
Justifications for Description Logic
Knowledge Bases Under

the Fixed-Domain Semantics

Sebastian Rudolph1, Lukas Schweizer1(B), and Satyadharma Tirtarasa2

1 Institute of Artificial Intelligence, TU Dresden, Dresden, Germany
{sebastian.rudolph,lukas.schweizer}@tu-dresden.de

2 Institute of Theoretical Computer Science, TU Dresden, Dresden, Germany
satyadharma.tirtarasa@tu-dresden.de

Abstract. The fixed-domain semantics for OWL and description logic
has been introduced to open up the OWL modeling and reasoning
tool landscape for use cases resembling constraint satisfaction problems.
While standard reasoning under this new semantics is by now rather
well-understood theoretically and supported practically, more elaborate
tasks like computation of justifications have not been considered so far,
although being highly important in the modeling phase. In this paper,
we compare three approaches to this problem: one using standard OWL
technology employing an axiomatization of the fixed-domain semantics,
one using our dedicated fixed-domain reasoner Wolpertinger in com-
bination with standard justification computation technology, and one
where the problem is encoded entirely into answer-set programming.

1 Introduction

With the success of semantic technologies and its tool support, most notably the
OWL language family and its status as W3C standard, more and more people
from various application domains create and use ontologies. Meanwhile, ontolog-
ical modeling is not only well supported by established tools like Protégé, also
methodologies such as the usage of ontology design patterns help practitioners
to design and deploy ontologies of high quality [9].

Despite these evolutionary improvements in ontology engineering, the result-
ing ontologies are not free of errors such as unintended entailments (including
the case of inconsistency). For that purpose, research has already brought up
several techniques to detect the causalities of unintended entailments, and it has
been studied for lightweight ontology languages such as EL [22], as well as for
very expressive description logics up to SROIQ [13,15], which in fact is the log-
ical foundation of OWL 2 DL [10]. These techniques already found their way as
built-in functionality into tools like Protégé, or are available stand-alone. In any
case, these methods have become an integral part of the semantic development
chain.

c© Springer Nature Switzerland AG 2018
C. Benzmüller et al. (Eds.): RuleML+RR 2018, LNCS 11092, pp. 185–200, 2018.
https://doi.org/10.1007/978-3-319-99906-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99906-7_12&domain=pdf

186 S. Rudolph et al.

When considering their purpose, ontologies are often divided into two groups:
those where the intended use is an (highly axiomatized) expert system focusing
on automated reasoning as main use (typically less data driven), or those ontolo-
gies that are rather used for data sharing, integration, and reuse with little or
no intentions on reasoning (typically data driven) [9]. However in our collabo-
rations with practitioners, we found scenarios exhibiting characteristics of both
usages, aiming at ontologies that (a) represent a detailed specification of some
product (schema knowledge), (b) include all data and (c) contain axioms that
(non-deterministically) specify variable (configurable) parts of the product. In
general, these ontologies resemble constraint-type problems, where the purpose
of typical automated reasoning tasks is (i) checking satisfiability and (ii) ask-
ing for models – solutions of the encoded problem. For both tasks, the natural
assumption in this setup is that the domain is explicitly given in the ontology,
and thus is finite and fixed a priori.

To accommodate these requirements, the fixed-domain semantics has been
introduced [6,27], which allows for reasoning over an explicitly given finite
domain. A reasoner, named Wolpertinger1, that supports standard reasoning as
well as model enumeration under the fixed-domain semantics has been developed
[28], based on a translation of DL into answer-set programming.

Our motivation in this paper is to elaborate on possible approaches to com-
pute justifications for ontologies under the fixed-domain semantics. We focus
on three approaches that evolved naturally during our investigation. First, it is
possible to axiomatize a finite domain and conduct fixed-domain reasoning using
standard tools, such that computing explanations can be done via standard tools
as well. Second, the Wolpertinger reasoner can be coupled with the off-the-shelf
justification components of Protégé, and finally we introduce a dedicated encod-
ing of the whole problem into answer-set programming. Our contributions in this
paper are:

1. A formal framework for justifications under the fixed-domain semantics.
2. A novel translation for SROIQ into answer-set programming that allows for

standard reasoning and model enumeration.
3. An extended version of the translation enabling to compute justifications

where the problem is encoded entirely into answer-set programming.
4. A comparison of three different approaches: one using standard OWL tech-

nology employing an axiomatization of the fixed-domain semantics, one using
our dedicated fixed-domain reasoner Wolpertinger in combination with stan-
dard justification computation technology, and one with our novel translation
where the problem is encoded entirely into answer-set programming.

The paper is organized as follows. We briefly recall the description logic
SROIQ and a sufficient background on answer-set programming in Sect. 2. In
Sect. 3, we introduce the notion of justifications, especially under the fixed-
domain semantics. Each possible approach to compute justifications is then
depicted in detail in Sect. 4. Finally, we compare the introduced methodologies
in Sect. 5.
1 https://github.com/wolpertinger-reasoner.

https://github.com/wolpertinger-reasoner

Justifications for Description Logic Knowledge Bases 187

2 Preliminaries

OWL 2 DL, the version of the Web Ontology Language we focus on, is defined
based on description logics (DLs, [1,26]). We briefly recap the description logic
SROIQ (for details see [14]). Let NI , NC , and NR be finite, disjoint sets called
individual names, concept names and role names respectively. These atomic
entities can be used to form complex ones as displayed in Table 1.

