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Chapter 7
Developing the Mathematical Eye Through 
Problem-Solving in a Dynamic Geometry 
Environment

Maria Alessandra Mariotti and Anna Baccaglini-Frank

7.1  �Introduction

Images play different roles, but they play a key role in human thinking and, gener-
ally speaking, in human mental activities. It is a familiar experience to have images 
accompanying our thoughts either in fantasying or in trying to solve a difficult 
mathematical problem. And it is exactly in solving problems that very often we look 
for help from images, for instance, by sketching a drawing on a sheet of paper; this 
is what Pólya (1957) wrote in his book How to Solve It, opening the discussion on 
figures in geometry:

Figures are not only the object of geometric problems but also an important help for all sorts 
of problems in which there is nothing geometric at the outset. Thus, we have two good 
reasons to consider the role of figures in solving problems. (p. 103)

Starting with the seminal work of Alan Bishop (1980, 1983), studies on visualiza-
tion have been developed (Presmeg, 2006) recently focusing on specific aspects of 
the relationship between images and mathematical thinking. The advent of digital 
technologies has opened a new direction of investigation on how specific digital 
environments might affect conceptualization processes and problem-solving in 
mathematics (Arcavi & Hadas, 2002).

A first fundamental result from the studies on visualization is about reflecting 
upon the use of a varied and vague set of terms commonly used in the current lan-
guage both for referring to the internal and the external context – such as visualization, 
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visual thinking, mental images, drawing, figures and schema – in order to establish 
a shared terminology.

According to Presmeg (2006), visualization can be characterized in the follow-
ing way:

[…] visualization is taken to include processes of constructing and transforming both visual 
mental imagery and all of the inscriptions of a spatial nature that may be implicated in 
doing mathematics (Presmeg, 1997). This characterization is broad enough to include two 
aspects of spatial thinking elaborated by Bishop (1983), namely, interpreting figural infor-
mation (IFI) and visual processing (VP). (p. 206)

As Bishop (1989) clearly pointed out, there seems to be a contrast between positive 
aspects and pitfalls related to visualization. On the one hand, starting from the origi-
nal work of Krutetskii (1976), mainly based on experts’ experience/reports, authors 
claimed the value and the power of visualization; on the other hand, the first studies 
concerning students’ behaviour have highlighted difficulties related to visualiza-
tion. Among these are the following (Presmeg, 1986):

Especially if it is vague, imagery which is not coupled with rigorous analytical thought 
processes may be unhelpful. (p. 45)

Our aim is that of discussing and clarifying some aspects related to processes of 
visualization in problem-solving in Euclidean geometry. We claim that specific 
visualization skills (the mathematical eye) that are necessary for solving geometri-
cal problems are actively involved in problem-solving processes that take place in a 
dynamic geometry environment (DGE). In the following sections, we start discuss-
ing and clarifying the meaning of the expression mathematical eye. Building on 
previous studies and on the current literature, we introduce specific cognitive con-
structs, which we call visual skills, involved in the elaboration of visual stimuli and, 
which are, consequently, fundamental in solving geometrical tasks. As we illustrate 
how different visual skills are involved in the solution processes of geometrical 
problems, we will see how a DGE can afford the mobilization of the same visual 
skills. Therefore, we claim that not only problem-solving activities can be designed 
with the aim of fostering the student’s development of specific visual skills but also 
that acting within a DGE might strengthen the didactic potential of geometrical 
problem-solving activities and eventually affect the development of the mathemati-
cal eye.

7.2  �Selected Skills Involved in Geometrical Problem Solving 
Using the “Mathematical Eye”

According to the notion of figural concept (Fischbein, 1993; Mariotti, 1995), geo-
metrical reasoning consists of a dialectic between figural and conceptual compo-
nents, so that the solution of a geometrical problem results from a coherent 
interaction between such components. Indeed, geometrical problem-solving is 
based on elaborations of images, both external representations (drawings on the 
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paper or drawings on the screen) and internal representations (mental images). This 
is why we are interested in studying processes involved in treating images and, spe-
cifically, in describing and explaining how spatial properties of images are noticed, 
identified and interpreted geometrically, and eventually linked together logically in 
a conditional statement.

For instance, how can it happen that, looking at a scribble on a piece of paper 
(see Fig. 7.1), the observer thinks of “a square”? Or, similarly, looking at a moving 
image on the screen, the observer suddenly exclaims, “it is a parallelogram!”?

Though these experiences may be considered common to any student who has 
learned a bit of geometry, other more sophisticated experiences are common for 
expert mathematicians, thanks to a high level of competence in the treatment of 
images that supports problem solving in geometry; we can call such competence the 
mathematical eye.

In the following, we will be assuming that the process of perception occurs 
thanks to specific mental schemes that allow us to interpret visual stimuli, that is, to 
transform them into a coherent perceived image. The internal elaboration that occurs 
in our brains can be modelled through these mental schemes that we will be talking 
about in terms of skills because of their important role in problem solving and, spe-
cifically, in the process of geometrical problem solving. In this section, our intent is 
not to be exhaustive in describing all skills that allow the mathematical eye to func-
tion; instead, we introduce a selection of specific skills, and we identify and describe 
their roles in processes of problem solving.

The following skills are elaborated based on the theory of figural concepts 
(Fischbein, 1993), Duval’s theory on cognition in geometry (Duval, 1994, 1998) 
and on the literature in cognitive psychology on visual-spatial abilities (e.g. Cornoldi 
& Vecchi, 2004). In the following we will refer to these skills as visual-geometrical 
skills, considering them as a possible characterization of what we call the “mathe-
matical eye”.

