
The MET: The Art of Flexible Reasoning
with Modalities

Tobias Gleißner(B) and Alexander Steen

Institute of Computer Science, Freie Universität Berlin, Berlin, Germany
{tobias.gleissner,a.steen}@fu-berlin.de

Abstract. Modal logics have numerous applications in computational
linguistics, artificial intelligence, rule-based reasoning, and, in general,
alethic, deontic and epistemic contexts. Higher-order quantified modal
logics additionally incorporate the expressiveness of higher-order for-
malisms and thereby provide a quite general reasoning framework. By
exploiting this expressiveness, the Modal Embedding Tool (MET) allows
to automatically encode higher-order modal logic problems into equiv-
alent problems of classical logic, enabling the use of a broad variety of
established reasoning tools. In this system description, the functionality
and usage of MET as well as a suitable input syntax for flexible reasoning
with modalities are presented.

1 Introduction

Various powerful automated and interactive theorem proving systems (ATP and
ITP, respectively) for first-order (FO) and higher-order (HO) logics have been
developed over the past decades, including the first-order ATP E [1], the higher-
order ATPs Satallax [2], LEO-II [3] and Leo-III [4], and the higher-order ITP
Isabelle/HOL [5]. While many of these systems are meanwhile quite robust and
mature, they often support reasoning in classical logics only. This is in contrast
to the fact that non-classical logics have many topical applications in mathemat-
ics, computer science and beyond. In this work, we focus on the automation of
quantified (multi-)modal logics [6] which can be fruitfully applied in the context
of artificial intelligence, computational linguistics and rule-based reasoning. They
also play an important role in various areas of philosophy, including ontology,
(computer-)ethics, philosophy of mind and philosophy of science. Many challeng-
ing applications, however, as recently explored in metaphysics [7–9], require quan-
tified and in particular higher-order quantified modal logics (HOMLs). But even
for first-order non-classical logics only a small number of implemented systems is
available to date, and the situation is even worse for higher-order quantified log-
ics. In particular, the development of ATPs for HOMLs is still in its infancy, hence
impeding more complex computer-assisted studies of relevant topics.

To overcome this situation, in this work we present the Modal Embedding
Tool (MET for short) that bridges the above gap by enabling the employment

Alexander Steen is partially supported by the Volkswagenstiftung (project CRAP).

c© Springer Nature Switzerland AG 2018
C. Benzmüller et al. (Eds.): RuleML+RR 2018, LNCS 11092, pp. 274–284, 2018.
https://doi.org/10.1007/978-3-319-99906-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99906-7_19&domain=pdf

The MET: The Art of Flexible Reasoning with Modalities 275

of classical higher-order reasoning systems, including powerful HO ATPs, for
reasoning in a broad variety of quantified modal logics. Recall that for quan-
tified modal logics there exist multiple different notions of semantics, most of
which usually used in different application domains. The exact semantics of a
given quantified modal logic can be regarded a product of multiple individual
semantical parameters, including:

(i) Modal axiomatization: What properties hold for each modality?
The properties range from axiom scheme K alone to the strong assumptions
of logic S5, and any intermediate system (cf. the modal logic cube [6]).

(ii) Quantification semantics: What are the domains of quantified variables?
Usual choices include so-called cumulative, decreasing, constant and varying
domain semantics.

(iii) Rigidity: Is the meaning of a symbol the same in every possible world?
Possible choices include rigid and world-dependent constant symbols.

Also, there exist different choices for logical consequence relations, including
at least so-called local and global consequence [6]. When taking all possible
parameter combinations into account this amounts to more than 120 different
HOMLs.

Fig. 1. Working principle of the MET: A modal logic problem statement is given to the
system which it then transforms and augments with suitable technical definitions. The
resulting problem is formulated in classical logic and only valid if the original problem
was valid.

