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Abstract. Recently, we have proposed the h-connection method for the
description logic (DL) . It replaces the usage of Skolem
terms and unification by additional annotation and introduces blocking through
a new rule in the connection calculus, to ensure termination in the case of cyclic
ontologies. In this work, we enhance this calculus and its representation to take
on , an extended fragment that includes role hierarchies, qualified
number restrictions and (in)equalities. The main novelty of the calculus lies in
the introduction of equality, as well as in the redefinition of connection to
accommodate number restrictions, either explicitly or expressed through
equality. The new calculus uses the Eq system, thus introducing substitutivity
axioms for each concept or role name. The application of Bibel’s equality
connections appears here as a first solution to deal with equality.
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1 Introduction

Particularly after the appearance of the Semantic Web, Description Logic (DL) [1] has
attracted growing attention in the Informatics’ mainstream, with applications in many
areas. The possibility of supplying Web users with query answers obtained by com-
plex, albeit decidable reasoning may constitute the main reason for such interest.

At least in the last two decades, the field of DL reasoning has been taken over by
tableaux calculi and reasoners. The DL family of languages has spread to include very
expressive fragments such as [15]; cutting-edge reasoning performance was
accordingly achieved, with the development of DL-specific optimization techniques.

On the one hand, a clear advantage for tableaux calculi against the growing array of
DL constructs - which demand particular treatment during reasoning - may lie in its
easy adaptability. Dealing with a new construct may only require conceiving a new
tableaux rule, maybe along with some optimization companion.

On the other hand, promising methods may have been neglected in such a scenario,
in which the tough competition is often focused on gains through optimizations.
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Therefore, perhaps there is still room available for “basic research” on DL reasoning, in
the sense that other efficient calculi need to be adapted to DL, tuned and tested.

Recently, we have embarked in such an endeavor. Departing from the successful
first-order logic (FOL) Connection Method (CM) - whose matrix representation pro-
vides a parsimonious usage of memory compared to other methods -, we designed, a
first connection calculus for DL, the [6]. It incorporates several features of
most DL calculi: blocking (implemented by a new rule in connection calculi), lack of
variables, unification and Skolem functions.

Moreover, RACCOON [7], the reasoner which embodied this calculus, displayed
surprisingly promising performance for an engine which has no DL optimizations. In
most of our benchmarking for , it was only clearly surpassed by
Konclude [15] (even against FacT ++ [16] and Hermit [8] – see Sect. 5), even con-
sidering that these reasoners were designed to face more complex DL fragments than

, a disadvantage for them. Nonetheless, this fact corroborates connection calculi as
fair, competitive choices for DL ontology querying and reasoning.

In an attempt to extend the expressivity of the ontologies it can cope with, in this
work we enhance this calculus and its representation to take on , an extended
fragment that includes role number restrictions and (in)equal-
ities. The main novelty lies in the introduction of (in)equalities, as well as the redefi-
nition of connection to accommodate number restrictions, either explicitly or expressed
through equalities. The application of Bibel’s eq-connections (equality connections) [4]
appears here as a first solution to deal with (in)equalities, although cardinality
restrictions do not need equality connections, once, in this case, an equality connects
only to an inequality, given a proper h-substitution for the pair is available. Surely,
there are other more efficient solutions to dealing with equality, such as paramodulation
[13] and RUE (Resolution and Unifications with Equality) [5], not to speak on the
many advanced techniques already applied in the DL setting. The aim of the new

calculus is providing a first solution and roadmap on how to
deal with equality and number restrictions, based on its semantics.

The text is organized as follows. Section 2 provides an explanation of the FOL CM.
Section 3 introduces ; its normalization is shown in Sect. 4. Section 5 explains
our formal connection calculus for . Section 6 discusses related work on
equality handling in FOL and DL. Section 7 concludes the article. The calculus’ ter-
mination, soundness and completeness are proven in www.cin.ufpe.br/*fred/RR.pdf.

