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Abstract. We present a KE-tableau-based procedure for the main TBox
and ABox reasoning tasks for the description logic DL〈4LQSR,×〉(D), in
short DL4,×

D . The logic DL4,×
D , representable in the decidable multi-sorted

quantified set-theoretic fragment 4LQSR, combines the high scalability
and efficiency of rule languages such as the Semantic Web Rule Language
(SWRL) with the expressivity of description logics.

Our algorithm is based on a variant of the KE-tableau system for sets
of universally quantified clauses, where the KE-elimination rule is gener-
alized in such a way as to incorporate the γ-rule. The novel system, called
KEγ-tableau, turns out to improve both the system introduced in [3] and
the standard first-order KE-tableaux [10]. Suitable benchmark test sets
executed on C++ implementations of the three mentioned systems show
that the performances of the KEγ-tableau-based reasoner are often up to
about 400% better than the ones of the other two systems. This a first
step towards the construction of efficient reasoners for expressive OWL
ontologies based on fragments of computable set theory.

1 Introduction

Recently, decidability results in Computable Set Theory have been used for
knowledge representation and reasoning, in particular, in the context of descrip-
tion logics (DLs) and rule languages for the Semantic Web. These efforts are
motivated by the fact that there exists a natural translation function between
set-theoretic fragments and languages for the Semantic Web.

In particular, the decidable four-level stratified set-theoretic fragment 4LQSR,
involving variables of four sorts, pair terms, and a restricted form of quantifi-
cation over variables of the first three sorts (cf. [1]), has been used in [2] to
represent the description logic DL〈4LQSR,×〉(D), in short DL4,×

D .
The description logic DL4,×

D supports various constructs on concepts and
roles, and it also admits data types, relevant in real word applications. In
addition, it permits to express the Semantic Web Rule Language (SWRL), an
extension of the Ontology Web Language (OWL). Decidability of the Conjunc-
tive Query Answering (CQA) problem for DL4,×

D has been proved in [2] via a
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reduction to the CQA problem for 4LQSR, whose decidability easily follows from
that of 4LQSR (see [1]). In [2], the authors provided a terminating KE-tableau
based procedure that, given a DL4,×

D -query Q and a DL4,×
D -knowledge base KB

represented in set-theoretic terms, determines the answer set of Q with respect
to KB. Such an algorithm serves also as a decision procedure for the consis-
tency problem for DL4,×

D -knowledge bases (KBs). We recall that KE-tableaux
systems [10] construct tableaux whose distinct branches define mutually exclu-
sive situations, thus preventing the proliferation of redundant branches, typical
of semantic tableaux.

The results presented in [2] have been extended in [3] to the main ABox
reasoning tasks for DL4,×

D , such as instance checking and concept retrieval, by
defining the Higher-Order Conjunctive Query Answering (HOCQA) problem for
DL4,×

D . Such problem, instantiable to the principal reasoning tasks for DL4,×
D -

ABoxes, has been defined by introducing Higher Order (HO) DL4,×
D -conjunctive

queries, admitting variables of three sorts: individual and data type variables,
concept variables, and role variables. Decidability of the HOCQA problem for
DL4,×

D has been proved via a reduction to the HOCQA problem for the set-
theoretic fragment 4LQSR.

In [4], an implementation of the KE-tableau procedure defined in [3] has been
presented. Such prototype, written in C++, supports DL4,×

D -KBs serialized in
OWL/XML. It has been implemented only for TBox-reasoning services, namely,
for verifying the consistency of given ontologies. Purely universal quantifiers are
eliminated by the reasoner during a preprocessing phase, in which each quan-
tified formula is instantiated in a systematic way with the individuals of the
KB. The resulting instances are then suitably handled by applying to them the
KE-elimination and bivalence rules. In the light of the benchmarking of the pro-
totype, it turned out that the preprocessing phase of the universally quantified
formulae is more and more expensive as the size of the KB grows.

In this paper, the KE-tableau-based procedure defined in [3] is modified,
by eliminating the preprocessing phase for universally quantified formulae and
replacing the standard KE-elimination rule with a novel elimination rule, called
Eγ-rule, that incorporates the standard rule for treating universally quantified
formulae (γ-rule). The resulting system1 turns out to be more efficient than
the KE-system in [4] and the First-Order (FO) KE-system in [10], as shown
by suitable benchmarking tests executed on C++ implementations of the three
systems. The main reason for such a speed-up relies on the fact that the Eγ-rule
does not need to store the instances of the quantified formulae on the KE-tableau.