MET implements a shallow semantical embedding approach [10] in which
formulas of modal logic are identified with specific terms of classical higher-
order logic such that a notion of modal validity can be defined within HOL
that coincides with the desired modal logic semantics. More concretely, a modal
logic formulated in a suitable machine-readable syntax (cf. Figs. 2 and 3) is
translated by MET to a problem statement in the de-facto standard TPTP
THF syntax [11,12] for HO ATP systems. The transformation process is thereby
validity preserving and thus allows the use of common reasoning systems that
do not support modal logic reasoning on their own. The process is visualized in
Fig. 1. Although the here discussed approach involves an indirection over classical
HOL, recent evaluations confirm that the reasoning effectivity of HO ATPs used
in conjunction with MET are on a par with established modal logic reasoners [4].

276 T. Gleißner and A. Steen

Additionally, reasoning using MET is much more flexible than the employment of
these special purpose systems as it allows a completely free choice of all relevant
semantical parameters (supporting every existent normal modal logic) whereas
native modal logic reasoners are limited to a small subset of modal logic systems
and usually have fixed choices for quantification semantics, symbol rigidity and
consequence. In fact, even more general modal logics are supported via a fine-
grained control over the properties of individual quantification domains, modal
operators, etc [13].

Whereas earlier work focused on the theoretical foundations [10], and the
development of the automatic embedding procedure itself [13], in this paper,
we present the prover-independent tool MET and its practical employment in
relevant application scenarios.

Higher-Order Modal Logics. HOMLs as addressed here are extensions of
HOL [14]. HOL provides λ-abstraction as an elegant means to denote unnamed
functions, predicates and sets (by their characteristic functions). HOML, in turn,
augments HOL with a set of modal operators �i, i ∈ I, for some index set I, and
is equipped with a suitable combination of HOL semantics and a Kripke-style
modal semantics [13]. In our approach an adequate notion of Henkin semantics
for both HOML and HOL is assumed [10,13].

2 A Syntax for HOML and Its Semantics

A standard ASCII-based machine-readable representation of HOL problems for
ATP systems is given by the TPTP THF dialect [12]. This syntax is supported
by most of the current HOL reasoners, including all HO systems mentioned in
the beginning of Sect. 1. Since the syntax of HOML is a conservative extension
of that of classical HOL, the THF representation language can as well easily be
augmented by introducing the modal operators $box and $dia as new primitive
connectives, representing the modal connectives � and ♦, respectively (in a
mono-modal settings). For multi-modal logics, there exist analogous operators
that are additionally given an index as first argument and the formula as second
argument. The remaining syntax coincides with standard THF and is described
in the literature [12].

As sketched in Sect. 1, there is no single semantics of quantified modal logics.
As a consequence, there is additional need for explicitly stating the semantical
setting in which a problem is to be assessed by a reasoning system. This is
realized in the here proposed syntax by including a meta-logical specification
into the problem header. Such a specification statement is displayed in Fig. 2:
In this logic specification, the identifiers $constants, $quantification and
$consequence specify the exact semantical settings for the rigidity of constant
symbols, the quantification semantics and the consequence relation, respectively.
Finally, $modalities specifies the properties of the modal connectives by means
of fixed modal logic system names or, alternatively, a list of individual modal
axiom schemes. The valid parameter values are given in Table 1.

The MET: The Art of Flexible Reasoning with Modalities 277

% Begin of logic specification
thf(〈name0〉, logic, ($modal := [

$constants := 〈const spec〉, $quantification := 〈domain spec〉,
$consequence := 〈conseq spec〉, $modalities := 〈modal spec〉])).

% End of logic specification, begin of problem statement
thf(〈name1〉, 〈role1〉, 〈formula1〉).
...

thf(〈namen〉, 〈rolen〉, 〈formulan〉).

Fig. 2. Layout of a general modal logic problem. The first statement (ll. 2–4) specifies
a concrete modal logic, the remaining statements (ll. 6–8) formulate the problem itself.
The 〈namei〉 serve as syntactic identifier for that statement, a 〈rolei〉 (usually set to
axiom or conjecture) tells the reasoning system how to interpret the 〈formulai〉 for-
mulated in the presented augmented THF syntax. Lines starting with % are comments.

Table 1. Semantic specification parameters. The parameter placeholders, written in
angles 〈·〉, refer to the values for the logic specification of Fig. 2. The names of the
modal logic system parameters (such as $modal_system_K or $modal_system_S5) refer
to the respective systems from the modal logic cube [6]. The individual modal axiom
schemes names (such as $modal_axiom_T or $modal_axiom_5) are named similarly.