2 The Connection Method

The connection method has a long tradition in automated deduction. Conceived by W.
Bibel in the early 80’s, it is a validity procedure (opposed to refutation procedures like
tableaux and resolution), i.e., it tries to prove whether a formula, theorem or query is
valid. It consists of a matrix-based deduction procedure designed to be economical in
the use of memory, as it is not generative as tableaux and resolution, in the sense that it
does not create intermediary clauses or sentences during proof search. We explain how
it works below, preceded by necessary definitions.
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A (first-order) literal, denoted by L, is either an atomic formula or its negation. The
complement :L of a literal L is P if L is of the form :P, and :L otherwise. A formula
in disjunctive normal form (DNF) is a disjunction of conjunctions (like C1 _ . . . _ Cn),
where each clause Ci has the form L1 ^ . . . ^ Lm and each Li is a literal. The matrix of a
formula in DNF is its representation as a set C1; . . .;Cnf g, where each Ci has the form
L1; . . .; Lmf g with literals Li. In the graphical matrix representation, clauses are rep-

resented as columns.

2.1 Method Representation

Suppose we wish to entail whether KB � a is valid using a direct method, like the
Connection Method (CM). By the Deduction Theorem [3], we must then prove directly
KB ! a, or, in other words, if :KB _ af g is valid. This opposes to classical refutation
methods, like tableaux and resolution, which builds a proof by testing whether
KB[ :af g � ?. Hence, in the CM, the whole knowledge base KB should be negated,
including instantiated predicates, like A að Þ, where a is a constant or individual. Given
KB ¼ a1; a2; . . .; anf g; ai being FOL formulae, in this work we define query as a matrix
:KB _ af g (i.e., :a1 _ :a2 _ . . . _ :an _ a) to be proven valid, where a is the query
consequent. A query represented in this way is said to be in positive DNF.

Besides, the effects for a negated KB in a DNF representation are: (i) axioms of the
form E ! D (in DL, EYD) translate into E ^ :D; (ii) in a matrix, variables are
existentially quantified; (iii) FOL Skolemization works over universally quantified
variables, instead of existentially ones; and (iv) the consequent a is not negated.

Example 1 (Query, positive DNF, clause, matrix). The query

f8w Animal wð Þ ^ 9z hasPart w; zð Þ ^ Bone zð Þð Þ ! Vertebrate wð Þ; 8x Bird xð Þ !
Animal xð Þ ^ 9y hasPart x; yð Þ ^ Bone yð Þð Þ ^ 9v hasPart x; vð Þ ^ Feather vð Þð Þg
� 8t Bird tð Þ ! Vertebrate tð Þ

is represented by the following positive DNF matrix and graphical matrix, where
variables y; v and t were skolemized by functions f xð Þ; g xð Þ and constant c (Fig. 1):

Fig. 1. A FOL query in disjunctive clausal form represented as a matrix and graphical matrix
(with literals abridged, e.g. A wð Þ stands for Animal wð Þ, etc.)
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2.2 Method Intuition and Functioning

We have represented a FOL query in DNF with clauses as columns, i.e., we are dealing
with the matrix vertically. If we change our perspective, traversing the matrix hori-
zontally in all possible ways (or paths), with each column supplying only one literal in
a path, and group these paths conjunctively, we are indeed converting the query to the
conjunctive normal formal (in the most inefficient way). For instance, in the matrix
above, two of the paths are (randomly) listed below:

A wð Þ;B xð Þ;B xð Þ;:Bo f xð Þð Þ;:h x; g xð Þð Þ;B xð Þ;:B cð Þ;V cð Þf g
h w; zð Þ;:A xð Þ;B xð Þ;:Bo f xð Þð Þ;:h x; g xð Þð Þ;:F g xð Þð Þ;:B cð Þ;V cð Þf g:

The conjunctive formula would look like (with all variables quantified):

. . . ^ A wð Þ _ B xð Þ _ B xð Þ _ :Bo f xð Þð Þ _ :h x; g xð Þð Þ _ B xð Þ _ :B cð Þ _ V cð Þð Þ ^ . . .

^ h w; zð Þ _ :A xð Þ _ B xð Þ _ :Bo f xð Þð Þ _ :h x; g xð Þð Þ _ :F g xð Þð Þ _ :B cð Þ _ V cð Þð Þ ^ . . .

