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Part I
General



Chapter 1
Introduction to Space Technology
Challenges: Potential and Future Prospects

B. S. Chaudhary, Haroon Sajjad, Meenu Rani, P. C. Pandey,
and Pavan Kumar

Abstract This book affords an outline of the future overview of the current position
and short-term insights into the space technology and the issues in the fast-mounting
geospatial technology. A prosperous marker in the space journey from the traditional
to advance remote sensing technology varying in space has been portrayed within
objectives and outcomes. The usefulness of spectral bands with dissimilar spectral
signatures provides vast data acquisition for application and services. Urbanization,
dynamic nature of agriculture, land use planning, ocean exploration, vegetation
resource management, and other ecosystems are being effectively monitored by
the satellite services from the space and have many future prospects. Space technol-
ogy assumes greater significance for monitoring natural and human resources and
analyzing judicious utilization of resources. The technology provides standardized
solutions for assessing potential and planning process in different geographical
regions. Thus, space technology with its different services like geographical infor-
mation system (GIS) and global positioning system (GPS) can effectively be utilized
for timely analysis and future planning of resources on the planet Earth. The book is
divided into 5 sections spreading over 16 chapters. The first section discusses the
usefulness of geospatial technology in various fields. Chapters 2, 3, 4 and 5 of Part II
are devoted to water resource and its various aspects. Natural hazard risk was
assessed through various models and presented in Chaps. 6, 7, 8, and 9 of Part III.
Part IV deals with progress and perspective scenario of urban growth models and
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covers Chaps. 10, 11, 12, and 13. Future challenges and prospects of geospatial
technology have been examined in Chaps. 14, 15, and 16 of Part V.

Keywords Space technology · GIS · GPS · Potential and Future Prospects

Development of geospatial techniques has given a way for timely and accurate
analysis of phenomenon of the surface of the earth. Use of varied spectral bands is
widening the horizon of information. Intensive use of software system and sensor
technology has proved effective for monitoring and assessing water resources,
urbanization, ocean exploration, forest resource management, and agriculture prac-
tices. Geospatial technology assumes greater significance for examining potential
and further exploration of natural resources. The technology is widely being used in
multi- and interdisciplinary sciences for effective decision-making processes.
Increasing population, growing demand for resources, and improper utilization of
resources are major challenges in the era of climate change. Therefore, recent
technology is essential for effective planning, management, and sustainable devel-
opment of resources at various geographical scales. This technology can help not
only in identifying the priority areas but also provide possible solutions. Integrated
approach involving remote sensing (RS), geographical information system (GIS),
and global positioning system (GPS) offers a range of possibilities for resource
conservation, efficient utilization, and management.

Database is pertinent for any analysis and decision-making process. Geospatial
database is employed for identifying, estimating, and analyzing varied phenomenon
in spatiotemporal context. Accuracy and precision have improved considerably with
the advancement of spatial and spectral resolutions. Development of the Defense
Meteorological Satellite Program Operational Linescan Program (DMSP OLS)
night-time light (NTL) data has enabled researchers to analyze gross domestic
product (GDP), electricity consumption, population density, and land utilization
index (LUI). Nowadays, applicability of geospatial techniques has become ubiqui-
tous in terms of environmental impact assessment, resource management, and policy
implementation. Digital elevation model (DEM), digital terrain model (DTM), and
light detection and ranging (LIDAR) are providing edge for multidimensional
visualization of spatial data. Remote sensing, GIS, and GPS are widely being used
in land resource management; soil, water, and forest management; monitoring
biodiversity; earthquake assessment; chlorophyll-a concentration; suspended sedi-
ment concentration; flood inundation; etc.

An attempt has been made by contributors to examine the effectiveness of
geospatial techniques in various case studies. The present volume incorporates the
papers on application on geospatial technology and instructive future prospects. The
research papers have been grouped under five themes: General, Understanding of
Sustainable Water Resource Management, Global Modelling of Natural Hazard Risk
Assessment, Progress and Perspective Scenario of Urban Growth Models, and
Future Challenges of Natural Resource Management and Their Potential over
Space and Time.

4 B. S. Chaudhary et al.



Part I deals with usefulness of geospatial techniques in various domains. It
discusses use of optical, microwave, as well as DMSP-OLS night-time light data.
It covers wider applicability of geospatial technology in resource conservation and
management, land use planning, forest resource management, biodiversity conser-
vation, urbanization, ocean exploration, earthquake, and hazard risk assessment and
agriculture.

Part II deals with Understanding of Sustainable Water Resource Management. It
comprises of four chapters focusing on water resources and integrated watershed
management. In Chap. 2, Rani et al. have made an attempt to examine the “Recharge
Potential Mapping in Complex Hydrological System of Kosi Basin in
Mid-Himalayan Region.” In this study, a GIS-based weighted sum analysis
approach was utilized to identify recharge potential sites in Upper Kosi basin of
Indian Himalayan region. GIS facilitated to provide precise and quick information
on suitable recharge sites for rejuvenation of springs and hydrological sustainability
of watershed. In Chap. 3, Vijendra Kumar Pandey has discussed about “Application
of Geoinformatics for the Integrated Watershed Management and Development
Planning, Bal Ganga Basin, Tehri Garhwal (Uttarakhand).” In this study,
geoinformatics has been used as a tool for the resource prioritization, gap analysis,
and development planning of the Bal Ganga watershed. In Chap. 4, Matin et al.
addressed “A Semi-Analytical Approach to understand Remote Sensing based
Backscattering Characteristics for Kerala Coast using In-Situ Observation.” This
paper has utilized a Quasi-Analytical Algorithm (QAA)-based distribution and
variability of particulate backscattering coefficient (bbp). In Chap. 5, Kaliraj et al.
have attempted “Phytoplankton (Chl-A) Biomass Seasonal Variability in the Gulf of
Mannar, South India: A Remote Sensing Perspective” through band combination
analysis. Study entails remote sensing applications for assessing phytoplankton
(chl-a) biomass variability and its major influencing factors (sea surface temperature,
salinity, waves, and currents) in the Gulf of Mannar (GoM), southeast coast of India.

Part III deals with Global Modelling of Natural Hazard Risk Assessment. The
section includes four chapters. In Chap. 6, Rajesh Kumar et al. have discussed
“Flood Inundation and Hazard Mapping of 2017 Floods in the Rapti River Basin
using Sentinel-1A Synthetic Aperture Radar Image.” They analyzed the propagation
of flood peaks and affected areas of Rapti River Basin using water level data and
SAR images. In Chap. 7, Salaj et al. assessed “Application of Aster Remote Sensing
for Lithological Mapping in the Udaipur District of Rajasthan, India.” Visible-near
infrared (VNIR) and short-wave infrared (SWIR) bands have been analyzed to
discriminate lithology features in metasedimentary terrains of Aravalli Supergroup
in Udaipur area of Rajasthan, India. In Chap. 8, Chaudhary et al. have made an
attempt to build an “Interactive Approach for Earthquake Scenario Development and
Hazards Resource Estimation.” Remote sensing, GIS model builder, and syntax
were used for analyzing earthquake scenarios development, planning, management,
and resource estimation. In Chap. 9, Rani et al. in their paper “A Sediment Dynamic
Modelling of Landsat OLI Image for Suspended Sediment Drift along the Southwest
Coast of India” analyzed the spatiotemporal movement of suspended sediments in
the shallow along the southwest coast of Thiruvananthapuram district, Kerala state in
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India. This study revealed the effectiveness of geospatial technology to estimate
sediment concentration and transportation in the shallow coastal water.

Part IV deals with Progress and Perspective Scenario of Urban Growth Models. It
contains four chapters focusing on urban spatial patterns, urban expansion using
optical, microwave, and NTL data. In Chap. 10, Elvidge et al. made an attempt to
assess the “Inter-Calibration and Urban Light Index of DMSP-OLS Night-Time
Data for Evaluating the Urbanization Process in Australia Capital Territory.” This
article employed scientific appraisal of the capabilities of NTL data set to identify
and delineate the urban morphology, urban augmentation, and growth of suburban
zones over the years in the Australian Capital Territory, using urban light index. In
Chap. 11, Pandey et al. proposed statistical regression modeling-based framework to
analyze the spatial patterns of urban growth with a focus on geographic determinants
in their paper entitled “Modelling Spatial Patterns of Urban Growth in Pune Metro-
politan Region, India.” In Chap. 12 Rahaman et al. made an attempt to assess the
“Analyzing Urban Sprawl and Spatial Expansion of Kolkata Urban Agglomeration
using Geospatial Approach.” The study discussed the spatiotemporal urban expan-
sion of different municipalities and Municipal Corporation of Kolkata urban
agglomeration of West Bengal, India, during 1990–2015. In Chap. 13, Suman
Sinha has discussed about “Automated Extraction of Urban Impervious Area from
Spectral-Based Digital Image Processing Techniques.” Several spectral indices as
vegetation index (soil-adjusted vegetation index (SAVI), normalized difference
vegetation index (NDVI)), water index (modified normalized water index
(MNDWI)), and urban indices (normalized difference built-up index (NDBI),
built-up index (BUI), and index-based built-up index (IBI)) were implemented in
the study.

Part V deals with Future Challenges of Natural Resource Management and Their
Potential over Space and Time. This section comprises four chapters covering detec-
tion of waterlogged rice, forest structural diversity, and future challenges of remote
sensing technology. In Chap. 14, Bambang H. Trisasongko has focused on “Hybrid
Polarimetric Synthetic Aperture Radar for the Detection of Waterlogged Rice Fields.”
This chapter discussed the implementation of popular classification methods such as
Random Forests (RFs) and Support Vector Machines (SVMs) and their variants to
retrieve waterlogged condition of rice fields. In Chap. 15, Kumar et al. focused on the
“Estimation of Forest Structural Diversity of Sariska Tiger Reserve, Rajasthan, India.”
A variety of different diversity indices including Margalef index (SR), Simpson’s
diversity (D), Shannon-Wiener index (H0), and Pielou’s (J) have been used for
community structure. In chapter 16: Sajjad et al. discussed the “Future Challenges
and Perspectives of Remote Sensing Technology”. In their paper the authors have
enunciated the challenges of new technology and how these challenges can
be accomplished.

6 B. S. Chaudhary et al.
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Chapter 2
Recharge Potential Mapping in Complex
Hydrological System of Kosi Basin
in the Mid-Himalayan Region

Meenu Rani, Himanshu Joshi, Kireet Kumar, and Ashutosh Tiwari

Abstract Increasing water use and climatic variability threaten thousands of springs
and spring-fed watersheds in the mid-Himalayan region. The decline in spring
discharge resulted in shrinking cropland, out migration and is adversely affecting
the economy of the region. Shallow aquifer and short retention time emphasize on
need of disposition of site suitable artificial measures to recharge groundwater.
Complex geological and tectonic formations and lithological and chronological
variations on one hand and impact of undulated terrain and land use pattern on the
other put obstruction in finding suitable recharge sites in Himalaya. In this study, a
GIS-based weighted sum analysis approach was used to identify suitable sites for
artificial recharge of groundwater in Upper Kosi basin of Indian Himalayan region.
The tools of GIS facilitate study relief and structural aspect of basin, quantify the
influence of one factor on the other and provide precise and quick information on
suitable recharge sites for rejuvenation of springs and hydrological sustainability of
watershed. The results indicated that 19.6% area lies under good to excellent while
46.9% area having fait to poor potential of groundwater recharge. Area under good
to excellent recharge potential can be further considered for implementation of site
suitable groundwater augmentation measures for sustained specific yield of an
aquifer.

Keywords Spring rejuvenation · Recharges potential site · Mid-Himalayan region ·
Groundwater augmentation
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2.1 Introduction

Surface water and groundwater are complementary in the hydrological system and
interact through various physiographic and diversified climatic landscapes. The
dissimilarity of topographical characteristics with regard to soil, lithology, geomor-
phology, stratigraphy and variation in precipitation over time and space led to an
unequal allocation of groundwater resource in different regions of the country
(Jaiswal et al. 2003). Kumaun Himalaya, with respect to global climate change
and rainfall variability, is among the world’s most vulnerable regions in terms of
water stress, specifically in the spring-fed river regime (Mishra 2014). The economy,
demography, biodiversity, ecology and landscape of Kumaun are controlled by five
watersheds of the region namely Ramganga, Kosi, Gaula, Saryu and Gagas. Kosi
watershed which is a spring fed system, due to its dependence on precipitation and
spring resurgence, is under critical water stress. Water availability is a function of
runoff, groundwater flow and net storage. Drying up of perennial streams, evidence
of died springs and diminishing discharge and rapid declining of summer flows in
Kosi River are threatening not only human sustainability but also the biodiversity of
this region. The major reasons suggested by researcher are rainfall variability (Negi
and Joshi 2004) and complex hydrogeological behaviour of springs. Spring water in
Kumaun is stored in the form of unconfined aquifers in most of the cases where the
water comes out under the action of gravity, and therefore, rainfall variability and
pattern affect spring water discharge. Secondly, the increasing water demand with
increasing population and decreasing water discharge of spring widens gaps in water
demand and supply. Rawat (2014) indicated that the perennial streams in Kosi
watershed are disappearing inch by inch every year, and the total length of perennial
streams has decreased from 225.89 km (a situation across 40 years back) to 41.57 km
in 2014. Because of transformation process of perennial to seasonal streams in Kosi
watershed, discharge of the Kosi River in summers has decreased very fast. The
minimum summer discharge (i.e. the base flow) of the Kosi River was recorded
790 l/s in 1992 which drastically declined up to 80 l/s in 2013. Another research
conducted by G.B. Pant National Institute of Himalayan Environment & Sustainable
Development (GBPNIHESD) indicated that demand for water in Kosi watershed has
increased from 8836 Cu m/day (2001) to 10,910 cu.m/day (2011) for human and
6110 cu.m/day (2007) to 7393 cu.m/day (2014) for livestock and predicted rise in
water demand from 45 to 85% in the next 18 years for different socio-economic
scenarios. With climatic changes and declining precipitation, drying springs are
unable to feed future water demand of increasing population. Peculiar hydrological
characteristics of a watershed, geology, slope, aspect and climate (Jaturon et al.
2014; Kumar and Shankar 2014) and is reflected in terms of land use practice,
occupational structure and social, cultural, floral and faunal biodiversity. Therefore,
the study of a watershed needs to be conducted in systematic approach considering
one and each component affecting or affected by the different parameters acting in
watershed.

10 M. Rani et al.



Researches on discharge of Kosi River indicated that future of Kosi River is
depressing. The diminishing discharge of springs in Himalaya continuously reported
by various researchers (Valdiya and Bartarya 1989, 1991; Negi and Joshi 2004;
Joshi and Kothyari 2003) indicated that these traditional sources of water have
become unsustainable to fulfil future water demand. In view of perturbed hydraulic
situations and increasing water demand, the need of the hour is to formulate
mechanical and biological treatment for rejuvenation of spring-fed rivers.
Geomorphologic features combined with structures such as joints/fractures and
lithology controls not only the flow and occurrence but also quality of groundwater.
Generally, the conventional methods of investigation like field-based
hydrogeological and geophysical resistivity survey are costly (Singh and Prakash
2003) and do not always consider the varied factors that control the groundwater
movement and occurrence in aquifer (Oh et al. 2011). Results are therefore not as
consistent as they may perhaps be in case of complex terrain using these traditional
techniques of groundwater exploration (Murthy 2000). In view of above constraints
of conventional techniques, groundwater potential investigation required a cumula-
tive approach which can count each factor responsible for peculiar hydrological
characteristics of a watershed. Recent advancement in techniques of remote sensing
has proved indispensable for environmental monitoring, geographical and
geomorphologic mapping, climatic condition, hazard mapping, resource estimation
and management, urban planning and many more applications (Chowdhury et al.
2009). Hence, in search for groundwater potential mapping, it offers the current
spatial character of general information on landforms, geology, soils, LULC, drain-
age and slope very quickly and reliably, even with less expenditure and labour than
traditional techniques (Gumma and Pavelic 2013). Various researches have been
carried out to delineate groundwater recharge potential throughout the world by
utilizing remote sensing and GIS-based methods. Researchers established that GIS
provide spatial autocorrelations between governing factors in complex
hydrogeological system by incorporating spatial data with database of water
resources and present more realistic and extensive view of complete watershed
(Fortes et al. 2005; Chenini et al. 2010). Various studies have been conducted in
various regions of the globe in order to identify and delineate groundwater recharge
potential zones using advanced remote sensing and GIS-based techniques
(Krishnamurthy et al. 2000; Shaban et al. 2006; Solomon and Quiel 2006; Tweed
et al. 2007; Riad et al. 2011). During the past few decades, researchers found multi-
criteria decision analysis (MCDA) as an effective method that provides a framework
for water resource management and planning (Pietersen 2006; Jha et al. 2010).

Widening gap between increasing water demand due to increasing population and
decreasing supply due to diminishing discharge of springs and streams in Kosi basin
needs implementation of an appropriate water management system that has capacity
to cope with the situation. Groundwater recharge is the only remaining solution with
planners and resource managers to preserve existing water resources and restraint
depleting groundwater levels. Identification of site suitable groundwater recharging
structures is a prerequisite in this effort. Integrating thematic layers of controlling
factors such as LULC, lithology, geomorphology, structure, slope, drainage density,

2 Recharge Potential Mapping in Complex Hydrological System of Kosi. . . 11



and soil with expert knowledge and knowledge-driven factor analysis provides a
way to look into complexities that arises due to different factors and assessing the
overall recharge capacity. In view of depleting water sources and to augment
groundwater, the present study is an effort to delineate groundwater recharge
potentiality in the complex hydrogeological mountainous watershed for identifica-
tion of sites for groundwater augmentation as the necessity to revitalize dying spring
and streams of Kosi basin.

2.2 Materials and Method

2.2.1 Characteristics of Study Area

The Upper Kosi watershed lies in Kumaun region of Kumaun Himalaya; fed by
numerous tiny springs and rainfall, river Kosi is said to be the backbone of economy,
basis of biodiversity and habitat sustainability. Hydrology of Kosi watershed is
controlled by different landscapes (tectonically and fluvial), soil and geology and
modified by various landforms (dissected valley, terraces, ridge), microclimate and
demography (Fig. 2.1).

Fig. 2.1 Location of study area

12 M. Rani et al.



The Kosi River originates from its northernmost point at Pinath (near Kausani,
Almora district), which flows downward and joins Ramganga in Ramnagar as its
major tributary. Geographically, the catchment of Upper Kosi River (the northern-
most sub-watershed of Kosi River basin) has its spatial extent between 29� 370 3000 N
to 29� 520 2000 N and 79� 310 0000 E to 79� 450 0000 E which covers an area of about
462 sq.km. The absolute relief of the catchment ranges between 1106 m and 2758 m
above mean sea level.

The climate of the watershed is temperate with summer, rainy and winter as three
distinct seasons. As climate is regarded a controlling factor for land use, complex-
ities of the landscape promote variations in microclimatic phenomena and influence
the soil and vegetation. The watershed represents diverse agricultural land (irrigated
to rain-fed, less fertile terraces to highly productive valley, food grains (wheat,
paddy), vegetables, etc.) but highly dependent upon water supply from Kosi River.
The wide and open valley and bench terraces containing thick layer of alluvium and
suitable climate condition were prime factors that encouraged the settlements of
human population in the region. The ultimate storehouse of water in Kumaun region
is the mountain groundwater in the form of spring water (locally known as ‘naula’,
‘dhara’ and ‘gadhera’) at up/middle/down slopes. Most of the people residing in
rural (64,202, Census 2011) places heavily depend on these resources for drinking
and all other uses. The undulating topography, diverse microclimatic conditions, etc.
also pose some difficulty in the efficient distribution of natural water resources.
Springs in the Kosi watershed are now under stress due to climatic variation,
increasing population/water demand and poor management of water resources.
Water stress and drying spring are raising question on the sustainability of Kosi
watershed. Water conservation and proper management are the only solution left for
hydrological sustainability of the watershed.

2.2.2 Data Collection and Preprocessing

Watershed boundary was delineated from integrated use of Survey of India (SOI)
topographical map and CartoSat-2 Digital Elevation Model (DEM) acquired from
NRSC-Bhuvan. Slope of the area was generated with contour interval of 10 m using
DEM. SOI maps were first scanned and converted into digital format and
geo-referenced (projection-UTM, spheroid and datum-WGS 84, Zone 44 North).
Geo-rectified satellite data of IRS Resourcesat-2 (LISS-IV sensor) was utilized for
preparing land use/land cover map (1:10000 scales) after performing radiometric
enhancement for better analysis and identification of features. For assimilating infor-
mation on soil and geology, soil map was procured from National Bureau of Soil
Survey and Land Utilisation Planning (NBSS&LUP), Nagpur, and geology map
procured from Geological Survey of India (GSI) on 1:50,000 scale. The secondary
information acquired on lineaments, geomorphology and lithology was collected
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and co-registered using high-resolution LISS-IV sensor (5 m). All these maps were
rectified using ERDAS Imagine 2013 and put into geo-database for further
processing in ArcGIS-10.3 software.

2.2.3 Multi-criteria Decision and Weightage Sum Analysis

The major challenge faced by hydrogeologist is the quantification of controlling
factors and proportional influence of one factor for controlling GW recharge and
discharge over the others. Multi-criteria decision analysis (MCDA) evaluates mul-
tiple conflicting criteria in decision-making where conflicting criteria are typical in
valuing options. GIS-based multi-criteria decision analysis provides good function-
ality for mapping potential of groundwater revival (Chenini et al. 2010). In case of
complex hydrogeology and formations, multiple factors influence the recharge
potential of a region but in different proportion. In multi-criteria evaluation tech-
nique, experts have liberty and judgment on relative weights of controlling factors
for assessment of recharge potential (Kaliraj et al. 2014). The judgment lies in the
assigning appropriate weightage to these factors. Principal geomorphologic and
hydrogeological controlling factors on groundwater flow systems in groundwater–
surface water interactions have been identified, and weightage has been assigned
based on their relative impact (Magesh et al. 2012). Integration of these controlling
factors and their potential weights has been calculated using weighted sum analysis
method in ArcGIS.

2.3 Results and Discussion

2.3.1 Relief Aspect and Recharge Potentiality of Basin

Upper Kosi River is a seventh-order stream, elevation between 1150 m and 2700 m
asl, following dendritic to sub-dendritic pattern at major scale as major tributaries
join main streams at angle less than 90�. This type of pattern develops in a region
underlain by homogeneous material. It indicated that the subsurface geology has a
similar resistance to weathering throughout the catchment, and there is no apparent
control over the direction of river. But at minor scale, the first- and second-order
streams join higher-order stream at sharp angle at many places showing trellis
pattern. Trellis pattern at local level indicated the development of folded topography.
Rectangular pattern at some place indicated the impact of joint and fractures at local
scale. Drainage density is dominant factor for identification of potential recharge
sites. Drainage density is termed as the closeness of spacing the drainage channels
and computed by dividing the total length of the stream by total basin area (Singh
et al. 2014).The occurrence of a natural drainage system is an indirect sign of high
porosity and permeability due to its direct relationship with surface runoff
(Krishnamurthy et al. 2000). A region with low drainage density causes more
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infiltration and lowered runoff. It means that areas having high drainage density have
lower potential of groundwater recharge and not suitable for implementation
of groundwater augmentation measures (Dinesh Kumar et al. 2007). Drainage
density of the basin lies between 0 and 6.6 km/km2 indicating various degrees for
recharging groundwater (Fig. 2.2a).

Fig. 2.2 Relief aspects of basin controlling hydrological behaviours of the region. (a) Stream order
and density, (b) slope angel, (c) contours and (d) land use and land cover
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Degree of slope also influences the surface water infiltration directly. Steep
slope enhances velocity of surface runoff, therefore reducing percolation
(i.e. infiltration is inversely proportional to the slope) thus adversely affecting
the process of groundwater recharge (Adiat et al. 2012). Steep slopes have less
potential of recharging as it allows water to flow downwards providing inadequate
time to permeate. Alternatively, flat terrain escalates the process of groundwater
recharge by storing rainwater and by providing restrained evaporation environment.
Out of total catchment area of watershed, 3.6% is under <3� and considered as flat
surface with comparatively high recharging capacity, but at the same time, 90% of
this area is under river channel which is again not good for recharging groundwater
due to saturated soil and thus low infiltration capacity. Therefore, this area has been
masked while preparing potential recharge zone map. 52.6% area is having >20�

slope and considered higher runoff zone with lower groundwater recharge (Fig. 2.2b,
c). Dense forest cover obstructs reduces the velocity of surface runoff thus increases
infiltration, while build-up (settlement, roads) allows flow of water due to higher
degree of relative imperviousness therfore contributes to very low infiltration. In
Upper Kosi watershed, 64% area is covered under forest and provides fair amount of
infiltration (Fig. 2.2d). But at the same time, 40.8% (153.4 km2) area lies under
reserved forest where intervention is not possible without collaboration with forest
department. Relief aspects of basin such as slope, drainage, stream order and density
affect the recharge potential by controlling runoff and, therefore, need to be studied
in identifying ideal site for groundwater augmentation.

2.3.2 Structural Aspect and Recharge Potentiality of Basin

Soil permeability coefficient among the leading factors in recharging groundwater
(Eid et al. 2006). Major soils in the watershed are ‘Typic Udorthents associated with
Dystric Eutrochrepts’ which are a moderately deep, coarse loamy soil with moderate
erosion tendency (61.4%). Further, Dystric Eutrochrepts associated with Typic
Udorthents are also found at upslope and hilltop which are characterized as deep,
fine loamy soils, with slight erosion (18.4%), and Typic Udorthents as moderately
deep, coarse loamy soil (20.2%) found at high slopes which is moderately eroded
soil (Fig. 2.3a). Ayazi et al. (2010) stated that lithology influences the porosity and
permeability of aquifer rocks. Basin lithology is dominant by quartzite of Berinag
formation, schist and gneiss of Saryu_Gumalikhet_Munsiyari Formation, slate of
Ratgaura formation, dolomite of Deoban (Gangolihat) Formation and gneiss of
Augen Gneiss (after Valdiya 1978, Fig. 2.3b). Two elongated tectonic belts of
sedimentary/meta-sedimentary rocks are separated by ESE-WNW trending crystal-
line zone, namely, Almora-Dudhatoli. The outer sedimentary belt, i.e. Krol Belt, lied
to the southern side of the crystalline mass, while the inner sedimentary belt, i.e.
Deoban-Tejam zone, lied to the north (Gansser 1964; Valdiya 1978). The impact of
variable rock group reflects spatial variability in recharging capacity in the study
area. Lineaments reflect a general surface appearance of fractures lied underground
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(Pradhan 2009). Lineaments in the form of faults and fracture/joints represent
geological discontinuities and act as pathway for groundwater percolation and
storage. The contribution of lineaments on runoff, infiltration and groundwater
recharge are well documented by Subba Rao et al. (2001) and Chenini et al.

Fig. 2.3 Structural aspects of basin controlling hydrological behaviours of the region. (a) Soils, (b)
lithology, (c) lineament density and (d) geomorphology and lineaments type
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(2010). Quantification of lineaments was done either on the basis of density (Dinesh
Kumar et al. 2007) or presence and absence of lineament (Babus and Sashikumar
2010). The Upper Kosi basin is characterized by structural lineament (Fault, fracture/
joint) and fluvial lineament (drainage parallel) as indicated in Fig. 2.3c. For quan-
tification of the relative influence of lineament, the density of lineament (km/km2)
was computed.

Evolution of landforms provides helpful information to understand the incidence
of permeable and porous zones; and therefore, for recharging groundwater the study
of geomorphology of a region is considered as an essential component. Four major
geomorphic units have been identified in the study area, viz. highly dissected hills
and valley, moderately dissected hills and valley, piedmont alluvial plain and
piedmont slope (Fig. 2.3d). Major geomorphology of the area is highly dissected
hills and valley (89%) which has moderated capacity of infiltration. Krishnamurthy
et al. (2000) suggested that less compact zone with higher degree of fracturing and
weathering assist runoff infiltration and therefore are comparatively suitable in hard
rock terrain for recharging groundwater. This way, the structural aspect of basin has
been thoroughly studied and assigned comparative weightage based upon expert
knowledge and published literature for assigning impact of these factors in evalua-
tion of recharge potential.

2.3.3 Recharge Potential Evaluation and Mapping

With the aim to evaluate potential of recharge in the watershed, relief aspect and
structural aspect of watershed have been studied. Simple approach of assigning
weightage has been adopted for quantification of complex hydrogeology. Different
relief and structural components as well as LULC of watershed have been classified
into different categories by assigning rank on 1–5 scale. Rank has been assigned
based upon comparative recharge capacity of different classes as a controlling factor.
Rank 1 has been assigned to class in a layer having higher recharge potential than
other categories. Similarly, higher rank has been assigned to class with lower
potential for recharge. Different layers and their ranks have been shown in
Table 2.1. After assigning rank, weighted sum analysis method was used for
calculation of a multi-criteria analysis between thematic layers of controlling factors.

The weightage assigned to each factor was equally distributed in different classes
of corresponding factor for computing overall weightage. Thereafter, sum of
weightage in each class was computed and divided into five equal categories
indicating excellent to poor recharge potential. Recharge potential zones are identi-
fied though weighted sum indicated that 5.1%, 14.5% and 33.4% area in the basin
lies under excellent, good and moderate recharge potential, respectively, while
31.7% and 15.2% area under fair and poor recharge potential. Recharge potential
area identified in Fig. 2.4 can be used as a base map for identification of ideal sites
for implementing suitable groundwater augmentation measures and conservation of
watershed.
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Groundwater augmentation measures in the form of chal-khal, percolation tank,
contour trenches, bioenineering structures like live check dams, rip-rap drains etc.
store water in recharge zone and facilitate infiltration which helps in increasing
the aquifer storage and sustenance of drying spring. Recharge potential in current
study has been predicted using remote sensing-based data and GIS tools and found
that these data and technique provide excellent platform for quantification of spatial
data for assessing groundwater recharge potential. But the limitation of identifying
recharge potentiality is that the error or accuracy in methods of proportionate weight

Table 2.1 Hydrogeological controlling factors, their categorization and rank assigned

Controlling factors and
their weight Categories

Rank on scale
(1–5)

Slope (19.2) < 3 ¼ excellent 1

3–8 ¼ good 2

8–15 ¼ moderate 3

15–20 ¼ poor 4

>20 ¼ nil 5

Lithology (15.4) Dolomite ¼ excellent 1

Schist ¼ good 2

Slate ¼ moderate 3

Quartzite ¼ poor 4

Gneiss ¼ nil 5

Soil (11.5) Typic Udorthents associated with Dystric
Eutrochrepts ¼ excellent

1

Typic Udorthents ¼ good 2

Dystric Eutrochrepts associated with Typic
Udorthents ¼ moderate

3

Geomorphology (11.5) Piedmont alluvial plain ¼ excellent 1

Piedmont slope ¼ good 2

Moderately dissected hill and valley ¼ moderate 3

Highly dissected hill and valley ¼ poor 4

Land use /land cover
(15.4)

Agriculture ¼ excellent 1

Forest ¼ good 2

Wasteland/ barren ¼ moderate 3

Build-up/settlement ¼ poor 4

Stream density (15.4) <0.83 ¼ excellent 1

0.84–2.28 ¼ good 2

2.29–3.40 ¼ moderate 3

3.41–4.31 ¼ poor 4

>4.31 ¼ nil 5

Lineament density (11.5) <0.95 ¼ negligible 5

0.96–1.90 ¼ poor 4

1.91–2.80 ¼ moderate 3

2.81–3.80 ¼ good 2

> 3.80 ¼ excellent 1
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assignment is not assessed. On the other hand, some factors work independently in
recharging groundwater. In case of lineament, the control of other factors becomes
negligible because the water flows through joints or cracks independent of other
factors (slope, lithology, LULC, etc.). Similarly, in case of drainage, the area around
channel is saturated with very poor or nil recharge potentiality, while other factors in
same area may indicate good or positive sign of recharge potential (low slope,
agricultural land, alluvial deposit, etc.). In such cases, the water body buffer has
been masked and assigned poor potential. The technique of assigning weightage and
ranking is good for comparing and identifying in case of remaining factors, but
alternative techniques can be developed through discussion with expert for quanti-
fication of these two factors, viz. lineament and drainage.

Fig. 2.4 Groundwater recharge potential in Upper Kosi basin, Almora, Uttarakhand
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2.4 Conclusion

Thematic data availability, level of accuracy, hydrogeological conditions and gov-
ernment policies play a vital role in groundwater management activities. The
relationship of hydrogeological factors is extremely useful for recharge estimation
and groundwater resources evaluation in any kind of topographical region. Remote
sensing data with integration of GIS techniques provide facility for utilizing various
hydrogeological components like slope, lithology, structure, rainfall, soil, LULC and
drainage on single platform and provide quantification techniques of these compo-
nents in a judgmental way for identification of groundwater recharge potential zones.
The study has established the ability of remote sensing data together with GIS
technique for delineation of groundwater projection, especially in the complex
hydrogeological terrain. Identifying the groundwater recharge potential zones in
Upper Kosi basin of Almora district using remote sensing and GIS methods is
competent to curtail the time, manpower and money. Although the proficiency in
assigning weightage and quantification of accuracy level (ground truth data accu-
racy) is a limitation, it provides spatial view of recharge potential area with various
degrees of variability and provides flexibility of decision-making by modifying the
weightage. The recharge potential map prepared in this study can provide a guideline
for construction of recharge structures and adopting conservation measures to
preserve hydrological sustainability of the watershed. The recommended methodol-
ogy will guide researcher and water departments for future groundwater exploration,
development, and management in mountainous catchment. Future scope of the new
emerging space technology-based modelling techniques lied in (1) understanding
and quantification of independent and interdependent factors that control the spatial
distribution hydrological factors, (2) challenges of modelling cumulative impact of
these factors with altering land use and changing climate, (3) identification of
suitable sites for augmentation work for recharging aquifer for sustainability of
groundwater resource.
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Chapter 3
Application of Geoinformatics
for the Integrated Watershed Management
and Development Planning, Bal Ganga
Basin, Tehri Garhwal (Uttarakhand)

Vijendra Kumar Pandey

Abstract The primary issue of the twenty-first century is optimum utilization of
natural resources and sustainable development planning in order to accelerate the
pace of socioeconomic development. The key issue of the developing countries is
how to address the development of backward region and remote hilly areas. They
need specific attention of the decision-makers to cater the rapidly, growing popula-
tion that has created pressure on shrinking natural resources. It is need of the time to
prepare development plans considering the optimal use of resources and its sustain-
ability. Despite remarkable advances in agriculture technology, there is prevalence
use of conventional methods of cultivation in the various regions. Either it was
because of inadequate resources, undulating terrain, or irascible area. The degrada-
tion of natural resources was mainly due to the lack of technological and appropriate
methodologies to address these issues. Soil degradation and lack of irrigation facility
are the primary aspects liable for poor agricultural growth and productivity. Inte-
grated watershed management approach can effectively resolve the issues of natural
resource management, livelihood, food security, and environmental issues. In this
study, geoinformatics has been used as tools for the resource prioritization, gap
analysis, and development planning of the Bal Ganga watershed. This study is an
attempt to check the applicability of geoinformatics techniques in the development
planning process and resource optimization. Survey of India topographic sheets has
been used to digitalize contours and prepare digital elevation model that was used for
the physiographic analysis in the ArcGIS software. The watershed is assumed as a
hydrologic unit which controls the ecological processes, such as soil and water
resources. Bal Ganga Basin has the potential for higher agriculture growth with
the optimal use of resources. The watershed is situated in the Lesser Himalayas;
there is eminence effect of physiographic control on the land use practices. Thematic
layers such as slope condition, aspect, types of soil, and soil depth are the essential
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parameters that affect crops growth were prepared in the GIS environment and
prioritized for the development planning. These independent variables are prepared
using ArcGIS 9.3, and land use capability was delineated for the suitable area of
cultivation. Demographic data of the villages and socioeconomic variables has been
attached, and level of development has been analyzed. As per the analysis of poten-
tial resource region, cultivation zone has been identified for comprehensive land use
planning.

Keywords Geoinformatics · Integrated watershed development · Land
degradation · Resource region · Uttarakhand

3.1 Introduction

The watershed management approach has become an increasingly significant ques-
tion in the developing countries (Bulkley 1977). This is stimulated by government
departments as well as nongovernmental organizations to find out suitable manage-
ment methodologies for the aggregate productivity of natural resources (Ratna
Reddy et al. 2017). The main approaches which are related to watershed manage-
ment have experienced a paradigm shift during the past few decades. Thoguh, there
is no universal methodology that has been developed for attaining watershed man-
agement (Nath Roy 2005; Chowdary et al. 2009). The significant advance in the
watershed management approach is community participation (Wani and Garg 2008;
Thapa 2000; Saravanan 2002; Pirani and Mousavi 2016; Johnson et al. 2001;
Batabyal 2002; Arya 2005). Watershed management has gained eminence appreci-
ation in the developing countries for the integrated resource management which will
be focused on the livelihood security of the poor. The frequent crops failure due to
climatic variability made the situation worse and become difficult to address the
situation of large-scale river valley projects forced a paradigm shift from watershed
to micro-watershed. It become major concern for the state and community to scripts
a new ground for the government towards as a “learning organization” which has
thrust to address the changing social order and environmental condition (Eswaran
and Samra 1997).

The watershed projects in India have long history implemented during the Vedic
period (Bhan 2013). The recent development in the watershed programs in India can
be dated back with the implementation of Command Area Development and Water
Management (CADWM) program, which initially started during 1974 (NITI Ayog
2015). Further, Drought-Prone Areas Programme (1973–1974) and the Desert
Development Programme (1977–1978) were brought into the watershed mode in
1987 (Department of Land Resource, Ministry of Rural Development 2001). The
Integrated Wasteland Development Programme (IWDP) was launched in 1989
under the aegis of the National Wasteland Development Board and also aimed the
development of wasteland (Department of Land Resource, Ministry of Rural
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Development 2003). These three major programs were implemented with watershed
development guidelines from 1995 with the National Watershed Development
Project in Rainfed Areas (NWDPRA) and the Watershed Development in Shifting
Cultivation Areas (WDSCA) (Department of Land Resource, Ministry of Rural
Development 2001). The objective of these schemes are to improve the irrigation
potential, soil conservation, and utilization and optimize the agricultural production
and productivity and promotion of agroforestry through integrated and coordinated
approach of efficient watershed management (Department of Land Resource, Min-
istry of Rural Development 2001; Bhan 2013; Bulkley 1977). Due to the partial
success, a new comprehensive scheme “Haryali” was launched during 2003 which
has encompassed rainwater harvesting, erosion control, irrigation, and microenter-
prise as a part of watershed programs (Department of Land Resource, Ministry of
Rural Development 2003).

Integrated watershed management (IWM) is considered as optimum approach for
improving agricultural productivity in the rain fed or drought-prone regions (Naqvi
et al. 2015; Pandey et al. 2007; Pirani and Mousavi 2016; Prasannakumar et al.
2012). It was estimated that India has planned and implemented micro-watershed
development programs at large scale (Farrington et al. 1999). The GoI has further
implemented Integrated Watershed Management Programme (IWMP) during
2008–2009 (Department of Land Resource, Ministry of Rural Development 2008).
The scheme has focused on the selection of micro-watershed and application of
Geoinformatics for the preparation, implementation, and monitoring of IWMP pro-
jects. The objectives of the IWMP are overall development of the micro-watershed
and mainly focused on the involvement of community and stakeholders in each stage
of the project.

The integrated watershed management programs were strengthened since the
1980s after the successful implementation of Sukhmojari Projects in Haryana
(Agarwal and Narain 2010; Arya 2005). It was a an innovative approache to create
new functionaries that meant to intensification of community involvement, sustain-
ability of programs, and its impacts on rural livelihood. Many government depart-
ments as well as nongovernment organizations have promoted watershed
development schemes to address the basic issues with the objectives of soil conser-
vation, soil erosion, water harvesting, afforestation, and encouraging suitable tech-
nologies for the resourceful and sustainable use of natural resources. However, many
of these watershed projects have not achieved the desired objectives, due to the poor
community participation (Johnson et al. 2001; Wani and Garg 2008; Thapa 2000;
Village et al. 1990; Wani et al. 2014).

The development of watershed management approach in India has significantly
evolved in the last two decades. During the first phase, it was primarily based on the
physical parameters and conservation of natural resources. In the late 1990s, there
was a significant paradigm shift observed in the watershed management approach.
The watershed approaches not only were included in the conservation of natural
resources but also focused on the increasing productivity of natural resources and
optimum utilization with active people participation (Wani et al. 2014; Tennyson
and White 2005). It was also adopted that modern tools and techniques for
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sustainable utilization and better coordination were found between the government
agencies. The development of remote sensing technology and geographic informa-
tion system (GIS) has added a new dimension to the watershed development
planning (Tim and Mallavaram 2003; Pandey et al. 2007; Murty 1998; Khan et al.
2001; Hiese et al. 2011; Gosain and Rao 2004; Abdelrahman et al. 2016). The
geoinformatics tools have proved to be a catalyst for the analysis of geophysical
parameters such as estimation of soil erosion, water conservation, forest loss, and
land use changes in the watershed (Al-Nasrawi et al. 2016; Bhaduri et al. 2000;
Gosain and Rao 2004; Naqvi et al. 2015; Prasannakumar et al. 2012; Pandey et al.
2007). The availability of global digital elevation model (GDEMs) and Google Earth
images has promoted the use of technology to address the issues and progression
toward the development of Civil GIS (Al-Nasrawi et al. 2016; Hiese et al. 2011).

The main issues of the twenty-first century are food security, drinking water, and
environmental attributes (Schmidhuber and Tubiello 2007). The technological
advances which were made in the agricultural apparatuses, many of the countries
around the world are unable to keep up with the fast paced food production and
increasing population. Stagnation or deterioration in agricultural production can be
due to excess use of fertilizer, degradation of soil and irrigation facility, and lack of
knowledge about soil fertility restoration methods. It was required to provide
appropriate training and demonstration to the farmers about new farming methods
to address the basic issue of resource management and to increase agricultural
productivity. The water scarcity is increased in the hilly areas where sufficient
precipitation occurs in the form of snowfall and rain. This is because of the lack of
water harvesting approach and deterioration of water quality. This also has negative
impacts on soils and land resources and potential risks of the enhanced deterioration
of the environment (Kukal and Bawa 2013; Khan et al. 2001; Dhruvanarayana and
Babu 1983; Nath Roy 2005). The study aims to explore the application areas of
geoinformatics technique for the watershed management, prioritization of the issues,
and needs and gap analysis for sustainability in the hilly terrain of Uttarakhand.

3.1.1 Why Watershed

Watershed is a well-defined area or catchment, which drains through a common
outlet. It is geographically delineated from the interfluve or water divide. Watershed
includes detailed characteristics of soils, landforms, vegetation, and land use.
Hydrologic processes within the watershed which are infiltration, runoff, subsurface
flow, and evapotranspiration are interlinked and can be appropriately assessed. It is a
basic hydrologic unit to study biophysical parameters of the region to prepare
development plans (Pirani and Mousavi 2016). Each watershed has a unique phys-
ical setting which requires specific attention to address the problems. These could be
soil erosion processes and transport of nutrients and pollutants by surface and
subsurface flow of water within the watershed. The surface runoff is directly related
to topography, slope length, and gradient as well as the direction which influences
geochemical process (Reddy et al. 2004). The fluvial processes show watershed
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physical and vegetative characteristics controlling erosion and minimizing land
degradation, vegetative loss, and water quality. These issues require a holistic
approach to understand the hydrologic processes at watershed level in order to
check the process and approaches to manage it. Soil degradation is a physical
process that has positive impacts on anthropogenic activity such as land use prac-
tices. Deforestation and water scarcity need to be addressed with land degradation to
improve the geophysical environment within a watershed. Therefore, the watershed
is a basic unit for the sustainable development planning (Pirani and Mousavi 2016;
Reddy et al. 2004; Saravanan 2002; Schmidhuber and Tubiello 2007).

3.1.2 Natural Resource Degradation

The degradation of soil and water resources has been very crucial and considered as
a global risk (Oldeman 1994). Due to the degradation, lands lost productive capacity.
The sources which degraded lands are wind and water. These two account for the
82% (250 out of 305 Mha) of the total degraded area (Oldeman 1994). In order to
check the soil erosion, drainage, and slope gradient, relationship-based strategy is
required in a catchment area. The watershed management approach in this regard is
very useful to effectively address the erosion processes and also restoration of
degraded land. A watershed is geographic unit which can be used as an ideal unit
to study the degradation process and decreasing productivity of natural resources.
The lack of adequate management techniques for the natural resources, which are
fragile, can cause deterioration of environments (Saravanan 2002). The quality of
life and livelihood of people are strongly interlinked with the natural resources
quality and function of the watershed. If the soil resources are good, its productivity
is higher which sustains livelihood pattern of people residing in the particular
watershed. In India, average soil loss was estimated at 16.5 ton/ha/year
(Dhruvanarayana and Babu 1983). Sedimentation rate of reservoirs of Indian sub-
continent has been examined to be 2–20 times more than that these were predicted
during the design stage (Galay and Evans 1989). The average annual soil loss is
calculated ranging from 21 to 555 ton/ha/year for the Asian rivers (Holeman 1968).

3.2 Study Area

The Bal Ganga is a right bank tributary of Bhilangna River which itself is an
important tributary of the Bhagirathi River. It originates near a peak (4846 mts)
opposite of Shastru Tal in the district of Tehri Garhwal. The geographical location of
the watershed is 78� 320 3700 E longitude 30� 25’ 4200 N latitude to 78� 490 500 E
longitude to 30� 43’ 1600 N latitude (Fig. 3.1). The watershed covers part of Ghansali
and Pratap Nagar Tehsil. Bal Ganga is remarkably known for its flat summit surface
near Chamiyala which is a town and market of the area. The climate of the area is
varied to subtropical in the valley to cold temperate on the upper reaches. January is
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the coldest and June is the warmest month in the area. Mean temperature of the
warmest months is recorded 32 �C and coldest months 19.6 �C. Relative humidity
touches to 85.6% in the monsoon season. Approximately 85% rainfall is received in
monsoon season (July–September) in the study area. Winter rainfall is also associ-
ated with the passage of the western disturbances and is in the form of snowfall on
higher elevations. The average annual rainfall in the district is 1395 mm which occur
in 87 rainy days (Indian Meteorological Department).

In the present study, 96 villages were studied of Pratapnagar Tehsil of Tehri
Garhwal district. Total population of the study area is 34,081 persons with a
population density of 45 persons/km2. The number of household resides in these
96 villages is 6250.

3.3 Materials and Method

To achieve the objectives of the present study, it is necessary to choose an appro-
priate methodology. There are a number of digital elevation models (DEMs) and
satellite images that were available in the open-source domain (Table 3.1). In order

Fig. 3.1 Location map of the Balganga Basin, District Tehri Garhwal (Uttarakhand)
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to prepare physiographic analysis survey of India topographic sheets and SRTM,
1-arc v.3 DEMs (digital elevation models) were used. ArcGIS 10.3 software was
used for the DEM processing, and satellite imageries were analyzed using Erdas
Imagine 14.0 software. Rainfall and temperature data and other ancillary data have
been procured from the various sources of the study area. The base map was
prepared on RF 1:12,500 scales. Survey of India topographic sheets was used to
digitize contours, drainage, and other infrastructures for the development planning.
DEM (digital elevation model) of the area is prepared from contour map and also
used for the preparation of slope, aspect, and relief maps. Land use/land cover of the
area was extracted using the satellite images. Soil map was prepared from the
National Bureau of Soil Survey and Land Use Planning (NBSS&LUP). Google
Earth images were used to geo-rectify cadaster map on RF 1:4000 for the IWMP and
resource management.

3.3.1 Physiography Variables

Bal Ganga basin lies in the Lesser Himalayan range having rugged topography.
Minimum elevation of the watershed is 820 m at the confluence with Bhilangana
River, and the highest elevation is 4780 m at the peak summit which separates the
watershed (Fig. 3.2a). It has unique topography as high undulating peak, wide flat

Table 3.1 Database and software available for geoinformatics applications

Type of
database Data source

Spatial
resolution Applications Web links

DEMs SRTM 90 m Topographic analysis https://
earthexplorer.
usgs.gov

ASTER 30 m https://
earthexplorer.
usgs.gov

CartoDEM 30 m http://bhuvan.
nrsc.gov.in/data

GEOTOPO30 30 m https://
earthexplorer.
usgs.gov

Satellite
image

Landsat 8 30 m (15 m
panchromatic)

Land use/land cover, infra-
structures and utilities, etc.

glovis.usgs.gov

Sentinel 2 10 m https://
earthexplorer.
usgs.gov

IRS AWiFS 56 m http://bhuvan.
nrsc.gov.in/data

IRS LISS-3 23.5 m http://bhuvan.
nrsc.gov.in/data
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surface in the middle of the watershed, and narrow outlet. In the middle part of the
basin, there is wide and flat river terrace deposited by fluvial processes.

Slope gradient is an important factor which controls human interface to the
environment. According to the s Slope inclination, controls the human activity and
reaching a particular point, it seeded. Average slope inclination of the area is varying
from 10 to 30� which are categorized at moderate slope category. Low slope angle
covers around 3% area (Fig. 3.2b). The total area of low and moderately inclined
slope accounts 63% area of the watershed. Particularly, this slope category is used
for plantation and growing crops. Subsequently, moderate-high slope covers 31%
area and high slope angle which is 40–60� inclination covers around 5% area of
watershed (Table 3.2).

Aspect is a very important physical factor which regulates geo-environmental
process in the hilly area (Fig. 3.2c). It is slope direction toward the sun. This gives
details about the average sunshine hours to the slope and also one of the important
agents that control physical weathering process. This is also important for the
growing crops in the hill tract.

Geomorphology is confined to the process that is operating on the surface of the
area. It could be fluvial, glacial, and aeolian in the hilly area. Most of the terrain of
the watershed is moderately dissected followed by very highly dissected according
to the coverage of the area. Highly dissected slope shows high land degradation and
covered by exposed rocky surface often sometime by sparse vegetation. River
terrace is best used for growing crops in the area. Rice cultivation is done on the
floodplain and terraces.

3.3.2 Soil

The soil is basic element for the development of a watershed. The soil of Bal Ganga
watershed has been classified as per multiple criteria such as soil depth; soil texture;
sand, silt, and clay composition; and soil structures (Fig. 3.2d). This has also
included soil fertility. The soil of valley floor is more fertile and has good depth.
The soil of upper slope has low soil depth and poor textures.