Parameter Valid values
〈const spec〉 $rigid, $flexible
〈domain spec〉 $constant, $varying, $cumulative, $decreasing

〈conseq spec〉 $local, $global

〈modal spec〉

$modal_system_X

for X in {K, KB, K4, K5, K45, KB5, D, DB, D4, D5, D45, T, B, S4, S5, S5U}
or
[$modal_axiom_X1, $modal_axiom_X2, ...]

for Xi in {T, B, D, 4, 5, CD, C4, C}

The remaining placeholders of Fig. 2, 〈name〉, 〈role〉 and 〈formula〉, are stan-
dard and given by the TPTP language definition [11] to which we refer to for
brevity. The semantics specification format presented in this paper is work-in-
progress and stems from an ongoing TPTP language extension proposal.1

3 Application Examples

In this section, the practical employment of MET for reasoning with relevant
non-trivial problem statements is discussed. The first application example, a for-
mulation of the wise men puzzle, incorporates the use of multiple inter-related
modality operators and quantification beyond first-order. The second example

1 See proposal “Logic Specification Format” of the TPTP platform for more details.

http://www.cs.miami.edu/~tptp/TPTP/Proposals/LogicSpecification.html

278 T. Gleißner and A. Steen

focuses on the use of logic specification statements within the problem and illus-
trates the flexibility of the here presented reasoning approach.

3.1 Case Study: The Wise Men Puzzle

A classical example dealing with knowledge between agents and implicit knowl-
edge transfer is the wise men puzzle (also known in a variation as muddy fore-
head puzzle). Epistemic logic, the logic about knowledge, can be interpreted
as a form of multi-modal logic, were the modality operators represent knowing
and are indexed with an agent’s identifier from an index set I (referring to the
particular agent whose knowledge it addresses). As an example, the sentence
“agent a knows φ”, for an agent a ∈ I, can be stated as �aφ. While dealing
with common knowledge scenarios, often an additional artificial agent (some-
times referred to as fool) is defined for allowing statements such as “everybody
knows φ”, represented by �foolφ.

1 thf(wise_men_puzzle_semantics, logic , ($modal := [
2 $constants := $rigid, $quantification := $varying,
3 $consequence := $global, $modalities := $modal_system_S5])).
4
5 % $i type models the agents’s hats
6 thf(agent_a, type, (a: $i)).
7 thf(agent_b, type, (b: $i)).
8 thf(agent_c, type, (c: $i)).
9

10 % Property of an agent’s hat: ws represents "having a white spot"
11 thf(white_spot, type, (ws: ($i>$o))).
12
13 % Common knowledge: At least one agent has a white spot
14 thf(axiom_1, axiom, ($box_int @ 0 @ ((ws @ a) | (ws @ b) | (ws @ c)))).
15
16 % If one agent has a white spot all other agents can see this
17 thf(axiom_2ab, axiom, ($box_int @ 0 @ ((ws @ a) => ($box_int @ 2 @ (ws @ a))))).
18 thf(axiom_2ac, axiom, ($box_int @ 0 @ ((ws @ a) => ($box_int @ 3 @ (ws @ a))))).
19 thf(axiom_2ba, axiom, ($box_int @ 0 @ ((ws @ b) => ($box_int @ 1 @ (ws @ b))))).
20 thf(axiom_2bc, axiom, ($box_int @ 0 @ ((ws @ b) => ($box_int @ 3 @ (ws @ b))))).
21 thf(axiom_2ca, axiom, ($box_int @ 0 @ ((ws @ c) => ($box_int @ 1 @ (ws @ c))))).
22 thf(axiom_2cb, axiom, ($box_int @ 0 @ ((ws @ c) => ($box_int @ 2 @ (ws @ c))))).
23
24 % If one agent has a black spot all other agents can see this
25 thf(axiom_3ab, axiom, ($box_int @ 0 @ ((~(ws @ a)) => ($box_int @ 2 @ (~(ws @ a)))))).
26 thf(axiom_3ac, axiom, ($box_int @ 0 @ ((~(ws @ a)) => ($box_int @ 3 @ (~(ws @ a)))))).
27 thf(axiom_3ba, axiom, ($box_int @ 0 @ ((~(ws @ b)) => ($box_int @ 1 @ (~(ws @ b)))))).
28 thf(axiom_3bc, axiom, ($box_int @ 0 @ ((~(ws @ b)) => ($box_int @ 3 @ (~(ws @ b)))))).
29 thf(axiom_3ca, axiom, ($box_int @ 0 @ ((~(ws @ c)) => ($box_int @ 1 @ (~(ws @ c)))))).
30 thf(axiom_3cb, axiom, ($box_int @ 0 @ ((~(ws @ c)) => ($box_int @ 2 @ (~(ws @ c)))))).
31
32 % Agents 1 and 2 do not know their hat color
33 thf(axiom_9, axiom, ($box_int @ 0 @ (~($box_int @ 1 @ (ws @ a))))).
34 thf(axiom_10, axiom, ($box_int @ 0 @ (~($box_int @ 2 @ (ws @ b))))).
35
36 % Agent 3 can deduce the color of his hat (white spot)
37 thf(con, conjecture, ($box_int @ 3 @ (ws @ c))).