It is now easy to see that such a formula (or matrix) is valid iff every path has a
connection, i.e., a r-complimentary pair of literals, where r is the (most general) unifier
between them. For instance, the first path above is true, once it contains the valid sub-
formula B xð Þ _ :B cð Þ, with r ¼ x=cf g; the second is true because it has the sub-
formula h w; zð Þ _ :h x; g xð Þð Þ, with r ¼ x=c;w=c; z=g cð Þf g, and so on.

The method then must check all paths for connections in a systematic way. Note
that a connection prunes many paths in a single pass, due to the matricial arrangement
of clauses, a relevant source of reasoning efficiency.

Example 2 (Connection Method). Figure 2 shows the step-by-step query solution.
The reader may note, e.g., that the first connection (step 1) solves 16 paths.

Each connection can create up to two sets of literals still to be solved, one in each
clause (column) involved in the connection. The first of these literals in each clause is
marked in each step of the Figure with an arrow.

Otten [11] proposed a “sequent-style” calculus formalization, alternatively to the
graphical matricial one. Our calculus is based on his; it is explained in Sect. 5.

3 The Description Logic

An ontology in is a set of axioms over a signatureR ¼ NC;NR;NOð Þ, whereNC

is the set of concept names (unary predicate symbols), NR is the set of role or property
names (binary predicate symbols), and NO is the set of individual names (constants) [1].
The sets are mutually disjoint. The set of concept expressions (C) is recursively
defined as follows (with n 2 N�, and C a concept expression, i.e., C 2 C):

C ::¼ NC C uCj jC tC :Cj j9r:C 8r:C � nrjj j � nr:C � nrj j � nr:C
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allows for a set of basic axioms (TBox, RBox), and a set of axioms of a
particular situation (ABox). In the definitions below a, b 2 NO; r; s 2 NR;D;E 2 C and
i; n� 1. A TBox axiom is a subsumption like DY E; an RBox one is like r � s; and an
ABox is a finite set of assertions (or instances) of three
types: (i) concept assertions like C að Þ; (ii) role assertions r a; bð Þ; (iii) (in)equality
assertions a ¼ b (or a 6¼ b). An ontology O is an ordered tuple

An interpretation I has a domain DI and an interpretation function :I that maps to
every A 2 NC a set AI �DI ; to every r 2 NR a relation rI �DI � DI ; and to every
a 2 NO an element aI 2 DI . The function :I extends to concepts as depicted in Table 1.

An interpretation I satisfies an axiom a I � að Þ iff all I axioms and a are satisfied, i.e.,
I satisfies CY D iff CI �DI ;C að Þ iff aI 2 CI , r a; bð Þ iff a; bh i 2 rI ; r � s iff rI � sI . O
entails a O � að Þ iff every model of O is also a model of a. In this paper, variables are
denoted by x, y, z, possibly with subscripts. Terms are variables or individuals.

4 Normal Form and Matrix Representation for

Matrices with (qualified) number restrictions can be represented in two ways: the
abridged form, i.e., with the number restrictions explicit, and the expanded form, with
number restrictions substituted by axioms containing concepts, roles and (in)equalities
that correspond to the semantic definitions. Besides, to take on (in)equalities, substi-
tutivity axioms (e.g., 8x8y x ¼ yð Þ ! ðE xð Þ ! E yÞð Þ for concept names, and
8x8y8z8k x ¼ zð Þ ^ y ¼ kð Þ ! r x; yð Þ ! r z; kð Þð Þ for role names) are represented as
clauses for every concept and role name in the query.

Fig. 2. The query solution, with literals abridged. Arrows stand for pending sets of literals.
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Next, the matrix is converted to a specific DNF, introduced here. This DNF, with
definitions concerning representation as matrices for the calculus, is presented below.

Definition 1 ( literal, formula, clause, matrix). are
atomic concepts or roles, possibly negated and/or instantiated, or (in)equalities. Literals
involved in universal or existential restrictions are underlined. In case a restriction
involves more than one clause, literals are indexed (in the top of the literal) with a same
new column index number. An formula in DNF is a disjunction of con-
junctions (like C1 _ . . . _ Cn), where each Ci has the form L1 ^ . . . ^ Lm, with each Li
being a literal. The matrix of an formula in DNF is a set C1; . . .;Cnf g, where
each clause Ci has the form L1; . . .; Lmf g with literals Li.

