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Preface

This book has its origins in the Problem@Web International Conference, subtitled 
Technology, creativity, and affect in mathematical problem solving, which took 
place in 2014 in Portugal1 (Carreira, Amado, Jones, & Jacinto, 2014). The confer-
ence was the culmination of the Problem@Web research project conducted in 
Portugal (with the support of FCT, the Portuguese research funding agency) and 
was also one of the project outcomes (Carreira, Jones, Amado, Jacinto, & Nobre, 
2016). The event offered an opportunity to share the project results, as well as to 
connect researchers and experts from various parts of the world involved in the 
study of problem solving, taking into account the multiple aspects of this area of 
study. One major aim of the conference was to assemble emerging and cutting-edge 
knowledge on what has been a highly relevant and fundamental subject in 
Mathematics Education research for several decades. The awareness that this field 
of research is invigorating, and has today new extensions, developments, theoretical 
approaches, practical implications, and international relevance, was one of the great 
motivations of the Problem@Web conference.

To a certain extent, following up on the developments and challenges in research 
on mathematical problem solving was an impetus for the Problem@Web project 
that was launched to investigate youngsters’ (aged 10–14) mathematical problem 
solving activity in a context beyond school, namely in the sphere of two mathemati-
cal competitions.2 These competitions are inclusive problem solving competitions, 
involving the use of digital technologies, bringing families and teachers closer to the 
mathematical activity of young people, and generating opportunities for the mani-
festation of mathematical creativity through original approaches to moderate math-
ematical challenges (Carreira et al., 2016).

At the Problem@Web conference, we sought submissions in the three strands of 
technology, creativity, and affect in mathematical problem solving, by considering 
the school context but also others such as mathematical competitions.

1 http://www.fctec.ualg.pt/problemweb2014/
2 http://fctec.ualg.pt/matematica/5estrelas/

http://www.fctec.ualg.pt/problemweb2014/
http://fctec.ualg.pt/matematica/5estrelas
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At the end of the Problem@Web conference, on a beautiful sunny afternoon in 
the Algarve, a range of conference participants gathered to discuss the prospect of 
publishing the research that had been shared at the conference in the form of an 
English-language edited book. The discussion around that enterprise continued and 
evolved in the following months until a general plan was reached. The plan was 
based on the idea of broadening the outlines of the research on specific facets of 
mathematical problem solving seen as pertinent for advancing the field.

The 25 chapters that compose the book are the result of a hard, prolonged, and 
very committed work of a group of authors to whom we, as editors, want to express 
our deep thanks. The contributing authors include people that were presenters at the 
Problem@Web conference, together with other researchers who were later invited 
to join, and who enthusiastically and diligently brought their knowledge, and their 
own research, into the whole. The set of manuscripts denotes the inclusive spirit of 
this publication rooted in a highly participated conference in Portugal. The book 
does this through the diversity of authors’ nations, the participation of young 
researchers as coauthors of chapters, as well as through the variety of research per-
spectives and wealth of ideas put into place and discussed.

The fact that we have brought the “footprint” of the Problem@Web conference, 
and the driving energy of the Problem@Web research project, into the book justifies 
the decision to begin each of the first three parts by a chapter that has its source in 
the keynote addresses that were presented at the conference. To complete each of 
the first three parts of the book, we invited researchers who are well known for the 
excellence of their research, and for their influential work, to act as discussants. 
They accepted the challenging task of writing a critical commentary on the set of 
chapters in each part. In view of their kind and full dedication to our proposal, and 
the results achieved, which add to each of the themes of the book a careful, synthe-
sizing, and insightful reading, we owe words of praise and thanks to Arthur Powell, 
Pietro Di Martino, and Roza Leikin.

Finally, we counted on the invaluable collaboration of a well-known author who 
agreed to undertake the final part that aims to link, articulate, and integrate the three 
topics that the book develops throughout the first three parts. To our colleague 
Viktor Freiman, for his dedication, generosity, and commitment, our sincere thanks 
for his valuable work.

We wish to emphasize our appreciation for the extensive and continuous collabo-
ration of all the authors and reviewers of the chapters, who patiently responded to 
our requests and who strove to ensure that each manuscript reached its final version, 
and encouraged us to conclude this project, which, although sometimes delayed by 
different contingencies, never ceased to be an ambition of us all.

Our thanks go to the staff at Springer, and the editors of the Research in 
Mathematics Education book series, Jinfa Cai and James A. Middleton, who stimu-
lated and supported us and enabled our proposal to go ahead and become this book.

Lisbon, Portugal Nélia Amado
Lisbon, Portugal Susana Carreira
Southampton, UK Keith Jones
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Chapter 1
Broadening Research on Mathematical 
Problem-Solving: An Introduction

Nélia Amado, Susana Carreira, and Keith Jones 

1.1  Introduction

Problem-solving continues to be an increasingly key focus for education in coun-
tries all around the world. Internationally, for example, the OECD (the Organisation 
for Economic Co-operation and Development) has, for some years, been assessing 
students’ problem-solving skills; in 2003 there was the first PISA (Programme for 
International Student Assessment) assessment of cross-curricular problem-solving; 
in the 2012 PISA, there was assessment of creative problem-solving skills; and the 
2015 PISA featured the first international assessment of collaborative problem- 
solving skills (Herde, Wüstenberg, & Greiff, 2016).

This increasing emphasis on problem-solving is, at least in part, because educa-
tional systems are being implored not only to embrace a wider range of goals and 
exploit a wider range of educational technologies than may have happened previ-
ously but also in ways that prepare learners to be confident to tackle new and emerg-
ing challenges. Griffin (2018, p. iv), for example, captures the current impetus:

Education must now focus on the preparation of a workforce demanding new ways of think-
ing and working that involve creativity, critical analysis, problem solving and decision mak-
ing. Citizens need to be prepared for new ways of working that will call upon their 
communication and collaboration skills. They will need to be familiar with new tools that 
include the capacity to recognise and exploit the potential of new technologies. In addition, 
they will need to learn to live in this multifaceted new world as active and responsible 
global citizens.

N. Amado (*) · S. Carreira 
Universidade do Algarve and UIDEF, Instituto de Educação, Universidade de Lisboa,  
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Although there is debate over the extent to which such goals are new (Suto, 2013), 
the current stimulus for education to address a wider range of goals does mean that 
mathematical problem-solving continues to be a key element of the mathematics 
curriculum across countries and a central aim of mathematics teaching and learning. 
Not only that, but, in meeting these “new” ways of thinking and working, the man-
ner in which mathematical problem-solving is taught and learnt needs to embed the 
increasingly widespread use of digital technologies, the promotion of creativity, and 
the recognition of the affective and aesthetic dimensions.

This is the stimulus for this book, with its focus on mathematical problem- 
solving in different educational environments in the early decades of the twenty- 
first century. The book gathers together contributions from leading researchers in 
mathematics education (and related research areas such as the psychology of educa-
tion, technology education, mathematics popularisation, and other relevant fields) to 
capture the broadening of research on mathematical problem-solving that has been 
taking place in recent years in different educational environments. The book pres-
ents the three major themes of technology, creativity, and affect, within which new 
pedagogical and research perspectives are presented. Each of the three themes rep-
resents crucial issues that are being solidly embedded in the activity of problem- 
solving in the teaching and learning of mathematics, both within the school setting 
and beyond the school. The book illustrates the broadening of the scope of research 
on mathematical problem-solving by not only examining each of the three themes 
of technology, creativity, and affect separately but also, in the final section, moving 
the field of research forward by evidencing a strong interconnection between the 
facets of technology, creativity, and affect, each of which has consistently shaped 
problem-solving. Thus, it reinforces the challenge to endorse a more comprehensive 
approach to research on mathematical problem-solving.

In this chapter, we provide a short overview of research on mathematical 
problem- solving. We use this as a springboard to introduce the central themes of 
the book: technology in mathematical problem-solving, creativity in mathemati-
cal problem-solving, and affect and aesthetics in mathematical problem-solving. 
We conclude by introducing the final section of the book on making evident the 
need to investigate in a comprehensive way how technology, creativity, and 
affect and aesthetics in mathematical problem-solving are being brought together. 
We begin by outlining some of the central trends in research on mathematical 
problem-solving over the past decades.

1.2  Trends in Research on Mathematical Problem-Solving

As Santos-Trigo (2014, p. 497) states in the entry on problem-solving in mathemat-
ics education in the Encyclopedia of Mathematics Education, mathematical prob-
lems and their solutions “are a key ingredient in the making and development of the 
discipline” of mathematics. As such, mathematical problems and their solutions are 
a vital component of all the elements of school mathematics.

N. Amado et al.
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In a review of some of the main research on mathematical problem-solving con-
ducted between 1970 and 1994, Lester (1994, p. 663) suggests that from the early 
1970s until the early 1980s, “quite a lot of attention was devoted to the study of 
determinants of problem difficulty”. He goes on to suggest that beginning in the late 
1970s and continuing until the mid-1980s, problem-solving research focused pri-
marily on “individual problem-solving competence and performance” (p.  665). 
During this latter period, early research on the role of affect on mathematical 
problem- solving began to appear. Into the 1990s, as research on social influences on 
mathematical problem-solving (and ideas of situated problem-solving) began to 
appear, Lester says he began to detect that mathematical problem-solving was 
“beginning to be of less interest to mathematics education researchers” (p. 667). 
Amongst possible reasons for this decline, Lester suggests that “other issues have 
drawn attention away from problem solving” or perhaps “problem solving is even 
more complex than first thought” (pp. 667–669). That problem-solving is highly 
complex is also one of the conclusions of a slightly earlier retrospective review of 
mathematical problem-solving research by Kilpatrick (1985).

Whatever the reasons for the decline in interest in researching mathematical 
problem-solving that began at that time, Lester concluded his review with a spirited 
call for more research on mathematical problem-solving. Amongst the issues identi-
fied by Lester as benefitting from further research was the role of affect in problem- 
solving. While Lester makes reference to Kilpatrick’s (1969) review of 
problem-solving and creative behaviour, there is no mention of research on creativ-
ity and mathematical problem-solving in Lester’s review. Likewise, while Lester 
makes reference to Ponte, Matos, Matos, and Fernandes (1992), Lester makes no 
mention of technology and mathematical problem-solving in his review.

Ten years later, Lester (2013) published an update reflecting on 40  years of 
research on mathematical problem-solving. In this revised review, Lester suggests 
that a major issue is that “although research on mathematical problem solving has 
provided some valuable information about problem-solving instruction, we haven’t 
learned nearly enough” (p.  251). As with Lester’s earlier review (Lester, 1994), 
there is no mention of technology and mathematical problem-solving, no mention 
of research on creativity and mathematical problem-solving, and only passing refer-
ence to research on affect and mathematical problem-solving. Most recently, Lester 
and Cai (2016) make the case that while the past 30 years were “an especially pro-
ductive period in the history of problem solving in school mathematics” (p. 117), 
there is much that remains to be learned. Amongst the issues they identify is that 
further research is needed on the influence of mathematical tools on problem- 
solving, on learning to be creative in mathematical problem-solving, and on affect 
and mathematical problem-solving.

In terms of tools, Santos-Trigo (2014) devotes a section of his encyclopaedia 
entry to the influence on mathematical problem-solving of using digital tools, con-
cluding that the appropriation of digital tools for use in problem-solving activities 
involves “extending previous frameworks” and developing “different methods to 
explain mathematical processes that are now enhanced with the use of those tools” 
(p.  500). While there is this consideration of digital tools, Santos-Trigo (2014) 

1 Broadening Research on Mathematical Problem-Solving: An Introduction
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makes no mention of creativity and mathematical problem-solving and only a pass-
ing mention of affect and mathematical problem-solving. Of course the encyclopae-
dia entry by Santos-Trigo must, necessarily, be short. Nevertheless, it illustrates that 
while there has been much research that has involved creativity and mathematical 
problem-solving and much research on affect and mathematical problem-solving, 
such recent research tends to be found in publications about creativity in mathemat-
ics education and affect in mathematics education and not always in research on 
mathematical problem-solving. For example, the book edited by Singer (2018) on 
mathematical creativity and mathematical giftedness makes many mentions of 
mathematical problem-solving. Likewise, Goldin et al. (2016) make many mentions 
of mathematical problem-solving in their review of developments in research on 
attitudes, beliefs, motivation, and identity in mathematics education. In the same 
way, Liljedahl et al. (2016) contain separate sections on creative problem-solving 
and on digital technologies and mathematical problem, while Felmer et al. (2016) 
contain separate chapters on affect in problem-solving and the use of digital tech-
nology to frame and foster learners’ problem-solving experiences.

The research project Mathematical Problem Solving: Perspectives on an interac-
tive web-based competition, usually referred to as the Problem@Web project, stud-
ied youngsters engaged in mathematical problem-solving using digital technologies 
of their choice and to which they had personal access (see Carreira, Jones, Amado, 
Jacinto, & Nobre, 2016). While Carreira et al. (2016) primarily report on strategies 
for, and ways of thinking in, mathematical problem-solving when using digital tech-
nology (such as forms of representation and expression of mathematical thinking 
and technology-supported problem-solving approaches), the Problem@Web project 
also focused on creativity manifested in the expression of mathematical solutions to 
problems and its relation to the use of digital technologies and on the beliefs, atti-
tudes, and emotions related to mathematics and mathematical problem-solving, 
both in school and beyond school, considering students, parents, and teachers.

The international conference organised by the Problem@Web project team at the 
end of the project (see Carreira, Amado, Jones, & Jacinto, 2014) kept true to these 
foci by identifying three strands of research as needing attention from the interna-
tional research community. The three strands are the basis for this book: technology 
in mathematical problem-solving, creativity in mathematical problem-solving, and 
affect and aesthetics in mathematical problem-solving. It is to each of these strands 
that we turn now. The three strands, each making up a section of the book, lead to 
the fourth section of the book in which technology, creativity, and affect and aes-
thetics in mathematical problem-solving are brought together.

1.3  Technology in Mathematical Problem-Solving

As exemplified by Carreira et al. (2016), research on technology and mathematical 
problem-solving seeks to encompass the strategies and representations used in 
technology- based problem-solving approaches. This includes research addressing 

N. Amado et al.
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the impact and the effects of using technology in problem-solving activity, the 
mediational role of technology in problem-solving, the relationship between strate-
gies and the use of digital and visual representations, the nature of digitally based 
communication and expression of the results of mathematical problem-solving, and 
so on. As noted by Santos-Trigo (2014), such research is likely to entail extending 
previous frameworks for mathematical problem-solving and developing different 
methods to explain mathematical processes that are now enhanced through the use 
of digital tools. It is some of these issues that are tackled in this section of this book.

In Chap. 2, Jacinto, Nobre, Carreira, and Amado (2018) analyse the representa-
tional and conceptual expressiveness that youngsters (aged 10–14  years old) 
exhibit when they use digital tools to shape and support their reasoning and solu-
tions to mathematical problems. Through their analysis, Jacinto et al. offer a way 
of identifying levels of sophistication and robustness of technology-based solu-
tions to problems, according to the characteristics of the tool used and its connec-
tion to the conceptual models underlying students’ thinking on the problems. For 
Chap. 3, Parzysz (2018) uses the didactical framework of Mathematical Working 
Spaces (MWS) (Kuzniak, Tanguay, & Elia, 2016) to inquire into the cognitive and 
epistemological aspects of using digital technology to tackle probability prob-
lems. In doing so, he illustrates how the role of technology is not just to make it 
easier to get a large data set in a short time but constitutes an important element 
for mathematical problem-solving.

Analysing the ways of reasoning exhibited by high school teachers when using 
a specific technology, in this case, dynamic geometry software is the focus of 
Chap. 4 by Santos-Trigo, Camacho-Machín, and Olvera-Martínez (2018). They 
report that the use of the particular technology not only offered a set of affordances 
for the teachers to test the pertinence of their initial ideas but also a family of 
examples that could be examined in order to detect patterns or possible relation-
ships between relevant parameters. Canavarro and Reis (2018), in Chap. 5, focus 
on analysing the contributions that a specific technology, that of the interactive 
whiteboard, provides for the development of dialogical interaction in the context 
of mathematical problem- solving. They argue that the multimodality and interac-
tivity available with this particular technology simultaneously stimulate and sup-
port students’ mathematical problem-solving.

For Fernandes, Lopes, and Martins (2018), in Chap. 6, the need is to understand 
how the use of a specific technology, in this case robots, acts as a mediating artefact 
of learning that contributes to mathematical problem-solving. They found that using 
the particular technology had a transformative impact on the way students negoti-
ated the meaning of mathematical knowledge for their problem-solving. Mariotti 
and Baccaglini-Frank (2018), in Chap. 7, illustrate how, when using a particular 
technology, there are specific visualisation skills that are differently involved in 
mathematical problem-solving processes. They show how problem-solving pro-
cesses can be described through the combination of different visual-mathematical 
skills that are necessary in problem-solving.

In the final chapter of this section, Chap. 8, Powell (2018) reflects on the use of 
digital technology in mathematical problem-solving situations investigated in the 
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six preceding chapters. Through his analysis of the six chapters, Powell shows how 
the chapters capture how learners develop powerful ways of seeing and acting 
mathematically in the context of technology-enhanced mathematical problem-
solving. He concludes that, while the six chapters highlight a diversity of perspec-
tives on how technology shapes mathematical problem-solving, there still remain 
research questions to address.

1.4  Creativity in Mathematical Problem-Solving

As can be inferred from some of the chapters in the book edited by Singer (2018), 
research on creativity in students’ mathematical problem-solving seeks to address 
the relationship between problem-solving activity and mathematical creativity. This 
is likely to include research on how problem-solving promotes the development of 
creativity across student attainment levels, the analysis of creative solutions in terms 
of strategies and expressive media, the relationship between creativity and inven-
tiveness in solving mathematical problems, the creativity involved in exposing and 
communicating solutions and processes, the fostering creativity in school mathe-
matics and beyond (including mathematical competitions), and so on. It is some of 
these issues that are tackled in this section of this book.

In Chap. 9, Carreira and Amaral (2018) analyse and examine the close and com-
plex relationship between mathematical creativity and mathematical problem- 
solving. They propose an analytical tool that guides the identification of features of 
mathematical problem-solving pertaining to the three dimensions of originality, 
knowledge activation, and representational means activation. For Chap. 10, Tabach 
and Levenson (2018) focus on the mathematical creativity elicited by mathematical 
problems that can be solved in many different ways. On the basis of their analysis, 
they argue that creative mathematical problem-solving can involve a combination of 
convergent and divergent thinking and that following one line of thought to an even-
tual end may actually lead to a new direction and new solution path.

Analysing the links between the use of visual solutions to problems and mathe-
matical creativity is the focus of Chap. 11 by Vale, Pimentel, and Barbosa (2018). 
Based on their analysis, they argue that problem-solving approaches that use visual 
representations bring out the development of creative thinking. Vanegas and 
Giménez (2018), in Chap. 12, focus on developing the proficiency of future teachers 
in what might be called creativity-directed teaching. While they found that the 
future teachers that they studied had difficulties in identifying authentic traits of 
creativity in children’s problem-solving activity, the future teachers did think that it 
would be possible for children to learn to improve their mathematical creativity.

For Bokhove and Jones (2018) in Chap. 13, mathematical creativity can be stim-
ulated through tasks that have constraints rather than necessarily requiring open- 
ended mathematical tasks. They show how tasks with suitable constraints can also 
serve as creativity-inducing problem-solving tasks. Moore-Russo and Demler 
(2018), in Chap. 14, report on an exploration of educators’ conceptions of creativity. 
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Through their study, they found how different views of creativity impact on the way 
educators consider methods for fostering creativity in mathematics classrooms.

In Chap. 15, Gómez-Chacón and de la Fuente (2018) aimed at analysing the 
nature of mediation in student’s creative processes. They show, on the basis of high 
school students’ reports, how the process of generating a mathematical research 
project from a specific given problem not only requires creativity on the part of the 
students but also the mediation of the teacher for the establishment of a creative 
suitable working space. For Chap. 16, Gontijo (2018) explains the systems perspec-
tive on creativity (Csikszentmihalyi, 1988, 1999) that considers creativity as a result 
of the interaction of three systems: person (genetic background and personal experi-
ences), domain (culture and scientific production), and field (social system).

In the final chapter of this section, Chap. 17, Leikin (2018) reflects on the 
studies of creativity in mathematical problem-solving contained in the preceding 
eight chapters in this section of the book. Through her analysis of the eight chap-
ters, Leikin formulates a categorisation of creativity-directed mathematical tasks 
in terms of openness, constraints, and mathematical insight. She argues that 
using this range of tasks in the classroom can provide a springboard for the 
development of children’s cognitive, intrapersonal, and interpersonal skills and 
that such use of creativity-directed mathematical tasks warrants further investi-
gation on a larger scale.

1.5  Affect and Aesthetics in Mathematical Problem-Solving

As can be surmised from some of the sections of the review by Goldin et  al. 
(2016), research on affect and aesthetics in mathematical problem-solving 
embraces research on attitudes, aesthetics, emotions, and so on of students, par-
ents, and teachers regarding mathematical problem-solving. This is likely to 
include research addressing the role and influence of affect and emotion in prob-
lem-solving activity; how emotions shape mathematical problem-solving; the 
question of enjoyment in mathematical problem-solving; the perceptions of stu-
dents, teachers, and parents about the emotional dimensions of problem-solving; 
the notion of help-seeking in mathematical problem-solving activity; problem-
solving as an enrichment activity connecting school, parents, family, and home 
(including mathematical competitions); and so on. It is some of these issues that 
are tackled in this section of this book.

In Chap. 18, Amado and Carreira (2018) use an analytical model to study atti-
tudes towards mathematical problem-solving. They report that the emotional 
dimension of mathematical problem-solving is related to the type of problems 
proposed and to the encouragement of expressing the process that leads to the 
solution of a problem. For Chap. 19, Presmeg (2018) focuses on some of the sig-
nificant aspects of both aesthetic sense and affective issues, which she describes 
as two under- researched domains, in solving nonroutine mathematical problems. 
She concludes that the positive emotions generated under the umbrella of aes-
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thetic experiences can provide a strong motivational effect in solving nonroutine 
mathematical problems and that this may encourage students to persist with the 
broader context of mathematics.

The role of the aesthetic in the problem-solving experiences of pre-service teach-
ers is the focus of Chap. 20 by Sinclair and Rouleau (2018). They report how the 
pre-service teachers referred to two considerations that align with research on math-
ematicians’ aesthetic: the problem should be adequately difficult, and it should be 
surprising. Ferreira and Moreira (2018), in Chap. 21, focus on the interrelationship 
between affect and cognition in mathematical problem-solving. They found that 
enabling students’ spontaneous expression of activating emotions can serve as a 
mediating tool in promoting students’ positive global affect towards mathematics.

For Liljedahl (2018), in Chap. 22, students’ engagement in mathematical 
problem- solving is sometimes overlooked in efforts to improve students’ problem- 
solving. He reports that students with higher than expected perseverance in the face 
of challenge and tolerance in the face of the mundane can use these attributes as 
safeguards while autonomously correcting any imbalance between the two. Daher, 
Swidan, and Masarwa (2018), in Chap. 23, report on a study of students’ emotions 
in learning to tackle mathematical problems with technology. They report how stu-
dents’ emotions can be related to their “positioning” as group leader or collaborator 
and the success or difficulty of proceeding with the problem-solving activity.

In the final chapter of this section, Chap. 24, Di Martino (2018) reflects on the 
studies of affect and aesthetics in mathematical problem-solving contained in the 
preceding six chapters in this section of the book. Amongst the issues he raises is 
whether aesthetics is seen as a part of affect or whether aesthetics and affect are 
closely intertwined but different domains with different functions. While also 
discussing the methodological difficulties in conducting studies of affect and 
aesthetics in mathematical problem-solving, Di Martino points to the new theo-
retical approaches, new methodologies, and new critical aspects of research 
about affect, aesthetic, and problem-solving that are evident in the six chapters in 
this section of the book.

1.6  Broadening Research on Mathematical Problem–Solving

While the main three sections of the book address the central themes of technology 
in mathematical problem-solving, creativity in mathematical problem-solving, and 
affect and aesthetics in mathematical problem-solving, the final section of the book 
emphasises the broadening of research on mathematical problem-solving in which 
technology, creativity, and affect and aesthetics in mathematical problem-solving 
are brought together. This endeavour of broadening the research on mathematical 
problem-solving, by looking at its multiple dimensions in a comprehensive way, is 
exemplified by Freiman (2018), in Chap. 25.

As Powell (2018) says in Chap. 8, the six chapters on the use of digital technol-
ogy in mathematical problem-solving situations illustrate how the use of technology 
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shapes mathematical problem-solving in formal and informal settings and has 
implications for mathematics teachers’ content and pedagogical knowledge. 
Furthermore, the emergence of new collaborative technologies occasions opportu-
nities and challenges (Jones, Geraniou, & Tiropanis, 2013) both for the teaching of 
mathematical problem-solving and, in tandem, for mathematics teacher education.

The emerging collaborative technologies highlight the importance of interper-
sonal skills that Leikin (2018), in Chap. 17, argues are characteristic of creative 
mathematical problem-solving illustrated by Chaps. 9, 10, 11, 12, 13, 14, 15, and 
16. She makes the case that creativity-directed activities are challenging for students 
due to the openness, constraints, and mathematical insight embedded in creativity- 
directed mathematical tasks. Such tasks, she goes on to say, are not only effective 
tools for developing mathematical skills but also have a role in the development of 
intrapersonal and interpersonal competences. Engaging students in such tasks 
primes student motivation.

This issue of the priming of student motivation leads Di Martino (2018), in Chap. 
24, to argue how the studies reported in Chaps. 18, 19, 20, 21, 22, and 23 provide 
much-needed evidence of the dynamic progression of motivational and emotional 
states through the problem-solving process. Here, at least for some of the studies, 
student participation is voluntary, and the problems are moderately challenging and 
intended for all.

To complete the book, Freiman (2018), in Chap. 25, explores the sort of approach 
that broadens the scope of research on mathematical problem-solving by which 
technology, creativity, and affect and aesthetics in mathematical problem-solving 
are brought together. He does this by using the example of recreational puzzles that 
may occupy the problem-solver for more than the equivalent of a single school, or a 
school day, or longer. By choosing the example of recreational puzzles, he brings 
attention not only to the origins of the puzzles and details of their analysis by 
renowned mathematicians but also, importantly, to the use of multiple representa-
tions, rigorous investigations, and observations that go beyond finding a solution to 
a particular problem towards elaboration of new methods and theories while expe-
riencing and sharing emotions and tribulations, along with endless pleasures of con-
tinued engagement in the intellectual endeavour of mathematical problem-solving.

1.7  Conclusion

The collective efforts of all the authors of chapters in this book show the richness 
of contemporary research in mathematical problem-solving. The empirical, theo-
retical, and methodological contributions of the chapters in the book are symptom-
atic of a vigorous field of research that is succeeding in broadening its scope and 
embracing the themes of technology in mathematical problem-solving, creativity in 
mathematical problem-solving, and affect and aesthetics in mathematical problem-
solving. The book details solid research findings that allow the building of further 
theoretical foundations about mathematical problem-solving. At the same time, the 
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book contains open questions and insufficiently explored avenues that are ripe for 
additional research. We hope that a broad audience of researchers, educators, cur-
riculum designers, pre-service teachers, and doctoral students find the book chal-
lenging and useful for their current and future research work on mathematical 
problem-solving and the closely related research fields of educational technologies, 
creativity, and affect and aesthetics.
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Chapter 2
Different Levels of Sophistication 
in Solving and Expressing Mathematical 
Problems with Digital Tools

Hélia Jacinto, Sandra Nobre, Susana Carreira, and Nélia Amado

2.1  Introduction

The research community has been acknowledging the significant role of beyond 
school and extracurricular activities where youngsters throughout the world are 
engaging in, which reveals a growing interest on studying its implications for math-
ematics learning contexts and also the impact of the formal curricular learning on 
beyond school activities (Barbeau & Taylor, 2009; Wijers, Jonker, & Drijvers, 
2010).

Presently, there are many organizations that support the development of mathe-
matical problem-solving skills by promoting competitions, clubs or summer 
schools, among others. This is the case of the Mathematical Competitions SUB12® 
and SUB14®, brought to young students in the south of Portugal (aged 10–14-year- 
olds) by the University of Algarve.

Our research agenda has been focused on uncovering the skills these young com-
petitors use and master by taking advantage of everyday digital tools and their rep-
resentational expressiveness to shape and support their reasoning in the development 
of a solution approach (Carreira, 2015; Jacinto, 2017; Jacinto & Carreira, 2013; 
Nobre, Amado, & Carreira, 2012). One emergent outcome deals with the fact that 
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there are different levels of robustness in the solutions produced by the participants 
in the competitions, mainly in terms of the strategies they devise by means of a 
particular technological tool while solving the problems.

In this chapter, we will focus on identifying and understanding the underlying 
aspects of these different ways of solving a problem with the same tool. As our main 
source of evidence, we will analyse a selection of solutions of two problems pro-
duced by participants in the SUB12 and SUB14 competitions, who resorted to 
GeoGebra, in one case, and to Excel, in the other. We will also identify levels of 
sophistication in the solutions produced with these tools.

Our main goal is to unveil how these youngsters are capable of creating effective 
ways of reaching the solution to a problem and communicate it mathematically, 
based on the digital resources at their disposal, in their daily lives and, most of them, 
in their home environment (e.g. the tools available on their computers such as the 
text editor, the electronic spreadsheet, the image editor or free access tools such as 
GeoGebra). In the context of our research, solving mathematical problems means to 
find ways of thinking about challenging situations where a mathematical stance is 
suitable and useful, though it does not necessarily or exclusively encompass the use 
of school mathematics. It is assumed that the concepts generated from intuitive and 
common sense-based approaches are fundamental in problem-solving.

Within this kind of beyond-school problem-solving activity, the conceptual 
model generated from the mathematization process may not have the sophistication 
of a mathematical model. The conceptual models developed by the youngsters often 
have an unsophisticated semblance, an informal tone and a look that strongly clings 
on to the context suggested in the problem. Thus, we intend to understand the main 
characteristics of these conceptual models when the solution of a problem is sup-
ported by the use of a digital tool, namely, the ways in which their different levels 
of sophistication may be related to a specific tool for solving the problem and 
expressing the underlying conceptual model.

2.2  Solving and Expressing Mathematical Problems 
with Digital Tools

Mathematical problem-solving is often regarded as a mathematization activity in 
which the solver develops productive ways of thinking about the situation (Lesh & 
Zawojewski, 2007), adopting a mathematical stance while developing a conceptual 
model (Carreira, Jones, Amado, Jacinto, & Nobre, 2016; Lester & Kehle, 2003).

It has been fully acknowledged that mathematization is not a straightforward 
result of applying a formal method that leads directly from the given data to a result; 
on the contrary, concepts produced from intuitive and common sense approaches 
are fundamental anchors in problem-solving. Hence, the often informal character, 
the unsophisticated appearance and the adherence to the situation are compatible 
with the development of early models of thinking about the problem (Gravemeijer, 
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1997). To consider these conceptual models as mathematical models or  mathematical 
skeletons, which are fundamental in finding a solution, supports the idea of a pro-
gressive mathematization activity: from a ‘model of’ into a ‘model for’ and from an 
informal into a formal model (Gravemeijer, 2005). Even though it may not have a 
full robustness and formal appearance, the mathematical skeleton supports the 
understanding of the situation as well as the actions taken in solving and in express-
ing the solution.

Obtaining the solution of a problem and communicating the result are often seen 
as separated phases in the problem-solving process. We argue that these are two 
closely related aspects in solving problems and that this connection is deeper when 
the use of digital tools is made available to support the expression of mathematical 
thinking. This means that every description, illustration, explanation and all the 
material incorporated into the final product are considered as an integral part of the 
whole process, as timely argued by Lesh and Doerr:

…descriptions, explanations, and constructions are not simply processes students use on 
the way to “producing the answer”, and, they are not simply postscripts that students give 
after the “answer” has been produced. They ARE the most important components of the 
responses that are needed. (Lesh & Doerr, 2003, p. 3)

In this sense, problem-solving is here regarded as a synchronous process of mathe-
matization and of expressing mathematical thinking mediated by technological 
tools, hereafter termed problem-solving-and-expressing (Carreira et al., 2016).

Hegedus and Moreno-Armella (2009a) have also discussed the use of represen-
tational and communicational infrastructures in the mathematics classroom, point-
ing out the mathematical expressiveness embedded. A key point in the technological 
environments lies in the ways in which expressiveness is transformed: there is a new 
representational expressiveness that students may profit from by using the various 
functionalities of software that allow many more ways to explain and interpret 
mathematically, through colours, symbols, gestures, metaphors, etc. For example, 
actions directly related to the use of digital devices may be the strategically colour-
ing or the use of visual elements such as inserting points, lines or objects, in high-
lighting the mathematical system in action. As Hegedus and Moreno-Armella 
(2009a) point out, ‘the students express themselves in vivid forms, informally and 
formally’ (p. 405), hence the need of a common ground on understanding the mean-
ing of mathematical representations in digital environments distinctive of the 
twenty-first-century technological world.

Borba and Villarreal (2005) emphasize the fact of being impossible to offer a 
clear separation between people and technology and suggest conceiving them as a 
single entity  – humans-with-media. From this standpoint, claiming that human 
beings are constituted by technologies means to acknowledge that they change and 
reshape ways of thinking and acting, but, at the same time, human beings are con-
tinuously producing, developing and transforming technology itself.

One other significant proposal by Borba and Villarreal (1998) is that personal 
experiences with specific digital media, either in the present or in the past, becomes 
integrant part of the unit of humans-with-media, even if that experience may not be 
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occurring at the moment. Experience then integrates cognition; for instance, the use 
of a computer is not limited to assist or support mathematical procedures in a par-
ticular context; rather it transforms the nature of what one can do in another moment, 
i.e. it changes the essence of mathematical activity itself. Furthermore, research also 
suggests that different collectives of humans-with-media may produce different 
ways of knowing and thinking: the mathematical knowledge produced by humans- 
with- paper-and-pencil is qualitatively different from that of humans-with- GeoGebra 
(Villarreal & Borba, 2010).

2.2.1  Understanding the Interaction Between the Individual 
and the Digital Tools

The construction of different ways of knowing can be explained by the recognition 
of possibilities for action in the tools, i.e. their affordances. According to Gibson 
(1979), the affordances are a set of aspects attributed to a certain tool that invite the 
individual to operate an action upon it. Later, Chemero (2003) argued that ‘perceiv-
ing affordances is placing features, seeing that the situation allows a certain activity’ 
(p. 187). In a way, this stand contradicts Gibson’s original perspective since it sus-
tains that the possibilities for action emerge from the interactions between the agent 
and the object (Chemero, 2003; Greeno, 1994), and they are not merely properties 
of potentials of the tool. Yet, there seems to be a consensus regarding the fact that 
the perception of affordances is a sine qua non condition for activity, even if activity 
may not actually occur. In fact, Greeno (1994) argues that if the notion of affordance 
refers to whatever there may be in the system that contributes to the existing interac-
tion, then it becomes necessary to define another expression to designate whatever 
there is in the agent that also contributes to the very same interaction, thus propos-
ing ability or aptitude.

This intrinsic relationship translates into an impossibility of separating the affor-
dances of the tool from the agent’s aptitude, that is, affordances and aptitude are not 
specifiable in the absence of each other, which to some extent echoes the metaphor 
of humans-with-media. It therefore seems appropriate to understand problem- 
solving as a production of mathematical knowledge that is mediated by digital tools, 
assuming that the subject is immersed, socially and culturally, in a technological 
environment that shapes and is shaped by its activity.

As we deepen this interplay between the individual and the digital tool, we see 
how the way of expressing mathematical thinking – that is, how to convey the pro-
cess of obtaining the solution of a problem (the conceptual models) – is an activity 
in which intentionality is confused with the feasibility of digital representations 
(Hegedus & Moreno-Armella, 2009b; Moreno-Armella & Hegedus, 2009). Thus, to 
understand the subject and the tool as a single unit in solving and expressing prob-
lems, it is essential to pay attention to the role of visual methods for solving or other 
experimental approaches afforded by technologies. This view elucidates the pairing 
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of individuals’ intentionality with the feasibility of digital representations, in the 
sense in which Hegedus and Moreno-Armella (2009b) describe it: ‘Today, besides 
their traditional spaces, symbols are digital and that means that intentionality 
becomes blended with the executability of their digital representations’ (p. 388).

To understand this problem-solving-and-expressing activity involves to recog-
nize the new opportunities found today in the most diverse technological devices 
related to image and modes of visualization, interactivity and manipulation of 
objects, with its expressiveness in the use of colours, icons and formats and with 
communication through sound, video, words and figures. Thinking and communi-
cating seem to become increasingly linked by the increasing plasticity of digital 
artefacts.

The evolution of static digital objects into dynamic digital objects has been dis-
cussed and analysed based on the concept of co-action between the subject and the 
digital medium that it acts upon (Hegedus & Moreno-Armella, 2009a, 2009b, 2010, 
2011; Moreno-Armella & Hegedus, 2009; Moreno-Armella, Hegedus, & Kaput, 
2008). The idea of co-action suggests that the individual can be guided or driven by 
a digital tool selected to perform a given activity and simultaneously can guide and 
direct the tool to achieve the desired goals. For example, the co-action with the 
spreadsheet while solving and expressing problems starts with the need to structure 
the conditions in columns or rows. This procedure allows students to identify a set 
of numbers with a single name, making it look like a variable, thus enhancing the 
understanding of its mathematical meaning (Wilson, 2006; Wilson, Ainley, & Bills, 
2005). Students then go on to introduce numerical data in the various cells, which 
may or may not include formulas expressing the relations involved. At this stage, 
they can analyse the immediate feedback provided by the spreadsheet and readjust 
their actions in a permanent flow of interactions with the tool (Nobre & Amado, 
2013).

This means that the use of a digital tool, such as a spreadsheet or GeoGebra, to 
solve a problem, may suggest different ways of dealing with the problem, and, at the 
same time, the way to approach the problem can be a consequence of the guidance 
provided by the tool to express the thinking that will lead to the solution. The solu-
tion is, then, the result of collaborative work between the student and the tool.

Intentionality is another central element of co-action, which is carried by both 
the individual and the media. Much of the intentionality in the dynamic tools is to 
react to the subject, thus becoming malleable and adaptable environments. The sub-
ject and the environment act and react one over the other, and it is such co-action 
that constitutes a distinctive feature of the unity between the individual and the tool.

The human-with-media reveals itself and becomes visible through the develop-
ment of co-actions. The idea that tools and human beings evolve together is essen-
tial to understand the importance of co-action in a digital environment, such as 
GeoGebra or Excel, in which solving mathematical problems occurs, as is the case 
in the empirical context of our research. In rejecting the separation between humans 
and the media, as we look at the ways in which students approach mathematical 
problems with digital tools, we are assuming that students and tools are agents in the 
development of mathematical knowledge.
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We have argued that the problem-solving-and-expressing activity is an outcome 
of a co-action between the solver, who perceives useful affordances, and the digital 
tool, which also demonstrates the combination between the mathematical knowl-
edge embedded in the tool and the solver’s knowledge. The resulting knowledge is 
a synthesis of both and becomes a unit rather than an aggregate of both or an exten-
sion of either.

The diverse conceptual models developed by students while solving and express-
ing the solutions may provide relevant clues to understand how mathematical con-
cepts can be used under a variety of (mathematical) points of view and additionally 
may reveal the mathematical thinking and mathematical representations that stem 
from the use of digital technologies.

2.3  A Way of Addressing the Data

Considering the nature of the phenomenon and our research goal, namely, the search 
for a clearer understanding of the participants’ ways of solving problems in a par-
ticular technological and social environment (SUB12 and SUB14), we assume an 
interpretative positioning in the development of a qualitative methodological 
approach (Quivy & Campenhoudt, 2008). We selected qualitative techniques for 
data collection, organization and treatment, foreseen appropriate to the data at hand, 
which are composed of digital solutions submitted by several participants to two 
problems posed by the competitions. The data selection was grounded on the exis-
tence and diversity of solutions produced by means of GeoGebra to the problem 
How many?, posed by SUB12, and of solutions produced by means of a spreadsheet 
to the problem The passion fruit crop of Mr. Tomás, posed by SUB14.

The research work was carried out independently by the researchers working in 
pairs but maintaining a close cooperation in discussing the organization and catego-
rization of the data as well as the potentials of the theoretical concepts mobilized in 
the analysis. The solutions collected were initially organized according to their 
original formats, and then a selection was made containing only the ones produced 
with GeoGebra, in the first case, and with Excel, in the other. The following sections 
will provide details regarding each set of solutions.

In each case, the samples included similar solutions so we chose the ones who 
could be representative of one same group and analysed them in depth. The analysis 
was carried out considering the theoretical concepts and arguments, following 
descriptive and inductive processes of the steps taken by the solvers in the develop-
ment of their approaches to the solutions. In each case, our intention is to offer a 
palette of solutions, that is, from the initial differentiation, we look for progression 
directly related to the robustness of the conceptual model involved and with its 
expression by means of GeoGebra and Excel.

Grounded on the intermediary analysis conducted by each pair of researchers, 
we then identified patterns transversal to the solutions that could assist in explaining 
and characterizing the differentiation found in the solutions, namely, in terms of the 
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degree of generality in the underlying conceptual models and in the way they are 
adapted to a certain use of the technological tools.

It is timely to note that both GeoGebra and Excel, as with other interactive tools, 
offer access to the ways the students interact with them. In the spreadsheet, it is pos-
sible to see how the relationships between cells, columns or lines were designed and 
what formulas were introduced to establish such relationships, and when intermedi-
ate relations are used, one can access the order in which they were produced. 
GeoGebra, on the other hand, includes a particular tool – the Construction Protocol – 
which records, step by step, the interactions with the software, that is, the proce-
dures taken by the student in obtaining a construction. Although the Construction 
Protocol does not keep a record of the cognitive processes or other tools that may 
have been used in the solving-and-expressing activity, it allows access to the par-
ticular order in which the geometrical and other objects were included in the con-
struction. This feature of these particular interactive environments is very important 
for the analysis of solutions whose construction was not observed, since there is 
evidence of the kind of co-action that may have existed during the activity between 
the student and the tool.

2.4  A Palette of Solutions Produced with GeoGebra

In this section, we describe and analyse how SUB12 participants (10–12 years old) 
solve and express mathematical problems with GeoGebra and discuss the ways in 
which the perception of affordances in this tool triggers the development of differ-
ent conceptual models of the situation.

The empirical data that support this segment of our research were gathered from 
the digital solutions submitted by the participants to a geometry problem that aims 
at determining the total of rectangles that may be inscribed in a dodecagon (Fig. 2.1). 
The complete and correct solutions were collected and organized according to their 
original electronic format. The following stage consisted of selecting the solutions 
produced with GeoGebra and organizing them according to the strategies developed 
by the participants, which led to three major approaches.

Three solutions, representative of each of these approaches, were selected for a 
deeper analysis, considering the notions that constitute the theoretical frame for 

How many?
How many rectangles can you build inside the polygon, by 
connecting its vertices?

Don’t forget to explain your problem solving process!

H
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Fig. 2.1 Problem #3 from the SUB12 competition (edition 2012/2013)
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understanding them. This detailed analysis is focused on identifying the affordances 
that are set forth in the development of the approaches and in their relationship with 
the mathematization level within the conceptual models, grounded on the descrip-
tion of the solutions. The steps taken by the participants while constructing their 
solution with GeoGebra are possible due to the records included in the Construction 
Protocol, a tool that allows replicating the sequence of constructions performed.

This problem was proposed in the qualifying stage of the competition SUB12. A 
total of 215 participants submitted correct solutions and 184 youngsters submitted 
incorrect or incomplete answers. The participants solved the problem and expressed 
their reasoning resorting to a multitude of digital tools, ranging from digitalization 
of paper-and-pencil solutions, using text editors, presentation editors and GeoGebra. 
From the correct solutions submitted, 24 participants resorted to GeoGebra: 6 of 
them from the fifth grade and 18 from the sixth grade.

From the analysis of the correct solution produced with GeoGebra, there are 
three emergent approaches. Thus, we selected one of each type: the solution pro-
duced (i) by David, (ii) by Débora and Isabel and (iii) by Greg. The latter was the 
single one to present the conceptual model of that particular kind.

2.4.1  Setting the Type of Rectangle and Displaying all

David, attending sixth grade, submitted a GeoGebra file (Fig. 2.2) containing three 
polygons, each one with a certain number of rectangles with similar characteristics. 
He started his construction by placing the points A and B freely on the GeoGebra 
plane and resorting to the tool ‘regular polygon’ used those two points to obtain the 
dodecagon. He continued by using the tool ‘polygon’ to represent rectangles of type 
1, that is, the ones whose smaller side coincides with the side of the dodecagon – 
[JEDK], [JCDI], [IBCH], [HABG], [GLAF] and [FELK]. David changed the colour 

Inside the polygon in the image, I can construct 15 rectangles

Fig. 2.2 Solution sent by David (sixth grader)
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of the quadrilaterals using the ‘object properties’ tool, even though the Construction 
Protocol does not include information regarding when it was carried out.

He proceeded by placing another two points, M and N, repeating the previous 
procedure to obtain rectangles of type 2 – [VZPR], [WUQO], [VTPN], [USOM] 
and [TRNZ]. He also changed the colours in this set of rectangles. On the right side, 
he continued his approach by representing another dodecagon and then the rectan-
gles of type 3, which are actually squares  – [ILCF], [KBEH] and [JADG], also 
changing their colours resorting to GeoGebra’s tools. At this point, David realized 
there was a rectangle missing in the previous construction, so he added the quadri-
lateral [SQMW]. Lastly, using the ‘insert text’ tool, he presented his answer to the 
problem: in those conditions, it is possible to construct a total of 15 rectangles, 
which he possibly obtained by adding the rectangles represented in each 
construction.

David’s way of looking mathematically at this problem entails a conceptual 
model organized around the three different types of rectangles that are possible to 
be built. In each step, the youngster sets one of these types and systematically rep-
resents them all, recognizing several affordances in GeoGebra, namely, placing 
points, constructing regular polygons by two given points, constructing quadrilater-
als from their vertices, changing properties of objects and inserting text. His con-
ceptual model, a ‘model of’, comprises a rudimentary mathematization extremely 
close to the context presented, based on the exhaustive representation of every pos-
sible case and culminating in counting those cases to obtain the solution.

2.4.2  Setting a Pair of Opposite Vertices and Displaying All

Débora and Isabel, attending fifth grade, were participating in SUB12 as a team. 
They also solved this problem with GeoGebra, but used a slightly different process 
from the previous one, which is also possible to document through the analysis of 
the Construction Protocol in the file they submitted.

As seen in Fig.  2.3, below the constructions, these students included short 
descriptions of their processes. They began by placing two points on the plane, A 
and B, using them to obtain the dodecagon by means of the tool ‘regular polygon’. 
As they mention, they copied and pasted the initial dodecagon five times and started 
to represent rectangles by setting a vertex and its opposite – in the first case, H and 
B. The construction started by the rectangle of side HG and continued clockwise: 
the rectangle of side HF, then HE, HD and HC, all of them containing the vertices 
H and B. Resorting to the ‘object properties’ tool, they changed the colours of the 
rectangles and the thickness of their sides. By then, they included the label beneath 
the first construction using the tool ‘insert text’.

On the right, they repeated the process now considering G1 e A1 as the opposite 
vertices and represented every possible rectangle passing through them and also by 
another two vertices of the dodecagon. When they completed this step, they realized 
there were only four possibilities left, as the fifth was already included in the 
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 previous construction. This reasoning guided the remaining of the constructions: on 
the third one, they represented three rectangles; on the fourth one, they represented 
two rectangles; and on the fifth dodecagon, there was only one rectangle missing. 
Underneath each construction, they included a short description of their procedure. 
The answer to the problem is given by the analysis of the number of represented 
rectangles in each case which means Débora and Isabel understood that, by main-
taining this organized representation approach, they could exclude rectangles previ-
ously considered, thus supporting a systematized counting process.

The conceptual model underlying this approach is developed with the perspec-
tive that it is possible to find the requested number of rectangles by setting a pair of 

1. I draw a dodecagon.
2. I copied it 5 times.
3. In the first one I drew 5 rectangles with two of their vertices in H and C.
4. In the second one I drew 4 rectangles with two of their vertices in G and 

[A]*.
5. There was not a fifth rectangle as it would be a repetition.
6. In the third one I drew 3 rectangles with two of their vertices in F and L.
7. There were no other rectangles as it would be a repetition.
8. In the fourth one I drew 2 rectangles with two of their vertices in E and K.
9. There were no other rectangles as it would be a repetition.
10. In the fifth one I drew 1 rectangle with two of its vertices in D and J.
11. There were no other rectangles as it would be a repetition.
12. In the sixth one I did not drew any rectangle as it would become a 

repetition of the previous ones.
13. We can draw inside the polygon, by connecting vertices:
5+4+3+2+1 = 15 rectangles

* The student wrote C but it seems a lapse since the figure is clear

Fig. 2.3 Solution sent by Débora and Isabel (fifth graders)
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opposite vertices and representing every possible rectangle containing those verti-
ces of the dodecagon. The method is developed by varying, intentionally and sys-
tematically, the positions of the chosen vertices. The affordances identified in 
GeoGebra’s tools support the easy and quick representation of the rectangles, and 
favour its distinction by using colouring or thickness of the borders, changing the 
properties of those objects. They also use the tools that permit copy/paste GeoGebra 
objects, taking advantage of a kind of knowledge that is common in other techno-
logical tools, thus allowing them to replicate easily the dodecagon. The lines of text 
that they include contain detailed descriptions associated with each construction, 
which are also incorporated in their conceptual model.

However, besides providing meaning to the constructions, these inscriptions are 
a lever for a more comprehensive look, for thinking mathematically about what they 
are observing: from one construction to another, there are repeated rectangles – on 
the second construction, one; then, two; three and so on. The answer they present, 
whose representation is associated with experimentation and observation and can be 
considered a horizontal mathematization of the situation, has great potential and can 
almost be considered a ‘model for’, where the youngsters identify a particular math-
ematical pattern: 5 + 4 + 3 + 2 + 1 = 15.

2.4.3  Setting a Vertex and Generalizing

A third approach was identified in the work of Greg, a sixth grader, exemplifying 
another way of approaching and thinking about this problem that stands out for not 
needing to exhaustively represent the rectangles to obtain the solution.

Greg initiated his construction (Fig. 2.4) by placing two points on the plane, 
A and B, and using them to construct a twelve-sided regular polygon using 

12 vertices, 5 rectangles in each vertex, repeated 4 times, 
because each rectangle has 4 vertices, that is 

12x5:4=60:4=15

Fig. 2.4 Solution sent by Greg (sixth grader)
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GeoGebra tools. Afterwards he represented the rectangle [ABGH] and all the others 
that contain the vertex A, following the anti-clockwise direction. Similar to the 
previous solutions, Greg edited the colours of the rectangles using the ‘object prop-
erties’ tool.

This initial approach to the problem seemed to be sufficient for Greg to visualize 
a way of obtaining the solution without having to construct the remaining rectan-
gles. As he explains, if we think that the polygon has 12 vertices and that in each 
vertex it is possible to construct 5 rectangles, we would have a total of 60 rectangles 
to construct. But since each rectangle has 4 vertices inscribed in the dodecagon, in 
this total count, there are sets of 4 rectangles that, in fact, represent the same. 
Therefore, it is necessary to divide the total, 60, by 4 to obtain the number of differ-
ent rectangles that can be inscribed in the vertices of a dodecagon, that is, 15.

This approach comprehends a conceptual model that also combines schemas 
with textual and mathematical inscriptions, as the ones before. But this strategy dif-
fers from previous ones because it is not based on an exhaustive list of possible 
cases, or, rather, the constructed scheme – which reveals the perception of essential 
affordances – favours a concrete first experience with the problem that can be con-
sidered a model of this specific context. Nonetheless, and despite revealing an ele-
mentary mathematization, this ‘model of’ seems to be responsible for triggering 
a more elaborate mathematical thinking, with a deeper understanding, almost a 
generalization, aimed at obtaining the solution and, at the same time, at finding 
mathematical arguments to justify it.

2.4.4  Discussion

The diversity of digital solutions that were submitted in response to this problem 
exposes a great disposition of the young participants with this technological tool. 
Similar to other cases already reported within the same context of mathematical 
problem-solving with technologies, these youngsters reveal characters of youngsters- 
with- GeoGebra (Jacinto & Carreira, 2013, 2017) in the sense that they are able to 
perceive the adequacy and usefulness of this tool and to use it effectively in the 
development of a solution and in expressing their procedures.

The data analysed indicate that the choice of GeoGebra to solve this particular 
problem can be grounded on the double role that the tool plays in this activity. 
If, initially, GeoGebra supports the ‘materialization’ of the situation, it is afterwards 
based on this embodiment that the mathematization underlying the strategy and the 
solution emerges. The free but intentional choice of GeoGebra reveals that these 
youngsters find in it the most suitable tool to experiment, solve or express them-
selves, activities that are not in any way parallel to other programmes or tools.

Representing a 12-sided regular polygon can be a demanding and time- consuming 
task, depending on the tools. But this is radically simplified when GeoGebra is 
available since it suffices to indicate two points and the number of sides of the polygon 
to construct it. The Euclidean geometry system of rules incorporated in the 
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programme, which the users may not be familiar with, guarantees that the construc-
tion is robust; that is to say, although the dimensions of the polygon may vary, it 
remains a regular polygon with 12 sides. Building a dodecagon with precision with 
GeoGebra is easy; these youngsters are aware of it and have the skills to do so.

Similarly, representing the several rectangles, which is vital for the counting of 
their total number in the first two cases, is also simplified with GeoGebra, using the 
polygon tool. Although it is a tool that allows free constructions, participants quickly 
realize whether the choice of vertices they are doing corresponds to a rectangle. 
Moreover, the way in which they choose to organize, identify and separate the dif-
ferent constructions is an indication that solving and expressing the solution are 
intentionally simultaneous: the first experiences allow to foresee a number of fig-
ures which, when overlapped, may hinder a clear and immediate reading of the 
strategy by providing lengthy or detailed descriptions. For this reason, these young-
sters also resort to setting properties to change the colour of the rectangles or the 
thickness of their sides. Nevertheless, these formatting choices bring forth a ‘star- 
shaped polygon’ that may drive the identification of a visual pattern, which, in turn, 
favours an organized counting process of the several rectangles. Thus, building all 
the rectangles with sufficient clarity is also very easy with GeoGebra; these young-
sters are aware of it and have the skills to do so.

As the literature suggests, these results show that youngsters perceive GeoGebra’s 
affordances in creating a model of the problematic situation. In some cases, this 
model is so close to the context that it uncovers all possibilities establishing itself as 
a model characterized by a horizontal mathematization, somewhat elementary. 
In another case, recognizing affordances also drives the development of a model of 
the situation, but there is already an intention in providing a more general meaning 
to the solution. This initial experience can be identified as an attempt to find a pat-
tern or a possibility of generalization, which has the outlines of a model to, since it 
has a more formal structure that allows the solution to be obtained without exhaus-
tively listing all possibilities.

These solutions illustrate how the construction undertaken impels a mathema-
tization approach: to set the type of rectangle and determine all possibilities lead 
the first participant to explain the solution through the addition 6 + 6 + 3; setting 
two opposite vertices and determining all possibilities lead the other two partici-
pants to see a different sequence so that the solution arises from adding 
5 + 4 + 3 + 2 + 1; while setting a vertex, experimenting and generalizing lead the 
last participant to another mathematical perspective: 12 × 5 ÷ 4. By further ana-
lysing these  mathematical structures, we observe that they differ greatly in terms 
of their potentialities of generalization, which can also be understood in different 
degrees of sophistication.

Let us test these models’ robustness by using them to conjecture the number of 
rectangles that can be inscribed in a 20-sided regular polygon or an n-sided regular 
polygon. The first mathematical structure is very dependent on the context and does 
not allow uncovering relationships between the facts that there are 6 rectangles of 
type 1 but only 3 rectangles of type 3 when a dodecagon is considered. There is a 
certain impossibility of moving away from the context to obtain the solution based 
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on this structure. The second model presents a higher degree of sophistication in the 
sense that the addition of a sequence of natural numbers is very visible so it would 
be expected that, in a regular polygon of 20 sides, the number of rectangles arises 
from adding 9 + 8 + ⋯ + 2 + 1. The first term in this sequence is a unit less than half 
of the number of sides in the regular polygon. Although this is a structure that allows 
a greater abstraction from the context, it loses its friendliness at this school level, 
when it requires a large number of calculations and, in itself, impels the need to 
work with a model of another level of generalization.

The last model shows that by one of the vertices of a dodecagon, it is possible to 
represent 5 rectangles, so if the polygon has 20 sides, it would be possible to repre-
sent 9 different rectangles (half minus 1). Following the same reasoning as the 
youngster, we can determine the number of rectangles by multiplying the number of 
vertices of the regular polygon, 20, by the number of possible rectangles in a single 
vertex, 9, and dividing by the number of times each rectangle repeats, 4. Thus, one 
would obtain 20 × 9 ÷ 4 or a total of 45 different rectangles. This model is more 
robust than the previous ones, since it does not require the exhaustive displaying of 
all rectangles, and it is strongly promoting generalization: with an n-sided polygon, 
there would be (n/2) − 1 rectangles, which means that its algebraic expression could 
easily be obtained from this.

These mathematical productions expose youngsters-with-GeoGebra mathemati-
zation’s activity and show that the set of affordances perceived and put into action, 
besides being diverse, is a key factor throughout the process of finding a solution, 
from the understanding of the context to the development of a strategy and to its 
expression. The free choice of the tool and the approach that begins to sketch while 
each participant perceives possibilities for action in the tool unleashes the progres-
sive development of mathematical structures that differ in terms of their robustness 
and can be organized in different levels of sophistication. However, the various 
approaches are channelled into useful conceptual models, since all competitors are 
able to undertake effective strategies to solve and express the problem.

2.5  A Palette of Solutions Produced with Excel

In this section, we describe and analyse how SUB14 participants (12–14 years old) 
solve and express mathematical problems with the spreadsheet and discuss the ways 
in which the co-action between the solvers and the tool triggers the development of 
different conceptual models of the situation. The data analysed refer to a numerical 
problem proposed in the qualifying stage of SUB14 (Fig. 2.5).

Of the 93 students who answered correctly, 35 resorted to the spreadsheet to 
solve the problem. After collecting all the solutions with Excel attachments, we 
analysed how students used the spreadsheet to solve the problem: how the columns 
were generated, how relationships were established (with or without formulas) and 
the diversity of complementary representations used. From the analysis of the vari-
ous solutions, we found typical solutions that can be assumed as representative. 
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From these set of solutions, we selected 3 that are illustrative and show the different 
paths that the students undertook to obtain the solutions with this digital tool.

This is a numerical problem that has several solutions. Although it is not explicitly 
stated in the problem, one has to admit that the bottles (of any of the capacities) to be 
used will be completely filled. From a mathematical point of view, the problem can be 
solved by the following equation:5.5x + 7y = 620 and x, y ∈ IN0. If the number x is odd, 
it is obvious that the amount of juice bottled in the smaller bottles will not be whole 
number; therefore the remaining juice will not fill a whole number of larger bottles. 
Thus, the number x will necessarily be even (x = 2t, t ∈ IN0), which originates an equa-
tion such as 11t + 7y = 620 and t, y ∈ IN0. As this is a linear Diophantine equation, it has 
infinite integer solutions (given that 11 and 7 are relative prime numbers), of which we 
only want the positive integers. However, the spreadsheet offers other avenues of explor-
ing these solutions, alternative to solving the equation using formal methods.

2.5.1  The Strategy of Guess and Check with Variable Cell

The first example refers to the solution of Bruno, a seventh grader participant, and 
is summarized in an excerpt of his Excel file (Fig. 2.6). He makes several experi-
ments using variable cells for the two types of bottles. In the cells D10 and H10, 

The passion fruit crop of Mr. Tomás
Mr. Tomás has a passion fruit plantation from where he produces 
concentrated passion fruit juice. From his last harvest, he managed to 
get 620 litres of passion fruit concentrate that were bottled in bottles of  
5.5 litres and 7 litres. The entire concentrate was packaged and 
transported to quality control. 
What were the possible ways that Mr. Tomás had to bottle all the passion fruit 
concentrate, using bottles of the two sizes? 
Don’t forget to explain your problem solving process!

Fig. 2.5 Problem #5 from SUB14 competition (edition 2009/10)

Fig. 2.6 Production sent by Bruno (seventh grader)
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he sets the capacities of 5.5 L and 7 L, respectively. The two cells below, D11 and 
H11, work as containers where Bruno inserts different values   to perform experi-
ments on the number of bottles. Cells E11 and I11 are dedicated to compute the 
amount of bottled concentrate in each of the two types of bottles; for that purpose, 
Bruno uses formulas where he multiplies the capacity of the bottle by the number of 
bottles. The results of these two cells are then duplicated to the row immediately 
below; then he adds those two values in the cell K12. This way, he obtains the total 
of bottled concentrate. This works as a control cell whose output is used by the 
student to make adjustments in the number of bottles in order to get a total of 620.

Bruno also constructs a table to expose the solutions he obtained where he pres-
ents a column for each type of bottle. On a side column ‘total’, he shows that in each 
case, the total of juice is 620. It is likely that Bruno has inserted the solutions on the 
table as he got them. Looking at the organization of the solutions, it is also likely 
that he started with a small number of 5.5 L bottles, and while increasing this num-
ber, he decreases the number of 7 L bottles.

This student’s production shows a great co-action with the spreadsheet, espe-
cially in the experiments carried out. In the email message he sent, Bruno explained 
his procedure in the spreadsheet:

[…] Actually, I did not use any specific method to solve the problem – I got the result only 
through experimentation, as demonstrated in the Excel sheet (prob5.xls), where if we 
change some number in the cell for the answer, the result changes instantly.

Bruno’s solution is structured in terms of constructing variable cells in the spread-
sheet. The variable cells correspond to a simple but very important mechanism for 
obtaining the outputs of a calculation that involves performing numerical opera-
tions between values   that are fixed in particular cells (which may be called param-
eters). The use of variable cells is associated with the idea that in the same cell, a 
new result can be obtained by simply changing the input in a container cell, i.e. the 
cell that is free to enter different values. As explained by the participant himself, 
the strategy used was to search for the various solutions to the problem by inspec-
tion, i.e. assigning values   to the variables x and y and verifying whether or not they 
satisfy the equality, by checking whether the quantities bottled in the two types of 
bottles total 620 L.

One relevant aspect of this approach is the perception that the problem has more 
than one solution. The second aspect to emphasize is that there is an inverse rela-
tionship of growth between the variable x and the variable y, that is, the larger the 
number of one type of bottles, the smaller the number of the other type, since they 
will have to compensate for the total to be 620 L.

The model underlying Bruno’s solution can, therefore, be described as a model 
of inspection of the solutions of the equation, based on the clear notion of covaria-
tion between the variables x and y and the fact that they constitute an ordered pair of 
variables with materialized meaning in the two types of bottles to be considered. In 
terms of how this model is transported to the spreadsheet, we are looking at with a 
good combination with the technological tool that performs the calculations effi-
ciently and automatically and that transforms the systematic and laborious compu-
tational work (assign values to the variables and to verify if they satisfy the equation) 
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in an expeditious process. There is an action with the tool (insert two numerical 
inputs in the variable cells) and a reaction from the tool (output of the calculations 
performed with the introduced values); then it follows a reaction from the individual 
(controlling the result and concluding whether or not a solution was found in the 
cell that shows the output of the linear combination) and if necessary a new action 
(trying new inputs).

An obvious feature of the conceptual model involved is that of experimentation 
that could be described as trial and refinement. It is a way of thinking that requires 
a clear notion of the role of the variable and simultaneously of the meaning of the 
unknown in an equation. Bruno’s model relies on this knowledge and on the ability 
to recognize the role of the variables x and y in the domain of the problem. But, first 
and foremost, it is a model for clever ‘guessing’ of the solutions. The spreadsheet 
plays an important role in this intention, especially since it clearly supports the work 
of testing the hypotheses by alleviating the laborious and time-consuming task of 
computation and verification. In a sense, the tool is adequate to have cells assigned 
to parameters and variable cells through which the computations are readily assured. 
This affordance of the tool is, moreover, ascertained by the solver himself, when he 
states that ‘if we change the values in the “answer cells”, the result instantly 
changes’. He names as ‘answer cells’ those that we know as variable cells, which 
represents one of tool’s affordances that effectively serves the purposes of imple-
menting the student’s conceptual model of the situation.

2.5.2  The Use of an Equation with Variable Columns

Ivo is an 8th grader who sent a spreadsheet file and also a Word file where he 
explained his process:

To get my answer I used an Excel file (which is attached). First I created the multiples of 
5.5 and took out all those that were not integers. Then, for each row, I made the subtraction: 
620 - multiples of 5.5. After getting those values, I tried to locate them in a column made of 
the multiples of 7 (this means finding the number of 7 litter bottles to add to the number of 
5.5 litter bottles so that the sum gives 620 according to the expression: 5.5x + 7y = 620). 
These numbers are indicated in red in the spreadsheet. The following are the hypotheses of 
Mr. Tomás to bottle the concentrate using the two [types of] bottles. (...).

This participant writes the equation 5.5x + 7y = 620 in the spreadsheet (Fig. 2.7). 
He names the column x, which refers to the number of 5.5 L bottles where he only 
considers even numbers, because he deletes the multiples that are not integers. In a 
column labelled as 5.5x, Ivo obtains the amount of concentrate that is bottled in the 
5.5 L bottles. In the next two columns, labelled as y and 7y, Ivo represents the num-
ber of 7 L bottles and the respective amount of concentrate (multiples of 7). In the 
construction of all the columns, Ivo resorted to variable columns using the Autofill 
of linear sequences.

The participant then creates a new column named 620-5.5x and applies a for-
mula, which, although unusual, leads to the same result as would be obtained with 
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the simple formula ‘=620-C5’. This way, the student obtains the amount of concen-
trate that will be bottled in the 7 L bottles. By inspecting all the values in this col-
umn, he looks for those that are multiples of 7, by comparing them with the values 
in the ‘7y’ column. When he detects that a particular value appears in the two col-
umns, he is able to find the value of x and the value of y. The value of x is in the row 
corresponding to the ‘620-5.5x’, whereas the value of y is in the row corresponding 
to the ‘7y’. Finally, Ivo records all the solutions found, the pairs of values x and y.

In his activity, the participant develops a co-action with the spreadsheet in the 
generation of the variable columns and in the establishment of relations between 
variables. However, the search for solutions is done through the comparison of the 
values in two columns. Ivo, in his solution, explains quite clearly the relationship 
between the algebraic equation and the resolution in the spreadsheet. His approach 
consists in defining a variable column to obtain the amount of juice in any even 
number of 5.5 L bottles and then calculating the difference for the total of 620 L. The 
search for the solutions is done by checking whether this difference is a multiple of 
7. As an illustration, the idea of Ivo can be summarized in the diagram of Fig. 2.8, 
based on the equality 620 − 5.5x = 7y.

This solution portrays a strong interaction with the spreadsheet aiming that all 
solutions to the problem are found. It should also be noted that this solution is based 
on the multiples of 5.5 and 7 but introduces a way of treating them quite differently 

Fig. 2.7 Production sent by Ivo (eighth grader)
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and more effectively than the previous solution, which used columns to generate 
these multiples but did not take advantage of the spreadsheet to express the desired 
relationship between the possible pairs formed by these multiples.

2.5.3  The Use of Predefined Functions with Variable Columns

Luís is another participant, attending the 8th grade, who also used the spreadsheet 
as can be seen in Fig. 2.9. In his solution, Luís names five columns: the first, for the 
number of 7 L bottles; the second, for the amount of concentrate bottled in the 7 L 
bottles; the third column shows the number of litres to be stored in the smaller bot-
tles in order to make a total of 620 L; the fourth column presents the remainder of 
the division of values in the third column by 11; and the last column makes a test on 
the values of the remainders to see when they are null, which means finding a 
solution.

In his activity, Luís uses the generation of variable columns through the introduc-
tion of formulas and the Autofill function. He also uses predefined functions, such 
as the MOD function (RESTO in Portuguese), and resorts to a logical function 
where in case the remainder is 0, it returns the quotient (number of 5.5 L bottles); 
otherwise it returns the word ‘False’. In the email sent, Luís explains his 
procedures:

Answer:
x = number of bottles of 7 L, y = number of bottles of 5.5 L

Since the equation has 2 variables, it is not possible to solve it in a ‘normal’ way (by hand). 
I used Excel and created the right formulas.

In the first column, there is the number of 7 L bottles used.
In the second column there is the volume contained in the 7 L bottles (1st column times 

7). In the third column, there is the remaining volume to be put in the 5.5 L bottles. Then 
the number of 5.5 L bottles must be a multiple of 2 because otherwise there is always half 
a litter left. So, to be a whole number the amount stored in the 5.5 L bottles is always a 
multiple of 11.

In the fourth column, I have the remainder of the division of the remaining volume by 
11 (2 bottles of 5.5). In the fifth column I checked if the remainder of the division is 0; if so, 
it returns the number of 5.5 L bottles. There are 8 possible solutions.

620  - ? = ?

Fig. 2.8 A diagram 
depicting the conceptual 
model produced by Ivo 
(eighth grader)

2 Different Levels of Sophistication in Solving and Expressing Mathematical…



34

As Luís explains, the spreadsheet allows an alternative way of solving an equation 
with two variables, for which he lacks the formal knowledge. His co-action with the 
spreadsheet consists of establishing relationships between variables by creating 
variable columns and searching the solutions by using a logical function represent-
ing the criterion to identify the solutions to the problem.

Luis’ solution reveals a degree of sophistication and awareness of the affordances 
of the tool even greater than in the previous cases. His conceptual model is schema-
tized in Fig. 2.10. In this case, the variable x is defined as a function of y. By chang-
ing the value of y, the amount of juice used in the 7 L bottles is calculated, and then 
the remaining juice of the total of 620 L is calculated, which is to be distributed by 
the 5.5 L bottles. To obtain the number of 5.5 L bottles, this student performs a test 
that consists of dividing the remaining juice by 11 (two times 5.5 L). When the 
remainder is zero, it means that the student found a solution to the problem.

The way the test is accomplished deserves special attention. The student uses a 
predefined function in the spreadsheet, which returns the remainder of the division 

Fig. 2.9 Production sent by Luís (eighth grader)

620  - ? = ?

Fig. 2.10 A diagram 
depicting the conceptual 
model produced by Luís 
(eighth grader)
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of a number by another. The idea of   using the MOD function is a more sophisticated 
alternative to check whether a number is or is not a multiple of 11, therefore avoid-
ing the creation of an auxiliary column of multiples to perform that checking. Luis’s 
activity goes even further regarding the co-action with the tool. He uses a logical 
function to perform the test and introduces a conditional formula that returns the 
number of 5.5 L bottles when the remainder is zero.

From the point of view of the conceptual model used to interpret and solve the 
problem as well as of the use of the digital tool, this solution shows the highest 
degree of sophistication and robustness, because it provides a general method that 
can be replicated for any other situation in which the given constants (capacity of 
each type of bottles and total amount of juice) are arbitrary.

2.5.4  Discussion

In reviewing the previously analysed solutions, we observe a diversity of ways of 
solving the problem with the spreadsheet. Firstly, we can identify the two main 
types of conceptual models. In one of them, students generate the multiples of 5.5 
(or 11) and the multiples of 7 and look for the cases where their sum is 620, thus 
obtaining the solutions (Bruno’s solution). In the other, the students define one of 
the variables as a function of the other, which leads them to find the solutions more 
easily (Ivo and Luís’ solutions). The second type of model is more sophisticated 
than the first, in what concerns the mathematical reasoning involved.

In the analysis carried out, there are evidences that more sophisticated concep-
tual models are associated with a stronger co-action of the participant with the 
spreadsheet. In the case of the last solution, the spreadsheet is used in a way that the 
solver does not need to make trials or go looking for the solutions. This case shows 
that the participant knows how to take advantage of the tools’ affordances to achieve 
the solution more efficiently and quickly.

At the opposite end, the spreadsheet is only used to make trials through the use 
of variable cells. The student still needs to go searching for the solutions and his 
co-action with the spreadsheet is weaker.

In this way, the co-action between the individual and the spreadsheet is a relevant 
criterion for establishing a gradual progression of mathematically expressed con-
ceptual models through this digital tool.

2.6  Conclusions

In this chapter we discuss mathematical problem-solving with digital tools in terms 
of the development of conceptual models, taking as grounding arguments the impos-
sibility of offering a clear boundary between solving a problem and expressing the 
underlying mathematical thinking and the impossibility of separating the solver 
from the digital tools in the activity of solving and expressing the problem.
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In the theoretical background, we argued that the construction of conceptual 
models emerges from the individuals’ ability in dealing productively with the math-
ematics embedded in the situations. In other words, this means to be in the presence 
of explicit descriptive and explanatory systems that offer visibility and expressive-
ness to the understanding of the mathematizable situation and to the search for and 
achievement of a solution. Thus, to distinguish different ways of approaching a 
problem and to consider the emergent conceptual models seem not to be enough; it 
is also important to understand how different conceptual models emerge and are 
developed in parallel with the way the digital tools, nowadays accessible to all, are 
used in such activity. In fact, these conceptual models can have several degrees of 
robustness, may it be embryonic or completely developed, and even if complete, 
they may be more or less robust.

This is partially why we have used a set of empirical data from the large hun-
dreds of responses to mathematical problems in digital format produced by many 
young participants in the SUB12 and SUB14 Competitions. This opportunity to 
face a vast amount of digital solutions enables a data acquisition in which quantity 
and diversity are valuable ingredients for searching and discussing different degrees 
of sophistication of conceptual models and ways of using digital technologies. 
Among several possibilities, we decided to focus on two problems: one of SUB12 
and one of SUB14; the first is related to the use of GeoGebra and the second related 
to the use of Excel. In each case, we analysed a set of solutions of different students 
in order to find evidence of different degrees of sophistication of the conceptual 
models and, at the same time, try to characterize the way in which the use of the tool 
was incorporated in the development of these models.

In the first case, attention was paid to each participant’s ability in recognizing 
affordances on GeoGebra, so we sought to interpret the humans-with-media entity 
regarding the affordances and the actions triggered, which led to a particular 
solving- and-expressing approach to the problem. In the versions reported, the com-
mon ground seems to lie in the construction of figures, exploration of properties and 
in the possibility of visualizing and recognizing some kind of systematization or 
organization in the given situation. The use of multiple affordances in GeoGebra 
was relevant and productive in each solution. The construction of regular polygons, 
the definition of polygons based on all their vertices, as well as the use of formatting 
options, such as the colour of the polygons or the thickness of the segments, and the 
use of text and inscriptions were decisive in solving and expressing the problem.

The recognition and mobilization of affordances by these youngsters show a dif-
ferentiation in the role played by the visualization ability, endorsed by GeoGebra. 
Although distinct from each other, David’s solution and the one produced by Débora 
and Isabel take advantage of an attribute of visualization: they visualize in order to 
verify. Every possible rectangle is displayed in the course of solving the problem, 
and in each case there is a certain way of thinking that guides the construction of all 
the rectangles to be considered. In contrast, Greg’s solution takes advantage of 
another attribute of visualization: he visualizes in order to imagine. This variation is 
consistent with the fact that digital geometry environments can generate reasoning 
mediated by the software but may also elicit mathematical explanations of the 
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geometric situation (Jones, 2000). Between the visualization to verify and the visu-
alization to imagine, it seems to be a differentiation that is explained by the way the 
interaction between the agent and the tool occurs (Chemero, 2003). Greg’s con-
struction of the various rectangles that can be defined maintaining one of its vertices 
on a particular dodecagon vertex led him to find the total number of rectangles. 
His conceptual model is robust, sophisticated and generalizable.

In the first two cases, the display of every rectangle is a result of different ways 
of thinking about its construction and how to guarantee the total number without 
repetitions. The use of colour has a very important meaning because it highlights 
and clarifies the configurations and the spatial characteristics of the various rectan-
gles. The solution of Débora and Isabel has, in addition, the advantage of referring 
to a numerical regularity and, as such, also allows imagining beyond the image, 
which is not plausible with David’s solution.

Therefore, it is possible to relate a nuance in the sophistication or robustness of 
these conceptual models (‘model of’ and ‘model for’) with the recognition of 
 affordances of the tool. Figure 2.11 seeks to illustrate this progression on a continu-
ous scale and proposes a view of the relative position between the three modes of 
thinking about this particular situation, in conjunction with the distinguishing crite-
rion of the perception of affordances in the digital tool.

Regarding the analysis of the solutions produced with Excel in a problem involv-
ing a linear equation with two integer variables, we also observed a range of ways 
of thinking about the situation that allows discussing and interpreting a progression 
in the conceptual models developed.

There is a fundamental distinction between two approaches: one that assumes the 
two variables to take independent values and the other that assumes one of the vari-
ables to be depending on the other. The first approach entails a less sophisticated or 
robust conceptual model, while the spreadsheet becomes a means of experimentally 
investigating the outcomes of assigning values   to one variable through organized 
attempts involving numerical properties of the solutions, such as being multiples of 
particular numbers.

It should be noted that the use of colour in the various versions of the solving- 
and- expressing process is extremely relevant. In fact, the use of colour and its 

Low sophistication
Affording visualization 

toobserving

High sophistication
Affording visualization 

to imagining

Moderate sophistication
Affording visualization to 
observing and describing 

David Débora & Isabel Greg

Fig. 2.11 Different levels of sophistication in conceptual models and its correspondence with the 
perception of affordances for visualization in the tool
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relevance were also reported on the solutions to the problem How many?, particu-
larly useful as a strategy of organization and clarification of the given situation and 
its expression through the digital tool. The use of textual and other types of inscrip-
tions, in addition to those that result immediately from the use of cells and formulas 
in Excel, is equally relevant in these solutions. ‘Translating’ the actions performed 
in Excel by means of long descriptions may be a way of compensating for the 
opacity of the spreadsheet’s language regarding the expression of mathematical 
thinking.

Considering this set of solutions, while there are informal conceptual models, 
essentially rooted in numerical modes of thinking, others have a more formal aspect 
since they have an increasingly algebraic character, although they may apparently 
be numerical since they are expressed in the spreadsheet through the use of variable 
cells or variable columns. The increasingly algebraic solutions portray a transfer of 
the goal of materializing the variables into Excel. They focus on the identification 
of a free variable, exhibiting the other variable as a function of the first one. In a 
sense, they approach the numerical relational nature of this tool and incorporate a 
functional or covariational way of thinking.

One of the relevant aspects of this progressive mathematization activity is closely 
linked to the visual feedback that the spreadsheet provides to the user’s actions. This 
feedback tends to be more informative in cases where the type of relationships 
between columns or between cells is progressively more relational and less infor-
mative when cells or columns are mainly numerical and the type of approach is 
based on trials and checking the solutions. In this sense, it is possible to differentiate 
the co-action between the student and the tool according to the problem-solving- 
and-expressing activity they engage in.

By detecting, in each case, indicators of how solvers guided and were guided by 
the opportunities and attributes they recognized in the digital tool, we clarify the 
existing co-action, which portrays the interaction linking intentionality and 
 representational expressiveness to the conceptual models produced by the partici-
pants while developing a solution. The most sophisticated conceptual models, 
namely, those in which the possibility of defining one variable as a function of the 
other prevails, reflect a high degree of co-action between the tool and the user. In the 
case of Luís’ solution, for example, not only is the conceptual model expressed 
through variable columns representing the relationship between the variables x and 
y, but the spreadsheet itself has the role of testing and returning the results that   cor-
respond to admissible solutions. Therefore, the students’ reliance on the feedback 
from the tool is evident either when they use numerical relations or when they rep-
resent functional relations.

From the analysis of the solutions produced with the spreadsheet, we propose a 
way of ordering them, in terms of the robustness or sophistication of the conceptual 
model that prevails in the organization and materialization of the operations and 
actions executed with Excel, in line with the intensity of the co-action between the 
solver and the digital tool (Fig. 2.12).

By comparing the independent analyses of these two sets of data, it is possible to 
distinguish the greater or lesser sophistication of the students’ conceptual models 
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and to understand how this emerges linked to a certain way of using a digital tool in 
solving a problem and expressing the underlying conceptual model. Two indepen-
dent forms of analysis were used, based on different theoretical concepts, although 
consistent with one another: (i) the recognition of the tool’s affordances to develop 
productive work on the problem and (ii) the type of co-action between the individual 
and the tool in the problem-solving-and-expressing process.

Our results reveal that more or less sophisticated conceptual models are directly 
involved in the understanding of the task and in the development of an approach to 
the solution. This is neither a new result nor a new way of understanding and 
explaining problem-solving and its relation to the production of mathematical 
knowledge. However, these results amplify the idea that there is a gradual continu-
ous between distinct versions of conceptual models, characterized by details, varia-
tions, specificities, possible to be described by means of a gradual scale. We are not, 
of course, advocating a distinction between worse and better conceptual models, let 
alone between unacceptable and acceptable models; rather, we are emphasizing 
their legitimacy as being in a continuous development. Our data highlight how we 
can understand its development.

Moreover, our results also place a particular emphasis on the way mathematical 
problem-solving takes place with the use of generally available digital tools. Bearing 
in mind the theoretical notion of humans-with-media, thus assuming the unity 
between the individual and the tool it uses, we found ways of establishing an eluci-
dative parallel between the students’ conceptual models and patterns of use of the 
digital tools (GeoGebra and Excel). Both of them indicate analogous, compatible 
and congruent types of progression. Thus, the use of a digital tool can be seen as a 
vehicle for the expression of different conceptual models, in the same way that the 
construction of conceptual models seems to have as counterpoint the different ways 
of recognizing the tools’ affordances and the corresponding interactions.

From this point of view, we argue that to-think-with-GeoGebra or to-think-with- 
Excel means to incorporate the possibilities of mathematical ‘expressiveness’ con-
veyed by the digital tools, which invite the student to develop mathematical thinking. 
Solving-and-expressing by means of digital tools is therefore something that comes 

Low sophistication
Weak co-action 

between the user and 
the spreadsheet

Bruno

High sophistication
Strong co-action 

between the user and 
the spreadsheet

Moderate sophistication
Sensible co-action 

between the user and the 
spreadsheet

Ivo Luís

Fig. 2.12 Different levels of sophistication in conceptual models and its correspondence with the 
intensity of the co-action between the user and the tool
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as a result of introducing a mathematical point of view to address a situation com-
bined with recognizing a mathematical point of view in the tool to deal with the 
same situation. The relevance of this conclusion seems to lie in the fact that a digital 
tool is itself a tool of conceptual expressiveness, even in seemingly insignificant 
aspects such as allowing formatting or editing, organizing and materializing objects, 
just as it happens with the conceptual nature of the use of colour, i.e. when it adds 
meaning to a mathematical construction.
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Chapter 3
Solving Probabilistic Problems 
with Technologies in Middle and High 
School: The French Case

Bernard Parzysz

3.1  Introduction

Through the last century statistics and probability used to be separate chapters in the 
French secondary mathematics curriculum (Parzysz, 2003), but a new approach of 
probability, together with the development of technologies for teaching, threw a 
bridge between them from the beginning of this century onwards. In high school 
curricula, for instance, the teaching of probability has evolved a great deal, shifting 
from a purely ‘cardinalist’ standpoint on the concept of probability to a more exper-
imental and less dogmatic approach, integrating a ‘frequentist’ standpoint.

To some extent, this situation results from the fact that nowadays technological 
tools play a large role in the teaching/learning of mathematics and in particular for 
solving probability problems. However, ‘it is not good enough to only consider 
which technology to use, but (…), in order for effective learning to take place, it is 
how the technology is integrated into the curriculum and learning process and how 
the teacher uses it that are vital’ (Pratt, Davies, & Connor, 2008, p. 98). As Trouche 
pointed out:

The development of computer tools has largely influenced the development of some math-
ematical domains […] and given a new status to experimental features in research […]. 
These effects apply to classroom mathematics as well. (…) Tools also have a great impact 
on the way students work. […] Finally, the tools put into play in teaching have thorough 
effects on conceptualization. (Trouche, 2005 p. 267)1
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These recent changes were not without consequence on students’ understanding; for 
example, as I show below, they may favour a tendency to blur the distinction 
between similar notions in one domain and the other. As Girard (2008, p. 2) states, 
‘teaching probability by modelling and simulation is not easy’, also adding that ‘the 
link between statistics and probability is still to be clarified’. Borovcnik (2008, 
p. 79) advocates supplying students with a wider and clearer view on probabilistic 
notions, noting that ‘clarification of the mutual dependencies between frequentist, 
Bayesian, and mathematical conceptions and intuitive thought makes the concept of 
probability flexible and robust’.

Although dealing with the specific case of the French current situation at middle 
and high school levels, this paper may be considered a survey of the main types of 
problems to be solved with the help of technological devices, some results being 
surely applicable to other countries since many students meet with such problems 
some time.

3.2  Didactical Frameworks for Teaching/Learning 
Mathematics in France

3.2.1  The Tradition: TDS, ATD and TCF

In France, contrary to many other countries, there is, for historical reasons, almost 
no research labelled ‘problem-solving’, i.e. aiming at developing specific skills. 
This has to be related with some features of the didactical frameworks developed by 
French researchers from 1970 onwards, the two best known and best used among 
them being TDS (Theory of Didactic Situations, initiated by Brousseau) and ATD 
(Anthropological Theory of Didactics, initiated by Chevallard).

TDS postulates that mathematical knowledge comes out of solving mathematical 
problems within didactical situations, and hence problem-solving is a fundamental 
element of the theory,2 a condition for a suitable problem being that the aimed 
knowledge is an optimal tool for solving it. Another condition is that mathematical 
learning can only be achieved if the problem is not much dependent on the teacher, 
hence the importance of the notions of devolution (i.e. the teacher’s problem becom-
ing the students’ problem) and milieu (i.e. symbolic and material artefacts with 
which teacher and students interact when they behave as epistemic subjects). A 
consequence is that a problem is never isolated but is an element in the progression 
of knowledge in a given domain of mathematics, the development of general solv-
ing skills being not an aim for the teaching.

ATD considers institution and praxeology as fundamental elements3: mathemati-
cal activity – like any human action − takes place within an institution and com-

2 See Brousseau (1997) and Warfield (2006).
3 See Chevallard (1999), and Chevallard (2002).
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prises two main components, a practical one (praxis) and a theoretical one (logos), 
interacting one with the other. In this framework mathematical knowledge comes 
out of solving types of tasks, together with associated techniques and a discourse 
justifying these techniques within the institution (called technology), and in turn 
technology being possibly justified by a theory. In this framework, a problem is 
embedded in a problematic question allowing the elaboration of technique and theo-
retical elements (Bosch, Chevallard, & Gascón, 2005).

A third framework, TCF (Theory of Conceptual Fields, initiated by Vergnaud4), 
includes a cognitive perspective in mathematical learning, putting the stress on the 
organization of problems into classes inside a given conceptual domain. Thus, one 
can see that even if the cognitive dimension is not missing in French didactics, the 
emphasis is rather on the epistemological side. Until recently, the French situation 
was what Artigue and Houdement (2007) described: ‘Research that could more or 
less be connected with problem-solving perspectives or metacognition has been 
maintained in a marginal position’ (p. 367).

In accordance with what was said above, problem-solving does not appear explic-
itly as a major goal of teaching mathematics but as a point among others, the stress 
being put on getting familiar with semiotic representation registers (figural, graphi-
cal, numerical) and on skills and methods linked with technologies (working out 
algorithms, simulation, experimentation…). However, solving problems is consid-
ered the basis of whole classroom work, under the designation ‘activity’, and gen-
eral cognitive skills are taken into account, for instance, in the 11th grade syllabus:

The activities proposed in the classroom and outside lean on solving problems, purely 
mathematical or coming from other matters. Of various kinds, they must train the students 
to:

 – search experiment, model, especially with technological tools;
 – choose and apply calculation techniques;
 – put algorithms into play;
 – reason, demonstrate, find out partial results and put them in perspective;
 – explain orally a process communicate a result orally or in writing. (Official Bulletin, 

2010/09/30)5

3.2.2  A Newcomer: MWS

Some years ago, the Geometrical Working Spaces framework (Houdement & 
Kuzniak, 2006) was extended into a general framework, MWS (Mathematical 
Working Spaces), including an explicit interaction between the epistemological and 
cognitive sides of mathematical activity (Kuzniak, 2011). It does not conflict with 
other frameworks but, on the contrary, is intended to be open and adaptable in inter-
action with other approaches in mathematics education:

4 See Vergnaud (1990).
5 My translation.
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The MWS construction is an object of a very different nature (…). Its logic seems more that 
of an assembly that would incorporate, possibly with adaptation, a diversity of constructs 
and perspectives developed in the field, without privileging any of them. This gives the 
MWS structure a plasticity that big theories (…) do not have, and certainly contributes to 
its accessibility and attractivity. (Artigue, 2016, 936)6

Its aim is to describe the various dimensions of the work put in play by anybody 
who is engaged in solving a mathematical problem; therefore, it takes into account 
not only mathematical knowledge, of course, but also cognitive activity. More pre-
cisely, within the MWS framework, two distinct ‘planes’, one epistemological and 
one cognitive, interacting with each other, are considered (Kuzniak, 2011).

The epistemological plane has three components:

 – A real space, including a set of semiotic representations (Duval, 1995)
 – A set of instruments (or artefacts), allowing to perform actions on the 

representations
 – A theoretical reference system, consisting of a set of mathematical knowledge

The cognitive plane is composed of three processes:

 – Visualization (this word being taken in a quite broad sense)
 – Construction, regarding the use of instruments
 – Proof, in relation to the reference system

The elements of this plane are connected with those of the epistemological plane 
along three dimensions:

 – Semiotic, related to the production of representations and visualization
 – Instrumental, regarding constructions using instruments (e.g. software)
 – Discursive, in relation to proof

Figure 3.1 shows the articulation between the two planes and their components.
The hypothesis underlying the MWS framework is that a good connection 

between the three dimensions fosters a better grasping of mathematical 
knowledge.

In relation to various possible uses and settings, three levels of MWS are distin-
guished in problem-solving:

 – Personal MWS, that of the student solving the problem
 – Suitable MWS, concerned with what is planned by the teacher to insure an effec-

tive work in the classroom
 – Reference MWS, i.e. the knowledge wished by the institution to be acquired by 

the student (e.g. official texts defining the syllabus).

Another feature of the MWS is that it takes into account the notion of para-
digm. This word is taken from Kuhn (1962): a scientific paradigm consists of 
‘universally recognized scientific achievements that, for a time, provide model 

6 My translation.
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problems and solutions for a community of practitioners’ (Kuhn, 1996, p. 10). 
A paradigm includes which phenomena are to be observed, the sensible associated 
questions, the predictions which can be expected and how to carry out experi-
ments for such purposes. In the present case, the ‘community’ is any given level 
of school institution.

In this chapter, the question of solving probability problems with technological 
devices is analysed from the MWS standpoint, with an addition of some features 
coming from other frameworks, namely:

 – Semantic congruence (Duval, 1995), i.e. a match between units belonging to two 
different semiotic registers and a similar organization of these elements

 – Instrumental genesis (Rabardel, 1995), i.e. the appropriation process of an artefact 
by its user, making a mere ‘tool’ become an ‘instrument’ through use

3.2.3  Application to Stochastics

A parallel between the teaching/learning of probability and geometry had been 
brought to the fore some years ago (Henry, 1999; Parzysz, 2011). At school level, 
two geometrical paradigms can be distinguished:

 – In one of them (G1), the objects of study are lines drawn on a physical support 
with instruments (ruler, compasses, protractor…,), and the proof is established 
by these instruments.

 – In the other one (G2), the objects of study are immaterial entities (represented by 
drawings), and the proof is established by a logical discourse.

Similarly, in the case of probability, several paradigms may also be 
distinguished:

Fig. 3.1 The MWS model. (After Kuzniak, 2011)
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 – A ‘realistic’ paradigm, i.e. the concrete experiment put into play using material 
objects (e.g. real dice, coins, lottery wheel, balls inside a bag, etc.).

 – A second paradigm (P1), resulting from a modelling in which the concrete exper-
iment will result in a list of outcomes and a precise experimental protocol 
(‘pseudo-concrete’ experiment) ensuring that the experiment can be repeated in 
the same conditions, the repetition leading to observe phenomena to which a 
chance of occurrence is ascribed.

 – A third paradigm (P2), resulting from a ‘probabilistic’ view on the experiment, 
in which the generic random experiment and the notion of probability are defined. 
Then a study of the properties of probability is undertaken, i.e. an algebraic 
structure is defined about the events, illustrated in classical model laws (bino-
mial, exponential, geometrical, Gaussian…). The related tools are mathematical 
proof, usual calculation techniques, representation registers (two-way table, 
probabilistic tree, set diagram, various statistical graphs…); this ‘standard’ para-
digm can possibly be extended by integrating continuous distributions (P2+), 
which is currently done in France during the last year of high school.

It is also necessary to consider statistics, since this domain is also frequently at 
play in current probabilistic problems. In this case, two paradigms are classically 
distinguished:

 – A descriptive statistical paradigm (DS), at play in computer simulation, which is 
also used to establish links with some probabilistic notions such as relative fre-
quency/probability, arithmetic mean/expected value…. The current French syl-
labus for 11th grade encourages such a relation: ‘By using simulations and a 
heuristic approach to the law of large numbers, the link will be made with the 
mean and variance of a series of data’.7

 – An inferential statistical paradigm (IS), including estimations and tests and mak-
ing use of probabilistic tools.

To these paradigms must also be added a subdomain of calculus: integral calcu-
lus (IC), which is used to calculate probabilities with Gaussian distributions.

3.3  Current Reference MWS Associated with Probability

Even if developing methods and skills of problem-solving among students is not a 
specific aim of mathematics teaching in France, solving problems is the ground on 
which mathematical knowledge is acquired. Hence studying the types of tasks put 
into play by students engaged in solving probability problems provides insights on 
why and how technologies are used in order to develop their knowledge in this 
domain. For this purpose, it appears useful to begin with pointing out the main 

7 My translation.
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features of the current syllabi, which are in relation to stochastics in middle and high 
school. When solving probability problems, the student’s MWS would of course 
include his/her knowledge and skills – and he/she would get new ones − not only in 
probability but possibly also in statistics and in the use of technologies, including 
algorithmics.

It is worth to be noticed that, contrary to many other countries, after having been 
for years limited to the end of high school (11th–12th grades), the French probabil-
ity syllabus, following other countries, is now conceived as a continuous progress 
from 7th to 12th grade.

3.3.1  Middle School

In France the teaching of descriptive statistics begins at the start of middle school 
(6th–9th grades), the aim being to provide the students with means for organizing 
and managing statistical data, namely, using graphical representations and parame-
ters. At the end of middle school, the student is supposed to be able to:

use a spreadsheet to calculate indicators and represent graphically data. Have a critical look 
on numerical information (…), organize and process results coming from measures (…), 
question the relevance of the way by which the data are collected, read, interpret or build a 
diagram (…) (Official Bulletin, 2015/11/26)8

At this same level, through the observation of the stabilization of relative frequencies, 
the students are supposed to establish a link between relative frequency and probabil-
ity, either by hand or with a spreadsheet, and calculate probabilities in simple cases.

Regarding the aim of the teaching of technologies, the syllabus for ‘cycle 4’ 
(7th–9th grades) states:

The student develops his/her intuition by shifting from one form of representation to 
another (…). Such changes of registers are fostered by the use of polyvalent software, such 
as a spreadsheet and dynamic geometry software. The use of a spreadsheet and calculator 
is necessary for managing real data (…).

The teaching of computer science at cycle 4 does not aim at training expert students but 
at providing them with keys for deciphering a numerical world constantly evolving. It 
enables the gaining of methods for constructing an algorithmic thought and developing 
abilities in representing and processing information, solving problems, controlling results. 
(ibid.)9

At the end of middle school, the student should ‘conceive parametrize and program 
computerized applications for mobile devices’ (ibid.).10 Since algorithmics is now 
included in the curriculum, the student should be able to:

8 My translation.
9 My translation.
10 My translation.

3 Solving Probabilistic Problems with Technologies in Middle and High School…



50

 – break up a problem into sub-problems in order to structure a program, recognize 
schemes.

 – write down, settle (test, correct) and run a program in answer to a given problem. 
(ibid.)11

3.3.2  High School

In high school (10th–12th grades), the panel of statistical parameters and represen-
tations is extended, helped, of course, by computer or calculator. At 10th grade 
level, the aim of the teaching of probability is now to enable students to:

 – study and model experiments coming within equal probability (…);
 – propose a probabilistic model from observing frequencies in simple situations;
 – interpret events using sets;
 – see through probabilistic calculations. (Official Bulletin, 2009/07/23)12

‘Scientific’ students of 11th grade carry on the study of finite probability spaces, 
together with the binomial distribution, which is then used to determine a fluctua-
tion interval for a sample of a B n p,( )  distribution, defined as ‘the interval centred 
around p in which the relative frequency of a sample of size n is situated with a 0.95 
probability’ (Resource document, June 2011).13 At 12th grade conditional probabil-
ity and continuous probability distributions are introduced; they are, namely, applied 
to the study of random walk, exponential and normal laws. To end with, the de 
Moivre–Laplace theorem (accepted) is used for introducing an asymptotic fluctua-
tion interval and a confidence interval at a 95% level.

At all three levels of high school, the aim with algorithmics is to train students 
to:

 – describe some algorithms in natural language or in a symbolic language;
 – run some of them with spreadsheet or a small program implemented in a calculator (…);
 – interpret more complex algorithms. (ibid.)14

Regarding technologies, like in other countries their use has been included in the 
math curricula for years, first through calculator and then computer. The syllabus 
for 10th grade goes further:

The use of software (calculator or computer), of tools of visualization and representation, 
calculation (numerical or formal), simulation, programming develops the possibility for 
experimenting, opens widely the dialectics between observation and proof and changes 
deeply the nature of teaching.(ibid.)15

11 My translation.
12 My translation.
13 My translation.
14 My translation.
15 My translation.
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At 11th grade level, a noticeable consequence of the use of technology is 
mentioned:

In particular, when solving problems, the use of formal calculation software can limit the 
time spent in very technical calculation, in order to concentrate on the setting up of reason-
ing. (Official Bulletin, 2010/09/30)

This remark is applicable to probability as well, making, for instance, obsolete 
browsing through double-entry tables to find out a probability.

The syllabus also indicates three ways for using them in the classroom:

 – By the teacher using a collective visualization device
 – By the students working in groups (guided practical work)
 – By the students working separately outside the classroom

3.4  ‘Virtual’ Suitable MWS: Textbooks

The reference MWS is given by the curricula, but the suitable and personal spaces 
can only be known by observing extended real classes. Nevertheless, an idea of suit-
able MWS can be given by textbooks, since they are much used by the teachers 
when planning their work, the more so that many of them are not familiar with the 
domain; for this reason textbooks can be considered as giving ‘virtual’ suitable 
MWS. The same goes for the so-called resource documents elaborated by a group 
of teachers and trainers and edited by the Ministry of Education; they are not, 
strictly speaking, part of the syllabus but are intended to give guidelines for teach-
ers, including problems to be solved in class under various forms.

In France, ten or so different textbooks are published for each level – some of 
them by the same publisher. In relation to the purpose of this chapter, they constitute 
a sample of how trained teachers conceive the teaching of probability and give exam-
ples of problems to be solved by students. In particular, some problems (‘activities’) 
provide details on the processes that are to be undertaken by the student, giving thus 
an insight on the suitable MWS intended by the authors for ‘ordinary’ classes. Some 
of the textbooks have a digital version, intended for teachers and/or students, includ-
ing the contents of the paper textbook (which can be projected), additional exercises 
(some of them in English and Spanish), animations, video tutorials, simulations of 
random experiments, MQC tests, worksheets, Internet links, and so on.

At high school level, many problems present a random experiment and ask ques-
tions about the probabilities of associated events. In order to answer these questions, 
students are asked to experiment, either ‘by hand’ or by simulation, with calculator 
or computer; and, on this basis, they are asked to formulate conjectures about the 
required probabilities. Then they are asked to search for mathematical answers to 
the initial questions (see Sect. 3.6.1).

In some cases, the first step is not to simulate the experiment but to carry it out a 
number of times, the initial purpose being the devolution of the problem to the stu-
dents (Sect. 3.6.1). Since the limitation of the number of tries prevents making 
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sensible guesses on probabilities from just observing frequencies, the next step is 
always to simulate the experiment. Anyway, in all cases a ‘frequentist’ standpoint 
has to be put into play for giving an answer.

On the contrary, in nearly all cases giving a mathematical solution implies identi-
fying elementary events having the same probability, i.e. a ‘cardinalist’ standpoint.

3.5  Two Standpoints on Probability

3.5.1  Random Generator

The first question about technologies being used to simulate random experiments 
for solving probability problems is: why not perform the experiment with real 
objects such as coins, dice, cards, etc.? Of course, a machine works incompara-
bly faster and easier than any human being. Performing a single real experiment 
and writing down its outcome takes at least several seconds. Within 1 h, it might 
be possible to reach 1000 tries at the best, whereas a calculator can give several 
thousands in the same time span and a computer several thousands in 1 min or 
so. Another reason to use technology is that after the simulation it is possible to 
use the results for various calculations. These are in fact the main reasons for 
using random generators.

Random generators do not produce randomness, since they generate determin-
istic sequences of numbers (Parzysz, 2005); this fact is not questioned by students 
(no more than about trigonometric or logarithmic functions). In any case, their 
teachers can tell them that, as far as they are concerned, they can take it for granted 
that the machine produces randomness and use it freely for simulating random 
experiments, once they have learnt how to do it.16 Indeed, how to link a decimal 
number belonging to [0;1] to a random experiment has to become part of the per-
sonal MWS of the students.

The main limitation of random generators for simulating random experiments is 
that they can only be used for some experiments, but not for all; for instance, it is 
not possible to simulate the tossing of a pushpin, which may fall on its head or on 
its point (Fig. 3.2), because it is not possible to assign a sensible probability to each 
of these two outcomes. In this case, a solution would be to toss it a great number of 
times and decide to assign the observed relative frequency of each outcome as its 
probability (see below).

16 Although in fact, when simulating a random experiment, what one actually does is testing the 
quality of the generator.
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3.5.2  Frequentist and Cardinalist Standpoints

The example of pushpin introduces a dual point of view on probability that is the 
very base on which many probability problems asked of French students rely. Being 
given a random experiment and an event related to this experiment, then:

 – A first (‘cardinalist’) standpoint assumes from a priori considerations (e.g. on the 
symmetry of the issues) that all the issues of the experiment have the same prob-
ability to occur; then the probability of the event is the ratio of the number of 
outcomes producing it to the total number of outcomes (known as Laplace’s 
formula).

 – A second (‘frequentist’) standpoint is based on experimentation; to assign a 
value to the probability of an event, the experiment is performed a great number 
of times, and the relative frequency of the event is noted down; then, a posteriori, 
a value linked with (equal or close to) this frequency is assumed to be the prob-
ability of the event.

This duality was clearly expressed for the first time by Jacob Bernoulli (1654–
1705), in his posthumous book Ars conjectandi (Bernoulli, 1713):

But to tell the truth another way to get what we are looking for is offered to us. What is not 
possible to be obtained a priori can at least be a posteriori, i.e. it will possibly be extracted 
from the observation of numerous similar examples, because it has to be assumed that each 
issue can happen and not happen afterwards following the same number of cases which 
previous observation showed it happen or not happen, in a similar state of things.17

Until recently, the cardinalist standpoint was the only one taken into account in the 
teaching of probability, but − as mentioned above − the development of technology 
made quite easy and fast, thanks to random generators, to get very great numbers of 
tries of a random experiment through simulation, and thus made possible for students 
having little or no knowledge about probabilistic paradigm P2 to obtain a fair approxi-
mation of the probabilities of events linked to this experiment, probabilities which 
would be difficult, if not impossible, for them to calculate directly. The condition being 
for them to be able to implement the experiment in the machine,18 hence the need for 
some specific knowledge both on probability and software. This is the kind of prob-
lems by which the frequentist standpoint made its appearance in French high school.

Fig. 3.2 The two possible 
outcomes when throwing a 
pushpin

17 My translation.
18 This implies that a model of the experiment is available, that is, a probability can be assigned to 
each issue.
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At 9th grade, students become sensitive to the frequentist standpoint by solving 
simple problems through carrying out and/or simulating elementary random experi-
ments with only two issues. They are asked to make a guess about the probability of 
a given event from observing on a related diagram produced by the machine how the 
relative frequency of successes fluctuates and stabilizes when the number of tries 
increases more and more. Figure 3.3 shows an example of the fluctuation of the 
frequency of ‘heads’ in a game of heads and tails simulated with Excel, for an 
increasing number of 1000, 2000, …, 50,000 tosses.

3.6  Technologies to Simulate Random Experiments

3.6.1  A Classroom Experiment

Although students seldom ask questions about how the random generator works, the 
shift from real to simulated random experiments is not so obvious and should be an 
initial aim in the teaching of probability. Then starting with performing real random 
experiments is unavoidable if one wants to show that probability is anchored in real-
ity, and this can be done quite soon (sooner than it used to be currently done in 
France, anyway).

The choice of the experiment is important, because the task must make sense for 
the students and not be too easy to solve. It is the case with the so-called d’Alembert’s 
problem,19 which can be summarized as follows:

Toss a well-balanced coin; if you get ‘head’ you win.
If you get ‘tail’ toss the coin again; then if you get ‘head’ you win, and if you get 

‘tail’ you lose.
What is your chance to win at this game?

Fig. 3.3 Heads and tails. Evolution of the relative frequencies of ‘heads’ up to 50,000 tosses

19 The origin of this problem is the entry ‘Croix ou Pile’ in the Encyclopédie (1751–1772) super-
vised by Jean le Rond d’Alembert and Denis Diderot.
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Some years ago, this task was given to ‘non-scientific’ 10th graders (Parzysz, 
2007).20 After discussing this before any experimentation, the students fell into two 
main equal categories:

 – Some believed that the chances of winning are two out of three, since three issues 
are possible: Head (→ win), tail + head (→ win), and tail + tail (→ lose).

 – Some others believed that one has three chances of winning out of four: One out 
of two at the first toss plus one out of four at the second.

They could not find any agreement between them – at that time, they were not 
familiar with tools like double-entry tables or tree diagrams− and, taking coins out 
of their pockets, some of them began to play the game. This feature having been 
anticipated by the teacher, all students were given coins and a planned experimenta-
tion began. Table 3.1 shows the frequencies of successes on 80 tries for a class in 
which the students were divided into seven working groups.

After gathering the results obtained by all the students, it appeared that the rela-
tive frequency of wins was nearer 3/4 than 2/3, but one could not be quite sure 
because there were not enough tries. Then simulation with calculator (a computer 
was not available then), proved useful and consequently was undertaken (Fig. 3.4). 
It showed the students that along with its rapidity, a random generator is really trust-
worthy and efficient for simulating random experiments.

3.6.2  Simulation: A Triple-Sided Process

The French syllabus for 10th grade states:

On the occasion of setting up a simulation, one may:
use the logical functions of a spreadsheet or calculator,
set up conditional instructions in an algorithm. (Official Bulletin, 2009/07/23)21

What is meant here by ‘simulation’ seems clear: it is using a calculator or a com-
puter to simulate a random experiment. The authors of the syllabus have indeed 
taken into account the expansion of technology, but by this they restrict the meaning 
of the word, since as a 10th grade textbook states: ‘simulating an experiment is 
replacing it by another experiment which enables one to get results similar to those 
of the first experiment; moreover, the new experiment has to be simpler to carry 

Table 3.1 d’Alembert’s game: frequencies of successes on 80 tries

Group 1 2 3 4 5 6 7 Total

Frequency 65 69 53 53 64 58 62 424
Relative frequency 0.81 0.86 0.66 0.66 0.80 0.72 0.77 0.76

20 The students were in fact given the original text, in which d’Alembert gives both the solution 
given ‘by all authors’ (3/4) and his own solution (2/3).
21 My translation.
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out’.22,23 The essential difficulty lies in ascertaining that the results of the simulation 
are ‘similar’ to those of the experiment. In fact, the similarity between the experi-
ment and its substitute can only come from the fact that they refer to the same proba-
bilistic model. For instance, throws of a well-balanced coin to play heads and tails 
may be simulated with a die, by agreeing that getting an even number is a ‘head’ and 
an odd number is a ‘tail’. Similarly, in order to study how boys and girls are distrib-
uted in families with three children, black and white balls can be put into a bag in 
equal numbers (e.g. ten) and three balls removed one at a time, putting each ball 
back in the bag afterwards and studying how many balls of each colour are obtained. 
In that case, the underlying model supposes that the births of a girl or a boy are 
independent and occur with the same probability. One may also assign different 
probabilities, for instance, use the current world sex ratio, 107 boys to 100 girls.