A SROIQ knowledge base K is a tuple (A, T ,R) where A is an ABox, T
is a TBox and R is an RBox. Table 2 presents the respective axiom types avail-
able in the three parts. The definition of SROIQ also contains so-called global
restrictions which prevents certain axioms from occurring together, retaining
decidability. They are not necessary for fixed-domain reasoning considered here,
hence we omit them for the sake of brevity. We use NI(K), NC(K), and NR(K)
to denote the sets of individual names, concept names, and role names occurring
in K, respectively.

The semantics of SROIQ is defined via interpretations I = (ΔI , ·I) com-
posed of a non-empty set ΔI called the domain of I and a function ·I mapping
individual names to elements of ΔI , concept names to subsets of ΔI , and role
names to subsets of ΔI × ΔI . This mapping is extended to complex role and
concept expressions (cf. Table 1) and finally used to define satisfaction of axioms
(see Table 2). We say that I satisfies a knowledge base K = (A, T ,R) (or I is a
model of K, written: I |= K) if it satisfies all axioms of A, T , and R. We say
that a knowledge base K entails an axiom α (written K |= α) if all models of
K are models of α.

Table 1. Syntax and semantics of role and concept constructors in SROIQ, where
a1, . . . an denote individual names, s a role name, r a role expression and C and D
concept expressions.

Name Syntax Semantics

Inverse role s− {(x, y) ∈ ΔI × ΔI | (y, x) ∈ sI}
Universal role u ΔI × ΔI

Top � ΔI

Bottom ⊥ ∅
Negation ¬C ΔI \ CI

Conjunction C � D CI ∩ DI

Disjunction C � D CI ∪ DI

Nominals {a1, . . . , an} {aI
1 , . . . , aI

n}
Univ. restriction ∀r.C {x | ∀y.(x, y) ∈ rI → y ∈ CI}
Exist. restriction ∃r.C {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI}
Self concept ∃r.Self {x | (x, x) ∈ rI}
Qualified number �n r.C {x | #{y ∈ CI | (x, y) ∈ rI} ≤ n}
Restriction �n r.C {x | #{y ∈ CI | (x, y) ∈ rI} ≥ n}

188 S. Rudolph et al.

Table 2. Syntax and semantics of SROIQ axioms.

Axiom α I |= α, if

r1 ◦ · · · ◦ rn � r rI1 ◦ · · · ◦ rIn ⊆ rI RBox R
Dis(s, r) sI ∩ rI = ∅
C � D CI ⊆ DI TBox T
C(a) aI ∈ CI ABox A
r(a, b) (aI , bI) ∈ rI

a
.
= b aI = bI

a � .= b aI �= bI

Answer-Set Programming. We review the basic notions of answer set program-
ming [19] under the stable model semantics [8], for further details we refer to
[4,7].

We fix a countable set U of (domain) elements, also called constants; and
suppose a total order < over the domain elements. An atom is an expression
p(t1, . . . , tn), where p is a predicate of arity n ≥ 0 and each ti is either a variable
or an element from U . An atom is ground if it is free of variables. BU denotes
the set of all ground atoms over U . A (disjunctive) rule ρ is of the form

a1, . . . , an ← b1, . . . , bk, not bk+1, . . . , not bm.

with m ≥ k ≥ 0, where a1, . . . , an, b1, . . . , bm are atoms, and “not ” denotes
default negation. The head of ρ is the set H(ρ) = {a1, . . . , an} and the body of ρ
is B(ρ) = {b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, B+(ρ) = {b1, . . . , bk}
and B−(ρ) = {bk+1, . . . , bm}. A rule ρ is safe if each variable in ρ occurs in
B+(r). A rule ρ is ground if no variable occurs in ρ. A fact is a ground rule with
empty body. An (input) database is a set of facts. A (disjunctive) program is
a finite set of disjunctive rules. For a program Π and an input database D, we
often write Π(D) instead of D ∪ Π. For any program Π, let UΠ be the set of all
constants appearing in Π. Gr(Π) is the set of rules ρσ obtained by applying, to
each rule ρ ∈ Π, all possible substitutions σ from the variables in ρ to elements
of UΠ.

An interpretation I ⊆ BU satisfies a ground rule ρ iff H(ρ)∩ I �= ∅ whenever
B+(ρ) ⊆ I, B−(ρ) ∩ I = ∅. I satisfies a ground program Π, if each ρ ∈ Π
is satisfied by I. A non-ground rule ρ (resp., a program Π) is satisfied by an
interpretation I iff I satisfies all groundings of ρ (resp., Gr(Π)). I ⊆ BU is an
answer set (also called stable model) of Π iff it is a subset-minimal set satisfying
the Gelfond-Lifschitz reduct ΠI = {H(ρ) ← B+(ρ) | I ∩B−(ρ) = ∅, ρ ∈ Gr(Π)}.
For a program Π, we denote the set of its answer sets by AS(Π).