Definition 2 (Substitutivity clauses, graphical matrix). matrices repre-
senting number restrictions also contain substitutivity clauses for every concept and
role name, in the forms x 6¼ y;E xð Þ;:E yð Þf g and x 6¼ z; y 6¼ k; r x; yð Þ;:r z; kð Þf g with
E 2 NC; r 2 NR.

In the graphical matrix representation, clauses are represented as columns, and
restrictions as lines; restrictions with indexes are horizontal; without are vertical (see
Example 3 – substitutivity axioms are not presented). Literals participating in a uni-
versal restriction in an axiom’s left-hand side (LHS) or in an existential restriction in
the right-hand side (RHS) are underlined; otherwise, they are sidelined.

Example 3 (Query, clause, matrix, abridged/expanded forms). Figure 3
shows query O ¼ [ 1 hasPart:WheelYVehicle; CarY � 3 hasPart:Wheelf g; a ¼
CarYVehicle in abridged form. The index marks clauses involved in a same
restriction).

Table 1. Syntax and semantics of constructors

Construct Syntax Semantics

Atomic negation :C DI / CI

Conjunction C uD CI \DI

Disjunction C tD CI [DI

Exist. restriction 9r:C fx 2 DI jhx; yi 2 rI ^ y 2 CIg
Value restriction 8r:C fx 2 DI jhx; yi 2 rI ! y 2 CIg
(In)equality a ¼ bn 6¼ aI ¼ bInaI 6¼ bI

Qualified number
restrictiona (for simple
number restrictions, drop
^yi 2 CI from the
semantics)

� nr:C fx 2 DI j Vnþ 1

i¼1
x; yih i 2 rI ^ yi 2 CI Vn

i;j¼1;i 6¼j
yi 6¼ yj

Vn�1

i¼1
yi 6¼ ynþ 1 ! yn ¼ ynþ 1g

� nr:C fx 2 DI j Vnþ 1

i¼1
x; yih i 2 rI ^ yi 2 CI Vnþ 1

i;j¼1;i 6¼j
yi 6¼ yjg

aNote that we have relied on an unusual semantics for number restrictions, instead of
fx 2 DI j#hx; yii 2 rI ^ yi 2 CI � j� ng. The semantics presented here indeed consists of the
basis for the number restrictions rules (� j � -rules [1]) in tableaux calculi.
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The negations in literals \3:hasPart1 and :Wheel1 constitute merely a notational
convention that facilitates the connections. They reflect the transformation to the
expanded form, where these literals are converted into negated literals and equalities.

The number restriction expanded form, according to the semantics defined in
Table 1, replaces [ 1hasPart; Wheel by hasPart x; y1ð Þ uWheel y1ð Þ u hasPart x; y2ð Þ
uWheel y2ð Þ ^ y1 6¼ y2 and \3 :hasPart1 by

V3
i¼1 hasPart x; við Þ uWheel við Þ uv1 6¼

v2 u v1 6¼ v3 ! v2 ¼ v3 before creating the matrix. The resulting matrix is depicted in
Fig. 4. For the sake of space, substitutivity axioms are not shown.

Definition 3 (Impurity, pure conjunction/disjunction). Impurity in an
formula is a disjunction in a conjunction, or a conjunction in a disjunction. A pure
conjunction (PC) or disjunction (PD) does not contain impurities (see Definition in [6]).

Fig. 3. The query from Example 1 represented as an matrix in abridged form

Fig. 4. Same example in expanded form, showing the (in)equalities (again, literals are abridged,
i.e., C means Car; h means hasPart, etc.)

Fig. 5. Examples of the three two-lined normal forms’ representations in
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Example 4 (Impurity, pure conjunction/disjunction). (a) 9r:A and
Vn

i¼1 Ai are PCs
if A and each Ai are also PCs; (b) ð8r: D0 t. . .tDn t E0 u. . .uEmð Þ t A0 u. . .uAp

� �� �
is not a PD, as it contains two impurities: E0 u. . .uEmð Þ and A0 u. . .uAp

� �
:

Definition 4 (Two-lined disjunctive normal form). An axiom is in two-
lined DNF iff it is in DNF and in one of the following normal forms (NFs): ið Þ bEY�D;
iið ÞEY bE ; iiið Þ �DYE; where E is a concept name1 bE is a PC, and �D is a PD.