Fig. 3. The wise men puzzle formulated in modal THF syntax. The term $box int @

i represents a box operator �i for which the set of integers serves as index set I. In this
example, the common knowledge agent (the fool) is given by index 0, the remaining
three agents by indexes 1, 2 and 3.

The MET: The Art of Flexible Reasoning with Modalities 279

A formulation of the wise men puzzle is given in Fig. 3. In the logic specifica-
tion, the modalities (including the common knowledge modality) are given an S5
axiomatization to capture the usual assumptions about knowledge. Additionally,
a varying domain semantics is used for this experiment. The modal operators
�a for some agent a �= fool ∈ I are related to common knowledge �fool using
so-called bridge-rules stating that everything that is common knowledge is also
known by the individual agents (cf. ll. 16–30). The common knowledge fact that
the first two agents do not know their hat color is given by two axioms (ll. 33–34)
and finally the conjecture that the third agent now knows its hat color is given
by the conjecture (l. 37). The wise men problem in the presented formulation
can be solved using MET in conjunction with Leo-III as reasoner back end in
under 5s, cf. AppendixA for a detailed display of the tools usage.

3.2 Case Study: Experiments with Semantical Variations

In this case study, we focus on the flexibility the logic specification within a prob-
lem provides for experiments in different semantical settings. Figure 4 displays
an example modal logic formula that is an instance of a corollary of Becker’s
postulate [15]. It essentially expresses that everything that is possibly necessary
it, in fact, necessary. Since this formula is obviously debatable, one might want
to explicitly include or exclude this fact from a logical system. It is known from
the literature, that Becker’s postulate is indeed valid in S5 modal logics but not
in any weaker logic systems. Even without this knowledge, the MET allows to
experimentally reproduce these results with only simple modification of the logic
specification statements. To that end, each semantical setting can be formulated
as logic specification and then transformed by MET to HOL problems. These
HOL problems are then in turn given to HO reasoning systems for verifying or
refuting the conjecture.

thf(s5_spec, logic, ($modal := [

$constants := $rigid, $quantification := $constant,

$consequence := $global, $modalities := $modal_system_S5])).

thf(becker,conjecture,(! [P:$i>$o,F:$i>$i, X:$i]: (? [G:$i>$i]:

(($dia @ ($box @ (P @ (F @ X)))) => ($box @ (P @ (G @ X))))))).

Fig. 4. A corollary of Becker’s postulate formulated in modal THF, representing the
formula ∀Pι→o∀Fι→ι∀Xι∃Gι→ι(♦�P (F (X)) ⇒ �P (G(X))).

In the example of Becker’s postulate, the higher-order ATP system Leo-III
and the counter-model finder Nitpick [16] verify the above claim. The systems
produce proofs resp. explicit, finite, counter-models of the validity the conjecture
in each modal logic system. The results of these experiments are summarized in
Table 2. It can be seen that, for every modal logic system, the combination of
both reasoners successfully assess the conjecture and yield the expected results.