Figure 3.5 shows that, although seeming double-sided, the simulation process 
is in fact triple-sided, requiring a theoretical model (possibly implicit) as a media-
tor between the real experiment and its simulation: Bernoulli’s law in the case of 
the die and binomial law in the case of the families. As Batanero, Henry, and 
Parzysz (2005) argue:

Using computers as simulation tools requires characterizing a model of the simulation and 
makes it still more necessary to explicitly state the working hypotheses. Finally, we remark 
that a pure experimental approach is not sufficient in the teaching of probability. Even when 

Fig. 3.5 From a random 
experiment to its 
simulation

Fig. 3.4 d’Alembert’s game: relative frequencies of successes up to 25,000 games (with 
spreadsheet)

22 My translation.
23 Deledicq, A. (dir.) Mathématiques classe de Seconde. Collection Indice. Bordas, Paris 2000, 138.
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simulation can help to find a solution to a probability problem arising in a real world situa-
tion, the simulation cannot prove that this is the most relevant solution, because it depends 
on the hypotheses and the theoretical setting on which the model is built. (p. 33)24

3.6.3  Simulating with a Technological Device

In order to carry out a simulation of a random experiment making use of technology, 
the machine must first be told what to do, i.e. a conversion needs to be made from natu-
ral language to that of the machine. Most often, this is achieved through an algorithm 
which makes it necessary to declare the variables, enter or initialize the data, process 
them and display the results. Figure 3.6 shows the example of an algorithm simulating 
N tosses of a well-balanced coin, taken from a 11th grade French textbook25.

This algorithm is then ‘translated’ into a specific language applicable to the tech-
nological device (Fig. 3.7).

An algorithm may be written in natural language, but specialized software have 
been developed (Algobox, Larp…). Figure 3.8 shows another example from another 
textbook relating to the following problem:

In a factory a product may present two defects:

 – Defect A with probability 0.1,
 – Defect B with probability 0.2.

Fig. 3.7 Implementations of the algorithm

24 My translation.
25 Beltramone et al., 2015

Fig. 3.6 An algorithm for 
tossing a coin

3 Solving Probabilistic Problems with Technologies in Middle and High School…



58

The two defects are independent from each other. The choice of a sample of size 
n of this product is simulated by a program and the relative frequency of the products 
presenting at least one defect is displayed. (…)

 (a) Explain what is represented by each variable of this program.
 (b) Implement and carry out this program for samples with n = 1000, n = 5000, 

n = 10,000. (…).26,27

One may notice that this part of the solution involves the three dimensions of the 
MWS: discursive to explain an algorithm, semiotic to shift from one language to 
another and instrumental to carry out the simulation; a study of the problems given 
in textbooks shows that, even if all three dimensions are present, the discursive 
dimension is limited to give simple justifications.

3.6.4  Analysis of a Simulation Problem

A most frequent type of problem to be found in French 10th and 11th grade courses 
and textbooks includes a simulation of a real situation in which several outcomes 
can occur in an unpredictable way, according to the following process:

Fig. 3.8 Another 
algorithm

26 My translation.
27 Malaval et al. (2011), p. 399.
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 1. Simulate the situation (with calculator or spreadsheet).
 2. Observe the results of this simulation.
 3. Express a conjecture about the probability of one of the possible issues of the 

experiment or about the possible value of a parameter of the situation.
 4. Solve the problem using the probability theory.
 5. Compare the theoretical results with the results of the simulation.

The implicit aim of such problems is that the student becomes aware of certain pro-
cesses for solving a ‘real’ probability problem:

 (a) When you have no clear idea of the solution, look for an algorithm describing 
the experiment.

 (b) Implement this algorithm in a machine, and carry out a ‘great’ number of tries.
 (c) Make a guess about the solution.
 (d) With the help of the algorithm and your knowledge in probability, search for a 

mathematical solution.

In these processes, the student will observe that:

 (a) Repeating the experiment a great number of times and observing the stabiliza-
tion of the relative frequencies of given events allow to get an idea on the prob-
ability of these events.

 (b) The number of tries being as high as he/she wants, one does not reach a unique 
value (Table 3.2 shows an example for 9994,…, 10,000 tries of heads and tails); 
hence this method is not able to give ‘the’ solution.

 (c) The solution can only be obtained by a mathematical reasoning.

As stated by Batanero et al.:

Finally, we remark that a pure experimental approach is not sufficient in the teaching of 
probability. Even when a simulation can help to find a solution to a probability problem 
arising in a real world situation, the simulation cannot prove that this is the most relevant 
solution, because it depends on the hypotheses and the theoretical setting on which the 
model is built. (Batanero et al., 2005, p. 33)

In this process, technology is used to simulate the experiment; that is, to find and 
implement an algorithm, this step, although insufficient to reach a solution, is nev-
ertheless important, not only to make a guess on the solution but also to find a path 
towards it, since the algorithm is in relation with a theoretical model (possibly 
implicit).

Table 3.2 Stabilization of 
relative frequencies

9994 0.49889934
9995 0.49894947
9996 0.4989996
9997 0.49904971
9998 0.49909982
9999 0.4990499
10,000 0.4991
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In order to make the purpose clearer, a problem taken from a French 11th grade 
textbook well used in classrooms is instructive.28 In fact, by now, this task has 
become a stereotype, since numerous examples of this same ‘activity’ are to be 
found in textbooks of that level:

(Part 129) You have three perfect tetrahedral dice: one blue, one red and one 
green. You throw these three dice and observe how many 4s you obtain.

An outcome is a three-digit number, for instance 1 4 3. It is assumed that 
the probability is the same for all the outcomes.

Let us consider the following game: if you get the number 4 three times 
you win 36 €; if you get it twice you win 2 €; otherwise you lose 1 €.

The aim of this exercise is to estimate the average profit, which can be 
expected from a series of 2500 tries.

(Part 2) Simulate with a spreadsheet (…)
(Part 3) Conjecture
Simulate this experiment several times. (…)
How does the mean profit evolve with the number of tries?
Which mean profit can be expected at the end of 2500 tries?
(Part 4) Proof

(a) How many outcomes are there for a try?
(b) Count the outcomes giving three 4s; two 4s.
(c) Let G be the random variable giving the algebraic profit (in €) of the player. 

Set up the table of the law of probability of G, then calculate E(G).
(d) (Part 5) What link do you establish between the result of the simulation and 

the expected value of G?

In Part 1, the first sentence describes the ‘concrete’ situation, material objects at 
play (shape, colour) and rule of the game, and a question is asked about this game.

28 Barra, R. et  al. Mathématiques classe de Première. Collection Transmath. Nathan, Paris 
2011, 303.
29 This division into five parts is mine; it is intended to make the following discussion easier.
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The student’s intended MWS is now composed of these objects and rules, 
together with actions (2500 tries) and subject of interest (mean profit); it stands in 
the discursive dimension.

Then a hypothesis is made (‘It is assumed that the probability is the same for all 
the outcomes’). In fact, it introduces a probabilistic model of the situation. This 
going through P1 is necessary, since to simulate an experiment you need to model it 
(cf.Sect. 3.6.2.). Making the model explicit ensures that the same experiment will be 
repeated, since in each try the same protocol occurs (Parzysz, 2009). However, this 
necessary step is often skipped in teaching, and one shifts directly from the real situ-
ation to its simulation. This is made easy because for most of the random experi-
ments studied in classrooms, a canonic model can be thought of, which is then 
considered ‘transparent’. But, by so doing, the students may be induced to simulate 
the real situation at first, i.e. without being aware that they are implicitly making 
hypotheses.

In the model presented here, ‘an outcome is a three-digit number’, and, since 
each die can show 1, 2, 3 or 4, there are 64 possible outcomes (43) which, from the 
hypothesis, are assigned 1/64 as probability. The referent workspace (in P1) is com-
posed of the outcomes with their probabilities, and the student is supposed to work 
within the domain of rational numbers.

The next step of the task (Part 2) is a simulation. In this part, the student’s MWS 
shifts from P1 to DS: the probability hypotheses have to be converted into instruc-
tions for the software, through an implicit algorithm. The work stands in the 
semiotic- instrumental plane, the corresponding semiotic registers being natural lan-
guage and the symbolic language implemented in the spreadsheet. Then he/she 
works within DS, using notions he/she already knows of (sum, mean). Implementing 
the rule of the game in the worksheet is trickier, but the textbook helps him/her by 
giving the formula to be used. The student has to elaborate a strategy, and for this, 
he/she is given clues at each of the three steps, which can be distinguished in the 
strategy:

 1. Dealing with the three dice individually.
 2. Putting the three results in common.
 3. Repeating the experiment.

At this point, a major difference with using geometry dynamic software appears in 
many of these problems: the student is much more guided, and he/she is confined to 
carry out elementary tasks, a characteristic fact which has already been mentioned 
by educators:

A […] feature of the [computer aided] teaching is the tendency to develop a solution strictly 
step by step […] The aspect being important for my concern is not that an order is put on 
mathematical task solving […] but that the participants restrict their considerations to the 
actual mathematical step. (Jungwirth, 2009, p. 3)

This is indeed the case for the above problem, in which Part 2 goes:
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Since ‘making the handling of software easier does not ensure the necessary ability 
for succeeding in more complex tasks’ (Rabardel, 1995),30 a diagram visualizing the 
algorithm at work can be most useful.

The justification required at the end of question (c) is supposed to make sure that 
the student understands what he/she is doing. Several textbooks pay attention to this 
question and have devoted paragraphs on how to use specific calculators, spreadsheet 
and dynamic geometry software in relation with the tasks required in the curriculum.

In Part 3 the spreadsheet is used for repeating the experiment and making con-
jectures based on the results displayed in various registers (numbers and diagram), 
i.e. in the semiotic dimension. This dynamic aspect is an important feature of the 
task, because it establishes a link between DS and P2.

Until now, the spreadsheet had been used in turn as a random generator (for 
throwing dice), a logical tool (conditional instruction), a copying machine (in order 
to get 2500 tries), a calculator (for the average profit) and finally a plotter (to show 
its evolution). Then it is used for making conjectures. The student’s task is now to 
observe how the results evolve through several series of experiments and then con-
clude by making a guess about a ‘limit’ for the parameter. An important feature of 
the software for teaching is indeed its dynamic aspect (using the F9 key) which 
shows the sample fluctuations and the convergence of the relative frequencies; nev-
ertheless it has some limits, since the – postulated − limit of the series of frequen-
cies is not accessible. The student’s personal MWS is mostly DS, with a – more or 

A B C D E F G

1 Try n Blue die Red die Green die Issues of 4 Profit Average profit

2
3

 (a) Open a worksheet and fill cells A2 to D2 with the appropriate formulas.
 (b) In E2 count the occurrences of 4 in the block of cells B2:D2. [help: Use 

the instruction COUNTIF].
 (c) In F2 have the profit of try #1 displayed.
 (d) Enter the conditional instruction: =IF(E2=3;36;IF(E2=2;2;-1)). Justify 

that it suitably describes the rule of the game.
 (e) In column H you want to display the mean profit as a function of the 

number of tries. Which formula do you have to enter?
 (f) Select the block of cells A2:H2, then paste downwards until row 2501.
 (g) Select columns A and H, then represent the mean profit as a function of 

the number of tries, n.

30 My translation.
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less implicit  – recourse to a ‘naive wording of the law of large numbers’ which 
refers to probability.31

Finally, this process can be illustrated by Fig. 3.9: starting from the real situation, 
the student shifts to probability (to implement a model in the spreadsheet) then to 
statistics (to calculate parameters of the distribution), then again to probability 
(using the law of great numbers to conjecture limits) and finally back to the real situ-
ation to express his/her answer.

Regarding the dimensions of the MWS, in parts 1–3 the semiotic-instrumental 
plane is greatly favoured, and the discursive dimension has only the rhetorical role 
to ensure that a subtask has been correctly implemented.

Part 4 is quite another problem, in which simulation is left aside and a theoretical 
solution asked within the traditional cardinalist standpoint. Its structure and  wording 
are that of a ‘classical’ probability problem to solve in paper-and-pencil environ-
ment (P2). The student’s first task is to determine which theoretical space he/she has 
to work in and then to set up the table of the law of probability of G and calculate 
its expected value.

The subjacent model is the initial one, in which an outcome is a three-digit num-
ber: this is the reason why the dice must have different colours, the aim of such a 
‘pedagogical artefact’ being to guide the student towards the correct solution.

Contrary to the previous parts, in this part the task stands in the semiotic- 
discursive plane of the MWS.

In the final part of the problem (Part 5), the student is asked to establish a link 
between the ‘statistical’ part (simulation) and the ‘probabilistic’ part (proof) of the 

Fig. 3.9 Processes 
involved in the task

31 ‘When the number of experimentations grows up the relative frequency gets nearer the 
probability’.
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activity. The justification is to be based on a ‘naive formulation of the law of large 
numbers’. But here E(G)  =  ∑xi. p(xi), whereas the average profit is ∑xi. f(xi) 
(1 ≤  i ≤ 3). Therefore, account has to be taken of not only the convergence of a 
particular frequency but also the convergence of the frequency distribution towards 
the probability distribution. This is indeed a consequence of the law, but it makes it 
necessary to consider the whole distribution.

[Remark. The purpose of the authors was certainly to introduce the binomial law, 
since three independent Bernoulli random variables B 1 0 5; .( )  can be attached to 
the dice. Moreover, the values of the random variable were chosen so that its 
expected value is 0 (fair game).]

Here a question arises about the model, which is far from unusual in probability, 
especially when spreadsheet is used (Parzysz, 2009): the model implemented in the 
software does not fit with the hypothesis. The table shows that the assumed equal prob-
ability concerns the four vertices of each die, since the hypothesis states that it is about 
the 64 possible three-digit numbers. A more suitable implementation would have been 
to display each three-digit number together with the corresponding number of 4s and/
or the associated profit. Of course, in the present case the two models, although differ-
ent, give the same results. According to the hypothesis, there are 54 outcomes with no 
or one 4, 9 with two 4s and 1 with three 4s. Hence the distribution is:

 
P G P G P G=( ) = =( ) = = −( ) =36 1 64 2 9 64 1 27 32/ , / , /

 

(and, as noticed above, E(G) = (1/64) × 36 + (9/64) × 2 + (27/32) × (−1) = 0).
But, according to the model implemented, for each die, 

p(1) = p(2) = p(3) = p(4) = ¼. Assuming that the dice are mutually independent, a 
binomial law with parameters n = 4 and p = 0.25 gives the same distribution as 
above:
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However, the first model would have been more difficult to implement with the 
software, and this is certainly the reason why the authors chose another one, as they 
knew it would lead to the same results.

Replacing a model by another one is quite ‘transparent’ for the teacher, since he/
she knows that they are equivalent. But the students could rightly be puzzled by this 
substitution. In the present case a possible better solution would be to study another 
experiment, in which a same die is thrown three times, the first throw giving the first 
digit of the number and so on (Table 3.3).32 The associated table would then be:

32 In this case, the ‘pedagogical artefact’ consisting of colouring the dice is no use.
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Fig. 3.10 Emergence of a 
model of the experiment

Table 3.3 An alternative simulation

A B C D E F G

1 Try n° 1st
throw

2nd
throw

3rd
throw

Outcomes
of 4

Profit Average
profit

2
3

At any rate, a problem appears when students are beginning to study probability, 
since they do not know what a probabilistic model is. The use of technological 
simulation can help them grasp this notion, in the following way (Parzysz, 2009): 
after simulating various random experiments, they may become aware that for some 
of them the procedures implemented are very similar, since the corresponding algo-
rithms have the same structure (e.g. see the above table and the table given in the 
original wording). This common experiment scheme can then be used to justify that 
one experiment may be replaced by another one that will ‘give the same results’ 
(Fig. 3.10):

 With regard to the present activity, the task looks at first composed of two differ-
ent exercises, the first one making use of a spreadsheet in a frequentist approach and 
the second one standing within a traditional cardinalist paper-and-pencil type. In 
fact, the link between them comes from the algorithm implemented in the spread-
sheet and represented in Fig. 3.11, which, in a ‘natural’ way, can be associated with 
a probabilistic tree; using then the properties of this semiotic register, one can 
deduce the probability distribution and the average profit.

The processes can be schematized by the diagram in Fig. 3.12, showing that the 
algorithm is a crucial point: the upper branch leading to an estimation of the profit 
(→ frequentist standpoint) and the lower one to its theoretical value (→ cardinalist 
standpoint).

Another feature which makes it interesting from a pedagogical point of view is 
the final comparison between the two standpoints: it makes explicit the fundamental 
link between statistics and probability and shows that the two domains are distinct – 
probability is about theoretical objects, whereas statistics studies a series of data 
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coming from an observed phenomenon, either real (experiment) or virtual (simula-
tion). There are of course strong links between them, the more so that some con-
cepts and formulas are very similar, for instance, arithmetic mean (statistics) and 
expected value (probability), standard deviation (both), etc. Moreover, at any level, 
take statistics as a starting point to solve probability problems – for instance, condi-
tional probability (Chow & Van Hanegham, 2016)–may help students become more 
performant in probabilistic problem-solving.

In the present case, the average profit observed in 2500 tries may be 0.0426, 
0.0018 or 0.0235, but the expected value of profit is exactly 0. The wording of the 
problem is confusing, since ‘average profit’ is used both in a probabilistic context 
(Part 1, ‘estimate the average profit which can be expected’) and a statistical context 
(Part 2, ‘In column H you want to display the average profit’). Consequently, the 
meaning of ‘average profit’ in the question ‘Which average profit can be expected 
at the end of 2500 tries?’ is really puzzling: if it really means ‘average profit’, after 
having carried out 2500 tries, you know it because you can calculate it; but if it 
means ‘expected value’, you do not need 2500 tries to know it, since it is 0. This 

Fig. 3.12 The crucial point leading to both standpoints
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Fig. 3.11 Probabilistic tree for the dice problem
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may give a clue to making the difference between the two domains appear. For 
instance, when you compare on a screen several experimental graphs issued by 
simulations of a binomial law with the theoretical graph of this same law, you notice 
that the statistical graphs are different from one another and different from the prob-
abilistic graph as well (although they are close to it). For instance, Fig. 3.13 shows 
two successive diagrams obtained for the frequency distribution of successes on 
1000 simulations of B 50 0 3; .( ) .

Finally, in such problems the student is faced with three different experiments: a 
real experiment (dice), a model experiment (to be implemented in the technological 
device) and a virtual experiment (simulation with the device). These experiments 
are associated with different reference domains, and thus with different MWS, and 
they interact with one another. This is somewhat similar with what happens with 
geometry problems when using dynamic geometry systems.

3.7  Giving a Statistical Solution to an ‘Everyday Life’ 
Problem

As said above (Sect. 3.3.2), the French high school curricula include studying fluc-
tuation intervals, i.e. an ‘interval centred around p in which, the relative frequency 
of a sample of size n is situated with a 0.95 probability’.33 This interval is studied 
under three forms, according to each level:

 – At 10th grade, an approximate simple form : ,p
n

p
n

− +










1 1
.

 – At 11th grade, a form corresponding with the binomial distribution
 – At 12th grade, a form (‘asymptotic’) corresponding with the normal 

distribution

At 11th grade level, for instance, a typical task consists of determining a fluctua-
tion interval for a given binomial distribution. Here is an example:

Fig. 3.13 Statistical fluctuation of simulations of a binomial distribution

33 My translation.
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A large hotel in a seaside resort propose a “thalassotherapy” option to their guests (…) The 
manager of the hotel wishes that 20% of his guests choose this option (…) To test if this 
objective is reached a sample of 500 guests has been taken randomly, showing that 70 
guests chose the “thalassotherapy” option.

Using a fluctuation interval, what should you recommend the manager to do? 34,35

Using a technological device, the student displays the corresponding distribution 
B 500 0 2, .( )  under its cumulative version (left two columns of Table 3.4) and then, 
for X increasing from 0 to 500, searches for the first value of P(X) verifying 
P(X) > 0.025 and the first value verifying P(X) > 0.975. For this, he/she can either 
observe each value of the second column one by one or have the help of a logical 
function (for instance, AND(B1  >  0.025; B1  >  0.975)).36 Then, once he/she has 
determined the fluctuation interval for the relative frequency, he/she has just to 
check whether the observed value belongs to this interval or not.

In the last century, such a problem would have been solved with the help of a 
table (with the major inconvenience that such tables did not exist for any values of 
n and p). So, in the present case, technology allows to save a lot of time and makes 
some techniques obsolete, in this case reading tables and interpolation.

In the student’s MWS statistics appears under both the DS and the IS paradigms, 
in the initial sample (DS) and the fluctuation interval (IS); probability (P2) is also 
present with the binomial law (Fig. 3.14). The three dimensions occur: semiotic in 
implementing an algorithm, instrumental for displaying the distribution and finding 
out the fluctuation interval, and discursive to draw a conclusion.

Table 3.4 Using a table for 
determining the fluctuation 
interval (excerpts)

X P(X)

80 0.012974222 FALSE
81 0.017469525 FALSE
82 0.023212001 FALSE
83 0.030441985 TRUE
84 0.039414912 TRUE
85 0.050393551 TRUE
… … …
115 0.956588024 TRUE
116 0.965632562 TRUE
117 0.973053721 TRUE
118 0.979075551 FALSE
119 0.983908197 FALSE
120 0.987744109 FALSE

34My translation.
35 After Beltramone et al. (2015).
36 The use of a logical function is not necessary; it just entrusts the conclusion to the device.
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3.8  Using Technologies with Continuous Distributions

[The research work for this section recently took place in France (Derouet, 2016; 
Derouet & Parzysz, 2016.]

3.8.1  Posing the Question

The question of introducing continuous laws in probability teaching is most impor-
tant, not only because of the popularity of the normal law (the famous ‘bell curve’) 
in the mass media but also for being able to suggest and use other model laws (e.g. 
exponential, almost as popular). Major differences with discrete laws appear at first, 
such as:

 – The probability of any value of the variable is nil
 – The need for a density function.

The subjacent idea is indeed to link a random variable X, not with a set of iso-
lated probability values p(xi) but with a function f (density) verifying, for any a and 
b

 
a b p a X b f x dxa

b≤( ) ≤ ≤( ) = ∫ ( ): .
 

In 2002, the French resource document for teachers of 12th grade suggested a pos-
sible path for this introduction: start with a statistical series corresponding to a con-
tinuous character (as it happens, a sample of 50,000 heights of adult men), gather 
the data in classes of equal lengths and draw a corresponding histogram and then 
search for ‘a function f, the curve of which fits the histogram, the area under the 
curve being equal to 1’.37

Fig. 3.14 Diagram of the process

37 My translation.
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In this process, situated mostly in the semiotic-instrumental plane of the MWS, 
the student engaged in solving the problem stands first in the DS paradigm, and the 
modelling process leads him/her towards P2+, according to Fig. 3.15.

This idea looks interesting but, as it rests on the notion of histogram, it makes 
necessary to have some knowledge about it.

The notion of density is commonly met in other matters, such as geography 
(population density), physics (voluminal mass), biology (cell density), and so on. In 
statistics, it is implicitly at play in histograms with unequal classes, but this feature 
remains often implicit or is not taken into account, the more so that spreadsheet can-
not produce such histograms and hence can be no help.

Namely, the interest of histogram is that, if only one does not stick to classes of 
equal lengths, it implicitly contains the notion of density, the density of each class 
being proportional to its height.

This results in French 12th graders having not a clear notion of that type of dia-
gram, especially if the help of software comes too early, before their constructing 
‘true’ histograms ‘by hand’. All the more so since 10th grade textbooks are not clear 
about them, and in particular none of them gives a reason (i.e. visual) for the rule: 
height = frequency/width. A consequence is that teachers do not spend much time 
on the subject (a French study showed a meantime of 1 h per school year): ‘almost 
half [of them] deem that teaching histograms does not contribute to the students’ 
mathematical education’ (Roditi, 2009, p. 131).38

3.8.2  Problems Introducing Continuous Distributions

When histogram has been thus worked and become part of the student’s MWS, the 
question is to move towards continuous laws. As Henry writes:

One can see that the bet of introducing continuous distributions at the end of high school is 
daring, to say the least. Here the point of view of modelling is unavoidable. Continuous dis-
tributions are then tools enabling, in the corresponding models, to calculate the probability of 
some types of events. These continuous models are chosen and their parameters determined 
(model hypotheses) to fit pretty well with a described discrete reality (working hypotheses), 

grounding on heuristic considerations and statistical estimations. (Henry, 2003, p. 6)39

Fig. 3.15 Diagram of the process

38 My translation.
39 My translation.
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The modelling point of view looks quite sensible. For instance, students could be 
given a real set of statistical data and been asked to represent it with a histogram and 
then find a continuous curve approximating its upper edge.

Here is an example posed in several scientific 12th grade classes by Derouet. 
This problem is based on a set of statistical data, inspired from a 12th grade text-
book and completed through the Internet:

The Aso volcano, situated on the Kyushu Island in Japan, is one of the most active in the 
world. The dates of its eruptions are available from the 13th century on. The following list 
gives the successive years of the eruptions, from 1229 to 1897 (for later years, the data col-
lected are different).

1229 1239 1240 1265 1296 … 1874 1884 1894 1897

The last eruption of the volcano took place in September 2015. How do you propose to 
assess the probability for the next eruption to occur during the year 2030? (after Derouet, 
2016)40

In a previous problem, in order to model a statistical distribution, using spreadsheet 
(GeoGebra) the students had approximated a histogram of relative frequencies with 
a straight line, one condition for finding this line being that the area between it and 
the x axis had to be equal to 1. In the case of the volcano, working in groups again 
with GeoGebra, they began with implementing a table showing the number of years 
between two successive eruptions, together with histograms of the waiting times 
with various steps. Then they undertook to approximate the histogram with curves 
drawn by the software. Obviously, a straight line was not suitable, so they tried 
various positive decreasing functions (Fig. 3.16), taken among the types they knew,

experimenting different values of the parameters: 
a

x b+
, 

a

x b2 +
, …, a. e−bx.

The last family of functions looked the most suitable, and the conditions led the 
students to take a same value for a and b (for instance, 0.1).41

The diagram (Fig. 3.17) can describe the whole process.
This problem, in which the software has an essential part, became the starting point 

for a discussion about the continuous nature of a random variable, and the research of 
a trend function for a histogram helped in giving sense to the notion of density.

A problem presented in a 12th grade textbook starts with asking a simulation of 
the operation time of an electronic device with the GeoGebra software,42 using the 
function t → f(t) = 0, 07*e−0,07t. The data are grouped into classes, and the students 
are asked to estimate some probabilities of the P(X ≤ a) and P(a ≤ X ≤ b) types and 
then to compare them with ∫ ( )0

a f x dx  and ∫ ( )a
b f x dx . Finally, an explanation of 

the similarity of the results is asked.

40 My translation.
41 In particular, for the area condition GeoGebra can display the area under the curve of a 
function.
42 Le Yaouanq (2012), p. 399.
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Here the process consists of starting from a density (neither defined nor named as 
such) which is used to simulate a probability distribution and then getting the histo-
gram of a sample (N = 5,000) which is superimposed with the density curve. A rela-
tive frequency is calculated, interpreted as an area of the histogram and compared 

Fig. 3.17 Process of the volcano problem

Fig. 3.16 Volcano problem. Various tries for the model curve
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with the corresponding area of the theoretical density curve according to the scheme. 
Since the area of the histogram is ‘naturally’ interpreted as a relative frequency for 
the sample, the area under the curve will be similarly interpreted as a probability for 
the theoretical distribution, according to the diagram in Fig. 3.18.

In this case, real data are replaced by a simulation, in order to make the probabi-
listic situation more experimental (Biehler, 1991). For the teacher, the intended 
MWS begins within IC (function) and then moves to DS (sample). But the student’s 
personal MWS starts from calculus (software) and then moves to DS (sample), P2+ 
(probability), and finally to IC (integral). It includes subtle to and fro shifts between 
DS and P2+, based on a graphic analogy between histogram and curve, i.e. within 
the semiotic and instrumental dimensions of the MWS. Yet these shifts, although an 
essential part of the process, are not highlighted, as if they were self-evident 
(Parzysz, 2011).43 In particular, the question of using a continuous model to account 
for a discrete distribution should be posed.

3.8.3  Gaussian Distribution

The French curriculum for 12th grade recommends an introduction of the Gaussian 
distribution by observing the variations of the random variable

Fig. 3.18 Process of the textbook practical work. (From Derouet & Parzysz, 2016)

43 We may notice that the big size of the sample results in a histogram very close to the theoretical 
curve and consequently makes the analogy easier to conceive and accept.
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Z X np np pn n= −( ) −( )/ 1 , Xn being a binomial variable with parameters n 
and p (n a large number), and using the − assumed − result of the de Moivre- 
Laplace theorem.

This introduction of the normal distribution is in accordance with the historic 
development, since the research work of Jacob Bernoulli (at the turn of the eigh-
teenth century), followed by Abraham de Moivre and later Pierre-Simon Laplace, 
on the behaviour of a binomial law when the number of tries becomes very large 
finally resulted in the discovery of the limit law by Carl Friedrich Gauss at the very 
beginning of the nineteenth century.

A binomial variable is discrete, since a normal one is continuous, so one is 
brought back to the previous problem: approximate a discrete distribution by a con-
tinuous distribution, although in a particular case. A study of the French 12th grade 
textbooks on that subject shows a common framework in accordance with the offi-
cial recommendation (even if only one of them mentions the historical origin of the 
question). Problems introducing the normal law start from a binomial variableXn, 
which is first centred and reduced (hence another variable, Zn); then, using a pro-
gression similar to the previous one, the histogram is approached by a continuous 
curve. Thus, the entire process remains within P2+.

Of course, the change of variable is operated with computer help, but, although 
the activity deals with particular cases for n and p, the general formula for Zn is 
given, no reason being given for the shift from Xn to Zn, except in one textbook, 
which undertakes a comparison of several distributions by ‘standardizing’ them:

By centring and reducing the variables, one makes them independent from the unit chosen 
for their values, with standardized mean and standard deviation equal to 0 and 1. By so 
doing, comparing several variables is made easier.44,45

Three types of diagrams are successively put into play, as shown in Fig. 3.19: bar chart 
(for Zn), histogram (or, rather, as seen above, ‘pseudo histogram’) and ‘bell curve’ of the 
normal law N 0 1;( ) . Like in the general case, the histogram appears a mere ‘transi-
tional’ artefact, created for allowing a comparison between the other two diagrams.

A difficulty appears in the comparison between pseudo histogram and curve: the 
ordinates are proportional, but not equal − since the distance between two succes-

sive values of Zn is not 1 but 1 1/ np p−( )  − and the textbooks solve it more or less 

awkwardly, by imposing a change of scale; this drawback would not appear with a 
real histogram, since a rectangle of the histogram would correspond to a similar 
area under the curve.

In all textbooks, a computer is much used, first for making it possible to observe 
a number of various cases (namely, with great values of n). Some of them use 
spreadsheet, while some others prefer other software (like GeoGebra or OpenCalc). 
Not surprisingly (Sect. 3.6.4), the instructions given to students for that purpose are 
again either vague (‘compare the diagrams’) or of push-button type (‘calculate’, 
‘complete the table’). The work is limited to the semiotic-instrumental plane of the 

44 My translation.
45 Le Yaouanq (2012), p. 400.
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MWS, and even the instrumental dimension is quite limited; in particular, the reason 
for centring and reducing the binomial random variable is never questioned; the 
need for it appears, for instance, when you want to compare the overall shape (sym-
metry) of the bar charts of two binomial distributions which are not located in the 
same area of the Cartesian plane and have not the same height (Fig. 3.20); you may 
then think of a ‘calibration’ changing the units on the axes in order to give them 
same mean and height.

Similarly, the reason for the choice of a continuous function approximating the 
histogram is never questioned. For instance:

Move the n cursor. The more n takes great values, the more the upper edges of the rectan-

gles get nearer a curve, an equation of which seems to be of the y = k e x. .− 5 2

 form. 
Conjecture the value of k. Draw this curve with GeoGebra.46

However, this drawback could be overcome by including such a function among other 
examples of density function when the students begin to study continuous laws.

Finally, in the present case like in the previous one, the software is mostly used 
for its’ dynamic’ power, i.e. to provide a number of various graphs in a short time. 
The discursive dimension appears only fleetingly and mostly for little demanding or 

0
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0.2
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Fig. 3.20 Bar charts of B 100 0 05; .( )  and B 50 0 4; .( )

Fig. 3.19 The three diagrams for B 200 0 4; .( )

46 My translation.
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a posteriori justifications. One reason for such a feature is certainly that the authors 
of the textbooks want the student go through the whole activity without being held 
up at any moment; in a real classroom, the situation would possibly be different, and 
time would certainly be left to students for research and experimentation, with help 
produced only on requirement.

Twelfth graders are also requested to use a computer to calculate probabilities 
associated with Gaussian distributions N µ σ, 2( ) . This has now become quite an 
easy task, comparatively with the use of a table for N 0 1,( )  that costs students a lot 
of time in the past years. Besides, computers can also be used in the classroom for 
other purposes related to probability, e.g. use a Monte Carlo method − mentioned in 
the syllabus − for estimating areas by plotting points at random within a surface 
(see, for instance, Kroese, Taimre, & Botev, 2011). The French Ministry of Education 
has recently put a set of computer animations online (mostly using GeoGebra and R 
software) visualizing some points of the syllabus: centring-reducing a binomial 
variable, convergence of binomial distribution towards normal distribution, fluctua-
tion and confidence intervals, use of Monte Carlo method for calculating integrals, 
and so on.

3.9  Conclusion

Technologies are involved in multiple ways in the solving of probability problems, 
sometimes in the same ways as in other domains but sometimes specifically, thanks 
to their random generator.

In this chapter, the case is made that, in tasks dealing with simulation, the seman-
tic congruence between the real situation and the model implemented in the techno-
logical device should be taken explicitly into account in teaching. Moreover, in such 
problems the process which has to be put into play by students is complex, since 
they have to deal with several domains and shift from one to another: reality, prob-
ability and statistics. The student’s personal MWS is constantly changing, first 
through a modelling process – often implicit − then through a simulation on spread-
sheet or calculator and finally through a return back to the model. In this process the 
computer acts as a versatile help, since it is used in turn as random generator, calcu-
lator, logical tool and plotter, both to calculate (and then it produces results) and to 
‘show’ theoretical results (and then it produces conjectures), which may not be so 
clear for students. In these process three different ‘experiments’ are carried out in 
turn, each of them belonging to a different domain, and teachers would certainly be 
aware of the risk of ‘blurring’ the distinction between them:

A dissymmetry between students and teachers must be noted. The latter, who are experts in 
their domain, directly decode the results which they are presented, without even thinking 
about it. It is not the case with students in the process of learning, who usually do not have 
the required knowledge at their disposal. (Bruillard, 1997)47

47 My translation.
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For that reason the role of technology is not just to make it easier to get a large 
number of experiments in a short time (i.e. tool), even if this is a major feature, but 
it constitutes an important element for modelling (i.e. instrument). This ‘instrumen-
tation’ process needs time, and students must be given a conceptual background 
enabling them to become familiar with the modelling process, in order to fulfil this 
goal (Rabardel, 1995); technology is a means to set up such a background, as already 
stated by Santos-Trigo, Moreno-Armella, and Camacho-Machin (2016) about 
geometry:

Indeed, [digital technologies] offer a rich diversity of ways to represent and explore the 
tasks. It is not the material object by itself that produces this transformation; it is the process 
of appropriation led by the teacher and the students that eventually transform the digital 
artefact into a mathematical instrument. (p. 829)

Obviously, the computer has now become a very useful − in fact essential – help in 
solving probability problems. Its versatility results indeed in numerous advantages, 
among which:

 – Access to the internet, to obtain real data
 – Statistical software, to process the data (parameters, diagrams, etc.)
 – Random generator, to simulate random experiments
 – Table, to display and visualize any probability distribution
 – Calculus software, to visualize and calculate continuous probabilities

But this must be accompanied by a concern for possible teaching problems 
which may arise from using technologies. As shown in the chapter, some teaching 
problems can be overcome if teachers train their students to become aware of the 
various domains brought into play, putting the stress on what comes from (real or 
computer-aided) experiment and what comes from theory. In this chapter, we could 
see in particular the need for:

 – Carefully designing the association between real random experiment and 
simulation

 – Making explicit the various domains of mathematical knowledge which take 
place when solving a probability problem

Research should be undertaken to specify how this can be achieved in ‘ordinary’ 
classrooms. Besides, when some points of the syllabus appear to put into play notions 
which may seem out of reach for high school students (for instance Gaussian distribu-
tions), we could see that problems are frequently split up into elementary tasks, the 
students’ activity being bound to stick to the semiotic-instrumental plane of the MWS 
and the discursive dimension quite poor, if not left aside. This is why some researchers 
recently recommended ‘to postpone the study of the normal law to university […], to 
concentrate in high school on discrete laws (binomial, Poisson, geometric…) and to 
use this probabilistic knowledge to study statistics’ (Perrin, 2015, p. 6348). In many 
countries, solving probability problems is nowadays becoming an important element 

48 My translation.
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of the students’ mathematical activity, and there is still a lot of research work to be 
undertaken in this domain. Young researchers in math education will not lack work for 
the years to come if they decide to get an interest in it.
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Chapter 4
High School Teachers’ Use of a Dynamic 
Geometry System to Formulate 
Conjectures and to Transit from Empirical 
to Geometric and Algebraic Arguments 
in Problem-Solving Approaches

Manuel Santos-Trigo, Matías Camacho-Machín, 
and Carmen Olvera-Martínez

4.1  Introduction

Nowadays, it is recognized that students access not only a variety of information 
regarding mathematical courses but also consult and review online materials and 
even presentations of concepts or contents provided by other instructors or experts 
(e.g. www.khanacademy.org). Furthermore, the learners’ easy access to multiple 
online resources does not ensure that they can select and use them efficiently in their 
learning experiences. They need to critically assess and monitor what information is 
pertinent or relevant and to discuss ways in which they can use online resources. 
“Educational uses of, for example, e-books, digital videos, podcasts, social net-
working, cloud computing, and many other mobile apps have been adopted by dif-
ferent groups of innovative educators and institutions around the world” (Churchill, 
Fox, & King, 2016, p.  21). As a consequence, curriculum contents and learning 
environments need to be analysed and redesigned, so that students rely on digital 
tools affordances to construct and apply mathematical knowledge (Kereluik, Mishra, 
Fahnoe, & Terry, 2013). Likewise, teachers need to incorporate several digital tools 
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in their teaching practice and to analyse not only possible changes in what is taught 
but also discuss what types of reasoning to develop in problem-solving environ-
ments that enhance the use of those technologies.

In education, technology is challenging traditional curriculum proposals and 
learning scenarios in terms of offering teachers some flexible ways to organize and 
approach contents and their learning routes. Dick and Hollebrands (2011) recognize 
that “technology is an integral part of modern society and the workplace… But 
while mathematics has been an indispensable tool for advancing research and devel-
opment of new technologies, the mathematics classroom itself has been slow to take 
advantages of using technology in the service of advancing mathematics learning” 
(p. xi). Recently, main institutions around the world have launched online learning 
activities that include online courses and a platform to investigate how the use of 
technology can transform learning (e.g. www.edx.org). Thus, it becomes important 
to discuss ways to structure and design online learning activities and the types of 
learning outcomes that learners can achieve during their interaction with the tasks. 
Churchill et al. (2016) propose a framework (RASE) to design technological learn-
ing environments around four interrelated elements: (i) resources that include online 
materials, (ii) activity that refers to a conceptual or theoretical perspective to orient 
learners’ actions (problem-solving, for instance), (iii) support that includes ways to 
assist and foster students learning (forums, email, chats, etc.) and (iv) evaluation to 
monitor and inform about both teachers’ and students’ progress and learning out-
comes. The core issue in mathematics education is to analyse the extent to which the 
systematic use of several digital technologies offers students and teachers novel 
opportunities to understand and develop mathematical knowledge.

Hoyles and Noss (2008) suggest that the incorporation of technologies in the 
students’ mathematical learning goes hand in hand with the identification of possi-
ble changes in the mathematics curriculum and the process involved in the learners’ 
appropriation of the tool. “[The uses of] digital technologies disrupt many taken- 
for- granted aspects of what it means to think, explain and prove mathematically and 
to express relationships in different ways” (p. 87). Thus, it becomes important to 
discuss and explain what type of mathematical activities, including ways of reason-
ing, that learners engage in and exhibit when they use digital tools in their problem- 
solving experiences.

Problem-solving activities that involve the systematic use of digital technologies 
offer teachers and students an opportunity to examine mathematical tasks from dif-
ferent perspectives that include the use of diverse concepts, resources and problem 
representations. Likewise, the coordinated use of various digital technologies in the 
classroom represents a challenge for teachers in terms of extending their knowledge 
about the use of digital tools and analysing the purposes, potentialities and limita-
tions that each technology brings into the curriculum and the learning 
environments.

In this study, we focus on analysing ways in which a group of eight high school 
teachers develops and uses both subject and technological knowledge (Mishra & 
Koehler, 2006) to construct and extend both mathematical and didactical knowl-
edge. Specifically, we analysed the participants’ ways of reasoning and problem- 
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solving competencies that they exhibit during the process of solving a task that 
involved exploring and analysing mathematical properties of linear functions and its 
product. In this context, they construct cognitive schemata to transform a techno-
logical artefact into a useful instrument to represent, explore and solve mathemati-
cal tasks or problems (Santos-Trigo & Moreno-Armella, 2016).

The aim of this study is to analyse and characterize ways in which high school 
teachers rely on a Dynamic Geometry System’s affordances to represent and reason 
about mathematical tasks in a problem-solving environment. Thus, research ques-
tions that guide the development of the study include:

To what extent do high school teachers rely on digital technology affordances to represent 
and explore mathematical tasks and what ways of reasoning they exhibit in their problem- 
solving approaches?

To what extent do the participants, via the use of digital technologies, reconcile visual 
and empirical evidences with geometric and algebraic arguments to identify and support 
conjectures that emerge during all problem-solving phases?

To delve into these questions, the participants worked on a series of mathematical 
tasks individually, in pairs and as a group, and consistently they use a Dynamic 
Geometry System (GeoGebra) throughout problem-solving episodes. These phases 
or episodes include making sense of tasks or comprehension phase, initial represen-
tation and exploration of concepts, discussion of ideas and resources involved in the 
task statement, solution planning and implementation (looking for different ways to 
approach and solve a task), contrasting task approaches and looking for extensions 
and the formulation of new problems.

4.2  Conceptual Framework

Different digital technologies might offer students and teachers distinct opportuni-
ties to engage in mathematical activities. What types of digital technologies are 
important for learners to develop mathematical knowledge and problem-solving 
competencies? How can teachers incorporate in their lessons the systematic use of 
several digital technologies? What task contexts are important for teachers to take 
into account in order to engage their students in the use of digital technologies in 
problem-solving approaches? High school teachers need to develop a broad concep-
tualization of mathematics to frame learning activities within contexts that involve 
dealing with daily problems (mathematics for life), facing and developing problem- 
solving skills (mathematics for the workplace) and developing ways of thinking 
consistent with mathematics practices and the use of technology (Liljedahl, Santos- 
Trigo, Malaspina, & Bruder, 2016).

The National Council of Teachers of Mathematics (NCTM) (2009) recognizes 
the importance for learners to focus on reasoning and sense-making activities as a 
way to understand concepts and to develop the foundations and cornerstone of the 
high school mathematics curriculum. In characterizing reasoning, the NCTM (2009) 
points out that “…[R]easoning can be thought of as the process of drawing conclu-
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sions on the basis of evidence or stated assumptions” (p. 4). It is also recognized that 
reasoning in mathematics can take many forms ranging from informal or empirical 
explanations to formal justifications and proofs. Sense-making is a key activity for 
learners to develop conceptual comprehension and problem-solving proficiency: 
“We define sense making as developing understanding of a situation, context, or 
concept by connecting it with existing knowledge” (NCTM, 2009, p. 4). Thus, rea-
soning and sense-making activities are essential for guiding learners in the develop-
ment of interrelated mathematical processes such as problem-solving, representations 
and communication during their learning experiences. Likewise, Santos-Trigo and 
Reyes-Rodríguez (2016) argue that learners should always look for different ways 
to represent and solve problems and to reflect on what each solution process entails 
in terms of concepts and strategies.

Schoenfeld (2009) reviewed the NCTM Focus in High School Mathematics: 
Reasoning and Sense Making document and pointed out that the examples dis-
cussed throughout it are useful for teachers to illustrate ways of approaching the 
high school content and the organization of students’ classroom interactions. He 
goes on saying that the reasoning and sense-making approach is consistent with his 
definition of teaching for problem-solving: “The mathematics studied should 
emerge as a reasoned and reasonable, rather than arbitrary” (Schoenfeld, 2009, 
p. 170). How can we frame the systematic use of digital technology in mathematics 
instruction that focuses on a reasoning and sense-making approach? Delving into 
this question involves paying attention to both: (i) the appropriation process shown 
by learners to transform an artefact or device into an instrument to comprehend 
concepts, to represent, to explore and to solve problems. Trouche (2016) pointed out 
the importance of distinguishing “between an artefact (a product of human activity 
that a subject can appropriate for performing a given task) and an instrument (result-
ing from this appropriation process)” (p. 246) and (ii) the characterization of ways 
of reasoning that subjects develop as a result of using particular tools.

Using technology to display multiple representations of the same problem can aid in mak-
ing connections…When technology allows multiple representations to be linked dynami-
cally, it can provide new opportunities for students to take mathematically meaningful 
actions and immediately see mathematically meaningful consequences—fertile ground for 
sense-making and reasoning activities. (NCTM, 2009, p. 14)

Similarly, Dick and Hollebrands (2011) pointed out the importance for students to 
use technology as a means to foster problem-solving habits during the entire solu-
tion process that involves:

• Analysing a problem: identifying which technology tools are appropriate to use and 
when to use them.

• Implementing a strategy: making purposeful use of the technology and monitoring 
progress toward a solution.

• Seeking and using connections: especially looking across different representations.
• Reflecting on a solution to a problem: considering the reasonableness of technology- 

derived results, recognizing the limitations of the technology, reconciling different 
approaches (both with and without technology), and interpreting the results in the con- 
text of the problem (Dick & Hollebrands, 2011, p. xiii).
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Thus, to characterize the participants’ ways of approaching the tasks, we focused 
on analysing kinds or types of reasoning and sense-making activities that high 
school teachers exhibit when they systematically use digital tools throughout 
problem- solving episodes. These include task comprehension, design and imple-
mentation of a solution plan, connections and task extension and looking back at the 
entire solution process. To this end, Santos-Trigo and Camacho-Machín (2009) pro-
pose a framework to foster learners’ use of digital technologies in problem-solving 
approaches. Similarly, Santos-Trigo, Moreno-Armella, and Camacho-Machín 
(2016) identify ways in which high school students rely on technology affordances 
to represent and explore geometric and calculus tasks.

Thus, the existence of several types of technologies makes necessary to identify 
what types of technology learners can use to both represent and solve mathematical 
tasks and to share and discuss ideas and problem solutions with peers and others 
beyond class settings (Santos-Trigo, Reyes-Martinez, & Aguilar-Magallón, 2016). 
The selection of a set of technologies to engage learners in mathematical activities 
implies that teachers develop certain skills and expertise that lead them to rely on 
technology affordances to represent, explore and analyse concepts and to solve 
problems. That is, teachers need to reflect on what the incorporation of digital tech-
nologies brings into their practice in terms of ways of representing and exploring 
mathematical concepts. They need to characterize ways of reasoning involved in the 
use of technology to deal with mathematical tasks and to also discuss what tools are 
important to foster teachers’ discussion of mathematical problems within and 
beyond classrooms.

In this context, a bricolage perspective that integrates problem-solving 
approaches, the systematic use of digital technologies and the subjects’ construction 
of mathematical knowledge (Santos-Trigo, 2014) was used to frame the study. In 
terms of problem-solving, our interest lies on orienting and explaining teachers 
about the importance of focusing on reasoning and sense-making activities to deal 
with concepts and mathematical problems (what do mathematics learning and 
problem- solving activities involve?), orientations that influence their ways of imple-
menting their activities (what do learning experiences, beliefs, values and resources 
teachers or learners bring into learning environments?) and the decision-making 
process involved in dealing with mathematical tasks (Schoenfeld, 2011, 2012, 
2015). In the field of digital technologies, we focus on analysing the process that 
learners show during the transformation of an artefact into an instrument or tool to 
solve mathematical problems (Trouche, 2016). In particular, we emphasize and 
make explicit the potential and opportunities that the coordinated use of digital tech-
nologies can offer to subjects in order to reason about mathematical concepts and 
problems. In terms of the subjects’ understanding of mathematical ideas and the 
development of problem-solving competencies, learning environments are struc-
tured around an inquiring or inquisitive approach in which learners pose and pursue 
questions as a means to understand concepts and to develop problem-solving com-
petencies. In this process, learners rely on technology affordances to construct 
dynamic models of tasks, explore and identify relations and conjectures and look 
for arguments to validate and communicate results (Leung, 2011). Santos-Trigo, 
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Reyes-Martínez, and Aguilar-Magallón (2015) stated that learners, through the use 
of digital technologies, can discuss and engage in continuous problem-solving 
activities that involve:

• Selecting pertinent online information to extend or clarify concepts, definitions 
or examples of problems related to themes in study. Thus, learners need to 
develop ways to contrast, analyse and eventually synthetize important informa-
tion to extend their knowledge and problem-solving strategies.

• Looking for different ways to solve problems and to openly discuss advantages 
and mathematical qualities associated with problem-solving approaches, in par-
ticular the importance of discussing the extent to which problem-solving meth-
ods can be applied to others’ problems.

• Using different tools throughout the whole problem-solving process to make 
sense of problem statements and to represent, explore, solve and communicate 
results. Tools include both multiple purpose to share and communicate results 
and mathematical action tools to construct and dynamic models of problems.

• Reporting and discussing partial results or problem solutions that might appear 
during the solution process of tasks and share them with other students.

• Looking for creative or novel ways to solve and extend initial problems.

4.3  Methodological Components and Procedures

The nature of this study is qualitative since our interest is to characterize ways of 
reasoning that high school teachers exhibit in a technology-enhanced problem- 
solving environment. In particular, the aim is to document the extent to which the 
participants transit from empirical reasoning to the use of geometric and formal 
arguments to support mathematical conjectures. Eight high school teachers who 
have completed a Bachelor of Science in Mathematics participated in a problem- 
solving course during one semester. The course was part of master’s degree program 
in mathematics education, and the participants met twice a week in sessions of 3 h 
each. An important goal of the course was to work on mathematical tasks via the use 
of digital tools throughout all problem-solving phases (understanding, plan design 
and implementation, finding and applying several solution methods and extending 
initial results).

The content of the course was structured around the concept of function as a 
central theme. The activities included problems or tasks that were structured around 
what Cooney, Beckmann, and Lloyd (2010) call the five big ideas that are essential 
during the study of functions: the function concept, covariation and rate of change, 
family of functions and the role in modelling, combining and transforming func-
tions and multiple representations of functions. According to the authors, these big 
ideas are essential for teachers and students to develop or construct a robust and 
comprehensive understanding of functions and to solve related problems.
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The sessions involved a brief introduction, provided by the course coordinator, 
regarding the task statement and its goal (including a task work sheet designed in 
advanced). The participants worked on the task individually and in pairs, and later 
they were asked to present their work to the group (plenary sessions).

It is important to mention that some of the participants had some experiences in 
the use of some digital tools and throughout the sessions, they were encouraged and 
guided to use multiple purpose technologies (communication technologies, Keynote 
or PowerPoint, YouTube) to share and follow up the work done during the sessions. 
To represent and explore the tasks, the participants mainly used a Dynamic Geometry 
System (GeoGebra) and the Wolfram Alpha computational knowledge engine 
(www.wolframalpha.com). Thus, the use of technologies became important not 
only to represent and explore the problems but also to keep an on-going discussion 
among the participants after the sessions. Data gathered came from individual 
reports, GeoGebra files and videos of plenary discussions of two sessions.

Two main intertwined phases were relevant during the design and development 
of the study, one in which the research team chose the problems and examined them 
in detail to identify different ways to represent, explore and solve them. This phase 
provided important information for the research team to structure the tasks and to 
generate potential questions to orient the participants’ approaches to solve those 
(Sacristan et al., 2010). Based on the task analysis, an implementation guided for 
each task was designed. The second phase involved the actual implementation of the 
tasks. Here, the participants worked on the tasks individually and as group.

In the first phase, the research team worked on and discussed each task previous 
to its implementation. The goal was to identify different ways to represent and 
explore the problem in order to design and implement a guide to orient the partici-
pants’ work. The guide includes ways to introduce the participants in the use of the 
tool, in this case the appropriation of a Dynamic Geometry System (GeoGebra). 
The idea is that the participants could think of the tasks as learning platforms to 
engage in continuous mathematical reflections and discussions associated with dif-
ferent ways to approach and extend the tasks. Specially, it was important to show 
that routine tasks could be transformed into a series of problem-solving activities 
that foster mathematical reflection (Santos-Trigo & Camacho-Machín, 2009; 
Santos-Trigo & Moreno-Armella, 2016).

We summarize the initial discussion of a task that was implemented during the 
problem-solving sessions. The goal was to represent and explore the tasks via the 
use of a Dynamic Geometry System. In this chapter, we focus on a task that involves 
analysing properties and relationships of two linear functions and its product.

4.4  Presentation of Results and Discussion

We chose a task to analyse and discuss ways in which the participants relied on the 
GeoGebra affordances to make sense, represent and explore the task. That is, the 
chosen task illustrates how the participants engaged in the use of a dynamic 
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geometry system during problem phases that involve understanding and exploring 
the problem statement, the identification of relationships, looking for argument to 
support conjectures and searching for extensions and connections of the initial task. 
At the outset, we summarize main ideas that the research team discussed previously 
to the implementation of the task.

The Task (Functions) Based on a given linear function f, find another linear func-
tion g, such as both linear functions are tangent to the graph of its product function 
h = f ∙ g.

The task is an adjusted version of a problem used by Wilson and Barnes, and it 
can be found in jwilson.coe.uga.edu/Texts.Folder/tangent/f(x).g(x)%3Dh(x).html.

During the discussion of this task, the research team focused on identifying 
potential questions to guide the participants during the implementation of the task. 
Can you give an example of a linear function and then look for a function that fulfils 
the condition? Thus, if f(x) = x + (1/2), then the goal is to find a function g such as 
both f and g are tangent to the graph of h = f ∙ g. That is, to make sense of the prob-
lem statement, it becomes important to think of a particular case in order to identify 
properties and relationships associated with the involved objects.

What does it mean that two linear functions are each tangent to its product? Can 
you sketch some examples? Is it always possible to find those functions holding the 
condition? What properties or how the product of two linear functions behave? With 
the use of GeoGebra, it is possible to explore a family of linear functions by chang-
ing, through sliders, the slope and the y-interception point. The idea is that the dis-
cussion of these types of question leads the participants to examine other examples 
and observe how they behave graphically.

Figure 4.1 shows some examples in which for a given function f(x) it was possi-
ble to find the corresponding function g(x), by changing the parameters slope 
and y-intersect (through the sliders) and observe the graphic representation of h(x). 

Fig. 4.1 Finding function g
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This empirical approach provides useful information regarding some possible relations 
among main parameters of the involved functions.

Are there some patterns, relationships or properties that relate the linear func-
tions and its product? Based on the information provided in Fig. 4.2, it might be 
observed that:

 (i) The product of two linear functions (assuming that the coefficient of the linear 
terms is not zero) always generates a quadratic function (what type of function 
does the product of two linear functions generate?).

 (ii) The sign of slopes of the linear functions provides information regarding the 
product behaviour. That is, if both signs are positive or negative, the product 
function will open upward; otherwise it would open downward. What informa-
tion does the product of the slopes of two linear functions provide regarding 
the graph of the product of those linear functions?

 (iii) The possible candidates, for the linear functions, whose product is tangent to 
both lines, need to have slopes with opposite signs.

Comment The team discussed the task and identified possible routes to implement 
it. In particular, it was decided to orient the teachers’ interaction with the task toward 
the use of the tool to explore properties associated with the behaviour of main 
parameters (slope and y-intersection) and the related product. Based on this analysis 
of the task, we intended to orient the participants to rely on the use of GeoGebra as 
a means to analyse changes in the parameters of the linear functions and the graphs 
of the product of those functions.

The Task Implementation Some of the participants read the task statement and 
began drawing a possible sketch of the linear function and its product. Figure 4.3 
showed a graph that one of the participants initially proposed and that later was used 
to discuss the extent to which it fulfilled the tasks conditions. This discussion led the 
participants to identify properties of the slopes of the linear functions and their rela-
tions to the quadratic function generated by the product. It was important to observe 
that when the participants began to explore the properties of the graph, they relied 
on the use of the tool to examine examples which could match what they had 
initially proposed as possible graph.

Table 4.1 shows initial ideas that the participants expressed in their individual 
work with the task. Indeed, the example found by Sandra led them to recognize that 
it was possible to find the linear functions both tangent to the product.

Fig. 4.2 Examples of 
some solutions
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Comment The participants’ initial individual work focused on trying to make 
sense of the task in order to sketch or visualize the tangent condition of the two 
linear functions to its product. One of the participants drew two intersecting lines 
and a parabola (Fig. 4.4) without realizing that the sketch did not match the repre-
sentation he had proposed. Others even mentioned that it was not possible to fulfil 
the task conditions. However, when these initial contributions were presented to the 
group, they were analysed and helped the group examine important properties asso-
ciated with the product of two linear functions. In particular, the example that one 
of the participants (Sandra) found (via the use of GeoGebra) was important for the 

Fig. 4.3 Initial sketch of 
the problem

Table 4.1 The participants’ initial ideas and sense-making of the task (exploration phase using 
GeoGebra)

What initial ideas did participants show in their individual approach to solve the task?

Properties of the 
function product h 
(quadratic, roots, 
concavity, vertex)

Intersections between 
f and h

Intersections between 
g and h

Is there a 
situation where 
the graphs of the 
linear functions 
are tangent to the 
graph of function 
h?

h intersects x-axis when 
f(x) = 0 and g(x) = 0
h opens up when the 
both signs of the slopes 
are positive or negative 
(same sign)
h opens down when the 
signs of the slopes of 
the linear functions are 
opposite
The vertex of the 
parabola lies on the 
perpendicular bisector 
of the segment that joins 
the two roots of h. (All 
the participants)

There might be either 
one or two intersection 
points. One of them is 
obtained when f(x) = 0
(Isabel, Laura and 
Paola)

Similarly, there might 
be either one or two 
intersection points. One 
of them is obtained 
when g(x) = 0
(Isabel, Laura and 
Paola)

It might not be 
possible
(Isabel, Gabriela, 
Laura and Paola)

There might be either 
one or two intersection 
points. One of them is 
x1 verifying 
f(x1) = 0 and the other 
point x2 must verify 
g(x2) = 1
(Ana, Gabriela, Sandra, 
Andrés and Gerardo)

There might be either 
one or two intersection 
points. One of them is 
x1 verifying 
g(x1) = 0 and the other 
point x2 must verify 
f(x2) = 1
(Ana, Gabriela, Sandra, 
Andrés and Gerardo)

It seems that we 
can draw the case 
where only one 
line is tangent to 
the product
(Ana, Andrés and 
Gerardo)
Yes, it is possible. 
She found an 
example
(Sandra)
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participants to focus on what properties the linear functions and the product must 
hold to fulfil the task conditions.

At this stage, all the participants relied on GeoGebra to find examples of two 
linear functions each of which is tangent to the graph of the product of the functions. 
Figure 4.5 shows an example of some graph representations that they explored to 
examine relations between the linear function and the quadratic by focusing on the 
root of the functions, the axis of symmetry and the parabola vertex.

The use of sliders to examine the behaviour of the linear function and the product 
became efficient when they fixed one of the linear functions and looked for the sec-
ond function by varying the corresponding parameters. Based on this strategy, they 
found more examples fulfilling the conditions:

f(x) =  − x g(x) = x + 1 h(x) =  − x2 − 1
f(x) =  − 2x + 3 g(x) = 2x − 2 h(x) =  − 4x2 + 10x − 6
f(x) =  − x − 1 g(x) = x + 2 h(x) =  − x2 − 3x − 2
f(x) = 4x − 7 g(x) =  − 4x + 8 h(x) =  − 16x2 + 60x − 56
f(x) =  − 2x + 6 g(x) = 2x − 5 h(x) =  − 4x2 + 22 − 30

At this stage, all participants recognized that it was possible to find examples, by 
changing the corresponding parameters via the use of sliders, that graphically satis-
fied the task conditions. Indeed, they recognized that the examples they found 
 fulfilled the properties that appear in Table 4.1. And, they also formulated the fol-
lowing conjectures:

Fig. 4.4 Dynamic representation
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 1. For two linear functions f(x) = ax + b and g(x) = cx + d to hold that the graph of 
the product f(x) ∙ g(x) is tangent to both f and g, then a =  − c (same slope with 
opposite sign) and b + d = 1.

 2. The function f intersects the quadratic function h (h = f ∙ g) at one or two points, 
and one of them (in case that there are two) B(x1, f(x1)) also holds that g(x1) = 1. 
This is because at the intersection point, it is true that f(x1) = h(x1) = f(x1) ∙ g(x1) 
and therefore g(x1)  =  1. Likewise, there is an intersection point C(x2, g(x2)) 
between g and h such that f(x2) = 1. And the case in which a linear function 
became tangent to the parabola, then intersection points between the product 
function and the linear functions coincide (Fig. 4.6).

 3. The case in which both lines are tangent to the parabola, then the parabola vertex 
and the intersection point of both lines (point H) are on the axis of symmetry of the 
parabola and the point H, intersection of f and g, is located at the intersection point 
of the axis of symmetry and line y = 0.5 (Fig. 4.7). Furthermore, the  intersection 
of function product and the axis of symmetry is the vertex (V) of the parabola.

Table 4.2 summarizes the set of conjectures that the participants formulated as a 
result of exploring empirically properties of the functions that fulfil the task 
conditions.

Comment At the beginning, some of the participants used four “sliders” to repre-
sent and get families of line by changing corresponding slopes or the y-intersecting 
points; however, they eventually realized that it was more efficient strategy to fix 
one linear function and to find the second function by changing the slope and 
y-intersection point (via the sliders) of particular function to get task conditions.

At this stage, the participants recognized that all conjectures were formulated 
based on examining graphically and empirically the behaviour of the linear func-
tions and its product. Here, one of the participants posed this question: Could we 
draw the graph of a linear function g if we know the graph of function f and then 
sketch the graph of their product?

Fig. 4.5 Exploring properties and relations
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Fig. 4.6 The intersection points of the linear functions and the product function coincide when the 
lines are tangent to the product function

Fig. 4.7 Identifying the axis of symmetry of the intersection of f and g

Table 4.2 Conjecturing the previous results

What conjectures did the participants formulate when they explored the task with GeoGebra?
Slopes of the linear 
function, the independent 
terms and the graph of the 
product

Roots of the linear functions and the product 
function Lines intersection

The slopes of the linear 
function need to be the 
same, but with opposite 
signs. And the sum of the 
independent terms must be 1
(All the participants)

Line f and parabola h get intersected at the 
root of f and when g has the value of 1. 
Similarly, line g and parabola h get 
intersected at the root of g and when f has the 
value of 1. In addition, when both f and g are 
tangent to h both intersection points coincide
(Ana and Sandra)

The intersection 
point of the 
lines f and g is on 
the line y = 1/2
(Andrés and 
Gerardo)
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There were several ways to find the graph of g from a given f and then the graph 
of product of f and g. A pair of participants followed up the properties and relations 
that they empirically had previously identified to graph the asked functions (the 
linear and the product functions). Figure 4.8 shows the graph they achieved based 
on the graph of y = 2x + 1.5.

 (i) Figure 4.8 shows the graph of the given function f(x) = 2x + 1.5. The x- coordinate 
of Point A is the root of f, and they drew a perpendicular l1 to x-axis from point 
A and line l2 (y = 1). B is the intersection point between l2 and l1(B belongs to 
the graph of g), and point C is the intersection between line l2 and f. Then, they 
drew a perpendicular line l3 to l2 that passes through point C and located point 
D that is the intersection point of l3 and the x-axis (D also is a point of the graph 
of g). They drew the graph of g as the line that passes through points B and D. 
Point E is the intersection of graphs of f and g.

 (ii) To sketch the function product h = f ∙ g, they drew the perpendicular bisector of 
segment AB (this is the axis of symmetry of h). This axis of symmetry intersects 
the x-axis at point G and the middle point of segment EG is the vertex of the 
parabola. At this stage, the teachers asked: Can we find the focus and directrix 
of the parabola? Another participant proposed to reflect line l1 over line f (f is 
tangent to the parabola) to get l1

′ , and the intersection of l1
′  and the axis of sym-

metry is the focus of the parabola (F). Then they drew the symmetric point of F 
(F’) with respect to V and drew a perpendicular l5 to the axis of symmetry that 
passes through point F’ (this is the directrix). Based on this information, the 
function product h was drawn directly.

Fig. 4.8 Sketching g and h 
based on the graph of f
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Comment The participants relied on the tool’s affordances to identify a set of 
mathematical relations involved in the graphic representation of the functions. At 
this stage, they even posed questions that involved graphic relations (perpendicular 
bisector, axis of symmetry, etc.) to examine graphically the behaviour of the linear 
functions and their product. This approach led the participant to transit form empiri-
cal to algebraic approaches to the task.

Supporting the Conjectures through Formal Arguments The participants recog-
nized that the conjectures emerged from visualizing the behaviour of objects when 
moving particular parameters and there was a need to justify or support those con-
jectures. Santos-Trigo, Moreno-Armella, and Camacho-Machín (2016) documented 
that the teachers relied on the tools’ affordances to think of the task or problem in 
terms of mathematical properties. In this context, the participants found several 
properties and mathematical relations, through the use of GeoGebra, that later 
became important in constructing algebraic arguments to validate their conjectures.

Table 4.3 shows a summary of the arguments that the participants provided to 
support the conjectures.

 (a) The signs and values of the slopes. Three participants (Sandra, Andres and 
Gerardo) considered the general case, that is, f(x)  =  m1x  +  b1 whose root 
(f(x1)  =  0) is x b m1 1 1= − /  and g(x)  =  m2x  +  b2, which takes the value of 1 
(g(x2) = 1) when x b m2 2 21= −( ) / . At the tangent point, both f and h must coin-
cide, that is, x1 = x2; therefore, m m b b2 1 2 11 1/ /= −( ) − …( ) . Similarly, for func-
tion g, g(x3) = 0 when x b m3 2 2= − / ,  and f(x4) = 1 for x b m4 1 11= −( ) / . Then, 
the graph of g is tangent to the product function when 
x x m m b b3 4 2 1 2 11 2= = − −( )…( ); / / .  By solving (1) and (2), they got that 
1 12 1 2 1−( ) − = − −( )b b b b/ / , that is, b1 = 1 − b2. That is, they proved the pattern 

they found regarding that sum of the y- intersection of both linear functions 
must be 1. Then by replacing b1 = 1 − b2 in (1), they proved that m1 =  − m2.

 (b) The derivative of the function product and the slopes of the linear functions. 
Another approach followed by other participants involved expressing algebra-
ically the linear functions and found its product. That is, h(x) = f(x) ∙ g(x) = (mx + a)
(nx + b) = mnx2 + (mb + na)x + ab. They focused on the values of the slopes at 
the tangent point of the linear functions and the derivative of the product func-
tion (h), that is, h′(x) = 2mnx + mb + na. They affirmed that at the tangency point 
the derivative of h is equal to the slope of each linear function. Then they found: 
−m  +  mb  −  na  =  0…(3) and −n  −  mb  +  an  =  0…(4), that is, 
−m(−2b + 1) = n(2a − 1). Then, they introduced the condition that −m = n, to 
find that b + a = 1.

 (c) A rectangle and the axis of symmetry of the parabola. Three participants 
observed that points A, B, C and D formed a rectangle with one side AD  (distance 
between the roots) and the other side AB of one unit length. Then the diagonals 
of the rectangle ABCD coincide with the linear functions. Therefore, the centre 
of this rectangle lies on the intersection point of y = 0.5 and the axis of symmetry 
of the parabola (Fig. 4.9).
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Table 4.3 Looking for arguments to support main conjectures

How did the participants validate their conjectures?

Slopes, intersection 
points and graphs

Relations between the linear 
functions and the quadratic function 
(product)

The lines and the diagonals of a 
rectangle

1. Getting the 
derivative of function 
h and applying the 
condition that it must 
be equal to the slope 
of each linear 
function.
(Isabel, Gabriela, 
Laura, Paola and 
Sandra)
2. Finding the 
intersection points of 
f and h and g and h 
to make them 
coincide for the 
tangent condition.
(Andrés and 
Gerardo)
3. Finding two points 
of the graph of g to 
get an algebraic 
expression for it
(Ana)

f and h:
Both get intersected when f(x) = 0 
since h(x) = f(x) ∙ g(x) = 0 ∙ g(x) = 0
They also get intersected when 
g(x) = 1 . This is because 
h(x) = f(x) ∙ g(x) = f(x) ∙ 1 = f(x)
g and h:
They get intersected when g(x) = 0 
since h(x) = f(x) ∙ g(x) = f(x) ∙ 0 = 0
They also get intersected when 
f(x) = 1, since 
h(x) = f(x) ∙ g(x) = 1 ∙ g(x) = g(x)
(All participants)

The lines determine the diagonals 
of a rectangle whose base is the 
segment between the roots of the 
linear functions (and quadratic) 
and a height of one unit. 
Therefore, the intersection point of 
the linear functions is the centre of 
the rectangle and is located on the 
line y = 1/2
(Sandra, Andrés and Gerardo)

Fig. 4.9 Justifying that lines intersections lies on y = 0.5
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4.5  Discussion of Results

It is important to reflect on the extent to which the participants relied on GeoGebra 
affordances to reason about concepts and to engage in making sense of activities 
that led them to explore, to formulate conjectures and to solve mathematical prob-
lems. In the first episode that involved understanding key ideas around the task, the 
participants’ individual contributions included some incomplete or contradictory 
representations (Fig.  4.1) of the task that later were examined within the group. 
Here, the use of GeoGebra became important not only to reject some initial sketches 
of the task but also to explain what the slopes of the lines produce to the behaviour 
of the product. Thus, the tools affordances helped the participants to transit from 
intuitive sketches of the task to those that consider the geometric meaning of the 
involved parameters (slopes, parabola concavity, etc.).

Taking a particular example for f became an important strategy to explore a fam-
ily of possible candidates for function g based on observing graphically both the 
behaviour of the functions and the product. In addition, the use of sliders for varying 
parameters of linear functions became a problem-solving strategy to generate data 
that later were used to detect patterns or conjectures and properties of the functions 
and the product. That is, the participants relied on GeoGebra’s affordances to make 
sense of the task statement that led them to think of task parameters (slope and 
y-intersect) in terms of sliders. So, they reasoned about the problem via a dynamic 
representation that provided useful information to explore possible patterns and 
relations between the linear functions and its product. At this stage, there were evi-
dences that the participants used the tool as a means to formulate conjectures and to 
identify properties of a family of linear functions that satisfies the task conditions 
(subjects’ tool appropriation). For instance, during the exploration, they detected 
invariances such as convergence of roots of the involved functions, opposite signs of 
slopes of the linear functions, location of the lines intersections, etc. Furthermore, 
they were able to identify and visualize a set of conjectures.

In the second episode, they relied on the tool affordances to construct a graph 
solution of the task. Indeed, with the use of the tool, they empirically validated some 
of the relations and conjectures that they had identified during the exploration of the 
task. That is, by considering a graph of a linear function, they were able to construct 
graphically the second linear function and the product function. Although at this 
stage they were convinced that the conjectures guided them to solve the task geo-
metrically, they also recognized that they had important information to present 
 algebraic arguments to validate the conjectures. Furthermore, the use of the tool 
became crucial to reconcile algebraic approaches and visual or geometric argu-
ments to support the emerging conjectures. Indeed, all the participants recognized 
that the construction of dynamic models of the tasks represented an opportunity for 
them to make sense of the task and to explore relations among parameters of objects 
that later were important to think of a solution plan. In addition, dynamic explora-
tions not only provided useful information to support conjectures but also to 
connect particular cases with the analysis of a family of objects.
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4.6  Closing Remarks

In general terms, there is evidence that the participants relied on GeoGebra affor-
dances to work on all problem-solving phases that involve making sense of the task, 
recovering from wrong or inconsistent initial approaches and identifying relations 
and conjectures to design and implement diverse ways to solve the task and to 
extend the initial task statement. Santos-Trigo and Moreno-Armella (2016) pointed 
out that the use of the tool often helps problem solvers realize whether their initial 
ideas are consistent or can be geometrically achieved. For instance, an initial sketch 
proposed by one of the participants (Fig. 4.3) showed that it was drawn based on his 
initial intuition; but later it became a vehicle to introduce the use of GeoGebra to 
explore, based on particular examples, whether that sketch could be achieved.

In terms of ways of reasoning that the participants engaged while solving the 
task, it was clear that the use of the sliders helped them to explore dynamically the 
parameters’ behaviour associated with the task. Thus, the controlled movement of 
those parameters led them to propose a set of conjectures and properties that later 
they support with mathematical arguments. Indeed, the list of properties and conjec-
tures that they found empirically led them to explore whether, from a given graph of 
a linear function, it was possible to find the graph of the second function and the 
product fulfilling the task conditions. That is, in general terms, the geometric 
approach to find the functions became a way to validate the set of conjectures that 
they had identified empirically.

In addition, when they looked for formal arguments to support the conjectures, 
the use of the tools was crucial to identify properties that later were used to validate 
their results. In this context, the use of the tool became important to reconcile and 
transit from empirical evidences to geometric and algebraic arguments to support 
results. That is, the use of GeoGebra not only offered a set of affordances for the 
participants to test the pertinence of their initial ideas but also to examine a family 
of examples in order to detect patterns or possible relationships between the involved 
parameters. Thus, the participants exhibited several problem-solving strategies such 
as examining special cases, analysing family of functions by changing the slope and 
the y-intersection point, collecting data and using a table to organize them, looking 
for patterns, finding conjectures and providing different types of arguments to sup-
port conjectures.

Working on the tasks became important for the participants to reflect on their 
understanding of concepts that appear during the solution process. For instance, 
Figure 4.3 shows an initial wrong representation of the graphic representation of the 
required functions that later was analysed and changed as a result of exploring some 
examples through the use of the tool. That is, the use of a dynamic geometry system 
became important to relate examples provided algebraically to the graphic represen-
tation of their product. This type of exploration led the participants to reflect on 
ways to introduce the use of the tool in their actual teaching practices.

In general terms, the inquiring approach that framed the participants’ approaches 
to the tasks helped conceptualize the tasks as a point of departure to engage in math-
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ematical reflections and as an opportunity to look for mathematical relations and 
ways to support it through visual, empirical and eventually formal arguments. In 
addition, all the participants recognized that the technology affordances not only 
helped them construct and explore dynamic models of the tasks but also to reflect 
on ways to implement the tasks in actual practice.
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Chapter 5
The Interactive Whiteboard 
and the Development of Dialogic 
Interaction in the Context 
of Problem-Solving

Ana Paula Canavarro and Carla Sofia Pereira Reis

5.1  Introduction

The interactive whiteboard was introduced in Portugal on a large scale about a 
decade ago. It was the last technological tool introduced in schools, and nowadays, 
it is available in most of them (Torres, 2008). Its use opens a wide range of possibili-
ties for work in the classroom, allowing the teacher to use digital resources, created 
by himself/herself or available on the Internet, taking advantage of the audiovisual 
use for experimentation and simulation of various situations, contributing to the 
promotion of interaction between the teacher and pupils and among themselves 
(Beauchamp & Kennewell, 2008; British Educational Communications and 
Technology Agency [BECTA], 2004).

However, in some contexts, there is a tendency to set the interactive whiteboard 
to expository teaching service: the whiteboard is used for purposes of projection, or, 
in other cases, some of its graphic capabilities are used to enhance the teacher’s 
content presentation to a listening-only class.

So, the use of the interactive whiteboard does not necessarily transform the class 
dynamics nor does it improve the interactions among its participants, but it is in this 
particular topic that important advantages for the teaching and learning process are 
achieved (Mercer, Hennessy, & Warwick, 2010; Tanner, Jones, Kennewell, & 
Beauchamp, 2005; Warwick, Hennessy, & Mercer, 2011). The interactive white-
board is a tool that can be used at the service of a dialogic approach to students’ 
learning, based on truly interactive classroom environments (Reis, 2014).

A. P. Canavarro (*) 
Universidade de Évora, Évora, Portugal
e-mail: apc@uevora.pt 

C. S. P. Reis 
Agrupamento de Escolas de Amareleja, Amareleja, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99861-9_5&domain=pdf
mailto:apc@uevora.pt


102

In a dialogical approach to learning, the key idea is the construction of shared 
knowledge that is established in the class derived from student and teacher dialogue 
engagement (Mercer et al., 2010; Ruthven, Hofmann, & Mercer, 2011; Stein, Engle, 
Smith, & Hughes, 2008). This perspective on learning is especially well articulated 
with an inquiry-based mathematics teaching (Ponte, 2005; Stein et  al., 2008; 
Warwick et al., 2011). In this model, the teacher’s role is a key factor in the coordi-
nation of collective discussion on the student’s work, resulting from challenging 
tasks and from the joint reflection produced, pointing to the construction of the 
mathematical knowledge that is being institutionalized in the class (Canavarro, 
Oliveira, & Menezes, 2012; Ruthven et al., 2011).

However, exploratory teaching practices are difficult to conduct while putting 
several challenges to the teacher (Canavarro, 2011). Special care must be taken in 
the choice of tasks to promote student work. The tasks must enable the confronta-
tion of ideas, strategies and results, both during the work of the students in small 
groups and during the collective discussion with the whole class. Problematic tasks, 
for its challenging nature (Ponte, 2005), emerge as especially appropriate and valu-
able in the development of dialogical interaction in mathematics classes.

Another difficulty has to do with the role of the teacher. In the inquiry-based 
teaching of mathematics, he/she has to perform a multitude of simultaneous actions, 
imbued with two purposes: to manage the class as a whole (time, resources, interac-
tions) and to promote students’ mathematics learning (reasoning, solving, commu-
nicating, concluding) (Canavarro et al., 2012). To better face this complexity, it is 
important that the teacher can easily mobilize resources for supporting the achieve-
ment of these actions in an effective way, in particular in what concerns the facilita-
tion of communication between different participants in class.

Being the interactive whiteboard a powerful resource to promote the interaction, 
it is of special importance and interest to understand how it can enhance the devel-
opment of dialogical interaction in the classroom.

This paper focuses on the identification and analysis of the contributions that the 
interactive whiteboard can provide for the development of dialogical interaction in 
the context of problem-solving, by identifying the features of the board that can be 
used to support this interaction.

It is our belief that this study may contribute to deeper the knowledge necessary 
to support teacher’s transformation of class dynamics, taking advantage of the use 
of the interactive whiteboard for helping teachers to better deal with the complexity 
of mathematics inquiry-based teaching practices.
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5.2  Theoretical Perspectives

5.2.1  The Interactive Whiteboard in the Teaching 
and Learning of Mathematics

An interactive whiteboard is an educational technology associated with a computer, 
a projector and a specific monitoring device (pen or other), which allows designing 
digital resources in an interactive surface. Through this surface, it is possible to 
write and control software programs, without computer usage.

The software associated with the interactive whiteboard offers a wide range of 
functions that allow revolutionizing both teaching and learning. Among the main 
features are the possibility to write on the screen; drag and drop objects; hide and 
reveal; enhance the written or other objects by placing a transparent colour on them; 
rotate, enlarge or decrease the objects; use multiple pages without having to delete 
information; store materials during the desired time and retrieve them; give sound 
or visual feedback when a given object is touched; and use, at the same time, spe-
cific programs of the various subject areas ([BECTA], 2004). In the case of mathe-
matics, it stands out the dynamic geometry programs, calculation programs and 
interactive applets, which can be integrated on the interactive whiteboard.

According to Glover, Miller, and Averis (2005), the demo tasks and the problem 
resolutions profit from the use of the item dragging and hidden answer revelation 
techniques, while working with graphics is facilitated by the use of colours and 
shadings. The object manipulation or rotation and the use of specific software allow 
students to better understand the concepts (Moss et al., 2007). Torres (2008) sug-
gests that a student who is given the opportunity to interact with the interactive 
whiteboard can present “a reasoning or a different strategy to approach a problem, 
using a spreadsheet, dynamic geometry software, an applet or other” (p. 43), taking 
advantage of the interactivity provided by the board.

For students, the use of the interactive whiteboard has several advantages (British 
Educational Communications and Technology Agency [BECTA], 2003): it allows 
them greater attention and focus on the class, since students do not need to spend 
all the time taking notes in their personal notebooks; it enhances their participation 
and cooperation in the activities and, consequently, the development of personal and 
social skills; it increases their motivation to participate by the use of more dynamic 
approaches – the use of games, colours, images, the Internet and software; and it 
extends the possibilities of understanding more complex concepts.

Some studies point to the fact that the use of interactive whiteboard contributes 
to increase the students’ motivation and their involvement in the learning process 
(Higgins et  al., 2005; Lerman & Zevenbergen, 2007; Levy, 2002). According to 
BECTA (2004), the greatest source of students’ motivation is the opportunity to 
physically interact with the board, together with the increased possibility of interac-
tion and discussion. Higgins et al. (2005) also highlight that what makes the differ-
ence in the use of the interactive whiteboard are aspects related to the interactions 
established in the classroom, which can increase considerably. Levy (2002) 
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 emphasizes that this technology has a positive impact on the presentation of infor-
mation and teaching resources, in the explanation of concepts and ideas and in the 
students’ interaction and activities.

There are also references to contributions of the interactive whiteboard for the 
teaching, namely, at the management of the class by the teacher. Glover and Miller 
(2001) emphasize the visual contact that the teacher can keep with the students 
while exposing the subject and controlling the computer through the board, allow-
ing him to be more attentive to the class events. Studies developed by Ball (2003) 
and Lerman and Zevenbergen (2007) showed that the use of interactive whiteboard 
contributes to increase the rhythm of the class.

Many advantages arise from the use of the interactive framework from the 
teachers’ point of view. BECTA (2003) considers that this tool allows the possibili-
ties of further integrating of ICT; registering of notes throughout the class, saving 
notes and printing or sending them to the students by email; sharing of materials 
with colleagues; reusing and reducing the work of lesson preparation; and adapting 
resources created to different age levels and curricular areas. However, according to 
Greiffenhagen (2000), cited by Lerman and Zevenbergen (2007), the effectiveness 
of the interactive whiteboard is only fully achieved if it is regularly used.

One key idea comes from this review: the interactive whiteboard is indeed a 
multipurpose tool for the teacher, but it is actually more than that, and its added 
value (for instance, in immediately switching between several pages when needed) 
is an essential point to be brought to the fore.

5.2.2  Dialogic Interaction and the Use of Interactive 
Whiteboard

Tanner et al. (2005) argue that a dialogue-based teaching methodology requires a 
powerful interaction with students, which is related to the degree of teachers’ tech-
nology control, to the type of task presented to students, to the degree of questioning 
the students and to the culture established in the class to create moments of presen-
tation and sharing of ideas.

This is a sustainable approach in a perspective of inquiry-based teaching, accord-
ing to which the construction of knowledge is made together, as a result of the dia-
logic interaction between teacher and students (Mercer et al., 2010). In this process, 
students play an active role, being encouraged to expose their ideas and explain their 
reasoning, where particular importance is given to the orchestration of the discus-
sions by the teacher.

Mercer et al. (2010) recognized that adopting a dialogical pedagogy is not easy. 
It is a demanding practice for teachers, both in preparation of the lessons and during 
the lessons, while the interactions are occurring, being the teachers’ orchestration of 
the collective discussions especially complex (Stein et al., 2008).
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According to Ruthven et al. (2011), teacher interventions should guide the course 
of the discussion, supporting students in articulating mathematical thinking and 
helping them relating the concepts with other examples, principles or existing tools. 
According to Ball (2003), the relationship between teacher and the student in the 
process of knowledge construction can take advantage of the use of the interactive 
whiteboard that allows the teacher to focus more on the students’ answers, staring 
them directly, without having to worry about the computer mouse or keyboard to 
explain or rework procedures.

The student’s role is relevant when he/she gets the possibility to interact with the 
teacher and with other colleagues handling directly the interactive whiteboard, 
which is a knowledge construction facilitator aspect, although it is not necessary for 
the student to handle the interactive whiteboard in order to achieve a good level of 
interaction (Reis, 2014). The teacher is the key element in the management and 
orchestration of the interactions among students and between them, and the interac-
tive whiteboard and the dynamics of the class strongly depend on the teacher (Stein 
et al., 2008).

Studies developed by Mercer et al. (2010) revealed some of the specific features 
of the interactive whiteboard that can be used in the classroom to support the dia-
logic interaction. They highlight the sharing of ideas and its registration as notes, 
which can be easily modified, stored or reviewed; the use of options to hide and 
reveal that allow students to focus their attention in specific parts of one document; 
and the multimodality, which concerns the possibility of integration of many 
resources that are readily available in order to be effectively used.

Large group discussions may be supported by the use of audio, visual and written 
functions, which stimulate the organization and development of the students reason-
ing, encouraging them to introduce and test their own ideas. The different ideas can 
be recorded, analysed, stored and revisited, allowing the construction of meanings 
based both on dialogue and on the interactions between students themselves and 
between them and the teacher (Reis, 2014).

Another aspect to consider in promoting dialogic interaction is the nature of 
the mathematical task or question proposed to the students (Beauchamp & 
Kennewell, 2008). Smith and Higgins (2006) stress the value of open questions 
defining them as questions that invite a range of acceptable answers. As they say 
(p. 486), open questions “which invite pupils to use talk to explore understand-
ings, to speculate, hypothesize, reason and evaluate, and to consider a range of 
possible answers (i.e., to give an open response), are more valuable in helping 
pupils construct and reconstruct knowledge and understanding”. When respond-
ing to open tasks, students tend to reveal their knowledge, express their doubts, 
speculate, set hypotheses and consider a number of possible answers. These tasks, 
which include the problems, seem to be those who best provide the construction 
and reconstruction of knowledge. During the discussion of a problem, the stimu-
lation of oral communication and of various types of interactions (teacher-student, 
student-student and student-class) must always be present in the teacher attitude, 
as well as the promotion of sharing and confrontation of ideas, resolution strategies 
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and mathematical procedures (NCTM, 2000). In contrast, closed tasks, although 
being widely used by teachers, elicit short and factual responses of low-level cog-
nitive demand and do not promote student’s active participation in the construc-
tion of knowledge. In this way, the development of dialogical interaction in the 
classroom can be more easily and deeply achieved through the use of open tasks, 
particularly through solving problems (Reis, 2014). However, again, the role of 
the teacher and the type of communication that he/she promotes in class are essen-
tial for modelling the students’ learning opportunities (NCTM, 2000), in particu-
lar the way in which teachers react to pupils’ responses to questions (Smith & 
Higgins, 2006).

In order to promote the dialogue in the classroom, the dynamics based on prac-
tices of inquiry-based teaching and learning are also reinforced (Canavarro et al., 
2012). These dynamics, combined with the solution of challenging tasks, potentiate 
the moments of discussion and debate, both in small groups and in large group 
(Canavarro, 2011). According to this perspective, the lessons are structured in four 
phases, which include the launching of the task to the students, solving the task in 
small groups, large group discussion of solution strategies and finally the systemati-
zation of the assembled mathematical learning.

It is interesting to note that when a class is using the interactive whiteboard, it is 
common to distinguish four phases (Kennewell & Beauchamp, 2007). The first 
phase of the class is characterized by the realization of lecture theme review, which 
is conducted by the teacher, and the attention of the class is focused on the interac-
tive whiteboard. The second phase includes the introduction of concepts and the 
development of skills, involving students in animations, in observations registration 
and other forms of physical interaction with the interactive whiteboard. The third 
phase involves the development of students’ work in groups and usually does not 
require the use of the interactive whiteboard. In the last phase, the interactive white-
board plays the major role to review the central aspects of the learning objectives 
and the main questions posed by students, mainly led by the teacher.

The class model of inquiry-based teaching and the class pattern with the use of 
an interactive whiteboard do not match exactly, but both have in common something 
essential: the emphasis on exploring the interaction of students in collective 
moments of discussion or appropriation of knowledge.

It must be stated that to conduct this kind of practice, it is extremely important 
that the teacher owns resources that enables him/her to expedite the students’ com-
munication, taking advantage of previously prepared and structuring materials of 
class activity, getting good-quality written records of students’ mathematical pro-
ductions that may be compared and confronted at any time and enabling opportuni-
ties for joint reasoning, discussion and conclusions, including diverse tone voices 
and ideas from students (Stein et al., 2008).

The interactive whiteboard, given its characteristics, can provide to the teacher 
the streamline of the various actions that he/she must perform, driven by two simul-
taneous concerns: on one hand, the managing of the classroom and, on the other, the 
promotion of the mathematical learning (Canavarro et al., 2012).
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In brief, we underline the idea that the interactive whiteboard is a versatile tool 
with many features that can be used for the promotion of the students’ learning. 
Among these features, some are concerning the written record, others relating to the 
integration of multiple useful tools to support the mathematical reasoning (multi-
modality) and others relating to the interactivity provided. The process of teaching 
and learning will be enriched if both teacher and students can take advantage of this 
interactivity, particularly in conducting discussions involving the whole class to 
facilitate a dialogical construction of mathematical knowledge. This kind of prac-
tice is of great complexity, because the teacher has to undertake a number of actions 
that have to do with two distinct but interrelated purposes: manage the class as a 
whole and promote the learning of the students.

5.3  Methodology

5.3.1  Fundamental Options

The research reported here is based on a case study with a group of students from 
8th grade of schooling from a basic school located in a city in an interior region of 
Portugal. This study arises in the context of a teaching experience held in 15 regular 
lessons of mathematics, during the second and third school terms. This experience 
consisted in a sequence of six tasks to be explored in class with the use of the inter-
active whiteboard and involved both the authors of this article as researchers and the 
mathematics teacher of the class.

The mathematics teacher has a positive attitude towards the use of ICT in math-
ematics teaching. She regularly uses the interactive whiteboard with the students but 
only in what concerns its use as a board for projection. The use of more sophisti-
cated potentialities of the interactive whiteboard is very scarce and happens only in 
the teaching of specific topics like symmetry, despite the teacher had some courses 
in the use of technology. For the teacher, this project is an opportunity for her to 
learn how to use the interactive whiteboard as a tool for promoting interaction and 
development of the mathematical communication of their students.

The planning of the lessons involved several sessions of joint work between one 
of the researchers and the class teacher in a collaborative context. In these meetings, 
the tasks were selected and adapted in order to be implemented in the classroom, 
and the lesson development was anticipated, including the preparation of resources 
to use on the interactive whiteboard.

All the tasks were problem situations in nature, but they were diverse: they 
focused on different curricular topics and had different purposes, from the learning 
of new mathematical contents to the development of mathematical processes such 
as problem-solving and communication, providing students with different learning 
experiences (NCTM, 2000).
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These lessons followed an inquiry-based teaching model, stressing the possibil-
ity of establishing interactions and class discussions aiming to the collective con-
struction of mathematical knowledge. Although not being a recurrent practice of the 
teacher, she was able to create a classroom environment in the spirit of dialogical 
interaction. In general, the structure of the lessons followed four phases: (i) task 
presentation by the teacher to the students; (ii) task solution by the students orga-
nized in small groups; (iii) discussion of task solutions, in large group, with the 
participation of all the students and the teacher; and (iv) systematization of mathe-
matical learning, conducted by the teacher with the participation of the students.

In this chapter, we focus on two of the problems. Its selection followed two main 
criteria: they have quite different learning objectives, allowing to observe and to 
analyse diverse scenarios of the use of the interactive whiteboard in the develop-
ment of the lesson. Furthermore, they correspond to different moments of the imple-
mentation of the sequence, one at the beginning and the other by the end.

The first problem, “Introduction to the systems of two equations in two 
unknowns”, was inscribed in the curricular topic “Systems of two equations in two 
unknowns” and corresponded to the first task of the sequence. The teacher’s aim 
was to introduce the concept of a system of two linear equations in two unknowns, 
from the interpretation of the problem posed by means of two equations related one 
to the other. Based on initial teacher guided discussion in which students tried to 
solve the problem by trial and error, they have come to the conclusion that they did 
not have sufficient knowledge to solve the problem properly. The method of substi-
tution for solving systems was then presented to the class by the teacher.

The second problem, “The cylindrical candles”, focused on the curricular topic 
“Geometric solids” and corresponded to the fifth task of the sequence. This problem 
had the purpose of consolidation of contents taught in previous lessons and, simul-
taneously, was an opportunity for solving a problem that allows different strategies 
to be used, requiring the organization of a sequence of steps until the final answer is 
achieved, fostering students’ creativity and critical sense.

5.3.2  Data Collection and Analysis

The data collection was based on observation and documental analysis (Creswell, 
2012). The observation took place on all the lessons of the teaching experience, 
which were video recorded with proper authorization. The moments involving the 
large group discussion and the concluding remarks were integrally transcribed. The 
documental analysis was based on the researcher field notes of the lessons and also 
on the digital files relative to the use of the interactive whiteboard, as the flipchart 
relating to the solutions of the problems and other files (for instance, GeoGebra files 
produced in the context of a task not focused in this paper).

The collected data was analysed with the purpose to understand which interac-
tive whiteboard features were used in the lesson development and which 
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 contributions resulted from there for the promotion of dialogical interaction 
development in class.

The data analysis was processed in two stages. In the first phase, a preliminary 
analysis of data collected from various sources was conducted, with the objective of 
identifying the categories of relevant analysis towards the interest of the present 
study, combined with the literature review. In a second phase, data analysis was 
performed according to the defined categories.

To analyse the features of the interactive whiteboard, three main categories have 
been considered. One of them is on the written recording functions, including, for 
example, the possibility to change the dimensions of the writing and to use colours 
for highlights, as well as the possibility of recording files and recover them. A sec-
ond category concerns multimodality that includes the possibility of using differ-
ent tools integrated in one screen, as it is the case of the calculator. Finally, we 
consider the category of interactivity, including the possibility of people interac-
tion, students or teacher, with the screen, with immediate feedback, allowing, for 
example, experimentation and simulation of various situations without any other 
software or applets.

Regarding the contributions to the promotion of dialogical interaction, we con-
sider two categories: on one hand, the contributions concerning whole-class global 
management (time, materials or resources to support communication or to promote 
students’ reasoning, resources to manage students’ participation, students’ attentive 
attitude, etc.) and, on the other hand, the contributions concerning the promotion of 
students’ learning mediated by dialogic interaction (possibility of considering vari-
ous contributions, clarification of class questions, collective construction and record 
of a collective product institutionalized by the class, collective experimentation for 
obtaining joint conclusions, etc.).

5.4  Presentation of Results

5.4.1  Introduction to the Systems of Two Equations  
in Two Unknowns

This problem had two specific purposes: introducing the concept of a system of two 
equations in two unknowns to the students and presenting the substitution method 
for solving linear systems.

The exploration of this problem took place in two consecutive lessons. In the first 
one, the teacher presented the problem to the students and promoted a discussion 
concerning the obtaining of solutions, interacting with the class, so as to show them 
how to solve it by an efficient method. At the second lesson, the focus was pointed 
in the systematization of students learning regarding the substitution method for 
solving systems.
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During the presentation phase, the teacher used the interactive whiteboard using 
a previously prepared flipchart with the statement of the problem (Fig. 5.1) [transla-
tion from the first screen: “First I thought of a number and then of another one; 
adding both numbers, I got 10. What are these numbers?”; translation from the 
second screen: “The difference between the double of the first number and the half 
of the second one is one half. What are the numbers?”].

The students were informed that the solution of the problem was hidden under 
the mysterious blue rectangle (Fig. 5.1) [translation: Numbers???], thus motivating 
their curiosity. The students felt challenged and excited and tried to guess the solu-
tions of the problem, interacting with the teacher that kept on pushing them:

T: (…) I could think of a quantity of numbers. I’ve heard some decimal numbers... Negative 
numbers, could also be. But I can tell you that none of these values are the ones hidden 
there!

Students offered several possible hypotheses, and the teacher recorded them in 
colour on the screen (Fig. 5.2), valuing their contributions.

The writing of the problem in mathematical language was the result of the 
interaction among all. After the two equations were obtained, the teacher, in 
response to students’ questions about the order of the variables, reviewed the 

Fig. 5.2 The use of colour 
transparent markers in the 
first equation of the 
problem

Fig. 5.1 Presentation of the problem Introduction to the systems of two equations in two unknowns
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writing of equations by taking advantage of the possibilities of using transparent 
coloured markers:

T: So, let’s see. If I have here … Let’s see … What did I say? I thought first of a number 
[highlights that phrase with a transparent orange marker]. This number, which I don’t know 
what it is… You don’t know what is the number I thought of! Do you represent it by what?

S1: x and y.
T: No, no. The first number that I thought of!
S1: x.
T: We represent it by x [teacher highlights the x with the transparent orange marker]. 

Then… let’s change the colour. Then, I thought of another number [highlights that phrase 
with a transparent pink marker]. This number is represented by what?

S1: By y.
T: By y [highlights the y with the pink marker].
[…]
T: I finally say “it’s ten” [changes the colour of the marker to brown and highlights that 

part with a brown-coloured marker]...
S3: It should be underlined the x + y.
T: Yes, you have some reason! What he’s saying is that I should have put the x + y, this 

whole part, in green colour. You are not far from being right. It’s true, because I’m adding 
the two, right? But, when I speak of the sum of the first with the second, I mean the sum... 
What is the symbol that will represent, mathematically, this sum? Is the “plus” sign, right? 
When I say it is 10, where am I going to get this “is 10” [points to the equation]?

S4: It is the result.
T: The “is” means is equal to ten [highlights “=10” with the brown marker]…

The colour highlights in the interactive board simplified the identification of the 
variables and the comprehension of their relationship (Figs. 5.2 and 5.3).

The next phase of the lesson consisted on the joint solution of the problem, since 
the students still lacked mathematical tools to its autonomous solution. The teacher 
guided the discussion in class, based on teacher-student dialogue, which occurred 
more frequently, and student-student, in a more occasional basis.

During the explanation of the problem solution method, the teacher felt the need 
of having more screen space so that it was possible to conclude the solution of the 

Fig. 5.3 The use of colour 
transparent markers in the 
second equation of the 
problem
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system on the same page of the board. So, she used the functionality of the interac-
tive whiteboard that allows to increase/decrease objects, keeping a good readability 
(Fig.  5.4) [translation of the sentence above the conjunction: “The sum of the 
numbers is equal to 10 and the difference between the double of the first number and 
the half of the second one is one half”]. This also enabled students to observe 
the complete sequence of steps performed and to have a global perspective of the 
method – this would only be possible when using a traditional board if prepared in 
advance and not in a dynamical way as it is possible with the interactive 
whiteboard.

The use of coloured pens contributed to stress the substitutions involved on the 
method, enhancing its understanding by the students.

After the solutions were obtained, the teacher revisited the flipchart first page 
and, using the magic ink, revealed the hidden numbers (Fig. 5.5), provoking a satis-
faction and contentment reaction in the students.

Fig. 5.5 The use of magic 
ink to reveal hidden objects 
in the problem. 
Introduction to the systems 
of two equations in two 
unknowns

Fig. 5.4 Solution of the 
problem. Introduction to 
the systems of two 
equations in two unknowns
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The teacher reviewed the steps of the system solution with the verbal participa-
tion of the students, who continued to express their interest and collaboration. They 
also suggested a new idea: to solve the first equation for y and verify if there was no 
difference in the final result. The teacher accepted the idea, again making use of the 
possibility of performing the problem solution in a single sheet of the interactive 
board (Fig. 5.6).

It was also important to be able to show the students the two different uses of the 
same method, which was easily done by the teacher recovering of the previous 
pages of the interactive whiteboard – this also would not be possible with a tradi-
tional board.

Throughout the lesson, it was notorious the teacher’s concerns to focus all stu-
dents on the interactive whiteboard where everything was recorded for later use. 
This allowed her to not have breaks in lesson rhythm that could arise if, for example, 
she had to wait for students to record the information on their notebook.

T: You don’t even have to write it right now. You will write some things on your notebook 
at a proper time. Now, I want your attention here. Can it be?

At the end of lesson, the teacher saved the pdf file containing all the pages written 
on interactive whiteboard and sent it to students by email.

In the beginning of the next lesson, the teacher proceeded to a synthesis of the 
substitution method for solving two linear systems, for better systemization of this 
solution method. For doing this, she recapped the various steps using the file 
obtained from the previous lesson. The use of this file allowed her to fast recover 
with accuracy all the previous work, improving the lesson rhythm and the manage-
ment of time.

Fig. 5.6 Second solution process of the problem. Introduction to the systems of two equations in 
two unknowns
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T: What was done? All we have here is what we did in the last lesson. Let’s only review it…

The method of solution of the system was reviewed, and the teacher proceeded to 
the verification of the solutions, having again used the coloured pens for better iden-
tification (Fig. 5.7).

With this approach, the teacher managed to introduce new mathematical content, 
not in an expository way but in interaction with the students, based on the dialogue 
that was effectively streamlined by the use of the interactive whiteboard. Although 
there was no physical interaction of the students with the interactive whiteboard, the 
ideas presented by the students were discussed, integrated and recorded on the 
board, and the final product resulted from the dialogic interaction of the class, 
although fairly conducted by the teacher.

The analysis of the main contributions arising from the use of interactive white-
board in the exploration of this problem shows its importance.

Both during the presentation of the problem, as throughout its exploration, the 
use of the interactive whiteboard enabled keeping the students on the same focus 
and contributed to increasing their motivation and interest. The fact that this board 
provides an enlarged good image of the content being explained allowed intensi-
fying the involvement of students in the task, preventing them to divert their atten-
tion. The joint exploration of the problem on the board contributed to the 
promotion of interaction between the students, who have shown great willingness 
to participate.

In particular, during the discussion and class solution of the problem, the process 
of writing and noting of the answers given by the students allowed the class to 
achieve a built-together and cumulative product, which is authored by all.

In the solution of this problem, the use of colour allowed the highlight of specific 
parts, increased the visual stimuli and facilitated the understanding of the problem 
in general, as well as the specific procedures followed in its solution. As already 

Fig. 5.7 Colour markers in the verification procedure of the solutions of the problem. Introduction 
to the systems of two equations in two unknowns
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mentioned, the annotations made on the interactive whiteboard allowed the good 
and clean visualization in a single page of the whole process of solving the system 
of equations, providing a better perception of the sequence of all steps to perform 
through the method.

The use of magic ink to reveal the solution to the problem has encouraged students 
who expressed satisfaction and contentment reactions.

In the synthesis phase, the reuse of the saved file with the work of the previous 
lesson enabled the rigorous and fast recap of the ideas of the class and to build on 
forward, stressing the feeling of collective authoring. It also contributed to a more 
effective time management.

5.4.2  The Cylindrical Candles

The problem “The cylindrical candles” had a double objective: on one hand, it invites 
students to solve a problem and, on the other, allows the application of mathematical 
contents taught in previous lessons on areas and volumes of geometric solids.

The work with this problem occurred in two lessons. The first included the pre-
sentation and solution phases of the problem and part of the discussion. The second 
lesson was devoted to conclude the discussion and the final phase of systematization 
of mathematical learning involved in the problem solution.

In the first phase, students were given a paper sheet with the written problem. The 
interactive whiteboard was used in addition to provide the problem to the class 
(Fig. 5.8) [translation: Task – Joana has two cylindrical moulds for candles, mould A 

Fig. 5.8 Presentation of the problem. The cylindrical candles
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and mould B, with different dimensions. Mould A: diameter of the base, 10  cm; 
height, 7.5 cm; Mould B – diameter of the base, 7.5 cm; height, 10 cm. She bought 
two blocs of paraffin, one red and one green, both with the shape of a parallelepiped, 
with 5 cm of height, 25 cm of width and 50 cm of length. With mould A, she did only 
red candles; with mould B, she did only green candles. In each case, she did the big-
gest possible number of candles. After, she decided to decorate the candles, rolling up 
them with decorative self-adhesive paper. The paper roll had dimensions of 
0.95 m by 0.60 m. Will Joana have enough paper to roll up all the candles she did?]

During the second phase of the lesson, students sought to solve the problem 
organized in small groups. The teacher encouraged the autonomy of the groups, 
pushing the students to explain their ideas and giving them some hints when needed 
to progress on their reasoning.

The discussion phase of the strategies of solving the problem on the interactive 
whiteboard started without all the groups had completed the full solution of the 
problem. The teacher justified this option in order to use the remaining time of the 
lesson for collective discussion in order to reach a shared solution of the class:

S1: Teacher, give us a little bit more of time… We haven’t finished yet.
T: I know, but everyone thought about the problem. Some groups already have almost 

everything done and now all together let’s see if we can reach some conclusion. John 
[points to the Group 1], you will present! Move on to next page [of the interactive white 
board], pick the pen and start.

Having realized that the strategies used by the groups were very similar, the teacher 
decided to ask each group to contribute to the discussion with a small part of the 
solution of the problem.

A student of the first group explained on the interactive whiteboard his reasoning 
to determine the volume of each cylindrical mould, the amount of wax available 
and the number of candles that it was possible to do, recording all calculations 
they made.

A question regarding the result correctness of mould volume A created the neces-
sity of verifying the calculations. The presenting student then used the integrated 
calculator on the interactive whiteboard (Fig. 5.9), clarifying the whole class at once 
about the correctness of the values.

Fig. 5.9 Use of the interactive whiteboard calculator in the solution of the problem. The cylindri-
cal candles
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In order to more clarification of the solution process, the information presented 
on the board was organized using coloured pens. The group of students highlighted 
in red the calculations relating to the mould A and in green the calculations relating 
to the mould B (Fig. 5.10).

During this presentation, some doubts arose concerning the default-like approach to 
the units of the number of red candles. Some students indicated that they could make 
only 10 candles, while others considered that it was possible to make 11. This was 
an opportunity for collective discussion about the significance of this approximation. 
The teacher let the interaction flow among students valuing the dynamics of the class 
and concluded the discussion by validating the argument of one of the students:

T: Could we fill 11 moulds with that amount of wax?
S1: No. But the 61 [0.61] must be used too.
T: Nobody says that…
[…]
S10: She used the most possible, but didn’t use all of it.
P: Exactly. Say it again! Listen to what John said, I liked the phrase.
S10: She used as much wax as possible.
T: She doesn’t have to use it all. She has to use as much as she can.

After the presentation of the first group, the next students continued to solve the 
problem on the same page of the flipchart. To do so, they had to reduce the space 
occupied by previous records.

This group started by the area determination of the coloured sticker paper. To this 
end, it was necessary to refer back to the statement of the problem to clarify the 
reductions made to the values of the paper length measures. So, the group switched 
quickly between the two flipchart pages, revisiting the statement of the problem. 
The group also used coloured pens to highlight the value of the paper area available 
to quilt the candles (Fig. 5.11).

Fig. 5.10 Use of colour 
ink markers in the 
organization of the 
problem resolution

Fig. 5.11 Utilization of colour markers in the available paper area calculations to quilt the 
candles
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The students of this group calculated also the lateral area of each of the red can-
dles, originated by the mould A, and also the consequent area occupied by those ten 
red candles (Fig. 5.12).

During the second group intervention on the interactive whiteboard, a low level 
of interaction between students was noticed, probably because there were no other 
resolutions to confront relating to this part of the solution.

When the lesson came to the end, the teacher asked students to complete the 
problem solution at home and saved the pdf file with all the written records.

The next lesson started with the state of the solution made so far, taking advan-
tage of the visualization of the pdf file from the previous lesson.

From there, a third group was called to the board and determined the area occu-
pied by the candles obtained from mould B, annotating the calculations in the same 
page and highlighting them in green colour (Fig. 5.13).

The discussion of the next step of the solution (whether if it was possible to cover 
all the candles with the available paper) led to the oral presentation of two distinct 
strategies, one addressing separately the candles of different colours and another 
that considered them together, based on the sum of both of the areas.

T: Any ideas? Say it, Joana.
S5 (Group 2): We need to divide 5700 by the result [refers to the area value of the 10 red 

candles] [...]
T: Tell me, John.
S2 (Group 1): I think we should add the 2356.3 to the 3298.68 and see if it was lower or 

higher than the value from above [refers to the area of available paper].
[…]
S1: The moulds are not equal…
S7: One is greater than the other.
S2: Okay! But if the 5700 is enough for the two [refers to the values of the areas: 2356.3 

and 3298.68] it is a sign that it works.
S3: Oh, yes! I see your point.
T: Let’s see. I have a sheet of paper. I want to cover; I could even have different things. 