For a program Π, we denote the set of its answer sets by AS(Π), and might
use AS(Π)|P to project on the predicates P = {p1, . . . , pn}.

Justifications for Description Logic Knowledge Bases 189

We make use of further syntactic extensions, namely integrity constraints
and count expressions, which both can be recast to ordinary normal rules as
described in [7]. An integrity constraint is a rule ρ where H(ρ) = ∅, intuitively
representing an undesirable situation; i.e. it has to be avoided that B(ρ) evaluates
positively. Count expressions are of the form #count{l : l1, . . . , li} �� u, where
l is an atom and lj = pj or lj = not pj , for pj an atom, 1 ≤ j ≤ i, u a
non-negative integer, and �� ∈ {≤, <,=, >,≥}. The expression {l : l1, . . . , ln}
denotes the set of all ground instantiations of l, governed through {l1, . . . , ln}. We
restrict the occurrence of count expressions in a rule ρ to B+(ρ) only. Intuitively,
an interpretation satisfies a count expression, if N �� u holds, where N is the
cardinality of the set of ground instantiations of l, N = |{l | l1, . . . , ln}|, for
�� ∈ {≤, <,=, >,≥} and u a non-negative integer.

In order to handle (subset) preferences over answer-sets w.r.t. to ground
instances of a specific atom, we make use of asprin [3]. The framework is designed
to support and simplify the incorporation of preferences over answer-sets.

3 Justifications Under Fixed-Domain Semantics

3.1 Fixed-Domain Semantics

The standard semantics of DLs is defined on arbitrary domains. While finite
model reasoning (a natural assumption in database theory) has become the focus
of studies in DLs [5,18,25], where one is interested in models over arbitrary but
finite domains, we consider the case where the domain has an a-priori known
cardinality and use the term fixed-domain. This restriction yields an advantage
regarding computational complexity for expressive DLs, but it also seems to
reflect the intuitive model-theoretic expectations of practitioners in the industrial
use cases we were confronted with. Satisfiability checking in SROIQ under the
standard semantics is N2ExpTime-complete [16], while being NP-complete in
the fixed-domain setting [6].

Definition 1 (Fixed-Domain Semantics [6]). Let Δ be a non-empty finite
set called fixed domain. An interpretation I = (ΔI , ·I) is said to be Δ-fixed,
if ΔI = Δ, and aI = a for all a ∈ Δ. For a DL knowledge base K, we call
an interpretation I a Δ-model of K (and write I |=Δ K), if I is a Δ-fixed
interpretation and I |= K. A knowledge base K is called Δ-satisfiable, if it has
a Δ-model. A knowledge base is said to K Δ-entail an axiom α (K |=Δ α), if
I |= α for every I |=Δ K.

3.2 Justifications

Logical modeling is prone to error, and it is therefore important to provide
debugging support. One of the most investigated methods is to determine expla-
nations of certain entailments. These explanations are usually (minimal) subsets
of the input knowledge base that suffice to entail the axiom in question. Several
terms have been coined to refer to such (sub)sets. In the context of lightweight

190 S. Rudolph et al.

description logics Minimal Axiom Sets (MinAs) is used, while the task of find-
ing them is called Axiom Pinpointing [2,22]. Instead, for propositional logic,
the term Minimal Unsatisfiable Subformula (MUS) to explain unsatisfiability
was introduced long before [21]. In this paper we use the notion of justification,
introduced in the context of highly expressive description logics [15].

Definition 2 (Justification [15]). Let K be a knowledge base such that K |=
α. J is a justification for α in K if J ⊆ K and J |= α, and for all J ′ ⊂
J ,J ′ �|= α.

Obviously, there may be multiple justifications for an axiom α. Dually to jus-
tifications, one might be interested in minimal subsets that can be retracted
in order to restore consistency, or remove the unwanted entailment; commonly
called repair. These two notions are strongly related in the sense that any repair
has a non-empty intersection with each justification. However, in this work we
restrict ourselves to justifications only.

Regarding the fixed-domain semantics, any justification needs to adhere to
the considered fixed domain. Note that fixed-domain reasoning is monotonic,
since otherwise, the subset minimality criterion in the definition of justifications
would not be reasonable.

Definition 3 (Fixed-Justification). Let K be a knowledge base, and Δ a
fixed-domain such that K |=Δ α. J is a Δ-justification for α in K if J ⊆ K
and J |=Δ α, and for all J ′ ⊂ J ,J ′ �|=Δ α.

It is the case that, if K |= α, then K |=Δ α for any fixed-domain Δ. However, it
does not hold that, if J is a justification for K |= α, then J is a Δ-justification
for K |=Δ α for any fixed-domain Δ. Due to a stronger restriction on models,
there might exist J ′ ⊂ J , such that J ′ �|= α but J ′ |=Δ α. Nonetheless, giving
a justification J under the standard semantics is helpful, since only subsets of
J need to be considered. Formally, if J is a justification for K |= α, then there
exist no Δ-justification J ′ ⊃ J for K |=Δ α, for any fixed-domain Δ. This
holds for any restricted reasoning maintaining monotonicity (e.g. finite model
reasoning).