•	 Identification: immediate identification of a geometrical property of a figure on 
the plane or in space, with a goal in mind; this skill echoes Duval’s perceptual 
apprehension and the visual-spatial abilities of visual organization and (planned) 
visual scan applied to the context of geometry.

Fig. 7.1  Scribble that 
could be recognized as a 
“square”
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•	 Reconstruction: reconstruction of a figure from parts that are not correctly orga-
nized in space or that are not visible. This skill echoes an aspect of Duval’s 
operative apprehension (1995a, 1995b) and the reconstructive visual ability 
(Cornoldi & Vecchi, 2004).

•	 Construction: construction of a representation of a figure, taking into account the 
use of tools and the construction sequence. This skill echoes Duval’s sequential 
apprehension and the visual-spatial ability referred to as reconstructive visual 
ability.

•	 Part-whole awareness: abstract a part of the figure and consider it separately 
from the rest; this skill echoes Duval’s attention to relevant subconfigurations 
and is described by Hadamard (1944, p. 80) as the ability to “abstract some spe-
cial part of the diagram and consider it apart from the rest”.

•	 Manipulation: manipulating a figure to transform it. This skill echoes the visual-
spatial ability of image manipulation and aspects of Duval’s operative 
apprehension.

•	 Theoretical control: mentally imposing on a figure theoretical elements that are 
coherent in the theory of Euclidean geometry; this skill allows to “see” a figure 
in relation to verbal statements describing its geometrical properties. Moreover, 
it allows the solver, in Hadamard’s words, to achieve a “simultaneous view of all 
elements of the argument, to hold them together, to make a whole of them in 
short”, and “understanding the […] proof” (1944, p. 77). Consistently, we will 
also speak of advanced theoretical control intending to mean how the mathemati-
cal eye can bring an expert to automatically make use of sophisticated (for a high 
school student) mathematical notions to “see” aspects of a figure that are invisi-
ble to a less trained eye. Examples would be seeing a configuration “modulus 
similarity or translation” or declaring certain points “inessential” in the manipu-
lation of a figure. This skill echoes aspects of Duval’s discursive apprehension, 
and operative apprehension, and Fischbein’s conceptual component of a figure.

There are two more visual-geometrical skills, which, for their specific role in 
geometrical reasoning, will be more widely described in the following sections: 
geometric prediction and crystallization.

7.2.1  �The Skill of Geometric Prediction

In solving a geometrical problem, reasoning is heavily guided by the goals the 
solver has in mind: for example, identifying geometrical properties of a figure and 
classifying it is a different process from identifying properties that need to remain 
invariant as a manipulation of the image is performed. Indeed, a process that seems 
rather frequent in geometric reasoning is to mentally manipulate a figure and imag-
ine how it will change given certain constraints, that is, maintaining certain proper-
ties invariant. Such process can be carried out through the use of the various skills 
listed above, but it is so common for experts to use it as a skill in its own right that 
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we will call it geometric prediction1. With geometric prediction, we intend the iden-
tification of particular properties or configurations of a new figure, arising from a 
manipulation process. This process does not seem to be precisely described in the 
psychological literature; however it appears to be coherent with respect to the 
notions of anticipatory image (Piaget & Inhelder, 1966) and anticipatory schemes 
(Neisser, 2014), which suggest an ability to make predictions, orienting both per-
ception and imagination, in the presence of a specific goal.

7.2.2  �The Skill of Crystallization

Dynamism seems to be a component of experts’ reasoning. Indeed, the skills of 
manipulation and of geometric prediction involve “movement” of the figure. If this 
movement is imagined by the solver, it may appear in different forms. For example, 
some may imagine a continuous deformation of the figure and others a “generic” 
figure that has at the same time infinite realizations that the solver can “move across” 
selecting the most useful ones. The use of movement (of any type) involves a tem-
poral dimension in this kind of reasoning, which has been well documented in the 
literature, especially in reference to the use of a DGE during geometrical explora-
tions. These were initially developed and used by mathematicians during their pro-
cesses of problem solving, thanks to the possibility they offer to “externalize the set 
of relations defining a figure” (see, e.g., Laborde & Laborde, 1992; Laborde & 
Straesser, 1990).

Indeed, Laborde, speaking of a specific DGE, Cabri-Géomètre, states:

The nature of the graphical experiment is entirely new because it entails movement. The 
movement produced by the drag mode is the way of externalising the set of relations defin-
ing a figure. The novelty here is that the variability inherent in a figure is expressed in 
graphical means of representation and not only in language. A further dimension is added 
to the graphical space as a medium of geometry: the movement. (1993, p. 56)

In this context, geometrical properties are interpreted as invariants (Laborde, 2005):

A geometric property is an invariant satisfied by a variable object as soon as this object 
varies in a set of objects satisfying some common conditions. (p. 22; emphasis added)

Therefore, the identification of invariants is also an important skill, constituting the 
mathematical eye.

Moreover, as the solver produces conjectures as part of the solution process, s/he 
can find him-/herself in the need of crystallizing an experimental situation by elimi-
nating the temporal dimension to move to conditional statements. Research has 
shown that this is not always a spontaneous process. Some research has been con-
ducted on processes of generation of conditionality (PGC) (Boero, Garuti & Lemut, 
1999; Boero, Garuti & Mariotti, 1996). We will touch upon this again briefly in the 
analyses.