3.3.3 Land Use/Land Cover

Land use/land cover of the watershed has been changed significantly over a period of
time. The land use map prepared using topographic map being prepared by Survey
of India, surveyed during 1962–1963, has shown some contrasting result in com-
parison to the satellite imagery dated 16 April 2006 IRS LISS III, path 046, row 097.
Table 3.2 shows that cultivated land has been decreased around 2.5%, and further
decreases have been noticed in the forest area near about 4% (Table 3.3). These
changes have been directly related to land degradation as the area under barren land
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Fig. 3.2 Physiographic variables of the study area: (a) physiography; (b) slope; (c) aspect; (d) soil;
(e) land use and land cover; (f) drainage network; (g) village boundary and location of settlement;
and (h) false color composite (FCC) satellite imagery showing vegetation cover
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(open area) has increased 8.27–11.27% (Fig. 3.2e). Those areas have been classified
as scrubs in 1962–1963 presently classified as separating alpine grasses and scrubs.
Some new category has also been introduced to improve the classification processes.

3.3.4 Drainage Network

Dendritic drainage pattern is observed in the watershed (Fig. 3.2f). It shows uniform
lithology and bedding plane. The major right bank tributary is Dharamganga, Medh
Gad, Gangadd Gad, and Argad Gad. Left bank streams are Jandria and Ghatu Gad
which pours water into the Bal Ganga.

Table 3.2 Slope distribution of the Bal Ganga watershed

S. No. Slope category Description Area (km2) % Area

1 < 10 Gentle 19.15 3.93

2 10–20 Moderate 101.82 20.88

3 20–30 190.88 39.14

4 30–40 Moderately high 150.53 30.87

5 40–50 High 23.93 4.91

6 50–60 1.24 0.26

7 > 60 Very high 0.11 0.02

Total 487.66 100.00

Table 3.3 Land use changes in Bal Ganga watershed

Land use based on topographic sheet (1962–1963) Land use based on imagery (2006)

Class name Area (km2) % area Class name Area (km2) % area

River 1.63 0.33 Waterbodies 0.82 0.17

Inland water 0.04 0.01

Open area 54.83 11.27 Open area 40.34 8.27

Quasi open 17.95 3.69

Alpine grasses 2.22 0.46 Scrubs 28.57 5.86

Forest 314.94 64.72 Forest 335.14 68.72

Dense forest 17.87 3.67

Cultivated land 62.98 12.94 Cultivated land 76.91 15.77

Settlement 1.38 0.28 Settlement 4.74 0.97

Landslides 3.27 0.67 Rocky slope 1.16 0.24

Glaciers/snow covered 10.42 2.14

Total 487.53 100.00 Total 487.67 100.00
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3.3.5 Villages

In the Bal Ganga watershed, villages are located in two major clusters. First, villages
are situated along the river valley, terraces, and moderately sloping surfaces which
are suitable for cultivation and construction of houses and road networks. Approx-
imately, 97 villages are located in the watershed, which is found in a clusters
(Fig. 3.2g). The first is located between Chakrushera village and Jyondana village,
and the second cluster is located between Gajwan Gaon village and Koti village. The
average village population size is 350 people.

3.3.6 Road Network

Villages of the watershed are connected with pucca road categorized as district and
link road. These roads run along the Bal Ganga River starting from Ghansali town to
Budha Kedar village (confluence at Bal Ganga and Dharamganga River). Other
villages have recently connected with road constructed under Pradhan Mantri Gram
Sadak Yojana (PMGSY). These roads are constructed by local PWD divisions. The
major roads run through the valley can be seen in the satellite images (Fig. 3.2h).

3.4 Integrated Resource Planning

The approaches of integrated watershed studies have gained momentum because it
evolves multiple problem solution environments within a catchment. It was observed
that natural processes are interlinked together and need a comprehensive approach to
address the issues. It was noted in the study area that in upper catchment area due to
the steep slope and denudation, land degradation is prevalent. Mass movements
induced by the torrential streams devastate forest, soil, and economic resources. In
the river valley, scarcity of water for irrigation has persisted. Land degradation is
directly related to soil erosion, high-velocity surface runoff, and vegetation damage,
particularly on the upper reaches. On the other side, these are related to slope
inclination, forest species composition, and institutional frameworks regulating use
of the natural resources. The barren slope which is exposed to the natural process of
denudation is most vulnerable to land degradation rather than the vegetated surface.
The main forces in mountain area of the land surface transformation processes are
physiography and climate. These forces influence works differently and sometimes
individually or in combinations to the biophysical environment of the watershed. In
this regard, a combined approach has been required to solve the problems (Fig. 3.3).

The effective implementation of watershed plans and management strategies
depends on the efficiency of institutions and community participation. Comprehen-
sive development plans have been prepared for the study area using problem solution

3 Application of Geoinformatics for the Integrated Watershed Management. . . 35



matrix. Land capability classes have been prepared for the area to identify a suitable
area of cultivation. It was also analyzed to prepare development according to the
feasibility and level of economic development. Community participation was
ensured to study the local issues, their priorities, and indigenous knowledge to tackle
the issues with the sustainability of the project (Fig. 3.4). In this study, physiographic
variables such as physiography, slope, aspect, soil, and drainage were analyzed to
prepare land capability classification of the area using geoinformatics techniques.
Land use/land cover map was prepared to understand the present scenario of primary
activities in the area, influencing the environment. GIS techniques prove a panacea
for the integrated watershed management. Topographic analysis, cadaster map
digitalization, and preparation of development to implementation of land manage-
ment as well as monitoring using the satellite imagery can be effectively done. All
the biophysical layers and resource prioritization were overlaid in the GIS environ-
ment, and optimum regions were identified for the development planning.

The Bal Ganga watershed was divided into three principle zones based on the
resource prioritization and identification of the main problems and suggests effective
measures (Fig. 3.5). During the field visits, it was assessed that due to the topo-
graphic constraints, upper reaches were barren land and fallow land. Mostly, com-
munity grasslands were found on the upper reaches slope that were used for the
fodder. In the discussions with the community, it was noted that these areas were
earlier used for agriculture, but due to drying up of springs and streams, scarcity of
water for irrigation facility turned these areas into fallow lands. If the irrigation
facility is available, these areas can be used for cropping. Forest on the lower slope
covered the first zone, and upper reaches are barren land (Fig. 3.6). These areas have
vast potential for off-season vegetables and herbals and aromatic plants. Villagers

Fig. 3.3 Flowchart for the integrated watershed management planning and resource prioritization
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Fig. 3.4 Watershed issues and challenges and approaches to address the problems for the sustain-
able development planning

Fig. 3.5 (a) Broad Bal Ganga valley used for intensive cultivation; (b) debris fall damaging forests;
(c) high-tech nursery promoting community as well as departmental afforestation program; and (d)
Boorha Kedar temple situated at the confluence of Bal Ganga and Dharamganga river
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were very keen if the government agency will help them for the water resource
conservation using check dams and small ponds. This water can be used for
irrigation of crops and drinking water. Some villagers have told that during
pre-monsoon months, they face acute shortage of drinking water. These barren
lands are the source of land degradation during the monsoon season. This causes
havoc on the lower slopes and in the river valleys. Slope failures, soil erosion, and
vegetation loss are the main issues in this zone. In order to minimize the effect of
channel correction and plantation, check dams have been suggested.

Second zones have major problems of soil erosion, land degradation, forest loss,
etc. These have economic values and very important for the prosperity of the
watershed. It requires a scientific approach to agriculture practices, community

Fig. 3.6 Resource planning and development zones prepared for the IWMP

38 V. K. Pandey



plantation, and awareness among individuals about social forestry on the barren and
fallow land. Third zones witness severe flash floods during monsoon season due to
sudden catastrophic rainfall. The area also witness landsliding that dispalce slope
materials and causes debris deposits is other issues which are being a concern as it
helps to floods and erodes fertile soil of the valleys.

3.5 Conclusions

This paper is an attempt to raise the issues, challenges, and potentialities of the
watershed development planning which could be studied and managed in an efficient
way using the geoinformatics technique. Land degradation, soil erosion, and scarcity
of water and forest damages are interlinked in such a way that a holistic approach is
needed to solve these issues. Land degradation is not only deteriorating the soil and
decreasing the farm production but also overall natural resource productivity which
could lead a region toward prosperity. How the topographic variable influences the
approaches to implement integrated watershed management within a watershed can
be prioritized using the GIS techniques. Physiography, slope, soil, forest, and
drainages can be integrated to prepare development plans for the watershed level.
In order to implement any project successfully, community participations and
change of approaches in both the community and institution are required working
together in coordination to sustain ecology and natural resources. Community
participation and institutional cooperation has been highlighted to effectively man-
age the natural resources. Considering the step-by-step approaches to study different
stages of watershed planning and implementation, geoinformatics techniques can
play a crucial role, particularly in the hilly areas. The paper explains key challenges
which are needed to be addressed and methods to be applied for the community
participation and institutional integration.
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Chapter 4
A Semi-analytical Approach to Understand
Remote Sensing-based Backscattering
Characteristics for Kerala Coast Using In
Situ Observation

Shafique Matin, Sisir Kumar Dash, and Tune Usha

Abstract A quasi-analytical algorithm (QAA)-based distribution and variability of
particulate backscattering coefficient (bbp) was studied for Kerala coast, India. A
total of 28 observations were made in the coastal stretch of about 410 km from
Kasaragod to Ernakulam for up to 50 m depth. Optical data were collected using a
hyperspectral underwater radiometer to evaluate the bbp, water-leaving radiance (Lw)
and chlorophyll-a (Chl-a) concentration. We aimed to achieve three objectives,
i.e. (1) QAA-based bbp calculation using underwater radiometer and its sensitivity
to downwelling irradiance (Ed) and surface radiance (Es), (2) validation of the
relationship between bbp and Chl-a concentration for inshore and offshore coastal
waters and (3) the relationship of Lw with QAA-based bbp and in situ Chl-a. We
observed that the range of bbp values varied between 0.07 and 0.002 m�1, with a
maximum bbp value between 1200 and 1400 h for inshore waters. Ed and Es are
independent variables and were placed at the denominator to calculate bbp, where Ed
is found relatively more sensitive than Es. The correlation between bbp and Chl-a
found growing with depth (< 20 m R2: 0.067, > 20 m R2: 0.487), due to the increasing
complexity of coastal waters (Case II). While relating the Chl-a and bbp with Lw,
showed a poor corleation with a low R2 value of 0.229 and 0.203, respectively,
signifying the maximum scattering due to other suspended matters with less contri-
bution from Chl-a pigment in highly turbid coastal waters.
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4.1 Introduction

The spectral dependency of particulate backscattering is essential to understand the
dynamics of ocean optics. Backscattering carries information with its shape, slope
and spectral curve and provides information about the particle composition (Boss
et al. 2004; Smith and Baker 1981). The particulate backscattering ratio and its
spectral dependency have been extensively studied in the ocean colour inversion,
inferring particle properties and light field modelling. However, information on
actual in situ spectral variability of the particulate backscattering and its properties
is limited and only available for global scale (Whitmire et al. 2007). A difference in
backscattering coefficient due to particle size and ocean depth is the key to under-
stand the coastal ecology, its biogeochemistry, which also includes dynamism of
particle (Loisel et al. 2007). Apart from its empirical relationship with Chl-a and
other organic constituents in open sea, information about particle size has tremen-
dous importance and can also be related to know about pelagic ecosystems
(Kostadinov et al. 2010).

Many researchers have utilised and reported several applications of spectral
particulate backscattering ratio in interpreting ocean colour data (Whitmire et al.
2007). Such interpretations are based on the interlinking of optical information
acquired from a hyperspectral sensor. For example, ocean reflectance ‘R’ and the
sensor irradiance (ratio of upwelling and downwelling radiance) are directly propor-
tional to the ratio of absorption and backscattering, respectively (Gordon and Morel
1983). The outcome proportionality here depends upon the quantum of dissolved
and particulate materials present in the sea-water. The absorption dynamics of
dissolved and particulate materials present in the sea-water has been adequately
explored using laboratory experiments, but there is still a gap in understanding of the
backscattering properties especially for coastal turbid waters (Stramski et al. 2004).
As the reason, many existing algorithms to estimate ocean dynamics use the
particulate backscattering coefficient in place of backscattering ratio and scattering
coefficient.

Sea waters have been categorised into two broad categories (i.e. Case I and Case
II) based on several factors including its turbidity and particulate density. The global
distribution of Case I water is ambiguous, although the deep-sea waters (offshore)
are frequently referred as Case I water (Lee and Hu 2006). By definition, a Case I
water is defined as the water for which phytoplankton and their associated materials
like bacteria, heterotrophic creatures and, dissolved organic matter (DOM) are
majorly reasonable for backscattering. On the other hand, mapping chlorophyll
concentration in Case I water is comparatively easier because only plankton influ-
ences the optical properties, and scattering and absorption by debris are correlated
with chlorophyll concentrations. The Case II waters are fed by the coastal rivers or
suspended sediments in addition to phytoplankton. Optical properties are typically
controlled by three independent components: (1) phytoplankton and their associated
debris, (2) colour DOM also known variously as yellow material, and (3) inorganic
traces and suspended remains. Concentrations of these three must be retrieved
simultaneously; and is a complex problem that is not yet fully resolved, although
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progress is being made, taking benefit from the Medium Resolution Imaging Spec-
trometer (MERIS) sensor from the NIR and red range of the spectrum. The standard
MERIS product uses a neural net algorithm, which concurrently retrieves yellow
substance and suspended sediment. The Case I waters are typical of the open ocean,
away from coasts and river mouths. Along the Kerala coast, the Chl-a concentration
ranges from very low in the oligotrophic waters to very high (up to 21 mg m�3) in
coastal areas. Observation of chlorophyll concentration from space extents over
three grades of magnitude and the likelihood of a point having chlorophyll concen-
tration are contrariwise proportional to its concentration. For this reason, chlorophyll
concentrations are generally presented on a logarithmic scale for the blooming
periods. Thus phytoplankton blooms frequently occurring in the upwelling areas
are a particular problem for ocean colour processing due to the presence of very high
chlorophyll concentration.

Ideally, Case I waters are controlled by phytoplankton and other supplementary
material, but enormous number of phytoplankton cells in the water means that the
water-leaving radiance (Lw) may be high enough to trigger the Case II classification
flag, and some blooms may have sufficient reflectance above 700 nm to cause
problems for aerosol retrieval and thus for the atmospheric correction. The Case I
waters may have a range of backscattering likelihood between 0.2% and 2%
dependent majorly on the chlorophyll concentration and other constituents (Gordon
et al. 1988) that has been estimated with very few in situ data and almost none
from the Indian Ocean (Morel 1988).

Watercolour and turbidity are two major factors that affect extensively to the
energy levels that a camera or underwater radiometer detect. Globally, a major part
of the Case I water falls in the tropical and subtropical areas. More than 50% of the
Case I waters are in the higher latitudes particularly in the North Hemisphere and fall
in the category of open ocean with very few river feds. Unlike the high latitude
oceans, the rivers and backwaters along the Kerala coast have sharp headwater
gradients, that feed high sediment loads, especially in the monsoon season. Dynamic
deltas at the river mouth are another effect of high sediment load and heavy rainfall
which carries rich biodiversity and healthy ecosystems through flooding. However,
river catchments are rapidly changing due to deforestation, anthropogenic interfer-
ence and sea-level rise.

So as to use the geoinformatics technique to quantify watercolour or quality, it is
significant to comprehend the complexities of water-light interface especially for
the coastal waters due to its high uncertainties related with space and time (Nechad
et al. 2016). On the other hand, in situ measurements of primary production and
biomass are particularly critical, although few novel promising techniques have been
recently proposed (Graff et al. 2015; Riser and Johnson 2008). To reduce the space-
time coverage sampling limitations, bio-optical oceanography has implemented
optical sensors on a variety of in situ platforms. Platforms comprise from research
vessels and moorings to gliders and profiling floats, each with specific complemen-
tary space-time observation scales (Claustre et al. 2010; Dickey 2003). Such plat-
forms enabled to monitor bio-optical properties that serve as proxies for major
biogeochemical variables.
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The difference in watercolour and quality can be observed by multispectral
instruments, but minute information may not be warranted due to its broader
bandwidth. Satellite-based hyperspectral approach to cover the inherent optical
properties of water has the limitation with respect to cloud cover and other atmo-
spheric attenuations. In practice, however, the fundamental problem of this approach
is the difficulty in finding the true remote sensing reflectance for a given location and
time, from which reflectance errors of individual pixels and uncertainties of all pixels
can be referenced (Hu et al. 2013). Satellites like Aqua MODIS (Moderate Resolu-
tion Imaging Spectroradiometer) are found to be good for such estimations but gives
under-estimated values, and the matchup between satellite and in situ values is also
partly consistent (Deidun et al. 2011). A critical area of research in aquatic optics is
to extract tangible information about water column optical properties, which
becomes more difficult in optically complex coastal waters. The capability to acquire
information about optical properties in coastal waters can be facilitated with the
application of high-resolution underwater spectral sensors. Such enhanced sensor
provides the opportunity to develop and evaluate algorithms that distinguish subtle
features in the radiance spectrum which may be significant to discrimination of
optically important materials. In many cases, such algorithms are based on theoret-
ical and semi-analytical relationships relating remote sensing reflectance to proper-
ties of absorption and backscatter. Narrow spectral bandwidth sensors
(e.g. hyperspectral) are capable of acquiring information about the optical properties
in coastal waters. High spectral resolution sensor provides the opportunity to distin-
guish subtle features in the radiance spectrum using object-specific algorithms,
which may be significant to discriminate different optically active substances.
Such algorithms are explicitly based on the theoretical and semi-analytical relation-
ships linking remote sensing reflectance to properties of absorption and
backscattering.

With the changing climate and related dynamics of river discharge, it is complex
to understand the coastal variabilities. In absence of any regional model and other
causative factors, river discharge supposed to have a major influence on the water
quality of coastal regions for Kerala coast. Researchers like Seo et al. (2009) relied
on a regional coupled model to understand the effect of surface run-off into the
Indian Ocean because of rainfall. The model treated river discharge by salinity
relaxation to climatology. They observed that the precipitation affected considerably
well-enough due to river discharge through its effect on barrier layer thickness and
therefore on inherent optical properties of coastal water.

Algorithms, derived from the radiative transfer equation like quasi-analytical
algorithm (QAA; Lee et al. 2002), are based on the relationship between Rrs and
inherent optical properties of water. The algorithm uses the multiband below-surface
remote sensing reflectance (rrs) as the input information to calculate absorption and
backscattering coefficients analytically. Such algorithms can be applied to sensors
having narrow bandwidth hyperspectral instruments and can also be used for
subsurface irradiance reflectance values as input data for the analysis. The perfor-
mance of these algorithms relies on accurate spectral models for discrete water
constituents as the absorption coefficients such as chlorophyll pigments, colour
dissolved organic matter (CDOM) or suspended sediments. Such regression was
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developed using specific water type and may give better correlation if the data being
analysed were collected from the same source because of the nature of the regression
(Lee et al. 2002). The quasi-analytical algorithm found to be estimating an under-
value of anw(λ) (non-water absorption coefficient) for all the waters in different
seasons if the slope of the regression is at the lower end, more specifically at a
wavelength of 400 nm. Conversely, a wavelength longer than the reference wave-
length may give rise to uncertainties in deriving anw(λ) and may also result in a very
high RMS error (Root Mean Square) and absolute percentage difference if taken at
440 nm (Li et al. 2016).

In this study, we utilised the above-surface remote sensing reflectance (Rrs) values
collected using the hyperspectral underwater radiometer instrument. The collected in
situ data were used to calculate the QAA-based bbp and also the sensitivity of bbp to
Ed and Es. The relationship between bbp and Chl-a concentration was also compared
for inshore and offshore coastal waters. Finally, the association of Lw with
QAA-based bbp and in situ Chl-a was analysed.

4.2 Materials and Method

The study was carried out in a coastal stretch of about 410 km between Kasaragod to
Ernakulam district of Kerala (Fig. 4.1). A hyperspectral underwater radiometer
(Satlantic HyperOCR II) was used to collect optical data samples. The radiometer
instrument can be used in different modes based on the data requirement and
analysis. It can be either used for a free-fall profiling to collect data at a different
depth or in floating mode using a detachable float cover to acquire data for near-
surface measurements. The device can also be used on a lowering frame base that has
been designed to use different sensors. This is an interchangeable platform that
allows optical sensors like the Satlantic multispectral OCR-500 instrument as well as
Satlantic hyperspectral HyperOCR OCR-3000 sensors. The instrument also has few
optional features like a conductivity sensor and connection ports. It contains
an option to integrate two external sensors into the instrument. This makes the
instrument versatile and the best available option for measuring ocean dynamics.

The radiometer instrument was specifically arranged to minimise the issues of
self-shadowing and cruise-induced instabilities. We collected data for seven tran-
sects from 10 to 50 m depth, on-board CRV Sagar Purvi between 28 January to
4 February 2013 (Table 4.1). In each transect, four depths (10, 20, 30 and 50 m) were
considered for sampling with river mouths as a landmark. Rivers considered for
sampling are Tejaswini (Kasargod), Valapattanam (Azhikkal), Chaliyar (Beypore),
Bharathapuzha (Ponnani), Periyar (Munambam), Kochi (Cochin) and Valiazheekal.
The hyperspectral underwater radiometer is capable of providing 136 channels of
optical data in the spectra ranging from 350 to 800 nm wavelength with 10 nm
spectral resolution. The optical data were collected at different time intervals in the
clear sky between 0900 and 1600 h to get the maximum light penetration. Apart from
the deployment mode we also collected radiometer data in buoy (floating) mode to
understand the changes at different depth intervals. Major emphasis has been given
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to data collected at around 1300 h to avail better lighting conditions and also to
synchronised the satellite pass.

To calculate the particulate backscattering coefficient (bbp) by means of the
multiband QAA (Lee et al. 2002), initially, the raw Rrs data acquired from the
hyperspectral underwater radiometer were converted into rrs using the following
formula provided by Lee et al. (2002):

rrs λð Þ ¼ Rrs λð Þ
0:52þ 1:7 Rrs λð Þ ð4:1Þ

Fig. 4.1 Showing sampling location in seven transects along south-west Kerala coast at different
sea depth (10–50 m), selected at the mouth of the major rivers in the state
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where Rrs is above-surface remote reflectance and T is equal to 0.52 and Q is 1.7,
considered from hydro light to deep waters and at a nadir-viewing sensor angle.

Rrs λð Þ ¼ Lw λð Þ
Ed λ; 0þð Þ ð4:2Þ

In the QAA there are two empirical aspects in the derivation of the backscattering
coefficients and total absorption. One relays to the assessment of the total absorption
coefficient at a reference wavelength of 555 nm, while the other one to the assess-
ment of the spectral slope Y of the available particles backscattering coefficient. In
the equation the reference wavelength was considered by keeping in mind that where
rrs(λ0) the elastic scattering and the absorption a(λ0) can be well-measured with

Table 4.1 Showing details of sampling plots. Sampling locations were selected considering major
river mouths as landmark along the Kerala coast

Plot no. Location; date Time Location Depth (m)

Cast-1 Off Ponnani; 29-01-2013 10:02 Lat, 10�47.0 N; long, 75�50.0E 11

Cast-2 Off Ponnani; 29-01-2013 11:27 Lat, 10�47.5 N; long, 75�48.0E 20

Cast-3 Off Ponnani; 29-01-2013 13:46 Lat, 10�48.1 N; long, 75�43.2E 30

Cast-4 Off Ponnani; 29-01-2013 15:56 Lat, 10�49.5 N; long, 75�37.2E 40

Cast-1 Off Azhikal; 30-01-2013 09:42 Lat, 11�51.0 N; long, 75�18.6E 12

Cast-2 Off Azhikal; 30-01-2013 11:07 Lat, 11�51.0 N; long, 75�14.6E 22

Cast-3 Off Azhikal; 30-01-2013 13:25 Lat, 11�51.3 N; long, 75�11.1E 30

Cast-4 Off Azhikal; 30-01-2013 15:29 Lat, 11�50.8 N; long, 75�04.9E 48

Cast-1 Off Kasaragod; 31-01-2013 09:20 Lat, 12�26.4 N; long, 74�56.9E 10

Cast-2 Off Kasaragod; 31-01-2013 11:14 Lat, 12�26.2 N; long, 74�53.8E 20

Cast-3 Off Kasaragod; 31-01-2013 12:58 Lat, 12�26.3 N; long, 74�51.0E 30

Cast-4 Off Kasaragod; 31-01-2013 15:16 Lat, 12�28.5 N; long, 74�43.7E 50

Cast-1 Off Beypore; 01-02-2013 09:01 Lat, 11�10.3 N; long, 75�27.2E 40

Cast-2 Off Beypore; 01-02-2013 11:28 Lat, 11�10.4 N; long, 75�35.1E 30

Cast-3 Off Beypore; 01-02-2013 14:08 Lat, 11�10.7 N; long, 75�41.7E 20

Cast-4 Off Beypore; 01-02-2013 15:19 Lat, 11�10.9 N; long, 75�44.5E 10

Cast-1 Off Munambam; 02-02-2013 09:13 Lat, 10�14.2 N; long, 76�06.4E 11

Cast-2 Off Munambam; 02-02-2013 10:50 Lat, 10�15.7 N; long, 76�00.2E 22

Cast-3 Off Munambam; 02-02-2013 13:29. Lat, 10�15.8 N; long, 75�54.2E 32

Cast-4 Off Munambam; 02-02-2013 15:39 Lat, 10�16.1 N; long, 75�48.4E 50

Cast-1 Off Valiazheekal: 03-02-2013 09:12 Lat, 09�08.9 N; long, 76�23.8E 13

Cast-2 Off Valiazheekal: 03-02-2013 10:43 Lat, 09�08.9 N; long, 76�21.4E 21

Cast-3 Off Valiazheekal: 03-02-2013 12:59 Lat, 09�09.1 N; long, 76�17.9E 30

Cast-4 Off Valiazheekal: 03-02-2013 14:52 Lat, 09�10.0 N; long, 76�12.2E 50

Cast-1 Off Cochin: 04-02-2013 09:26 Lat, 09�57.4 N; long, 75�53.8E 41

Cast-2 Off Cochin: 04-02-2013 11:48 Lat, 09�58.2 N; long, 76�01.7E 30

Cast-3 Off Cochin: 04-02-2013 13:54 Lat, 09�58.1 N; long, 76�05.7E 20

Cast-4 Off Cochin: 04-02-2013 15:40 Lat, 09�58.1 N; long, 76�08.7E 10
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maximum accuracy. So, the reference wavelength considered here (rrs(λ0)) from
elastic scattering can be measured without any error and well-used to calcu-
late absorption a(λ0) considering the same wavelength (λ).

bbp 555ð Þ ¼ u 555ð Þ a 555ð Þ
1� u 555ð Þ � bbw 555ð Þ ð4:3Þ

Here, u555 is the ratio of backscattering coefficient with absorption and back-
scattering coefficient combined and can be obtained using the formula provided by
Lee et al. (2002). u(λ) is the ratio of backscattering coefficient with absorption and
backscattering coefficient combined and can be obtained using the following
formula:

u λð Þ ¼
�g0 þ g0ð Þ2 þ 4 g1rrs λð Þ

h i1=2
2g1

ð4:4Þ

Here g0¼ 0.0895 and g1¼ 0.1247 are the averaged values taken from the Gordon
et al. (1988) and Lee et al. (1999) calculated for open and coastal waters. The
backscattering coefficient of the pure sea water (bbw) was referenced from Smith
and Baker (1981). The value for λo can be replaced with different wavelengths, such
as 640 nm or 670 nm for high-absorbing clear water for a better measurement of
rrs(λo) and accurate estimate of a(λo).

a 555ð Þ ¼ 0:0596þ 0:2 a 440ð Þi � 0:01
� � ð4:5Þ

a 440ð Þ ¼ exp �2:0� 1:4þ 0:2ρ^ 2ð Þð Þ, where, ρ ¼ ln
rrs 440ð Þ
rrs 555ð Þ

� �
ð4:6Þ

The bbw is the backscattering coefficient of pure sea water that was taken from
Smith and Baker (1981).

Y ¼ 2:2 1� 1:2 exp �0:9
rrs 440ð Þ
rrs 555ð Þ

� �� �
ð4:7Þ

Here Y, which is the wavelength-dependent factor, was taken from the empirical
relation derived by Lee et al. (1996). Lee et al. (1996) used this at the wavelengths of
440 nm and 555 nm as an exponent value in the backscattering. To calculate the
backscattering coefficient and other wavelengths than 555 nm, we used the bbp at
555 nm as reference value using the following formula:

bbp λð Þ ¼ bbp 555ð Þ∗ 555=λð ÞY ð4:8Þ

We also measured Chl-a concentration data at each point location simultaneously
with the Rrs data. The Chl-a concentration data were collected using the fluorescence
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sensor mounted on the same hyperspectral underwater radiometer. The
phytoplankton-based Chl-a concentration estimation (Eq. 4.9) was carried out at
440 nm wavelength where Chl-a absorbs maximally (Loisel et al. 2007).

Chl� a ¼ K λð Þ�Kw λð Þ
Xc λð Þ

� 	 1=e λð Þ
ð4:9Þ

where Xc, Kw and e(λ) were taken from the Morel and Maritorena (2001) model. K(λ)
coefficients can be expressed as functions of the C under the general power law
which includes a coefficient Xc and exponent e, both function of λ. The Lw is the
radiance that exits the ocean to the sensor mostly from the surface and subsurface
waters which give better information about Chl-a concentration; hence we analysed
the relationship between Lw and Chl-a and later validated this with observed QAA
values (Morel 1988).

K λð Þ ¼ Kw λð Þ þ Xc λð ÞCe λð Þ ð4:10Þ

The water-leaving radiance (Lw), which is basically the reflected radiance that
leaves the ocean water and reaches to the sensor, is mostly from the surface and
subsurface waters. These water-leaving radiance (Lw) may give better information
about Chl-a concentration on the surface; hence we analysed the relationship
between Lw and Chl-a and also validated with observed QAA values. We used the
calculated values of Lw using the given formula:

Lw 0þ; λð Þ ¼ Lu 0�; λð Þ 1� ρ λ; θð Þ
ηw2 λð Þ


 �
ð4:11Þ

Here, ρ(λ,θ) taken is the Fresnel reflectance index (FRI) of seawater. Note that the
default value for ocean water is 0.021, and ηw(λ) is the Fresnel refractive index of
ocean water and the default value for is 1.345.

Precisely, to achieve the first objective, i.e. QAA-based bbp calculation, we used
the existing algorithm proposed by Lee et al. (2002), and the sensitivity of the Ed and
Es data was carried using two different correlation analyses. To validate the rela-
tionship of bbp with Chl-a as the second objective, we used the bbp values calculated
in objective one and plotted against the Chl-a value derived using Eq. (4.9). The third
objective to understand the association of Lw with QAA-based bbp and in situ Chl-a
was carried out by plotting an individual regression analysis for Lwwith both bbp and
Chl-a.
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4.3 Results and Discussion

Samples collected at different locations and times resulted into a wide range of
values which helped to understand the variability of particle availability and
response. The bbp was observed maximum between 1200 and 1400 h and minimum
at the 0900 h and ranged from 0.0035 m�1 to 0.039 m�1 (Fig. 4.2). For offshore
coastal waters, the bbp variation was relatively lesser (0.0085–0.0215 m�1 and
0.00947–0.039 m�1, respectively, for 30 and 50 m depths) than the inshore water.

Chl-a concentrations were found very high (up to 13 ug/l) in all the inshore
coastal water (<20 m depth) samples and low in offshore (> 30 m depth) coastal
waters (0.03 ug/l). The high Chl-a concentration found in most of the samples may
be attributed to the presence of high organic feeding by rivers. The relationship
between bbp and Chl-a was observed becoming stronger with the increasing distance
from the shoreline (Fig. 4.3). In the inshore coastal waters, the correlation (R2)
showed a minimum of 0.067, whereas in offshore waters, the value increased up to
0.487.

It is always intricate to understand the multifaceted nature of the coastal waters
due to its optical inconsistency with space and time. Many unknown factors in the
measurement procedure and limitations in the algorithm development may

Fig. 4.2 QAA-based particulate backscattering coefficient (bbp) for all the 28 plots at different
depth and time. Plotting timing is mentioned for each day. Depth information is available in
Table 4.1
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contribute to various levels of uncertainties in optical properties calculation includ-
ing bbp. It is always recommended to use above-surface remote sensing reflectance
(Rrs) instead of surface irradiance (Es) to calculate the bbp of coastal turbid waters
(Lee et al. 2002), whereas few studies (Latha et al. 2013) have used Es sensors for
bbp calculation in absence of Ed sensor. Here we have calculated bbp considering
both Ed and Es and observed that Ed-based bbp is having a better relationship with
Es-based bbp for Chl-a concentration (Fig. 4.4), although the values obtained from
Ed- and Es-based bbp is following a similar trend. To validate the efficiency of both
the results, we calculated bbp by considering both Ed and Es values. It was clearly
evident that Ed-based bbp calculation gives a better relationship instead of Es
(Fig. 4.4).

We observed that water-leaving radiance (Lw) is generally high among all the
samples near 500 nm wavelength (Fig. 4.5). At the same wavelength, the
hyperspectral underwater radiometer also measures the Chl-a concentration to
achieve the maximum penetration of coastal turbid water. The relationship of
water-leaving radiance (Lw) with calculated bbp and Chl-a was also evaluated to
validate bbp as a function of absorption by particle (not reflectance). Insignificant
relationships were observed for Lw and Chl-a (R

2: 0.229) and Lw and bbp (Fig. 4.6; R
2

: 0.203).

4.4 Conclusions

In the current study, we evaluated the hypothesis of using a semi-analytical
approach like QAA to understand remote sensing-based backscattering characteris-
tics for Case I and Case II waters and determine that such observations are only good
if the water is less productive. The investigation also reveals the statement that
QAA-based bbp algorithm should not be used for the bbp–Chl-a relationship for
turbid coastal waters as it may contain many particulate materials other than

Fig. 4.3 QAA-based particulate backscattering coefficient (bbp) plotted against chlorophyll-a
observed using underwater radiometer at 500 nm wavelength at (a) inshore 10 m to 20 m and (b)
offshore 30 m to 50 m sea depth
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Fig. 4.4 Correlation between backscattering coefficient (bbp) calculated using downwelling irra-
diance (Ed) and surface irradiance (Es) at 500 nm wavelength

Fig. 4.5 Showing water-leaving radiance (Lw) for all the 28 plots between 400 and 700 nm. Dotted
box represents wavelength band with highest Lw value
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dissolved or suspended materials. The algorithm may also not give better relation-
ship if water is pigment-rich (like in ponds or lakes) or in a blooming condition. We
argued on the correlation of Lw with Chl-a and bbp for turbid coastal waters and
identified that maximum scattering caused due to the other suspended matters not
by Chl-a. We conclude that due to a broad spectrum of optical properties of waters
found at different latitudes with varied environmental, a single empirical function
cannot be applied to all, but may be for the Case I quality waters, where optical
properties of water vary only with concentrations of chlorophyll present. Further
research is required by considering other contributing constituents for backscattering
in coastal waters with more number of observations in offshore waters to better dis-
criminate the scattering coming from many other molecules.
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Chapter 5
Phytoplankton (chl-a) Biomass Seasonal
Variability in the Gulf of Mannar, South
India: A Remote Sensing Perspective

S. Kaliraj, N. Chandrasekar, and K. K. Ramachandran

Abstract The phytoplankton is being a primary producer that lies at the base of
food web for aquatic flora and fauna of marine and coastal ecosystems. The study
describes remote sensing applications for assessment of phytoplankton (chl-a) bio-
mass variability and its major influencing factors (sea surface temperature, salinity,
waves and currents) in the Gulf of Mannar (GoM), southeast coast of India. Multi-
temporal Landsat ETM+ images acquired on 2016 and 2017 are used for mapping
assemblage of phytoplankton (chl-a) and its concentration at site-specific level. Band
combination analysis along with mathematically derived coefficient of determina-
tion values has been used to extract phytoplankton (chl-a) concentration using
spectral reflectance properties (0.4–10 μm). Multispectral images acquired on dif-
ferent times are used for the mapping of phytoplankton concentration with its
seasonal variability. Highest assemblage of phytoplankton (chl-a) is measured at
concentration of 48.8 μg/L, and it reflects 0.25% at wavelength of 0.55 μm (green)
and 1.0 μm (SWIR), respectively. Coastal water comprises higher chl-a concentra-
tion which can observe majority wavelength in blue (0.45 μm) and red (0.65 μm) that
distinguish phytoplankton from coastal water. The result reveals that chl-a concen-
tration has significantly decreased to 36.20 μg/L, and this reflects 0.16% of wave-
length at 0.55 μm (green). The chl-a concentration is further decreased to 33.33 μg/L,
and it reflects 0.17% at the wavelength of 0.55 μm. Seasonal assessment shows
higher chl-a concentration during pre-monsoon. Coastal water in shallow depth
(<5.0 m) area has estimated higher chl-a concentration within a distance of 1.0 km
from the shore during post-monsoon. However, the chl-a concentration has signif-
icantly decreased in monsoon due to highly fluctuating hydrodynamic conditions
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that reduce availability of nutrients. Spatial variability of chl-a assemblage is mainly
regulated by changing salinity and sea surface temperature. The coastal waters with a
salinity level of 33.67 psu (practical salinity unit) at the temperature of 26.44 �C is
found favour higher phytoplankton concentration (48.88 mg/m3) in the post-
monsoon, whereas considerable reduction of primary production to
17.10–33.33 mg/m3 at the salinity level of 33.0–34.5 psu and this has been observed
during monsoon. The phytoplankton concentration increases to 26.85–36.20 mg/m3

at the salinity of 34.0–35.5 psu with the optimum temperature range of 28.0–30.5 �C
during pre-monsoon. Sea surface temperature (SST) involves growth and produc-
tivity of phytoplankton (chl-a) in coastal waters. The phytoplankton productivity
increases up to 33.33–48.48 mg/m3 in the coastal water, and SST ranges from 26.0 to
28.0 �C; however, it is decreased to 22.5–24.5 mg/m3 at the SST level of
28.5–30.0 �C. Growth and productivity of phytoplankton have increased in various
parts during post-monsoon than monsoon and pre-monsoon because of the occur-
rence of optimum SST and salinity in coastal water and prevailing favourable
hydrodynamic forces and climatic conditions. It is observed that phytoplankton
(chl-a) concentration is gradually decreased with an increase of depth and distance
in the Gulf of Mannar region.

Keywords Phytoplankton biomass · Seawater salinity · Sea surface temperature ·
Landsat ETM+ image · Remote sensing · Gulf of Mannar

5.1 Introduction

The coastal waters are characterized by diversity having the largest numbers of flora
and fauna such as phytoplankton, zooplankton, sea grasses, coral reefs, etc. Phyto-
plankton biomass is a primary food source and is highly productive ecosystem of fish
communities. (Chauhan et al. 2002). Coastal and marine ecosystems are dependent
on phytoplankton biomass (chl-a) and its concentrations with high temporal and
spatial variability due to availability of nutrients, which is often too difficult to
characterize using in situ survey and with limited equipments available onboard
(George and Heaney 1978; Sathe and Jadhav 2001; Selvavinayagam et al. 2003;
Laws 2013). The phytoplankton communities in the coastal waters are diverse in
nature and include approximately tens of thousands of phytoplankton species
(Solanki et al. 2001). Seawater at each 100 ml contains thousands of flora and
fauna especially phytoplankton species within every 100 m2 of the area (Desortiva
1981; Bosart and Sprigg 1998). Phytoplankton productivity is highly sensitive to
physical and chemical properties of coastal water that are frequently influenced by
environmental and climatic factor with noteworthy shifting blooms or phenology of
marine species, i.e., changing of salinity, temperature, and nutrient resulting from
natural and anthropogenic impacts (Dey and Singh 2003). Traditionally bio-optical
models have been used to categorize phytoplankton in the coastal waters (Beaver
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and Crisman 1991). Multispectral remote sensing images have contributed signifi-
cantly to oceanographic studies because of higher spectral, spatial and radiometric
resolutions, as evidenced by many scientific studies. The advancement of image
processing techniques can retrieve phytoplankton assemblage from coastal water
and other suspended matters (Barale 2010). Mapping of phytoplankton using spec-
tral reflectance properties of image provides insight for understanding phenology of
marine ecosystems in the coastal water (Nagamani et al. 2011). Satellite image-
derived phytoplankton (chl-a) biomass in coastal water estimated at spatial scale is
highly correlated to in situ sampling measurement and used to identify its spatio-
temporal variability. Multispectral remote sensing images are being most suitable for
oceanographic studies such as phytoplankton (chl-a) concentration, sea surface
temperature, sea surface salinity, movement of suspended nutrients, etc. (Roy El
Hourany et al. 2017). Spectral reflectance properties of coastal water are a primary
indicator for assessment of phytoplankton concentration in the coastal waters that
can use multispectral images for the purposes (Singh and Chaturvedi 2010). Assem-
blage of phytoplankton communities in coastal water and their dispersal have
noticed spatial and temporal variability, so that the chl-a estimation may provide
potential result by using remotely sensed images like Landsat, OCM, MODIS and
Sentinel, etc. depends on spatial, spectral and temporal resolutions. Phytoplanktons
occur in coastal water that reflects a variety of spectral reflectances at visible and
infrared wavelengths depending on their phenology and concentration. Spatial
diversity of phytoplankton communities may reflect noticeable amount of energy
(spectral radiance), which quiet differently from leaving radiances by clear water and
other suspended particles. Depth variation of coastal water determines vertical
distribution of phytoplankton that affects primary productivity as well as energy
transfer from surface to deep tropic levels. Spectral reflectivity of phytoplankton
distinguishes optical properties from clear seawater, allowing its relatively straight-
forward retrieval from remote sensing images. Seasonal variability of phytoplankton
biomass using multi-temporal satellite images may provide considerable output due
to variability of optical reflectance in coastal waters during different seasons
(Sarangi 2011; Chen and Quan 2013). Satellite remote sensing can be used as crucial
tool for discriminating spectral and spatial properties of suspended matters and clear
water, and this technique may help to differentiate phytoplankton assemblage
(Behrenfeld and Boss 2006), and variability in spectral reflectance is increasingly
applied to retrieve phytoplankton (chl-a) biomass in coastal water (Geider et al.
1997; Ahn et al. 2008).

Quantitative measurement of phytoplankton (chl-a) concentration in coastal water
has noticed high correlation with measured radiances from the images like Landsat
TM and ETM+, Ocean Colour Monitor (OCM), MODIS, SeaWiFS, Sentinel OLCI,
etc. (Vaillancourt et al. 2004). Monitoring seasonal variability of phytoplankton
(chl-a) in coastal water can be achieved successfully using multi-temporal images
that may be an alternating technology to in situ measurement. Mapping the spatial
assemblage of phytoplankton (chl-a) using multispectral images may provide
insights of spatio-temporal dynamics, bloom initiation, peak and declining stages
(Siegel et al. 2013). Growth and productivity of phytoplankton (chl-a) are mainly
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dependent on SST and salinity which can be assessed using satellite images along
with their spatial dispersal (Reynolds and Smith 1994; Racault et al. 2015). Physico-
chemical properties like sea surface temperature (SST) and salinity (Burrage and
Wesson 2008) can be extracted from the satellite images like Landsat ETM+,
MODIS, OCM and SeaWiFS (Balzano et al. 2015). Landsat ETM+ images provide
significant results in chl-a mapping compared to other images, since the sensor
onboard has superior radiometric sensitivity to the reflected spectra from the
suspended objects in the seawater. Many studies are executed to extract phytoplank-
ton from the seawater using various band combination analyses and multivariate
algorithms that segregate phytoplankton concentration exclusively based on the
spectral radiance values from satellite images (Burrage and Wesson 2008; Wallhead
et al. 2014).

In the Gulf of Mannar located along the southeast coast of India, seawater shows
spectral variability due to dispersal of organic and inorganic materials, whereas
phytoplankton and suspended sediments can distinctly extract from seawater
(Sarangi 2011). Band combination analysis calculates phytoplankton by differenti-
ating spectral reflectance at different wavelengths (Chauhan et al. 2002; Sarangi
et al. 2008). Spectral variability observed from VNIR and SWIR bands of Landsat
ETM+ images shows seasonal changes of phytoplankton (chl-a) concentration in
coastal water at pixel scale (Nagamani et al. 2008; Palmer et al. 2015). The Gulf of
Mannar experiences seasonal variability of phytoplankton (chl-a) concentration due
to changes in SST and salinity. The present investigates spatial variability of
phytoplankton and its influencing factors at seasonal scale using multispectral
Landsat ETM+ images.

5.2 Gulf of Mannar: Geographical Profile

The Gulf of Mannar is the world’s second largest marine bioreserve that lies in the
Bay of Bengal sea, southeast coast of India, which is located between Tuticorin and
Rameswaram Island. The GoM covers the longitude of 78� 50 000–79� 300 000E and
latitude of 8� 470 000N–9� 150 000N with the geographical area extent of 140 km (see
Fig. 5.1). The GoM consists of 21 small islands located in various parts with the
distance of 8 Km from the coastline. The islands of GoM endow a variety of marine
ecosystems that comprise dunes, beaches, mangroves, sea grass, seaweeds and coral
reefs, which provide enough nutrients for phytoplankton growth and productivity
(Selvavinayagam et al. 2003). The Gulf of Mannar extends with the length of
140 km towards SW-NE direction and the total area of 10,500 km2. The Gulf of
Mannar consists of Quatemary to recent sediment formations, which exhibit various
types of coral reefs such as fringing, patch and coral pinnacles. The GoM prevails
sub-tropical climatic condition with optimum temperature of 21–24 �C and average
rainfall of 10–16 cm. The GoM experiences lower waves and current flow,
transporting sediments with enriched nutrients from various parts of the area;
however, sea surface is often choppy during late spring and through summer due
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to tropical cyclones and storm surge. The productivity of phytoplankton influences
the life cycle of marine ecosystems, and changes in phenology may decrease growth
and productivity of zooplankton and fish communities (Sarangi et al. 2005; Singh
and Chaturvedi 2010). In the GoM region, the growth and productivity of phyto-
plankton are frequently influenced by physical and chemical properties, i.e. sea
surface temperature and salinity. Seasonal variability of phytoplankton biomass is
important for understanding the flora and fauna communities in the GoM marine
reserve.

5.3 Materials and Method

Landsat ETM+ image shows spectral reflectance variability that differentiates phy-
toplankton (chl-a) and clear seawater in the Gulf of Mannar. Landsat ETM+
(Enhanced Thematic Mapper Plus) visible, NIR, and mid-IR at spatial resolution
of 30 m have been widely used for estimation of phytoplankton concentration in the
seawater (see Fig. 5.2). Phytoplankton (chl-a) shows highest reflection in red (band
6) and absorption in near-infrared band (band 5). Spectral reflectance variability of
these bands involves the extraction of distinct assemblage of chl-a from seawater and
other inorganic matters suspended in the near offshore area (Barale 2010; Sarangi
2011).

Fig. 5.1 Geographical location of the Gulf of Mannar
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Landsat ETM+ images acquired on April and October 2016 and February 2017
have been used for estimation of seasonal variability of phytoplankton concentra-
tion. The images are systematically processed using advanced image processing
techniques to obtain their actual spectral reflectance to extract the occurrence of
phytoplankton concentration in the coastal water. To obtain the actual reflectance of
phytoplankton, suspended matter and clear water, all the VNIR and SWIR bands of
Landsat ETM+ image are atmospherically corrected using FLAASH (Fast Line-of-
sight Atmospheric Analysis of Spectral Hypercubes) model in ENVI 4.7 software.
Subsequently, the images have been applied for systematic band combination
analysis using mathematical algorithm to demarcate the phytoplankton assemblage
from seawater and other suspended matters.

Data Products

Secondary data

Base Map

LULC
Bathymetry
Geology

Map
Creation

Physiological
Study

Interpolation

Bouys Data

Wind Speed
Wind Height

Wind
Direction
Current
Direction
Salinity

SST

Climatological
Study

Phytoplankton Concentration in Gulf of Mannar

Chlorophyll-a
Concentration

Algorithm Implementation

Post-processing

Atmospheric
correction

Gap Fill

Pre-processing

Landsat ETM+

Geo-
morphology

Ocean Data

Primary data

•
•
•

•

•
•

•
•
•
•

Fig. 5.2 Methodological flow chart of the present study
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5.3.1 Extraction of Phytoplankton (chl-a) Concentration

Landsat ETM+ images of VNIR and SWIR bands are analysed using band combi-
nation technique by applying coefficient values using GIS software for the assess-
ment of phytoplankton (chl-a) concentration. Landsat ETM+ includes seven bands
with 30 m spatial resolution except band 6 (TIR with 60 m) such as visible bands,
namely, ETM1 (blue, 0.45–0.51 μm), ETM2 (green, 0.525–0.605 μm) and ETM3

(red, 0.63–0.690 μm). NIR band of ETM4 (0.75–0.90 μm), SWIR bands of ETM5

(1.55–1.75 μm) and ETM7 (2.09–2.35 μm). The regression analysis of ETM6 (TIR)
is used to measure SST at the wavelength of 10.40–12.50 μm. The band combination
analysis of Landsat ETM+ bands of VNIR and SWIR is used to extract phytoplank-
ton (chl-a), in which regression analysis of band 2 and band 4 using coefficient of
determination (R2 ¼ 0.677) and error of dependent parameter is estimated as (root
mean square error) RMSE ¼ 0.958 gμ/l). Phytoplankton (chl-a) and suspended
matter have been differentiated based on actual spectral radiance using linear
equation applied on ETM1, ETM2, and ETM3 by applying coefficient of determina-
tion value (R2 ¼ 0.542), and error of dependent parameter is estimated as
(RMSE ¼ 1.465 mg/l). The band ratio analysis of Landsat ETM+ image is used to
establish logarithmically the transformation of spectral reflectance of all objects to
demarcate phytoplankton (chl-a) concentration in the Gulf of Mannar. Estimation of
phytoplankton (chl-a) concentration using standard mathematical equation with
laboratory-derived coefficient of determination values is expressed as follows:

Chl að Þ ¼ 15:1329� 0:1573 ETM1ð Þ þ 0:0394 ETM2ð Þ þ 0:2671 ETM3ð Þ
� 0:5383 ETM4ð Þ þ 0:1214 ETM5ð Þ � 0:0606 ETM6ð Þ
þ 0:1007 ETM7ð Þ ð5:1Þ

5.3.2 Sea Surface Temperature Estimation

Sea surface temperature (SST) is estimated using Landsat ETM+ TIR (band 6) based
on object emissivity properties. The regression algorithm is applied on ETM+ band
6 (10.40–12.50 μm) for converting spectral radiance into surface temperature
(Reynolds and Smith 1994; Kilpatrick et al. 2001; Solanki et al. 2001). Landsat
ETM+ image’s band 6 (TIR) is used to estimate sea surface temperature (SST) using
regression algorithm, and the equation is represented as follows:

SST ¼ 36:3409� 0:2613 ETM 61ð Þ þ 0:0010 ETM 62ð Þ2 ð5:2Þ

Where, coefficient of determination is R2 ¼ 0.157 and RMSE ¼ 0.814.
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5.3.3 Seawater Salinity Estimation

Seawater salinity is mainly dependent on chemical properties (Na and Cl) of the
seawater that produces distinct variability in spectral reflectance of Landsat ETM+
image (Burrage and Wesson 2008). Salinity characteristics of seawater can be
successfully estimated using spectral data that incorporated laboratory-derived coef-
ficient values (Maged and Mazlan 2009). Seawater salinity interacts significantly
with optical properties (spectral reflectance) of seawater and other suspended matters
due to reflection or absorption at different wavelengths (McCarthy et al. 2015).
Seawater salinity has produced various spectral reflectances based on salt concen-
tration. The spectral reflectance of saline water is high in band 3 of the Landsat ETM
+ image; using the algorithm proposed by, seawater salinity is estimated with
relatively accurate and the algorithm is expressed as follows:

Salinity ¼ �102þ 9 � 8� ETM3 ð5:3Þ

5.4 Results and Discussion

Spectral variability of Landsat ETM+ bands plays a vital role for the estimation of
phytoplankton (chl-a) concentration in the GoM region. The phytoplankton assem-
blage occurs in the coastal water and may result in unique spectral properties due to
absorption (NIR) and reflection (Red) of EMR at different wavelengths. Based on
this concept, the empirical algorithm is executed on all bands of ETM+ image for the
estimation of phytoplankton concentration in pixel scale.