Now I have here this piece of paper, let’s imagine, and now I want to cut here a rectangle 

Fig. 5.13 Determination of the area occupied by the green candles

Fig. 5.12 Area determination occupied by the red candles
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and quilt a little thing with a rectangle. So what do I have to check? If the areas fit here or 
not, right?

S5: But if we divide the area of the paper by the area of the model, we know how many 
candles we can cover.

T: Do you agree with Joana?

After some discussion, the conclusion was collectively withdrawn, involving the 
participation of several students, and was recorded on the interactive whiteboard by 
a student of another group.

T: Can Joana quilt every candle or not?
Several students: Yes.
T: Why?
S4: The value [of the area of all the candles] is lower than the other [refers to the area of 

paper available].
T: So we have more paper to quilt from than area to quilt. Right?
Several students: Yes.
T: So, John, go to the board and skip the page. Write the conclusion. And what was the 

conclusion that we took from this problem?
S13: That Joana can quilt....
[…]
S10: Joana can cover all the candles.
T: Then write it!

After this phase, a surprise to the class was reserved. Anticipating the possible 
difficulties of the students to understand effectively that the paper sticker was not 
enough to cover all the candles, the teacher introduced them to a new flipchart previ-
ously prepared, in which it was possible to simulate the situation of the problem by 
making use of the interactive whiteboard potential. The simulation was about the 
distribution of candle moulds through the colourful sticker paper by inserting and 
manipulating rectangles (Fig. 5.14). This promoted students’ interaction with the 
board, some of them had the possibility of trying. Besides, this simulation allows 
the use of iconic representations, favouring the overall understanding of the situa-
tion and revealing important aspects for the process solution.

In general, the motivation of students increased significantly at this stage, having 
been retrieved a stronger degree of interactivity. Everyone wanted to make a trial on 

Fig. 5.14 Two simulations for cover the paper with the red mould A and green mould B
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the interactive whiteboard, and the teacher was essential to control the student’s 
contributions.

Figure 5.14 shows two of the attempts made by the students to cover the yellow 
rectangle simulating the sticker sheet of paper with red (mould A) and green 
(mould B) rectangles.

At this stage, the class gained a new life. All the students wanted to participate and 
gave lots of suggestions to those who were using the interactive whiteboard to manip-
ulate the rectangles. Some commented: “Actually, I think it’s not going to fit...”

During this discussion, previous pages were revisited to confirm how many rect-
angles had been managed to fit on each trial. Many students convinced themselves 
that it was not possible to cover all the candles and were debating out loud their 
opinions.

S4: There [points to the interactive whiteboard] is already a bit wasted.
S2: These spaces will always be remaining.
S10: So if this area is larger than the lateral area of the candles… How couldn’t it work?!
S2: It’s not going to happen! Look at the spaces that are not being used [points to the 

interactive whiteboard].
S4: The difference is so tiny and because there are some empty spaces left, it’s not going 

to be enough!
S13: There will always be spaces that will not be used.

The teacher moved on to the systematization phase of the lesson when she evaluated 
that most students were already convinced that it was not possible to cover all the 
candles, because of the waste of paper. At this stage, the purpose of the problem was 
recalled; the various pages of the flipchart were reviewed, allowing a better under-
standing of the solving process. The main conclusions were then synthesized, and 
the final answer to the problem was recorded on the interactive whiteboard.

T: With this information we have here, do you think we can cover it or not?
[…]
S4: The spaces will not be all covered… It is not going to be enough! There is always 

paper waste.
[…]
S11: Teacher, with these little spaces, couldn’t we put it all together and put them in a 

single piece?
T: Well, that’s the issue here. Bernardo had already said it… If I want to quilt a candle 

with “patches”, even little ones, then, in that case, would it work or not?
Several students: Yes, it can work.
S4: Enough to quilt yes, but it’s not a practical task.
T: Then it works.
S13: By the calculations, yes...
T: Exactly! We’ve been able to confirm by calculations that it will be enough paper. But 

if you don’t use “patches”, do you think it fits or not?
Several students: No.
T: So, Bernardo, come here to the board and write down the conclusion.

The analysis of the main contributions arising from the use of the interactive white-
board in the exploration of this problem shows its importance in two phases of the 
lesson.
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During the discussion phase, the interactive whiteboard was effectively used by 
students, and no sort of handling embarrassment was detected. The use of the inter-
active whiteboard calculator has confirmed, in front of the class, the results obtained 
by the students, concentrating their attention again on the same focus. The use of 
coloured pens allowed to highlighting parts of the resolution of the problem, provid-
ing a better organization of the records made on the board.

Reducing the size of the written records allowed visualizing all the steps of the 
solution in one page, allowing students visual contact with the whole process.

The possibility of retrieval and visualization of pages previously written contrib-
uted for students understanding of the complete solving strategy and for teacher 
making of summaries and clarification of questions posed by the students.

The distribution “of moulds of candles” on “the coloured sticker paper”, by the 
insertion and manipulation of objects on a page previously prepared for this pur-
pose, took advantage of exploring interactivity associated with the board. The simu-
lation allowed to confirm/disconfirm the first solution found by the class, which was 
incorrect. In a fast and effective way, students convinced themselves easily that the 
sticker paper was not sufficient to cover all the candles if full pieces of paper were 
selected. Their ideas and reasonings were supported or rejected in a great interactiv-
ity environment. The strategy of using specific features of the interactive whiteboard 
to explore this situation was quite rewarding, enabling the agile use of iconic repre-
sentations. Without the use of the interactive whiteboard, the discussion of these 
strategies would have been too time-consuming and probably not implemented if a 
pencil and paper approach was required.

All groups contributed to the collective construction of a product common to the 
class, which was then made available by email to students. This pdf file was a sup-
plementary support to the records that students made in their daily notebook.

5.5  Conclusions and Final Remarks

Table 5.1 summarizes the main features of the interactive whiteboard used in the 
exploration of the two problems focused on Sect. 5.4, as well as the contributions 
resulting from the use of these functionalities for promoting a dialogic interaction 
in class.

5.5.1  Features of the Interactive Whiteboard Used to Support 
Dialogic Interaction in Solving Problems

The interactive whiteboard was used by the teacher and also by the students although 
the last ones had used it only on the second problem, for which they had their own 
solutions to present. All of the students used it without apparent technical difficul-
ties and took advantages of several of its functionalities.
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The analysis of Table 5.1, organized by the lesson phases where the interactive 
whiteboard was used, points to several conclusions.

In the presentation phase, the interactive whiteboard was used as a screen projec-
tion of problem statements, through access to digital resources (flipcharts) previ-
ously prepared and, in one case, making   use of the functionality of the magic ink 
that hides or reveals objects.

In the phase of discussion of the strategies of solution of the problems, several 
features of the interactive whiteboard were used: the recording and annotation of 
responses and suggestions from students, the use of coloured pens for highlights 

Table 5.1 Synthesis of the main features of the interactive whiteboard used in the exploration of 
the two problems and contributions for promoting dialogic interaction

Phases of the lesson
Features used of the 
interactive whiteboard

Contributions to promote dialogic 
interaction

Presentation of the 
problem

Access to a digital 
resource previously 
prepared
Inclusion of visual special 
effects (magic ink)

To concentrate students’ attention on the 
same focus, simultaneously
To increase students’ motivation and 
willingness for participation

Discussion of 
strategies for solving 
the problem

Written record with the 
use of different colours 
and kind of pens
Decreasing/increasing of 
written records and objects
Effect of hide/show 
objects
Use integrated of 
calculator
Use of iconic 
representations that can be 
manipulated interactively
Save of pdf files produced 
in previous lessons
Recovery and visualization 
of pages previously saved

To concentrate students attention on the 
same focus, simultaneously
To increase students’ motivation and 
willingness for participation
To obtain organized and well-presented 
written records
To compare easily results and strategies 
presented by students or teacher
To clarify doubts using specific tools
To support the interactive experimentation 
and simulation
To support the development of ideas, 
reasoning and communication of students
To increase the interactions among 
students and teacher and studentsTo build 
collectively and cumulatively a common 
class product
To save time and increase the rhythm of 
the lesson
To retrieve work done in previous lessons 
for review, with completeness, accuracy 
and speed

Systematization of 
mathematical learning

Recovery and visualization 
of pages previously saved
Written record using 
different colours and kind 
of pens

To retrieve work done in previous lessons 
for review, with completeness, accuracy 
and speed
To build a collective product resulting 
from class dialogue conducted by the 
teacher
To provide the relevant information 
recorded to students for posterior use
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and organization, the insertion and manipulation of objects and the use of integrated 
calculator.

In the phase of systematizations of mathematics learnings was used the retrieval 
and display of previously written pages and used the possibilities of written record 
in previously saved pages.

Thus, we observed that it was used a wide variety of functionalities. Some of 
them are related with the written record of quality; others are related to the possi-
bility of interactivity and multimodality. This conclusion is consistent with early 
studies, in particular from Glover et  al. (2005) and Mercer et  al. (2010), which 
relate to many aspects of this study. Moss et al. (2007) put great emphasis on the 
use of colour and manipulation and resizing objects, two features also widely used 
in this study.

However, the different features do not seem to be used with the same frequency 
and intensity in all phases of the lesson in the context of solving problems, being 
less used in the phases of solution of the problem by the students and of presentation 
of the problem to the class.

The discussion phase of solutions of the problem that took place in plenary with 
the class made   use of a large number of features of the interactive whiteboard. It was 
at this phase that the features of multimodality and interactivity proved to be par-
ticularly useful. This conclusion is not surprising if we assume that it is in this phase 
that different ideas of students emerge, as well as questions to clarify and hypothe-
ses to test. The interactive whiteboard had here a fundamental role, in particular in 
the problem of “The cylindrical candles”, where the simulation assisted by iconic 
representations students could manipulate came with great importance for deeper 
students understanding of the problem.

On the other side, it is important to note that at the systematization phase, which 
occurred at the second lesson devoted to the work with each one of the problems, 
the teacher always resorted to features on the written record, retrieving the files 
constructed and recorded. This allowed her to quickly, completely and accurately 
recapitulate the work previously done, reducing the difficulties that arise in time 
management and in obtaining the attention and concentration of students when the 
conclusion of the task discussion and synthesis does not occur in the class in which 
it was initiated (Canavarro, 2011).

5.5.2  Contributions of Interactive Whiteboard Use to Facilitate 
and Expedite the Dialogic Interaction in the Context 
of Problem Solving

The interactive whiteboard provided several contributions in promoting dialogic 
interaction, which was observed both in the lesson where the teacher introduced 
new knowledge to students and in the lesson in which they solved the problem 
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autonomously. These contributions were revealed in the different phases of the class 
considered in Table 5.1.

In the problem presentation phase, it allowed to concentrate the students on the 
same focus, being the interactive whiteboard the spatial reference to look at and the 
screen where the action unfolded, involving technological innovation. This aroused 
students’ interest and motivation, in particular in the problem where special visual 
effects were used, stimulating students’ curiosity to find the solutions of the 
problem.

In the discussion phase of the problems, many contributions were taken from 
the use of the interactive whiteboard. On the one hand, some of the features con-
tributed to increase motivation and interest of the student, to record more orga-
nized information and to enhance and highlight colours to specific parts of the 
solutions of tasks by providing conditions for the construction of a written prod-
uct with quality.

Other features contributed to support the development of ideas, reasoning and 
student’s communication. We highlight the interaction achieved from the use of 
simulation of the moulds of candles, which allowed also to exploring effectively 
new situations. It was a powerful contribution for supporting teacher actions in what 
concerns promoting students learning.

At the discussion phase and also at the systematization phase, we stress the pos-
sibility to easily retrieve the work already carried out in previous lessons, namely, 
when the discussion of solutions took more than one lesson. Also the effect of 
increasing the rhythm of the lesson and saving of time was obtained in this phase. 
Both are powerful contributions for supporting teacher actions in what concerns 
managing the class as a whole.

All these contributions allow a progressive construction of a product of the class, 
promoting in the students a feeling of authorship – the collective product evolves in 
the class and integrates the ideas of those who participate.

Taken together, these contributions have supported quite significantly the devel-
opment of an inquiry-based teaching of mathematics. They favoured students’ 
tracking of the work done by the class and recorded on the interactive whiteboard 
and fostered students’ attention and willingness of participation in the discussion, 
interacting with the teacher, with colleagues and with the interactive whiteboard. 
Thus, this study confirms the results of other investigations (Higgins et al., 2005; 
Lerman & Zevenbergen, 2007; Levy, 2002), stressing those that enhance the inter-
active whiteboard as an extra motivating factor for students, increasing their involve-
ment and interactions (BECTA, 2003; Higgins et al., 2005).

Analysing the diverse contributions, we can say that many of them support the 
actions that the teacher should perform for an efficient conduction of maths les-
son. On one hand, the functionalities related to written record of quality were 
crucial for the management of time and resources. On the other hand, functional-
ities linked to multimodality and interactivity, they provide conditions that facili-
tate teacher actions regarding to the promotion of mathematical apprenticeship by 
the students.
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5.5.3  Final Remarks

The interactive whiteboard is a very versatile tool. Its features support increased 
interaction even in lessons where students do not really manipulate the board by 
themselves or in lessons where they do not solve tasks for sharing their own solu-
tions with the class. This study showed that the interactive whiteboard is worth full 
in the context of a class discussion orchestrated by the teacher, in order to present 
new contents. This scenario can be very rich as a stimulus for the promotion of 
interactions among all participants – the interaction can be dialogic depending more 
of teacher intentions and actions than of the technological resource being used in 
classroom.

But the interactive whiteboard is not a neutral device and brings many contribu-
tions to promote dialogic interaction. Of particular interest is its use in the collective 
discussion of problem solutions, where multimodality and interactivity are simulta-
neously stimulus and support for promoting student mathematical learning. The 
features concerning quality written records are valuable in any phase of the lesson, 
but its use facilitates teacher management of whole class, namely, in the manage-
ment of lesson time.

This study is a first experience for this teacher and students but still revealed 
interesting results. A more regular use of the interactive whiteboard would create 
better conditions for its enhancement, in relation to the exploitation of more open 
tasks to make space to a deepening of the dialogue. Warwick et al. (2011) point out 
that teachers who adopt an interactive pedagogy, involving students in their learning 
through dialogue, are those who are better able to integrate the use of the interactive 
whiteboard in the service of their educational goals.
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Chapter 6
Learning Scenarios with Robots Leading 
to Problem-Solving and Mathematics 
Learning

Elsa Fernandes, Paula Lopes, and Sónia Martins

6.1  Introduction

Children are growing up in a world where technology surrounds them and encom-
passes most of the aspects of their lives. This has an impact on a new generation of 
learners who are entering our educational institutions having technology as an inte-
gral part of their everyday life. Those learners are imbued with particular forms of 
talk, cultural history and social relations. All this transforms the way they learn. 
Thus, creating technological learning environments in the classroom seems to be 
important and needed. But it challenges the traditional process of teaching and 
learning.

We have therefore decided to challenge the teaching and learning of mathematics 
and informatics within the project DROIDE II  – Robots in Mathematics and 
Informatics Education – that aimed to understand how the use of robots as mediat-
ing artefacts of learning contributes to meaning production and to the learning of 
mathematics and informatics topics and contents, by exploring possible articula-
tions between both domains. This research problem, herein defined in general man-
ner, was dissected into two research questions aimed at guiding our research work. 
(1) How do students learn mathematics and/or informatics, when robots are media-
tors of learning? (a) What is the shared repertoire that students build in those prac-
tices and what are its particular features? (b) Which kinds of contradictions arise 
from the use of robots on those learning environments? (c) How do such contradic-
tions lead to new forms of activity? (d) How can the work with robots contribute to 
the development of mathematics and informatics competences? (2) What contribu-
tions to the learning of mathematics and/or informatics emerge from the participa-
tion in social digital environments? (a) How do young people make explicit and 
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communicate their ways of doing and thinking on those environments? (b) How do 
young people critically but constructively participate on those environments? (c) 
How are young people aware of their own responsibility and initiative that their 
participation entails?

DROIDE II has adopted a strategy that brings the theoretical field and the empiri-
cal field of research into dialogue, in the course of four phases: (1) creating prob-
lems in mathematics and informatics education to be solved with robots, (2) creating 
learning scenarios using robots in which the created problems will be included, (3) 
analysing the practice of the learners when solving problems using robots and (4) 
developing a set of guidelines about using robots as an educational tool.

We assumed that robots would be used to discuss mathematical concepts and to 
solve mathematical problems, but also that students using robots would be dealing 
and generate mathematical concepts and problems. We conceptualise learning as a 
social phenomenon, and our theoretical background is based on three approaches to 
learning: learning as participation (Lave & Wenger, 1991), learning as transforma-
tion (Engeström, 2001) and learning as dialogic action (Alrø & Skovsmose, 2004).

Due to the nature of our research problem, the phenomenon under study – learn-
ing – and our positioning towards learning, we designed a qualitative research by 
adopting an interpretive approach (Savenye & Robinson, 2004).

Data collection for analyses and evidence production was performed through (a) 
the researchers’ participation in learning environments, in which robots had a fun-
damental role (namely, school contexts – mathematics classroom, in grades 1–9, 
and informatics, in grades 10–12; project area (a cross-disciplinary area taking 
place in middle school)  – and other non-curricular and virtual learning environ-
ments), and (b) informal interviews to the participants. Field work was planned to 
be across a 6-month period and took place through the immersion of subgroups of 
researchers in the field. Work sessions as well as the participants’ interviews were 
audio and/or video recorded.

In this chapter, we intend to explore and discuss the role of robots as mediating 
artefacts of mathematics learning and its effect on the reconstruction of the stu-
dents’ foregrounds regarding the learning of mathematics. We will explore the role 
of robots in the learning of mathematics at a micro-level of analysis, by bringing 
students’ perspectives forward, and also at a macro-level of analysis, by bringing 
sociocultural and political aspects that frame students’ lives and can sometimes 
hinder mathematics learning, using insights coming from the empirical field in two 
of the learning scenarios of the project DROIDE II: ‘Making a Movie’ and ‘Robot 
Race’.

As the design and implementation of learning scenarios had a fundamental role 
in this project, in the following section we will discuss the concept of learning sce-
narios and arguments for their use. Afterwards we will briefly present the six learn-
ing scenarios designed in the project DROIDE II. Two of them will be further and 
deeper described as they will be used later in the chapter as a support to discuss 
learning with robots.
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6.2  Learning Scenarios

Learning scenarios constitute resources that people use to modify or transform their 
previous ideas about something (Matos, 2013). These are not projections or plans 
for future actions, but they contain structural elements that shape people’s learning 
trajectories.

Our positioning about learning led us to the concept of learning scenarios because 
this resource proved to be a good way of addressing and articulating several compo-
nents of learning situations, by imagining different settings constituted by different 
actors.

6.2.1  What Are Learning Scenarios and Why to Use It?

During times of rapid change or complexity, existing ways of thinking are often 
based on rationales that are no longer valid and that prevent us from seeing new 
relationships. Scenarios are useful tools when complexity and uncertainty are high. 
Complexity and uncertainty are typical of many situations and, for that reason, 
anticipating changes through creative processes, such as formulating scenarios, 
becomes helpful.

The concept of learning scenario is a prospective concept used when we intend 
to introduce changes in a certain context (Carroll, 1999). A learning scenario tells a 
story of how various elements might interact under certain conditions:

Scenarios are stories of what might be. Unlike projections, scenarios do not necessarily 
portray what we expect the future to actually look like. Instead scenarios aim to stimulate 
creative ways of thinking that help people break out of established ways of looking at situ-
ations and planning their action. (Wollenberg, Edmunds, & Buck, 2000, p. 2).

Learning scenarios are stories of persons in activity and because people are in 
action, they learn. The fundamental is in the action and interaction between people 
and not in the resources used. A learning scenario is a hypothetical situation of 
teaching and learning composed of a set of essential elements: a setting in which 
learning occurs (in which people are included); the knowledge domain in which the 
scenario may be situated (including multi- and transdisciplinary domains); the roles 
played by different agents, shaped by their goals; the story establishing the condi-
tions for the development of the scenario, including sequences of events and creat-
ing a coordinated structure that constitute an activity. The learning scenario should 
also predict an outcome and/or products.

Learning scenarios should not be something that teachers design for the students. 
They are joint constructions of the different actors involved – such as teachers, stu-
dents, researchers, etc. They should be configured in a dynamic process of creation, 
experimentation and reflection and conceived as something ‘under construction’ 
since they should be modified while they are being implemented, according to the 
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teachers’ and students’ reflections and their evaluation of the work being done, in 
trying to meet the needs of the different actors involved.

In project DROIDE II, learning scenarios were a powerful way of enabling 
researchers, teachers and students to jointly engage in creative learning contexts. 
According to our positioning towards learning – as a social phenomenon – learn-
ing scenarios were used as a tool for engaging different sets of actors, understand-
ing their motives and preferences, encouraging the use of different kinds of tools 
and determining equitable arrangements among actors where abilities, prefer-
ences and power relations differ. Our experience and also our learning through 
the project development led us to gradually design learning scenarios that were 
less and less structured and also with increasing complexity and involving more 
interdisciplinarity.

6.2.2  Scenarios Designed and Implemented in the Project 
DROIDE II1

A possible trip This was the first learning scenario we created and possibly the one 
with the most tight and straightforward academic structure. We created a worksheet 
about the ‘notion of function’, which aimed for students in seventh grade to under-
stand, learn and define the concept of function, by working with robots as they fol-
lowed the questions of the worksheet. The innovation was just the inclusion of the 
robots for students to think about the mathematical concepts involved.

The worksheet proposed that students think about two robot trips represented by 
two graphics provided. First, we intended that the students analyse both graphics 
and make a description of the robot trip having the starting point as a reference. 
After, we intended that students would programme the robot to perform the trips, if 
possible. One of the graphics represented a relation between time and distance that 
was a function and the other represented a relation that was not a function.

Students also solved a worksheet about proportionality as a function. Through 
the comparison of the velocities of two robots, they redefined their notion of 
proportionality.

Introducing robots in the school mathematics class exposed a dynamic link 
between the work with those artefacts and the way students thought about the notion 
of function (Fernandes, 2012).

Making a movie We designed a learning scenario involving two primary school 
classes working together with robots. The learning scenario was developed in two 
moments. In a first moment, students built robots and defined their physical and 
emotional features. Their creations become characters in a play-story written by all 
of them. After writing the story, students programmed their robots in order to 

1 More information about each learning scenario can be found at http://www.cee.uma.pt/droide2/
cenarios/index.htm and at http://www.cee.uma.pt/droide2/ebook
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 perform their roles in the play; in a second moment, students, teachers and research-
ers decided to produce a film, using the story written as a storyline. Students estab-
lished new tasks to produce the film, and they created teams to accomplish those 
tasks. Each student chose which team(s) they wanted to work in (Martins, 2013a).

The use of robots in this learning scenario contributed to the emergence of math-
ematical and other concepts. Robots were a powerful tool for students to perceive, 
use, expand on and talk about mathematical concepts. Despite the contributions that 
robots brought to this learning scenario, we cannot disregard the working methodol-
ogy encouraged. Our positioning towards learning – as participation in social prac-
tices – led to a methodology with characteristics that potentiate the learning scenario 
(Martins & Fernandes, 2015).

Robot race To work with NXT robots, students from an eighth-grade class 
received assembling kits and had the opportunity to build, in groups, a car out of 
Lego bricks, by following instructions. Each working group also created a proto-
type of a racing route. In the whole-class group, the students chose the racing route 
to be used and then built it in real size. Afterwards, the robot races were held. Each 
working group collected data and worked on them in order to decide how to elect 
the winning robot. With the data collected from the races, each group made a statis-
tical study where conclusions were provided and generalisations were established. 
The statistical content matter had not been studied before the implementation of 
this learning scenario; rather, those emerged from the robot race development 
(Lopes, 2012). Having provided a relevant context – Robot Race – was important 
to promote knowledge and awareness, among students, about the relevance of sta-
tistical data. With this project, students have become more able to solve problems 
and to understand, to interpret, to analyse, to relate, to compare and to summarise 
data, thus developing statistical competence and citizenship attitudes (Lopes & 
Fernandes, 2015).

Virtual droide Three groups comprised of three or four students (each one from a 
different part of Portugal – Lisbon, Porto and Funchal) that did not know each other 
before the scenario implementation built a robot (collaboratively) that could solve 
eight problems proposed by the research team. Each group had a tutor (an informat-
ics teacher) working with them on weekly meetings. Each student had a robot, but we 
imposed the condition that they had to build a robot that could solve all the problems. 
This condition was central for youngsters to work collaboratively (Santos, 2012).

Robot guide dog for the blind girl Ema was a blind girl. The informatics teacher 
proposed, to their pupils of grade 12, in a cross-disciplinary area called project area, 
to build a robot guide dog for the blind girl. Pupils were organised in working 
groups. Jointly, they defined four important tasks in order to make the project: (1) to 
search for the features of a guide dog in order to define robots’ functions, (2) to 
decide how the robot has to be in order to execute predefined functions, (3) to 
 programme the robot and (4) to create an arena in which they can test the robot 
(Abrantes & Matos, 2012).
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A journey to the centre of the Earth The activities were developed with students 
of ninth grade working in groups of four or five elements. During the classes, there 
were moments of discussion in large and small groups, and in order to assess the 
goals’ achievement, we monitored discussions in the working groups as well as 
those that occurred between students of different groups.

First, students watched the movie trailer The Core in which they were challenged 
to ‘save the planet Earth’. The challenge appears written as subtitle. Then they built 
a ship prototype, to reach the centre of the Earth in order to detonate a bomb of great 
intensity in the core to reactivate it. Several bombs with less intensity should be 
dropped close to the paths that were open during the journey. Initially the working 
groups had to build the ship prototype (Phase 1) and then test the programming 
(Phase 2) to become familiar with the programming environment. During the 
classes, different groups were working on different phases of scenario’s implemen-
tation, according to their own rhythms.

The teachers helped the students when they were testing the prototype program-
ming by setting small challenges. Using a small two-dimensional scheme of the 
centre of the Earth, students projected a round journey to the Earth’s core. At the 
end, students prepared a written report requested by ‘NASA’. With this report, we 
intended that students could achieve the meaning of trigonometric ratios as relation-
ships between the lengths of the sides in similar right triangles (Fernandes, 2013c).

6.3  Our Positioning Towards Learning

For thousands of years, children have learned the lessons of their community by 
participating with parents and others in important activities to their lives and the 
lives of their families. Learning occurred while the children were trying to be part 
of the ongoing activities of their families – be they agriculture, weaving, fishing, 
trade, understanding of spiritual narratives, treatment of diseases or discussion of 
moral principles (Rogoff, Turkanis, & Bartlett, 2001). The children were in the 
same scenario that adults were and realised the importance of learning the skills 
needed for survival. From this point of view, learning is conceived as part of iden-
tity construction. It is connected and embedded with the social and cultural setting 
in which it occurs. Slowly and steadily the idea of school and the schools them-
selves as institutions appeared. Today, for many, it is impossible to imagine that 
children can learn without being taught (in the traditional sense) and also to imag-
ine instruction that is organised in other ways than what is common in schools 
(Fernandes, 2004).

Associated with this idea, learning is seen as a process in which the individual 
moves from one phase of not understanding to one stage of understanding a topic or 
subject; and it is also assumed that everybody learns in the same way. This concep-
tion of learning determines a style and an educational process. ‘A number of authors 
have challenged that view and proposed new forms of understanding how people 
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learn. In particular, authors from a situated learning perspective claim that learning 
is intimately linked with participation in social practices’ (Matos, 2010, p. 42).

Whatever the social theory we adopted to think about learning, it has always an 
underlying way of looking at the person, the social world and the relationship 
between the person and the world. In project DROIDE II, (i) the person is seen as 
the agent in the world; (ii) we assume the relation between the agent and the world 
as a dialectic one (Fernandes & Santos, 2013):

People, even when looked at in their individuality, are considered in relation to the social 
practices in which they act. As participants in social practices, they participate in the social 
and institutional world, which is inherently collective. Subjects, practices, and the social 
world (in which culture and knowledge are embedded, but also artifacts, meanings, and 
rules) are perceived as constituting one another and are therefore codependent. (p. 2).

The way learning is conceptualised in the context of this project connects to three 
metaphors that complement each other – participation, transformation and dialogic 
action – as discussed in the project LEARN (Matos, 2010).

First, we take learning as participation, recognising it as an integrative part of 
generative social practices and considering it ‘located in the social co-participation 
processes and not in the head/mind of the people’ (Santos, 2004, p. 43). Knowledge, 
identities and communities are constructed and reified in social practices being that 
people, who are participating in them, learn. But because, in social practices, there 
are people in transformation (learning), then collectives, communities (of practice) 
and organisations transform themselves, or ‘learn’ (Fernandes & Santos, 2013).

Furthermore, we take learning as transformation, which is inherently linked to 
the idea of activity, and therefore we may speak of ‘learning activity’. But we can 
only understand the meaning and significance that learning activity takes when we 
consider it as framed by a system (the activity system) that represents the relation-
ships established between the subjects and the social world (Engeström, 2001).

Finally, we envision learning as dialogic action, which implies participating in 
dialogues with a purpose that usually stems from motives that lead people to partici-
pate in a certain practice, even if the practices in which people participate have not 
been organised so as to meet those motives. However, the ways in which people 
participate in social practices hold a strong relationship with the motives and dispo-
sitions (those being the resources of the intentions-in-learning (Alrø & Skovsmose, 
2004)). Learning involves being in a dialectic process that demands, from the 
learner, intentionality, reflection and critique, that is, acting dialogically with the 
world (artefacts, meanings, etc.) and with others.

6.4  Artefacts of Mediation on the Learning of Mathematics

Every theory of learning that assumes the situated nature of learning embodies the 
notion of participation. Participating does not only refer to events of local engage-
ment in certain forms of activities or with certain types of people but to a wider 
process of being an active participant on the practices of social communities 
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(Wenger, 1998). Participation makes us not only what we are but also who we are 
and the way we look and interpret what we do. It also shapes the communities in 
which we participate; in fact, our ability or lack of it to shape our communities of 
practice is an important aspect of our participating experience.

Participation in a social practice implies constant negotiation. To negotiate a 
shared enterprise entails responsibility from the parts involved. These relations 
include what matters and what does not, what is important and what is not, what to 
do and what not to do, what parts need attention and what to ignore, what to say and 
what not to say, what should be justified and what to presume justified and what to 
show and what to conceal. It also include to understand when actions and artefacts 
are good enough and when they still need improvement or refining (Wenger, 1998), 
given that ‘their usefulness is not revealed in the characteristic identified indepen-
dently of the use in the practices where they are put in action’. (Santos & Matos, 
2008, p. 201).

Understanding learning, especially mathematics learning, involves understand-
ing how the use of artefacts in mathematics classes ‘impacts on the learners’ con-
ceptions of mathematical objects encountered through the use of such artefacts’ 
(Jones, 2000, p. 1). Learning mathematics is a process of people becoming more 
capable of participating, and it is also a social practice which encompasses the rela-
tions between people, knowing and artefacts. Boaler and Greeno (2000) consider 
knowing and understanding mathematics as aspects resulting from participation on 
social practices, in particular, those in which the individuals engage themselves on 
sense-making and solving problems using mathematics representations, concepts 
and methods as resources. Throughout this process, multiple moments of negotia-
tion take place. Those moments of negotiation that take place in mathematics classes 
shape the practice of school mathematics, affecting participants and their way of 
participating.

To talk about participation also requires talking about reification. Wenger (1998) 
uses the term reification more generally to talk about the process of shaping our 
experience by producing objects that congeal this experience into ‘thingness’. In 
doing that, we create focus points around which the negotiation of meaning becomes 
organised. According to Matos (2010, p. 48):

[t]he key issue is that negotiation of meaning occurs in the convergence of the two: reifica-
tion calls for transformation of experience, for its commodification; reification produces 
projections of meaning in the social world giving them a dimension of existence frequently 
perceived as independent.

Writing down a law or producing a tool is a similar process. A certain under-
standing is given a form. ‘This form then becomes a focus for the negotiation of 
meaning, as people use the law to argue a point, use the procedure to know what to 
do, or use the tool to perform an action’ (Wenger, 1998, p. 59). The reification pro-
cess is central in any practice. In every practice, there are ‘abstractions, tools, sym-
bols, stories, terms and concepts that reify something of this practice in a congealed 
form’ (Wenger, 1998, p. 59). What usually happens in mathematics classes is that 
the concepts and procedures are presented to students in a way that reification it is 
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not tangible for them. They do not participate in the process of giving meaning and 
significance to those concepts and procedures.

With the term reification, Wenger (1998) intends to cover a wide variety of pro-
cesses that include making, designing, representing, naming, encoding and describ-
ing, as well as perceiving, interpreting, using, reusing, decoding and recasting. 
Reification shapes our experience. Having a tool to perform an activity changes the 
nature of the activity. The word processor reifies our view of the activity of writing 
but also changes the way we position ourselves in relation to writing, in the sense 
that we pay attention to different aspects of those we pay attention when we write 
by hand. Incorporating the word processor as a mediational instrument in the activ-
ity of writing had the power to change the activity. Furthermore, the artefact of 
mediation is also transformed during the activity and carries in it a particular cul-
ture, that is, the traces of a historical activity. This transformation does not have to 
be physical; it may be conceptual too, which is a consequence of the way the subject 
acts with the artefact (Martins, 2016).

6.4.1  Making a Movie

For the purpose of illustrating and discussing the role of robots as mediating arte-
facts in learning as participation, we will bring the learning scenario – ‘Making a 
Movie’, from Martins (2013b).

This learning scenario was developed with two primary school classes – grade 2 
and grade 3 – from the same school. Students from both classes worked together 
throughout all the learning scenario implementation.

At the beginning, the research team presented to both teachers a draft of the 
learning scenario to be implemented. That initial draft was discussed and modified 
several times according to ideas presented by the teachers and students. In this pro-
cess, students have made options, which were very important for them and for the 
success of the project. The learning scenario was constructed by the research team, 
by the teachers from both classes and by their students. Parents have been informed 
about the project and driven by the enthusiasm of their children, which in turn, 
fomented enthusiasm in the parents. Between some of the working sessions, the 
teachers have often contacted the researchers to report on students’ opinions and 
expectations.

In this learning scenario, students, teachers and researchers had a main purpose – 
Making a Movie with robots – and to achieve it, many actions were developed. In 
those actions all the participants chose what was important to do, what physical and 
conceptual artefacts were to be used and also the way each one of the actors could 
actively participate in a meaningful and effective way. The decisions and strategies 
were jointly discussed.

This learning scenario was implemented in a less conventional setting, and we 
tried to make a bridge between the work on the project with robots and the work that 
teachers and students had developed in regular classes. The learning scenario was 
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developed in two time frames: the first, between May and June 2011 (students in 
grade 2 and grade 3), and the second, between April and July 2012 (students in 
grade 3 and grade 4). The scenario’s activities followed a project work methodol-
ogy. In this project, students worked with the Lego robots RCX and NXT. In both 
RCX and NXT models, the programming environment is a very intuitive icon-based 
drag-and-drop programming language, designed for an easy introduction to pro-
gramming. By choosing programme blocks that work with the motors and make the 
sensors react to inputs, students simply build up their programme, block by block, 
and they could create programmes that range from simple to complex. The students 
and the teachers had never worked with robots before.

In the beginning of the project, students played a game to choose the working 
teams. Those teams were composed of students from both classes. At different 
stages of the scenario’s implementation, those teams have changed because students 
were involved in different actions, and they chose what they wanted to do and with 
whom they wanted to work. The teachers had to support students in their work, and 
the researchers sought to support students and teachers alike in taking advantage of 
situations that could contribute to the emergence of mathematical concepts. Based 
on that intention, researchers assumed a questioning attitude towards students’ work 
in their practice with robots.

In the first phase of the scenario’s implementation, students had to construct dif-
ferent robots (e.g. a dog, a spider, a bug, a football player) and define their physical 
and emotional features (e.g. whether the robot was strong or weak, whether it was 
sad or happy). Their creations would become characters in a play-story written by 
all of them. After writing the story, the students had to programme their robots so 
that they performed their roles in the play. The initial goal was to accomplish those 
tasks and make the robot characters for the play. The play was not produced in this 
first phase of the scenario’s implementation.

In the second phase of the scenario’s implementation, students, teachers and 
researchers decided to produce a film using the story written as its storyline. Students 
established new tasks to produce the film, and they created teams to accomplish 
those tasks. Each student chose in which team(s) she/he wanted to work.

Two teams were created to programme the robots, one team for each of the robot 
models. The voices team was constituted by ten students who gave voices to the ten 
constructed robots. This team recorded the voices using the Microsoft Audio 
Recorder and chose the film’s soundtrack. The film was edited using the Windows 
Live Movie Maker by the editing team. Some students were responsible for the 
filming, and others were in charge of the lights. Based on the story previously writ-
ten, the direction team wrote the script for the film, and this team was also respon-
sible for making the communication between all the involved teams.

According to the created storyboard, students from both classes decided to build 
the physical ‘scenarios’ needed for filming the movie within the arts classes.

All students decided that the grade 3 class would construct the ‘floor’ in which 
filming would be made and the grade 4 class would be responsible for the ‘vertical’ 
scenarios. In order to accomplish those tasks, students explained to the arts teachers 
from both classes the way the robots would perform the scenes in the film, the way 
they would move on the filming scenario and which environments would be neces-
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sary to create (a restaurant, a park, a castle, etc.). A researcher followed and partici-
pated in the arts classes.

In the second moment of the scenario’s implementation, when students were 
filming, they wanted to paint routes to define the robots’ trajectories. This intention 
emerged when grade 3 students were working in the arts classes, creating the ‘floor’ 
for the filming.

As it was found to be interesting that, in different moments of the filming, the 
streets’ position could change, the researcher suggested the use of black cardboard 
strips representing the streets in which the robots would move. Thus, the streets’ 
position could easily be changed, which obtained the agreement of the students and 
arts teachers.

The researcher prepared the black cardboard strips, and by observing how stu-
dents positioned the strips on the floor, she considered that this should be a good 
moment to bring the relative position of lines into discussion. Hence, it opened the 
space, in this learning scenario, to the negotiation of the mathematical meanings 
related to this topic. The researcher knew that the grade 3 students had not yet stud-
ied the relative position of straight lines in their regular classes and that grade 4 
students had already studied it. Supported by our theoretical framework, we believed 
that using the cardboard strips to discuss robots’ trajectories would be fruitful to 
grade 3 students for negotiating the mathematical meaning of the straight lines’ 
positions and to grade 4 students to renegotiate it in this specific practice. This 
turned out to be another good opportunity to reinforce the bridge between what 
students were learning in their regular classes and the learning that was occurring 
with the scenario’s implementation.

6.4.2  Robots as Mediating Artefacts of the Concepts of Relative 
Position of Two Lines

We will next analyse how the mathematical meanings were negotiated (Wenger, 
1998) in the practice developed within the learning scenario’s implementation and 
how the robot, as a mediating artefact of learning (Engeström, 1987, 1999a, 2001; 
Vygotsky, 1978), shaped the way students appropriated those concepts.

The transcription below will support the discussion on the role of the robot on the 
negotiation of mathematical meaning.

Res: The way that you want to put the streets on the ‘floor’ seems to be related to what you 
want the robots to do. Let’s imagine, for instance, that I have two robots in distinct streets 
and that I do not want them to meet each other… How would you place the streets, in this 
case?

Ine_3: We could place it like this. [The student placed the black cardboard strips on the 
floor, representing two parallel lines]

Res: Very well. Do you think that our situation is solved?
Mat_3: The robots, moving like that, in those streets, they will never find each other…
Fran_4: Yes, in oblique streets those robots will never find each other…
Res: In oblique streets? What do you mean by that?
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Fran_4: Oblique streets are streets that never met [Putting his arms in parallel 
position].

Mar_4: Those streets are parallel.
Fran_4: I’m confused again. I did it correctly a few days ago, and I’m already confused 

again...
Mar_4: The oblique streets are others.
Res: And how are they?
Fran_4: Oblique are two lines that intersect, and all angles between the lines are 90°.
Res: Do the angles measure 90°? [Students started whispering without ideas to offer.] 

Yes or no? [Students continued whispering]
Fran_4: I’m confused all over again.
Grade 3 Teacher: My students haven’t learnt the angles yet… [Talking to the researcher]
Res: But without talking about the angles, we can simply use a cardboard square to sup-

port our discussion. [The researcher uses a cardboard square and asks the students.] What 
can we say about these sides of the square? [Pointing at two parallel sides]

Several Students: Parallel.
Res: And the other two? [Pointing to perpendicular sides of the square]
Bea_3: These are not parallel. If the robots were there, they will surely find each other.
Jes_3: But the robots could both be moving on the streets in the perpendicular position, 

and they might miss each other. Possibly, one was moving faster than the other.
[The deliberation continued, and students concluded that perpendicular lines are oblique 

lines that have ‘perfect corners’ in their intersection.]

In analysing the previous discussion, we can see that there was a strong connec-
tion between the way the streets (representing lines) were placed on the floor and 
the way the students claimed that robots would be programmed to travel across 
them. The meaning of parallel lines was an outcome negotiated from the fact that 
students did not want certain robots to meet each other. Students concluded that the 
best way to ensure that two robots would not find each other was to put them mov-
ing in parallel streets. The robot, although only conceptually present (through the 
streets), was the mediator in the negotiation of this meaning.

As we can see in the transcription above, the discussion about the lines’ position 
(parallel, oblique and perpendicular) was supported by the use of robots. By analys-
ing its trajectories, grade 3 students expanded their knowledge about positions of 
lines and started using a mathematical vocabulary that was subsequently shared by 
all students that were working on the project. On the other hand, students from 
grade 4 needed to make those contents clear to others, which allowed that such 
specific topics also became apparent to themselves (Martins & Fernandes, 2015).

Students also realised that it would be possible for two robots moving in two 
intersecting streets (lines) not meeting each other. This question was raised by ‘Jes’: 
‘But the robots could both be moving on the streets in the perpendicular position 
and they might miss each other. Possibly, one was moving faster than the other’. Jes’ 
finding is probably not completely disconnected from his actions taken in the robots’ 
programming team. The knowledge that ‘Jes’ had about the effect of the robots’ 
programming in its movement was brought by him to support his argument. In 
robots’ programming, students used blocks to define robots’ actions such as moving 
forwards or backwards for a specific period of time, in seconds. They also estab-
lished the power of the robots’ motors to produce those movements. By doing that, 
they were programming robots to move themselves in different velocities. The stu-
dents of the programming teams were responsible for programming all the robots. 
Those students therefore knew how robots could move and interact with each other.
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Despite the fact that the focus of this article is not on the robots’ programming, 
we must highlight that the students’ actions in that domain was a very productive 
field for the negotiation of the meaning of mathematical concepts such as position-
ing, orientation, duration, trajectories, direction and movement. Dealing with robots 
was a powerful opportunity for students to engage in solving mathematical prob-
lems in a very specific context. By programming robots, students learn to predict 
how a robot would move from one place to another by establishing time and direc-
tions for that action. By manipulating robots, students had several experiences that 
gradually allowed them to negotiate the meaning of time and space. Robots trans-
formed the students’ conceptions about those mathematical contents. Robots were 
physically present, and they were a tool for students to perceive and to expand on 
those concepts. But, as stated above, robots were a structural resource for students’ 
learning even when they were not physically present. The robot has transformed the 
way students acted, reasoned and communicated using mathematical contents.

Based on the proposal by Engeström (1999b), the mediating nature of mathemat-
ics learning in this activity can be presented in a triangular form (Fig. 6.1).

The robot, while being a mediating artefact, is much more than something being 
used between the student and the mathematical content (the position of lines and/or 
temporal and spatial notions). In fact, as the episode emphasises, in that interaction 
the mathematical contents appear, in a unique and concrete way, in the actions 
developed by the students with those artefacts. In this sense, the data led us to claim 
that when students used robots in this learning scenario to think about mathematical 
contents and properties, their activity was mediated in a particular way by those 
artefacts (Wertsch, 1991). The artefacts reflect joint stories of learning and the mem-
ber’s engagement in the practice (Wenger, 1998). In this learning scenario, robots 
represent reifying elements that reflect, in a particular way, the students, the teach-
ers and the researcher’s sense of belonging (Martins & Fernandes, 2012) and their 
unique stories of participation in that practice.

The robot was also a mediating artefact between the several activities in the stu-
dents’ school practice. That being said, many concepts (mathematical or others) 
developed in the classroom activity of all the classes (language, mathematics, natu-
ral sciences, technology, arts, etc.) were brought to the project activity ‘Making a 
Movie’. Similarly, concepts and ideas from the project were taken to the classroom. 
This was not completely disconnected from the teachers’ and researcher’s 
 intentionality, but it also happened because of the students’ high engagement with 
the practice that became integrated in the project.

6.5  Students’ Foregrounds Regarding the Learning 
of Mathematics

In the previous section, we have drawn on two social theories of learning to analyse 
the researched phenomena, by adopting the perspective of the learners at a micro- 
level, which emerged from their participation in a practice, and by assuming the 
perspective of the school community at a macro-level of analysis. But learning can 
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also be addressed by relating the social, cultural, economic and political aspects that 
frame students’ lives, at another macro-level of analysis, with the perspective of the 
students about learning, at a micro-level of analysis.

We thus bring into play the concept of foreground (Alrø & Skovsmose, 2004; 
Skovsmose, 1994, 2011, 2012) in order to analyse the way students approach learn-
ing. According to Skovsmose (1994), every person has a background and a fore-
ground. Background can be interpreted as ‘that socially constructed network of 
relationships and meanings which belong to the history of the person’ (Skovsmose, 
1994, p. 179).

Usually when we talk about the intentions of a person, we relate them with the 
person’s background, but this is not the only source of intentions. The person’s fore-
ground is also an important source. The foreground is seen as ‘the opportunities 
which the social, political, economic and cultural situation provides for the person’ 
(Skovsmose, 2011, p. 22). However, two people having similar foregrounds can act 
out their possibilities in quite different forms. Thus, the foreground includes both 
collective and individual features. ‘Foregrounds include experiences and interpreta-
tions, which are elaborated through interaction and communication’ (Skovsmose, 
2011, p. 23).

One can see the foreground of a person as a complex combination of two sets of 
features. On one hand, ‘a foreground is formed through the possibilities, tendencies, 
propensities, obstructions, barriers, hindrances, et cetera, which his or her context 
provides for a person’ (Skovsmose, 2012, p. 2). One can therefore see the  foreground 
as structured through social, economic, political and cultural parameters; however, 
the foreground is not uniformly determined by this. The foreground is also formed 
through the person’s experiences and interpretations of the above mentioned 
parameters.

The notion of intentionality is related to the notion of foreground. If we look for 
the motives for an action, it is important to consider the person’s foreground 
(Skovsmose, 2011). Learning is an action which includes intentions and motives. 
When we want to investigate learning phenomena, we have to consider the inten-
tionality of the learners.

Can the learning that happens at school be considered in terms of action? This 
draws our attention to the students’ intentionality, to their foregrounds and to their 
motives (or lack of it) for learning (Skovsmose, 2011, p. 26):

Fig. 6.1 Robot as mediating artefact on the learning of mathematics
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When learning is seen as action we can interpret different learning phenomena – students’ 
engagement (or lack thereof) and their achievements (or lack thereof) with reference to 
their foregrounds. In particular, a ruined foreground can obstruct bringing intentions into 
the learning process.

For there have to be action and therefore learning, it is important that students 
experience open and challenging learning situations so that their intentionality to 
learn ‘is born’ in a natural way. Closed situations can completely block the emer-
gence of intentionality and end up with no need of action. Situations that can bring 
out intentionality to learn may not be related to the students’ backgrounds. They may 
be connected ‘with student’s possibilities in future life, not the objective possibilities 
but the possibilities as the student perceives them’ (Skovsmose, 1994, p. 182).

According to Skovsmose (2011), this aspect is very important given that the 
meaning of an action is related to the intentionality included in that action, which in 
turn relates to the foreground of the person in action. The meaning of a classroom 
activity is constructed by the students, and that construction depends on what stu-
dents can perceive as their possibilities, and it is related with their foreground and 
intentions. In view of that, there is a close relationship between meaning, intention-
ality and foreground.

To learn implies to live meaningful experiences, which can be either relation-
ships between what is taking place in the classroom and the students’ backgrounds 
or their daily life experiences. However, ‘experience of meaningfulness has much to 
do with experienced relationship between activities in the classroom and students’ 
foregrounds’ (Skovsmose, 2011, p. 93). The student produces meaning in a learning 
situation when he or she feels like he or she is learning something that is socially 
valued. Students also produce meaning if they understand that their contributions 
are valued within a situation of cooperation (with colleagues or with the teacher).

The dialogic action is a search for and a questioning on shared perspectives in an 
attempt to produce meaning. Dialogic action means acting in cooperation.

Learning implies action, which can be a dialogic action in terms of producing 
means to read the world and also to transform it. But to learn implies also reflection 
about that action. Dialogic action is an interaction which provides (a visible) basis 
for critical learning (Alrø & Skovsmose, 2004).

Alrø and Skovsmose (2004) conceptualise critical mathematics learning as being 
grounded in dialogic actions, and they define mathemacy as the competence that 
critical mathematical learning represents. That is, mathemacy is not only the ability 
to calculate and to use mathematical techniques but a competence associated with 
reflecting and acting in a world strongly structured by mathematical models. 
Skovsmose (2011) points to mathemacy as the competence of dealing with mathe-
matical notions, applying these concepts in different contexts and reflecting on 
those applications. Frankestein (1998) advocates the need of mathematics to be 
worked, lived, taught and learned in the real context and dealing with problems as 
they are presented to us on a daily basis. In real life, we have to deal with many 
problems presented to us in an unorganised way. The problem-solving of traditional 
curriculum isolates and simplifies particular aspects of reality in order to provide 
students the training of techniques.
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6.5.1  Robot Race

For the purpose of illustrating and discussing the role of students’ foregrounds on 
the learning of mathematics, we will bring the learning scenario – ‘Robot Race’ 
from Lopes (2013).

One year prior to the scenarios’ implementation (school year 2010–2011), the 
students worked with robots in the learning scenario ‘a possible trip’ that we 
described above (Fernandes, 2012). In the following school year (in grade 8), they 
asked the mathematics teacher to work with robots again. The mathematics teacher 
contacted the research team, and together they designed a learning scenario. We 
proposed students to organise a robot race. With this learning scenario, students had 
their first experience with NXT robots along with its programming environment. 
During nine classes of 90 minutes each, in the last term of the school year, these 
students learned mathematics using robots.

With the purpose of students learning to programme the robots to hold the races, 
three challenges were launched: (i) to programme the robot to run around four 
tables arranged in pairs (forming a rectangle); (ii) to hold races in a straight line 
from side to side of the classroom (the robot should stop when it detects a wall 
(ultrasonic sensor)); and (iii) to programme, taking that into account, the robot so 
that it would have to start the race upon the starting signal (sound sensor), to follow 
a black line (light sensor) and to stop 15 cm before the end of the line (ultrasonic 
sensor). Each working group created a prototype of a race route with provided parts, 
so that two robots could race simultaneously. Each two robots should have the same 
chance to win. The race route should fit inside the classroom.

In the whole-class group, students selected the race route to be used, and then 
they built it with the real dimensions. They decided that all robots would run under 
the same conditions, that is, each one would run twice against each opponent and 
once in each line of the race route.

They started making some training in the race route in order to improve their 
programming and thus to increase the chance of winning the races. Each working 
group collected data from the races performed and analysed it in order to determine 
the winning robot. Each group made a statistical study – within the scope of an 
inquiry process  – whereby conclusions were provided and generalisations were 
established. Statistical contents emerged from students’ actions within that activity 
(Lopes & Fernandes, 2012).

6.5.2  Racing to Reconstruct Foregrounds 
Regarding Mathematics

These students were from a poor neighbourhood close to their school. They had a 
poor school performance, and many of them had low grades in mathematics. Their 
parents without any constraints accepted this fact. The cultural roots of these 
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students, as well as the way they and their parents interpreted their past experiences 
regarding school mathematics, led them to have a low participation and a highly 
disinterested positioning in mathematics classes, including a high rate of absentee-
ism (Lopes, 2016). We can say that most of these students had a ruined foreground 
in relation to school mathematics, that is, most of them had only experienced deso-
lated possibilities in relation to the learning of mathematics. The students’ fore-
grounds did not allow them to see what possibilities school (and particularly 
mathematics) could bring to their lives since, from the perception that they have 
about their possibilities of future life, they considered that having good grades in 
mathematics was not necessary to finish school. Thus, the intentionality to learn 
mathematics was not easily activated by most of these students. Ten of the fourteen 
students received bad grades in maths in the second term of the school year 2011–
2012, and some of them had never had a good grade in mathematics tests.

So, what changed from the implementation of the learning scenario – ‘Robot 
Race’?

The fact that students’ request to work again with robots has been accepted by 
their mathematics teacher seems to have been the starting point for the reconstruc-
tion of the students’ foregrounds related to mathematics. Realising that their inter-
ests were valued by the teacher opened a space for the emergence of students’ 
intentions-in-learning.

From the moment the ‘big idea’ of the learning scenario was presented – to hold 
races with robots – the way students acted has started changing. Working in the 
mathematics classes with robots that were built by them also triggered the students’ 
learning intentions. The emotional relationship created with the robot they built to 
run and to win the races helped students to find motives to engage in school math-
ematics practice and in the learning of mathematics (Fernandes, 2013b).

The openness of the learning situation also created a fruitful environment to the 
emergence of the intentionality of the students. Robots as well as the challenge 
proposed to the students that had embedded a playful tone and the idea of gamifica-
tion (Gee, 2008) also contributed to the reconstruction of students’ foregrounds 
regarding mathematics. The intentions-in-learning emerged, and learning as action 
arose naturally in mathematics classes.

After students have learned to programme with the aim of performing the three 
proposed challenges, they held races, and thereafter they searched for mathematical 
arguments for their own robot to become the winner, if possible.

The intention, action and reflection were closely connected with the practical 
activities, and its product was some physical element (a robot, a programme that 
makes what is expected and a race route that fits in the classroom). But, in the 
moment of finding mathematical arguments to choose the winning robot, the prod-
uct was no longer a physical element; students had to create strategies and justifica-
tions to convince themselves and others that their perspective was a valid one. The 
transcription below supports the discussion of students’ conceptions about what 
means to solve a problem in mathematics class.
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Res: What are you doing?
R: We have finished. We have already found the winner!
N: It is Jagunço.
Res: And how did you find out?
D: We calculated the average.
Res: Can you explain, please?
R: We calculated the average time of the races of each robot, and we assigned the robots’ 

classification.
D: The robot that has the best average is the first one; the robot that has the second best 

average is the second one and so on...
N: We are in the third position.
Res: Can you find a strategy that makes your robot become the winner?
D and R: Not worthy, teacher. We’ll never be the winner.

At this moment, students did not know that using different criteria would define 
a different winner. According to their conceptions about mathematics and about 
solving problems in the mathematics class, finding a solution for a problem is to 
solve the problem. So, the problem was solved: Jagunço was the winner.

Through questioning, the researcher tries to understand the students’ perspec-
tives and to explore them, leading students to develop or abandon them, in order to 
construct a shared understanding of mathematical concepts. Furthermore, with this 
positioning, the researcher led students to reflect about their work and to recognise 
the mathematical ideas they used and also helped them to reconstruct the idea of 
what can be solving problems in the mathematics class. Through an inquiry process, 
the researcher fostered dialogue and moderated discussions in the small and large 
groups. The last question of the researcher ‘Can you find a strategy …?’ was formu-
lated to challenge students, to open up new perspectives and also to keep them 
involved in the mathematical activity. Thus, the researcher is making visible other 
possibilities of robots’ classification. However, the students did not still understand 
what to do. Then, the researcher suggested, in the form of a hypothetical question:

Res: What if you analyse the times of the races, in order to find out who has the best of all 
racing times? (The researcher knew that the best racing time belonged to this group.)

Students understood the suggestion proposed by the researcher, and the zooming 
in was activated. Zooming in indicates a quest for shared perspectives. The entire 
dialogue presented in the episode shows the search for a shared perspective between 
the researcher and the students. It represents action, since students started analysing 
the data from the races, again.

After some minutes analysing the data, the students called the researcher and 
said:

D and R: Using this criteria we win.
Res: Can you explain it, please?
N: We have the best time of all races… if we use only the best time of each robot…
D, N and R: We win.
Res: Well done. Try to organise the information in order to present the classification of 

each robot…
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The researcher moved away from the group to let the students work autonomously.
Through questioning, the researcher helped the students to see that their robot 

could also be the winner. This fact made students’ intentions for learning to emerge. 
They were able to find mathematical arguments to show that their robot could also 
be the winner. Thus, the researcher managed to establish a relationship between the 
classroom activity and students’ foregrounds regarding mathematics, helping them 
to reconstruct it and leading them to live meaningful experiences in maths classes.

So, the students create the following table (Table 6.1).
Then, the researcher asked them to explain the table.

D: First, we chose only the best time of each robot… in this way we win.
Res: Well done. We can say that you have chosen the ‘minimum time’ of each robot.
N: Yes… minimum time. Do you think we should write, in the table, minimum time 

instead of best time?
Res: Yes, I do… to use statistical language.
D: And what should we put instead of ‘worst time’?
Res: What term do you think we should put?
N: Maximum time?
Res: Yes. Very good. The lowest time is called minimum time, and the greatest time is 

called maximum time. These values correspond to the extreme values of the times of the 
races, of each set of data. How did you choose the second and the third robot position?

D: To be the second, we chose ‘the best worst time’.
Res: Can you explain it, please?
N: As the two robots have had the same ‘best time’, that is, the same ‘minimum time’, 

we decided that the one that had the lower... hum... hum... ‘maximum time’ would win.
Res: Ok. Have you used the sample range?
D: Sample range?
Res: Yes. You decided that, if there is a draw, the robot that has the smallest difference 

between the ‘maximum time’ and ‘minimum time’ wins, that is, the robot which has the 
lower range.

Throughout the above episode, the students have calculated and have used math-
ematical techniques but have also reflected upon the data collected in the race in 
order to build argumentation to justify that their robot had been the winner. Besides 
that, students solved problems as they appear in real life and not in a structured way 
as they usually appear in a traditional mathematics class.

The episode also shows evidence that the students gave meaning to the mathe-
matical (statistical) contents by relating them to the races.

All groups, except one, were able to find out mathematical arguments to make 
their robot be the winner. Each group used a statistical measure (average, median, 
or minimum time) as an argument for their robot to be the winner of the races. 

Table 6.1 Table created by the DNR group for the classification of robots

Best time (s) Worst time (s) Classification

DNR 26.54 29.75 1st
Jagunço 27.05 27.57 2nd
Vinagre 27.05 30.44 3rd
X − 5 28.32 33.52 4th
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The group that failed to make their robot to be the winner also sought mathematical 
arguments. But the data from their robot did not allow them to win. However, they 
were also analysing data within an inquiry process.

At the presentation of the conclusions and generalisations of their statistical 
analysis, students showed the criteria for a robot to be the winner using the statisti-
cal concepts in a correct way and explaining their meaning in the races, therefore 
showing that they learned statistics.

For the researcher, it was clear that students had learned mathematics, but the 
teacher felt the need to evaluate students also through a written test. In this test all 
the students got good grades.

Mathematics learning occurred within an inquiry process, by reflecting on math-
ematics and with mathematics. We may say that students have been developing their 
mathemacy competence (Skovsmose, 2011) once they have been dealing with 
mathematical concepts, applying them and reflecting on them. The lived experience 
opened the field of possibilities provided to these students and contributed to an 
ongoing construction and reconstruction of their foregrounds (Skovsmose, 2011) 
regarding mathematics. Most of the students became actively involved in mathe-
matics classes and finished the middle school with good grades in mathematics.

6.6  Conclusions

The design of the learning scenarios in DROIDE II project was supported by theo-
retical assumptions that framed the research project, namely, our positioning towards 
learning as a situated phenomenon that embodies the notion of participation.

The creation and implementation of learning scenarios with robots revealed itself 
to be a powerful artefact (Engeström, 2001) to enhance mathematics learning 
(Fernandes, 2013a). In fact, learning scenarios, usually designed by teachers, are 
often presented to students as a reified product (Wenger, 1998) without explanation 
of the reasons underlying their creation. Therefore, students are not expected to 
participate in the negotiating of the fundamental aspects of the practice, leaving it 
meaningless to most of them. The fact that the students were cocreators of the learn-
ing scenarios in our research project was decisive for their involvement in the prac-
tice, because this aspect presupposes that the students’ intentionality is part of the 
process once they are allowed to participate in the negotiation of the several activi-
ties that constitute the practice. From this point of view, learning was also sought as 
action (Skovsmose, 2011), once students’ engagement was a central key in the 
process.

The openness of the situation proposed to the students and also the interdisciplin-
ary nature that was potentiated from working around big themes – ‘Making a Movie’ 
and ‘Robot Race’ – were also important aspects of the learning scenarios. The the-
matic proposed, which in the project DROIDE II we call the ‘big idea’, led students 
to find motives to engage in the practice in which they were coactors. From the 
work held by students, teachers and researchers to achieve the ‘big idea’, learning 
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mathematics (but not only that) emerged in an ongoing process. There was inten-
tionality of teachers and researchers to bring out the mathematical contents. 
Nevertheless, it was not only the mathematical contents that governed the creation 
of the scenarios (Fernandes, 2013d). The ‘big idea’ is what Wenger (1998) also calls 
the joint enterprise. The joint enterprise is not dictated by someone who creates the 
scenario (and teaches) and is accepted by others who learn. It is jointly negotiated 
by the participants. For this reason, it was important that the research team created 
a ‘sketch’ of a scenario and opened the space so that the other actors could partici-
pate in their construction (Fernandes, 2013d). During the implementation of the 
learning scenarios, the initial intentions of the different actors were considered but 
also those that emerged along the way, with a view to achieving the objectives ini-
tially established and which were renegotiated throughout the process (Martins & 
Fernandes, 2015).

The working methodology adopted, including in it the researchers’ positioning 
and the questioning in both learning scenarios, was important because of how it 
emphasised the cooperation between students and between students and teachers, 
opening spaces for negotiation and sharing of mathematical meanings but also for 
negotiation of ways of acting and thinking in the mathematics class.

The creation of learning scenarios where challenges are posed (which entails the 
resolution of various mathematical and other problems) leads students to deal with 
knowledge from different areas and is a powerful artefact for mediating learning. 
Nevertheless, it requires a very different positioning of the teacher (in this case, the 
researchers had also this role), particularly in relation to the mastery of knowledge 
in their subject area, but also in other areas. The fact that the project team was plu-
ridisciplinar was very useful. However, to think about the empirical field in a dialec-
tical relationship with the theoretical framework was very fruitful to the 
decision-making.

When we are trying to understand learning, namely, mathematics learning, as a 
social phenomenon, it is important to pay attention to the social and cultural context 
in which it occurs. The analysis of the relationship between students and between 
students and teachers is a rich approach for understanding how the learning takes 
place. Equally important, the relationship between students and the tools they are 
using to learn is also central.

The artefacts people use in a certain activity cannot be constructed and concep-
tualised outside that activity. In fact, ‘artefacts should not be considered by them-
selves’ (Santos & Matos, 2008, p. 183); they can only be understood within their 
own history. The robots constructed by students in the researched learning scenarios 
are productions from developed practices in the implementation of those scenarios. 
For someone external to those two practices these robots would not be more than 
just ‘simple’ robots. For the students involved, these robots reify a history of partici-
pation in a practice and may represent an idealised character or a robot that allowed 
them to compete and eventually win a race. The robot reifies those practices as well 
as the mathematical ideas and concepts students used to create those characters or 
to win the race.

6 Learning Scenarios with Robots Leading to Problem-Solving and Mathematics…
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These robots transformed the way students negotiated the meaning of mathemat-
ical knowledge. As shown above, the position of straight lines, space and time were 
notions that were negotiated based on robots’ trajectories. In addition, statistics was 
a tool to make a robot become the winner of a race. Mathematics was, together with 
the robots, a tool to act in the learning scenarios. Robots reified the experience of 
learning mathematics, and certain mathematical concepts ‘were born’ in association 
with the robot (Fernandes, 2012). Mathematics emerged embedded in the work with 
robots, and as a result of that, students reconstructed the meaning of learning 
mathematics.

The robots had also a significant role over the reconstruction of students’ fore-
grounds, which are in themselves dynamic entities (Skovsmose, 2011). In the learn-
ing scenario ‘Robot Race’, the inclusion of the robots in the mathematics classroom, 
within the ‘big idea’ of the learning scenario, challenged the students’ positioning 
towards school mathematics learning.

‘There are no regulations and simple guidelines for establishing meaningful edu-
cation and for anticipating students’ intentionality’ (Skovsmose, 2011, p. 30). But 
we can argue that school, and in particular mathematics education, have to create 
different learning scenarios, enriched with technologies, in order to open the field of 
possibilities for students to reconstruct the meaning of learning mathematics and of 
the usefulness of mathematics in problem-solving. And, for the students with ruined 
foregrounds in relation to mathematics (and to school), it may open the range of 
possibilities for them to reconstruct it, thus providing them with new opportunities 
in life.

Acknowledgement The work reported in this chapter was developed under the support of the 
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Chapter 7
Developing the Mathematical Eye Through 
Problem-Solving in a Dynamic Geometry 
Environment

Maria Alessandra Mariotti and Anna Baccaglini-Frank

7.1  Introduction

Images play different roles, but they play a key role in human thinking and, gener-
ally speaking, in human mental activities. It is a familiar experience to have images 
accompanying our thoughts either in fantasying or in trying to solve a difficult 
mathematical problem. And it is exactly in solving problems that very often we look 
for help from images, for instance, by sketching a drawing on a sheet of paper; this 
is what Pólya (1957) wrote in his book How to Solve It, opening the discussion on 
figures in geometry:

Figures are not only the object of geometric problems but also an important help for all sorts 
of problems in which there is nothing geometric at the outset. Thus, we have two good 
reasons to consider the role of figures in solving problems. (p. 103)

Starting with the seminal work of Alan Bishop (1980, 1983), studies on visualiza-
tion have been developed (Presmeg, 2006) recently focusing on specific aspects of 
the relationship between images and mathematical thinking. The advent of digital 
technologies has opened a new direction of investigation on how specific digital 
environments might affect conceptualization processes and problem-solving in 
mathematics (Arcavi & Hadas, 2002).

A first fundamental result from the studies on visualization is about reflecting 
upon the use of a varied and vague set of terms commonly used in the current lan-
guage both for referring to the internal and the external context – such as  visualization, 
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visual thinking, mental images, drawing, figures and schema – in order to establish 
a shared terminology.

According to Presmeg (2006), visualization can be characterized in the follow-
ing way:

[…] visualization is taken to include processes of constructing and transforming both visual 
mental imagery and all of the inscriptions of a spatial nature that may be implicated in 
doing mathematics (Presmeg, 1997). This characterization is broad enough to include two 
aspects of spatial thinking elaborated by Bishop (1983), namely, interpreting figural infor-
mation (IFI) and visual processing (VP). (p. 206)

As Bishop (1989) clearly pointed out, there seems to be a contrast between positive 
aspects and pitfalls related to visualization. On the one hand, starting from the origi-
nal work of Krutetskii (1976), mainly based on experts’ experience/reports, authors 
claimed the value and the power of visualization; on the other hand, the first studies 
concerning students’ behaviour have highlighted difficulties related to visualiza-
tion. Among these are the following (Presmeg, 1986):

Especially if it is vague, imagery which is not coupled with rigorous analytical thought 
processes may be unhelpful. (p. 45)

Our aim is that of discussing and clarifying some aspects related to processes of 
visualization in problem-solving in Euclidean geometry. We claim that specific 
visualization skills (the mathematical eye) that are necessary for solving geometri-
cal problems are actively involved in problem-solving processes that take place in a 
dynamic geometry environment (DGE). In the following sections, we start discuss-
ing and clarifying the meaning of the expression mathematical eye. Building on 
previous studies and on the current literature, we introduce specific cognitive con-
structs, which we call visual skills, involved in the elaboration of visual stimuli and, 
which are, consequently, fundamental in solving geometrical tasks. As we illustrate 
how different visual skills are involved in the solution processes of geometrical 
problems, we will see how a DGE can afford the mobilization of the same visual 
skills. Therefore, we claim that not only problem-solving activities can be designed 
with the aim of fostering the student’s development of specific visual skills but also 
that acting within a DGE might strengthen the didactic potential of geometrical 
problem-solving activities and eventually affect the development of the mathemati-
cal eye.

7.2  Selected Skills Involved in Geometrical Problem Solving 
Using the “Mathematical Eye”

According to the notion of figural concept (Fischbein, 1993; Mariotti, 1995), geo-
metrical reasoning consists of a dialectic between figural and conceptual compo-
nents, so that the solution of a geometrical problem results from a coherent 
interaction between such components. Indeed, geometrical problem-solving is 
based on elaborations of images, both external representations (drawings on the 
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paper or drawings on the screen) and internal representations (mental images). This 
is why we are interested in studying processes involved in treating images and, spe-
cifically, in describing and explaining how spatial properties of images are noticed, 
identified and interpreted geometrically, and eventually linked together logically in 
a conditional statement.

For instance, how can it happen that, looking at a scribble on a piece of paper 
(see Fig. 7.1), the observer thinks of “a square”? Or, similarly, looking at a moving 
image on the screen, the observer suddenly exclaims, “it is a parallelogram!”?

Though these experiences may be considered common to any student who has 
learned a bit of geometry, other more sophisticated experiences are common for 
expert mathematicians, thanks to a high level of competence in the treatment of 
images that supports problem solving in geometry; we can call such competence the 
mathematical eye.

In the following, we will be assuming that the process of perception occurs 
thanks to specific mental schemes that allow us to interpret visual stimuli, that is, to 
transform them into a coherent perceived image. The internal elaboration that occurs 
in our brains can be modelled through these mental schemes that we will be talking 
about in terms of skills because of their important role in problem solving and, spe-
cifically, in the process of geometrical problem solving. In this section, our intent is 
not to be exhaustive in describing all skills that allow the mathematical eye to func-
tion; instead, we introduce a selection of specific skills, and we identify and describe 
their roles in processes of problem solving.

The following skills are elaborated based on the theory of figural concepts 
(Fischbein, 1993), Duval’s theory on cognition in geometry (Duval, 1994, 1998) 
and on the literature in cognitive psychology on visual-spatial abilities (e.g. Cornoldi 
& Vecchi, 2004). In the following we will refer to these skills as visual-geometrical 
skills, considering them as a possible characterization of what we call the “mathe-
matical eye”.

• Identification: immediate identification of a geometrical property of a figure on 
the plane or in space, with a goal in mind; this skill echoes Duval’s perceptual 
apprehension and the visual-spatial abilities of visual organization and (planned) 
visual scan applied to the context of geometry.

Fig. 7.1 Scribble that 
could be recognized as a 
“square”

7 Developing the Mathematical Eye Through Problem-Solving in a Dynamic…



156

• Reconstruction: reconstruction of a figure from parts that are not correctly orga-
nized in space or that are not visible. This skill echoes an aspect of Duval’s 
operative apprehension (1995a, 1995b) and the reconstructive visual ability 
(Cornoldi & Vecchi, 2004).

• Construction: construction of a representation of a figure, taking into account the 
use of tools and the construction sequence. This skill echoes Duval’s sequential 
apprehension and the visual-spatial ability referred to as reconstructive visual 
ability.

• Part-whole awareness: abstract a part of the figure and consider it separately 
from the rest; this skill echoes Duval’s attention to relevant subconfigurations 
and is described by Hadamard (1944, p. 80) as the ability to “abstract some spe-
cial part of the diagram and consider it apart from the rest”.

• Manipulation: manipulating a figure to transform it. This skill echoes the visual- 
spatial ability of image manipulation and aspects of Duval’s operative 
apprehension.

• Theoretical control: mentally imposing on a figure theoretical elements that are 
coherent in the theory of Euclidean geometry; this skill allows to “see” a figure 
in relation to verbal statements describing its geometrical properties. Moreover, 
it allows the solver, in Hadamard’s words, to achieve a “simultaneous view of all 
elements of the argument, to hold them together, to make a whole of them in 
short”, and “understanding the […] proof” (1944, p. 77). Consistently, we will 
also speak of advanced theoretical control intending to mean how the mathemati-
cal eye can bring an expert to automatically make use of sophisticated (for a high 
school student) mathematical notions to “see” aspects of a figure that are invisi-
ble to a less trained eye. Examples would be seeing a configuration “modulus 
similarity or translation” or declaring certain points “inessential” in the manipu-
lation of a figure. This skill echoes aspects of Duval’s discursive apprehension, 
and operative apprehension, and Fischbein’s conceptual component of a figure.

There are two more visual-geometrical skills, which, for their specific role in 
geometrical reasoning, will be more widely described in the following sections: 
geometric prediction and crystallization.

7.2.1  The Skill of Geometric Prediction

In solving a geometrical problem, reasoning is heavily guided by the goals the 
solver has in mind: for example, identifying geometrical properties of a figure and 
classifying it is a different process from identifying properties that need to remain 
invariant as a manipulation of the image is performed. Indeed, a process that seems 
rather frequent in geometric reasoning is to mentally manipulate a figure and imag-
ine how it will change given certain constraints, that is, maintaining certain proper-
ties invariant. Such process can be carried out through the use of the various skills 
listed above, but it is so common for experts to use it as a skill in its own right that 
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we will call it geometric prediction1. With geometric prediction, we intend the iden-
tification of particular properties or configurations of a new figure, arising from a 
manipulation process. This process does not seem to be precisely described in the 
psychological literature; however it appears to be coherent with respect to the 
notions of anticipatory image (Piaget & Inhelder, 1966) and anticipatory schemes 
(Neisser, 2014), which suggest an ability to make predictions, orienting both per-
ception and imagination, in the presence of a specific goal.

7.2.2  The Skill of Crystallization

Dynamism seems to be a component of experts’ reasoning. Indeed, the skills of 
manipulation and of geometric prediction involve “movement” of the figure. If this 
movement is imagined by the solver, it may appear in different forms. For example, 
some may imagine a continuous deformation of the figure and others a “generic” 
figure that has at the same time infinite realizations that the solver can “move across” 
selecting the most useful ones. The use of movement (of any type) involves a tem-
poral dimension in this kind of reasoning, which has been well documented in the 
literature, especially in reference to the use of a DGE during geometrical explora-
tions. These were initially developed and used by mathematicians during their pro-
cesses of problem solving, thanks to the possibility they offer to “externalize the set 
of relations defining a figure” (see, e.g., Laborde & Laborde, 1992; Laborde & 
Straesser, 1990).

Indeed, Laborde, speaking of a specific DGE, Cabri-Géomètre, states:

The nature of the graphical experiment is entirely new because it entails movement. The 
movement produced by the drag mode is the way of externalising the set of relations defin-
ing a figure. The novelty here is that the variability inherent in a figure is expressed in 
graphical means of representation and not only in language. A further dimension is added 
to the graphical space as a medium of geometry: the movement. (1993, p. 56)

In this context, geometrical properties are interpreted as invariants (Laborde, 2005):

A geometric property is an invariant satisfied by a variable object as soon as this object 
varies in a set of objects satisfying some common conditions. (p. 22; emphasis added)

Therefore, the identification of invariants is also an important skill, constituting the 
mathematical eye.

Moreover, as the solver produces conjectures as part of the solution process, s/he 
can find him-/herself in the need of crystallizing an experimental situation by elimi-
nating the temporal dimension to move to conditional statements. Research has 
shown that this is not always a spontaneous process. Some research has been con-
ducted on processes of generation of conditionality (PGC) (Boero, Garuti & Lemut, 
1999; Boero, Garuti & Mariotti, 1996). We will touch upon this again briefly in the 
analyses.

1 This construct has also been used in a recent study by Miragliotta, Baccaglini-Frank and Tomasi 
(2017) and is being used in the doctoral work of Miaragliotta (Miragliotta and Baccaglini-Frank 
2017, 2018).
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7.3  Skills Involved in Problem-Solving Processes: Analyses 
of Two Problems

In this section, we give two examples of problems and provide a priori analyses of 
how the mathematical eye, described through the previous visual-geometrical skills, 
might guide possible solution processes. The first problem is rather classical, typi-
cally found in Italian geometry textbooks (and indeed it is a translation of one such 
problem), for the fact that it explicitly states what is to be proved, given the described 
construction. The second is an “open problem”, less typical in the curriculum, but 
with the potential of fostering development of the mathematical eye, because of the 
skills it is necessary to use to solve it. Moreover, it lends itself quite naturally to be 
explored within a DGE, which can support the development of such skills thanks to 
its affordance of specific tools that will be analysed in a later section.

In the following analyses of this section, we imagine working without the sup-
port of a DGE.

7.3.1  Visual-Geometrical Skills Used in Solving a “Prove 
That” Problem

Problem 1: Finding triangles with equal area
Given a triangle ABC and the midpoint D of side BC, consider a point E on 
segment BD and construct line AE and the parallel to AE through D. This line 
intersects AC in F. Construct segments AD and EF; these segments intersect 
at H. Prove that triangles EHD and FHA have the same area.

What are key geometrical problem-solving skills that come into play?
The solver will probably first use the construction skill to produce a representa-

tion of the figure described in the problem, and s/he might wonder whether triangles 
FHA and EHD are congruent in general. Without further questioning, s/he may 
simply assume this and attempt to prove their congruence by  trying to apply the 
triangle congruence criteria (if the triangles can be proved to be congruent, then of 
course their areas will be congruent).

However, if the image that is first realized following the construction steps looks 
like our Fig. 7.2, this (incorrect) assumption may not be made.

The solution process is guided by the aim of finding a relationship between the 
two triangles that is not their congruence. The process will start with the identifica-
tion of properties of the figure and in particular of the property “AE parallel to FD”. 
Such property may be identified through a manipulation of the figure: the solver 
may imagine E moving along BD, and as the figure changes, through geometric 
prediction, s/he can notice properties of the figure as those that remain unvaried 
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throughout the manipulation. Though a changing figure might be imagined, the 
dynamism is then eliminated through crystallization of the figure into a “generic” 
configuration. In other words, the mathematical eye will interpret a specific configu-
ration as representing all the characteristic properties and nothing else; in terms of 
figural concepts, the figural and the conceptual components are fully integrated, and 
the drawing is properly controlled (Fig. 7.3).

For example, while the property “EHD congruent to AFH” is not always true, the 
property “AE parallel to FD” is (indeed it is one of the construction properties), as 
well as the (derived) property “triangles AFE and ADE have congruent heights”. 
Notice that to “see” congruent heights, the solver needs to use the skill of recon-
struction, as no segments corresponding to the heights are included in the construc-
tion given in the problem. These properties are key in solving the problem, because 
triangles AFE and ADE, having the same base AE and congruent heights, must have 
the same area. Identification of these properties is guided by theoretical control over 
the figure. Indeed, the following theorem needs to be recalled: “Given a triangle 
ABC, all triangles with the same base AB and the third vertex on a line parallel to 
AB through C have the same area”. Such theorem could be recalled in a dynamic 
form, for example, with the third vertex “moving” along the parallel line through C.

However, the solution of the problem is possible only through awareness of a 
specific part-whole relationship, that is, each of the two triangles AFE and ADE can 
be seen as made of a common part AEH and one of the two triangles AHF and 
EHD. From such awareness the solver can deduce the equivalence of the two tri-
angles AHF and EHD, as it was to be proved.

Fig. 7.2 Possible figure 
obtained by accomplishing 
the construction described 
in Problem 1

Fig. 7.3 Possible outcome 
of a (mental) manipulation 
of the constructed figure 
for Problem 1 by changing 
the position of E on BD
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There are different reasons why the solver could be led to perceiving the key 
properties, “common base AE” and “equal heights” of AHF and EHD. The follow-
ing two reasons we consider come from somewhat opposite directions of reasoning, 
but they include the same geometrical ingredients and similar activity of the math-
ematical eye.

 1. In an attempt to identify significant (for the problem) properties starting from the 
configuration, the solver can manipulate the figure, imagining E to vary on seg-
ment BD or the triangle ABC to vary. Thanks to geometric prediction, this can 
lead to noticing that there are very few “special” properties in the figure, so it 
may be rather straightforward to identify the parallelism of AE and FD (a con-
struction property), seen as constancy of the distance between the two lines and 
of any other consequent properties; this may be promoted also through theoreti-
cal control over the figure.

 2. On the other hand, the solver can think about the conclusion (“area EHD = area 
FAH”) and reason about these surfaces, thinking about how to decompose them 
or see them as part of greater surfaces, thanks to part-whole awareness (as 
described above at the end of the first process outlined). In this case, triangles 
AFE and ADE may be seen as made of the “parts” AHE (common), EHD and 
FAH; the solver may attempt to search for an argumentation leading to the prop-
erty “area AFE = area ADE” and in doing so identify their property of sharing a 
base and having congruent heights (that s/he “sees” thanks to the skill of 
reconstruction).

At this point, through part-whole awareness, AE can be seen as the common base of 
two triangles with the same height, and thanks to the same skill, these triangles can 
then be decomposed into two parts each, of which one (AHE) is common. S/he can 
conclude that the areas of AFH and HED are equal because these triangles are parts 
of congruent triangles to which a common region (AHE) is subtracted.

The first form of reasoning seems to be heavily based on identification of rele-
vant (to the problem) properties, thanks to manipulation and geometric prediction, 
guided by theoretical control over the figure.

The second form of reasoning seems to depend much more on the solver’s skills 
of recognizing the geometrical rather than the algebraic nature of the area searched 
for: instead of focusing on the product of two numbers, focusing on the product of 
two segments (one side and the height relative to it).
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Problem 2: Finding possible types of quadrilaterals a constructed figure 
can become
Let A, M and K be three points, and construct B as the symmetric point of A 
with respect to M, and construct C as the symmetric point of A with respect to 
K. Construct the parallel line l to BC through A and the perpendicular line r to 
l through C. Let D be the intersection of l and r. Make conjectures about which 
types of quadrilaterals can ABCD be (Fig. 7.4).

D

C

B

A

K

M

Fig. 7.4 Figure obtained 
following the construction 
steps in Problem 2

One way to proceed in solving Problem 2 is to construct a figure and proceed to 
identify properties of the quadrilateral ABCD. The variable points are A, M and 
K. Properties can be identified by manipulating mentally the figure, for example, by 
thinking of moving points A, M or K. The properties constructed will definitely be 
invariant (the parallelism of AD and BC, the perpendicularity of BC and CD, AM 
= MB, AK = KC), but also properties that are logical consequences of these in the 
theory of Euclidean geometry can be identified during any manipulation and pro-
cess of geometrical prediction (e.g. CD perpendicular to DA, KM parallel to CB, 
KM = 1/2 CB). Of course, to identify such properties, it is also necessary to have 
good theoretical control over the figure.

Through manipulation, an expert mathematician may imagine inducing move-
ment on ABCD to explore possible configurations, realizing, as a colleague once 
reported, that M and K act as a sort of “handles” for moving B and C. The expert 
might quickly realize this because of the fixed (by construction) relationships 
between A, M and C (AM/MC = 1/2) and A, K and B (AK/KB = 1/2). Indeed, 
experts interviewed on this problem have answered that “no matter what fixed 
ratios” there were between these sets of points, “M and K are inessential” in the 
manipulation of the quadrilateral. This seems to be an automatic process (the expert 
says it is “natural and immediate”), characteristic of the mathematical eye of an 
expert. This automatized process has surely been reached through years of 

7.3.2  Visual-Geometrical Skills in Solving an “Open Problem”
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 experience in “looking at” and “working with/talking about” mathematical objects. 
In other words, the trained mathematical eye, thanks to advanced theoretical control 
acquired over the years, guides the exploration process and the choices of features 
of the figure that are “relevant”.

Once these properties have been identified, the solver can advance a conjecture 
such as “ABCD is (always) a right trapezoid”, which can easily be proved using the 
theorems that allowed him/her to infer “CD perpendicular to DA” from the con-
struction properties. The expert may also make a claim like “The types of quadrilat-
erals that can be obtained depend only on the choice of K”, arguing that a type of 
quadrilateral is determined “modulo similarity and rotation”, so A and M can be 
thought of as fixed. Again, the mathematical eye must be quite experienced and 
well-trained to be able to see “modulus similarity and rotation”.

What other types of quadrilaterals can ABCD be? Using his/her knowledge of 
how quadrilaterals can be theoretically classified, the solver can list other possible 
types of quadrilaterals to test, as subtypes of right trapezoids with a second pair of 
parallel sides (rectangles, including squares). The solver can perform manipulations 
of the figure, guided by theoretical control and by part-whole awareness through 
which specific subconfigurations can be searched for and identified.

At this point, in a possible attempt to construct a figure with the properties listed 
in the problem plus additional properties that will guarantee the figure’s belonging 
to a subtype of quadrilateral, the solver can search for conditions under which the 
subtype may be identified, possibly using geometric prediction.

Conceiving the necessity of the angle at M to be right in order for ABCD to be a 
rectangle may come from noticing, thanks to (possibly advanced) theoretical con-
trol over the figure: (1) triangle AMK is similar to ABC and (2) a right trapezoid 
becomes a rectangle if either of its non-right angles become right (this is a sufficient 
condition).

A conjecture might be advanced such as “If AMK is a right triangle (at M), then 
ABCD is a rectangle”.

7.4  How Development of the Mathematical Eye Can 
Be Fostered Through Problem Solving in a DGE

In this section, we analyse possible solution processes of the two problems intro-
duced above when these are solved within a DGE. From the analyses, we will show 
how the tools in the DGE can support the solver’s solution process, either support-
ing the use or compensating for the weakness of certain visual-geometrical skills 
and eventually developing the mathematical eye. These analyses will lead into our 
hypotheses on how the development of certain geometrical exploration modalities 
can be fostered within a DGE through appropriately designed activities.
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7.4.1  Analysis of a Solution Process of the “Prove That” 
Problem Within a DGE

Within a DGE, the first step is generally to realize a construction that incorporates 
all the properties given in the problem. So the solver will need to use his/her skills 
of construction, determining which commands to use from the menus in the DGE to 
incorporate properly each property  into the figure described in the problem’s 
hypothesis: in this case D as the midpoint of BC, E as a mobile point “attached to” 
segment BD and DF as the parallel through D to AE. In order to guide processes of 
identification and part-whole awareness, the solver may also decide to highlight the 
surfaces of the two triangles AFH and EHD (Fig. 7.5). In doing this, the solver is 
supported by the DGE that carries out the constructions correctly and precisely; this 
is something that is not guaranteed in a hand-made drawing.

The solver might now try to identify properties of the triangles AHF and EHD, 
as crystallized invariants as s/he manipulates the figure. However, unlike in the pre-
vious cases analysed without the DGE, here the solver can physically drag points of 
the figure; so the DGE becomes responsible for much of the theoretical control over 
the figure and compensates the solver’s geometric prediction ability, showing the 
result of each manipulation instantly (e.g. see Figs. 7.6 and 7.7).

These manipulations may allow the solver to notice, for example, that the prop-
erty “triangles AFH and EHD are congruent” is not true in general; indeed, some 
results of the manipulations (dragging) can be identified as counter examples to 
such a property.

Through such (physical) manipulations, the solver can search for invariant prop-
erties, identifying them through a process of crystallization in which dynamism is 
eliminated and a particular configuration (product of the crystallization of an invari-
ant) becomes the figural component of a figural concept – an identified property. 
This may occur even for invariants that were defined by the steps of the construction 
(we have evidence of this in various students’ protocols); in this case, for example, 
it could occur for the property “AE parallel to FD”.

Fig. 7.5 Possible figure obtained by accomplishing the construction described in Problem 1 in a 
DGE

7 Developing the Mathematical Eye Through Problem-Solving in a Dynamic…



164

Now, the solver might refer to his/her theoretical knowledge and ask him-/herself 
what can be inferred from segments being parallel, and this could lead to the iden-
tification of congruent segments, perpendicular to the parallel lines, seen as an indi-
cation of the lines always having a “same distance”. This way, through reconstruction, 
two segments could be seen in the figure and actually constructed in the DGE. Since 
points A, E, F and D are visible in the figure, it is likely that the solver will choose 
to construct the segments through two of these points and, possibly, from two points 
on the same line because of the types of images s/he might be familiar with (Fig. 7.8).

This choice – which may happen without a conscious decision being made by the 
solver – can guide the part-whole awareness and, thanks to theoretical knowledge, 
help noticing triangles with a same base and congruent heights and thus identifying 
properties such as “triangles AFE and ADE have congruent heights”, “triangles 
AFE and ADE have base AE in common” or (if the distances from A and E to FD 
were drawn) “triangles DFA and DFE have congruent heights” and “triangles DFA 
and DFE have base FD in common”. Moreover, the solver can identify the theorem 
relating the two properties noticed: “Given a triangle ABC, all triangles with the 
same base AB and the third vertex on a line parallel to AB through C have the same 
area”. Of course, as described in the preceding solution process for Problem 1, 
much of the whole solution process may be guided by the solver’s identifying a 
proper configuration of such a theorem within the figure on the screen.

Fig. 7.6 Possible outcome 
of a manipulation through 
dragging of the constructed 
figure for Problem 1 by 
dragging E along BD

Fig. 7.7 Possible outcome of a manipulation through dragging of the constructed figure for 
Problem 1 by dragging vertex A of the triangle ABC
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Finally, as in the previous solution process, the solution can be reached through 
awareness of a specific part-whole relationship, that is, both of the two triangles 
AFE and ADE can be seen as made up of a common part AEH and of one of the 
triangles AHF and EHD. From such awareness, the solver can deduce the equiva-
lence of the two triangles AHF and EHD, as it was to be proved.

Compared to the solution process described previously, we highlight how the 
skill of geometric prediction plays a much more minor role in the context of the 
DGE because the software exercises on the figure the theoretical control that the 
solver would have to otherwise exercise him-/herself. Instead, in the DGE, the 
solution processes typically involve crystallization, a skill that seems less domi-
nant in geometrical problem-solving with paper and pencil. As a matter of fact, 
in a DGE, the solution might be achieved, eliminating dynamicity and grasping 
the invariance of a relation between properties, in other words recognizing the 
occurrence of a theorem.

7.4.2  Analysis of a Solution Process of the “Open Problem” 
Within a DGE

The solver can start by constructing a dynamic figure incorporating the properties 
described in the problem, in this case: C symmetric to A with respect to K, B symmet-
ric to A with respect to M, DA parallel to CB and CD perpendicular to DA (Fig. 7.9).

The solver can manipulate the figure dragging A, M or K and see (on the 
screen) the effect of the dragging of any of these points. In doing this s/he can 
identify the property “ABCD  is a right trapezoid”, as a crystallized invariant 
emerging from all the configurations that appear. The identification of this prop-
erty may not require the reconstruction and part-whole awareness skills (to realize 
that only the angle ADC is right by construction, while angle DCB is right as a 
consequence of the construction properties), since the quadrilateral ABCD may 
be perceived as a dynamic whole. A first conjecture like “ABCD is always a trap-
ezoid” may be put forth.

Fig. 7.8 A DGE figure in 
which segments showing 
the parallel lines AE and 
FD having the “same 
distance” are shown
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Then the solver may ask him-/herself what other types of quadrilateral ABCD 
can become, theoretically controlling the possibilities by recognizing that the quad-
rilateral can only become subtypes of a right trapezoid, that is, rectangles or squares.

The exploration (and solution process and products) changes based on which 
points the solver drags (we are assuming to be in a DGE in which only one point at 
a time can be dragged). For example, manipulating the figure by dragging M, the 
solver can search for “good positions”, positions in which the property “ABCD 
rectangle” can be identified (Fig. 7.10).

The solver can also search for regularity in the movement of a certain point s/he 
decides to drag. For example, if K is dragged, and the solver is trying to figure out 
“when ABCD is a rectangle”, s/he will have to drag K along a line, and not just any 
line, the line through M perpendicular to AM. This line (in this case actually the 
geometrical locus of the points M such that ABCD is a rectangle) can be discovered 
without exercising much theoretical control over the figure but instead other skills, 
including eye-hand coordination and crystallization transforming the regular 
“straight” movement of K into a geometrical property, such as “K belongs to the 

Fig. 7.9 Possible figure 
constructed for Problem 2 
within a DGE

Fig. 7.10 The figure is 
manipulated by dragging 
M as the solver searches 
for “good positions” in 
which ABCD is a rectangle
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perpendicular to AM through M”. Such process can be fostered through a tool 
offered by the DGE that is the trace mark activated on the dragged point (Fig. 7.11).

This particular way of dragging while trying to maintain a desired property has 
been referred to as maintaining dragging (Baccaglini-Frank & Mariotti, 2010), and 
we consider it a potential support for mobilizing specific visual skills for the 
problem- solving in a DGE.

If A is dragged, a similar regularity in its induced movement can be crystallized 
and another property identified: “A belongs to the line through M and perpendicular 
to MK”. Carrying out the maintaining dragging and identifying that property may 
stimulate the skill of geometric prediction as, for example, when a path is marked 
by the trace. Now, the simultaneous presence of two identified properties can be 
crystallized into the conditional statement (a conjecture): “if A belongs to the line 
through M and perpendicular to MK, then ABCD is a rectangle”.

Finally, if M is the dragged point, the solver can crystallize and identify the prop-
erty “M belongs to the circle with diameter AK”, and the simultaneous presence of 
two identified properties can be crystallized into the conditional statement (a con-
jecture): “If M belongs to the circle with diameter AK, then ABCD is a rectangle”. 
In our research, we have witnessed the possibility that solvers, before expressing 
their conjectures, linking the identified properties, decide to construct the property 
that will become the premise of their conditional statement in order to obtain a fig-
ure in which the whole conjecture, if correct, can be identified and possibly crystal-
lized (Fig. 7.12).

Therefore, based on the point dragged, the solver may make a number of differ-
ent conjectures that vary in the condition added to the construction to obtain a rect-
angle and, possibly, in the terminology used to express the conjecture itself. The 
conditions may be the following: “K belongs to the line perpendicular to AM 
through M”, “A belongs to the line through M perpendicular to MK”, “M belongs 
to the circle with diameter AK” and “AMK is a right triangle (in M)”. Based on the 
results of our research, we can definitely conclude that the last condition was the 

Fig. 7.11 What is shown 
on the screen in a DGE 
when the trace mark is 
active on the dragged point 
D as the solver tries to 
maintain the property 
ABCD rectangle
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least common in students who used maintaining dragging to reach their conjectures 
in this problem (for further details, see Baccaglini-Frank, 2010a).

The conjecture may not contain only “static”, crystallized words; indeed, if 
dynamic explorations are carried out, our studies (and many others) have shown that 
students use expressions like “A moves on a line”, “ABCD is a quadrilateral when 
[a certain condition is verified]”, “in order for ABCD to remain [a rectangle], the 
point has to move [in a certain constrained way]” or even “when I move the point 
[on some path], then ABCD stays a rectangle”.

Speaking about the visual-geometrical skills involved in reaching such conjec-
tures, we wish to briefly comment on how crystallization may contribute to the 
solver’s reaching a conjecture as a product of the problem-solving process in a 
problem like the one described. The skill we have described as crystallization and 
used in the analyses has important roots in the literature, especially regarding stud-
ies of students’ “processes of generation of conditionality (PGC)” (Boero et  al., 
1996, 1999).

In particular, processes like the one we have described echo processes described 
by Boero and his colleagues, such as the following PGC.

The conditionality of the statement can be the product of a dynamic exploration of the 
problem situation during which the identification of a special regularity leads to a temporal 
section of the exploration process, that will be subsequently detached from it and then 
“crystallize” from a logic point of view (“If…, then…”). (Boero et al., 1996, p. 121)

Studying processes of conjecture generation in open problem situations in a DGE, 
we found that PGCs, as described by Boero and colleagues, seem to be present dur-
ing the processes analysed (Baccaglini-Frank, 2010a) and also that a new element 
comes into play: continuity that is induced by the specific kind of motions that 
occurs in the DGE. Indeed, the examples provided for the PGCs in literature have 
mostly been of a “discrete” nature, the use of dragging in the processes of conjec-
ture generation attributes a new “continuous” nature to the processes. We note that 
although dynamism seems to provide support for the processes of conjecture 

Fig. 7.12 M can be linked 
to the circle with diameter 
AK so that the figure 
embeds properties “M 
belongs to the circle with 
diameter AK” and, as a 
consequence, “ABCD is a 
rectangle”
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generation like the ones described, making it more “natural”, it may turn into an 
obstacle as far as the aim to formulate conjectures within the “static” theory of 
Euclidean geometry is concerned, where it becomes necessary to “eliminate” time.

Going back to the analysis of the open problem solved within a DGE, a final 
consideration can be made in how the role of the mathematical eye can contribute. 
While for some students, the three premises in the conjectures (1. “K belongs to the 
line perpendicular to AM through M then ABCD, 2. “A belongs to the line through 
M perpendicular to MK”, 3. “M belongs to the circle with diameter AK”) have noth-
ing to do with one another, the mathematical eye, thanks to advanced theoretical 
control, will allow to condense them into a condition that expresses a general rela-
tionship between A, M and K, such as “AMK is a right triangle (at M)” or “the angle 
AMK is right”. Moreover, as we described in the first analysis of this problem, the 
expert will also exercise advanced theoretical control to reduce the exploration to a 
minimum, for example, deeming the dragging of A and M as “inessential” as the 
configurations can be uniquely determined “modulus similarity and rotation”.

Similar to what we concluded in the other case, here, too, for the open problem 
solved in a DGE, manipulation can be carried out through dragging, offloading from 
the solver much of his/her theoretical control over the figure. Moreover, we high-
light how the skill of geometric prediction plays a much more minor role; however 
it may be stimulated by the solver’s use of a tool such as maintaining dragging, as 
we have described. The use of such tool can be fostered through open problem 
activities like asking for the production of conjectures, like in the case discussed in 
the example. In the problem-solving process in a DGE, the crystallization skill 
seems to emerge much more than in a paper and pencil environment, where, in fact, 
frequently there seem to be no traces of it at all.

7.5  How Geometric Problem Solving in a DGE Can Foster 
the Development of Skills Pertaining 
to the Mathematical Eye

The analyses presented above have highlighted how certain tools offered within the 
DGE seem to induce the use of particular skills, allowing a less expert solver to take 
part in explorations in which his/her experience resembles that of an expert, thus 
fostering the development of his/her mathematical eye. For example, while the 
expert mentally manipulates the figure and performs geometric prediction, the less 
expert solver can drag and change the configuration, identifying properties (and 
relationships between properties) through the crystallization of invariants. In doing 
this, s/he enriches with dynamism (which cannot be achieved through static images 
drawn on paper) his/her figural components of the geometric concepts involved; the 
dynamism represents variability and generality (for the expert). So, we argue that 
through geometric problem solving in a DGE, it is possible to enhance particular 
skills supporting development of the mathematical eye. The use of some skills, such 
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as crystallization, and other skills associated to the use of specific dragging modali-
ties like maintaining dragging seems to be mostly present within a DGE, but we 
have argued that these can be seen as preparatory and supporting for other skills 
comprising the mathematical eye.

In this section, we take this argument a step further and show a case of how solv-
ers’ expert use of skills associated to maintaining dragging actually fostered the 
development of skills pertaining to the mathematical eye that the solvers were able 
to use without support from the DGE. For this purpose, we will introduce a third 
problem, similar to Problem 2, highlighting design aspects that seem to foster the 
development of desired skills, and then present excerpts from the students’ explora-
tion in which we found evidence of the students’ strengthened geometric problem- 
solving skills.

Problem 3
Construct the quadrilateral ABCD following these steps. Construct: a point P 
and a line r through P, the perpendicular line to r through P, C on the perpen-
dicular line, a point A symmetric to C with respect to P, a point D on the side 
of r containing A, the circle with centre C and radius CP, point B as the second 
intersection between the circle and the line through P and D. Formulate con-
jectures about the possible types of quadrilaterals it can become describing all 
the ways you can obtain a particular type of quadrilateral.

The design of this problem is similar to that of Problem 2: the task asked of the 
solver is an open-ended one, in which explorations of the figure are promoted 
through dragging. The processes of problem-solving induced by these kinds of 
problems involve the generating of conjectures as an outcome of various kinds of 
manipulation of the figure. Moreover, our studies have suggested that a request in 
which the solver is asked to describe “all the ways” in which a certain configuration 
may be visually verified can foster the use of certain dragging modalities such as 
maintaining dragging, assuming that this modality is familiar to the solvers (e.g. 
Baccaglini-Frank, 2010a, 2010b; Baccaglini-Frank & Mariotti, 2010).

Coming to the specific construction proposed in Problem 3, when solving the 
problem in a DGE, the figure (see Fig. 7.13) can be acted upon by dragging points 
C, P or D. We will concentrate on dragging D. Among the properties that can be 
identified, there are the properties described in the steps of the construction.

If the solver tries to obtain the configuration “ABCD parallelogram” through 
maintaining dragging, new invariants can be crystallized into geometrical properties 
(e.g. “D lies on a circle CAP with centre in A and radius AP”).

As in the analysis of a solution process for Problem 2, here, too, identification of 
these new properties during dragging can be supported by the use of the trace mark, 
a functionality in most DGEs. The properties that appear to be visually verified 
simultaneously as the figure is acted upon through dragging may be crystallized into 
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a conditional statement, a conjecture (e.g. “If D belongs to CAP, then ABCD is a 
parallelogram”), as the outcome of the problem-solving process. Indeed, our 
research has shown that many solvers who decide to use maintaining dragging per-
ceive a relationship between properties that are simultaneously visually verified on 
a dynamic figure they are manipulating (e.g. Baccaglini-Frank & Mariotti, 2010; 
Leung, Baccaglini-Frank & Mariotti, 2013; Mariotti, 2014)2 (Fig. 7.14).

However, their attempt fails, as shown in the following excerpt3.

2 The process is described in further detail by Baccaglini-Frank and Mariotti (Baccaglini-Frank, 
2010a, 2010b; Baccaglini-Frank & Mariotti, 2011).
3 Adapted from Baccaglini-Frank and Mariotti (2010, pp. 238, 240, 241) with permission from 
International Journal of Computers for Mathematical Learning, copyright 2010, by Springer

Fig. 7.13 A possible result of the construction in the situation described above

Fig. 7.14 Construction of 
the figure in Problem 3 
with which the students are 
working
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What is said [and done] Comments

Gianni: And now what are we doing? Oh yes, for 
the parallelogram?
Francesco: Yes [as he drags D with the trace 
activated] yes, we are trying to see when it remains 
a parallelogram.
Gianni: Yes, okay the usual circle comes out.
Francesco: Wait, because here...Oh dear! Where is 
it going? […] so, maybe it’s not necessarily the 
case that D is on a circle so that ABCD is a 
parallelogram. Because you see, if we then do a 
kind of circle starting from here, like this, it’s 
good, it’s good, it’s good, it’s good [he drags along 
a circle he imagines], and then here… see, if I go 
more or less along a circle that seemed good, 
instead it’s no good…so when is it any good?

Francesco and Gianni seem to have 
conceived a geometric prediction for the 
path along which point D should be 
dragged. This prediction does not seem to 
fit with the shape of the trace mark 
appearing on the screen as Francesco 
performs maintaining dragging. This leads 
the failure of the students’ use of 
maintaining dragging as a physical tool, so 
they abandon it.

Suddenly Gianni expresses the result of a geometric prediction he has carried out 
mentally, thanks to theoretical control he exercises on the figure.

What is said [and done] Comments

Gianni: Eh, since this is a chord, it’s a chord right? 
We have to, it means that this has to be an equal chord 
of another circle, in my opinion with centre in 
A. Because I think if you do, like, a circle with centre.
Francesco: A, you say…
Gianni: Symmetric with respect to this one, you have 
to make it with centre A.
 […]
Gianni: With centre A and radius AP. I, I think…
Francesco: Let’s move D. More or less…
Gianni: It looks right doesn’t it?
Francesco: Yes.
Gianni: Maybe we found it! (Fig. 7.15)

Gianni, who was not dragging, carries 
out a geometric prediction.
The students proceed to construct the 
newly conceived circle along which 
Gianni has imagined D to move.
The identified relationship “if D belongs 
to the symmetric circle then ABCD is a 
parallelogram” is constructed in the 
DGE.

The students seem quite satisfied and formulate the following conjecture explic-
itly: “If D belongs to the circle with centre in A and radius AP, then ABCD is a 
parallelogram”.

What happened to maintaining dragging here? The students continue the explo-
ration mentally as if they were dragging. Gianni seems to be using the maintaining 
dragging tool mentally (Baccaglini-Frank, 2010a, 2010b). Therefore, the conjectur-
ing process relies entirely on his theoretical control over the figure.

In this case, geometric prediction, paired with theoretical control, plays a key 
role in the process of problem solving. We conjecture that this way of thinking was 
fostered by Gianni’s extensive experience using maintaining dragging as a physical 
tool that strengthened his theoretical control and geometric prediction skills to the 
extent that he was able to take-upon himself to manipulate the figure, controlling its 
conceptual components and carry out an accurate geometric prediction. In sum-

M. A. Mariotti and A. Baccaglini-Frank



173

mary, looking at the transcript, we can infer that this prediction was possible for him 
because the combination of visual-geometrical skills comprising his mathematical 
eye allowed him to “see” the circle with centre in A as the image of the circle in the 
original construction through reflectional symmetry across r.

This case suggests that appropriation of dragging modalities such as maintaining 
dragging is possible and can lead to strengthening particular visual-geometrical 
skills and, therefore, to development of the mathematical eye. Moreover, specific 
analyses of the case have also suggested that use of maintaining dragging as a psy-
chological tool  (Vygotski, 1978) can bring continuity between the conjecturing 
phase and the proving phase (if students are later asked to prove their conjectures), 
because many theoretical notions become explicit to the solver who can then control 
them at will (Baccaglini-Frank & Antonini, 2016).

7.6  Concluding Remarks

The aim of this chapter was to discuss some aspects related to visualization pro-
cesses in problem solving. We started with the idea of the necessity of a mathemati-
cal eye to successfully perform geometrical problem solving. In order to clearly 
describe what the mathematical eye could mean, we introduced a selection of spe-
cific skills and elaborated on some theoretical constructs, previously introduced in 
the literature concerning cognitive aspects of visualization; we called these visual- 
geometric skills.

Our analyses showed how the problem-solving process can be described through 
the combination of different visual-geometrical skills that are necessary in the 
problem- solving process. This raises the educational problem of how it might be 
possible to improve such skills and eventually develop a mathematical eye.

The general hypothesis presented in this chapter concerns the educational role 
played by moving into a dynamic geometry environment, that is, proposing and 
solving a problem with the support of a DGE.

Fig. 7.15 Francesco drags D along the newly constructed circle
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The analyses developed in Sects. 7.3 and 7.4 show how the same visual- 
geometrical skills are actively involved in the solving processes but also how the 
functionalities of the DGE can support the emergence and consolidation of these 
skills. For example, in Sect. 7.4 we have shown how specific DGE skills associated 
to a way of dragging points, maintaining dragging, can support the development of 
the skill of geometric prediction.

Moreover, repeated experiences mobilizing the skill of identification and the 
skill of crystallization seem to contribute to the strengthening of the solver’s theo-
retical control; these visual-geometrical skills guide the mathematical eye during 
problem-solving processes. In particular, the visual-geometrical skill of theoretical 
control can be at the basis of the elaboration of a theorem.

Indeed, let us imagine how this could happen if a student who is elaborating the 
theorem “Given a triangle ABC, all triangles with the same base AB and the third 
vertex on a line parallel to AB through C have the same area.” used the first prob-
lem we analysed. The student could be introduced to the theorem in a dynamic 
form, for example, exploring a figure in which a triangle ABC is constructed as a 
segment (AB) and a third vertex C attached to a line parallel to AB. As C is moved 
on the parallel line, the invariant area of the triangle may be identified. Such 
dynamic configuration, with the invariant relationship between C being on the 
parallel line and the constant area of ABC, can be crystallized by the student into 
a statement such as “any triangle with the third vertex C on a line parallel to side 
AB has a given area” or “any two triangles with a common base and congruent 
heights have the same area”, by eliminating the dynamism in favour of awareness 
of the being generic of the configuration. Once the process of crystallization is 
complete, the student will have probably also strengthened his/her theoretical con-
trol, since a new fragment of theory is now at his/her disposal. According to the 
notion of figural concept, the new fragment of theory will not only have a concep-
tual component – possibly expressed in a verbal text – but also a figural component 
encompassed in a crystallized configuration. That means that such a theorem, if 
needed, may be also recalled in a dynamic form, for example, with the third vertex 
“moving” along the parallel line through C.