1 This construct has also been used in a recent study by Miragliotta, Baccaglini-Frank and Tomasi 
(2017) and is being used in the doctoral work of Miaragliotta (Miragliotta and Baccaglini-Frank 
2017, 2018).
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7.3  �Skills Involved in Problem-Solving Processes: Analyses 
of Two Problems

In this section, we give two examples of problems and provide a priori analyses of 
how the mathematical eye, described through the previous visual-geometrical skills, 
might guide possible solution processes. The first problem is rather classical, typi-
cally found in Italian geometry textbooks (and indeed it is a translation of one such 
problem), for the fact that it explicitly states what is to be proved, given the described 
construction. The second is an “open problem”, less typical in the curriculum, but 
with the potential of fostering development of the mathematical eye, because of the 
skills it is necessary to use to solve it. Moreover, it lends itself quite naturally to be 
explored within a DGE, which can support the development of such skills thanks to 
its affordance of specific tools that will be analysed in a later section.

In the following analyses of this section, we imagine working without the sup-
port of a DGE.

7.3.1  �Visual-Geometrical Skills Used in Solving a “Prove 
That” Problem

Problem 1: Finding triangles with equal area
Given a triangle ABC and the midpoint D of side BC, consider a point E on 
segment BD and construct line AE and the parallel to AE through D. This line 
intersects AC in F. Construct segments AD and EF; these segments intersect 
at H. Prove that triangles EHD and FHA have the same area.

What are key geometrical problem-solving skills that come into play?
The solver will probably first use the construction skill to produce a representa-

tion of the figure described in the problem, and s/he might wonder whether triangles 
FHA and EHD are congruent in general. Without further questioning, s/he may 
simply assume this and attempt to prove their congruence by  trying to apply the 
triangle congruence criteria (if the triangles can be proved to be congruent, then of 
course their areas will be congruent).

However, if the image that is first realized following the construction steps looks 
like our Fig. 7.2, this (incorrect) assumption may not be made.

The solution process is guided by the aim of finding a relationship between the 
two triangles that is not their congruence. The process will start with the identifica-
tion of properties of the figure and in particular of the property “AE parallel to FD”. 
Such property may be identified through a manipulation of the figure: the solver 
may imagine E moving along BD, and as the figure changes, through geometric 
prediction, s/he can notice properties of the figure as those that remain unvaried 
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throughout the manipulation. Though a changing figure might be imagined, the 
dynamism is then eliminated through crystallization of the figure into a “generic” 
configuration. In other words, the mathematical eye will interpret a specific configu-
ration as representing all the characteristic properties and nothing else; in terms of 
figural concepts, the figural and the conceptual components are fully integrated, and 
the drawing is properly controlled (Fig. 7.3).

For example, while the property “EHD congruent to AFH” is not always true, the 
property “AE parallel to FD” is (indeed it is one of the construction properties), as 
well as the (derived) property “triangles AFE and ADE have congruent heights”. 
Notice that to “see” congruent heights, the solver needs to use the skill of recon-
struction, as no segments corresponding to the heights are included in the construc-
tion given in the problem. These properties are key in solving the problem, because 
triangles AFE and ADE, having the same base AE and congruent heights, must have 
the same area. Identification of these properties is guided by theoretical control over 
the figure. Indeed, the following theorem needs to be recalled: “Given a triangle 
ABC, all triangles with the same base AB and the third vertex on a line parallel to 
AB through C have the same area”. Such theorem could be recalled in a dynamic 
form, for example, with the third vertex “moving” along the parallel line through C.

However, the solution of the problem is possible only through awareness of a 
specific part-whole relationship, that is, each of the two triangles AFE and ADE can 
be seen as made of a common part AEH and one of the two triangles AHF and 
EHD. From such awareness the solver can deduce the equivalence of the two tri-
angles AHF and EHD, as it was to be proved.

Fig. 7.2  Possible figure 
obtained by accomplishing 
the construction described 
in Problem 1

Fig. 7.3  Possible outcome 
of a (mental) manipulation 
of the constructed figure 
for Problem 1 by changing 
the position of E on BD
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There are different reasons why the solver could be led to perceiving the key 
properties, “common base AE” and “equal heights” of AHF and EHD. The follow-
ing two reasons we consider come from somewhat opposite directions of reasoning, 
but they include the same geometrical ingredients and similar activity of the math-
ematical eye.

	1.	 In an attempt to identify significant (for the problem) properties starting from the 
configuration, the solver can manipulate the figure, imagining E to vary on seg-
ment BD or the triangle ABC to vary. Thanks to geometric prediction, this can 
lead to noticing that there are very few “special” properties in the figure, so it 
may be rather straightforward to identify the parallelism of AE and FD (a con-
struction property), seen as constancy of the distance between the two lines and 
of any other consequent properties; this may be promoted also through theoreti-
cal control over the figure.

	2.	 On the other hand, the solver can think about the conclusion (“area EHD = area 
FAH”) and reason about these surfaces, thinking about how to decompose them 
or see them as part of greater surfaces, thanks to part-whole awareness (as 
described above at the end of the first process outlined). In this case, triangles 
AFE and ADE may be seen as made of the “parts” AHE (common), EHD and 
FAH; the solver may attempt to search for an argumentation leading to the prop-
erty “area AFE = area ADE” and in doing so identify their property of sharing a 
base and having congruent heights (that s/he “sees” thanks to the skill of 
reconstruction).

At this point, through part-whole awareness, AE can be seen as the common base of 
two triangles with the same height, and thanks to the same skill, these triangles can 
then be decomposed into two parts each, of which one (AHE) is common. S/he can 
conclude that the areas of AFH and HED are equal because these triangles are parts 
of congruent triangles to which a common region (AHE) is subtracted.

The first form of reasoning seems to be heavily based on identification of rele-
vant (to the problem) properties, thanks to manipulation and geometric prediction, 
guided by theoretical control over the figure.