We focus on finding justifications for inconsistency, since entailment checking
in SROIQ can be reduced to satisfiability checking. For example, K |=Δ A

B, iff K ∪ {(A � ¬B)(a)} is Δ-inconsistent, where a is a fresh individual not
occurring in K. In the same way, justifications for entailments can be reduced to
finding justifications for inconsistency. The caveat is that the introduced axiom
should be fixed and not be part of candidate subset guessing.

Justifications for Description Logic Knowledge Bases 191

Example 1. We consider a simple assignment problem, encoded in Kas. We let
the domain be Δ = {p1, p2, p3, l1, l2, l3, t1, t2, t3}.

Lecture
 ∃teach−.Prof Prof
 ≤ 1 teach.Lecture (α1−2)

SpecialLecture
 Lecture SpecialLecture
 ∀teach−.{p2} (α3−4)
Lecture
 ¬Prof Lecture
 ¬Time Prof
 ¬Time (α5−7)

∃heldAt
 Lecture �
 ∀heldAt.T ime (α8−9)
teach ◦ heldAt
 busyAt (α10)

First, we introduce the core of the knowledge base. Axioms α1−2 specify
that a lecture must be taught by a professor, but one professor teaches at most
one lecture. Axioms α3−4 introduce special lectures that can only be taught
by professor p2. Pairwise disjointness of the classes of lectures, professors and
times is represented by axioms α5−7. The domain and the range of heldAt are
restricted by α8−9. Finally, axiom α10 defines that a professor is busy at a certain
time if he teaches a lecture at that time.

We specify the ABox for Kas in Fig. 1. As shown by the graph, this knowledge
base is designed to find a suitable teach “configuration”. Then, we add additional
constraints ¬busyAt(p1, t2) [α25] and {p3}
 ≤ 1 busyAt.T ime [α26]. It is easy
to see that those constraints enforce p1 and p3 to teach l1. However, l1 is a
special lecture that can only be taught by p2. Consequently, Kas is inconsistent.
Then, for example J as = Kas \ {α11−13, α15, α17−19, α21−22} is a Δ-justification
for Kas inconsistency.

Note that some assertions can be concluded implicitly, i.e. using the axioms
in J as, we can infer that p1, p2, p3 must be professors since other elements in
the domain are lectures and time points. Thus, we can remove them to get a
minimal justification. Besides J as, there are 52 justifications in total. Also note
that Kas is consistent under the standard semantics, since new professors can
be introduced to teach problematic lectures.

Fig. 1. Kas ABox representation and axioms.

192 S. Rudolph et al.

4 Computing Justifications

Algorithms for finding justifications can be categorized coarsely into black-box
and glass-box approaches. Black-box approaches use a reasoner to conduct the
reasoning tasks it was designed for, i.e. entailment checking. Contrarily, in the
glass-box approach, reasoners are modified, i.e. the internal reasoning algorithms
are tweaked towards justifications. Generally, black-box approaches are more
robust and easier to implement, whereas the glass-box approaches provide more
potential for optimization. Subsequently, we introduce two black-box approaches,
followed by a dedicated glass-box approach.

4.1 Black-Box Approaches

The ontology editor Protégé, has built-in functionality to compute justifications
under the standard semantics, which is based on the OWL Explanation Work-
bench2 [12]. The underlying algorithm is based on the Hitting-Set Tree (HST)
algorithm originating from Reiter’s theory of diagnosis [24]. For the details of
the implementation we refer to [11].

Axiomatization of Δ-models. Given a knowledge base K and a fixed domain
Δ = {a1, . . . , an}, one can axiomatize the fixed-domain semantics, such that
K |=Δ α iff K ∪ FDΔ |= α, where FDΔ = {�
 {a1, ...an}} ∪ {ai � .= aj |
1 ≤ i < j ≤ n}. It is easy to see, that those axioms enforce reasoning over
Δ. A black-box algorithm for finding justifications merely exploits inconsistency
or entailment checking, which is a standard reasoning task, thus standard DL
reasoners can be used for fixed-domain standard reasoning. In Sect. 5 we will
therefore use the explanation workbench with HermiT as black-box reasoner.

A Fixed-Domain Reasoner as a Black-box. Wolpertinger has been introduced
as reasoner adhering to the fixed-domain semantics [28], which can easily be
plugged into the explanation workbench. We will evaluate the performance of
this approach, and expect the performance to correlate with the performance of
entailment checking. With W-black-box we refer to this approach in the subse-
quent evaluation.

4.2 A Glass-Box Approach Using Answer-Set Programming

We now introduce a glass-box approach for computing justifications using an
encoding into answer-set programming. The translation is based on the näıve
translation [6], which has already been implemented in Wolpertinger, but some
fundamental changes needed to be made in order to compute justifications. Since
finding justifications is about finding the corresponding (minimal) subsets of a
knowledge base, another “layer” is required, on the top of the model correspon-
dence established in the näıve translation, which is not straightforward to encode

2 Subsequently just called explanation workbench.

Justifications for Description Logic Knowledge Bases 193

in ASP. We will therefore avoid negation-as-failure, and hence refer to this new
translation as naff (negation-as-failure free). Subsequently, the translation is
depicted in detail.