280 T. Gleißner and A. Steen

Each invocation of the reasoning systems (including the pre-processing by MET)
takes less than 1 s. Note that both systems are in a sense complementary, i.e.
theorem proving systems are usually stronger for proving the validity of a con-
jecture while counter-model finders focus on counter-satisfiability. Using both
systems, positive and negative results can be established as desired.

The example of Becker’s postulate is chosen for demonstrative purposes.
Similarly interesting formulas for certain modal logics such as Barcan’s formula
(or its converse) can be analyzed analogously using MET [13]. In a more general
setting, the semantical flexibility of the here presented approach allows for an
empirical assessment of a formal system’s adequateness for a specific application;
and to explore further, possibly unintended, consequences of a given formulation.

Table 2. Evaluation results of the validity of Becker’s postulate from Fig. 4. For each
semantical setting, the factual validity of the postulate (Expected) and the actual
results of Leo-III and Nitpick (Result) are presented. � and × denote validity resp.
invalidity of the postulate under the respective semantics as well as a system’s accord-
ing result. A timeout of a system (i.e. no feasible result) is denoted †. Quantification
semantics are abbreviated co and va for constant and varying domains, respectively.

(a) Leo-III

Modal System K B T S4 S5
Domains co va co va co va co va co va
Expected × × × × × × × × � �
Result † † † † † † † † � �

(b) Nitpick

Modal System K B T S4 S5
Domains co va co va co va co va co va
Expected × × × × × × × × � �
Result × × × × × × × × † †

4 Summary and Further Work

In this work, a self-contained syntax for formulating higher-order modal logic
problems was sketched that is used as input format to the Modal Embedding
Tool. This stand-alone tool acts as external pre-processor for HO reasoning sys-
tems and emits for a given input problem statement an equivalent (wrt. validity)
HOL problem formulated in standard THF syntax. MET is implemented in Java
and freely available at GitHub under BSD-3 license.2 The higher-order ATP
system Leo-III additionally incorporates a version of MET for automatically
embedding modal logic problems without any need for external pre-processing.

When used in conjunction with further powerful HO ATP systems, MET
has many topical applications for reasoning in knowledge bases, legal reasoning,
smart contracts and, more generally, in alethic, epistemic and deontic contexts.
An adaption of MET for accepting RuleML input syntax [17], OWL [18] or
further languages for rule-based reasoning is, thanks to the flexible underlying
embedding approach, straight-forward and current work-in-progress [19]. The
MET can also be extended to serve as a translation tool between these different
representation formats.
2 See github.com/leoprover/embed modal for details and further instructions.

https://github.com/leoprover/embed_modal

The MET: The Art of Flexible Reasoning with Modalities 281

A Installation and Usage of MET

Acquisition and Installation

MET is freely available on GitHub (https://github.com/leoprover/embed
modal) under BSD-3 license. The most current release is always accessible under
https://github.com/leoprover/embed modal/releases/latest. To get it, simply
download the source archive and extract it so some location.

> wget https://github.com/leoprover/embed_modal/archive/1.0.tar.gz

> tar -xvzf 1.0.tar.gz

After extraction, MET can be built using Make. Simply cd to the extracted
directory s and run Make:

> cd embed_modal-1.0

> make

After building, there should be a directory bin/, relative from the current direc-
tory. This directory contains the binary embedlogic of MET. You will also find
a JAR in the directory embed/target/ which you can use as a library for your
own projects.

MET can optionally be installed by invoking

> make install

which copies the binary to the directory $HOME/.local/bin and adds it to your
$PATH.

Usage

To execute MET, simply run the embedlogic command (assuming you have
installed MET) or run bin/embedlogic. For brevity, we assume that embedlogic

is available.
For the example of Becker’s postulate, running

> embedlogic -i becker.p -o becker_embedded.p

will generate a new file becker_embedded.p that contains the embedded THF
problem that is semantically equivalent to the modal problem of becker.p as
given in Fig. 4 (the file is also contained in the distribution of MET in examples/).
Now, any TPTP THF-compliant ATP system can be used, e.g. Leo-III can be
invoked on the result:

> leo3 becker_embedded.p

% Axioms used in derivation (1): mrel_meuclidean

[...]