The analyses presented and these final considerations support our claim that 
problem-solving activities can be designed with the aim of fostering students’ 
development of specific visual skills, which can, in turn, contribute to the develop-
ment of a mathematical eye. 
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Chapter 8
Reflecting on Digital Technology 
in Mathematical Problem-Solving 
Situations

Arthur B. Powell

8.1  Introduction

The preceding six chapters concern the first tripartite theme of this book: the role of 
digital technology in mathematical problem-solving situations. The chapters repre-
sent research pursued in four different Europe countries, one in France, one in Italy, 
three in Portugal, and one in Spain. Of the six chapters, five are qualitative empirical 
investigations, and one is a theoretical study for which later empirical studies can 
further elucidate and refine the proposed theory.

Collectively, these chapters broaden research in mathematics education on prob-
lem-solving with digital technologies as they investigate theoretical, epistemologi-
cal, and pedagogical uses of a wide range of technologies, both hardware types and 
software applications, as well as in formal and informal educational settings. The 
research reported in the chapters are notable since they manifest a certain state of 
affairs: digital technology in mathematics education has moved from novelty, need-
ing exploration to determine appropriateness, to essential, requiring further under-
standing of the specific ways it shapes instruction and learning. This is not to say 
that in actual classrooms instructional uses of digital technologies abound.

Notwithstanding, a statistical analysis of the use of digital technologies for math-
ematics teaching and learning, the significance of the chapters is their theoretical 
framing, their methodological approaches, and their findings. The goal of this reac-
tion chapter is not to rehearse what is already well-presented in the chapters them-
selves but rather to reflect on a few common themes. To do it, we first review the 
research problem that motivates each chapter.
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8.2  Research Problems

As this section of the book concerns roles that technology plays to broaden research 
on mathematical problem-solving, the six chapters highlight a diversity of 
investigations into how technology shapes instruction and learning. It is particularly 
interesting, therefore, to compare the six conceptual issues or problems about which 
these studies report. Each study’s research problem represents the researchers’ 
insight into a condition of incomplete knowledge or understanding reflected in the 
extant mathematics education literature. Each set of authors specified explicitly or 
implicitly the research problem that motivated their study. Table 8.1 lists what I 
surmised to be the research problem that each chapter addresses.

These research problems coexist with a reality of digital technologies in mathe-
matics education. Outside of schools, digital technologies are evermore part of the 
quotidian cultural and social environment of both teachers and students. Nevertheless, 
in schools, these technologies have yet to permeate mathematics instructional and 
learning spaces. Some of the chapters echoed this state of affairs as they introduced 
their research problem.

Investigations such as those in Chaps. 2–7 represent the next stage in the use of 
technological tools. Though teaching with technology is recommended (National 
Governors Association Center for Best Practices & Council of Chief State School 
Officers, 2010, p. 7), meta-analytic and large-scale studies indicate that teaching 
with technology do not guarantee positive learning outcomes (Cheung & Slavin, 2013; 

Table 8.1 Research problems posited in each of Chaps. 2–7

Research problem

Chapter 2 Need to understand levels of sophistication and robustness of representational and 
conceptual expressiveness that young competitors (10- to 14-year-olds) evidence 
when they use digital tools to shape and support their reasoning and solutions to 
mathematical problems

Chapter 3 Need to understand, along with Duval’s semantic congruence and Rabardel’s 
instrumental genesis, insights derived from that didactical framework—
Mathematical working spaces (MWS)—Inquire into the cognitive and 
epistemological aspects of solving of probability problems with digital technology

Chapter 4 Need to “analyse and characterize ways in which high school teachers rely on a 
dynamic geometry system’s affordances to represent and reason about mathematical 
tasks in a problem solving environment” (p. 83)

Chapter 5 Need to understand how interactive whiteboards can be used to develop dialogical 
interactions as students problem-solve and what features of the boards can be used 
to support these interactions

Chapter 6 Need to “understand how the use of robots as mediating artefacts of learning 
contributes to meaning production and to the learning of mathematics and 
informatics topics and contents, by exploring possible articulations between both 
domains” (p. 129)

Chapter 7 Need to understand how different visual-geometrical skills are involved in 
geometrical problem-solving and how DGEs support the mobilization of these 
visual-geometrical skills
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Higgins, Xiao, & Katsipataki, 2012; Kaput & Thompson, 1994; Li & Ma, 2010; 
Rakes, Valentine, McGatha, & Ronau, 2010; Wenglinsky, 1998). The research prob-
lems that the chapters address are investigations to understand how appropriate 
digital technologies shape mathematics learning in formal and informal settings as 
well as mathematics teachers’ content and pedagogical knowledge.

Collectively, another theme evident among how researchers approached their 
research problems is that with digital technologies, the software applications 
provide feedback to learners as or after they manipulate dynamic objects. Several 
chapters indicate that, in turn, this affects the user’s interaction with the software. 
The environment reacts to the users’ actions through engineered infrastructure that 
responds according, for instance, in the case of dynamic geometry environments 
(DGEs), to the theory of geometry. This reaction can inform the learners’ actions 
and shape their thinking.

8.3  Responses to Research Problems: Seeing Mathematically 
as an Educated Capability

The research problems motivated the investigations reported in the six chapters 
of this section of the book. Table 8.2 attempts to summarize the empirical and 
theoretical responses. From the empirical and theoretical responses to research 
problems in each of Chaps. 2–7, a common theme emerges. The theme concerns 
how digital technology shapes learners’ discourse about mathematical objects 
and reflects in their discourse what learners learn to see. The use of digital tech-
nologies, whether computers, whiteboard, or robots or whether GeoGebra, 
WolframAlpha computational knowledge engine, or Excel, enables learners to 
develop new ways to act mathematically and new mathematical capabilities. 
These technology-based actions and associated capabilities gear learners to 
develop new ways of seeing.

These technology-enhanced new ways of seeing educate what, in Chap. 7, 
Mariotti and Baccaglini-Frank term, with reference to geometry, the “mathematical 
eye”. Their term refers to theorized “mental schemes that allow us to interpret visual 
stimuli, that is, to transform them into a coherent perceived image” (p. 155). They 
identify eight schemes, which they call “visual-geometrical skills” and provide a 
priori exemplification of how they enable geometrical problem-solving. Each of 
these visual-geometrical skills as elements of a mathematical eye enables both 
seeing and acting in powerful ways.

In a similar fashion, as we discover in Chaps. 2–6, learners develop powerful 
ways of seeing and acting mathematically in the context of technology-enhanced 
problem-solving in informatics, geometry, probability and statistics, analytic 
geometry, and algebra. Moreover, the investigation of solutions produced by 
youngsters who participate in the mathematical competitions SUB12® and SUB14® 
provide evidence of different levels of sophistication in how with technology the 
youngsters develop, represent, and communicate their solutions of mathematical 
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problem situations. These levels can be thought of as different levels of sophistication 
with their ways of seeing and acting exemplified in their solutions.

These levels of sophistication represent differing and evolving mathematical 
capabilities, power, or ability to solve mathematical problems. From the reports in 

Table 8.2 Empirical and theoretical responses to research problems in each of Chaps. 2–7

Research problem

Chapter 2 A gradual scale can be discerned among the conceptual models, characterized by 
details, variations, and specificities that are directly involved in understanding of 
the mathematical task and in developing an approach to the solution. “[T]
o-think-with- GeoGebra or to-think-with-excel means to incorporate the 
possibilities of mathematical ‘expressiveness’ conveyed by the digital tools, which 
invite the student to develop mathematical thinking. Solving-and-expressing by 
means of digital tools is therefore something that comes as a result of introducing a 
mathematical point of view to address a situation combined with recognizing a 
mathematical point of view in the tool to deal with the same situation” (p. 39–40)

Chapter 3 “In tasks dealing with simulation, the semantic congruence between the real 
situation and the model implemented in the technological device should be taken 
explicitly into account in teaching. Moreover, in such problems the process which 
has to be put into play by students is complex, since they have to deal with several 
domains and shift from one to another: Reality, probability and statistics. The 
student’s personal MWS [mathematical working spaces] is constantly changing, 
first through a modelling process – often implicit − then through a simulation on 
spreadsheet or calculator and finally through a return back to the model. In this 
process the computer acts as a versatile help, since it is used in turn as random 
generator, calculator, logical tool, plotter, both to calculate (and then it produces 
results) and to ‘show’ theoretical results (and then it produces conjectures), which 
may not be so clear for students” (p. 76)

Chapter 4 “The inquiring approach that framed the participants’ approaches to the tasks 
helped conceptualize the tasks as a point of departure to engage in math-ematical 
reflections and as an opportunity to look for mathematical relations and ways to 
support it through visual, empirical and eventually formal arguments. In addition, 
all the participants recognized that the technology affordances not only helped 
them construct and explore dynamic models of the tasks but also to reflect on ways 
to implement the tasks in actual practice” (p. 98–99)

Chapter 5 Given a four-phase, inquiry-based teaching model: (1) teacher presents task; (2) 
students solve the task in small groups; (3) all students and the teacher discuss task 
solutions; and (4) the teacher with the participation of the students systematize 
mathematical learning, for phases 1, 3, and 4, specific features of the whiteboard 
promote dialogic interactions among students and among the teacher and students

Chapter 6 Considering learning as a situated, participatory phenomenon, robots are mediating 
artefacts that can enhance mathematics learning when students are co-creators to 
meaning production and to the learning of mathematics and informatics topics and 
contents, by exploring possible articulations between both domains

Chapter 7 Grounded in the literature and a priori analyses, postulate eight visual-geometrical 
skills that contribute to the development of a mathematical eye and enable 
geometrical problem-solving. Moreover, learners’ mobilization of their visual-
geometrical skills is afforded by DGEs

A. B. Powell



181

each chapter, using digital technological tools, the capabilities that learners develop 
are to discern critical features of problem situations. Those features are variant or 
invariant as in the movement of dynamic geometric constructions using dynamic 
geometry environments as well as delimiting parts from wholes as the cylindrical 
candles problem in Chap. 5 or the stabilization of relative frequencies analysed in 
Chap. 3. The use of digital tools and specially designed task enables learners to 
develop their capability of seeing mathematically. This is a way of seeing something 
as defined by the aspects discerned, the critical feature of what is seen (Marton 
et al., 2004; Runesson, 2005; Watson & Mason, 2006).

8.4  What Is to Be Done?

Much is left to do. Each chapter implicitly or explicitly mentions further areas that 
their findings suggest need to be investigated. To complement those suggested areas 
of research, it seems worthwhile to indicate a research domain not mentioned. It 
concerns what has come to be called group cognition (Stahl, 2008, 2016) and its 
manifestation and support using collective Web 2.0 technologies.

The emergence of new collaborative, digital technologies occasions opportuni-
ties to rethink school learning and classroom practice. These technologies permit 
learners working collectively to construct, visualize, conjecture, and manipulate 
mathematical objects and relations such as dependencies (Christou, Mousoulides, 
& Pittalis, 2004). Furthermore, the new technologies’ collaborative affordances 
support social argumentation, justification, and deductive reasoning (Öner, 2008; 
Silverman, 2011). This potential for knowledge building enables learners to engage 
jointly in ways that parallel the real world online, collaborative work of 
mathematicians, including Fields Medal recipients (Alagic & Alagic, 2013). To 
realize the educational potential of these emergent collaborative technologies in 
mathematics classrooms requires teacher professional development.

Models of teacher professional development, whether face-to-face, hybrid, or 
virtual, tend to extract teachers from classroom practice, narrate to them new 
information, engage them in activities, and guide them on changing their practice to 
implement the new knowledge. However, these models often neither change teacher 
practice nor improve student outcomes (Gulamhussein, 2013). Other models may 
be more effective. Recent surveys of teachers found “teachers in strong collaborative 
environments see significant benefits in their day-to-day work” (Bill & Melinda 
Gates Foundation, 2014, p. 5). Effective professional development engages teachers 
in “learning how to put knowledge into practice through engagement in practice 
within a community of practitioners” (Schlager & Fusco, 2004, p. 132). As Brown 
and Duguid (2000) emphasize, “practice is an effective teacher and the community 
of practice an ideal learning environment” (p. 127, as quoted in Schlager & Fusco, 
2004, emphasis added).
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Chapter 9
Mathematical Problem Solving Beyond 
School: A Tool for Highlighting Creativity 
in Children’s Solutions

Susana Carreira and Nuno Amaral

9.1  Mathematics Competitions as a Research Field

Today, more and more activities seek to attract students to the world of mathematics 
through projects that excite their curiosity and propose them good mathematical 
challenges. Worldwide many organizations are promoting mathematical enrichment 
extracurricular activities, along with several well-known international contests and 
competitions. Those projects represent an important contribution to mathematics 
education and particularly to a large number of promising students insofar as it 
offers a complement to the work developed in the classroom (Koichu & Andzans, 
2009). The awareness of such importance has been nurturing a growing interest in 
knowing, as accurately as possible, the impact and benefits of competitions related 
to mathematics education, in particular those that take place beyond the school 
context.

Previous studies have shown that mathematical problem-solving competitions 
contribute to increase the mathematical skills of the individuals who take part in 
them (Freiman & Applebaum, 2009). At the same time, they can positively influ-
ence the motivation of young people and create contexts for discovery, exploration 
and communication of new ideas, thus providing a rich learning context (Freiman & 
Lirette-Pitre, 2008). Competitions may actually be considered as a source of cur-
riculum enrichment as they strengthen the abilities required for solving problems 
while developing an increasing appreciation for mathematics as a discipline 
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(Freiman, 2009). They have also a primary role in the realization of the students’ 
intellectual and creative potential and offer opportunities for their mathematical 
empowerment in ways that are compatible with their ages (Koichu & Andzans, 
2009). To some extent, they challenge the traditional classroom by letting students 
learn independently or together, leading them to be persistent and making them 
aware of thinking processes, strategies and learning media (Freiman & Lirette-Pitre, 
2008). In general, competitions emphasize that mathematics is not just about defini-
tions, theorems, formulas, etc. but it is full of processes including experimenting, 
reasoning, conjecturing, refuting and justifying.

The current study, in theoretical and empirical terms, was developed under the 
research project Mathematical Problem Solving: Perspectives on an Interactive 
Web-Based Competition (SUB12 and SUB14) more commonly referred to as the 
Problem@Web Project. The general goal of the project was to expand the current 
knowledge on mathematical problem solving taking place outside the classroom, 
namely, in the context of mathematical competitions based on the Internet. One of 
the project’s research foci was the study of mathematical creativity manifested in 
young students’ solutions to mathematics problems in the course of their participa-
tion in web-based competitions. One of the issues that soon caught our attention 
was the need to develop tools that would allow us to assess the creativity of a solu-
tion to a challenging problem. In this chapter, we propose a tool, which is both 
descriptive and numerical, and show how it was used to highlight the creativity of 
the solutions produced by the students in a mathematics competition.

The empirical field is the mathematical problem-solving competition SUB12 
promoted by the University of Algarve and covering the southern region of Portugal. 
This competition takes place through the Internet, over a period of 6 months, and 
addresses students attending fifth and sixth grades (10–12 years old). Every 2 weeks, 
a new problem is proposed in the competition website; the problems are varied and 
cover different mathematical domains. It is the kind of problems where students are 
supposed to be challenged and think for themselves, where diverse strategies and 
approaches are possible and where they may use various forms of representation in 
the process of finding the solution.

In this competition, it is explicitly required that students present and explain the 
whole process leading to the solution, as clearly as possible. Moreover, the competi-
tion allows participants time and freedom to create inventive solutions. Those are 
key factors for the development of creativity, which are sometimes lacking in the 
classroom due to the pressure of curricular targets or other constraints of the school 
system. It is therefore an environment with obvious potential for the development of 
mathematical creativity and independent thinking, where students can display their 
talent each time they solve problems in unexpected and innovative ways.

In taking this competition as a research setting, our aim was to devise a tool for 
characterizing the mathematical creativity in the solutions submitted through email 
by the students participating in the SUB12. In this particular context, and bearing in 
mind the very young age of the students and the moderate challenge of the problems, 
mathematical creativity is often revealed in unusual and remarkable products, whether 
by the insights of the solvers or by the ways they find to express the solution.
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Our search for a tool that would account for the creativity involved in this math-
ematical problem-solving contest has led us to develop an analytical framework to 
assess students’ creative solutions. Its main purpose is to track observable indicators 
of creativity in solutions to mathematical problems. It is no more than a reconfigura-
tion of a traditional psychometric conception of evaluating the creativity of a prod-
uct, by suggesting three basic dimensions to that effect. In this sense, it is a tentative 
formulation that we have been working on and revising over time, both by refining 
the descriptors of such dimensions and by deepening their meaning (cf. Amaral, 
2016; Amaral & Carreira, 2012, 2017). The evolutionary construction of an analyti-
cal tool is seen as inherent to the process of researching a complex and theoretically 
dense phenomenon, such as that of mathematical creativity.

9.2  Mathematical Creativity and Problem Solving

Acquired knowledge is certainly an important condition for the emergence of cre-
ativity, but in no way can it be said to be enough (Sternberg, 2007). Mastery of a 
given content may be crucial in interpreting, in processing and integrating informa-
tion and in establishing connections between different concepts (Kattou, 
Kontoyianni, Pitta-Pantazi & Christou, 2013). But in addition to the mastery of 
content knowledge, an inclination to innovate, to work intensely on ideas and to 
look for new, different and unusual possibilities is also vital. The creative talent is 
often associated with the ability to produce original, surprising and interesting ideas 
that go beyond convergent thinking (Milgram & Hong, 2009).

Silver (1997) has pointed out a close connection between problem solving and 
the genuine activity of mathematicians, as far as to suggest that problem solving 
could be the best mirror of mathematical creativity. In discussing the signs of cre-
ativity in mathematics, Silver refers to the novelty of the problem-posing or 
problem- solving approach, the shifts taking place during the problem-solving pro-
cess and the number of different paths explored and solutions achieved. Those are 
broadly the kind of parameters involved in the classical tests designed to measure 
creativity. In fact, the dimensions of originality, fluency and flexibility have been 
extensively used in developing tools to determine creativity (Mann, 2005; Silver, 
1997; Yuan & Sriraman, 2011). One of the most renowned tools that are based on 
those three variables is the Torrance Test of Creative Thinking (TTCT).

The recognition of originality is decisive in determining creativity, but this relevant 
dimension should not be narrowly viewed. It has been recurrently argued by several 
authors that creativity is a two-part concept: it simultaneously embraces originality 
and effectiveness (Aldous, 2007; Runco & Jaeger, 2012; Selter, 2009). According to 
Aldous (2007), a simplified definition of creativity would be the production of some-
thing new and effective. Both qualities – novelty and usefulness – are jointly crucial 
to yield an understanding of creativity; something that is new and original but does 
not present any usefulness, adequacy or suitability loses its value as a creative prod-
uct. Moreover, Aldous (2007) points out that the production of effective novelty has 
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to be seen in relation to the subject who creates it. If an individual produces an inde-
pendent and effective solution to a problem, though not a new discovery in some 
domain, it should be accepted as a manifestation of creativity.

This means that creativity must not be restricted to eminent discoveries and 
instead should include more modest and everyday achievements like those that arise 
with school students solving problems that are new to them. In such a setting, cre-
ative products could be those that support the understanding of mathematical rela-
tions and the discovery of hidden ones or that may lead to unpredicted results 
(Leikin, 2009). In a sense, we are considering the inclusive creativity – the little-c 
instead of the Big-C creativity – that allows seeing the diversity in the apparent 
uniformity (Beghetto & Kaufman, 2009).

Traditionally, creativity scholars have focused on creative outcomes classified either as 
Big-C (eminent) or little-c (everyday) creativity. Big-C creativity focuses on clear cut 
examples of great creative expression (e.g., Pythagoras’s theorems, Dickenson’s poetry, 
Mozart’s compositions). In contrast, little-c creativity — focuses more on the creativity of 
everyday life, accessible to most anyone (Runco & Richards, 1998). One example of every-
day creativity might be the creative way you arrange plants and flowers in your garden — 
an arrangement that receives praise from friends and family. (Beghetto & Kaufman, 2009, 
p. 40)

Fluency is one of the characteristics of the creative process and refers to the number 
of ideas generated in response to a query and to the flow of associations between 
different ideas. To become an indicator of creativity, it is essential that fluency 
comes along with originality and flexibility, in the sense that generating a lot of 
ideas does not guarantee any creative result. So, this indicator of creativity may not 
be as important and decisive as originality and flexibility (Guerra, 2007), but it has 
a deeply rooted tradition in the tests of divergent thinking that are very much associ-
ated with the quantification of creativity (Plucker & Renzulli, 1999). To test fluency, 
individuals are asked to produce various responses to visual or verbal prompts, and 
scores are given to the number of different ideas produced. However, as Plucker and 
Renzulli (1999) refer, there are risks into overemphasizing ideational fluency, espe-
cially given that it may be detrimental to originality (the rareness of ideas). 
According to the authors, the ability to generate numerous ideas is just one of the 
aspects of the creative process, but to overstate its importance may dissipate the 
fundamental role of problem solving in creativity, which substantially draws on 
convergent thinking. Therefore, as they conclude, the role of fluency in the assess-
ment of creativity may be more complex than it is often admitted.

Flexibility is a feature of creativity that is related to the apparent changes in the 
approaches taken in producing a response to a request. It has to do with the ability 
to consider a variety of options and think carefully about each alternative before 
choosing one. Cognitive flexibility stands out through the ability to combine ideas 
in solving problems (Vale, 2012). Therefore, flexibility is an aptitude that enables 
individuals to cope with constant changes (Runco, 2004).

The relation between problem solving and creativity is not straightforward. 
Runco (2004), for example, states that creativity underlines problem solving and 
problem finding. He notices that creativity in problem solving may be related to 
avoiding fixation and routine practices and over-relying on established knowledge. 
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Some authors have also argued that creative problem solving is a matter of how one 
defines the problem (Runco & Sakamoto, 1999). In fact, in the literature on mathe-
matics problem solving, the well-known distinction between routine and nonroutine 
problem solving brings the key point of the need to develop some novel and insight-
ful approach to arrive at a solution.

The creative application of mathematical knowledge in solving problems 
involves the activation of mathematical rules and procedures in non-standard com-
binations (Pehkonen, 1997; Silver, 1997). Thus, the manifestation of mathematical 
creativity and its consequent materialization in solutions to problems may arise 
from the combination of convergent thinking and divergent thinking, since this 
intersection involves a wide variety of ideas, some of which are useful in problem 
solving (Pehkonen, 1997). Convergent and divergent thinking are therefore both 
essential in problem-solving experience. While convergent thinking emphasizes the 
reproduction and adaptation of existing knowledge to new situations, divergent 
thinking involves the production of new ideas in reaction to the challenge at hand.

The act of solving a problem, which involves mobilizing knowledge inherent to a 
certain domain, as well as isolating the structural elements of the situation, may be 
seen as a creative act. Good mathematical problems are, by nature, challenging situa-
tions that encourage individuals to structure thinking in order to generate links between 
given and absent elements, based on their previous experience (Freiman, 2006).

In the case of mathematical problem solving, ideational fluency may be paral-
leled to the use of various concepts, procedures and mathematical results and the 
ability to coherently structure several steps to solve a problem. Thus, the problem 
presents a request to which the solver responds with a number of appropriate, useful 
and meaningful mathematical ideas that must be articulated in the search for a solu-
tion. In this context, knowledge activation is seen as a necessary condition for suc-
cessful problem solving, and it entails the ability to implement strategies and 
procedures with efficiency, precision and flexibility (NCTM, 2014). Therefore, 
applying mathematical content knowledge is more than retrieving memorized facts 
and procedures or performing algorithms; it refers to the readiness of a mathemati-
cal knowledge base (NCTM, 2014; Russel, 2000).

In the same way, as it has been strongly emphasized in the research on mathe-
matical problem solving, the ability to use and adapt multiple representations and to 
switch between representations is part of a cognitive flexibility that contributes to 
success in achieving a solution (Heinze, Star & Verschaffel, 2009). Good problem 
solvers generally develop very rich representations while solving problems. In fact, 
the flexibility of representation in mathematics is a characteristic of the solvers who 
choose appropriate and strategic representational forms, according to the task pro-
posed (Nistal, Van Dooren, Clarebout, Elen, & Verschaffel, 2009). Each form of 
representation expresses elements of the underlying reasoning, in line with the 
choice of a particular strategy or approach (Preston & Garner, 2003; Steele, 2008). 
So, ideational flexibility seems to have also parallels with the ability of creating and 
using powerful mathematical representations, even because the representational 
means highlight the developed reasoning and its expression. In postulating the 
inseparability between solving the problem and expressing the solution to others 
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(Carreira, 2015; Carreira, Jones, Amado, Jacinto, & Nobre, 2016), challenging 
problems should encourage both mathematical reasoning (including adapting and 
applying concepts, procedures and strategies) and mathematical communication 
(including the choice and use of representational means to support and express 
mathematical thinking).

9.3  A Tool for the Analysis of Creative Mathematical 
Solutions

The present study reconsiders the traditional psychometric model underlying the 
measuring of creativity and divergent thinking, namely, by acknowledging the well- 
established components of creativity. However, we intend otherwise to characterize 
the mathematical creativity of the products submitted by children participating in 
the mathematics competition SUB12. The focus is placed on the creative product, 
and the assessment of creativity is based on a consensual approach supported by an 
analytical tool aimed to assist in examining the solutions and interpreting their cre-
ative quality and variability.

As stated before, we will not be looking for exceptional mathematical talent; we 
aim, on the contrary, for the little-c creativity: the mathematical creativity in the 
solutions of children solving moderately difficult problems in effective ways.

The problems proposed in the competition can be solved in different ways and do 
not require the application of specific curriculum contents, giving opportunity and 
freedom for students to find their own resolution processes and even to invent their 
own strategies. To describe creative solutions, we will look at the dimension of orig-
inality as being related to the ability to generate unique resolutions within a given 
sample, taking into account the context of the competition and the level of profi-
ciency which is attainable by the participants. In other words, originality reflects the 
ability to produce unusual ideas and unusual ways to solve problems (Gomez, 2007; 
Sriraman, 2008). Another dimension to be considered is the knowledge- based acti-
vation, which relates to the use of concepts, procedures and mathematical notions, 
and also to the way of imagining and performing steps to solve the problem (Fig. 9.1). 
The activation of mathematical knowledge thus concerns the ability to use knowl-
edge in a clear and effective way, such as in devising strategies, as well as linking 
together ideas, concepts and procedures. Creative mathematical thinking is here 
connected to proficiency in mathematical concepts and procedures, especially when 
applied in novel ways to solve nonroutine tasks (Aizikovitsh-Udi, 2013).

The third dimension that the model postulates is the representational means acti-
vation. This dimension is linked to the ability to select, combine, create and use 
representations, according to the characteristics of the problem, supporting the rea-
soning followed and the expression of mathematical thinking (Heinze et al., 2009). 
Thus the flexible use of representational means involves conveying the reasoning 
that leads to a solution, the choice of strategic representations and the communica-
tion and expression of the resolution in clear and accurate ways (Fig. 9.2). The idea 
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of representational flexibility has to do with the fact that the same mathematical 
concept can be viewed from different perspectives and represented in different 
ways, but it also means that representations are forms of expressing and communi-
cating reasoning (Andresen, 2007; Gagatsis & Elia, 2004).

In short, the concept of creativity will be operationalized by the combination of 
the three dimensions: (i) originality, (ii) activation of mathematical knowledge and 
(iii) activation of representational means. In this system, originality plays a central 
role in ascribing creativity to a resolution.

Bearing in mind the three dimensions and their most relevant elements, the ana-
lytical tool shown in Table 9.1 offers a set of coded indicators and descriptors that 
summarize the essential elements attributed to each of the three dimensions of cre-
ativity, in a total of 15 descriptors (O1 to O5; K1 to K5; R1 to R5).

Mathema-
tical 
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Procedural 
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Strategic 
Knowledge

Conceptual 
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mathematical problem 
solving
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The above tool, in short the “O.K.R” model, is intended as a practical tool for 
highlighting evidence of mathematical creativity in students’ solutions to mathe-
matical problems in the specific context of the competition SUB12. Even though it 
has been tested and applied to several empirical data (Amaral, 2016; Amaral & 
Carreira, 2012) and has undergone successive refinements and revisions, it remains 
in an evolutionary state as further investigations and results are being assembled.

9.4  The Methodological Procedure

As part of a larger study on the creative participants’ solutions to nonroutine prob-
lems, within the Problem@Web Project, here we will focus on a set of 10 selected 
resolutions (within a population of 177) to problem #7 posed in the 2012/2013 edi-
tion of the SUB12 competition, which is transcribed below:

“All locked”
In a drawer we have 20 locks and 20 keys. Each key opens exactly one lock, but we 
do not know which key corresponds to each lock. To associate each key to the 
corresponding lock, we have to proceed by trial. Suppose that one trial means trying a 
key in a lock. In the worst-case scenario, what is the number of trials that we need to 
make to associate each key to the respective lock?
Do not forget to explain your problem-solving process.

Table 9.1 The analytical tool for describing the mathematical creativity of the resolutions

Indicators (code) Descriptors (code)

Originality (O) 1) effective and unusual resolution (O1)
2) uncommon and significant ideas (O2)
3) striking and effective strategy (O3)
4) clear and uncommon reasoning (O4)
5) distinctive and accurate form of communication (O5)

Mathematical knowledge 
activation (K)

1) relevant mathematical content according to givens and goal 
(K1)
2) insightful and efficient use of mathematical content (K2)
3) procedural knowledge used with skill and efficiency (K3)
4) conceptual knowledge expressed in formal or informal  
ways (K4)
5) display of the structuring stages of the resolution (K5)

Representational means 
activation (R)

1) use of appropriate representations (R1)
2) different representations cleverly interconnected (R2)
3) presence of personal and distinctive forms of representation 
(R3)
4) use of strategic representations for solving the problem (R4)
5)  representations supporting the communication and the 

reasoning (R5)
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The selection of the ten resolutions of the problem “All locked” was subject to 
the following criteria: its uniqueness, the mathematical knowledge revealed, the 
strategies developed and the forms of representation used. They were the result of 
filtering the most original ones from the complete set of resolutions (n = 177, 98 
from fifth graders and 79 from sixth graders), in line with the adopted concept of 
creativity in which originality is a decisive component, albeit not enough for the 
characterization of a creative product. In the assessment of the originality dimen-
sion, each resolution was evaluated within the population of the resolutions that 
were submitted to the competition. The two authors were responsible, through con-
sensual assessment, for the analysis of all the solutions that led to the selection of 
the 10 final ones; there was a complete agreement on the application of the estab-
lished criteria. The small number of selected resolutions is intentional, given the 
main purpose of highlighting, in a qualitative way and in a sample of productions, 
the nature of mathematical creativity in problem solving, according to the indicators 
of originality (within a target group), mathematical knowledge activation (which 
refers to concepts, procedures and strategies) and representational means activated 
(which includes the suitability and relevance of the representations used).

Content analysis is a method of data analysis supported by systematic proce-
dures of content description intended to determine the presence of certain expres-
sions or concepts in the discourse of participants and/or in documents produced by 
them. Through it, the researcher interprets the meaning of the concepts and relation-
ships between them, making inferences from the description of the data (Bardin, 
2004). It is generally based on systematic encodings that help to understand the 
phenomena beyond the common sense (Moraes, 1999).

The thematic content analysis adopted in this study requires at least three steps 
(Bardin, 2004). At first, a pre-analysis is performed to prepare the actions to be 
taken in the analysis itself. This involves defining the corpus of analysis (choice and 
organization of documents), the formulation of the goals and the development of 
indicators that support the final interpretation. In this study the analysis of the stu-
dents’ resolutions will be supported by the application of the above analytical tool 
consisting of three indicators and several descriptors specifically created for identi-
fying the mathematical creativity of submitted solutions in the particular context of 
the SUB12 competition.

The next phase is dedicated to the exploration of the material, which consists of 
the systematic transformation of the raw data to allow the description of relevant 
evidence. In this step, the operations of coding, classification and categorization are 
performed. For each resolution, the tool is used firstly to detect evidence of original-
ity and subsequently to identify traces of knowledge activation and representational 
means used, by briefly describing how the encoding was obtained based on the 
descriptors.

Since the analysis is based on a comparison of resolutions in the sample, we have 
set the symbols plus (+), minus (−) and zero (0) for labelling a greater or lesser pres-
ence of descriptors or its total absence in each of the selected solutions. To allow a 
more clear and concise picture of the codification of the mathematical creativity, the 
coded descriptors for each resolution are compiled in tables.
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After the encoded description of each resolution, a schematic summary is cre-
ated, using a three-dimensional graph (Fig. 9.3) representing the size of the three 
dimensions: originality (O), mathematical knowledge activation (K) and representa-
tional means activation (R). The number represented in each axis of the graph aims 
to give an impression of the breadth of that same dimension. That number is obtained 
by converting the symbolic codes assigned to each of the 15 descriptors, plus (+), 
minus (−) and zero (0), to the numerical values 1, 1/2 and 0, respectively. In this 
way, the size of a dimension is the sum of the values given to the descriptors that 
compose it, therefore ranging between 0 and 5, with half-unit increments. At the end 
of the analysis of the resolutions, a snapshot of the type of mathematical creativity 
arises from the tables of encoded descriptors and the three-dimensional graphs.

The third, and final stage, comprises the interpretation of the results obtained in 
all the collected material, and a comparative analysis aimed at highlighting the simi-
lar and different aspects.

9.5  The Analysis of the Solutions Using the Analytical Tool

The situation described in the problem “All locked” involves the discovery of a 
number pattern, drawing on inductive reasoning, since it is necessary to test, one by 
one, each key in all the locks to find the lock that matches it. The problem refers to 
an extreme situation (the worst-case scenario) where a key-lock-pair is found only 
on the last attempt – when all the locks, except one, have been tested and rejected. 
Inductive reasoning may suggest an ordering of the keys, k1, k2, …, k20, and pad-
locks, p1, p2, …, p20, and a strategy that sets out all the tests on the key k1 (19 pad-
locks), the key k2 (18 padlocks), etc., bearing in mind that only the last padlock 
matches the key that is being tested. Thus, one has to find the number of tests that 
will be performed with each key (or each lock) to arrive at the total number of trials. 
The result is given by the sum of the first 19 natural numbers. In solving the 
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problem, several ideas will be relevant to approach the situation from a mathemati-
cal perspective: (i) find a systematic method of counting the failed attempts; (ii) 
consider simpler situations (fewer keys and padlocks); (iii) make trials with some 
particular cases and look for a pattern; (iv) focus on an iterative process and look for 
a rule; and (v) create forms of pairing, such as a double-entry table.

In the set of selected resolutions, these ideas or approaches are present in various 
ways, different from case to case, which makes them unique and distinct yet sharing 
common points.

9.5.1  Coding of the Solution S1

The solution S1 (Fig. 9.4) is distinct from the others in the way it emphasizes an 
organized process of counting the failed attempts and in making use of a double- 
entry table to make the counting systematic, comprehensive and categorical.

1. I have read and understood. 
2. Givens: 20 locks and 20 keys. Each key opens a lock. 
3. Question: In the worst-case scenario, which is the number of attempts that we need to do 
to associate each key to the respective lock? 
4. Count: 190 
5. Answer: 190 attempts.

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  
1  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  X  
2  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  X  X  
3  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  X  X  X  
4  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  X  X  X  X  
5  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  X  X  X  X  X  
6  86  87  88  89  90  91  92  93  94  95  96  97  98  99  X  X  X  X  X  X  
7  100  101  102  103  104  105  106  107  108  109  110  111  112  X  X  X  X  X  X  X  
8  113  114  115  116  117  118  119  120  121  122  123  124  X  X  X  X  X  X  X  X  
9  125  126  127  128  129  130  131  132  133  134  135  X  X  X  X  X  X  X  X  X  
10  136  137  138  139  140  141  142  143  144  145  X  X  X  X  X  X  X  X  X  X  
11  146  147  148  149  150  151  152  153  154  X  X  X  X  X  X  X  X  X  X  X  
12  155  156  157  158  159  160  161  162  X  X  X  X  X  X  X  X  X  X  X  X  
13  163  164  165  166  167  168  169  X  X  X  X  X  X  X  X  X  X  X  X  X  
14  170  171  172  173  174  175  X  X  X  X  X  X  X  X  X  X  X  X  X  X  
15  176  177  178  179  180  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  
16  181  182  183  184  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  
17  185  186  187  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  
18  188  189  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  
19  190  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  
20  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  

Fig. 9.4 Solution S1 from a sixth grader
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9.5.1.1  Originality Description

The solution includes two main elements: a small text explaining successive steps of 
the solving process and a double-entry table with 20 columns and 20 rows, each of 
them labelled with the numbers from 1 to 20. The entries of the table are shadowed in 
grey and apparently serve as a continuous counting register of the failed trials, while the 
symbols X seem to represent the cases that are not to be considered in the counting.

In general, the resolution can be characterized by a median originality, according 
to the coding of its five descriptors. This is an effective yet unusual resolution, con-
sidering that a full counting of the attempts, one by one, is not a very expeditious 
approach. In this case, the effectiveness means having reached the desired result 
even if using mostly endurance (O1+). It is not obvious any uncommon mathemati-
cal idea in the approach (O2 absent); in any case, the strategy of using the consecu-
tive numbering of cells in a double-entry table strikes for its simplicity and the fact 
that it clearly works (O3+). As for the reasoning set out in the search for the solu-
tion, it is clearly based on finding a reliable and organized method of counting, 
which is materialized in the table; some lack of clarity is felt as the meaning of the 
“X” in the non-numbered entries is not explicit and can only be guessed. On the 
other hand, the lack of labels on the table rows and columns seems to indicate that 
it is indifferent (keys and padlocks are commutable) and it only matters the record-
ing of the pairs that are checked and do not work (O4−). In what concerns the pro-
cess of communicating the way to achieve the solution, it is a proposal that though 
revealing the essential elements does not offer an explanation of the entries of the 
table and of the way it was conceived to provide a counting method; therefore accu-
racy in the communication is not a strong quality (O5−). In short, the reasoning that 
led to the solution and the method of communicating and explaining the process 
somehow restrict the originality.

9.5.1.2  Knowledge Description

The most relevant mathematical knowledge to achieve the solution appears to be the 
understanding of the given conditions and the implementation of a comprehensive 
and systematic counting method of the failed attempts (K1+).

There is no significant use of mathematical content or procedural knowledge skil-
fully executed, namely, the possibility of using addition to get the total of trials; on 
the contrary, there is a long counting process of the trials, one by one (K2, K3 absent). 
The use of a double-entry table does reflect the notion that there is a combination 
process between keys and padlocks, and this is a useful form of translation of a cross 
product of two sets (K4+). Finally, the structure of the successive stages of the reso-
lution seems evident although the stage dedicated to count is not properly docu-
mented and the process of filling the double-entry table is not perfectly clear (K5−).

In short, in terms of knowledge, both conceptual and procedural, there is little 
proficiency in approaching the situation, without this invalidating an organized way 
to structure the search for the solution.
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9.5.1.3  Representational Means Description

In the domain of representation, it stands out the double-entry table and its comple-
tion with successive numbers starting at 1 and ending at 190, indicating all the failed 
attempts and their total. There is also a brief description of the process that basically 
reproduces the problem conditions and points to a counting procedure. The connec-
tion between the two elements is very weak, and the table meaning must be decoded 
by the reader. The double-entry table although not sufficiently explained is an 
appropriate representation to the purposes of the counting procedure (R1+). There 
are no other mathematical representations presented as the basic strategy stands on 
doing a thoroughgoing counting (R2 absent). In any case, the representation found 
for this purpose has a personal touch in supporting a process which is naive and 
somewhat trivial but which requires no technical expertise and turns out to be reli-
able (R3+). The use of a double-entry table is a strategic choice in developing a 
systematic representation of checking each pair of key lock, but, in addition, it 
serves as a means to count, bypassing the need for any calculations or other proce-
dures (R4+). Finally, the representation clearly supports the reasoning, i.e. the 
counting procedure, but its communicational ability is not fully harnessed in 
expressing the solving process (R5−).

In short, there is the resort to a strategic representation that supports a counting 
process, but that representation is handled poorly, and it shows some opacity.

9.5.1.4  Mathematical Creativity Description

According to the coding of the three indicators of mathematical creativity, below is 
a descriptive summary of the solution S1 (Table 9.2).

Table 9.2 Coded descriptors of creativity in the solution S1

Solutions

Indicators/descriptors
Originality (O) Knowledge (K) Representation (R)
O1 O2 O3 O4 O5 K1 K2 K3 K4 K5 R1 R2 R3 R4 R5

S1 1 0 1 1/2 1/2 1 0 0 1 1/2 1 0 1 1 1/2

9.5.2  Coding of the Solutions S2 and S3

The two solutions (Figs. 9.5 and 9.6) reveal approaches with many similar aspects. 
Both rely on a double-entry table to record the tests done with the various locks and 
keys, by organizing the entries in the form of successes or failures. The use of 
colours is common to both tabular representations. Also in each case, the pairs that 
are correct associations are highlighted in the diagonal. The main distinctions occur 
in terms of detail and also in the explanation attached to the double-entry table.
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I considered that the best case would be to get the right lock - key pairs at the first
attempt (20). On the contrary, in the WORST case the number of at tempts to 
open all the locks is [[(20×20)-20]/2]+20 = 210 attempts (this is assuming that 
each key that “does not fit” in a lock will not be used again in the same wrong 
lock). However if the requirement is “to associate each key to the respective 
lock” then it is just 210 attempts MINUS 20 hits = 190. (For instance, for the 
CAD1 it is required 19 attempts because even without doing the 20th test it is 
known that the remaining key is the right one!)

Note: CAD is short for CADEADO (Lock); CH is short for CHAVE (Key).

Fig. 9.5 Solution S2 from a sixth grader

Sum of trials: 19 + 18 
+ 17 + 16 + 15 + 14 + 
13 + 12 + 11 + 10 + 9 
+ 8 + 7 + 6 + 5 + 4 + 3 
+ 2 + 1 + 0 = 190
Or: using the average
number of trials for the 
20 keys, which is 9.5, 
we have 9.5×20 = 190
(this is to  confirm). 
This is the solution if 
we assume that we 
don’t check that each 
key fits in the last lock 
available. If we had to 
check that each key 
works in the last lock, 
then it would be 
another 20 trials, 
therefore 210 trials.

Fig. 9.6 Solution S3 from a fifth grader
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9.5.2.1  Originality Description

In both cases we are dealing with effective resolutions, but obviously not unusual 
due to the strong similarity between the two (and also with others in the bulk of 
answers submitted), in particular as regard to the tabular representation that each 
includes (O1− is assigned to both). Any of the two contains very interesting and 
different ideas. The solution S2 suggests an approach to compute the number of 
cells with crosses as a kind of “finding an area”, i.e. subtracting the diagonal to the 
total of cells and dividing the remaining by two. The solution S3 goes towards the 
successive addition of values because the table includes a column displaying the 
record of failed attempts for each verified key (O2+ is assigned to both).

Any of the strategies proves to be very clear and effective. However, the first of 
the solutions has a distinctive element in the computation method of the failed 
attempts, which captures the spatial arrangement of the cells in the table. Therefore, 
the originality of the strategy is perceived as more striking in the solution S2 (O3+) 
than in the solution S3 (O3−). There is also evidence, in both cases, of a correct 
reasoning and accuracy in the justifications. However, the solution S3 presents a 
more unusual approach, with a “geometric” flavour. Therefore, some differentiation 
is made between S2 (O4+) and S3 (O4−). As to the clarity and distinctiveness of 
communication, both cases are noticeable by the ability to generate verbal and non-
verbal elements that allow us to understand the solving process and its expression 
(O5+ assigned to both). These are two resolutions with a high degree of originality 
that take good advantage of the tabular representation, with a small lead of the solu-
tion S2 due to the curious form of calculation of the failed attempts.

9.5.2.2  Knowledge Description

Both resolutions reveal the use of valid and useful mathematical content to go from 
the givens to the goal. The number of keys and padlocks and their representation, in 
clearly labelled rows and columns in a table, are a suitable way to get a systematic 
and organized record of successes and failures. The calculation of the number of 
failed attempts is mathematically well founded in both cases (K1+ assigned to 
both). Still, there is a clear presence of a mathematical process related to the sum of 
the terms of a finite arithmetic progression in the solution S3 (K2+), something that 
is not recognized in the solution S2 (K2−). At the level of the efficient use of proce-
dural knowledge, both solutions show great skill and clarity in every detail (K3+ 
assigned to both). The same happens with the expressed conceptual knowledge 
(K4+ assigned to both), although revealing distinct conceptual models: the result as 
the sum of the average number of attempts ((0 + n − 1)/2) × n or as given by the 
formula (n2 − n)/2. It is also apparent a capacity to structure the resolution in both 
the solutions, although the solution S2 shows greater concern to verbalize an under-
standing of what is asked and what the answer means as opposed to other possible 
views of the situation (K5+) compared to the solution S3 that goes directly to the 
table construction and from there to the calculations (K5−).
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9.5.2.3  Representational Means Description

It can easily be seen that the representational power in both resolutions is very high. 
The representations are appropriate: in particular the double-entry table and the 
translation into the arithmetic language are done cleverly, which leads to see the two 
resolutions as quite balanced, more verbal the first and more figurative the second 
one (R1+ and R2+ assigned to both). Any of the tables has a distinctive feature, 
though both rely heavily on the use of colours and a few icons, which makes them 
rather similar (R3− assigned to both).

The tabular representations are clearly strategic to solve the problem as well as 
the use of synthetic calculations that are well set out (R4+ assigned to both). 
Lastly the use of well-constructed representations is a fundamental basis for the 
 development and expression of the mathematical reasoning in both the solutions 
(R5+ assigned to both). Thus, the ability to represent is a crucial point in these 
two solutions, contributing substantially to their level of representational 
activation.

9.5.2.4  Mathematical Creativity Description

In summary, we present a condensed description of the mathematical creativity of 
the two solutions in Table 9.3.

Table 9.3 Coded descriptors of creativity in the solutions S2 and S3

Solutions

Indicators/descriptors
Originality (O) Knowledge (K) Representation (R)
O1 O2 O3 O4 O5 K1 K2 K3 K4 K5 R1 R2 R3 R4 R5

S2 1/2 1 1 1 1 1 1/2 1 1 1 1 1 1/2 1 1
S3 1/2 1 1/2 1/2 1 1 1 1 1 1/2 1 1 1/2 1 1

9.5.3  Coding of the Solutions S4, S5, and S6

The three resolutions (Figs. 9.7, 9.8, and 9.9) have in common the fact that there is 
the search for a numerical pattern depending on the number of keys and locks to be 
taken, based on a recursive process that relates the next term of the sequence to its 
previous one. Thus, all the cases refer to the idea of starting with a small initial 
number of keys and locks and then successively going up a unit. At the end, the 
several terms of the sequence are added, and the answer is found.
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1. We have read the problem…
2. We know that there are twenty keys and twenty locks. Each key opens only one 
lock… 
3. And we have to know the number of trials in the worst case. 
4. And we remembered a problem of handshakes that was very similar…
5. Then we started to think about... the handshakes between people… Each 
handshake corresponds to a trial of a key in a lock… 
6. With 1 person there are no handshakes to give! 
7. With a new person, we get 2 persons and there is 1 handshake; 
8. If a 3rd person comes, that person gives two handshakes to the people who were 
there and who had already greeted. Total: 2 +1 handshakes. 
9. And so on... When a person comes, that person gives a handshake to the people 
who had already greeted... and then we add it. 
10. And now we represent this on a table.
11. Conclusion: at worst, with twenty keys and twenty locks, there are 190 trials .

Fig. 9.7 Solution S4 from a group of two fifth graders

9.5.3.1  Originality Description

From the standpoint of the effectiveness and the unique character, it is clear that the 
three resolutions are effective and convincing, but they share many commonalities. 
However, the solution S4 is distinguished by the insightful association to a related 
situation (the problem of the handshakes), and the solution S5 has the benefit of 
being the only one that does not thoroughly specifies all the terms of the sequence 
(O1+ assigned to both), so by comparison, this reduces the strength of the solution 
S6 (O1−). In terms of powerful and unusual ideas, it is clear that the solution S4 
stands out for the connection to the handshakes problem and for the way that con-
nection is understood and described. Likewise, the solution S5 lies on inductive 
reasoning and seeks to make a generalization leading to the sum of the terms of an 
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arithmetic progression (O2+ assigned to both). In the case of the solution S6, the 
relevant ideas are hardly evident (O2 absent). For an impressive and effective strat-
egy, it appears that all the three resolutions follow an inductive process by increas-
ing the number of keys and padlocks. Apparently, this strategy has a greater impact 
on the solution S4, because of the link to the handshakes lending meaning to the 
recursive model (O3+), than on the solutions S5 and S6 (O3−).

Concerning the reasoning revealed by the three resolutions, it seems clear that 
the solution S6 has several limitations in showing the way to get the table contents, 
that is, the justification of the calculations. We argue that this solution reveals the 
absence of this descriptor (O4 absent). When comparing the other two solutions, 
one realizes that the solution S4 is clearer in explaining the reasoning that leads to 
the calculations (O4+) than the solution S5 (O4−). Finally, with regard to the form 
of communication and expression of the solution, all the resolutions show precision 
and detail, although the solution S6 is less able to account for the entire process 
(O5−) than the solutions S4 and S5 (O5+).

9.5.3.2  Knowledge Description

Any of the resolutions demonstrates the use of relevant mathematical content to 
solve the problem, namely, the ability to formulate a numerical pattern that is recur-
sively developed and to represent this pattern in a table for the calculation of the 
failed attempts as a function of the number of keys and padlocks (K1+ assigned to 

To find an easy way to discover the answer to the problem, I considered a few 
cases. I started with the easiest situation, as if I had initially 2 locks and 2 keys and 
then I extended the process by adding more locks and keys. For that, I made a 
"table"...
We have to realize that in order to get the next number of trials we have to add the 
new trials to the previous number of trials... So when we get to the number 20 
(twenty locks, twenty keys), we just have to add all the trials. 
I have a way of adding many sequential numbers that give large sums; I hope you 
understand the way that I use. 
We have to do:
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19=(1+19)/2×19=190.
Ans: At worst, 190 trials are made.

Fig. 9.8 Solution S5 from a sixth grader
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all). The more efficient use of mathematical concepts emerges in the solutions S4 
and S5 (K2+) either by the recursive process or by the generalization that leads to 
the terms of an arithmetic progression. In the case of the solution S6, the use of 
mathematics is less efficient (K2−).

Regarding the procedural knowledge, the S5 solution stands out because it is the 
only one capable of proposing a formula from a set of particular cases and advanc-
ing to the sum without specifying all the iterations of the process (K3+). By con-
trast, the solutions S4 and S6 proceed with the completion of each successive 
addition, in a redundant way (K3−). As for the conceptual knowledge involved in 

1. I read the problem in order to understand it. 
2. When I was reading, I took the following information: 
-There are 20 locks and 20 keys that have been shuffled; 
-Every single key corresponds to a lock; 
3. Trying a key is the same as making an attempt; 
4. I want to know: “At worst, what is the number of attempts we need to do to 
associate each key to the respective lock?”. 
5. To make it easier, I started working with a small number of keys and an equal 
number of padlocks. 
6. Then I kept increasing the number of keys and padlocks and organized 
everything in a table. 
7. The table is the following. 
8. In short, the answer to the problem is: The number of attempts I need to do to 
make sure that each key finds its lock is 190 attempts. 

Keys 
and 
locks  

fomuSslairT
the 
trials  
001
112
31+23
61+2+34

011+2+3+45
511+2+3+4+56
121+2+3+4+5+67
821+2+3+4+5+6+78
631+2+3+4+5+6+7+89
541+2+3+4+5+6+7+8+901
551+2+3+4+5+6+7+8+9+0111

12  11+10+9+8+7+6+ 661+2+3+4+5
871+2+3+4+5+6+7+8+9+01+11+2131

14  13+12+11+10+9+8+7+ 191+2+3+4+5+6
15  14+13+12+11+10+9+8+7+6+5+4+3+2+1  105  
16  15+14+13+12+11+10+9+8+7+6+5+4+3+2+1  120  
17  16+15+14+13+12+11+10+9+8+7+6+5+4+3+2+1  136  
18  17+16+15+14+13+12+11+10+9+8+7+6+5+4+3+2+1  153  
19  18+17+16+15+14+13+12+11+10+9+8+7+6+5+4+3+2+1  171  
20  19+18+17+16+15+14+13+12+11+10+9+8+7+6+5+4+3+2+1  190  

Fig. 9.9 Solution S6 from a fifth grader

9 Mathematical Problem Solving Beyond School: A Tool for Highlighting Creativity…



206

the problem, all resolutions show the mastery of essential ideas that lead to the con-
struction of a numerical sequence and the discovery of a pattern that is used to get 
the answer (K4+ assigned to all). Finally, it is also clear, in all the solutions, an 
understanding of the steps that structure the resolution of the problem, in particular, 
the central role of the table created (K5+ assigned to all).

9.5.3.3  Representational Means Description

Moving to the indicator of representational means activation, we notice that the three 
resolutions show a high level of ability in the use of representations. All rely on 
appropriate representations, namely, tables and arithmetic language, to carry out the 
inductive reasoning that leads to the solution (R1+ assigned to all). Also the different 
types of representations are well connected, namely, in the solutions S4 and S5 (R2+), 
and only poorly interconnected in the solution S6 since the recursive formula dis-
played in the successive rows is not linked to any other elements of the resolution (R2 
absent). In any case, those are solutions in which the presence of distinctive represen-
tations is visible, both regarding the use of tables and the use of verbal and mathemat-
ical language (R3+ assigned to all). Likewise, the use of tables to express the ordered 
sequence with the increasing number of keys and locks is a strategic choice in all 
cases (R4+ assigned to all). Finally, the case of the solution S6 is one where the tabu-
lar representation is not totally effective as a way of communicating thinking (R5−), 
unlike what happens in the solutions S4 and S5 (R5+ assigned to both).

9.5.3.4  Mathematical Creativity Description

The three solutions S4, S5 and S6 that were coded above by means of the adopted 
descriptors are now described in terms of their mathematical creativity (Table 9.4).

Table 9.4 Coded descriptors of creativity in the solutions S4, S5 and S6

Solutions

Indicators/descriptors
Originality (O) Knowledge (K) Representation (R)
O1 O2 O3 O4 O5 K1 K2 K3 K4 K5 R1 R2 R3 R4 R5

S4 1 1 1 1 1 1 1 1/2 1 1 1 1 1 1 1
S5 1 1 1/2 1/2 1 1 1 1 1 1 1 1 1 1 1
S6 1/2 0 1/2 0 1/2 1 1/2 1/2 1 1 1 0 1 1 1/2

9.5.4  Coding of the Solutions S7, S8, S9, and S10

It is common to the four solutions (Figs. 9.10, 9.11, 9.12, and 9.13) the fact that all 
of them conceive ways of portraying the actual situation of trying the keys in the 
locks, one after the other. In a certain sense, these solutions offer a narrative of the 
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problem situation and in it the process to achieve the solution, by doing that in a 
more pictorial way or in a more verbal one.

9.5.4.1  Originality Description

The solution S7 shows in a schematic way a brief simulation of the situation for the 
first three keys and then generalizes the rule for the remaining ones. Likewise, the 
solution S8 uses pictures and thoroughly conveys the idea that the number of trials 
is decreasing by one for each new key. And the solution S9 presents a remarkable 
symmetric table showing in iconic terms how each new lock is successively hit in 
the last attempt. The solution S10 just explains in a very clear and remarkably sim-
ple way what happens in the process, and it also uses a table to present the ordered 
keys and the respective number of failed attempts. It is apparent that all the solutions 
are effective and unusual in their one way (O1+ assigned to all). The same may be 
said about the presence of relevant and original ideas to express the problem situa-
tion (O2+ assigned to all).

As to the strategy used, it is possible to see that the solution S7 is the most eco-
nomical one, and it easily provides the basis to move towards the general rule. 
Therefore the solution S7 is distinguished in this point (O3+) by comparison with 
the other three (O3− assigned to the other solutions). In what concerns the disclo-
sure of solid and clear reasoning, the solutions S7 and S10 demonstrate more clearly 
and simply the inductive reasoning that leads to the rule for the number of failed 
attempts (O4+ assigned to both). In fact, the solutions S8 and S9 tend to be more 
expensive in terms of developing pictorial representations to support the reasoning 
(O4− assigned to both). Finally, the solutions S7 and S10 are the most effective and 
accurate in terms of the communication process. They easily tell how the thinking 
is conducted and reinforce it with the help of simple representations (O5+ assigned 

I saw that it would 
always decrease one 
unit. Since there were 20 
locks, it means to 
decrease 1 unit 20 times.
19+18+17+16+15+14+ 
13+12+11+10+9+8+7+ 
6+5+4+3+2+1+0 = 190 
attempts. 

Fig. 9.10 Solution S7 from a sixth grader
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With the key 1, in the worst case, I only get a hit on the 20th lock, so I make 19 attempts

Now I only have 19 locks and 19 keys and I make new trials, and in the worst case I only get 
a hit on the 19th lock – I make 18 attempts

I keep making attempts, now with 18 keys and 18 locks and in the worst case I get a hit in 
the 18th lock  – I make 17 attempts

Now I only have 17 locks and 17 keys and I make new trials and in the worst case I get a hit 
on the 17th lock – I make 16 attempts

Now I only have 16 locks and 16 keys and I try again and in the worst case I get a hit on the 
16th lock – I make 15 attempts

Each time I use a new key, since it is always in the worst possible case, I hit the last lock 
(that does not count as a trial for it is certain that it’s the key to that lock), so I still have to 
try with the remaining 15 keys:

Key 6 – 14 trials Key 11 – 9 trials Key 16 – 4 trials
Key 7 – 13 trials Key 12 – 8 trials Key 17 – 3 trials
Key 8 – 12 trials Key 13 – 7 trials Key 18 – 2 trials
Key 9 – 11 trials Key 14 – 6 trials Key 19 – 1 trials
Key 10 – 10 trials Key 15 – 5 trials Key 20 – 0 trials

Then I added the number of trials:
19+18+17+16+15+14+13+12+11+10+9+8+7+6+5+4+3+2+1+0 = 190 trials.
ANSWER: At worst, the minimum number of trials I have to do to associate each key to the 
respective lock is 190 trials.

X         X         X        X        X        X         X         X         X          X         X         X         X         X         X          X         X           X X        V

Key 1

X         X         X        X        X        X         X         X         X          X         X         X         X      X         X          X         X           X   V

Key 2

X         X         X        X        X        X         X         X         X          X         X         X         X         X         X          X         X        V

Key 3

X         X         X        X        X        X         X         X         X          X         X         X         X      X         X          X          V

Key 4

X          X         X        X       X      X         X        X         X          X          X         X        X          X          X         V

Key 5

Fig. 9.11 Solution S8 from a fifth grader
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In the worst case, the 
number of attempts will 
be 190. I made this chart 
to help explain my rea-
soning. I concluded that 
the number of attempts in 
each row is equal to the 
number of locks to open, 
minus one. 
In the first row there are 
nineteen attempts, be-
cause after nineteen at-
tempts, all unsuccessful, 
the twentieth is no longer 
an attempt, it is a cer-
tainty, because now we 
are sure that this key be-
longs to the lock, since 
the others did not. In the 
second row there are 
eighteen attempts, since 
the eighteenth attempt is 
the last one before the 
lock that was already
opened. They are eight-
een because the lock that 
was previously opened 
no longer counts, since
we already know its cor-
responding key. And so 
on, until we have just two 
locks and one failed at-
tempt.

Locks Nr of 
attempts
19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Total 190

Fig. 9.12 Solution S9 from a fifth grader

to both). The other solutions although interesting and effective in the communica-
tional facet reveal a more intricate style in the expression of the solution (O5− 
assigned to the others).

9.5.4.2  Knowledge Description

The four resolutions reveal considerable mobilization of mathematical concepts 
related to formulating numerical sequences, both through recursive reasoning and 
as a relationship between the number of attempts and the number of keys or 
padlocks.
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In this sense, it seems legitimate to consider that all resolutions exhibit relevant 
mathematical knowledge that take into account the givens and the goal (K1+ 
assigned to all). Likewise, this knowledge is used efficiently and insightfully (K2+ 
assigned to all). In what concerns the application of specific techniques or proce-
dures, it is noted that all these resolutions make use of the simple addition of the 
successive values of the sequence (terms of progression). For this reason, a major 
level of procedural skill is not detected (K3− assigned to all). In contrast, the con-
ceptual models developed in the resolutions are adequate and clearly lead to obtain-
ing an arithmetic progression whose terms are essential for calculating the desired 
result (K4+ assigned to all). Finally, all the resolutions show how the approach 
taken is organized in a number of steps leading to the final calculation that provides 
the answer (K5+ assigned to all).

9.5.4.3  Representational Means Description

At the level of representational means activated, there seems to be more pronounced 
distinctions between the four resolutions. In any case, it is clear that all of them 
resort to multiple and appropriate representations (R1+ assigned to all). Besides, all 
the resolutions show the interconnections of different representations in the narra-
tive that expresses the solving process (R2+ assigned to all). No doubt the personal 
and distinctive touch of the representations used is also a trademark of any of the 
four resolutions. However, the solutions S7 and S8 propose illustrative schemes that 
have many similarities, thus reducing their differentiation (R3−) compared with the 
solutions S9 and S10 (R3+).

Initially, I have 20 keys for 20 locks.
I will number the keys from 1 to 20.
For the key #1 I have 20 locks, of 
which 19 are wrong and only one is 
right.
So at worst I make 19 attempts for the 
key #1, and after those attempts I as-
sociate it to the correct lock.
Now the key #2 has only 19 locks 
available, so I make 18 attempts to get 
to the right lock, and so on, as shown 
in this table.
Answer:
To associate all the keys to their locks
thereby the attempts needed are 190 
in total (1+2+3+4+5+....+ 18+19).

keys attempts locks 
1ª 19 20 
2ª 18 19 
3ª 17 18 
4ª 16 17 
5ª 15 16 
6ª 14 15 
7ª 13 14 
8ª 12 13 
9ª 11 12 
10ª 10 11 
11ª 9 10 
12ª 8 9 
13ª 7 8 
14ª 6 7 
15ª 5 6 
16ª 4 5 
17ª 3 4 
18ª 2 3 
19ª 1 2 
20ª 0 1 

Fig. 9.13 Solution S10 from a fifth grader
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At the level of the strategic power of the representations used, we highlight the 
solution S7 for the use of an instructive diagram that illustrates a small number of 
tests but suggests its extension for the following cases (R4+). Likewise, the iconic 
representation involving a table of unpaired and paired padlocks proposed in the 
solution S9 has a very important role in the visualization of the rule and the apparent 
symmetry between the mismatches and hits (R4+). In the solutions S8 and S10, the 
forms of representation used (diagram and covariation table) are important but have 
a somewhat redundant character in that they thoroughly display the calculation of 
all the terms of the sequence (R4− assigned to both). Finally, the various types of 
representations chosen and used in these solutions play a fundamental role in sup-
porting the communication of the reasoning (R5+ assigned to all).

9.5.4.4  Mathematical Creativity Description

For a summary of the mathematical creativity identified in the solutions S7, S8, S9, 
and S10, Table 9.5 presents the relative magnitudes of the three indicators based on 
the coding of the solutions.

Table 9.5 Coded descriptors of creativity in the solutions S7, S8, S9, and S10

Solutions

Indicators/descriptors
Originality (O) Knowledge (K) Representation (R)
O1 O2 O3 O4 O5 K1 K2 K3 K4 K5 R1 R2 R3 R4 R5

S7 1 1 1 1 1 1 1 1/2 1 1 1 1 1/2 1 1
S8 1 1 1/2 1/2 1/2 1 1 1/2 1 1 1 1 1/2 1/2 1
S9 1 1 1/2 1/2 1/2 1 1 1/2 1 1 1 1 1 1 1
S10 1 1 1/2 1 1 1 1 1/2 1 1 1 1 1 1/2 1

9.6  Discussion and Conclusions

Resuming the aim of this study, it was intended to obtain a descriptive view of the 
mathematical creativity in problem solving, drawing on an analytical tool that seeks 
to guide the identification of features pertaining to the three dimensions: originality, 
knowledge activation and representational means activation. Given the results of the 
data analysis, the analytical tool reveals potential for describing, in a qualitative and 
comparative way, the creativity of the solutions in the context of the SUB12 
competition.

In conclusion, the three-dimensional representations presented in Fig. 9.14 show 
some diversity in the creativity manifested in the ten selected resolutions, which 
indicates that the mathematical creative product assumes a heterogeneous character 
in an inclusive competition. Indeed, this is a competition that aims to include a wide 
range of young students with different levels of aptitude and achievement in school 
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Fig. 9.14 The 3-D graphs illustrating the creativity of the ten selected solutions
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mathematics. From observing the 3-D representations, one realizes that the boxes 
have different shapes and that their largeness is quite discernible in some cases, such 
as the cases of the solutions S1 and S6, but not immediately graspable in other 
cases. One possibility of making that distinction more evident is to consider the 
solid volume of the box, which is why this information is visible in the legend of 
each graph in Fig. 9.14.

The values of the volumes reveal that the top three solutions in terms of mathe-
matical creativity are, in descending order, the solutions S4, S7, and S5. It is note-
worthy that such volumes are the closest to the maximum volume (125 volume 
units) and therefore to the largest cube. This tells us how important the convergence 
between the three indicators of creativity is. In other words, mathematical creativity 
is based on the simultaneous contribution of the three dimensions considered. None 
of them is irrelevant and negligible, and none can alone explain the mathematical 
creativity of the solutions. Thus, the creativity cannot be reduced to the originality, 
because elements of novelty are not enough to qualify a creative product. On the 
contrary, it is clear from the results that the originality of a resolution is not detached 
from the activation of mathematical knowledge or the representational means. The 
latter are important indicators related to the interpretation and understanding of the 
problem as well as to the creation and representation of interesting, effective and 
relatively unusual mathematical approaches to the problem situation.

The mini-c creativity expressed in this set of resolutions is characterized by being 
associated with unique products, which acquire meaning through the mathematical 
knowledge deployed and the usefulness of the involved representational resources, 
since originality alone does not ensure ingenious results (Runco & Jaeger, 2012).

In this problem, the originality was supported by the ability to create interpretive 
tables of the situation, as a major component of several strategies, together with the 
ability to organize and explore data through them, which was combined with other 
numerical, iconic and verbal representations. There were cases in which the origi-
nality came together with the ability of inferring numerical patterns from other 
types of representations, including schematic drawings of the process of trying each 
key in a set of locks. In general, higher levels of originality tend to appear in inter-
esting approaches in which the representational systems carry genuine authorship 
(Preston & Garner, 2003).

The knowledge activation is a critical component of creativity that has to do with the 
mathematical proficiency in problem solving, favouring the application of methods, 
strategies and procedures efficiently and accurately (NCTM, 2014). The way this indi-
cator highlights the nature of mathematical creativity relates to the activation and use 
of concepts and potentially useful mathematical procedures, strategically combined 
and structured, as well as with the ability to clearly express mathematical reasoning.

As several researchers have argued, prior knowledge influences the understand-
ing of the problems and the choice of solving strategies. In fact, prior knowledge 
and previous experience are all that a solver has to design a strategy to attack a 
problem (Mayer, 2006; Sternberg, 2007). When individuals can take advantage of 
prior knowledge, they do not need to spend cognitive effort in an attempt to recon-
struct necessary procedures during the course of a resolution. For example, if some-
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one has automated procedures and arithmetic concepts, then that person can focus 
on more critical issues, including the preparation of a plan, from which a creative 
solution may arise (Mayer, 2006). If students have a good repertoire of concepts and 
strategies, they can use it to build creative solutions; for example, through thinking 
by analogy, the resolution of a new problem may remind another problem that is 
then used as a reference to develop a method for solving the new one (Mayer, 2006). 
A good example of this is the solution S4 that makes an insightful connection to the 
famous problem of the handshakes, showing how the mathematical knowledge base 
is linked to a high capacity to represent and to great novelty.

The results show that the majority of the resolutions entail proficiency levels that 
contribute to the creativity of those solutions. Either way, it is important to refer the case 
of the solution S1, in which the lower mathematical knowledge activation has an impact 
on the overall creativity, whereas the solution S6 despite a higher level of knowledge 
activation has little originality which impoverishes the overall creativity. In short, a high 
proficiency in the domain of mathematics is not all you need to achieve a highly cre-
ative solution. Instead, knowledge activation must be in line with the two other indica-
tors in order to be an effective component of mathematical creativity (Guerra, 2007), in 
particular to ensure a suitable and interesting application of mathematical knowledge.

Representational ability has also apparent consequences in the level of creativity 
achieved in the field of problem solving. In view of the proposed problem, the acti-
vation of representational means is expressed by the adequacy and articulation 
between mathematical representations, which allow representing the problem con-
ditions in a mathematical way and support a strategy to solve the problem. The 
representational ability is revealed in the way the representations were operational-
ized in each case, were tuned and adapted to the goal of the problem and played a 
role in expressing and revealing the reasoning clearly. Representational flexibility is 
one of the important skills in mathematical problem solving which translates into 
imaginative and inventive capacity (Ainsworth, 1999; Benko & Maher, 2006). The 
various representations chosen by the solvers often showed a strategic character, in 
the sense that they have shaped an approach: a double-entry table to register a pro-
cess of cross product, or a function table relating the number of keys and padlocks 
to the number of attempts in supporting inductive thinking, or pictorial schemes that 
seek to depict the process of trying out the keys in suggesting a pattern or a rule for 
calculating the total of attempts. In many cases, the representations were themselves 
invested with originality or led to original ideas.

Therefore, it should be noted that in general, the selected solutions showed a high 
level of representational flexibility. This salient features leads to stress the apparent 
centrality of this dimension for mathematical creativity in problem solving. In par-
ticular, it seems plausible that the freedom to design and build personal approaches 
based on the more readily available representations allowed students to generate 
significant ideas and make sense of the problem (Benko & Maher, 2006).

In a final comment, it must be said that the description of mathematical creativity 
of the solutions is the result of applying the “O.K.R” model where the definition of 
categories is admittedly loose and not rigid and whose implementation involves a 
subjective interpretation of the data, far from being a neutral procedure (Guerra, 
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2006). Thus, the description of the 10 solutions is not expected to be exact nor it 
assumes the purpose of a creativity measurement. However, despite different pos-
sible interpretations, the indicators have a reasonable analytical power; in 
 highlighting the mathematical creativity of the solutions, it suggests that it is not 
merely a question of novelty but rather depends on the activation of mathematical 
knowledge or even more likely on the activation of representational means.
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Chapter 10
Solving a Task with Infinitely Many 
Solutions: Convergent and Divergent 
Thinking in Mathematical Creativity

Michal Tabach and Esther Levenson

10.1  Introduction

The field of creativity in general, and mathematical creativity in particular, has become 
a growing arena for innovative research, as evidenced, for example, by two recently 
published special issues (Leikin & Pitta-Pantazi, 2013; Singer, Ellerton, & Cai, 2013). 
So far, these research efforts have not yielded a single acceptable definition of creative 
mathematical thinking in general or of creative mathematical thinking in the school 
context in particular (Mann, 2006). Nonetheless, researchers generally agree that 
problem-solving has the potential to elicit creative mathematical thinking (e.g. Silver, 
1997). Specifically, “assignments in which a student is explicitly required to solve a 
mathematical problem in different ways” (Leikin, 2009, p. 133) may help elicit cre-
ative thinking. Indeed, many studies aimed at investigating creative mathematical 
thinking have used this explicit instruction as a tool for eliciting and evaluating cre-
ative mathematical thinking (e.g. Kattou, Kontoyianni, Pitta-Pantazi, & Christou, 
2013; Tabach, & Friedlander, 2013; Tsamir, Tirosh, Tabach, & Levenson, 2010).

Often, researchers use a task that has one final solution outcome and several strate-
gies by which that outcome can be found. Even when one considers open- ended tasks, 
the number of solution outcomes is varied but finite. Take, for example, a typical 
open-ended task: Which of the following numbers is different from the others? If pos-
sible, try to find many possible cases or answers (Kwon, Park, & Park, 2006). In this 
case, each number can be considered to be unique. Hence the number of solution 
outcomes is equal to the number of numbers presented. More than one reason may 
exist as to why a particular number is unique, though again the number of variations 
is finite. What would happen if there were an infinite number of  solution outcomes? 
Could such a problem also be used to elicit and evaluate mathematical creativity?
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The current study examines an extreme case of a task with infinitely many 
mathematical solution outcomes, in which participants are explicitly asked to solve 
the problem in more than one way. Such a task was administered to adults with a 
variety of mathematical backgrounds and resources (Schoenfeld, 1985). The first 
aim of this study is to explore whether indeed such a task is a suitable vehicle for 
eliciting and evaluating creative thinking. Many times, creative thinking is associ-
ated with divergent thinking (e.g. Torrance, 1974). In turn, divergent thinking may 
be evaluated in terms of fluency, flexibility, and originality of outcomes (e.g. Leikin 
& Lev, 2007). On the other hand, problem-solving, including creative problem-
solving, is also linked with convergent thinking (Lin & Cho, 2011). Taking into 
consideration that a task with an infinite amount of solution outcomes may lead to 
excessive divergent thinking, the second aim of this study is to investigate partici-
pants’ solutions in terms of both divergent and convergent thinking (Guilford, 
1973). Finally, the third aim of this study is to use the outcomes created by all 
participants to highlight several methodological questions regarding outcome 
assessment in terms of fluency, flexibility, and mathematical creativity.

10.2  Theoretical Background

10.2.1  Mathematical Problems as Relative Phenomena

The use of mathematical problems to elicit creative mathematical thinking 
necessitates being able to discern routine algorithmic tasks from problems. 
Routine algorithmic tasks are used to drill and practise acquired skills and tech-
niques. Nevertheless, “a task in which the student is interested and engaged and 
for which he wishes to obtain a resolution; and for which the student does not 
have a readily accessible means by which to achieve that resolution” (Schoenfeld, 
1985, pp. 87–88) constitutes a problem for the student. Note that the first part 
of Schoenfeld’s definition refers to emotional aspects of interest and engage-
ment. The definition does not exclude the possibility of being engaged with an 
algorithmic activity. The second part of the definition, however, distinguishes 
mathematical problems from routine algorithmic problems, indicating that the 
learner does not have a ready-made algorithm to tackle the task. In fact, being 
engaged with a problem involves searching for a strategy by which the problem 
can be solved.

This important second distinction in Schoenfeld’s definition highlights another 
aspect of the task as a problem – its relative nature. That is, the same task may be a 
routine activity for one student and a problem for another. Moreover, for a task to 
become a problem, students need to become engaged with it. That is, their mathe-
matical knowledge should be sufficiently developed to allow them to become 
engaged with the problem. In other words, for a task to become a mathematical 
problem, the problem-solver must be taken into consideration as well.
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10.2.2  Creativity as a Relative Phenomenon

Creative mathematical thinking can be considered to be the ability to solve problems 
or to develop structural thinking while referring to the logical-deductive nature of a 
domain that has connections to mathematics (Ervynck, 1991). For professional 
mathematicians, creative mathematical thinking, like creativity in any other domain, 
involves “the ability to produce original work that significantly extends the body of 
knowledge” and that is expected to open up “avenues of new questions for other 
mathematicians” (Liljedahl & Sriraman, 2006, p. 18). This is akin to what Kaufman 
and Beghetto (2009) called Pro-C creativity or professional creativity. This type of 
creativity represents a professional-level expertise in a creative area that is both 
developmental and effortful. Taking this to a higher-level, Big-C creativity consists 
of clear-cut, eminent creative contributions that have a significant and lasting contri-
bution to society.

Of course, one can hardly expect to describe the achievements of K-12 students 
in such terms. Little-c creativity underscores the important role that creativity plays 
in everyday life and points to the importance of identifying and nurturing creativity 
in everyday settings such as schools (Kaufman & Beghetto, 2009). According to 
Liljedahl and Sriraman (2006), school-level mathematical creativity includes 
unusual and/or insightful solutions to a given problem or viewing an old problem 
from a new angle, raising new questions and possibilities. As such, creativity in 
K-12 mathematics can be evaluated with respect to students’ previous experiences 
and the performance of their peers (Leikin, 2009). In other words, like mathematical 
problems, creative mathematical thinking is relative to the participants.

Creativity may also be relevant to the task at hand. Silver (1997) refers to cre-
ative mathematical thinking in relation to problem-solving. He claims that creative 
mathematical thinking can be developed by working on relevant mathematical 
activities. In fact, he considers creative mathematical thinking to be relevant for all 
students. Silver (1997) argues that “mathematics educators can view creativity not 
as a domain of only a few exceptional individuals but rather as an orientation or 
disposition toward mathematical activity that can be fostered broadly in the general 
school population” (p. 79). The use of open-ended problems with different solution 
methods or solution outcomes may provide learners with valuable experience in 
analysing and creating new solutions on the basis of known solutions.

Solving problems in multiple ways is a widely recognized tool for developing 
connectedness of mathematical knowledge (NCTM, 2000; Polya, 1973; Schoenfeld, 
1985). Silver, Ghousseini, Gosen, Charalambous, & Font Strawhun (2005) empha-
sized that “different solutions can facilitate connection of a problem at hand to dif-
ferent elements of knowledge with which a student may be familiar, thereby 
strengthening networks of related ideas” (p. 288). Mathematical activities with the 
potential to promote creative mathematical thinking can be used to evoke, condense, 
and reorganize prior knowledge (Mumford, Baughman, Maher, Costanza, & 
Supinski, 1997). Specifically, open problems such as construction problems may 
elicit learning because (a) creative production requires learners to reactivate their 
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prior knowledge and use it to derive the necessary parts relevant to the task; (b) as 
learners make and verify conjectures, they actively construct their knowledge; and 
(c) while evaluating their own conjectures and reorganizing their knowledge, learn-
ers also develop a general problem-solving strategy. Ervynck (1991) claims that 
creative mathematical thinking allows individuals to build a schema from which 
they can create an unlimited number of connections that can lead from one point in 
the schema to any other desirable target.

Finally, mathematical creativity, as other forms of creativity, may be related to 
the environment. Davies et al. (2012) describe the learning environment as extend-
ing “beyond the physical architecture of the space in which learning takes place … 
to encompass psychosocial and pedagogical features … [and includes] the influence 
of places and people outside of school” (Davies et al., 2012, p. 80). Thus, in addition 
to flexible use of physical space, an environment which encourages creativity pro-
vides a balance between structure and freedom, allowing participants to take risks 
with minimal pressure. The atmosphere of such an environment is of mutual respect 
for all participants that incorporates open dialogue. An open environment may also 
encourage participants to be open to new experiences, which in turn may be related 
to intrinsic motivation, engagement in creative processes, and finally to improved 
creative performance (Tan, Lau, Kung, & Kailsan, 2016).

10.2.3  Divergent and Convergent Thinking 
in Problem-Solving

Two thinking processes that play a major role in problem-solving have been identi-
fied as a basis for creative thinking (Guilford, 1973): convergent thinking and diver-
gent thinking. Convergent thinking takes place when the solver logically strives to 
find a solution to a problem. In other words, the solver seeks to understand the logi-
cal connections among knowledge elements in the problem and to apply the relevant 
standard algorithm. Convergent thinking is usually not associated with creativity. 
Haylock (1987), for example, linked convergent thinking with narrow thinking that 
relies on routine processes.

Divergent thinking, on the other hand, is often thought of as the hallmark of cre-
ative thinking. It is often measured in terms of the fluency, flexibility, and originality 
of ideas produced. Silver (1997) related fluency to “the number of ideas generated 
in response to a prompt” (p. 76). Flexibility, according to Silver (1997), refers to 
“apparent shifts in approaches taken when generating responses to a prompt” (p. 76). 
Leikin (2009) evaluated flexibility by assessing if different solutions employ strate-
gies based on different representations (e.g. algebraic and graphical  representations), 
properties, or branches of mathematics. Flexibility may also be thought of as the 
opposite of fixation. In problem-solving, fixation is related to mental rigidity 
(Haylock, 1997). Overcoming fixation and breaking away from stereotypes are 
signs of flexible thinking.
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Not all divergent thinking leads to creativity. Runco (1996) distinguished 
between divergent thinking at the service of creative thinking and divergent thinking 
as the production of random useless ideas. In his view, creativity is “manifested in 
the intentions and motivation to transform the objective world into original interpre-
tations, coupled with the ability to decide when this is useful and when it is not” 
(p. 4). In other words, Runco adds the aspect of discretion. With regard to problem- 
solving, divergent thinking allows the solver to seek and find different solution 
paths. However, the intrapersonal evaluation of ideas is necessary in order to dif-
ferentiate between useful and unproductive paths. In other words, divergent think-
ing, along with convergent thinking, may be necessary for creativity.

Another view of divergent and convergent thinking describes them each as two 
different but related creative processes: divergent-exploratory and convergent- 
integrative (Storme et al., 2015). Divergent thinking tasks generate many brief solu-
tions to a problem, while integrative thinking tasks generate one elaborate solution 
to a problem. As opposed to divergent thinking tasks, convergent tasks usually call 
for the participant to elaborate on one single idea, without diverging from that idea. 
Several researchers consider these two types of thinking processes as involving dif-
ferent neurocognitive processes (e.g. Storme et al., 2015) and thus take each into 
account when investigating creativity.

10.2.4  Problem-Solving and Mathematical Creativity

Several studies have focused on problems that have more than one final solution or 
problems in which an explicit request was given to solve it in several ways. In the 
following we briefly report on some of these studies, organized according to partici-
pants’ age group, starting with the youngest. The ability of 5-year-old children to 
handle a task for which there is more than one solution method and more than one 
correct outcome was evaluated in an interview setting (Tsamir et al., 2010). The 
results show that the children were able to find more than one solution and more 
than one strategy, including the solution involving two empty sets, which is known 
to be problematic even for mathematics teachers (e.g. Linchevsky & Vinner, 1998). 
Hayne and Tabach (2014) used problems embedded in a story context and a techno-
logical environment to examine whether a sequence of such tasks would develop the 
knowledge of 6-year-old children regarding equality and whether it would promote 
their creative mathematical thinking. The results show that indeed the children’s 
answers were beyond the researchers’ expectations, based on their early age.

Maher and Martino (1996) described a longitudinal study in which students engaged 
in a task of building different towers at a height of three cubes, when two colours were 
available. This task was given to the same students once a year for five consecutive 
years, from grade 1 and on. The results suggest that encouraging students to justify their 
solutions as they engage in such a task may foster the development of the notion of 
mathematical proof. A different longitudinal study approach was taken by Kattou et al. 
(2013). In an attempt to articulate and empirically test a theoretical model that predicts 
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abilities in mathematics requiring creative potential, the researchers administered a 
problem-solving questionnaire to elementary school students from grades 4 to 6 to 
evaluate their creative mathematical thinking. The results showed that mathematical 
creativity is a predictor of mathematical ability. Similarly, problems with an explicit 
request to solve the problem in several ways were used as a tool in evaluating students’ 
creativity levels. The study examined whether indeed becoming more knowledgeable 
in math, as expressed in advancing from grades 4 to 9, would be reflected in measures 
of creativity while engaging with the same problem (Tabach & Friedlander, 2013). 
Results show that the solution space of eighth grade students became more narrowed 
down, possibly because they had begun to study algebra. This tendency was no longer 
seen in the solution spaces of ninth graders.

In the high school context, Levav-Waynberg and Leikin (2009, 2012) used prob-
lems with an explicit request to solve the problems in several ways as a tool for 
evaluating mathematical thinking in geometry. These problems served a double 
role – didactic and diagnostic. Tenth graders learned geometry while proving theo-
rems in multiple ways as a classroom norm. The problems were also used as a tool 
for evaluation, by comparing the individual and collective solution spaces. The 
authors claim that such problems can be used for multiple purposes: (1) “as a diag-
nostic research instrument to assess students’ mathematical knowledge and creativ-
ity”, (2) “to measure and follow the development of mathematical knowledge and 
creativity criteria”, (3) “for comparative research”, and (4) “as a research instru-
ment for the verification of theoretical hypotheses such as the relations between 
mathematical knowledge and flexibility or between mathematical creativity and 
original reasoning” (2012, p. 330).

Problems with an explicit call to solve them in several ways were also used in 
professional development courses for prospective (Guberman & Leikin, 2013) and 
practising (Lev-Zamir, & Leikin, 2011, 2013) mathematics teachers. The problems 
play a dual role – in research and as didactic tools. In all the studies mentioned 
above, the number of strategies in using the problems and the number of correct 
outcomes for any given problem were finite. In the current study, in contrast, the 
task has infinitely many outcomes, as demonstrated in the methods section.

10.2.5  Evaluating Creative Mathematical Thinking

The application and assessment of routine procedures and algorithms are widely 
documented in the literature (see, e.g. Ayres, 2000; Demby, 1997; Kieran, 1981). In 
contrast, the essence and measurement of creative problem-solving are different. 
Krutetskii (1976) argued that problems with several solution methods allow for 
examining the flexibility of an individual’s mathematical thinking by investigating 
moves from one mental operation to another.

Creative mathematical thinking can be analysed along several dimensions 
(Guilford, 1973; Torrance, 1974) with respect to students’ abilities when offering 
strategies and solutions for solving a mathematical problem: fluency, flexibility, and 
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originality. Fluency is the ability to provide a number of correct solutions for a given 
problem within a specific time limit. Fluency is related to an individual’s active and 
available knowledge with respect to a problem. Flexibility is the ability to modify 
one’s way of thinking regarding a given task. The solution strategies may derive 
from different mathematical domains or different mathematical principles. 
Originality is the ability to relate to a given problem in a novel way, producing solu-
tions that are unexpected, unusual, or uncommon to the problem at hand. Some 
researchers see fluency, flexibility, and originality as manifestations of divergent 
thinking (Kwon et al. 2006; Levenson, 2011).

10.3  Methods

As stated above, the general aim of this study is to examine the potential of a math-
ematical task with infinitely many solutions to be used as a tool for evaluating cre-
ative mathematical thinking. The task was to draw as many different1 polygons as 
possible with an area of 15 units in a period of 5 min. The task was taken from a 
previous study conducted with elementary school students (Swisa, 2015).

10.3.1  Settings

The task was administered to an international group of adults comprising 23 
researchers in mathematics education who all attended one session at the Problem@
Web Conference. The researchers varied in terms of background, but all had at least 
a master’s degree in mathematics or mathematics education, and many of them had 
a PhD in one of these domains. Each participant received one sheet of grid paper 
and was asked to answer anonymously. More sheets were available on demand. The 
time limit for the researchers to complete the task was 5 min, which is a relatively 
short period of time, and the aim was to consider initial thinking directions. Next we 
consider the expert solution space for this task.

10.3.2  Solution Spaces for the Task

As the task is about polygons, we begin with polygons with the least possible num-
ber of sides, namely, triangles. Our first candidate is a triangle with a base length of 
10 units and an altitude length of 3 units. Next, we draw a line parallel to the base at 
a distance of 3 units; any point on this parallel line can be linked by two segments 

1 It was clear for participants in this study that “different” polygons referred to noncongruent 
polygons.
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to the endpoints of the base, creating infinitely many different triangles with an area 
of 15 square units. The cardinality of this set of triangles is א (aleph). The same 
process of constructing a set of triangles can be carried out with any positive base 
length b and altitude length a, such that a × b = 30 (see Fig. 10.1a for illustration). 
The cardinality of the set of all base lengths is also א (aleph), and hence the cardi-
nality of the set of all triangles satisfying the requirement (area of 15 square units) 
is א = א × א (aleph × aleph = aleph).

We then turn to four-sided polygons, beginning with rectangles. Each positive 
side length c yields one rectangle of area 15, namely, one whose second side length 
is d such that c × d = 15. Hence the cardinality of the set of all rectangles of area 15 
is also א (aleph). If we refer to quadrilaterals with one side length denoted by c and 
the altitude length for that side denoted by d, where c and d are positive real num-
bers such that c × d = 15, we have one solution. By drawing a parallel line through 
the opposite side c, we can construct a set of quadrilaterals that satisfy the task 
conditions (see Fig. 10.1b). The cardinality of that set is also א(aleph). Since we can 
choose a new value for c and repeat the whole process, we can create א (aleph) sets 
of quadrilaterals satisfying the task conditions, and the cardinality of the set of all 
such sets of quadrilaterals is א = א × א (aleph × aleph = aleph). Note that the set of 
rectangles is a subset of the set of quadrilaterals.

It can also be proven that the set of all n-gons (for any n ≥ 5) has cardinality ℵ. 
From this it follows that the cardinality of the set of all polygons is ℵ (see Appendix). 
Note that the proof in the appendix can be generalized not only to any n-gons but 
also to any area.

10.3.3  Analysing Participants’ Outcomes

In analysing participants’ responses, we refer to their outcomes. We try to follow 
their line of thought as represented by the collection of their outcomes, and we look 
for manifestations of convergent and divergent thinking. In cases where systematic 
modifications were made, resulting in a set of modified outcomes, we categorized 

Fig. 10.1 (a) a || CD, Triangles ABD and ABC share a base of length a and altitude of length b, 
such that a × b = 30. (b) c || i, Quadrilaterals ABEC and ABFD share one side of length c and the 
altitude d, such that c × d = 15
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this as a case of convergent thinking. When a different representation was used or 
when no clear linkage could be noted between outcomes, we saw it as a case of 
divergent thinking.

We also referred to participants’ outcomes in terms of fluency, flexibility, and 
originality. Recall that fluency is the ability to provide a number of correct solutions 
for a given problem. Hence, measuring fluency is a straightforward process: after 
identifying the outcomes that satisfy the task requirements, counting how many 
valid solutions a participant suggests is a measure of the said participant’s fluency. 
Flexibility is a more subtle matter. Referring back to the definition, flexibility is the 
ability to modify one’s way of thinking regarding a given task. The question to be 
asked, then, is what should be considered modification of a way of thinking. 
Solutions deriving from different mathematical domains, different mathematical 
principles, or a different mathematical representation may be indications of flexible 
thinking. Originality is the ability to relate to a given problem in a novel way, pro-
ducing solutions that are unexpected, unusual, or uncommon to the problem at 
hand. Due to the nature of the task (i.e. an infinite number of solutions) and the 
limited number of participants, we do not refer to originality in our analysis.

10.4  Findings

Based upon initial observations of the participants’ solutions, we divided the 
responses into 2 groups: 8 responses clearly indicate that infinitely many such poly-
gons can be found, while the remaining 15 responses yielded between 1 and 18 
polygons or an average of 8.3 polygons per participant. We report first on the 
responses of these 15 participants. After that, we consider the outcomes of the eight 
researchers (R1-R8) who explicitly referred to infinitely many polygons with an 
area of 15 units. To some extent we were also able to trace their solution process, as 
recorded on the grid paper. For each of them, we briefly describe their outcomes and 
offer our analysis.

The group of 15 participants used drawings, sometimes coupled with numerical 
notations. To illustrate one of the solutions we present R10’s solution (see 
Fig. 10.2), which includes 9 polygons. We can see a 3 × 5 rectangle at the top left 
and next to it a 1 × 15 rectangle. Under these are all kinds of irregular polygons, all 
having sides that are parallel to the grid. All the polygons contain small dots, as if 
R10 was counting the square units to verify that indeed each polygon contains 15 
square units. We cannot point to a systematic line of thinking. It looks as if each 
polygon is a new endeavour, exhibiting divergent thinking, with no attempt to fur-
ther pursue any specific direction. Similarly, the other 14 participants drew sketches 
of polygons in a seemingly random manner, without any verbal comments, until 
the allotted time was over.

Next we discuss each of the responses of the participants from the other group in 
some detail.
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R1 began by drawing a 3 × 5 rectangle. Under it she drew a quadrilateral with 
one pair of parallel sides of length 3, while the altitude to that side was of length 5. 
Below that she drew yet another quadrilateral, with more tilted sides, and then 
another one. At the bottom of this row, which clearly represents a sequence of quad-
rilaterals, she wrote “etc. (an infinite number)” and also “…”. To the right of the first 
drawing of the 3 × 5 rectangle, she drew another rectangle, with side lengths of 

Fig. 10.2 R10’s attempts at solving the task

Fig. 10.3 R1’s attempts at solving the task
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1 × 15, below a quadrilateral with side lengths of 1 and altitude length of 15, and 
under it she wrote “etc. (an infinite number)” and “…”. Next she drew three more 
polygons, crossed them out, and wrote below “I need more time for polygons other 
than rectangles/quadrilaterals” (see Fig. 10.3).

We can see that R1 began with a very basic polygon, which she was able to 
modify almost dynamically (in a static media), obtaining two sets of infinitely many 
solutions. While we can consider the first move from a rectangle to quadrilaterals in 
each sequence as evidence of some (low) level of flexibility, the changes alongside 
each set of quadrilaterals have a different flavour. They could be an illustration of 
convergent thinking, applying systematic modification to the same basic shape. 
Likewise, in moving from the first set of quadrilaterals to the second, R1 did not 
exhibit a moment of flexible thinking. Rather, this represented a second application 
of the same idea on a rectangle with different side lengths. The three crossed-out 
polygons on the far right, although they did not yield successful results, evidently 
point to an attempt to flexibly alter the working strategy applied to the two initial 
sets. In other words, this may have been the beginning of divergent thinking. 
Interestingly, finding the first and then the second infinite sets of polygons did not 
stop R1 from continuing to search.

R2’s approach was totally different, although he too worked systematically. He 
started by drawing a 1 × 15 rectangle. Beneath it he drew an irregular polygon which 
he crossed out, and below that he drew a sequence of irregular-shaped polygons. 
The first looks like a 1 × 13 rectangle with the addition of 2 square units on top, 
marked as “2”. The second looks the same, but this time the top part has 3 square 
units and the rectangle is 1 × 12 and marked as “3”. The fourth already hints at the 
shape, and the last polygon in the sequence is marked as “7” and is fully drawn (see 
Fig. 10.4). Beneath this R2 began a new sequence of shapes, denoted by 1&2, 1&3, 
up to 1&6. In this second sequence, the shapes are arranged in three rows: the 
uppermost shape with 1 square unit, the middle with a changing number of square 
units that increase, and the lower row including the rest of the square units. Under 
this R2 started yet another sequence, denoted by 2&1, 3&1, … in which three rows 
were again drawn, though this time the upper row had a changing number of square 
units and the middle row consistently had 1 unit. Next R2 drew three more irregular 
polygons, each of which could be thought of as an element in yet another sequence. 
This time there were four rows, where the upper row had 1 square unit as a constant, 
the second had an increasing number of square units, the third again had a constant 
number of 3 square units, and the rest of the units were in the fourth and lowest row. 
Each element was also denoted with a code: 1-2-3-9, 1-3-3-8, and 1-4-3-7 (see 
Fig. 10.4, right side). Under this R2 wrote “…” to denote that there were more, and 
below that he wrote the infinity symbol, ∞. Below that was yet another polygon, 
this time a triangle whose base length was denoted by y and altitude length denoted 
by x, and under this R2 wrote: for every x, y: x∙y = 30.

An examination of the way R2 created the sequences indicates that the system-
atic thinking process is almost visual. In contrast to the dynamic continuum of mod-
ifications observed in R1’s work, here the feeling is that more discrete modifications 
were made. The way R2 coupled a drawing with a numeric symbolic code for the 
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irregular polygons highlights the discrete nature of his modifications. In fact, the 
infinity symbol at the end of the sequence is a bit puzzling. It is not clear that there 
are indeed infinitely many such sequences and elements within them. In any case, 
moving from one sequence to the next would not count as flexibility. Rather, the 
entire process seems to be more in line with convergent thinking, i.e. following the 
same line of thoughts systematically. Yet we can consider the last polygon drawn by 
R2, the triangle, and the accompanying symbolic notations, as a manifestation of 
divergent thinking that exhibits a different set of considerations. The change is 
apparent in the way it was expressed by using general algebraic symbolic notations. 
Note also that R2’s conclusion that he can create infinitely many irregular polygons 
did not stop him from flexibly considering the task from an entirely new approach, 
which, based on the general notations he formulated, also ended up with infinitely 
many triangles.

Fig. 10.4 R2’s attempts at solving the task
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R3 began like R1 by considering a 3 × 5 rectangle but continued in a different 
direction. She drew the 3 × 5 rectangle three times, each time with a different orien-
tation on the paper, but next to it, she wrote “orientation doesn’t matter”. She drew 
yet another square-like rectangle and denoted its sides by √15. Next she wrote 
“numerous rectangles, possible others (trapezoids)”. Next she drew a rectangle with 
side lengths 5 and 6 in such a way that two of its sides are dashed and its diagonal 
is marked and wrote “half of any rectangle (again orientation doesn’t matter)” (see 
Fig. 10.5). Next R3 drew a five-sided polygon composed of a rectangle and a tri-
angle with a shared side. Next to the triangle, she wrote “3 units” and next to the 
rectangle “12 units”. Next to the polygon, R3 wrote: “5-sided (pentagon). Many 
variants of this area Δ + area rect. Orientation doesn’t matter”. R3 added: “possible 
for regular pentagon but I won’t do that now due to time constraints” and “others 
too”. Below that she wrote: “6-sided (hexagons). Regular (easier) area of equilateral 
Δ × 6” and below “irregular”. Finally, she wrote: “out of time (didn’t even look at 
concave options)”.

As opposed to R1 and R2, R3 did not at any point explicitly state that in fact there 
are infinitely many solutions. Nevertheless, she did relate to “numerous rectangles 
possible”, and hence we included her in this group. She systematically considered 
polygons with an increasing number of sides, and for each she provided an example 

Fig. 10.5 R3’s attempts at 
solving the task
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or a way to build an example of polygons that would fit the task requirements. 
We can consider her move between polygon types as an example of convergent 
thinking, coupled with systematic considerations. Her last written comment about 
concave polygons may hint at applying divergent thinking.

As opposed to R1-R3, R4 did not begin by considering a particular polygon with 
15 square units in area. Rather, he drew a triangle, and next to it, he wrote a ∙ b = 30 
and then the ∞ sign, an arrow, and again the ∞ sign, this time with an exclamation 
mark. Below that he drew a rectangle. Next to it he wrote a ∙ b = 15 and, next the 
∞ sign, an arrow and again the ∞ sign and an exclamation mark. Below he wrote 
“…” to denote continuation, and all this was marked with 1. Next he wrote 2, as if 
indicating a new line of thoughts. He wrote “if a, b integers, Δ ab = 30, a = 30/b; 
a = 1, b = 1, 30; a = 2, b = 15; a = 3, b = 10; 5 6; 6 5”. Next he drew the first quadrant 
of a coordinate system; marked the axis with a and the other with b; marked 2 
points on each axis, 1 and 30; and drew a curve (see Fig. 10.6). Just below the graph 
he wrote “4 Δ”, as if counting how many triangles there are with base length and 
altitude length as integers. Under that, it seems he was making the same calcula-
tions for rectangles, concluding that there are two rectangles that meet the task 
requirements. Below he drew a pentagon, but he did not continue.

R4’s initial considerations were general in nature, starting with the smallest 
polygon possible, a triangle, and immediately acknowledging the fact that there 
are infinitely many such triangles. The exclamation mark may hint at his surprise 
at this discovery. He next moved on to rectangles, came to the same conclusion, 
and then wrote “…”. It is not completely clear how he was going to advance next 

Fig. 10.6 R4’s attempts at 
solving the task

M. Tabach and E. Levenson



233

along this line of thinking, but then he took a different approach, acknowledged by 
marking 1 next to what was done up to this point and 2 from then on. We can refer 
to this first line of thinking as a manifestation of systematic convergent thinking. 
The interesting thing is that now he constrained the solution space to include only 
integers. It is not clear why he did this. It could be the influence of the grid paper 
he was given. In any case, he found four pairs of triangle base lengths and altitude 
lengths (a, b) and probably due to symmetry considerations stopped there and did 
not continue to the reversed four pairs, concluding that there are four such trian-
gles. However, here the symbolic notations hide the fact that a and b, where one 
represents the side length of a triangle and the second represents its altitude length, 
were not symmetrical, and in fact there are eight different triangles. The symmetry 
considerations were valid for the case of rectangles. The entire second line of 
thinking, marked by 2, is on its own another example of convergent thinking. Yet the 
transition from the first to the second line of thinking exemplifies flexibility. 
In conclusion, we note that both flexibility and convergent modifications can be 
seen in R4’s solution process. The same phenomenon of continuing after obtaining 
infinitely many solutions was observed again.

R5’s solutions are as follows: He drew a 3  ×  5 rectangle but then wrote 
15 → 1 × 15 → ∞. He then drew an arrow to a drawing of a parallelogram with side 
length 15 and altitude length 1 as an explanation of the infinity conclusion (see 
Fig. 10.7). Under this, he also wrote 3 × 5 → ∞ with no further explanations. Next 
he wrote Δ → 30→ 1 × 30 → ∞; below that, he listed: 2 × 15 → ∞; 3 × 10 → ∞; 
and finally 5 × 6 → ∞.

In all, R5 found six different infinite sets. Two sets are based on parallelograms, 
and four are based on triangles. We saw the notion of modifying a specific parallelo-
gram in R1’s solution, but while R1 presented his solution in a visual manner by 
drawing the continuous dynamic changes, R5 used one drawing and did not elabo-
rate on it. The drawing was self-explanatory for him. The generality of his solution 
was communicated by the use of symbolic algebraic notations. Furthermore, he did 
not provide any explanation for the four infinite sets of triangles. In terms of flexibil-
ity, we see a small modification from considering rectangles to considering triangles, 
and within each type of polygon, we see systematic convergent thinking based on 
natural numbers. Here again we see that finding one set of infinitely many solutions 
did not stop R5 from searching further for solutions.

Fig. 10.7 R5’s attempts at solving the task
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Determining the solution path is less clear from R6’s solution sheet. It seems 
that he first drew a 3 × 5 rectangle and perhaps several irregular polygons (see 
Fig. 10.8). At one point, he drew an equilateral triangle with a base length of 6 and 
an altitude length of 5. Yet at this point, he drew several other triangles, all using 
the same base length and the same altitude length, but not equal sides, and above 
it, he denoted “infinity”. At the lower part of his answer sheet, he again drew two 
3  ×  5 rectangles: on each, he highlighted a triangular part which he then drew 
attached to the rectangle at some other point and with an arrow denoting that in fact 
the highlighted part had been moved around (see Fig.  10.8). Next to these two 
drawings, he again wrote “infinity”.

Thus, R6 drew three sets of infinitely many solutions – one based on triangles, 
and the other two based on rectangles. It seems that the underlying reasoning for the 
triangle sets was different from the underlying reasoning on which the two rectan-
gular sets were based. In this sense, we can say there is flexibility in R5’s thinking. 
In between we see some irregular polygons. It seems that in R6’s case, the changes 
were less systematic than the ones observed in other responses, as if his thinking 
was more divergent. Yet, the phenomenon of having one set of infinitely many solu-
tions while still looking for other solutions is manifested here as well.

R7’s solution began with a header – the word “triangles”. Beneath that, he drew a 
triangle of base length 30 and altitude length 1. He drew a line parallel to the trian-
gle’s base and marked several points on that parallel line connecting them to the base 
sides, yielding many triangles. Below he wrote a new header – “rectangles” – though 

Fig. 10.8 R6’s attempts at solving the task
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here he did not draw even a single rectangle. Rather, he drew a graph of the curve 
xy = 15 (see Fig. 10.9). At the bottom of the page, he wrote the word “infinity” with 
a double underline.

A systematic move from considering triangles to considering rectangles can also be 
seen in R4’s solution. However, while R4’s reasoning concerning triangles seems to be 
based on symbolic considerations, R7 seems to be using a more visual form of thinking 
for the case of triangles. It also seems that R7 went on to consider rectangles in a gen-
eral symbolic way, as also expressed graphically. So, while R7 referred to graphical 
representations in considering all rectangles that satisfy the task, R4 considered the 
graphical representations for discerning cases of solutions that were based on integers 
only. In any case, we can see flexibility in R7’s thinking when moving from triangles to 
rectangles, as expressed in the different representations used for triangles [drawing and 
numerical] and for rectangles [algebraic symbols and graphical drawings]. Again we 
see a systematic approach that continues after the first set of infinitely many solutions.

Fig. 10.9 R7’s attempts at 
solving the task
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R8 began by considering a 3 × 5 rectangle, modified to be a parallelogram 
with the same side length and altitude length, yielding a parallelogram with the 
same area. Next to this, he explained that 15 = b × a, and it seems that he came 
to the conclusion that there are infinitely many solutions. Next he drew a 1 × 15 
rectangle, possibly with a similar set of considerations. After that, he moved on 
to triangles, denoting that (a × b)/2 = 15, a × b = 30. Next to this, he drew a 
triangle with a base length of 6 and an altitude length of 5, where a line parallel 
to the base is drawn through the vertex and many triangles are drawn with one 
shared base. He then wrote that there are an infinite number of triangles, though 
only one of them is equilateral. Next he drew a square, writing “if it’s a square, 
there is only one, l = √15”. He then drew an irregular polygon, based on a 3 × 5 
rectangle, with 1 unit moved around, and then drew a second example of such a 
modification and indicated that it can be accomplished in other ways as well 
(see Fig. 10.10).

In R8’s solution, we can again observe a systematic move. He started with 
basic polygons, modified each to see if more polygons suitable for the task could 
be obtained, and then moved on to the next polygon. We see this as a manifesta-
tion of convergent thinking. However, the last set of infinitely many irregular 
polygons may be a sign of flexible divergent thinking. Here also we can see that 
the first instance of infinitely many solutions did not prevent him from suggest-
ing other alternatives in a combination of visual drawings and explanations 
accompanied by symbols.

Fig. 10.10 R8’s attempts 
at solving the task
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10.5  Discussion

The first question posed at the outset of this research was: What is the potential of a 
mathematical task with infinitely many solutions to be used as a tool for evaluating 
creative mathematical thinking? The formulation of the task used in this study is not 
complex. When such a task is given to upper elementary school students, results 
indicate that with an ample amount of time, the students were able to find many 
solutions for it (Swisa, 2015). The participants in this study, 23 mathematics educa-
tion researchers, were given a very limited amount of time, 5 min, to perform the 
task. As reported above, some of them noted that the limited time did not allow them 
to further explore the situation.

Several observations can be made on the basis of the findings reported above. 
We note that the task elicited two different sets of responses. One set may be char-
acterized by drawing polygons with an area of 15 square units. It may be that the 
grid paper provided a means for recording the solutions, functioning as a “hidden” 
variable and constraining some of the participants to draw mainly polygons with 
sides parallel to the grid. It may also be that the instruction “to draw” polygons 
combined with the physical tool of the grid paper led the participants to consider 
concrete solutions, as opposed to abstract and perhaps logical lines of thinking. 
Considering that this group comprised two-thirds of the responses, we could count 
how many correct polygons were recorded in each response, yielding a fluency 
measure. We could distinguish between various polygons in an attempt to define 
which polygons would possibly point at a different line of thinking in order to 
discern a flexibility measure. Finally, we could see which polygons were unique 
and measure originality.

What stopped us from doing all the above, usually considered to be normative 
when evaluating creativity in such a research study, was the second set of responses. 
We see the production of the first two-thirds of the participants as a manifestation of 
what Runco (1996) characterized as divergent thinking. It exemplifies the produc-
tion of random ideas. Like the example we showed in the results section, these 
participants did not seem to pursue any one direction which might lead to some 
coherent general statement. Instead, it seemed that each solution was a new endeav-
our, in a different direction. In other words, for us, these responses lack evidence of 
critical discretion. Hence, in line with Runco (1996), we say that the 15 participants 
who drew actual polygons exhibited noncritical divergent thinking without signs of 
convergent thinking.

The second group of responses, which represented about a third of the entire 
group, explicitly referred to the existence of infinitely many polygons that meet 
the task requirements. As reported in the findings section, each of the eight par-
ticipants in this group had his or her own unique approach to the task. However, 
we can infer some general characteristics of their working process. One is that 
they usually pointed to more than one set of infinitely many polygons. This is 
surprising as one might think that finding a set of infinitely many polygons 
would cause the solver to stop looking for more solutions. However, all eight 
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participants in the present study who found such an infinite set did not stop 
working. In fact, in most cases, they looked for other solutions based on a dif-
ferent thinking strategy, thus exhibiting flexible and divergent thinking. This is 
in line with Storme et al.’s (2015) theory that creative thinking consists of two 
different but related creative processes: divergent- exploratory and convergent-
integrative (Storme et al., 2015). It may be that they interpreted the task instruc-
tion to “find as many as possible” to be, in fact, an instruction to find as many 
categories as possible.