The second form of reasoning seems to depend much more on the solver’s skills 
of recognizing the geometrical rather than the algebraic nature of the area searched 
for: instead of focusing on the product of two numbers, focusing on the product of 
two segments (one side and the height relative to it).
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Problem 2: Finding possible types of quadrilaterals a constructed figure 
can become
Let A, M and K be three points, and construct B as the symmetric point of A 
with respect to M, and construct C as the symmetric point of A with respect to 
K. Construct the parallel line l to BC through A and the perpendicular line r to 
l through C. Let D be the intersection of l and r. Make conjectures about which 
types of quadrilaterals can ABCD be (Fig. 7.4).

D

C

B

A

K

M

Fig. 7.4  Figure obtained 
following the construction 
steps in Problem 2

One way to proceed in solving Problem 2 is to construct a figure and proceed to 
identify properties of the quadrilateral ABCD. The variable points are A, M and 
K. Properties can be identified by manipulating mentally the figure, for example, by 
thinking of moving points A, M or K. The properties constructed will definitely be 
invariant (the parallelism of AD and BC, the perpendicularity of BC and CD, AM 
= MB, AK = KC), but also properties that are logical consequences of these in the 
theory of Euclidean geometry can be identified during any manipulation and pro-
cess of geometrical prediction (e.g. CD perpendicular to DA, KM parallel to CB, 
KM = 1/2 CB). Of course, to identify such properties, it is also necessary to have 
good theoretical control over the figure.

Through manipulation, an expert mathematician may imagine inducing move-
ment on ABCD to explore possible configurations, realizing, as a colleague once 
reported, that M and K act as a sort of “handles” for moving B and C. The expert 
might quickly realize this because of the fixed (by construction) relationships 
between A, M and C (AM/MC = 1/2) and A, K and B (AK/KB = 1/2). Indeed, 
experts interviewed on this problem have answered that “no matter what fixed 
ratios” there were between these sets of points, “M and K are inessential” in the 
manipulation of the quadrilateral. This seems to be an automatic process (the expert 
says it is “natural and immediate”), characteristic of the mathematical eye of an 
expert. This automatized process has surely been reached through years of 

7.3.2  �Visual-Geometrical Skills in Solving an “Open Problem”
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experience in “looking at” and “working with/talking about” mathematical objects. 
In other words, the trained mathematical eye, thanks to advanced theoretical control 
acquired over the years, guides the exploration process and the choices of features 
of the figure that are “relevant”.

Once these properties have been identified, the solver can advance a conjecture 
such as “ABCD is (always) a right trapezoid”, which can easily be proved using the 
theorems that allowed him/her to infer “CD perpendicular to DA” from the con-
struction properties. The expert may also make a claim like “The types of quadrilat-
erals that can be obtained depend only on the choice of K”, arguing that a type of 
quadrilateral is determined “modulo similarity and rotation”, so A and M can be 
thought of as fixed. Again, the mathematical eye must be quite experienced and 
well-trained to be able to see “modulus similarity and rotation”.

What other types of quadrilaterals can ABCD be? Using his/her knowledge of 
how quadrilaterals can be theoretically classified, the solver can list other possible 
types of quadrilaterals to test, as subtypes of right trapezoids with a second pair of 
parallel sides (rectangles, including squares). The solver can perform manipulations 
of the figure, guided by theoretical control and by part-whole awareness through 
which specific subconfigurations can be searched for and identified.

At this point, in a possible attempt to construct a figure with the properties listed 
in the problem plus additional properties that will guarantee the figure’s belonging 
to a subtype of quadrilateral, the solver can search for conditions under which the 
subtype may be identified, possibly using geometric prediction.

Conceiving the necessity of the angle at M to be right in order for ABCD to be a 
rectangle may come from noticing, thanks to (possibly advanced) theoretical con-
trol over the figure: (1) triangle AMK is similar to ABC and (2) a right trapezoid 
becomes a rectangle if either of its non-right angles become right (this is a sufficient 
condition).

A conjecture might be advanced such as “If AMK is a right triangle (at M), then 
ABCD is a rectangle”.

7.4  �How Development of the Mathematical Eye Can 
Be Fostered Through Problem Solving in a DGE

In this section, we analyse possible solution processes of the two problems intro-
duced above when these are solved within a DGE. From the analyses, we will show 
how the tools in the DGE can support the solver’s solution process, either support-
ing the use or compensating for the weakness of certain visual-geometrical skills 
and eventually developing the mathematical eye. These analyses will lead into our 
hypotheses on how the development of certain geometrical exploration modalities 
can be fostered within a DGE through appropriately designed activities.
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7.4.1  �Analysis of a Solution Process of the “Prove That” 
Problem Within a DGE

Within a DGE, the first step is generally to realize a construction that incorporates 
all the properties given in the problem. So the solver will need to use his/her skills 
of construction, determining which commands to use from the menus in the DGE to 
incorporate properly each property  into the figure described in the problem’s 
hypothesis: in this case D as the midpoint of BC, E as a mobile point “attached to” 
segment BD and DF as the parallel through D to AE. In order to guide processes of 
identification and part-whole awareness, the solver may also decide to highlight the 
surfaces of the two triangles AFH and EHD (Fig. 7.5). In doing this, the solver is 
supported by the DGE that carries out the constructions correctly and precisely; this 
is something that is not guaranteed in a hand-made drawing.

The solver might now try to identify properties of the triangles AHF and EHD, 
as crystallized invariants as s/he manipulates the figure. However, unlike in the pre-
vious cases analysed without the DGE, here the solver can physically drag points of 
the figure; so the DGE becomes responsible for much of the theoretical control over 
the figure and compensates the solver’s geometric prediction ability, showing the 
result of each manipulation instantly (e.g. see Figs. 7.6 and 7.7).