5.4.1 Landsat ETM Image Reflectance Response
to Phytoplankton Concentration

Phytoplankton concentration in the coastal water consists of organic matters derived
from the physical and climatological factors. The reflectance value of image pixel
depends upon the concentration of phytoplankton (chl-a) at various stretches of
wavelength that can alter the optical properties of the water column. The spectral
reflectance of all ETM+ bands (VNIR and SWIR) clearly differentiate phytoplank-
ton and other suspended matter (inorganic contents) from coastal water (see
Fig. 5.3).

Landsat ETM+ image shows high spectral reflectance from coastal water which
consists of higher concentration of phytoplankton (chl-a) in visible bands (blue,
green and red bands) and lower reflectance in wavelength of NIR bands. The
phytoplankton (chl-a) concentration has produced relatively nearest reflection
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which ranges from 0.05% to 0.25% within the wavelength of 0.4–10.0 μm. The
separation of spectral curves within this wavelength is more difficult to distinguish
phytoplankton (chl-a) concentration from water content. This is due to the low
amount of backscattering by phytoplankton (chl-a) concentration present in surface
water. Highest phytoplankton (chl-a) concentration at 33.33 μg/L and above has
been observed at the reflectance range from 0.17% to 0.25%. This analysis reveals
that the response of reflectance in the image tends to increase with the increase of
phytoplankton (chl-a) concentration in wavelength of all bands with a few mirror
exception in the NIR spectrum. This is due to the wavelength of green (525–605 μm)
and red (630–690 μm) bands. Comparative analysis of reflection and wavelength at
different phytoplankton (chl-a) concentrations produces non-linear spectral profile,
and that indicates the distribution of phytoplankton concentration in surface water;
the spectral response of three different seasons are accurately demarcated (see
Fig. 5.4). Phytoplankton (chl-a) concentration has often reflected more radiation in
the visible portion than the infrared portion which includes NIR, mid-IR, SWIR and
TIR bands. The variation in reflectance from individual band of ETM+ image is
attributed to the estimation of phytoplankton (chl-a) concentration and dispersal.
Assessment of seasonal variability of phytoplankton biomass is important for under-
standing the physical, chemical and environmental changes of marine ecosystem due
to its influence of primary productivity in the coastal waters (Graf JR et al. 2015).
The multi-temporal satellite images are primarily used for retrieving and mapping
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Fig. 5.4 Multispectral image reflectance response to phytoplankton concentration
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the assemblage of phytoplankton known as phenology with its dispersal in seasonal
scale.

5.4.2 Estimation of Phytoplankton Concentration

Landsat ETM+ image-derived phytoplankton (chl-a) concentration has been esti-
mated using multivariate regression algorithm in GIS software environment. The
phytoplankton (chl-a) concentration and its spatial dispersal have been estimated
using multi-temporal Landsat ETM+ image acquired on 2016 (see Fig. 5.5). The
result reveals that the phytoplankton (chl-a) concentration is estimated with ranges
from 25.88 to 48.88 μg/L during pre-monsoon, 26.85–36.2 μg/L during monsoon
and 17.1–33.33 μg/L during post-monsoon. Among them, coastal water surface that
extends (8709 km2) with the distance of 1 km from shoreline less than 10 m depth to
seabed has been estimated with high phytoplankton (chl-a) concentration as
48.48 mg/L.

5.4.3 Spatio-Temporal Variation of Phytoplankton (chl-a)
Biomass

Spatial dispersal of phytoplankton (chl-a) biomass and its seasonal variability have
been demarcated for GoM region. The growth and productivity of phytoplankton
(chl-a) biomass are highly sensitive to physical and chemical properties (SST and
salinity) and hydrodynamic forces like waves and currents. Seasonal variability of
plankton assemblage at various parts depends on waves and currents (Esaias et al.
1998; Burroughs 2007) and monsoonal changes in hydrodynamic processes which
control their spatial dispersal. Phytoplankton (chl-a) concentration is estimated at
higher rate (35.92–48.48 μg/L) in coastal water within the distance of less than 1 km
from shore and depth of 10–100 m during pre-monsoon, and this is slightly
decreased to 24.43–33.33 μg/L in monsoon and 34.23–36.20 μg/L in post-monsoon.
The variation of salinity and SST influences growth and productivity of phytoplank-
ton in coastal water column, and their assemblage varies at different places resulting
from hydrodynamic processes. Quantitative measurement of phytoplankton (chl-a)
and major influencing factors of SST and salinity in various spots are shown in
Table 5.1.
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Fig. 5.5 Spatial assemblage of phytoplankton (chl-a) along the Gulf of Mannar at seasonal scale,
pre-monsoon (a), monsoon (b), post-monsoon (c)
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5.4.4 Factor Influencing Phytoplankton (Chl-s) Dispersal

5.4.4.1 Seawater Salinity

Seawater salinity is a dynamic entity and depends on chemical components of Na
and Cl. Phytoplankton concentration reaches higher rate with lower salinity in
coastal water. It describes that higher salinity may be found with lethal limit for
growth and productivity of phytoplankton communities. Salinity of coastal water is
being a medium for phytoplankton productivity by maintaining osmotic balance
(Emery and Thomson 2001). Change of salinity causes osmotic stress on uptake or
loss of nutrients by phytoplankton species. Seawater salinity is strong enough to
control the growth of phytoplankton community and establish their spatial assem-
blage in specific sites. Seawater salinity can be estimated using Aqua/ MODIS,
Landsat ETM and OCM images (Wong et al. 2007). The Landsat ETM+ image has
been used to measure seawater salinity using standard regression algorithm proposed
based on appropriate coefficient values. In the GoM region, the mean seawater
salinity has been estimated with a range of 17–23 psu. Seasonal variations of
seawater salinity were noted with a range of 17.04–28.67 psu in pre-monsoon; and
during the periods, the phytoplankton concentration lever has reached at
25.88–48.88 μg/L. The seawater salinity has changed to 18.22–23.97 psu during
monsoon, and phytoplankton concentration level is assessed at the rate of

Table 5.1 Estimated rate of phytoplankton (chl-a) concentration using Landsat ETM+ images and
the quantitative values of factors influencing during pre-monsoon (April 2016), monsoon (October
2016) and post-monsoon (February 2017)
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24.43–33.33 μg/L. However, seawater salinity prevails at the level of
11.36–23.17 psu during the post-monsoon and this has noticed as optimum salinity
level for higher growth and productivity of phytoplankton and it estimated with the
range of 34.23–38.20 μg/L while compared to rest of seasons in the GoM region
(Fig. 5.6).

Fig. 5.6 Sea surface temperature (a, b and c) and salinity (d, e and f) in the Gulf of Mannar at
seasonal scale where SST and salinity are represented as (a and d) is pre-monsoon, (b and e) is
monsoon, (c and f) is post-monsoon, respectively
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5.4.4.2 Sea Surface Temperature

Sea surface temperature (SST) varies from place to place and at vertical range of
water column, which highly influences phytoplankton growth and productivity.
Seasonal variation of SST determined phytoplankton assemblage and spatial pat-
terns that shows the annual cycles of biomass variability and their recurrence
strength (Walton et al. 1998; Wallhead et al. 2014). The SST variation in the GoM
region is among the major determinants to influence phytoplankton growth rates and
spatial and temporal distribution. In addition to that, the seasonal variability of SST
regulates phytoplankton productivity by controlling photosynthesis that differently
responds to different temperature regimes. The SST at pixel scale has been measured
using TIR (band 6) of Landsat ETM+ image by applying the algorithm and the
estimated SST at the range of 19.53–22.44 �C during pre-monsoon. The SST level
has raised up to 20.65–28.81 �C in the monsoon period, and further the SST come
down with range of 19.27–21.72 �C during post-monsoon. Meanwhile, the SST
prevails during post-monsoon and is noticed as optimum temperature for constant
productivity of phytoplankton communities, and the rate of concentration is esti-
mated at 34.23–38.20 μg/L in coastal water of the GoM region.

5.4.4.3 Wave Height and Littoral Current

The wave height annually ranges from 2.7 to 5.155 m in the Gulf of Mannar. The
dispersal of phytoplankton (phytoplankton (chl-a) concentration increases
(33.33–48.48 μg/L) with the decrease in wave height at 2.7 m, and the dispersal of
phytoplankton (phytoplankton (chl-a) concentration conversely decreases
(17.1–25.8 μg/L) with increase in wave height at 5.155 m. The wave height is
influenced corresponding to the wave direction, so this influences the wave height
to increase along the deep sea bed and decrease along the shoreline. Spatial dispersal
of phytoplankton communities depends on waves, wind and currents; however, their
growth and productivity are regulated by SST and salinity. Wind-driven external
factors transport phytoplankton assemblage towards the direction of waves and
currents; wind-induced lateral processes have transported horizontally plankton
assemblage towards shoreline and accumulated at lower depth of offshore. However,
the movement of plankton assemblage at coastal water column depends on upwell-
ing or downwelling processes resulting from induction of internal waves, and
vertical distribution of phytoplankton is dynamically changed by seasonal hydrody-
namic processes.

In the GoM region, the flow of littoral current influences phytoplankton concen-
tration and its spatial dispersal in coastal water by controlling coastal system within
the surf zone (Esaias et al. 1998; Dey and Singh 2003). In the Gulf of Mannar, the
littoral current prevails with velocity range of 3.7–62.69 m/s, and this process has
accumulated phytoplankton assemblage at higher level (33.33–48.48 μg/L) in
coastal water of lower depth area within the distance of less than 1 km from the
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shoreline, whereas offshore area with a distance of more than 1 km has noticed
littoral current velocity at 10.72 m/s, and the dispersal of phytoplankton (phyto-
plankton (chl-a) concentration decreases up to 17.1–25.8 μg/L. It is observed that the
change of littoral current velocity subject to shoreline distance and depth of coastal
water determines spatial dispersal of phytoplankton concentration along the GoM
region.

5.5 Conclusion

Phytoplankton concentration and its seasonal variability in coastal water have been
extracted using Landsat ETM+ image in GIS software environment. The spectral
reflectance of VNIR and SWIR bands indicates the occurrence of phytoplankton
(chl-a) in the coastal water. Band combination analysis of the total range of wave-
length (0.45–1.0 μm) shows high phytoplankton (chl-a) concentration measured
during pre-monsoon; however, constant productivity occurs in post-monsoon. More-
over, high phytoplankton (chl-a) is estimated along the shallow depth in the natural
area, especially in the eastern part due to the large quality of river discharge materials
shoaling by waves and current. Whereas the water surface away from the shore is
found with low phytoplankton (chl-a) concentration, it tends to increase the depth
and distance, and the low assemblage of them is only available to spread along the
vast water surface area. The growth and productivity of phytoplankton depend on
seasonal changes of SST and salinity, whereas their spatial dispersal is controlled by
seasonal dynamics of waves and currents. The phytoplankton (chl-a) concentration
in coastal water has higher rate in various parts during post-monsoon and lower level
during pre-monsoon. It is observed that the assemblage of phytoplankton (chl-a)
spread at high concentration in coastal water with lower depth and within the
distance of 1 km to shoreline. It is concluded that phytoplankton (chl-a) concentra-
tion is inversely proportional to the depth and distance to the shoreline and has direct
relationship with wave direction, littoral currents, SST and salinity prevailing over
the GoM region. The phytoplankton (chl-a) concentration shows higher correlation
with the logical relation of physical parameters like SST and salinity. Remote
sensing-derived output of this study provides useful information for identification
of potential fishing zone and marine ecosystem studies for researchers and manage-
ment authorities.
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Chapter 6
Flood Inundation and Hazard Mapping
of 2017 Floods in the Rapti River Basin
Using Sentinel-1A Synthetic Aperture
Radar Images

Rajesh Kumar

Abstract Globally, the flood magnitude and flood-induced damage are increasing.
Hence, the geospatial technology has been used to minimise the adverse effects of
floods and to plan the floodplain for the betterment of floodplain dwellers. One of the
major causes of floods in the Rapti River basin is heavy rainfall induced by the
break-in-monsoon condition. These days, geoscientists and planners use Sentinel-
1A IW GRD synthetic-aperture radar (SAR) image for flood extent mapping. Gauge
level and flood duration data recorded at Bhinga, Balrampur, Bansi, Regauli,
Birdghat, Kakarahi, Uska Bazar and Trimohinighat sites provide the basis for the
selection of SAR images. Extensive floods occurred in the Rapti River basin during
August 13–September 01, 2017. The flood duration in the Rapti River basin varied
from 3 (Bhinga) to 18 days (Birdghat) in 2017. The flood duration, normally,
increases from the upstream to downstream along the Rapti River due to decreasing
slope and discharges contributed by the tributaries. In this study, Sentinel-1A GRD
SAR images of August 21 and 25, 2017, have been selected for flood mapping in the
Indian part of the Rapti River basin. The water level of rivers was above the danger
level (DL) at Bansi, Regauli, Birdghat, Kakarahi, Uska Bazar and Trimohinighat
gauge and discharge (G/D) sites on August 21 and 25, 2017. The propagation of
flood peaks and affected areas has been analysed using water level data and SAR
images for the mentioned periods. The actual flooded areas covered 2046.7 km2 area
of the Indian part of the Rapti River basin during August 21–25, 2017. The
validation of flooded areas has been done using GPS way points collected during
field survey (November 2017) and Landsat 7 ETM+ images (August 24, 2017).
Breach sites in flood-prone areas have been mapped using Sentinel-2A and B MSI
images. The z-score method has been used for the standardisation of development
block-wise flooded areas (km2) and number of flood-affected villages. After
standardisation, these two parameters have been added to formulate development
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block-wise flood hazard index (FHI). High to very high FHI values have been
observed in Siddharthnagar and Gorakhpur districts.

Keywords Sentinel-1A IW GRD SAR · Rapti River basin · Backscatter values ·
Danger level · Unprecedented flood · Flood hazard index

6.1 Introduction

Earth scientists and planners extensively use satellite images from active and passive
remote sensing satellites for quick, accurate and real-time mapping of the flooded
areas and hazard assessment in a river basin across the world. Active sensors utilise
near-infrared and microwave region of the electromagnetic spectrum for terrestrial
mapping (Jensen 2018). These sensors have the capacity to sense the Earth’s objects
during cloudy and light rainfall weather conditions. These sensors also work round
the clock. However, the passive sensors do not detect the Earth’s objects at night and
during cloudy and light rainfall weather conditions. Hence, satellite images acquired
by the active sensor are extensively used for flood mapping and its propagation
downstream. But many researchers have used satellite images of the active and
passive sensors to map the flood extent, depth, duration and turbidity (Kumar and
Acharya 2016; Bhatt et al. 2016; Kumar 2016). Flooded or water pixel extraction
from the top-of-atmosphere or surface reflectance images of the passive sensors,
namely, Landsat operational land imager and thermal infrared sensor (OLI-TIRS),
thematic mapper (TM), enhanced thematic mapper plus (ETM+) and multispectral
scanner (MSS), are based on the normalised difference water index (NDWI),
modified normalised difference water index (MNDWI), density slicing of near-
infrared and shortwave infrared bands, visual interpretation and tasseled cap trans-
formation (Crist and Cicone, 1984; McFeeters 1996; Jain et al. 2006; Xu 2006;
Romshoo et al. 2018). Furthermore, the coarse spatial resolution images of Moderate
Resolution Imaging Spectroradiometer (MODIS) and National Oceanic and Atmo-
spheric Administration (NOAA) Advanced Very High Resolution Radiometer
(AVHRR) sensors are used for large-scale mapping of the flooded areas due to
their high temporal resolution (Ahamed and Bolten 2017; Islam and Sado 2000).

Presence of speckles in SAR image is a major disadvantage because it makes the
texture analysis of image complicated (Lee 1981). Speckles in SAR images also
influence the spatial characteristics of the backscattering coefficient of different
Earth’s objects that largely depends on surface roughness, dielectric constant,
polarisation and incident angle of SAR waves (Senthilnath et al. 2013). Wind-
induced ripples, the velocity of floodwaters, heavy rainfall and submerged vegeta-
tion and crops make the surface of the flood inundation rough that further creates a
problem in image analysis and classification (Huang 2008; Eisuke 2012). Speckle
filtering minimises the speckle noise, but it further degrades the resolution and object
information of the SAR image (Sheng and Xia 1996; Manavalan 2017). Further-
more, the adaptive speckle filtering methods conserve the edges and texture
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information by computing the kernel mean and normalised standard deviation
(Senthilnath et al. 2013). Different types of adaptive filters have been developed
for the speckle suppression of SAR images. These are mean, median, refined Lee,
sigma Lee and Lee (Lee 1981), Frost (Frost et al. 1982) and Gamma MAP (Lopès
et al. 1990) filters. According to Qui et al. (2004), “In general, no filter consistently
outperforms others. Each filter has its unique strengths and limitations”. Hence, the
selection of despeckle filter for SAR images depends on the nature of the study (Lee
et al. 1994). Manavalan and Rao (2014) pointed out that the despeckle filtering is not
necessary when the flood inundation surface is smooth. Flooded area mapping using
SAR images is based on different methods like visual interpretation (Oberstadler
et al. 1997), Ostu’s method and thresholding of backscattering values (Hirose et al.
2001; Yamada 2001; Tan et al. 2004; Bhatt et al. 2013; Manjusree et al. 2015; Ban
et al. 2017), band ratio and change detection (Giustarini et al. 2013; Schlaffer et al.
2015), SAR image-based supervised classification (DeRoo et al. 1999; Borghys
et al. 2006), fuzzy rules (Pulvirenti et al. 2013), region growing (Mason et al. 2012a;
Giustarini et al. 2013) active contour model (ACM) (Kass et al. 1988; Williams and
Shah 1992; Horritt 1999), grey-level co-occurrence matrix (GLCM) (Song et al.
2007), segmentation and object-oriented image analysis techniques (Li et al. 2007).
Many methods of extracting flooded areas from different SAR images are directly or
indirectly based on finding an appropriate threshold range (Manavalan 2017).

Due to improvement in the spatial and temporal resolution, the Sentinel-1A SAR
image has been used for detecting floods in rural areas (Clement et al. 2017).
However, in urban areas, high density of buildings causes radar shadow and double
bouncing effects that further creates a problem in detecting flooded areas (Clement
et al. 2017). Therefore, the detection of flooding in urban areas requires fine
resolution SAR images of COSMO-SkyMed, TerraSAR-X and RADARSAT-2
(Mason et al. 2012b; Pulvirenti et al. 2016).

In developing countries like India, the flood-prone areas are extensively used for
agriculture and business activities. Despite huge investment on flood control mea-
sures in India, the flood-induced damage to houses, public utilities, the standing
crops and the affected population has been increasing since 1980, inferring
encroachment of high-value land use on chronically flood-affected areas (Sivasami
2002). Hence, flood hazard assessment using geospatial technology is a
nonstructural measure for minimising the adverse effects of floods in flood-prone
areas (Manjusree et al. 2015). Flood hazard assessment in Bihar has been analysed
using flood layers (1998–2010), hazard area and number of floods in a year param-
eters, derived from RADARSAT-1 and RADARSAT-2 (C-band) HH polarisation
images (Manjusree et al. 2015).

Uttar Pradesh has the highest flood-prone areas in India. The total flood-prone
areas in Uttar Pradesh account for 73,400 km2 (Planning Commission 2011).
However, the total flood-prone areas in the Rapti River basin account for 4322.6 km
2 which is ~5.9% of the total flood-prone areas of Uttar Pradesh. The Rapti River, its
tributaries and sub-tributaries experience severe floods in the monsoon season due to
heavy downpour. Against the backdrop of above-mentioned methods and studies,
the present study aims to map the flooding extent of 2017 floods in the Indian part of
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the Rapti River basin and to prepare a flood hazard map at development block level
using the parameters, i.e. flooded areas and flood-affected hamlets.

6.2 Study Area

The entire Rapti River basin extends from 26� 180 0000 N to 28�3300600 N and
81�3300000 E to 83�4500600 E and accounts for 25,793 km2 of area, out of which
44% (11,401 km2) lies in Nepal and 56% (14,392 km2) in Uttar Pradesh (Fig. 6.1)
(Rana et al. 2009; Kumar 2010). Administratively, the Rapti River basin covers
Bahraich, Shrawasti, Balrampur, Siddharthnagar, Maharajganj, Gorakhpur,
Kushinagar, Deoria, Sant Kabir Nagar and Basti districts of Uttar Pradesh.

The Rapti River originates from the Nepalese part of the lesser Himalaya where
this river is known as the West Rapti. It is the largest tributary of Ghaghara River,
which, in turn, is a major constituent of the Ganga (Rana et al. 2009; Kumar 2010;
Kumar et al. 2013). The Jimruk, Burhi Rapti and its tributaries, Rohini and Gaura
River are the major left bank tributaries of the Rapti. The right bank tributaries are
Ami and Taraina River. In the Indian part of the basin, six gauge and discharge
(G/D) sites, namely, Kakardhari, Bhinga, Balrampur, Bansi, Regauli and Birdghat
(Gorakhpur), are located along the Rapti River. Kakarahi, Uska Bazar and

Fig. 6.1 Location map of the study area
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Trimohinighat G/D sites are located along the Burhi Rapti, Kunhra and Rohini
River, respectively (Fig. 6.2). The study region is a part of the vast alluvial plain
of the Ganga where the depth of alluvium varies from ~4 to 6 km (Singh 1996). The
major geomorphic features of the study area are piedmont alluvial plain, older
alluvial plain, older floodplain and active floodplain (GSI and NRSC 2012). Fur-
thermore, the active and older floodplains constitute the flood-prone areas of the
Rapti River basin. In this study, areas bordered by the embankments are mapped as
an active floodplain. The older floodplain is protected by the embankments. How-
ever, breaches in embankments cause flooding therein (Fig. 6.3). Agriculture is a
general land use pattern in the study area (Yadav 1999).

6.3 Material and Methodology

Sentinel-1 consists of two-satellite constellation, namely, Sentinel-1A and Sentinel-
1B. Sentinel-1A C-band SAR operated at a frequency of 5.405 GHz to detect the
Earth’s objects. Sentinel-1A and B missions were launched on April 3, 2014, and

Fig. 6.2 Drainage map and gauge and discharge (G/D) sites of the Rapti River basin
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April 25, 2016, by the European Space Agency (ESA) under Europe’s Copernicus
programme, respectively, (ESA 2018a). The orbit height of Sentinel-1A and B is
693 km with a combined temporal resolution of 6 days. However, the temporal
resolution of a single Sentinel-1 satellite is 12 days at the equator (ESA 2018a). The
level-1 ground range detected (GRD) data products of Sentinel-1A have been used in
this study. Interferometric wide swath (IW) GRD data product has dual polarisation
modes, i.e. VV and VH. With the help of an Earth ellipsoid model, the GRD level-1
data have been detected, multi-looked and projected to the ground range (ESA
2018b). Sentinel-2 is a multispectral instrument (MSI). This is a two-satellite
constellation, namely, Sentinel-2A and Sentinel-2B that were launched on June
23, 2015, and March 07, 2017, by the ESA, respectively (ESA 2018c). The temporal
resolution of the combined Sentinel-2 satellites is 5 days at the equator, while it is
10 days for a single satellite (ESA 2018c). The height of the orbit of Sentinel-2A and
B satellite is at 786 km (ESA 2018c). Sentinel-2 operates in visible, near-infrared
and shortwave infrared part of the electromagnetic spectrum (Table 6.1) (ESA
2018d).

The Sentinel-1A SAR images have been used for mapping the flooded areas and
pre-flood water bodies, while the Sentinel-2 images have been used for mapping of

Fig. 6.3 Geomorphic features of the study area along with breach locations due to 2017 floods
(Modified after GSI and NRSC 2012)
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the geomorphic features and breach sites. Landsat 7 ETM+ images of 30 m spatial
resolution (EarthExplorer 2017) have been used for accuracy assessment of flooded
and non-flooded areas extracted from the Sentinel-1 SAR images (Table 6.2). The
Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) at 90 m
spatial resolution (CGIAR-CSI 2008) has been used to extract the Rapti River basin
boundary using hydrology module of the spatial analyst tool of ArcGIS 10. The
development block boundaries have been digitised from the administrative atlas of
Uttar Pradesh (Census of India 2001). The hamlet point feature data have been
obtained from Mizushima Laboratory (2013). The geomorphic map has been
obtained from Bhuvan, an Indian Geo-platform of ISRO (GSI and NRSC 2012).
The rainfall and water level data have been obtained from the irrigation department
of Uttar Pradesh (Irrigation & Water Resource Department 2017). Synoptic weather
system information has been collected from all India weekly weather report (August
10–15, 2017), India Meteorological Department (IMD), Govt. of India (IMD 2017).

In this study, the Sentinel-1A IW GRD products of VV and VH polarisations
have been processed using Sentinel Application Platform (SNAP) tool. The
pre-processing steps using SNAP tool are given in Fig. 6.4. The standard procedures
such as orbit correction, thermal noise removal, calibration (sigma0), speckle

Table 6.1 Spectral bands of the Sentinel-2A and B sensor

Band
number Band name

Sentinel-2A Sentinel-2B

Central
wavelength
(nm)

Bandwidth
(nm)

Central
wavelength
(nm)

Bandwidth
(nm)

Spatial
resolution
(m)

1 Coastal
aerosol

443.9 27 442.3 45 60

2 Blue 496.6 98 492.1 98 10

3 Green 560 45 559 46 10

4 Red 664.5 38 665 39 10

5 Vegetation
red edge

703.9 19 703.8 20 20

6 Vegetation
red edge

740.2 18 739.1 18 20

7 Vegetation
red edge

782.5 28 779.7 28 20

8 NIR 835.1 145 833 133 10

8a Vegetation
red edge

864.8 33 864 32 20

9 Water
vapour

945 26 943.2 27 60

10 Cirrus 1373.5 75 1376.9 76 60

11 SWIR 1613.7 143 1610.4 141 20

12 SWIR 2202.4 242 2185.7 238 20

Source: Sentinel online (2018)
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filtering and terrain correction have been applied on the raw SAR images to obtain
the geometrically correct image along with backscattering values (sigma0) (Twele
et al. 2016; Clement et al. 2017). A 7 � 7 Gamma MAP filtering method has been
used for speckle suppression of the Sentinel-1A GRD SAR images. The sigma0
values have been converted into logarithmic scale, i.e. decibel (dB).

In this study, the selection of SAR images is based on the flood occurrence,
duration and movement of the flood crest downstream. The statistics of training sites
of flooded areas computed from VV and VH polarisation images of August 21, 2017
show unimodal distribution. Hence, the VV polarisation images of August 21, 2017
have been used for flood pixel extraction. Many researchers concluded that the VV
polarisation of Sentinel-1A IW GRD product is appropriate for the flood detection
(Twele et al. 2016). But VV polarisation is more affected by wind-induced ripples on
the surface of the floodwaters than other polarisations (Manjusree et al. 2012). The
VH polarisation image of August 25, 2017 provides better results for mapping the
flooded areas than the VV polarisation using thresholding of the backscattered
values. The histogram of training site statistics of the VV polarisation image of
August 25, 2017, shows a polymodal distribution, while it is a unimodal distribution
for VH polarisation image (Fig. 6.5). Hence, the computation of threshold value for
the extraction of flooded areas from VH polarisation image is easy and appropriate.

After pre-processing, a thresholding procedure has been used to extract the flood
pixels from the Sentinel-1A IW GRD SAR images. On the basis of statistics of the
training sites of the flooded areas (minimum, mean, median and standard deviation),

Fig. 6.4 Pre-processing
steps of Sentinel-1A GRD
SAR image
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lower and upper limit of the threshold range has been decided. Backscattering values
(dB) of the flood areas are normally distributed for which the mean � 3 standard
deviation covers 99.7% of the distribution (Fig. 6.5) (Motulsky 2014). In this study,
the lowest value of all training sites has been taken as the lower limit of the threshold
range. The upper limit (UL) has been obtained using Eq. (6.1):

UL ¼ μþ 3σð Þ½ � ð6:1Þ

where σ stands for the standard deviation of training site backscattered values in
decibel (dB) and μ is the mean backscattering values of training sites (flooded areas).

The actual flooded areas have been obtained by subtracting the pre-flood water
bodies (June 02–10, 2017) from the total flooded areas of August 21–25, 2017. The
accuracy assessment of actual flooded and non-flooded areas of August 25, 2017 has
been done with the help of the Garmin eTrex global positioning system (GPS)
waypoints and reference points selected from the Landsat 7 ETM+ images (August
24, 2017). The overall accuracy of flooded and non-flooded areas of August
25, 2017 is 91.6% with a high kappa coefficient value of 0.83. The user’s accuracy
for the flooded areas is 94.87% (Table 6.3).

The breach sites in the embankments have been mapped through visual interpre-
tation of false colour composite (FCC) of Sentinel-2 MSI post-flood images (10 m
spatial resolution). The development block-wise flood hazard assessment of 2017
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floods has been based on two parameters, namely, development block-wise flooded
areas and number of flood-affected hamlets. The linear association between these two
parameters is strongly positive as the coefficient of determination (R2) value is 0.79
(Fig. 6.6). Hence, the z-score (z) method has been applied for the standardisation of
these two parameters (Eq.6.2) (Burt et al. 2009):

z ¼ χ � μð Þ=σ ð6:2Þ

where χ stands for a parameter. μ and σ are mean and standard deviation of a
parameter, respectively.

The z-score values of these two parameters have been added linearly to make a
composite index, i.e. flood hazard index (FHI). Furthermore, the development block-
wise FHI values have been classified into four categories using natural break
classification method.

Table 6.3 Accuracy assessment of flooded and non-flooded areas (August 25, 2017)

Class
Producer
accuracy (%)

User accuracy
(%)

Producer accuracy
(pixels)

User accuracy
(pixels)

Flooded
Areas

88.1 94.87 37/42 37/39

Non-flooded
areas

95.12 88.64 39/41 39/44

Overall accuracy, (76/83), 91.6% Kappa coefficient, 0.83

Fig. 6.6 Association between development block-wise flooded areas and flood-affected hamlets
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6.4 Results and Discussion

6.4.1 Cause and Occurrence of 2017 Floods

The 2017 floods in the Rapti River basin were caused by the heavy rainfall during
August 12–14 due to the break-in-monsoon system (IMD 2017). The highest rainfall
of 303.6 mm was recorded at Kakarahi G/D site on August 14. Overall, the high
rainfall was recorded at all the G/D sites of the basin on August 14 (Fig. 6.7). Hence,
flooding was observed at all the G/D sites except Kakardhari. The flood peak which
occurred at Bhinga on August 14 takes 2 days to reach Balrampur G/D site. The
synchronisation of peak floods occurred at Bansi, Regauli and Birdghat. The
unprecedented flood occurred at Bansi on August 21, 2017, when the water level
crossed the previous highest flood level (1998) by 0.06 m. The flood peaks at
Trimohinighat, Kakarahi and Uska Bazar occurred on August 16, 18 and
20, 2017, respectively. Deviation of the maximum water level (MWL) from the
danger level (DL) at Bansi, Regauli, Birdhat, Kakarahi, Trimohinighat and Uska
Bazar was large and ranged between 1.53 and 3.14 m. Such a large deviation of
MWL indicates that the major floods occurred at these G/D sites in 2017 (Table 6.4).
When the water level in a river remains above the DL by 1 m or more, it is defined as
major floods (Dhar and Nandargi 2003).

The flood duration in the basin varied from 3 (Bhinga) to 18 days (Birdghat)
during 2017 floods. The flood duration along the Rapti River in the basin showed an
increasing trend from upstream to downstream due to decrease in slope and dis-
charges contributed by the tributaries. Hence, the extreme downstream Birdghat G/D
site recorded the highest flood duration of 18 days from August 15 to September
01, 2017 (Table 6.5).

Due to the high water level in Rapti, Burhi Rapti, Gaura and Rohini River,
breaches in embankments occurred during 2017 floods. A breach of 130 m length
occurred in the right embankment of the Burhi Rapti River (breach ID 1) (Table 6.6).

Fig. 6.7 Rainfall recorded at different G/D sites during August 10–15, 2017
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Two breach sites (ID 3 & 4) were located along the Rohini River (Fig. 6.3). Two
breaches (ID 7 & 11) were also mapped along the right bank embankment of the
Gaura River. The rest of the breach sites were located along the Rapti River. The
largest breach (ID 9) of 132 m occurred in the left bank embankment of the Rapti
River. Such large breaches in embankments indicate that the structural measure is
not a permanent solution for flood control in the basin. Breaches in embankment
often produce more coarse to medium sand in the floodwaters that settle in the
nearby embankment-protected arable land. Such deposition of coarse and medium
sand in the arable land makes it infertile for many years (Kumar 2010).

Table 6.4 Maximum water level (MWL), danger level (DL) and highest flood level (HFL) in Rapti
River basin

G/D Site
DL
(m)

MWL,
2017 (m) Date

Deviation of MWL
from DL (m) HFL (year)

Kakardhari 131 130.77 August
13, 2017

�0.23 132.37 (2014)

Bhinga 119.5 120.11 August
14, 2017

0.61 120.3 (2014)

Balrampur 104.62 105.52 August
16, 2017

0.90 105.51 (2014)

Bansi 84.9 85.88 August
21, 2017

0.98 85.82 (1998)

Regauli 80.3 81.84 August
21, 2017

1.54 82.12 (2000)

Birdghat 74.98 77.22 August
21, 2017

2.24 77.54 (1998)

Kakarahi 85.65 88.79 August
18, 2017

3.14 88.97 (1998)

Uska Bazar 83.52 85.05 August
20, 2017

1.53 85.62 (1998)

Trimohinighat 82.44 85.23 August
16, 2017

2.79 85.43 (2001)

Source: Irrigation and Water Resource Department (2017)

Table 6.5 Flood duration in Rapti River basin during 2017

G/D site River Days above DL Date

Kakardhari Rapti 0 N.A.

Bhinga Rapti 3 August 13–15

Balrampur Rapti 8 August 13–20

Bansi Rapti 11 August 16–26

Regauli Rapti 15 August 15–29

Birdghat Rapti 18 August 15–September 01

Kakarahi Burhi Rapti 14 August 14–27

Uska Bazar Kunhra 12 August 15–26

Trimohinighat Rohini 11 August 13–23

Source: Irrigation and Water Resource Department (2017)
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6.4.2 Flooded Area of the Rapti River Basin in 2017

The actual flooded area in the basin is 2046.7 km2, while the pre-flood water bodies
account for 68.6 km2 only (Fig. 6.8). The flood-prone area covers 30% geographical
area of the Rapti River basin (UP). During 2017 floods, the actual flooded areas

Table 6.6 Breach in
embankments during 2017
floods

Breach site ID River name Length (m)

1 Burhi Rapti 130

2 Rapti 40

3 Rohini 50

4 Rohini 80

5 Rapti 110

6 Rapti 36

7 Gaura 99.3

8 Rapti 71.9

9 Rapti 132

10 Rapti 23.9

11 Gaura 113

12 Rapti 94.4

Fig. 6.8 Actual flooded areas and pre-flood water bodies of the Rapti River basin (Indian part)
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account for 38.8% geographical area of the total flood-prone area. The actual flooded
areas of the flood-prone region cover 80% of the total actual flooded areas of the basin.

6.4.3 Downstream Movement of 2017 Floods

Downstream movement of the flood has been analysed with the help of flood extent
in window 1 and window 2. The actual flooded area in window 1 on August
21, 2017, was 205 km2, while it was 131 km2 on August 25, 2017 (Fig. 6.9). The
water level recorded at Kakarahi and Uska Bazar G/D site was above the DL with a
decreasing trend during August 21–25, 2017 (Table 6.7). The window 2 largely
covers the older floodplain between the Rapti and Gaura River downstream of
Birdghat G/D site. The actual flooded area in window 2 was 91 km2 on August
21, 2017, while it was increased to 143 km2 on August 25, 2017 (Fig. 6.10). The
main causal factor for an increase in flooded area was breaches in embankments
along the Rapti and Gaura River. Such breaches in the embankments in window
2 were caused by the flood flow from the upstream reaches.

6.4.4 Development Block-Wise Flood Hazard Assessment

Flood hazard assessment in a populated river basin is basically based on certain key
parameters such as elevation, flooded areas, turbidity, flood frequency, depth,

Fig. 6.9 (a) and (b) Actual flooded areas on August 21 and 25, 2017 in the window 1
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duration, flood-affected population and hamlets (Sanyal and Lu 2006; Manjusree
et al. 2015; Kumar and Acharya 2016; Kumar 2016; Kumar et al. 2016). In this
study, the development block-wise flooded areas show the extent of flooding, while
the number of flood-affected hamlets indicates the flood-induced damage. Therefore,
a composite index (FHI) has been computed using these parameters.

In this study, development block-wise low flood hazard is observed in all
districts except Siddharthnagar (Fig. 6.11). Generally, the low flood hazard zone

Fig. 6.10 (a) and (b) Actual flooded areas on August 21 and 25, 2017 in the window 2 along with
breach locations

Table 6.7 Danger level (DL), water level (WL) and deviation of WL from DL in Rapti River basin
during August 21 and 25, 2017

G/D Site

Danger
level
(m)

WL
(August
21, 2017)
(m)

WL
(August
25, 2017)
(m)

Deviation of WL
from DL
(m) (August
21, 2017)

Deviation of WL
from DL
(m) (August
25, 2017)

Kakardhari 131 129.01 128.83 �1.99 �2.17

Bhinga 119.5 118.06 118.11 �1.44 �1.39

Balrampur 104.62 104.51 103.98 �0.11 �0.64

Bansi 84.9 85.88 85.33 0.98 0.43

Regauli 80.3 81.84 81.4 1.54 1.1

Birdghat 74.98 77.22 76.6 2.24 1.62

Kakarahi 85.65 87.71 86.93 2.06 1.28

Uska Bazar 83.52 84.99 84.09 1.47 0.57

Trimohinighat 82.44 83.92 81.63 1.48 �0.81

Source: Irrigation and Water Resource Department (2017)
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lies in the older alluvial plain that comes under flood-free zone or Bangar land
(Table 6.8a).

Medium flood hazard zone is found in the development blocks of Shrawasti,
Balrampur, Siddharthnagr, Maharajganj, Gorakhpur and Sant Kabir Nagar districts

Fig. 6.11 Development block-wise flood hazard categories with label IDs. Name of the districts is
given in callouts

Table 6.8a District-wise flood-affected development blocks in low flood hazard zone

District Affected development block (label ID)

Bahraich Nawabganj (70)

Shrawasti Sirasia (65) and Gilaula (67)

Maharajganj Part of Siswa Bazar (32), Ghughuli (33), part of Partawal (34), Siswa Bazar (35),
Nichlaul (36), Maharajganj (37), Mithaura (41) and Nautanwa (43),

Kushinagar Sukrauli (82), Captanganj (83), Hata (84) and Motichak (85)

Deoria Gauri Bazar (24), Barhaj (25), Deoria (26), Rampur Karkhana (27), Baitalpur
(28) and Desai Deoria (29)

Gorakhpur Gola (2), Belghat (3), part of Gagaha (4), Urua (5), part of Kauriram (7) and part
of Belghat (13)

Sant Kabir
Nagar

Part of Semariyawan (73, 74 & 78) and Baghauli (75)

Basti Rudhauli (79), Saughat (80) and Ramnagar (81)
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(Table 6.8b). In general, this flood zone falls in the topographically low-lying areas
of older alluvial plain and older floodplain. Such low-lying areas comprise oxbow
lakes, abandoned and minor channels. In the local language, these lakes and chan-
nels are called as chaurs that often get flooded during the monsoon season. The high
flood hazard zone falls in the development blocks of Balrampur, Siddharthnagar,
Maharajganj, Deoria and Gorakhpur districts (Table 6.8c). This zone covers the
topographically low-lying areas of older alluvial plain, older and active floodplain.

In Siddharthnagar district, a very high flood zone is observed in Uska Bazar,
Bansi and Bhanwapur development blocks that fall in the active floodplain of
Kunhra, Rapti and Burhi Rapti River (Fig. 6.11). Jungle Kaudia development
block of Gorakhpur district also falls in the very high flood zone (Table 6.8d). Jungle
Kaudia block comes under the older and active floodplain of Rapti and Rohini River.
The topographically low-lying areas of the older floodplain of this block are
protected by embankments. Breaches in embankments along the Rohini and Rapti
Rivers often cause floods in Jungle Kaudia block.

Table 6.8b District-wise flood-affected development blocks in medium flood hazard zone

District Affected development block (Label ID)

Shrawasti Ikauna (66), Hariharpur (68) and Jamunaha (69)

Balrampur Pachperwa (57), Gainsari (58), Tulasipur (59), Harraiya Satgharwa (60),
Shridattganj (62), Utraula (63) and Gaindas Buzurg (64)

Siddharthnagar Birdpur (44), Naugarh (45), Shohratgarh (47), Kheserha (50), Mithwal (51) and
Domariyaganj (52)

Maharajganj Paniara (30), Partawal (31), Pharenda (38) and Lakshmipur (42)

Gorakhpur Gagaha (6), Kauriram (9), Khajani (14), Shahjanwa (15) and Pali (19)

Sant Kabir
Nagar

Mehdawal (71), Semariyawan (72), Khalilabad (76) and Santha (86)

Table 6.8c District-wise flood-affected development blocks in high flood hazard zone

District Affected development block (Label ID)

Balrampur Balrampur (61)

Siddharthnagar Jogiya Khas (48), Barhni Bazar (54) and Itwa (55)

Maharajganj Dhani (39) and Brimanganj (40)

Deoria Rudrapur (23)

Gorakhpur Barhalganj (1), Brahmpur (8), Bansgaon (11), Khorabar (12), Piprauli (17),
Chargawan (18) and Campierganj (22)

Table 6.8d District-wise flood-affected development blocks in very high flood hazard zone

District Affected development block (Label ID)

Siddharthnagar Uska Bazar (46), Bansi (49) and Bhanwapur (56)

Gorakhpur Jungal Kaudia (21)
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6.5 Conclusions

The 2017 floods in the Rapti River basin have been caused by the heavy rainfall due
to the break-in-monsoon condition. Breaches in embankments are another reason for
flooding in embankment-protected areas, i.e. older floodplain. Major floods occurred
at Regauli, Birdghat, Kakarahi, Uska Bazar and Trimohinighat G/D sites in 2017.

Siddharthnagar and Gorakhpur were the most flood-affected districts in 2017.
The confluence of the Burhi Rapti and Rohini River with the Rapti comes under the
very high flood hazard zone due to backwater effect. The development block-wise
flood hazard zone of a major flood in the Rapti River basin has immense importance
to the district administration for the execution of flood management strategies at the
block level. The geospatial approach used in this study for flood hazard assessment
can be improved with the help of amount of compensation money given to the
floodplain dwellers whose houses were damaged by the 2017 floods.

Methods discussed in this study are easy to detect flood-affected areas during the
monsoon season using freely available Sentinel-1A IW GRD SAR images. Sentinel-
1A SAR detects the Earth’s objects round the clock and during cloudy and light
rainfall weather conditions. Hence, Sentinel-1 GRD SAR images have immense
potential for the implementation of flood fighting measures during floods.
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Chapter 7
Application of ASTER Remote Sensing
for Lithological Mapping in the Udaipur
District of Rajasthan, India

S. S. Salaj, S. K. Srivastava, Rahul Dugal, Richa Upadhyay,
D. S. Suresh Babu, and S. Kaliraj

Abstract Remote sensing applications for earth studies such as lithological dis-
crimination, geological mapping and potential mineral exploration have shown great
success worldwide. Advanced Spaceborne Thermal Emission and Reflection Radi-
ometer (ASTER) Level-1B image includes visible and near-infrared (VNIR) and
shortwave infrared (SWIR) bands that have been analysed to discriminate lithology
features in meta-sedimentary terrains of Aravalli Supergroup in Udaipur area of
Rajasthan, India. The area comprises various types of geological settings and rock
types composed of economic valuable deposits of lead, zinc, copper, micas and
marbles; they show spectral reflectance distinctly in bands of VNIR and SWIR. The
unique spectral signature reflected by lithological unit shows effectiveness in litho-
logical mapping. The reflectance spectra of various rock types, namely, phyllitic
dolomite, siliceous dolomite, metagreywacke, quartzite and gneiss, were collected in
situ using spectroradiometer and used as reference of ASTER image for the prepa-
ration of spectral signature of different lithological units. The image is applied to
analysis atmospheric correction using Fast Line-of-sight Atmospheric Analysis of
Hypercubes (FLAASH) and empirical line calibration techniques to convert pixel
radiance values into reflectance. A minimum noise fraction (MNF) transform is
applied to identify the inherent variance of spectral reflectance and effectively
discriminates various lithological units. The different types of lithological units are
clearly discriminated using MNF method. Spectral Angle Mapper (SAM) classifi-
cation is an effective tool for differentiating rock types and its distinct mineralogical
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composition from associated terrains. Spectral Angle Mapper (SAM) classification
uses field-derived spectral signature to demarcate various lithological features with
its spatial extent. The result shows different lithological units under Aravalli Super-
group, Banded Gneissic Complex and intrusive formations that are composed of
meta-arkose, conglomerate, phyllite, mica schist, dolomite, metagreywacke and
migmatites in various locations. The extracted geological features using ASTER
image show strong resampling with the district resource map and validated using
ground truth verification. The overall accuracy of SAM-classified map of litholog-
ical units is 73.39% and Kappa coefficient of 0.59. Mapping the lithological features
using ASTER image, data coupled with MNF and SAM techniques provides
relatively accurate result, and this study may be used for discrimination of litholog-
ical units with its spatial characteristics.

Keywords ASTER · Lithological mapping · FLAASH · Minimum noise fraction ·
Spectral Angle Mapper · Remote sensing and GIS

7.1 Introduction

Application of remote sensing in geological studies shows a great success in
lithological discrimination, mineral exploration and identification of hydrothermally
altered rock types (Chandan Kumar et al. 2015). Remotely sensed multispectral
images involve earth exploration studies especially delineation of geological out-
crops, different rock types and soils and minerals (Kruse and Dietz 1991; Rowan and
Mars 2003; Tangestani et al. 2011). Multispectral images including AVIRIS,
MODIS, MERIS, ASTER and ETM+ have great utility in geological mapping at
different scales; several studies dealt with the utilization of ASTER image which
includes spectral bands of VNIR, SWIR and TIR for lithological discrimination and
detection of rocks alteration products (Boardman and Kruse 1994; Di Tommaso and
Rubinstein 2007; Gabr et al. 2010; Hosseinjani and Tangestani 2011; Pour and
Hashim 2012). Multispectral images of ASTER and ETM+ with higher spectral and
spatial resolution have been well employed for mapping of lithological features and
lineaments (Gomez et al. 2005; Gad and Kusky 2007; Rajendran et al. 2012).
Spectral reflectance of various rock types is used as endmember for discriminating
location and spatial extent of them along with their mineral compositions. The
spectral combination analysis of ASTER image provides distinct reflectance in the
spectral reflectance of visible, NIR bands that is used for discriminating the main
hydrothermal alteration mineral zones (Kruse and Dietz 1991; Rowan et al. 2003).
ASTER image shows spatial extends of lithological features and rock types and used
for various geological applications. Imaging spectroscopy allows geologists to
explore vast territories for surface features that may indicate the presence of minerals
in a certain area, using specific absorption features, caused by chemical bonds in
materials (Borengasser et al. 2008). ASTER image with continuous spectrum of
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VNIR and SWIR bands is utilized for effective lithological mapping and provides
new prospective of investigating earth surface mineral compositions (Van der Meer
et al. 2012). Spectral reflectance of ASTER sensor acquired in the VNIR, SWIR and
TIR regions offers unique spectral signature for surface-exposed lithological features
(Rajendran et al. 2012) minerals (Chandan Kumar et al. 2015), hydrothermally
altered rocks include propylitic, argillic, phyllic and potassic, etc. with relatively
high accuracy (Zhang et al. 2007). ASTER image comprises wide range of spectral
coverage to enhance specific rock for lithological mapping from other features
(Hewson et al. 2005; Gad and Kusky 2007). Advanced development of image
processing methods is applied to ASTER data as a tool for mapping lithological
features and mineral zones associated with their rock types. The development of
image processing techniques, i.e. SAM, MNF, ANN, etc., can provide complemen-
tary mapping for lithological, mineral and altered rocks using ASTER image
(Gomez et al. 2005; Hosseinjani and Tangestani 2011). Advanced image processing
techniques like principal component analysis (PCA), minimum noise fraction
(MNF), band ratios (BRs), band combinations (BCs) and spectral indices (SIs) are
well employed on ASTER image for discrimination of various lithological units. The
target spectra (endmember)-based classification algorithms such as Spectral Angle
Mapper (SAM), Spectral Feature Fitting (SFF), Matched Filter (MF), Constrained
Energy Minimization (CEM), Linear Spectral Unmixing (LSU) and Mixture-Tuned
Matched Filtering (MTMF) are provided subpixel level classification of lithological
features along with their abundant mineral compositions. Minimum noise fraction
(MNF) is a statistical method widely used to demarcate the inherent properties of
spectral dimensionality from lithological features based on segregation of minimum
noise and identify various types of lithological features along with their associated
features with spatial extent on the ground surface.