% SZS status Theorem for becker.p : 3443 ms resp. 1260 ms w/o parsing

https://github.com/leoprover/embed_modal
https://github.com/leoprover/embed_modal
https://github.com/leoprover/embed_modal/releases/latest

282 T. Gleißner and A. Steen

Becker’s Postulate Embedded

The embedded file becker_embedded.p contains the following:
% declare type for possible worlds
thf(mworld_type,type,(

mworld: $tType)).

% declare accessibility relations
thf(mrel_type,type,(

mrel: mworld > mworld > $o)).

% define accessibility relation properties
thf(mreflexive_type,type,(

mreflexive: (mworld > mworld > $o) > $o)).

thf(mreflexive_def,definition,
(mreflexive
= (^ [R: mworld > mworld > $o] :

! [A: mworld] :
(R @ A @ A)))).

thf(meuclidean_type,type,(
meuclidean: (mworld > mworld > $o) > $o)).

thf(meuclidean_def,definition,
(meuclidean
= (^ [R: mworld > mworld > $o] :

! [A: mworld,B: mworld,C: mworld] :
(((R @ A @ B)

& (R @ A @ C))
=> (R @ B @ C))))).

% assign properties to accessibility relations
thf(mrel_mreflexive,axiom,(

mreflexive @ mrel)).

thf(mrel_meuclidean,axiom,(
meuclidean @ mrel)).

% define valid operator
thf(mvalid_type,type,(

mvalid: (mworld > $o) > $o)).

thf(mvalid_def,definition,
(mvalid
= (^ [S: mworld > $o] :

! [W: mworld] :
(S @ W)))).

% define nullary, unary and binary connectives which are no quantifiers
thf(mimplies_type,type,(

mimplies: (mworld > $o) > (mworld > $o) > mworld > $o)).

thf(mimplies,definition,
(mimplies
= (^ [A: mworld > $o,B: mworld > $o,W: mworld] :

((A @ W)
=> (B @ W))))).

thf(mdia_type,type,(
mdia: (mworld > $o) > mworld > $o)).

thf(mdia_def,definition,
(mdia
= (^ [A: mworld > $o,W: mworld] :

? [V: mworld] :
((mrel @ W @ V)
& (A @ V))))).

thf(mbox_type,type,(
mbox: (mworld > $o) > mworld > $o)).

thf(mbox_def,definition,
(mbox
= (^ [A: mworld > $o,W: mworld] :

! [V: mworld] :
((mrel @ W @ V)

=> (A @ V))))).

% define exists quantifiers
thf(mexists_const_type__o__d_i_t__d_i_c_,type,(

mexists_const__o__d_i_t__d_i_c_: (($i > $i) > mworld > $o) > mworld > $o)).

thf(mexists_const__o__d_i_t__d_i_c_,definition,
(mexists_const__o__d_i_t__d_i_c_
= (^ [A: ($i > $i) > mworld > $o,W: mworld] :

? [X: $i > $i] :
(A @ X @ W)))).

The MET: The Art of Flexible Reasoning with Modalities 283

% define for all quantifiers
thf(mforall_const_type__o__d_i_t__o_mworld_t__d_o_c__c_,type,(

mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_: (($i > mworld > $o) > mworld > $o) > mworld > $o)).

thf(mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_,definition,
(mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_
= (^ [A: ($i > mworld > $o) > mworld > $o,W: mworld] :

! [X: $i > mworld > $o] :
(A @ X @ W)))).

thf(mforall_const_type__o__d_i_c_,type,(
mforall_const__o__d_i_c_: ($i > mworld > $o) > mworld > $o)).

thf(mforall_const__o__d_i_c_,definition,
(mforall_const__o__d_i_c_
= (^ [A: $i > mworld > $o,W: mworld] :

! [X: $i] :
(A @ X @ W)))).

thf(mforall_const_type__o__d_i_t__d_i_c_,type,(
mforall_const__o__d_i_t__d_i_c_: (($i > $i) > mworld > $o) > mworld > $o)).

thf(mforall_const__o__d_i_t__d_i_c_,definition,
(mforall_const__o__d_i_t__d_i_c_
= (^ [A: ($i > $i) > mworld > $o,W: mworld] :

! [X: $i > $i] :
(A @ X @ W)))).