These manipulations may allow the solver to notice, for example, that the prop-
erty “triangles AFH and EHD are congruent” is not true in general; indeed, some 
results of the manipulations (dragging) can be identified as counter examples to 
such a property.

Through such (physical) manipulations, the solver can search for invariant prop-
erties, identifying them through a process of crystallization in which dynamism is 
eliminated and a particular configuration (product of the crystallization of an invari-
ant) becomes the figural component of a figural concept – an identified property. 
This may occur even for invariants that were defined by the steps of the construction 
(we have evidence of this in various students’ protocols); in this case, for example, 
it could occur for the property “AE parallel to FD”.

Fig. 7.5  Possible figure obtained by accomplishing the construction described in Problem 1 in a 
DGE
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Now, the solver might refer to his/her theoretical knowledge and ask him-/herself 
what can be inferred from segments being parallel, and this could lead to the iden-
tification of congruent segments, perpendicular to the parallel lines, seen as an indi-
cation of the lines always having a “same distance”. This way, through reconstruction, 
two segments could be seen in the figure and actually constructed in the DGE. Since 
points A, E, F and D are visible in the figure, it is likely that the solver will choose 
to construct the segments through two of these points and, possibly, from two points 
on the same line because of the types of images s/he might be familiar with (Fig. 7.8).

This choice – which may happen without a conscious decision being made by the 
solver – can guide the part-whole awareness and, thanks to theoretical knowledge, 
help noticing triangles with a same base and congruent heights and thus identifying 
properties such as “triangles AFE and ADE have congruent heights”, “triangles 
AFE and ADE have base AE in common” or (if the distances from A and E to FD 
were drawn) “triangles DFA and DFE have congruent heights” and “triangles DFA 
and DFE have base FD in common”. Moreover, the solver can identify the theorem 
relating the two properties noticed: “Given a triangle ABC, all triangles with the 
same base AB and the third vertex on a line parallel to AB through C have the same 
area”. Of course, as described in the preceding solution process for Problem 1, 
much of the whole solution process may be guided by the solver’s identifying a 
proper configuration of such a theorem within the figure on the screen.

Fig. 7.6  Possible outcome 
of a manipulation through 
dragging of the constructed 
figure for Problem 1 by 
dragging E along BD

Fig. 7.7  Possible outcome of a manipulation through dragging of the constructed figure for 
Problem 1 by dragging vertex A of the triangle ABC
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Finally, as in the previous solution process, the solution can be reached through 
awareness of a specific part-whole relationship, that is, both of the two triangles 
AFE and ADE can be seen as made up of a common part AEH and of one of the 
triangles AHF and EHD. From such awareness, the solver can deduce the equiva-
lence of the two triangles AHF and EHD, as it was to be proved.

Compared to the solution process described previously, we highlight how the 
skill of geometric prediction plays a much more minor role in the context of the 
DGE because the software exercises on the figure the theoretical control that the 
solver would have to otherwise exercise him-/herself. Instead, in the DGE, the 
solution processes typically involve crystallization, a skill that seems less domi-
nant in geometrical problem-solving with paper and pencil. As a matter of fact, 
in a DGE, the solution might be achieved, eliminating dynamicity and grasping 
the invariance of a relation between properties, in other words recognizing the 
occurrence of a theorem.

7.4.2  �Analysis of a Solution Process of the “Open Problem” 
Within a DGE

The solver can start by constructing a dynamic figure incorporating the properties 
described in the problem, in this case: C symmetric to A with respect to K, B symmet-
ric to A with respect to M, DA parallel to CB and CD perpendicular to DA (Fig. 7.9).

The solver can manipulate the figure dragging A, M or K and see (on the 
screen) the effect of the dragging of any of these points. In doing this s/he can 
identify the property “ABCD  is a right trapezoid”, as a crystallized invariant 
emerging from all the configurations that appear. The identification of this prop-
erty may not require the reconstruction and part-whole awareness skills (to realize 
that only the angle ADC is right by construction, while angle DCB is right as a 
consequence of the construction properties), since the quadrilateral ABCD may 
be perceived as a dynamic whole. A first conjecture like “ABCD is always a trap-
ezoid” may be put forth.

Fig. 7.8  A DGE figure in 
which segments showing 
the parallel lines AE and 
FD having the “same 
distance” are shown
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Then the solver may ask him-/herself what other types of quadrilateral ABCD 
can become, theoretically controlling the possibilities by recognizing that the quad-
rilateral can only become subtypes of a right trapezoid, that is, rectangles or squares.

The exploration (and solution process and products) changes based on which 
points the solver drags (we are assuming to be in a DGE in which only one point at 
a time can be dragged). For example, manipulating the figure by dragging M, the 
solver can search for “good positions”, positions in which the property “ABCD 
rectangle” can be identified (Fig. 7.10).

The solver can also search for regularity in the movement of a certain point s/he 
decides to drag. For example, if K is dragged, and the solver is trying to figure out 
“when ABCD is a rectangle”, s/he will have to drag K along a line, and not just any 
line, the line through M perpendicular to AM. This line (in this case actually the 
geometrical locus of the points M such that ABCD is a rectangle) can be discovered 
without exercising much theoretical control over the figure but instead other skills, 
including eye-hand coordination and crystallization transforming the regular 
“straight” movement of K into a geometrical property, such as “K belongs to the 

Fig. 7.9  Possible figure 
constructed for Problem 2 
within a DGE

Fig. 7.10  The figure is 
manipulated by dragging 
M as the solver searches 
for “good positions” in 
which ABCD is a rectangle
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perpendicular to AM through M”. Such process can be fostered through a tool 
offered by the DGE that is the trace mark activated on the dragged point (Fig. 7.11).