Spectral Angle Mapper (SAM) is a standard classification method that is suc-
cessfully used for mapping lithological features compared to other classification
systems. SAM classification is used to determine spectral similarity between image
spectra and reference reflectance spectra (field-observed spectra also known as
endmember). This is highly suitable for classification of lithological features from
multispectral image with medium and high spatial resolution (Boardman and Kruse
1994; Borengasser et al. 2008; Pour and Hashim 2011). SAM classification of
ASTER image has been used worldwide for mapping geological features and
alteration minerals and for identifying potential mineral exploration sites with the
use of field reflectance spectra (i.e. USGS/Japan Spectral Library) as reference
spectrum (Tangestani et al. 2011). This classification provides a pixel-wise feature
extraction for improved lithological mapping and is quiet an advanced one compared
to other methods because this executes spectral properties at each pixel of images
(Rowan and Mars 2003; Zhang et al. 2009; Pour and Hashim 2012). The ASTER
image is classified using SAM algorithm to quantify spectral similarity of litholog-
ical features based on endmember (reference spectra) of known rock types observed
in the field (Qiu et al. 2006). SAM algorithm is used as spectral matching method for
identification of lithological features using multispectral or hyperspectral images
(Sabins 1999; Tangestani et al. 2011). ASTER image provides clear discrimination
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of mineral composition for mapping alteration minerals with high accuracy. Many
classification techniques are widely used for feature extraction from the image based
on spectral reflectance, and SAM is one of the most suitable classification methods
for lithological discrimination using multispectral images such as Landsat TM, ETM
+, OLI and ASTER and hyperspectral images (Hyperion and AVIRIS) that provide
mineralogical compositions. The endmember applied on SAM algorithm can exe-
cute image classification at subpixel level to demarcate different rock types based on
field-observed reference spectra collected from various rocks (Youssef et al. 2009).
SAMmodel quantifies spectral similarity between spectrum of image pixel and field-
observed spectra from known components (rock types), and the model’s algorithm
executes spectral matching method and hence widely used for identification of
lithological type using multispectral images (Pour and Hashim 2012). The present
study investigates ASTER image for lithological mapping in the Udaipur district,
Rajasthan, India, using field-observed spectral signatures; the various types of
lithological features have been effectively discriminated and mapped using
advanced image processing techniques such as minimum noise fraction (MNF)
and Spectral Angle Mapper (SAM) methods in remote sensing and GIS
environment.

7.2 Study Area and Geological Setting

ASTER image-based lithological features have been discriminated in the south-
eastern part of the Udaipur district of Rajasthan, India. The surface-exposed rock
types comprise different geological settings associated with various rock types due
to formation of Archean to recent alluvium formations. Figure 7.1 shows geograph-
ical location of the study area. The geographical extent of the study area lies between

Fig. 7.1 Location map of the study area
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the longitude of 74� 140 1300E – 73� 240 3800E and latitude of 24� 540 4400N – 24� 140

4000N with the coverage of total area which is approximately 3600 km2. The terrain
achieved the present-day topography largely due to long period of erosion. Aravalli
Mountains are highly folded and show undulating topography with ridges and peaks
intervened by low-lying valleys. Figure 7.2 shows the 3D view of physiography of
study area using ASTER image. The study area consists of rocky-exposed terrains
which prevail during semiarid climatic condition that are generally composed of
economically valuable mineral resources including iron, lead, zinc, copper, rock
phosphate, soapstone, limestone, barites, marble, etc. The Udaipur district of Rajas-
than state holds enriched mineral resources, whereas the Aravalli Supergroup of
rocks hosts some of the best mineral belts being worked in the district (Roy and
Paliwal 1981; Sharma 2009). The geological setting of the study area is demarcated
in Fig. 7.3. Lithological formations occur during orogenic cycles, and the terrain is
classified as (i) Aravalli Supergroup (includes sub-groups of Jharol, Bari Lake (basic
volcanics, metaconglomerate and phyllite), Udaipur group (overlain by Zawar
formation in some areas)), (ii) Banded Gneissic Complex (Bhilwara Supergroup),
(iii) Debari group and (iv) synorogenic granite and gneiss (intrusive rocks). Aravalli
Supergroup (ASG) shows two contrasting lithofacies composed of surface facies of
shale-sand-carbonate assemblage and deepwater facies of carbonate-free shale-
arenite association; within this, the ultramafic rocks (serpentinites) are emplaced as
formation of Aravalli fold belt (Sharma 2009; Chandan Kumar et al. 2015). Debari
group and Udaipur group represent platform facies of the surface. Debari group
consisting of coarse clastics, carbonates and pelites overlies the basement Banded

Fig. 7.2 Physiography of the study area
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Gneissic Complex. Debari group overlay by Udaipur group comprising greywacke
and phyllite. A carbonate sequence named as Zawar formation hosting lead-zinc
mineralization overlies Udaipur group. Jharol group represents deep-sea facies and
ultramafics mainly consisting of pelite-dominant sequences, serpentinites, chlorite
schist and quartzite with phosphoritic dolomite (Roy et al. 1988). The metamorphic
formation occurs in Aravalli sequence which extends from east to west. The major
area covers rock types of gneiss, migmatites, phyllite, quartzite, metagreywacke and
dolomite. Dolomite in Zawar formation constitutes the principal host rock for
sulphide mineralization. The rock types generally formed between Archaean to
mid-Proterozoic period (Sinha-Roy et al. 1998). Meta-sedimentary rocks of Aravalli
Supergroup occur in the plateau of Aravalli hills. The Proterozoic rock formation has
deposited as supracrustal forms, and that is called as Archaean basement gneiss
complex under Banded Gneissic Complex (BGC). This formation has predomi-
nantly occurred as poly-metamorphosed, multi-deformed rock-suite of tonalite-
trondhjemite gneiss, amphibolite, migmatite and granitoids (Sharma 2009). The
rocks of Aravalli Supergroup are formed as phyllite, greywacke, quartzite, dolomite
and intra-formational conglomerate, and these formations were deposited in Pre-
cambrian Aravalli sea during 2.3 Ga (Roy and Paliwal 1981; Sinha-Roy et al. 1998).
The sedimentary deposits are formed as folded outcrops with mildly metamorphosed
rocks. Synorogenic intrusive formation comprises with granite and gneiss that are
formed as isolated patches in various parts of the study area.

Fig. 7.3 Geological map of the study area
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7.3 Materials and Methodology

Geological remote sensing has been achieved for mapping of lithological features in
arid to semiarid environments. Terra onboard ASTER sensor has been launched in
December 1999 by NASA’s Earth Observing System (EOS) AM-1. ASTER consists
of three separate instrument subsystems to observe the three different spectral bands
including visible and near-infrared (VNIR), shortwave infrared (SWIR) and thermal
infrared (TIR). ASTER image comprises long-narrow spectral reflectance of an
object in SWIR band that mostly used for discriminating lithological features and
mineral mapping. Hydrothermally altered mineral assemblages can be identified
using their diagnostic spectral absorption from VNIR through SWIR (0.4–2.5 μm)
and TIR (8.0–14.0 μm) wavelength regions. Significant spectral properties of
ASTER have been commonly used for geological applications including
(i) discrimination and identification of rocks, minerals and lithological features and
(ii) identification of iron oxide minerals in surface and mapping of carbonates and
silicates. The methodology flowchart that shows systematic geoprocessing opera-
tions used for this study is shown in Fig. 7.4.

ASTER Level-1B image of VNIR and SWIR bands which cover the Udaipur
region has been analysed for this study. ASTER image consist of three bands
including visible/near-infrared (VNIR) and six spectral bands in shortwave infrared
(SWIR) regions. The image with enough spatial resolution provides a new
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Fig. 7.4 Methodological flowchart shows geoprocessing functionalities involved in this study
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prospective for exploration studies on the earth surface. The VNIR region with three
bands (0.52–0.86 μm) provides distinct spectral reflectance from the ores of transi-
tion metals such as iron, manganese, chromium, copper, etc. The six bands of SWIR
region (1.60–2.43 μm) have been used for identification of carbonate, hydrate and
hydroxide minerals. The TIR band covers wavelength of 8.125–11.65 μm that have
perfectly provided spectral reflectance of silicates and its composed matter (Chandan
Kumar et al. 2015). Multispectral bands of ASTER image have been used for
identification of various lithological features based on different band combination
analyses. The spectral reflectance of VNIR and SWIR bands in ASTER image has
scientifically been proved for geological applications such as lithological discrimi-
nation, mineral mapping and identification of altered rock types.

7.3.1 Field Spectra Reflectance Data Collection

The objects that occur on the earth surface, near the sub-surface, reflect unique
spectral reflectance that indicates their spectral signature based on shape, size,
pattern and mineral composition in nature. The earth surface features reflect or
emit unique portion of spectral reflectance in a VNIR and SWIR wavelength
depending on their mineral composition and textural properties such as grain size,
packing, mixing and physical state that are involved for lithological mapping.
Various rock types exposed on the surface in the semiarid terrain of Udaipur in
Rajasthan and the spectral reflectance collected as endmember from various rocks
can be used to demarcate lithology and hydrothermal-altered minerals. Field-
observed spectral reflectance describes material’s characteristics in continuous elec-
tromagnetic spectrum interact with them. The spectroradiometer instrument (Ana-
lytical Spectral Device) is used for collection of reference spectra (endmembers)
with narrow-continuous bands that are having high-intensity contact with the rock
types to generate spectral signature. The spectral sampling locations were marked
using handheld GPS system. The ASD spectroradiometer is used to collect contin-
uous spectra with the wavelength range of 325–1075 nm, in which VNIR and SWIR
bands cover 0.35–2.5 nm (VNIR), 10 nm (SWIR) spectral resolutions and 1 nm
spectral sampling. The ASD field spectra were collected mainly from dominant rock
types, viz. gneiss, quartzite, phyllitic dolomite, siliceous dolomite and
metagreywacke, across the Udaipur district in Rajasthan state. Figure 7.5 shows
the field-observed ASD spectra (endmember spectra collection) from different rock
types of the study area. The spectral reflectance collected from various rock types at
different angles is used for empirical line correction and reference for reflectance
spectrum of ASTER image for mapping the lithological features.
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7.3.2 ASTER Pre-processing and Image Calibration

A systematic calibration requires an ASTER image for removing atmospheric and
radiometric errors and other sensor defects, before performing reliable image anal-
ysis. The pixel values (digital number) of an image may not represent surface
reflectance and that required transferring into spectral reflectance. ASTER image
can maximize by calibrating it for atmospheric and radiometric correction to repre-
sent actual spectral reflectance of objects as it is in the earth surface. Image
atmospheric correction plays an important role for converting DN value to spectral
reflectance. FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hyper-
cubes) model is applied to ensure atmospherically corrected ASTER image to
produce true surface reflectance. This model incorporates MODTRAN4 radiation
transfer code, which is applied on individual bands of ASTER image to correct
atmospheric scattering due to water vapour and aerosol on a pixel-by-pixel basis.
FLAASH uses the algorithm and is expressed as

L ¼ Aρ

1� ρeS

� �
þ Bρe

1� ρeS

� �
þ La ð7:1Þ

where ρ is the pixel surface reflectance, ρe is an average surface reflectance for the
pixel and a surrounding region, S is the spherical albedo of the atmosphere, La is the
radiance back scattered by the atmosphere and A and B are coefficients that depend
on atmospheric and geometric conditions but not on the surface. Image atmospheric
correction is used as mathematical equation (Eq. 7.1) for removing the atmospheric
disturbances (effects) that involve conversion of the image radiance to ground truth
reflectance (GTR). FLASSH tool has been calibrated using ASTER image compris-
ing VNIR and SWIR bands to improve spectral reflectance of the objects. Moreover,
the process of conversion of absolute radiance (DN value) to ground truth Reflec-
tance involves the classification of earth features from the image using field spectral
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reflectance, mainly used for discrimination of earth features (Chandan Kumar et al.
2015).

7.3.3 Empirical Line Calibration (ELC)

Table 7.1 shows the rock types and its locations of ASD field spectra collection for
ASTER image empirical line calibration. This model is executed for image-
measured spectra or field spectral reflectance (endmember) for enhance spectral
properties of each objects that provides as an alternative to radioactive transfer
modelling for lithological mapping. This method is executed multivariate regression
equation, and this is represented as

DNk ¼ ρλAk þ Bk ð7:2Þ

where DNk is the DN value for a particular pixel in band (k), ρλequals to scaled
surface reflectance of object within the remote sensor IFOV at a specific wavelength
(λ), Akis gain and Bkis offset.

In an ASTER image after FLASSH model-based atmospheric corrections, some
residual errors like path radiance remain in the image data, but it can be corrected
using empirical line calibration (ELC) based on regression statistical method. Image
pixel spectra is calibrated to match ground spectra (ASD field spectral reflectance
data) using certain ground control points from contrasting albedo areas. This model
calculates linear relationship between image-derived spectra and ground-measured
reflectance spectra of objects with a range of contrasting albedo to calculate total
reflectance gains and total reflectance offsets and to convert image pixel values into
reluctance factor. Field spectral reflectance of the selected targets is used for ELC for
ASTER bands of VNIR and SWIR to produce independent reflectivity of image
measurement.

7.3.4 Minimum Noise Fraction (MNF) Transformation

The minimum noise fraction (MNF) is a standard transformation model that com-
putes normalized linear combinations of spectral reflectance of each band, which

Table 7.1 The rock types and
their locations of ASD field
spectra collection for ASTER
image empirical line
calibration

Field sample Latitude Longitude

Phyllitic dolomite 24�21008.500N 73�43018.200E
Siliceous dolomite 1 24�2103800N 73�43044.300E
Siliceous dolomite 2 24�21043.200N 73�42000.6100E
Metagreywacke 24�21041.700N 73�43045.100E
Gneiss 24�24032.600N 73�39030.300E
Quartzite 24�.100N 73�4401500E
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maximizes signal (reflectance) to noise ratio for filtering noise and inverting reflec-
tance value in a pixel of an image (Rajendran et al. 2013). Output of MNF
transformation produces ternary coloured MNF image that shows distinct variability
of different rock types in their spectral signature for lithological compositional
mapping. MNF transformation was applied on ASTER image with VNIR and
SWIR bands using ENVI 5.4 software to implement cascaded analysis such as
PCA and MNF transformation. The selection of endmembers from the MNF
image using matched filtering produces enough spectral variability as a function of
different mineralogies in the visible and near-infrared and shortwave-infrared ranges
that compare successfully with the existing geological map. MNF algorithm ana-
lyses the ASTER VNIR and SWIR bands to determine inherent dimensionality, to
segregate noise in the data and to reduce the computational requirements for
subsequent image processing. This analysis executes MNF transformation as a
first step, which is used to segregates noise in the image in which the noise has
unit variance and no band-to-band correlations. Secondly, principal components
analysis (PCA) is executed on VNIR and SWIR bands to transform the pixels with
noise-whitened data into new uncorrelated bands that have maximum variance in
spectral reflectance values (DN value) to highlight uncorrelated features for explor-
ing the rock types exposed on the surface.

7.3.5 Spectral Angle Mapper Classification

Spectral Angle Mapper (SAM) is a standard classification model, which is applied to
classify ASTER image to experimentally map the different rock types using field
reflectance spectra (endmember) derived from ASD spectroradiometer instrument
(350–2500 nm). SAM classification executes pixel-based analysis of ASTER image
using endmember or reference spectra (spectral signatures of the objects measured
directly in the field or laboratory) to classify various features and ponderation of their
values assigned as 0 (low spectral similarity) and 1 (high spectral similarity). This
model takes inherent property of rocks for further magnified as they acquired in
remote sensing image based on spectral variability. Two methods were executed to
derive endmember classes (reflectance spectra) used for SAM classification for the
preparation of improved lithological mapping using ASTER image; (i) calculate
mean spectral derivatives using sum of spectral values from field-observed spectra
and image-measured original spectra (spectral value of pixel). It is described as the
combination of image-derived mean spectrum and field-observed mean spectral
derivative used in the SAM classification to improve class separability (spectral
variability) for a corresponding rock type; (ii) use of multiple endmembers (reflec-
tance spectra of many rock samples) into SAM classification to accommodate
spectral variability among various types of rocks. In the present study, the SAM
method is used for the classification of rock types using ASTER image by calculat-
ing spectral similarity of image spectra to reference reflectance spectra (Kruse et al.
1993). Spectral reflectance of different rock samples was collected using field
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measurements or extracted directly from the image as an endmember or reference
spectra used for SAM classification analysis. The algorithm of SAM classifier is
used to measure spectral similarity of an object compared to endmember by calcu-
lating spectral angle between image spectra and field-observed spectra and treating
them as vectors in n-dimensional space (Kruse et al. 1993; Rowan and Mars 2003).
The statistical correlation of spectra showing narrow angle between above spectra
indicates occurrence of higher similarity for demarcating the rock types, whereas the
wider spectral angle indicates low similarity and causes poor classification results.
The SAM model is independent from spectral, radiometric errors due to solar
illumination factors, because this model mainly calculates spectral angle of two
different spectra of the same features and it is independent from vector’s length
(Kruse et al. 1993). The SAM algorithm calculates spectral similarity of image
spectra and endmember spectra by computing arccosine value at dot product for
test spectrum ‘t’ and reference spectrum ‘r’ involved in the analysis (Kruse et al.
1993). The algorithm computes spectral similarity at each pixel of an image based on
comparative analysis between spectral angles between reference spectrum
(endmember) and image-derived spectrum, and the output shows a vector in
n-dimensional space, in which the narrow spectral angles represent high similarity
and indicates closer matches to reference spectrum derived from the field (Kruse
et al. 1993). In this analysis, SAM classification has been executed on ASTER image
with VNIR and SWIR bands using field-observed spectra for mapping lithological
units. The field-observed spectra is used as a reference (endmember), which have
been collected from different rocks at various locations. There are 436 sample points
that are comparatively analysed with stratified random distribution for accuracy
assessment using error matrix method (Congalton 1991). SAM-classified lithologi-
cal map was comparatively verified using existing geological features on district
resource map published by the Geological Survey of India (GSI 1997).

7.4 Results and Discussion

ASTER remote sensing provides for spectrally unmixed products of various rock
types that may be useful for mapping lithological features with improved geological
discrimination details using MNF and SAM classification techniques (Tangestani
et al. 2011). Field-observed reflectance spectra from different rock types have been
used as reference spectrum for classifying specific lithological units with their
pattern, association and spatial extent as it is on the earth surface. ASTER image
with VNIR and SWIR bands (spatial resolution 30 m) has been used for discrimi-
nating different lithological features from various parts of the study area. The output
of lithological map derived from ASTER image shows Gneissic Complex formation
of gneiss in major parts of the study that have exposed as rocky outcrops. Migmatites
and granitic rocks combined with shale-sand-carbonate assemblage, deepwater
facies of carbonate-free shale-arenite association and intrusive formation of
synorogenic granite and gneiss. The lithological map with location and spatial extent
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of mineral resources may be helpful for planning socio-economic development
activities.

7.4.1 ASTER Image Spectral Characteristics of Rock Types

The spectral reflectance of ASTER image shows unique signature of various litho-
logical units. Figure 7.5 shows spectral variability reflected by different rock types at
wavelength of VNIR and SWIR bands of ASTER image. The field spectra collected
from various rock samples using spectroradiometer are highly resembled with
ASTER image spectra for discriminating the rock types. Mapping of lithological
features has been performed using band combination analysis of ASTER image,
i.e. (i) band composition analysis of band 4 (SWIR 1.60–1.70 μm), band 5 (SWIR
2.145–2.185 μm) and band 7 (2.235–2.285 μm), (ii) MNF analysis of VNIR and
SWIR bands and (iii) band ratio of image of (6/8:R; 4/8:G and 11/14:B). Massive
sheared granodiorites and diorites have been discriminated as light and dark grey
image signatures, respectively, on the 4/8 band ratio of ASTER image. The forma-
tion of hard rock types consists of granites and dykes that have spectrally demarcated
by their dark grey signature on image using the 6/8 band ratio analysis. The altered
rocky formations of hornblende, biotite and plagioclases (chlorite, sericite and clay
minerals) may be responsible for absorption features at the wavelength of 1.65 μm
and 2.35 μm regions. The TIR bands of ASTER image may be attributed unique
emissivity to different lithological units; the band ratio of 11/14 shows different
lithological units like diorite, granodiorites and post-tectonic granites; and these
features have been discriminated based on bright, grey and dark image signatures,
respectively. The different rock types reflect their unique spectral signature in
ASTER image of VNIR and SWIR bands, and these signature are derived as
endmember classes (reference spectra) for SAM classification for mapping the
lithological features.

7.4.2 Discrimination of Lithological Feature Using MNF
Analysis

Figure 7.6 shows the ASTER image-derived lithological features that have catego-
rized into three major groups of lithological formations such as (i) Aravalli Super-
group (ASG) which occurred with the assemblage of shale-sand-carbonate,
carbonate-free deepwater facies and shale-arenite association, in which ultramafic
rocks (serpentinites) have emplaced as group or isolated bathes along the Aravalli
fold belt; (ii) Banded Gneissic Complex (BGC) which comprises the formation of
gneiss, migmatites and granitic rocks; and (iii) intrusive formation of synorogenic
granite and gneiss. Figure 7.7 shows the minimum noise fraction analysis of
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lithological discrimination; Locality 1 shows lithological features: Debari group of
meta-arkose and conglomerate (A); phyllite and mica schist (B); dolomite, phyllite
and mica schist (C); phyllite and metagreywacke (D); composition of
metagreywacke, dolomite and phyllite (E); intrusive formation of granite and gneiss
(F); Banded Gneissic Complex of gneiss, migmatites and granitic rocks. Locality
2 shows the different lithological features such as synorogenic granite and gneiss
formation (1); metaconglomerate (2); pebbly arkose (3); Udaipur group of
metagreywacke and phyllite (4); Debari group of phyllite and mica schist formation
(5); and Jharol group of phyllite, chlorite and mica schist. Aravalli Supergroup
formations are dominated with heterogeneous assemblage of amphibolite facies of
metamorphites associated with migmatites, composite gneisses, feldspathic mica
schist, sillimanite-kyanite, mica schist, hornblende schist, granite gneiss and
amphibolite with mixture of minor carbonates. BGC layers overlay on ASG forma-
tions such as self facies of mafic, volcanics, coarse clastics and carbonates that are
densely assembled in the eastern parts, and carbonate-free deep-sea facies formed
dominated phyllites with quartzite in the western parts. Major parts of self facies
have been further subdivided into (i) volcanic formation of Delwara group and (ii)
volcanic-free Debari group, in which the Delwara group are found as the lowermost
sequence layer under the ASG formations, and they are mainly composed of mafic
volcanic, quartzite, quartz-pebble conglomerate and banded iron formation. Debari
group of rocks are formed as middle layer of ASG that comprised coarse clastics,
carbonates and phyllites. Udaipur group consists of greywacke and phyllite overlain

Fig. 7.6 MNF colour composite (RGB: 312) draped over DEM viewed from the north. The major
groups of lithological formation in the study area: (i) Aravalli Supergroup of shale-sand-carbonate
assemblage and deepwater facies of carbonate-free shale-arenite association, in which ultramafic
rocks (serpentinites) emplaced along the Aravalli fold belt, (ii) Banded Gneissic Complex formation
of gneiss, migmatites and granitic rocks; (iii) intrusive formation of synorogenic granite and gneiss
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by carbonate sequence composed of Pb-Zn minerals, and it is known as Zawar
formation. The Jharol group of ASG consist of carbonate-free and pelite dominant
sequence arenite bands and are mainly composed of phyllites, chlorite schist and
garnetiferous mica schist. Assemblage of lithological features shows that majority of
them have undergone severe metamorphic processes, and they are formed as hydro-
thermally altered rocks with economically valuable deposits in various parts of the
study area.

Fig. 7.7 The minimum noise fraction analysis of lithological discrimination; Locality 1 shows
lithological features: Debari group of meta-arkose and conglomerate (A); phyllite and mica schist
(B); dolomite, phyllite and mica schist (C); phyllite and metagreywacke (D); composition of
metagreywacke, dolomite and phyllite (E); intrusive formation of granite and gneiss (F); Banded
Gneissic Complex of gneiss, migmatites and granitic rocks. Locality 2 shows lithological features:
synorogenic granite and gneiss formation (1); metaconglomerate (2); pebbly arkose (3); Udaipur
group of metagreywacke and phyllite (4); Debari group of phyllite and mica schist formation (5);
and Jharol group of phyllite, chlorite and mica schist
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7.4.2.1 Locality 1: 73� 530 E to 74� 400 E and 24� 200 N to 24� 300 N (Area
of Kotra, Jhamarkotra and Zawar)

Since the variance of MNF bands is very high, their combinations highlight different
zones in the image. These zones are uncorrelated areas which arise due to compo-
sitional and topographic variations in the terrain. The major geological formations in
the area can be demarcated using MNF colour composites. The highlighted zones are
correlated with the existing geological map to identify the formations. As the extent
of the study area is very large, two localities exposing maximum lithological
variations in the MNF colour composite image (RGB: 312) have been selected as
representatives for comparison with the digitized geological map (Figs. 7.7 and 7.8).
The ASTER image-classified lithological map shows major parts of the area cov-
ered: Debari group, Udaipur group, Synorogenic intrusive and Banded Gneissic
Complex.

(a) Debari group: It is represented by yellow-coloured zone (A) in the central part
and a prominent blue-coloured patch ‘B’ in the upper right (Fig. 7.7a). Zone A is
highly correlated to a meta-arkose and conglomerate formations. The lower part
this zone, the layer noticed by bluish patch parallel to upland, mainly consists of
phyllite and mica schist. Zone ‘B’ is another formation belonging to Debari

Fig. 7.8 The Spectral Angle Mapper (SAM) classification of lithological features (map shows
various lithological features with its spatial extent that are discriminated based on spectral reflec-
tance variability)
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group that comprises phyllite and mica schist, and the narrow patches of these
formations also occur in the western side to meta-arkose formation.

(b) Udaipur group: This formation comprises three types of rocks represented as C,
D and E in Fig. 7.7. Zone C is found in southwestern parts that mainly contains
dolomite, phyllite and mica schist. In between this zone, there are some narrow
reddish patches, which can correlate with Zawar formation consisting of
sulphide-bearing dolomite. Zone D occurs with the formation comprised of
phyllite and metagreywacke, whereas phyllitic rocks appear in blue-coloured
patches, and metagreywacke have shown in greenish colour. Zone E represented
as shade of yellow and red colour that mainly contains metagreywacke, dolomite
and phyllite. This is another formation in Udaipur group that is noted in middle-
western parts.

(c) Synorogenic intrusive: Zone F denoted occurrence of this formation that com-
prises of granite and gneiss intrusive rocks; they are clearly demarcated by
reddish-blue-coloured patches in the north-western parts.

(d) Banded Gneissic Complex: Zone G represented spatial distribution of this
formation in middle-eastern parts, and this is noted as reddish-coloured patches.
BGC forms basement for the Aravalli rocks and mainly contains gneiss,
migmatites and granitic rocks that consist of Bhilwara Supergroup.

7.4.2.2 Locality 2: 73� 350 E to 73� 440 E and 24� 360 N to 24� 420 N (Area
of Thur, Badgaon, Fatehpura and a Part of National
Highway 27)

Locality 2 shows the major formations of synorogenic intrusive, Bari Lake group,
Udaipur group, Debari group and Jharol group. These formations consist of the
lithological units such as synorogenic granite and gneiss formation (1);
metaconglomerate (2); pebbly arkose (3); Udaipur group of metagreywacke and
phyllite (4); Debari group of phyllite and mica schist formation (5); and Jharol group
of phyllite, chlorite and mica schist.

(a) Synorogenic intrusive: Zone 1 denoted the occurrence of this formation predom-
inantly in middle parts that correlated with synorogenic granite and gneiss in
geological map. The intrusion of granite and gneiss marked the end of Aravalli
orogeny. The exposed part of intrusive is well distinguished in MNF image.

(b) Bari Lake group: Zones 2 and 3 belong to this group. These formations appear in
bale greenish yellow patches of enriched metaconglomerate associated with
some pebbly arkose in the northern parts and distributed NW and NE direction.
Spatial pattern of this formation is clearly highlighted in MNF image. The Bari
Lake group overlay with Udaipur group and Jharol group in the study area.

(c) Udaipur group: Zone 4 shows Udaipur group formation that comprises of
metagreywacke and phyllite, and this formation are marked by a bluish region
southeast to the intrusive. These formation covers in larger area that extend from
middle-eastern part to southeast parts.
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(d) Debari group: Zone 5 shows occurrence of phyllite and mica schist formation
under Debari group that shows light green colour in middle-eastern parts parallel
associated with Udaipur group formation.

(e) Jharol Group: Zone 6 shows occurrence of the Jharol group that runs parallel to
the western parts and extends from north to south direction. This formation
represented as shade of bluish green patches that consists of phyllitic and
chlorite-mica schist rock types.

ASTER-derived lithological mapping explores various rock types along with
their spatial distribution of different lithological units. The result shows relative
positions of various geological formations based on their topographic zones, such as
planar region of BGC basement, upland deposition of Aravalli Supergroup of rocks
that are highly folded and synorogenic intrusive formation at lower position of the
study area.

7.4.3 SAMClassification of ASTER for Lithological Mapping

The study area comprises two major lithological formations such as phyllitic and
gneissic terrains that have predominantly distributed in the western and eastern parts
of the area. Figure 7.8 shows the Spectral Angle Mapper (SAM) classification of
lithological features such as siliceous dolomite, phyllitic dolomite, metagreywacke,
gneiss and quartzite. The phyllitic dolomite predominantly distributed in western
parts that mainly associated with siliceous dolomite and metagreywacke (Roy et al.
1988; Congalton 1991; Chandan Kumar et al. 2015). The eastern parts of the area are
found predominantly with gneissic formation that constituted batches of quartzite in
various locations. The error matrix of SAM-classified lithological features used for
accuracy assessment is shown in Table 7.2. SAM-classified image of overall accu-
racy is estimated as 73.39% with Kappa coefficient 0.59. The result is comparatively
high correlation with GSI-published geological map for Udaipur district. The
gneissic rocks formed as Banded Gneissic Complex (BGC) and synorogenic intru-
sive, and siliceous dolomite formation occurs in the Zawar area. Phyllitic dolomite
rocks occur in major parts of Aravalli Supergroup formation. Metagreywacke are
found as thick layers in some locations of Udaipur group formation. Quartzite rock
types have formed in Jharol group that mainly are associated with gneissic terrain in
western parts.

7.5 Conclusion

Lithological mapping using ASTER image provides various lithological units with
their spatial characteristics. Atmospherically corrected image shows actual spectral
reflectance of rock types. Analysis of multispectral bands of the image using MNF
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and SAM methods shows spatial extent of various lithological features. The SAM
classification of ASTER image using field-observed spectra produces lithological
mapping successfully. The experimental result of SAM method shows spectral
variability of different lithological classes with mean reference spectrum. Accuracy
assessment of ASTER-derived lithological mapping proved the rock types and other
lithological features as similar as GSI-published map for the study area. Lithological
mapping using ASTER image may provide basic information for exploring mineral
resources and helpful for planning socio-economic developmental activities.
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Chapter 8
Interactive Approach for Earthquake
Scenario Development and Hazards
Resource Estimation

B. S. Chaudhary, Ram Kumar Singh, Nupur Bhatia, Ravi Mishra,
Md Ataullah Raza Khan, Juhi Yadav, and Shashikanta Patairiya

Abstract Indian subcontinent attained present physical form due to vast tectonic
movements that resulted into large number of earthquakes. In studies it has been
found that more than 50% area in the country is prone to damaging earthquakes. The
northeastern part of India as well as the entire Himalayan belt is susceptible to
earthquake of magnitude more than 8.0. The present study is principally aimed at
understanding the intricate seismological processes in the study area, Sikkim which
is on hilly terrain of Eastern Himalayas. Sikkim is situated in a region where major
cause of earthquake is displacement of the Indian plate toward the Eurasian plate
having complex geology. Remote sensing and GIS model builder and syntax were
proven for hazard and vulnerable map creation used in earthquake scenarios devel-
opment, planning, management, and resource estimation. In this study the prelimi-
nary factors including geology, topography, slope, relief, land use/cover, major
roads, and historical epicenter were used with mechanical weightage, and overlay
categorization was used for hazard index map and zone identification.

Keywords Earthquake scenarios management · Hazard index map · Overlay
analysis
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8.1 Introduction

India has faced several serious world’s enormous earthquakes, and about more than
50% of the country region is said to be vulnerable of earthquake (Sengar et al. 2013).
The most vulnerable region of earthquake is the northeastern regions of India,
including the entire Himalayan (Kaila and Narayan 1976). Earthquake is identified
as natural sudden shaking of the ground earth due to movement on earth’s rocks and
surface (Armas 2012; Armas and Gavris 2013). Earthquake occurs when the plate
tectonic is unexpectedly separated to form a fault or fold and releases energy in form
of seismic waves and tremble ground surface (Pavel and Vacareanu 2016;
Chemenda et al. 1995; Fekete 2009; Walker et al. 2014). Seismograph or Seismometer
is used to detect and record the seismic waves. The major cause of earthquake is a
sudden release of energy due to sudden breaks in the underlying rocks along the faults
that leads to procreation of seismic waves. Plate tectonic refers to the explanation of
the movements of the earth surface in an existing place or the past experienced places.
The spot under the ground where the earthquake occurs is known as focus, and the
place perpendicularly above the focus is termed as the epicenter (Chen et al. 2011;
Pavel et al. 2016; Rufat 2009). The focus of the earthquake is an underground point
where rocks first begin to move and the seismic waves travel outward from the
earthquake’s focus. The epicenter is the point on the earth’s surface which is directly
above the focus point. Lower magnitude of earthquake even causes mass destruction
even more than an atom bomb, so hazard resource estimation and scenarios develop-
ment are very important (Skarlatoudis et al. 2004).

The major cause of earthquake is the shifting of tectonic plates which forms the
folds and faults feature. Another reason could be due to the volcanic inflation,
explosions, deep penetrations bombs, geothermal energy, stress transfer, groundwa-
ter extraction which decreases the pore pressure, surface quarrying, and many
reasons more (Allen and Kanamori 2003; Ansal et al. 2004; Strasser et al. 2008;
Toma-Danila et al. 2015). Earthquake scenarios help in management of hazardous
resources which refers to the series of actions for maintaining the influence areas or
zones to reduce the disaster (Champatiray et al. 2005). It does not completely reduce
the influence of disaster, but it brings out the outcome or plans to decrease the risk
factor. There is no such planning or arrangements for the disaster management that
would lead to the worst-case scenario and include the loss of life as well as damage
to the properties (Roustaei et al. 2005; Trifunac and Todorovska 1997; Lillesand
et al. 2008). India has faced many powerful impacts of the world’s greatest earth-
quakes; therefore, greater amount of area of the country is evaluated to be prone to
earthquakes (Zhou et al. 2009).

The spectacular geomorphic-tectonic features as exhibited by the Indian
lithosphere plate include the continental mountain systems, plateaus, and uplands
(Glennie et al. 1990; Wilson 1965; Ouma et al. 2011; Lang et al. 2012). The reason
behind the occurrence of earthquake in this particular region is due to the displacement
of the Indian plate which is shifting toward the Eurasian plate and also collides with it
which leads to the creation of the convergent boundaries. The Indian plate is bounded
by some major and minor plates from all direction: the African plate in the west, the
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Arabian and Iranian microplates in the north-west, the Eurasian plate toward north, the
Chinese plate toward east and southeast, and Antarctic plate in the south.

Geographic information system is a unified application of the scientific knowl-
edge which refers to computer science, topography, technology, and most impor-
tantly geography (Gong Jianya 2004). GIS uses all input factors for analyzing and
assigning different weightage priority and various mechanisms in handling and
inspecting the spatial data (Bai Yungang et al. 2004). It has been proven successfully
to an enormous field including geography (Chen et al. 2006). This conception is
being used widely throughout the world for various purposes which include the
identification of the risk regions. It is capable for identifying risk factors and
vulnerable prone areas for earthquake (Morrow 1999; Zhou et al. 2009). The
utilization of GIS for earthquake disaster is substantially focused on the hazards
emerging from the earthquakes commence from the active fault locations frequently
termed from the inter plate earthquakes.

The representation of these maps has been done by using two software, that is,
ERDAS Imagine and ArcGIS. The GIS technology is being used widely for the
seismic fields including analyzing approach for seismic forecasting, resistance to
earthquake, prevention of disaster, and mitigation and emergency command
(Weiwei et al. 2009). GIS is growing in a vast approach toward analyzing the
vulnerability and risk zones (Sun et al., 2008). GIS is used for mapping, land use,
planning, water conservancy, and civil engineering as every connection is linked
toward the earthquake disaster and these processes are interlinked to the geograph-
ical location.

8.2 Study Area

Sikkim, one of the states of India, is situated in the Eastern Himalayas which comes
under the world’s third highest mountain Khangchendzonga which is of 8585 m,
restrained by the people of Sikkim as their protective deity. Sikkim is parted from the
Singalila range from Nepal in the west, Chola range from Tibet and Bhutan, and also
the Rangeet and Rango rivers from the borders. Sikkim is located at the 27.33�N and
88.62�E; therefore the total area covered by is about 7096 Sq. Km2 (Fig. 8.1). The
elevation of Sikkim ranges from 300 m to about 8583 m above the mean sea level,
Mt. Khangchendzonga being the highest. It aggregates 82.31% (Sikkim ISFR 2017) of
the total land which is covered with forest, consisting of the 8 species of the tree ferns,
11 species of the oak trees, along with the 20 species of bamboos, 300 species of ferns,
and for about 400 species of the flowering plants. Its population is around 6.11 Lakhs
(Census of India 2011). It is one of the states in India which receives the regular
snowfall and the heavy rainfall, and hence there is an increased chance for landslides
(Onagh et al. 2012; Lin et al. 2006). The land area of Sikkim is not fit for agricultural
activities, but still most of its hill slopes are converted in the form of terrace farming
land. The hills of the state mainly comprise of the gneiss rock and the schist rocks
which are likely to erode due to the process of weathering and erosion. The geology
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of Sikkim largely comprises of the infertile soil, inappropriate for the agricultural
purposes. Sikkim comprises of the three important rocks named half-schistose, gneiss-
ose, and the Precambrian. Precambrian rock is established and is significant part of
Sikkim geology that is made up of schists and phyllites. The existence of the schist’s
and phyllites forms the gradients of the region that are prone to weathering

Fig. 8.1 Study area map
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and erosion. Earthquakes in India show some striking aspects which can be
implemented for planning the earthquake disaster management. Sikkim falls
under the category of zone IV having high damage risk zone. The study area
Sikkim, India, is chosen due to its earth structure, located at highly terrain of
Eastern Himalayas, displacement of the Indian plate toward the Eurasian plate,
moderate population in open area, and statistical earthquake, falling into earth-
quake zone IV (Sarkar and Nandy 1974).

8.3 Material and Methodology

Consolidating geospatial technology is accompanied in conception of informations
and experiences during earthquake for constructing a hazard map for risk-prone
regions that will be helpful for future planning and strategy making (Chen et al.
2006). Therefore, the limitation envisages by using GIS, and maps are classified into
three classes. After formative criteria assessment ranges, the ranking of the class
values from 1 to 3 is assigned with respect to scientific codes and postulation.

The foremost factors used for the study and categorization (Table 8.1) for
geology, soil, slope, land use, and road are also vital mechanisms of dwindling
modeling development and are together mapped. In this study classification is done
to organize the factors used for categorizing the map so as to help the decision-
makers understand the situation and distribute the mechanism rapidly by visualizing
the map. The whole procedure for GIS data and investigation is carried out by using
the model builder tool. In this way a mechanical GIS system may also be a
significant element for classification-based researches. The weight and individual
features (Table 8.1) are made flexible to transform through a user interface.

Material used for study Landsat-8 Operational Land Imager (OLI) Image,
Cartosat Stereo pairs, major roads source DIVA-GIS, and historical earthquake
data are used to derive useful hazard index.

8.3.1 Land Use/Land Cover

The land cover figure documents how any area is enclosed by forests, wetlands, and
impervious surfaces, agricultural together with the other land and water types,
whereas the land use represents how people utilize the landscape whether for growth,
preservation, or diverse uses. Land cover can be resoluted by analyzing satellite and
the aerial imagery (Metternicht et al. 2005). Land cover maps endow with the
statistics to assist the managers paramount and recognize the existing landscape
(Fig. 8.2). The term land use and land cover are used interchangeably. Using Landsat
8 OLI, image was used for land use-land cover classification using maximum
likelihood classifier to classify into nine classes specifically agricultural, snow and
glacier, alpine scrub, alpine meadow, oak forest, conifer forest, roads, alpine thicket,
and the alder forest.
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8.3.2 Cartosat DEM

Cartosat is an exclusive stereoscopic undertaking with the ability of attaining the
along track stereo imagery with the unchanging B/H ratio. It holds two payloads
which are the fore camera and the aft camera. These two panchromatic cameras with
the 2.5 m spatial resolution are to obtain two descriptions concurrently. ERDAS
IMAGINE Photogrammetry is used to create elevation model of 15 m.

8.3.3 Slope Approach

A slope map represents the variations in altitude which simultaneously shows the
aspect and degree of slope for a terrain. Slope map is made up of Cartosat 15 m

Table 8.1 Representing weightage rank for five basic factors related to earthquake

S. No Themes Weightage Individual factors

Rank/Value
for
individual
entity

Weightage*
rank
assigned

1 Geology 0.15 Metamorphic 1 0.15

Gabbros 2 0.3

Chert/limestone facies 3 0.45

Gabbros and Ultrabasics 4 0.6

Fluviatile deposits 5 0.75

Ultrabasics-peridotite,
Precambrian rock

6 0.9

2 Soil 0.1 Torrifluvents,
Torriorthents and rock
outcrops, clay-rich soil

1 0.1

Rock outcrops,
torripsamments, and
calciorthids

2 0.2

3 Slope
(in percentage)

0.15 Low (0–30) 1 0.15

Medium (30–60) 2 0.3

High (>60) 3 0.45

4 Land use 0.1 Green areas 1 0.1

Water bodies 2 0.2

Scrub land 3 0.3

Rock outcrop, dunes, and
crushers

4 0.4

Built-up 5 0.5

5 Road (m) 0.05 1500 1 0.05

1000 2 0.1

500 3 0.15
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DEM. It represents the direction and steepness of the slope for a terrain for contin-
uous surfaces. They are characterized as a symbolized such as the combination of the
hues such as the red, yellow, orange, and green.

Fig. 8.2 Land use and land cover of the study area
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8.3.4 Relief

Relief map basically displays the altitude and topography. They are more better-
quality adaptation of the topographic maps as the topographic map utilizes equiva-
lent elevation to generate two-dimensional models. The relief map attempts to depict
the physical appearance of the ground based on its shape and height. The relief of
topography has an important impact on the earthquake response of a region. The
climate and weather of any region largely determines the variation in altitude which
influences the rock and soil type found in the region.

8.3.5 Weightage Assignments

Weightage assignment is taken as important preliminary factors to set up parameters
to study any seismic study. The most important authority of geologic environment
on both strong trembling description and consequential damage pattern are inte-
grated in this study. The relationship between gray scales, statistical sample gray
value, and earthquake intensity has been established and analyzed for affected area
from the change image and published report. Model the probability distribution of
the gray value in different intensity zones by Eq. (8.1).

F j xið Þ ¼ pnorm xi; μi; σið Þ ð8:1Þ

Fj(xi) denotes the probability density function of the gray value in intensity j ¼ 5,
6, 7, 8. . ., and xi is the gray value of the change image. μi, σi are the mean and
standard deviation of statistical sample gray value in intensity j, respectively. A map
projection conversion is directed with a suitable location of the origin of coordinates
or false northing and false easting to make all XY coordinates positive, and then the
contours were generated.

Take aj ¼ max (xij), bj ¼ min (xij), c ¼ max (yij), and d ¼ min (yij), where I is for
identification of the sample point, j is for intensity, e¼min (j), f¼max (j), and xij,yij
are the coordinates of point i with intensity j. The circle contour can be stated by the
following (Eq. 8.2).

R2
J ¼ x j � x0

� �2 þ y j � y0
� �2 ð8:2Þ

x0 ¼ 1
2 f � eþ 1ð Þ

X f

j¼e
a j þ b j
� �

y0 ¼
1

2 f � eþ 1ð Þ
X f

j¼e
c j þ d j
� �
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R j ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a j � b j

� �2 þ c j � d j

� �2q

where (x0,y0) is the coordinate of a circle center and Rj is the equivalent radius of
the region with intensity j. If the rupture direction is recognized (in 0–90 degree), an
ellipse can be determined in Eq. 8.3.

x j � x0
� �

α j þ y j � y0
� �

β j

� �2
A2

j

þ y j � y0
� �

α j þ x j � x0
� �

β j

� �2
B2

j

¼ 1 ð8:3Þ

A j ¼ R j,B j ¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a j � b j

� �2 þ c j � d j

� �2q� �

α j ¼ cos∅j, β j ¼ sin∅j, φ j ¼ arctan
c j � d j

a j � b j

� �

where Aj is the radius along the major axis and Bj is the radius along the
major axis.

8.3.6 Trend Surface Analysis

The trend surface analysis is the most widely applicable global surface-fitting
procedure. It is a global procedure with an inexact interpolation used for obtaining
smooth and approximate value points with known values using a polynomial
equation (Chang, 2006). A cubic polynomial surface such as in Eq. (8.4) can be
used to model the trend of the spatial distribution of the RS variables. After global
polynomial interpolation by Eq. (8.4), the contours without a given shape can be
generated by horizontal cuts. The mapped data are approximated by a polynomial
expansion of the geographic coordinates of the control points, and the coefficients of
the polynomial function are found by the method of least squares, insuring that the
sum of the squared deviations from the trend surface is a minimum. Each original
observation is considered to be the sum of a deterministic polynomial function of the
geographic coordinates plus a random error.

Z x; yð Þ ¼ b0 þ b1xþ b2yþ b3x
2 þ b4xyþ b5y

2 þ b6x
3 þ b7x

2yþ b8xy
2

þ b9y
3 ð8:4Þ

where Z(x, y) is the surface equation and b0,b1,b2,b3,b4,. . .. . .. . .b9 are coefficients to
be fitted in the regression.
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8.3.7 Co-Kriging

Co-Kriging is a geo-statistical analyst module that is considered as a point interpo-
lation. It needs point data as input which is used to yield raster data with approxi-
mations of an optionally inaccurate data. It is a multivariate variant of the usual
kriging operation that predicts for a poorly tested variable (predictor) with support of
a well-sampled co-variable, where they should be highly correlated using Eq. 8.5.
This paper considers intensity as the primary variable and statistical sample gray
value as the secondary variable.

P∗ u0ð Þ ¼
Xn
k¼1

λk∗p ukð Þ þ
Xn
k¼1

ƞl∗q ulð Þ ð8:5Þ

Where P∗(u0) is for the co-kriging estimate at pointu0, n is for the number of p(.)
points, and m is for the number of q(.). The p(uk) is for the intensity at point uk and q
(ul) for the statistical sample gray value at point ul, respectively. The corresponding
weights λk,ƞlare from the solution of co-kriging equations of intensity
semivariogram, statistical sample gray value semivariogram and cross-covariance
of intensity, and statistical sample gray value.

8.3.8 Isoseismic Line

Concentric loops are the most implied isoseismic lines but are very coarse. Ellipses
are better with two structures but are still not compliant since the form gets fixed. The
lines with different roman numerals, V, VI, VII, IX, and X, respectively, denote
intensity zones. Both the co-kriging and trend surface methods can generate
isoseismic lines quite well. Isoseismic lines acquired from the trend surface model
are very smooth, and those from the co-kriging model must be further leveled. The
larger the numbers of “n” and “m,” the smoother the isoseismic lines, and it can be
smoothed using other mathematical tools.

8.4 Results and Discussion

8.4.1 Land Use/Land Cover

The land use and land cover map is a chief principle for regulating the earthquake
risk zones. In the present study, nine land use and land cover classes specifically
agricultural, snow and glacier, alpine scrub, alpine meadow, oak forest, coniferous
forest, roads, alpine, teaks, and the alder forest have been classified from the
LANDSAT-8 image using Maximum likelihood classifier. The supervised
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classification was done along with the image analysis keys such as the tone,
association, texture, etc. (Fig. 8.2).

8.4.2 Cartosat DEM

The Cartosat digital elevation model (DEM) of 15-meter resolution was used for
generating the slope and relief map for the study area (Fig. 8.3). The map represents
the digital elevation model of Sikkim, and the value of the map varies from 188 (low)
to 8387 (higher).

8.4.3 Slope Map

A slope map represents the variations of altitude within a distance. Slope map is
made up of Cartosat DEM (Fig. 8.3). It represents the direction and steepness of the
slope for a terrain for continuous surfaces. Slope map is categorized on the basis of
combination of the hues such as the red, yellow, orange, green, etc. (Fig. 8.4).A
slope map specifies in the direction of the topography of a region alongside with a
study of topographic description as they have inclined and may persist to authority
the enlargement of land. The slope map is determined of steepness characteristic
comparative to the horizontal plane. The surface topography is one of the most
influential determinants for the site effects during an earthquake. The slope resolu-
tion is classified into five classes for slope degree in between 0 and 87.5 values
(Fig. 8.4).

8.4.4 Relief

The relief of topography has an important impact on the earthquake response of a
region. The variation in altitude is greatly affected by the climate and the weather
which determines the rock and soil type found in the region. The relief map was
extracted from the Cartosat DEM classified into five classes ranging from 0 to
8340 m (Fig. 8.5).

8.4.5 Earthquake Mapping

Earthquake transpire when the plate tectonic unpredictably disengage to form a fault
or fold during the time of seismic activity and makes ground to tremble (Fig. 8.6). An
earthquake map is prepared by contemplating the past fault and the earthquake
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activities as well as the performance of the seismic waves traveling in different
direction. An earthquake map can be utilized for the development of a land use,
alleviation, and the crisis response. The earthquake map represents different proba-
bilities selected to provide an overview of relative range of seismic activities. It
shows areas that were affected by the earthquake along with the hazard intensity.
The intensity of earthquake varies from lowest 6 to 8.5 which are of highest intensity
(Fig. 8.6).