2 Preliminaries

2.1 The Set-Theoretic Fragment

It is convenient to recall the main set-theoretic notions behind the description
logic DL4,×

D and its reasoning problems. For space reasons, we do not report the

1 The source code is available at https://github.com/dfsantamaria/DL4xD-Reasoner.
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syntax and semantics of the whole 4LQSR: the interested reader can find it in [1],
together with the decision procedure for its satisfiability problem. Thus, we just
focus on the class of 4LQSR-formulae actually involved in the set-theoretic repre-
sentation of DL4,×

D , namely, the propositional combinations of 4LQSR-quantifier-
free literals (atomic formulae and their negations) and of 4LQSR purely universal
formulae of the types displayed in Table 1. For the sake of conciseness, we refer
to such class of 4LQSR-formulae as 4LQSR

DL4,×
D

.
We recall that the fragment 4LQSR admits four collections, Vari, of variables

of sort i = 0, 1, 2, 3, which are denoted by Xi, Y i, Zi, . . . (in particular, variables
of sort 0 are also denoted by x, y, z, . . .). In addition to variables, also pair terms
of the form 〈x, y〉, with x, y ∈ Var0, are allowed. Since the types of formulae
illustrated in Table 1 do not involve variables of sort 2, notions and definitions
concerning 4LQSR

DL4,×
D

-formulae will refer to variables of sorts 0, 1, and 3 only.

Table 1. Types of literals and quantified formulae admitted in 4LQSR
DL4,×

D
.

Quantifier-free literals of level 0 Purely universal quantified formulae of
level 1

x = y, x ∈ X1, 〈x, y〉 ∈ X3

¬(x = y), ¬(x ∈ X1), ¬(〈x, y〉 ∈
X3)

(∀z1) . . . (∀zn)ϕ0, where z1, . . . , zn ∈ Var0
and ϕ0 is any propositional combination of
quantifier-free atomic formulae of level 0

The variables z1, . . . , zn are said to occur quantified in (∀z1) . . . (∀zn)ϕ0. A
variable occurs free in a 4LQSR

DL4,×
D

-formula ϕ if it does not occur quantified in
any subformula of ϕ. For i = 0, 1, 3, we denote with Vari(ϕ) the collections of
variables of sort i occurring free in ϕ.

For space reasons, the notions of 4LQSR
DL4,×

D
-substitution and of 4LQSR

DL4,×
D

-
interpretation are not included here, but they can be found in [5].

2.2 The Logic DL4,×
D

In what follows, we present the syntax and semantics of the description logic
DL4,×

D .
Let RA, RD, C, I be denumerable pairwise disjoint sets of abstract role

names, concrete role names, concept names, and individual names, respectively.
The definition of data types relies on the notion of data type map,

given according to [11] as follows. A data type map is a quadruple D =
(ND, NC , NF , ·D), where ND is a finite set of data types, NC is a function assign-
ing a set of constants NC(d) to each data type d ∈ ND, NF is a function assigning
a set of facets NF (d) to each d ∈ ND, and ·D is a function assigning a data type
interpretation dD to each d ∈ ND, a facet interpretation fD ⊆ dD to each facet
f ∈ NF (d), and a data value eDd ∈ dD to every constant ed ∈ NC(d). We shall
assume that the interpretations of the data types in ND are nonempty pairwise
disjoint sets.
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(a) DL4,×
D -data type, (b) DL4,×

D -concept, (c) DL4,×
D -abstract role, and (d) DL4,×

D -
concrete role terms are constructed according to the following syntax rules:

(a) t1, t2 −→ dr | ¬t1 | t1 � t2 | t1 	 t2 | {ed} ,
(b) C1, C2 −→ A | 
 | ⊥ | ¬C1 | C1	C2 | C1�C2 | {a} | ∃R.Self |∃R.{a}|∃P.{ed} ,
(c) R1, R2 −→ S | U | R−1

1 | ¬R1 | R1 	 R2 | R1 � R2 | RC1| | R|C1 | RC1 | C2 |
id(C) | C1 × C2 ,

(d) P1, P2 −→ T | ¬P1 | P1 	 P2 | P1 � P2 | PC1| | P|t1 | PC1|t1 ,

where dr is a data range for D, t1, t2 are data type terms, ed is a constant
in NC(d), a is an individual name, A is a concept name, C1, C2 are DL4,×

D -
concept terms, S is an abstract role name, U is an abstract role name denoting
the universal role, R,R1, R2 are DL4,×

D -abstract role terms, T is a concrete role
name, and P, P1, P2 are DL4,×

D -concrete role terms. We remark that data type
terms are introduced in order to represent derived data types.