A different commonality relates to the thinking process that may have led to find-
ing an infinite set of polygons. In many cases, we noticed convergent thinking, 
where a sequence of slightly small modifications led the solver to conclude that an 
infinite number of similar solutions can be found. In fact, when considering the 15 
responses that found a finite number of solutions, this type of thinking seems to be 
missing. That is, although in many of the solutions of both groups, starting with a 
regular 3 × 5 rectangle was the first step, for those who reached the conclusion of 
infinitely many polygons, convergent thinking followed, while the other two-thirds 
of the participants just moved on to consider some other shape.

While Guilford (1973) identified divergent thinking with creative mathematical 
thinking, it seems that we can point to convergent and divergent thinking as play-
ing two complementary roles in creative mathematical thinking. On the one hand, 
the divergent thinking of the 15 participants led to relative fluency in producing 
results. On the other hand, each result was an isolated solution. In general, conver-
gent thinking leads the solver to the one sought-after result. In this case, however, 
convergent thinking actually led to different sets in which each set contained an 
infinite number of solutions. Furthermore, after reaching a solution set with an 
infinite number of solutions, participants continued to search for an additional 
solution set. In other words, it seemed that the convergent thinking process also 
led to divergent thinking processes. This is a significant finding of this study. It 
makes sense that, for a problem to be solved, convergent thinking must eventually 
follow divergent thinking. However, to allow for creative mathematical problem-
solving, this study shows how the combination of both processes is necessary and 
that following one line of thought to an eventual end may actually lead to a new 
direction and new solution path. Thus, we may conclude that a task with an infi-
nite amount of solution outcomes can be suitable for eliciting and evaluating cre-
ativity, by taking into consideration both convergent and divergent thinking. It 
also raises methodological issues.

In line with most other studies which attempted to evaluate mathematical creativ-
ity, we also set out to assess the outcomes in terms of fluency, flexibility, and origi-
nality (although from the beginning we stated that originality would not be part of 
this study). In the end, this standard method of analysis was revised. Fluency was 
apparent for the most part in the 15 participants who drew a variety of polygons. Yet, 
what can be said about the participants who indicated that an infinite amount of 
solutions may be found? How can fluency be assessed in a task with an infinite 
amount of outcomes? Regarding flexibility, although we did not explicitly analyse 
the flexibility of the 15 participants, it may be said that flexibility was evidenced in 
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the form of different-shaped polygons (e.g. rectangles and triangles). Among the 
eight participants who obtained an infinite number of solutions, a richer form of 
flexibility was evident. For these eight participants, flexibility took the form of using 
different representations (R1-R8). For some of them, this flexibility involved using 
both algebraic thinking and visual thinking (R2 & R4) or using algebraic expres-
sions and verbal expressions (R7 & R2). When comparing this task with more com-
mon problems, it seems that the issue of flexibility is essentially similar to how it 
may be assessed in those other problems. What is perhaps different in this case is 
that for a task with an infinite number of solutions, a second degree of flexibility 
comes into play, as the solver seeks not only multiple isolated solutions but also 
multiple sets of solutions. Thus, the method of analysing and evaluation creativity 
may differ in a task with an infinite amount of outcomes. Finally, although in this 
study we did not analyse originality, how to analyse originality when solving this 
type of task is another methodological question.

This study raises several possible directions for future study. First is the time 
aspect. The stated reason for not studying originality was the short time limit given 
to solve the problem. Task time is a variable in need of further investigation. Further 
studies in which more participants are given more than 5 min to solve a problem are 
necessary in order to examine this complex aspect of mathematical creativity. A 
second research path is how the same problem may be solved by different groups of 
participants and what that might mean in terms of creativity. Was this task perceived 
as a problem in the way Schoenfeld (1985) defined it? On the one hand, this task did 
not pose a challenge to the participants of the Problem@Web Conference. Recall 
that this task was also given to elementary school students. Yet, this is not an algo-
rithmic task – there was no ready-made algorithm to be applied. Indeed, the partici-
pants took different starting points to solve the problem. Also, it seems that the 
participants were engaged with the problem – how else can we explain that even 
after finding a set of infinitely many solutions some of them kept looking for another 
such set? Or the fact that some wrote that not enough time was given to consider 
other polygons? Could it be that the 5-min limit turned this task into a challenge? 
We need more experience with such problems to draw conclusions. Finally, we note 
that the special environment of the conference could have also affected the results. 
At the conference, participants solved the problem in an environment that was con-
ducive to taking chances, fostered mutual respect for all, and, perhaps most impor-
tantly, encouraged participants to be open to new experiences. As educators, we ask 
ourselves how such an environment can be replicated in the classroom and, if so, 
how might that extend the possibilities for fostering mathematical creativity.

 Appendix

Claim: The cardinality of the set of all polygons in the plane is א) .א denotes the 
cardinality of the continuum.)
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Lemma: For any given natural number n ≥ 3, the cardinality of the set of all 
n-gons in the plane is א.

The claim follows from the Lemma and the fact that א =א ×0א.
Proof of the Lemma:
The set of all n-gons in the plane is at most as large as the set of all n-tuples of 

points in the plane because different n-gons, when placed in the plane, determine 
different n-tuples of points. But the set of n-tuples of points in the plane is equiva-
lent to the set of vectors in 2n-dimensional space (every point has two coordinates), 
which is of cardinality (א)2n=א.
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Chapter 11
The Power of Seeing in Problem Solving 
and Creativity: An Issue Under Discussion

Isabel Vale, Teresa Pimentel, and Ana Barbosa

11.1  Introduction

The teaching of mathematics is a complex task, as there are several aspects that 
must be considered simultaneously, which requires that teachers have knowledge 
and deep understanding of the issues and mathematical content they expect to teach 
and also requires that teachers have a good understanding of how to teach, in order 
to be effective in the development of mathematics learning of all students.

Effective teaching of mathematics should engage students in the discussion and 
solution of tasks that promote reasoning and problem solving, skills that should be 
emphasized in mathematics classrooms at all levels. One way for teachers to meet 
this goal involves the selection of tasks that require students to apply their mathe-
matical knowledge and involvement in higher-level thinking. These tasks must 
include the use of different representations and tools, and their flexible handling, 
allowing students to find multiple ways to approach a problem and various strate-
gies (NCTM, 2015). Ever since 1980, the National Council of Teachers of 
Mathematics, in its Agenda for Action, recommended that problem solving should 
be the focus of school mathematics. Thus, problem solving has been considered an 
essential theme in the teaching and learning of mathematics given the existence of 
unanimity about its importance in the curriculum. Students’ abilities in solving 
problems still require substantial improvement, especially when considering the 
nature and rapid evolution of today’s world. However, due to the complexity of 
the process of problem solving, many of the issues related to greater efficiency in 
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 teaching problem solving remain unanswered. What effective perspectives can be 
considered in the teaching of problem solving? May the performance of students in 
problem solving be affected by a specific type of approach?

We believe that problem solving must still remain as a central goal of mathemat-
ics learning in the twenty-first century; it will eventually be necessary, however, to 
rethink its approach in the classroom. This change results from the growing demand 
for professionals with higher-order skills. This change concurs with the objective 
that all students have access to an education that emphasizes creativity, innovation 
and problem solving (e.g. Pitta-Pantazi, Sophocleous, & Christou, 2013). A promis-
ing strategy may involve the enhancement of visualization; and this ability can be 
developed in students if it is promoted by the teaching practices. Although visual 
representations have been underrated for several decades, in the late twentieth 
century, there was a revival of the interest in visualization as a powerful tool in 
mathematical reasoning.

Recent research in the area of cognition, in particular in problem-solving pro-
cesses, comes to the conclusion that, for certain kinds of tasks, the use of visual 
representations may have advantages over the use of other representations, therefore 
facilitating problem solving. Some authors (e.g. Campbell, Watson, & Collis, 1995; 
Dreyfus & Eisenberg, 1986; Presmeg, 2014; Zimmermann & Cunningham, 1991) 
suggest that for students to be mathematically competent and creative, they have to 
be able not only to solve traditional computational and logical problems but also 
to use visual images and intuitive skills at all stages of the developmental process. 
We emphasize the potential of visual solutions, especially because of the simplicity 
and creativity that such proposals may exhibit. In this sense, we begin by presenting 
an overview of some aspects associated with problem solving, creativity and visu-
alization, grounded in reference authors and in some studies we carried out 
(e.g. Barbosa & Vale, 2014; Vale & Pimentel, 2011; Vale, Pimentel, Cabrita, Barbosa, 
& Fonseca, 2012), where we highlight the importance and power of the problem-
solving strategy seeing and its links with creativity.

11.2  Revisiting Problem Solving

Some authors suggest that problem solving is the process of applying the previously 
acquired knowledge to new situations and that it may involve exploring, applying 
strategies, formulating and testing conjectures. This is a very absorbing activity, 
because the solver is challenged to think beyond the starting point, to think differ-
ently, to expand his/her thinking and, consequently, to reason mathematically. 
We think it is pertinent to start by defining problem, in order to delimit the concept. 
In general, it is consensual to consider that problems are situations for which a pro-
cedure or method to get to the solution is not known and whose solution requires 
critical thinking. Otherwise, if the situation can be solved using routine or standard-
ized processes known by the individual that lead directly to the solution, the ques-
tion is classified as an exercise. Thus, analysing if a given situation is or not a 
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problem doesn’t only depend on the task but also on the individual to whom it is 
proposed to. For example, the question Calculate the product 8 × 6 can have mul-
tiple interpretations, according to the level of knowledge of the individual who faces 
it: a specific fact, if the response is automatic and the solver makes use of memory; 
an exercise, if the solver mobilizes training or mechanization; or a problem, if it 
involves finding a path. It is usually recognized that problem solving depends on 
many factors such as an organized body of knowledge about the problem domain, 
techniques of representation and metacognitive processes (Kilpatrick, 1985). Other 
features may be the difficulties of understanding the statement and those that come 
from too much importance given to the calculations and quick answers from the 
earliest years of schooling.

When facing a real problem, in which we don’t know the path to the solution, it 
is necessary to choose and use strategies according to each situation. Polya (1945) 
introduced the notion of heuristics, through his book How to solve it, a concept later 
referred by mathematics educators as strategy. Other authors have also proposed 
models for problem solving where one of the phases involves the search for strate-
gies that enables the solver to attack the problem and get to the solution (e.g. 
Guzmán, 1990). Strategies have been recognized as useful as they can give clues 
about the path to follow and over the years they have been considered as abilities 
that students should develop. For these reasons a trend emerged advocating the 
explicit teaching of strategies and also defending the approach of the different stages 
of Polya’s model. This perspective, called teaching about problem solving (Hatfield, 
1978), considers that problem solving should be seen as a curricular content, taught 
in the same way as, for example, multiplication. However, it was found that this way 
of teaching did not produce the desired effect, that is, it did not contribute to make 
students better problem solvers. Strategies help to reflect and interpret problems, but 
there are authors (e.g. Cai & Lester, 2010) that consider they don’t help students 
who don’t know what to do, since they are too general, independent from mathemat-
ical subjects, and so it is not likely that they help to solve an algebra problem, for 
example. To overcome this difficulty, Schoenfeld (1985) recommends (a) develop-
ing with students a greater number of more specific strategies, more connected to 
certain categories of problems; (b) teaching metacognitive strategies so students 
learn to apply problem-solving strategies and the knowledge acquired in the right 
situations; and (c) studying ways to eliminate counterproductive beliefs of students 
and foster productive beliefs about mathematics, problem solving and their own 
personal skills. Strategies may be defined as tools which, most of the times, are 
identified with thinking processes and can be very useful in different phases of the 
problem-solving activity; moreover, mathematical knowledge and reasoning strate-
gies must be learnt and used simultaneously and not separately (e.g. draw a picture 
or diagram, make an organized list, look for a pattern, trial and error, work back-
wards). We believe that the acquisition of a repertoire of feasible strategies – already 
known and applied – is a body of knowledge in action that (a) helps students to 
address the problem and to trace a path, (b) may be an alternative to the direct use 
of concepts that students do not have or are not immediately accessible and (c) 
frequently facilitates the interpretation of situations (Vale & Pimentel, 2004).
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Problem solving can also be seen as the ultimate purpose of mathematics teaching, 
considered as a way of thinking. Routine procedures are just tools, and it is there-
fore necessary to teach students to think and prepare them to effectively solve 
problems. This is teaching for problem solving. In this perspective the teaching of 
concepts and procedures is considered basic and a prerequisite. Some authors criti-
cize this approach, in considering that problem solving is thus seen as an indepen-
dent and isolated subject, with a secondary importance in the development of 
mathematical ideas; they also argue that there is little evidence supporting that stu-
dent’s ability to solve problems improves when isolating the problem solving from 
the learning of concepts and mathematical processes (Cai & Lester, 2010; English, 
Lesh, & Fennwald, 2008).

Problem solving can also be considered as a way of instruction. We can teach in 
our mathematics classes using problem solving as a guideline to mathematical con-
cepts, thus becoming the basis for teaching the various contents. This perspective is 
referred to as teaching through problem solving. Cai and Lester (2010) present 
problem solving as referring to mathematical tasks that have the potential to provide 
intellectual challenges that can increase the development and understanding of the 
students. In this sense, problem solving is an integral part of the learning of mathe-
matics, not being considered as a separate topic in the curriculum but as a means for 
teaching mathematical concepts and skills.

While agreeing that problem solving is a key context for learning mathematics, 
we recognize that the definition of learning through problem solving seems to be 
excessive in certain circumstances. Even the authors who advocate teaching through 
problem solving consider that not all the proposed tasks have to be problematic 
(Cai & Lester, 2010). There are moments in the learning of mathematics to develop 
certain skills that involve training exercises. We also consider that this is a real situ-
ation and we know that teachers are confronted with it daily. Without some training 
it is not possible to acquire dexterity in routine procedures, necessary even to solve 
complex problems.

Thus, and after this brief incursion into different ways of looking at problem 
solving and its relations with the learning of mathematics, we propose the expres-
sion, perhaps more consistent with practice, of teaching with problem solving; in 
this view, we defend that problem solving should follow in parallel the curriculum 
and classroom practice, along with other more procedural tasks, developing an 
understanding of concepts and of mathematical structures and leading students to 
progressively acquire a list of useful and productive strategies in other approaches.

11.3  From Problem Solving to Creativity

In recent decades, problem solving has played an important role around the world 
as an organizing axis of the mathematics curriculum. However, it had not the 
expected impact on teachers’ practices and, consequently, on students learning. 
Students’ mathematics learning should include more than routine tasks; it should be 
enriched with challenging problem-solving tasks. According to Liljedahl and 
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Sriraman (2006), the ability of students to present new insights and/or solutions in 
mathematics is considered as an indicator of creativity. This is of great importance, 
not only for students but also for teachers, especially if these tasks lead to structural 
understanding of mathematical concepts and encourage fluency, flexibility and orig-
inality as essential components of creative thinking. Teaching that does not provide 
moments in which students are creative denies them any opportunity to develop 
their skills in mathematics but also to appreciate this subject.

Mathematical creativity is a very complex construct to define and measure (e.g. 
Haylock, 1997; Pitta-Pantazi et al., 2013). In an examination of the research about 
how to define mathematical creativity, we found that there is a lack of an accepted 
or used definition for mathematical creativity, since there are numerous ways to 
express it (e.g. Mann, 2006). It is argued that creativity begins with curiosity and 
engages students in exploration and experimentation tasks where they can manifest 
their imagination and originality; in general it is a notion that embraces a wide range 
of cognitive styles, categories of performance and many kinds of outcomes (Barbeau, 
2009; Haylock, 1997). When we talk about creativity of young students, we do not 
mean the same creativity of famous people who made significant contributions to 
society (also known as creativity with big-C). Instead, we are concerned with the 
creativity of every day (with little-c) that can happen and is manifested in the class-
room. Creativity is an essential part of mathematics learning (e.g. Mann, 2006; 
Pehkonen, 1997), but it is a process often neglected and considered impossible to 
pursue in mathematics classes; however, creativity is not a mysterious, unobserv-
able process or an innate ability, not capable of being learnt. It is, instead, a range of 
abilities that can be taught and learnt by the student, so teachers must provide them 
a learning environment, where they propose adequate mathematical tasks in order to 
develop some of the mathematical creativity components. Research findings show 
that mathematical problem solving and problem posing are closely related to cre-
ativity (e.g. Pehkonen, 1997; Silver, 1997), leading to the understanding of struc-
tural mathematical concepts. Thus, teachers should provide tasks with multiple 
solutions that arouse curiosity and involvement and provide the flow of mathematical 
ideas, flexibility of thought and originality (Vale et al., 2012).

11.3.1  Insight and Intuition

To do mathematics is in fact to solve problems. And, in this activity, there is little 
difference between a mathematician and a mathematics student. Each one is follow-
ing a path unknown to them. So, between the homework problem of a student and 
the invention of a mathematician, there is only a difference of cognitive degree 
(Silver, 1997). Invention is also required to the student. Here, we discuss some 
related concepts like invention, aha experience, intuition and creativity.

Mathematical invention has four stages (Hadamard, 1945): (a) initiation. In the 
initiation phase, there is deliberate and conscious work. The person engages 
 voluntarily with the problem, using previous knowledge and experience; (b) incuba-
tion. This phase can last some minutes or some years. In this stage new ideas are 
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created and discarded, and so imagination relies heavily on the contributions of the 
unconscious mind. The incubation phase begins when the solver, unable to obtain a 
solution, stops to work on the problem. But actually he is working at an unconscious 
level; (c) illumination. The illumination stage may then occur in the form of a solu-
tion, coming quickly when the person is not thinking about the problem and produc-
ing a feeling of joy; and (d) verification. In this phase there is a validation, testing 
and reducing the idea to an exact form.

Davis and Hersh (1981) refer to the illumination phase as a flash of insight. Some 
authors call this the Aha! experience. According to Liljedahl (2004), the Aha! expe-
rience is self-defining. At the moment of insight, in the flash of understanding when 
everything seems to make sense and the answer appears before you, that is, you 
know it. So the Aha! experience is one of the stages of the invention process, illumi-
nation, although it is strongly influenced by the previous stages of initiation and 
incubation.

No one can explain exactly what happens in the mind of the person who has a 
flash of this kind. It is known that this happens unexpectedly, often when the person 
is not thinking about it but doing something else. This process is described as a 
creative leap of the mind (Gardner, 1978), which sees the situation in a more simple 
way, thereby solving a problem that, using conventional methods, may prove to be 
difficult. This ability is developed by solving problems and getting used to look at 
them in an unconventional way.

Invention is a global process that includes intuition, imagination and creativity 
(Liljedahl, 2004).

The term intuition can be defined as a representation, an explanation or an inter-
pretation directly accepted by us as something natural, self-evident or immediate 
(Fischbein, 2002). A factor that contributes to the effect of immediacy is visualiza-
tion, because a visual image delivers simultaneously most of the information 
related to a situation. It can also be described as plausible, convincing, incomplete, 
heuristic and holistic. Associating this phenomenon with teaching, Davis and Hersh 
(1981) state that we try to teach mathematical concepts not formally but intui-
tively  – showing examples, solving problems and developing a reasoning tech-
nique – all expressions of having successfully internalized something: an intuitive 
mathematical idea. As a result of those experiences, something reminds in the 
student mind which is his/her representation of the mathematical concept. So intu-
ition is not the direct perception of something existing internally or externally but 
the effect in the mind of certain experiences of activity, manipulation of concrete 
objects and later of recordings on paper or mental images. We have intuition 
because we have mental representations of the mathematical objects (Hersh, 1997). 
And we acquire those representations, not through the memorization of verbal for-
mulas but through repeated experiences of manipulation of physical objects and 
then problem solving and self-discoveries. This way, intuition doesn’t exist without 
knowledge of the subject. It definitely develops because if you have a false one, 
that intuition is  modified (Burton, 1999). Intuition is slightly different from insight 
since the latter is a sort of flash, although they are both components for developing 
knowledge.
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11.3.2  Problem Solving and Creativity

Polya (1945) states that creativity is an innate characteristic of individuals but teach-
ers have the responsibility to stimulate mathematical creative thinking of students. 
This way, the environment plays a critical role in nurturing mathematical creativity 
if the teacher promotes an exploratory approach. Mainly, we believe that creativity 
involves the ability to challenge assumptions; break boundaries; recognize patterns; 
see things in new ways or have new eyes to old situations; have a chance to imagine, 
communicate, solve and invent problems; take risks; make mistakes; reflect; extend; 
and make new connections. Based on these assumptions, creativity plays a crucial 
role in problem solving. We argue that creative thinking can be learnt and developed 
if teachers propose to their students tasks that enable multiple solutions and involve 
the use of different representations and different properties of a mathematical con-
cept (e.g. Leikin, 2009; Vale, Barbosa, & Pimentel, 2014).

To judge creative productions in mathematics, in particular creative solutions to 
problem solving and problem-posing tasks, researchers propose several criteria, but 
we can notice that there are some commonalities in the different attempts, espe-
cially in three main components/dimensions: fluency, flexibility and originality (e.g. 
Guilford, 1956; Leikin, 2009; Silver, 1997). Fluency is the ability to produce a large 
number of different solutions for the same task. This ability can be acquired by try-
ing to achieve the greatest possible number of different ideas. Ideas come some-
times associated, and the more a person works on a topic, the more fluent he/she 
becomes. This skill is very important because the first step to problem solving or 
generating anything creative is having as many ideas as possible to choose from. 
Although generating many ideas does not mean that all are interesting, it is impor-
tant because it is associated with flexibility and originality. Teachers’ practices tend 
to make students seek only for one correct answer instead of considering multiple 
possibilities; as a consequence, students don’t feel the need to present more than 
one solution. Silver (1997) states that the use of open or ill-structured tasks, during 
the teaching process, can encourage students to generate various solutions, which 
contributes to the development of fluency. Moreover, it has to be explicitly asked to 
students to solve the task in many different ways (Vale et al., 2014). Flexibility is the 
ability to think in different ways to produce a variety of different views on the same 
issue, and it is thus an important factor in solving problems. A flexible thinking, as 
it implies to view the problem from different perspectives, allows making associa-
tions between different areas of knowledge. Within mathematics education, 
Krutetskii (1976) considers reversibility, the ability to reverse a mental operation, as 
an aspect of the flexibility of thinking. It is associated with a change in the under-
standing and interpretation of tasks, a change of ideas and strategies when you are 
solving a problem to find other solutions or to choose the optimal solution. Silver 
(1997) argues that flexibility in problem solving and posing is identified by the 
number of different ways the student uses to solve, express or explain a problem. 
This means that the different solutions can be categorized by the different processes 
or contents used to achieve the solution. Flexibility requires a change in the way we 
look for situations, that is, the opposite of fixation (e.g. Haylock, 1997). What makes 

11 The Power of Seeing in Problem Solving and Creativity: An Issue Under Discussion



250

a solution creative is, as Presmeg (2014) suggests, the fact of being necessary to 
break the usual mental scheme, for example, which suggests the use of formulas 
when the word “area” is displayed, in order to search for a more fruitful and simple 
method of visual solution. It is flexibility that may lead to originality. Originality is 
the ability to think in an unusual way, producing new and unique ideas (e.g. Leikin, 
2009; Silver, 1997), thinking outside the obvious or having a rare idea. Originality 
is the pinnacle of creativity. Often it is this skill that makes us finding a person to be 
“creative”. This skill is the most difficult to develop but it can be reinforced. By defi-
nition, originality means producing ideas and products that have not existed before, 
but we judge it in relative terms. This means that a student that has never been 
exposed to an idea before and comes up with it on his/her own displays originality.

Another dimension of creativity, also considered in some situations, is elabora-
tion. It refers to the number of details of an idea and is used to extend or improve a 
solution, that is, the ability that the student shows to have a careful thought about 
particular aspects of a problem or situation, changing one or more of its aspects, 
replacing, combining, adapting, changing, expanding, removing, rearranging or 
going back and then speculating on how this change would have a ripple effect on 
other aspects of the problem or situation. We do not consider it in our work, and one 
reason is related to the difficulty in determining different development levels of the 
solutions presented by the students in many of the tasks. Several authors (e.g. 
Leikin, 2009; Pitta-Pantazi et  al., 2013; Silver, 1997) do not use this dimension 
either when analysing the mathematical creativity of students.

It is the combination of these dimensions that allows us to characterize, through 
the analysis of the students’ productions to the proposed tasks, the creativity of 
students in school mathematics and help design tasks and strategies to use in the 
process of teaching and learning.

11.4  Visualization as a Different Mode of Thinking

Visualization has nowadays a crucial role in our society. Currently, the need to think 
and reason visually in problem solving is much stronger, and it can be a very impor-
tant cognitive tool in the development of mathematical concepts and processes, 
including problem solving (Rivera, 2011). Before analysing and presenting some 
potentialities and constraints of visualization in the area of mathematics education, 
and their connections with problem solving and creativity, we will start by discuss-
ing the perspectives of different authors, in an attempt to delimit its meaning. Finally 
we discuss some implications for classroom practice.

11.4.1  Characterizing Visualization Towards Problem Solving

When reading about research in the area of visualization, many terms appear related 
to it, like visual reasoning, spatial thinking, visual images and visual representa-
tions, among others. Although it is important to clearly define a concept, the field of 
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visualization is so wide that it is not reasonable to try to enclose it all (Gutiérrez, 
1996). Professionals from diverse areas, like psychology or mathematics education, 
normally use different words or terminology. If we attentively analyse their defini-
tions, we conclude that in some cases, different terms are used with the same mean-
ings, and in other cases different meanings may have been developed for the same 
words. There is no general agreement about the terminology to be used in this field, 
but it is undeniable that visualization is considered relevant in a variety of areas of 
knowledge (e.g. Gutiérrez, 1996; Hershkowitz, Arcavi, & Bruckheimer, 2001; 
Zimmermann & Cunningham, 1991).

Presmeg (2006) presents an exhaustive synthesis of more than 150 studies about 
visualization in mathematics education, discussing several overlapping dimensions, 
like psychological, curricular, instructional, technological and semiotic. In her opinion 
visualization involves simultaneous acts of creating a spatial arrangement and con-
structing its image, stating that it includes processes of constructing and transforming 
both visual mental imagery and all of the inscriptions of spatial nature that may be 
implicated in doing mathematics. The term mathematical inscription refers to graphi-
cal representations (e.g. symbols, diagrams, drawings, figures) necessary in mathe-
matical activity (Rivera, 2011). As for visual imagery, it is important to address first 
the view of Dreyfus (1995) that defines it as the use of “mental images with a strong 
visual component” (p. 3). This perspective broadens the possibilities in terms of the 
types of images we can consider. Presmeg (1986) proposes to define visual image as a 
“mental scheme depicting visual or spatial information” (p.  42), with or without 
requiring the presence of an object or other external representations. In this sense, this 
author established different categories for visual images: (1) concrete, pictorial images 
as being the pictures in the mind; (2) pattern images that are pure relationships stripped 
of concrete details; (3) memory images of formulas, when we can see in our minds a 
formula as it appeared in an external representation; (4) kinaesthetic images, reporting 
physical movement; and (5) dynamic images, when an image is transformed or moved 
in the mind. This categorization makes sense in the context of the definition of visual-
ization presented by Presmeg, since it is wide enough in order to include different 
types of images, representing models, diagrams but also pictures in the mind.

Ben-Chaim, Lappan, and Houang (1989) argue that visualization involves the 
ability to interpret and understand information represented in the form of figures 
and the ability to conceptualize and translate abstract relations and information that 
is not displayed visually. Here it is also possible to distinguish two cases: interpreta-
tion of visual information and production of visual images based on non-visual 
information. The latter situation can also be identified by the words of Dreyfus and 
Eisenberg (1986) when they state that “many concepts and processes in school 
mathematics may be tied to visual representations, that is, visual models can be built 
which reflect (a large part of) the underlying mathematical structure” (p. 1). For the 
authors, visualization is associated with visual representations, considering that any 
mathematical concept can be translated by means of a diagram or a graphic. Arcavi 
(2003) states that visualization is no longer related to a merely illustrative ending, it 
is also recognized as a key component of reasoning, problem solving and proving. 
It can be considered as a tool of thinking in the sense that is fundamental in the 
process of mathematical discovery, involving components of creative thinking.
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In the same line of reasoning, Zimmermann and Cunningham (1991) understand 
that visualization stands for “the process of forming images (mentally, or with pen-
cil and paper, or with the aid of technology) and using such images effectively for 
mathematical discovery and understanding” (p. 123). In the opinion of the authors, 
visualization is related to the student’s ability to draw an appropriate diagram to 
represent a certain concept or solve a problem and to use the diagram to achieve 
understanding. In this sense, in mathematics, visualization is not an end in itself but 
a means towards an end, which is understanding. In the words of Hershkowitz et al. 
(1990), visual and spatial thinking and reasoning “generally refers to the ability to 
represent, transform, generalize, communicate, document and reflect on visual 
information” (p. 75). Arcavi (2003) discusses mathematical visualization in a more 
figurative and deeper sense, as seeing the unseen, not only what comes within sight 
but also what we are unable to see. This author considers that mathematics deals 
with objects and entities quite different from the physical phenomena, raising the 
need to rely heavily on visualization in its different forms and at different levels. 
Following these ideas, Arcavi (2003) presents a definition of visualization blending 
the ones proposed by Hershkowitz et  al. (1990) and by Zimmermann and 
Cunningham (1991):

Visualization is the ability, the process and the product of creation, interpretation, use of 
and reflection upon pictures, images, diagrams, in our minds, on paper or with technologi-
cal tools, with the purpose of depicting and communicating information, thinking about and 
developing previously unknown ideas and advancing understandings (p. 217).

This definition integrates many facets of visualization. Concurring with the perspec-
tive of Schmitz and Eichler (2015), we consider that the following aspects are espe-
cially relevant: (1) it integrates process and product; (2) it integrates different ways 
of how to handle visualization; (3) it mentions diverse kinds of representations; 
thus, everything not being completely symbolic could be considered as visual; and 
(4) it defines visualization as goal-oriented and enumerates purposes like discovery 
and understanding.

The use of visual representations as a crucial element in problem solving is not a 
new idea as it is stated by some authors (e.g. Polya, 1945; Schoenfeld, 1985; 
Stylianou & Silver, 2004). Polya proposed a set of strategies to achieve success in 
problem solving, being one of the most prominent in this list of suggestions to draw 
a picture; this translates the importance attributed by the author to visual aspects in 
mathematical thinking and problem solving. At this respect, Polya (1945) stated:

Figures are not only the object of geometric problems but also an important help for all sorts 
of problems in which there is nothing geometric at the outset … Even if your problem is not 
a problem of geometry, you may try to draw a figure. To find a lucid geometric representa-
tion for your non-geometric problem could be an important step toward the solution. (p.108)

Considering the focus of this paper, it is useful to clarify the meaning of visual and 
non-visual methods of solution. Based on the ideas of Presmeg (2006), we consider 
that visual solutions include not only inscriptions in the form of pictures but also 
more abstract spatial depictions, involving different visual representations (e.g. 
graphics, charts, figures, drawings). A non-visual solution is one that involves 
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mainly algebraic, numeric and verbal representations. There are many problems, 
usually of visual nature or context, that have great potential for visual solutions. It 
is to such problems that we propose the use of an additional and specific strategy we 
call seeing. In the same sense, Stylianydes and Silver (2009) also refer to the impor-
tance of visual representations as a possible problem-solving strategy. We consider 
that seeing involves an activity that may be associated with a more traditional range 
of strategies (e.g. draw a picture or diagram, solve a simpler problem, look for a 
pattern), but it is specifically considered as a strategy of thought that involves visual 
perception of mathematical objects and is blended with knowledge and past experi-
ences. Moreover, seeing includes imagining, which is related with having creative 
insights or Aha experiences and intuitions; it can also be expressed in terms of draw-
ing, which means translating one’s ideas in some visual form. In problem solving, 
this strategy that recurs to visual representations normally must be complemented 
with numerical and verbal explanations. According to Duval (2006) “…it is neces-
sary to combine the use of at least two representation systems, one for verbal expres-
sion of properties or for numerical expressions of magnitude and the other for 
visualization” (p. 108). The use of a variety of representations contributes to flexi-
bility of thought and creates the opportunity to think in different ways, which is so 
important to the development of creative visual solutions.

The use of visualization may be an important aid to all types of problems, includ-
ing problems in which the visual component is not evident. In these cases, seeing 
may lead to the development of intuition and the ability to establish new relation-
ships, thus breaking with mental fixations and enabling creative thinking. The see-
ing strategy does not replace any other traditional problem-solving strategy; it is 
rather a way to approach a problem. However it is not always encouraged by teach-
ers although it can be very useful. Many researchers agree that there is a strong 
relationship between visualization and the ability to solve problems, since visual-
ization often contributes, along with other strategies, to solve problems and to 
increase student repertoire (Ben-Chaim et al., 1989).

11.4.2  Potentialities and Constraints of Visualization 
in Problem Solving

A visual method is one that involves a visual image with or without a diagram as an 
essential part of the method of solution. A non-visual method, on the contrary, 
doesn’t depend on a visual image. The discussion about the role played by visual-
ization in students’ reasoning can be complex.

The potential and limitations of visual reasoning are recognized as part of the 
mathematics classroom culture (e.g. Presmeg, 1999; Zodik & Zaslavsky, 2007) 
related to the considerations and dilemmas underlying the choice of visual represen-
tations. As we have been saying, among the community of mathematics educators 
and researchers, it is rather consensual that visualization is fundamental and has 
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great potential, in the sense that enhances a global and intuitive perspective and 
understanding in different areas of mathematics. It is also clear that different indi-
viduals may have different thinking styles, and, when solving problems, some pre-
fer to ground their reasoning in visual features (Presmeg, 1999), which reinforces 
the importance of not overlooking this ability.

In this section, we identify some roles/potentialities of visualization, that is, 
looking for a visual solution, and seek to explain and justify our choice with some 
examples of tasks that illustrate such roles. Most of them are associated with solu-
tions that evidence divergent thinking and originality, which are components of 
creativity we also want to stress.

 1. To understand the problem
Non-visual methods are more likely to be used in such a way that prevents 

students to adequately understand the problem. Visualization is used to help 
understanding what the problem is about, allowing students to go deep into 
the situation to support their understanding before any generalization can 
happen.

The Big Ben lasts 5  s to beat 6  h. How much time does it last to beat 
midnight?

To solve this problem, students usually use proportional reasoning that leads 
to an incorrect answer: they suppose that it lasts 10 s. An easy way to prove that 
the numerical method is not appropriate is to make a scheme, as illustrated in 
Fig. 11.1.

Starting from the data and through the visual representation of the problem, 
students are easily conducted to the correct answer of 11 s.

 2. To attribute a meaning to a numerical or algebraic expression
The tasks that require students to see the arrangement in different ways and 

translate it in a numerical or algebraic expression can be used to attribute a mean-
ing through visualization to such numerical expression, connecting previous 
knowledge about numbers and basic geometric concepts and their relationships 
(Vale et al., 2012).

 The sea girl organized the shells she caught yesterday  
as the figure shows. Can you find a quick process to count  
them? Discover as much ways as you can.
There are different ways to count the arrangement of the 

shells, and each counting can be, respectively, written through 
a numerical expression that translates the students’ thinking and seeing. 
Figure  11.2 illustrates the summary of the most common solutions, with the 
expressions corresponding to each way of seeing.

Fig. 11.1 Solution of the Big Ben problem
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Fig. 11.2 Summary of the students’ most common responses to the task

Fig. 11.3 Summary of the students’ most original responses to task

These expressions can be verbalized as the following: “I see the shells in hori-
zontal rows, each one with 4, 4, 6, 6, 6, 6, 4 and 4 shells” or “I see ten squares of 
2 by 2”. It is important that teachers allow students to discover that each expres-
sion illustrates one way of seeing but they are all equivalent and correspond to 
the same number of shells, 40. These kind of tasks have other advantages if many 
solutions are requested in the statement, since, through visual attempts of solu-
tion, students may foster their creative skills, mainly the fluency and the original-
ity. Figure 11.3 illustrates the most original responses.

We argue that a previous work with counting tasks in figurative settings can 
be a particularly good way to develop skills of seeing (identification, decomposi-
tion, rearrangement) to facilitate similar processes in growing pattern tasks 
(Vale & Pimentel, 2011).

 3. To avoid computation
Seeing some features of the problem can possibly allow to justify numerical 

conclusions without making computations.
 All the segments are traced by the midpoints of the  
respective rectangles. Find a relation between the areas  
of the several rectangles.
Students must discover if these eight figures are, or not, equivalent. Usually 

they begin to attribute numerical values to the dimensions of the initial rectangle 
and apply formulas. In order to avoid computation and break with fixation in the 
connection area formula (Haylock, 1997; Presmeg, 2014), the teacher may 
 suggest looking at the figure, trying to see relationships that could be explained 
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without computations. Students can discover that the initial rectangle is divided 
into four congruent rectangles, and then, each one, a fourth of the initial, is 
divided into two halves. So, in every case, he/she obtains a rectangle whose area 
is 1/2 × 1/4 of the initial rectangle. This way, the figures are all equivalent.

 4. To plan ahead
Students can visualize during the problem-solving process in order to antici-

pate, that is, wondering: “What will be the consequence, if I do this?”. The prob-
lem Towers of Hanoi is an example of this.  

 Move all the discs from tower 1 to tower 3. 
Tower 2 can be used as intermediate, but you 
cannot place a larger disc onto a smaller one.
This proceeding relates to the problem posing 

question “What if?”. To answer a question like “What happens if I move the disc 
to here?”, students would need to be aware that this is one of several possibilities 
and therefore have a visualization of the wider context of the problem, opposed 
to a blind route of choosing the first thing that comes into their head.

 5. To bridge with a formal mathematical representation
The following example shows that the work with figurative patterns is espe-

cially suitable to visualization. The sequence is a growth pattern since each term 
changes predictably over the previous. This type of patterns provides mathemati-
cally rich and varied explorations and is a privileged context for the development 
of algebraic thinking, particularly in the transition from arithmetic to algebra. 
Here we intend to enhance the relationship between visual/figurative patterns 
and the respective numerical patterns showing how the visual appropriation of 
the regularity, and the search for consistency with the numerical representation, 
allows a degree of generalization to the discovery of the general term that would 
not be possible for young students, by simple observation of the numeric 
sequence.

Consider the first four figures of a given sequence:

 
How many squares will have the 199th figure? And the nth figure?
Previous to being in contact with visual approaches, students tend to convert 

figures into numbers, in order to find a rule based on the numeric relations.

 5 9 13 17 20, , , , ,…  
But, observing the figurative pattern, the students can see that “we have a 

square in the middle and in each arm of the X we have the same number of 
squares as the order of the figure”, as shown in Fig. 11.4.
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Fig. 11.4 One way of seeing

Fig. 11.5 Construction of a table

The students frequently dispose in a table the numerical result. But, in order 
to facilitate far generalization, it is not the final number that must be recorded but 
the way the construction is seen (Fig. 11.5).

As we can see, this perspective is much more powerful to reach far general-
ization. Such a discovery includes a type of relational thinking involving the 
concept of function which leads to the general term of the sequence. In each case 
the teacher must use the language and the most appropriate concepts for the 
proposed goals and level of schooling.

 6. To transform the problem into a mathematical form
Mathematical formulas may be obtained from the visual representation. 

Let us see an example:
Discover a general formula to the area of a rhombus.

A good way to deduce a formula is to make a drawing (Fig. 11.6).

Fig. 11.6 Decomposition of the rhombus
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So, if we label D and d, the two diagonals of the rhombus, the area will be 

A
D

d= ×
2

 which conducts to the classical form of the area of the rhombus, 

A
D d

=
×
2

.

Through this dynamic decomposition, the rhombus is transformed into a 
rectangle whose area is known. That is, the visual transformations used consist 
of an operation of reconfiguring the original figure. This process is purely visual, 
occurring without resource to a mathematical property. The visual evidence 
obtained can be used in teaching, since it intuitively explains a mathematical 
result (Duval, 2006).

 7. To explain or prove an assertion
Tasks with figurative patterns can be a good example of approach to complex 

processes, mostly conjecturing and generalizing, since they allow a friendly inter-
action either for teachers or for students. But can this process ensure, by itself, 
the truth of the conclusion? We argue that it does.

Stylianides and Silver (2009) defend that the structure provided by the figura-
tive representation of the sequence, since the way it is constructed is univocally 
determined, can guarantee and justify the mathematical law discovered. That is, 
the mathematical structure of the pattern, provided by the figure and by the state-
ment that makes the pattern defined, eliminates the need of checking the conjec-
ture in more data. In these cases we can trust the pattern discovered without the 
need to examine individual cases.

With this issue we raise the question whether which is developed through 
visual argumentation support is a proof, that is, if it can be considered deductive 
reasoning. To explore a little more of this aspect, we present an example.

Triangular numbers

 

Observe the figure and try to discover a mathematical law.
A numerical approach can be done:

 1 3 6 10 15, , , , ,…  

 
t n nn = + + +……+ ( ) +1 2 3 1–

 
or, using commutative property, tn = n + (n–1) + … + 3 + 2 + 1.
Thus, adding both equalities, we have: 2tn = (n + 1) + (n + 1) + … + (n + 1) 

and, consequently, t
n n

n =
× +( )1

2
.

But, based on visual reasoning, we can also conclude that figure n is half a 
rectangle n × m, as is shown in Fig. 11.7.
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Fig. 11.7 Visual proof

A

B
C

D X

E

3.35

2.79

A

B
C

D X

E

Fig. 11.8 Aha solution

So, its law is also t
n n

n =
× +( )1

2
.

What are the differences between the two approaches? Both are based on the 
concept of multiplication. In the first it seems to be no doubt that it is a mathe-
matical proof. Thus, due to the parallel made between both, we argue that the 
second process, fully explained by viewing, can also be considered a mathemati-
cal proof (Nelsen, 1993).

 8. To enhance Aha experience
To make a drawing can obviously facilitate the understanding of a problem, 

but it is not always sufficient to solve the problem. It is also necessary an Aha 
experience, as we can see in the example below:

[ABC] is a rectangular triangle and X is a mobile point in the hypotenuse 
[AC]. Each of the points D and E is the projection from X towards each cathetus. 
Discover the location of X in order that [DE] length is minimum.

In fact, a drawing with a dynamic geometry programme can be a good starting 
point to explore this question, but the solution depends on the Aha, which con-
sists in choosing the other diagonal, not in the figure.

In the rectangle [BEXD], the diagonals are congruent, and, this way, we may 
seek the minimum length of [XB], which happens in such a position of point X 
that makes [XB] the distance from B to the hypotenuse, that is, when [XB] is 
perpendicular to the hypotenuse [AC], as shown in Fig. 11.8.
We highlighted eight situations where we aimed to exhibit some potentialities 

and benefits of visualization. However, we can ask whether the visual is always 
helpful. In the words of Hershkowitz (1989), the use of this ability can work in two 
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directions: on one hand, visualization is needed to help form mental images of a 
concept; but the visual elements may, in some cases, narrow down the perspective 
of an individual about a certain concept.

Cognitive science studies on the problem-solving process show that, although a 
visual representation may contain the same amount of information than any other 
form of representation, it may become, by this fact, less explicit. It is precisely 
because visual representations may contain so much information that can be diffi-
cult for students to interpret, construct or use in mathematical problem solving. 
Thus, there is a need for students of an explicit teaching that puts these visual abili-
ties in evidence.

It is very common to assume that students are introduced to a concept through 
the observation/exploration of a few examples only. This is called the prototype 
phenomenon (e.g. Hershkowitz, 1989). We can say that the examples related to a 
certain concept satisfy its definition and contain its critical attributes; however they 
are different from one another visually and psychologically. The prototype is desig-
nated by Hershkowitz (1989) as being the “popular example”.

The selection of certain examples may have implications, when some cases are 
preferred and others are neglected, which may result in different types of reasoning 
(Hershkowitz, 1989): (1) the prevalence of visual reasoning based on appearance, 
leading to a visual judgement that can result in correct or incorrect responses; (2) 
the fixation on noncritical attributes, which are associated to the prototype example 
only; and (3) reasoning based on critical attributes. The difference between these 
last two categories is leading to incorrect or correct responses, respectively.

Following the perspective of this author, also Yerushalmy and Chazan (1990) 
approached the issue of visualization obstacles, dividing them according to (1) the 
particularity of diagrams, (2) considering standard figures/diagrams as models (proto-
typical thinking) and (3) the inability to see a figure/diagram in different ways. These 
researchers suggest that figures/diagrams are not always easy to interpret and certainly 
one example or a particular case is not enough to form a complete and accurate mental 
image of a given concept. Thus it is recommended to explore many different examples, 
not only prototypes, which highlight critical and noncritical attributes, allowing indi-
viduals to broaden their visual perceptions (Zodik & Zaslavsky, 2007).

A problem can be presented to students with or without the support of a figure. 
When a visual representation is given, the figure presented to illustrate the problem 
may influence the way a student approaches that specific problem and to what extent 
he/she will be successful when solving it (Zodik & Zaslavsky, 2007). Some choices 
end up being helpful, reducing the cognitive demand of the problem, while others 
may increase the level of difficulty. The possible potential or limitations of the 
visual aid are related to the type of information that the student can convey from the 
figure, what he/she understands to be translated by the figure or not.

In a more broaden scenery, it is also pertinent to reflect about the potential and 
difficulties of using visualization in problem solving even when there is no figure to 
start with.

Presmeg (1999) starts by identifying the mnemonic advantages of prototype 
examples but also refers that concrete images are effective in parallel with non- 
visual methods, like the application of formulas or logical analysis.
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Alongside Hershkowitz (1989), Presmeg (1999) also identifies situations related to 
prototype examples that can lead to some misconceptions. The author also mentions 
that a standard image of a figure can induce the lack of flexibility in reasoning, interfer-
ing with the recognition of a concept in a non-standard figure. These difficulties rely on 
the fixation for a persisting image preventing the individual to be open to other paths of 
solution. It is also stated by Presmeg (1999) that a concrete image, involving particular 
characteristics of a figure, can be associated by students to irrelevant details or may even 
introduce false assumptions. This type of situation occurs, for example, when students 
rely on an inaccurate drawing, taking for granted some relations that may not exist. 
Bell and Janvier (1981) discuss the implications of a similar phenomenon described as 
“pictorial distractions”, stating that, despite the meanings underlying a certain figure, 
the judgement focuses on visually salient clues perceived by an individual.

Another aspect that should be taken into consideration, in terms of the difficul-
ties arising from the use of visualization, whose attention is brought up by Presmeg 
(1999), is the possible lack of rigour of a certain representation in the sense that is 
vague, that is, an image that is not associated to a precise process of analytical rea-
soning can be of little help.

Visual intuitions can be very valuable, since they have meaning and they can 
constitute a referent to the individual, which is normally absent from the rigorous 
formal/abstract approach. However, intuitions aren’t infallible. They need to be 
checked in the sense that they can mislead us to think that certain statements are 
obvious or self-evident when, in reality, they are dubious or false (Hersh, 1997).

Summarizing, we can assume that all these situations are related with the diffi-
culty of generalizing an image, which is, naturally, a concrete case (Presmeg, 1999).

Both potentialities and constraints of visualization pointed out along this section 
are important contributions for classroom practices. In order to facilitate the use of 
visual thinking by students and contribute for them to use it in a more effective way, 
it’s crucial to enhance the roles of visualization. The teacher must be aware of these 
different roles, to help students in the problem-solving process.

Following the words of Goethe, what we see is what we know (Arcavi, 2003), 
which can be determined by one’s previous knowledge but also by the context within 
which the observation is made. For these reasons teachers should value the use of 
figures, recur to different types of visual images (e.g. drawings, gestures, movement) 
and motivate students to apply them but also present several visual examples of the 
same concept (e.g. varying aspects like orientation). To conclude, visualization must 
be valued and assume a central role in mathematics education; however, it is also 
necessary to understand the possible mishaps of its use, adjusting teaching practices, 
in order to indubitably consider it a key component of reasoning.

11.5  The Teaching of Seeing to Foster Creativity

Creativity is a dynamic characteristic that students can develop if teachers provide 
them appropriate learning opportunities. Our challenge as teacher educators is to 
find ways for developing creative and innovative education, as a means to foster 
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creative competences and innovative skills among the next generation. So we must 
teach for creativity. Teachers are the main vehicle for doing this because they have 
the power to unlock the creative, innovative and critical potential of young students. 
If we believe that learning mathematics is strongly dependent on the teacher and 
creativity is connected with problem solving and problem posing, it is necessary, 
thus, to offer (future) teachers diverse experiences, in order to develop their problem- 
solving skills to apply in their teaching practice.

The teaching and learning process must give students the opportunity to “think 
outside the box”, but this is only possible if teachers believe that creativity is teach-
able and know how to do that.

In this section we will discuss some aspects of the work we have been developing 
within the context of studies that we carried out with elementary pre-service teach-
ers’ education.

11.5.1  Teachers and Creativity

What students learn is largely influenced by the tasks used in the classroom that 
provide the starting point for the mathematical activity. Teachers can create some 
problematic situations for very specific purposes and allow others to arise in a less 
planned manner. Mathematical challenging tasks are not just difficult tasks or with 
a higher level of mathematization, but much of the challenge may be provided by 
the teacher (e.g. Stein & Smith, 1998; Vale & Pimentel, 2011). So, teachers should 
carefully plan what they want to work on and what cognitive challenges they wish 
to provide their students. Teachers also must decide what aspects of a task to high-
light, how to organize and orchestrate the work of the students, what questions to 
ask to challenge those with varied levels of expertise and how to support students 
without taking over the process of thinking for them and thus without eliminating 
challenge, in particular, when they explore problem-solving tasks (Vale et  al., 
2012). A task is good when it serves to introduce fundamental mathematical ideas, 
is an intellectual challenge for students and allows different approaches (NCTM, 
2000). Tasks must develop new approaches and creative ideas, so they must pro-
vide multiple solutions in order to raise the student flow of mathematical ideas, 
flexibility of thought and originality in the responses. Teachers must encourage 
students to create, share and solve their own problems, as this is a very rich learn-
ing environment for the development of their ability to solve problems and their 
mathematical knowledge. The most successful problem solver is the individual 
who can apply diverse approaches. It is important that future teachers become 
themselves creative thinkers and they must be aware to act in the same way with 
their own students. Our concern was not to categorize students but to identify 
potentialities in the tasks to develop creativity in students, detecting their mathe-
matical strengths or weaknesses.

To develop in future teachers the ability to look at a problem from different 
angles, we focus on the visual strategies, whose use is not always privileged in 
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mathematics classes (Stein & Smith, 1998) but which have a great creative potential. 
To accomplish this goal, we advocate the analysis in the classroom of many of such 
strategies, presented and shared among students or, if it doesn’t emerge naturally 
from the students’ products, highlighted by the teacher. Some of those strategies 
don’t occur without several attempts and reflection. This implies that teachers must 
encourage students to engage in suitably challenging problems over a prolonged 
period of time, thereby creating the opportunities for the discovery of an insight. 
Those good tasks are also concerned with knowledge because the more different are 
the situations we propose to students, the greater must be his/her repertoire in order 
to have the intuition towards the solution.

Psychologists and mathematics educators interested in mathematics problem- 
solving strategies have classified solvers according to their mode of thinking. 
Krutetski (1976) considers two modes: verbal-logical and visual-pictorial. 
According to this author, it is the balance between these two ways of thinking which 
determines how an individual operates on mathematical ideas, so students can be 
placed in a continuum with regard to their preference for thinking. In consequence 
we can consider three types of students depending on their thinking preference in 
mathematical problem solving: (a) verbalizers (analytical) – those students, who 
have a preference for the use of non-visual solution methods, preferring to use 
verbal- logical modes of thinking, which involve algebraic, numeric and verbal rep-
resentations, even with problems that would yield to a relatively simple way to solve 
through a visual approach; (b) visualizers (geometric) – those students, who have a 
preference for the use of visual solution methods, preferring the use of visual- 
pictorial schemes, which involve graphic representation (namely, figures, diagrams, 
pictures), even when problems are easily solved by analytical means, i.e. they have 
preference for an extensive use of visual methods to solve a mathematical problem 
that can be solved either by visual or non-visual methods; and (c) harmonic (mixed 
or integrated) – those students who have no specific preference by either verbal- 
logical or visual-pictorial thinking. They have an integrated thinking style because 
they combine analytical and visual reasoning (e.g. Borromeo Ferri, 2012; Krutetski, 
1976; Presmeg, 2014).

These issues have great implications in the classroom practice.
Students often tend to use analytical ways of processing information rather than 

visual ones, even when the former are more complex – a trend that sometimes leads 
to bad results, because students often have no mathematical knowledge to give a 
complete analysis of the problems (e.g. Eisenberg & Dreyfus, 1991). Some studies 
(e.g. Clements & Del Campo, 1989; Whiteley, 2004) show that students taught in a 
visual way tend to learn to use visual methods. Although depending on the problems 
and modes of thinking of solvers, the activity of seeing is something you can create, 
develop, teach and learn.

We arrived at the confluence of three domains – problem solving, visualization 
and creativity. The act of seeing, adopted as a problem-solving strategy, can be 
taught and developed, provoking the visual reasoning associated with intuition, the 
Aha experience, the ability to invent and divergent thinking, essential characteristics 
of creative thinking.
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Our concern during classroom practice is to promote mathematical problem 
solving, encouraging thinking and creativity. We use a set of good tasks that chal-
lenge the students, providing opportunities for making connections, and for the 
teacher to build upon the knowledge that students bring to discuss through their 
products. The different strategies used to solve a problem are a suitable way for the 
teacher to highlight connections and to practice flexible thinking, an important fea-
ture of creative thinking. Along this activity we expect students to produce elegant 
solutions to a given problem situation. Certain classroom tasks seem to be able to 
motivate weak students, not only for learning mathematics but also to engage in 
mathematical thinking. They have some characteristics that make them less threat-
ening and allow weaker students, in particular, to be less anxious and to focus on the 
tasks with a clearer mind, keeping nonetheless good students challenged. In our 
work we reached the same conclusions, i.e. when we use tasks that appeal for visual 
solutions (e.g. Barbosa & Vale, 2014; Vale et  al., 2012, 2014), many solutions 
emerge, some of them very original. Without radical changes in teaching method-
ologies, we can have students think creatively.

The two tasks analysed below can be solved by both visual and non-visual meth-
ods. And visual solutions may be emphasized precisely when both options of solu-
tion exist. For some problems there is only a visual way to interpret and solve them. 
It is among them the goat problem, which statement can be, for example: In a square 
house wall of 6 m situated in a big field, there is a goat tied to point A by a tether of 
length 8 m. What area of the field can be grazed?

However, in many problems we have a choice for a visual or a non-visual strat-
egy. We claim that, in most problems, visual solutions are simpler and more elegant, 
show a deeper understanding and are more likely to be creative. Yet, as most stu-
dents are non-visualizers, they do not spontaneously reason this way. So we must 
teach them to see. With this goal of developing seeing and creative thinking in 
problem solving, in our teacher education courses, we seek to create a teaching 
environment that stands out visualization. Such a methodology lies on the following 
issues: (a) to choose carefully the tasks, privileging the ones that have multiple solu-
tions and allow several approaches; (b) to suggest students to solve the problem by 
using more than one solution, hosting many ideas to tackle the problem, even if they 
seem unreasonable, and to follow each one for a while; and (c) to promote a discus-
sion period, where the visual solutions must be presented and processed to get them 
highlighted, such as imagining; drawing pictures and schemes; painting them if 
useful; looking at the picture from another point of view, rotating the paper; decom-
posing and recomposing given pictures; and exploring symmetry.

We have verified that visual reasoning, or seeing to think, is learnt. Students can 
learn to develop and apply visual skills since such a work of visual enhancement is 
done in class. We present two problems and some solutions obtained before and 
after this work.
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Example 11.1 The Zs 

Fig.1 Fig.2 Fig.3 Fig.4  

Assume that the pattern goes on. How many little squares can you find in the 5th 
figure of the sequence? Generalize to a figure of any order n. Present as many solu-
tions as you can.

This example related to a pattern shows that the work with figurative patterns is 
especially suitable to visualization. Actually, in face of such a problem, traditionally 
students transform the figures into numbers obtaining the sequence

 5 10 17 26 37, , , , ,…  

for which it is not easy to discover a general mathematical law, for example, in a 
linear pattern as

 3 5 7 9 11, , , , ,…  

However, if the sequence is approached in a figurative way, the situation is quite 
different.

A visual approach to this pattern allows students to find a process of construction 
of the successive terms of the sequence that leads them to the discovery of a math-
ematical law. There are many ways of seeing to make this generalization; the exam-
ple of Fig. 11.9 illustrates one of these modes.

The search for consistency between the visual pattern and the numerical repre-
sentation makes the numerical sequence take the form shown in Fig. 11.10, which 
gives meaning to the numerical sequence above.

Fig.1          Fig.2                    Fig.3                  Fig.4

Fig. 11.9 First way of seeing
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Fig. 11.10 Expressing the way of seeing

Fig. 11.11 Second way of seeing

Fig. 11.12 Third way of seeing

Now a formula naturally emerges from generalization to any term:

 
a n nn = + +( )2 2 1 .

 

In alternative, many students see this arrangement as a rectangle plus two little squares. 
We show in Fig. 11.11 the decomposition made in the 4th figure of the sequence.

This generates the numerical sequence 1 × 3 + 2, 2 × 4 + 2, 3 × 5 + 2, 4 × 6 + 2, 
… and the generalization process gives rise to the algebraic expression

 
a n nn = +( ) +2 2.

 

There are, however, other ways of seeing. The rules above are equivalent to 
an = (n + 1)2 + 1, which translates another more dynamic and simpler way of seeing. 
This is shown in Fig. 11.12:

Example 11.2 Regular octagon
 

The painted region of the regular octagon has area 3. What is 
the area of the octagon? Present as many solutions as you can.

Since this problem is geometric, it is not possible to avoid the 
use of visualization. However, there are great differences among 
solutions. We must say that most students presented only one solu-
tion and in many cases even that one is not complete. The most typical attempt 
before stressing the importance of visual solutions relies obviously in the figure, 
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but the word area immediately leads to algebraic formulas. Figure 11.13 shows the 
decomposition of the octagon:

 
A

x y y
x x xyT = ⇔

+ +
× = ⇔ + =3

2

2
3 32

 

By the Pythagorean theorem, x2 + x2 = y2.
So AR = (2x + y) × y = 2xy + y2 = 2xy + 2x2 = 2(xy + x2)=2 × 3 = 6 and finally 

Aoct = 3 + 6 + 3 = 12
Another solution, although relying in an algebraic method like the first one, 

begins by considering that the given polygon can be obtained from a square from 
which we cut four triangles (Fig. 11.14).

After the teacher enhanced the search for visual solutions, some others appeared. 
The students, reasoning by symmetry, answered (Fig. 11.15):

The octagon is composed by four overlapped trapezoids and a central square. The over-
lapped region is constituted by four triangles, whose area is precisely equal to the area of 
the central square, divided into four triangles. So the area of the octagon coincides with the 
area of the four trapezoids.

Afterwards, one student who finished the reasoning concluded that the area of 
the four triangles is equal to the area of the square. This conclusion, however, didn’t 
rely on visualization as in the solution presented below, but in calculations using the 
Pythagorean theorem. So this solution is mixed, using both visual reasoning and 
calculations.

x
x

y

Fig. 11.13 Decomposition of the octagon in the most frequent solution

Fig. 11.14 Framing the initial polygon

Fig. 11.15 The overlapped trapezoids
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Fig. 11.16 Reconfiguration of the initial trapezoid

There was also a completely visual solution:

Decomposing the figure, we obtain 8 congruent rectangular triangles and 4 congruent 
 rectangles. The sum of the areas of 1 rectangle and 2 triangles is 3. So, the total area 
is 12 (Fig. 11.16).

In the last two examples, the students invented a dynamic solution that involved the 
displacement of parts of the figure, obtaining a different view of the whole.

The results obtained by students in these examples can be identified with the 
processes most used and are consistent with what is referred in several studies 
(e.g. Eisenberg & Dreyfus, 1991; Presmeg, 2014), confirming that most students, 
when having the opportunity to choose the process of solving a task, do not choose 
the visual solution, by preferring algebraic methods, and so fitting in the category of 
non-visual.

Those examples show that problems can be solved by more traditional means – 
which are those that the students prefer; however, some solutions involve Aha expe-
rience. Actually, the seeing strategy allows a flexible approach to the problem that 
leads to a much more concise and elegant solution (Liljedahl, 2004). In those exam-
ples, students were encouraged to search for visual solutions, and this happened 
either after the discovery of a numerical solution or after trying without achieving 
any solution. So we can say they had a time of incubation before the flash of insight 
that characterizes the Aha experience (Gardner, 1978; Liljedahl, 2004). Some of 
them were able to restructure the information to see beyond what was given 
(Wertheimer, 1959) so that the solution became simpler and more elegant. This 
route lies with creative thought, since the illumination stage is inventive by nature. 
Also, as students are required to present more than one solution, they can develop 
fluency and even flexibility when they turn to a different category of a solution 
(Vale et al., 2012) – for instance – turning from a numerical to a visual solution; 
originality is more likely when the solution is the result of a flash, in which there is 
a reorganization of the given data. And even in a set of visual solutions, there are 
some more original. In the Zs problem, the horizontal or vertical scanning in the 
initial figure is more common, and, on the contrary, those solutions that make a rear-
rangement of the initial figure are less frequent.

So, to foster creativity, we, as teachers, must encourage our students to see 
beyond what they initially see, either basing in the figure presented in the statement 
or in a visual representation made by the student.
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11.6  Closing Comments

Several authors (e.g. English et al., 2008; Lesh & Zawojewski, 2007; Schoenfeld, 
1985) consider that research on problem solving has not evolved since the late 
1990s and early this century. Moreover, the research conducted does not seem to 
have allowed building up an efficient body of knowledge about how to effectively 
promote problem solving in and beyond the classroom. We argue that problem solv-
ing should be an integral part of the mathematics curriculum, helping in the compre-
hension of a given concept or mathematical process to enable students to think 
mathematically, which involves creating and interpreting a situation (describe, 
explain, communicate) at least as much as it involves calculating, performing pro-
cedures and reasoning deductively (Lesh & Zawojewski, 2007). Thus we call for a 
mathematics teaching with problem solving, where we value in particular the seeing 
strategy. Although some problems can be solved using both a visual and a non- 
visual approach (e.g. Eisenberg & Dreyfus, 1991; Presmeg, 1986), many of them 
can be more efficiently solved by visual methods, since they allow students to see 
the data, otherwise, rearranging them in a personal way, expressing flexible and 
original thinking, which are components of creativity. Thus, we can say that the 
approaches that use visual representations bring out the development of creative 
thinking (Presmeg, 2014).

Preliminary results of our work show that the tasks used are appropriate for our 
goal because they highlight the strength of the seeing strategy as being the one that 
provides more creative solutions. These tasks have multiple solutions, involving 
various contents and processes, which favour flexibility and fluency; but among the 
possible strategies, there are some clearly simpler ones involving seeing and aha! 
(e.g. Fischbein, 2002; Freiman & Sriraman, 2007; Presmeg, 2014).The thinking 
styles used by the students were mainly analytic and integrated. There is still a long 
way to run either towards creativity or to the use of visual strategies. Here the teach-
er’s role is critical: when these strategies do not appear naturally, the teacher must 
necessarily demonstrate that way of seeing, in order to develop the visual skills of 
students and to increase the students’ strategies repertoire (Arcavi, 2003). These 
results are in accordance with Presmeg (2006, 2014), which shows that students are 
not reluctant to visualize, by the contrary, for some this is the only way to solve a 
problem. But we realize that for sociocultural reasons we have yet a problem in the 
acceptance of this mode of thinking in the classroom.

Our work has been focused, in a first phase, especially in students with advanced 
schooling, who normally don’t choose to use visual processes, since during their course 
of learning, this approach was not valued by teachers. It is our conviction that, with 
young students without this brand of education and with a teaching that uses tasks that 
put into evidence the potential of this approach, students can use these strategies in a 
more systematic way, which allows to develop their critical thinking and creativity.

At the end of this paper, we can answer the questions raised earlier. We defend a 
mathematics teaching and learning approach with problem solving, where teachers 
use a practice that enhances visualization and develops this ability through tasks 
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that have many solutions. Those tasks can help students overcome some difficulties 
with mathematical concepts and procedures.

With this work we can get a repertoire of tasks, with at least a visual solution, to 
use during the mathematics classes, which help students to obtain a more dynamic 
use of their mathematical knowledge, being fluent and flexible in the transference to 
new situations and giving them opportunity to show their originality.

The teachers’ challenge is to provide an environment of practice with problem 
solving that enables students to think creatively, so teachers should seek appropriate 
curricular materials to develop such ability. It would be interesting to extend this 
discussion to other resources like DGEs, analysing the potentialities of their visual 
impact in dynamical constructions.
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Chapter 12
Creativity and Problem Solving with Early 
Childhood Future Teachers

Yuly Vanegas and Joaquín Giménez

12.1  Introduction

Reports on children’s mathematical achievement pointed out that many children at 
early childhood level successfully engaged in mathematical thought and these skills 
are predictors of later school mathematics achievement (Munn, 1997). The process 
of learning and instruction of early problem-solving skills are considered a way of 
improving basic capacities. In such a perspective, research and expert practice indi-
cate that certain concepts and skills are both challenging and accessible to young 
children (Seo & Ginsburg, 2004).

For a long time, mathematics and creativity have appeared as incompatible terms 
even for some educators (Upitis, Phillips, & Higginson, 1997). In addition, many of 
the current studies refer mainly to exceptionally talented children. However, how do 
we start preparing creative pupils from preschool onwards? In this chapter we talk 
about the need to prepare future preschool teachers to consider creativity aspects 
when working with children since early ages, particularly when future teachers 
analyse what children do when they are involved in problem-solving activities and 
identify which mathematical ideas are behind the children’s statements and their 
arguments.

It is generally assumed that in order to support high-quality mathematics educa-
tion, the institutions, programme developers and policymakers should create a more 
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effective early childhood teacher’s preparation and continuing professional devel-
opment. Consequently, it is important to improve teachers’ ability to identify chil-
dren’s behaviour, in order to support children’s thinking and take the best professional 
decisions. There is a large lack of research about the impact of an early acquirement 
of didactical analysis competence of the future teachers, which are non-specialists 
in mathematics education, in particular, about how the future teachers interpret rel-
evant events that are difficult to see, because of the early use of mathematical lan-
guage, as happens with the early childhood education.

In such a framework, our main aim in this chapter is to characterize some trends 
of the initial process of how future teachers notice strategies and mathematical con-
tent that children developed when faced with problem-solving activities (Jacobs, 
Lamb, & Philipp, 2010). At the same time, we aim to understand the importance of 
promoting creativity through interactional means in the early ages.

In particular, we are interested to see if in the observations of future teachers, 
some creativity traits appear when they analyse children’s strategies. The school 
experience presented to the future teachers is a part of an arithmetic problem- solving 
workshop done in preschool. The school experience was developed within an atmo-
sphere of total freedom to choose manipulative and procedures of resolution, in 
which children invent their own strategies, discuss them within the group and decide 
which strategies will be the “official” ones for the group as a negotiating process 
(De Castro & Escorial, 2007). We structure the chapter into two parts: the theoreti-
cal presentation, explaining the main constructs used, and a case study experience 
with future teachers, offering results and perspectives.

12.2  Creativity and Problem Solving

Previous research found that the level and the complexity of preschool children’s 
mathematical understanding are strongly underestimated by some teachers (Rudd, 
Lambert, Satterwhite, & Zaier, 2008). Some other authors, such as Craft (2002), 
highlight the role of the teacher in providing the optimum balance between structure 
and freedom of expression for young children.

Unfortunately, in many cases, future teachers assume that mathematical abilities 
develop by themselves without any support and problem-solving strategies are far 
from the possibilities of childhood (Clements, 2004). On the other hand, we know 
that for a mathematics teacher, a problem means an attractive question whose steps 
or ways of solution students do not know but the pupils do have the necessary pre-
liminary information (Schoenfeld, 1989). In this sense, problem solving not only 
means finding the result of a mathematics question but also facing new conditions 
and finding flexible, effective and elegant solutions for these conditions. We assume 
a theoretical investigative approach (Ponte, 2007) to analyse the teaching and learn-
ing of mathematical processes in preschool (Baroody, 2003), in particular, for 
problem- solving activities.
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When preschool children are situated in problem-solving situations, it is nearly 
always within a very familiar context, for example, a problem involving the applica-
tion of a mathematical concept that students have just been taught. In such situa-
tions, learners are aware of boundaries and have been given some clear leads about 
what knowledge to apply. Such problems often seem closed, with very little room to 
explore and be creative. Therefore, in our perspective we are talking about challeng-
ing new problems, using different methods and strategies.

In such activities, children will need a teacher or another person (one committed 
to fairness) to guide them through the steps at first. This help will not be as neces-
sary as children gain experience by practicing their newly learnt skills. The ability 
to communicate is a prerequisite skill for social problem solving, but children as 
young as 3 years of age need a mediator most of the time. Teachers should also work 
with parents and caregivers to encourage them to model problem solving for chil-
dren. With this, they can promote and support children’s efforts to practice problem 
solving at home.

We interpret creativity as a group of elements that helps to include mathematics 
in the educational process, as something that helps to develop flexible thinking. This 
kind of thinking is possible when future teachers promote the construction of prob-
lems and situations and promote the solution of real problems. All this appears in an 
environment where both teacher and student enjoy mathematics and where the stu-
dents feel free to make mistakes and to learn from them. It gives the opportunity to 
improve the imagination of the children. Training teachers to teach mathematics 
creatively means fostering the ability to solve problems that allow the development 
of structures, recognizing their generation, in order to encourage future teachers in 
both mathematics production and difficulties’ confrontation (Sequera, Giménez, & 
Servat, 2005).

12.2.1  Creativity, Problem Solving and Preschool Settings

It is regularly assumed that investigative approaches enable children to experience 
mathematics (in particular, problem solving) within a context that is meaningful to 
them. To do this, it is fundamental for the teachers to increase their personal subject 
knowledge, in order to fully extend the potential learning of the children in an inves-
tigative approach. Creativity in the mathematics classroom is not just about what 
pupils do but also about what we do as teachers. Very simple activities may be a 
problem for one child but not for others. Interesting problems involve alternative 
solutions using different mathematical ideas. If we are thinking creatively about the 
mathematical experiences we offer our pupils, we can open up opportunities for 
them to be creative (Piggott, 2011).

Emphasis must be put upon the creative process, rather than judging the quality 
of children’s “products”. However, it is necessary to control the reflective state-
ments given during the process, as an adult game in which we should be finding 
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validated solutions. In fact, creativity becomes more visible when adults try to be 
more attentive to the cognitive processes of children than to the results they achieve 
in various fields of doing and understanding (Malaguzzi, 2001).

In order for teachers to act as an informed other and scaffold the children’s 
potential learning, they need to draw on their knowledge base about what the chil-
dren know, understand and are able to learn (Clements, 2004). In this investigative 
framework, the creativity is considered an inherent characteristic of the mathemati-
cal knowledge building, and it can be widely promoted in the school population in 
general by means of problem-solving activities (Silver, 1997).

In such an approach, it is important to start with a worthwhile task, one that is 
interesting and creates a real need to learn and to practice. Experiencing mathemat-
ics in context is not only more interesting to children but more meaningful for chil-
dren (Baroody, 2000), where students feel free to make mistakes and to learn from 
their mistakes. In our mathematical practices, we see the importance of using ways 
to represent what children are doing, giving opportunities for creativity. In fact, 
mathematical graphics support children’s thinking when we encourage them to use 
their own ways of representing their personal ideas. Adults who acknowledge dif-
ficulties and which also demonstrate perseverance can help children to persist and 
become positively and creatively problem solvers (Gifford, 2005).

Imagery and systematization are also important for creative problem solving, 
particularly during the incubation-illumination stage of the process. Deloache and 
Brown (1987) found that when looking for a lost camera, some 3-year-old children 
used systematic strategies by searching only in places visited since the camera was 
seen there. We are convinced that children should be prepared for complexity since 
the early years. Mathematics educators should overcome traditional ways of teach-
ing openness to unexpected answers (Jalongo & Hirsh, 2012) because in elementary 
school, creativity decreases.

Young children can also plan reflectively for problem-solving purposes. 
According to Gura (1992), children who were more experienced with block play 
tended to plan before building, by selecting the blocks they would need. At any 
given point in their development, children will use five or six different strategies. 
Higher and lower order strategies coexist and compete. Thus, what is important is 
not the process of moving from one strategy to the next (Baroody, 2000) but build-
ing several appropriate strategies in order to show a good interpretation of the prob-
lem needed to obtain a result.

In this chapter, we also assume that mathematical thinking is not primarily about 
developing isolated arithmetic skills but about posing and solving problems, which 
require ability in quantitative and relational understanding (Van Oers, 2004). We (as 
teachers) also acknowledge that children need to feel in control of the outcome. 
Instead, children’s actions often are focused on pleasing the teacher (Carr, Peters, & 
Young-Loveridge, 1994).

Creativity is related to motivation, clarity, richness and openness. We know that 
a rich problem may have more than one solution and can be solved using a range of 
methods at different levels (Davis & Pepper, 1992).
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12.2.2  Creativity, Equity and Problem Solving

Developing children’s problem-solving strategies and confidence becomes an equal 
opportunity issue: teachers will need to find problems for engaging children. The 
issue is not so much who thinks of the solution first, but whether the children engage 
with the problem and come to see it as their own problem. Having a rich context is 
not enough for encouraging children’s creativity. Some children may find it difficult 
to express their creativity. These ideas and many other similar comments defend the 
idea that equity is necessary for promoting creativity. We do not only interpret cre-
ativity associated with gifted children (Meissner, 2003).

Problem solving considered as play, in which questions are understandable, 
gives opportunities for all children to provide answers and control them as well. An 
arithmetic problem-solving workshop as a game leads to the expression of ideas and 
contrast in a democratic way, as a universal task which cannot be reduced to num-
bers (Carlsson-Paige, 2013). Some children may need to learn to stand up for their 
own ideas, especially when these do not conform to those of the rest of the group. 
In this moment when new curricula ask for inclusion, problem solving is a powerful 
task to improve equity.

We already know that many future teachers come from a curricular perspective 
in which such principles were not established. Besides, the difficulties of teachers in 
mathematical issues lead us to think that problem-solving tasks can be inappropriate 
for early childhood. Nevertheless, we should overcome such a belief. Emotional 
processes, such as emotional fantasy in play, pleasure in challenge, involvement in 
tasks and tolerance of anxiety, are characteristics of problem-solving activities for 
early childhood. Problem solving in an open democratic environment promotes cre-
ativity and enables children to make connections between different aspects in math-
ematics and thus extend their understanding. Both creativity and play require 
imagination, insight, problem solving, divergent thinking and the ability to experi-
ence emotion and to make choices (Russ, 2003).

12.2.3  Construction of Noticing Skills

The process of noticing is an important aspect in professional teacher development 
and in particular, as a first point for doing an in-depth didactical analysis. We assume 
that noticing relates two important professional skills (Sherin, Jacobs, & Philipp, 
2011): (a) the extent to which future teachers attend to the mathematical details in 
children’s strategies and (b) the extent to which the teachers’ reasoning is consistent 
with both the details of the specific children’s strategies and the research on chil-
dren’s mathematical development. This feature of teacher professional competency 
involves the cognitive ability to identify and interpret the salient features of the 
students’ output in order to make informed decisions (Llinares, 2013).
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The notion of noticing helps to characterize what the mathematics teacher knows 
and how this is put into practice in the classroom. It is an important topic in math-
ematics education (Ponte & Chapman, 2006). The skill “notice professionally” 
requires that the teacher be able to identify relevant aspects of the teaching situation, 
use knowledge to interpret the events and establish connections between specific 
aspects of teaching and learning situations and more general principles and ideas 
about teaching and learning (Jacobs et al., 2010; Mason, 2002; Sherin et al., 2011).

One particular aspect of teacher notice is the ability to be attuned to the students’ 
mathematical thinking (Llinares, 2013). The main aim of noticing is that future 
teachers were able to understand and analyse the selecting and designing of suitable 
mathematical tasks. The future teachers should interpret and analyse the students’ 
mathematical thinking, the practice of mathematics teaching initiating and guiding 
the mathematical discourse and the role of interactions. Although there are different 
theoretical ideas about noticing, a common approach involves highlighting the way 
in which teachers interpret mathematic teaching situations.

Most students’ classroom experiences of mathematics involve studying materials 
and working through tasks set by their teachers, in which they are passive observers 
of mathematics (Boaler, 1997), leaving little room for the entrepreneur or creative 
thinker. Therefore, it is difficult for future teachers to identify traits of creativity in 
preschool. This includes aspects such as being willing to notice patterns, as well as 
making decisions about problem solving, including planning, checking, changing 
strategy and reviewing (OFSTED, 2013).

We assume that for detecting or noticing traits of creativity, it is fundamental to 
identify evidences from (a) children’s problem-solving strategies developed in dif-
ferent school dialogues and (b) deep observations and interpretation about arithme-
tic knowledge built by individuals and identified processes. The discourse analysis 
generated by future teachers enables them to show what they consider relevant, and 
group discussion offers the possibility of proposing other formulations to others, 
raising objections and so on (Fernandez, Llinares, & Valls, 2013).

We consider that future early childhood teachers have previous personal knowl-
edge about what children and the teacher are doing, but they need theoretical mate-
rials to improve their analysis (Fernandez et al., 2013). For instance, future teachers 
should know elements about semantic analysis coming from problem-solving 
research.

12.2.4  Children’s Creativity and Pre-Service Teachers

In order to develop creativity in mathematics education, both teachers and students 
need much more than solid mathematics knowledge (Meissner, 2000). It is in this 
sense that Kubínová (1999) points out that in order to produce creative, self- 
confident pupils, it is necessary to produce creative and self-confident teachers, that 
is, teachers who are able to develop their pupils’ skills to use their knowledge and 
react adequately to the changing conditions of their world.
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Identifying creativity relates to the recognition of children using unusual strate-
gies, and showing if children establish relations and structures, even it is not explic-
itly. In our framework we want to see how future preschool teachers recognize how 
children are creative thinkers going beyond algorithms (Leikin, 2009), by identify-
ing what is behind the children’s statements and their arguments. Educators have to 
be creative in planning and implementing the curriculum, and they must nurture 
creativity in children, which is all about identifying people’s strengths and estab-
lishing an education community (ACECQA, 2011).

Reflective thinking is necessary for creative future teachers as the process of car-
rying one’s own experience into meaning formation and the relation and connection 
of bringing a deep understanding into other experiences and ideas (Rodgers, 2002). 
Training aimed at developing creativity provides self-confidence to the participants 
(Scott, Leitz, & Mumford, 2004). Perception always creates a barrier in almost 
everything possible, and for one to improve creativity, one needs to have his/her 
thoughts clear. Perceptions can cause a limit to one’s eventual level and means of 
reasoning. Problems in perception may not allow one to reach the necessary differ-
ent levels of reasoning.

Creativity is an important aspect for early childhood education. In fact, children 
should have opportunities to imagine and create, propose theories and reasons, mas-
ter skills, have meaningful experiences, express thoughts and ideas, solve problems, 
engage in reflective thinking and explore diverse ways of knowing, thinking and 
learning (ACECQA, 2011).

In many curriculum standards, the need for ‘Children express ideas and make 
meaning using a range of media’ (EYLF, 2009) is highlighted. It should include the 
following principles: (a) the need of imagining and creating role scripts and ideas; 
(b) sharing stories and symbols of their culture; (c) re-enacting stories; (d) using the 
creative arts such as drawing, painting, sculpture, drama, dance, movement, music 
and storytelling to express ideas and make meaning; (e) experimenting with ways of 
expressing ideas and meaning using a range of media; and (f) beginning to use 
images and approximations of letters and words to convey meanings. Assuming 
these principles, it was considered that number problems are an important issue and 
because future teachers tend to have a stronger competence in this field, more so 
than with geometry problems.

To categorize future teachers’ comments, we assume the following indicators of 
creativity: originality, flexibility, fluency and elaboration (adapting which are used 
for tasks in Sequera et al. (2005) and Leikin (2009)). Such categories are explained 
as follows.

Originality is the ability to think in an unusual way, producing new and unique 
ideas (Silver, 1997). It means a reference about promoting novelty, unpredictability 
and surprise. It causes the student to evade a previous conceptual system and build 
a new one that affects both ideas and people. It brings about innovative ideas, statis-
tically infrequent.

Flexibility is the ability to think in different ways to produce a variety of different 
views on the same issue. It means considering different kinds of knowledge, by 
recognizing that children use different representations, even methodologies, to 
interrelate interpretations and promote openness in problem solving (Callejo, 2003).
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Fluency is the ability to produce a large number of different solutions for the 
same task. It is difficult to find more than one process being explicit. Effective flu-
ency relates to the generation of ideas, communication and ability for judgement in 
challenging situations (Callejo, 2003). Therefore, we assume that for children it is 
possible to consider fluency when the children can accept or modify other’s solu-
tions. It means also to generate alternatives, approaches, combinations, association 
capacity, completion and production of relations when solving problems.

Elaboration is understood as the ability to face complex situations as an inte-
grated configuration of meanings (Reigeluth & Stein, 1983). It appears when the 
generating process is focused, with attention to detail, carefully and meticulously. It 
allows the pre-service teacher to organize the content, to imagine the following 
steps once the images, thoughts and statements have been conceived.

In a previous research, we used such categories to analyse the potentiality of 
professional tasks used for future primary teachers (Sequera et al., 2005). What 
will happen with early childhood education? Therefore, we now explain the power 
of a professional task not only to analyse the task itself but also to see how it con-
tributes to professional development on creativity aspects. For our purposes, in the 
training experience explained below, we considered just the first three components 
of creativity (originality, flexibility and fluency) as in the research of Amaral and 
Carreira (2012) which analyse problem-solving strategies with primary school stu-
dents. In fact, it is difficult for future teachers to find elaboration and complexity in 
preschool classrooms.

12.3  An Experience with Future Teachers

Now we will describe a case study with future teachers, in which we exemplify our 
research development. In this study, we worked with 30 pre-service teachers of 
third-year in the Early Childhood Education Program at the University of Barcelona. 
We propose two professional tasks in order for future teachers to recognize and to 
interpret some classroom situations, by analysing problem-solving strategies and 
mathematical content behind the scholastic activity. In the analysis of pre-service 
teachers’ answers of these two tasks, we focus on two questions related to noticing 
(a) how pre-service teachers integrated mathematical elements in the written text 
produced relating the characteristics of the problem and the strategies and (b) how 
to improve creativity findings by means of collaborative discussions during didacti-
cal analysis in two steps (naïf description, and including theoretical framework for 
analysis). The third aspect of noticing, which is taking decisions, could not be 
implemented because the topic appears before the school practicum.

A specific professional learning environment for future teachers was designed to 
establish our instructional goal as a basis for improving noticing skills. This learn-
ing environment requires that pre-service teachers first think about the issue, 
 interacting among themselves in order to discuss aspects of the teaching of prob-
lem-solving strategies and numbers’ operations at preschool stage, reflecting on 
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theoretical issues and analysing new proposals. Our chapter refers to the first two 
steps as a first didactical analysis introducing noticing reflective process. The 
Moodle platform provided by the university gives the opportunity to collect all the 
future teachers’ reflections. We also videotaped the sessions to record group 
discussions.

12.3.1  A First Professional Task

For designing the professional task, we selected a school practice that takes place in 
an environment that we believe helps the development of creativity. In this practice, 
the teacher proposes open problems that can be solved in different ways. The teacher 
also gives the opportunity to choose materials and procedures of resolution in a way 
in which it is possible that flexibility appears. It is important that future teachers are 
aware of these aspects. We assume that the teacher idea of promoting explanations 
by group discussion leads to children’s fluency. When the teacher helps to decide on 
an official common strategy accepted by all children, elaboration seems to be pro-
moted. The availability of materials leads to originality and metaphoric use of dif-
ferent representations for initiating the process of idealization. Thus, we imagine 
that in such a school practice, the teacher continuously provides challenging situa-
tions for children to promote creativity.

The professional task (see Fig.  12.1) starts by explaining the context of the 
problem- solving school practice selected (De Castro & Escorial 2007), called a 
problem-solving workshop. Previously, future teachers had been involved in read-
ings about the importance of sharing ideas and communication in mathematics 
problem solving (Bushman, 2003; Parrish, 2010).

After describing the environment of school practice, the trainer gave the future 
teachers the transcription of the dialogues produced in the problem-solving school 
practice. Future teachers should respond to two questions in order to pursue the first 
analysis: Which strategies and mathematical content were developed during each 
dialogue? What aspects of the dialogue favour the process of problem solving?

As a second part of the professional task, the personal answers of future teachers 
were after discussed in small groups in order to arrive at an agreement. It was 
expected that natural strategies about adding, missing values, multiplication and 
sharing processes would be observed.

12.3.2  Expected Creativity Values of the School Experience

We will explain some parts of the school practice and also an expert analysis about 
creativity values through the description of some of the children’s dialogues in order 
to establish expectations about future teachers’ observations and findings.
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PROFESSIONAL TASK

DESCRIPTION OF THE SCHOOL PRACTICE

� The experience consists of a workshop solving arithmetic problems developed with 
children in their last year of Early Childhood Education.

� The environment in which the experience develops is free to choose materials and 
resolution procedures, children invent their own strategies, discussed within the 
group, and decide what could be the “official” group strategy.

Description about the context

The dialogues discussed below 
occur in work sessions that last 
about an hour. In each of the 
sessions, one or two problems 
are solved. The teacher (Beatriz) 
takes part as little as possible, 
and always indirectly. She does 
not give the right solution, or 
propose a procedure as 
appropriate.

Description about the forms of action

When a child gives an answer that does not make 
sense within the context of the problem, the 
teacher tries to make him see through a question. 
On the contrary, when a procedure seems worthy 
of being highlighted, she asks the student to 
explain again and asks if everyone have 
understood. The teacher also, takes part to assess 
the validity of the explanations given by children 
about the procedures used, highlighting the 
criteria of this assessment.

READING OF THE FIRST PROBLEM

Beatriz: We had three pot-bellied pigs.
Nacho: What are pot-bellied pigs?
Beatriz: Oh, sure! You were not at the farm last year
Nacho: No. I got sick
Beatriz: The pot-bellied pigs are smaller than normal pigs, and they are of 

black colour
Diego: I went!, I went! There were many pigs!
Beatriz: (reading the letter) In the farmer school, we had three little pigs 

before and were born four more. How many pigs we have 
altogether?

AN EXAMPLE OF DIALOGUE

Cristina: I have done it like this: 1, 2, 3. Then I went up to four (1, 2, 3, 4) with 
the fingers and then I saw that is 7.

Beatriz: Have you put 3 in one hand and four in another?
Cristina: No. I put 3 in one hand and then I have counted 4, 5, 6 and 7.

QUESTIONS FOR FUTURE TEACHERS
Look at the dialogues, and tell us which processes you can see in each of 
the dialogues.
1. Which strategies and mathematical content have been developed during 
each dialogue?
2. What aspects of the dialogue favour the process of problem solving? 
Especially observe the role of the teacher and students.

Fig. 12.1 Components of the professional task
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As we mentioned above, the teacher (Beatriz) starts the first workshop by moti-
vating the children. A letter appeared from a character that the children met when 
they went to a farm. The letter was written by an elf named Pitutin, who takes care 
of the animals on the farm and proposes problems to children. The preschool teacher 
encouraged children to help the elf solve the proposed problems and to send letters 
with the elaborated answers, as agreed on by the group. It is also assumed that the 
use of manipulative resources can create more mathematical opportunities, prompt-
ing children to choose the answers according to their previous knowledge and to 
explore different combinations and arrangements using them. Here we see the value 
of communicating mathematical ideas by using written texts. It contributes to a flex-
ible and elaborated mathematical thinking.

A first problem proposed tells us about someone who started with three pot- 
bellied pigs and then four more were born. How many pigs do we have now? The 
teacher explains that children solve this problem without any difficulty.

A second problem proposes a new addition problem. “In the school farm, there 
are four male ducks and five female. How many ducks in total?” Three different 
answers appear: ten, nine and seven. The one who said ten explains to the others “I 
had thought wrong! Because I heard you say five and five”. Let us here say some-
thing about potential creativity in this part. The naturalistic way of acting gives 
opportunities for self-regulation and control. It promotes fluency in the sense of 
building meaning for addition and also building the coherency of the strategy used. 
Even making a mistake, the answer ten corresponds to five plus five answer.

One child argues that he used a table of numbers from 1 to 100 to solve the prob-
lem. Why does it contribute to creativity? Children did not discuss addition and its 
symbolic use before the classroom experience, but they can solve problems by using 
materials such as the number Table  1–100. Future teachers never used the 
Table 1–100 before. Therefore, we decided to introduce such material in training 
class in order to see its mathematical contribution. Thus, future teachers will learn 
about the similarities and differences between the 1–100 table, the number line or a 
rekenrek abacus as a semiotic mediator (Vigotsky, 1978).

Using the table, the order of numbers is 
maintained. Going down a row in the table 
means that we add 10. Going one step to the 
right is one more. The children see the order 
of numbers and the structure of each group 
of ten. After some trials they start to discover 
equivalence representations like:
+ 30 + 4 = +4 + 30 = +1 + 20 + 3 + 10.
That is the starting of algebraic thinking. 
Thus, we consider that it provides 
opportunities for flexible thinking.
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Therefore, reflecting on this kind of observations, we hope that future teachers 
not only recognize the need for computing addition but also realize that children 
should transform the data into a different representative form such as the use of 
manipulative material. It is important to notice that the use of manipulation is a 
consequence of a “way of doing” as a problem-solving strategy, not directly pro-
moted by the problem statement.

When the trainer discusses such a dialogue, the relevance of introducing ques-
tions to reflect about the conceptual scaffolding (Coltman, Petyaeva, & Anghileri, 
2002) is considered by future teachers. In this case, we use questions like the fol-
lowing: “What was the child’s thinking when using the 1–100 table” and “Why do 
you think some children answered seven?”

With this type of above questions, we want to identify if future teachers recog-
nize mathematical knowledge behind students’ answers, as an important part of 
noticing. According to an expert position, it opens the possibility for identifying 
flexibility and fluency as traits of creativity. In fact, the children use original strate-
gies, as an initial point for building structures. Accepting other ways of doing things, 
children should highlight conjectural thinking and promote flexibility of strategies. 
Refutations appear through sustainable learning, by hearing the students’ voices. It 
is also the starting of building meanings for validation processes and the elaboration 
part of creativity.

Children’s discussions with materials promote the use of original strategies dur-
ing the school practices of multiplication and division problems. In such an experi-
ence, of course, some children may rush towards a solution without going through 
preliminary or reflective stages. They can use materials as coloured woods, or cubes, 
for instance, to solve the problem. However, we also expect to find a sense for strate-
gies of grouping in a natural way, according to the situation of presented division. 
In fact, sharing’s problems are very useful because they are familiar and purposeful, 
and the level of difficulty can be easily adapted from everyday life (Anthony & 
Walshaw, 2007).

A final dialogue about a subtraction problem is the following: eight ducks on the 
farm and one day a few more came. Since then there are 14 ducks on the farm. How 
many ducks came over? Christine says, “Was it fourteen [I point the finger]? No, 
sorry. It was eight [points to eight and counts from there to 14] and then: one, two, 
three, four, five and six. Therefore, it is fourteen. Mary explains that ducks were... 
(I use two cubes together) and... Those who came flying are these (showing 1cube). 
Moreover, I counted six. Peter uses blocks and he made a mistake, because he 
counted to nine”.

In such sentences, we find original strategies, because children need to use 
material for metaphorical help. Some children use a counting related strategy, but 
others imagine the situation in a more abstract way. Surpassing the border of ten 
presses the children to find a “going back strategy” or starting at the end (accord-
ing to Polya’s sense). It also promotes future teacher’s flexibility by building 
structural images.
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Let us say something about multiplication and division problems. Recent 
research about early multiplication and division (Mammede & Soutinho, 2012) 
identify a decomposition strategy related to semantics about grouping and finding 
out about fairness as a way to reduce the problems to a set of counting strategies in 
some division problems.

After analysing the children’s dialogues, we – as researchers – could assume that 
children use at least three different types of images when we analyse the inscrip-
tions in a semiotic way (according to Presmeg, 2006):

 (a) Kinaesthetic imagery (involving physical movement) when they use the blocks 
to express a subtraction that identify what is typical in the situation. It is the 
case of Ainvar, which uses 14 blocks and leaves 5 on 1 part of the table. Then 
he counts 9.

 (b) Pattern images when Diego tells us that he made a tower of 14, altogether, and 
I took out five (1, 2, 3, 4, 5) to represent the ducks that Pitutin had lost.

 (c) Changing representations. We can also state, according to the educator, that 
some children change from one representation to another. For instance, Sandra 
moves from the use of a number line to verbal writings and words (Gagatsis & 
Elia, 2003); thus she is approaching dynamic imagery. Nacho also moved from 
the number line idea to writing a series of numbers and suggests that deleting 
five last numbers gives the solution.

Cristina represented both numbers separately. She says the result is 19. Then, the 
following dialogue appears:

Teacher: Let us see. 14 ducks, 5 are lost…thus…19?
Child 2: Mm. (Observes that Cristina did a mistake).
Teacher: Does he have more ducks? [Cristina says yes by gesturing] Some ducks are 

lost, and he has more? When you lose something, do you have more or less?
Cristina: Less…I did a mistake.

The case of Cristina is an example to show that the kinaesthetic visualization strat-
egy sometimes inhibits the child from getting a good solution, because she cannot 
interpret the lost ducks as a distance model, because she sees 14 and 5 and perhaps 
forgets the question. What is interesting in the global dialogue is that the teacher 
does not focus on the action but on the validity of the proposed result. It is not pos-
sible that if you lose something, then you have more.

Could we say that offering visual imagery possibilities will improve creativity 
values and attitudes in early childhood education? Not always, but an attitude of 
control seems to help even Cristina to improve this “proving” attitude in problem 
solving in order to better use images and visual reasoning. From now, what is 
most important for our discourse analysis is to recognize that future teachers see 
it and look at such details as an important way to promote originality and fluency 
aspects.
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12.3.3  Introducing a Theoretical Framework

After a global dialogue, about the results of the first part, we start by explaining to 
the future teachers a set of theoretical categories about problem solving:

 (a) Classical notions of heuristics, according to Polya.
 (b) List of counting strategies (Baroody, 2000).
 (c) Semantic classical classification of verbal problems of addition and subtraction 

(Carpenter, Fennema, Peterson, & Carey, 1988).
 (d) Categories about the use of mediators: gestures, concrete materials, diagrams or 

digits as numerical representations.
 (e) Categories of creativity as fluency, originality, flexibility and elaboration.

The first part of this second task was to discuss some personal answers about the 
type of strategies or ideas used by children exposed during the first task, according 
to the recent theoretical perspectives above cited. After initial personal corrections, 
it is proposed to discuss in groups of four in order to give a common answer about 
one of the dialogues. Globally speaking, the group reflects on the use of individual 
processes, representations and personal meanings in each dialogue. For that pur-
pose, a grid was used to collect the information (see Fig. 12.2).

The main aim for both professional tasks is to know about what future teachers 
identify and interpret the children’s strategies observed when reading the mathemat-
ical dialogues, in order to improve an individual perspective of noticing analysis. 
During a first professional task, each future teacher sees all the dialogues and 
explains which of the strategies could be relevant. During the second task, each 
group should analyse one of the dialogues, by using the categories introduced. The 
future teachers discussed their ideas as a communicative group debate. A third part 
of that professional task confronts future teachers with a creativity framework above 
explained in a group discussion.

Fig. 12.2 Future teachers involved in reflection about strategies in problem solving
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12.3.4  Research Analysis Method

A team of three researchers tried to reach a consensus on knowing if the future 
teachers have observed traits of creativity above explained in children’s behaviour. 
In order to know future teachers’ knowledge, we collected all the future teachers’ 
writings (posted in the Moodle platform for the first task and written comments for 
the second task), some group discussion and class discussions, which were audio-
taped and constituted data for our research process. Finally, a team of researchers 
found commonalities in the conjectured approaches, because of noticing processes 
always based upon future teacher texts (Fernandez et al., 2013).

The answers proposed by the future teachers were codified according to three 
categories associated to creativity:

 (a) Future teachers identify originality when they reflect about some unexpected 
and intelligent children’s responses from remote premises and when they 
assumed that children use mathematical connections to interpret images or dia-
grams and/or use them when solving problems. An unexpected answer is theo-
retically interpreted as the ability to promote no immediate relations and far 
connectivity among problem-solving strategies (Callejo, 2003).

 (b) Future teachers identify flexibility when they talk about children using appropri-
ate mathematics when they see the children looking into a problem from differ-
ent angles and when children use different effective representation systems and/
or use connections between representations and interrelate given data and goals 
in order to give a solution.

 (c) Future teachers identify fluency when they interpret the fluency in children’s 
reasoning and communicate the problem-solving process done by the children. 
We also consider that future teachers identify fluency when using a specific 
mathematical content knowledge to describe the children’s behaviour having a 
direct influence over the solution. We assume that it is difficult to say, in this 
category, that preschool children develop and explore mathematical concepts 
and procedures in different ways.

Finally, the research team discusses about the assigned codes and interprets the 
results observed qualitatively and quantitatively by seeing the mathematical ele-
ments introduced in future teachers’ explanations. The identification of these 
mathematical elements is the first step in the teacher’s ability to interpret the 
students’ level of problem solving and the creativity issues observed. In some 
occasions, we understand the category is present even if the explanation is not 
fully explicit.
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12.4  Future Teachers’ Interpretations

First, we will explain how the future teachers (called from now on St-#) identify 
heuristic strategies used by the children and how they understand arithmetic content 
knowledge recognized in the dialogues. We will argue which traits of creativity we 
can see in their explanations. After that, we will explain some observations about 
the role of the teacher promoting creativity.

12.4.1  About Traits of Creativity Found in Task 1

In some comments, we see the future teachers explaining the strategies used by the 
children, but without explicit comments referred to creativity uses. Now we will 
explain some examples.

The main heuristics observed by the future teachers are the use of diagrams and 
guessing/proving strategy without talking about novelty. For instance, they say, 
“children go testing and finding out the solution to obtain the definitive answer” 
(St-9). In many cases, future teachers confuse strategies with content knowledge. 
This situation is evident in sentences like “In the dialogue... we see the children 
subtracting” (St-1).

Although the going back strategy was unstated, we can interpret it as being 
observed in some arguments of future teachers like “Children have difficulties 
observing the missing number solution, as is supposed to be, perhaps because it is 
easy to count back if you know the list of numbers going down” (St-21). Almost all 
the future teachers talk about some children (Sandra) as being cognitively different 
from the other children, because she formulates hypothesis and conjectures (St-14, 
St-16 and others). In addition, they give arguments relating different representa-
tions: “She used cubes to graphically do the addition, because the digits of two 
hands are not enough in order to achieve the result” (St-12). Such comments are 
related to a restricted interpretation of what the process of conjecturing means. 
Therefore, we assume that, in this case, it is not a trait of creativity found.

As it was expected, the future teachers do not say anything about guessing as 
being different from retrieval by heart. This is the case of a child explaining that she 
guessed, but she really looks at the distance from 8 to 14. The child does not attempt 
to retrieve an answer from memory, but sometimes simply provides any number that 
comes to mind, which implies that the number is randomly generated. To sum up, 
future teachers intuitively assume the following as heuristics: counting strategies, 
representational issues and some heuristic ideas, rather than semantic categories 
that are not so easy to identify.

We assume surprising comments as being approaches to flexibility as “I was 
surprised by the strategy of using cubes” (St-4). Two future teachers talk about 
analysis/synthesis strategy before group discussion. However, they do not explain 
where they see this in the dialogue. In some addition problems, future teachers talk 
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about children interpreting the meaning of operations, for example, adding as put-
ting together by using designs or material, because it is stated in the classroom 
dialogue (St-16). It is also a reference about the strategies, but not to the creativity. 
Let us say that the future teachers talk about counting as a common sense strategy, 
because they never received any specific training about such counting strategies.

Future teachers found that Carmen demonstrates a trial-error strategy starting 
using groups of two with the design, by using cubes (St-14). None of the future 
teachers explain that it is important for her to visualize the representation of pigs in 
order to have the result but also for controlling the result. Some other future teachers 
talk about Diego using trial-error to verify his hypothesis. He modifies the strategy 
until he finds the good solution. He never disconnects from the context. He used a 
random behaviour to find the solution (St-12, St-13, St-14 and St-15). In these cases, 
we are not fully convinced that such comments are expressing a creativity remark.

In some cases, the future teachers identify some interesting strategy, without any 
explicit assumption of surprise. Diego tries to share by giving three to each, plus 
one. After that, he decomposes by giving 4, 3, 3, 2 and 0. After that, he uses a com-
plete sharing process by giving one to each pig and then another one and perceiving 
that the problem is solved by giving three acorns to each pig. In our interpretation, 
the future teachers do not identify the use of pattern images (Presmeg, 2006) as an 
original use of the strategy in the same observation, interpreting the semantics of 
sharing besides the trial and error strategy.

Some future teachers explain the need for stability in acquiring strategies as a 
basis for creative thinking in other moments or in the future learning process. Future 
teachers considered this idea as a common sense strategy adapting real-life experi-
ence. In this case, it is not interpreted as a part of a creativity process.

12.4.1.1  About Flexibility

Many future teachers recognize that in some dialogues, addition strategy involves 
some different strategies as counting each of the addends separately, then counting 
up to the first addend and continuing to count by the number indicated by the second 
addend (St-24). Others explain that “we can find the composition and decomposi-
tion strategy” (St-18). There is evidence that children spontaneously activate the 
sum of two numbers as counting both subsets, so it seems likely that guessing some-
how involves consciously not attempting to retrieve an answer. Some future teach-
ers also identify counting from the first strategy involving “counting on from the 
first addend by the number indicated by the second addend” (St-19 and St-22). After 
analysing all such future teachers’ explanations, it seems that they refer to flexible 
use of solving methods, but it is not explicit.

Many other comments relate to flexibility. It is the case of the use of fingers. In 
fact, future teachers identify that finger recognition involves “putting up fingers to 
represent each of the addends” (St-20, St-26) and assuming that “the child recog-
nises the total, which is different from using fingers to assist counting” (St-17). 
None of the future teachers interpreted children’s behaviour as counting on from the 
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larger of the two addends by the number indicated by the smaller of the addends. 
The use of structural images as fingers gives opportunities for bringing a personal 
computation. It seems completely different from the use of fingers for evocation of 
the traditional number sequence. It also relates to the flexibility of strategies.

When future teachers talk about subtraction, they considered the observation of 
counting down using the cardinal principle by observing the use of material (St-
23). Another future teacher said: “In the case of Diego, he uses multilink pieces to 
find the answer, putting 14 as a pile, and taking off five, before counting” (St-21). 
We interpret such future teacher comments as some way of noticing the use of 
external representations, as not only helping to solve the problem but also reveal-
ing some originality issue. In fact, not every child needs to associate the cubes 
with the situation.

To understand the case of the problem having 15 magic acorns and wanting to 
share them between 5 pigs, the question was as follows: How many acorns corre-
spond to each pig in order for everybody to have the same amount? Not all children 
answered correctly. Some future teachers consider that Cristina’s argument is good 
because she uses the number line in an original way. She searched for 15. She made 
groups of three, using hands. It seems that she tried first groups of two, or identified 
that using groups of two, you do not arrive at 15, but 10 (St-21, St-22, St-23, St-24). 
Some other future teachers talk about the use of cubes, without explaining if this 
relates to flexibility or not.

12.4.1.2  About Originality

We found that it is not easy to identify if several children’s actions and statements 
reveal some specific new or unusual mathematical strategy. Moreover, we also can 
conclude that future teachers do no assume imagery perspectives. Five future teach-
ers identify that children use counting on from one and counting on from the last 
number in one dialogue as something usual.

In many explanations, the expression “surprising” more than “unusual” appears. 
When the future teachers talk about subtraction, they assume the strategy of deleting 
from the highest number as unusual (St-2, St-13, St-21). Such explanation provides 
an example of a child successfully bridging his/her own knowledge of informal and 
formal symbolic representation for the calculation. In this case, we assume the 
future teacher recognizes some originality. Instead of that, some future teachers’ 
comments are too general: “all children identify that it is necessary to do a sum” 
(St-17, St-18, St-19, St-20).

Some future teachers talk about the 1–100 table as new and surprising material for 
them. Is it a suspicion that there is some originality in such a comment? Or do they 
have difficulties to assume that children know more in this case than future teachers?

In many comments analysed, we observe that it is difficult for future teachers to 
identify some of the strategies as unexpected or interesting by themselves. In many 
cases, the future teacher describes the solving of the problem in terms of the 
 operations carried out, but he does not relate these operations to the structure of the 
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problem. The future teacher, therefore, does not recognize that the solution was 
incorrect for this type of problem.

The future teachers consider unexpected what is different from their own strat-
egy to solve. They used sentences such as “I cannot understand... because it’s easier 
to solve...in such a way” (St-15 and St-16).

12.4.1.3  About Fluency

They also find that “The more you use it, the more you are confident with such a 
mediator” (St-18). Only a few of them talk about its relation with arithmetic count-
ing strategies: “Such a strategy is intermediate between counting everything, and 
count from first” (St-5 and St-6). “...A child, instead of counting as the others, does 
use colours” (St-4, St-5, St-7, St-8). Future teachers notice that it is a fluency com-
ment because it helps future different strategies to solve problems.

We identify nine future teachers making several comments about flexible use of 
strategies relating to the use of multiple representations to solve the division prob-
lems. Let us mention some examples: in some cases, there are general comments 
about “the use of materials for abstracting processes” (St-18). In other cases, there 
are connections with building structures: “I was surprised…the child organized 
groups of two eggs without representing the amount of hen” (St-9) or uses a way for 
representing equal amounts (St-19, St-20). In some other cases, connecting repre-
sentations “…materials give opportunities to find solutions by themselves” (St-16).

It is difficult that future teachers identify fluency in some children’s episodes, 
because it is not easy for preschool children to explain verbally mathematical rela-
tions used to solve the problem. We found some evidences of flexibility, when 
future teachers interpret a separation process to solve the problem by relating eggs 
to hen, such as “the interesting aspect is that the child separates [the pieces] and 
evidences the use of representations in sharing situations, without making the ani-
mal associated to eggs explicit” (St-6, St-7). In two of the discussion groups, they 
focus on the importance of the material as helping the strategies to solve the prob-
lems without entering in details.

Using fingers as representation to solve the problem is not a common strategy for 
children. Therefore, it is difficult for future teachers to identify it as unexpected 
strategy. However, some future teachers tell us “I was surprised with Cristina’s talk 
because of the use of fingers on one hand, but as we need four digits, we remove one 
digit to have four plus” (St-24). In this case, we consider that future teachers assume 
this comment as an example of flexibility, even when it is not fully explicit.

When they discuss in a group to make a common opinion, they mainly observed 
self-control of results in many of the analysed children. These cases clearly relate to 
flexibility and fluency. One of the groups of future teachers explains that Cristina 
interpret sharing situations, but future teachers think that she has internalized the 
process, because she verbalises all the steps of her reasoning without teacher’s help 
(St-10, St-11, St-12, St-13). In this case, the future teachers group interprets such 
autonomy in terms of solving strategies, not as a way to gain effective fluency.
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12.4.2  Traits of Creativity during the Second Activity

During the future teachers’ group discussion after knowing theoretical aspects, they 
continue to assume some misunderstandings as misinterpretations of the problem 
statements. Nevertheless, they consider some deep understandings about creativity 
aspects.

Let us see some examples observed during task 2. Future teachers are excited 
when children can solve a problem of six hens having two eggs each one, by “using 
a representation of eggs, without representing the hen” (St-13 and St-14). Carmen’s 
behaviour surprises almost everybody “joining the two blocks to represent the two 
eggs of each hen; even Diego accepts Carmen’s proposal. We think that it signifies 
an original process because they abstract some mathematical idea with such a ges-
ture” (St-15 and St-16).

Although future teachers do not see the strategy “counting by pairs”, they are 
close to this immediate strategy, identifying the group of two assigned metaphori-
cally to one hen. It means that a trend of mathematical originality is that the children 
can enter into the dialectics of idealization/materialization (Godino & Font, 2010) 
to approach the context solution. Some future teachers explain that the problem of 
eggs is similar to the problem of counting legs, when children have plastic animals 
(St 8&9). The context is used as a referent in the sense that they know how to 
approach a solution in these problems.

The table used as a research tool for concentrating on the assignments of any of 
the indicators is not enough to see changes about traits of creativity, but the written 
justifications are. They find flexibility related to the fact of having an open problem. 
Even when recording the conversations, sometimes it is not easy to understand the 
adopted meanings to classify some children’s behaviours to marks and explanations 
given. For instance, a pair of future teachers told us about Sandra’s original strategy, 
but others did not.