Fig. 8.3 Cartosat digital elevation model (DEM) of the study area
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Fig. 8.4 Slope map of the study area
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8.4.6 Seismic Hazard Map

Based on the parameters such as geology, slope, soil, land use and land cover
pattern, and the earthquake mapping (USGS 2014), the potential risk zones of the
earthquake vulnerable areas were studied (Fig. 8.7). Map describes that complication

Fig. 8.5 Relief map of the study area
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of the risk is not fully restricted to the state of the potentially exposure and the
socially tempered acknowledgement. Therefore risk is considered to be the feature of
the urban society that can be an admittance through an arrangement of the ecological
aspect that are related with the physical environment of the geographic space where
the urban society is situated or the social situation of the population in that region

Fig. 8.6 Earthquake mapping of the study area
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(Fischhoff et al. 1981).Through the study of risk or the vulnerability zones, the
highly prone areas are easily identified and differentiated from the other regions
within the study area. The risk zone is considered to be the spatial problem which
involves the observant confirmation of the risk zones based on the weighted analysis

Fig. 8.7 Hazard map of the study area
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(Keeney 1995). By the use of GIS-based spatial multi-measurement, the problem
toward the risk analysis can be tackled.

Exploration and analysis are still continued to be done and grow on the earth-
quake mapping and the hazard mapping in a large-scale format. The shift in the
hazard to disasters has continued, and the spotlight on human vulnerability has been
maintained (White et al. 2001). The affiliation between a hazard and its prospect can
be used to finish off the on the whole level of risk. The surroundings can be
expensive in economic and social term; a direct hazard to life is the most severe
threat. Risk is occasionally taken as identical with hazard, but risk has extra
implication of the possibility of exact hazard actually happening. Hazard is para-
mount viewed as a physically taking place or human-induced process, or occasion,
with impending to generate loss. Risk is the actual exposure of something of human
value to a hazard and is often regarded as the product of probability and loss (Okrent
1980).

8.5 Conclusion

The research characterizes the attempt to study and mapping of the earthquake for
the state of Sikkim which lies in the zone-IV category classified as the great vertical
extend zone. The research emphasizes on the areas that were affected by the
earthquake or the areas that are vulnerable to earthquake. This has been calculated
via various algorithms and with the use of ArcGIS and ERDAS Imagine. The
concluded map is the overlay analysis map representing all the combination of factor
maps that slope map, relief map, digital elevation model map, and land use and land
cover map. The research was taken into account to analyze the five criteria that are
geology, soil, slope, road, and the land use/land cover using the GIS to create the
earthquake hazard map. This map is concluded to increase the awareness, manage-
ment, and preparedness among the people invulnerable areas in Sikkim.
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Chapter 9
A Sediment Dynamic Modelling of Landsat
OLI Image for Suspended Sediment Drift
Along the Southwest Coast of India

Meenu Rani, S. Kaliraj, Raihan Ahmed, Biswajit Tripathy,
Bismay Ranjan Tripathy, and Gajendra Singh Pippal

Abstract The movement of suspended sediment along the coastal water is an
indicator of erosion and deposition of the coastal landforms. The current study
deals with the spatio-temporal movement of suspended sediments in the shallow
along the southwest coast of Thiruvananthapuram district, Kerala state in India. The
customized model here systematically analyses the spectral properties of multiple
bands to mapping the suspended sediments at various concentration and spatial
distributions. The study on sediment drift and its impacts on the coast through
conventional method are difficult; meanwhile, multi-temporal images may provide
effective results for studying sediments concentration and their movement along the
coastal water. The geoprocessing modelling of sediment dynamics has executed
mathematical algorithm on Landsat OLI image to retrieve SSC from coastal water
and demarcate movement of sediments along the coast during pre- and post-
monsoon. The study reveals that sediment concentration has estimated at higher
rate along the offshore area with depth lower than 30 m, and this is gradually
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decreasing towards the sea at the depth beyond 30 m. It is observed that the
suspended sediment drift produces depositional landforms at the low wave-energy
zone and erosional landforms at high wave-energy zone. This study proves the
effectiveness of geospatial technology to estimate sediment concentration and trans-
portation in the shallow coastal water.

Keywords Suspended sediment drifts (SSD) · Seasonal movement of sediment ·
Landsat OLI image · Single band model algorithm · GIS and remote sensing

9.1 Introduction

Suspended sediment loads in the coastal water generally consist of sand, silt, clay,
etc. that are derived from river discharge due to littoral transport to the surf zone by
waves and currents. The suspended sediment drift along the coastal area determines
shape, size, spatial pattern, and morphology of the coastal landforms based on
erosion and accretion processes. The availability of suspended sediment concentra-
tion in coastal water influences the coastal dynamics and is being an indicator of
erosion and deposition processes in the coastal area. Coastal processes are highly
dynamic in nature due to waves, currents, and tides that are interacting with coastal
landforms and frequently moving littoral sediments (Kaliraj et al. 2017). Sediment
transport changes over time and place depends on wave direction and releasing
energy to the coast (Panwar et al. 2017; Kaliraj et al. 2016). The stability of coastal
landforms and their environment may strongly relate to sediment deposition and
erosion resulting from waves and currents. Understanding suspended sediment drift
using multi-temporal satellite images is important for monitoring changes of coastal
landforms. Geoprocessing modelling of suspended sediment drift may be useful for
measurement and monitoring of suspended sediment load in coastal water
transported from the river or other sources; this study provides primary information
sources for coastal vulnerability mapping and management (Nechad et al. 2010;
Sinha et al. 2004). Seasonal variability of suspended sediment has strong influence
on coastal erosion and accretion processes, and they alter pre-morphology of the
coastal landforms due to shoaling action induced by wind and waves and littoral
currents, and bathymetry may increase or decrease. Suspended sediment is drifting
along the coast accordingly based on waves and currents that have certainly not
touched the bed by means of turbulence of coastal due to upwelling waves that
distinctly differentiate sediment from clear coastal water in the surf zone. Suspended
sediment concentration in coastal water reflects unique spectral signature that dis-
tinctly differentiate sediment occurrence from clear coastal water and other
suspended matter in multispectral remotely sensed images. Suspended sediment
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drift can be demarcated using multispectral images like ETMþ, OLI, ASTER and
OCM and other hyperspectral images based on spectral reflectance variability
between sediment and coastal water (Kaliraj 2016).

Many scientific studies have been performed worldwide on multispectral satellite
image for the estimation of suspended sediment and monitoring spatio-temporal
movement suspended sediment concentration (SSC) in the coastal water. Since past
decades, much number of studies on suspended sediment concentration using remote
sending was observed to estimate and monitor SSC in various parts of the world
(Rawat et al. 2011; Whitelock et al. 1981; Curran and Novo 1988; Marcus and
Fonstad 2010; Kaliraj et al. 2017). As we know remote sensing offers larger area
view for analysing water quality and providing a more efficient and cost-effective
method for assessing SSC from the ocean. Remote-sensing image plays vital role in
the monitoring of sediments along the shallow coastal water, especially Landsat
mission, MODIS, SPOT, OCM etc., which provides a synoptic view as well as the
configuration (Ontowirjo, et al. 2013). According to Kaliraj and Chandrasekar
(2012), the processing of Landsat ETMþ image using empirical algorithm can be
estimated through assemblage of suspended sediments from the coastal water.
Advantages of remote sensing have opted for various coastal studies such as
sediment transportation, movements and deposition along the shallow water area,
which can be effectively helpful for monitoring using multi-temporal images with
relative high accuracy (Byers 1992). The spectral reflectance of image at each pixel
has explored the characteristics of sediments and its accumulation, which can be
calibrated using mathematical algorithms for estimation of sediment load in coastal
water (Gerald 1980). The spectral reflectance variability between sediments and
clear coastal water may be used to extract the pixels representing sediment occur-
rence using coefficient values calculated from in situ sampling analysis (Kaliraj
et al. 2014).

Experimental analysis of estimation of suspended sediment concentration using
Landsat images provides site-specific calculations for sediment load with relative
practical accuracy, as it is field derived from field-observed reflectance data (Islam
et al. 2001; Kaliraj et al. 2013). Moreover, the multispectral images have distinctly
reflects spectral signature from suspended sediments and coastal water based on
sediment concentration and depth of coastal water (Kaliraj et al. 2015). The coastal
water shows higher level of spectral reflectance at the wavelength of 0.5–0.8 μm
(Landsat ETM/OLI bands of visible and infrared) due to occurrence of sediment, and
the band combination related to this portion may be used to demarcate suspended
sediments. Suspended sediment accumulated with coastal water interacts signifi-
cantly with spectral properties and thermal emissivity in the electromagnetic spec-
trum. The energy flux varies between coastal water accumulated with suspended
sediments and clear coastal water; whereas the energy flux is significantly decreased
in sediment mixed coastal water than clear coastal water; this is due to absorption of
energy by clear water than turbidity. The empirical algorithm is used to calculate the
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energy flux variability using Landsat OLI image to estimate suspended sediment
load with relatively high accuracy (Islam et al. 2001; Wang and Lu 2010; Qu 2014).
Remotely sensed data only can give information in one- to two-dimensional studies
because this cannot give evidence on the vertical circulation of sediments in water as
we get the reflection data from only two metre surface water (Wang et al. 2009;
Katlane et al. 2013; Warrick et al. 2004a, b). Estimation of suspended sediment
concentration using Landsat images is a complex process that involves systematic
geoprocessing analysis and is necessary to modelling for monitoring suspended
sediment drift along the coast (Yanjiao et al. 2007; Tassan 1998; Zhang et al.
2003). This study is attempted to execute mathematical algorithm for estimation of
suspended sediment load and its seasonal transportation using multi-temporal
Landsat 8, OLI images (30 m) along the southwest coast of Thiruvananthapuram
district, Kerala state, for periods of pre-monsoon and post-monsoon. The result of
this study may provide primary information for planning the sustainable coastal
monitoring and management activities.

9.2 Study Area

Southwest coast along the Thiruvananthapuram district covers both erosional and
accretional landforms, and the study area boundary covers with the stretch of about
72 km along the shoreline and extends up to 10 km width across the sea with the
geographical coverage of 8� 17' N – 8� 54' N latitudes and 76� 410 E – 77� 170.E
longitudes. Major parts of the coastal stretches cover dense human settlements,
infrastructures, active business centres, tourist attractions and very densely popu-
lated zones. The coastal stretch is highly active due to the hydrodynamic forces such
as waves, currents and tides, etc. The coastal area also undergoes variability in terms
of nearshore bathymetry and landforms of different types, such as sandy berms,
beach ridges, beach cusps, beach scarps, etc. The coastal zones frequently experi-
ence erosion of larger quantity of sediments that causes severe vulnerability to
human settlements and infrastructures. The landforms along the coast undergo
morphological instability due to both natural and anthropogenic factors. The
sub-tropical climate prevails along the southwest coast that leads high energy
waves and currents interaction to the seashore throughout the year. The annual
average rainfall along the study area has recorded with the range of
826–1456 mm; meanwhile the optimum temperature is estimated at minimum
range of 23.78 �C and maximum range of 33.95 �C. The coastal tract has experi-
enced dynamic changes due to coastal process fluctuating sediment load to the
landforms. The sediment dynamic modelling of Landsat OLI image is performed
for estimation of suspended sediment drift during pre-monsoon and post-monsoon
(Fig. 9.1).

144 M. Rani et al.



9.3 Materials and Methodology

9.3.1 Data Used

The data used to carry out the work includes the satellite data and other spatial
dataset. Landsat 8 scans the earth surface and measures different ranges of electro-
magnetic spectrum. Operational Land Imager (OLI) gives the multispectral data for
visible as well as infrared range. It covers the entire earth in 16 days. The OLI uses
the push broom sensor with 115 mile cross track field of view. We have used OLI
data for determining pre-monsoon (March 2017) and post-monsoon (September
2017) suspended sediments from USGS EarthExplorer. Wind direction is derived
from the portal European Reanalysis Interim (ERA), provided by European Centre
for Medium-Range Weather Forecasts (ECMWF), based on a four-dimensional IFS
(Cy31r2) system. Shuttle Radar Topography Mission is a research effort that
obtained digital elevation model for generating high-resolution digital topography
database for the earth. For extracting the bathymetry, we have used a global relief
model which is a composite model of Digital Bathymetry Model (DBM).
SRTM30_PLUS consists of both topography and bathymetry model that provides

Fig. 9.1 Site-specific map of study area
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30 arc seconds (900 m) resolution data for land as well as for ocean, which is derived
from depth sounding (SONAR) and satellite altimetry.

9.3.2 Conversion of DN to TOA Reflectance

TOA (top of the atmosphere) reflectance denotes to a most sophisticated method of
removing the aids by surface sparkle and atmospheric scattering from the assessed
total reflectance to determine the water-leaving reflectance. The total reflectance is
the amount of the Rayleigh’s reflectance, aerosol reflectance, specular reflection of
the sun and the reflectance of foam and whitecaps. All of these parameters can be
estimated from the metadata and field measurement using empirical relationship
(Gordon and Morel 1994). Water-leaving reflectance is computed as upwelling solar
radiance just above the surface of the water divided by downwelling solar irradiance.
In NIR band, solar radiation is totally absorbed by the water. As a result, water-
leaving radiance is negligible or very small and, therefore, can be eliminated,
allowing estimation of aerosol radiance directly. As per many established studies
and test, the red (R) and near-infrared (NIR) bands prove to be superior for mapping
and modelling medium to relatively high concentrations of SPM.

These raw data can be converted to ToA reflectance from DN (Eq. 9.1), using the
required parameters from the metadata file (MTL.txt):

ρ0t ¼ Mp∗Qcal þ Ar ð9:1Þ

where ρ0t¼ TOA planetary reflectance (without solar angle correction), Mp¼ band-
specific multiplicative rescaling factor, Ar ¼band-specific additive rescaling factor
and Qcal¼ quantized and calibrated standard product pixel values (DN). Next, we
have corrected the ρ0tusing Eq. 9.2 for the solar angle:

ρt ¼
ρ0t

cos θSZð Þ ¼
ρ0t

sin θSEð Þ ð9:2Þ

where ρt ¼ TOA planetary reflectance, θSE¼ local sun elevation angle, θSZ¼ local
solar zenith angle and θSZ¼ 90� – θSE.

9.3.3 Rayleigh’s Reflectance Correction

Most of the TOA radiance is light reflected by aerosols and air molecules in the
atmosphere, and it is a must to compute these contributions very precisely and
subtract from the observed signal. At-sensor total reflectance (Eq. 9.3) can be
calculated using the following equation.
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ρTOA ¼ L1B�
Radiance

Extra Terrestrial Sun Radiation
ð9:3Þ

ρ0:5 ¼
ρTOA�ρR

TR

1þ SR∗
ρTOA�ρR

TR

ð9:4Þ

where:

ρr ¼ Rayleigh reflectance
Extra-terrestrial sun radiation¼π ∗ Es ∗ cos (θs) ∗ e�m ∗ OzoneTau ∗ dsol

m ¼ 1
cos θsð Þ þ

1
cos θvð Þ

θs and θv are the angle of solar zenith and sensor zenith, respectively
dsol, the eccentricity correction factor of the Earth’s orbit
TR ¼ Rayleigh atmospheric transmittance

T total ¼ Tyu∗Tyd∗e�m∗OzoneTau∗e�m∗WaterVapoTau

Tyu¼Rayleigh transmittance for sensor

Tyu ¼ 2=3þ cos θvð Þ þ 2=3� cos θvð Þð Þ∗e�
RayleighTau

cos θvð Þ

4=3þ RayleighTau

Tyd¼Rayleigh transmittance for sun

Tyd ¼ 2=3þ cos θsð Þ þ 2=3� cos θsð Þð Þ∗e�
RayleighTau

cos θsð Þ

4=3þ RayleighTau

RayleighTau ¼ Rayleigh optical depth
O2Tau¼ Oxygen optical depth
Tau ¼ Optical depth
SR¼ Rayleigh spherical albedo

RayPolynomi ¼ �0:58þ RayleighTau � 0:25∗RayleighTau2

þ 0:055∗RayleighTau3 � 0:0098∗RayleighTau4

þ 0:0011∗RayleighTau5

Rayleigh reflectance (ρr) is calculated below:
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ρR ¼ μ5; μv;∅v �∅5ð Þ
¼ ρR1 μ5; μv;∅v �∅5ð Þ þ 1� e�

τ
μv

� �
1� e�

τ
μv

� �
Δ τð Þ ð9:5Þ

where m s ¼ cos of sun zenith, m v ¼ cos of sensor zenith, j s ¼ sun azimuth, j
v ¼ sensor azimuth, ρR1¼ the single-scattering contribution and t ¼ atmospheric
optical depth.

Most of the terminologies used in Eq. 9.5 are derived either through precomputed
radiative transfer simulations or from models that depended upon the spectral
response, solar angle, viewing geometry of sensor and ancillary information. Ray-
leigh correction can be made by subtracting the value of Rayleigh reflectance from
TOA as stated in Eq. 9.6.

ρC ¼ ρR � ρTOA ð9:6Þ

9.3.4 Marine Reflectance Calculation

Aerosol (ε) is calculated from the reflectance ratio in the band couple over water
pixels so that the marine effect in those bands can be minimized and expected to be
zero. “ε”, the ratio of multiple-scattering aerosol reflectance, is assumed as constant
over scene and, therefore, considered 1 in R and NIR band for more standard
processing (Vanhellemont et al. 2014). The aerosol reflectance in R-NIR (4, 5) is
predicted by assuming a linear relationship between bands 4–5 marine reflectance
and constant aerosol types (ε) over the scene. ε can be derived through regression
line slope (Neukermans et al. 2009) or the median ratio of Rayleigh corrected
reflectance over clear water pixels in band R and NIR (ρc4, ρc5). The ratio of oceanic
reflectance, “/”, in both bands is constant and can be derived using the mean
resemblance spectrum for central wavelengths of the band (Eq. 9.7).

/¼ ρw
4ð Þ

ρw 5ð Þ ¼
ρwn780

655nmð Þ

ρwn780
865nmð Þ ¼

4:734
0:544

¼ 8:702 ð9:7Þ

“γ” is the fraction of diffused atmospheric transmittances in the two bands, which is
calculated using the following equation (Eq. 9.8).

γ ¼ t0 4ð Þtv 4ð Þ

t0 5ð Þtv 5ð Þ ð9:8Þ

Then, the oceanic reflectance is calculated using ρw
(3) and ρw

(4) as noted in
Eq. 9.9.
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ρw
3ð Þ ¼ α

t0 4ð Þtv 4ð Þ
ρc

3ð Þ � ρc
4ð Þ

αγ � ε

� �
ð9:9Þ

9.3.5 Physiography and Drainage System

In the study area we will get huge numbers of landforms and several water bodies
spatially distributed. Information of those landforms and drain system were extracted
using high-resolution satellite images like Landsat 8 OLI (30 m) and district resource
map published by GSI, 2010. The study area has also various geomorphic features,
and all of these are mapped using Landsat 8 OLI image of 30 metres spatial
resolution and SOI published topographic map (1:25,000 Scale), where we have
extracted nine to ten features for the study area.

9.3.6 Mean Significant Wave Height

According to the physical oceanography, the mean significant wave height is one
third of the highest wave, where the wind blowing across the sea pushes the water
surface into waves. Effective coastal sediment management depends on understand-
ing the processes that affect sediment transport at various spatial and temporal scales.
So in a short time scale, huge waves can cause large amount of sediment movement
and thus potential to cause damages to the coastal environment.

9.3.7 Coastal Erosion and Accretion

As we know shoreline is the most dynamic feature in the coastal landforms, which
reflects erosion and accretions of coast in short-term and long-term periods. Shore-
line change detection is the simplest way to show the erosional and depositional
scenario of the shore using multi-temporal satellite data. So in the present study, we
have used Landsat images for delineating the accretion and erosion area. We have
taken Landsat 5 TM of Feb, 1997, and Landsat 8 OLI of Feb, 2017, for analysing the
changes of shoreline during the past 20 years. Both the data have the same resolu-
tion, 30 metre resolution. We have extracted the erosion and depositional area in the
study area using analysing tool “Intersect” in ArcGIS 10.4.1.
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9.3.8 Relative Sea Level Rise

Sea level rise is a major issue for the shallow coastal communities all over the world.
The surface of the ocean is not uniform, and the sea level is changing in response to
its chemistry and temperature. Over time, global warming-induced sea level rise may
inundate the shallow area of the coast throughout the world that changes the position
of the coastline and sinks natural locale and coastal structures. It directly results in a
corresponding higher shift to the zone of wave action, which reflects in a larger
shoreline recession on milder slopes. Sea-level rise along the coast is the enduring
inundation of coastal areas and produces serious impacts on the coastal habitats as
well as socio-economic status of the people and causes worsening of coastal erosion
by transporting inundated sediments offshore and spreading the effects of coastal
flooding by allowing waves to act further, and hence, the coastal landforms along
with the human-made construction gradually get affected badly. Sea level data is
available for many station near the study area and can be found at PSMSL portal as
described at the data used section. Ten stations’ location and their sea-level data are
listed below (Table 9.1).

9.3.9 Extraction of Suspended Sediments

Suspended sediments in pre-monsoon and post-monsoon were calculated after
correcting data. The SSC was analysed using the reflectance of blue
(0.45–0.51 μm), red (0.64–0.67 μm) and near-infrared (0.85–0.88 μm) wavelengths.
The increase of the red reflectance in the turbid water indicates the presence of
sediment or shallow water. SSC was derived using the single band algorithm
(Eq. 9.10) used by Nechad et al.:

Table 9.1 PSMSL station and their corresponding rate of MSL

Latitude Longitude Location Relative sea level (m)

4.181036 73.50818 Maldives 1.20

3.921824 72.7445 Himandhoo 1.32

4.221673 73.84193 Hulhule 1.35

8.27908 73.05076 Minicoy 1.48

8.460289 78.09659 Tuticorin 1.14

6.940934 79.85113 Colombo 1.19

11.17359 75.79905 Beypore 0.98

15.37592 73.81338 Marmagoa 1.40

12.8816 74.81591 Mangalore 0.82

9.934021 76.2456 Cochin 0.90
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SPM ¼ Aρw
1� ρw=C

ð9:10Þ

Where A ¼ 327.84 g m � 3 and C ¼ 0.1708. So in this way we have mapped the
solid particles suspended near the shore (within 10 km) and get the idea about
transportation of suspended particle along the coast in pre-monsoon as well as in
post-monsoon.

9.4 Results and Discussion

9.4.1 Landforms and Drainage System

Varkala, Vizhinjam and Edavai places present in the coastal city of
Thiruvananthapuram district have very rough and undulated topography (Fig. 9.2).
Three distinguished topographic units identified from west to east in the district are
(1) lowland (coastal plains), (2) midlands and (3) highlands. The lowland topogra-
phy was observed mainly between Thiruvananthapuram and Anjego and between
Vizhinjam and Poovar. Marine and fluvial activities are responsible for lowland
topography and can be seen all along the coastal plain (younger and older coastal
plain), characterized by gentle sloping landscape. The crystalline at Kovalam, Veli
and Vizhinjam and laterite at Poovar and Varkala are noticeable landforms that lie at
coastal plains and are quite narrow with maximum width of 5 km. The most
important landforms are sandy and coastal cliff, rocky beaches and sand ridges.
Denudational process formed the major part of the district, including both midlands
and highlands. The midland part comprises of valleys occupying 60% part of the
district as well as hillocks creating an undulated topography.

Neyyar (56 km or 35 mi), the southernmost river of the Kerala state, one among
the three major rivers (Fig. 9.3) in the district, originated from Agasthyamala (second
highest peak in the Western Ghats). Karamana (67 km) originated from
Vayuvanthol, another mountain in the Western Ghats. The Vamanapuram River
originated from Chemunji Mottai in the Western Ghats. Veli, Anchuthengu,
Kadinamkulam, Kappil, Edava Nadayara and Akathumuri are major lakes in the
district. Apart from this, a freshwater lake that lies at Vellayani in
Thiruvananthapuram taluk is a potential lake which can be a major source of water
supply for Thiruvananthapuram in the future.

9.4.2 Hydrodynamic Processes Along the Coast

The sediments near the shore are transported instead of being stabled at one place
due to the various hydrodynamic action that influences the ocean, and the mean
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significant wave height (Fig. 9.4) is one of them. The study found that the mean
significant wave height for the study area ranges from 0.35 to 1.50 m, where high
MSWH was found along southern part, like Pachalur, Vizhinjam, Mullur,
Karumkulam, Poovar and Kollankod, which decreases towards the north. The area
experience high wave energy can mingle more sediments compared to less energy
influential area.

Fig. 9.2 Landform map along the coast
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The change in the rate of sea-level rise is estimated (Fig. 9.3) by gridding the
coastal zones using a linear interpolation method. In the south of the study area near
Poovar, Vizhinjam and Kollankod, the sea-level rise is about 0.05 to 0.91 metre
above the MSL, and the impact of the wave intensity is more, and other areas like
Panathura, Muttathara and Kovalam possess the sea-level rise that approximately
ranges from 0.7 to 0.9 m (Table 9.2).

Fig. 9.3 Drainage order map along the coast
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Areas like Kappil, Palachira, Thumba, Beemapally, Poovar, Vataturuthu,
Vettukad, Pallithura, Kollankod and Kovalam are noticed having high rate of
erosion as these area have retreated up to more than 500 m2 Mullur, Panathura,
Puntura, Veli, Vettur and Tiruvampadi regions possess seasonal erosion as well as
deposition of about 1–250 m2 accretion and 1–100 m2 erosion at a particular interval,
whereas Vettur, Vilabhagam, Rathikkal, Vettukad, Puntura and Panathura regions
experience 250–500 m2 of accretion during the last 20 years. The main reason

Fig. 9.4 Mean significant wave height along the coast
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behind it is the extending of depositional landforms due to swashing of sediments on
the gentle slope.

9.4.3 Monitoring of Suspended Sediments

The northern part of the study area is observed with heavy deposition during the
post-monsoon as the swashing of suspended particles by fewer energy waves along
with the dominant wave direction in this session (Fig. 9.4). Whereas, in the
pre-monsoon, the circulation of the sediments found to be at the lower part of the
study area as due to the dominate wave and current action along the shore (Fig. 9.5).
Basically, a sediment particle will be suspended when the vertical velocity of the

Table 9.2 Characteristic of Thiruvananthapuram coastal stretch

Coastal
stretch Geomorphology LULC

Shoreline
change
(m2/year)

Coastal
slope
(m)

RSL
(mm/year)

Zone 5 Young coastal plain,
flood plain, natural
levee, river channel,
back swamps, rocky
coast and plateau
(lateric)

Mixed crop, beaches,
perennial, mining, res-
idential, coconut,
water bodies, banana,
mixed built-up and
coastal sand

9–400 (A) 40–
(�65)

0.69–0.81
More
than
500 (E)

Zone 4 Paleo-beach ridge,
canal, swale (old
coastal), waterbody
mask, lateric plateau,
valley, channel bar and
river

Beaches, coastal sand,
airport, mixed built-
up, mixed crop, coco-
nut, double crop,
perennial, residential
and commercial

11–500
(A)

100–
(�48)

0.60–0.72

100 more
than
500 (E)

Zone 3 Estuaries, canal, beach
ridge, swale (young
and old coast plain),
canal, island and
young coastal plain

Beaches, coastal sand,
coconut dominant
mixed crop, mixed
built-up, perennial,
commercial and dense
mixed forest

1–400 (A) 78–
(�31)

0.56–0.65
More
than
500 (E)

Zone 2 Paleo-beach ridge,
tidal flat (younger
mud), brackish water
creeks, Kayals (estuar-
ies), river canal (flood
plain) and old coastal
plain

Town/cities, beaches,
coastal sand, river/
stream, deciduous, vil-
lages, mixed crop,
coconut, agricultural
and built-up land

More than
500 (A)

88–
(�40)

0.62–0.70

90–470
(E)

Zone 1 Beach (young), young
coastal plain, canal,
valley, lower plateau,
river canal, flood plain
and Kayals

Banana, teak, beaches,
plantation, coconut
dominant mixed crop,
commercial, mixed
built-up, paddy land
and villages

More than
500 (A)

110–
(�36)

0.68–0.77

0–350
(E)
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Fig. 9.5 Suspended sediments in the pre-monsoon
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fluid motion becomes greater than the settling velocity of the particle. So, in the case
of wave field, the vertical motion must result from the combined effects of turbu-
lence and wave orbital motion. Here another phenomenon also acts on the sediments,
i.e. gravity of the sediments suspended in the ocean, as the heavy sediments get
deposited nearshore, whereas the lighter sediments float. The wave direction in the
post-monsoon and pre-monsoon is shown in Figs. 9.4 and 9.5. It is found that SSC is
decreased rapidly with the increases of distance (0–10 km) from the shoreline to
bathymetry level of 5–10 m. Also, the effect of the wave shoaling in the deeper water
is significantly less, which causes sparely distribution sediment concentration. The
SSC, beyond 5000 metres from the shoreline and below 10–20 m depth, is rarely
observed as they cannot be measured at that depth, which is one of the limitations of
the optical data. The movement of SSC indicates that the SSC has a positive
correlation with wave direction and littoral current, and according to the deposition
along the shore, we have assigned the weight to the layer. Mostly the southern part of
the study area is found to be in high concentration of suspended matter as these
regions experience high suspended sediments in both periods, whereas the middle
part is found to be in cyclic concentration as it experiences seasonal erosion of the
shore and deposition sediments near the beach. The northernmost part of the study
area is found to have less concentration of the suspended sediments throughout the
year.

9.5 Conclusion

It is found that the sediment concentration decreased rapidly with the increase of
distance to the beach and depth to the seabed. As the bathymetry increases, the low
amount of sediments available moves towards the shore and so it’s observed as low
concentrations in the surface water. Another factor, wave, which has a frequency at
comparatively a large distance in deeper water, causes sparely distribution of
sediments. So the sediments remain at a lower depth in high bathymetry
(>¼ 10 m) and distance more than 2 km from the shoreline. The dissimilarity of
sediments reveals that the suspended sediments are indirectly proportional to
bathymetry and distance from the shoreline and are directly proportional to the
wave direction and littoral current at offshore. Since the 1970s, the skill to retrieve
the concentration from remotely sensed imagery has opened up the possibility for
rebuilding past transport settings. Unfortunately, there is still a great deal of hesita-
tion in the relation between the water-leaving reflectance and these concentrations in
turbid, as different particles are having different sizes, and mineralogy properties
affect the scattering properties. However, the present study provides interesting
visions to monitoring the suspended sediments at nearshore, after radiometric and
geometric correction. Another prospectus of this study also revealed the factors
affecting the particles to be suspended in the nearshore as well as offshore. OLI
(30 m), having spectral range from 0.45 to 0.88 μm for visible as well as NIR,
demonstrated the best detail to conduct the analysis on the basis of the spectral

9 A Sediment Dynamic Modelling of Landsat OLI Image for Suspended. . . 157



response. Its spectral analysis for the suspended sediments may conclude that the
high reflection in near IR expresses the high concentration of SSC, and, in contrast,
the high reflection in the visible range states the lower concentration of suspended
sediments. The monitoring in both periods (pre-monsoon and post-monsoon)
revealed that suspended sediments are transported from south to north in post-
monsoon, and the contrary situation occurs in the pre-monsoon. Mapping the spatial
distribution of suspended materials with remotely sensed data would be supportive
for the management of water bodies as well as the seasonal variation in the water
quality, and the study can further extend for determining the point and non-point
source of water bodies, which discharge in the ocean. Finally, we have concluded
that geospatial technology can potentially be used as a tool for monitoring the
sediments in the ocean in the pre-and post-monsoon.
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Chapter 10
Inter-calibration and Urban Light Index
of DMSP-OLS Night-Time Data
for Evaluating the Urbanization Process in
Australian Capital Territory

Christopher D. Elvidge, Himangshu Kalita, Upasana Choudhury,
Sufia Rehman, Bismay Ranjan Tripathy, and Pavan Kumar

Abstract The magnification mechanism of human settlement is called urbanization,
involving various other activities such as population transition, resource consump-
tion, etc. leading to various growing patterns of urban augmentation. The assessment
of such spatial pattern is crucial in developing a sustainable urban agglomeration.
Night-time light (NTL) data is an important machination for such assessment and
detailed monitoring. In this paper, DMSP-OLS (the Defence Meteorological Satel-
lite Program/Operational Linescan Program) datasets have been used to assess the
urban straggle of Australian Capital Territory (ACT) and to delineate the urban
extent from 1992 to 2012, at an interval of 3 years. DMSP-OLS has the unique
capability to detect synthetic lights from cities, towns, industrial sites, ports, etc.
Moreover, using ARC GIS calligraphies, 20 random points were selected from the
extracted area of interest (AOI). Pixels values of those 20 random points are derived
from the given time series dataset (1992–2012). A regression value was extracted
from each year by using a second-order polynomial equation. A polynomial regres-
sion model is also constructed by taking the regression values and the time series as
the two variables, respectively. Urban light index (ULI) is also constructed for
analysing the progression of urbanization in ACT from 1992 to 2012 with the help
of a derived formula. Furthermore, a unit circle buffer zone having a radius of 20 km
is established by taking the centre of each built-up zone as the focal point of the
constructed buffer, to compare easily the rate of expansion of urbanization. The
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present paper indicates the growing potential of the DMSP-OLS night-time satellite
data to define the urban light space information, which truly describes the attributes
of urban sprawl, and to delineate the evolution of urban morphology and urban
extension.

Keywords Australian Capital Territory · DMSP-OLS night-time data · Inter-
calibration · Urban light index · Urbanization

10.1 Introduction

The congenital nature of man as a societal visceral directly or indirectly has led to the
development of urbanization. With the plodding increase in the concreteness of
people living in urban zones than in rural, this increase of people leads to progression
of towns and cities making urban to sprawl. Urban sprawling causes an outward
migration from urban to low-density areas. Metamorphosis of agrarian economy to
an industrial and transition of natural ecological land cover simulated land use
environment (Han et al. 2009; Feng et al. 2002; Elvidge et al. 1999; Li 2004). The
synchronized process associated with population statistical transition inducing force
on nature and biological cycle, aiding to anthropogenic activities, resource con-
sumption and economic dynamics (Milesi et al. 2003; Ma et al. 2012). Therefore, the
measurement of urbanization progress can be deliberated from only with the values
of demographic transition (Zhang et al. 2013; Pandey et al. 2013; Letu et al. 2012;
He et al. 2006; Lo 2010). Exploration of the potencies influencing urban enlarge-
ment and its impact on environment is crucial for scrutinizing ecological urban
augmentation (He et al. 2012). Estimation and monitoring of the transition of urban
agglomeration over the years is crucial for the development of a sustainable metro-
politan planning (Cinzano et al. 2001; Fujita et al. 1999; Small 2003). Constituting
of a very small segment of the facade of the earth, urban escalation exerts colossal
influence on the other interrelated activities such as mass movements, mass com-
pactness and exploitation of recourses (Small 2005; Sutton et al. 2001). The struc-
tural formation of the spatial allocation and the occurrence of the large-scale urban
netting have imperative allegation ranging from socio-economic development to
ecological urban augmentation to evolution of urban fabrication (Elvidge et al. 2007;
Imhoff et al. 1997). Assessment of worldwide urban extent through corporeal
supervision is challenging. Currently, night-time dataset for the measurement of
the large-scale lighted extension is being employed (Liu et al. 2012; Shu et al. 2011).

The night-time satellite imagery is an important contrivance in analysing the
urban straggle and delineating urban extent. Synthetic lights of towns, cities,
manufacturing locations and anthropological actions during night-time can be
detected using the satellite images of night-time data from the Defence Meteorolog-
ical Satellite Program/Operational Linescan Program (DMSP/OLS) (Schneider et al.
2010; Elvidge et al. 1999), and VNIR (visible near infrared, 0.4–1.1 μm) and TIR
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(thermal infrared, 10.5–12.6 μm) are two spectral bands of DMSP with radiometric
resolution of 6 bit and 8 bit, respectively (Owen 1998; Elvidge et al. 1997). In a
spatial resolution of 2.7 km and a swath width of 3000 km, OLS covers a wider
extent of the surface of the earth (Miller et al. 2009). Although previously used for
cloud observation (Henderson et al. 2003; Huang et al. 2016), DMSP-OLS images
are currently being used extensively for urban morphology assessment due to its
ability to detect low light during night without moonlight (Letu et al. 2012; Ma et al.
2012). Delineate global dispersal of metropolitan extents through stable satellite
imaging, with the help of DMSP/OLS in a precise and economical manner. The
spatial resolution of 30 arcsecond of the DMSP/OLS continues to provide night-time
data on urban morphology at a national and global measure, but the coarse resolution
debilitates the accurate extraction of the built-up areas (Liu et al. 2015; Li et al. 2016;
Lu et al. 2008). The dataset of DMSP-OLS can be arranged into three types: the
mutated radiance, the stable NTL and the standardized DN (digital number) values
(Welch and Zupko 1980). Among them, the stable NTL dataset is used for assess-
ment of urban morphology (Lo 2002; Ma et al. 2012).The acquired dataset from
DMSP-OLS utilized to map the proportion of urban extension, urban nucleus and the
progression of urbanization. The major challenged faced while using DMSP-OLS
dataset is to acquire quantitative association between urbanization factors and the
pixel brightness of the dataset in different types of urban magnification mechanism
(Sutton 2003; Ting Ma et al. 2012).

However, the saturated pixel values restrict the possibilities to differentiate
between interurban discrepancies (Mertes et al. 2015). Previous studies have
revealed inconsistency between the actual lighted zones and the geographical
periphery of the urban areas (Su et al. 2015). Sometimes the global synthetic lighted
zones aligned to as the advanced built-up area allude due to blooming effecting
(Small et al. 2005). The abrasive radiometric and spatial resolution of the DMSP/
OLS also detecting scattered low-lighted zones, large amount formation of mixels in
OLS satellite imagery and geo-positional errors are introduced during the processing
stage; these are some of the constraints of DMSP-OLS which results in blooming
effects, yielding erroneous information of synthetic lights of site which in actual
does not restrain any energy resource. So, the frequently identified lighted area of
threshold 89% was proposed by (Imhoff et al. 1997) to reduce the effects of
blooming and to establish a consistent relationship between substantial lighted
zones and the perimeter of the urban extent, thus shrinking the lighted zones
(Small et al. 2005). But fixation of a threshold evades other minor frequency lights,
thus reducing the information content in the dataset (Small et al. 2005). Moreover,
DMSP-OLS dataset cannot be applied directly due to unavailability of on-broad
calibration producing erroneous DN (digital number) values caused by varied
orientation and displacement of sensor and atmospheric and radiometric condition
(Li et al. 2014).

NPP-VIIRS, another regional night-time amalgamated data, is also used to the
exact statistics of urban morphology chronicling synthetic light at night, having a
spatial resolution of 15 arcsecond which is equal to about 500 m and a radiometric
resolution of 14 bit (Elvidge et al. 2007; Kaifang Shi et al. 2014). Such high spatial
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and radiometric resolutions of NPP-VIIRS dataset have the potential to stipulate
better product of information. To evaluate urban agglomeration, urban extension and
socio-demographic pattern at a variety of global scales such as demographic transi-
tion, power consumption and conservational modification, the NPP-VIIRS dataset is
a powerful tool for such assessment. However, there are still some constraints in
NPP-VIIRS dataset such as area dependency on referenced data affecting the result
of urban area extractions; the inability to remove the noise created from fires, gas
flares and volcanic eruptions from recent NPP-VIIRS dataset and the eminence of
the dataset however requires to be enhanced (Kaifang Shi et al. 2014). A debatable
competition is arising between the application of the dataset of DMSP-OLS and the
NPP-VIIRS. So, a comparative analysis of the accuracy quality of the dataset of
NPP-VIIRS with that of DMSP-OLS will provide better result in scrutinizing the
urban sprawl and extraction of the built-up area and their application in future
research but being in the toddler stage, VIIRS night-time images are not able to
fulfil the demands of the long duration time sequence requirements of analyst and
also involves a sophisticated data processing (Dewan and Yamaguchi 2009). How-
ever other remote sensing data such as QuickBird, IKONOS and SPOT images are
expensive and need intricate data processing along with miscellaneous spectral
differentiation, and inadequate spatial and radiometric resolution causes satellite
like Landsat TM less capable to detect urban expansion and urban dynamics.

This paper aims to appraise the capabilities of NTL dataset to identify and
delineate the urban morphology, urban augmentation and growth of suburban
zones over the years of the Australian Capital Territory, using night-time satellite
imagery from DMSP-OLS dataset from 1992 to 2012 at an interval of 3 years, for
evaluation of the Australian Capital Territory growing pattern of urban sprawl and
urban extension which is critical for sustainable development relative to ecological
urban planning, management and decision-making for future urban development
projects.

10.2 Study Area

The Australian Capital Territory (ACT) embraces a population of 410,300 out of
24 billion and a population density of 179.96 per km2 (ABS 2017). ACT is located
on the south-western side of the country, with geographical extension of 35�1802900S
latitude and 149�702800E longitude. Surrounded by the Australia’s capital city Can-
berra on the north, the Namadgi National Park on the south constitutes about 40% of
the territory (Linsie Tan 2017), the Goulburn-Cooma railway line in the east and in
the west by the Cotton River. Canberra is a sprawling city with heavily concentrated
economic activities of the Australian Capital Territory allied with rapidly increasing
population associated with steady employment. The urban morphology of Canberra
as a planned city was initially designed by a major American architect Walter Burley
Griffin (Wigmore 1971). The transportation network follows a prototype of wheel
and spoke. The nucleus of the city’s morphology is arranged as a 90� angle, with two
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directional axes, one stretching along Lake Burley Griffin and the other stretching
from north-eastern Anzac Parade to the foot of the Mount Ainslie. Settlement
hierarchy of the urban areas of Canberra is organized in a chronological order of
districts, city hubs, assembly hubs, native fringes and rural community (Fig. 10.1).

10.3 Materials and Methodology

10.3.1 Spatial Analysis: Estimation of Detected Area Under
Threshold Frequency

The lighted zone and their frequency distributions size are detected through fre-
quency threshold to quantify the light detected area and the adjoining light polygons
and the regularity of centroid for every dataset, and the frequency of dataset is from
1992 to 2012, which is booked at diverse edge. Using ArcGIS calligraphies, we
planned the numeral of sunlit polygons and their extent and outside for both onsets at
10% breaks among 0% and 90% symmetry. The longitude and latitude tones were
then bestowed to the centroids of each concerning lighted magnitude. For enumer-
ating the communication amid size and regularity of recognition, we calculated the
finding incidence at the centroid of each polygon at a different interval. This was
finished by coalescing the inventive light incidence datasets with the case
comprehending the longitude and latitude directs of the centroids of the attached

Fig. 10.1 Study area
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bright polygons. By the system, every uncovering regularity value agreeing with
connecting lighted area is dispensed to the area centroid. In several cases, people find
undeviating distance which is more instinctual than expanse, and we generally
embody the size of each irregularly fashioned neighbouring lighted area as compa-
rable circular span defined.

10.3.2 Urban Built-Up Area Extraction

Constrution of artificially lighted urban areas provides the radiance values for
corresponding DN values which surrounds the different values. In other different
revisions, a non-set assessment was regularly assistance to division of urban areas on
DMSP-OLS documents (Imhoff et al. 1997; He et al. 2006; Liu et al. 2012; Small
et al. 2005). Larger than the different threshold values which is considered as the
building part of the different urban areas and the corresponding pixel values is the
inception value for that particular areas. With the otherwise use of DMSP-OLS data
overhead and in lieu of this, the NPP-VIIRS data can be used which is the best suited
method as used to extract the onset value of urban modelling. The optimization of
different threshold values for urban mapping causing extraction of night-time light
data is also a provident of government statistical data (He et al. 2006). The dawn rate
that created slightest difference among image-derived assessment and arithmetic
figures was scheduled as the foundation for assessment of night-time light-based
urban mapping. The high-accuracy implementations based on this method are the
more accurate based on the DMSP-OLS data night-time light data-based urban
mapping (Shu et al. 2011). This revision includes the adoption of a comparable
tactic to decide the peak beginning threshold value of residential urban area abstrac-
tion for every one different city from two types of nocturnal graceful NTL-based
data images. However, the main objectives to find different diplomatic process are
the following: Firstly, the extraction of different types of night-time light images for
every municipal (city) was mined from the different international data cliques by
using a façade polygon of the managerial periphery. Secondly, an onset of the tiniest
or radiance value was used to divide the images hooked on built-up non-urban area.

The extracted area and the different statistical data which gives an absolute value
grouping of the differences between the threshold values of different statistical data
were chronicled. The recapitulation of different threshold values such a process
increases the optimum value of night-time light data and reaches the extreme pixel
value of the image. The difference in the maximum and minimum value of the
NTL-based data provides the threshold value for the built-up extraction of the urban
areas.

168 C. D. Elvidge et al.



10.3.3 Inter-calibration of the Night-Time Light Dataset

For the different dramatic mapping picture of urbanization through large city light
monitoring, the use of night-time images of the earth shows visible light secretions
which have become a great interest in recent times (Small et al. 2011). The night-
time light data do not quantify land shelter unswervingly, but most of the
non-urbanized places which have light during night-time, considering various fea-
tures, has been shown a many interrelated with the populace density (Lo 2001).
Nevertheless, but the DMSP-OLS night-time light series dataset is not being able to
rightly be used for studying suburbanization due to the absenteeism of on-board
setting in the DMSP-OLS dataset (Miller et al. 2009; Liu et al. 2012). The data used
in this paper (1992–2012), which is obtained from different NTL satellites contains
no firm inter-calibration. Direct utilization of NTL data cannot be done due to
quotation the undercurrents of worldwide and local built-up urban increase because
of the deficiency of comparability and endurance revenue of NTL data. To dominate
the inconsistencies and instruct confusability to the NTL dataset, the NTL data needs
to be inter-calibrated which is indispensable to strict use. The stability and various
comparisons to these data of NTL time series data, which we take from 1992 to 2012
for DMSP-OLS data, are monitored by a statistical data formulation of second-order
regression algometry that improves data solidity (Elvidge et al. 2009).

In this study, we have created 20 random points in each year data of regional area
within a unit loop so that every dataset can cover a unique and equally distributed
data. The total random points taken are 20, and a sample version of this pictorial
view is given below in the figure (Fig. 10.2).

The DN (digital number) values from each random point are extracted using
extract values from point calibration. And the different sets of a DN value from every
year data (1992–2012) are extracted. The random points which extracted the values
were then sampled, and by using the second-order polynomial equation, the regres-
sion value from each set is extracted. These illustration data of Australian Capital
Territory (ACT) were extracted from each year data (1992–2012) (ACT, urban area
and semiurban). In the process of swotting the night-time light series dataset, it has
initiated that the data from the satellite �2003 (F152003) apprehended with extreme
numeral of stricken pixels in the region of Australian Capital Territory. From the
year 2003, the main urban area begins to encompass in the form of different sides.
The extracted various DN values of the raster image are shown in Table 10.1.

The data inter-calibration of DMSP-OLS satellite was steered using the regres-
sion formula of second-order polynomial regression (In Eq. 10.1), relaying on
capricious as the reference image and self-regulating inconstant as images to be
calibrated.

DNcalibrated ¼ a X DN2 þ b X DNþ c ð10:1Þ

The DN values which were extracted from 20 random points were inter-calibrated
by using Eq. 10.1, where the reliant flexible values are used as the reference data to
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use the regression equation. The typical restrictions a, b and c were appraised with
conventional slightest tetragonal relapse equation for specific NTL image dataset
(Pandey et al. 2013) (Fig. 10.3).

The core-centred model of urban indices in two different circles shows that the
centred area is how much expanded accordingly with the evaluation of time. The
second image correlates the random points to extract the DN values, where DN
53–63 belongs in core mid area, 41–52 belongs to second circle and 0–40 belongs to

Fig. 10.2 Extracted Defence Meteorological Satellite Program (DMSP)/Operational Linescan
System (OLS) night-time satellite imagery of Australian Capital Territory (ACT)
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Table 10.1 The extracted pixel value from the random points

Sample point

DN values of randomly selected point

1992 1995 1998 2000 2003 2006 2009 2012

RP1 0.00 0.00 3.70 0.00 2.44 2.33 2.44 2.33

RP2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RP3 0.00 0.00 0.00 1.52 1.20 0.00 1.20 2.22

RP4 0.00 6.56 1.79 2.90 1.15 2.27 1.15 3.57

RP5 18.75 9.84 11.11 11.76 12.36 2.33 12.36 4.82

RP6 63.00 55.67 52.00 61.43 48.86 43.17 48.86 46.84

RP7 0.00 1.69 2.04 1.47 1.22 0.00 1.22 1.18

RP8 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00

RP9 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00

RP10 5.36 6.35 7.51 7.15 9.51 8.54 9.37 9.65

RP11 0.00 0.00 2.08 1.54 1.19 0.00 1.19 1.10

RP12 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00

RP13 0.00 1.69 1.96 0.00 2.33 0.00 2.33 1.20

RP14 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00

RP15 6.25 1.56 0.00 1.49 0.00 4.76 0.00 2.33

RP16 0.00 1.64 3.70 1.47 2.30 0.00 2.30 0.00

RP17 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00

RP18 63.00 63.00 35.96 36.76 29.31 57.67 59.31 55.29

RP19 53.75 44.85 52.55 59.12 64.37 61.11 64.37 51.43

RP20 37.50 36.07 13.21 5.71 19.77 12.50 19.77 10.59

Fig. 10.3 A unit circle buffer zone of radius 20 km established by taking the centre of each built-up
zone as the focal point of the constructed buffer, to compare easily the rate of expansion of
urbanization
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last circle. This is how about the random points show their significance in this core
research.

10.3.4 Statistical Data for Measuring ULI

In this research, NTL time series study period (1992–2012) was separated into eight
periods (1992–2012) with a hiatus of 3 years. F10 for 1992, F12 for 1995 and F16
for 2006 were particularly selected due to elevated coefficients than the erstwhile
substitute satellite of F14 and F15 which was used for the year 1998, 2000 and 2003,
respectively (Table 10.2). Demographic transition indicator like urbanization, eco-
nomical population, economic growth, integration of industrial progression in the
national gross domestic product (GDP) and built-up area are obtained from the
Australian Capital Territory (ACT) (1992, 1995, 1998, 2003) (ABS 2017).

10.3.5 Frequency of Calibration Data

The change in lighted space is the number of adjoining lights for changed recogni-
tion regularity inceptions. Increasing threshold from 14% to 20%, the total lighted
area monotonically regulates, but the number of adjoining lights primarily intensifies
as large cities splinter from the data of DMSP-OLS. As inception value of light
increases supplementary on the number of lights moderates as greater quantities of
slighter or less frequently area are detected, the data of night-time lights are ham-
pered. The following figures of different years which comprised two graphical
representations—before calibrated and after calibrated—give the intensification of
urbanization increase in the different years (1992–2012). A frequency threshold of
14% value resulting in the detection of real urbanization from the NTL time series
data gives the individual pixel value for the DN ranges in the dataset 1992–2012.
Threshold of 10% exploits the numerical value of lights in the 1994–2012 dataset
(Fig. 10.4).