Example 5 (Two-lined disjunctive normal form). The axioms (i) bEY �D;
(ii) EY 9r:bE and (iii) 8r:�DYE; where bE ¼ Vn

i¼1 Ei and �D ¼ Wm
j¼1 Dj (Fig. 5).

Definition 5 (Cycle, cyclic/acyclic ontologies and matrices). If A and B are atomic
concepts in an ontology O, A directly uses B, if B appears in the right-hand side of a
subsumption axiom whose left-hand side is A. Let the relation uses be the transitive
closure of directly uses. A cyclic ontology or matrix has a cycle when an atomic
concept uses itself; otherwise it is acyclic [1]; e.g., O ¼ fAY 9r:B;BY 9s:Ag is
cyclic.

5 The

The differs from the
FOL Connection Method (CM) by replacing Skolem functions and unification by h-
substitutions, and, just as typical DL systems, employs blocking to assure termination.

Besides, equality connections, proposed by Bibel [4], are needed here as a first
attempt to address (in)equalities, and thus (qualified) cardinality restrictions. The idea is
to include substitutivity axioms for each concept and role name, e.g., for concept P:
x ¼ y ! P xð Þ;! P yð Þð Þ, represented as a single column x ¼ y; P xð Þ;:P yð Þf g

Moreover, expands the notion of connection to
include equality, which is used to express number restrictions. An ontology represented
as a matrix with the equalities is said to be in the expanded form and is explained in the
next section. The abridged form, with number restrictions without equalities, is tackled
in Subsect. 4.2.

5.1 Expanded Form - Representation and Reasoning

Definition 6 (Path, connection, h-substitution, h-complementary connection). A
path through a matrix M contains exactly one literal from each clause/column in M. A
connection is a pair of literals in three forms: (i) E;:Ef gwith the same concept/role name,
instantiated with the same instance(s) or not; (ii) x ¼ y; x 6¼ yf g, with x and y instantiated
with the same instance or not. A h-substitution assigns each (possibly omitted) variable an
individual or another variable, in an literal. A h-complementary connection is a

1 The symbols E and bE were chosen here to designate a concept name and a pure conjunction rather
than the usual C and bC , to avoid confusion with clauses, that are also denoted by C.
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pair of literals E xð Þ;:E yð Þf g or p x; vð Þ;:p y; uð Þf g, with h xð Þ ¼
h yð Þ; h vð Þ ¼ h uð Þ. The complement L of a literal L is E if ¼ :E, and it is :E if L ¼ E.

Remark 1 (h-substitution). Simple term unification without Skolem functions is used
to calculate h-substitutions. The application of a h-substitution to a literal is an
application to its variables, i.e. h Eð Þ ¼ E h xð Þð Þ; x fresh, and h rð Þ ¼ r h xð Þ; h yð Þð Þ,
where E is an atomic concept and r is a role. For notation, xh ¼ h xð Þ.
Definition 7 (Set of concepts). The set of concepts s xð Þ of a term x contains all
concept names instantiated by x so far, defined as s xð Þ def E 2 NCjE xð Þ 2 Pathf g.
Definition 8 (Skolem condition). The Skolem condition ensures that at most one
concept name is underlined for each term in the graphical matrix form. If i is an index,

this condition is defined as 8a j fEi 2 NC Ei að Þ
��� 2 Pathg j � 1.

Definition 9 ( connection calculus). Figure 6 brings the formal
connection calculus , adapted from the FOL CM [11]. The rules of
the calculus are applied in an analytic, bottom-up way. The basic structure is the
tuple <C, M, Path> , where clause C is the open sub-goal, M the matrix corresponding
to the query O ⊨ a (O is an ontology) and Path is the active path, i.e. the
(sub-)path being currently checked. The index l 2 N of a clause Cl denotes that Cl is
the l-th copy of clause C, increased when Cop is applied for that clause (the variable
x in Cl is denoted xl) – see example of copied clauses in Fig. 13a. When Cop is
applied, it is followed by the application of Ext or Red, to avoid non-determinism in the
rules’ application. The Blocking Condition states that, when a cycle finishes, the last
new individual xhl (if it is new, then xhl 62 NO, as in the condition) has a set of concepts

sðxhlÞ which is not a subset of the set of concepts of the previous copied individual, i.e.,

sðxhlÞ * s xhl�1

� �
[14]. If this condition is not satisfied, blocking occurs.