Some disagreements appear, because of the different interpretations of problem- 
solving strategies or categories. After being introduced to theoretical categories and 
explanations, we see that not every indicator used to analyse the problem-solving 
activity was fully understood. For instance, the future teachers associated an unex-
pected multiple grouping with a subtraction problem. They found in dialogues 5 and 
6 the situations in which some interesting or “unexpected strategies or flexible 
behaviours” are more explicit than others, probably because in such problems there 
are interactions suggesting different ways of solving.

The 66.6% of the future teachers think that the use of manipulative aids or fingers 
is crucial for solving the problems but just 36.6% tell us about them as alternative 
or unexpected strategies. It sounds similar to what is expressed by some authors 
telling us that “whereas children are adept at forming varied and unusual images, 
adults tend to have advantages when it comes to storing and retrieving information, 
drawing upon experience, and making judgments about what is benefit or appropri-
ate” (Jalongo & Hirsh, 2012).
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When using theoretical indicators about representations, 90% of future teachers 
found the use of the number line as the main tool for solving the most difficult prob-
lems. The future teachers did not relate this comment to flexibility, but to improving 
problem solving itself.

When analysing children’s behaviour with the lens of theoretical tools provided 
during the second task, every future teacher knows that “adding to” and “taking 
away” means knowing that adding to a collection makes it larger and subtracting 
makes it smaller. Moreover, they see addition and subtraction as the same structure. 
Therefore, they find new originality aspects, valuing some children’s actions. Some 
future teachers accept that children use such ideas as common sense strategy com-
bined with counting and (de)composing. It was assumed that children could solve 
simple problems with increasing efficiency because of classroom dialogues.

In fact, children’s creativity is different from adults, in which expertise and habits 
dominate. For children, it is related to playing and interacting with the real world in 
a fresh way having lasting effects on the brain, stretching pathways, as neuroscien-
tists suggest (Jensen, 2006), and enlarging the connections in the brain when chil-
dren experiment and observe (Gopnik, Meltzoff, & Kuhl, 2001). It is also important 
to know that formulating good problems that invite creative thought enables chil-
dren to understand and express abstract concepts (Jensen & Kiley, 2003).

12.4.3  The Teaching Role in Promoting Challenge 
and Creativity

Future teachers found that the educator uses an environment creating a community 
of collaborative problem solvers and promoting the ability of communicating ideas 
in project-based learning in the mathematics classroom. The future teachers also 
identify that emergent mathematical ideas are present in children’s arguments, 
which reflect the processes worked through to understand and to communicate the 
strategies used when solving the problems.

Future teachers assume (not always explicitly stated) a set of teaching strategies 
(Epstein, 2007) contributing to improving the dialogue as a way of building collec-
tive knowledge as a challenging situation, giving opportunities for creativity. The 
dialogue has the following characteristics:

• The teacher did not pressure children to choose a particular solution, even if 
children refused a number of possible solutions offered by the other child 
(St-21).

• The teacher quietly observed from a short distance to be able to intervene if nec-
essary, but using words that did not judge either side of the disagreement.

• “Beatriz (the school teacher), accepted and heard the children’s solutions if both 
parties were satisfied, even if the solution did not make sense to the adults” 
(St-26).

• The teacher also accurately defines the situation, which, in itself, sometimes 
moved children towards solving the problem.
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• The teacher promotes inquiry, by asking questions and asking for clarification 
and consolidations that are good strategies to involve children into problem- 
solving participation.

• The teacher uses challenges and promotes the idea of a non-unified truth on 
mathematical knowledge (St-18). In such comments, we assume they are talking 
about flexibility issues.

Any one of the future teachers interprets the importance of helping children 
intuitions of properties by themselves, giving them the vocabulary to describe the 
properties. It only appears during the whole group discussion after small group 
discussion.

Future teachers do not really have a founded knowledge about the possibility for 
children to solve structured problems since early years. In fact, they see some of the 
dialogues as a surprise. The most impressive answer for future teachers is to find the 
result of a subtraction by counting backwards after writing the numbers as a num-
ber line series (Nacho’s proposal). Nevertheless, in such an original aspect, future 
teachers identified drawing graphical representations as fluency comment.

The future teachers found semiotic gestures and number lines as giving a chance 
to stimulate number and calculating discussions. Future teachers considered the use 
of democratic dialogues as opportunities for building visualization tools when 
developing metacognitive reflection and as opportunities to relate previous knowl-
edge with new ideas and standard written symbols. Just during discussion after 
having theoretical tools, we interpret that they notice the role of semiotic tools as 
representations or gestures promoting effective interactions.

The use of dialogical methodology in the teacher training process and the fact of 
having purposes behind the methodology used lead us to conjecture a set of princi-
ples induced by the teacher:

 (a) Scaffolding process using structural dependences in order to analyse and have 
arguments.

 (b) Helping for sharing patterns.
 (c) Planning strategies hearing children’s voices, needed to build efficient good 

images.
 (d) Adapting sensitive perceptions to build metaphoric constructions, as a play 

situation.
 (e) Truth as something not previously decided and argumentation being the only 

way for controlling.
 (f) Self-control as a way to touch personal beliefs.

12.4.4  About Evolution in Traits of Creativity

According to the future teachers’ writings, we notice how many of them assume posi-
tions related to originality, by assuming that he or she considers at least one chil-
dren’s case. For flexibility and fluency, it is assigned the codification by the team of 
researchers who decide about the evidences, because it is not so clear as originality.
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To see how the evolution of future teachers occurs, we use the same categories to 
identify creativity as explained above to see their comments on the second task after 
discussing about theoretical tools before introducing any explicit reflection about 
creativity in task 2. In Table 12.1, we see the different percentage of future teachers 
that we find in each category.

Let us see an example of five students, which during group discussion, consid-
ered originality in Cristina’s behaviour, but not before. To notice new fluency aspects 
is really a consequence of group discussion, because future teachers did not recog-
nize some of the children’s actions in terms of learning many possibilities for new 
strategies in the future. The main changes in terms of flexibility interpreted by future 
teachers are related to representational observations.

A few comments suggest the advances on enrichment of mathematical processes. 
Comments like “I see that the complementary use of representations as number line 
and table 1-100 gives opportunities that I never expected” or “We never had this 
opportunity to have objects for solving problems…I never had discussed about 
others’ strategies during my primary school. It was not usual to use inquiry based 
approach when I was a kid” (St-16 to St-20) appeared.

As we can see in the table, after group discussions, more students talk about 
some traits of creativity. The main aspect relates to the role of counting strategies, 
and the stability of the use of processes needed to solve the problems as evidences 
for originality and flexibility. One of the interesting changes when group discus-
sions occur is that, in both moments, the idea of cause-effect as a necessary princi-
ple to interpret an equality problem that seems to be related to pattern images, 
fruitful for problem solving, appears. We interpret such comments in terms of flu-
ency. There is also a general observation that in preschool children sometimes 
solves simple multiplication (grouping) and division (partitioning) problems by 
direct modelling with objects.

Future teachers do not identify the need for negotiation according to previous 
pedagogical reflections as easily. St-4 (24-year-old future teacher) explains: “It was 
becoming clear that children were learning the process of finding solutions on their 
own. In some cases, I see children negotiating the operational meaning”. Some 
future teachers interpret that the teacher uses the dialogue to help children feel 
empowered to express their needs.

During the third part of task 2, where creativity features were described, we 
observed some changes in five groups of future teachers. They notice specific rela-
tions between semiotic perspective of imagery (Presmeg, 2006) and originality. 
They continue observing fluency more related to the classroom attitude organized 
by the educator.

Table 12.1 Percentage of future teachers identifying the categories of creativity

N = 30
Identifying 
originality Identifying flexibility

Identifying 
fluency

First approach (task 1) 36.6% 30% 16.6%
After group discussion(task 2) 53.3% 66.6% 40%
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As we see in Table 12.2, the dual process of materialization and idealization found 
in the mathematical practice appears to be consistent and seems to give opportunities 
for increasing not only creativity but growing mathematical thinking. We interpret 
the use of metaphors as children’s actions, leading to certain aspects observed as 
strategic knowledge, and some aspects of mathematical thinking promoted.

Future teachers theoretically accept that throughout the early years of life, chil-
dren notice and explore mathematical dimensions of their world. However, it seems 
initially difficult for them to evoke rich mathematical ideas appearing in the dia-
logues without any specific preparation about analysing children’s texts. The future 
teachers also emphasized that creative education should start at an early age to 
become permanent. They understand that powerful and strong use of imagery allows 
the person to engage with all of the possible senses. In addition, future teachers use 
metaphors in expressing views and opinions in graphic imagery at least in a naïf way.

12.5  Final Reflections

The study contributes to the research based on how pre-service teachers make sense 
of preschool mathematics in a specific learning environment. The work done rein-
forces the hypothesis that interaction focused on a specific goal can help pre-service 
teachers to develop the noticing skill. The observed problems engaged children in a 
range of mathematical skills and ideas, such as counting, subitizing, comparing and 
recognizing numerical relationships. Future teachers considered that the school 
experience was nice to analyse.

Future teachers spontaneously identify some traditional problem-solving strate-
gies and increase their observational perspective about how to interpret children’s 
behaviour, when they have some theoretical and methodological tools of analysis and 
group discussion. Nevertheless, it is not clear if their ability to notice creativity issues 

Table 12.2 Findings about the use of metaphors, creativity strategic aspects and mathematical 
thinking promoted during the school experience

Type of metaphors used in the 
classroom Strategic aspects observed

Mathematical thinking 
promoted

Relativity of representations and 
having referents

Ordering and relational 
properties

Mathematical properties and 
number sense

Physical and kinaesthesical 
observations and gestures

Trial and error strategies Applications and tools for 
controlling

Free use of materials showing 
equivalences

Pattern recognition and 
classification

Algebraic thinking and 
design

Motivating by everyday situations Semantic and structural 
observations

Embodied cognition

Heuristics and visual intuitions Conjecturing and heuristic 
strategies

Hypothetical reasoning

Observing changes by stories and 
music

Operational understanding Relational and functional 
thinking
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is really growing. In the context researched, deep interpretation occurs, when being 
aware of categories of creativity. It is built upon deep understanding about the impor-
tance of giving children the opportunities to share and compare the strategies used.

The future teachers consider each of the creativity skills as a method of instruc-
tion to be expressed that would reach efficient, permanent and meaningful learning. 
They emphasized the individualization of learning and enriching the educational 
climate with the help of these techniques. They see more aspects, but they assume 
interpretations not directly associated with the evidences found in the dialogues.

We suspect that future teachers are more worried with schoolteacher intervention 
than recognizing mathematics behind children’s comments. They look at the 
problem- solving process as a global set of actions leading to a positive end. Let us 
say that as an initial study, we explain neither the growing of future teachers when 
improving their didactical analysis nor the role given to dialogue in developing 
problem-solving capacities here.

The study reveals the difficulties future teachers have noticing authentic traits 
of creativity in problem-solving activities because of methodological difficulties in 
overcoming their own perspectives about evidences. This demonstrates how 
important it is for future teachers to develop an explicit “awareness” of the math-
ematical elements involved in solving problems and their role in determining the 
students’ reasoning.

The future teachers assume that the development of creativity is time-consuming 
and it is quite normal that the applied techniques take time to improve and under-
stand. Such a result is in agreement with the research from Sternberg (1996).

Future teachers interpreted problem solving as an important element in class-
room life, enriching the children’s experiences, language and learning. Problem- 
solving activity is not easy. It is one of the hardest skills to build. It takes a lot of 
self-control for the teachers and the children (Gross, 2005). The considered satisfac-
tory strategies are the following: getting a feel for the problem; looking at it holisti-
cally; checking if they have understood (e.g. talking it through or asking questions); 
planning, preparing and predicting outcomes; monitoring progress towards the goal 
(e.g. checking that the bears will fit the houses); being systematic; methodically try-
ing possibilities without repetition, rather than at random; trying alternative 
approaches and evaluating strategies; and refining and improving solutions (e.g. 
solving a puzzle again in fewer moves) (Gifford, 2005:153).

The problems and workshop style allow a wide variety of representations and 
the development of inductive processes, starting with particular cases. Oral con-
versation occurred. Finally, we discovered that future teachers believe that it is 
possible to learn and improve creativity (Houtz, 2003) via activities of ongoing 
training and creative problem solving. The trainers play a vital part in creating an 
environment, in which creativity and reasoning individuality are valued and uti-
lized, but also offering situations in which students can reveal their strengths and 
highlight areas where they need greater support. Additional research is needed on 
the factors that constrain and/or promote the development of creativity under-
standing in a noticing process, while better theoretical models must be developed 
that enable us to understand it.
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Chapter 13
Stimulating Mathematical Creativity 
through Constraints in Problem-Solving

Christian Bokhove and Keith Jones 

13.1  Introduction

In the project entitled Mathematical Creativity Squared (MC-squared; www.mc2-
project.eu), we began exploring the premise that enabling teachers to be more cre-
ative in their design of tasks to be used in their lessons can help their learners in 
these teachers’ classrooms be more creative (see, e.g. Bokhove, Jones, Mavrikis, 
Geraniou, & Charlton, 2014; Bokhove, Mavrikis, & Jones, 2015). In working on the 
design of mathematical tasks during the project, we pondered how the use of so- 
called open problems often appears to be emphasised in deliberations about math-
ematical problem-solving (Boaler, 1998; Pehkonen, 1997; Silver, 1995; Sullivan, 
Clarke, & Clarke, 2012; Sweller, Mawer, & Ward, 1983). The reason seems to be 
that problem-solving is deemed best supported by the provision of open-ended 
tasks. On top of that, it is further argued that the openness of problems is more con-
ducive to students’ mathematical creativity than closed tasks. Silver (1997, p. 77), 
for instance, argued that the development of learners’ ‘creative fluency’ is ‘likely to 
be encouraged through the classroom use of ill-structured, open-ended problems 
that are stated in a manner that permits the generation of multiple specific goals and 
possibly multiple correct solutions’. Similarly, Kwon et al. (2006, p. 51), in their 
study, concluded that the use of open-ended tasks ‘may provide a possible arena for 
exploring the prospects and possibilities of improving mathematical creativity’.

In this chapter we problematise this idea that problem-solving and creativity are 
seen as best supported by providing open-ended tasks. In doing so we take a some-
what different, but related, approach to that proposed by Haught-Tromp and Stokes 
(2016) who describe what they call ‘constraint pairs’, where one constraint pre-
cludes something, while its ‘pair’ directs the search for a substitute (such as the next 
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most efficient strategy) as a way to inform lessons that help students develop cre-
ativity. In contrast, we make the case for what might be called ‘constraints-based’ 
task design. In this latter approach, which we relate to research in economics on 
scarcity (and the American television series character MacGyver), we show how 
tasks that are ‘moderately closed’ (being neither fully ‘open’ nor fully ‘closed’) can 
provide for creative mathematical thinking and problem-solving. In some cases, the 
use of feedback can provide cues to students. Using examples from a range of top-
ics, we explore examples of ‘constraints-based’ creativity such as producing geom-
etry constructions solely with ruler and compass, ways of tackling number puzzles 
and solutions to sets of equations. We conclude that such examples demonstrate that 
classroom tasks for mathematical problem-solving and creativity need not be 
restricted solely to open-ended problems; rather, we argue that tasks with suitable 
constraints can serve as creativity-inducing problem-solving tasks as well.

13.2  Problem-Solving, Creativity and Task Constraints

13.2.1  Problem-Solving Tasks

While problem-solving is a key component of the school mathematics curriculum 
internationally, the nature of what constitutes the ‘problem’ (or task) to be solved 
during mathematical problem-solving is not necessarily straightforward. Borasi 
(1986), for example, attempted to clarify the notion of a mathematics ‘problem’ in 
terms of the following structural elements:

 (a) The formulation of the problem; the explicit definition of the task to be 
performed.

 (b) The context of the problem; the situation in which the problem itself is 
embedded.

 (c) The set of solution(s) that could be considered acceptable for the problem given.
 (d) The methods of approach that could be used to reach the solution.

Although this clarifies some aspects of the notion of a mathematics ‘problem’, it 
leaves much under-explored. For example, Christiansen and Walther (1986, p. 244) 
argue that even though classroom work on mathematical problems in the form of 
‘exercises’ [which they describe as ‘drill and practice in relation to previously 
described concepts and procedures’] is ‘centrally placed at all levels of mathematics 
teaching’, such use ‘rests on an inadequate and insufficient differentiation with 
respect to the relationships between the concepts task and activity’ (ibid., pp. 245–
46), where the task is set by the teacher and the activity is what the learners engage 
in. In this, they argue (ibid., p. 275), the completion by learners of tasks that are 
‘exercises’ does not ‘contribute to a genuine development of knowledge’ in terms of 
learner activity, while the use of nonroutine tasks provides ‘optimal conditions’ for 
cognitive development of new knowledge. Thus, as Boaler (1998, p. 42) explains, 
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supporters of the use of nonroutine tasks contend that ‘if students are given open- 
ended, practical and investigative work that requires them to make their own deci-
sions, plan their own routes through tasks, choose methods and apply their 
mathematical knowledge, the students will benefit in a number of ways’.

Sullivan et al. (2012, p. 57) differentiate task goals into ‘closed’ or ‘open’, where 
a closed goal ‘implies there is only one acceptable response’, whereas an open goal 
‘has more than one (preferably many more than one) possible response’. Table 13.1 
provides an illustrative example of what might be considered a ‘closed’ task (one 
with a goal that is likely to be closed) and an ‘open’ task (one with a goal that is 
rather open). Such different types of tasks reflect different qualities and priorities in 
task design. This can include the degree to which the task is constrained for the 
student (for more on this, see Stoyanova, 1998) or the role the task may play in 
relationship with problem-solving (for more see Silver, 1995). More recently, Yeo 
(2017) proposed a framework to characterise the ‘openness’ of tasks with five ele-
ments: goal, method, task complexity, answer and extension. All this suggests that 
‘closed-open’ is one of the main distinctions that is made about the form of mathe-
matical tasks that can be used in the mathematics classroom.

In what follows we examine the case for what might be called ‘constraints-based’ 
task design by exploring tasks that are ‘moderately closed’ (neither fully ‘open’ nor 
fully ‘closed’) and how these can provide for creative mathematical thinking and 
problem-solving. We begin by examining the notion of creativity (both broadly and 
in mathematics education) and from that go on to explore the role and nature of 
constraints in mathematical creativity and problem-solving.

13.2.2  Defining Creativity

Creativity is a frequently used term in education in general and in mathematics 
education in particular. Despite this, and the increasing interest in promoting cre-
ativity in all sectors and across all individuals and groups, the term remains a vague 
and difficult construct both to define and to operationalise (Mann, 2006; Sriraman, 
Haavold, & Lee, 2014). This is mainly because of the wide range of theoretical 
approaches and disciplines that have been used to address creativity (Cropley, 
1999). There is currently an array of theories and perspectives on creativity that 
provides critical insights into a better understanding of the phenomenon. For exam-
ple, in the field of psychology, many co-existing paradigms been developed, ranging 
from linear to integrative approaches to creativity. Sternberg (2003), for instance, 

Table 13.1 Illustrative examples of ‘closed’ and ‘open’ tasks

Illustrative example of a ‘closed’ task
Illustrative example 
of an ‘open’ task

You have two dogs; one eats 1 can of dog food per day, while the other 
eats 3 cans. If a can of dog food costs 80p, what is the total of feed the 
two dogs each day?

How much does it 
cost to keep a pet?
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identified at least eight frameworks for viewing creativity, from ‘mystical’ 
approaches to those entailing psychodynamic, cognitive, psychometric, pragmatic, 
social personality, evolutionary and confluence models of creativity.

A major distinction that is often made is whether creativity is ‘Big-C’ creativity 
(Creativity with a capital C) or ‘everyday’ or ‘little-c’ (creativity with a little c). The 
former, ‘Big-C’, has a tradition in creativity research that is typically concerned 
with the exceptionally creative activity of some really very talented but rare indi-
viduals (who might get referred to as ‘geniuses’) (Simonton, 2010). Yet creativity 
can also be seen as a potential that all people are capable of displaying and which 
can find expression in various situations of everyday life; this is ‘everyday’ or ‘little-
 c’ creativity (Simonton, 2013, 2017). Boden (1994) provides another term for ‘lit-
tle- c’ creativity: ‘psychological creativity’. This is when something is identified as 
creative at least by the creator themselves, without being necessarily an outstanding 
contribution to some specific domain.

Notwithstanding these distinctions, most definitions of creativity found in 
research literature (Runco & Albert, 1990; Runco & Pritzker, 1999; Kaufman & 
Sternberg, 2010) include two structural elements: (1) novelty (originality, unexpect-
edness) of the creative work and (2) its value (relevance, appropriateness, signifi-
cance, usefulness, effectiveness). These elements are apparent in the Handbook of 
Creativity (Kaufman, Glăveanu, & Baer, 2017; Sternberg, 1999; Kaufman & 
Sternberg, 2010), which summarises contemporary creativity research. Some defi-
nitions that show this common pattern are:

 1. ‘Creativity is the ability to produce work that is both novel (i.e. original, unex-
pected) and appropriate (i.e. useful, adaptive concerning task constraints)’ 
(Sternberg & Lubart, 1999, p. 3).

 2. ‘[our definition] involves novelty and value: The creative product must be new 
and must be given value according to some external criteria’ (Gruber & Wallace, 
1999, p. 94).

 3. ‘A creative idea is one that is both original and appropriate for the situation in 
which it occurs’ (Martindale, 1999, p. 137).

 4. ‘Creativity from the Western perspective can be defined as the ability to produce 
work that is novel and appropriate’ (Lubart, 1999, p. 339).

The 1999 edition of the handbook contained a comparison table compiled by Mayer 
(1999, p. 450) which shows how these two elements are prevalent in definitions of 
creativity.

While these existing definitions of creativity can be used to help specify creativ-
ity in mathematics and mathematics education (Mann, 2006), no single and widely 
accepted definition of mathematical creativity exists. One distinction often made in 
the definition question is whether it is the process or the product that is in focus. 
Hadamard (1945), for example, refers to the mathematicians’ creative process using 
the four-stage Gestalt model: preparation – incubation – illumination – verification. 
Liljedahl (2013) extended that model by also emphasising the inventive process of 
mathematical creativity by adding the phenomenon of the AHA! experience. In par-
ticular, Liljedahl and Sriraman (2006) describe mathematical creativity at the school 

C. Bokhove and K. Jones



305

level, as (1) the process that results in unusual (novel) and/or insightful solution(s) 
to a given problem or analogous problem and/or (2) the formulation of new ques-
tions and/or possibilities that allow an old problem to be regarded from a new angle. 
The product approach to creativity focuses on the outcomes that result from creative 
processes. It starts from the premise that to identify a process or activity as creative, 
one has to discern the existence of some creative outcome. Sternberg and Lubart 
(1999) seem to support this view when saying creativity is the capability to produce 
unexpected, original, appropriate and useful pieces of work. Leikin and Pitta- 
Pantazi (2013) give a broad overview of the ‘state of the art’ regarding creativity and 
mathematics education, arguing that the focus can be on the creative person, the 
creative process, the creative product or the creative environment. Liljedahl and 
Sriraman (2006) make the case that the creative process and creative product are 
inseparable and indistinguishable.

Silver (1997), among others, sees creativity as an orientation or disposition 
towards mathematical activity that can be broadly fostered in the general school 
population. This approach is more associated with long periods of work and reflec-
tion rather than rapid and exceptional insight. This has consequences for how one 
might approach creativity as it suggests that creativity-enriched teaching and other 
support might be conducive for a broad range of students. Here, creativity is not 
merely something for a few exceptional individuals. This view is often accompa-
nied by thoughts about problem-posing and problem-solving (Bonotto & Dal Santo, 
2015; Singer & Voica, 2016).

More specifically, problem-posing and problem-solving are closely related 
(Singer, Ellerton, & Cai, 2015). It is in the interplay of formulating, attempting to 
solve, reformulating and eventually solving, a problem that is seen as creative activ-
ity. Features of creativity that could be detected within this frame are novelty in the 
problem formulation or solution, shift in direction during the problem-solving pro-
cess and number of different solution paths or different solutions.

In his assessments of ‘divergent thinking’, Guilford’s (1967) Alternative Uses 
Task distinguished four components of creativity that could be applied to the domain 
of creative mathematical thinking:

• Fluency as it relates to the continuity of ideas, flow of associations and use of 
basic and universal knowledge. This entails the student’s ability to pose or come 
up with as many responses as possible (ideas or configurations).

• Flexibility as associated with changing ideas, approaching a problem in various 
ways and producing a variety of solutions. It describes the student’s ability to 
vary the approach or suggest a variety of different methods towards a problem or 
situation.

• Originality/novelty as seeking for unique ways of thinking and unique products 
of a mental or artistic activity. The criterion pertains to the student’s ability to try 
novel or unusual approaches towards a problem.

• Elaboration as relating to the capability to describe, illuminate and generalise 
ideas. Such a criterion should assess the person’s capacity to redefine a problem 
or situation to create others.
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Sternberg and Kaufman (2010) emphasise another important criterion, namely, 
‘quality’ or ‘usefulness’. They describe how, under the criteria of novelty, drawing 
random lines on a piece of paper could be deemed creative as ‘in all likelihood, no 
one has ever before created quite the same pattern of lines’ (p. 467). At the same 
time, it is not a given that random lines on a piece of paper would necessarily pass 
the test of quality or usefulness. Sternberg and Kaufman assert that this is a defini-
tional constraint, if only because novelty is ‘in the eye of the beholder’. In general, 
there are many constraints on creativity, something which some see as an impedi-
ment for creativity. The issue for us in this chapter is the role and impact of con-
straints in creativity and problem-solving. It is to this issue that we turn next.

13.2.3  Constraints in Creativity and Problem-Solving

Sternberg and Kaufman (2010) contend that the concept of creativity is subject to 
many constraints. These constraints are, in a sense, already embedded in the defini-
tion of creativity itself – work can be creative only if it is both novel and useful in 
some way. Apart from the constraints of being novel and useful in some way, there 
also are constraints internal to the problem-solver such as risk-taking or motivation. 
Society also imposes external constraints. Such internal and external constraints 
interact. Sternberg and Kaufman (2010, p. 481) give the following example: ‘some-
one who is constantly beaten down as a result of being creative may give up and 
simply decide not to be creative again’.

This chapter runs with the idea that constraints do not necessarily harm creative 
potential. As constraints are part of the construct of creativity itself, we rather see 
them as a mechanism by which creativity can be stimulated. Here, the words of 
Sternberg and Kaufman (2010) are pertinent: ‘Many consider the haiku [a tradi-
tional form of Japanese poetry that consists of three lines with the first and last lines 
having five syllables each and the middle line seven syllables] to be an ultimate 
creative expression precisely because only a handful of words is allowed. What 
makes a person or product creative is the flair of originality constrained by useful-
ness, and the benefit of usefulness constrained by originality’ (p. 481).

There are numerous examples where constraints have played a positive role 
regarding creativity. In an informal way, one can think of how in economics the 
‘scarcity’ of certain goods pushes individuals and organisations to be creative (e.g. 
Legros, Newman, & Proto, 2014). The ‘MacGyver’ meme (humorous illustrations 
or pieces of text spread rapidly by Internet users) shows how television personality 
MacGyver (from the American television series of the same name) always man-
ages to escape from a serious predicament by ‘just using a paperclip’; the message 
being that MacGyver’s inventive character can always find a creative solution for 
any challenge. Yet Amabile and Kramer (2011a & b) would likely not call this 
‘scarcity’; rather, they would call it ‘necessity’ because, they say, constraints can 
‘stoke the innovation fire’ (Amabile & Kramer, 2011b). A similar view was 
expressed by Yahoo! CEO Marissa Mayer (2006) writing for Businessweek: 
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‘Constraints shape and focus problems, and provide clear challenges to overcome 
as well as inspiration. Creativity loves constraints, but they must be balanced with 
a healthy disregard for the impossible’.

Such views are not only apparent in the entertainment and business realm. A 
study by Marquc, Förster, and Van Kleef, (2011) showed that tough obstacles can 
prompt people to open their minds, look at the ‘big picture’ and make connections 
between things that are not obviously connected. Participants in the study were 
asked to play a computer maze game. For one group the maze contained an obsta-
cle, severely constraining the number of possible routes to escape. The other group 
had no obstacle. Using the Remote Associates Test as the creativity measure, the 
group with the obstacle performed 40% better. It was hypothesised that the con-
straint had forced members of the obstacle group into a more creative mindset. 
Stokes (2001) reports that related experimental research suggests two things. One 
is that along with learning how to do something, people learn how to do it in dif-
ferent and variable ways, so they can continue doing it. A second thing Stokes 
shows is that constraints play a role because high variability is caused by con-
straints. Stokes gives the example of Claude Monet’s painting: his high level of 
variability in painting was acquired during the first part of his life and was main-
tained throughout his adult career by a continuous series of task constraints 
imposed by the artist on his own work.

In her book, Stokes (2005) lists different types of constraints. The first set of 
constraints is domain constraints. Individuals in any field can only be creative if 
they first acquire expertise in the field. Acquiring expertise requires some agreed- 
upon performance criteria of a field, criteria that are seen as goal, subject and task 
constraints. Goal constraints specify a particular style, subject constraints involve 
content and task constraints refer to the particular materials that are used in a 
domain. It is seen as the foundation upon which variations can be produced. A sec-
ond set of constraints concerns cognitive constraints. These pertain to the limita-
tions of the human mind. It is here where developing expertise is relevant as this 
involves overcoming cognitive limitations. A third set of constraints is about vari-
ability constraints. These specify how differently something must or should be 
done. This suggests that maintaining a high-variability level is likely to be condu-
cive for divergent thinking. Finally, the fourth set involves talent constraints. A 
domain might require special talents and capabilities. If someone does not have 
such talents and capabilities, this is likely to constrain their capacity to achieve, 
whereas if someone does have the talents and capabilities, this is likely to help.

Rosso (2014) notes there is a paradox in the tension between freedom and con-
straint in the creative process. Although, in the abstract sense, there is the view that 
the ideal creative process is unstructured, open-ended and free of external limita-
tions, there is evidence that, in some cases, creative individuals and teams can ben-
efit from constraints. Here we have space to elaborate on only some of the many 
different types, with one of the most researched ones being time constraints. 
Typically, the presence of deadlines has been seen as a negative influence on cre-
ativity as it is not considered conducive to exploration and tends to reinforce fixed 
ways of working (Amabile, 1996). Nevertheless, there also are indications to the 
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contrary that suggest that time constraints can have a positive impact on creativity, 
subject to conditions (e.g. Amabile, Hadley, & Kramer, 2002; Baer & Oldham, 
2006). One prerequisite though, according to Hennessey and Amabile (2010), is that 
creators are protected from distractions and the feeling that they are on a mission. 
The same ambiguous findings are reported for resource constraints. While suffi-
cient material resources need to be available to be maximally creative (e.g. Amabile, 
1988, 1996), researchers such as Csikszentmihalyi (1997, p. 321) warn that excess 
resources can also make people too comfortable and that this has a ‘deadening’ 
effect on creativity. Another resource aspect that has been studied is the impact of 
standardised routines and processes. Here again some research indicates that stan-
dardised routines and processes might hurt creative efforts, while other studies – 
especially in team work – indicate that standardised processes can be conducive to 
creativity. Groups might structure or bound their work in ways that enhance their 
creativity (e.g. Hargadon & Sutton, 1996; Stokes, 2005).

In sum, empirical research on the impact of constraints on creativity suggests that 
constraints do not necessarily impede creativity. In fact, subject to conditions, con-
straints may even be conducive to creativity. In the next sections, we give concrete 
examples for mathematics education of ways in which this might work. For these 
examples, we adopt the view, adapting Sternberg, that creative mathematical think-
ing is a combination of fluency, flexibility, originality, elaboration and usefulness.

13.3  Cases Illustrating Task Constraints

13.3.1  Case Example 1: Restricting Geometry Tools 
and Operations

Our first case example is about restricting geometry tools and operations. There are 
three ancient geometry problems that are considered to be extremely influential not 
only in the development of geometry but also on mathematics as a field (Coxeter & 
Greitzer, 1967; Sibley, 2015). These problems, each of which could be tackled using 
only a compass and straightedge, are the following: squaring the circle, doubling the 
cube and trisecting an angle.

The problem of ‘squaring the circle’ was to construct a square with the same area 
as a given circle; see Fig. 13.1 for an illustration. While the ancient Greeks did find 
exact constructions for this problem (and the other problems listed above) using 
methods beyond a straightedge and compass (it is less clear that in ancient times 
such constraints were imposed), nowadays, these classic problems such as ‘squar-
ing the circle’ are formulated as problems which have to be solved using solely a 
compass and straightedge (for more on these classic problems from a computer- 
orientated position, see Meskens & Tytgat, 2017).

In tackling geometrical construction problems solely with compass and straight-
edge, the argument is that this provides a rich environment for problem-solving 
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because ‘the restriction to using compass and straightedge only, ‘forces’ the solver 
to exercise higher-order thinking skills such as analysis, evaluation, hypothesising, 
[and] organising’ (Lim, 1997, p. 144). This remains the case even though in the 
nineteenth century it was proved that the three constructions listed above are actu-
ally impossible to solve with only a compass and unmarked straightedge.

In contemporary mathematics curricula, it is ruler (a marked straightedge) and 
compass constructions that continue to be specified for classroom teaching. 
So-called ‘standard’ constructions include constructing the perpendicular bisector 
of a line segment, constructing a perpendicular to a given line from/at a given point 
and bisecting a given angle. This continues to be the case even though forms of 
dynamic geometry software (DGS) (such as Cabri, Cinderella, GeoGebra, 
Geometer’s Sketchpad and others) have been available since the mid-1990s. In such 
software, there is the decision of the designer about which menu items to provide in 
the software (such as a perpendicular line or a circle through three points), and then 
there is the decision of the task designer (or the teacher) about whether or not to 
constrain the choice of menu items that is available to learners (Jones, Mackrell, & 
Stevenson, 2010; Mackrell, 2011).

For example, Mariotti (2001) reports on a research project where the decision 
was made to start the teaching with the software having a menu of tools that was 
empty. Menu items were subsequently introduced only after having been the subject 
of classroom discussion. Mariotti gives the example of the menu item giving a per-
pendicular line. This, says Mariotti, ‘incorporates the piece of theory concerning the 
definition of perpendicularity and the theorem validating the existence of a perpen-
dicular line’, which ‘may too complex [for learners] to grasp all at once’ (p. 715). 
The approach of beginning with an empty menu, and only adding menu tools when 
these had been explored and understood, is one way of designing geometrical con-
struction tasks that have constraints on what learners do. The reason for having 
constraints, as Kortenkamp and Dohrmann (2010, p. 59) describe, is the tensions 
within problem-solving: ‘if students learn to combine several steps into a more 
complex operation (say, instead of using the compass twice and connecting the 
intersections to find the midpoint between two points, one can use the midpoint 

Fig 13.1 ‘Squaring the 
circle’; construct a square 
with the same area as a 
given circle using only a 
compass and straightedge
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operation provided by the software) this reduces their workload when doing con-
structions, but it increases the complexity of their software use’.

The issue of constraints in geometry problems is not restricted to DGS. Figure 13.2 
provides an example of a project created using the software Desmos, while Fig. 13.3 
shows a task from our enGasia project (http://engasia.soton.ac.uk). In the latter, the 
number of ‘stars’ indicates the number of different proofs that are valid. Returning 
to the issue of the provision of menu items in DGS, there are parallels that can be 
drawn between this issue and the notions of procedures and sub-procedures in the 
‘turtle geometry’ microworld available in Logo (for more on procedures, and sub- 
procedures, in Logo, see Papert, 1972).

In each of the examples in this section, tasks are set in a constrained domain, 
with constrained operations. Nevertheless, in each case there are multiple ways to 
approach and solve the tasks. The latter is the space for creativity.

13.3.2  Case Example 2: Operations and ‘Countdown’

Our second case example focuses on how elements of a popular TV game show 
illustrate elements of constraints in creativity and also how similar elements are 
apparent in two online digital applications (the WisWeb application ‘number fac-
tory’ and a digital book from the MC-squared project). In addition, for the latter 
application, we show how the constraints can be operationalised for creativity.

Countdown is a British game show involving word and number puzzles that is 
based on the French game show Des chiffres et des lettres (Numbers and Letters), 
created by Armand Jammot. The game show has a so-called numbers round in 
which a contestant is asked to select 6 of 24 shuffled tiles. There are two groups of 
numbers: one group with four ‘large numbers’ (25, 50, 75 and 100) and one group 
with ‘small numbers’ with two of each of the numbers 1–10. The contestant first 

Fig. 13.2 An example of a project created with Desmos (and used with permission); see https://
www.desmos.com/calculator/umgyltokag
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chooses how many large numbers he or she wants, ranging from zero to four; the 
rest will be a small number. Then a random three-digit target is generated, and the 
contestant is asked to find a calculation with the six numbers that gets as close as 
possible to the target number using addition, subtraction, multiplication and divi-
sion. Not all numbers need to be used; fractions are not allowed, only positive inte-
gers. In some games, there are multiple solutions; other games are unsolvable. This 
aspect demonstrates how constraints can lead to creativity, after all there are severe 
constraints regarding numbers, operations and time (in the game show a contestant 
has 30 s to come up with an answer). Yet this does not hold back the possibility of 
creative answers, as this actual example of a solution demonstrates (for the TV epi-
sode, see https://www.youtube.com/watch?v=pfa3MHLLSWI):

Numbers given: 25 50 75,100 3 6
Target: 952

The contestant came up with:
100 + 6 = 106
3*106 = 318
318*75 = 23,850
23,850–50 = 23,800
23,800/25 = 952

In the ‘numbers round’ game, Alliot (2015) shows the intricacies by providing a 
complexity analysis of the game, an analysis of solution algorithms and the presen-
tation of a new algorithm that increases resolution speed by a factor of 20.

Fig. 13.3 An example of a task from the enGasia project (http://engasia.soton.ac.uk/); used with 
permission
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The core idea behind the numbers round is also the basis for a WisWeb applica-
tion of ‘number factory’, which has been used in Dutch mathematics education. As 
with Countdown, there are numbers and operations, and a student has to make the 
target number.

Figures 13.4 and 13.5 show screenshots of a digital book, a so-called c-book, 
from the MC-squared project (www.mc2-project.eu). Figure 13.5 shows a task that 

Fig. 13.4 Screenshot of a digital book (‘c-book’) with the 'number factory' application. (From 
WisWeb, www.wisweb.nl and the MC-squared project; used with permission)

Fig. 13.5 Screenshot of a  digital book (‘c-book’). (From the MC-squared project; used with 
permission)
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is proposed, in this case ‘make 23’, along with prompts and responses from the 
c-book system. The chosen number can be randomised, so it shows a different num-
ber, or even expression, every time a student visits the page. The student is pre-
sented with several boxes and asked to give as many expressions that are equivalent 
to the target number. The example answers, not from a real student, by the way, but 
proof of concept, show that the solution strategies can be more varied. This is the 
case because there are fewer constraints on the operations. The figure shows answers 
with numbers, basic operations, trigonometric functions and even integrals. If 
desired, the generation of these answers could also be subjected to time constraints. 
In this particular case, feedback can be provided as well, to further stimulate stu-
dents to think more widely than just the current answers. In our view, this again 
gives an example of how constraints might be used to trigger creativity. A decent 
amount of ‘closedness’ (and a balancing amount of openness) seems helpful.

The fact that creativity is there can also be seen by applying the creativity criteria 
described previously: fluency, flexibility, originality/novelty and elaboration. A lot 
of fluency (i.e. the student’s capacity to pose or come up with as many responses as 
possible) is required. The whole point of the key activity in the c-book is to provide 
as many equivalent expressions to a given expression. With regard to flexibility (i.e. 
the student’s capacity to vary the approach or suggest a variety of different methods 
towards a problem or situation), the task provides the opportunity for students to 
provide many alternative answers. This is demonstrated in the figure as well: inte-
gral signs, trigonometric functions and many solutions are acceptable. Of course, 
this does not mean that students necessarily do this, and this is where feedback 
could help to trigger more creative thinking. This aspect also touches on originality/
novelty, as the student is allowed to try novel or unusual solutions (in this case, 
equivalent expressions) towards a problem or situation. Elaboration, in this task, has 
not been catered for yet but could be addressed by making variations of this page 
with a progression from simple numbers towards more generalised algebraic 
expressions.

13.3.3  Case Example 3: Diophantine Equations

Our third case example of creativity through constraints is the mathematics game 
Wuzzit Trouble from the company InnerTube Games, a venture initiated by Keith 
Devlin (from Stanford University and known as The Math Guy on US National 
Public Radio). With this game, Devlin builds on work from his book Mathematics 
Education for a New Era (Devlin, 2011). The free game follows the structure that is 
well-known from many modern ‘apps’ such as Angry Birds: there are levels (75 in 
total in the case of Wuzzit Trouble) that require the user to solve a puzzle. While the 
storyline is about Wuzzits, ‘cute characters’ that have to be saved, the better the user 
solves each puzzle (in the case of Wuzzit Trouble, this relates to the minimum num-
ber of moves), the more ‘stars’ are earned. The differing numbers of stars to be 
collected can be seen as a way to encourage multiple solution strategies.
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The levels themselves consist of target numbers that need to be constructed by 
turning a cog. In the case shown in Fig. 13.6, the first target number is 5. The cog 
can be turned to the left and to the right. The keys have to be collected by making 
the numbers by turning the cog.

The topic of the game, through using cogs, entails integer partitions (though not, 
of course, in the formal sense). Actually the game relates to Diophantine equations, 
polynomial equations of the form that seek whole number solutions  – the most 
famous example being the problem in Fermat’s Last Theorem (does an + bn = cn 
have any integer solutions for 𝑛>2?). Players are unlikely to feel that they are solv-
ing these equations; rather it is a puzzle. The tension is immediately apparent: there 
is a constrained domain, namely, integer partitions, with constrained operations, 
namely, turning cogs. Nevertheless, there are multiple ways to solve the tasks.

13.4  Discussion

In this chapter we examined a number of mathematical problem-solving scenarios, 
ranging from producing geometrical constructions to ways of tackling number puz-
zles and solving sets of equations. Through our analysis of these forms of tasks, we 
argue that classroom tasks for mathematical problem-solving and creativity need not 
be restricted solely to open-ended problems but that tasks with suitable constraints 
can serve as creativity-inducing problem-solving tasks as well.

Fig. 13.6 The 
mathematics game Wuzzit 
Trouble. (From the 
company InnerTube 
Games; used with 
permission)
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Notwithstanding the categorisation of Sullivan et  al. (2012, p.  57) that a task 
‘goal’ (taken as ‘the result that students seek as a product of their activity in response 
to the task statement’) can be open or closed, perhaps tasks can be positioned on a 
two-way grid, as shown in Fig. 13.7, in terms of the degree of ‘openness’ (on one 
axis) and the level of potential creativity in problem-solving task (on the other axis). 
This entails a more nuanced analysis of task design than an ‘open’ versus ‘closed’ 
opposition, or an opposition of creativity versus problem-solving, or creative versus 
noncreative. This would likely imply something more sophisticated than ‘more open 
is more creative’, or ‘less open (so more closed) is less creative’. Of course it is not 
necessarily the case that tasks are more or less open; it might be preferable to talk 
about being less or more creative with less or more open tasks, in other words, mod-
erately closed (or moderately open) tasks. As such, it may not be a case of placing 
the tasks discussed above at specific locations on the graph in Fig. 13.7; it may be 
more that the axes in Fig. 13.7 could be helpful in considering learner activities with 
any one of the tasks (and with other moderately closed, or moderately open, tasks).

This approach of relating task openness and level of potential creativity aligns 
with Lubart and Mouchiroud (2003, p. 142) who show how ‘all problem-solving is 
not creative problem-solving’ and that ‘there exists a continuum’ between the two 
extremes of open-closed in that ‘some problem-solving relies heavily on existing 
[known] procedures but [also] requires some novelty, some enhancements to existing 
structure’. Mason (1991, p. 14) suggested that task qualities such as interesting or 
relevant, open or closed, belong ‘not to questions, but arise only in the presence of 
people’, while Guilford (1967) proposed that ‘real’ problem-solving involved 
actively seeking and constructing new ideas that fit with constraints imposed by a 
task or more generally by the environment. Nevertheless, there are also dangers; Wu 
(1994, p. 122-123), for example, argued that while the use of open-ended problems 
started off as ‘a well-intentioned pedagogical device’, the issue of mathematical sub-
stance ‘got lost somewhere’ such that there is a ‘very real possibility of [open- ended 
problems] being an educational liability instead’. Another parallel is with the notion 

Degree of open-ness of the problem-
solving task

Level of potential creativity in problem-solving task

more

less

less

more

Fig. 13.7 Task openness and level of potential creativity
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of ‘moderately challenging’ tasks developed by Carreira, Jones, Amado, Jacinto, and 
Nobre, (2016) in their project on mathematical problem-solving with technology. 
Also related is the proposal of Yeo (2017) to characterise the ‘openness’ of tasks.

All this raises a question regarding the way in which ‘creativity’ is often mea-
sured using the pioneering work of Torrance (1962) and the notions of fluency, flex-
ibility, originality and elaboration. Our reconceptualization of creativity through 
constraints might indicate that such a measure of creativity may need some revision. 
Here the work of Ohlsson (2011) might be useful as he identifies four issues that he 
suggests need to be addressed by a successful theory of creativity: how are novel 
ideas possible; what are the key features that distinguish creative processes and 
justify calling them creative; and what gives direction to the creative process, what 
are the limiting factors, and why is it difficult to create.

13.5  Conclusion

In this chapter we have subjected to critical scrutiny the idea that problem-solving 
and creativity are seen as best supported by providing open-ended tasks. In doing so 
we have made the case for what might be called ‘constraints-based’ task design. In 
this latter approach, which we have related to research in economics on scarcity 
(and the American television series character MacGyver), we have examined how 
tasks that are moderately closed (being neither fully open nor fully closed) can pro-
vide for creative mathematical thinking and problem-solving. In some cases, the use 
of feedback can provide cues to students.

Based on a range of examples from across a number of mathematical topics, our 
argument is that such examples demonstrate that classroom tasks for mathematical 
problem-solving and creativity need not be restricted solely to open-ended prob-
lems; rather, we argue that tasks with suitable constraints can serve as creativity- 
inducing problem-solving tasks as well. As Sullivan et al. (2012, p.14) argue, this 
entails classroom tasks that ‘provide appropriate contexts and complexity; that 
stimulate construction of cognitive networks, thinking, creativity, and reflection; 
and that address significant mathematical topics explicitly’. As we have shown in 
this chapter, based on our experience of designing task on the MC-squared project 
(www.mc2-project.eu), and on other projects such as enGasia (engasia.soton.ac.uk), 
moderately closed (or moderately open) tasks meet these requirements and can 
serve as creativity-inducing problem-solving tasks.
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Chapter 14
Linking Mathematical Creativity 
to Problem Solving: Views from the Field

Deborah Moore-Russo and Erica L. Demler

14.1  Introduction

According to Pólya (1981), problem solving involves “some degree of indepen-
dence, judgment, originality, [and] creativity” (p. xi). Bolden, Harries, and Newton 
(2010) propose that there are many creative opportunities for students in the math-
ematics classroom, citing several examples including how mathematics solutions 
for mathematical problems are generated and how mathematical situations, plans, 
and outcomes are hypothesized. This would suggest that the development of 
mathematical creativity in students should be a goal of mathematics education 
(Lev- Zamir & Leikin, 2011).

In fact, Silver (1997) suggests that “inquiry-oriented mathematics instruction 
which includes problem-solving and problem-posing tasks and activities can assist 
students to develop more creative approaches to mathematics” (p. 75). Problem pos-
ing is both the transformation or modification of given problems and the generation 
of new problems (Brown & Walter, 1993, 2005, 2014; Silver, 1994). It has been 
considered as a means to measure mathematical creativity (Cai, Hwang, Jiang, 
& Silber, 2015) and is also seen as a didactic tool that might be used to foster 
creativity. In addition, creativity is more apt to be cultivated in classrooms that use 
open problems (Pehkonen, 1997), whose solution paths are not immediately known 
but require more than mere algorithms and routines (Haylock, 1987), and are not 
limited but rather allow for creative exploration (Mann, 2006).
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Aiken (1973) sees teachers as the keys to unlocking creativity in the classroom, 
as he believes creative teachers will produce creative students. Recent studies have 
confirmed that mathematics teachers also believe this to be true and consider them-
selves primarily responsible for enhancing creativity in their students (Bolden et al., 
2010; Kattou, Kontoyianni, & Christou, 2009; Leikin, Subotnik, Pitta-Pantazi, 
Singer, & Pelczer, 2013). It is clear from the literature, however, that more than 
creative teaching is necessary to advance student creativity (Bolden et  al., 2010; 
Starko, 2013). Starko (2013) delineates between “creative teaching” and “teaching 
to develop creativity” – what others have deemed respectively as teaching creatively 
and enhancing students’ creativity (Leikin et al., 2013), creative teaching and cre-
ative learning (Bolden et  al., 2010), and teacher-directed creativity and student- 
directed creativity (Lev-Zamir & Leikin, 2011, 2013).

Whereas creative teaching refers specifically to acts made by teachers, whether 
they be mathematical or pedagogical in nature (Lev-Zamir & Leikin, 2011), teach-
ing to develop creativity requires a shift in focus to “essential creativity on the part 
of the students” (Starko, 2013, p. 20). One of the key responsibilities of mathemat-
ics teachers is to provide meaningful mathematical activities in the classroom 
(Fennema & Romberg, 1999). If creativity is central to genuine mathematical 
endeavor (Silver, 1997) and if it plays a role in problem solving, then teachers 
should be cultivating creativity in their classrooms. They should be helping students 
“pay attention to their wonderings… [and to] capture their ideas and build on them” 
(Starko, 2013, p. 144).

The practices teachers use in the classroom are primarily influenced by their 
conceptions or implicit theories (Sternberg, 1985) of creativity. It has been found 
that these implicit theories are used by teachers to identify and describe creativity 
both in themselves and in others (Runco & Bahleda, 1986; Sternberg, 1985). 
Kowalski (1997) argues that implicit theories are extremely important and should be 
considered concurrently with any initiative to enhance students’ creativity. Hence, 
it is important to study teachers’ views on creativity and its role in the classroom. 
Recent studies have examined teachers’ conceptions of creativity (Bolden et  al., 
2010; Kampylis, Berki, & Saariluoma, 2009; Leikin et  al., 2013; Lev-Zamir & 
Leikin, 2011, 2013) and have reported that preservice mathematics teachers in the 
United Kingdom have a limited understanding of creativity and how to encourage 
and assess it in the classroom (Bolden et al., 2010); less than a quarter of Greek 
teachers feel well-trained to facilitate students’ creativity (Kampylis et al., 2009); 
certain factors of mathematical creativity are culturally dependent (i.e., the amount 
of attention devoted to creativity), while others seem to reach across cultures (i.e., 
the relationship between creativity and problem solving) (Leikin et  al., 2013); 
teachers hold both teacher-directed and student-directed conceptions of creativity 
(Lev-Zamir & Leikin, 2011); and teachers who are more student-directed display a 
greater congruence between their declared and enacted conceptions of creativity 
(Lev-Zamir & Leikin, 2013).

Creativity is recognized in these studies (and many others) as being a very com-
plex construct that is “widely used but vague” so researchers “face difficulties when 
required to put its meaning into words” (Kampylis et al., 2009, p. 16). Despite this 
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recognition, each of the aforementioned studies settles on a single definition of 
creativity to rely on throughout the research. They examine creativity in the classroom 
through a single lens (e.g., considering certain components of creativity), which 
may or may not be a particularly good filter as it only captures a limited notion of 
creativity.

Our approach is unique in that we are viewing creativity through a variety of 
lenses in order to get a more complete representation of the complex nature of the 
construct. As such the purpose of this study was to examine mathematics instruc-
tors’ conceptions of creativity through four different lenses, which are discussed 
below. The following research questions were explored:

 1. How do mathematics educators define creativity, and which components of 
creativity do they identify?

 2. How do they feel creativity should be cultivated in the mathematics classroom?
 3. Who benefits from creativity-enriched instruction?

In the following sections, we consider the existing literature on these topics, both 
generally and more specifically, in relation to mathematical problem posing and 
solving. We then present our findings and discuss significant themes that emerged 
from the data while also considering the implications these results have for mathe-
matics instruction.

14.2  Literature Review

14.2.1  Categories of Creativity Definitions

Definitions of creativity abound. Treffinger, Young, Selby, and Shepardson (2002) 
write, for instance, that there are more than 100 contemporary definitions of math-
ematical creativity. Nevertheless, Plucker and Beghetto (2004) note that there are 
two key features of creativity that are seen throughout the literature in general: 
originality and usefulness. Sriraman (2005), in an attempt to conceptualize mathe-
matical creativity, writes that creativity is “the process that results in unusual and 
insightful solutions to a given problem, irrespective of the level of complexity.” In 
other words, mathematical creativity can be defined as novel and useful work in 
mathematics. The specific meaning of “novel” and “useful” would depend on the 
context and on the user.

According to Bolden et al. (2010), “creativity is a personal activity intended to 
produce something new” (p. 143). Creativity is the ability to combine ideas, things, 
techniques, or approaches in a novel way (Romney, 1970) and to distinguish 
between acceptable and unacceptable patterns (Birkhoff, 1969). Plucker and 
Beghetto (2004) call it “the interplay between ability and process by which an indi-
vidual or group produces an outcome or product that is both novel and useful as 
defined within some social context” (p. 156). Specifically in relation to  mathematical 
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thinking, Poincaré (2000) and Hadamard (1954) maintain that creativity is an 
intuitive “flash of insight,” a subjective experience (Aiken, 1973). It is clear from 
these examples that there is a lack of consistency and precision in how creativity is 
defined in the literature, which Sriraman (2005) attributes to the inherent complexity 
of the construct itself.

In short, creativity may mean different things to different people. For example, 
there is evidence in the literature of varying degrees of creativity. Boden (2004) 
distinguishes between historical and psychological creativity, which are respec-
tively linked to the absolute and relative creativity discussed by Leikin (2009). 
Absolute or historical creativity is more universal as it relates to profound discover-
ies and great historical works at the global level. Relative or psychological creativ-
ity, on the other hand, is more personal and refers to individual discoveries that are 
novel to a particular person. One of the most interesting publications on creativity is 
the recorded back-and-forth dialog between Liljedahl and Sriraman (2006) where 
the two discuss creativity and its many definitions. Like good art, creativity is some-
thing you recognize when you see but is difficult to define.

In looking at definitions of creativity, Getzels (1969) found that they fit in three 
categories. Creativity can be seen as a product, a process, or a subjective 
experience.

Creativity can be thought of as a product. The root word of creativity is crea, 
which comes from the Latin word creare meaning “to create.” Creativity is therefore 
naturally linked to creation; something is produced that is unique or unexpected but 
also useful (MacKinnon, 1962; Plucker & Beghetto, 2004; Sternberg & Lubart, 
1999).

Creativity is also a process. Many definitions characterize creativity as the ability 
to go against and/or beyond traditional thinking and accepted practices. Creativity 
is the process by which individuals engage in nonalgorithmic decision-making 
(Ervynck, 1991); it is the ability to discern patterns and find similarities and differ-
ences by analyzing a problem in a variety of ways (Birkhoff, 1969; Laycock, 1970). 
While this process often requires divergent thinking (Runco, 1999) to be fruitful, it 
is not completely unfounded. Rather, people move from the familiar to the unfamil-
iar by utilizing and combining knowledge they already have in unique and novel 
ways (Laycock, 1970; Romney, 1970).

Distinct from the notions of creativity as a product or a process stands the view 
that creativity is a subjective experience. Definitions in this category consider cre-
ativity to be a flash of insight, the “Aha!” or “Eureka!” moment where clarity is 
gained (Hadamard, 1954; Poincaré, 2000). This conception is associated with the 
“genius view” of creativity, where creative acts are considered to be rare mental 
feats achieved by extraordinary individuals, rapidly and effortlessly (Weisberg, 
1988). Under this notion, creativity is seen as an innate ability that certain people 
possess while others simply do not. It follows that creativity-enriched instruction 
would only benefit select students and only insofar as it would help them to unlock 
and/or access this ability. Otherwise, instruction designed around the principles of 
the “genius view” is likely to have little or no effect on creativity. Although this view 
has dominated western culture’s beliefs about creativity, Silver (1997)  acknowledges 
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that it has been challenged in recent research, giving rise to a new, less restrictive 
conception of creativity.

Recent research has argued that creative acts are actually the result of extended 
periods of mathematical activity and reflection based on the use of deep and flexible 
content knowledge (Gruber & Wallace, 1999; Holyoak & Thagard, 1996; Sternberg, 
1988). This conception is more consistent with definitions that characterize creativ-
ity as a product or process, rather than a subjective experience, as it emphasizes 
prolonged engagement with a problem situation and reflection on the processes 
used and the products created. It also suggests that instruction can influence creativ-
ity. Haylock (1997) and Sriraman (2009) maintain that, in order for people to be 
creative, they need the ability to think outside the box and also an understanding of 
how to apply their deep and flexible knowledge of mathematics in seeing opportuni-
ties in problem situations. Teachers can use problem-posing and problem-solving 
activities in the classroom not only to demonstrate how to do this but also to provide 
students with opportunities to practice themselves. In stark contrast to the “genius 
view,” this contemporary view of creativity supports the argument that creativity 
can be cultivated and nurtured and that all students – not merely a few exceptional 
individuals – can benefit from creativity-enriched instruction (Cropley, 2001; Silver, 
1997; Smith, Ward, & Finke, 1995).

14.2.2  Components of Creativity

Even though definitions of creativity can differ considerably, there are some under-
lying themes that can be identified. One such theme apparent in each of the exam-
ples above is originality; creativity is about coming up with something new, about 
not thinking like everyone else. Originality, or novelty, is just one piece of the 
puzzle, though.

Silver (1997) discusses three components of creativity – fluency, flexibility, and 
novelty  – and the implications they have for mathematics instruction. Fluency 
relates to the amount or quantity of ideas that are generated in response to a prompt 
and the continuity or flow of those ideas. Flexibility is being able to shift approaches, 
consider situations from different perspectives, and utilize multiple forms of repre-
sentation when solving, or presenting a solution to, a problem. Novelty is concerned 
with the generation of new, original ideas.

Mathematical problem posing and solving are naturally connected to creativity. 
As Silver (1997) notes, “it is in this interplay of formulating, attempting to solve, 
reformulating, and eventually solving a problem that one sees creative activity” 
(p. 76). In fact, well-established means of assessing creativity, such as the Torrance 
Tests of Creative Thinking (TTCT) (Torrance, 1966, 1974), often rely on problem- 
posing and problem-solving activities to measure the three identified key aspects of 
creativity (fluency, flexibility, and novelty). While some may question the applica-
bility and appropriateness of using problem-posing and problem-solving activities 
in the classroom (i.e., Sriraman, 2005), others argue that their use can actually help 
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develop these components of creativity. Silver (1997) and Lev-Zamir and Leikin 
(2011) recognize that the use of ill-structured and open-ended problems by both 
teachers and students can help to build fluency and flexibility because these types of 
problems generally allow for multiple interpretations, methods, and solutions. For a 
given problem situation, students can first try to define as many different problems 
as possible (fluency). Then as students solve a particular problem, they can look for 
additional methods that could also be used to solve it (flexibility). Voica and Singer 
(2013) also found a connection between problem-posing activities and cognitive 
flexibility in above-average mathematical students. Working with ill-structured and 
open-ended problems should help students engage in exploration that may help 
them learn to appreciate (and even develop) novel, original ideas. Therefore, it can 
be argued that students should be exposed to an environment where teachers and 
students pose problems, problems are solved in multiple ways, solution ideas and 
paths are shared with peers, and originality is championed.

14.2.3  Principles for Maximizing Creativity

Based on his work with professional mathematicians, Sriraman (2005) identifies 
five overarching principles to maximize creativity and suggests ways to incorporate 
them in the K–12 mathematics classrooms. These principles are gestalt, aesthetic, 
free market, scholarly, and uncertainty.

The gestalt principle mainly refers to the work of Hadamard (1945) and Poincaré 
(2000), who believed there were four stages to mathematical creativity: (a) prepara-
tion or the introduction to the problem situation and formulation of problem; (b) 
incubation or the time to unconsciously think about the problem situation by letting 
the mind be occupied by other things; (c) illumination or a flash of insight, the Aha! 
moment (what Liljedahl (2013) related to as an affective experience); and (d) veri-
fication or the refining of a final solution. The gestalt principle relates to recognizing 
how the unconscious mind works on latent ideas (Haavold, 2016). When applied to 
the mathematics classroom, this conception of creativity calls for allowing students 
freedom of time and movement when working with problems (Sriraman, 2005). 
Students need to know that time, energy, and effort are needed to solve mathemati-
cal problems (consistent with the contemporary view of creativity as discussed 
above), and they need to be exposed to an environment where they are allowed to 
experience this.

The aesthetic principle is concerned with the beauty of mathematics. Although 
many people, including mathematics teachers, tend to associate creativity and 
beauty more with the arts than mathematics (Bolden et al., 2010), others contend 
that mathematical work has more in common with art than the sciences (Littlewood, 
1986). Hardy (1940) exclaims:

The mathematician’s patterns, like the painter’s or the poet’s, must be beautiful; the ideas, 
like the colors or the words, must fit together in a harmonious way. Beauty is the first test: 
there is no permanent place in the world for ugly mathematics. (p. 85)
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Students should be able to recognize and appreciate that some solutions are more 
elegant than others and that there can exist a simple solution to a seemingly complex 
problem. One example from mathematics history that highlights this elegance and 
simplicity is Gauss’ technique for adding all the natural numbers from 1 to 100. He 
paired the numbers up as sums equaling 101 (i.e., 1 + 100, 2 + 99, 3 + 98, and so 
on), recognized that 50 pairs would result, and so multiplied 101 by 50 to arrive at 
the answer of 5050. Sriraman (2005) argues that students should be exposed to 
notable examples from mathematics history such as this to help develop their appre-
ciation of the beauty of mathematics and also to encourage them to look for patterns 
and simpler solutions in problems they are working on.

The free market principle derives from the environment in which professional 
mathematicians work, an environment where they are expected to develop and 
defend solutions to problems under scrutiny from their peers. This often requires 
mathematicians to engage in atypical thinking as they work on new, unsolved prob-
lems. They must also be willing to take the risk of presenting their atypical thinking 
and solutions to others in the field, who will surely take the time to verify such solu-
tions. As it translates to the mathematics classroom, the free market principle states 
that students should be encouraged to take risks in presenting and defending their 
solutions – both in the classroom and in other venues, such as mathematics contests 
and competitions – and that they should be provided a safe environment in which to 
take those risks (Sriraman, 2005). Starko (2013) echoes these sentiments as she 
contends that developing a creativity-friendly classroom “entails creating a class-
room atmosphere in which flexible thinking and seeking and solving problems are 
welcomed…and a safe space for risk taking” is provided (p. 139). Students are not 
likely to put themselves out there in front of their peers unless they are sure their 
unique contributions will be valued. Atypical thinking about problem situations 
should be encouraged and even modelled by the teacher, and students should not 
fear reprimands for trying a creative method and failing.

The scholarly principle is based on the notion that creative problems and solu-
tions help push the field of mathematics forward by contributing to, challenging, 
and extending the body of mathematical knowledge, often through paradigm shifts 
(Juter & Sriraman, 2011). Students need to see that mathematical knowledge is 
continuously being constructed (as opposed to being stale) and that they can actu-
ally make valuable contributions to the classroom (instead of relying solely on the 
teacher and/or textbook as sources of knowledge) (Haavold, 2016). Alternative 
approaches, or “creative deviance,” are needed to ensure that a field continues to 
progress. Creative deviance, as Sriraman (2005) refers to it, involves being flexible 
and open to using multiple approaches to solve a problem. Teachers can help culti-
vate creative deviance by allowing students to work on open-ended problems with-
out any explicit instruction. They should also “nurture a classroom environment in 
which students are encouraged to debate and question the validity of both the teach-
ers’, as well as other students’, approaches to problems” (Sriraman, 2005, p. 28).

The final principle identified by Sriraman (2005) to maximize creativity in the 
classroom is the uncertainty principle. This principle again derives from the work 
of professional mathematicians, who must confront uncertainty and ambiguity on a 

14 Linking Mathematical Creativity to Problem Solving: Views from the Field



328

regular basis both when posing problems and also when solving them (Haavold, 
2016). Creating knowledge is not an easy task and requires perseverance, and stu-
dents need to understand that uncertainty and discomfort are part of being creative 
(Sternberg, 2003). In order to expose students to the difficulty and uncertainty inher-
ent in mathematics, Sriraman (2005) suggests using examples from the history of 
mathematics where ideas evolved over extended periods of time and required contri-
butions from multiple mathematicians. He also recommends utilizing ill- structured 
and open-ended problems that are messy and need definition or assumptions to be 
made before solutions can be considered. Recent research has shown that these 
practices do indeed extend creative thinking in both grade school students (Amit & 
Gilat, 2012) and prospective mathematics teachers (Shriki, 2010).

As previously mentioned, these five principles were derived from what profes-
sional mathematicians saw as invaluable characteristics of mathematical creativity 
(Sriraman, 2005). While Sriraman successfully translates each of them from the 
world of professional mathematicians to the K-12 mathematics classroom, little 
attention is given to the pedagogical concerns associated with promoting creativity 
in the classroom. Lev-Zamir and Leikin (2011) found that teachers’ conceptions of 
creativity for mathematics instruction are comprised of two distinct facets – teacher- 
directed creativity and student-directed creativity – and that student-directed cre-
ativity is dependent upon the teacher’s ability to be creative. Sriraman’s (2005) five 
principles are all related to student-directed creativity in that they prescribe creative 
activities for the students to partake in; none of the principles refer to the creativity 
needed by the teacher in order to effectively implement those activities. Starko 
(2013) addresses this gap by more directly considering the role of the teacher in 
developing a creativity-friendly classroom.

14.2.4  Keys to a Creativity-Friendly Classroom

Teachers are aware that they play a key role in enhancing students’ mathematical 
creativity (Bolden et al., 2010; Kattou et al., 2009; Leikin et al., 2013) but are often 
unsure of how to actually accomplish this (Bolden et al., 2010). Starko (2013) pro-
vides insight into three keys she believes teachers should use to create a classroom 
in which creativity can flourish: teaching the general skills and attitudes of creativ-
ity, teaching discipline-specific methods of creativity, and creating an appropriate 
atmosphere.

Teaching the skills and attitudes of creativity involves explicit instruction on 
creativity. This instruction can take several forms. Teachers should introduce stu-
dents to creative individuals and discuss the nature of the creative processes they use 
(Starko, 2013). These individuals can be notable people from history who are 
deemed to have been creative, or they may be contemporary professionals who 
work in fields who are reliant on creative thinking. Teachers should also teach 
students about the strategies that can be used to spawn creative ideas. This requires 
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teachers to be familiar with those strategies so they can effectively model them for 
the students.

The second key, teaching discipline-specific methods of creativity, is similar to 
but has a narrower focus than the first key (teaching the skills and attitudes of cre-
ativity). Here, the teacher is encouraged to teach students how individuals are cre-
ative in relation to a specific discipline, such as mathematics. Professional 
mathematicians are a great resource as they can talk about the uncertain nature of 
their work, the stages of problem posing and solving, the amount of time and energy 
they devote to a single problem, and the joy associated with creating new knowl-
edge and pushing the field forward, all reminiscent of the five principles (Sriraman, 
2005) discussed above. It is important to realize that mathematics teachers are also 
part of the mathematics field and are capable of displaying both mathematical flex-
ibility and fluency to their students (Lev-Zamir & Leikin, 2011).

In order to fashion an appropriate atmosphere for creativity in the classroom, a 
teacher “uses varied and flexible teaching methods, provides experiences with 
choice, offers informational feedback in assessment, encourages self-assessment, 
uses rewards thoughtfully, teaches both cooperation and independence, and pro-
motes questioning and experimentation” (Starko, 2013, p.  139). While some of 
these features were discussed above in relation to the free market and scholarly 
principles espoused by Sriraman (e.g., questioning and experimentation), Starko’s 
description is more akin to teacher-directed creativity (Lev-Zamir & Leikin, 2011). 
Teachers must be flexible, both mathematically and pedagogically, in order to do 
mathematics in different ways and to transform instructional settings and content to 
meet the needs of the students. They must also be original in order to generate tasks 
beyond the textbook and to make the lessons interesting and enjoyable for students 
(Lev-Zamir & Leikin, 2011). In short, teachers must be creative themselves so as to 
enhance the creativity of their students.

14.3  Methodology

14.3.1  Participants

Data were collected from a convenience sample of 13 faculty and staff members 
associated with a gifted mathematics program in the United States. While the fac-
ulty and staff members work with mathematically gifted and talented middle and 
high school students (i.e., students typically aged 12–18) in this unique program, 
they all also work with, or have worked with, students in regular educational settings. 
All of the participants had successfully completed varying amounts of graduate 
coursework in either mathematics or mathematics education. Of the 13 participants, 
6 held PhD and 5 held Masters degrees. All had taught mathematics at either the 
secondary or tertiary level prior to being employed by the program.
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14.3.2  Setting

The gifted mathematics program (GMP) is a selective, after-school program that is 
housed on a university campus in the northeastern part of the United States. This 
6-year program is designed for students in grades 7–12 (ages 12–18). Its curriculum 
is both accelerated (by corresponding to the state mathematics requirements but 
moving through them more rapidly than is usually done) and enriched (by introduc-
ing topics, such as set theory, not included in state requirements). In the final 2 years 
of the program, students take university mathematics (i.e., Calculus I, II, and III as 
well as Linear Algebra).

Each of the six levels of GMP includes students from the same age group. They 
are kept together and move through the program as a cohort. During the school year, 
GMP meets twice a week, for 2 h and 20 min each meeting. GMP replaces the 
required math courses at the students’ home schools. Approximately 60 students 
enter in the first year of the program from over 30 schools in and around the metro-
politan area where the university is located. In any year, there are about 250 students 
in GMP, and inevitably, there is some attrition as the student cohort progresses in the 
program, primarily due to competing interests as the students grow older and have 
more extracurricular options in their lives.

14.3.3  Data Collection and Coding

The data were collected via surveys. The surveys contained a series of intentionally 
open-ended items, which are displayed in Table 14.1. Participation in the survey 
was optional, and participants were given 3 weeks to submit either handwritten or 
word-processed responses. All responses were de-identified and input in a spread-
sheet. In total, there were 13 participants and 65 responses (5 per person). Responses 
to the five items were used as the units of analysis.

Multiphase coding was based on four different schemes. The first scheme came 
from the three categories of definitions of creativity outlined by Getzels (1969) as a 
product, process, or subjective experience. Table 14.2 outlines the codes that were 
used. The second coding scheme examined the components of creativity offered by 
Silver (1997) for creativity as including fluency, flexibility, and novelty. The coding 

Table 14.1 Data collection items

Item

1. What is creativity? What does creativity involve?
2. What role does/should creativity play in mathematics and mathematics education?
3. What role does/should creativity play in mathematical problem solving?
4. How should creativity be promoted/facilitated in mathematical instruction?
5. Is the promotion/facilitation of creativity something that is only applicable to certain 

students, or is it something that you see as valid for all mathematical learners?
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criteria are described in Table 14.3. The third coding scheme was based on the prin-
ciples that Sriraman (2005) suggested could be used to maximize creativity: gestalt, 
aesthetic, free market, scholarly, and uncertainty. In addition, a sixth principle for 
guiding creativity was eventually introduced: instructional design. Table 14.4 out-
lines the coding criteria that were used. Finally, the fourth coding scheme was based 

Table 14.2 Coding phase one – Getzels’s (1969) categories of definitions of creativity

Codes Descriptions Representative commentsa

Creativity as
Product An outcome or result

Something creative that is accomplished 
or created be it an artefact, commodity, 
idea, substance, or some other noun

It’s not enough to just try things that 
are weird, novel, unique – you 
eventually need to accomplish 
whatever you are trying to accomplish. 
There has to be some end game

Process A series of actions or steps
Something that occurs during the 
creative “doing” whether that be 
creating, choosing, communicating, 
discerning, distinguishing, representing, 
thinking, or some other verb

Creativity is a process that involves the 
ability of going beyond what is 
typically done or known pushing past 
commonly accepted ways of doing and 
thinking

Subjective 
experience

A flash or burst of insight
Something inspired that occurs in an 
“Aha!” moment

None

aNote that representative comments were also often assigned other codes (in the different phases) 
than the code for which they are provided as an illustration. Underlining was part of the coding, not 
part of the original comment; it relates to key elements in the comment to the code

Table 14.3 Coding phase two – Silver’s (1997) components of creativity

Codes Descriptions Representative commentsa

Creativity can include
Fluency Ability to generate a number of 

solutions or ideas.
Purposed or obvious multiplicity in 
solving and posing problems

This multiplicity in problem solving needs to 
help learners see that there are many ways to 
solve problems and there are many ways to 
communicate those solutions

Flexibility Ability to shift in approach or 
method used to solve a problem
Purposed or obvious utilization of 
alternative mathematical 
representations when solving or 
posing problems

In problem solving, creativity should play a 
role in trying … different ways to find a 
solution to a problem

Novelty Ability to create something that is 
original, unique, or unexpected
Purposed or obvious uniqueness of 
methods and solutions when 
solving or posing problems

Creativity involves thinking outside of the box 
and producing distinct ideas and 
unconventional solutions never before seen

aNote that representative comments were also often assigned other codes (in the different phases) 
than the code for which they are provided as an illustration. Underlining was part of the coding, not 
part of the original comment; it relates to key elements in the comment to the code
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Table 14.4 Coding phase three – Sriraman’s (2005) principles to maximize creativity

Codes Descriptions Representative commentsa

Creativity is maximized when teachers
Gestalt 
principle

Allow students’ freedom of time 
and movement; let students 
know that often considerable 
time, energy, and effort are 
needed to solve mathematical 
problems (and provide ample 
time and space for students to 
experience this)

Creativity is often the result of persistence 
and collaboration. Students should be given a 
challenging problem then encouraged to 
“chew on” this mathematical problem for a 
while

Aesthetic 
principle

Help students see the beauty of 
certain solutions; expect 
students to recognize, 
appreciate, and assess aesthetic 
appeal in mathematics; facilitate 
students’ recognition and 
evaluation of elegance in 
mathematical ideas, theorems, 
and solutions

[Creativity] allows students to see that there 
are different approaches to mathematics, 
some of which are more elegant (or even fun) 
than others – and sometimes this is a matter 
of personal preference

Free market 
principle

Encourage students to take risks 
and provide a safe environment 
for them to do so in the 
classroom; promote other 
venues were students can take 
risks (e.g., mathematical 
contests); encourage students to 
engage in atypical thinking

Create an environment where students feel 
free to take risks

Scholarly 
principle

Help students understand 
creativity as contributing to, 
challenging, and extending the 
existing body of knowledge; 
expect students to be flexible 
and open to alternative 
approaches to problems since 
this can push mathematics, as a 
field, forward

Creativity … is needed to extend the 
boundaries of what is known

Uncertainty 
principle

Help students accept and grow 
comfortably with open-ended, 
messy, ill-defined problems; 
teach students to tolerate 
ambiguity and uncertainty in 
mathematical problems

Creativity really flourishes when questions 
are open ended and left for interpretation by 
the reader

(continued)
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on the keys to a creativity-friendly classroom outlined by Starko (2013): teaching 
general skills and attitudes, teaching discipline-specific methods, and creating an 
appropriate atmosphere. Table 14.5 outlines the codes that were assigned.

Two coders, the authors of this chapter, read and independently coded the first 
response using the three definitions of creativity. They then used the three compo-
nents of creativity and the five original principles for maximizing creativity. Then 
on the last phase, they coded the keys to developing a creativity-friendly classroom. 
When there was 100% agreement on the first coding phases, the two coders decided 
to code the remaining phases together after reading each response at least three 
times and after discussing their ideas for the response. The coding team met six 
times and spent over 14 h assigning codes to the responses. During this process, it 
was determined that an additional code was needed for the principles for maximiz-
ing creativity. That is when the sixth code, instructional design, was added. The 
coding team then revisited the responses and assigned this code appropriately. 
Tables 14.2, 14.3, 14.4, and 14.5 provide direct quotations taken from the partici-
pants’ responses that are representative of the codes assigned in each of the coding 
phases.

Table 14.4 (continued)

Codes Descriptions Representative commentsa

Instructional 
design 
principleb

Design instruction so that 
creativity is purposely both:
  1. Demonstrated and valued 

by the teacher and
  2. Fostered during the 

teacher’s interactions with 
students

Teachers can … allow for problem posing in 
the classroom. By asking students to think 
about the problem in a slightly different way 
(e.g., using the what-if-not strategy), students 
can often start to view the original problem in 
a new light
Creativity should be promoted by the types of 
questions that teachers/instructors ask of 
their students
[M]ultiplicity …means more than a teacher 
showing her students three or four solutions 
to a problem. Teachers need to select 
examples that allow for different 
representations, with multiple solutions… [s]
tudents might come to see that this is more 
than one way to tackle a problem (and share 
its solution). This is most easily done if 
problems are not “lock-step” but more open 
in nature.

aNote that representative comments were also often assigned other codes (in the different phases) 
than the code for which they are provided as an illustration. Underlining was part of the coding, not 
part of the original comment; it relates to key elements in the comment to the code
bThis code was added to the original five suggested by Sriraman (2005); additional representative 
comments are provided
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14.3.4  Data Analysis

All of the assigned codes were placed in a spreadsheet by person and by item. The 
data were then studied to see how many of the comments were assigned each code. 
Next, the data were studied to see how many of the participants were assigned a 
code in any of their responses to the five items.

14.4  Results

Our aim with this study is to offer a more complete picture of teachers’ conceptions 
of mathematical creativity by using four coding schemes as lenses: Getzels’ (1969) 
three categories of creativity definitions, Silver’s (1997) three components of cre-
ativity, Sriraman’s (2005) five principles for maximizing creativity, and Starko’s 
(2013) three keys to a creativity-friendly classroom. The results of our multiphase 

Table 14.5 Coding phase four – Starko’s (2013) keys to a creativity-friendly classroom

Codes Descriptions Representative commentsa

Creativity-friendly classrooms are developed by teachers'
General skills 
and attitudes

Teaching:
  1. Creativity in an explicit manner
  2. The nature of the creative process
  3. Strategies to generate creative 

ideas

By asking students to think about the 
problem in a slightly different way 
(e.g., using the what-if-not strategy)

Discipline- 
specific 
methods

Teaching about:
  1. How others have been creative in 

mathematics (e.g., using historical 
examples in mathematics)

  2. The kinds of questions that 
mathematicians ask and the methods 
they use to do mathematics

  3. Obstacles to mathematical 
progress

I feel that this perspective can be 
brought about by teaching the history 
of solving problems

Appropriate 
atmosphere

Providing:
  1. A safe space for risk taking
  2. Organizational structures that 

support motivation
  3. Experiences that involve student 

choice
  4. Feedback and assessment while 

also encouraging self-assessment
  5. An environment that promotes 

questioning and experimentation

…the classroom needs to be a safe 
place where students are open to 
thinking outside the box

aNote that representative comments were also often assigned other codes (in the different phases) 
than the code for which they are provided as an illustration. Underlining was part of the coding, not 
part of the original comment; it relates to key elements in the comment to the code

D. Moore-Russo and E. L. Demler



335

analysis, including the counts for each coding scheme, are provided in Table 14.6. 
We now will consider each of the three research questions that guided this study.

14.4.1  Definitions and Components of Creativity

Using Getzels’ (1969) work as a lens, we found that all of the participants thought 
of creativity as a process, while only 8 of the 13 also thought of it as an end product 
or outcome. None of the participants provided evidence of seeing it as a subjective 
experience where rare mental feats occur in a burst of insight. In terms of the 65 
responses, 39 were identified as participants adopting a process view, 14 a product 
view, and 0 an experience view of creativity.

When Silver’s (1997) work was used as a lens, we noted that at least 7 of the 13 
participants identified fluency, flexibility, and novelty as components of creativity. 
Participants were most likely to comment on the value of a unique or original solu-
tion method (i.e., novelty coded for 12 participants, 25 responses). They also com-
mented on creativity as involving a variety or shift in the methods used to solve 
problems (i.e., flexibility coded for 10 participants, 23 responses) more than on the 
generative processes that can be part of problem solving and posing (i.e., fluency 
coded for 7 participants, 9 responses).

Table 14.6 Coding counts by participant and by response

Aspects of creativity
Participants
(n = 13)

Responses
(n = 65)

Getzels’ (1969) definitions of creativity
Process 13 39
Product 8 14
Experience 0 0
Silver’s (1997) components of creativity
Novelty 12 25
Flexibility 10 23
Fluency 7 9
Sriraman’s (2005) expanded principles to maximize creativity
Scholarly 10 28
Instructional design 9 19
Uncertainty 8 14
Free market 6 7
Gestalt 5 6
Aesthetic 3 5
Starko’s (2013) keys to creativity-friendly classroom
General skills and attitudes 7 16
Discipline-specific methods 6 10
Appropriate atmosphere 6 8
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Within the responses that were coded as showing evidence of Silver’s (1997) 
novelty component and Getzels’ (1969) process view of creativity, it was noted that 
there was a general consensus among the participants that creativity involves mov-
ing from the known to the unknown and requires foundational knowledge or a cer-
tain level of scaffolding to occur. Responses from 8 of the 13 participants allude to 
this idea, which seemed heavily rooted in constructivism and related to a relative 
view of creativity; below are some representative excerpts with underlining that was 
not part of the original response but was added to highlight key elements in the 
comment:

For a student to be able to solve a problem in a unique or personal way [novelty], it often 
means that they have fully synthesized the problem and are constructing a solution from 
previous knowledge [process].

Creativity consists in … the application of previously learned systems of experiences 
[process] onto new unfamiliar [novelty] ones by way of analogy.

Exposing students to creativity-enriched instruction in which they are challenged to 
come up with multiple problems and solutions and to persevere in looking for those solu-
tions will help them think more adaptively and learn how to apply skills and knowledge 
acquired [process] in one setting to problems in another setting [novelty].

Creativity is often perceived as the ability to see things differently, or perceive the world 
in new ways [novelty], which in math is… applying existing theories to solve new, difficult 
problems [process].

The participants who held a more absolute view of creativity, meaning creativity 
was seen as pushing the boundaries of the field, also showed evidence of Silver’s 
(1997) novelty component of creativity and Getzels’ (1969) product view of creativ-
ity in their responses. While the overall message in the response below suggests the 
absolute view of creativity, the individual components were related to novelty and 
product coding:

At this point, not every student is at the level where they can come up with a truly unique or 
creative [novelty] solution [product]. That doesn’t mean that every student can’t appreciate 
the ability for others to do so and strive to achieve that level of understanding.

14.4.2  Cultivation of Creativity

Using Sriraman’s (2005) work as a lens, we found that each of the five original 
principles to maximize creativity, as well as the added instructional design princi-
ple, was noted in the participants’ responses. That said, three of the principles were 
not commonly coded. Participants were least likely to mention the elegance or 
beauty of solutions (i.e., aesthetic principle coded for only three participants and 
five responses), how students need space and time for creativity to blossom (i.e., 
gestalt principle coded for only five participants and six responses), or the need to 
provide an environment where students can take risks and defend their ideas (i.e., 
free market principle coded for only six participants and seven responses).

The other principles were all mentioned by over half of the participants and were 
noted in a greater number of responses. The most common (10 participants, 28 
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responses) was the scholarly principle where participants thought of creativity as 
pushing the boundaries of knowledge. Note, however, that a number of participants 
did mention that the extension of knowledge could be at the individual level and 
does not require engaging in pursuits that push the entire field of mathematics for-
ward in order to be considered creative. The second most common (9 participants, 
19 responses) was the instructional design principle where participants denoted the 
need for components of creativity (i.e., fluency, flexibility, and novelty) to be mod-
elled by instructors and fostered in instructor-student interactions. The third most 
common (8 participants, 14 responses) was the uncertainty principle where students 
are taught to tolerate messy problems that are marked with ambiguity and 
uncertainty.

When Starko’s (2013) work was used as a lens, we noted that about half of the 
participants were recorded as touching on all three keys to creativity-friendly class-
rooms. Topping the list was the teaching of general skills and attitudes of creativity 
where there is an overt emphasis on the nature of the creative process and general 
strategies are explicitly taught; this was evidenced in 7 participants and 16 responses. 
Teaching discipline-specific methods by considering how others have been creative 
in mathematics and what this looks like in terms of methods used and questions 
asked was found for six participants and ten responses. Providing an appropriate 
atmosphere where students have an environment that promotes questioning, where 
students feel safe to take risks, and in which student are allowed to make choices 
was noted for six participants and eight responses. It was noted that all of the 
responses except one coded as general skills and attitudes of creativity were also 
assigned the instructional design principle (Sriraman, 2005) code. Also, all of the 
responses coded as addressing the free market principle (Sriraman, 2005) were also 
coded as appropriate atmosphere code.

Some of the participants used vibrant examples and language to describe creativ-
ity and how it is cultivated through problem solving. Here are examples from three 
of the participants:

Play is that murky area wherein we feel ideas out in our heads, turning them around and 
trying to draw analogies to bring it into a world we understand, and also expanding the 
world of our understanding…teachers should be constantly challenging students to solve 
problems they haven’t been given solutions to… being given the tools to solve a problem 
[rather] than being given directions…

Creativity should be interwoven in the very fabric of problem solving. To push this anal-
ogy further, how can we expect mathematical artistry if we do not allow learners to view 
many types of fabrics with varying patterns and threads of different textures and colors? 
This multiplicity in problem solving needs to help learners see that there are many ways to 
solve problems and there are many ways to communicate those solutions. Often algebraic 
methods are often over emphasized in the classroom. In privileging the algebraic, other 
types of solutions methods (be they more numeric/combinatoric or more visual) are not 
being fostered.

Students should be allowed to think outside of the box on a problem they are given 
before just being given an algorithm for solving it. They should be consistently told the 
mathematical playground has a strict set of rules, but should be allowed to think creatively 
about a problem within that playground as opposed to being told immediately how the 
playground works.
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Participants often couched their responses in terms of what not to do. They com-
mented on what has traditionally been done in school settings that should be altered 
to promote creativity. There seems to be strong feelings about this held by many of 
the participants, as illustrated in the following quotes by five participants:

If we “show and tell” students, as often happens, how to do all problems then we take away 
[students’] ability to think critically and their ability to problem solve. In addition, this 
process of show and tell gives the students a false sense that there are no other ways to solve 
the same problem…

Unfortunately, creativity does not play as much of a role in K-12 (or even university) 
mathematics, as it is typically taught, as it should. There is nothing that kills creativity quite 
like the formula-first, example-second loop that is all too common in mathematics 
instruction.

… the kinds of problems we actually need to solve are not the kind we know directions 
for (if we did, they’d be solved already), but we do have a repertoire of tools and techniques 
that can be used to tackle many problems. Problem design needs to ride this line between 
too few tools and too much guidance. By designing and assigning problems which are solv-
able but novel to the student and require them to play, we give them the opportunity to draw 
their own analogies and gain a deep understanding and competence with material that is 
totally missed if we tell them how to solve a problem before giving them a chance to try.

Creativity is usually associated with problem solving with either challenging problems 
or their solutions to them [that are] original and non-standard. Almost all classroom 
instruction aims at reducing the creativity necessary to solve problems, in effect necessarily 
making the problems pedestrian so that students can achieve on standard content exams.

Other participants took a more positive approach, by talking about their own instruc-
tion and how they foster creativity, but in essence, they alluded to the same ideas as 
shown in the following excerpt:

It is a regular occurrence that students solve a problem in a different way than I solved it. 
On these occasions, I am sure to have students present their methods and discuss the merits 
of their method with the class.

… students benefit because they get to see a side of mathematics that is often hidden in 
school – the “living” side where problems are posed and contemplated and the solutions 
are not obvious or easy to determine. Students have a tendency to give up on a problem or 
think they are incapable of “doing” math when they don’t readily know the answer to a 
problem, or how to approach it, or if they don’t understand the process that has been pre-
sented to them. Exposing students to creativity-enriched instruction in which they are chal-
lenged to come up with multiple problems and solutions and to persevere in looking for 
those solutions will help them think more adaptively…

14.4.3  Audience for Creativity-Enriched Instruction

The final survey question posed to participants asked them to identify who in par-
ticular they felt would benefit from creativity-enriched instruction. Each of the 13 
participants believed that all students should be exposed to instruction that fosters 
creativity. This is seen below in the responses from five of the participants:

All human beings are capable of being creative and promoting creativity….
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Creativity is something that should be cultivated and fostered in all learners. All levels 
of learners benefit from creativity.

Everyone can benefit from their [activities that foster creativity] use.
It [creativity-enriched instruction] should be available to all students.
Not every student is at the level where [he or she] can come up with a truly unique or 

creative solution that doesn’t mean that every student can’t appreciate the ability for others 
to do so and strive to achieve that level of understanding.

Recall that every participant had worked, or was still working, with regular educa-
tion students, but at the time of the study, all were associated with a program that 
exclusively serves mathematically gifted students. Despite this connection, there 
were no explicit references in the responses to suggest that participants viewed cre-
ative acts solely as the work of gifted and talented students or that even hinted to a 
relationship between creativity and giftedness. This was somewhat surprising in 
light of the connections that are often made between creativity and giftedness (Hong 
& Aqui, 2004; Kattou, Kontoyianni, Pitta-Pantazi, Christou, 2013; Kontoyianni, 
Kattou, Pitta-Pantazi, & Christou, 2013; Leu, & Chiu, 2015; Sriraman, Haavold, & 
Lee, 2013) and the fact that creativity has been connected with high mathematical 
proficiency (Leikin, 2009; Sheffield, 2000).

However, as can be noted in the preceding excerpt, there was a good deal of vari-
ance evident in responses about whether participants thought that all students are 
capable of being creative. These ideas are denoted in the following excerpts from 
participants’ responses:

I want to believe that it [creativity] is valid for all. Certainly, the ability to be creative will 
vary greatly among students.

In the most optimal classroom, all students should get to the point of creative problem 
solving.… Students should know the power of thinking creatively about a problem even if 
they never get to the point where they are able to do it themselves.

Some students really do have a higher aptitude for creativity… than others.

Students’ aptitudes for creativity were often tied to whether a participant adopted a 
more relative or absolute (Boden, 2004; Leikin, 2009) view of creativity. Below are 
exemplars of responses where participants seemed to hold a relative view of 
creativity:

However, this is not just something that is applicable to the field of mathematics. The same 
case could be made at the individual level. Creativity does not mean that a learner is neces-
sarily doing something in a way that no person has ever done it before. This learner could 
just be doing something in a way that is creative for him or her, in a way that extends past 
what he or she has ever seen or done before.

For a student to be able to solve a problem in a unique or personal way, it often means 
that they have fully synthesized the problem and are constructing a solution from previous 
knowledge. … Every student likes to be recognized when they come up a method or solution 
that the teacher hasn’t yet taught or discussed.

If in the course of history of solving a particular problem, as a student, I realize that I 
would have proposed the same paths that yielded to breakthroughs at the time, I might feel 
incline to do more math.

Several participants took a more absolute stance, viewing creative acts as those that 
would push the field forward. These participants were often less optimistic that 
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every student is capable of such creativity. However, their responses seemed to sug-
gest that relative creativity is something that all students would be able to achieve. 
Some representative examples are shown below:

…creativity is the ability to generate completely new theories … My personal view is that 
… the existence of a solution already limits the degree of creativity that can be applied to a 
problem.

All human beings are capable of being creative and promoting creativity if there exists 
a real desire to achieve something no one has yet!

14.4.4  Limitations

Based on our findings and on the research of others (Boden, 2004; Leikin, 2009; 
Lev-Zamir & Leikin, 2011), it seems that instead of a single “thing” to be studied, 
there are actually two related constructs: absolute creativity and relative creativity. 
By using only a single word for creativity, it is hard to tease apart which of the two 
conceptions participants are actually espousing in their responses. In hindsight, we 
acknowledge that this study could have yielded more illuminating findings had the 
distinction between absolute creativity and relative creativity been made in the data 
collection instrument.

This study was very much contextualized in the gifted mathematics program 
from which its participants were drawn. To a certain extent, it serves as an initial 
point of departure for design-based research on creativity and the role and promo-
tion of creativity in today’s mathematics classrooms. As such, we are hopeful that 
this study might serve as a springboard for more iterative designs of future research, 
which will take into account a variety of overlapping lenses that can and should be 
used when considering creativity. We do not propose that this particular study puts 
the mathematics education community anywhere near to the stage of being able to 
develop domain theories, design frameworks, or even design methodologies 
(Edelson, 2002); rather, it serves as one small, initial step in that process.

The small, focused sample used for this study was not meant to be representative 
of the larger population of mathematics educators. While this might be deemed a 
limitation, the intention of the study was to glean more detailed information and to 
see if the exploration of creativity warranted the use of multiple phases of qualita-
tive analysis through a variety of lenses. In this way, the study does contribute to the 
corpus of literature on creativity.

14.5  Summary

Kern (2010) reports that, on a survey conducted by IBM, 1500 chief executives 
identified creativity as the most important leadership competency. “It is evident that 
creative thinking skills, openness to change, flexibility and the ability to cope with 
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challenging tasks are essential for integration in today’s society and workplace” 
(Barak, 2009, p. 345). Since teachers are preparing the workforce and leaders of 
tomorrow, from a school-to-work perspective, the promotion of creativity in stu-
dents should be desirable. Moreover, creativity and creative ways of problem solv-
ing are also of value in the study of higher-level mathematics (Sriraman, 2005). For 
these reasons, teachers and teacher educators should recognize that creativity- 
enriched instruction is important and deserves to be researched more aggressively. 
It is easy to note that teachers can set classroom norms where students come to 
expect messy problems that are marked with ambiguity and uncertainty or that 
teachers can ask students to engage in problem-posing activities in addition to 
problem- solving activities. Yet, such prescribed teacher actions are not quick rem-
edies. Kaufman and Sternberg (2007) report that creating a learning environment 
that allows and encourages creativity “is sometimes seen as irrelevant to educational 
practice… [where] creative teachers and those who encourage creativity in the 
classroom often are accused of being idealists or missing the big picture” (p. 55). 
Creativity and problem-solving activities are often incorporated in the classroom 
only when time allows and often only for certain students. This is a culture that must 
change.

One strategy to encourage the regular and universal promotion of creativity in the 
mathematics classroom is to change teachers’ conceptions of who exactly is capable 
of being creative. According to Haavold (2016), “a widespread belief among both 
teachers and students is that mathematics is created only by very prodigious and 
creative people; others just have to try to learn what is handed down” (p. 7). This 
belief ties in with both the absolute and the “genius” views of creativity. The genius 
view is often associated with definitions that classify creativity as an experience 
(Silver, 1997); those who see creativity as being merely a flash of insight or an Aha! 
moment tend to think that only select individuals are capable of being truly creative 
and pushing the boundaries of knowledge. While all of the participants in this study 
seem to believe that, to varying degrees, students should be capable of exhibiting 
signs of creativity, those who were less optimistic about it assumed a more absolute 
view of creativity. The genius view of creativity was challenged, as all 13 partici-
pants believe that every student is capable of engaging in and benefitting from 
creativity- enriched instruction. This finding is supported by the fact that none of the 
participants classified creativity as a subjective experience; instead, all perceived it 
to be a process. It is interesting to note, however, that only five participants cited the 
gestalt principle (i.e., freedom of time and movement) as being necessary for the 
promotion of creativity. Processes take time to complete, and teachers need to be 
willing to allow students time to work on solving and posing problems. “It is well 
known in the literature that creativity tasks as well as tasks linking mathematics to 
other disciplines typically require more time to be completed” (Leikin et al. 2013, 
p. 318).

There was considerable overlap between some of Sriraman’s (2005) principles 
for maximizing creativity and Starko’s (2013) keys to creativity-friendly class-
rooms. We noted that Starko’s categories were broader than Sriraman’s, and, while 
the two did have some commonalities, the lenses were different enough in focus that 

14 Linking Mathematical Creativity to Problem Solving: Views from the Field



342

each brought value to the study. As discussed above, Sriraman’s principles were tied 
to student-directed creativity (Lev-Zamir & Leikin, 2011), whereas Starko’s (2013) 
work was geared more toward teacher-directed creativity (Lev-Zamir & Leikin, 
2011). Moreover, the results of the current study reported in this chapter suggest 
that certain views of creativity might be linked to specific components of creativity 
(e.g., the absolute view and the novelty component) and the creative problem- 
solving and problem-posing activities teachers use. More investigation is needed to 
consider the definitions and components of creativity that teachers value in light of 
their absolute or relative views of the construct. In turn, all of this should be studied 
in relation to the assumptions teachers make and the methods they use to promote 
creativity in the classroom.

Creativity is a complex construct with a plethora of definitions that are often 
vague, marked by a variety of viewpoints that can be conflicting. Recent research on 
teachers’ conceptions (Bolden et  al., 2010; Kampylis et  al., 2009; Leikin et  al., 
2013; Lev-Zamir & Leikin, 2011, 2013) tend to offer partial insights into mathemat-
ical creativity as each study relies on a single lens which filters all analysis. This 
might lead to an underdeveloped understanding of creativity and how those in math-
ematics education view it. Mann (2006) argues that the lack of a clear and consistent 
definition has impeded research efforts to comprehend mathematical creativity and 
its role in the classroom. We contend that trying to reduce such a multifaceted con-
struct down to a single definition, and a single coding scheme, actually undermines 
attempts to grasp the true nature of creativity and how it can be cultivated.

In fact, this particular study could have benefitted from the inclusion of a fifth 
lens for analyzing creativity: achievement emotions. Pekrun (2006) defines achieve-
ment emotions as “emotions tied directly to achievement activities or achievement 
outcomes” (p. 317) and argues that positive control and value appraisals are essen-
tial for creative problem solving. In order for students to find enjoyment while 
engaging in activities that promote creativity, they must highly value that type of 
activity while also feeling like they have some control over it. Although consider-
ation of the role emotion plays in creativity was not part of the initial study design, 
we recognize its importance and see it as being related to Starko’s (2013) keys to 
creativity-friendly classrooms. In fact, upon further review of the data, there were 
instances when a few of our participants did reference emotional aspects of creativ-
ity and problem solving (i.e., value, creativity is rewarding. People love to express 
their ideas. We could make use of this motivational tool better; control, we should 
want kids to be problem solvers and we shouldn’t restrict the manner in which those 
problems are solved). Perhaps the inclusion of additional items in the data collec-
tion instrument could have been worded to prompt more participant input related to 
achievement emotion. This would have yielded more data (from participant 
responses) tied to achievement emotions; future research could hone-in on this 
aspect of creativity.

The strength of this study is that, rather than reducing creativity down to a single 
dimension, it embraced the multifaceted construct that has been so elusive and 
undervalued in educational research. In fact, the multiple phases of coding and the 
variety of coding schemes allowed the research team to look through many different 
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lenses and develop a more comprehensive understanding of how different views of 
creativity impact the way educators consider methods for fostering creativity in 
mathematics classrooms.
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Chapter 15
Problem-Solving and Mathematical 
Research Projects: Creative Processes, 
Actions, and Mediations

Inés M. Gómez-Chacón and Constantino de la Fuente

15.1  Introduction

Inquiry-based learning is a complex inquiry-based student-centred pedagogical 
approach. There exists a general consensus among researchers (Artigue & Baptist, 
2012; Artigue & Blomboj, 2013; Palatnik & Koichu, 2015; Schoenfeld & Kilpatrick, 
2013) about the desirability of mathematics research (in its various meanings) 
which are present in the mathematics classroom, because it provides opportunities 
for students to implement thinking processes which are useful in solving problems 
or unfamiliar situations while illustrating the working modes and methods used by 
professional mathematicians in their daily work.

The design and analysis of Mathematical Research Project (MRP) are compli-
cated tasks. Among the main challenges teachers face are the implementation and 
organization of students’ projects, which may last up to several months and may be 
influenced by various factors, which are difficulties even for an experienced teacher.

In this chapter, suggestions are provided for resolving these challenges. It focuses 
on the process of transforming a problem-solving task (PST) in a Mathematical 
Research Project (MRP) carried out with high school students (17 years old, senior 
year). The process of generating a Mathematical Research Project (MRP) for a par-
ticular problem will not only require creativity on the part of the students but also 
the mediation of the teacher for the establishment of a suitable creative mathemati-
cal working space.
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Creativity is, according to Sriraman, Haavol, and Lee (2013), “a buzzword of the 
21st century and seen as a major component of education”. These authors consider 
that research on creativity, specifically in mathematics, is scarce, because there is 
not an agreement on a consistent definition of creativity and aspects of mathemati-
cal creativity need be distilled (aspects of problem-solving, problem posing, and 
problem sequencing).

We would like to point out that the focus on creativity research has shifted over 
time, moving from an early dominant focus on genius, towards giftedness in the 
middle of the twentieth century, to a more contemporary emphasis on originality of 
thought and work (Getzels, 1987). Our work lies firmly in the latter category, in that 
we do not see these individuals as having “extraordinary” creative powers but rather 
having what may be accessible to most, if not all of us. Creativity is fundamentally 
defined as a state relating to or involving imagination or original ideas. Ideas are 
generated by thinking, and skills for thinking can be learned. Our assumption is that 
mathematics creative thinking and idea generation are skills that can be learned. As 
Mishra and Henriksen (2014) noted, “Creativity is the end result of the manner in 
which human cognition works—and is available to all people. Finally, as with other 
human cognitive skills, there is a significant level of variability between individuals, 
and it can be learned and developed with practice” (p. 15).

Based on this idea, the creative process is a process that involves skills that can 
be learned and developed with practice; a key issue are the relations and mediations 
between the instrument (in our case the Mathematical Research Project (MRP) is 
the instrument) and the individual or the individuals involved in the mediated activ-
ity (student and teacher). So, one of the fundamental points in this chapter focuses 
on the activity of the student on the design and development of the Mathematical 
Research Project (MRP) identified by the teacher.

In recent decades, research in cognitive ergonomics, in the French tradition, has 
devoted considerable effort to the issue of inventiveness as it is manifested in the 
activity of users confronted with a technique. The theory of activity mediated by an 
instrument (Rabardel, 1995, 2005; Rabardel, & Béguin, 2005; Winograd & Flores, 
1986) and the instrumental approach in mathematics education are part of this per-
spective (Artigue, 2002; Gueudet & Trouche, 2008; Guin & Trouche, 2007). In the 
present research, this approach allows us to highlight the articulations and connec-
tions between action and activity, namely, activity and identified theories (see Sect. 
15.3). The cognitive ergonomics approach indicates four dimensions that character-
ize activity in a situation: inventiveness, mediation, and the developmental and 
social nature of instrument-linked activities. Among the premises of this approach 
lies the inventiveness of a user using an instrument as a key characteristic in the 
design and use of instruments and the apprehension or the subjective grasp of reality 
by individuals in a situation.

Based on this perspective, we define the mediated activity. We look at the media-
tor and suggest conceptualizing it as a mixed functional entity: the instrument –the 
Mathematical Research Projects (MRPs) – elaborated by the student. The identifi-
cation of student activity will be done by the teacher through the activity mediated 
by the instrument (different versions of the MRP developed by the student until the 
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final version). We consider the constructive and productive dimensions of the 
teacher activity in the relationships that take place between the teacher and the 
development of the MRP by the student. We examine the output and development 
of the modalities of mediations during processes of instrumental genesis working 
from problem-solving tasks (PST) to Mathematical Research Projects (MRPs). So, 
mediations produced by the subject (teacher) and the goal of the activity (MRP 
obtained by the student) are analysed.

Although different authors have proposed different models for inquiry-based 
learning with projects (Artigue & Blomboj, 2013), we believe it can be helpful to 
study learning through Mathematical Research Projects (MRPs) for high school 
students, considering the cognitive ergonomics approach of using an instrument. We 
believe that conceptualization in terms of mediated activity is part of a broader evo-
lution of models that aim to account for human behaviour.

In this chapter, the modelling that takes place in the development of a 
Mathematical Research Project (MRP) is presented, that is, the process (instrumen-
tal and documentary genesis) of the transformation of the resource (the student 
productions – drafts and scientific final report) into a final document that will be the 
Mathematical Research Project (MRP). This intends to answer the question: What 
teacher mediations articulate student inventiveness in Mathematical Research 
Projects? And it will specify (1) identification of the student activity by the teacher – 
the operational mathematical invariants of the students’ schemes, cognitive pro-
cesses that the student puts into action, and domains of mathematical knowledge – and 
(2) mediated activity between teacher and students regarding instrument, object, 
and subject.

In Sect. 15.2, we present our understanding of Mathematical Research Projects 
(MRPs). In Sect. 15.3, we define the mediated activity, and we will distinguish dif-
ferent types of mediations conceptualized as mixed functional entities: the instru-
ment and the instrumental and documentary genesis. These concepts are based on 
analytic methods of the development of Mathematical Research Projects (MRPs). 
Section 15.4 illustrates a project, and the chapter will end with some didactic con-
siderations for the design of Mathematical Research Projects (MRPs).

15.2  From Tasks to Mathematical Research Projects

The basis of the following tasks and mathematical research projects is problem- 
solving, developed in the second half of the twentieth century (Guzmán, 1991; 
Polya, 1957; Schoenfeld, 1985, 1992a, 1992b), and studies that conceptualize the 
action of mathematical thinking (Mason, Burton, & Stacey, 1982) where the idea of 
mathematical structure (as identification of general properties, relationships between 
elements) and the disposition to use, explain, and connect these characteristics in 
mathematical thinking require attention structures of the individual (Mason, 2010).

We understand the idea of mathematical research in high school with two mean-
ings: (1) through a research project characterized by a series of processes 
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 (exploration; consideration of special cases; inductive thinking; generalization; 
speculation, along with its proof or refutation; and approaching new problems aris-
ing from the initial problem) and (2) the transformation of a small math problem (or 
set of problems) in serious research work (Braverman, 2010; Braverman & Samovol, 
2008). We present an illustrative example that, after several years of experimenta-
tion with students, has generated a theory that generalizes the idea of traditional 
arithmetic progressions (a.p.).

Initial problem-solving task: Is it possible to fill the empty spaces in the table with positive 
integers so that the numbers in each row and in each column form arithmetic 
progressions?

In Sect. 15.4, we will show the MRP “arithmetic progressions in space” generated 
by students taking as a starting point this initial problem-solving task. Here we sum-
marize some of the questions that led to several research projects with different 
students, described in Sect. 15.4, generated by several students as a result of work-
ing on the initial problem shown in Fig. 15.1.

In an arithmetic progression, we can deduce the whole progression if we know 
two terms. In a table of numbers like this, if we know four terms, can we identify 
everything else? Under what conditions? In three-dimensional space, into a rectan-
gular parallelepiped shape, consisting of cubes in each of the three dimensions, if 
we know eight elements, could we know all the elements of the figure? Under what 
conditions? If we consider a similar N-dimensional figure, what could we say about 
it?

As in the case of an arithmetic progression for which we know formulas that 
identify a general term an, the sum of the first n terms, and the interpolation of arith-
metic means, could we obtain similar formulas for two-dimensional, three- 
dimensional, and N-dimensional tables?

15.2.1  Types of Mathematical Research Projects

Following the conception of the aforementioned mathematics research, our pro-
posal covers two types of tasks or research projects:

Fig. 15.1 Example of an 
initial problem-solving 
task
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 (a) Mini-Mathematical Research Projects (mMRPs). They constitute a first 
approach of high school students to mathematics research and are based, among 
others, on the idea of scaffolding (Wood, Bruner, & Ross, 1976). The idea of 
mMRP is related to scaffolding, as they provide the student with a guiding 
script to enlighten a possible way forward (De la Fuente, 2013, 2016; De la 
Fuente, Gómez-Chacón, & Arcavi, 2015). After 3 or 4 weeks, the student must 
submit a scientific report that is reviewed by the teacher and returned with writ-
ten comments. Subsequently, the student submits the final report.

These mMRPs are usually of two types: projects for the discovery, demonstra-
tion, and possible generalization of some abstract and general property derived from 
a particular mathematical context and proposals for the discovery of effective math-
ematical models for solving real problems. We present an example of the beginning 
of a guiding script proposed by the teacher for the problem of a table, the rows and 
columns of which are arithmetic progressions (it is not fully shown because of space 
limitations in this document).

If the number above the 0 were x, could you fill the table in terms of x? Considering the 
problem data, calculate the value of x and solve the problem.

Solve the problem in other ways. We suggest that one of them will come from the dif-
ference in the arithmetic progression of the first row, h1, and from the difference in arithme-
tic progression of the first column, v1. Study successions (hi) and (vi)) i = 1, 2, 3, ... Do they 
have any property in common?