Let K = (A, T ,R) be a normalized SROIQ knowledge base, and Δ a fixed
domain.3 With Π(K,Δ) = Πgen(K,Δ) ∪ Πchk (K) ∪ Πinc(K), we denote the
translation of K into a logic program w.r.t. Δ. Intuitively, Πgen(K,Δ) generates
candidate interpretations w.r.t. Δ, and each axiom is translated into rules in
Πchk (K), in such a way, that any violation will cause a dedicated propositional
atom to be true. If so, the Principle of Explosion (POE) is applied via appro-
priate rules. For every translated axiom, an additional dedicated propositional
activator is added in the body of the resulting rule, allowing to activate or deac-
tivate the rule, thus indicating whether to include or exclude the axiom in a
candidate justification. With the disjunctive rules in Πgss(K,Δ), the generation
of extensions for every concept and role name is realized.

Πgss(K,Δ) = {A(X), not A(X) :− �(X) | A ∈ NC(K)} ∪
{r(X,Y), not r(X,Y) :− �(X),�(Y) | r ∈ NR(K} ∪
{�(a) | a ∈ Δ}.

Atomic clashes need to be detected explicitly, which is done via simple rules in
Πobv (K). Note that clashes are not represented by constraints, but rules with
the dedicated propositional variable inc as head.

Πobv (K) = {inc :− A(X), not A(X) | A ∈ NC(K)} ∪
{inc :− r(X,Y), not r(X,Y) | r ∈ NR(K}.

Based on the detection of atomic clashes, the rules in Πpoe(K) encode the POE,
that is, every concept and role assertion follows whenever inc holds.

Πpoe(K) = {A(X) :− inc,�(X) | A ∈ NC(K)} ∪
{not A(X) :− inc,�(X) | A ∈ NC(K)} ∪
{r(X,Y) :− inc,�(X),�(Y) | r ∈ NR(K} ∪
{not r(X,Y) :− inc,�(X),�(Y) | r ∈ NR(K}.

Qualified Number Restriction Encoding. One problem that we encoun-
tered is the usage of the <-operator in the translation of at-least cardinality
restrictions. Consider the concept ≥ n r.C, which restricts an individual to have
at least n r-neighbors, that are a member of C. The intuitive translation is a
constraint that counts how many outgoing r-connections exist, satisfying also
the membership in C, thus failing if there are less than n r-neighbors not sat-
isfying the condition. However, this translation does not work anymore due to
the rules in Πpoe(K).

3 We do not provide details on the normalization part, an refer instead to our previous
work [6].

194 S. Rudolph et al.

We therefore introduce a different view of the semantics of cardinality restric-
tions in the fixed-domain setting. For simplicity, we define r.C(a) = {x ∈ CI |
(a, x) ∈ rI}. Hence r.C(a) consists of all members of concept C that are con-
nected via r starting in a. The idea is to count individuals which are not a
member of the concept where this restriction applies. There are two possibilities
that an individual b is not in r.C(a): (a, b) /∈ r or b /∈ C. Let n = |ΔI | and
m = |{b ∈ ΔI | b /∈ r.C(a)}|. Hence, the number of individuals in r.C(a) is
n − m. This is only possible due to the given fixed domain.

Proposition 1. Let K be a SROIQ knowledge base, Δ be a fixed-domain, and
I a Δ-model of K. Then (≥ n r.C)I = {x ∈ Δ | #{y ∈ Δ | y /∈ CI or (x, y) /∈
rI} ≤ |Δ| − n}.
Hence, we can compute such a relation between two individuals to be used later
in the translation of axioms. A new auxiliary predicate is introduced for each
pair of concept (and its negation) and role. We define:

Πnra(K) = {not r C(X,Y) :− not C(Y) | C ∈ NC(K), r ∈ NR(K)} ∪
{not r C(X,Y) :− not r(X,Y) | C ∈ NC(K), r ∈ NR(K)} ∪
{not r not C(X,Y) :− C(Y) | C ∈ NC(K), r ∈ NR(K)} ∪
{not r not C(X,Y) :− not r(X,Y) | C ∈ NC(K), r ∈ NR(K)}.

Πnra(K) does not change the interpretation built by Πgen(K). It merely collects
all those individuals satisfying the previously mentioned conditions. Addition-
ally, we have to take care about inverse roles, for which the rules look similar,
but variables need to be swapped. Finally, Πgen(K,Δ) = Πgss(K,Δ)∪Πobv (K)∪
Πpoe(K) ∪ Πnra(K).

ABox Translation. The first pruning of the search space originates from ABox
assertions. As the input is a normalized knowledge base, each assertion contains
only a literal concept, or literal role, respectively. It then straightforward to
encode:

Πchk (A) = {inc :− active(i), not A(a) | A(a) ∈ A} ∪
{inc :− active(i), A(a) | ¬A(a) ∈ A} ∪
{inc :− active(i), not r(a, b) | r(a, b) ∈ A} ∪
{inc :− active(i), r(a, b) | ¬r(a, b) ∈ A}.

TBox Translation. Each TBox axiom is normalized and of form �

⊔n

i=1 Ci,
with each Ci being non-complex, i.e. one of the concept constructors depicted
in Table 3. It is then easy to turn normalized axioms into appropriate rules to
detect any violation.