10.3.6 Inter-calibrated Resulted Urban Light Index (ULI)

In this study paper, the different versions of DMSP/OLS NTL data series were used
where version 4 data of different satellites, viz., F10, F12, F14, F15, F16 and F18, is
used as the coverage of the data is 149�E and 35�S. The bit of DMSP/OLS data is
6 bit, and the range of digital number for each pixel is 0–63. The concentration of the
area’s light unswervingly signposts assessment of this value. The zero value of DN
in each pixel is from the non-light area. Pixel with 63 DN value is an inundation
pixel, and much blizzards are instituted in the fundamental built-up urban area

172 C. D. Elvidge et al.



T
ab

le
10

.2
T
he

D
N
in
te
r-
ca
lib

ra
tin

g
ni
gh

t-
tim

e
lig

ht
s
re
gr
es
si
on

ev
al
ua
tio

n

S
at
el
lit
e

Y
ea
r

c
b

a
R
2

S
ec
on

d-
or
de
r
re
gr
es
si
on

F
10

19
92

0.
00

00
49

7
0.
04

96
7.
27

11
0.
79

5
V
ar
1
¼

7.
27

11
+
0.
04

96
*x

+
4.
97

52
E
-6
*x

^
2

F
12

19
95

0.
00

00
55

8
0.
05

57
7.
13

25
0.
81

2
V
ar
1
¼

7.
13

25
+
0.
05

57
*x

+
5.
58

69
E
-6
*x

^
2

F
14

19
98

0.
00

00
49

1
0.
04

9
7.
57

02
0.
72

4
V
ar
1
¼

7.
57

02
+
0.
04

9*
x
+
4.
91

36
E
-6
*x

^
2

F
15

20
00

0.
00

00
44

5
0.
04

44
7.
76

92
0.
70

2
V
ar
1
¼

7.
76

92
+
0.
04

44
*x

+
4.
45

33
E
-6
*x

^
2

F
15

20
03

0.
00

00
49

7
0.
04

96
7.
58

7
0.
71

8
V
ar
1
¼

7.
58

7
+
0.
04

96
*x

+
4.
97

49
E
-6
*x

^
2

F
16

20
06

0.
00

00
48

5
0.
04

84
7.
50

53
0.
77

3
V
ar
1
¼

7.
50

53
+
0.
04

84
*x

+
4.
85

45
E
-6
*x

^
2

F
16

20
09

0.
00

00
46

5
0.
04

64
7.
76

83
0.
70

2
V
ar
1
¼

7.
76

83
+
0.
04

64
*x

+
4.
65

E
-6
*x

^
2

F
18

20
12

0.
00

00
47

7
0.
04

76
7.
69

98
0.
71

3
V
ar
1
¼

7.
69

98
+
0.
04

76
*x

+
4.
77

26
E
-6
*x

^
2

10 Inter-calibration and Urban Light Index of DMSP-OLS Night-Time Data. . . 173



(Elvidge et al. 1997; Letu et al. 2012). The grid data of the night-time light data
images accounts the intensity value of the DN and latitudinal magnitude evidence of
ACT. The different light areas which are growing or increasing are redirected in
association with the marginal areas that are promising (Imhoff et al. 1997). This
partakes in the consequence for the broadening of small reimbursements and inten-
sifying the borders of large cities which are expanding and can be validated by NTL
data. Therefore, these attributes are accustomed to paradigm expanse sunlit cata-
logues. The shrewdness formula for urban light index is (Yi et al. 2014):

Urban Light Index ULIð Þ ¼ 100 X
XmaxDN

i¼10

DNi

maxDN
X

Ci

sumC
ð10:2Þ

The ULI indicates the urban light index, whereas DNirefers to the calibrated DN
value from Eq. 10.1. sumC is the count of total DN values in a unit area. By Eq. 10.2,
the value of urban light index for the different data taken from 1992 to 2012 is
calculated, and finally the main outcome of urban sprawl map is determined with a
final generalized value.

Fig. 10.4 The statistical model showing the variations in regression of calibrated DN values from
1992 to 2012 and a comparison between before and after calibrated DN values
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10.4 Results and Discussion

10.4.1 Light Detection Threshold Information Retrieval

The light data series of DMSP/OLS NTL have several important properties with
some percentage threshold value and their discrepancy in size occurrence dissemi-
nations. The minimum inception seen in the 1992 dataset is the value of 14% and
which increases as on 2000-year dataset that provides a useful blue-pencilled to
exploit the number of the individual lights thus corresponding to diminution of
insignificant different lights with the lessening of latitudinal data completed magni-
tude over around large cities of ACT. The size occurrence dispersals of the threshold
value increase from the 14% value to the 20% over the sharp intensification in the
value of threshold where a tiny value of light can distribute the DN value which
perseveres to intensification of the threshold value. Another appearance of the
tributary mode suggests more areas observed at lower than 14% to 20% of the
peak value of threshold value of NTL data; interstitial prospering among reimburse-
ments of the ACT moderately grows than individual small light areas. The mainte-
nance of this allegation of the centroid of NTL data occurrences dissemination. As
they show that the dissemination of specific decorations, which mountaintops
around 14% beginning and dewdrops accelerating at lower thresholds (Welch
1980). The data observation of different years (1992–2012) recommends that fur-
thermost of the lighted DN value (pixel value) within the threshold range of 14–20%
belongs to light blooming on the sideline of the grander reimbursements. The areas
which are distinguished in the regression value R2 < 50% corresponds the total area
which threshold value belongs within the 14–20% for the dataset 1992–2012
correspondingly (Small 2002). The stratum of 14% threshold value which signifi-
cantly reduces the up-and-coming threshold DN ranges in many different tempering
small settlements also. To retrieve the extreme information from the NTL time series
data, a minimum of 14% threshold value for data collecting is used for significant
guesstimate of ACT size. Comparable threshold value during 1992–2012 dataset
occurs at 17% exposure in this study research for total lighted area and 14% for the
non-lighted area.

10.4.2 Urban Light Indexation (ULI) of NTL Time
Series Data

The hardness of urban area level extraction from any data is not easy based on an
administrative area because of the great transformations whichever in spatial extent
or populace of the dataset. The minimization of this problem levels the study of need
of DMSP/OLS dataset which is thoroughly discussed in this paper. In the compar-
ison of the different scale expansions of the urban areas with the total data, a process
of fixing the whole data by a filtering through the ULI (urban light index) gives the
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distinct urbanization boundary from the entire data. Here the study area which
comprises of 20 random points and the extracted DN values enhances the urban
centre, and to show the entire urbanization, we use a perfect buffer zone for the
whole random points that can retreat the entire DN value extraction easily. The given
following figures show the increase in ULI value from the different datasets
(1992–2012) in Australian Capital Territory (Fig. 10.5).

As the most developed region in the northern Australian Capital Territory (ACT),
the Canberra region shows a centre of urbanization which is increasing in time
extension. The increasing evolution of the urbanization, the population and economy
is the main factor for the growing activities of the ACT in the Canberra region. The
system for the northern Australian Capital Territory is integrating towards a wide
range in the year from 2000 to 2012 in comparison with the year from 1992 to 2000.
The main axis of growing in the southern ACT region is Canberra of ACT. The other
cities including Canberra are Acton, Parkes, Melba, Hall, etc. The demography of
the ACT shows the actual integration of urbanization in comparison to the popula-
tion increase with different respective years.

10.5 Discussion

The suburbanization development parades palpable terrestrial altitudinal powers.
DMSP/OLS dark light data was converted for efficient expansion inquiry than the
rest daytime satellite data for the succeeding two explanations: the first one is the
altitudinal tenacity of DMSP/OLS NTL data is 1–1.2 km, and anthropological
domestic expanses are essential for provincial suburbanization inquiry; on the
other hand, NTL data is alongside a dusky family, and the night light data metaphors
confiscate the troubles of terminated evidence on city surface settings in afternoon
metaphors so they can thoughtfully internment the framework of the conurbations,
which is advantageous for confiscating urban astrophysical suggestion. The present
paper utilizes ULI which is instituted to scrutinize along with quantitative estimation
of the speedy and method of suburbanization by incorporating DMSP/OLS NTL
Data from the period from 1992 to 2012. The municipal well-lit concentration is
incapable to replicate the agglomeration flat of a city’s inhabitants and pecuniary
doings, whereas dissimilarity in Metropolitan Dark Space records the trace of
municipal space enlargement. For associating levels of suburbanization in unlike
cities under the identical average development of unit circle assessment were
recognized in this broadside to painstakingly investigate the suburbanization process
in ACT in gently years (1992–2012). Substantial variations are found in reverted
cities and populous without slanting comparability predisposed by influences as
antiquity, position and policy implementation. Hence, suburbanization research is of
vital significance in order to ascertain the progression and advancement of urbani-
zations. Unit circle model up to certain hefty magnitude eradicates the deficiency of
urbanization exploration with the directorial area as the appraisal unit. This is
prototypically relevant for estimating research of expansion levels midst cities
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indoors as a province. This urban light index (ULI) is gauged to study the recom-
penses of weaknesses and the attainability of studies on urbanization. Results
showed wider application of ULI in monetary needles, extent of built-up areas in
cities and urban inhabitants.

Arrangement of urban light space as times gone by of expansion which effec-
tively imitate the detached landscapes of town space fruition. There is rectilinear
bearing among the urban inhabitants, monetary movement, built-up cover and ULI
linearity (the correlation coefficients with 70–75%). This study embryonically
utilized urban light space for the first time. In agreement with diverse supplies in
urban light concentration, the urban light space is classified into central urban area
(CUA) (DN 57–63), urban fluorescence space (DN 15–25), suburban changeover
zone (SCZ) (DN 45–57) and outlying area (OA) (DN 25–45). From the four light
spaces observed built-up types, time-based three-dimensional growth patterns from
the time-based and longitudinal dissimilarity of the ACT are given due to consider-
ation of the present. Outcomes derived by analysing built-up cover and ULI are
closely associated in course of urbanization with spatial pattern of cities and their
geographical distribution.
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Chapter 11
Modelling Spatial Patterns of Urban
Growth in Pune Metropolitan Region, India

Bhartendu Pandey, P. K. Joshi, T. P. Singh, and A. Joshi

Abstract Explaining urban growth patterns is a fundamental need to understand the
recent rapid urbanization globally. This study identifies geographic features
explaining the spatial patterns of urban land expansion (ULE) in the rapidly urban-
izing Pune metropolitan region (India). ULE maps were derived from Landsat
Thematic Mapper and Operational Land Imager images using support vector
machine (SVM) classification. Relation between geographic features and spatial
patterns of ULE was analyzed using statistical modelling including ordinary least
squares (OLS) regression, spatial lag model (SLM), spatial error model (SEM), and
geographically weighted regression (GWR). SEM specification best modeled ULE
patterns. High density of existing urban areas is identified to negatively affect ULE,
suggesting dominant dispersed urban growth. In addition, proximity to special
economic zones and transportation infrastructure explains multicentric growth in
the region. GWR model was identified inappropriate due to the presence of high
local collinearity. Models accounting for spatial dependencies are recommended
while studying ULE patterns.

Keywords Urban growth · Spatial lag model · Spatial error model · Geographically
weighted regression · Special economic zone
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11.1 Introduction

Globally the rate of urban land-use change is faster than urban population growth
rate (Angel et al. 2005). China and India are the two countries where recent rapid
urban land-use change has shown similar trends (Zhang and Seto 2011). Contem-
porary urbanization is unprecedented in the rate and scale of demographic, eco-
nomic, and urban land-use changes (Taubenböck et al. 2009; Zhang and Seto 2011).
In India, retrospective studies of urban land-use and land-cover (LULC) changes—
that essentially measured changes in built-up or impervious surface area from
satellite image analysis—have shown that the rate of urban land expansion (ULE)
is higher than that of demographic transitions (Sudhira et al. 2004; Farooq and
Ahmad 2008; Jat et al. 2008). ULE has direct effects on regional climate (Pathirana
et al. 2014), agriculture (Fazal 2001), biological diversity (Concepción et al. 2015),
and other systems. Therefore, considering these effects, there is an urgency to
understand the magnitude, rate, and pattern of urban land-use changes in cities
with rapid growth. Hereafter, the terms ULE and urban growth are used interchange-
ably to denote urban land-use changes measured as changes in built-up or impervi-
ous surface area.

Several studies have examined the magnitude, rate, and pattern of ULE using
remote sensing (RS) and geographic information system (GIS). A conventional
approach involves temporal comparison of landscape ecology metrics for discrete
administrative units (Sudhira et al. 2004; Schneider and Woodcock 2008;
Taubenböck et al. 2009; Kowe et al. 2015; Triantakonstantis and Stathakis 2015).
The relative influences of different causal variables on these metrics are then
examined using multivariate regression (Sudhira et al. 2004; Jat et al. 2008). Such
an approach may have three limitations. First, regression models estimated for a
spatially relevant process such as ULE using conventional statistical methods are
prone to bias in error-variance and may have modified significance levels or
overestimated R2 (Anselin and Griffith 1988). Second, aggregated measurements
of ULE based on discrete administrative units result in information loss and may add
to statistical bias (Openshaw 1984; Fotheringham and Wong 1991). Third, ULE
process is assumed to be spatially independent and non-stationary (Luo and Wei
2009; Luo et al. 2008). Recently, a gradient analysis approach has been proposed in
which the study area is divided into concentric circles with radius varying with
respect to the city center (Ramachandra et al. 2012). The algorithm then computes
spatial metrics for each concentric circle to reveal broad spatial patterns of ULE.
Although this approach is prone to the modifiable areal unit problem (MAUP) when
aggregating LULC data into radial geometries (Openshaw 1983), it may be used to
study the spatial patterns of ULE relative to other geographic features, such as
transportation corridors, industrial centers, and others. More recently, statistics-
based spatial clustering approaches have been utilized to study urban land-use
change hotspots (Ganguly et al. 2016). In summary, the conventional framework
to study ULE embraces its cogent measurement but has ignored explaining its
relation with geographic features.
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In addition to measuring ULE, scholars have modeled ULE using different
techniques, including cellular automata-based models (Moghadam and Helbich
2013; Al-sharif and Pradhan 2015) and machine learning algorithms (Linard et al.
2013). While these techniques are robust and important for simulation and predic-
tion, these do not directly determine how different geographic features explain the
spatial patterns of ULE relative to each other. Local to regional geography plays a
significant role in shaping urban growth. In fact, geographic features have been
conventionally used as proximate driver variables in several dynamic models of
urban growth to estimate spatially explicit urban growth probabilities (Linard et al.
2013; Moghadam and Helbich 2013; Al-sharif and Pradhan 2015; Mondal et al.
2016), which are pertinent for urban land-use change science and policy studies.
Therefore, identifying geographic determinants of urban growth patterns is highly
relevant.

Multivariate statistical techniques can study the relationships between ULE and
geographic features (Cheng and Masser 2003; Hu and Lo 2007; Luo et al. 2008; Luo
and Wei 2009; Shafizadeh-Moghadam and Helbich 2015). Classical multivariate
statistical models, however, assume spatial independence and stationarity (Yu 2006;
Luo and Wei 2009; Lafazani and Lagarias 2016). Due to decentralized urbanization
in India and elsewhere (Luo and Wei 2009; Mondal et al. 2015; Shafizadeh-
Moghadam and Helbich 2015), geographic features explaining spatial patterns of
ULE are likely to show spatial dependency and non-stationarity. In this context,
spatial regression tools may be used to study the spatial patterns of ULE. Previous
studies have considered global and local multivariate regression models to model
urban growth patterns. A majority of these studies concluded that local multivariate
regression models or geographically weighted regression (GWR) models outperform
local models (Luo and Wei 2009; Mondal et al. 2015; Shafizadeh-Moghadam and
Helbich 2015). However, in local regression, dealing with local collinearity between
explanatory variables remains a challenge (Wheeler and Tiefelsdorf 2005; Lu et al.
2014). More recently spatial econometric models such as spatial lag models (SLM)
and spatial error models (SEM) have been used to model ULE (Zhang et al. 2013;
Zeng et al. 2015). These studies suggest that SLM and SEM outperform global
regression models estimated using ordinary least squares (OLS) regression. Given
that the aforementioned regression models deal with spatial effects and spatial
heterogeneity differently, it is worth exploring how each of these modelling tools
identifies geographic determinants of ULE patterns.

The overarching goal of this paper is to propose a statistical regression modeling-
based framework to analyze the spatial patterns of urban growth with a focus on
geographic determinants. Here, the emphasis is on variables influencing spatial
patterns of ULE in rapidly urbanizing regions considering decentralized urbaniza-
tion and importance for place-specific planning strategies. Specific research objec-
tives of this case study are, first, to understand the capability of spatial regression to
study the spatial patterns of ULE and, second, to identify key contemporary geo-
graphic determinants of ULE within the study area.
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11.2 Study Area and Data

Pune metropolitan region (PMR) with a total area of 1870 km2 was selected as the
study site. Pune district is located in the State of Maharashtra in India (Fig. 11.1).
The district encompasses Pune metropolitan region or Pune urban agglomeration
which is currently the eighth largest—in terms of population—of all metropolitan
regions in India (Census of India 2011). There is significant urbanization and
economic activity in the metropolitan region. This region is an industrial hub
known for manufacturing, especially automotive, and more recently service indus-
tries (e.g., information technology (IT) and biotechnology). High job and economic
opportunities in the region have caused significant population influx (Pimpri-
Chinchwad Municipal Corporation 2008; Pune Municipal Corporation 2008).

The study site has a heterogeneous landscape characterized by an undulating
terrain (minimum, maximum, and mean elevations are 450, 1150, and 625, respec-
tively). Furthermore, it has a characteristic polycentric urban growth pattern
(Taubenböck et al. 2009; Kantakumar et al. 2016); however, it is not clear which
underlying geographic features explain the polycentricism.

The datasets used in this study are a combination of official and open-source
resources. This study largely relies on satellite images to identify ULE and Survey of
India (SOI) toposheets for information on geographic features such as transportation
networks, streams, water bodies, and protected forests (Fig. 11.1). Geographic
features digitized from SOI toposheets were edited using Google Earth™ images
and Google Maps™ data. Addresses of universities and special economic zones
(SEZs) were determined from government websites and later geocoded using Goo-
gle Maps™ Geocoding service. Slope parameter was calculated from ASTER

Fig. 11.1 Location map of the study area and the vector database generated
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Global Digital Elevation Model (GDEM) Version 2. Due to known inaccuracies in
the GDEM product, the digital elevation model (DEM) was first processed by
identifying abrupt depressions in elevation values. Later the values for identified
depressions were interpolated by calculating the median value in a 5 � 5 window.
Slope parameter was calculated from this depression-less DEM and was used during
satellite image classification and in subsequent modeling exercise.

11.3 Methods

The approach undertaken in this study comprised of two stages: (a) satellite image
classification to identify urban LULC and ULE and (b) model development and
interpretation. Figure 11.2 summarizes the methodology used in the case study.

11.3.1 Satellite Image Classification

Two Landsat 5 TM and one Landsat 8 OLI images with ~0% cloud cover were
downloaded, each for March months of the year 2000, 2010, and 2015. For each
year, all the bands, except thermal, were converted to top-of-atmosphere reflectance

Fig. 11.2 Overall methodology to study spatial patterns of urban growth and identify geographic
determinants. Note the two stages involved in our analysis: (1) satellite image classification to
identify urban land expansion and (2) model development and interpretation
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images that were used along with the slope image to classify LULC into four classes:
water, vegetation, bare land, and urban. Training sites for each of these classes were
randomly collected from Google Earth™ and raw Landsat images. Next, a support
vector machine (SVM) classifier with radial basis function (RBF) kernel was used to
perform image classification using the e1071 package in R statistical software v3.0.0
(Dimitriadou et al. 2006). Here, the γ parameter of the RBF kernel was optimized
using a ten-fold cross-validation procedure, and the optimized classifier was used to
predict LULC classes for the entire study area.

Accuracies of classified images were assessed using 200 random points generated
with equalized random sampling. These random points were labeled with reference
from Google Earth™ and raw satellite images. These random points along with the
class distributions were used to compute an unbiased confusion matrix from which
overall accuracies were computed (Pontius Jr and Millones 2011). The classified
images showed overall accuracies of 88.90%, 94.19%, and 93.62% for the year
2000, 2010, and 2015, respectively. The classified images were then used to
compute ULE raster with four classes: nonurban, urban (2000), urban growth
(2000–2010), and urban growth (2010–2015). During ULE raster generation, a
pixel identified as urban was also considered urban in the subsequent years. Again
for accuracy assessment, 400 random points were generated with equalized random
sampling and labeled using temporal Google Earth™ images. Here, an overall
accuracy of 67.44% was obtained from the unbiased confusion matrix.

11.3.2 Model Development

11.3.2.1 Dependent and Explanatory Variables

Dependent and explanatory variables were computed at two resolutions, i.e., 300 m
and 750 m. Here, the dependent variable represented urban growth in a continuous
scale ranging from 0 to 100. Specifically, urban growth class from the ULE raster
was aggregated to coarser spatial resolutions, and total pixel counts were recorded
for each aggregated pixel. Thirteen explanatory variables were used in regression
modeling (Table 11.1). These variables, including the dependent variable, will be
referenced in the remaining text with abbreviations listed in Table 11.1. Previous
studies have indicated topography as one of the important factors that limit urban
growth; relatively flat regions are conducive to ULE (Jantz et al. 2004; Li et al.
2013). The slope parameter was therefore computed at 300 and 750 m spatial
resolutions and used to model topographic constraints to urban growth.

Socioeconomic factors typically drive ULE. For instance, population and eco-
nomic growth are usually positively associated with urban expansion. Often data for
these variables is collected for administrative divisions and is too coarse compared to
per-pixel representation of geographic features. Thus, due to the lack of socioeco-
nomic data at the required spatial and temporal scale, proximity to CBD
(Prox_CBD), SEZ (Prox_SEZ), and the university (Prox_Univ) were included as
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explanatory variables. Clearly, these variables will not capture the actual socioeco-
nomic dynamics but will reveal the spatial relationships between socioeconomic
centers and urban growth.

Physical contiguity and connectivity of urban areas through transportation net-
works are usually the major determinants of ULE (Jantz et al. 2004; Hu and Lo 2007;
Li et al. 2013; Linard et al. 2013). Euclidean distance raster for transportation
features such as road (Prox_Road), highway (Prox_High), railway (Prox_Rail),
and airport (Prox_Airp) were computed to represent connectivity levels. In addition,
an urban density raster (Den_Urb) was computed to represent contiguities to urban
areas.

Aesthetics and recreation is also an important factor that promotes urban growth
(Clark et al. 2002). Here proximity to forests (Prox_Forest), water bodies
(Prox_Water), and streams (Prox_Str) was used to evaluate whether these geo-
graphic features affect urban growth positively or negatively in the study area.
Furthermore, a density of vegetation raster (Den_Veg) was computed to assess
whether contiguity to vegetated areas is a determinant of ULE in the study area.

All the proximity and density variables were computed in Quantum GIS v1.8.0 at
spatial resolutions of 300 m and 750 m. The euclidean distance rasters were
transformed such that a location (i) closer to the geographic features has a higher
value and finally were rescaled to a range of 0 to 100 (Eq. 11.1). Den_Urb raster was
computed by calculating stable urban pixel count in the ULE image at aggregated
spatial resolutions (i.e., 300 m and 750 m) and scaling the output to range from 0 to
100. Similarly, Den_Veg raster was computed by calculating stable vegetation pixel
count in the classified image at the aforementioned resolutions. Figure 11.3 shows all

Table 11.1 Dependent and explanatory variables used in regression modelling

Variable Variable type Abbreviation

Urban growth (2000–2010) Dependent UG_00_10

Urban growth (2010–2015) Dependent UG_10_15

Slope Explanatory Slope

Proximity to Pune CBD Explanatory Prox_CBD

Proximity to SEZs Explanatory Prox_SEZ

Proximity to universities Explanatory Prox_Univ

Proximity to minor roads Explanatory Prox_Road

Proximity to national and state highways Explanatory Prox_High

Proximity to railways Explanatory Prox_Rail

Proximity to airport Explanatory Prox_Airp

Proximity to protected forests Explanatory Prox_Forest

Proximity to streams Explanatory Prox_Str

Proximity to water bodies Explanatory Prox_Water

Density of existing urban areas (2000) Explanatory Den_Urb_00

Density of existing urban areas (2010) Explanatory Den_Urb_10

Density of vegetated areas Explanatory Den_Veg
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the dependent and independent variables computed at 300 m resolution for ULE
model for the 2000–2010 period.

Proximityi ¼ 1� Euclidean Nearest Distancei
Maximum Euclidean Distance

� �� �
∗100 ð11:1Þ

11.3.2.2 Variable Selection

Inclusion of too many explanatory variables in the model could cause
multicollinearity effects; strong correlation between variables may bias the param-
eter estimates. On the contrary, choosing too few variables could cause omitted
variable bias. Therefore, dealing with the multicollinearity problem and simulta-
neously avoiding omitted variable bias necessitated a three-stage selection of explan-
atory variables. First, a matrix of pair-wise correlations was examined to identify
variables with high collinearity. Figure 11.4 shows the correlation matrix and the
pair-wise density scatterplots. Here, Prox_CBD, Prox_SEZ, Prox_Univ, and
Prox_Rail showed high correlations (>0.6). Second, a variable inflation factor
(VIF)-based backward variable elimination procedure was used such that variables
were dropped until all the VIF values were below 5. Here, Prox_CBD and Prox_Rail
were identified as collinear. Using outputs of the two stages, Prox_CBD and
Prox_Rail were eliminated from subsequent modeling. Third, step-wise Akaike
information criterion (AIC)-based model selection was carried out with the

Fig. 11.3 Dependent and independent variables computed at 300 m resolution for the 2000–2010
period
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remaining variables to select the final model. Here, the final model included all the
variables, and none of the variables were dropped. Therefore, after excluding
Prox_CBD and Prox_Rail, 11 explanatory variables were used in subsequent
modeling.

11.3.2.3 Ordinary Least Squares Regression

Two nonspatial regression models were estimated using OLS regression technique.
In order to check parameter stability across spatial resolutions and ensure that the
choice of coarser resolution does not cause any bias, the model specified in Eq. 11.2,
with UG_00_10 as the dependent variable, was estimated with variables computed at
300 m and 750 m resolutions, whereas the model specified in Eq. 11.2 with

Fig. 11.4 Density scatterplots and pair-wise correlation matrix of all the explanatory variables used
in this study
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UG_10_15 was estimated only with variables computed at 300 m, with a purpose of
evaluating the parameter stability across time. After estimation, residuals were tested
for the presence of spatial autocorrelation using Moran’s I statistic. Here, a first-order
contiguity-based spatial weights matrix was used (Anselin 1988). Furthermore,
spatial residual autocorrelation and spatial lag dependence were tested using the
Lagrange Multiplier tests.

Dependvar ¼ β0 þ β1∗ Den Urb 00ð Þ þ β2∗ Prox Airpð Þ
þ β3∗ Prox SEZð Þ þ β4∗ Prox Univð Þ þ β5∗ Prox Forestð Þ
þ β6∗ Prox Roadð Þ þ β7∗ Prox Highð Þ þ β8∗ Prox Strð Þ
þ β9∗ Prox Waterð Þ þ β10∗ Slopeð Þ þ β11∗ Den Vegð Þ
þ ε ð11:2Þ

where DependvarE (UG_00_10, UG_10_15).

11.3.2.4 Spatial Regression

Besides OLS-based regression, models that account for spatial dependencies were
also estimated. Specifically, the following SLM and SEM were estimated using the
maximum likelihood estimation technique (Anselin 1988):

Dependvar ¼ ρ∗W∗UG 00 10ð Þ þ β0 þ β1∗ Den Urb 00ð Þ
þ β2∗ Prox Airpð Þ þ β3∗ Prox SEZð Þ þ β4∗ Prox Univð Þ
þ β5∗ Prox Forestð Þ þ β6∗ Prox Roadð Þ
þ β7∗ Prox Highð Þ þ β8∗ Prox Strð Þ þ β9∗ Prox Waterð Þ
þ β10∗ Slopeð Þ þ β11∗ Den Vegð Þ þ ε ð11:3Þ

Dependvar ¼ β0 þ β1∗ Den Urb 00ð Þ þ β2∗ Prox Airpð Þ
þ β3∗ Prox SEZð Þ þ β4∗ Prox Univð Þ þ β5∗ Prox Forestð Þ
þ β6∗ Prox Roadð Þ þ β7∗ Prox Highð Þ þ β8∗ Prox Strð Þ
þ β9∗ Prox Waterð Þ þ β10∗ Slopeð Þ þ β11∗ Den Vegð Þ
þ λ∗W∗εð Þ þ υ ð11:4Þ

where DependvarE (UG_00_10, UG_10_15), ρ, and λ are the spatial autoregressive
coefficients, W is the first-order contiguity weights matrix, and υ is the idiosyncratic
disturbance. In order to check parameter stability across spatial resolutions, models
with UG_00_10 as the dependent variable specified in Eqs. 11.3 and 11.4 were
estimated with variables computed at 300 and 750 m resolutions.

A number of studies have used GWR to take spatial non-stationarity of parameter
estimates into account. Intrinsic differences in social, economic, and environmental
conditions are conducive to different responses to the same stimuli but in different
locations (Fotheringham et al. 2003). In this study, the capability of GWR to study
non-stationary relationships between urban growth and geographic determinants
was evaluated.
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In GWR, the algorithm assigns weights for a given location (i) to its neighboring
values. GWR requires specification of a kernel function that further requires a
bandwidth specification that defines distance decay in the weighting scheme. The
bandwidth could be specified as fixed or adaptive across space, and its optimum
value can be estimated by analyzing how well the model fits the data while
accommodating model complexity (Fotheringham et al. 2003). In this study, the
bi-square distance decay function was used with an adaptive weighting scheme. The
optimum value of the bandwidth parameter was determined by minimizing the
corrected AIC. The following GWR model was estimated using GW model package
in R (Gollini et al. 2013; Lu et al. 2014):

UG 00 10i ¼ β0i þ β1i∗ Den Urb 00ið Þ þ β2i∗ Prox Airpið Þ
þ β3i∗ Prox SEZið Þ þ β4i∗ Prox Univið Þ
þ β5i∗ Prox Forestið Þ þ β6i∗ Prox Roadið Þ
þ β7i∗ Prox Highið Þ þ β8i∗ Prox Strið Þ
þ β9i∗ Prox Waterið Þ þ β10i∗ Slopeið Þ þ β11i∗ Den Vegið Þ
þ εi ð11:5Þ

where i is a given location. The optimum model was identified using the model.
selection.gwr function from the GW model package. This function selects the
appropriate model through a step-wise forward selection procedure. Additionally,
multicollinearity in the model was explored using the gwr.collin.diagno function.

11.4 Results

11.4.1 Ordinary Least Squares Regression

Table 11.2 shows the OLS regression outputs for urban growth from 2000 to 2010
using data at 300 and 750 m. The OLS regression models obtained from data at
300 m (R2 ¼ 0.18) and 750 m (R2 ¼ 0.26) have low explanatory power. Addition-
ally, the parameter estimates are not stable across spatial scales. When comparing the
estimates across spatial scales, the results show that Prox_Forest, Prox_Water, and
Den_Urb_00 variables have opposite relationships with the dependent variable.
Significant change in parameter values, however, is noted for Prox_Water and
Slope. Furthermore, two variables, i.e., Prox_Forest and Prox_Airp, became statis-
tically insignificant at 700 m compared to 300 m. Clearly, these results indicate
MAUP in multivariate statistical models. Nonetheless, results also indicate that OLS
models cannot be trusted due to spatially autocorrelated residuals (Table 11.2).
Table 11.3 shows OLS regression outputs for urban growth from 2010 to 2015
using data at 300 m. Again, low explanatory power and spatially autocorrelated
residuals were observed (Table 11.3). Results from the Lagrange Multiplier tests
showed statistically significant spatial residual autocorrelation and spatial lag
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dependence in all the OLS models. These results emphasize that OLS regression is
unable to capture spatial dependencies in the data. Consequently, it is unsuitable for
identifying the geographic determinants of ULE patterns.

Table 11.3 OLS, SLM, and
SEM regression for urban
growth in the 2010–2015
time-period

Dependent variable: UG_10_15

Model 1 Model 2 Model 3

(300 m) (300 m) (300 m)

OLS SLM SEM

Constant �1.584* �1.387** �16.418***

(0.928) (0.675) (2.917)

Den_Urb_10 �0.018*** �0.022*** �0.081***

(0.004) (0.003) (0.005)

Prox_Airp �0.131*** �0.024*** �0.112***

(0.007) (0.005) (0.023)

Prox_SEZ 0.093*** 0.019*** 0.122***

(0.006) (0.004) (0.020)

Prox_Univ 0.073*** 0.029*** 0.030

(0.007) (0.005) (0.023)

Prox_Forest �0.015** �0.001 �0.020

(0.005) (0.003) (0.017)

Prox_Road 0.004 0.007 0.119***

(0.007) (0.005) (0.022)

Prox_High 0.066*** 0.020*** 0.089***

(0.006) (0.004) (0.020)

Prox_Str 0.074*** 0.009** 0.082***

(0.006) (0.004) (0.018)

Prox_Water �0.001 �0.001 0.014

(0.006) (0.005) (0.023)

Slope �0.701*** �0.249*** �0.336***

(0.023) (0.017) (0.029)

Den_Veg 0.037*** 0.021*** 0.044***

(0.003) (0.002) (0.004)

ρ – 0.782*** –

(0.006)

λ – – 0.800***

(0.006)

Observations 20,976 20,976 20,976

Moran’s I 0.493 �0.025 �0.033

R2 0.123 0.537 0.547
AIC 166,950 155,931 155,644

OLS Ordinary least squares model, SLM Spatial lag model, SEM
Spatial error model
*p < 0.1; **p < 0.05; ***p < 0.01
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11.4.2 Spatial Regression

Table 11.2 shows the SLM and SEM results for urban growth from 2000 to 2010
using data at 300 m and 750 m. Models that accounted for spatial dependencies, i.e.,
SLM and SEM, showed much higher explanatory power compared to the OLS
models and negligible spatial autocorrelation in residuals. Although there is only a
slight difference in AIC statistic and R2 values, when comparing SLM and SEM,
SEM models consistently have higher R2 values and lower AIC values (Table 11.2).
This consistency is also observed in models estimated for urban growth from 2010 to
2015 at 300 m (Table 11.3). This suggests that, for this study, SEM specification is
better than the OLS and SLM specifications and that SEM is suitable for identifying
the geographic determinants of spatial patterns of ULE in this study. Therefore,
SEMs were interpreted to determine geographic determinants of ULE in the
study area.

Figure 11.5a shows the comparison between model parameters estimated from
SEM at 300 and 750 m. SEM estimated using data at 300 m and 750 m largely
showed consistency in parameter estimates. Two parameters, i.e., Den_Urb_00 and
Prox_Road, however, showed maximum changes in absolute values, i.e., 0.151 and
0.158, respectively. Nonetheless, Prox_Road continued to be a major and statisti-
cally significant variable positively affecting ULE (Fig. 11.5a). Similarly,
Den_Urb_00 is found to affect ULE negatively at both the scales but with a higher
magnitude at 300 m (Fig. 11.5a). Overall, while there may be minor differences in
parameter estimates across spatial scales, these results emphasize that one can
identify geographic determinants of ULE by interpreting a model estimated at a
given scale. In this study, SEM estimated at 300 m resolution is selected for further
interpretation given relatively higher R2 and sample size.

Fig. 11.5 Comparison between parameter estimates of spatial error models estimated for (a) urban
growth during 2000–2010 time-period at 300 m and 750 m spatial resolutions and (b) urban growth
during 2000–2010 and 2010–2015 time-periods
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SEM parameters underline Prox_Road as the major determinant of urban growth
during the 2000–2010 time-period (Table 11.2). This is not surprising as proximity
to transportation infrastructure is a typical precursor for ULE, which is further
emphasized by the model results that show Prox_High as a major determinant of
urban growth during the 2000–2010 time-period. Additionally, Prox_SEZ is another
major determinant of urban growth during the 2000–2010 time-period (Table 11.2).
In the study area, recently approved and operational SEZs have increased employ-
ment opportunities, and based on a recent fieldwork, better infrastructure was
observed in areas contiguous to SEZs than elsewhere in the PMR. In fact,
establishing SEZs and a lack of urban jurisdiction have caused the surrounding
areas to be more attractive, and realizing the attractiveness and paucity of housing
infrastructure, several private developers initiated housing projects near SEZs pro-
viding better amenities and promoting better living standards. The SEM results
corroborate these observations from the fieldwork and findings from a recent case
study (Kantakumar et al. 2016) and thus are realistic. Den_Urb_00 is identified to be
the greatest barrier to ULE indicating dominant suburbanization or dispersed form of
ULE in the study area. In addition to Den_Urb_00, SEM parameters highlight
topography as another major ULE barrier (Table 11.2).

Next, SEM estimates for urban growth during the 2000–2010 time-period were
contrasted with SEM estimates for urban growth during the 2010–2015 time-period.
Figure 11.5b shows the comparison between parameter estimates from SEM esti-
mated for urban growth during the 2000–2010 time-period and SEM estimated for
urban growth during the 2010–2015 time-period. Here, the results showed no broad
changes in the geographic determinants of ULE; Prox_Road, Prox_SEZ, and
Prox_High remain the major determinants, and Slope and Den_Urb remain the
major barriers to urban growth across the two time-periods. Nonetheless, there are
significant differences in some of the parameter estimates. Specifically, Prox_SEZ in
the recent time-period is the strongest positive determinant of urban growth as
opposed to Prox_Road in the former time-period (Fig. 11.5b). Similarly, Slope in
the recent time-period is the strongest barrier to urban growth as opposed to
Den_Urb in the former time-period. These results suggest that the relationship of a
geographic feature with urban growth may vary across time, but the underlying
reasons for these temporal dynamics remain unclear.

As opposed to OLS, SLM, and SEM, GWR necessitated additional model
selection procedure to identify the best model while taking into account spatial
non-stationarities. Here, the model represented in Eq. 8 was selected in the forward
selection procedure, i.e., no variables were dropped. Table 11.4 shows the results
from GWR model estimation. The estimated GWR model has higher explanatory
power (R2 ¼ 0.50) and lower AIC value compared to the OLS model. Conversely,
the GWR model has relatively low explanatory power and higher AIC value
compared to SLM and SEM. This suggests that even though GWR is able to take
into account spatial non-stationarity of parameter estimates, overall SLM and SEM
are superior. Next, GWR residuals were examined, and a statistically significant
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spatial autocorrelation is identified suggesting presence of bias in model parameters.
Furthermore, the examination of local collinearity diagnostics results suggests that
there is significant local collinearity between variables that will avert unbiased
estimation of local model parameters (Fig. 11.6). Overall, these results suggest that
GWR is not an appropriate tool for identifying geographic determinants of ULE in
the study area.

Table 11.4 Summary of GWR model for urban growth in the 2000–2010 time-period

Dependent variable: UG_00_10

Minimum Maximum Mean % Positive % Negative

Constant �1321.339 1145.715 �39.777 42.758 57.242

Den_Urb_00 �0.547 10.818 0.492 70.900 29.100

Prox_Airp �32.083 14.026 �0.217 53.423 46.577

Prox_SEZ �6.356 18.346 �0.036 41.710 58.290

Prox_Univ �41.011 29.281 �0.071 54.381 45.619

Prox_Forest �3.927 5.098 �0.086 38.701 61.299

Prox_Road �0.539 3.595 0.576 85.097 14.903

Prox_High �1.757 1.660 0.181 62.419 37.581

Prox_Str �1.228 2.289 0.088 66.047 33.953

Prox_Water �9.623 42.617 0.325 47.707 52.293

Slope �2.717 3.503 �0.166 27.169 72.831

Den_Veg �0.354 0.162 �0.042 30.683 69.317

Observations 20,976

Moran’s I 0.356

AIC 168,511

R2 0.506

Fig. 11.6 Local collinearity in parameter estimates of GWR model estimated for urban growth
during 2000–2010 time-period
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11.5 Discussion

11.5.1 Key Findings

From a methodological perspective, this study highlights three key findings. First,
variable selection using a combination of different methods is more robust compared
to a single method. Previous research focused on a single method such as pair-wise
comparison (Luo and Wei 2009) or VIF-based selection (Shafizadeh-Moghadam
and Helbich 2015). Analysis in this study, however, showed differences in outputs
from different techniques and that a combination of these techniques can address the
multicollinearity problem. Second, global regression models, in which spatial depen-
dencies are adequately accounted, can actually perform better than local regression
models. Previous research suggests that local regression using GWR outperforms
global regression that considers parameter stationarity. On the contrary, results from
this study suggest that global models that consider parameter stationarity with error
or spatial lag terms can have higher strength and robustness when compared to a
GWR model. Third, results from this study suggest that analyzing local collinearity
is important and cannot be neglected when attempting to estimate a GWR model.
Several previous research studies that estimated GWR models only considered
collinearity problem in the entire spatial dataset. However, this research showed
that collinearity could exist locally, which could bias the spatially varying parameter
estimates. While the current study found GWR application unsuitable, one may
explore the prospects of using GWR models. In the presence of local collinearity,
one may use locally compensated ridge term (Gollini et al. 2013; Lu et al. 2014).
Note that due to very high local collinearity (Fig. 11.6), GWR with locally compen-
sated ridge term was not explored in the present study.

Our results highlight two key findings about the urban growth patterns. First,
locations that are sparsely urbanized, are near SEZs, and have higher transportation
accessibility are more likely to urbanize compared to other locations. This study
showed that transportation infrastructure is a key determinant, that existing urban
area density is negatively associated with ULE, and that a location near a SEZ will
experience greater ULE in the study area. These findings point toward suburbani-
zation or diffused patterns of ULE since these conditions hold generally at locations
farther from the core urban area. Second, in the recent time-period, i.e., 2010–2015,
this study found that SEZ is the most important determinant of ULE compared to
transportation infrastructure in the 2000–2010 time-period. This suggests that recent
ULE in the study area is associated with the establishment of SEZs during the
2000–2010 period.
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11.5.2 Proposed Framework

The analysis and results put forward a statistical regression modeling-based analyt-
ical framework to study the spatial patterns of urban growth. As shown in this study,
comparing different ULE models, albeit for same time-periods, based on different
factors, such as model performance, multicollinearity, spatial-scale considerations,
parameter non-stationarity, and spatial dependency, is critical. This is so because
model selection based on one of these criteria may be biased and may lead to the
selection of an inappropriately specified model. For example, even though a GWR
model might show higher performance compared to OLS model, local
multicollinearity may bias the parameter estimates, thus making GWR an inappro-
priate model. Nonetheless, after identifying a stable unbiased model, one can study
the geographic determinants of ULE. A simplified representation of the proposed
framework is given in Fig. 11.7.

Fig. 11.7 A simplified
representation of the
proposed statistical analysis-
based framework to identify
geographic determinants of
urban growth

11 Modelling Spatial Patterns of Urban Growth in Pune Metropolitan Region, India 199



The second important facet of the proposed framework is that one can easily
examine the geographic determinants of specific land-use changes while estimating
separate models each with the specific land-use change type as the dependent
variable, which is continuous in nature. With this approach one can also examine
the differences or similarities between the geographic determinants of different land-
use change types by comparing between different models. However, when the
dependent variable is categorical in nature, a single multinomial model can study
the relationship between different land-use changes and the geographic features.

11.5.3 Methodological Limitations

This analysis highlights two methodological problems in using RS and GIS data in a
statistical regression modeling-based framework. First, RS-derived information
about ULE accompanies some measurement error. Similarly, digitizing detailed
geographic features are also subject to multiple error sources. Consequently, one
must not expect high model fit. In the present study, the best spatial regression
models explained ~67% of the variance. Second, identifying appropriate spatial
scales to model ULE could be challenging. While previous studies identified an
optimum scale by referring to goodness-of-fit measures (Shafizadeh-Moghadam and
Helbich 2015) or fractal dimension (Hu and Lo 2007), Fotheringham and Wong
(1991) suggested that the MAUP effects in multivariate models are unpredictable
and that one must analyze models estimated at different aggregation levels. The
present study emphasizes that one must look for consistent information from param-
eter estimates when identifying geographic determinants of ULE, in the absence of
which an optimum scale may be identified. Despite the aforementioned problems,
this study suggests that multivariate statistical tools and spatial regression, in
particular, are appropriate for identifying geographic determinants of ULE.

11.6 Conclusion

A first step toward understanding urban-environment linkages is to develop a
scientific understanding of how urban landscapes are changing. Much of the current
research using RS and GIS tools has focused on quantifying the spatial patterns of
growth in cities. However, examining the relevance of different geographic features
toward observed changes can further our understanding of underlying reasons for
similarities and differences in the morphologies of different urban areas. In the
present study, first, the capability of multivariate statistics, spatial regression in
particular, to understand the spatial patterns of ULE is examined. Second, key
contemporary geographic determinants of ULE in the Pune metropolitan region
are identified.
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This study uses state-of-the-art regression techniques, including spatial econo-
metric tools, and presents a novel investigation of how these tools can be used to
understand the geographic determinants of ULE. The results show that comparing
models estimated from different techniques based on model performance,
multicollinearity, spatial-scale considerations, parameter non-stationarity, and spa-
tial dependency is critical. Most previous studies on statistics-based ULE modeling
have carried out model selection following one of these criteria. This study shows, in
such cases, an inappropriate model may be selected and interpreted. Therefore, based
on the analysis and results, this study proposes a robust multivariate statistics-based
framework to understand the geographic determinants of ULE. The proposed frame-
work does not invalidate using conventional methods, such as landscape analysis
using spatial metrics, but is intended to supplement these methods for detailed
examinations. The framework can also be used with spatially explicit socioeconomic
datasets to explain ULE patterns. However, developing countries often have a
paucity of high-quality data on urban landscapes due to several political and
economic reasons. In such cases, empirical model estimations from RS and GIS
data with appropriate model selection can study the relationships between land-use
changes and corresponding spatial drivers. Here, the proposed framework will be a
useful tool in decision-making, planning, and assessing land-use policy outcomes.

This study also identified several geographic determinants of the spatial patterns
of urban growth in the urbanizing region of Pune. The results show that contempo-
rary urban growth in one of India’s major metropolitan areas is concentrated in
outlying areas with low existing urban density and that the SEZs are causing
immediate surrounding areas to be attractive for urbanization and are acting as
growth nuclei for ULE. Furthermore, results highlight that SEZs became a signifi-
cant determinant of urban growth during the 2010–2015 time-period, i.e., after most
SEZs were notified or established in the 2000–2010 time-period. This finding also
highlights SEZs as one significant factor explaining characteristic polycentric
growth pattern observed in the Pune metropolitan region.

In summary, in data-sparse conditions, analyzing RS images and GIS data of
urbanizing regions in an appropriate analytical framework can provide insights into
urban growth dynamics, from both urban and regional perspectives. This study
suggests that multivariate statistical analysis tools that explore spatial dependencies
and spatial non-stationarity in influencing features (such as SLM, SEM, and GWR)
can identify the geographic determinants but with some limitations.

References

Al-sharif AAA, Pradhan B (2015) A novel approach for predicting the spatial patterns of urban
expansion by combining the chi-squared automatic integration detection decision tree, Markov
chain and cellular automata models in GIS. Geocarto Int 30:858–881

Angel S, Sheppard S, Civco DL, Buckley R, Chabaeva A, Gitlin L, Kraley A, Parent J, Perlin
M. (2005 The dynamics of global urban expansion [Internet]. [place unknown]: Citeseer; [cited

11 Modelling Spatial Patterns of Urban Growth in Pune Metropolitan Region, India 201



2016 Jul 26]. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi¼10.1.1.309.
2715&rep¼rep1&type¼pdf

Anselin L (1988) Spatial econometrics: methods and models. Dordrecht. Kluwer Academic Pub-
lishers, Boston

Anselin L, Griffith DA (1988) Do spatial effects really matter in regression analysis? Pap Reg Sci
65:11–34

Census of India (2011 Census of India, 2011. India Provisional Popul Totals Pap. 1
Cheng J, Masser I (2003) Urban growth pattern modeling: a case study of Wuhan city, PR China.