Find out if any table of this kind can be completed if we know four of its elements. What 
about if we know fewer than 4 elements?

 (b) Mathematical Research Projects (MRPs). These are the real research (De la 
Fuente, 2016). From the initial problem statement, a process analogous to sci-
entific research follows, with the teacher acting as project manager. It lasts 
about 4 months, and at the end of this process, the student must submit a scien-
tific report on the results achieved, reasons for the work, and personal reflec-
tions on it. The mathematical content of MRP is usually of two types: the 
deepening of some mathematical knowledge on which the student built the 
research problem or the application of mathematical knowledge to solve a real 
problem. In Sect. 15.4, this example of MRP “arithmetic progressions in space” 
is presented.

15.3  Theoretical Framework

The theoretical conceptualization of the research presented is based on the latest 
developments of the person-tool interaction. One of the key points of the approach 
is that the main relation is that of the subject with the object of his activity. The tool, 
whether it is the traditional pencil and paper or digital technology, is in an interme-
diary mediator between the subject and the object. In this context, the main ideas of 
the theoretical framework are the theory of activity and within them the activities 
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mediated by an instrument. In the latter, in the person-instrument interaction, actions 
of epistemic, pragmatic, and heuristic mediation take place, which give rise to the 
documentary genesis, through the functions of instrumentation and instrumentaliza-
tion to take place (Gueudet & Trouche, 2011; Rabardel & Bourmaud, 2003).

15.3.1  Mediated Activity

When the relationship between the subject and object of the activity is not direct but 
is carried out through an instrument, the idea of mediated activity arises (Wertsch, 
1998). We share Wertsch’s point of view of mediated activity as a unit of analysis 
that retains the characteristic properties of individuals, tools, and contexts.

In this context, working with the instrument (in the light of the object of the 
activity) produces the relations of mediation. In our study on the implementation of 
Mathematical Research Projects, mediated activity will be a good candidate for a 
unit of analysis for the exploration of issues of mediation and the development of 
students’ projects in the classroom. We consider this mediation as the central fact 
that transforms psychological functions in the creative activity. Following Rabardel 
and Bourmaud (2003), we propose to distinguish three main orientations of media-
tion in instrument-mediated activity: towards the object of the activity, towards 
other subjects, and finally towards oneself.

In Fig. 15.2, the dotted arrows represent the three orientations of mediation in 
the instrument-mediated activity. The linear arrows represent non-mediated rela-
tions. Depending on the content and to what or to whom mediation relations are 
addressed, these can be classified into three types: epistemic, pragmatic, and 

Fig. 15.2 Orientations of 
mediation in the 
instrument-mediated 
activity
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reflexive or heuristic (Rabardel & Bourmaud, 2003, p. 670). The mediations are 
described below for each one of the agents of mediated activity:

 1. Towards the object of the activity. In this case, the epistemic mediation is directed 
to knowing the object of the activity. The subject here is aware of the nature of 
the goal of the activity. It occurs in the analysis phase, in the process of the func-
tioning of the artefact component of the instrument. The pragmatic mediation is 
directed to knowing the action and performance of the object. It can lead to the 
transformation (review, modification, adaptation) of the object or goal of the 
activity.

 2. Towards other subjects. “Interpersonal mediations” may also be epistemic or 
pragmatic in nature, depending on whether it is a question of getting to know 
others or acting upon them. Epistemic mediation is directed to seeking the 
knowledge of other subjects, ideas, arguments, mindsets, learning, etc., while the 
pragmatic mediation tries to act on them producing transformations and changes, 
new learning, changing their mindsets, etc.

 3. Towards oneself. In this case, the most important mediation that occurs is reflex-
ive or heuristic mediation, aimed at management, activity monitoring, and 
decision- making, depending on the evolution of what is being done and/or 
obtained. This mediation is specific in writing notes and making annotations for 
the subject himself. In the case of a mediated activity where the subject (or aspect 
thereof) is also the object of activity, under these conditions, the epistemic medi-
ation is directed to the knowledge of this aspect of the subject, which forms the 
object of the activity. Also, pragmatic mediation, which will seek transformation 
and change in the object (subject) of the activity, will be part of it.

15.3.2  Instrumental and Documentary Genesis

In the “instrument-mediated activity” approach (Beguin & Rabardel, 2000; Rabardel 
& Bourmaud, 2003), the design of an instrument cannot be confused with an arte-
fact. An instrument is seen as a composite entity made up of “the artefact”, in its 
structural and formal aspects, and the subject’s social and private schemes. 
According to Rabardel (1995), the notion of artefact includes everything that has 
undergone a transformation, however small, of human origin. Its significance is not 
restricted to material objects (physical world) but includes symbolic systems that 
can also be instruments. The two components of the instrument, artefact and scheme, 
are associated with one another, but they are also in a relation of relative 
independence.

The instrumental genesis could be considered a way of conceptualizing the pro-
cesses of apprehension. In this process of apprehension, the subject internalizes 
something that is on the outside (the artefact), associating it with their own means 
(the scheme), creating the transformation from artefact to instrument.
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Likewise, in the instrumental genesis (Guin & Trouche, 2007; Rabardel & 
Bourmaud, 2003), two dual processes occur:

 1. The instrumentation. The instrumentation dimension includes the artefact and 
the subject and is reflected in the changes that occur in the schemes of action of 
the individual to use the artefact-instrument. Changes in the schemes are pro-
duced by the pragmatic (action and use), epistemic (knowledge), and heuristic 
(management and decision-making) functions of the schemes.

 2. The instrumentalization. This dimension goes from the subject to the instrument 
and is manifested by the changes that occur in the artefact as it is customized by 
the subject, in the gradual process of transformation of the artefact into an instru-
ment. Figure 15.3 represents the instrumental genesis and the two processes that 
structure.

For the implementation of this approach by a teacher who wants to perform 
MRP, there are several actions: (a) think of the educational use of artefacts in order 
to understand, accompany the work, and enhance the work of the students and (b) 
establish an instrumental orchestration that involves designing various configura-
tions of devices and multiple operating modes, adjusted to the successive stages of 
an educational activity (e.g. different stages of solving a mathematical problem) and 
the objectives of the teacher in each of these phases (stimulate individual explora-
tion efforts, or the exchange of ideas, or giving proofs, or a reflective feedback, etc.).

Moreover, the so-called resources and documents play an important role in the 
teacher’s role. Via this documentary work, the teacher constructs the subject to 
teach; therefore, this work is the bearer of professional development.

It is within this interrelated process that documentary focus emerges, which is an 
extension of the instrumental perspective. The concept has been outlined by Gueudet 
and Trouche (2010, p. 2), who consider that the heart of the teacher’s activity is:

Fig. 15.3 Instrumental genesis taken from Guin and Trouche (2007, p. 203)
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documentary work that consists of seeking, combining, designing, sharing and revising his 
teaching resources. In this task, the teacher interacts with groups of resources. These 
resources may be devices, which span a wider range; in this way, a student’s answer is an 
essential resource for the teacher. During these interactions, the teacher develops what we 
call a document, which incorporates both the combined resources and their patterns of use, 
saturated with professional experience and knowledge.

This process of transformation, from the resources to the documents, is defined as 
documentary genesis, which also contains the two dimensions of instrumentation 
and instrumentalization, which play an important role in the context, form, and type 
of the proposed activity.

15.3.3  Organization Levels in the Domain of Activity

Instruments are not isolated. All of us know this intuitively from experience. As 
soon as the activity has a certain complexity, its authors use a range of instruments. 
They are mobilized in line with operational goals and needs as given. The functional 
complementarity relations between instruments and the logic of the activity gener-
ate temporary sequences in the use of instruments, in a successive or simultaneous 
manner.

But the instruments are mobilized not only in specific situations, but they are also 
structurally linked to the invariable dimensions of some types of activities (Rabardel, 
2001). The instrumental genesis is grounded in these invariants, and the instruments 
developed allow the management of their peculiarities.

Types of situations that organize themselves into domains of activity (or inter-
vention) for which there are corresponding groups of instruments. Rabardel and 
Bourmaud (2003, p. 678) exemplify with an intuitive experience of this in everyday 
life: “the tool box we keep in the trunk of our car or the sewing kit kept handy, etc. 
are groups of instruments that allow us to deal with the main situations requiring 
intervention in these limited everyday domains”.

In the professional analysis of the relationships between instruments and situa-
tions, three levels of organization and analysis (Rabardel & Bourmaud, 2003) are 
distinguished:

 (a) The situations with sufficiently similar characteristics, either by the tasks or by 
situations that should be considered, can be grouped, resulting in types of situ-
ations. These types have associated instruments adapted to the peculiarities of 
each of them. They give rise to forms of activity that are relatively stable for the 
same type and are differentiated.

 (b) The types of situations can be organized in a higher-level cluster, constituting 
families of activities. These families gather and organize all types of situations 
that correspond to the same type of general purpose of the activity. At this level, 
there may be types of situations belonging to more than one family of 
activities.
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 (c) The group of all activity families constitutes a third level of organization and 
analysis: the professional domain of activity. This domain includes all activity 
families along with the kinds of situations that compose them, and for each 
there are corresponding groups of instruments.

Figure 15.4 (Rabardel & Bourmaud, 2003, p. 678) outlines the ideas graphically: 
the activity families, types of situations, and domain of professional activity

15.3.4  Productive Dimension (Instrumentalization) 
and Constructive Dimension (Instrumentation)

The documentary approach focuses its attention on the analysis of teachers’ work 
starting with their production activity: for a type of situations (e.g. “teach the notion 
of function to a high school class”), the teacher gathers resources, works on them, 
and develops teaching materials, which he/she implements in the classroom. This 
implementation is not a single action; it will happen again with other students and 
other academic courses. At various points in the development and implementation, 
changes take place: in a movement of instrumentalization, the resources involved 
are constantly reviewed by the teacher; in a process of instrumentation, the teacher’s 
knowledge is questioned by the resources, by the implementation, and by the result-
ing effects (Gueudet & Trouche, 2011).

Thus, the productive activity of the teacher is also a constructive activity 
(Samurçay & Rabardel, 2004) because it is not only limited to producing transfor-
mations of objects in the external world (specifically, the resources documents) but 
also he himself becomes transformed, thus enriching his repertoire of resources and 

Fig. 15.4 Organizational levels in the domain of activity
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knowledge, both the content and the didactical content. That is, the teacher learns 
what he/she teaches; this is the constructive role of the activity (Pastré & Rabardel, 
2005).

Moreover, during the process in which the constructive functions arise, the 
teacher conducts an internalization (Wertsch, 1998) which is not always observable 
from the outside nor verbalizable by him.

The same applies to the instrumentalization, which also does not necessarily 
have immediate consequences. This is why it is necessary to look at the invisible 
work (Blombreg, Suchman, & Trigg, 1996). But besides being difficult to see, not 
all components of the instrumentation and instrumentalization functions are directly 
named.

This is particularly true in the case of schemes that, in the instrumental or docu-
mentary approach, must be taken into account. The action is the knowledge that 
activates the “already incorporated knowledge”, and this is much more than being 
able to explain it. This dimension also applies to schemes when they are supported 
by operational invariants (Vergnaud, 1996) that are implicit in the subject and have 
not been externalized.

As for the relations between the productive and constructive functions and the 
professional activity of the teacher, Gueudet and Trouche (2008, p. 16) explain it the 
following way:

This dialectic of the productive and constructive allows taking into account the complexity 
of these processes: a completed activity has a production goal that is nothing more than the 
realization of the given task. In this activity, the subject also constructs oneself and modifies 
the conditions of later production.

This dialectic does not mean that we simply consider the documentary work as 
capable of generating professional development, but it also represents a real change 
of perspective. This is not to consider documentary work as a necessity directed 
towards the work in the classroom; the documentary work is at the heart of the pro-
fessional activity of the teacher, which takes place inside and outside classroom. 
Thus, classwork is analysed as a moment of documentary enrichment. From this 
perspective, the documentary genesis is the essence of professional development.

At this point, one should highlight the connections between the constructive role 
of documentary genesis and the heuristic activities mediations, mediated by an 
instrument. Heuristic functions, which are directed towards the subject himself, are 
those that identify operational invariants (knowledge in action) of the teacher’s 
schemes, by interacting with the instrument (document). These mediations are those 
in which the subject is the teacher himself and allow the exposure of the invisible 
work. At this point the two major approaches of the theoretical framework, media-
tions and documentary genesis, are connected to give more rigour and consistency 
to the research. This potential is exemplified and illustrated in the following 
section.
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15.4  Exemplification of a Mathematical Research Project: 
“Arithmetic Progressions in Space”

In this section, the process of transforming a problem-solving task into a MRP is 
presented. The aim of this section is the characterization of this transformation pro-
cess in two key aspects: (a) the operational mathematical invariants of the students’ 
schemes – mathematical and cognitive processes that the student puts into action – 
and (b) mediated activity between teacher and students regarding the instrument, 
object, and subject that allows the structure and the phases that form the backbone 
of the structure to be identified.

Student activity is a complex process that it is part of the resolution of a problem- 
solving task (PST) in order to obtain a Mathematical Research Project (MRP) by 
proposing the corresponding research question. This process is finished when the 
student makes the research problem explicit, obtained as an extension of the work 
on the problem-solving.

In order to facilitate better understanding, we explain the terminology used. We 
consider the MRP report as the “instrument” (artefact + scheme), i.e. it is the docu-
mentary resource that collects student productions (two draft reports and the final 
report). The object is the MRP, and the subjects are the teacher and the students (see 
Fig. 15.2).

We base our presentation on experimentation conducted during two academic 
years, 3 months in each year, of the MRP: “arithmetic progressions in space”. The 
empirical data presented are supported by the response of a student, PI, the first year 
(TN-PI) who developed the MRP individually – and the response of a group of five 
students (document RPA-TG) who developed the MRP together as a group. In both 
cases we will use the final document of the MRP.

All the participants are students in their senior year of high school (17 years old), 
who selected the line of studies towards science and technology. They have an aver-
age high performance in mathematics – above average with respect to their peer 
group. One of them is a participant in a mathematical talent programme, and the 
other four are students who regularly take part in Mathematics Olympics.

The teacher proposes to each student an initial problem-solving task (PST) to be 
resolved and expanded gradually to formulate and develop an MRP. The students 
must submit successive drafts every 3 weeks. Drafts collect the accumulated work 
carried out by the student so far, with help and guidance given by the teacher, and 
the results achieved so far. The teacher reads and analyses each of the drafts submit-
ted and adds comments in the margin of the documents, returning them to the stu-
dents through interviews at the end of the following week. These ideas and 
suggestions given by the teacher should be taken into account by the students, who 
must incorporate them into the working document and develop them. In total, each 
student completes three versions of the document: two drafts and the final report of 
the MRP at the end of the third month.

The cases presented have been selected for the following reasons, among 
others:
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 1. The initial PST develops an elementary mathematical content, adequate for the 
students’ academic level, which is rich and complex once one delves further into 
the topic.

 2. The MRPs obtained are all based on the same initial PST; therefore, they offer 
different problems to be addressed relating to a common mathematical content.

 3. The final reports of these students are of a high quality, and the level of achieve-
ment of the students is rather satisfactory. So, they can be considered key 
reporters.

Furthermore, these projects have been developed as part of the teaching process, 
their completion being compulsory for all the students in the class, although their 
topics may not all be the same nor all the projects completed in the classroom.

With respect to the role of the researchers, we note that one of them is a teacher- 
researcher involved in the teaching process, and the other researcher manages the 
investigation process. Selected tasks for the implementation and data analysis were 
worked on by both researchers.

In the following section, we describe the example of the MRP: arithmetic pro-
gressions in space. The section is divided into several subsections. In Sects. 15.4.1, 
15.4.2, and 15.4.3, the mathematical resolution of the initial problem for the MRP 
formulation, both in the case of PI and in the case of RPA group (Sects. 15.4.1 and 
15.4.2), and the levels of organization of situations and domains of mathematical 
activity (Sect. 15.4.3) are presented. The data allow the teacher to establish the 
mathematical invariants and the student’ schemes put into practice in the develop-
ment of the MRP. In Sect. 15.4.3, the mediated activity between the teacher and the 
students regarding the instrument, object, and subject is presented.

15.4.1  Mathematical Resolution from the Problem-Solving 
Task to the Formulation of the MRP: The Case 
of the Student PI

The productive and constructive functions of the teacher will be included in Sects. 
15.4.1 and 15.4.2, through the analysis done by the teacher regarding the mathemat-
ical resolution of the initial problem for the MRP formulation, elaborated by the 
students in the final version of the document.

The student PI is a high school senior (17 years old), who has selected science 
and technology as the main line of study. We will take her final report of MRP (TN- 
PI). The initial problem posed by the teacher to the students was presented in 
Fig. 15.1.

The table of contents of the MRP final report submitted by the student is shown 
in Fig. 15.5. Prior to this final document, the student made two drafts. Both were 
discussed in the tutorial sessions with the teacher. The processing time until the final 
version was 3 months.
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Firstly, one can see that the student, during the process of solving the initial prob-
lem, uses the terminology of Mason, Burton, and Stacey (1985) in the titles of Sect. 
15.2. This use of this terminology is due to the guidance given by the teacher in her 
first draft. In point 3, the student deepens into the initial problem, and in point 4, she 
presents the concepts of a new theory, which generalizes the traditional idea of 
arithmetic progression (a.p.1), defining similar concepts in space and presenting 
some properties or theorems.

We note that points 2 and 3 make the process of transforming a problem-solving 
task into a MRP. To illustrate this fact, we will look at points 3.1.2. and 3.3. The 
student starts solving the problem (item 2  in the table of contents, Fig.  15.5) in 

1 The arithmetic progression will be denoted by a.p.

1. Introduction
2. A problem

2.1. Entry - Initial exploration
2.2. Attack
2.3. Review-Extension

2.3.1. Alternative 1
2.3.2. Alternative 2
2.3.3. Alternative 3
2.3.4. Alternative 4

3. Questions, conjectures, new ideas
3.1. Some form of generalization

3.1.1. A more general problem
3.1.2. Some more general concepts

3.2. Variations on the problem
3.2.1. A case not determined
3.2.2. Some cases with equal differences 

3.3. Problem Structure 
4. Concepts, properties, and theorems

4.1. Arithmetic networks
4.2. Unidimensional Arithmetic Networks and arithmetic progressions
4.3. Two-dimensional Arithmetic networks and matrices
4.4. Priscila number associated with an arithmetic network

4.4.1. For two-dimensional arithmetical networks 
4.4.2. The case of three-dimensional arithmetic networks
4.4.3. The case of n-dimensional arithmetic networks

4.5. Back to the initial problem 
5. Open problems
6. Final Reflection
7. Bibliography

Fig. 15.5 Table of contents of the MRP report submitted by student PI
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 several ways (TN-PI, p.  4–72). Specifically, she proposes four different ways to 
solve the problem: first, using as an auxiliary an unknown x, the element located 
above 0, and applying the properties of the a.p., solving an equation with one 
unknown. In other forms of solution, other auxiliary unknowns – differences of a.p-
row or a.p.-column, etc. – are used, solving the systems of linear equations with two 
or three unknowns. Later some generalizations are proposed. In order to illustrate 
this, we will look at Sect. 3.1.2 (TN-PI, p. 8) entitled Some More General Concepts 
(Fig. 15.5).

In this excerpt from the final report of the PI (Fig. 15.6), it can be seen that the 
student, using analogy, contextualization, connections between contexts, and 
abstraction, outlines questions. She poses some conjectures about possible general 
results and connects the context of arithmetic progressions with geometric progres-
sions. This is a first approach to obtaining general questions or first formulation of 
the mathematical research problem.

2 The final report of MRP will be denoted by TN-PI.  The pages of the presented extracts are 
included.

Fig. 15.6 Extract of the MRP of student PI from the final report
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Returning to the table of contents of the MRP, the student continues to item 3.2. 
(TN-PI, p. 9), Variations on the problem, which presents the study of different cases 
obtained by modifications of the initial conditions of the problem, and then finishing 
with item 3.3 (TN-PI, p. 12) entitled Problem Structure. The student wrote what is 
shown in Fig. 15.7.

The process ends with the statement of a Mathematical Research Problem (MRP) 
or, equivalently, with the approach of a possible MRP: “Under what conditions can 
we build: a cube, a parallelepiped, a square, a line, or an arithmetic rectangle?” The 
work of the student continues trying to pose a possible MRP.

It is convenient to note that the subject-object mediations of the activity (the 
teacher and the obtaining of the MRP) via the instrument have allowed the specific 
identification of the operational constants of the students’ schemes and the levels of 
organization for the conditions and domains of the developed activities.

With respect to this last aspect, we note that the teacher-student interviews and 
the teacher’s analysis of the student’s drafts prior to the definitive report of the MRP 
also provide results about productive and constructive functions but will not be 
included here due to the space limitation of this chapter, which is exclusively con-
cerned with the process of obtaining an MRP via a PST. In any case, let us note that 
the teacher’s types of orientations and commentaries, in the analysis of the student’s 
successive drafts, focus on suggestions of improvements for the attainment of the 
project objectives: assess the results, propose essay improvements and suggestions 
for the elimination of errors and modification of results, suggest new paths, pose 
new questions, etc.

We note that the mediations between the subject and the object of activity 
(teacher and obtaining of the MRP) through the instrument facilitate the following 
functions: (a) productive (instrumentalization), i.e. when the teacher checks the 
instrument, assesses their adequacy with the goal, and identifies and proposes the 

After all the above, we are able to analyze the structure of the problem so that we 
can observe all its richness, complexity, etc.

The internal structure of the problem includes:
• Square.
• Numerical values given: Four integers 
• Arithmetic progressions with their respective differences.

The structure of the problem varies when we change any of the variables given:
• Square: Rectangle, Straight, cube, parallelepiped, etc.
• Numbers given: four. It will be the minimum number? If we get 3 ... And if 
we are given values of the differences ...
• Arithmetic progressions: Geometrics
• Positive integers: whole numbers, fractional numbers, etc.

All issues listed refer to a more open problem that could have the statement: 
"Under what conditions can we build: a cube, a parallelepiped, a square, a 
straight or arithmetic rectangle?"

Fig. 15.7 Extract of the MRP report of student PI, from Sect. 3.1.2. of the final report
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characterization of the process, and (b) constructive (instrumentation), when the 
teacher clarifies the structure and phase in the passage from the PST to a MRP done 
by the student according to his mathematical knowledge schemes.

15.4.2  Mathematical Resolution from the Problem-Solving 
Task to the Formulation of the MRP: The Case 
of the Group

In this section, we will explain the process of the mathematical resolution of the 
initial task to the formulation of an MRP, taking the solution given by the group of 
five students in their senior year (17 years old) who selected science and technology 
as their line of study.

Regarding the final report of the group of five students (document RPA-TG), we 
note that they know the work developed by the student PI in the previous academic 
year and start working with this knowledge. They solve the initial problem without 
contributing anything new to what was done by the student PI, but they add a second 
initial problem, which has some analogy or resemblance to the first problem. It is a 
context of a numerical table in which lines are also a.p. They know the second prob-
lem as it was proposed earlier in a high school Mathematics Olympiad, in which 
some of them participated. This problem is as follows (RPA-TG, p. 6):

We have a set of 221 real numbers the sum of which is 110721. They are set in a rectangular 
table, such that all rows and the first and last column are arithmetic progressions of more 
than one item. Prove that the sum of the elements of the four corners is 2004.

Starting from the resolution of this problem, along with the results obtained by the 
student PI, in the previous year, students propose the attainment of formulas similar 
to those used in the traditional a.p., to calculate the sum of all the elements of a table 
with these features, the expression of the general term of a table, the interpolation of 
arithmetic terms in a table, and the resolution of some similar problems for geomet-
ric progressions. This is summarized in the table of contents of their final report 
(RPA-TG, p. 3) (Fig. 15.8).

The most commonly used mathematical processes, to transfer the context of tra-
ditional a.p. to arithmetic tables, which they call arithmetic networks, are contextu-
alization, analogy, abstraction in context, establishing connections between contexts, 
and generalization.

The result of all this is the originality and creativity achieved in some results, 
such as

 
a d i j h i v j ai j p, ,= ⋅ −( ) ⋅ −( ) + ⋅ −( ) + ⋅ −( ) +1 1 1 11 1 1 1  

The general term of a bi-dimensional arithmetic table, aij, may be expressed as a 
function of h1, the difference of the arithmetic progression (a.p.) first row, the differ-
ence between the arithmetic progression (a.p.) first column v1, and the Priscila 
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difference, dp, which is the difference of the a.p. formed by the differences of the 
a.p. rows or columns (RPA-TG, p. 6):

 
a d i j h i v j ai j p, ,= ⋅ −( ) ⋅ −( ) + ⋅ −( ) + ⋅ −( ) +1 1 1 11 1 1 1  

This formula generalizes the an = a1 + d (n−1). It is obtained from the previous for 
the case i = 1 or j = 1.

Fig. 15.8 Table of contents of the final report of the MRP submitted by the students group RPA
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The sum of the terms of a two-dimensional arithmetic table depends on the terms 
in the corners (RPA-TG, p. 16):

 
S

n m
a a a an m n m n m, , , , ,=

⋅
⋅ + + +( )

4 11 1 1
 

This formula generalizes the traditional a.p. S
n a a

n
n=

+( )1

2
 resulting in the latter 

of the above for the case m = 1.
This idea of generalizing the formula is not only for two-dimensional tables but 

also for tables of any size. This is recurring throughout the report.
Finally, we note that in this case (working group case), the mediations between 

the subject and the other subjects (i.e. mediations of teacher and students) foster in 
the teacher two functions: (a) productive (instrumentalization), to allow him to 
review the instrument, assessing its suitability to identify operational invariants 
(knowledge in action) of students (use of contextualization, analogy, generalization, 
and establishing connections between contexts), and (b) constructive (instrumenta-
tion), making explicit the value of knowledge in action by students and making 
clear the role of analogy, generalization, and the connection between contexts, 
within the appropriate mathematical working space to solve the problem of the 
MRP.

15.4.3  Organizational Levels of Situations and Domains 
of Mathematical Activity

According to the theoretical framework (Sect. 15.3), the levels of organization and 
domains of activity are described. These domains and levels are those that support 
the transformation of the problem-solving task into the MRP “arithmetic progres-
sions in space” by the student PI. These organizational levels refer to the work done 
by the student in TN-PI.

Domains of Mathematical Activity
To analyse the activities of the process carried out by the student, we have used the 
concepts of domain of activity (in this case there is a domain D1) defined in Sect. 
15.3, following Rabardel and Bourmaud (2003).

This idea includes the activity families (in the example four families were stud-
ied, F1,i with i varying between 1 and 4) and the kinds of situations (in the example 
there are various kinds of situations C1,i, j with i varying from 1 to 4 and j varying 
from 1 and 4 depending on i). In Fig. 15.9, this is summarized.

Mathematical Operational Invariant and Mathematical Schemes
The final reports of the student PI and of the group of five students (RPA) have 
allowed the collection of the main operational invariants implemented by them and 
part of their schemes (psychological part of the instrument) (Table 15.1).
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If these operational invariants are compared to the cognitive processes of the 
model by Yeo and Yeap (2009) which proposes a model for research tasks, charac-
terizing, on one hand, the stages of student work and, on the other, the cognitive 
processes that occur and interactions that occur among them, we can see that in the 
passage from a RPT to a MRP, there are also these cognitive processes, along with 
others that allow extending the RPT to make explicit the research problem.

Main Mathematical Processes Implemented
As a result of reflection on the cases studied, Fig. 15.10, a first explanation is pre-
sented. It is a graphic approach, with the phases and key mathematical processes 
that the student can implement to reach an MRP.

Fig. 15.9 Domains of mathematical activity for the initial problem of MRP “arithmetic progres-
sions in space”
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Phases of the process The first phase is the initial problem resolution through pro-
cesses of the mathematization-modelling (with its phases) or through the use of a 
problem-solving model (with its phases). The second phase is the search for the 
structure of the initial problem by deepening into some aspect of it (other forms of 
resolution, raising new questions about the problem, solving connected problems 
obtained by variations in its data, studying specific cases, looking for patterns, con-
jecturing, etc.). The third phase is the preparation of the research project, which is 

Table 15.1 Mathematical operational invariants

Mathematical operational invariants

Particularization. Generic examples. Special cases
Patterns and invariants. Similarities, differences
Generalization. Abstraction in context
Conjectures: construction and justification
Mathematical proof
Mathematization processes-modelling
Variations on the problem. Strategies: what else? what if? etc.
Contextualization
Connections between contexts
Other heuristic strategies for problem-solving: number of cases, appropriate language 
(graphical, algebraic, etc.)

Fig. 15.10 Main mathematical processes implemented
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considered completed once it has been achieved to pinpoint the problem or research 
problems. This phase is very effective to analyse the free variation of the qualities 
of the initial problem, generalization of the context of the initial problem, use of 
appropriate strategies, etc.

Mathematical processes Mathematical cognitive processes that the student imple-
ments are, on the one hand, explicit academic knowledge that has been acquired in 
the process of teaching and learning. These are explicit in the student mind (reason-
ing, action rules, concepts, etc.). On the other hand, however, it also implements 
thinking processes that are not explicit knowledge, not formal, and not part of the 
scientific subject formalized knowledge or operational invariants, which are those 
that have been identified in the study of the cases. These mathematical processes are 
part of the activities carried out by the student in the process of extension from a 
PST to a MRP.

15.4.4  Mediations of the Teacher in Transforming PST 
into MRP

As we indicated in the introduction to the process of generating a Mathematical 
Research Project from a specific problem, it will not only require creativity on the 
part of the students but the mediation of the teacher for the establishment of a cre-
ative suitable working space. In this section, based on the theoretical foundations 
(presented in Sect. 15.3.1), teacher-experienced mediations in transforming a 
problem- solving task into a Mathematics Research Project (MRP) are described. In 
each of the experiments, carried out by the student PI and the group of five students, 
different types of mediations occur.

In Fig. 15.11, mediation lines that have a prominent role in each of the experi-
ments can be seen: both for the student PI in the first experiment and in the case of 
group work in the second experiment:

 (a) Epistemic mediations. In the first experiment, between the teacher (subject of 
activity) and the student (another subject), line (1) will allow identification, 
through the mediation of the epistemic type, mathematical processes that the 
student implements. Along this line, in the second experimentation, analogous 
to the above situation, the same occurs but in this case with five students, so that 
line (1) through the mediation of epistemic type will allow contrasting the 
mathematical processes implemented by the five students. These identified 
mathematical processes are part of operational invariant schemes of the stu-
dents in both experiments. In this case, epistemic mediations can recognize the 
types of knowledge in action implemented by the student or by the group: to 
search for contexts related to the problem-solving variants of the initial prob-
lem, to establish analogies with other problems or other contexts, to generalize, 
to draw analogies with known formulas, etc.
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 (b) Pragmatic mediations. In the first experiment, this type of mediation between 
the teacher (subject) and the MRP (object of activity), line (2) allows the teacher, 
through the pragmatic mediation, to identify the way to move from the initial 
task to achieve the object of the activity: MRP. The teacher values, above all, the 
appropriateness and effectiveness of the processes carried out by the student (in 
the case of the first experiment) and by the five students (in the case of the sec-
ond experiment). In this case, the pragmatic mediations allow the teacher, on 
the one hand, to deepen into the nature of the object of the activity, i.e. to know 
better the process and requirements involved and, on the other hand, to know 
the adequacy and effectiveness of knowledge in action, implemented by stu-
dents to achieve the object of the activity, i.e. for formulation of the research 
problem(s) corresponding to the MRP. This knowledge in action has been iden-
tified through epistemic mediations.

A summary of these mediations from the point of view of the teachers’ work is 
presented in Table 15.2.

As shown in Table  15.2, the epistemic mediations (addressed to the student) 
allow the teacher to detect what kind of knowledge in action the student has, which 

Fig. 15.11 Mediated 
activity by the instrument

Table 15.2 Results of teachers’ mediation work

Mediations Results for the teacher

Towards the student 
(epistemic)

To make explicit the operational invariants (implicit) of their 
schemes
To know the mathematical processes implemented

Towards the goal
(pragmatic)

To deepen into the nature of the goal
To know the structure (phases) of the process
To describe the actions associated with each phase
To provide dynamism to the process by using effective strategies
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is a key issue to later, through pragmatic mediation (directed towards the goal), 
characterize the process: phases and cognitive processes implemented by the student, 
which is the goal of experimentation.

Epistemic and pragmatic mediations by the teacher with both the instrument and 
the subject lead students to put into practice the procedural knowledge: strategies 
for problem-solving, posing questions, making connections between contexts, 
determination of the specific cases, detection of pattern, its extension and general-
ization, etc.

15.5  Didactic Considerations for Implementing a MRP

Creativity plays a vital role in the full cycle of advanced mathematical thinking. It 
contributes in the first stages of development of a Mathematical Research Project 
when possible conjectures are framed and in the formulation of the MRP.

Among the didactic considerations arising from this research, two are 
highlighted:

 1. Detection of domains of activity and mathematical invariants
 2. The mediated activity: teacher-instrument-subject

Regarding the first, we agree with authors who have indicated that generalization 
is a form of mathematical creativity (Ervynck, 1991; Kruteskii, 1976; Sriraman, 
2009). Hence, we look at mathematical creativity essentially as the ability to create 
mathematical objects, together with the discovery of their mutual relationships. In 
the transformation of a problem-solving task (PST) into a Mathematical Research 
Project (MRP), creativity demands an extension of this context in a way that has not 
been conceived before. It therefore requires the individual to create new ideas and 
put old ideas together in a new way. It is something that can be carried out if it is 
involved not only in instrumental understanding but also in relational understand-
ing, which involves a meaningful grasp of the relationships between the concepts.

In the passage from the PST to MRP, the student extends their schemes and gives 
two fundamentally different kinds of generalization: the expansive generalization, 
which broadens the applicability of the theory without changing the nature of the 
cognitive structure, and the constructive generalization which requires the knowl-
edge structure to be reorganized. While the first one may be relatively easy, even 
when it occurs creatively for the first time, the latter involves a cognitive transition 
of great difficulty which requires not only special personal qualities to overcome the 
struggle but also a special mediation by the teacher.

Concerning the second, mediated activity tends to promote professional mathe-
matical activity. The examples illustrate epistemic and pragmatic mediations. These 
mediations help in student’s activity of meta-process; a meta-process, which acts 
upon and generates new mathematics that several authors, such as Poincaré or 
Hadamard, explicitly attempted to describe in their ideas relating to mathematical 
creativity. In addition, we have seen that there are certain requirements of mathe-
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matical creativity which seem to link with the full range of advanced mathematical 
thinking, for which a work of incubation and metacognitive processes are required, 
in our case accompanied by the teacher.

We summarize some specific considerations by way of practical suggestions for 
any teacher interested in implementing MRPs in the classroom. These are as 
follows:

 1. Teachers interested in MRPs, or in other tasks which develop research processes, 
must consider a gradual approach, starting with mMRPs; with less complex 
tasks, open problems, and the extension of problem-solving tasks; or with 
research with an illustrative outline for the students. In all of these, the students 
will need to produce a report which brings together the process, the results, and 
their reflections.

 2. The process of generating an MRP is one of the most fitting and simple ways for 
teachers to introduce secondary school students to the process of discovery in 
mathematics, putting into practice specific methods typical of professional math-
ematicians’ everyday tasks.

 3. The MRPs consist of tasks which are very valuable for the development of stu-
dents’ mathematical competencies: solving problems; thinking mathematically; 
reasoning with logical correctness; representing mathematical ideas using differ-
ent language; modelling real-life situations; using codes, symbols, and mathe-
matical notations; and communicating mathematical ideas.

 4. The MRPs give the students a leading role in their education: they solve the 
problems which they pose to themselves; make decisions about the paths, strate-
gies, and focuses of the investigation; reflect on the process and the results 
obtained; and communicate their ideas in a scientific document.

 5. The teacher’s analysis of the students’ productions, their drafts and final report, 
is one of the most effective resources in the process of subject-object mediation 
of the activity. This strategy allows the teacher to identify the levels of organiza-
tion which the student adopts in different situations and the operational constants 
of their schemes of thought.

Finally, the case described in this chapter shows a framework where the indi-
vidual, the domain, and the mediated activity all work together to define the creative 
act (Csikszentmihalyi, 1996). The individual (each of these students) imbibes the 
contours of the domain, even while they seek to transform it. The inventiveness, as 
it is manifested in the activity of users confronted with a technique, i.e. the mediated 
activity (teacher-instrument-their peers), negotiates and demands high-quality work 
as defined by the domain – which in itself is transformed by the work of these indi-
viduals. Creativity is where the individual, the domain, and the mediated activity 
operate in harmony.
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Chapter 16
Mathematics Education and Creativity: 
A Point of View from the Systems 
Perspective on Creativity

Cleyton Hércules Gontijo

16.1  Introduction

The field of research in creativity is continuing to develop, and, because of this, 
several conceptions of creativity are evident in the literature. Lubart (2007) points 
out that multifaceted ways of analysing creativity have been proposed as it is “the 
result of a convergence of cognitive, conative and environmental factors” (p.16). 
This highlights the perspective that, rather than resulting from specific factors of 
each individual, creativity arises from a multiplicity of factors. According to Alencar 
and Fleith (2003a, p. 13), “it can be noticed that one of the main dimensions present 
on the several definitions of creativity implies the emerging of a new product, be it 
a new idea or an original invention, be it re-elaboration and perfection of existing 
products and ideas”.

Studies investigating creativity aim to comprehend the variables that allow it to 
be expressed or inhibited, measuring it in order to establish strategies for its devel-
opment. Studies usually focus on one of the elements involved in creative produc-
tion. In this way it is possible to focus on the following perspectives (Feldhusen & 
Goh, 1995): the person (cognitive characteristics, emotional and personality quali-
ties, life experiences), the product (verifying if it is new, has social value and utility, 
causes impact), the process (the stages of development of a creative product) and the 
environment (environmental elements involved in the promotion or inhibition of 
creative capabilities: physical, emotional, social and cultural factors, etc.).

Sternberg and Lubart (1999) emphasize that, in order to comprehend creativity, 
a multidisciplinary approach is needed. This is because isolated studies can only 
provide a partial and incomplete view of the phenomenon. According to Alencar 
and Fleith (2003b, p. 2), “in order to comprehend why, when and how new ideas are 
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produced it is necessary to consider variables both internal and external to the 
individual”.

In this sense, the aim of this chapter is to approach creativity in mathematics 
from the theoretical model of Csikszentmihalyi’s (1988, 1996, 1999a, 1999b) sys-
tems perspective on creativity. This “systems perspective” relates the creative effort 
by individuals to the state of the domain in which they are working and to the char-
acteristics of those who assess the worth of the creative endeavour in the field con-
cerned. As such, it offers a way to generate a penetrating analysis of how a creative 
endeavour emerges within a social field.

16.2  Mathematical Creativity Analysed from the Systems 
Perspective

According to Csikszentmihalyi’s systems perspective, creativity is not the result 
solely of an individual’s action; rather, it emerges from the interaction between the 
individual and socio-historical-cultural environment. According to Csikszentmihalyi, 
creativity depends more on the social and cultural context than on the individual. 
Genetic differences and personal experiences may be involved, but these do not 
determine the expression of creative production. In this way, the systems perspec-
tive accepts the importance of individual characteristics for determinating creative 
production, but, nevertheless, it associates two other elements to the creativity 
domain and field, which, together, make its achievement possible. By 
Csikszentmihalyi’s proposition, creativity is considered as resulting from the inter-
action of three systems: the person (genetic background and personal experiences), 
domain (cultural and scientific production) and field (social system). In the next 
section, these systems are described, pointing to a way of thinking creativity in 
mathematics based on this model.

16.2.1  Person

In the systems perspective, the person is approached by means of several aspects of 
their development and the relation between these and creativity. Nakamura and 
Csikszentmihalyi (2003) analysed three aspects of a creative person: their cognitive 
process, their personality and their values and motivation. Their view is that “every 
person is potentially creative” (p. 189).

Cognitive processes are related to psychological processes involved in coming to 
know, to understand, to perceive, to learn, etc. Nakamura and Csikszentmihalyi 
refer to the way the person deals with stimuli from external world: the way the sub-
ject sees and perceives, the way they register information and the way they add new 
information to previously registered data. Personality characteristics refer to 
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 curiosity, independence, positive self-concept, attraction for complex problems and 
lack of fear of taking risks. Motivation can be described by the interest, pleasure and 
satisfaction of having accomplished a task. It can also be seen when the person 
searches for information about their field of interest; they thus develop their domain 
capabilities. Another characteristic resulting from motivation is a person’s capacity 
to take risks and break free from commonly employed styles of idea production 
(Amabile, 2001).

These characteristics may lead the person to a creative production, since environ-
mental conditions are favourable to this production. That is why it is important to be 
in an environment which stimulates creative production, values the learning pro-
cess, offers opportunities of accessing and updating knowledge and opens the way 
to mentors and resources such as books, computers, etc. Regarding the model being 
considered, which involves the person, the field and the domain, the person has the 
function of promoting domain variations.

Carlton (1959, quoted in Gontijo, 2007, p. 45), when specifically discussing indi-
viduals with mathematical creative potential, lists a set of characteristics to describe 
such individuals. The list includes aesthetic sensitivity to observe mathematical pat-
terns and relations, capacity to solve and pose problems which go unnoticed by 
other people, willingness to work independent from teachers and other students, 
pleasure in communicating mathematical ideas, capacity to speculate or elaborate 
more than one hypothesis to a given problem, pleasure in adding something new to 
knowledge produced in the classroom or a different solution to a problem already 
solved, pleasure in working with mathematical language, the tendency to make gen-
eralizations, the capability to visualize an entire solution at once, the capacity to 
insert imagination into the process of producing mathematical ideas, conviction that 
every problem must have a solution, persistence in look for solution to the prob-
lems, boredom with repetitive activities and the capability to perform several math-
ematical operations in a short period of time, among others. According to Biermann 
(1985), one of the most important characteristics of creative mathematicians of the 
seventeenth to nineteenth centuries was fascination with the subject matter and con-
sequent extreme motivation.

16.2.2  Domain

The domain is a body of formally organized knowledge that is related to a certain 
field of knowledge. Alencar and Fleith (2003b, p.  6), analysing this system in 
Csikszentmihalyi’s work, affirm that “domain consists of a set of symbolic rules and 
procedures culturally established; that is, knowledge accumulated, structured, con-
veyed and shared in a society or by many societies”. The function of the domain is 
preserving knowledge selected by a group of specialists (in the field) in order to 
convey it to new generations.

Mathematics is as an important field of knowledge that can contribute signifi-
cantly to personal and scientific growth, granting the person the development of 
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competences and capabilities that instrument and structure thought, enabling the 
person to comprehend and interpret situations; to master specific languages; to 
argue, analyse, evaluate and come to personal conclusions; and to make decisions 
and generalizations. At the same time, it provides the person with techniques and 
strategies to be applied to different sciences, including mathematics itself, and con-
tributes to the advancement of knowledge and to the comprehension and resolution 
of everyday problems. As D’Ambrósio (2001) puts it, mathematics appeared as “a 
strategy developed by human species throughout its history to explain, to under-
stand, to handle and deal with the sensitive, perceptive reality and its imaginary, 
naturally in a natural and cultural context” (p. 82).

According to Pais (2001), scientific knowledge is related to academic life and to 
knowledge produced by universities and research centres, in accordance with a for-
mal, encoded language. School knowledge, in contrast, is constituted by knowledge 
and practices shared by a given community, where the mathematics content is deter-
mined by the curriculum and presented in teaching programmes and didactic books. 
By means of didactic transposition (i.e., “the work that makes an object of knowing 
how to teach into an object of teaching” (Chevallard, 1991, p. 39)), knowledge that 
constitutes the mathematics domain is made accessible to students.

Having access to this domain may enable the instrumentalization of the individ-
ual to use mathematics techniques and strategies that can be applied to the different 
sciences, including mathematics. This contributes to the advancement of knowledge 
and to the comprehension and solving of problems found in everyday life. It is para-
mount that students are able to exploit this domain, having the experience of con-
structing mathematics knowledge and not only reproducing what has historically 
been accumulated by humanity. In this sense, culture and scientific production may 
be accessible to the students so that they are able to interact with certain study 
objects, both to appropriate them and to change them in order to incorporate them 
to the domain of school mathematics.

When mathematics content is presented to the student isolated from real life, it 
becomes devoid of true educational meaning. When this connection with reality is 
lacking, the student’s approach to mathematics becomes more complex or even dif-
ficult to happen (Freitas, 1999). Unfortunately, the way pedagogical work is some-
times conducted in schools has been causing in the students a lack of interest and 
indifference regarding this domain and creating, throughout the student’s school 
life, a feeling of failure and inability to understand and solve mathematical prob-
lems (Gontijo, 2007).

16.2.3  Field

A field is composed of all those who can affect the structure of the related domain. 
Its primary function is preserving the domain as it is, and its second function is to 
select carefully new approaches to be incorporated to the domain. In each field of 
knowledge or of production (artistic, cultural, industrial, etc.), there is a group of 
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specialists who, because of their experience and knowledge, are considered quali-
fied to analyse and judge the elements that may be incorporated to the domain.

In mathematics, as in other fields of knowledge, the field is made up of different 
levels of specialists, from university researchers to teachers of basic schools; that is, 
it includes those who are producing and/or conveying knowledge by means of 
teaching at all the levels. Considering school mathematics, teachers represent the 
specialists who organize activities that make it possible for the students to enjoy the 
mathematical experience, and they are responsible for evaluating what the student 
produces. This way, representations and beliefs that these teachers may have regard-
ing mathematics may result in an action that fosters mathematical creativity (this is 
besides, of course, the theoretical mastery they have that allows them to teach/judge 
properly).

Hence, teachers must develop competences to create an environment appropriate 
to mathematics learning. In developing these competences, there is a vital role for 
initial and continued teacher education to inform teacher behaviour in the class-
room. For example, it is important that mathematics teachers have a clear view of 
the nature of mathematics, of mathematical activity, of mathematics learning and of 
what constitutes an environment suitable for learning mathematics (D’Ambrósio, 
1993). These things are important because, in considering if students’ mathematical 
work is creative, it is evaluated and validated by the teacher acting according to their 
conceptions, beliefs, values and attitudes. In order for the student’s mathematical 
production to become learning and an expression of their creativity, it is necessary 
that the pedagogical work developed at schools stimulates the students. For 
Brousseau (1996), it is the teacher’s duty to create a suitable situation that becomes 
a learning situation.

Cropley (1999, p.  634) identified some teacher behaviours that promote 
creativity:

1) possession of a fund of general knowledge; 2) knowledge of one or more special fields; 
3) an active imagination; 4) ability to recognize, discover, or invent problems; 5) skill at 
seeing connections, overlaps, similarities, and logical implications (convergent thinking); 
6) skill at making remote associations, branching out, seeing the unexpected, and so on 
(divergent thinking); 7) ability to think up many ways to solve problems; 8) a preference for 
accommodating rather than assimilating; 9) ability and willingness to evaluate their own 
work; ability to communicate their results to other people.

When dealing with mathematics field, Higginson (2000) considers that there are 
four prevalent conceptions in the teacher’s practice as to how creativity is mani-
fested in the classroom. The first sees creativity as a methodological resource to 
make the work dynamic. Thus, the class is considered creative when the teacher, for 
example, presents content to the students in an unusual, different and innovative 
way. The second considers as creative the construction of manipulative didactic 
materials, and the classroom becomes a laboratory to produce artefacts used to illus-
trate/demonstrate the mathematics being studied. The third relates to the atmosphere 
in the classroom, where the creativity is manifest when there are opportunities for 
uncovering ideas; that is, when students are allowed to express their ideas and inter-
pretations of the mathematics with which they are working. The fourth refers to the 
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activity of constructing symbolic models from problem situations. For that, problem- 
solving activities are proposed, and the students must suggest models of solution, 
indicating logical implications existing between the initial situation and variations 
performed until a solution is reached. Higginson (2000) affirms that, in educational 
practice, teachers mix these conceptions when they organize mathematics 
activities.

The systems perspective model considers that the person, the social system and 
the domain are marked by a dialectical interaction. Figure 16.1 illustrates the rela-
tion between the systems described by Csikszentmihalyi.

This suggests that the emerging of creativity in the process of teaching and learn-
ing mathematics depends on creating an environment favourable to mathematical 
activity – one that stimulates curiosity and enables learners’ actions with mathemat-
ical objects. In the school environment, teachers and students are in permanent 
interaction, with learning as the primary goal. This interaction is facilitated by a 
dialectic contact (Brousseau, 2008) in which learners’ social representations of 
mathematics determine their actions and guide their engagement in the work being 
done.

16.3  Some Strategies to Develop Creativity in Mathematics 
Education

The three systems proposed by Csikszentmihalyi to study creativity (the person’s 
background and personal experiences, the domain of culture and scientific produc-
tion and the field or social system) can be used to analyse creativity in mathematics. 
To stimulate creativity, it is helpful for teachers to be attentive to the experiences 
their students may have had, trying to identify elements that may have created a 
positive or negative stimulus as regards to mathematics and how these act in the 
construction of a positive representation of mathematics. It is also helpful for teach-
ers to investigate the curriculum structure they teach in order to identify where it 
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Fig. 16.1 The systems perspective. (Csikszentmihalyi, 1999a, p. 315)
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appeals to mathematical creativity and if its organization fosters creative processes. 
When teachers examine their own conceptions of mathematics and its teaching, this 
can help them to comprehend these in their dynamic characteristics whose essence 
is problem-solving.

Besides that, it is necessary to create a classroom environment favourable to the 
student’s creativity, strengthening personality traits such as self-confidence, curios-
ity, persistence, independence of thought and courage to exploit new situations and 
deal with the unknown. Organizing the work in the classroom can be done in ways 
that aim at collaborating with students, helping them to let go of emotional blocks 
such as fear of making mistakes or being criticized and to overcome feelings of 
inferiority and insecurity (Alencar & Fleith, 2003a). The way in which the student 
(person), the teacher (field) and the knowledge (domain) interact in the classroom 
can favour the construction of a culture of learning and academic success, helping 
the creative production to happen.

In this sense, many strategies are being employed to assist the development of 
mathematical creativity. Studies favour problem-solving, problem posing and redef-
inition as didactic-methodological strategies that enable the development of math-
ematical creativity and at the same time allow evaluating this creativity (Gontijo & 
Fleith, 2014; Haylock, 1987). While using these strategies may not guarantee the 
development of creativity, it is worth considering each in turn.

16.3.1  Problem-Solving

Problems, according to Sarduy (1987), are situations that cannot be solved with 
automatic and direct use of previous experience. In other words, a genuine problem 
means that the person does not have immediate access to the answer but is forced to 
think and reason to find necessary knowledge that leads to the answer or, in a broad 
sense, to the solution of problem.

As Brito (2006) puts it,

Solving problems is a complex form of combining cognitive mechanisms available from the 
moment the subject comes across a situation to which s/he must search alternatives of solu-
tion. It can be defined as a cognitive process aiming to transform a given situation in a situ-
ation directed to an objective, when an obvious method of solution is not available to the 
solver presenting four basic characteristics: it is cognitive, it is a process, it is directed to an 
objective and is personal because it depends on the person’s previous knowledge. (p. 18)

Adopting problem-solving as a strategy for organizing the pedagogical work in 
mathematics enables the development of capabilities such as observation, establish-
ing relations, communication, argumentation and validating processes, besides 
stimulating ways of reasoning such as intuition, induction, deduction and estima-
tion. These capabilities are required in the students’ everyday situations, which is 
when problem-solving demands a set of competences. This option has in it the con-
viction that mathematical knowledge acquires significance when students have 
challenging situations to solve and work to develop solving strategies. In this way 
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even a simple problem may stimulate interest for mathematical activity as long as it 
raises in the student the interest for looking for solutions and stimulates curiosity, 
creativity and reasoning improvement, expanding mathematical knowledge.

A problem to motivate the student and arouse their creativity cannot be charac-
terized as the direct application of an algorithm or formula but must involve inven-
tion and/or creation of any specific resolution strategy. The model suggested by 
Polya (1994) for solving problems inspires many that use this as a resource to con-
duct the mathematical learning process. The model presents four steps for solving a 
problem: (a) understanding the problem, (b) elaborating a plan of resolution, (c) 
executing the chosen strategies and (d) reviewing the solution.

Problem situations that aim to favour the development of mathematical creativity 
are formulated in contexts that make it possible for the student to generate numer-
ous ways to resolve them. Thus, the preferred type of problem to develop creativity 
is the one that is often called an open-ended problem, that is, one that admits mul-
tiple solutions.

For solving open-ended problems, students must be responsible for decision- 
making, not leaving this responsibility to the teacher or to the rules and models 
presented in books (Gontijo, 2015). Deciding what kind of methods and/or proce-
dures could be used can be based on previous knowledge and experiences students 
may have, especially resulting from prior works they had contact with or developed 
to solve similar problems. It is important to give the students the opportunity to 
construct their own models, test them and then come to the solution. It is also neces-
sary to construct a strategy to communicate to schoolmates and teachers their expe-
rience in solving the problem, explaining the mental process and the way they 
revised the selected strategies to come to the solution. A successful communication 
depends on how deeply the student understood the problem. Nevertheless, success-
ful communication enables the student to reflect about the methods chosen and, at 
the same time, how to use them in other problems and areas of mathematics. 

An example of open-ended problem that could be posed to students in the field 
of geometry is formulated as follows:

Another example is the problem posed by Kattou, Kontoyianni, Pitta-Pantazi, 
Christou, & Cleanthous (2013) for a mathematical creativity test as it allows for 
multiple solutions:

Look at this number pyramid. All the cells must contain one number. Each number in the 
pyramid can be computed by performing always the same operation with the two numbers 
that appear underneath it. Fill in the pyramid, by keeping on the top the number 35. Try to 
find as many solutions as possible (see Fig. 16.2).

A rectangle has an area of 120 cm2. Knowing that the length and width are 
whole numbers, answer: (a) What are the possible length and width of the 
rectangle? (b) What is the minimum perimeter possible?
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16.3.2  Problem Posing

Problem posing is described by Silver (1994) as the creation of a new problem or 
reformulation of certain problem presented to the students. Posing problems can 
happen before, during or after the solution of a problem. Problem posing must be 
based on concrete situations that express significant mathematical situations.

English (1997) considers that problem posing involves generating new problems 
and questions to explore a given situation and also reformulation of a problem dur-
ing the process of solution. For the author, this strategy allows the teachers to have 
important insights about how the students understand mathematical concepts and 
processes, as well as their perception of the activities done and their attitudes regard-
ing mathematics and the creative ability in mathematics.

To develop the capacity of posing problems, English (1997) points to three basic 
elements:

 (a) Understanding what a problem is: this refers to the ability of recognizing a 
structure underneath a problem and finding these structures in corresponding 
problems, that is, realize which different problems have similar structures.

 (b) Perceiving different problems: this element refers to aspects that may draw stu-
dents’ attention in everyday situations or not. Activities when students are able 
to express their perceptions regarding different problems and compare them to 
the different opinions their schoolmates may have can represent a powerful 
instrument to understand mathematics.

 (c) Perceiving mathematical situation in different perspectives: interpreting a math-
ematical situation in more than one way is particularly important for the student 
to develop his/her ability to posing or reformulating problems.

Activities involving problem posing can be proposed in all teaching levels. For 
example, Silver and Cai (1996) presented, in a mathematical creativity test, the fol-
lowing situation for the students to create problems: “Write different questions that 
can be answered from the information: Jerome, Elliot, and Arturo took turns driving 
home from a trip. Arturo drove 80 miles more than Elliot. Elliot drove twice as 
many miles as Jerome. Jerome drove 50 miles” (Silver & Cai, 1996).

Teachers can also encourage students to formulate a new, different question 
about an existing mathematical problem related to the contents they are working 
with. Another activity can be asking the students to formulate mathematical prob-
lems based on a sport they may be interested in or in any everyday situation that 
they may be interested in investigating (Sternberg & Grigorenko, 2004).

Fig. 16.2 Number 
pyramid. (Kattou et al., 
2013, p. 172)
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16.3.3  Redefinition

This strategy consists in redefining a mathematical situation in terms of its features, 
in a varied and original way, coming up with many possibilities of representing it. 
Thus, students must be encouraged to, for example, present different ways of orga-
nizing numbers, objects and other significant elements based on their mathematical 
properties and features.

Redefinition activities are developed from preschool. Logic blocks are usually 
employed at this level of education, for they enable the children to come to different 
ways of classifying pieces of this material, take as a reference one of its features 
(shape, colour, thickness and size) or the combination of more than one feature.

Haylock (1985) suggested, in an activity to evaluate mathematical creativity in 
basic education students, that students took the whole numbers from 2 to 16 (includ-
ing 2 and 16) and wrote the several subsets they were able to create with these 
numbers and indicated a rule for the formation of each of them, that is, indicating 
the characteristics numbers have and that allows that they form part of the same 
subset. This problem also represents an example of redefinition.

16.4  Final Considerations

In conclusion, mathematical creativity can be understood and stimulated taking into 
account the model proposed by Csikszentmihalyi, who considers creativity as a 
result of the interaction of three systems: person (genetic background and personal 
experiences), domain (culture and scientific production) and field (social system). 
Thus, in order to develop this creativity, attention needs to be paid to the experiences 
students have had, trying to identify elements that generate positive or negative 
stimuli in relation to mathematics and how they contribute to the construction of 
positive representation about this field of knowledge. The curriculum can be inves-
tigated to find out if its structure fosters mathematical creativity or if its organization 
encourages memorizing processes and reproduction of formulas and algorithms. It 
is also necessary to verify if the field members, who would be the teachers in school, 
understand that mathematics has a dynamic nature whose essence is problem- 
solving and that this strategy can help in educating students to be creative and com-
petent to solve not only school problems but especially those that appear in their 
different everyday life contexts.
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Chapter 17
Openness and Constraints Associated 
with Creativity-Directed Activities 
in Mathematics for All Students

Roza Leikin

17.1  Creativity as a Major Twenty-First-Century Skill

Modern society has been undergoing exponential innovative changes in all areas of 
life including sciences, technology, engineering and medicine. Computers, cell 
phones and Internet-based technologies influence our life endlessly. One of the cen-
tral roles of the educational system is to allow people to adapt fluently to these 
changes and innovations. Obviously, mathematics is at the basis of technological 
progress, but school education should also ensure – along with the development of 
deep and robust mathematical knowledge – students’ creative abilities. Moreover, 
teaching and learning of mathematics can and should make use of the advantages 
provided by technological progress to achieve this goal.

The NRC (National Research Council) committee defined a system of “transfer-
able knowledge and skills in the 21st century” (Pellegrino & Hilton, 2012). The 
report defines three major dimensions of the twenty-first-century skills – cognitive, 
intrapersonal and interpersonal competences – which are interwoven and support 
each other in their development. Cognitive competencies include clusters of pro-
cesses and strategies, knowledge and creativity associated with complex problem- 
solving. Strategical reasoning is described in terms of critical thinking, 
argumentation, decision-making and adaptive learning. The knowledge cluster 
includes information and ICT literacy. Creativity is one of the basic twenty-first- 
century cognitive skills that determine career readiness.

Intrapersonal competences encompass positive self-evaluation, self-regulation, 
responsibility and appreciation for diversity. Furthermore, intellectual openness, 
flexibility, adaptability, intellectual interest and curiosity, which are usually 
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 considered acute characteristics of a creative personality, are among the twenty-
first- century intrapersonal skills. Interpersonal skills, e.g. teamwork and collabora-
tion, have to be developed along with cognitive and intrapersonal competencies. 
These skills are critical for everyday life as well as for social, scientific and techno-
logical progress.

I call creativity-directed activity any activity which is aimed at developing, sup-
porting or evaluating creativity skills and other accompanying (above-mentioned) 
skills. I argue that any creativity-directed activity is a powerful tool for the advance-
ment of twenty-first-century skills in all the dimensions. I address the rich collection 
of chapters published in this section of the book in light of this argument. I discuss 
critical features of the Creativity-Directed Activities addressed by the authors. 
Finally, I suggest a framework for the analysis of types of openness, constraints and 
insights embedded in the creativity-directed mathematical activities and explain 
that creativity-directed activities are challenging – that is, cognitively demanding 
and interesting for the participants.

17.2  Components of Creativity-Directed Activities According 
to the Chapters Observed Here

Each of the eight chapters presents a unique view on creativity, while at the same 
time, they have many features in common. First, all chapters meaningfully intersect 
when it comes to the literature review: they address Guilford (1956) for divergent 
and convergent thinking and, with or without explicit reference Torrance, 1974, for 
the tetrad consisting of fluency, flexibility, originality and elaboration as integral 
components of the creative process. Second, within the creativity-knowledge para-
dox (Leikin, 2016), the authors accept the necessity of the knowledge base for cre-
ative production and consider creativity-directed activity to be a springboard for the 
development of mathematical knowledge.

The word cloud (created at https://www.jasondavies.com/wordcloud/) applied to 
the text of all the chapters in this section (Fig. 17.1) demonstrates that when the 

Fig. 17.1 Word cloud 
applied to the text of all the 
chapters in this section
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authors analyse creativity-directed mathematical activities, both the teachers and 
the students who are involved in solving problems of different types play a central 
role. Furthermore, they address students’ creative ability as related to their knowl-
edge, visual skills and ability to comprehend different strategies and ways of solv-
ing the problems as well as flexibility and the raising of new ideas. Finally, in line 
with the vision of the goals of education in the twenty-first century, the authors 
agree on the importance of creativity for students’ futures.

Like any activity, creativity-directed activities have particular motives and goals 
and are conducted under specific conditions (Leontiev, 1983). The activities are 
composed of actions and operations as determined by goals and conditions. The 
actions and operations (tasks and problems) are framed by a theoretical perspective 
on creativity chosen by facilitators of the activities. In spite of the differences in 
specific goals, conditions and groups of participants, the unifying motive of all the 
authors in this section is their commitment to the integration of creativity-directed 
activities in mathematics education for all and their understanding that creativity is 
a skill that can be learned and advanced.

Carreira and Amaral (Chap. 9) aimed to develop a model for the evaluation of 
creativity in the solving of nonroutine problems by young students. The study was 
conducted in the conditions of mathematical outside-the-classroom, web-based 
problem-solving competitions. The goal of the activity was both development and 
evaluation of students’ creativity. Correspondingly, students’ ability to produce 
solutions that were unique relative to their group served as an indicator of the origi-
nality of the solutions. Carreira and Amaral introduce a model for the evaluation of 
creativity which integrates dimensions of originality, activation of mathematical 
knowledge and activation of forms of representation. The authors devise their origi-
nal visual representation of this three-dimensional model for the assessment of 
creativity.

Tabach and Levenson (Chap. 10) demonstrate the power of mathematical tasks 
with an infinite number of solutions for eliciting mathematical creativity. They 
examined problem solutions produced by adults with a range of mathematical back-
grounds and resources within a time constraint of 5 min. Analysis of solutions was 
based on the diversity of problem-solving strategies and outcomes. Vale, Pimentel 
and Barbosa (Chap. 11) aimed to demonstrate the power of visual solutions for 
advancing creativity, deepening mathematical understanding and reasoning and 
developing problem-solving abilities. A problem-solving strategy that leads to a 
visual solution, named seeing, serves as a complementary strategy and thus requires 
flexible reasoning. Visual solutions are also shown to be connected to pattern recog-
nition and generalisations, and the originality of solution is based on the ability to 
“think outside the box”. Bokhove and Jones (Chap. 13) discuss the stimulation of 
mathematical creativity through constraints in problem-solving. They examine and 
exemplify the power of implementation of “constraint-based” task design in 
creativity- directed activity. They argue that constraints stimulate creative thought 
and describe several types of constraints accompanied by examples of constraint- 
based mathematical tasks. In this context, the requirement to produce a visual solu-
tion can be seen as a creativity-eliciting constraint of a task. The authors introduce 
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the concept of potential creativity of a task and claim there is a continuum of open-
ness which is relative with respect to personal experiences.

Vanegas and Giménez (Chap. 12) work with prospective mathematics teachers in 
the purpose of developing their proficiency in creativity-directed teaching. The 
authors develop what they call “professional asks” for teachers in which they are 
asked to evaluate student dialogues and responses. The goal of this study was to 
explore prospective teachers’ conceptions of creativity. The authors find that the 
teachers develop understanding of the importance of the use of multiple representa-
tions as well as imagery for the development of students’ mathematical compe-
tences and creativity. Three types of imagery were identified: kinaesthetic imagery, 
pattern images and changing representations.

Moore-Russo and Demler (Chap. 14) explore educators’ conceptions of creativ-
ity at the gifted mathematics programme housed on a university campus. They sug-
gest a multiphase coding for the analysis of teachers’ conceptions of creativity 
based on four theoretical dimensions. The first dimension distinguished between 
product, process and subjective experience; the second dimension focused on flu-
ency, flexibility and novelty; the third dimension included such perspectives as aes-
thetic, free market, scholarly and uncertainty; and the fourth dimension integrated 
instructional design principles for guiding creativity.

Gómez-Chacón and de la Fuente (Chap. 15) aimed to develop teachers’ creativ-
ity and skills in the management of creativity-directed activities. They asked teach-
ers to transform problem-solving tasks into a mathematical research project. Two 
creativity-directed activities can be observed in this work: one is task transforma-
tion itself, and the other is performing mathematical research projects. Three theo-
retical lenses for considering creativity are implemented: (1) creativity is defined, as 
a product, a process or an experience; (2) fluency, flexibility and novelty; and (3) 
principles that allow to maximise creativity. Gómez-Chacón and de la Fuente anal-
yse types of mediation that support creativity-directed activity in students. Gontijo 
(Chap. 16) takes a systems perspective on creativity with a focus on the interaction 
between the three systems – the person, the domain and the field – with problem- 
solving, problem posing and redefinition being major actions in creativity-directed 
activities.

17.3  Openness and Constraints in Creativity-Directed 
Activities

While there is a consensus that the openness of the task is a critical feature of 
creativity- directed activity, Bokhove and Jones (Chap. 13), uniquely for this collec-
tion of works, explicitly adapt a position according to which constraints affect 
creativity- directed activities, actions and operations due to constraints being inte-
grated in the definition of creativity: a requirement for novel and useful products. 
Constraints can be associated with domain, cognitive processing, variability, time 
limitations, availability of resources, tasks and personal talent. Despite the 
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seemingly paradoxical contrast between the request for openness inherent to 
creativity- directed activities and the power of constraints in provoking creative rea-
soning, they seem to be two sides of a coin; the openness of a task can also be con-
sidered a particular type of task-design constraint of the creativity-directed activities. 
For example, the requirement to produce visual solutions in Vale et al. (Chap. 11) 
can be seen either as a constraint or as an opening to alternative ways of solution.

An interesting comparison of openness combined with constraint can be seen in 
the two following problems and I assume can be used to explain the power of con-
straints in creativity-directed activities.

Both problems are combined open-start and open-end tasks. The openness of 
Problem 1 is related to the possibility of constructing geometrical figures of differ-
ent types using available resources (e.g. paper and pencil and DGE). It includes time 
constraints only. Then the discussion of the collective solution space can be focused 
on the variety of answers and their rareness. I would suggest that a discussion of 
classes of figures and of the systematic strategies for solving this problem could 
raise mathematical challenge of the activity and, probably, allow for a process of 
generalisation. I assume that a requirement of describing possible systematic strate-
gies for solving this problem could be of interest for participants. However, this 
definitely cannot be performed within a 5-min time limit.

Problem 2 seems to be “less open”, though it is also a combined open-start and 
open-end task. It includes constraints related to the type of figures (rectangles) that 
should be constructed and the length of sides (whole number of units). This task 
allows flexible and systematic reasoning associated with different problem-solving 
strategies. Factorization of 120 into 2 factors can be performed in different ways, 
and the whole solution space can serve as an exciting base for the discussion of the 
fundamental theorem of arithmetic as a connector for all the produced solutions.

The two problems are definitely creativity-evoking and challenging. However, 
the different constraints included in these problems lead to different goals that can 
be attained by means of solving them.

The use of open problems in mathematics education has a long history. In 1993, 
Pehkonen led a PME discussion group (PME-17 in Japan) and then edited a special 
issue of ZDM in which four articles (Nohda, 1995; Pehkonen, 1995; Silver, 1995; 

Problem 1
In 5 min construct multiple polygons with an area of 15 sq. units (Tabach & 
Levinson, Chap. 10).

Problem 2
Construct all possible rectangles for which the area is 120 sq. units, and the 
sides’ lengths are whole numbers of units (Gontijo, Chap. 16).
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Stacey, 1995) analysed the use of open problems in mathematics teaching and learn-
ing. In this special issue, Nohda and Silver argued that the main goal of using open 
problems is promoting creativity and mathematical thinking. Later Silver (1997) 
explicitly connected problem-solving and problem posing with Torrance’s (1974) 
component of creativity – fluency flexibility and originality.

Open problems include a broad range of mathematical problem types: “investi-
gation problems, problem-posing tasks (e.g., problem variations, using the what-if- 
not method), real-life situations, projects, problem fields (problem sequences), and 
problems without questions” (Pehkonen, 1995, p. 55). Pehkonen suggested consid-
ering open problems as an “umbrella class” comprising problems of three main 
types, depending on the openness of the starting situation (open-start problems) and 
openness of the goal situation (open-end problems) defined by the task. Table 17.1 
systematizes types of openness and constraints embedded in creativity-directed 
activities. It includes references to corresponding types of activities described in 
this book section.

Table 17.1 Types and examples of open creativity-directed tasks

Types of tasks Task requirements
Examples of tasks can be found in(a, 

b)

Open-end Multiple answer 
tasks

Finding all possible 
outcomes (for a finite 
number of solutions)

Gontijo (Chap. 16): Problem 2 
above

Finding as many answers 
as possible with a time 
constraint (for tasks with 
infinite number of 
answers)

Tabach & Levinson (Chap. 10): 
Problem 1 above

Task the solution which 
is an inequation

Verschaffel and De Corte (1997): 
birthday party problem, school 
distance problem

Open-start Nonroutine 
problems

Solving “new” problem 
(applying knowledge in a 
new situation)

Carreira and Amaral (Chap.9): 
solving Olympiad problems

Insight-based 
problems

Insight-based due to 
the newness of the 
problem

Monck problem http://bredemeyer.
com/RequisiteVariety/?p=154

Multiple solution 
tasks

Solving/proving 
problems using multiple 
strategies base on:
  Different 

representations
  Different theorems/

properties
  Different tools
  Concepts from 

different fields
Insight-based solutions 
are possible

Vale, Pimentel and Barbosa (Chap. 
11): visual solutions
Gómez-Chacón and de la Fuente 
(Chap. 15): multiple 
representations
Bokhove and Jones (Chap. 13): 
alternative solutions under 
constraints
Krutetskii 1968/1976 (e.g. Gilya’s 
solutions, p. 208)
Leikin (2007, 2009a, 2009b, 2016)

(continued)

R. Leikin

http://bredemeyer.com/RequisiteVariety/?p=154
http://bredemeyer.com/RequisiteVariety/?p=154


393

Table 17.1 (continued)

Types of tasks Task requirements
Examples of tasks can be found in(a, 

b)

Open-end 
and 
open-start 
combined

Multiple 
solution/answer 
tasks

Different strategies and 
different answers are 
possible

Tabach & Levinson (Chap. 10): 
Problem 1
Gontijo (Chap. 16): Problem 2

Sorting tasks Sorting criteria chosen 
by participants, different 
sorting criteria lead to 
different groups of 
objects

Zaslavsky and Leikin (2004)

Problem posing Posing problems (that 
include real-life 
situations) to match a 
mathematical model

Singer, Ellerton, and Cai (2015)

Problem transformation Gómez-Chacón and de la Fuente 
(Chap. 15): transforming problem- 
solving tasks into mathematical 
research projects

Mathematical 
investigations 
research projects

Discovering different 
properties using different 
investigation strategies

Gómez-Chacón and de la Fuente 
(Chap. 15): transforming problem- 
solving tasks into mathematical 
research

Insight-based solutions 
are often

Leikin (2015)

aThe table does not cover all the possibilities
bThere was no possibility to cite all the work in the field

Solving open problems makes a strong contribution to both the development of 
mental flexibility and openness and the development of problem-solving expertise. 
Expertise is a result of deliberate practice that leads to the acquisition of huge 
amounts of relevant knowledge and its systematic storage, which allows for better 
use of rapid processing as expressed in the ability to make fluent and flexible use of 
strategy-based processes as and when required (Ericsson & Lehmann, 1996; 
Schoenfeld, 1992). Creativity (it is commonly agreed) is expressed in the produc-
tion of original work that is useful and adaptive (Sternberg & Lubart, 2000). It is 
associated with invention and insight, which is an experience of suddenly realizing 
“how to solve a problem” (Hadamard, 1945; Polya, 1954/1973).

The importance of creativity for child development was stressed by Vygotsky 
(1930/1982). Creativity (or “imagination” in Vygotsky’s words) is the central mech-
anism in the development of children’s knowledge and skills and thus in the devel-
opment of expertise. Vice versa, the creative process requires deep and broad 
knowledge and rich experience since it presumes to expand existing knowledge into 
new territory, on the basis of one’s existing knowledge. Moreover, according to 
Vygotsky, everything the imagination creates is always based on elements taken 
from a person’s previous experience. These two connections between creativity and 
knowledge base create the creativity-expertise paradox (Leikin, 2016): one cannot 
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be creative without a sufficient level of knowledge and expertise, while creativity is 
the main mechanism of knowledge development.

The creativity-expertise paradox emphasizes the importance of the integration of 
creativity-directed activities in the deliberate mathematical practices used in school 
mathematics. This integration requires that a distinction be made between absolute 
and relative creativity (Leikin, 2009a). Absolute creativity is associated with “his-
torical works” as termed by Vygotsky (1930/1982, 1930/1984); relative creativity is 
associated with creativity in mathematics students and teachers.

The relativity of mathematical creativity in the education of students and teach-
ers can be of different types that can be found in the chapters here – originality of 
solution (either problem-solving strategy or problem-solving outcome) can be eval-
uated relative to:

• A person’s previous experience in his/her educational history
• A person’s reference group, when a solution is unique within the collective solu-

tion space (Leikin, 2007)

Relativity of the first type is associated with mathematical insight linked to the 
implementation of known strategies in an unfamiliar situation or in an unexpected 
way and usually leads to the production of ideas that are new to the individual. 
Relativity of the second type is related to the uniqueness of the solutions, questions 
asked or ideas on the group level. In this sense, collective solution spaces are the 
major source for the development of individual solution spaces and thus of indi-
vidual creativity and expertise. The two types of relativity are intertwined and reflect 
mutual relations between the development of creativity and expertise in mathemat-
ics and beyond.

17.4  Creativity-Directed Activity in Mathematics 
as a Springboard for the Development of Twenty-First- 
Century Skills

Mathematical challenge – defined as mathematical difficulty that a person is able 
and motivated (interested) to overcome at a particular moment – is an integral com-
ponent of high-quality mathematical instruction. Analysis of creativity-directed 
activities above demonstrates that they are challenging due to the openness, con-
straints and mathematical insight embedded in the creativity-directed mathematical 
tasks. Levav-Waynberg and Leikin (2012) demonstrated that systematic implemen-
tation of multiple solution tasks in geometry significantly advanced learning 
achievements, fluency and flexibility. This finding emphasizes the importance of the 
integration of creativity-directed activities in mathematical instruction. The open-
ness of the tasks also serves as a basis for differentiated instruction that is fitted to 
students’ needs. Note that development of originality and of the ability to produce 
insight-based solutions is more complex. Our experience demonstrates that while 
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flexibility and fluency are dynamic characteristics, which can be developed, origi-
nality seems to be related more to general intelligence (Lev & Leikin, 2017), and 
thus insight-based tasks require special attention and mediation.

Interestingly, creativity-directed activities not only constitute an effective tool 
for the development of cognitive skills but also seem to promote the development of 
intrapersonal and interpersonal competences. Pellegrino and Hilton (2012) recom-
mend using multiple and varied representations of concepts and tasks, encouraging 
elaboration, questioning and explanation, engaging learners in challenging tasks 
and priming student motivation. All these activities are obviously described in the 
chapters observed here. When each student is provided with the opportunity to pres-
ent their solutions to others and when a diverse array of solutions is discussed in the 
classroom, collective solution spaces become a major source for the development of 
individual solution spaces. Thus, when accompanied by teamwork and collabora-
tive discussion, the suggested approaches and activities become a powerful tool for 
the development of responsibility, appreciation for diversity, intellectual openness, 
intellectual interest and curiosity  – the twenty-first-century intrapersonal skills. 
More systematic, big-scale studies that explore creativity-directed instructional 
practices and devise recommendations on the effective integration of creativity- 
directed tasks in teaching and learning mathematics are needed.

A decade ago, a review of research on creativity in mathematics (Leikin 2009b) 
demonstrated that publications on creativity in mathematics were rare and the 
research on mathematical creativity was overlooked. The same review revealed a 
gap between the research on creativity as a general psychological phenomenon and 
research on mathematical creativity. Luckily, the situation has changed during the 
past decade. Several volumes were issued since then (REF). Mathematics educators 
have paid more and more attention to the nature and nurture of creativity in school 
mathematics and beyond, and more connections are drawn between theories in 
mathematics education and theories of creativity. The current collection is an excit-
ing example of an additional meaningful step in the development of creativity- 
directed research and practice in mathematics education. I am certain that readers 
will enjoy the diverse range of creative ideas about creativity-directed activities and 
will use them in their practice.
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Chapter 18
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18.1  Introduction

In this chapter, we present part of the research work developed in one of the strands 
of the Problem@Web Project that aimed to study attitudes and emotions related to 
mathematics and mathematical problem solving, both in school and beyond-school 
activities, involving students, parents, and teachers (Carreira, Jones, Amado, Jacinto, 
& Nobre, 2016). Here, we will be reporting part of the research results related to the 
attitudes revealed by the young participants in the mathematical competitions 
SUB12 and SUB14 towards mathematics, problem solving, in the context of their 
participation in those web-based inclusive competitions.

The students’ participation in inclusive mathematics competitions such as 
SUB12 and SUB14 stands out as a fruitful field of affect involving mathematics 
(Amado, Carreira, & Ferreira, 2016), similar to what has been observed in other 
contexts with comparable characteristics (Applebaum & Leikin, 2014; Freiman & 
Lirette-Pitre, 2009; Freiman & Manuel, 2015). Our approach to the study of student 
attitudes moves away from the more traditional trend of research, which is very 
focused on searching for causal relationships between attitude and achievement and 
looking at mathematics from the point of view of a school activity (Di Martino & 
Zan, 2015). Instead, as highlighted in Fig. 18.1, our approach intends to study a 
combination of attitudes towards (i) mathematics, (ii) mathematical problem solv-
ing, and (iii) engagement with challenging mathematics within an activity that takes 
place beyond school.

In this way, we aim to get a better understanding of the attitudes of the young 
participants based on their participation in the competitions, by addressing different 
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dimensions involved, in an interconnected way, and by resorting to several kinds of 
data, which include interviews and questionnaires, together with spontaneous state-
ments and reactions expressed in their e-mail messages generated in the course of 
the web-based interaction that consistently takes place in each edition. We expect 
this broadens our knowledge on the way attitudes relate to students’ engagement 
with positive experiences with mathematics and mathematical problem solving 
beyond school.

Typically, mathematics and problem solving are associated with negative atti-
tudes such as rejection, disinterest, or disaffection on the part of a large number 
of students (Freiman, Vezina, & Gandaho, 2005; Mata, Monteiro, & Peixoto, 
2012). Along with such dominant picture, much attention has been given to the 
effects of attitudes on school performance and school attainment (OECD, 2013). 
However, little is yet known about other contexts of mathematical activities that 
are dissociated from the issue of school achievement but not indifferent to the 
issue of creating affective bonds with mathematics. As such, this project becomes 
particularly relevant insofar as it is more related to engagement with mathemat-
ics than to school performance, as it focuses on inclusive competitions that wel-
come young participants with different levels of achievement in school 
mathematics. Besides, it brings to the foreground the problem-solving activity as 
a way to attract students to the world of mathematics, both highest and lowest 
achievers. Recent reports (OECD, 2013) have already drawn attention to the 
weak involvement of students with mathematical activities outside the class-
room, in pointing out that the vast majority of students only participate in such 
activities when these are a school requirement.

attitudes
towards

participation in
SUUB12 & SUB14

attitudes
towards
problem
solving

attitudes
towards

mathematics 

Fig. 18.1 A threefold 
perspective for the study of 
attitudes regarding 
mathematics and problem 
solving in a beyond-school 
context
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18.2  Underlying Aspects of the Research Field

The research field of this study – the mathematical problem-solving competitions 
SUB12 and SUB14 – undertakes particular characteristics that bear relevance to the 
specific domain of students’ attitudes. First and foremost, it is inspired by the con-
cept of mathematical challenge, and it embodies the idea of inclusion within a math-
ematical competition.

In this section, we start by clarifying our understanding of mathematical chal-
lenges and inclusive mathematical competitions.

18.2.1  Mathematical Challenges

The idea of mathematical challenges has been discussed by several authors regard-
ing the different contexts in which they may arise. Although not a new discussion, 
it has been accentuated in recent years, mostly in light of the relevance, that this 
type of mathematical activity has aroused, both among students and teachers and 
more generally in society (Kenderov et al., 2009).

According to Protasov et al. (2009), mathematical challenges have always been 
present throughout history, in a more or less formal way, sometimes as a means to 
encourage the ingenuity and insight of those who were incited to solve difficult 
problems and could be granted some reward. This practice of putting mathematical 
challenges to others has taken on different conventional forms, being one of them 
the largely disseminated promotion of mathematical competitions directed at stu-
dents. In fact, nowadays the presence of mathematical challenges has to be consid-
ered both in the classroom and beyond, including in public events. The recognition 
of its importance may be seen as reflected, for example, in the publication of the 
Challenging Mathematics in and Beyond the Classroom: The 16th ICMI Study 
(Barbeau & Taylor, 2009), which is devoted to the discussion of mathematical chal-
lenges in and out of school, as well as in the formation of a topic study group dedi-
cated to mathematical competitions in the International Congress on Mathematical 
Education (ICME).

Although the literature offers several definitions of mathematical challenges, 
also referred to as rich mathematical problems, they share many aspects that allow 
us to recognize some common denominator (Freiman & Manuel, 2015; Leikin, 
2007, 2014; Protasov et al., 2009; Taylor, 2006).

Leikin (2004) has identified a set of parameters, generated from the contributions 
of theorists and researchers who were determinant in the problem-solving domain 
(Charles & Lester, 1982; Polya, 1973; Schoenfeld, 1985), rendering a challenging 
mathematical task as one which should (a) be motivating, (b) not include readily 
available procedures, (c) require an attempt, and (d) have several approaches to a 
solution.
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According to Taylor (2006), the most frequent meaning of mathematical chal-
lenge is grounded on the idea that a challenge is the experience of finding a new and 
unforeseen situation and attempting to solve it. The author also claims that by learn-
ing to overcome a challenge offered by a mathematical situation, the individual 
develops the ability to abstract, which will eventually be helpful in everyday situa-
tions without any mathematical context but still requiring a systematic approach.

Challenge is not only an important component of the learning process but also a vital skill 
for life. People are confronted with challenging situations each day and need to deal with 
them. Fortunately, the processes in solving mathematics challenges (abstract or otherwise) 
involve certain types of reasoning which generalize to solving challenges encountered in 
everyday life. (p. 2)

Another form of interpreting this notion, as suggested by Barbeau (2009), includes 
that a challenge may be an opportunity for the individual to develop knowledge and 
understanding:

…a challenge is a question posed deliberately to entice its recipient to attempt a resolution, 
while at the same time stretching their understanding and knowledge of some topic. (p. 5)

Thus, we can say that a mathematical challenge is an interesting and motivating 
mathematical difficulty that a person can overcome. A mathematical challenge is a 
core element of mathematical learning directed at the fulfilment of the learner’s 
mathematical potential through integration of mathematical difficulty and positive 
affect in the learning process (Applebaum & Leikin, 2014).

There is a clear consensus among the various authors regarding the need to pay 
particular attention to the selection of the challenges posed to young people in and 
beyond the classroom. For example, Applebaum and Leikin (2014) consider that it 
is necessary to take into account all the variables having to do with the students’ 
learning potential. Thus, a mathematical challenge must be adjusted to the students’ 
abilities and therefore not too easy or too difficult. It should motivate students to 
persevere on the task and develop their mathematical curiosity and interest in the 
subject. It should also support and nurture students’ beliefs about the creative nature 
of mathematics, the constructive nature of the learning process, and the dynamic 
nature of mathematical problems as having different solution paths and enabling 
individual learning styles and knowledge construction (Leikin, 2007).

Likewise, Barbeau (2009) brings forth other facets, such as the several processes 
involved in solving a good challenge:

A good challenge will often involve explanation, questioning and conjecturing, multiple 
approaches, evaluation of solutions for effectiveness and elegance, and construction and 
evaluation of examples. (p. 5)

In short, it is possible to isolate some characteristics that make a challenge appropriate 
or not, such as the context in which it is proposed and the background of the recipient. 
A good mathematical challenge in the classroom may not be a good challenge beyond 
the classroom. In fact, there have been proposals to characterize good mathematical 
challenges, often from the point of view of the students and other times from the teach-
ers’ perspective. One of such models (Freiman & Manuel, 2015; Manuel, 2010) 
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suggests a set of dimensions that constitute a good challenge or rich problem, each of 
which is deployed in several indicators. This model establishes the principles underly-
ing a good mathematical challenge, according to which such a problem should be (i) 
open-ended, (ii) contextualized, (iii) ill-defined, (iv) complex, and (v) allowing multi-
ple interpretations.

Our perspective of a mathematical challenge or rich mathematical problem is in 
line with the broad concept presented by many researchers in the field, and it con-
tains, in particular, some of the characteristics that are present in the model offered 
by Manuel (2010). Another distinctive feature of good challenges, as suggested by 
Kenderov et al. (2009), is that they are suitable for participants with different levels 
of performance in mathematics:

…Challenges can be adapted to all levels of achievement. Even those with limited abilities 
can benefit from a challenging environment. They will be involved in the investigation and 
strategizing from the outset, and so gain an intimacy with the mathematics involved. (p. 87)

Having in mind the main key features of a mathematical challenge, we may say that 
the mathematical problems selected, within the scope of the mathematical competi-
tions SUB12 and SUB14, are:

 1. Contextualized, because they present concrete situations (real or fictitious).
 2. Reasonably complex, because they imply more than a single step, and often 

more than a mathematical concept, as well as require finding patterns and 
generalization.

 3. Open-ended, in the sense that they allow several paths leading to the solution.
 4. Likely to offer several points of entry and can be approached in different ways.
 5. Suited to different skill levels, as they can be also solved through non-formal 

methods.

Finally, we know that mathematical challenges can be worked out in school and 
beyond. Our choice to look at solving rich mathematical problems in the context of 
a mathematical competition that takes place beyond the classroom has to do with 
the realization that there are opportunities and advantages that are specific to this 
context and that are relevant to identify positive attitudes regarding mathematics, 
which are desirable for mathematics learning. Table  17.1 illustrates some of the 
most obvious differences regarding the activity of solving rich mathematical prob-
lems when comparing the contexts of in and beyond the classroom, by taking as a 
reference the mathematical competitions SUB12 and SUB14.

18.2.2  Inclusive Mathematical Competitions

Mathematical challenges are closely linked to mathematical competitions as dis-
cussed above. But mathematical competitions have also been conceived as an activ-
ity to motivate students to mathematics and to promote mathematical talent.
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In Portugal, as in the whole world, the number of mathematical competitions has 
increased, taking on the most diverse forms, contents, and durations and targeting 
ever-widening groups of students. Examples of well-known competitions are the 
national and international Mathematical Olympiads aimed for especially talented 
students, along with others like the Mathematical Kangaroo or the SUB12 and 
SUB14 problem-solving competitions, which clearly are of an inclusive character, 
that is, they are open to a large number of students with varying degrees of problem- 
solving ability.

One of the intentions of these so-called inclusive competitions is to create oppor-
tunities for the development of positive attitudes towards mathematics. This means, 
among other aspects, to motivate and to engage students with mathematics, promot-
ing enjoyment and interest for this subject and involving them in activities that are 
pleasant for them (Kenderov et  al., 2009; Stockton, 2012). Competitions of an 
inclusive character, such as the SU12 and SUB14, propose several problems 
throughout their course that are simple though often intriguing and set in familiar 
situations (Carreira et al., 2016).

The participation of the students in an inclusive competition must be based on 
their decision and willingness, as stressed by Protasov et al. (2009). No parent or 
teacher should force or make children or students participate. One of the distin-
guishing features of inclusive competitions, which envisage the participation of a 
large number of students, is that the proposed activities are intended for all, or in 
other words, they try to ensure that the mathematical abilities involved are within 
the scope of all students.

This may be a reason why we find opinions on the importance and the advan-
tages of (inclusive) competitions being detached from the curriculum:

One of the problems with the classroom is that a school curriculum is rather restricted and 
cannot suit all. Competitions enable students to be exposed to other aspects of mathematics 

Table 17.1 Rich mathematical problem solving in and beyond the classroom

Rich mathematical problem solving
In the classroom In the mathematical competitions SUB12 and SUB14

Limited time Extended time
Possibility of addressing the teacher 
and using the classroom resources

Possibility of resorting to a large diversity of human and 
material resources

Strong linkage of problems with the 
official school curriculum

Independence of problems from the official curriculum

Solving the problems using formal 
methods or with the aim of obtaining 
new formal methods

Great independence and freedom in the creation of a 
resolution strategy and in the way of approaching the 
problem

Mathematical communication 
strongly linked to the mathematical 
language of the classroom

Freedom and creativity to express the thinking/
reasoning that leads to the solution

Predominantly use of formal and 
conventional representations

Very diverse use of representations, including diagrams, 
images, graphics, or just words, as well as others made 
possible by the use of digital technologies
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and for them to apply the skills they have to new situations. Competitions enrich the learn-
ing experience of hundreds of thousands, in fact millions of students who participate in the 
inclusive competitions. (Kenderov et al., 2009, p. 64)

Some researchers have already shown that participation in mathematical competi-
tions of an inclusive nature, particularly for the younger ones, has a positive influ-
ence on their motivation to learn mathematics (Freiman & Véniza, 2006; Kenderov 
et al., 2009; Koichu & Andzans, 2009; Wedege & Skott, 2007). Moreover, the ben-
efits of participating in mathematical competitions beyond the classroom – which 
are not only challenging but also intended to be appealing and mathematically 
enriching projects – include developing a positive affective relationship with math-
ematics and problem-solving activity. And this happens for both students who per-
form well in school mathematics and those who experience a lesser degree of 
success in the school context (Freiman & Véniza, 2006; Freiman et  al., 2005; 
Kenderov et al., 2009). Satisfaction, the sense of self-efficacy, and the enjoyment 
and interest in mathematics are some of the advantages stemming from the partici-
pation of young people in inclusive mathematical competitions that have been iden-
tified in previous research studies (Freiman & Applebaum, 2011).

18.3  A Theoretical Model of Attitude

In mathematics education, research on attitude has a very long tradition (Hannula, 
2012; Hannula et al., 2016; McLeod, 1992), and in that tradition, there is a great 
concern of researchers with the relation between attitudes and performance, namely, 
school performance. Therefore, the efforts tend to be more evident in the persistent 
attempts at identifying, measuring, and correlating variables in the field of attitudes 
than at producing a theoretical conceptualization around the construct of attitude 
(Di Martino & Zan, 2015). The recognized difficulty in the theorizing of attitude is 
fairly understandable due to the enormous complexity, invisibility, and fluidity of 
this concept, which includes its interweaving with other affective dimensions, such 
as beliefs, emotions, self-confidence, motivation, anxiety, and so on. More recently, 
the efforts to deepen and construct the concept of attitude have become more accen-
tuated, and new theoretical and methodological approaches to the study of attitudes 
have been affirmed in the field of mathematics education (Eligio, 2017).

In a sense, those efforts seek to break with some previous models that, although 
pioneering and allowing a remarkable development of the study of attitudes and 
other affective variables, paralyzed the theoretical discussion in favour of the devel-
opment of instruments and their empirical validation. Among such models, it is 
impossible to ignore McLeod’s theoretical approach in which “attitude refers to 
affective responses that involve positive or negative feelings of moderate intensity 
and reasonable stability” (p. 581, our emphasis). This model is based on a division 
of the affective domain into three categories, beliefs, attitudes, and emotions, and 
the major criteria to distinguish them are aspects such as the duration/intensity and 
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the stability of the affective responses they provoke in individuals regarding math-
ematics. In this model, beliefs and attitudes are usually more stable, while emotions 
usually change more quickly. Emotions lie at a higher end of a continuum of inten-
sity, with beliefs at the weaker intensity opposite end and attitudes at the intermedi-
ate points.

Therefore, we can think of beliefs, attitudes, and emotions as representing increasing levels 
of affective involvement, decreasing levels of cognitive involvement, increasing levels of 
intensity of response, and decreasing levels of response stability. (McLeod, 1992, p. 579)

One of the consequences of this perspective, as we have emphasized before, is a 
load of fuzziness and ambiguity in the conceptualization of attitude, insofar as it is 
regarded as something that lies in an intermediate position between two extremes. It 
means that one cannot speak of attitude without putting it into some relative posi-
tion to beliefs and emotions. Another critical issue that has been raised is the char-
acterization of attitudes as positive/negative. Such dichotomy has been simplistically 
identified with an emotional disposition towards mathematics that could be summed 
up in the opposition between like and dislike. The work of McLeod (1992) and 
many other researchers tends to identify the positive and the negative with what is 
emotionally pleasant and unpleasant, thus making the definition of attitude unidi-
mensional, which leads to attitudes being examined in terms of dislike of geometric 
proof, enjoyment of problem solving, or preference for discovery learning, among 
other examples. At the basis of this conceptualization is the assumption that atti-
tudes can be analysed in terms of emotional responses that correspond to them. An 
example would be the following causal relationship: if students feel emotionally 
satisfied working with their classmates in solving problems, then they develop a 
positive attitude towards group work in learning mathematics. In other words, a 
positive emotion triggers a positive attitude towards mathematics or the learning of 
mathematics. One of the weaknesses of this hypothesis seems to be on the fact that 
several large-scale studies do not find a particular causal relationship that could be 
expected between a positive attitude towards mathematics and achievement in 
mathematics. This fact continues to generate puzzlement among researchers, par-
ticularly with regard to the results of the PISA studies (Eric, 2011).

The research work of Di Martino and Zan (2010, 2011, 2015) has been consoli-
dated as a proposal to overcome the conceptual fragilities mentioned above. On the 
one hand, the authors embrace the need to consider attitude as an autonomous theo-
retical concept, which therefore ceases to be seen as a hybrid form between belief 
and emotion and is no longer defined on the basis of the instruments designed to 
capture it. On the other hand, they seek to overcome the unidimensional nature of 
attitude, connected to the duality of like/dislike, and therefore to the emotional dis-
position, by postulating that an attitude is negative when at least one of its various 
dimensions is negative.

Their theoretical formulation does not eradicate complexity or density from the 
concept of attitude; however, it makes the concept as the ground on which cognitive, 
emotional, and behavioural elements are played. Of course, the fact that relations 
can be found between attitudes and achievement is not to be ruled out; however, the 
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idea of causality and measurement is set aside in order to give primacy to ways of 
interpreting and understanding what a positive attitude or a negative attitude means 
(Di Martino & Zan, 2011). One of their intentions is to capture the subjectivity of 
the interaction between emotional disposition and other dimensions of attitudes that 
may allow forms of diagnosis and intervention in the face of negative attitudes or 
the implementation of projects to cultivate and develop positive attitudes towards 
mathematics (Di Martino & Zan, 2010).

In recent years, Di Martino and Zan (2010, 2011, 2015) have established what 
they have named as a three-dimensional model for attitudes (TMA) towards math-
ematics, which consists of three dimensions (Fig. 18.2): (1) emotional disposition 
towards mathematics, (2) vision of mathematics, and (3) perceived competence in 
mathematics.

When considering the model against the purpose of our study, it may be antici-
pated that the three proposed dimensions and also their interconnections are useful 
to examine the attitudes of the students who participate in a beyond-school mathe-
matical activity, where mathematical challenge and communication are the fulcrum 
and where formal and informal mathematical knowledge are both relevant.

As such, we endorse the three-dimensional model in our approach to students’ 
attitudes, by projecting our analysis of each dimension on a threefold empirical 
phenomenon: students’ participation in the mathematical competitions, students’ 
problem-solving activity, and students’ performance and mathematics knowledge. 
This approach is schematically depicted in Fig. 18.3.

The links between the three dimensions that are seen as one of the advances of 
this model are potentially convenient to our study, especially in light of the available 
data gathered from multiple sources as we will describe in the following section.

18.4  The Research Context and Method

Specific details about the context of the mathematical competitions SUB12 and 
SUB14 will be presented; we then briefly describe the methodological approach to 
our study of students’ attitudes.

EMOTIONAL
DISPOSITION

PERCEIVED
COMPETENCE

VISION OF
MATHEMATICS

Fig. 18.2 The three-dimensional model for attitudes towards mathematics. (Di Martino & Zan, 
2011, p. 476)
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18.4.1  The Mathematical Competitions SUB12 and SUB14

The SUB12 and SUB14 are regional online problem-solving competitions pro-
moted by the University of Algarve, having similar formats and running in parallel 
(Carreira et  al., 2016). SUB12 targets fifth and sixth graders (10–12  years old), 
while SUB14 addresses students in seventh and 8th grades (12–14 years old). The 
competition is composed of two phases: the qualifying that takes place at a distance, 
between January and June, and the final that is on-site and takes place at the end of 
June. During the qualifying phase, a new challenge for each of the SUB’s is posted 
online every 2  weeks. Participants have 15  days to e-mail their resolution and 
answer to the problem. Feedback is given to all the resolutions, and the participants 
have the chance to revise and resubmit their solutions within the established sub-
mission period. To get qualified to the final, any participant must attain the correct 
solution in eight of the ten proposed problems.

The competitions can be briefly characterized through ten distinctive features:

• The mathematical challenges proposed can be described as contextualized non-
routine word problems and usually have various forms of resolution.

• Mathematical communication is valued by explicitly requiring the presentation 
of the strategy and process used to obtain the solution.

• It is intended that students have the necessary knowledge to solve the proposed 
challenge.

• The challenges are chosen independently of the school curriculum, that is, the 
problems are not designed to fit specific curricular topics.

• The support of parents and teachers to the young participants is encouraged.

PARTICIPATION IN SUB12 & SUB14

PROBLEM SOLVING

MATHEMATICS

EMOTIONAL
DISPOSITION

VISIONS PERCEIVED
COMPETENCE

Fig. 18.3 The three-dimensional model adapted to the context of the present study
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• Formative and friendly feedback is offered, by suggesting clues or hints to 
encourage the student’s revision or improvement of the solution, if needed.

• All types of media that students can use to produce their resolutions are accepted 
(from the use of digital tools to the scanning of resolutions made with paper and 
pencil).

• Persistence in the competition and parental involvement are encouraged, although 
communication is always directed at the participating pupils.

• Public recognition is given to expeditious, creative, elegant, and interesting reso-
lutions through its publication on the competition webpage.

• The competitive part is confined to the final where students have to solve a set of 
problems individually and in limited time.

This raises the hypothesis which is that the combination of the various features 
of the SUB12 and SUB14 competitions has an impact on students’ attitudes towards 
mathematics, in direct articulation with their attitudes towards problem solving and 
their participation in the competitions.

18.4.2  Methodological Approach

As referred above, the Problem@Web Project entailed a long and extensive process 
of data collection within the context of the mathematical competitions SUB12 and 
SUB14. A large part of the data concerning the participating students’ attitudes is 
qualitative in its nature. Since it concerns online competitions that take place beyond 
school and without face-to-face contact with the participants, we soon found the 
need to listen to the voices of the participants and of some older students who had 
been former participants. We did this through conducting several semi-structured 
and extensive interviews to a number of participants at the time and to ex- participants 
who took part in former editions (in a total of 20 interviewees). A systematic collec-
tion of e-mail messages was also carried out. In these e-mails, we have signalled not 
only relevant information regarding the students’ solutions to the problems pro-
posed but also some emotional reactions and statements they spontaneously included 
in their messages, namely, about their participation in the competition, the chal-
lenges presented, and their enjoyment in solving the problems. At the same time, we 
obtained more extensive data from a questionnaire that was administered after the 
final of one of the editions of the SUB12 and SUB14. The survey was carried out 
electronically to all the participants in that edition of the competition. The number 
of validated questionnaires is n = 350 which corresponds to a 20% rate of return.

The questionnaire focused on questions related to the use of technologies in solv-
ing problems, students’ relationship with mathematics and problem solving, and 
affective aspects involved in their participation in the mathematical competitions. It 
was mainly composed of 4-point Likert-type questions, after some closed-ended 
questions related to demographic data, namely, gender, age, year of schooling, and 
school grade in mathematics.
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Aiming to outline the attitudes of the students from the point of view of their 
participation in the competition, we selected 19 questions from the total. For this 
selection, two criteria were adopted: (i) the questions are contextualized in the par-
ticipation of the students in the competition and (ii) each question points to one of 
three dimensions – students’ views (Vi), students’ emotional dispositions (Ei), and 
students’ perception of their competence (Ci). In addition, the organization of the 
questions into categories led to consider six main thematic domains:

 1. Adherence to beyond-school mathematics.
 2. Fun and enjoyment experienced.
 3. Ways of solving mathematical problems.
 4. Solving and expressing mathematical problems.
 5. Self-improvement experienced.
 6. Mathematical performance and knowledge.

The 19 questions are presented (Table 17.2) as they were organized and coded along 
the three dimensions considered.

It is important to note that this coding should not be considered as an absolute 
way of untying the three dimensions. The distribution of the questions by the dimen-
sions considered in the three-dimensional model is tricky in that the separation of 
the three dimensions is not trivial; on the contrary, they intertwine in many ways as 
previously pointed out. In short, it is not possible to precisely establish the boundar-
ies between emotions, beliefs, and perceived competence.

In the categories adopted, we may observe the prevalence of the emotional dis-
position items, especially when compared with the weight of the perceived compe-
tence items. In justifying this, we recall that the data that are being analysed mainly 
focus on the participants’ progress and experience during the qualifying phase. This 
phase undertakes an eminently formative character and can be seen as a preparatory 
phase, sometimes considered by the participants themselves as training for the final, 
which involves a greater competitive edge.

By assuming the investigation of students’ attitudes from the point of view of 
their participation in the competitions, we are admitting that there is an implicit 
perception of self-competence to engage in the moderately demanding qualifying 
phase. The students’ perception of their competence at the outset may also be related 
to the possibility of help-seeking either from family members or teachers and also 
from the organization itself that provides feedback and allows reformulating any 
submitted solution. In virtue of this, the question of perceived competence is placed 
on certain elements of the qualification phase, namely, on the diverse ways of 
approaching and solving problems, on the ability to communicate and explain the 
problem-solving process, and on the confidence in dealing with mathematical ideas. 
Furthermore, this dimension is apparent in the questions that refer to getting quali-
fied to the final and also to reaching the top places of the competition.

N. Amado and S. Carreira



413

Table 17.2 Coding of the dimensions considered in the questionnaire design

1. Adherence to beyond-school mathematics

1 E1 It is nice to participate in the competition
2 E2 I have fun with participating in the 

competition
3 V1 My participation in the competition 

increases my interest in mathematics
2. Fun and enjoyment in solving problems

4 E3 I feel the problems of the competition are 
fun

5 E4 It pleases me the type of problems 
proposed in the competition

6 E5 It is nice to get the problems of the 
competition right

3. Ways of solving problems

7 V2 I think that the problems of the 
competition incite me to think

8 V3 I think that the problems of the 
competition can be solved in several ways

9 C1 I may try different ways in solving a 
problem of the competition

4. Solving and expressing problems

10 V4 I think that the problems of the 
competition incite me to explain

11 C2 In solving a problem of the competition, I 
expect to be able to explain my solution

12 E6 In solving a problem of the competition, I 
wish that my solution is easy to follow

13 E7 It pleases me to discuss the problems of 
the competition with other people

5. Self-improvement experienced

14 V5 My participation in the competition helps 
me to be better at mathematics

15 C3 My participation in the competition 
makes me more confident in mathematics

16 E8 It pleases me to learn more mathematics 
in the competition

6. Mathematical performance and knowledge

17 C4 It is important to be good at mathematics 
to participate in the competition

18 V6 I think that the problems of the 
competition require a lot of mathematics 
knowledge

19 C5 It is important to be good at mathematics 
to reach the final of the competition
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18.4.3  Brief Description of the Participants

From the data collected through the questionnaire, we obtained an elucidative image 
of the participants in these competitions. Of the 350 young respondents, about 55% 
are female and 45% are male. Their ages range from 10 to 15 years. In fact, students 
attending the levels of schooling involved in these competitions generally range 
between 10 and 14, so the presence of students over the age of 14 may mean that they 
are students with some retention. This situation reinforces the contention that the 
competitions are inclusive, seeking to involve all students. From the graph (Fig. 18.4), 
we see that young students aged 11 and 12 have the most significant participation in 
the competitions. It is also evident that the pupils’ participation declines as their age 
increases. The reasons for fewer individuals to participate as they progress through the 
years of schooling may be related to a number of factors. Some students say they are 
not available to participate because in seventh and 8th grades they have to cope with a 
larger number of school subjects and, consequently, with a greater workload at school. 
Other students also find it difficult to reconcile their various extracurricular activities, 
namely, sports, with their participation in the SUBs.

The comparison between the graphs of Figs. 18.4 and 18.5 reveals a clear com-
patibility, since the 10–11-year-olds are those who attend the fifth grade where the 
highest percentage of participants (48.9%) is recorded. And, as said before, the 
participation declines as the level of schooling increases, which for many young 
people means an increase in school work. Frequently, the organizing team of the 
competitions gets e-mail messages from participants who justify their delay in 
 sending the solution to a problem due to the extra time dedicated to the preparation 
for assessments at school.

Regarding school performance, the data show the presence of students with dif-
ferent levels of performance, in tune with the concept of an inclusive mathematical 
competition. In fact, the graph of Fig. 18.6 reveals that although the percentages of 
participants with the lowest performance levels – level 1 (2.3%, corresponding to 
eight students) and level 2 (about 6.6%) – are low, the percentage of students with 

21.70%

33.4%

26%

13.4%
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years 
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years 
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Fig. 18.4 Distribution of the respondents by age
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level 3 (25.4%) has a significant expression, which shows that the competition is not 
only or preferentially directed to the students with a high level of school perfor-
mance. The highest percentage refers to participants with performance level 4 
(35.4%), followed by the percentage of participants with level 5, which is 30.3%. 
Thus, it is possible to recognize a clear heterogeneity in the participants, being note-
worthy the fact that there is a reasonable percentage of students who are average 
achievers and also noticeable that the younger ones are more predisposed to engage 
in the SUB12 competition, which addresses grades 5 and 6.

18.5  Students’ Attitudes in the Context of Their 
Participation in the Mathematical Competitions SUB12 
and SUB14

For the presentation and analysis of the data on the attitudes of the students partici-
pating in the competitions, we will cover the six thematic areas described above. In 
each of these areas, the results of the questionnaire responses are given on fre-
quency charts, and their interpretation will be corroborated and substantiated 
through the selection of interview excerpts and examples of e-mail messages sent 
by participants during several editions of the two competitions.

48.8%

26.6%

16.3%
8.3%

5th grade 6th grade 7th grade 8th grade

Fig. 18.5 Distribution of 
the respondents by school 
grade

2,3%
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25,4%

35,4%
30,%3

1 2 3 4 5

Fig. 18.6 Distribution of 
the respondents by school 
performance level (1–5)
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18.5.1  Adherence to Beyond-School Mathematics

Concerning the adherence of the participants to these mathematical competitions 
that take place beyond school, the data reveal an overwhelming majority of answers 
(90%) agreeing with the assertion that it is nice to participate in the competition 
(Fig. 18.7). This information shows that the students have a very positive overall 
attitude towards their participation in this mathematical competition of an inclusive 
nature. A closer examination of the data reveals that this broad attitude is more pre-
cisely described as different dimensions of this attitude are detailed.

When observing the data on the fun that is involved in that participation 
(Fig. 18.8), we note that the affirmative answers also stand out with a percentage of 
about 75%; even so, that result does not replicate the numbers obtained on being 
nice to participate. Furthermore, if we consider the increase in interest in mathemat-
ics related to the students’ participation (Fig. 18.9), we find that the number of con-
cordant answers shows a small increase (being close to 80%), compared to the fun 
experienced in the participation.