This particular way of dragging while trying to maintain a desired property has 
been referred to as maintaining dragging (Baccaglini-Frank & Mariotti, 2010), and 
we consider it a potential support for mobilizing specific visual skills for the 
problem-solving in a DGE.

If A is dragged, a similar regularity in its induced movement can be crystallized 
and another property identified: “A belongs to the line through M and perpendicular 
to MK”. Carrying out the maintaining dragging and identifying that property may 
stimulate the skill of geometric prediction as, for example, when a path is marked 
by the trace. Now, the simultaneous presence of two identified properties can be 
crystallized into the conditional statement (a conjecture): “if A belongs to the line 
through M and perpendicular to MK, then ABCD is a rectangle”.

Finally, if M is the dragged point, the solver can crystallize and identify the prop-
erty “M belongs to the circle with diameter AK”, and the simultaneous presence of 
two identified properties can be crystallized into the conditional statement (a con-
jecture): “If M belongs to the circle with diameter AK, then ABCD is a rectangle”. 
In our research, we have witnessed the possibility that solvers, before expressing 
their conjectures, linking the identified properties, decide to construct the property 
that will become the premise of their conditional statement in order to obtain a fig-
ure in which the whole conjecture, if correct, can be identified and possibly crystal-
lized (Fig. 7.12).

Therefore, based on the point dragged, the solver may make a number of differ-
ent conjectures that vary in the condition added to the construction to obtain a rect-
angle and, possibly, in the terminology used to express the conjecture itself. The 
conditions may be the following: “K belongs to the line perpendicular to AM 
through M”, “A belongs to the line through M perpendicular to MK”, “M belongs 
to the circle with diameter AK” and “AMK is a right triangle (in M)”. Based on the 
results of our research, we can definitely conclude that the last condition was the 

Fig. 7.11  What is shown 
on the screen in a DGE 
when the trace mark is 
active on the dragged point 
D as the solver tries to 
maintain the property 
ABCD rectangle
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least common in students who used maintaining dragging to reach their conjectures 
in this problem (for further details, see Baccaglini-Frank, 2010a).

The conjecture may not contain only “static”, crystallized words; indeed, if 
dynamic explorations are carried out, our studies (and many others) have shown that 
students use expressions like “A moves on a line”, “ABCD is a quadrilateral when 
[a certain condition is verified]”, “in order for ABCD to remain [a rectangle], the 
point has to move [in a certain constrained way]” or even “when I move the point 
[on some path], then ABCD stays a rectangle”.

Speaking about the visual-geometrical skills involved in reaching such conjec-
tures, we wish to briefly comment on how crystallization may contribute to the 
solver’s reaching a conjecture as a product of the problem-solving process in a 
problem like the one described. The skill we have described as crystallization and 
used in the analyses has important roots in the literature, especially regarding stud-
ies of students’ “processes of generation of conditionality (PGC)” (Boero et  al., 
1996, 1999).

In particular, processes like the one we have described echo processes described 
by Boero and his colleagues, such as the following PGC.

The conditionality of the statement can be the product of a dynamic exploration of the 
problem situation during which the identification of a special regularity leads to a temporal 
section of the exploration process, that will be subsequently detached from it and then 
“crystallize” from a logic point of view (“If…, then…”). (Boero et al., 1996, p. 121)

Studying processes of conjecture generation in open problem situations in a DGE, 
we found that PGCs, as described by Boero and colleagues, seem to be present dur-
ing the processes analysed (Baccaglini-Frank, 2010a) and also that a new element 
comes into play: continuity that is induced by the specific kind of motions that 
occurs in the DGE. Indeed, the examples provided for the PGCs in literature have 
mostly been of a “discrete” nature, the use of dragging in the processes of conjec-
ture generation attributes a new “continuous” nature to the processes. We note that 
although dynamism seems to provide support for the processes of conjecture 

Fig. 7.12  M can be linked 
to the circle with diameter 
AK so that the figure 
embeds properties “M 
belongs to the circle with 
diameter AK” and, as a 
consequence, “ABCD is a 
rectangle”
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generation like the ones described, making it more “natural”, it may turn into an 
obstacle as far as the aim to formulate conjectures within the “static” theory of 
Euclidean geometry is concerned, where it becomes necessary to “eliminate” time.

Going back to the analysis of the open problem solved within a DGE, a final 
consideration can be made in how the role of the mathematical eye can contribute. 
While for some students, the three premises in the conjectures (1. “K belongs to the 
line perpendicular to AM through M then ABCD, 2. “A belongs to the line through 
M perpendicular to MK”, 3. “M belongs to the circle with diameter AK”) have noth-
ing to do with one another, the mathematical eye, thanks to advanced theoretical 
control, will allow to condense them into a condition that expresses a general rela-
tionship between A, M and K, such as “AMK is a right triangle (at M)” or “the angle 
AMK is right”. Moreover, as we described in the first analysis of this problem, the 
expert will also exercise advanced theoretical control to reduce the exploration to a 
minimum, for example, deeming the dragging of A and M as “inessential” as the 
configurations can be uniquely determined “modulus similarity and rotation”.

Similar to what we concluded in the other case, here, too, for the open problem 
solved in a DGE, manipulation can be carried out through dragging, offloading from 
the solver much of his/her theoretical control over the figure. Moreover, we high-
light how the skill of geometric prediction plays a much more minor role; however 
it may be stimulated by the solver’s use of a tool such as maintaining dragging, as 
we have described. The use of such tool can be fostered through open problem 
activities like asking for the production of conjectures, like in the case discussed in 
the example. In the problem-solving process in a DGE, the crystallization skill 
seems to emerge much more than in a paper and pencil environment, where, in fact, 
frequently there seem to be no traces of it at all.