Πchk (T) = {inc :− active(j), τ(C1), ..., τ(Cn),�(X) | �

n⊔

i=1

Ci ∈ T }

Justifications for Description Logic Knowledge Bases 195

Table 3. Translation of concept constructors. Note: Oa is a new concept name unique
for a, and m = |ΔI |.

C τ(C)

A not A(X)

¬A A(X)

{a} {not Oa(X)}, {Oa(a)}
∀r.A {not A(Y), r(X, Y)}
∀r.¬A {A(Y), r(X, Y)}
∃r.Self not r(r, X, X)

¬∃r.Self r(r, X, X)

≥ n r.A #count{Y : not r A(X, Y)} > (m − n)

≥ n r.¬A #count{Y : not r not A(X, Y)} > (m − n)

≤ n r.A #count{Y : r(X, Y), A(Y)} > n

≤ n r.¬A #count{Y : r(X, Y), not A(Y)} > n

RBox Translation. Since normalized, each axiom in an RBox R is either a
(simplified) role chain, disjointness or role inclusion axiom. As for TBox axioms,
each axiom in R is translated into a rule that enforces the propositional variable
inc to be true, whenever the axiom is violated.

Πchk (R) = {inc :− active(i), r(X,Y), s(X,Y) | Dis(r, s) ∈ R} ∪
{inc :− active(i), r(X,Y), not s(X,Y) | r
 s ∈ R} ∪
{inc :− active(i), s1(X,Y), s2(Y,Z), not r(X,Z) | s1 ◦ s2
 r ∈ R}.

For example, α2 and α10 in Example 1 are encoded as:

i n c :− a c t i v e (2) , p ro f (X) ,#count{Y: teach (X,Y) , l e c t u r e (Y)}>1.
inc :− a c t i v e (10) , teach (X,Y) , heldAt (Y,Z) , not busyAt (X,Z) .

Finally, let Πchk (K) = Πchk (A) ∪ Πchk (T) ∪ Πchk (R), be the translation of all
axioms in a knowledge base. It remains to remove any candidate answer-set not
including inc, as well as guessing the set of active rules. As a result, any answer-
set now indicates which axioms jointly cause the inconsistency. Then, preferring
answer-sets that are subset-minimal w.r.t. the set of ground instances of active
yield exactly the desired justifications. The following program captures these
requirements and completes the translation Π(K,Δ) = Πgen(K,Δ)∪Πchk (K)∪
Πinc(K).

Πinc(K) = { :− not inc.

{active(X) :− X = 1..n}.

#optimize(p).
#preference(p, subset){active(C) : C = 1..n}. }

196 S. Rudolph et al.

Theorem 1. Let ACT (K) = {active(1), . . . , active(n)}, where n = |K| and
KX = {αi ∈ K | active(i) ∈ X}. Then AS(Π(K,Δ))|{active} = {X ∈ 2ACT (K) |
KX is Δ-inconsistent}.

Proof sketch. Using the well-known splitting theorem [17], we split
Π(K,Δ) into two parts: axiom (subset) guessing and inconsistency checking.
First, we show that each X representing a potential subset can be used to
reduce the program to Π(KX ,Δ). For the second part, we show that if KX

is Δ-inconsistent, AS(Π(KX),Δ) consists only of exactly one answer set. Com-
bining both arguments via the splitting theorem, it can be concluded that each
answer set of Π(K,Δ) corresponds to a Δ-justification for inconsistency of K.��

We implemented this glass-box approach into Wolpertinger. In the evalua-
tion, we refer to this approach as W-glass-box. While our translated programs
need to be evaluated by asprin (which needs Clingo), it would be easy to
remove the minimality preference, such that each answer set then corresponds
to an inconsistent subset of the knowledge base. One could the also define (other)
preferences, e.g. prioritizing some axioms to be necessarily included.

5 Evaluation

We introduce several simple constraint-type combinatorial problems that are
aligned with our approach. We deliberately make them inconsistent, with a con-
trolled number of justifications. The evaluations were performed on an HPC
system with Haswell CPUs using a 4 GB memory limit. Unless stated differ-
ently, the timeout for each evaluation was 30 min. We use the hyphen symbol (-)
to denote a timeout.

We reused an unsatisfiable knowledge base described in [6]. The knowledge
base represents a Pigeonhole-type problem. We specified the axioms such that
we want a model that depicts an r-chain of length n+1, but fixed the domain to
n elements, for which a model cannot exist. For Kn = (T n,An), we have:

T n = {A1
 ∃r.A2, . . . , An
 ∃r.An+1} ∪
{Ai � Aj
 ⊥ | 1 ≤ i < j ≤ n + 1}

An = {A1(a1)}
Δn = {a1, ..., an}

First, a comparison between the näıve and naff translation as been made.
We expected the naff translation to be somewhat slower due to the overhead of
computing some auxiliary atoms, which is confirmed as depicted in Table 4 (left).
Afterwards, the performance of each approach to compute (Δ)-justifications (of
inconsistency) of this knowledge base has been evaluated. In this case, since
the only justification is the whole knowledge base, there is no major difference
between requesting only one, or all justifications. This would be different if the
only justification is a proper subset, because the algorithm has to make sure there

Justifications for Description Logic Knowledge Bases 197

Table 4. Runtimes for checking unsatisfiability of Kn (left table), and runtimes of each
approach for computing one justification.

is no other justification. Table 4 (right) shows the result. It can be stressed,
that for smaller instances, the W-glass-box approach performs best, followed
by W-black-box. However, they do not scale well for bigger instances where
H-black-box outperforms both of them. For the latter experiment, the timeout
was set to one hour.