% ---
% transformed problem
% ---

thf(1,conjecture,
(mvalid
@ (mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_

@ ^ [P: $i > mworld > $o] :
(mforall_const__o__d_i_t__d_i_c_
@ ^ [F: $i > $i] :

(mforall_const__o__d_i_c_
@ ^ [X: $i] :

(mexists_const__o__d_i_t__d_i_c_
@ ^ [Q: $i > $i] :

(mimplies @ (mdia @ (mbox @ (P @ (F @ X)))) @ (mbox @ (P @ (Q @ X)))))))))).

References

1. Schulz, S.: E – a brainiac theorem prover. AI Commun. 15(2,3), 111–126 (2002)
2. Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B., Miller,

D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 11

3. Benzmüller, C., Sultana, N., Paulson, L.C., Theiß, F.: The higher-order prover
LEO-II. J. Autom. Reason. 55(4), 389–404 (2015)

4. Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNAI, vol. 10900, pp. 108–116.
Springer, Heidelberg (2018)

5. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Lecture Notes in Computer Science, vol. 2283. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45949-9

6. Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of Modal Logic, vol. 3.
Elsevier, Amsterdam (2006)

7. Benzmüller, C., Woltzenlogel Paleo, B.: The inconsistency in Gödel’s ontological
argument: a success story for AI in metaphysics. In: Kambhampati, S. (ed.) IJCAI
2016, vol. 1–3, pp. 936–942. AAAI Press (2016). (Acceptance rate ≤ 25%)

8. Benzmüller, C., Weber, L., Woltzenlogel Paleo, B.: Computer-assisted analysis of
the Anderson-Hájek controversy. Logica Universalis 11(1), 139–151 (2017)

9. Fuenmayor, D., Benzmüller, C.: Types, Tableaus and Gödel’s God in Isabelle/HOL.
Archive of Formal Proofs (2017). This publication is machine verified with
Isabelle/HOL, but only mildly human reviewed

https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1007/3-540-45949-9

284 T. Gleißner and A. Steen

10. Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory.
Logica Universalis 7(1), 7–20 (2013). (Special Issue on Multimodal Logics)

11. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

12. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the
TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010)

13. Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal
logic. In: Eiter, T., Sands, D. (eds.) LPAR-21. EPiC Series in Computing, Maun,
Botswana, vol. 46, pp. 14–30. EasyChair (2017)

14. Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia
of Philosophy. Stanford University, Metaphysics Research Lab (2014)

15. Becker, O.: Zur Logik der Modalitäten. Max Niemeyer Verlag (1930)
16. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order

logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14052-5 11

17. Athan, T., Boley, H., Paschke, A.: Ruleml 1.02: Deliberation, reaction and con-
sumer families. In: Bassiliades, N., et al. (eds.) Proceedings of the RuleML 2015
Challenge, the Special Track on Rule-based Recommender Systems for the Web
of Data, the Special Industry Track and the RuleML 2015 Doctoral Consortium
hosted by the 9th International Web Rule Symposium (RuleML 2015). CEUR
Workshop Proceedings, vol. 1417. CEUR-WS.org (2015)

18. Cao, S.T., Nguyen, L.A., Szalas, A.: The web ontology rule language OWL 2 RL+

and its extensions. Trans. Comput. Collect. Intell. 13, 152–175 (2014)
19. Boley, H., Benzmüller, C., Luan, M., Sha, Z.: Translating higher-order modal logic

from RuleML to TPTP. In Giurca, A., et al. (eds.) Proceedings of the RuleML 2016
Challenge, the Special Industry Track and the RuleML 2016 Doctoral Consortium
hosted by the 10th International Web Rule Symposium (RuleML 2016). CEUR
Workshop Proceedings, vol. 1620. CEUR-WS.org (2016)

https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_11

	The MET: The Art of Flexible Reasoning with Modalities
	1 Introduction
	2 A Syntax for HOML and Its Semantics
	3 Application Examples
	3.1 Case Study: The Wise Men Puzzle
	3.2 Case Study: Experiments with Semantical Variations

	4 Summary and Further Work
	A Installation and Usage of MET
	References