Fig. 6. The connection calculus
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Lemma 1 (Matrix characterization). A matrix M is valid iff there exist an index l, a
set of h-substitutions hih i and a set of connections S, s.t. every path through Ml, the
matrix with copied clauses, contains a h-complementary connection Lh1; L

h
2

� � 2 S, i.e. a
connection with h L1ð Þ ¼ h L2

� �
. The tuple lh ; hih i; Si is called a matrix proof.

Clause copying and its multiplicity l already existed in the original CM, but neither a
copy rule nor blocking were necessary, as FOL is semi-decidable. To regain termi-
nation, the new Copy rule implements blocking [1], when no alternative connection is
available and cyclic ontologies are being processed. The rule regulates the creation of
new individuals, blocking when infinite cycles are detected. The Skolem condition
solves the FOL cases where the combination of Skolemization and unification correctly
prevents connections (see Soundness Theorem in WWW.cin.ufpe.br/*fred/RR.pdf).

In the Ext and Red rules, h-substitutions replace implicit variables by terms in the
current path. A restriction avoids the situation in FOL matrices, where unification is
tried with distinct Skolem functions: any individual x can have in its set of concepts
s xð Þ at most a single concept name with a column index in the matrix, stated by the

condition 8a Ei 2 NC Ei að Þ
��� 2 Path

n o��� ��� � 1.

Example 6 ( connection calculus). Figures 7 and 8 show the proof of the
query from Example 1 using the matrix representation and the calculus, respectively.

Fig. 7. The query’s proof in graphical matrix representation. Arcs are connections whose labels
are the names of the involved individual(s)/variable(s). Arrows indicate pending literals’ lists.
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Furthermore, when equality between pairs of individuals are being dealt, equality
connections [4] with substitutivity axioms, in explicit or implicit form, can be relied
upon. One can solve, e.g., P að Þ; a ¼ bf g�P bð Þ, as portrayed in Fig. 9. Figure 9(i)
displays the equality connections performed in the usual way, with the introduction of
the substitutivity axiom P: x ¼ y ! P xð Þ ! P yð Þð Þ (represented as the column
x ¼ y;P xð Þ;:P yð Þf g), while Fig. 9(ii) presents the same connection in an abridged way.

This subject naturally leads to the representation of number restrictions connections
in the abridged form, deployed in the next subsection.

5.2 Abridged Form - Representation and Reasoning

(Qualified) number restrictions can be in abridged form (� � nrj :Cð Þ with n 2 N�). In
this case, one should note that : � nrð Þ ¼ � n� 1ð Þr and : � nrð Þ ¼ � nþ 1ð Þr.
Definition 10 (Number restriction literal). Number restriction literals are literals
representing (qualified) number restrictions. They can be negated and/or instantiated,
and/or under- or sidelined or with no line. In case a restriction involves more than one
clause, literals are top indexed with a same new column index number.

Definition 11 (Number restriction valid interval). Two number restrictions form a
valid interval iff their numerical restrictions share an intersection, e.g. >5r, <8 :r.

Fig. 8. The proof of the query using the calculus, where M is an abbreviation for ffh;W y1ð Þ;
h;W y2ð Þ; y1 6¼ y2;:Vg; fC; :h1gg; fC, :W v1ð Þ1g; fC, :h2gg; fC, :W v2ð Þ2g; fC, :h3gg;
fC, :W v3ð Þ3g; C; v1 ¼ v2f g; C; v1 ¼ v3f g; C; v2 ¼ v3f g; V að Þf g; :C að Þf gg. The double-
ended arrow just copies the proof part to save text space.