Landsc Urban Plan 62:199–217
Clark TN, Lloyd R, Wong KK, Jain P (2002) Amenities drive urban growth. J Urban Aff

24:493–515
Concepción ED, Moretti M, Altermatt F, Nobis MP, Obrist MK (2015) Impacts of urbanisation on

biodiversity: the role of species mobility, degree of specialisation and spatial scale. Oikos
124:1571–1582

Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A, Leisch MF (2006) The e1071
package. Misc Funct Dep Stat E1071 TU Wien [Internet]. [cited 2016 Jul 26]. Available
from: http://ftp.auckland.ac.nz/software/CRAN/doc/packages/e1071.pdf

Farooq S, Ahmad S (2008) Urban sprawl development around Aligarh city: a study aided by
satellite remote sensing and GIS. J Indian Soc Remote Sens 36:77–88

Fazal S (2001) The need for preserving farmland: a case study from a predominantly agrarian
economy (India). Landsc Urban Plan 55:1–13

Fotheringham AS, Wong DW (1991) The modifiable areal unit problem in multivariate statistical
analysis. Environ Plan A 23:1025–1044

Fotheringham AS, Brunsdon C, Charlton M (2003) Geographically weighted regression: the
analysis of spatially varying relationships [Internet]. [place unknown]: John Wiley & Sons;
[cited 2016 July 26]. Available from: https://books.google.com/books?hl¼en&lr¼&
id¼9DZgV1vXOuMC&oi¼fnd&pg¼PR7&dq¼Geographically+weighted+regression:+Wiley
+New+York+book&ots¼64FJNgo9KG&sig¼rvfajcybZupWNRMGTen6intGITc

Ganguly K, Kumar R, Reddy KM, Rao PJ, Saxena MR, Shankar GR (2016) Optimization of spatial
statistical approaches to identify land use/land cover change hot spots of Pune region of
Maharashtra using remote sensing and GIS techniques. Geocarto Int 0:1–20

Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2013) GWmodel: an R package for exploring
spatial heterogeneity using geographically weighted models. ArXiv Prepr ArXiv13060413
[Internet]. [cited 2016 July 26]. Available from: http://arxiv.org/abs/1306.0413

Hu Z, Lo CP (2007) Modeling urban growth in Atlanta using logistic regression. Comput Environ
Urban Syst 31:667–688

Jantz CA, Goetz SJ, Shelley MK (2004) Using the SLEUTH urban growth model to simulate the
impacts of future policy scenarios on urban land use in the Baltimore-Washington metropolitan
area. Environ Plan B Plan Des 31:251–271

Jat MK, Garg PK, Khare D (2008) Monitoring and modelling of urban sprawl using remote sensing
and GIS techniques. Int J Appl Earth Obs Geoinf 10:26–43

Kantakumar LN, Kumar S, Schneider K (2016) Spatiotemporal urban expansion in Pune metrop-
olis, India using remote sensing. Habitat Int 51:11–22

Kowe P, Pedzisai E, Gumindoga W, Rwasoka DT (2015) An analysis of changes in the urban
landscape composition and configuration in the Sancaktepe District of Istanbul Metropolitan
City, Turkey using landscape metrics and satellite data. Geocarto Int 30:506–519

Lafazani P, Lagarias A (2016) Applying multiple and logistic regression models to investigate
periurban processes in Thessaloniki, Greece. Geocarto Int 31:927–942

Li X, Zhou W, Ouyang Z (2013) Forty years of urban expansion in Beijing: what is the relative
importance of physical, socioeconomic, and neighborhood factors? Appl Geogr 38:1–10

Linard C, Tatem AJ, Gilbert M (2013) Modelling spatial patterns of urban growth in Africa. Appl
Geogr 44:23–32

202 B. Pandey et al.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.2715&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.2715&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.2715&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.2715&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.2715&rep=rep1&type=pdf
http://ftp.auckland.ac.nz/software/CRAN/doc/packages/e1071.pdf
https://books.google.com/books?hl=en&lr=&id=9DZgV1vXOuMC&oi=fnd&pg=PR7&dq=Geographically+weighted+regression:+Wiley+New+York+book&ots=64FJNgo9KG&sig=rvfajcybZupWNRMGTen6intGITc
https://books.google.com/books?hl=en&lr=&id=9DZgV1vXOuMC&oi=fnd&pg=PR7&dq=Geographically+weighted+regression:+Wiley+New+York+book&ots=64FJNgo9KG&sig=rvfajcybZupWNRMGTen6intGITc
https://books.google.com/books?hl=en&lr=&id=9DZgV1vXOuMC&oi=fnd&pg=PR7&dq=Geographically+weighted+regression:+Wiley+New+York+book&ots=64FJNgo9KG&sig=rvfajcybZupWNRMGTen6intGITc
https://books.google.com/books?hl=en&lr=&id=9DZgV1vXOuMC&oi=fnd&pg=PR7&dq=Geographically+weighted+regression:+Wiley+New+York+book&ots=64FJNgo9KG&sig=rvfajcybZupWNRMGTen6intGITc
https://books.google.com/books?hl=en&lr=&id=9DZgV1vXOuMC&oi=fnd&pg=PR7&dq=Geographically+weighted+regression:+Wiley+New+York+book&ots=64FJNgo9KG&sig=rvfajcybZupWNRMGTen6intGITc
https://books.google.com/books?hl=en&lr=&id=9DZgV1vXOuMC&oi=fnd&pg=PR7&dq=Geographically+weighted+regression:+Wiley+New+York+book&ots=64FJNgo9KG&sig=rvfajcybZupWNRMGTen6intGITc
https://books.google.com/books?hl=en&lr=&id=9DZgV1vXOuMC&oi=fnd&pg=PR7&dq=Geographically+weighted+regression:+Wiley+New+York+book&ots=64FJNgo9KG&sig=rvfajcybZupWNRMGTen6intGITc
https://books.google.com/books?hl=en&lr=&id=9DZgV1vXOuMC&oi=fnd&pg=PR7&dq=Geographically+weighted+regression:+Wiley+New+York+book&ots=64FJNgo9KG&sig=rvfajcybZupWNRMGTen6intGITc
https://books.google.com/books?hl=en&lr=&id=9DZgV1vXOuMC&oi=fnd&pg=PR7&dq=Geographically+weighted+regression:+Wiley+New+York+book&ots=64FJNgo9KG&sig=rvfajcybZupWNRMGTen6intGITc
https://books.google.com/books?hl=en&lr=&id=9DZgV1vXOuMC&oi=fnd&pg=PR7&dq=Geographically+weighted+regression:+Wiley+New+York+book&ots=64FJNgo9KG&sig=rvfajcybZupWNRMGTen6intGITc
https://books.google.com/books?hl=en&lr=&id=9DZgV1vXOuMC&oi=fnd&pg=PR7&dq=Geographically+weighted+regression:+Wiley+New+York+book&ots=64FJNgo9KG&sig=rvfajcybZupWNRMGTen6intGITc
http://arxiv.org/abs/1306.0413


Lu B, Harris P, Charlton M, Brunsdon C (2014) The GWmodel R package: further topics for
exploring spatial heterogeneity using geographically weighted models. Geo-Spat Inf Sci
17:85–101

Luo J, Wei YD (2009) Modeling spatial variations of urban growth patterns in Chinese cities: the
case of Nanjing. Landsc Urban Plan 91:51–64

Luo J, Yu D, Xin M (2008) Modeling urban growth using GIS and remote sensing. GISci Remote
Sens 45:426–442

Moghadam HS, Helbich M (2013) Spatiotemporal urbanization processes in the megacity of
Mumbai, India: a Markov chains-cellular automata urban growth model. Appl Geogr
40:140–149

Mondal B, Das DN, Dolui G (2015) Modeling spatial variation of explanatory factors of urban
expansion of Kolkata: a geographically weighted regression approach. Model Earth Syst
Environ 1:29

Mondal B, Das DN, Bhatta B (2016) Integrating cellular automata and Markov techniques to
generate urban development potential surface: a study on Kolkata agglomeration. Geocarto Int
32:1–19

Openshaw S (1983) The modifiable areal unit problem. GeoBooks, Norwich
Openshaw S (1984) The modifiable areal unit problem. In: [place unknown]: Geo Abstracts

University of East Anglia
Pathirana A, Denekew HB, Veerbeek W, Zevenbergen C, Banda AT (2014) Impact of urban

growth-driven landuse change on microclimate and extreme precipitation—a sensitivity study.
Atmos Res 138:59–72

Pimpri-Chinchwad Municipal Corporation (2008) Comprehensive mobility plan (CMP) for PCMC.
[place unknown]

Pontius RG Jr, Millones M (2011) Death to Kappa: birth of quantity disagreement and allocation
disagreement for accuracy assessment. Int J Remote Sens 32:4407–4429

Pune Municipal Corporation (2008) Comprehensive mobility plan for Pune city. Pune
Ramachandra TV, Setturu B, Aithal BA (2012) Per-urban to urban landscape patterns elucidation

through spatial metrics. Int J Eng Res Dev 2(12):58–81
Schneider A, Woodcock CE (2008) Compact, dispersed, fragmented, extensive? A comparison of

urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census
information. Urban Stud 45:659–692

Shafizadeh-Moghadam H, Helbich M (2015) Spatiotemporal variability of urban growth factors: a
global and local perspective on the megacity of Mumbai. Int J Appl Earth Obs Geoinf
35:187–198

Sudhira HS, Ramachandra TV, Jagadish KS (2004) Urban sprawl: metrics, dynamics and modelling
using GIS. Int J Appl Earth Obs Geoinf 5:29–39

Taubenböck H, Wegmann M, Roth A, Mehl H, Dech S (2009) Urbanization in India–spatiotem-
poral analysis using remote sensing data. Comput Environ Urban Syst 33:179–188

Triantakonstantis D, Stathakis D (2015) Examining urban sprawl in Europe using spatial metrics.
Geocarto Int 30:1092–1112

Wheeler D, Tiefelsdorf M (2005) Multicollinearity and correlation among local regression coeffi-
cients in geographically weighted regression. J Geogr Syst 7:161–187

Yu D-L (2006) Spatially varying development mechanisms in the Greater Beijing Area: a geo-
graphically weighted regression investigation. Ann Reg Sci 40:173–190

Zeng C, Zhang M, Cui J, He S (2015) Monitoring and modeling urban expansion—a spatially
explicit and multi-scale perspective. Cities 43:92–103

Zhang Q, Seto KC (2011) Mapping urbanization dynamics at regional and global scales using
multi-temporal DMSP/OLS nighttime light data. Remote Sens Environ 115:2320–2329

Zhang Z, Su S, Xiao R, Jiang D, Wu J (2013) Identifying determinants of urban growth from a
multi-scale perspective: a case study of the urban agglomeration around Hangzhou Bay, China.
Appl Geogr 45:193–202

11 Modelling Spatial Patterns of Urban Growth in Pune Metropolitan Region, India 203



Chapter 12
Analysing Urban Sprawl and Spatial
Expansion of Kolkata Urban
Agglomeration Using Geospatial Approach

Mehebub Rahaman, Shyamal Dutta, Mehebub Sahana,
and Dipendra Nath Das

Abstract Since the last quarter of the twentieth century, India has been witnessing
predominantly outward expansion of most large megacities in the form of sprawl,
and peripheries have been engulfing many small towns and villages rather than
accommodating the migrants from rural areas in the city core. Amidst this transfor-
mation, the condition of people living in peripheral areas becomes precarious which
is explained by ‘degenerated periphery’. In this backdrop, the present study aims to
assess the spatiotemporal urban expansion of different municipal areas and munic-
ipal corporation areas of Kolkata urban agglomeration of West Bengal, India, during
1990–2015. Landsat Thematic Mapper and Landsat 8 OLI satellite data of the years
1990 and 2015 along with Shannon’s entropy model and urban built-up index were
used to assess the spatial dispersion of and consistency of urbanization. The inves-
tigations reveal a rapid increase of built-up areas outside the municipal boundaries
during the last two and half decades. Shannon’s entropy at local level is computed,
which shows dispersed unplanned urban growth, specifically in the outskirts of the
city. The study indicates that the core of the city has experienced negative growth.
Land use and land cover change analysis revealed that the built-up area has increased
drastically over the study periods. The agriculture land and open land have
transformed into built-up area, indicating the sprawl growth within the Kolkata
urban agglomeration. The overall result shows that urban expansion of Kolkata
urban agglomeration is not compact in nature and it is an evidence of concentration
of sprawl growth over the municipalities.
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12.1 Introduction

At present, we the global people are living in an ‘urban age’ (Brenner and Schmid
2014). For the first time in the human history in today’s world, the number of
inhabitants residing in urban areas had outstripped the figure of those living in rural
villages. It is estimated that by 2050, about two-thirds of human population would
be living in urban areas (United Nations 2014). Future prediction reveals that by
2030 out of 8.1 billion population in the world, 5 billion people will live in urban
areas. Most of this growth will be concentrated in the developing countries,
especially sub-Saharan Africa and southern as well as south-eastern Asia. Though
the growth of urban population in the countries like China and India has slowed
down, the absolute number is astonishing. From the recent Census of India data, it
is evident that despite the slow rate of urbanization, the absolute addition of
population in urban areas was even more than the total rural population in India
(Census of India 1991, 2011). However, urbanization continues in the cities of
developing courtiers without adequate planning or expansion of infrastructure. As
a result, unlike developed countries, the rapid urbanization in developing countries
(Montgomery 2008) leads to unplanned and haphazard urban expansion (Cohen
2006; Grimm et al. 2008). One of the striking features of India’s urbanization is the
rapid growth of metropolitan suburbs in spatial transformation (United Nations
Population Fund 2007; World Bank 2013). Since the last quarter of the twentieth
century, India has been witnessing predominantly outward expansion of most of
the large megacities in the form of sprawl, and peripheries have been engulfing
many small towns and villages rather than accommodating the migrants from rural
areas in the city core. After globalization, liberalization and privatization, many
Indian large cities like Kolkata, Mumbai, Delhi, etc. had started to spill over their
administrative boundary (Shaw and Satish 2007), and this process was fuelled by
urban planner’s proposed new development areas. Urbanization can fundamentally
be defined as the process of transformation of land mostly happening as a conse-
quence of rural to urban migration (Velmurugan and Sajjad 2009; Bhagat and
Mohanty 2009; Taubenböck et al. 2009). The concept of evolution of urbanization
as a process starts with the configuration of urban areas in terms of towns and cities
which later on takes the dimension of metropolitan as well as urban agglomeration
(Jokar et al. 2013). Urban growth came under the domain of a multifaceted vibrant
progression comprising of dynamism in physical as well as functional constituents
of built environment which pick up the pace of transition of landscape to urban
forms (Castle and Crooks 2006). Those drivers of landscape change to configure
urban identity incorporated several geographical, environmental, as well as socio-
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political factors (Su et al. 2012; Dutta et al. 2017; Sahana et al. 2018). Across the
several parts of the world, a new global economy boost up resulted in the process
of urbanization that is factually reforming the visage of the globe (Sajjad and Iqbal
2012; Abbas 2016). Metropolitan cities in most of the developing countries across
the globe have grown up speedily due to rapid population increase and growth in
different economic sectors (Luo and Mountrakis 2010; Al-sharif and Pradhan
2015). So, managing urban growth is a very intricate phenomenon and an immense
challenge of the present century (Cohen 2004). Though rapid urbanization has
been measured on the scale of expansion of suburban growth or by urban sprawl,
there are several temporal phases of urban development (Duany et al. 2001; Sajjad
2014). In the first stage of the process of urbanization, the land use/land cover
changes are confined to urban fringes as a result of urban expansion (Nuissl et al.
2009). This process results in changes in landscape function and consequently land
degradation (Dewan and Yamaguchi 2009; Jamil et al. 2018).

Remote sensing and geographical information system (GIS) techniques have
made it achievable to produce modelling and analysis of urban growth and its
predication globally (Awasthi et al. 2011; Al-shalabi et al. 2013). These techniques
have been extensively used for mapping urban expansion and prediction of change
over the years (Sahana et al. 2018; Haack and Rafter 2006). Many models have
been introduced to analyse land use/land cover transformation and urban expan-
sion as these sophisticated techniques have become powerful instrument in mon-
itoring and analysing urban landscape dynamics too (Al-shalabi et al. 2012;
Hashem and Balakrishnan 2015; Prenzel 2004; Jat et al. 2008). Many efforts
have been made to model urban growth and define urban spatial patterns using
Shannon’s entropy model over the world (Torrens and Alberti 2000; Angel et al.
2007; Jiang et al. 2007; Ahmed and Bramley 2015). During the last 50 years, the
population of India (today 1.2 billion) has become more than double, but the urban
population has grown nearly five times. India has been undergoing rapid urbani-
zation over the last three decades (Bhagat and Mohanty 2009). With the passage of
time as well as in every decade, the number of urban agglomeration (UA) has
grown rapidly as evidenced from the growth scenario of Mumbai, Delhi and
Kolkata, Bangalore, Chennai and Hyderabad in India, and it would be expected
that India will have the biggest concentration of urban agglomeration in the world
by the year 2021 (Chakrabarti 2001, Taubenböck et al. 2009). The Kolkata urban
agglomeration is the tenth largest in the world and the third largest in the country
(only in Eastern India) (UN 2011). KUA is continuously expanding over the urban
agglomeration from the last few decades (Bhatta 2009). Various studies have
attempted (Bhatta 2009; Ramachandra et al. 2014; Mondal et al. 2015, 2016) to
analyse urban growth as well as land transformation especially urban areas within
Kolkata Municipal Corporation and its adjoin regions, but hardly any work has
been conducted to analyse urban expansion and spatiotemporal growth of the
whole Kolkata urban agglomeration. Apart from the assessment of changing land
use/land cover dynamics over the last 25 years (1990–2015), the present study
used Shannon’s entropy model of urban expansion in Kolkata urban agglomera-
tion. Incorporation of specific administrative area (municipality level) along the
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river line of urban development for calculation of built-up density change as well
as entropy dynamics of sprawled urban area gives the present work a newer
dimension. The main focus of the present research encompasses to comprehend
the LULC dynamics using multi-temporal satellite data along with spatial outlook
of urban growth by computing built-up density and by using Shannon’s entropy
model.

12.2 Study Area

Kolkata urban agglomeration (KUA), also identified as Kolkata Metropolitan Area
(KMA), has been incessantly escalating over the last 100 years. With the areal
coverage of approximately 1851 sq.km, KUA is located between 22�001900 N to
23�000100 N latitude and 88�000400 E to 88�003300 E longitude (Fig. 12.1). The
Kolkata urban agglomeration has communicable linear urban prototype along
both east and west bank of the river Hooghly, which is one of the lifelines of
Southern Bengal. The agglomeration is surrounded by rural hinterland lying as a
ring around the metropolitan area and acting as a shielding green belt (KMC 2015).
It consists of a complex set of administrative entities of 3 important municipal
corporations (MC) of South Bengal (Kolkata, Howrah and Chandernagore),
38 municipalities, 77 Census towns (CT), 16 outgrowths and 445 rural villages.

Fig. 12.1 Location of Kolkata urban agglomeration and its spatial identity
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According to the 2011 Census, the overall population of the KMA has been
recorded as 14.72 million with population density of 7950 persons per square
kilometre. Its annual population growth rate is 1.8% by 2011, and its population
would be wished-for to rise to 20 million in the year 2021 as well as 21.1 million in
the year of 2025 (Census of India 2011; KMDA 2011). Kolkata urban agglomer-
ation features the 30 largest megacities of the world having a population of more
than 10 million (UN 2007). Kolkata is the third largest urban agglomeration and
the third largest city in India. As a growing metropolitan city (almost likely to other
cities around the globe) in a developing country, Kolkata confronts with consid-
erable urban pollution in terms of air-water and noise, traffic congestion, poverty,
overpopulation as well as numerous socio-economic nuisances (Bhatta 2009;
Mukherjee 2012). Moreover KMA has huge number of slum population which is
more than 33% of the total urban population. The mixed nature of urban land uses
comprising of residential and commercial as well as industrial character is found in
slums of the urban agglomeration (Roy et al. 2014; Sugiyama 2008; Bhatta 2009).
The back swamp and marshy lands lie in the eastern corner of the KMA, especially
in the Bidhan Nagar, Rajarhat, Maheshtala and Sonarpur. These marshy lands are
being encroached by local inhabitants for residential purposes and fitting for
urbanized tract mostly without any planning (Ghosh and Sen 1987; Dasgupta
et al. 2013).

12.3 Database and Methodology

At the initial stage of study, LULC change and its spatial patterns over time have
been analysed by using a set of two specific Landsat images, acquired for two
different years, i.e. 1990 (TM) and 2015 (OLI/TIRS). In contemporary research in
RS-GIS, Landsat data has been extensively used as satellite data for assessment of
urbanization process. The source of data and their characteristics are given in
Table 12.1.

Table 12.1 Details of spatial and nonspatial data used for this study

Data Data types Source of data Details about data Period

Landsat
TM

Spatial USGS satellite
images

(30 m resolution) path/raw 138, 45 November
1990

Landsat
8 OLI

Spatial USGS satellite
images

(PAN 15 m, 30 m resolution) path/
raw 138, 45

November,
2015

Base map Spatial KMDA Polygon shape 2011

Population Nonspatial Census of
India

PCA, 1991, 2001 and 2011 town and
village abstract

1991, 2011,
2001
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12.3.1 Assessment of the Degree of Urbanization

Landsat satellite images of 1990 (Landsat 5) and 2015 (Landsat 8 OLI), respec-
tively, have been used to generate land use/land cover maps of Kolkata urban
agglomeration. In the present study, the supervised classification based on Landsat
images of two different time phases has been assessed to identify the spatiotem-
poral dynamics in different land use parameters. Maximum likelihood method and
supervised classification techniques were employed for this classification. The
classification error was reduced by reclassifying the generalized images and
improved the classification accuracy. Kappa index (Cohen 1968) and KHAT
statistic (an estimate of kappa) were used for accuracy assessment. Cohen’s
kappa index is a multinominal sampling model used to measure the accuracy
assessment (Galton 1892; Sahana and Sajjad 2017). In this processing, the whole
accuracy of land use/land cover classes was 88.46% for 1990 and 91.92% for 2015,
and kappa coefficient values were 0.88 and 0.93, respectively. Areal change
discovery for each LULC class over a period of two and half decades has been
assessed. The obtained values of individual land use/land cover classes have been
used to compute the rate of change in every LULC class using the subsequent rule
(Puyravaud 2003; Sahana and Sajjad 2018):

R ¼ 1
t1 � t2

� �
� ln

C1

C2

� �� �

where R indicates rate of land use/land cover change and C1 and C2 are the
representatives of built-up area in time periods t1 (2015) and t2 (1990),
respectively.

Builtup density (BD) is percentage proportion of built-up area with its total area
of a particular spatial unit, which has been calculated by using this formula:

BD ¼ builtup area
total area

� 100

12.3.2 Shannon’s Entropy Model of Urban Expansion

Various scholars applied Shannon’s entropy model (Shannon 1948) to study the
relative urbanization phenomena. This model is competent to weigh up the spatial
disparity of urban areas within GIS environment (Li and Yeh 2004). This model is
basically used to analyse disparity of urban patterns and assess urban sprawl growth.
In our study we used this model for assessing urban expansion in urban subcentre
region. Five nonurban land use/land cover classes were considered, water bodies,
vegetation, agricultural lands, barren lands and urban areas, which include built-up
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areas. The entropy value was used to identify the level of urbanization. This value
varies between zero and one. The compact urban distribution was indicated by a zero
entropy value, and dispersed urban distribution was indicated by nearly one value
(Bhatta 2010). So the higher entropy value indicates a high level of sprawl concen-
tration. The below equation was used to assess the relative Shannon’s entropy values
(Shannon 1948):

Hn ¼
Xn

i¼1
pilog

1
pi

� �
=log nð Þ

where Pi¼ the probability (%) of the variable occurring within block i (i.e. urban
area (%) in the ith block determined by the urban area in the ith block/block area) and
n ¼ total number of block (i.e. 8).

12.4 Result and Discussion

12.4.1 Spatiotemporal Dynamics of LULC and Urban Built-
Up Area

Advancement in geospatial applications in spatial modelling has significantly
enabled the process of assessing spatial mosaic in the analysis of land use dynam-
ics (Sang et al. 2011). Analysis and replication rely on dynamic and wide-ranging
satellite databases that portray physical parameters of contemporary urban expan-
sion, incorporation of transportation networks and change in protected areas and
topography which controls such land use dynamics. Main characteristics of land
use/land cover classification of Kolkata urban agglomeration for the years 1990
and 2015 have been generalized into eight classes, namely, (1) crop land, (2) agri-
cultural fallow, (3) vegetation/plantation, (4) aquatic vegetation, (5) open land,
(6) river, (7) wetland and (8) built-up. In this context, KUA practised a severe
transformation different in land use/land covers over the last two and half decades.
There was a rapid increase in built-up and agricultural fallow whereas a rapid
decrease in crop land, vegetation and open land (Table 12.3). Increase in agricul-
tural fallow land has been observed in close proximity to the built-up area. Both the
land uses, i.e. agricultural fallow and built-up area, have experienced 62.4 and
45.1% positive change during these 25 years. Mainly the Rajarhat-Sonarpur in
south-eastern corner and adjoining region of Bally in south-western part of the
study area have experienced enormous increase in agricultural fallow. It is the
indication of urban expansion by abolition of primary agricultural land (Fig. 12.2),
which has happened tremendously. Open land has also been transformed in built-
up area and registered a decline of 67.5 sq. km (3%) during the study period.
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Though these particular land uses occur in a very scattered manner over the study
area, it has been positively converted into built-up or other land uses. In this
conversing scenario, other land use/land cover classes under green space in
terms of vegetation as well as plantation, wetlands and aquatic vegetation have
been experiencing a drop-off in their respective areas (Table 12.2). In this period
(1990–2015), remarkable change has occurred in the percentage of agricultural

Fig. 12.2 Land use and land cover of Kolkata urban agglomeration in 1990 and 2015

Table 12.2 Change in the area of different land use/land cover classes over the study periods

LULC classes
Area in km2

(1990)
Area in
%

Area in km2

(2015)
Area in
%

Rate of change
(%)

(1990–2015)

Agricultural land 621.1 34.71 405.1 22.64 �34.8

Agricultural
fallow

118.2 6.61 191.9 10.72 62.4

Vegetation/
plantation

154.3 8.62 135.7 7.58 �12.1

Aquatic
vegetation

64 3.58 58.1 3.25 �9.2

Open land 177.6 9.92 110.1 6.15 �38

River 55.9 3.12 53.78 3.01 �3.8

Wetland 61.9 3.46 55.9 3.12 �9.7

Built-up 536.5 29.98 778.7 43.52 45.1
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fallow land which has risen by 62.4 percentage point. Land speculation and losing
suitability of the land for agriculture due to the change in physical environment
induced by urban expansion could be the main reasons behind such phenomenal
increase.

12.4.2 Builtup Density

Proportion of built-up area of a particular unit to total unit area in its percentage
figure was indicated as the built-up density of any urban area. In 1990, the highest
built-up density is identified in Bally (87.85%) followed by Baranagar (76.55%) and
Dumdum (75%) whereas the lowest in Barrackpore (4.4%). During the mentioned
25-year time span, all the 42 units experienced significant positive increase in built-
up area. In 2015, the highest built-up density is identified in Dumdum (97.67%)
followed by Bally (96.5%) and South Dumdum (95.92%) whereas the lowest in
Uluberia (19.20%). So the highest value of built-up density almost reached cent
percent, and the minimum threshold also increased significantly. Maximum change
in built-up area occurred in case of North Dumdum (46.44%) followed by Rajarhat
(38.3%) and North Barrackpore (28.54%). From the spatial output in 1990, area
under 60% built-up has been concentrated around the two major urban cores of
Kolkata MC and Howrah MC where only Bally Municipality crosses the limit and
recorded more than 80% built-up area (Fig. 12.3). After 25 years the scenario has

Fig. 12.3 Built-up area density in Kolkata urban agglomeration in 1990 and 2015
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changed drastically where the previous occupied area adjoining to Kolkata MC and
Howrah MC has crossed the 80% built-up area. In the northern part of the study area,
Hooghly-ChinsurahMunicipality also recorded 83.65% built-up area as well as area under
lowest record (< 20%) of built-up area only limited to Uluberia municipal area (Fig. 12.3).

12.4.3 Shannon’s Entropy Model for Urban Expansion

Shannon’s entropy which is an indicator of sprawl indicates that the land use is
fragmented in all orders due to the coming out of new urban tracts with point in time.
Extreme growth is practical at the centre of the whole urban agglomeration as a
single unit. The main interest of this segment of study highlights an increase of
entropy values during the last two and half decades, demonstrating the sprawl
tendency that demands appropriate strategy interventions for the condition of basic
facilities. The relative entropy values over the study periods are larger than 0.5
(Table 12.3). Thus, it is clear that urban growth of the study area is not compact in
nature, and it is an evidence of concentration of sprawl growth, and it’s clearly seen
that the urban expansion is occurring mainly in Khardah (0.54), Bidhan Nagar
(0.55), Bally (0.56), Kolkata (0.58), Hooghly-Chinsurah as well as Howrah (0.59)
and Uttarpara (0.63) (Table 12.3). Moreover, during the 25 years (1990–2015),
sprawling trend for the mentioned municipalities is increasing except in the case
of Naihati (�0.04), Titagarh (�0.06), Bidhan Nagar (�0.03), Kolkata (�0.14) and
Howrah (�0.08). So planned urban policy is needed to this study area to control the
disorganized expansion. Table 12.3 shows that higher positive values of entropy
change can be seen in Rajarhat, North Dumdum, Pujali, North Barrackpore and New
Barrackpore, i.e. 0.57, 0.54, 0.52, 0.51 and 0.47, which shows that the rate of urban
expansion is much more in these three areas over the last 25 years (Figs. 12.4 and
12.5). The higher value of overall entropy for the whole Kolkata urban agglomer-
ation represents higher spreading of the built-up area, which is an indication of urban
growth. Spatial mosaic of urban sprawl during this time period has happened in
major four directions concentrating in the main urban core of Kolkata MC starting
from northern (Barrackpore region) to north-eastern (Dumdum region) to south-
eastern (Sonarpur) and south-western (Budge Budge region) as the Kolkata-Howrah
MC became saturated in their built-up density. The increase in dispersion between
1990 and 2015 is due to new-fangled areas being added to the municipal area limits
and some of the latest housing schemes implemented by the government. Beside
this, there is a noteworthy boost in the commercial, industrial as well as recreational
complexes in the periphery of Kolkata MC. The government also contributed in the
expansion by establishing some of its educational institutions (e.g. Aliah University
Campus) as well as major recreational facilities (e.g. eco-park) in the Rajarhat, South
Dumdum and Dumdum which aggravated the sprawling of built-up area in the
north-eastern corner of Kolkata MC. In the southern extension of KUA, Maheshtala,
Budge Budge, Pujali and Sonarpur have been added to the high sprawling zone
during the 25 years.
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12.5 Conclusion

Kolkata is the world’s 13th mostly inhabited and 8th biggest urban agglomeration in
the world, having a population of approximately over 14 million. Urban organization
indicates the diverse alignment of earthly objects and different land use character-
istics which broadly include green space, built-up, water bodies and wetlands as well
as open spaces in a region. So the perception and evaluation of urban dynamics in
spatiotemporal context involve significant land transitions. Present attempt demon-
strates the quantification of land use dynamics in the most popular urban agglomer-
ation in Eastern India emphasizing on the spatiotemporal domain of urban sprawl
through multi-temporal satellite data using Shannon’s entropy model. Land use and
land cover analysis for Kolkata urban agglomeration reveals that the area for
agricultural land significantly has declined from 35% (1990) to 23% in 2015.
Simultaneously agricultural fallow and built-up area increased from 6.65 (1990) to
7.2% (2015) and 30% (1990) to 43.5% (2015), respectively, during the 25 years.
Comparing to this situation, built-up density of different constituent municipalities
also increased significantly. Among them municipalities of north-eastern adjoin
regions of KMC are noteworthy (i.e. North Dumdum, Rajarhat). Shannon’s entropy
values draw attention to the tendency of urban sprawl that urge for apt policy
interventions to afford basic facilities as well as services in the regions. Spatially
urban sprawl during the 25-year time span covered almost major four directions

Fig. 12.4 Entropy index of 1990 and 2015 of Kolkata urban agglomeration
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concentrating in the main urban core of Kolkata MC starting from Barrackpore
region in the north to Dumdum region in the north-eastern to Sonarpur and Budge
Budge region in the south-eastern and south-western directions, respectively. In the
present study, multi-temporal satellite data (1990 and 2015) under Shannon’s
entropy index has provided considerable versatile information in every order of
spatial units (e.g. municipality and municipal corporation) for unfolding the spatial
design of urban growth dynamics to maintain choice-based planning in Kolkata UA
as a composite urban system.

Fig. 12.5 Change in entropy value (1990–2015) in Kolkata urban agglomeration
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Chapter 13
Automated Extraction of Urban Impervious
Area from Spectral-Based Digital Image
Processing Techniques

Suman Sinha

Abstract Urban area comprises a complex mix of diverse land cover types and
materials; it is often difficult to separate these classes due to their heterogenic nature.
Studying and monitoring urban areas and its environment are closely associated with
the study of impervious surfaces, which are anthropogenic features through which
water cannot infiltrate into the soil. In the present study, spectral indices were
developed using spectral information from satellite remote sensing sensor. Several
spectral indices like vegetation index, soil-adjusted vegetation index (SAVI) and
normalized difference vegetation index (NDVI); water index, modified normalized
difference water index (MNDWI); and urban indices, normalized difference built-up
index (NDBI), built-up index (BUI) and index-based built-up index (IBI), were
implemented in the study. The combination of various spectral indices can be
used, and finally using NDBI, BUI and IBI, principal component analysis (PCA)
was performed, the first component of which was classified through unsupervised
classification through K-means algorithm to extract urban built-up impervious
features. The methodology has the potential to identify and automatically extract
urban impervious features from other land use-land cover classes and is established
over the city of Kolkata (India). Maps showing effective classification of urban areas
were developed. The approach is further successfully operated over a forested area in
order to extract settlements within the forest patch that proves the transferability of
the method and can be universally accepted.
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13.1 Introduction

The Earth is experiencing serious alteration in its processes and environment pri-
marily due to the anthropogenic activities, the consequences of which are severe,
irresistible and irreversible. Urbanization, along with its allied detrimental conse-
quences like industrialization, urban sprawl, population explosion, heat island effect
etc., is a solemn issue associated with this. Urban represents a complex system with
intermixing of several land use and land cover (LULC) types, including water,
vegetation or plantation, various soil types and structures, impervious structures,
etc. The quantitative and qualitative extent of impervious surface in a landscape is an
indicator of environmental quality (Arnold and Gibbons 1996). Impervious surfaces
are surfaces through which water cannot infiltrate and are associated with transpor-
tation and building rooftops (Bauer et al. 2004). Hence, imperviousness becomes an
inevitable factor in runoff, non-point pollution source, water quality, land use-land
cover change, land and forest degradation, energy balance, urban heat island, habitat
degradation, fragmentation and other ecological services. As the rural environment
changes to urban and suburban environment, the proportion of the impervious areas
also enhances, and this change of land use has serious effect over the entire
ecosystem, primarily owing to decrease in water and forest cover. Urban system
has an intricate intermingling of diverse land cover types and materials. Hence, an
efficient monitoring of urban impervious areas for timely and accurate calculation at
high spatial and temporal resolution has become a serious challenge that can be
confronted by the use of satellite remote sensing-based techniques.

Remote sensing technology offers novel prospects to establish significant contri-
butions in urban ecosystems through objective and verifiable characterization of
urban composition (Ridd 1995). It provides an easy cost-effective solution to handle
this cumbersome problem to efficiently map the impervious surfaces due to the
synoptic coverage of any area. Huge load of archived remotely sensed data is easily
available freely in a raster-based digital form that allows immense computer-assisted
processing with precise and accurate interpretation, as compared to the tedious, time-
consuming and erroneous manual interpretations.

Extraction of the impervious features and differentiating from the other LULC
types, specifically with multispectral optical remote sensing, are of utmost challenge.
The use of these optical satellite sensors for several aspects of the urban environment
has been demonstrated by Patino and Duque (2013). The development of the
concept started from the vegetation-impervious surface-soil (VIS) model of the
urban set-up designed by Ridd (1995) that became the backbone of spectral-based
LULC classification which marked the basic strategy to differentiate between veg-
etation, impervious and soil agglomerates for urban ecosystems. However, the water
bodies were not addressed in this model that led to inconveniences in forthcoming
urban-related studies using this model, and hence, this became the most serious
drawback of the stated model. Xu (2008) targeted this shortcoming by developing
IBI that included NDBI (Zha et al. 2003), soil-adjusted vegetation index (SAVI)
(Huete 1988) and modified normalized difference water index (MNDWI) (Xu 2006)
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simultaneously, for extracting built-up areas with an overall accuracy of 96.7%. The
fact that spectral response of built-up lands has higher reflectance in the middle-
infrared (MIR) or short-wave infrared (SWIR) wavelength range than in the near-
infrared (NIR) wavelength range led to the conceptualization of NDBI; however, the
drier vegetation can show higher reflectance in the MIR or SWIR wavelength range
than in the NIR range, which led to built-up land classification often mixed with
plant noise (Xu 2008). This eventually led to the development of Index-based Built-
up Index (IBI). Urban index (UI), with structurally and functionally similar equation
to that of NDBI, developed by Kawamura et al. (1996) behaves similarly as NDBI
and IBI; however, UI reveals more mixing of built-up lands with the bare lands than
the other two indices (Li et al. 2017) and shows no better classification accuracies
while inheriting similar drawbacks of that of NDBI. UI involves SWIR2 band
information, while the other indices use information of SWIR from SWIR1 band.
BUI is not any new concept that has already been considered during the analysis of
NDBI by Zha et al. (2003), however, without producing comparable advancement
over NDBI and IBI, due to noises from other classes that lead to misclassifications in
built-up classification. UI, NDBI, BUI and IBI result in speedy mapping of built-up
areas or bare land areas but are unable to differentiate between these two classes
efficiently, while enhanced built-up and bareness index (EBBI) can successfully
distinguish among these two classes (As-syakur et al. 2012). Thermal remote sensing
using thermal infrared (TIR) band information has the potential to improve LULC
classification, as every LULC parcel has a unique distinctive emissivity (As-syakur
et al. 2012; Sinha et al. 2014, 2015b; Wang et al. 2015; Li et al. 2017). Relationship
exists between land surface temperature (LST) variation derived from MODIS
thermal data products and urban built-up density that helps in better understanding
the complex dynamics of urban microclimate and urban heat island (UHI) effect
(Morabito et al. 2016).

Spectral-based indices have proved beneficial than the original spectral bands in
such feature identification. In a study using thermal information from thermal remote
sensing sensors, it was observed that thermal-based vegetation indices produced an
overall accuracy of more than 90% in comparison to the overall accuracy of 85% for
LULC classification using original multispectral band information (Sinha et al.
2015b). Simultaneously, an overall classification accuracy of 85% was obtained
by Masek et al. (2000) using unsupervised classification on NDVI image products
for detecting built-up features. Vegetation and impervious features are negatively
correlated, and this concept of studying vegetation distribution for mapping imper-
vious features was demonstrated by Gillies et al. (2003) and Bauer et al. (2004).
However, this perception has serious limitations arising due to seasonal variations
and vegetation dynamism. Zha et al. (2003) developed NDBI to delineate urban
areas with 92.6% of classification accuracy but involved NDVI corrections owing to
the interference of vegetation noise in the classification. The approach of using
NDBI was improved by He et al. (2010) where the proposed automatic segmentation
method resulted in classification accuracy of 20% higher than the original method
for extracting the built-up areas. Improvement in NDBI was also targeted by
Varshney (2013) via an automated kernel-based thresholding algorithm. Xu (2007)
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applied SAVI, MNDWI and NDBI concurrently to classify urban areas with accu-
racy lying between 91.5 and 98.5%. The same indices were simultaneously used to
develop IBI to effectively map out the built-up areas by Xu (2008) with 96.7% as the
overall classification accuracy. Likewise, Lee et al. (2010) also developed BUI for
mapping built-up areas using inputs from NDBI and NDVI. Thermal data were used
by As-Syakur et al. (2012) for designing EBBI for mapping built-up and even
separated the bare land from the built-up with high accuracy. Moreover, Normalized
Difference Bare Land Index (NBLI) formulated by Li et al. (2017) performed even
better than EBBI in distinguishing bare lands from built-up and other lands with an
overall classification accuracy of 92%. Normalized Difference Impervious Surface
Index (NDISI) developed by Xu (2010) also helped classify impervious surface but
produced poor results. Liu et al. (2013) transformed this index to Modified Normal-
ized Difference Impervious Surface Index (MNDISI); however, it too suffered due to
its intrinsic complexities. Simultaneously, Wang et al. (2015) also proposed another
index for mapping impervious surface, namely, Normalized Difference Impervious
Index (NDII), which was developed using Landsat TM thermal data and attained an
overall classification accuracy of 91.4%. However, the major challenge is to use
visible multispectral bands for mapping built-up impervious surface, and till date,
IBI has the best potential for mapping built-up impervious areas.

Mapping of land features started with the use of multispectral satellite images,
however, with satisfactory level of classification accuracy owing to spectral mixture
of heterogeneous land features (Xu 2008). The methods for image classification
using satellite images involve unsupervised classification (Masek et al. 2000),
supervised classification (Kumar et al. 2013), interpretation keys (Sinha et al.
2013), principal component analysis (Masek et al. 2000), knowledge-based expert
classification using decision tree algorithm (Sharma et al. 2013), texture measures
(Weeks et al. 2007), object-based image analysis (Blaschke 2010), spectral index-
based classification (Sinha et al. 2015b), artificial neural networks (Hu and Weng
2009) and then different integrated methods and algorithms for image classification
(Xu 2002; Xian and Crane 2005). Apart from optical sensors, SAR has also been
used for built-up studies (Abdikan et al. 2016; Lv et al. 2015; Aghababaee et al.
2013; Chen et al. 2012); however, it is limited. Synergy of optical and SAR has
potential for innovative openings in this context (Sinha et al. 2016; Corbane et al.
2008; Shao et al. 2016; Johnson et al. 2017).

The available literature implies that major approaches dealing with the remote
sensing-based estimation methods for urban detection over the last decade comprise
of pixel-based, subpixel-based, object-oriented algorithms and artificial neural net-
works (Weng 2012). Pixel-based techniques include image classification, regression,
etc., while subpixel-based methods include linear spectral unmixing, imperviousness
as the complement of vegetation fraction, etc. Techniques, such as data or image
fusion, textural measures, expert systems, data mining and contextual classification
methods, have also been investigated. Various indices have been developed for
automated mapping of built-up areas. The majority of research efforts have been
made for mapping urban landscapes at various scales from global to local and
regional and on a wide range of spatial resolution requirements from coarse to
very high resolution for such mapping. Numerous image processing techniques are
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also being investigated. The current study integrates spectral-based built-up indices
and certain digital image processing techniques to automatically extract out the built-
up areas.

This study targets the extraction of urban impervious areas with a unique
approach that uses principal component analysis (PCA) technique applied to a
pseudo-false colour composite (FCC) image formed from three built-up indices,
namely, NDBI, BUI and IBI, which are generated from spectral band information of
the satellite imagery, with a view of extracting the urban impervious built-up features
from the information provided by the spectral-based built-up indices through PCA.

13.2 Materials and Methods

13.2.1 Study Area and Data Sets

The megacity of Kolkata, capital of the state of West Bengal, India, and its
surroundings, located at 22.57oN and 88.36�E, is taken as the study site. This
megacity mainly encompasses residential and commercial areas with a backdrop
of huge proportions of anthropogenic structures and high population density. The
site represents a purely urban scenario with heterogeneous features distributed
throughout with an average altitude of 17 feet from mean sea level. Kolkata,
previously known as Calcutta, is the capital city of the state of West Bengal
(India). Kolkata is the most important commercial, cultural and educational centre
of Eastern India that is located on the eastern bank of River Hooghly, a distributary
of River Ganges, well within the Bengal basin. The annual mean temperature is
26.8 �C; monthly mean temperatures lie in between 19 �C and 30 �C. Maximum
temperatures exceed over 40 �C during summer in the months of May and June.
Winters occur during December to early February when the minimum temperatures
generally lie between 12 �C and 14 �C. The highest recorded temperature is 43 �C
and the lowest is 5 �C. Kolkata has a tropical wet-and-dry climate, with summer
monsoons dominated by strong southwesterly monsoon winds. Annual average
rainfall is 1582 mm. The city generally experiences spells of thunderstorm and
heavy rains during early summer. August marks the maximum precipitation, while
the monsoon generally occurs during June–September. Temperature inversions
occasionally lead to mists during early mornings and smog during evenings. The
wind and cyclone zones of Kolkata possess ‘very high damage risk’. Also the city
lies within the seismic zone III on a scale ranging from I to V in order of increasing
susceptibility to earthquakes.

Resourcesat LISS-III imagery acquired on November 23, 2009, is used. It has a
spatial resolution of 23.5 m and a swath width of 141 km. The four spectral bands
are, namely, the band 1 corresponding to green (0.52–0.59 μm), band
2 corresponding to red (0.62–0.68 μm), band 3 for near infrared or NIR
(0.76–0.86 μm) and band 4 for short-wave infrared or SWIR (1.55–1.70 μm). The
data was obtained from the National Remote Sensing Centre (NRSC, ISRO, India)
(Fig. 13.1).
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13.2.2 Methodology

The entire methodological flow diagram is sketched out in Fig. 13.2. The first step
was the proper rectification and preprocessing of the satellite data. Secondly the
spectral-based indices were calculated. Next, PCA was performed using the built-up
indices as input parameters. Lastly, the PCA image was classified based on the
indices, and classification accuracy was assessed with finally extracting the built-up
areas. NEST and Erdas Imagine software were used for this procedure.

Satellite images of LISS-III were co-registered and geometrically rectified in
reference to the mosaicked Survey of India (SOI) toposheet for analogous distinct
identifiable objects on the toposheets, ground (GT points via Global Positioning
System or GPS) and preregistered images of the same region. The satellite image
was geocoded with UTM projection, datumWGS-84 and Zone 45 North comprising
of green (G), red (R), near-infrared (NIR) and short-wave infrared (SWIR) bands on
a 1:50,000 scales (Sinha et al. 2013).

The following spectral-based indices considered in the study are enlisted in
Table 13.1. SAVI (with an additional soil factor with NDVI), MNDWI and NDBI
were used to extract vegetation, water and built-up feature classes, respectively.
These three indices, being mutually negatively correlated, were combined together
resulting to IBI (Table 13.1). Simultaneously BUI was also calculated. NDBI, BUI
and IBI images were combined to be used as the input parameter for carrying out
PCA. As the first principal component has the greatest variance, it produced the
highest data variability. So the first principal component (PCA1) was considered for
classification through k-means cluster analysis, thus resulting to a binary classified
map that delineated the urban impervious areas from the non-impervious urban
areas. Accuracy assessment for the classification was performed generating
300 ground control points (GCPs). Based on the accuracy, the method was
established and validated over two different regions.

Fig. 13.1 (a) Location map of the study site with (b) standard FCC of LISS-III satellite imagery
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Fig. 13.2 Methodological
workflow

Table 13.1 Formulae used in the study

Eq. Formula Source Remarks

1 Normalized difference vegeta-

tion index NDVI ¼ NIR�Rð Þ
NIRþRð Þ

Rouse
et al.
(1974)

Surface reflectance in near-infrared (NIR) and
red (R) spectral bands

2 Soil-adjusted vegetation index

SAVI ¼ NIR�Rð Þ� 1þLð Þ
NIRþRþLð Þ

Huete
(1988)

Surface reflectance in near-infrared (NIR) and
red (R) spectral bands, L is a constant whose
value depends on the soil properties

3 Normalized difference built-up

index NDBI ¼ SWIR�NIRð Þ
SWIRþNIRð Þ

Zha
et al.
(2003)

Surface reflectance in short-wave infrared
(SWIR) or middle-infrared (MIR) and near-
infrared (NIR) spectral bands

4 Modified normalized differ-
ence water index

MNDWI ¼ G�SWIRð Þ
GþSWIRð Þ

Xu
(2006)

Surface reflectance in short-wave infrared
(SWIR) or middle-infrared (MIR) and green
(G) spectral bands

5 Built-up index
BUI ¼ NDBI � NDVI

Lee
et al.
(2010)

NDBI and NDVI from Eqs. 3 and
1, respectively

6 Index-based built-up index

IBI ¼ NDBI� SAVIþMNDWIð Þ=2½ �
NDBIþ SAVIþMNDWIð Þ=2½ �

Xu
(2008)

NDBI, SAVI and MNDWI from Eqs. 3, 2 and
4, respectively; NDVI from Eq. 1 can also be
used instead of SAVI
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13.3 Results and Discussion

The nature of the DN response for the feature class shows that vegetation can be well
demarcated from the difference in NIR and red bands. Likewise, water can be well
identified from the difference in green and NIR or SWIR. Built-up discrimination
requires inputs from SWIR; however, any particular spectral information is inap-
propriate for discriminating built-up/impervious from other feature classes. Fig-
ure 13.3 depicts the mean DN values of the four spectral bands in the study area.
The maximum variability was observed from the B3, red, and B4: NIR bands. The
graph of the relationship between the red and NIR shows the vegetation along the
NIR (y-axis), water along red (x-axis) and built-up along the diagonals (Fig. 13.4).
Vegetation pixel values in SWIR are observed to be well below NIR values; so dry
vegetation that can pose noise in built-up classification is absent.

SAVI and MNDWI maps in Fig. 13.5a, b show an efficient demarcation of
vegetation and water bodies, respectively. Moreover, the three built-up indices,
namely, NDBI, BUI and IBI maps in Fig. 13.5c, d and e, respectively, could also
extract out the built-up areas. Figure 13.6 depicts the scattergrams of spectral feature
space of the index images derived from LISS-III bands showing separability of three
main land cover classes, namely, water (marked in ‘blue’), vegetation (marked in
‘green’) and urban impervious (marked in ‘red’). Here, the relationship between the
built-up indices is demarcated as (a) BUI (x-axis)-IBI (y-axis), (b) NDBI (x-axis)-
IBI (y-axis) and (c) NDBI (x-axis)-BUI (y-axis). Figure 13.6 shows positive corre-
lation between the indices, which represents clear separation of the built-up and
urban impervious feature class from the remaining two of the major classes, namely,
water and vegetation. On the other hand, these two classes are inseparable as
depicted in the figure.

Fig. 13.3 Mean DN values (y-axis) of the four spectral bands (B2, green; B3, red; B4, NIR; B5,
SWIR) for water (blue), vegetation (green) and built-up/impervious (red) feature classes for the
study area
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Fig. 13.4 Scatter plot of the spectral clusters in red (x-axis) and NIR (y-axis) bands for water
(blue), vegetation (green) and built-up/impervious (red) for the study area

Fig. 13.5 (a) SAVI, (b) MNDWI, (c) NDBI, (d) BUI, (e) IBI, (f) PCA1 (of ‘c’, ‘d’ and ‘e’) maps
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Fig. 13.6 Scattergrams of
spectral feature space of the
index images derived from
LISS-III bands showing
separability of classes water
(blue), vegetation (green)
and urban impervious (red):
(a) BUI (x-axis)-IBI
(y-axis), (b) NDBI (x-axis)-
IBI (y-axis), (c) NDBI
(x-axis)-BUI (y-axis)
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Both the NDBI and IBI maps seem quite similar. On properly classifying the
NDBI and IBI maps into impervious (IS) and non-impervious (NIS) areas, it is
evident that IBI maps produced more accurate result, as revealed from the accuracy
assessment reports (Table 13.2) for the classification. BUI map showed the least
accuracy for classifying the urban impervious areas. All these three indices, namely,
NDBI, BUI and IBI, are for identifying built-up areas via spectral information, but
each of them suffers from certain limitations. PCA over these indices extract out the
data variability, hence, ending up with the maximum information from all the three
indices. Henceforth, the binary classified map derived from the PCA presented in
Fig. 13.7d gave the best results for extracting the impervious built-up areas.

The scatterplots between the NIR and PCA1 in Fig. 13.7d reveal the zone for
built-up/impervious area discrimination. The ‘yellow’ portion in the graph encircled
in ‘white’ colour concentrates the built-up feature class. This figure describes the
efficiency of PCA generated from built-up indices (NDBI, BUI and IBI), which
resulted in the well-defined zone of concentration of the built-up areas when plotted
against the NIR band. The zone of built-up area concentration is not observed as
such when the individual built-up indices are plotted against the NIR band
(Fig. 13.7a, b and c). Figure 13.7a (i.e. NDBI and NIR) shows complete absence
of any dominant zone, while in Fig. 13.7b, c, respectively, for BUI versus NIR and
IBI versus NIR, a not so well-defined but a zone can be identified for built-up area
demarcation. Among BUI and IBI, the zone is more prominent for IBI as marked in
Fig. 13.7c. However, the best of all is shown in Fig. 13.7d, where a clear well-
defined intense zone is highlighted for the built-up area. This clearly proves the
effectiveness of PCA in the analysis over the individual indices.