A DL4,×
D -KB is a triple K = (R, T ,A) such that R is a DL4,×

D -RBox, T
is a DL4,×

D -TBox, and A is a DL4,×
D -ABox. For space constraints, the defini-

tions of DL4,×
D -RBox, DL4,×

D -TBox, DL4,×
D -ABox and the semantics of DL4,×

D

are omitted here, but the interested reader can find them in [5].

Expressiveness of the Description Logic DL4,×
D . Despite the fact that the

description logic DL4,×
D is limited as far as the introduction of new individu-

als is concerned, it is more liberal than SROIQ(D) [7] in the construction of
role inclusion axioms, since the roles involved are not restricted by any ordering
relationship, the notion of simple role is not needed, and Boolean operations on
roles and role constructs such as the product of concepts are admitted. More-
over, DL4,×

D supports more OWL constructs than the DLs underpinning the
profiles OWL QL, OWL RL, and OWL EL [8], such as disjoint union of con-
cepts and union of data ranges. Furthermore, basic and derived data types can
be used inside inclusion axioms involving concrete roles. In addition, concerning
the expressiveness of rules, the set-theoretic fragment 4LQSR

DL4,×
D

underpinning
DL4,×

D allows one to express the disjunctive Datalog fragment admitting nega-
tion, equality and constraints, subject to no safety condition, and supporting for
data types.

Reasoning with the Description Logic DL4,×
D . Next, we introduce the

reasoning services available for the description logic DL4,×
D , i.e., the type of

inferences that can be drawn from what is explicitly asserted in a DL4,×
D -KB.

Specifically, we focus on two families of reasoning tasks, concerning respec-
tively TBoxes and ABoxes. Among the main TBox reasoning problems, such as
satisfiability of a concept, subsumption of concepts, equivalence of concepts, and
disjunction of concepts, the problem of deciding the consistency of a DL4,×

D -
KB is the most representative one, as it includes the majority of them.2 In [2],

2 A separate analysis, to be addressed in a future work, is required by the classifica-
tion problem of a TBox, consisting in the computation of ancestor and descendant
concepts of a given concept in a TBox.
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we proved the decidability of the consistency problem of a DL4,×
D -KB and of a

relevant ABox reasoning task, namely the Conjunctive Query Answering (CQA)
problem for DL4,×

D consisting in computing the answer set of a DL4,×
D -conjunctive

query with respect to a DL4,×
D -KB. In [3], we generalized the problem introducing

the Higher Order Conjuctive Query Answering (HOCQA) problem for DL4,×
D .

Such problem is characterized by Higher Order (HO) DL4,×
D -conjunctive queries

admitting variables of three sorts: individual and data type variables, concept
variables, and role variables (the interested reader can find in [3] the definitions
of HO-conjunctive queries, HO-substitutions, and HOCQA problem).

As illustrated in [3], the HOCQA problem can be instantiated to significant
ABox reasoning problems such as (A) role filler retrieval, the problem of retriev-
ing all the fillers x such that the pair (a, x) is an instance of a role R; (B) concept
retrieval, the problem of retrieving all concepts which an individual is an instance
of; (C) role instance retrieval, the problem of retrieving all roles which a pair
of individuals (a, b) is an instance of; and (D) conjunctive query answering, the
problem of finding the answer set of a conjunctive query.

In [3], we solved the HOCQA problem just stated by reducing it to the
analogous problem formulated in the context of the fragment 4LQSR

DL4,×
D

(and in
turn of the decision procedure for 4LQSR presented in [1]).

The HOCQA problem in the 4LQSR
DL4,×

D
context can be stated as follows. Let

φ be a 4LQSR
DL4,×

D
-formula and ψ a conjunction of 4LQSR

DL4,×
D

-literals. The HOCQA
problem for ψ w.r.t. φ consists in computing the HO answer set of ψ w.r.t. φ,
namely, the collection Σ′ of all the substitutions σ′ such that M |= φ ∧ ψσ′, for
some 4LQSR

DL4,×
D

-interpretation M.
In view of the decidability of the satisfiability problem for 4LQSR-formulae,

the HOCQA problem for 4LQSR
DL4,×

D
-formulae is decidable as well. The reduc-

tion is carried out by means of a function θ that maps the DL4,×
D -KB KB

in a 4LQSR
DL4,×

D
-formula φKB in Conjunctive Normal Form (CNF) and the HO

DL4,×
D -conjunctive query Q in the 4LQSR

DL4,×
D

-formula ψQ (see [2] for details).
Specifically,

φKB :=
∧

H∈KB θ(H) ∧
∧12

i=1
ξi, and ψQ := θ(Q).