The second knowledge base K(m,n) used for evaluation heavily uses cardinality
restrictions. Individuals of the source concept C need to be connected with at least
n individuals that are each a member of the concept Ai, where 1 ≤ i ≤ m. How-
ever, we restrict the domain to contain only n + 1 elements. Finally, we impose a
constraint such that all concepts are disjoint. Obviously, the existence of two such
axioms already cause an inconsistency. For K(m,n) = (T (m,n),A) we have:

T (m,n) = {C
 ≥ n r.A1, . . . , C
 ≥ n r.Am} ∪
{C
 ¬A1, . . . , C
 ¬Am} ∪
{A1
 ¬A2, A1
 ¬A3, . . . , Am−1
 ¬Am}

A = {C(a)}
Δn = {a, x1, ..., xn}

The result is shown in Table 5. The black-box approach with HermiT failed to com-
pute the justifications for any case within the time limit. This result indicates that
standard reasoners struggle in handling cardinality restrictions under the fixed-
domain semantics. We suppose that the result originates from the fact that ≥-
cardinality is handled easily in standard semantics since the reasoner can intro-
duce new individuals satisfying the restriction. While H-black-box is able to solve
some of the instances, W-glass-box computes all of them in reasonable time.

The third evaluation is based on the graph-coloring problem. We encode
some instances of the Mycielskian graphs4. Since the chromatic number of each
instance is provided, making them non-colorable is trivial. For a graph with
chromatic number n, we only provide n−1 colors. The result is shown in Table 6.
Each approach exceeded the timeout for the larger instances. Similar to
the cardinality evaluation, the W-glass-box approach performs best. For the
4 http://mat.gsia.cmu.edu/COLOR/instances.html.

http://mat.gsia.cmu.edu/COLOR/instances.html

198 S. Rudolph et al.

Table 5. Runtime for individual cardinality.

Instances H-black-box W-black-box W-glass-box

1 K10,10 – 94.787 s 3.461 s

2 K10,20 – 75.107 s 5.141 s

3 K10,30 – 104.382 s 8.029 s

4 K20,10 – 448.757 s 45.578 s

5 K20,20 – – 66.123 s

6 K20,30 – – 103.721 s

7 K30,10 – 634.572 s 331.576 s

8 K30,20 – – 476.985 s

9 K30,30 – – 548.865 s

Table 6. Runtime for n-coloring problems.

Instances #Nodes #Edges H-black-box W-black-box W-glass-box

1 Kmyciel3 11 20 43.335 s 71.347 s 1.423 s

2 Kmyciel4 23 71 – – 11.327 s

3 Kmyciel5 47 236 – – –

small instance, H-black-box performs better than W-black-box. For the second
instance, we find that H-black-box provided merely one justification before the
timeout, while W-black-box was able to compute at least five justifications.

As shown in Table 4, H-black-box performs better in some cases. While find-
ing justifications is a hard problem, asking for several of them is more feasible.
The necessary adjustments can easily be done for each tool. Another important
note to mention is, we only use one thread for evaluation, though the problem
itself could be done in parallel.

6 Conclusion

We considered the task of computing justifications for entailments under the
fixed-domain semantics, a task of general high importance in the modeling phase
of ontologies. We proposed three different approaches to this problem and com-
paratively evaluated one using standard OWL technology employing an axiom-
atization of the fixed-domain semantics, one using our dedicated fixed-domain
reasoner Wolpertinger in combination with Protégé’s explanation workbench,
and one where the problem is encoded entirely into answer-set programming.
The evaluation suggests that each of the proposed approaches do have their
difficulties as well as individual advantages. Hence, it remains imperative to
conduct more experiments with different setups. Also, all tools were used in
their standard configuration, which gives another optimization angle.

Moreover, other approaches developed to debug answer-set programs need
to be considered and compared. For example, Pontelli et al. suggest a method

Justifications for Description Logic Knowledge Bases 199

to obtain justifications for the truth value of an atom in an answer-set [23],
which might be reused in our setting to obtain an explanation for inconsistency
(represented by the propositional atom inc). A different approach is the step-
wise debugging methodology proposed by Oetsch et al. which allows to identify
rules that prohibit a certain (partial) answer-set [20]. However, this approach
is designed to answer the question, why some interpretation is actually not an
answer-set of the program, thus we see it as future work to identify how this
approach can be resembled into our setting. Moreover, it would be a great fea-
ture for users if a tool actually recommended automatic repairs in addition to
the justifications, which might be realized be using these related approaches.

Acknowledgements. We are grateful for the valuable feedback from the anonymous
reviewers, which helped greatly to improve this work. This work is supported by DFG
in the Research Training Group QuantLA (GRK 1763) and in the Research Training
Group RoSI (GRK 1907).