Figure 13.8 demarcates the impervious built-up areas in ‘red’ colour, while the
white portions are non-built-up regions. Table 13.2 states the overall accuracy
(OA) and kappa statistics (k) for classification. According to the table, based on
the classification accuracy, the performance can be arranged as follows: BUI (OA ¼
86%, k¼ 0.68) < NDBI (OA¼ 89%, k¼ 0.75) < IBI (OA¼ 90%, k¼ 0.77) < PCA
(OA ¼ 96%, k ¼ 0.91).

The same approach is applied to another area in order to establish the method and
reproduce the results, so as to test for the transferability and validity of the approach.

Table 13.2 Accuracy assessment report

BUI IBI
IS NIS OA k IS NIS OA k

IS 183 14 197 86 0.68 IS 186 11 197 90 0.77

NIS 28 75 103 NIS 19 84 103

211 89 300 205 95 300

NDBI PCA
IS NIS OA k IS NIS OA k

IS 185 12 197 89 0.75 IS 190 7 197 96 0.91

NIS 21 82 103 NIS 5 98 103

206 94 300 195 105 300
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Fig. 13.7 Scatterplots for NIR in the x-axis and (a) NDBI, (b) BUI, (c) IBI and (d) PCA1 in y-axis
highlighting the built-up encircled in ‘white’

Fig. 13.8 Binary classified
map derived from PCA1
(red colour ¼ IS, white
colour ¼ NIS)
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The second area under investigation is the tropical deciduous forested area of
Munger in Bihar, India, with geographic coordinates of 25�1903000N–24�5605000N
latitudes and 86�3303300E–86�1105100E longitudes. Details of the study site have been
discussed by Sinha and Sharma (2013). The method is applied to automatically
extract out the built-up areas within the forests (Fig. 13.9). Figure 13.9 illustrates the
index maps, namely, the SAVI, MNDWI, NDBI, BUI and IBI maps, and the binary
classified map of the derived PCA1 product. The method is observed to provide
similar significant results with high level of accuracy for classification of in-forest
built-up areas (OA ¼ 92.86%, k ¼0.82). The result showed considerable improve-
ments in the accuracy when IBI was used alone to extract the built-up areas within
forests, where overall accuracy value was 89% with k value of 0.78 (Sinha et al.
2018).

13.4 Conclusion

The study targets in efficient extraction of built-up impervious areas within an urban
landscape that cannot be easily demarcated due to unavailability of pure pixels from
low or moderately low spatial resolution satellite images as the urban set-up is well
intermixed with vegetation, plantation, water bodies and other non-impervious
features. This becomes more challenging in a forest landscape, where settlement
areas are scattered heterogeneously within the forest patch. Spectral indices provide

Fig. 13.9 (a) SAVI, (b) MNDWI, (c) NDBI, (d) BUI, (e) IBI, (f) binary classified PCA1 (of ‘c’, ‘d’
and ‘e’) and (g) zoomed built-up areas from classified maps (black colour¼ IS, white colour¼NIS)
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better information in comparison to original spectral bands of any remote sensing
satellite sensor. The study reveals the use of combined built-up spectral indices fed
into PCA for extracting of built-up impervious areas from other non-impervious
built-up features with high accuracy. PCA serves as a powerful and effective image
processing technique that can extort information from the original data. Hence, PCA
proved to be an extremely useful tool for feature extraction. The unique approach
adopted in the study is not region-specific and can be successfully implemented over
other regions as well. Hence, this approach has the global acceptability and can be
reproduced over any region of interest, ranging over from small to large scales.

Deforestation, forest degradation and illegal cutting, logging and felling of trees
can also be well demarcated within any forest patch by this approach, which can
prove advantageous in the framework of REDD. Sensors, other than optical remote
sensing sensors, need to be further investigated. In this context, the future scope is to
use SAR (synthetic aperture radar) or radar remote sensing that can provide new
openings, as the target-wave interaction depends on the scattering properties of the
features on the ground, based on which backscatter values are generated (Sinha et al.
2015a). Index based on multi-frequency and multi-polarized SAR data is a prospec-
tive thrust area that needs development, as limited research has been done in this
context. Future scopes comprising of PCA and similar such statistical and image
processing techniques applied to SAR multi-polarized and hyperspectral data need
to be properly investigated for automated detection of impervious areas. Mapping of
impervious surface area can be useful inputs to planning and management activities
arising due to land use shift from non-impervious to impervious surfaces that are
closely correlated with several detrimental ecological and environmental impacts.
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Chapter 14
Hybrid Polarimetric Synthetic Aperture
Radar for the Detection of Waterlogged
Rice Fields

Bambang H. Trisasongko

Abstract Rice has been the most important agricultural commodity in Asia. Vari-
ous monitoring schemes based on remotely sensed data have been dedicated for rice
research purposes, and responsible agencies currently seek an efficient, operational
paddy field monitoring. Multispectral datasets serve as the backbone to the applica-
tion; nonetheless, their successful implementation in tropical regions is somewhat
fluctuating due to persistent cloud cover. Options in the use of synthetic-aperture
radar (SAR) data are currently available, from X-, C-, or L-band spaceborne systems.
The latter is preferable as long wavelength is less susceptible to the attenuation of
high precipitation often seen in tropical regions. In this chapter, hybrid polarization
as one of the emerging SAR techniques is investigated to retrieve waterlogged rice
fields as a proxy for the commencement of a new planting season. Two popular
hybrid polarimetric representations, i.e., modulus of covariance matrix and polari-
metric features of Raney decompositions, are discussed. Information extraction was
done using 11 supervised learners. The findings indicated that modulus of covari-
ance matrix generally performed inferior than Raney decomposition datasets. The
latter amplified the overall accuracy to around 95%, with about 20% discrepancy to
the covariance matrix. Although modern data mining methods including random
forests and support vector machines were preferable than conventional methods such
as single tree approach, this research indicated that some variants of random forests
and support vector machines may yield overall accuracy below the expectation. The
research also discovered that Raney decomposition features outweighed fully polar-
imetric backscatter coefficients, although the difference is considerably low (about
5%). Hence, it could be summarized that hybrid polarimetry may provide an
efficacious solution to large-scale monitoring of active rice fields.
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Keywords Coherence matrix · Data mining · Hybrid polarimetry · Raney
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14.1 Introduction

Rice remains the staple food for most Asian countries including Indonesia. Lowland
areas with abundant water resources have been the most favorable environment to
this commodity. Supported by suitable soil types, Java, Sumatra, and Sulawesi
islands are top rice-producing areas in Indonesia, largely with two or three crop
rotations per year. In addition, upland paddy fields are also common in major
Indonesian highlands, generally with only one planting cycle each year during the
rainy season. To some communities situated in East Sumatran wetlands, several rice
varieties capable to handle frequent waterlogged condition have also been cultivated.
Although its importance has been acknowledged in decades, monitoring scheme of
rice fields is understudied. Especially in Indonesia, complexity of the problem
remains large, partially due to small-scale farming and inhomogeneity of planting
epoch. Rice planting season starts with waterlogging fields; hence, with the nature of
the condition, it is possible by remote sensors to identify the starting phase of the
season.

Multispectral sensors have been the primary source of data to this need. Landsat,
for instance, has been one of the most popular datasets for agricultural mapping,
including rice monitoring, essentially due to its long temporal data availability and
free access. Kontgis et al. (2015) demonstrated its utility for mapping rice extent in a
Vietnamese site. A lesson learned from the research includes that time stack of
remote sensing data could be useful not only to map the extent of rice production but
also to provide essential information on annual cropping frequency. Estimation of
yield has also been conducted, mostly with the aid of vegetation indices. Normalized
Difference Vegetation Index (NDVI) at the peak vegetation period was notably
important to the estimation of rice yield (Siyal et al. 2015). Nonetheless, rigid
conclusion is yet to be developed as site dependency appears having high influence
and transferability of models has been far understudied. For tropical countries like
Indonesia, this type of sensor has significant drawback because it has a greater
sensitivity to atmospheric disturbance such as cloud, haze, and smoke. This depen-
dency then limits multispectral dataset implementation for operational basis.

Synthetic-aperture radar (SAR) systems have a greater insensitiveness to atmo-
spheric condition; hence, they have inherent advantages for tropical agriculture
monitoring. Single-polarization radar was initially used (Panigrahy et al. 1999);
however, with the advance of SAR technology, dual-polarization backscatter coef-
ficients have been the primary dataset for rice field monitoring. Pei et al. (2011), for
instance, examined dual-polarized X-band TerraSAR for rice field identification in a
Chinese site. With the limited number of predictors in SAR data, fusion with
multispectral data is commonly implemented to improve the outcome. This approach
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was successfully demonstrated in India using a combined RADARSAT and the
Advanced Wide Field Sensor (Haldar and Patnaik 2010). SAR came into a new era
of spaceborne SAR capable to generate fully polarimetric (FP) data since 2006 when
Phased Array L-Band SAR (PALSAR) on board Advanced Land Observing Satellite
(ALOS) became operational. Improvement of the outcomes, compared to dual- or
single-polarization data, was studied elsewhere (Lee et al. 2001; Cloude 2009).
Investigation of FP data with an application for rice monitoring was done to separate
basmati and non-basmati rice yielding an accuracy around 85% (Kumar et al. 2016).
This level of accuracy is somewhat similar to the earlier outcome of Wu et al. (2011),
using the same sensor configuration. While the use of fully polarimetric data is
strongly envisaged, the issue of data availability remains problematic. FP imaging
mode requires higher amount of energy, which makes it complicated when the
sensor is hosted in a spaceborne platform. Fully polarimetric mode, therefore, pro-
hibits frequent data capture, a situation where is unfavorable for operational rice field
monitoring.

Compact (or hybrid) polarity of SAR data, therein CP, is one of the emerging
solutions to power and swath constraints in spaceborne SAR. The idea was firstly
proposed by Souyris et al. (2005) through measuring reoriented waves. Conven-
tional FP measurements include horizontal and vertical orientations, both in trans-
mission and reception. In CP mode, only single transmission is used, either in
circular or in 45� orientation, while normal horizontal and vertical positions are
employed in the receiver. With this approach, about a half of the power is therefore
conserved and allows full-swath scanning. While long debates are progressing on the
utility of the technique, several SAR vendors such as Japan, Canada, and India have
announced their readiness to provide CP data acquisition. Experimentation on its
advantages and drawbacks, however, needs to be done in various aspects of remote
sensing data utilization for improving previous knowledge gained in land cover
monitoring (Turkar et al. 2013), forestry (Lardeux et al. 2010; Trisasongko 2015),
and agriculture (McNairn et al. 2017).

To alleviate the understanding on the behavior and performance of CP, the central
goal of this chapter is to observe the feasibility of CP SAR in comparison to FP
dataset. In particular, the main focus is on the utilization of varieties of features
derived from CP, which have been lightly studied. With the availability of numerous
data mining methods, this chapter also discusses the implementation of popular
classification methods such as random forests (RFs) and support vector machines
(SVMs) and their variants to retrieve waterlogged condition of rice fields.

14.2 Materials and Methods

14.2.1 Test Site and SAR Data

The research was situated in Jember Regency, East Java Province, Indonesia. This
area is considered as one of the largest rice cultivation areas in the province. This is
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supported by low-lying terrain; only a few locations of the regency are occupied by
hills and mountains. In hilly terrain, majority of land use includes forest, timber,
coffee, and rubber plantations. In the rest of the area, irrigated fields dominate with
paddy and sugarcane that serve as the primary commodities. Irrigations were vastly
developed taking advantage of the humid climate with sufficiently high rainfall
throughout the years. Abundance of spring water from Ijen-Raung volcanic complex
and Mt. Argopuro in the northern part of the research site leads to adequately large
amount of rivers and creeks. Rice agriculture is also supported by alluvium soil types
influenced by two aforementioned volcanoes. Figure 14.1 presents the site location.

The main dataset used in this research was FP Phased Array-type L-band SAR
(PALSAR-2), acquired in 31 March 2015 by the Japan Aerospace Exploration
Agency (JAXA). Preliminary calibration was performed by the vendor before
delivery. Nonetheless, since L-band data are susceptible to ionospheric condition,
prior to analysis, Faraday rotation was estimated using an algorithm developed by
Bickel and Bates (1965). Preliminary analysis showed that the rotation was 3.38�,
which is lower than 5�, the threshold suggested by Wright et al. (2003). Complex
scattering matrix S2 data were subsequently calibrated using Ainsworth et al. (2006)
technique. From this data, three forms of dataset were then derived.

14.2.2 Data Analysis

The first dataset was backscatter coefficients, which are the most popular form of
SAR data, derived by taking the amplitude for each S2 main components, i.e., SHH,
SHV, and SVV. Notations H and V, respectively, denote linear scattering element of
transmitted and received wave; hence, SHV indicates cross polarization of horizontal
and vertical wave propagation between transmission and reception. Since receiver
and transmitter modules are placed in the same SAR antenna, the reciprocity
theorem applies, that is, SHV ¼ SVH. Hence, only SHV is considered in this analysis.

Fig. 14.1 Jember (Indonesia) test site
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Due to unavailability of actual CP data, in this research, they were simulated from
FP dataset following the procedure conducted in earlier publications (Chen et al.
2014; White et al. 2014). The π/4 method (Souyris et al. 2005), also known as slant
linear, was adopted to simulate covariance matrix C2 data. From this matrix, three
amplitudes (i.e., C11, C12, and C22) were extracted, serving as the second dataset.
The last dataset in this research was polarimetric features derived from Raney et al.
(2012) decomposition, also known as m-χ decomposition. The decomposition takes
input from Stokes parameters calculated from C2, resulting in six main features. The
first three components, i.e., m, χ, and δ, respectively, denote degree of polarization,
Poincare ellipticity, and relative phase between horizontal and linear polarization.
Remaining components mimic features derived from model-based FP decomposi-
tion comprising contributions of double-bounce, volume, and surface scattering in
the area of illumination. The latter group of three features is easier to interpret and
may be linked to physical processes, perhaps, the main reason that they are more
popular in the development of polarimetric decomposition theorems. Double-bounce
scattering, for instance, is a key parameter to identify man-made structure. In the
case of vegetative cover, it relates to sparse stand density which allows sequential
wave interaction process with ground surface and the stem before reception by SAR
antenna. Volume, also known as random, scattering is beneficial for vegetation
studies, while surface scatterers are often identified in smooth surface like open water.

PALSAR-2 data were preprocessed using PolSARPro 5.0 software, freely avail-
able from European Space Agency (ESA, https://earth.esa.int/web/polsarpro/home).
Further geometrical processing to match baseline map was done in SNAP (Sentinel
Application Platform, http://step.esa.int/main/toolboxes/snap/) version 5.0, also a
free toolkit from ESA. Since SAR data are strongly influenced by topography, this
research employed SAR Simulation Terrain Correction module in SNAP to com-
pensate the effect. Final data have 15 m spatial resolution with World Geodetic
System (WGS) 1984-based geographic coordinate system. All datasets were then fed
into R statistical software version 3.4.3 (https://cran.r-project.org/) for modeling and
prediction procedures.

Information extraction targeting waterlogged and non-waterlogged rice fields was
done by employing both conventional and contemporary classification methods
applied to three aforementioned datasets. Summary of classification methods is
presented in Table 14.1. In this research, CART technique was used as the bench-
mark considering its widely utilization in remote sensing. Variants of techniques,
whenever available, were also evaluated to improve understanding of their
implementations and extent for rice monitoring. Prior to classification, samples
were taken throughout the image guided by the baseline map and field survey
conducted in December 2015. Gap between satellite data acquisition and field survey
was minimized by collecting information about normal pattern of planting schedule
from local farmers and by obtaining planting seasons from local government bodies.
Samples were subsequently divided into training and testing data with proportion of
3:1. Tenfold cross-validation with three repeats was adopted to minimize bias and to
ensure that the outcome would statistically be reliable. Finally, the performance of
statistical models was measured using overall accuracy.
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14.3 Results and Discussion

14.3.1 The Importance of Dataset Selection

With large choices of remotely sensed data available today, selecting “the best
option” would not be an easy task. In the case of optical data, hyperspectral data
are perhaps the ideal one. Nonetheless, complexity of processing has been a long
issue in data processing, and there is no guarantee that the outcome may be optimum.
This also applies to FP dataset, where users can opt to retrieve conventional
backscattering coefficients along with numerous features derived from polarimetric
decomposition theorems. While FP data have been advocated (consult Charbonneau
et al. (2010) for recent review), paucity of proofs in tropical rice monitoring is
evident.

Figure 14.2 depicts variations in overall accuracy calculated using proposed
models. This clearly summarizes that C2 data were unable to fully distinguish two
designated classes: waterlogged and non-waterlogged rice fields. The average accu-
racy of this data using available models was about 74.7%, with the highest provided
by least squares SVM (76.0%). In contrast, backscatter coefficients of FP data and
Raney features provide promising results. The figure indicates that the outcomes of
backscatter coefficients were interestingly consistent irrespective of the complexity
of selecting a good classifier. With the average of about 89.1%, backscatter coeffi-
cient may serve as the primary option when preference of classification methods is
restricted. In this test case, classification using Raney features generally delivered a
higher accuracy. They gave average accuracy about 95.9%.

Table 14.1 Employed classification models

Model name Code Reference

Classification and regression trees CART (for original
algorithm)

Breiman et al. (1984)

CARTBag (for bagged
version)

Multivariate adaptive regression
splines

MARS (for original
algorithm)

Friedman (1991)

MARSBag (for bagged
version)

Random forest RF Breiman (2001)

Rotation forest RFrot Rodriguez and Kuncheva
(2006)

Weighted subspace RF RFws Xu et al. (2012)

Gradient boosting GB Friedman (2001)

Extreme gradient boosting GBx Chen and Guestrin (2016)

Support vector machines SVr Vapnik (2000)

Least squares SVM SVls Suykens and Vandewalle
(1999)
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Previous reports found that accuracy obtained from CP was generally inferior
than the one yielded from FP. Singh et al. (2014), for instance, discovered that FP
mode, instead of CP, was suggested for mapping five different classes in a glacier
area of India. The m-χ parameters coupled with model-based decomposition features
used in that research achieved lower accuracy, suggesting a limitation of CP mode in
a specific mapping purpose. For wetland vegetation monitoring, assessment using
simulated RADARSAT Constellation Mission (RCM) was reported by White et al.
(2017). The research found that acceptable performance of CP could only be
achieved through a fusion with optical and terrain data. The issue may be linked
with the nature of C-band used in RCM. Shorter wavelength generally interacts with
top canopy layer of the woody vegetation; hence, actual tree structure as one of the
key identifiers of arboreous stands is less detectable. This research, however,
discovered that in a very specific application such as the detection of waterlogged
rice fields, the outcomes of CP mode would be as high as the ones demonstrated by
FP data. It was suspected that data selection fed into statistical models was one of
important keys in successful class separation. While covariance matrix of FP mode
was shown useful in a previous report (Amani et al. 2017), this research indicated
that it was not the case in CP SAR application for rice field observation. Due to
paucity of further information, the reason of this situation remains unknown and
warrants further investigation. Although the variance is shown relatively high
compared to FP backscattering coefficients, the span of CP’s overall accuracy is
less than 10%. The main contributor of lower accuracy was CART and MARSBag.
This indicates that single tree models are less adaptable to this situation. Modern data
mining models, in contrast, provided a much consistent outcome. Leaving CART
and MARSBag out, CP yielded overall accuracy between 94.5% and 97.6%, which
is nearly as consistent as FP. Similar conclusion was drawn from a research in
Spanish test site (Lopez-Sanchez et al. 2014), showing competitiveness of CP as an
potential alternative of FP. Likewise, Charbonneau et al. (2010) findings suggested

Fig. 14.2 Probability to obtain suitable accuracy among datasets
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that some CP forms could be able to provide an improved accuracy than the one
given by fully polarimetric decomposition features. This research therefore suggests
that the accuracy produced by CP remains high irrespective of the classification
model being employed.

14.3.2 Performance of Prediction Models

In actual applications such as rice monitoring, complexity becomes bigger with the
abundance of classification models available from the literature. Although modern
classification techniques such as RFs or SVMs have become “standards” in data
analysis, the extent of obtaining an acceptable outcome is generally understudied,
partially because of limited number of publications assessing group of models. In
this research, only ten models were further evaluated, and the overall accuracy is
presented in Fig. 14.3. MARSBag model was found less robust, with the average of
overall accuracy of about 20%. Hence, for the sake of brevity, this approach is
excluded from discussion.

In general, all models yielded sufficiently high results as the average spans around
90%. As expected, CART as the benchmark model in this study provided least
accurate results. SVM and its variant tended to produce a slightly higher overall
accuracy than the remaining models. A previous study favored SVM over other
classification models such as RF (Park and Im 2016), although abundant research
also showed that similarity of performance exists between SVM and RF (Chan et al.
2012; Attarchi and Gloaguen 2014) or neural networks (Yousefi et al. 2015).
Competing algorithms such as tree-based models (RF and GB) have a slightly
lower average. Nonetheless, the difference appears insignificant; therefore one
may expect comparable capability among modern data mining methods.

Fig. 14.3 Model performance
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Interestingly, frequently neglected models including MARS could well compete
with contemporary classification methods. This is probably due to the nature of
simpler discrimination of only two classes with sufficient numbers of predictors,
which makes the separation straightforward.

14.3.3 Best Performing Data and Models

As previously discussed, Raney decomposition features provided the most promis-
ing outcomes. Capability of separating classes by Raney components is presented in
Fig. 14.4. As shown, some Raney components such as m and χ were less robust for
the discrimination, which suggests a partial disagreement to previous research
(Lopez-Sanchez et al. 2014). In contrast, the remaining features provided a better
proficiency to distinguish waterlogged rice fields. Odd-bounce component, also
known as surface scattering, contributed the most. This is understandable since
radar has interesting ability to detect smooth Earth surfaces like open water. Their
interaction with incoming waves would result a weaker returning signal as the
surface would deflect most SAR waves away from the receiver. Lopez-Sanchez
et al. (2014) reported that surface scattering would remain dominant until the age
about 20 days after sowing. Nonetheless, this situation could vary depending on
many factors, including SAR system parameters (wavelength and incidence angle)
and object properties (genetic varieties, etc.).

Along with odd-bounce, double-bounce scattering also contributed to the dis-
crimination. This is possibly due to wave augmentation after sequential interaction
with ground surface and then rice stalks before returning to SAR sensor. The
phenomenon was previously reported in Japanese rice fields with regular planting
spaces using an L-band sensor (Ouchi et al. 2006). Investigation of FP data in Spain
also indicates similar situation where double-bounce scattering would be in its
existence until about 30 days after sowing (Lopez-Sanchez et al. 2014). Detection
of double-bounce component in waterlogged rice field, therefore, indicates that
sowing has already commenced.

Random (or volume) scattering is a distinctive feature of vegetative cover. Hence,
it is explicable that in-production rice fields have a stronger random scattering
component from vegetative cover. In this specific case, bimodal structure was
observed in waterlogged rice fields. In addition to weak random scattering (nearly
0.1) which suggests the existence of water-dominated pixels, secondary peak at
about 0.35 was observed. Possible reason is that the remaining rice stumps with
small fraction of leaves exist and act as random scatterers. In general, stumps are not
entirely removed from rice fields by local farmers; therefore, they acted as additional
random scatterers in waterlogged fields. Another reason is the inclusion of seedling
plots which are often situated within the field. Spatial resolution of the SAR image
was about 15 m which was quite excessive for small fields and often occupied two
adjacent terraced fields in the northern part of the site. Therefore, a mixed condition
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often occurs within single pixel. This suggests an interesting information that CP
could provide a possibility to identify pure and mixed waterlogged paddy fields.

Although SVM has a greater chance in yielding preferable results (Fig. 14.3),
individual measurement of model performance shows that RF and its variants
consistently achieved the best (Table 14.2). The best performing SVM with radial
basis function (RBF) kernel produced 96.1% accuracy, while least squares SVM
yielded a half percent lower. Previous record showed that least squares SVM was in
favor due to its capability to handle noises and to offer an improved accuracy (Shi
et al. 2009); however, in the case of rice monitoring, significance of SVM variant
was considerably low. In this research, RF and its variant yielded equally; nonethe-
less, in terms of computation time during training phase, weighted subspace algo-
rithm learned much slower than original RF. Hence, preference would be given to
original RF technique for the prediction of the whole scene.

Fig. 14.4 Histogram indicating class separability of each component. Responses from waterlogged
paddy fields are presented in light yellow
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CART’s performance was considerably at moderate level due to its monolithic
decision scheme, although its bagging variant yielded a much appreciable outcome.
The reason to significant contribution includes mechanisms for recursive
partitioning allowing more evaluation during the construction of decision-making.
Although developed in the same era with RF, popularity of GB has considerably
been much lower. This may be linked with slower learning process than RF, which
in turn requires more computing time and may not be the perfect choice when it
comes into implementation of real applications. Performance of GB in comparison to
RF, SVM, and ANN for rural land cover mapping was discussed in Trisasongko
et al. (2017). The research found that GB may compete with RF and SVM in
complex classification problems, without the necessity to tune its parameters.
While modern data mining techniques progressively deliver improvement to the
outcome, many algorithms require detailed parameter settings to achieve the
expected accuracy. It appears that GB and RF algorithms did not well respond to
parameter setting; hence, this may be the main benefit of using both techniques to
seek suitable outcomes despite their slow training procedures. Experiments on
tuning data mining parameters, as discussed above, remain an important subject
for research and should be continuously expanded using various datasets and
problem definitions.

Figure 14.5 shows the outcome of classification using RF model, segmented
using irrigation blocks. Non-rice field land cover classes such as built-up and
waterbodies are masked (colored white) to emphasize the classification result. It is
shown that most central irrigation regions have been in a new planting cycle,
supported by primary irrigation channels. Almost all northern irrigation districts
also commenced new plantation cycle, except Jubung village, which is situated
slightly far from the main irrigation channels. More rice fields in southern irrigation
districts, especially in Ajung and Tegal Besar villages, stayed behind the schedule.

14.4 Conclusion

Capability of monitoring rice fields in very large spatial extent is one of the
significant contributions of remote sensing. With greater options on data selection
recently available, the application needs some insight whether specific sensor is
suitable to the purpose. For many cases in tropical regions, FP SAR data are
favorable due to their richness in information, similar to modern multispectral

Table 14.2 Top five
performing models, all from
Raney decomposition features

Model name Overall accuracy (%)

RF 97.6

RFws 97.6

CARTBag 97.5

GBx 97.2

GB 96.6
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imaging systems. Nonetheless, they have severe consequences in terms of data
generation and processing, leading to current development of CP SAR. To date,
applications of CP are unfortunately understudied.

Similar to FP mode, several forms of CP data are available for research and
implementation. It was found that features derived from Raney decomposition
theorem provided an equally accurate result to conventional FP backscatter coeffi-
cients. Considering lower power requirement than FP, the outcome of this research
suggests that CP could be more efficient in the detection of new planting season in
tropical region. This indicates that spaceborne CP SAR systems such as Japanese
PALSAR-2, Canadian RCM, and Indian RISAT-1 satellites may offer global-scale
information on rice production seasons with reasonable accurateness. The research
also showed that RF, among other modern data methods, was capable to provide
highly accurate estimation without additional tuning experiment. It yielded overall
accuracy about 97%, with negligible difference to its weighted subspace variant. RF
models were in favor for mapping waterlogged fields since they have fewer param-
eter settings, compared to other contemporary approaches. Nonetheless, slow learn-
ing process during ensemble tree modeling as adopted in RF encourages more
studies of learning strategies in the future. Conventional models such as CART
may be used only if it was further improved through bagging mechanisms, yielding a
much improved outcome with insignificant discrepancy to the accuracy provided
by RF.

Fig. 14.5 Prediction map overlaid by irrigation compartments
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Chapter 15
Assessment of Forest Species Diversity
in Sariska Tiger Reserve, Rajasthan, India

Pavan Kumar, Haroon Sajjad, Sufia Rehman, and Purva Jain

Abstract This study makes an attempt to assess tree species diversity in Sariska
Tiger Reserve (STR), Rajasthan, India, using Sentinel-2A data. We collected tree
samples from ten plots in STR through random variable probability selection
method. A total of 62 different species and 584 individual trees were selected from
the plots using a principal coordinates of neighborhood matrices (PCNM). Four
ecological indicator indices, namely, Margalef index (SR), Simpson’s diversity (D)
index, Shannon-Wiener index (H0), and Pielou’s index (J), were utilized for mea-
suring species diversity. Results revealed that Simpson’s diversity (D) index was
more suited for determining species diversity, while Shannon-Wiener index (H/) was
found to be the best index for assessing species richness. The methodology used in
this study can help forest managers, environmentalist, and conservationist for
formulating policies for management of forest ecosystem at various scales. This
approach will be instructive in examining varied tree species and their richness with
Simpson’s diversity (D) index and Shannon-Wiener index (H/).

Keywords Species diversity · Species richness · Simpson’s diversity index ·
Shannon-Wiener index · Sariska Tiger Reserve

15.1 Introduction

Tropical forest as an important repository of terrestrial biological diversity is the most
diverse ecosystem on the earth. Tropical forests act as benevolence for the life forms
living in the tropics and provide natural resources and habitat conditions (Tomar et al.
2013; Thomson et al. 2010; Legendre et al. 2009). These forests play a crucial role in
lessening the effects of global climate change by sequestering carbon from the
atmosphere than any other terrestrial biological community (Fearnside and Laurance
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2004). However, these forests are under degradation due to increasing anthropogenic
impacts and natural adversity (Nagendra 2001; Chiarucci and Bonini 2005; Quéré
et al., Le Quéré et al. 2013). These losses perturb the natural functioning of this
terrestrial biome and strongly influence the carbon emission and diversification of
species (Fahrig 2003; Gibbs et al. 2007). Hence, appropriate policies are required to be
made for maintaining diversification in species and carbon stocks of tropical forests.
Geospatial techniques can help in proper planning and management of species and
carbon stock (Turner et al. 2003). Developing flexible methods from remotely sensed
data allows critical mapping of the elements influencing genre diversity and their
biomass (Hernández-Stefanoni et al. 2011; Gillespie et al. 2008; Balvanera et al.
2002). Forest stand can be scrutinized on the basis of diversity in position, dimension,
and species (Ozdemir and Karnieli 2011; Pommerening 2002; O’Hara 2014; St-Louis
et al. 2009; D’Alessandro and Fattorini 2002). These three aspects of structural
diversity can be utilized for forest management planning. Bettinger and Tang (2015)
codified and optimized tree species diversity amalgamation for the management of
forest on structural basis (Lexerød and Eid 2006; Bettinger and Tang 2015).

The conventional method for estimating biodiversity relied on the evaluation of
diversity at the local level (alpha diversity), species dissimilarities between sites
(beta diversity), and the aggregation of these two measures (Foody and Cutler
2006; Whittaker 1972; Gallardo- Cruz et al. 2009). Understanding and identification
of specified information such as rarity, diversity of species, composition, and threats
are critical for the efficient conservation of biodiversity efforts (Pérez-García et al.
2009; Morlon et al. 2008; Palmer 1995, 2005; Laurance 1991). Examining and
analyzing the spatial distribution of species have long been attracted the attention of
ecologists. However, traditional methods of such assessments are cost-effective and
time-consuming. Geospatial technology, on the other hand, provides timely and
accurate analysis of spatial distribution of vegetation species (He et al. 2009; St-
Louis et al. 2009; Rocchini et al. 2009; Oldeland et al. 2010a, b; Koellner et al.
2004). The chemical and physical attributes of each delineated species can be
assigned with unique spectral signature using remotely sensed data (Palmer et al.
2008; Ferretti and Chiarucci 2003; Kalkhan et al. 2007; Skidmore et al. 2003).

Ground surveys and field inventories partially help in the evaluation of spatial
distribution of plant species. Remote sensing serves as an efficacious source for
obtaining such collateral data at regular interval of time (Dale and Fortin
2002; Chust et al. 2006; Rocchini et al. 2011). Traditional methods generally involve
assessment of influencing the factors of biodiversity like habitat extent and terrain
pattern. Advancement in resolutions of remote sensing data has enabled the
researchers to delineate plant and tree canopies and identification of idiosyncratic
species of trees (Oindo and Skidmore 2002; Fairbanks and McGwire 2004; Rocchini
2007; Feilhauer and Schmidtlein 2009; St-Louis et al. 2009). The parameters derived
through remote sensing data can help in the assessment of distribution; pool of species
and their richness at microlevel is feasible through various remotely sensed derived
data parameters (Bock et al. 2005). Structural and compositional complexity of habitat
can be analyzed either by species indices (NDVI) variability or by establishing spectral
variability using multiple bands (Kirby and Thomas 2000; Rocchini et al. 2005; Fair-
banks and McGwire 2004).
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Spectral signature of species heterogenetic in nature can be determined by analyz-
ing the remotely sensed data (Gallardo-Cruz et al. 2010; Palmer et al. 2002; Haralick
et al. 1973; Wilson 2000). The influence of environment and spatial elements of
biodiversity is currently being given in ecological studies (Oindo and Skidmore
2010; Mejía-Domínguez et al. 2012). The information derived through these studies
can be helpful in assessing diversity based on characteristics of tree species (Jones
et al. 2008). Thus, this study intends to assess diversity of tree species and their
richness using ecological indicator indices. Principal coordinates of neighborhood
matrices (PCNM) was used for analyzing spatial variability of species diversity at
local level (alpha diversity) and species dissimilarities between sites (beta diversity).

15.2 Materials and Methods

15.2.1 Study Area

Sariska Tiger Reserve is located in the Alwar district of Rajasthan. It stretches
between 27�130 N and 27�310 N latitudes and 76�150 E and 76�330 E longitudes
(Fig. 15.1). Its elevation ranges between 200 and 250 meters with the maximum

Fig. 15.1 Location map of the study area
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elevation of 230 m. The average rainfall in the study area amounts to be 621 mm.
The Sariska Tiger Reserve is dotted with diversified landscape including
denudational valleys, rocks, grasslands, and scrub-thorn arid forest (Kumar et al.
2015; Jain and Sajjad 2016b). The vegetation of the reserve can be categorized into
two major classes, i.e., tropical thorn and tropical dry deciduous forest (Jain and
Sajjad 2016a). However, many types of forest can be observed on the basis of
edaphic variations.

The dominant species of the reserve are Anogeissus pendula Edgew., Acacia
catechu, and Boswellia serrata Planch. Acacia catechu and Anogeissus pendula
species are found along the buffer zone of STR (Jain et al. 2016). Other species
identified in the study area are Lannea coromandelica Houtt. and Boswellia serrata
Planch., found along the Aravalli hills in Rajputana to Bundelkhand. These species
are utilized for fuel purposes.

15.2.2 Data Used

Multispectral instrument (MSI) of Sentinel-2A satellite data with 12 spectral bands,
13 spectral channels, and 10 m spatial resolution was procured on September 2017
for developing NDVI indices of the sampled tree species. The effectiveness of
Sentinel-2A data in monitoring land use at optimal ground resolution helps in
monitoring land use/land cover changes due to wildfire, forest change, drought,
urbanization, climate change, etc (Kumar et al. 2013b). Atmospheric and geometric
corrections of satellite image were carried out using image processing software
ERDAS IMAGINE (v. 2014). False color composite (FCC) was developed for
interpretation of different land use/cover categories using element image interpreta-
tion (Kumar et al. 2012, 2013a). Delineated tree species on satellite image were
verified with geo-tagged surface species through ground truth.

15.2.3 Determination of Sample Size and Species Sampling
Distribution

The in situ data were collected from ten different transect plots (Fig. 15.2) of the STR
in both reserved and non-reserved forest areas (Table 15.1). The total number of all
sampled from n random variables is denoted by X1, X2,. . . ..Xn. The distribution for
which all these sample plots were taken is determined by the function Y¼Y(X1,
X2,. . .. . ., Xn). Sample size of transect plots was determined by using the equation:

P Y ¼ y½ � ¼
X

P X1 ¼ x1;X2 ¼ x2; . . . . . . ;Xn ¼ xn½ �
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15.2.4 Data Assembly and Basal Area

The basal area/genera and species/hectare were analyzed for each plot. Diversity
indices of all the sampled species in STR were calculated, and their significance was
determined using the analysis of variance (ANOVA). Basal area (BA) was calcu-
lated as:

A ¼ πr2 ið Þ

where

BA ¼ basal area of the tree (m2)
r ¼ radius (cm)

Tree species were collected from each sampled transect plot. For each species
total number of individual species were determined. Natural log of species was
calculated using total number of individual species. Mean number of genera/ha was
calculated from total no. of species.

Fig. 15.2 Plot layout design of study area
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15.2.5 Empirical Analysis of Species Richness Diversity
and Evenness Indices

The most quantifying matrices to measure the species richness are α diversity and β
diversity. Remote sensing has been widely used for estimating species richness.
Species richness can be determined using very high temporal resolution data (Kark
et al. 2008). Shannon-Wiener index (H/), Margalef index of species richness (SR),
and Simpson’s diversity (D) index were used for determining species diversity, and
Pielou’s index (J) was used for determining species evenness.

15.2.5.1 Shannon-Wiener Index (H/)

Shannon’s index (H0) was utilized to estimate species diversity (Shannon and
Weiner 1949):

H= ¼
XS
i¼1

pi ln pi

where

H/¼ Shannon-Wiener index
pi¼ proportion of individual belonging to species i
ln¼ natural log

15.2.5.2 Margalef Index of Species Richness (SR)

Margalef index was used for evaluating species richness (Margalef 1958; R.
E. Ulanowicz 2001):

SR ¼ S� 1
ln Nð Þ

SR ¼ Margalef index of species richness
S ¼ number of species
N ¼ total number of individuals

15.2.5.3 Simpson’s Diversity (D) Index

Plant diversity increases by species richness and their regularity (Simpson 1949).
Simpson’s diversity index was utilized for determining species diversity:
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D ¼ 1�
P

n n� 1ð Þ
N N � 1ð Þ

n¼ total number of organisms of a particular species
N¼total number of organisms of all species

15.2.5.4 Pielou’s Index (J )

Species evenness was determined following Pielou’s index (Bray and Curtis 1957):

J ¼ H=

ln Sð Þ

J¼ Pielou’s measure of species evenness
H/¼Shannon-Wiener index
S¼ total number of species/sample

15.3 Results and Discussion

15.3.1 Land Use/Land Cover and Forest Stand Structure
Analysis

The LULC classification was prepared using spectral analysis of remote sensing data
and ground truthing. Nine main classes of land use/cover were identified (Fig. 15.3).
Of the total forest area (51%), open forest occupies the largest area. Barren land has
been encroached in settlement and agriculture. Area under different LULC classes
revealed that the largest area was found under open forest (39.4%) followed by
fallow land (24.3%), cropland (16.3%), barren land (9.0%), degraded forest (8.2%),
dense forest (1.1%), water body (0.7%), settlement (0.3%), and forest blank (0.1%).

15.3.2 Forest Type Classification

Six major types of forest species were identified in Sariska Tiger Reserve, namely,
Anogeissus pendula Edgew., Boswellia serrata Planch., Acacia-Ziziphus, Butea
monosperma, mixed forest, and riverine forest (Fig. 15.4). The forest of the study
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area was divided into four density classes, viz., >70%, 70–40%, 40–10%,
and < 10%. Of the total forest area of the reserve (48.78%), about 22.75% area
was under the forest having 40–70% density followed by 16.81% area having
10–40%, 7.83% area having <10%, and 1.13% area having >70% density.

Fig. 15.3 LULC classes
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15.4 Species Diversity

A total of 62 species and 584 individual trees of �10 cm DBH belonging to
43 genera and 23 families were distinguished in 10 transect plots (Table 15.2).
The Shannon-Wiener index (H0) was used to compare species diversity between
transects. The index (H0) for T1–T10 was determined as 1.915, 2.146, 1.04, 0.086,
1.643, 1.819, 2.301, 1.304, 0.139, and 1.017, respectively. Species diversity was
found complex in transect T7, while T4 was simple in composition of species. The

Fig. 15.4 Forest cover type
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Shannon-Wiener index (H0) (ranged between 0.086 and 2.301) in our study was
found to be lower than other tropical forests. However, species diversity cannot be
compared in view of differences in geographical location and different structural
characteristics of species (selection of plot size and diameter). Closeness of the
species to environment evenness is measured by Pielou’s index (J). The maximum
evenness was measured by plotting the individual species with each transect (Bray
and Curtis 1957, Kumar et al. 2014). The highest and lowest values of Pielou’s index
were observed at T10 and T4 transects, respectively.

The biological diversity through the Simpson’s indices is a quantified value to
measure the species richness and evenness (Hernandez-Stefanoni and Ponce-
Hernandez 2004). Simpson’s diversity (D) index was utilized to measure the species
richness in terms of population size of each of the species. Species diversity could
not be assessed effectively by Simpson’s diversity index as T4 and T9 transects had
similar values. Simpson’s diversity (D) index was found to be higher compared to
other indices as the density of the indigenous species was more pronounced than the
other species indices. The more is the species index value of the Simpson’s diversity
(D) index, the more is the value of species individual population present. Simpson’s
diversity (D) index was found to be the best diversity index for determining species
diversity. Similar patterns were observed for species richness (SR). Habitat hetero-
geneity within the transects was assessed using Margalef index of species richness
(SR). Maximum heterogeneity (2.396) was found in transect T7 and lowest (0.245)
in T4. Further analysis revealed more dissimilarities in species between sites.

15.5 Determination of Diversity Through Clustering

The species clustering of transect plot is associated with two methods. One is the
agglomerative method, where the species have their own separate cluster. The
optimum cluster number of any chosen distribution is taken into account in this
clustering method. The second one is the divisive method where probable distribu-
tion of all the individual species is clustered and kept in one sample. The agglom-
erative method is more often usable than divisive methods, because of the usefulness
of Euclidean distance.

In general, if the p variables are measured as X1, X2, . . .,Xp on a species of n plots,
the detected data for transect can be denoted by xi1, xi2, . . ., xjp and the non-detected
data for other transects by xj1, xj2, . . ., xjp.

The Euclidean distance between these two plots is calculated as:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi1 � x j1
� �2 þ xi2 � x j12

� �2 þ � � �� � �� � �� � � þ x1p � x jp

� �2q

The maximum, minimum, and mean values of clustering were determined for
species richness of ten transect plots. The highest clustering species value richness
was assigned by plotting the graphs in the form of the total plot with species richness.
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Clustering pattern was analyzed through plotting of species richness and diversity
indices (Fig. 15.5). The calculated Shannon-Wiener index (H/) from the clustering
showed significant association between the values derived from field species.
Margalef index, Simpson’s diversity (D) index, and Pielou’s index (J) were found
to have lower values of species richness. The increase of clusters (k) does not seem
to have affected the result. The clustering of Shannon-Wiener index increased with k
value.

The clustering value was found to be closer to the species richness value obtained
through filed data. Thus, it is clear from analysis revealed that Simpson’s diversity
(D) index was found to be the best method for determining diversity of species,
while Shannon-Wiener index (H/) was found to be the best method for species
richness.

15.6 Conclusion

This paper examined tree species diversity and their richness in STR, India. Land
use/land cover and trees species types were mapped using Sentinel-2A data. Six
major types of forest species were identified in Sariska Tiger Reserve, namely,

Fig. 15.5 Species richness for clustering with k values
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Anogeissus pendula Edgew., Boswellia serrata Planch., Acacia-Ziziphus, Butea
monosperma, mixed forest, and riverine forest. Ten transect plots of 0.1 ha were
delineated using Chacko’s formula, and from all the selected plots, 62 species and
584 individuals were selected. Height, volume, and diameter at breast height (DBH)
and circumference at breast height (CBH) were measured for each individual species
within 0.1 ha plot. We evaluated the effectiveness of Shannon-Wiener index (H/),
Margalef index, Simpson’s diversity (D) index, and Pielou’s index (J) for assessing
trees species diversity. Tree species richness was determined by agglomerative and
divisive cluster methods. The findings revealed that Simpson’s diversity (D) index
was more suited for determining species diversity, while Shannon-Wiener index (H/)
was found to be the best index for assessing species richness. The methodology
adopted in this study will be instructive for future researches in various forest
ecosystems at spatial scales.
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Chapter 16
Future Challenges and Perspective
of Remote Sensing Technology

Haroon Sajjad and Pavan Kumar

Abstract During the last few decades, the world has experienced a remarkable and
rapid advancement in the field of remote sensing, acquisition of geospatial information
and mapping. The technology has gained momentum in its utilization and application
in different fields. With increased demand of geospatial data, various space-borne,
airborne and ground-based remote sensing technologies have been instigated and put
into venture. Consequently, various research institutes, government agencies as well as
private sectors are excessively utilizing this technology for getting timely data. This
has resulted into easy accessibility and utilization of remote sensing data for finding
solutions to more complicated problems. However, it experienced many challenges.
Handling large volume of data and complex data formats with complex processing is a
major issue to be tackled. Hence, real-time data processing and open GIS conversing
data formats will go a long way for better utilization of spatial data. The technology
has wide potential in analysing land, vegetation and water resources. Landsat, SPOT,
Sentinel, IRS, IKONOS, QuickBird, etc. high-resolution data are in great use for
making inventory and analysing various aspects of human interaction with land, water
and vegetation. In this backdrop, the book presents an overview of the potential
challenges and the perspective of the fast-growing geospatial technology.

Keywords Remote sensing · Potential · Application · Challenges

Earth-observing satellites are increasing in space and remote sensing data are under-
going an explosive growth. These satellites will produce large volume of remote
sensing data and will give rise to complexity and diversity in high-dimensional
characteristics of data. However, it will be extremely difficult for various end users
and advance user communities to efficiently use such traditional remote sensing data
sets. At the same time, data processing and distribution will be a new challenge. It will
also become difficult for user community to maintain the increasing volume of data

H. Sajjad · P. Kumar (*)
Department of Geography, Jamia Millia Islamia, New Delhi, India

© Springer Nature Switzerland AG 2019
P. Kumar et al. (eds.), Applications and Challenges of Geospatial Technology,
https://doi.org/10.1007/978-3-319-99882-4_16

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99882-4_16&domain=pdf


and to build and launch hardware into space. Large volume of data, complex data
formats, different map projections, applications of GIS, communication capability and
processing time are crucial issues for the wide use of remote sensing data. Therefore,
real-time remote sensing data in different formats will help users in analysing future
earth-observing satellite systems. Preprocessing, data format conversing, open GIS
applications and real-time data processing will help in better utilization of future earth-
observing satellite systems.

Remote sensing technology has a wide range of scope from agriculture to urban
and geosciences to disaster management. The study of plant characteristics in the
agricultural field through the crop reflectance at various stages of growth is assessed
to estimate the crop acreage and yield forecasting. It also studies about the identi-
fication of crops and landholding size through high-resolution data. Conventional
visual interpretation method of land use and land cover classification has given way
to high-tech machine learning tools. Remote sensing technology is widely used for
planning and management of forest resources. The technology has proved useful in
assessing forest biomass, deforestation, forest fragmentation, spatial distribution of
tree species, classification of forest, etc. Landsat, SPOT, Sentinel and IRS data are
extensively used in forest resource assessment and management. Very high spatial
resolution data are used for classification and identification of built-up area in urban
studies. Satellite sensors like IKONOS and QuickBird with high spatial resolution
(<1 m) are used for cadastral mapping and urban planning. However, the growth of
urban built-up, urban agglomeration and urban sprawl can be assessed using mod-
erate resolution data acquired through Landsat, Sentinel and IRS sensors.

Hyperspectral images are widely used by geologists for identification of rocks
and minerals. However, multispectral images are also used for detection and iden-
tification of geological structures and rock formation with the help of image inter-
pretation keys. Geostationary satellite data is preferred for studying extreme weather
events and cyclone due to its constant monitoring. MODIS and Landsat 8 sensors
having coastal and aerosol spectral band are used for aerosol optical depth. Remote
sensing data along with geographical information system (GIS) has also proved
significant tools for disaster management. Digital elevation model (DEM) is exten-
sively used to analyse the slope instability and occurrence of landslide. Remote
sensing data are also used for mapping the past and current occurrence of landslide
and analysing its trend and patterns. Weather and climate variability analysis,
climate change analysis, natural hazards mapping and vulnerability assessment are
being efficiently carried out with the help of remote sensing and GIS techniques.
Earthquake mapping and flood mapping are also carried out by remote sensing data.
Multispectral, hyperspectral and DEM are utilized for micro-zonation mapping of
earthquake-prone areas, while microwave data along with DEM are extensively used
for assessment of flood inundation.

Remote sensing technology is experiencing shift from optical and multispectral to
hyperspectral remote sensing mainly due to limited spectral bands. Hyperspectral
remote sensing or imaging spectroscopy has invited the attention of researchers since
the last decade or so. First sensor of imaging spectrometer (Hyperion) was launched
into orbit in 2000. Subsequently, access to such data became easier due to availabil-
ity of various imaging spectrometer sensors, namely, HyMap, DAIS and AVIRIS.
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These sensors record spectral signature with hundreds or thousands of elements from
a pixel in a targeted area. Hyperspectral remote sensing improves the capability of
object identification in extremely harsh conditions due to the availability of large
number of spectral bands. However, unmanned aerial vehicles (UAVs) are used
nowadays for monitoring and collecting of data for small areas. Flexibility to sensor
selection in UAVs has made it easy to collect data as per requirement.

The main challenges for remote sensing technology are preprocessing and vali-
dation. Various remote sensing data products are available for site-specific
researches, but their resolutions varied from each other. For example, the assessment
of forest fire needs high spatial and temporal resolution data. This is not possible for
one sensor to provide both high resolutions, for example, if MODIS data is utilized
for assessing forest fire, it will provide high temporal resolution of 1 day but will
yield poor spatial resolution. Similarly, real-time flood assessment needs high
temporal and spectral resolution data for bypassing cloud cover and detecting
water spread. Hyperspectral remote sensing data with high spectral resolution will
hold promising key to the solution to the future challenges of remote sensing
technology. This will reduce the time of image processing for various spectral
bands. However, hyperspectral remote sensing data will also need to be specifically
enhanced for spatial resolution for providing better results. Hyperspectral image
needs large storage and heavy processing configuration which will be a hurdle for
digital image processing. Finally, remote sensing model validation is a complex task
for researchers. There are large numbers of models based on remote sensing data
applied by the researchers in various fields. All mathematical models don’t have
compatibility with all sensors, and these also don’t work in all geographical loca-
tions. Therefore, validation of model is essential with in situ data. The on-ground
data can also be utilized for model improvement through its integration with remote
sensing data. This will improve the accuracy of results carried out by remote
sensing data.
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