Let Σ be the HO-answer set of Q w.r.t. KB (see [3] for the definition of HO-
answer set) and Σ′ the HO-answer set of ψQ w.r.t. φKB. Then Σ consists of
all substitutions σ (involving exactly the variables occurring in Q) such that
θ(σ) ∈ Σ′. By Lemma 1 in [3], Σ′ can be effectively computed and thus Σ can
be effectively computed as well.

3 A KE-Tableau Based Algorithm for Reasoning in DL4,×
D

In what follows, we briefly discuss the procedures Consistency-DL4,×
D and

HOCQAγ-DL4,×
D . The procedure Consistency-DL4,×

D checks the consistency
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of its input 4LQSR
DL4,×

D
-formula φKB, representing a DL4,×

D -KB. When φKB is
consistent, it builds a KE-tableau TKB whose distinct open and complete
branches induce the models of φKB. Then the procedure HOCQAγ-DL4,×

D

computes the HO-answer set of a given 4LQSR
DL4,×

D
-formula ψQ (representing a

DL4,×
D -HO conjunctive query Q) w.r.t. φKB, by means of a forest of decision

trees based on the branches of the KE-tableau TKB computed by the procedure
Consistency-DL4,×

D with input φKB.
We now shortly introduce a variant of KE-tableau called KEγ-tableau.3 Let

Φ := {C1, . . . , Cp}, where each Ci is either a 4LQSR
DL4,×

D
-literal of the types

illustrated in Table 1 or a 4LQSR
DL4,×

D
-purely universal quantified formula of the

form (∀x1) . . . (∀xm)(β1 ∨ . . . ∨ βn), with β1, . . . , βn 4LQSR
DL4,×

D
-literals. T is a

KEγ-tableau for Φ if there exists a finite sequence T1, . . . , Tt such that (i) T1 is
the one-branch tree consisting of the sequence C1, . . . , Cp, (ii) Ti+1 is obtained
from Ti, for each i < t, either by an application of one of the rules (Eγ-rule
or PB-rule) in Fig. 1 or by applying a substitution σ to a branch ϑ of Ti (in
particular, the substitution σ is applied to each formula X of ϑ; the resulting
branch will be denoted with ϑσ), and (iii) Tt = T . In the definition of the Eγ-rule
reported in Fig. 1 we have: (a) τ := {x1/xo1 . . . xm/xom

} is a substitution such
that x1, . . . , xm are the quantified variables in ψ and xo1 , . . . , xom

∈ Var0(Φ);
(b) Sβiτ := {β1τ, . . . , βnτ}\{βiτ} is a set containing the complements of all the
disjuncts β1, . . . , βn to which the substitution τ is applied, with the exception
of the disjunct βi.

ψ Sβiτ

βiτ
Eγ-rule

where
ψ = (∀x1) . . . (∀xm)(β1 ∨ . . . ∨ βn),
τ := {x1/xo1 . . . xm/xom},
and Sβiτ := {β1τ, ..., βnτ} \ {βiτ},
for i = 1, ..., n

A | A
PB-rule

where A is a literal

Fig. 1. Expansion rules for the KEγ-tableau.

Let T be a KEγ-tableau. A formula ψ = (∀x1) . . . (∀xm)(β1 ∨ . . . ∨ βn) is
fulfilled in a branch ϑ, if ϑ contains βiτ for some i = 1, . . . , n and for all τ having
as domain the set QVar0(ψ) = {x1, . . . , xm} of the quantified variables occurring
in ψ and as range the set Var0(ϑ) of the variables of sort 0 occurring free in ϑ.
Notice that since the procedure Consistency-DL4,×

D does not introduce any new
variable, Var0(ϑ) coincides with Var0(φKB), for every branch ϑ. A branch ϑ is
fulfilled if every formula ψ = (∀x1) . . . (∀xm)(β1 ∨ . . . ∨ βn) occurring in ϑ is
fulfilled. A KEγ-tableau is fulfilled when all its branches are fulfilled. A branch

3 KE-tableaux are a refutation system inspired to Smullyan’s semantic tableaux [13]
(see [10] for details).
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ϑ of T is closed if either it contains both A and ¬A, for some formula A, or
a literal of type ¬(x = x); otherwise, it is open. A KEγ-tableau is closed when
all its branches are closed. A branch ϑ is complete if either it is closed or it is
open, fulfilled, and it does not contain any literal of type x = y, with x and y
distinct variables. A KEγ-tableau is complete (resp., fulfilled) if all its branches
are complete (resp., fulfilled or closed). The notions of branch and KEγ-tableau
satisfiability are the standard ones.