Fig. 9. (i) A connection using the substitutivity axiom; (ii) an equality connection [4]
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Definition 12 (Number restriction h-substitution, h-complementary number
restriction connection). Let A and B be two number restriction literals, � j� nr and
� j�m :r, instantiated or not, representing role instance sets r x; y1ð Þ; . . .; r x; ynð Þh i
and r z;w1ð Þ; . . .; r z;wmð Þh i, with a valid interval between them (vi). A number
restriction h-substitution for the pair is a mapping h, s.t. h xð Þ ¼ h yð Þ; h yið Þ ¼ h wið Þ,
with i ¼ 1 to min við Þ. A h-complementary number restriction connection is a pair of
number restriction literals over a same role in the form � � n r; �j j�m :rf g, that,
under a number restriction h-substitution, share a valid interval vi.

A connection represents a tautology, e.g. E t:E. For number restrictions, this
means a valid interval, as, for example, any individual possessing any number of role
instances (including 0) with r satisfies the restriction >5r t <8r. If there is a “hole”, for
instance, >8r t <5r, then individuals with 5 to 8 role instances of r would not satisfy
the restriction, and the latter cannot be a tautology. Recall that <8r is represented as <8
:r, only to facilitate the connections to be settled.

Example 6 ( connection calculus, abridged form). Figures 10 and 11
display the proof from Example 2 in the abridged form, using the graphical matrix
representation and the formal calculus. Note that min [ 1 hasPart;\3:hasPartð Þ ¼ 2.

The abridged form can easily accommodate number restrictions with role hierar-
chies, if connections between number restrictions and role axioms exist.

Fig. 10. Proof of Example 2 in the abridged form. h a; við Þi; i ¼ 1; 2 is a set of two role instances
and vi; i ¼ 1; 2 is a set of two instances (of concept Wheel).

Fig. 11. The proof of Example 2 using the calculus, withM ¼ ff[ 1hasPart;Wheel;:Vehicleg;
fCar;\3 :hasPart1g; fCar; :Wheel1g; Vehicle að Þf g; f:Car að Þgg (literals are abbreviated)
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Example 7 (Number restrictions, role hierarchies). O ¼ [ 2 hasPart:Wheelf Y
Car; hasComponent� hasPart;TruckY � 6 hasPart:Wheelg; a ¼ TruckYCar:

This query is represented by M ¼ ff[ 2 hasPart;Wheel;:Carg; fhasComponent ;

:hasPartg; Truck;\5 :hasComponent1
n o

; Truck; :Wheel1
� �

; :Truck(a)f g; Car að Þf g :

Figure 12 brings the proof for M, with min [ 2 hasPart;\5 hasPartð Þ ¼ 3.

6 Discussion

Matricial inference methods, such as the CM, presents a few advantages over other
methods, as well as some drawbacks. We will discuss our method, at first in the light of
memory handling and existent solutions to solve equality equations in the context of
FOL. Next, we briefly comment some recent comparative performance of our
reasoner, RACCOON (ReAsoner based on the Connection Calculus Over ONtologies)
against well-known DL reasoners [7], and existent solutions for number restrictions
within the DL scenario, followed by a small discussion on next steps.

As for memory usage, in the CM, matrices require only a copy of the matrix and
data structures to store the current path, the pending clauses and literals, the unifier and
literal’s indices. It does not generate any intermediary results; this constitutes an
interesting benefit in terms of memory usage over generative methods such as reso-
lution or tableaux, which create intermediary clauses and sub-formulae.

Indeed, dealing efficiently with memory with cyclic ontologies is crucial for a DL
reasoner, since a number of fragments (including ) have been proven
PSPACE-complete [1]. Our calculus processes cycles (thanks to the Copy rule), saving
memory due to keeping only one copy of the matrix in memory [3, 4]. The other copies
are virtual, i.e., only the index l is created or incremented and stored, together with the
h-substitution and the current path. The next example portraits this case.

Example 8 (Cycles). O ¼ f9hasSon: DrtDrAncestorð ÞYDrAncestor; hasSon
ðZePadre; MoisesÞ; hasSon Moises;Luizð Þ; hasSon Luiz;ð FredÞ; Dr Fredð Þg; a ¼
DrAncestor ZePadreð Þ: This cyclic query has its proof represented by both Figs. 13a
and b.

Figure 13a brings an explicit copy of the second clause, needed for the proof. On
the other hand, Fig. 13b incorporate indices to denote how the only copy was used with
different individuals and instantiations. At least in theory, such idea exists in the CM,

Fig. 12. Proof with number restrictions and a role hierarchy axiom
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called implicit amplification [3]; we adopted it in RACCOON with the same notation,
and gain memory with its procedure.