7.5  �How Geometric Problem Solving in a DGE Can Foster 
the Development of Skills Pertaining 
to the Mathematical Eye

The analyses presented above have highlighted how certain tools offered within the 
DGE seem to induce the use of particular skills, allowing a less expert solver to take 
part in explorations in which his/her experience resembles that of an expert, thus 
fostering the development of his/her mathematical eye. For example, while the 
expert mentally manipulates the figure and performs geometric prediction, the less 
expert solver can drag and change the configuration, identifying properties (and 
relationships between properties) through the crystallization of invariants. In doing 
this, s/he enriches with dynamism (which cannot be achieved through static images 
drawn on paper) his/her figural components of the geometric concepts involved; the 
dynamism represents variability and generality (for the expert). So, we argue that 
through geometric problem solving in a DGE, it is possible to enhance particular 
skills supporting development of the mathematical eye. The use of some skills, such 
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as crystallization, and other skills associated to the use of specific dragging modali-
ties like maintaining dragging seems to be mostly present within a DGE, but we 
have argued that these can be seen as preparatory and supporting for other skills 
comprising the mathematical eye.

In this section, we take this argument a step further and show a case of how solv-
ers’ expert use of skills associated to maintaining dragging actually fostered the 
development of skills pertaining to the mathematical eye that the solvers were able 
to use without support from the DGE. For this purpose, we will introduce a third 
problem, similar to Problem 2, highlighting design aspects that seem to foster the 
development of desired skills, and then present excerpts from the students’ explora-
tion in which we found evidence of the students’ strengthened geometric problem-
solving skills.

Problem 3
Construct the quadrilateral ABCD following these steps. Construct: a point P 
and a line r through P, the perpendicular line to r through P, C on the perpen-
dicular line, a point A symmetric to C with respect to P, a point D on the side 
of r containing A, the circle with centre C and radius CP, point B as the second 
intersection between the circle and the line through P and D. Formulate con-
jectures about the possible types of quadrilaterals it can become describing all 
the ways you can obtain a particular type of quadrilateral.

The design of this problem is similar to that of Problem 2: the task asked of the 
solver is an open-ended one, in which explorations of the figure are promoted 
through dragging. The processes of problem-solving induced by these kinds of 
problems involve the generating of conjectures as an outcome of various kinds of 
manipulation of the figure. Moreover, our studies have suggested that a request in 
which the solver is asked to describe “all the ways” in which a certain configuration 
may be visually verified can foster the use of certain dragging modalities such as 
maintaining dragging, assuming that this modality is familiar to the solvers (e.g. 
Baccaglini-Frank, 2010a, 2010b; Baccaglini-Frank & Mariotti, 2010).

Coming to the specific construction proposed in Problem 3, when solving the 
problem in a DGE, the figure (see Fig. 7.13) can be acted upon by dragging points 
C, P or D. We will concentrate on dragging D. Among the properties that can be 
identified, there are the properties described in the steps of the construction.

If the solver tries to obtain the configuration “ABCD parallelogram” through 
maintaining dragging, new invariants can be crystallized into geometrical properties 
(e.g. “D lies on a circle CAP with centre in A and radius AP”).

As in the analysis of a solution process for Problem 2, here, too, identification of 
these new properties during dragging can be supported by the use of the trace mark, 
a functionality in most DGEs. The properties that appear to be visually verified 
simultaneously as the figure is acted upon through dragging may be crystallized into 
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a conditional statement, a conjecture (e.g. “If D belongs to CAP, then ABCD is a 
parallelogram”), as the outcome of the problem-solving process. Indeed, our 
research has shown that many solvers who decide to use maintaining dragging per-
ceive a relationship between properties that are simultaneously visually verified on 
a dynamic figure they are manipulating (e.g. Baccaglini-Frank & Mariotti, 2010; 
Leung, Baccaglini-Frank & Mariotti, 2013; Mariotti, 2014)2 (Fig. 7.14).

However, their attempt fails, as shown in the following excerpt3.

2 The process is described in further detail by Baccaglini-Frank and Mariotti (Baccaglini-Frank, 
2010a, 2010b; Baccaglini-Frank & Mariotti, 2011).
3 Adapted from Baccaglini-Frank and Mariotti (2010, pp. 238, 240, 241) with permission from 
International Journal of Computers for Mathematical Learning, copyright 2010, by Springer

Fig. 7.13  A possible result of the construction in the situation described above

Fig. 7.14  Construction of 
the figure in Problem 3 
with which the students are 
working
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What is said [and done] Comments

Gianni: And now what are we doing? Oh yes, for 
the parallelogram?
Francesco: Yes [as he drags D with the trace 
activated] yes, we are trying to see when it remains 
a parallelogram.
Gianni: Yes, okay the usual circle comes out.
Francesco: Wait, because here...Oh dear! Where is 
it going? […] so, maybe it’s not necessarily the 
case that D is on a circle so that ABCD is a 
parallelogram. Because you see, if we then do a 
kind of circle starting from here, like this, it’s 
good, it’s good, it’s good, it’s good [he drags along 
a circle he imagines], and then here… see, if I go 
more or less along a circle that seemed good, 
instead it’s no good…so when is it any good?

Francesco and Gianni seem to have 
conceived a geometric prediction for the 
path along which point D should be 
dragged. This prediction does not seem to 
fit with the shape of the trace mark 
appearing on the screen as Francesco 
performs maintaining dragging. This leads 
the failure of the students’ use of 
maintaining dragging as a physical tool, so 
they abandon it.