The procedure Consistency-DL4,×
D takes care of the literals of type x = y

occurring in the branches of TKB by constructing, for each open and fulfilled
branch ϑ of TKB, a substitution σϑ such that ϑσϑ does not contain literals
of type x = y with distinct x, y. Then, for every open and complete branch
ϑ′ := ϑσϑ of TKB, the procedure HOCQAγ-DL4,×

D constructs a decision tree Dϑ′

whose maximal branches induce substitutions σ′ such that σϑσ′ belongs to the
HO-answer set of ψQ with respect to φKB (the definition of Dϑ′ can be found
in [5]).4

We recall that the HOCQA problem can be solved in exponential-time when
the DL4,×

D -KBs do not contain qualified cardinality restrictions and role chain
axioms, otherwise it can be solved in double-exponential time (see [5] for details).

Remarks on Different Versions of the Algorithm. The C++ implementa-
tion of the algorithm presented in this paper, called KEγ-system, is more efficient
than the prototype KE-system proposed in [4]. The main motivation behind this
performance improvement relies on the introduction of the Eγ-rule (see Fig. 1)
that acts on the 4LQSR

DL4,×
D

-purely universal quantified formulae in the KB by
systematically instantiating them and applying the standard E-rule (elimina-
tion rule) on-the-fly. The Eγ-rule replaces the preliminary phase of systematic
expansion of the 4LQSR

DL4,×
D

-purely universal quantified formulae in the KB and
the subsequent application of the E-rule implemented by the KE-system pre-
sented in [3]. In addition, the KEγ-system turns out be also more efficient than
the implementation FO KE-system of the FO KE-tableau in [10], that applies
the standard γ- and E-rules. Incidentally, it turns out that the KE-system and
the FO KE-system have similar performances. As shown in [5, Fig. 3], the KEγ-
system has a better performance, up to about 400%, than the other two, even if
in some cases (lowest part of the plot) the performances of the three systems are
comparable. Thus the KEγ-system is always convenient, also because the collec-
tion of the expansions of DL4,×

D -purely universal quantified formulae of level 1
(exponential in the size of the KB) is not stored in memory.

The benchmarking process is based on a huge amount of KBs of differ-
ent sizes and kinds, constructed ad hoc just for the purpose of comparing the
three mentioned systems, and on some real-world ontologies developed by the
authors.

4 The procedures Consistency-DL4,×
D and HOCQAγ-DL4,×

D can be found in [5] together
with their correctness, completeness, and termination proofs.
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4 Conclusions and Future Work

We presented an improvement, called KEγ-tableau, of the KE-tableau in [3]
for the most widespread reasoning tasks for DL4,×

D -TBoxes and DL4,×
D –ABoxes.

These reasoning problems are addressed by translating DL4,×
D -KBs and queries

in terms of formulae of the set-theoretic language 4LQSR
DL4,×

D
. The procedure

introduced in this paper generalizes the KE-elimination rule in such way as
to incorporate the γ-rule, namely, the expansion rule for handling universally
quantified formulae. The KEγ-tableau procedure has remarkable aftermath, since
its implementation is markedly more efficient in terms of space and execution
time than the KE-system [4] and the implementation FO KE-system of the FO
KE-tableau [10], as observed in our experimental tests.

In order to be able to reason with description logics admitting full existen-
tial and universal quantification, we plan to extend the set-theoretic fragment
underpinning our reasoner with a restricted version of the operator of relational
composition. Results and notions presented in [9] will be of inspiration for such
a task. We also intend to improve our reasoner so as to deal with the reasoning
problem of ontology classification. We shall compare the resulting reasoner with
existing well-known reasoners such as Hermit [6] and Pellet [12], providing also
some benchmarking. In addition, we plan to allow data type reasoning by either
integrating existing solvers for the Satisfiability Modulo Theories (SMT) problem
or by designing ad hoc new solvers. Finally, as each branch of a KEγ-tableau can
be independently computed by a single processing unit, we intend to implement
a parallel version of the software by using the Nvidia CUDA framework.
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