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn.,
Cambridge University Press (2007)

2. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol.
4667, pp. 52–67. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74565-5 7

3. Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: Customizing answer
set preferences without a headache. In: AAAI, pp. 1467–1474. AAAI Press (2015)

4. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

5. Calvanese, D.: Finite model reasoning in description logics. In: Proceedings of the
5th International Conference on the Principles of Knowledge Representation and
Reasoning (KR 1996), pp. 292–303. Morgan Kaufmann (1996)

6. Gaggl, S.A., Rudolph, S., Schweizer, L.: Fixed-domain reasoning for description
logics. In: Kaminka, G.A., et al. (eds.) Proceedings of the 22nd European Confer-
ence on Artificial Intelligence (ECAI 2016), Frontiers in Artificial Intelligence and
Applications, vol. 285, pp. 819–827. IOS Press, September 2016

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in prac-
tice. Synth. Lect. Artif. Intell. Mach. Learn. 6, 1–238 (2012)

8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

9. Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A., Presutti, V. (eds.): Ontol-
ogy Engineering with Ontology Design Patterns - Foundations and Applications,
Studies on the Semantic Web, vol. 25. IOS Press (2016)

10. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.):
OWL 2 Web Ontology Language: Primer. W3C Recommendation

11. Horridge, M.: Justification based explanation in ontologies. Ph.D. thesis, University
of Manchester (2011)

https://doi.org/10.1007/978-3-540-74565-5_7
https://doi.org/10.1007/978-3-540-74565-5_7

200 S. Rudolph et al.

12. Horridge, M., Parsia, B., Sattler, U.: Explanation of OWL entailments in Protege 4.
In: Bizer, C., Joshi, A. (eds.) Proceedings of the Poster and Demonstration Session
at the 7th International Semantic Web Conference (ISWC 2008), 28 October 2008,
CEUR Workshop Proceedings, vol. 401. CEUR-WS.org (2008)

13. Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in OWL ontologies.
In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS (LNAI), vol. 5785, pp. 124–137.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04388-8 11

14. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty,
P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th International Con-
ference on Principles of Knowledge Representation and Reasoning, KR 2006, pp.
57–67. AAAI Press (2006)

15. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of
OWL DL entailments. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS,
vol. 4825, pp. 267–280. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-76298-0 20

16. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Brewka, G., Lang, J.
(eds.) Proceedings of the 11th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2008), pp. 274–284. AAAI Press (2008)

17. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP, vol. 94, pp. 23–37
(1994)

18. Lutz, C., Sattler, U., Tendera, L.: The complexity of finite model reasoning in
description logics. Inf. Comput. 199(1–2), 132–171 (2005)

19. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

20. Oetsch, J., Pührer, J., Tompits, H.: Stepwise debugging of answer-set programs.
TPLP 18(1), 30–80 (2018)

21. Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. J. Comput.
Syst. Sci. 37(1), 2–13 (1988)

22. Peñaloza, R., Sertkaya, B.: Understanding the complexity of axiom pinpointing in
lightweight description logics. Artif. Intell. 250, 80–104 (2017)

23. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under
answer set semantics. TPLP 9(1), 1–56 (2009)

24. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

25. Rosati, R.: Finite model reasoning in DL-Lite. In: Bechhofer, S., Hauswirth, M.,
Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 215–229.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68234-9 18

26. Rudolph, S.: Foundations of description logics. In: Polleres, A., et al. (eds.) Reason-
ing Web 2011. LNCS, vol. 6848, pp. 76–136. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23032-5 2

27. Rudolph, S., Schweizer, L.: Not too big, not too small... complexities of fixed-
domain reasoning in first-order and description logics. In: Oliveira, E., Gama, J.,
Vale, Z., Lopes Cardoso, H. (eds.) EPIA 2017. LNCS (LNAI), vol. 10423, pp. 695–
708. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65340-2 57

28. Rudolph, S., Schweizer, L., Tirtarasa, S.: Wolpertinger: a fixed-domain reasoner. In:
Nikitina, N., Song, D., Fokoue, A., Haase, P. (eds.) Proceedings of the ISWC 2017
Posters and Demonstrations and Industry Tracks Co-located with 16th Interna-
tional Semantic Web Conference (ISWC 2017), 23–25 October 2017, CEUR Work-
shop Proceedings, vol. 1963. CEUR-WS.org (2017)

https://doi.org/10.1007/978-3-642-04388-8_11
https://doi.org/10.1007/978-3-540-76298-0_20
https://doi.org/10.1007/978-3-540-76298-0_20
https://doi.org/10.1007/978-3-540-68234-9_18
https://doi.org/10.1007/978-3-642-23032-5_2
https://doi.org/10.1007/978-3-642-23032-5_2
https://doi.org/10.1007/978-3-319-65340-2_57

	Justifications for Description Logic Knowledge Bases Under the Fixed-Domain Semantics
	1 Introduction
	2 Preliminaries
	3 Justifications Under Fixed-Domain Semantics
	3.1 Fixed-Domain Semantics
	3.2 Justifications

	4 Computing Justifications
	4.1 Black-Box Approaches
	4.2 A Glass-Box Approach Using Answer-Set Programming

	5 Evaluation
	6 Conclusion
	References