Suddenly Gianni expresses the result of a geometric prediction he has carried out 
mentally, thanks to theoretical control he exercises on the figure.

What is said [and done] Comments

Gianni: Eh, since this is a chord, it’s a chord right? 
We have to, it means that this has to be an equal chord 
of another circle, in my opinion with centre in 
A. Because I think if you do, like, a circle with centre.
Francesco: A, you say…
Gianni: Symmetric with respect to this one, you have 
to make it with centre A.
	 […]
Gianni: With centre A and radius AP. I, I think…
Francesco: Let’s move D. More or less…
Gianni: It looks right doesn’t it?
Francesco: Yes.
Gianni: Maybe we found it! (Fig. 7.15)

Gianni, who was not dragging, carries 
out a geometric prediction.
The students proceed to construct the 
newly conceived circle along which 
Gianni has imagined D to move.
The identified relationship “if D belongs 
to the symmetric circle then ABCD is a 
parallelogram” is constructed in the 
DGE.

The students seem quite satisfied and formulate the following conjecture explic-
itly: “If D belongs to the circle with centre in A and radius AP, then ABCD is a 
parallelogram”.

What happened to maintaining dragging here? The students continue the explo-
ration mentally as if they were dragging. Gianni seems to be using the maintaining 
dragging tool mentally (Baccaglini-Frank, 2010a, 2010b). Therefore, the conjectur-
ing process relies entirely on his theoretical control over the figure.

In this case, geometric prediction, paired with theoretical control, plays a key 
role in the process of problem solving. We conjecture that this way of thinking was 
fostered by Gianni’s extensive experience using maintaining dragging as a physical 
tool that strengthened his theoretical control and geometric prediction skills to the 
extent that he was able to take-upon himself to manipulate the figure, controlling its 
conceptual components and carry out an accurate geometric prediction. In sum-
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mary, looking at the transcript, we can infer that this prediction was possible for him 
because the combination of visual-geometrical skills comprising his mathematical 
eye allowed him to “see” the circle with centre in A as the image of the circle in the 
original construction through reflectional symmetry across r.

This case suggests that appropriation of dragging modalities such as maintaining 
dragging is possible and can lead to strengthening particular visual-geometrical 
skills and, therefore, to development of the mathematical eye. Moreover, specific 
analyses of the case have also suggested that use of maintaining dragging as a psy-
chological tool  (Vygotski, 1978) can bring continuity between the conjecturing 
phase and the proving phase (if students are later asked to prove their conjectures), 
because many theoretical notions become explicit to the solver who can then control 
them at will (Baccaglini-Frank & Antonini, 2016).

7.6  �Concluding Remarks

The aim of this chapter was to discuss some aspects related to visualization pro-
cesses in problem solving. We started with the idea of the necessity of a mathemati-
cal eye to successfully perform geometrical problem solving. In order to clearly 
describe what the mathematical eye could mean, we introduced a selection of spe-
cific skills and elaborated on some theoretical constructs, previously introduced in 
the literature concerning cognitive aspects of visualization; we called these visual-
geometric skills.

Our analyses showed how the problem-solving process can be described through 
the combination of different visual-geometrical skills that are necessary in the 
problem-solving process. This raises the educational problem of how it might be 
possible to improve such skills and eventually develop a mathematical eye.

The general hypothesis presented in this chapter concerns the educational role 
played by moving into a dynamic geometry environment, that is, proposing and 
solving a problem with the support of a DGE.

Fig. 7.15  Francesco drags D along the newly constructed circle
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The analyses developed in Sects. 7.3 and 7.4 show how the same visual-
geometrical skills are actively involved in the solving processes but also how the 
functionalities of the DGE can support the emergence and consolidation of these 
skills. For example, in Sect. 7.4 we have shown how specific DGE skills associated 
to a way of dragging points, maintaining dragging, can support the development of 
the skill of geometric prediction.

Moreover, repeated experiences mobilizing the skill of identification and the 
skill of crystallization seem to contribute to the strengthening of the solver’s theo-
retical control; these visual-geometrical skills guide the mathematical eye during 
problem-solving processes. In particular, the visual-geometrical skill of theoretical 
control can be at the basis of the elaboration of a theorem.

Indeed, let us imagine how this could happen if a student who is elaborating the 
theorem “Given a triangle ABC, all triangles with the same base AB and the third 
vertex on a line parallel to AB through C have the same area.” used the first prob-
lem we analysed. The student could be introduced to the theorem in a dynamic 
form, for example, exploring a figure in which a triangle ABC is constructed as a 
segment (AB) and a third vertex C attached to a line parallel to AB. As C is moved 
on the parallel line, the invariant area of the triangle may be identified. Such 
dynamic configuration, with the invariant relationship between C being on the 
parallel line and the constant area of ABC, can be crystallized by the student into 
a statement such as “any triangle with the third vertex C on a line parallel to side 
AB has a given area” or “any two triangles with a common base and congruent 
heights have the same area”, by eliminating the dynamism in favour of awareness 
of the being generic of the configuration. Once the process of crystallization is 
complete, the student will have probably also strengthened his/her theoretical con-
trol, since a new fragment of theory is now at his/her disposal. According to the 
notion of figural concept, the new fragment of theory will not only have a concep-
tual component – possibly expressed in a verbal text – but also a figural component 
encompassed in a crystallized configuration. That means that such a theorem, if 
needed, may be also recalled in a dynamic form, for example, with the third vertex 
“moving” along the parallel line through C.

The analyses presented and these final considerations support our claim that 
problem-solving activities can be designed with the aim of fostering students’ 
development of specific visual skills, which can, in turn, contribute to the develop-
ment of a mathematical eye. 
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