Clausal inference methods require normal forms, in which transformations apply
over formulae to produce clauses over which the method works. On the one hand,
clause manipulation accelerates reasoning in reasonably expressive logics, e.g., FOL.
On the other hand, the drawbacks are at least two-fold.

First, literals’ redundancy among clauses often constitutes an overhead in large
knowledge bases. In the CM, matrix representation minors the problem during rea-
soning, as the method is non-generative; anyway, it remains if, in an initial query
representation in DNF, clauses share too many literals. For the , the
two-lined normal form reduces this type of redundancy at the expense of introducing a
small number of new symbols. To sum up, the best solution consists in applying a non-
clausal connection method [12], where matrices can be nested.

Another problem for clausal calculi resides on adapting to an increasing set of
constructs in DL: each new construct to be inserted into the calculi requires careful
analysis, and frequently changes in the existing rules. This problem also plagues
equality approaches in clausal systems. Consolidated solutions from saturation-based
reasoning, such as paramodulation [13], are hard to be integrated, and the former is not
complete for the connection method [11]. Nevertheless, an equality approach based on
RUE (Resolution with Unification and Equality) [5] seems plausible for connection
calculi but has not been tried yet. Our aim in formalizing our calculus with the Eq
system is paving the way for such more efficient solutions.

Although the Eq system is not yet coded in RACCOON, the goal-oriented search
embodied by the connection calculus, together with its economical approach to
memory, made the reasoner display unexpected fair results for consistency,
compared to Hermit, FacT++ and Konclude. A summary of the benchmarking con-
ducted over the ORE 2014 and 2015 baselines is deployed in Fig. 14 [7].

Fig. 13. Proof representations of a cyclic query, with að Þ explicit and bð Þ implicit copies
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In the baselines, ontologies were ranked by size and expressivity. RACCOON
exhibited the fastest results (side by side with Konclude) in smaller and less complex
ontologies; however, against the larger and more complex set (the last ones), results
start to decay (in a graceful fashion), probably due to the lack of DL optimizations.
Furthermore, in the first experiment, RACCOON’s performance fell short in ontologies
in the presence of a certain structure where cycles occur inside other cycles massively.
Apart from that, the results seem promising, given the possibility of implementing
reductions built in other competitors.

When faced with number restrictions and their equalities, the idea is applying the
abridged form first, which demand less steps and memory; only in the cases it does not
suffice, the expanded form must be used (comparing two number restrictions has a
quadratic complexity in the simpler cases, not to talk about checking the ABox).
Besides, with the expanded form, hundreds of substitutivity axioms might need to be
added to the matrix. Thus, can only be competitive in this DL frag-
ment, when, e.g., solutions based on rewriting [2, 10] can be devised and integrated,
i.e., a way to substitute equal individuals by their canonical representative is envisaged.
Bibel already suggested term rewriting as a possible technique to solve equality in the
CM [4]. Integrating it with the represents a challenge for our calculus
to remain competitive as more expressive fragments are to be addressed.

7 Conclusions and Future Work

In the current work, is presented, a connection method that enhances
the , by, mainly, introducing (in)equalities and, as a respective solution to
handle them, equality connections with equality predicate substitutivity axioms explicit
or implicit, as defined by Bibel. Two new forms of representing number restrictions are
also shown: the abridged and the expanded form. In the former, cardinality restrictions
are a new type of literals themselves, and this new notion of literal together with its
respective new connection type had to be defined. In the latter, number restrictions are
replaced by literals and (in)equalities that correspond to the number restriction’s
semantic definition.

Fig. 14. Comparison of RACCOON and ORE competitors for consistency on the ORE 2014
and 2015 baselines ( ontologies)
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As for theoretical future work, we aim to create more sophisticated blocking
schemes for dynamic and double blocking for DL constructs like inverses, union,
intersection and complement of roles [9], transitivity, role chains and value maps,
complex role axioms and dealing with nominals. As for practical future work, we
intend to enhance the fragment currently dealt by RACCOON to include , as
well as the future new solutions mentioned as theoretical future work.
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