3.1%
6.9%

46.6%
43.4%

Totally
disagree

Disagree Agree Totally
agree

Fig. 18.7 It is nice to 
participate in the 
competition

7.1%

18.0%

50.9%

24.0%

Totally
disagree

Disagree Agree Totally
agree

Fig. 18.8 I have fun with 
participating in the 
competition
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This apparently indicates that the nice experience of participation is not limited 
to the fun that students have with it. Likewise, the emotional atmosphere of having 
a nice experience does not quite match the increase in interest for mathematics, 
although the view of getting more interested seems to be quite discernible in the 
answers of the respondents.

The strong adherence to the competition is characterized by high levels of emo-
tional disposition to engage in the competition that suggest an intense affective link 
to the experience of participation. Such indicators also appear in the words of some 
participants, either in interviews or in their e-mail messages. For example, 
Figs. 18.10 and 18.11 show some of the comments and emotional expressions sent 
by the participants in the e-mails in which they submitted their solutions to prob-
lems and convey some of their reactions to facts of the qualifying phase.

6.6%

14.3%

47.1%

32.0%

Totally
disagree

Disagree Agree Totally
agree

Fig. 18.9 My participation 
in the competition 
increases my interest in 
mathematics

Hi!
So far, I have all the problems 
correct! I am very happy!
I love participating in Sub-12!!!!!!
You may count on my 
participation in the competition.
Thanks,

Fig. 18.10 Message from a girl in sixth grade, stating that she likes to participate and, at the same 
time, revealing her satisfaction for her correct answers
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Fig. 18.11 Message from another participant that expresses her fondness for the competition

18.5.2  Fun and Enjoyment in Solving Problems

The results referring to the category of fun and enjoyment in problem solving show 
one side of the participation in the competition that is directly related to the type of 
problems proposed. The results (Figs. 18.12 and 18.13) show that most students find 
that the problems of the competition are fun (about 80%) and they enjoy solving that 
kind of mathematical challenges (about 80%). This satisfaction is also quite evident 
in the words of one of the participants (Fig. 18.14) who, in one of his e-mails con-
taining the resolution to a problem, manifests his enjoyment for certain problems 
that are their favourite.

In addition to this very favourable emotional disposition about the moderate 
challenges that constitute a trademark of the competition, another aspect clearly 
demonstrated by the respondents refers to the fact that they find it very pleasant to 
be able to get the problems right (about 90%) (Fig. 18.15). This result reinforces the 
idea that it is possible to engage students in enthusiastically solving problems, in 
particular by proposing them interesting mathematical challenges that are within 
their reach.

As can be seen from the utterances of two of the interviewed participants, getting 
the correct answer to a problem is a goal that stimulates them and makes them feel 
good about themselves, sometimes seeming a magical experience that appears to be 
very rewarding.

We are challenged to solve a problem and when we get it, it is...It makes us feel good about 
ourselves. We know that we can, and then we try the next one and we get it. If we cannot 
solve it straight away, then we will succeed on the second or third attempt. (Excerpt from 
an interview to a participant in SUB14)

What excites me is to get the right solution to the problem. For me it is a kind of 
magic…. It seems magic when I discover the solutions to the problems. (Excerpt from an 
interview to a participant in SUB12)
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Fig. 18.12 I feel the 
problems are fun

Fig. 18.13 It pleases me 
the type of problems

3.1%
7.4%

53.4%

36.0%

Totally
disagree

Disagree Agree Totally
agree

Fig. 18.14 It is nice to get 
the problems right
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I liked very much this problem, 
where we have to use the trial 
and error method; I just love this 
kind of problems. 
I took a look at the problem n.4 
and it seems to be a good 
challenge !!!

Fig. 18.15 E-mail message from a boy from seventh grade stating that the problems please him 
and that he finds them challenging

18.5.3  Ways of Solving Problems

There is almost unanimity (about 97%) in the belief that the problems of the com-
petition incite students to think (Fig. 18.16). This reveals that although the competi-
tions are inclusive and the challenges are of moderate difficulty, they are not seen by 
the participants as routine and as having an immediate answer. In addition, we have 
already seen that the participants like the problems proposed and get involved in 
their resolution, so the fact that they are led to think is something that seems to be 
linked to their liking of the problems presented. Regarding the answers on the exis-
tence of different ways of solving the problems, a large majority (92%) also agrees 
with this idea about the problems, as shown in Fig. 18.17.

It is important to distinguish between the belief that problems can be solved in 
different ways and the emotional disposition of feeling comfortable in trying differ-
ent ways to find a solution. There is clear evidence that the number of students with 
a willingness to try different ways of approaching a problem is actually lower. In the 
graph of Fig. 18.18, we can see that about 40% of the participants never or only 
sometimes tried different ways to solve a problem. This may relate to the fact that 
there are students with different mathematical backgrounds in the competition. It 
may as well suggest the existence of less open and flexible students in facing prob-
lem situations as an effect of the inclusive character of the competitions.

In any event, for many participating students, this relationship with the problems 
proposed in the competitions is permeated by a strong affective disposition that 
makes them fascinated by the possibility of exploring different ways to find the 
solutions to the challenges; even when seemingly more difficult, this is an activity 
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Fig. 18.16 I think they 
incite me to think

Fig. 18.17 They can be 
solved in several ways

7.2%

33.3%
36.5%

23.0%

Never Sometimes Very
often

Always

Fig. 18.18 I may try 
different ways to solve the 
problem

that gives them pleasure and that eventually leads to success. The following excerpt 
is illustrative of this kind of suggested fascination:

I am fascinated by the fact that a problem has several possible ways to be solved...more than 
one. A seemingly difficult problem that I cannot immediately solve, after rereading the 
statement and thinking a little, ends up being possible to solve. (Excerpt from an interview 
to a participant in SUB14)
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18.5.4  Solving and Expressing Problems

One of the ten characteristics that define the dynamics of the SUB12 and SUB14 is 
that of enhancing and encouraging mathematics communication associated with the 
problem-solving activity. This is well denoted by the fact that all the problems 
posted on the website are accompanied by a reminder, as seen in Fig. 18.19.

The solving and expressing process is an indispensable requirement for any solu-
tion to be considered correct. This requirement is clearly recognized by the partici-
pants who in their responses to the questionnaire were quite convergent on the idea 
that the problems incite them to explain. Almost 95% of the participants (Fig. 18.20) 
reveal this view on solving the problems of the competitions.

Despite the high percentage of participants who are aware of the importance and 
requirement of explaining the problem-solving process, the number of respondents 
who feels able to do so, always or very often, is much lower. Only about 60% of the 
respondents (Fig. 18.21) feel that they are usually able to provide an explanation of 
their solution that seems actually good to them. We realize from the part of several 
participants in the competition their effort and concern to find a good way to explain 
their problem-solving process. Some participants even expressed this feeling in 
their e-mail messages, stating that they had tried to find the best way to expose their 
reasoning even though some believed they had not totally succeeded (Fig. 18.22).

Do not forget to 
explain your problem 
solving process.

Fig. 18.19 Statement of a problem posted on the SUB14 webpage in one of the editions
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Fig. 18.20 I think they 
incite me to explain

Fig. 18.21 I expect to be 
able to explain

*It was the best way I found to 
explain, though I know it is not 
the best there is.

Fig. 18.22 E-mail from a participant in SUB14 referring to his way of explaining the problem- 
solving process

One of the ex-participants who was interviewed acknowledged that at the begin-
ning of his participation, he was not used to explain the problem-solving process 
and then described how he struggled to achieve and improve his way of explaining. 
He pointed out that the desire to communicate his solution in a way that satisfied 
him impelled, in many cases, his search for other “paths” to arrive at the solution.

In the beginning, what I did was describing; I described all the steps. It was boring to be 
describing. But it was one of the biggest challenges: ‘How do I explain the way that I got 
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there?’ This was important because there were times when I was thinking, and thinking – 
‘This way is hard for me to explain, I have to find another way’. So I would a try different 
path because the first one was difficult to describe. (Excerpt from an interview with an ex- 
participant in SUB12 & SUB14)

The concern with being able to explain is often referred by several interviewees. 
The motivation they reveal to produce an explanation of the solution process arises 
along with the desire that the solution becomes easy to understand by others, par-
ticularly by the members of the organization who will be reading it and sending 
feedback. One participant’s statement shows such concern in the way she paid atten-
tion to the process of explaining her solution.

If I quickly get to the right answer but cannot explain it, I do not feel very happy about it, 
because the answer is not the most important thing. If we do not explain how we get there, 
the answer is worthless. (…) I make sure that I have things well organized so that the people 
who will read my solution to the problem and see if it is correct will understand it. (Excerpt 
from an interview to a participant in SUB12)

More than 90% of the respondents express their wish that their explanation is easy 
to understand (Fig. 18.23). The comparison between the graphs of Figs. 18.21 and 
18.23 shows a certain difference between the perception of being able to explain and 
the emotional disposition to provide a good explanation. This difference seems to 
reflect the idea expressed by some participants that despite their effort and their 
intention to do the best, their forms of expression and communication were not 
always the ones they considered ideal (“the best there is”). It is important to empha-
size that coupled with a belief that participation in the competitions prompts the 
explanation of the resolution, we can see the participants’ true perception of compe-
tence about what they are capable of doing and also their emotional disposition to 
reach the best final product.

Another aspect reported in Fig. 18.24 is directly related to one of the character-
istics of the competitions, which is the possibility they offer the participants to dis-
cuss and get the support of others, such as parents, family, teachers, friends, and 
colleagues. About 78% of the respondents appreciate this possibility. For some stu-
dents, this is a favourable condition as it allows them to see different ways of solv-
ing a given challenge and to compare various proposals coming from people with 
different mathematical and life experiences.

Fig. 18.23 I wish that my 
solution is easy to follow
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The appreciation for discussing problems with others is well documented in an 
interview with a SUB12 participant who describes how she had been exchanging 
ideas with various family members and teachers of different subjects and compared 
their different strategies in solving a problem.

I really enjoyed all the problems. I really liked this one, because it was the first one, but I 
have been enjoying them all.... But the Problem 2 was fun because I was solving it in a tuto-
rial class and it was my Music teacher who helped me with it.

In the Problem 7, of the washed towels, I was solving it at home and my mother said that 
you could not count the towels that were washed but my father said that you had to count 
the washed towels. Then I took it to my grandfather, and he got a result that was very dif-
ferent from ours. In my solution, I obtained 80, so I took it to school and the Mathematics 
Club teacher solved it too and she said it was 80. (Excerpt from an interview to a participant 
in SUB12)

18.5.5  Self-Improvement Experienced

The expressed view that participation in the competitions makes the participants 
better and more confident in mathematics is very clear in the answers of a large 
majority of respondents. In both items (Figs. 18.25 and 18.26), around 80% of the 
respondents seem to hold that belief.

Linked to this belief of becoming better in mathematics and to the feeling of self- 
confidence, we may find an emotional disposition concerning the satisfaction with 
learning more mathematics. About 86% (Fig. 18.27) of the respondents show their 
pleasure with learning mathematics through their participation in the competitions. 
For example, to some of the students, the experience of successfully solving math-
ematical problems is a motivating factor for dealing with subsequent new problems. 
It means, therefore, a favourable mind-set to face new challenges. For other stu-
dents, the problem-solving experience is felt as a way to develop mathematical 
thinking and to explore several strategies and mathematical topics that are present 
in the different types of problems proposed in the competitions.

Fig. 18.24 It pleases me 
to discuss the problems 
with other people
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Fig. 18.25 My 
participation in the 
competition helps me to be 
better at mathematics

Fig. 18.26 My 
participation in the 
competition makes me feel 
more confident

3.4%

10.6%

48.0%

38.0%

Totally
disagree

Disagree Agree Totally
agree

Fig. 18.27 It pleases me 
to learn more mathematics 
in the competition

Through the interviews we have carried out, we obtained statements from some 
participants who expressed not only their conviction of self-improvement but also 
their pleasure with learning mathematics in the context of the competitions. The 
words of a participant in one of the interviews clearly show the strong interconnec-
tion between the emotional dimension and her perception of competence. Those 
words convey an awareness of increased competence in problem solving as she gets 
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renewed success in each of the proposed problems and, at the same time, the plea-
sure of reaching the solution, which fuels her will to continue to be challenged with 
new problems.

The fact that I have solved so many problems, always gives me motivation to solve more, 
because I feel that I am able to solve problems. Perhaps it makes me believe in myself, that 
I can solve more problems. It helps me because I get to the problems with a different mind- 
set. (…) And it helps me to see myself as a person who can overcome the problems, the 
difficulties, and if I get it that helps me to solve the next ones. (Excerpt from an interview 
to a participant in SUB14)

Another participant highlights the nature of the problems and their diversity as a 
factor that has enabled her to undertake a deep and diversified learning.

The SUB12 is basically a competition where...we solve a lot of problems, which are also 
very, very deep. We develop a lot of reasoning and we can learn new ways of solving prob-
lems. We also learn a variety. For example, it is varied, it has algebra, or geometry, or other 
things. (Excerpt from an interview to a participant in SUB12)

18.5.6  Mathematical Performance and Knowledge

The view that it is important to be a good achiever in mathematics to participate in 
the competitions gets high agreement. The results show that more than 70% of 
respondents agree with this idea (Fig. 18.28). However, when questioned about the 
mathematical knowledge required to solve the problems proposed in the competi-
tions, we found a decrease in the percentage of participants who considered that 
much mathematical knowledge was necessary to solve them (about 58%) 
(Fig. 18.29). This difference between the participants’ beliefs about the advantage 
of being a high achiever and the knowledge that is actually required to solve the 
challenges proposed shows once again that the problems posed do not require more 
than the mathematical knowledge that most students have. This result also reflects 
one of the characteristics that define these competitions  – they are, by nature, 

Fig. 18.28 It is important 
to be good at mathematics 
to participate in the 
competition
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independent of the school curriculum, that is, problems are not designed to fit spe-
cific curricular topics.

For some participants, problem solving is not only limited to mathematical 
knowledge; it is also very important to know how to think mathematically in order 
to solve them. The opinion of a participant in SUB12 about the need for mathemati-
cal knowledge to solve the problems proposed was as follows:

There were some (problems) that were more to use reasoning and such...which did not take 
much (mathematical) knowledge but there were others where it was necessary. (Excerpt 
from an interview with a participant in SUB12)

Another participant seems to believe that the problems were within the reach of all 
students and that solving them is not only dependent on mathematical knowledge 
but also on certain mental habits. Despite the idea that problems can be solved by 
all students, in his words, there emerges the belief that there are students with 
greater intrinsic ability to solve problems.

(…) Because, if students think hard about the problems, if they read things carefully, then 
they can solve them. Anyway, there are also people with more ability than others. (Excerpt 
from an interview with a participant in SUB12)

In relation to the struggle for the first three places in the competition final, there 
seems to be more agreement on the need for a good mathematical knowledge 
(Fig. 18.30).The results of the questionnaire clearly show that about 87% of the 
respondents consider it important to have a good mathematical knowledge to obtain 
one of the first three places. This view is related to another characteristic of these 
competitions, which is that the true competitive spirit is restricted to the final phase. 
In fact, at that stage, the qualified students solve the problems individually, without 
any help and in limited time, besides being at stake the dispute of the first three 
awards.

In many of the students’ e-mails, expressions of rejoicing arise from the realiza-
tion that they have been qualified to the final. In certain cases, the participants also 
reveal a certain anticipation of a new round of the competition that they believe to 
be more demanding (Fig. 18.31).

In general, participants consider the qualifying phase as training for the final 
competition. Thinking, explaining, and calculating, for example, are skills that 

Fig. 18.29 I think that the 
problems of the 
competition require a lot of 
mathematics to be solved
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3.1%

10.6%

42.0%
44.3%

Totally
disagree

Disagree Agree Totally
agree

Fig. 18.30 It is important 
to be good at mathematics 
to get to the top places in 
the final

Fig. 18.31 Message from a student who got the confirmation that he qualified for the final

some participants believe to have developed over the 6 months of the qualifying 
phase and which they feel will be indispensable for the final.

With the SUB’s I was training, because I had to calculate, I had to learn, to think, and to 
explain my reasoning well, especially for the Final. (Excerpt from an interview with a par-
ticipant in SUB14)

Regarding the need for mathematical knowledge to solve the problems proposed in 
the final, participants are aware that they require some amount of knowledge:

We needed mathematics to solve them [the problems of the Final]. Yes, we had that notion. 
(Excerpt from an interview with a participant in SUB14)

In addition to the emphasis given by the participants to the relevance of mathemati-
cal knowledge at the final, other aspects were also highlighted by the students who 
were qualified, such as the reward of their dedication and commitment and the pride 
of being part of those who like to be challenged:

Reaching the final is very good. I am pleased because the work I have done over the months, 
solving mathematical problems, working on them, was very good. So, I am in the final. And 
it gives me satisfaction, not because it is important to win but because going to the final 
allows me to participate and solve even more difficult problems amongst the best ones as 
well. (Excerpt from an interview with a participant in the Final of SUB14)
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In the statement above, it is clear that reaching the final of the competition is a 
meaningful achievement to the student; it also highlights her perception of being 
confident in addressing possibly even more challenging problems.

18.6  Final Comments

In this final section, we set out to draw some conclusions that may support our 
understanding of students’ attitudes towards problem solving and mathematics in 
the context of the mathematical competitions SUB12 and SUB14.

One of the clear results of the study is, of course, a very positive overall attitude 
towards participation in those inclusive competitions. Being a quite likely result, the 
several data obtained nevertheless allow a more refined and more consistent mean-
ing to be given to this global attitude.

We may start by focusing on the affective dimension and observing that the fact 
that it is pleasant to participate in the competition, which is well evidenced by the 
answers to the questionnaires and statements of the students, shows that this liking 
cannot be simply explained by the fun side that the participation entails for the 
young participants. Apparently, this liking of participating is very much associated 
with a satisfaction with the type of problems proposed and the fact that they are felt 
as appealing. Another quite shared emotional element is related to the pleasure of 
being able to get the correct answer, that is, to overcome the mathematical chal-
lenges proposed. This adds to the circumstance that students are glad to be able to 
explain their resolutions satisfactorily, that they like to be allowed to discuss the 
problems with other people, and also that they feel that they are learning more 
mathematics.

Thus, the emotional dimension is distributed through several aspects of the com-
petition, which refer to its intrinsic inclusive nature, to the type of problems pro-
posed, and to the encouragement of expressing the process that leads to the solution 
of a problem.

With regard to the way students express their views, it may be pointed out that 
their interest in mathematics increases while at the same time students perceive that 
the problems can be solved in several different ways and incite them to think, and 
they find themselves impelled to explain how they got the solution. Another relevant 
fact relates to their awareness that the problems do not require a great extent of 
mathematical knowledge, leading us to suppose that they feel the problems as being 
at their reach.

Finally, with regard to the dimension of their perceived competence, we observe 
that students are aware of their competence, both in solving problems and in express-
ing the solution process, and also in the degree of knowledge they consider at play 
in the two phases: the qualifying and the final. Briefly, most students report that it is 
feasible to come up with various ways of tackling a problem, although a consider-
able percentage of students admit to having less dexterity and flexibility to actually 
do so. Similarly, there is a range of students who are not completely sure of being 
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able to perfectly explain their solution to problems. This fact is corroborated by 
statements from some students who feel somewhat insecure about what they are 
able to achieve in this respect. In addition, there is evidence that many students 
believe that their learning and struggling to explain the problem-solving process 
also help them to become better at mathematics. Furthermore, the degree of math-
ematical knowledge they find necessary to participate in the competition is seen as 
relevant, although the preponderance of that knowledge is more noticeable when it 
comes to reaching the most demanding level of the competition, which is the final.

In view of the results, it is time to summarize some of the characteristics of the 
attitudes of the students participating in SUB12 and SUB14. At this point, we again 
underline the very close interaction between (i) participation, (ii) problem solving, 
and (iii) mathematics.

• The competition represents a scenario of participation in a mathematical 
activity beyond school that is globally enjoyable for the students, thus repre-
senting a positive emotional connection with mathematical challenges and 
mathematics.

• This overall pleasant scenario has favourable emotional aspects such as the 
appeal they encounter in the challenges posed but also in other aspects such as 
the pleasure of obtaining the correct solution, the willingness to express the prob-
lem solving in an interesting and right way, and the chance to discuss the chal-
lenges with different people in their daily school and home environments.

• The pleasant scenario also has relevant cognitive aspects, namely, an increased 
interest in mathematics, as well as a realization that problem solving involves 
reasoning, mathematical thinking, and several possible and legitimate ways of 
approaching challenging mathematical situations.

• Among the cognitive aspects to be highlighted, it is apparent that students value 
the search for different strategies and for ways of conveying their reasoning and 
problem-solving processes; they also believe on improving their ability to solve 
and express and on becoming better at mathematics; for some students, the quali-
fication phase, which involves several months of work in solving challenges, is 
synonymous with preparation and prolonged learning.

• Concerning the way in which their self-competence is revealed and nurtured, we 
find that participation in the competition increases students’ confidence in math-
ematics and problem solving, making them aware of their skills and problem- 
solving competence.

• In general, students seem to feel challenged and have an interest and pleasure in 
solving the challenges, even when they do not always achieve what they consider 
to be the highest possible level; there is therefore a widespread awareness that 
students assess themselves in terms of their competence, showing a certain per-
ception that they are competent to successfully participate in the qualification 
phase; the students also seem to presume that the final phase is more demanding, 
but they show a positive expectation in their participation, underlining, for exam-
ple, the opportunity to be competing with the best ones.
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• Students recognize the importance of mathematical knowledge in the context of 
their participation but indicate that there are important skills involved in solving 
the problems that go beyond-school mathematical knowledge.

The three-dimensional model that we have adopted in this research confirms the 
idea of a very close interaction between the students’ emotional disposition and the 
dimensions related to beliefs and self-competence. The results seem to reinforce the 
importance of developing students’ positive attitudes by promoting “(…) a vision of 
mathematics based on processes more than products, to encourage students to shift 
the idea of success from the production of correct answers to the enactment of 
meaningful thinking processes (…)” (Di Martino & Zan, 2011, p. 481).

From our point of view, the mathematical competitions SUB12 and SUB14 pro-
vide fulfilling experiences to the young participants (in each of the three dimensions 
of the model adopted), which are linked to the will to solve and express mathemati-
cal problems, to a favourable view about mathematics, and to a perception of 
improvement. Among the various operational characteristics of the competitions, 
the emphasis placed on the selection of rich but moderately demanding problems 
contributes to an engaged participation with positive effects on students’ relation-
ship with problem solving and mathematics.
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Chapter 19
Roles of Aesthetics and Affect 
in Mathematical Problem-Solving

Norma Presmeg

19.1  Introduction

Both aesthetics and affect are under-researched domains in mathematics teaching 
and learning (Sinclair, 2004, 2008). Yet there is ample evidence, from the personal 
experience of teachers of mathematics, of the motivational effect of an “Aha!” 
moment experienced by a student in solving a mathematical problem and of the 
pleasure that such an experience affords. And research mathematicians frequently 
speak of the aesthetic elements involved in their work, for instance, of the beauty of 
an elegant proof (Burton, 1999). Thus, it would appear that aesthetic sense is a sig-
nificant issue in the learning and doing of mathematics and worthy of further 
research attention. Especially, as in the case of the nonroutine problem-solving 
involved in the Problem@Web Project, when students are not under compulsion to 
solve the mathematics problems, what is it that gives them the motivation to do so 
and to persist in the face of difficulty in order to reach a solution? My goal in this 
chapter is to tease out some of the significant aspects of both aesthetic sense and 
affective issues in the solving of nonroutine mathematical problems and to illustrate 
these aspects from relevant research projects.

19.2  A Vignette

I start with a vignette of a high school teacher who was particularly aware of the 
aesthetic elements of mathematics and who stressed these in his teaching. This 
teacher was especially adept at helping his students to make connections in their 
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learning of mathematics, between different topics, but also in linking aesthetic and 
cognitive processes.

In my original fieldwork (Presmeg, 1985), Mr. Blue (pseudonym – in most cases 
participants were identified by their favourite colours) was a high school mathemat-
ics teacher who did not feel the need to use imagery or inscriptions in solving the 
problems on my test for preference for visuality in mathematics (called the 
Mathematical Processing Instrument, MPI). In fact, his mathematical visuality 
score on this test was only 3 out of a possible 36, the most nonvisual score of all of 
the 13 teachers in my study. Yet he used many of the classroom aspects that had 
been identified in the literature and tested in my research as being facilitative of 
visual thinking in mathematics classrooms (Presmeg, 1991). Of 12 such classroom 
aspects, he was observed to use 7 during the year in which I observed his lessons. 
This teaching visuality score placed him squarely in the middle group of teachers 
(as one of four teachers in this group), between those of the nonvisual group (four 
teachers) and the visual group (five teachers) according to the visuality of their 
teaching. It turned out that mathematical visuality (as measured using the MPI) and 
teaching visuality were only weakly correlated in this sample of teachers (Spearman’s 
rho = 0.404, not significant) – a result that made sense because good teachers know 
when their students need more visual thinking than they do. In the classes of these 
13 teachers, of the 54 senior students who preferred to think visually according to 
my test, those who performed well in their final school-leaving examinations in 
mathematics were in the classes of teachers in the middle group, contrary to the 
common sense notion that visualizers would do best with visual teachers.

Commenting in an interview on some of the rich characteristics that I had identi-
fied in his lessons – in which he stressed abstraction and generalization in addition 
to introducing and encouraging visual inscriptions – Mr. Blue spoke as follows:

Mr. Blue [with excitement]: You’ve got to be careful sometimes I think; you’ve got to be 
careful making, bringing things too, from the abstract, to too concrete. Then it’s that way 
forever, then everything is like that. You’ve got to be careful with that because sometimes 
you must remember that our abstractness carries us to flights of imagination of where we 
can go with it. And that’s what I would like them as often to see here, when we do some-
thing, this is another possible way of doing this problem; more algebraically, what you can 
do with it.

For Mr. Blue, algebra was often the vehicle of abstraction. It was noteworthy that 
for Mr. Blue, the aesthetic elements resided in the mathematics itself and not in 
some external addendum introduced in the classroom to “make the mathematics 
interesting” – which would imply that mathematics is intrinsically boring! In his 
teaching, Mr. Blue frequently expressed his own pleasure in the beauty of mathe-
matics. Indeed, he expressed his feelings often not only towards mathematics but 
also towards his boys (he taught in a boys’ school). In a trigonometry lesson, he 
spoke with his students about errors that some of them were making:

Mr. Blue: Don’t just square things, and suddenly they disappear into space. … And then of 
course I was really saddened by this: now let me say this to you. Don’t do this anymore. 
Now you know better than that in this room. You cannot take the square root of individual 
what?
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Boys: Terms.
Mr. Blue: Terms. … Don’t force it! Maths just won’t be forced. That’s the beauty of it, 

that’s its beauty: where it stands strong against this forcing things into it that don’t have any 
place for it at all. It must go on the way it always has gone on.

The way that Mr. Blue encouraged metacognition was also apparent in an algebra 
lesson on change of base of logarithms, with the same class. The problem under 
discussion, which had been done by the boys in a test, involved a quadratic equation 
in base three logarithms:

 
log log3

2

310 9 0x x( ) − + =
 

Mr. Blue: So this would be the fastest way: factorize. You can do the change of base with 
tens, you can get it, it will be right, when you’ve finished [but it is slow]. … We could put a 
y in for log to the base 3 of x, couldn’t we? Then factorize. … The whole thing in higher 
grade is to think in patterns, and relate the patterns of the former work received. And you 
get bigger and bigger problems. If you look at this one now, how many ideas were in this 
problem? This idea was a log idea, this turns into a quadratic idea, this turns into factoriza-
tion, this turns into exponentials to get the answer. All in one problem. That’s what you 
must start getting used to.

The connections between domains that Mr. Blue was helping his boys to identify 
in this lesson are a topic that is relevant to the beauty of mathematical form.

Mr. Blue’s references to the beauty of mathematical abstraction have resonance 
in the writings of great classical thinkers and mathematicians:

Aristotle: “The mathematical sciences particularly exhibit order, symmetry, and limitation; 
and these are the greatest forms of the beautiful.”

Bertrand Russell: Mathematics possesses “a supreme beauty … capable of a stern per-
fection such as only the greatest art can show.”

Hardy: “There is no place in this world for ugly mathematics.”
However, references to beauty by mathematicians are often in lieu of addressing aes-

thetic notions, which might have a connotation of fuzziness to mathematicians. (Sinclair, 
2004, p. 263)

19.3  Some Theoretical Formulations of “the Aesthetic”

In two thorough and thoughtful papers, Sinclair (2004, 2008) discusses current the-
oretical formulations of the aesthetic in the arts and the sciences, including mathe-
matics. Aesthetics falls under the umbrella of axiology, which is concerned with 
judgements of value, in classical philosophy (Sinclair, 2008). Axiology embraces 
qualities of being in balance, having value, and being worthy and proper; thus, aes-
thetics involves more than artistic taste and style; aesthetics concerns what, how, 
and why something is valued. Sinclair (2004) points out that there are three groups 
of aesthetic responses. In relation to the focus of this chapter, these may play dis-
tinct roles in mathematical problem-solving, as follows:
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• Evaluative: These aesthetic responses ground value judgements. Some theoreti-
cal formulations in this mode centre aesthetic qualities in the solution or mathe-
matical proof being evaluated, e.g. elegance or symmetry in the solution itself. 
This formulation is the objectivist view. Then an external agent may do the eval-
uating, which presupposes certain agreed-upon criteria for judging the worth of 
the solution. Other formulations place more emphasis on the problem-solver’s 
thought processes as the locus of aesthetic properties, as in the following group.

• Generative: Aesthetics in this view generates new ideas and insights in the 
thought processes of someone solving a mathematical problem, which could not 
be derived by logic alone. Several of the solutions given by young students to 
problems in the mathematical competitions SUB12 and SUB14 involved in the 
Problem@Web Project (Jacinto, Carreira, & Amado, 2011) illustrate this aspect. 
I return to one of these insightful solutions later in this chapter.

• Motivational: These responses attract mathematicians to certain problems or 
fields of mathematics. Equally, such aesthetic concerns may provide the incen-
tive to persist in the face of difficulty. This aspect is particularly germane to the 
situation in the mathematical competitions SUB12 and SUB14, in which partici-
pation is optimal, and some of the problems may be challenging and go beyond 
the mathematics that participants have studied in their classes.

What is the role of affective states and reactions in regard to aesthetic concerns 
in problem-solving?

19.3.1  Distinctions Between Aesthetics and Affect

Aesthetics and affect are intimately connected, but different authors have provided 
differing interpretations of the nature of these connections. In an important seminal 
formulation, Goldin (2000) explicitly linked affective and cognitive representations 
in his model of problem-solving competence. For Goldin, affect is a tetrahedral 
construct comprising beliefs, attitudes, emotional states, and finally, the axiological 
dimension of values, ethics, and morals. Thus for him the aesthetic, as relating to the 
latter dimension, falls under the umbrella of affect. Sinclair (2008) argues convinc-
ingly that it should rather be the other way around: she points out that the problem- 
solver becomes alert to aesthetic responses through affective states, given that 
feelings and emotions rely on sensory perception. “From the inquiry viewpoint, the 
aesthetic functions is a non-logical form of knowing, which aligns itself much more 
with cognition (broadly viewed) than with affect” (p.  10). She continues as 
follows:

In other words, the aesthetic and the affective domains each function differently in the 
problem solving process: the aesthetic draws the attention of the perceiver to a phenomenon 
(a pattern, a relationship, a contradiction), while the affective can bring these perceptions to 
the conscious attention of the perceiver. (p. 11, italics in original)
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Aesthetic responses thus link with emotions, attitudes, beliefs, and values, but they 
have a sociocultural component (Sinclair, 2004): they may exhibit historical varia-
tion, and they may be culturally specific.

Sinclair (2008) points out that the aesthetic is not confined to artistic experience. 
Based on Dewey’s formulation, an experience has aesthetic quality “whenever there 
is coalescence into an immediately enjoyed qualitative unity of meanings and val-
ues, drawn from previous experience and present circumstances” (p. 6). Such expe-
riences are aesthetic in that they combine emotion, satisfaction, and understanding. 
They can happen “while appreciating art, fixing a car, having dinner, or solving a 
mathematical problem” (ibid.).

Both aesthetics and affect are inescapably connected to the cognitive domain in 
mathematical problem-solving, as I illustrate in the next section using data from a 
research project in which graduate students were asked to solve nonroutine mathe-
matical problems (Presmeg & Balderas-Cañas, 2001). This project confirmed that 
generative and motivational aesthetic responses may evoke many emotions, includ-
ing tension, curiosity, bewilderment, frustration, and loss, as well as more positive 
states. Frustration and loss may contribute to ultimate excitement and satisfaction; 
however, it is necessary for the problem-solver to be able to handle the negative 
states in order to move past them. Further, mathematical self-identity is involved. In 
analysing the graduate students’ varied responses, we found it useful to use the 
notion of affective pathways developed by Goldin (2000). It is significant that recent 
theoretical formulations highlight the dynamic nature of such pathways, as illus-
trated in the title of a recently edited book, From Beliefs to Dynamic Affect Systems 
in Mathematics Education (Pepin & Roeskin-Winter, 2014).

19.4  Illustrations from Empirical Research: Aesthetics, 
Visualization, and Affect in Graduate Students’ 
Mathematical Problem-Solving

Affective pathways are “sequences of (local) emotional reactions that interact with 
cognitive configurations in problem solving. Such pathways provide solvers with 
useful information, favouring the learning process and suggesting heuristic problem- 
solving strategies” (Gómez-Chacón, 2012, p. 104). However, such pathways may 
have positive or negative consequences for problem-solving. The following are two 
contrasting pathways identified by Goldin (2000).

• Affective pathway 1 (enabling): curiosity → puzzlement → bewilderment → 
encouragement → pleasure → elation → satisfaction → global structures (spe-
cific representational schemata, general self-concept structures)

• Affective pathway 2 (constraining): curiosity → puzzlement → bewilderment → 
frustration → anxiety → fear/despair → global structures  (self-/mathematics-/
science-/technology-hatred)

19 Roles of Aesthetics and Affect in Mathematical Problem-Solving
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These affective pathways were useful in the analysis of systems of cognition, 
affect, and aesthetic sense in graduate students’ solving of nonroutine mathematical 
problems.

As another potentially important component of aesthetics, visual imagery used 
in mathematics is often of a personal nature, related with cognition and belief sys-
tems, but also laden with affect (Goldin, 2000; Presmeg, 1997). Such imagery also 
may enable or constrain mathematical problem-solving (Presmeg, 1985): it is inex-
tricably interwoven with emotional states that carry meaning, intertwined with lan-
guage, cognition, and self-image. The significance of meta-affect (affect about 
affect: Goldin, 2000) was brought out in the analysis of the cases that follow. For 
instance, Presmeg and Balderas-Cañas (2001) describe the case of Ms. Blue,1 an 
elementary school teacher, whose meta-affect so paralysed her thinking that she was 
not able even to enter the first sense-making stage of solving three nonroutine prob-
lems presented to this group of graduate students.

Ms. Blue was one of the four graduate students interviewed individually in this 
research project. There were two tape-recorded interviews with each of these stu-
dents, but some of the results of only the first of these interviews are presented here. 
In the first interview, three nonroutine problems were presented in sequence, and the 
student was asked to “think aloud” or to describe his or her thinking process in ret-
rospect. The three problems (taken from Part C of Presmeg’s 1985 MPI) were as 
follows (Fig. 19.1):

Ms. Blue represents an extreme case in which negative affect inhibited her 
problem- solving to such an extent that her thinking “froze up”, and she was unable 
to proceed at all with any of the problems, despite a “strong background” in math-
ematics, in the sense that she had completed successfully several graduate mathe-
matics courses. Early in the interview, it became apparent that she considered these 
problems too difficult for her to solve: “I hate these problems!” she exclaimed with 
passion. She drew diagrams and wrote formulas, but these were unproductive: 

1 Ms. Blue and Mr. Blue are unrelated. They were asked to choose their favourite colour as a pseud-
onym, in both cases.

C-1: A boy walks from home to school in 30 minutes, and his brother takes 40 
minutes. His brother left 5 minutes before he did. In how many minutes will he 
overtake his brother?

C-2: An older brother said to a younger, “Give me eight walnuts, then I will have 
twice as many as you do.” But the younger brother said to the older one, “You 
give me eight walnuts, then we will have an equal number.” How many 
walnuts did each have?

C-3: A train passes a telegraph pole in a quarter of a minute and in three quarters 
of a minute; it passes completely through a tunnel 540 meters long. What is the 
train’s speed in meters per minute, and its length in meters?

Fig. 19.1 Three problems used in the first interview
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“Actually I want to visualize it with a picture, but the picture never really works with 
the numbers”. She made futile attempts to understand the conditions of all the prob-
lems, and she could not proceed with any of them. Her meta-affect seemed to be 
connected with past experiences. She seemed paralysed by fear of the problems, 
which she later confirmed, and attributed to unpleasant experiences in the past. 
Goldin (2000) summed up this situation as follows: “If there is already a history of 
unfavourable affect …, then the anxiety and fear that evoke avoidance and denial 
processes can occur almost as soon as a problem is posed” (p. 218). The affective 
pathway that is illustrated in the case of Ms. Blue is the constraining one:

• Affective pathway 2 (constraining): [curiosity and puzzlement were not dis-
played] bewilderment → frustration → anxiety → fear/despair → global 
structures.

The history of negative affect in Ms. Blue’s case resulted in fear/despair and 
“mathematics-hatred” responses in the very first stages of problem-solving. There 
was also evidence of negative affect concerning her self-identity as a 
mathematician.

Continuing with empirical data from the same project, three further cases of 
nonroutine problem-solving are presented, each of which gives evidence of a more 
productive affective pathway than that of Ms. Blue. In these three cases, despite dif-
ficulties, the students were able to persist and arrive at solutions to the problems by 
various methods.

An enabling affective pathway was experienced in the case of Mr. Silver, who 
was a teacher of college-level mathematics. His solution processes could be anal-
ysed in terms of all four “moments” of our framework, namely, preparing to solve, 
processes of solution, conclusion of these processes, and checking. However, the 
complexity of these processes helped us to become aware of the cognitive demands 
of these problems: the solution processes were not straightforward, as is illustrated 
in Mr. Silver’s solution to problem C-3 about the boy and his brother walking to 
school at different rates (Fig.  19.1). He first drew two lines for the boy and his 
brother, called A and B, but he was unsure if the lines represented distance or time, 
and whether negative time was acceptable. After some puzzling, he drew a two- 
dimensional diagram (Fig. 19.2).

The diagram marked the end of the preparation phase, and it would have been 
easy to conclude that the boy overtook his brother halfway. But for Mr. Silver, the 

School
A

-5 0 30 35
Time in minutes

Distance

BFig. 19.2 Mr. Silver’s 
diagram for problem C-3
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symmetry was obscured by the cognitive demands of the two starting points, and he 
resorted to algebra, working with the rate formula. He returned to the diagram in the 
checking and hindsight phases, but his main confidence lay in his algebraic solution 
processes, which he used immediately in the other two problems. He expressed 
metacognition, but not meta-affect. However, his persistence, confidence, and initial 
puzzlement imply the presence of affect.

Two further solutions of C-3, those of Mr. Gold and Mr. Green, illustrate varied 
solution processes, which however still yielded enabling affective pathways. Mr. 
Gold also taught college-level mathematics courses. His metacognition was strong 
(but not meta-affect). He was confident and enthusiastic, despite moments of doubt 
and uncertainty in certain moments of the processes. For C-3 he went straight to alge-
bra, with a diagram. Still in the preparation phase, and thinking aloud, he assigned “x 
over 30” as A’s velocity. Thinking of the brother, B, he struck an obstacle:

I’d wish to check this. An easy part … distance … Let’s put one mile in here, for the dis-
tance from home to school. So if it takes this brother 40 to walk a mile … 40 is two-thirds 
of an hour … he’s walking at 60 miles per hour.

Mr. Gold appeared to see nothing unusual in this unrealistic hypothesis! After a long 
pause, he started afresh, using his diagram, and succeeded after complicated alge-
braic processing: “The diagram helps me to visualize in my mind, because it seemed 
chaotic, the processes in my mind. I had a diagram to relate to all these equations”.

The case of Mr. Green illustrates how meta-affect can in fact hinder the finding 
of a solution. Of the three college mathematics teachers, Mr. Green’s meta-affect 
was most noticeable: “Oh I don’t know why I am so nervous. I’ve never been stud-
ied before like that (nervous laugh)!” In his problem-solving affect, he appeared to 
enter the negative pathway, experiencing frustration and anxiety at times during the 
solving of both C-3 and C-6. Referring to C-3 he exclaimed: “Oh man, it [algebra] 
doesn’t work today! Should be easy!” Each time, he broke free from this negative 
pattern, experiencing encouragement and satisfaction as he solved the problems 
successfully, using combinations of diagram, algebra, and imagery. After several 
tentative diagrams, he came up with the metaphor of a clock face for C-3 (Fig. 19.3); 

Boy leaves at 10:00 (reference point)

Brother leaves at 9:55

*Boy overtakes brother

at 10:15.

Brother arrives at 10:35

Boy arrives at 10:30

Fig. 19.3 Mr. Green’s metaphor: a unified clock face image
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however, it was algebraic equations that gave him a solution. Even then, there was 
confusion about whether his answer of 20 min applied to the boy or to his brother. 
He did not see the symmetric solution that the clock provided.

Problem C-4 (the walnuts problem – see Fig. 19.1) was solved relatively quickly 
and without much difficulty by all three college teachers, once the cognitive obsta-
cle (for making equations) of giving and receiving walnuts was overcome. None of 
them drew a diagram, although Mr. Silver and Mr. Green reported imagery. The 
problem could be solved visually (which is why it was included in the MPI), but the 
visual solution is relatively complex (Fig. 19.4), and algebraic solutions were used 
in all three cases (e.g. as in Fig. 19.5).

The enabling affective pathway could be applied to all three cases, those of Mr. 
Silver, Mr. Gold, and Mr. Green:

• Affective pathway 1 (enabling): curiosity → puzzlement → bewilderment → 
encouragement → pleasure → elation → satisfaction → global structures 
(specific representational schemata, general self-concept structures).

All three were college-level mathematics instructors, with positive meta-affect 
possibilities, despite the hindering effect of Mr. Green’s emotions about his affect. 

C-4. Solution 2:I drew a diagram to represent the number of walnuts.

Older brother’s number
Younger brother’s of walnuts
number of walnuts

a b

From the conditions of the problem, the top half of line b is divided into 4 equal parts, 
each representing 8 walnuts. Thus 7 of these parts represents the older brother’s number 
of walnuts and 5 parts represents the younger brother’s. Thus the younger brother had 40 
and the older brother 56 walnuts.

Fig. 19.4 A visual solution to problem C-4

C-4. Solution 1: I used symbols and equations, e.g.,
Let the younger brother have x walnuts and the older, y walnuts.

+ 8 = 2( – 8)
and – 8 = + 8.

Solve simultaneously: = 40and = 56 .
The younger brother has 40 walnuts and the older 56 walnuts.

y
y

y
x

x

x

Fig. 19.5 A solution to problem C-4 using symbols and equations
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It is possible that their college teaching may have influenced their preference for 
algebraic solutions. Despite various forms of puzzlement and bewilderment, all 
three experienced elation and satisfaction on solving the problems successfully, 
with intact positive self-concept.

19.4.1  The Roles of Visualization with Regard to Aesthetics 
and Affect

In the previous section, summarizing the affective pathways of four graduate stu-
dents, in the sense-making phase, both Mr. Silver (Fig.  19.2) and Mr. Green 
(Fig. 19.3) drew effective diagrams for problem C-3. In both cases, the solution 
could have been immediately inferred from the symmetry of the visual forms – but 
in neither case was this aspect apparent, both students resorted to algebraic equa-
tions to solve the problem. However, the presence of the diagram gave them a “rock” 
on which to anchor their algebraic reasoning, which had the positive effect of lead-
ing to enabling affective states, despite initial bewilderment or discouragement. 
Visual aspects of aesthetic sense in problem-solving could be examined further. In 
several other instances in my research, the patterning aspects of aesthetic sense 
resulted in metaphoric thinking that had the potential to be fruitful and to overcome 
some of the negative affective states, such as frustration, that threatened to derail the 
problem-solving processes. Mr. Green’s example of a clock metaphor that was ulti-
mately fruitful resonates with the work of Carreira (2001) in connection with math-
ematical models. Table  19.1 shows the extent of diagram and imagery use (by 
self-report) of the four graduate students in my research.

As is evident from Table 19.1, problems C-3 and C-6 prompted the use of a 
diagram by all four students, although such diagrams did not always provide an 
immediate solution or method of proceeding. Problem C-6, the train in tunnel 
problem (Fig. 19.1), is an interesting instance of a problem in which an aesthetic 
sense of symmetry could result in creative visual solutions in concrete or more 
abstract ways. Here is the text of the problem once more: “C-6. A train passes a 
telegraph pole in ¼ minute, and in ¾ minute it passes completely through a tunnel 
540 metres long. What is the train’s speed in metres per minute and its length in 
metres?” The cognitive complexity of this problem seemed to reside in synchro-
nizing the pole and the tunnel. All three college teachers resorted to algebraic 

Table 19.1 Analysis of use of visualization by four graduate students

Problem 
number Ms. Blue Mr. Silver Mr. Gold Mr. Green

Diagram Imagery Diagram Imagery Diagram Imagery Diagram Imagery

C-3 √ √ √ √ √
C-4 X √ X √ X X X √
C-6 √ √ √ √ √ √ √
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solutions, despite their diagrams. However, a creative visual solution to the prob-
lem is as follows (Fig. 19.6).

In my original research (Presmeg, 1985), some of the participants drew a picture 
of the train, complete with engine and coaches and smoke emerging from the stack, 
in a diagram that elaborated on the abstract one in Fig. 19.6. The concrete details 
seemed unnecessary. However, Susana Carreira (personal email communication, 
2014; Carreira, 2015) pointed out that with today’s available technology, it is easy 
to add concrete details to the picture, as she demonstrated (Fig. 19.7). Such details 
could be important resources in students’ sense-making and could enhance their 
positive affect and incentive to solve the problem. Unlike the algebraic process, the 
visual method yields an instant solution.

The examples of students’ solutions to problems from the SUB12 and SUB14 
competitions give ample evidence of the power of effective visual solutions in this 
context too (Jacinto, Amado, & Carreira, 2009; Jacinto et al., 2011). The aesthetic 
function of illustration is pointed out by Jacinto et al. (2009), and its link with posi-
tive affect is also suggested (Jacinto & Carreira, 2012). The level of difficulty of 
problems presented is a factor in this regard, with optimal results when the level of 
difficulty is neither too low nor too high but moderate (Carreira, Tomás Ferreira, & 
Amado, 2013).

The first segment of the journey is where the train is before it enters the tunnel. 
Each segment takes the train a quarter minute. It takes the front of the train half a 
minute to go the length of the tunnel. Thus, the speed of the train is 540 x 2 = 
1080 metres/minute, and the length of the train is half the length of the tunnel, i.e., 
270 metres.

Pole

Fig. 19.6 A creative visual solution to the train in tunnel problem

Pole
Bridge

(or tunnel)

¼ minute ¼ minute ¼ minute

540 m

¼ minute

Fig. 19.7 Pattern imagery and concrete imagery: Susana’s creative concrete solution

19 Roles of Aesthetics and Affect in Mathematical Problem-Solving



446

The following section provides evidence of the significance of another aspect in 
mathematical problem-solving, namely, the role of connected knowledge.

19.5  Aesthetic Effects of Connections in Mathematical 
Problem-Solving

Connections, patterns, and metaphors are recurring themes in my research that 
related to affect and to aesthetics (Presmeg, 1992, 1998, 2006a, 2006b). I present a 
brief vignette from the case of Sam (Presmeg, 2006b), whose initial compartmen-
talization prevented him from solving a trigonometric problem (Fig. 19.8) involving 
an angle in the second quadrant; I report his elation when he finally connected the 
unit circle and the graph of a sine function. Sam was chosen as one of three students 
(from 27 in this class of prospective elementary school teachers) to be interviewed, 
because of his strong abductive thinking (Peirce, 1998) in class discourse.

Sam knew the right triangle definitions of the trigonometric ratios (using the 
mnemonic SOH CAH TOA). He called the rotation angle theta and marked its sup-
plement, the reference angle in the second quadrant. He dropped perpendiculars to 
the x- and y-axes and joined P to the circle’s intersection with the y-axis (Fig. 19.9). 
He identified the sine of the reference angle, the acute angle, as having a value of 
0.8.

Sam: That’s point 8, yeah. But over here, let’s see, […] the sine of the whole angle is one.
Interviewer: The sine now of the obtuse angle?

-1
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-0.8
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0.6

0.8
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1

This graph shows an angle. Give the approximate value of the sine of the angle.

Fig. 19.8 Third question in the preliminary interview (from Brown, 2005)
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Sam: So this would be point 2 [pointing to the arc between P and the y axis].

Sam appeared to have an image resembling that in Fig. 19.10.

Sam: So I’d say negative one point two … I dunno.
Interviewer (I): How did you get one point two?
Sam: So, the sine of this angle is one.
I: The ninety-degree angle?
Sam: Yes, so this is one. And then this is … let’s see, this point is … negative point six, 

point eight.
I: Oh, I see. You’re figuring out the coordinates?
Sam: I was just thinking of a unit circle. And with coordinates …’cause now like, the 

sine of this angle here [indicating point of intersection of circle and y axis] is, the cosine 
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Fig. 19.9 Sam’s 
inscriptions on the unit 
circle
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Fig. 19.10 A 
reconstruction of Sam’s 
imagery
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zero, the sine one. […] And then it goes, that’s 90, which, it still stays positive though, so 
… one point two, because this is point two.

Sam then explained negative and positive values in the quadrants using coordinates 
of points. After the interviewer told him that the correct answer for the value of the 
sine of theta is point eight, he persisted:

Sam: But if this … if the sine of this angle here is one, how can a bigger angle be less?
I: Ah, that’s a good question. Do you know what a sine graph looks like?
Sam: Yeah.
I: Can you draw me one? Can you put values in there?

Sam drew the sine graph for one revolution and inserted appropriate radian mea-
sures on the θ-axis and 1 and −1 on the y-axis.

I: There you go! Now you just said, how can it be less, if it’s [the angle is] bigger that 90?
Sam: Yeah, it, it’s not … [following the curve with his finger].
I: So it goes down again.
Sam: So that spot is the same here. Yeah! [He marks symmetrical points on the sine 

curve on either side of π/2.]

Sam seemed elated to make this connection between the sine of an angle as 
defined in a unit circle and the sinusoid graph. His case illustrates the intricate 
detail involved in the aesthetics of personal connections and how these inter-
twine with affect and with cognition. In the hurly-burly of mathematics class-
room experience, it would be extremely difficult for a teacher to identify such 
delicate detail. However, teachers could benefit from an awareness of the value 
of connections in regard to positive affect and of the enhanced learning that 
accompanies such aesthetic elements.

19.6  A Strikingly Aesthetic Solution to a SUB14 Problem

One final example is drawn from the students’ solutions to problems in the SUB14 
competition (Jacinto et al., 2011). Leonor’s work powerfully illustrates the genera-
tive aspect of aesthetics in mathematics. Leonor was solving the following 
problem:

Problem 10: Cat and Mouse
A hungry cat surprises a mouse. Immediately the mouse starts running and the 
cat follows in pursuit. When the mouse starts its escape, it has a lead of 88 
mouse’s little steps on the attacker. It turns out that 2 steps of the cat are 
equivalent, in distance, to 12 little steps of the mouse. Moreover, while the 
mouse takes 10 little steps, the cat takes 3 steps. How many steps must the cat 
take to catch the mouse?
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Leonor devised a visual solution to the problem (Fig. 19.11), which provides an 
example of the potential of such solutions to cut through the complexity of relation-
ships in mathematical problem-solving.

Leonor’s solution effectively synchronizes distance and time in a computer rep-
resentation using colour coding and “chunking” of steps of a cat and mouse. The 
colour coding enables her to impose a time element on the chunking of six little 
mouse steps for the distance of one cat step. The originality and power of Leonor’s 
solution is evident: her visual representation serves both to organize the very com-
plex distance and time relationships that are given and to enable a solution that is 
elegant and certain. Before examining Leonor’s solution, I tried to solve the prob-
lem myself, using algebraic equations – and I struggled to reconcile the two ratios 
given, those of 12 mouse steps being equivalent (in distance) to 2 cat steps and of 10 
mouse steps being equivalent (in time) to 3 cat steps. And the mouse had a head start 
of 88 little steps! Leonor’s visual solution does not eliminate the need for reasoning: 
logic is certainly involved in her analysis of the 6:1 distance ratio, and in the super-
position of a colourful 10:3 time ratio. This use of strong logic in an effective visual 
solution is consonant with the theoretical position I adopt (following Krutetskii, 
1976) that strong logic is involved in all effective mathematical thinking, whether 

Fig. 19.11 Leonor’s solution to the cat and mouse problem
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visual or nonvisual: visualization and logic are not opposed but are orthogonal in 
this model (Nardi, 2014; Presmeg, 2006a, 2006b). My further research through the 
decades showed again and again the effectiveness of alternating or combining visual 
modes and nonvisual reasoning in solving mathematical problems at all levels, from 
elementary to college-level mathematics.

19.7  Motivational Effects of Aesthetics

In this chapter, I provided some illustrations of the power of aesthetic elements to 
configure solutions in mathematical problem-solving. From Mr. Blue’s promotion 
of the “beauty of abstraction”, through the positive and negative affective pathways 
traversed by four graduate students in solving nonroutine mathematical problems, 
through Sam’s bewilderment in linking two trigonometric domains, to the genera-
tive creativity of Leonor’s visual solution to a SUB14 problem, it is evident that 
aesthetics and affect are significant factors. Recurring themes were the pitfalls of 
compartmentalization and the need for connections, the power of metaphors and 
visual inscriptions in both the generative and motivational aesthetic responses, and 
in some instances the openness to various kinds of solution, which encourages a 
playful and exploratory stance. Many of these elements were observable in stu-
dents’ work in the Problem@Web Project, along with evidence that the open use of 
technology provides enhanced opportunities for visual inscriptions. Once again, 
here is the question with which this chapter opened:

When students are not under compulsion to solve the mathematics problems, what is it that 
gives them the motivation to do so, and to persist in the face of difficulty in order to reach a 
solution?

Some answers to this question are presented in the next subsection.

19.7.1  Features of SUB12 and SUB14 Problem-Solving that 
Lead to Positive Affect and Motivation

Summarizing the aspects of the Problem@Web Project that are effective in engag-
ing students in the problem-solving activities, the following are significant factors:

• Entering solutions for the competitions is optional. This aspect lessens the pres-
sure, thereby opening the way to better engage aesthetic responses that are 
generational.

• The organizers are open to all effective solutions, thereby encouraging creativity 
and playful exploration.

• There is relative lack of time pressure, which provides space for the role of 
playing.
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• If there is puzzlement or bewilderment, there is the option of engaging others in 
the solution process to help, thereby turning a potentially negative affective path-
way into a positive one.

• The facilities provided by technology make colourful, aesthetically pleasing 
drawings relatively easy to construct.

Thus, the process can be pleasurable and exciting. But what exactly gives partici-
pants the motivation to persist in the face of difficulties, in order to reach a solution 
to a problem? The “motivational aesthetic” identified by Sinclair (2004) is relevant. 
As she claims:

The motivational aesthetic does not operate merely as an eye-catching device; neither does 
it provide merely the psychological support needed to struggle through a problem. Rather, 
it is central to the very process that enables the mathematician to deliberately produce quali-
tatively derived hypotheses: It initiates an action-guiding hypothesis. (p. 277)

Thus, the motivational aesthetic not only has the potential to suggest potentially 
fruitful ways of proceeding, but it also is adequate to sustain persistence in the face 
of difficulty in solving nonroutine problems (as in the Sub12 and Sub14 
competitions).

Sinclair (2001) was concerned to operationalize the theoretical formulations of 
“the aesthetic” in order to investigate how these issues could be used to enhance 
classroom learning of mathematics. Thus, she developed a “colour calculator” for 
an aesthetically rich learning environment for use in research with 15 grade 8 stu-
dents learning about rational and irrational numbers: colour patterns came from 
repeating decimals, e.g. 1/7, enabling learners to experiment – leading to aesthetic 
experiences and positive affect. The aim of her project was to encourage free 
problem- solving associated with aesthetic elements, as middle school students 
worked with fraction patterns in individual interviews. Sinclair’s research was spe-
cifically targeted to aesthetic elements, affect, and motivation in the mathematics 
learning of young students. She identified not only the difficulties associated with 
research on these “ephemeral” topics, but also their importance, and their potential 
to make a difference in encouraging students to continue with the subject of 
mathematics.

19.8  Conclusion: Some Possible Further Directions 
for Research

Sinclair’s research and the manifestations of persistence by students in the Problem@
Web Project suggest that positive emotions generated under the umbrella of aes-
thetic experiences not only have a strong motivational effect in the solving of non-
routine mathematical problems but may also encourage students to persist in the 
broader context of mathematics classes they are currently taking and in the desire to 
continue with mathematics in the future. These two aspects, namely, students’ 
enhanced learning in their current mathematics classes and motivation to continue 
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studying mathematics in further mathematics courses, are strong conjectures in 
need of further research and empirical evidence. The Problem@Web Project 
provides a fruitful setting for investigating both aspects in further research.

Another research question that is suggested is the extent to which teachers might 
implement some of the characteristics of the mathematical competitions SUB12 and 
SUB14 in their classroom teaching. For instance, openness to all effective solutions 
to nonroutine problems of a moderate level of difficulty, relative lack of time pres-
sure, and the possibility of help-seeking in the face of difficulty are all elements that 
are possible for teachers to implement either in class or in projects completed at 
home. Whether such elements result in aesthetic enjoyment, positive emotions, and 
enhanced motivation to engage in mathematics is a research focus that could be 
addressed using both qualitative and quantitative methodologies. The delicate 
details of students’ thinking and affect and their interconnections, as suggested in 
some of the research reported in this chapter, hint that mixed methodologies might 
be fruitful in this regard, in order to investigate not only whether such effects exist 
and how extensive they are but also why enhanced learning and motivation may 
occur.

The role of technology in this regard is another whole aspect, which is being 
fruitfully addressed in the Problem@Web Project. Sinclair (2001, 2004, 2008) is 
one researcher amongst many others who are engaged in addressing the ways in 
which technology use not only changes the nature of learning mathematics but also 
has potential to enhance the aesthetic elements – both generative and motivational – 
in such learning. There is much more to investigate in ways that the affordances of 
technology enhance the mathematical aesthetic experience of students; however, it 
is already clear that aesthetic and affective issues and their interrelationships with 
cognition are significant research topics in mathematics education that should not 
be neglected.
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Chapter 20
On Choice, Collaboration and Closeness 
in Problem Solving: Aesthetic Experiences 
of Pre-service Teachers

Nathalie Sinclair and Annette Rouleau

20.1  The Role of the Aesthetics in Mathematics Thinking 
and Learning

This section is divided into two parts. In the first, we review research related to the 
aesthetic dimension of mathematical activity as it is done by professional mathema-
ticians. In the second, we focus on research related to the aesthetic dimension of 
mathematical activity as it is done by students and teachers. We note that almost all 
of this research has relied on post hoc descriptions made by those engaged in math-
ematical activity, which is not surprising given how difficult it can be to observe 
aesthetic responses during the process of mathematical problem solving. We will 
return to this issue when we discuss our own methods of research.

20.1.1  Focus on Mathematicians

A substantial part of the early writing on the mathematical aesthetic was concerned 
with determining the aesthetic merits of different mathematical proofs and theo-
rems. The mathematician G.H. Hardy (1940) took an objective view of aesthetics 
and proposed criteria that could be used to characterise beautiful or elegant results, 
such as depth and significance, unexpectedness, inevitability and economy. Of 
course, these criteria could prove to be quite subjective. Indeed, in the early 1990s, 
David Wells ran a survey in the Mathematics Intelligencer showing that the aes-
thetic metric of mathematical theorems was highly subjective. In the large number 
of responses he received, from eminent mathematicians around the world, who were 
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asked to rate the beauty of 22 theorems, Wells (1990) found that many factors were 
at play in evaluating the aesthetic merit of these theorems: field of interest; prefer-
ences for certain mathematical entities such as problems, proofs or theorems; past 
experiences or associations with particular theorems; and even mood. He also found 
that aesthetic judgements change over time, something that Netz (2009) has made 
very clear as well in his study of the style of Archimedean mathematics.

The inferences made by Wells correspond to a contextualist view of aesthetic 
appreciation and are summed up by this respondent: “beauty, even in mathematics, 
depends upon historical and cultural contexts, and therefore tends to elude numeri-
cal interpretation” (p. 39). Indeed, the history of mathematics shows how new math-
ematical ideas, such as irrational numbers, non-differentiable but continuous 
functions and even homotopy theory, often inspire negative aesthetic responses 
before they become accepted within the community and eventually judged in posi-
tive aesthetic terms. In a similar vein, Michael Polanyi’s (1958) ground-breaking 
“post-critical” examination of the non-explicit dimension of scientific knowledge 
argues that mathematical knowledge cannot be divorced from personal and com-
munal values and commitments. His concept of indwelling, which is the process 
through which scientific knowledge is developed, is aesthetic inasmuch as it is 
about knowing through our bodies, through transforming our bodies in relation to 
other (sometimes inanimate) bodies (see also Chandrasekharan, 2014). The non- 
explicitness of this knowing has a family resemblance to intuition, which we will 
return to later on.

In addition to Wells’ study, another empirical investigation into mathematicians’ 
aesthetics was conducted by Burton (2004), who interviewed 70 mathematicians 
from a wide range of fields. Based on her analysis, she proposed an epistemological 
model of “mathematician’s coming to know”, which includes the aesthetic as one of 
five categories (the others being its recognition of different approaches, its person- 
and cultural-social relatedness, its nurturing of insight and intuition and its connec-
tivities). The aesthetic category was restricted to mathematicians’ sense of whether 
or not beauty played a role in their creation or appreciation of mathematics. Our 
sense is that some of the other categories may also have aesthetic dimensions as 
well. For example, the nurturing of insight evokes Poincaré (1908/1956) and 
Hadamard’s (1945) sense in which the aesthetic acted as a guide for mathemati-
cians. While problem solving, for example, Hadamard wrote specifically about the 
“sense of beauty” (p. 130) that informs the mathematician that “such a direction of 
investigation is worth following; we feel that the question in itself deserves interest” 
(p. 127; italics in original). It also relates to Polanyi’s non-explicit ways of knowing 
that arise out of dwelling within mathematics.

In addition, the category of person- and cultural-social relatedness, which Burton 
set in opposition to a more Platonic epistemological view, may also have an aes-
thetic dimension. This can be seen in the writing of mathematician William 
Thurston (1995), who claims that “the social setting is extremely important […] We 
are inspired by other people, we seek appreciation by other people, and we like to 
help other people solve their mathematical problems” (p. 11). This relates to the 
notions of taste and style that von Neumann (1947) wrote about wherein certain 
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mathematicians are seen as the arbiters of taste, deciding which programmes should 
be developed, which problems should be solved or which areas of mathematics are 
the most significant and/or interesting. This can be seen in contemporary mathemat-
ics through the influence of mathematicians such as Alexander Grothendieck and 
Robert Langlands.

By acknowledging the contextual nature of the aesthetic, inquiry shifts from 
what is beautiful or ugly in mathematics to what is the function of value judgements 
in mathematics. In this vein, drawing on pragmatic concern for the role of the aes-
thetic in mathematics and on interviews with contemporary mathematicians, 
Sinclair (2004) has identified three distinct roles the aesthetic plays in mathematical 
inquiry—where the term “aesthetic” is used to designate judgements of value. The 
most recognized and public of the three roles of the aesthetic is the evaluative; it 
concerns the aesthetic nature of mathematical entities and is involved in judgements 
about the beauty, elegance and significance of entities such as proofs and theorems. 
The generative role of the aesthetic is a guiding one and involves nonpropositional 
modes of reasoning used in the process of inquiry and that is often expressed through 
affective responses to felt patterns. Lastly, the motivational role refers to the aes-
thetic responses that attract mathematicians to (or repel them from) certain prob-
lems or certain fields of mathematics. Tymoczko (1993) sees this as the crux of the 
aesthetic function in mathematics: of the infinitely many true propositions one could 
state in mathematics, only a very few attract attention.

We cite these three roles of the aesthetic, and especially the motivational one, 
because it relates closely to the context of our study in which we invited pre-service 
teachers to consider choice in relation to their problem solving. Although they were 
not posing their own problems, they were offered a set of problems from which they 
could choose to report on, and we think these choices can provide insight into sig-
nificant aesthetic dimensions of problem solving in schools, both by teachers and by 
students.

A final aspect of the aesthetic that is less discussed in the literature relates to the 
experiences that mathematicians report having while doing mathematics, experi-
ences that are often described in emotional terms as well as cognitive ones and that 
Dewey (1934) described as aesthetic experiences. We are intrigued by Rota’s (1997) 
assertion that beauty and elegance are words used by mathematicians that are seen 
as being more safe and objective ways for them to express their own aesthetic 
experiences:

Mathematical beauty is the expression mathematicians have invented in order to obliquely 
admit the phenomenon of enlightenment while avoiding acknowledgement of the fuzziness 
of this phenomenon […]. (pp. 132–133)

This statement links the aesthetic and the affective as highly intertwined, with the 
affective often providing physical evidence of an aesthetic response, be it a smile, a 
frown or a more consuming feeling of “Oh!” when one perceives a connection or 
sees something in a new way. Silver and Metzger (1989), in their study of research 
mathematicians, also support this view: “decisions or evaluations based on aesthetic 
considerations are often made because the problem solver ‘feels’ he or she should 
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do so because he or she is satisfied or dissatisfied with a method or result” (p. 70). 
Positive or negative feelings can arise from a perception, or an awareness, of some-
thing being worthwhile, important or interesting. In other words, the aesthetic and 
the affective domains each function differently in the problem-solving process: the 
aesthetic draws the attention of the perceiver to a phenomenon (a pattern, a relation-
ship, a contradiction), while the affective can bring these perceptions to the con-
scious attention of the perceiver.

The aesthetic can also be tightly coupled with the cognitive. At one level, and 
perhaps a rather cerebral one, we might talk about perceptions of simplicity, struc-
ture, conciseness and lucidity. However, Johnson’s (2007) view of aesthetics offers 
a more visceral link, not dissimilar from that of Polanyi. For example, the work of 
Radford (2003), which focuses on the direct connection between bodily movement 
and abstract mathematical conceptualisations, has a strong affinity with this aes-
thetic approach. In particular, Radford shows how the rhythmic utterances of stu-
dents are used to construct meaning for algebraic patterns they are studying—the 
rhythm, and not the actual words, acts as semiotic markers of generalization. Others 
might respond to the visual or the tactile, instead of the rhythmic. We see embodi-
ment as being closely intertwined with intuition as well. As Rotman (2008) has 
argued, “If one accepts the embodied—metaphorical and gestural—origins of 
mathematical thought, then mathematical intuitions becomes explicable in principle 
as the unarticulated apprehension of precisely their embodiment” (p. 38). Intuition 
thus becomes a “felt connection to [the] body” (p. 38). Indeed, as the mathematician 
André Weil suggests, the aesthetic pleasure in mathematics may be that of recon-
necting to the body: “nothing gives more pleasure to the researcher [than] these 
obscure analogies, these murky reflections of one theory in another, these furtive 
caresses, these inexplicable tiffs” (1992, p. 52).

20.1.2  Focus on Learners and Teachers

For Poincaré, mathematicians were the only ones to possess the “special aesthetic 
sensibility” that was capable of generating productive ideas in the mathematician’s 
unconscious mind. The early research in education by Dreyfus and Eisenberg (1986) 
reified this view in that they found that when students were asked which solution to 
the problem of how many times the digit 7 appears in the numbers from 0 to 99,999, 
they concluded they lacked aesthetic sensibility because they did not show the same 
aesthetic appreciation as expert mathematicians. This led the authors to infer that 
novice mathematicians may not be able to develop a mathematical aesthetic.

Papert (1978) challenges this elitist view. He argues that mathematicians are 
not the only ones to possess the “special aesthetic sensibility” and shows how 
non- mathematicians can also be guided towards correct mathematical ideas 
through appeal to aesthetic considerations. The aesthetic responses of these non- 
mathematicians had little to do with Hardy’s (1940) objective criteria of depth 
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and significance or even of surprise. Instead, they involved emotional reactions 
to an equation’s form and structure—a desire to get rid of a square root sign or to 
place the important variable in a prominent position. Subsequently, another 
empirical work has shown that, when provided with inquiry opportunities in rich 
environments, students do indeed use aesthetic values in choosing problems, 
generating conjectures and evaluating their solutions (Eberle, 2014; Lehrer, 
2008; Sinclair, 2001). These values sometimes, but not always, overlap with 
canonically mathematical aesthetic values such as fruitfulness, visual appeal and 
surprise. In working with university-level students, Brown (1973) reported on a 
preference for “genealogical solutions”, in that students tended to prefer their 
own solutions to those of mathematicians—perhaps because their “messy” solu-
tion encoded the parts of the problem-solving process that contribute to their 
understanding. For Brown, a difference in aesthetic preference does not entail a 
lack of aesthetic sensibility.

Similar work, focusing on the problem-posing phase of inquiry, has shown 
that pre-service elementary teachers can use aesthetic values to pose more inter-
esting mathematical problems (Crespo & Sinclair, 2008). However, little is 
known about the aesthetic aspects of how pre-service teachers (or students or 
even teachers) choose problems to solve or what they value in a problem they 
have solved.

In terms of aesthetic experiences, it goes without saying that students tend to 
describe mathematics in very negative terms that relate more to anxiety, fear and 
detachment and then to the kinds of pleasure and enlightenment to which Weil and 
Rota refer. In Buerk’s (1982) study of “able women” who avoided mathematics, but 
who she invited to participate in some problem-solving experiences in which the 
problems were open-ended and the women could collaborate, one of the women 
reflected that “[…] this wandering has helped me to think through the values that 
define my own character as well as mathematics. This seems to me an important 
step in repairing the flawed ‘relationships’ I have with math” (p. 24). We cite this 
research because it highlights the negative experience many adults have of mathe-
matics and also draws attention to the way in which gaining positive experiences 
can change one’s values and relationship to mathematics. Having a relationship 
with mathematics is not just about liking it or being good at it but also about a felt 
connection. Indeed, drawing on Sinclair’s (2004) tripartite model in which the gen-
erative role of the aesthetic was related to “getting a feel for” and “establishing 
intimacy”, it may be that such a relationship is necessary in the problem-solving 
process. DeBellis and Goldin (1999) have also written about the importance of inti-
macy in the problem-solving process and, in particular, how developing intimacy 
requires time and care. While these authors view intimacy as part of the affective 
domain, we also see it as having an aesthetic component inasmuch as intimacy with 
mathematics implies a sensory knowledge of mathematics as well as a valuing of 
that sensory knowledge.
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20.2  Theoretical Framing of the Aesthetic

In our study, we investigate the aesthetic aspects of pre-service teachers’ problem-
solving experiences as described in their journal entries. In line with much of the 
empirical work cited above, we take a contextual and democratic view of the aes-
thetic, instead of seeing it as an objective judgement to be made by a cultural elite. 
We also acknowledge both the social and affective dimensions of the aesthetic, see-
ing it not just as an axiological process in which values are created or adopted but 
also as a quality of human experience.

For our primary theoretical lens, we will use Pimm’s (2006) pragmatic formula-
tion of the aesthetic, which does not constrain aesthetic responses to ones typically 
associated with mathematics, such as elegance and brevity, but that is consonant 
with known aesthetic aspects of research mathematics. Pimm writes:

Aesthetic considerations concern what to attend to (the problems, elements, objects), how 
to attend to them (the means, principles, techniques, methods) and why they are worth 
attending to (in pursuit of the beautiful, the good, the right, the useful, the ideal, the perfect 
or, simply, the true). (p. 160; italics in original)

When the pre-service teachers are explaining the choice of problems to write about 
in their journals, we will look for instances of the what, in terms of the aspects of 
the problem or the problem situation that they attended to; the how, in terms of 
processes they attend to in the solving of their problems; and the why, in terms of 
why the reasons they offer for why the problem was worth attending to. We know 
that mathematicians might choose to work on a given problem because of its visual 
appeal or its “unexpected simplicity” (Penrose, 1974, p. 267), but we know very 
little about what pre-service teachers attend to when considering a mathematical 
problem. In her analysis of the ways in which a middle school teacher attended to 
the aesthetic, Sinclair (2008) identifies three examples related to the what. Only one 
seemed to elicit a response from the students, which was when the teacher drew 
attention to the value of arbitrariness in mathematics when introducing the notion of 
a mathematical relation. Instead of providing examples using familiar numbers or 
relations, he pointed out that −23.79 could be related to a million or to π, which 
made the students laugh. Although this example is not specific to problem posing or 
problem solving, it does highlight the way in which aesthetic considerations are not 
necessarily framed in terms of aesthetic words such as beauty and elegance. They 
are, instead, about the different kinds of values that can be associated to certain 
things—and in this case, there is a valuing of the arbitrary and the unusual.

In terms of the how, some mathematicians have written about preferring certain 
methods over others, which might include geometric approaches to solving a prob-
lem (see Le Lionnais, 1948/1986) or negative aesthetic reactions to certain tech-
niques, such as computer-based ones (Montano, 2014). An example of how for the 
teacher in Sinclair’s study is when the teacher described algebra as suitable for 
working with relations that have patterns (such as a set of collinear points), but not 
for working with a random set of points. Algebra is thus being described as a method 
or technique for working with certain kinds of patterns but not others.
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In terms of why, there is certainly evidence of truth, beauty and usefulness as 
being worthy of attention amongst mathematicians. Amongst pre-service teachers, 
there is some evidence that student accessibility makes problems worth attending to 
(Crespo & Sinclair, 2008) when they are asked to pose “good” problems. Indeed, it 
is reasonable to expect that pre-service teachers will have educational concerns in 
mind when thinking about what is worth attending to—unlike mathematicians. 
Brown (1973) showed that some students preferred their solutions over the more 
elegant ones of mathematicians because they valued solutions that were their own, 
perhaps out of pride or perhaps because such solutions better reflected their under-
standings. Similarly, Sinclair (2008) describes an example of when the teacher in 
her study offered the textbook definition of a relation and then offered her own defi-
nition. As Sinclair writes, “He invited the students to consider his definition pre-
cisely because it is his, thus suggesting that people may have individual 
understandings of mathematical concepts and that it is acceptable to work with defi-
nitions that are personally useful or relevant” (p. 32). Instead of being in pursuit of 
the perfect or the true or the beautiful, the teacher’s invitation exemplifies how 
attending to the why can be in pursuit of the personal (it’s mine!).

Pimm’s articulation of aesthetic considerations does not make explicit the more 
affective, social and embodied aspects of the aesthetic that we have highlighted in 
the previous section. We can, however, elaborate his articulation in order to make 
these aspects more overt. In particular, we can include affective experiences in the 
why category in that pre-service teachers (as well as students and mathematicians) 
might consider a problem worth attending to if it has provided them with some kind 
of pleasure or enlightenment to which Rota refers or the “felt connection to the 
body” about which Weil writes.

20.3  Investigating Pre-service Teachers’ Aesthetic Responses

In this section, we provide some background on the goals of the course in which the 
pre-service teachers, who participated in our study, were enrolled and the nature of 
the data that we collected for this study. We also outline our methods of analysis.

20.3.1  Context of the Research

The data for this study was obtained from 66 pre-service teachers enrolled in two 
sections of an elementary mathematics method course taught by the second author. 
The design of the course was shaped by a strong desire to transform the way the 
pre-service teachers felt about mathematics as well as their own ability to do math-
ematics. Accordingly, the course’s 11 lessons were developed around rich problem-
solving tasks that offered multiple approaches to solving and were frequently 
open-ended. Collaboration was fostered through the use of visibly random grouping 
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and vertical surfaces, such as a whiteboard or chalkboard (see Liljedahl, 2016). The 
intent was for the pre-service teachers to leave the course with a newfound apprecia-
tion for the teaching and learning of mathematics that they would hopefully take 
with them into their future classrooms.

Throughout the course, the pre-service teachers were engaged in solving a num-
ber of problems. Every four-hour-long lesson provided the opportunity to work on 
several problems, with the final problem of each day designated as a problem they 
could use for a journaling assignment. The original intent was to have the pre- 
service teachers select three from a list of nine problems and write about their expe-
rience in solving the problem. To eliminate pedagogical tensions around subjective 
evaluation of personal journal writing, evaluation of the assignment was limited to 
objective measures of completion, e.g. the pre-service teacher had written about 
three problems and described their problem-solving process and why they chose to 
write about the problem. The task outline was as follows:

Throughout the course you will be working collaboratively in-class on many mathematics 
problems. Your efforts for these problems are to be kept in a portfolio, from which you will 
choose three for submission. However, the intent isn’t just to write out the problem and the 
solution. You must provide a narrative of the problem-solving process that you and your 
group went through: What were you feeling, thinking, doing? What did you try first? What 
did you do when you felt unsure? Frustrated? What did you like? Dislike? Why did you 
decide to include this particular problem?

Thus, instead of asking the pre-service teachers to choose a particular problem to try 
to solve, we asked them to choose problems that they wanted to write about. This 
methodological decision enabled us to gain insight not only into the motivational 
role of the mathematical aesthetic but also into the overall aesthetic experiences of 
the pre-service teachers, which we conjectured might involve social and emotional 
dimensions as well.

By the end of the very first lesson, however, the pre-service teachers were already 
inquiring whether they could choose to write about any of the problems they 
encountered in class, not just the final problem of the day. These students had 
already had a powerful experience with a problem they had worked on during the 
lesson and wished to chronicle that experience for the assignment. This was unex-
pected yet not unwelcome. Having no strong attachment to the original nine prob-
lems other than a desire for organization and the personal belief that they were 
“richer” problems, an in-the-moment decision was made to open up the assignment 
to include any problems worked on in class. This resulted in 24 problems from 
which the pre-service teachers could choose, and in the end, 18 of those 24 were 
written about in the problem journals. In what follows we describe in some detail 
two of the problems the pre-service teachers encountered, which are representative 
of the two kinds of problems that were offered. The first is from the original list of 
nine designated problems, and the second is an example of a problem that the stu-
dents asked permission to include in their journal.

The most commonly chronicled problem-solving experience was a place value 
problem given during the second lesson. On the original list of 9 problems, 36 of the 
pre-service teachers chose to journal about this problem. Its instructions were 
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 simple: How many times does the digit “7” appear in the numbers from 0 to 1000? 
Dreyfus and Eisenberg (1986) use a variation of this problem to showcase relevant 
features of aesthetic thought in mathematics problem solving. While the problem fit 
well with the day’s lesson on place value, its value in an elementary mathematics 
methods course was twofold. First, it is important for pre-service teachers to have 
mathematical experiences that are similar to those they intend to provide for their 
students. Telling pre-service teachers about the benefits of problem-solving activi-
ties in a classroom is far less effective than having them undergo the experience 
personally. “Coming to know something is not a spectator sport although numerous 
textbooks, especially in mathematics, and traditional modes of instruction may give 
that impression” (Brown & Walter, 1983, p. 2). Secondly, it is an effective problem 
for encouraging collaboration.

It was apparent from the submissions that the problem responsible for changing 
the assignment parameters was “the tax collector”. Not included on the original list 
of nine problems, it was the second problem of the first lesson and the first time the 
pre-service teachers were required to work collaboratively. Nineteen of the sixty-six 
students chose to journal about this problem for their final submission. The problem 
is a simple task that required the pre-service teachers to revisit their prior knowledge 
about factors. Presented as a game, the premise of the tax collector is that you are 
given a series of paychecks, from $1 to $48. You can choose any paycheck to keep. 
Once you choose, the tax collector gets all paychecks remaining that are factors of 
the number you chose. The tax collector must receive payment after every move. If 
you have no moves that give the tax collector a paycheck, then the game is over and 
the tax collector gets all the remaining paychecks. The goal is to beat the tax collec-
tor. Again, the intent behind using this problem was twofold: to provide the pre- 
service teachers with an early experience in mathematical problem solving that was 
engaging and collaborative, both of which were unusual for the majority of the 
pre-service teachers.

20.3.2  Method of Analysis

Our data corpus was comprised of 66 problem-solving journals that described 198 
problem-solving experiences (three for each pre-service teacher). In their responses 
to the prompts, the pre-service teachers provided a variety of reasons for choosing 
the three problems to journal about. Some reasons were very succinct, such as 
“because it was challenging”, while others were more elaborate and involved the 
broader context such as the particular dynamic of the group or the relation of the 
problem to something outside the classroom. Our first round of analysis involved 
reading through the journals in order to discern instances of Pimm’s (2006) what, 
how and why formulation of the aesthetic. Since the pre-service teachers were not 
just writing about the strictly mathematical aspects of the problems, for which 
Pimm’s formulation would apply directly, but also about their problem-solving pro-
cess as a whole, we decided to slightly modify Pimm’s three categories as follows: 
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the what focused on aspects of the problems identified by the pre-service teachers; 
the how focused on the process of solving the problem; and the why addressed the 
reasons given to explain the worthiness of the problem.

In addition to our specific focus on the choice of problem, we also noticed as we 
read through the journals that the pre-service teachers wrote about aspects of their 
experience that were not strictly focused on the problems they had chosen but were 
more broad. We thus attended specifically to their aesthetic responses, which we 
identified through their use of words such as enjoy, feel, surprise and excited. 
Guided in part by our review of the literature, and in particular of the writings of 
mathematicians such as Rota, Thurston and Weil, we noticed that the aesthetic 
responses clustered in two areas, which we categorised as collaboration and per-
sonal closeness with mathematics. These became our themes, and using NVivo cod-
ing software, we then recoded the collected data accordingly.

20.4  Choice, Collaboration and Closeness

This section comprises three subsections. In the first, we describe the results of our 
analysis of the pre-service teachers’ descriptions of their reasons for choosing to 
journal about their three problems. In the second and third, we present our analysis 
of data relating to collaboration and closeness, respectively.

20.4.1  Aesthetic Considerations in Choosing Which Problem 
to Write About

Following Pimm (2006), we report on each type of aesthetic consideration that we 
found in the pre-service teachers’ explanations of the three problems that they chose 
to write about in their journals. We found several different explanations of what to 
attend to that were similar to what has been reported by mathematicians, as well as 
some that are quite distinct. We begin with the former set of explanations.

The most frequently mentioned aspect of the problems the pre-service teachers 
chose to report on was that it was sufficiently difficult, that is, not too easy but not 
too hard: “challenging but attainable” as one participant said, or in the words of 
another, “it was just enough of a challenge to be kept intrigued”. Several partici-
pants also mentioned choosing problems that they found interesting, such as one 
participant who described a problem as being “an interesting mind exercise”. 
Another aspect of the problem that was mentioned related to it somehow being sur-
prising; one participant wrote that the problem was “so lopsided I find that it 
intrigues me” and another said “I had never heard of palindromes in mathematics”. 
These surprising problems often provoked a desire to understand how the problem 
worked: “I wanted to really get to understand it”. Finally, several pre-service 
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 teachers wrote about the problem being somehow immediately accessible, either 
because they could see a pattern (the number pattern was “accessible” to me) or how 
to solve it (“I was quickly able to come up with a strategy”) or because it corre-
sponded well to a personal strength: “[it] was directed to my skills and my way of 
thinking”.

In terms of aspects of the problem that we have not seen reported by mathemati-
cians, we found two different kinds of explanations. Some pre-service teachers 
wrote about a particular aspect of the problem that they could relate to, such as the 
problem involving money or a connection to literacy, or a problem they had seen 
before or a problem that reminded the participant of a family member. Another 
aspect of the problem frequently mentioned by the pre-service teachers was that the 
problem did not have to be solved in any specific way. This is quite an interesting 
aspect of the what category because it would be taken for granted in the context of 
mathematicians, who try to solve problems in any way they can and not just by 
using a strategy or concept they have just learned! The pre-service teachers may not 
have seen right away that the problem had different solutions, but their instructor 
had made it clear to them.

The how of what the pre-service teachers attended to was evident in the pro-
cesses they wrote about in their journals. Many chose problems in which they had 
the experience of working collaboratively, an atypical experience for the majority of 
them: “this was the first problem where I understood the power of group work” 
wrote one participant, while another elaborated that “I never experienced this [col-
laboration] type of learning during my educational journey in math classes”. Others 
chose to write about problems in which the process of finding the answer was key: 
“fun, creative and collaborative” was one participant’s description of solving, while 
another stressed the importance of finding the answer successfully “in our own 
way”. Still others chose problems because the way the problem was solved was 
appealing: either through “the power of ‘guess and check’ and trial and error” or 
because “it felt like we were on the right track”. This idea of being on a path forward 
arose repeatedly with one participant describing it as “it feels like there is a constant 
progression”, while another related her enjoyment of the process of solving to that 
of “going for a nice, long walk”.

Workspace was an intriguing aspect of the pre-service teachers’ how experience 
of problem solving that perhaps differs from mathematicians’ accounts. Some chose 
problems that they experienced not only collaboratively but while working at verti-
cal surfaces. One participant mentioned enjoying solving “all of the problems we 
did in class” and went on to add that it is “due to the use of vertical surfaces”. 
Vertical surfaces in the classroom were simply whiteboards or chalkboards at which 
groups of three or four pre-service teachers stood when engaged in problem solv-
ing. The vertical surfaces allowed them to “share ideas freely” and to persevere, 
with one participant suggesting that a vertical surface “makes it easy to erase every-
thing and start again when you need a new perspective”. Many pre-service teachers 
also mentioned the connection between the vertical surfaces and being “actively 
engaged” with one of the participants writing:
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I also loved the vertical surfaces. I found more of us were engaged this way as we weren’t 
sitting in chairs looking at our own paper but instead all eyes were on one large chalk board. 
Even our body language felt more engaging. I found myself leaning in, open minded and 
not as closed off if we were to be sitting and slouched over. This was new to me, but I 
remember already feeling the power of vertical surfaces even after just one day.

This idea of working collaboratively at a vertical surface (such as a blackboard or 
whiteboard) is not novel for mathematicians who, as Menz (2015) has documented, 
typically need to think through diagrams and written symbols that cannot easily be 
communicated through speech only. It was, however, outside the norm of school 
mathematics for the pre-service teachers, whose collective experience in prob-
lem solving was almost exclusively working individually with paper and pencil at a 
desk.

We turn next to why the pre-service teachers felt the problem they chose was 
worth attending to. Frequently mentioned was that the problem offered a moment of 
insight. Referred to as an “aha” moment in their journals, one participant went on to 
describe the experience as “cathartic”. Affective responses often played a role in 
deciding a problem’s worthiness with participants using words like “enthusiastic”, 
“excited” and even “feeling warm and fuzzy inside” to explain why they chose to 
include a particular problem. Related to this was the overall joy experienced in solv-
ing the problem. “Because I honestly just really enjoyed it”, wrote one pre-service 
teacher, while another wrote of the “pure enjoyment I got out of trying to solve [it]”. 
Personal insights were another factor in the why behind choosing a problem with 
one participant reaching the realization that “our past influences shape our 
approaches” and another selecting a problem that was a “representation of my 
growth”. Connected to this were those pre-service teachers who chose problems 
that allowed them to “continue the learning outside of the classroom”. One partici-
pant wrote, “I have never in my life been so excited to show my friends and family 
something I learned in school”.

This preference for problems that extend the learning beyond the actual moment 
of solving is one that resonates with the mathematicians’ attraction to fruitfulness, 
that is, to the valuing of a problem, solution or concept because of its potential for 
generating further mathematical ideas. In this case, however, the fruitfulness was 
specific to the generating of future learning. It seems that many of the pre-service 
teachers viewed the problems from the dual perspectives of learner and teacher, as 
we see in one participant who wrote, “It showed me the importance of quite a few 
things in regards to learning and teaching”. Yet another wrote about the importance 
of “striving to teach math with the ease and confidence that you demonstrated”. 
Viewing the problems with this duality was evident in many of the journal entries, 
in which participants wrote about liking the “in-class applications” or “classroom 
potential” of a problem. Focusing even more specifically on the individuals within 
those classrooms, still others wrote of a desire to “impress future students” with a 
particular problem or because “I think students would really enjoy participating in 
this problem”. This suggests that part of the aesthetic appeal of a problem for pre- 
service teachers lies in its applicability for use in their future classrooms.
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20.4.2  The Social Nature of Aesthetic Experience

The image of a mathematician as a lone individual working privately was negated 
by Burton (1998), whose research on mathematicians revealed the prevalence of, 
and the preference for, working collaboratively. More recently, as mentioned above, 
Menz (2015) has documented the way in which mathematicians work together, 
often at a blackboard, to understand the nature of the problem, build shared mean-
ings around the objects and relations at play and communicate through diagrams, 
gestures and words.

Unfortunately, the negative stereotype persists in school mathematics and is per-
petuated in classrooms where mathematics is most often pursued as an individual 
endeavour. This was true for the majority of the pre-service teachers, many of whom 
were experiencing collaborative problem solving in mathematics for the very first 
time. As one pre-service teacher wrote, “It was my first time experiencing group 
work in math class, engaging in discussions with peers, and working together to 
solve a mathematical problem. Solving the problem was fun; I was actively engaged 
the whole time”. In all, 29 pre-service teachers connected this positive experience 
of working together to an increased enjoyment and appreciation of mathematics. We 
see this as an aesthetic response that arose from the social nature of their problem-
solving experiences. The pleasure was not just about being in a group and not just 
about solving a problem but instead about coming to know mathematics together.

For many of the pre-service teachers, the experience of working collaboratively 
resulted in a stronger, more positive relationship with mathematics. One wrote 
about the group experience as “making me think deeply about finding a strategy” 
and “being pushed ‘mathematically’”. Still another wrote:

Throughout the process, I have seen myself evolve in how I view math. I can attribute this 
to the way in which I have been learning math. Working through these problems as a group 
have, for the most part, allowed me to feel supported through the process and as a result stay 
engaged. I have been prompted to extend my thinking, and further my learning as a result.

This linking of the affective and cognitive domains—in the mentioning of feeling 
support and also extending his/her thinking—resulted in an aesthetic response that 
we associate with the social dimension of Sinclair’s (2004) motivational role of the 
aesthetic. As with mathematicians, these pre-service teachers write about wanting to 
work on problems not just because the problems are interesting or important but 
because of the social complicity.

Working collaboratively was a pleasurable experience that the pre-service teach-
ers saw as strengthening their mathematical skills. This, in turn, led to an even 
stronger desire to collaborate and an increased affinity for problem solving. Indeed, 
another pre-service teacher wrote of this recursive motivational effect of collabora-
tion on problem solving stating:

As the term went on, I noticed myself begin to take more risks as I realized the benefits to 
the group and myself of sharing diverse ways of looking at problems and talking my ideas 
through with others.
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The taking of risks seems of utmost interest in this last quote, in part because it 
seems to be this affective comfort zone in which “ponderings, what ifs, it seems to 
me thats, it feels as thoughs” can occur, which Burton (1999, p. 30) describes as 
being helpful in nurturing intuition.

Still others wrote of how working collaboratively allowed them to solve prob-
lems they felt were impossible. “It took all of us to test our theories and explain our 
thought processes to reach the final answer”, wrote one pre-service teacher, while 
another mentioned, “If I did not have a partner there to double-check my work and 
my numbers, I would not have been able to solve the problem”. The pleasure in their 
unexpected success suggests an aesthetic response evoked by collaboration. In a 
similar comment, another pre-service teacher describes herself as “delighted by 
how clever a problem it really is” after a successful collaborative experience with an 
“impossible” problem. Here we clearly see the impact of the social dimension on 
the motivational role of the aesthetic and the overall stimulating effect on the pre- 
service teachers.

That is not to say that all the collaborative experiences were positive. Of the four 
pre-service teachers who shared negative experiences of problem-solving, one felt 
uncomfortable in several group situations, while the other three spoke of a single 
unpleasant occurrence. The first pre-service teacher related her discomfort to her 
own perceived lack of mathematical ability but adds:

Looking back I realize that it was silly of me to let my fear of embarrassment in front of my 
peers to hold me back from expressing my ideas, but in a situation with people you barely 
know it can be hard to let your inhibitions go.

Two of the other three pre-service teachers shared an experience of being part of a 
group whose approach to the problem was difficult to understand. They felt 
excluded. One wrote, “I ended up in a group that felt I could not contribute to and 
that I felt extremely disengaged in”. The fourth pre-service teacher’s journal entry 
stemmed from a group experience in which all the group members chose to work 
sitting together at one table. He noted that they all immediately began working indi-
vidually, writing, “I think that the work at the “horizontal” spaces set conditions for 
atomized work and encouraged us to get set in our ways”. He later added, “Instead 
of working as a group, we were working in a group”. This telling phrase perhaps 
encapsulates the experience of all four of these pre-service teachers. Being in a 
social situation, which lacked collaboration, negatively affected their aesthetic 
experience of problem solving.

Interestingly, this negative experience was felt by several other pre-service teach-
ers. However, rather than having the experience of problem solving in two different 
kinds of social situations, these pre-service teachers contrasted their collaborative 
experience in problem solving with working alone:

After experiencing working on these problems in a group, both with random peers and my 
friends, I thought it would be interesting to experience the different emotions and feelings 
of doing one of these questions independently, as many students in math class are required 
to do. I must say that many of the emotions I felt during this process were not positive and 
this was a great reminder of how isolating math can be if you let it.
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The feeling of isolation here is related to the social context, but it may also affect the 
sense of alienation from mathematics itself. In contrast, the development of social 
relations may also promote the development of relations with mathematics, which 
in turn may well be at the heart of the intuitions on which the generative role of the 
aesthetic depend.

Yet another remarked on an unsuccessful attempt to solve a problem alone at 
home:

There was no one motivating me to continue, or pushing my thinking or presenting new 
ideas regarding how to solve it. At this point I started really appreciating math done in a 
collaborative setting because I had never given up before in one of my groups during class.

This intertwining of the affective and aesthetic domains suggests that collaboration 
itself became less of a way of “doing” mathematics and more of a way of experienc-
ing mathematics. It was through collaboration that aesthetic motivation was possi-
ble for these pre-service teachers. In addition, we conjecture that the safe, shared 
space that was created also provided fertile grounds for the generative role of the 
aesthetic, inasmuch as the pre-service teachers also developed their relations with 
mathematics. In the next section, we turn to this theme more directly in examining 
instances in which the pre-service teachers described a sense of rapprochement.

20.4.3  Getting Close to the Mathematics

In reading the literature on the aesthetic dimension of mathematical activity, there 
were a few instances in which mathematicians described a kind of felt connection to 
mathematics, which we associated with Sinclair’s (2004) generative role of the aes-
thetic but also to the notion of intimacy and relationship—both of which we see as 
establishing some kind of closeness with mathematics. We identified 26 instances in 
which the pre-service teachers evoked closeness. By far the most common theme in 
these 26 instances was how the problem-solving experiences helped the teachers 
learn something about themselves, which we see as closeness in that the mathemat-
ics is inserting itself in the pre-service teacher’s relationship with herself. There 
were 20 such instances. For example, one pre-service teacher wrote:

I learned a lot about myself in group situations, and my own thoughts and opinions about 
my own personal math abilities. I feel as though I grew a great deal as a math learner 
through these problems; I started off very shy and never wanted to share my thoughts 
because I was always doubting myself, to becoming really comfortable and very sure of 
myself!

This comment could be read in affective terms, as a change in confidence, for exam-
ple. It could also be read in terms of the pre-service teacher’s identity as a mathe-
matics learner. We see it as an example of aesthetic closeness in parts because it 
combines affective and cognitive dimensions but also because of the sense of a new 
relationship with mathematics that shifts the way she sees her own mathematical 
abilities. Another pre-service teacher also wrote about increased confidence, 
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especially in a group: “Despite my original shy nature with math, I even found 
myself picking up the chalk first which made me proud because I was not as afraid 
to do math in front of others”.

A similar comment, which could also be seen as being related to identity, was 
made by a different pre-service teacher:

I never really though myself one to be affected by the thought of “satisfying” numbers, but 
there is something just so pleasing about symmetry in this regard…

There is a shift in this pre-service teacher’s perception of herself, as someone who 
could find a mathematical object “satisfying”, but also a new closeness to number 
because of the pleasure of symmetry. This response alludes to the more traditional 
aesthetic category of symmetry, but it is not the detached criterion of beauty that 
G.H. Hardy or Bertrand Russell might talk about. Instead, it is wrapped up in a new 
relationship with herself, once again, as someone who might respond positively to 
particular mathematical objects. Another pre-service teacher expressed a similar 
feeling, writing: “To be honest, I was surprised by my feeling of joy and excitement 
from a math problem!”

A different type of closeness that was articulated by the pre-service teachers con-
nects very closely with the generative role of the aesthetic. We only found six such 
responses, but they each mentioned something about a “feeling” or “inkling” or 
“sense of pattern” that they had when working on the problem. One pre-service 
teacher wrote “I remember being a bit in between these two feelings, like I was on 
the edge of my seat knowing some epiphany was about to happen but still not know-
ing what to expect”. This is not about the “aha” experience, but about the feeling 
leading up to it, when you are anticipating such an experience. It seems in line with 
Weil’s description of “murky reflections”, “furtive caresses” and “inexplicable 
tiffs”—when you feel you know before you actually know.

20.5  Discussion and Conclusion

Our goal in this chapter has been to examine the aesthetic responses of pre-service 
teachers engaged in open and collaborative problem solving. Given the particularity 
of their contexts, as students in a course but also future teachers, we expected their 
aesthetic experiences to diverge from those reported by and about expert mathema-
ticians. Given the methodological challenges of capturing aesthetic responses in the 
course of problem-solving, we chose to study our phenomenon of interest by asking 
the pre-service teachers to describe their reasons for choosing certain problems (out 
of the many they encountered over the course of the semester) to include in their 
journals. The focus on choice, we hoped, would give rise to axiological consider-
ations, especially in relation to the aesthetic values at play.

In analysing the pre-service teachers’ journal responses, we focused on the three 
types of aesthetic considerations put forward by Pimm (2006), which involve what 
is being attended to, how it is being attended to and why. Given our context, we 
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adapted these three types of considerations as follows: the what focused on aspects 
of the problems identified by the pre-service teachers; the how focused on the pro-
cess of solving the problem; and the why addressed the reasons given to explain the 
worthiness of the problem. In relation to the what, the pre-service teachers referred 
to two considerations that have been found in the research on mathematicians’ aes-
thetic: the problem should be adequately difficult and it should be surprising. The 
pre-service teachers also spoke of two other considerations: the problem should 
have some kind of personal connection and it should have multiple solution meth-
ods. In relation to the how, the most important consideration was collaboration, as a 
method of doing mathematics. The pre-service teachers also wrote about attending 
to the particular methods they found appealing such as “guess and check”. One very 
important consideration was the workspace, which involved the use of vertical sur-
faces. Finally, in relation to the why, the pre-service teachers wrote about valuing 
problems because they provided insight and enjoyment, which is something the 
research literature suggests they share with mathematicians. They also referred to 
the fruitfulness of a problem in terms of their perception that the problem could be 
used in their own classrooms, in the future.

In reading the pre-service teachers’ responses, we were also struck by two themes 
that have been mentioned in the literature on the practices of mathematicians but that 
have not typically been featured in discussions of the mathematical aesthetic. One 
theme had to do with the social context in which mathematical problem solving can 
occur and the concomitant affective and cognitive implications of such activity. We 
also argued that the collaborative opportunities may have occasioned opportunities for 
intuitive ways of thinking that have been linked with the generative role of the aes-
thetic. This relates also to the second theme of closeness, in which we saw evidence 
of the pre-service teachers expressing a new relation to mathematics. The closeness 
was also evident in their writing about having a “feeling” for mathematical ideas—not 
solutions to problems but intuitions about how the problem could be solved.

Although we have highlighted the types of problems that the pre-service teachers 
were given the opportunity to work on and the assignment they were given as part 
of the assessment of their work, we have said very little about the role of the teacher 
in creating an environment in which the various aesthetic responses we identified 
could occur. Encouraging collaboration certainly helped, but the pre-service teach-
ers also reported feeling safe in the classroom, which would enable them to take 
risks in their problem solving. The teacher repeated over and over again that she was 
interested in the process, which also likely mitigated any feelings of anxiety the pre-
service teachers might have had.

Overall, we have found that the pre-service teachers wrote about having many 
aesthetic responses that are similar to those reported by mathematicians. They also 
wrote about some types of aesthetic experiences that are more pertinent to their 
roles both as students and future teachers. If the role of the teacher is to enculturate 
students into mathematics, then we see it as essential for them to develop an aware-
ness of the aesthetic nature of mathematical activity, but we also underscore the 
importance of helping them develop an aesthetic awareness that is relevant to the 
teaching and learning of mathematics.
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Chapter 21
Facebook and WebQuests as Tools 
for Engagement with Mathematical 
Problem-Solving: The Emotions 
Experienced in the Math@XXI Gymkhana

Rosa Antónia Tomás Ferreira and Marli Duffles D. Moreira

Inclusive competitions have been receiving increasing attention, both from the edu-
cational community and the general public (Kenderov et al., 2009; Stockton, 2012). 
Such competitions are aimed at all students, regardless of their school achievement. 
This means that although students deal with (mathematical) challenges, they per-
ceive those challenges as attainable and related to their daily lives which, in turn, 
favour the search for a solution.

Inclusive competitions are typically available in beyond the classroom contexts. 
Given the challenging environment that usually surrounds them, such competitions 
stimulate student participation and foster positive affect towards learning mathe-
matics, namely, regarding motivation, interest, and pleasure (Freiman & Véniza, 
2006). Furthermore, if collaboration also occurs, students’ learning of mathematics 
is promoted, including those who have more difficulties (Barbeau & Taylor, 2009).

The social interaction that emerges during the participation in inclusive competi-
tions promotes a context of cultural relationships that favours each and every stu-
dent’s individual development. Several studies have shown that similar activities 
beyond the classroom contribute to developing a positive attitude towards school 
and towards mathematics (Barbeau & Taylor, 2009; Freiman & Applebaum, 2011). 
One might argue that students’ willingness to participate in a mathematical compe-
tition beyond the classroom signals their predisposition to enjoy mathematics and 
face it in a positive manner; however, when a large number of students are involved 
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in such after-school activities, one must also look at the characteristics of those 
activities that promote such engagement and positive attitudes.

Math@XXI (Moreira, 2016) is a school mathematical competition of inclusive 
nature under the format of a gymkhana. This pedagogical intervention was devel-
oped in a public school in Northern Portugal, in a beyond the classroom context. 
Aimed at students in the third cycle of basic education (aged 12–15 years old, 7th 
through 9th grade levels), the gymkhana included four digital tournaments 
(WebQuests) and one on-site final tournament without Internet usage.

Approximately 155 students organized themselves, freely, in 13 teams of 11 par-
ticipants each and one team of 12. Students came from eight 7th grade classes and five 
8th grade classes. The teams were quite heterogeneous in terms of their elements’ 
grade levels and school mathematics achievement. Six mathematics teachers of the 
school supported the teams’ work. Each team named itself.

From the beginning, Facebook was included in the Math@XXI design as a 
means for facilitating the communication amongst the elements of each team and 
between them and the facilitator (second author). As such, 14 closed groups were 
set up, one per team, the facilitator being the sole common element in those groups. 
Facebook was also intended to be the vehicle to publish the WebQuests that consti-
tuted the digital part of the competition. During such digital tournaments, students 
were encouraged to ask for help to the gymkhana’s facilitator or the teachers 
involved whenever they felt the need. The facilitator was present at the school at 
least once a week in order to provide support to the gymkhana’s development.

Math@XXI lasted for 5 months, starting in January 2015 with the publication of 
the first WebQuest on the closed groups in Facebook. The WebQuests were com-
mon to all the teams and were designed around four integrating themes: (i) triangle, 
(ii) number 7, (iii) infinity, and (iv) mode. Figure 21.1 depicts how each of these 
themes was proposed to the participants in Math@XXI. As shown, there was a pat-
tern in the design of the WebQuests – for each aggregating theme, the participants 
were asked to complete tasks that pushed towards establishing different kinds of 
connections: with the history of mathematics, with distinct areas within mathemat-
ics, with other sciences, and with daily life. The tasks challenged students to solve 
problems and engage in mathematical explorations (Ponte, 2005). As a final product 
of each digital tournament, the teams were asked to produce an issue of a journal, in 
digital or printed format, presenting their responses to the tasks posed in the 
WebQuests.

The facilitator scored all teams for their work throughout the five tournaments, 
in a total of 240 points, half of which equally distributed by the four WebQuests. 
Scoring was a way to give a kick to the competition. In truth, the real competitive 
part of Math@XXI was the final tournament. The digital tournaments had the major 
goal of pushing participants to engage with mathematics, find new connections 
within mathematics and with other areas, including daily life, and develop an appre-
ciation for mathematics. Throughout these tournaments, the scores and the feedback 
given (on-site and via Facebook) helped the participants in identifying what they 
needed to improve in their next journal issue. The teams’ work on the WebQuests 
was assessed based on the following criteria, which were of public knowledge: 
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 correctness of the answers to the tasks, clarity and correctness of the written texts, 
cooperation amongst all team members, and creativity in the solution of the tasks.

The final tournament took place on a Friday afternoon, in an after-school schedule, 
involving 105 students working in their respective teams, 12 in total. This tournament 
allowed no Internet usage nor help request. Given the weight of this tournament’s 
score in the final score of the competition, the partial ranking of the digital tourna-
ments could be drastically changed after the final tournament. Though the tasks of the 
final tournament addressed the same themes of the WebQuests and were of the same 
nature – mathematical problems and explorations – the participants’ working condi-
tions were significantly different. This could alter the participants’ emotional states, 
but, at the same time, it could challenge the participants’ attitudes that they had been 
developing while engaged in the competition. In  particular, the self-confidence and 

Tournaments Connections Tasks

First WebQuest

Theme: TRIANGLE

(January 12, 2015)

History 
Pythagoras, his  ideas  and 

accomplishments

Mathematics Pythagoras’ theorem

Geography

Circumcentre of an imaginary triangle 

formed by three extreme points in 

Portugal

Daily life Total area of a roof

Second WebQuest

Theme: NUMBER 7

(February 13, 2015)

History Thales, his ideas and accomplishments

Mathematics Prime numbers

Physics Rainbow

Daily life Distances in maps

Third WebQuest

Theme: INFINITY

(March 13, 2015)

History
Georg  Cantor, his  ideas and 

accomplishments

Mathematics Golden ration and irrational numbers

Natural sciences Water

Daily life Medication in “infinite” dosages

Fourth WebQuest

Theme: MODE

(April 20, 2015)

History
Blaise Pascal and Pierre de Fermat, their 

ideas and accomplishments

Mathematics Mean, median, and mode

Statistics Data handling

Daily life Results of a football championship

Final tournament
(on-site)

Without Internet 

(May 29, 2015)

Group A About a topic in history of mathematics

Group B About a problem of daily life

Bonus task
Crosswords about the themes addressed 

in the digital tournaments

Fig. 21.1 Organization of the five tournaments of Math@XXI
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collaborative skills that the students developed during the digital tournaments were 
driving forces for the final tournament.

The closing event of the Math@XXI gymkhana occurred on June 8, 2015. All 
students of the 12 teams which participated in the final tournament were given medals. 
The two teams with the highest final scores received a prize: a 1-day guided tour in 
Porto (second largest city of the country, about 50 km away from the school site), 
including a visit to the Faculty of Sciences of the University of Porto.

In this chapter, we present the partial results of a wider research study (Moreira, 
2016) that was developed based on Math@XXI. Following a design-based research 
methodological approach, the Math@XXI intervention was grounded on the ideas 
of mathematical enculturation and activity theory, with an emphasis on the interre-
lationship between affect and cognition. Our aim is to describe the emotions expe-
rienced by students in Math@XXI and discuss the potential of Facebook and 
WebQuests to support the development of students’ global, positive, affect towards 
mathematics.

21.1  Mathematical Enculturation and Activity

The intervention Math@XXI was designed based on Bishop’s (1991, 2002) notion 
of Mathematical Enculturation and on Leontiev’s Activity Theory (Leontiev, 1978). 
Both authors emphasize that learning is a sociocultural phenomenon that is devel-
oped through each individual’s appropriation of objects of the human culture, his-
torically constructed. In this section, we briefly present those two theoretical 
perspectives (since they framed the whole Math@XXI project, though they were 
not relevant to the data analysis herein presented), pointing to how we perceive their 
interrelationship in the context of Math@XXI.

According to Bishop (1991, 2002), mathematics is a cultural good that should be 
available to all students through a process of enculturation. Mathematical encultura-
tion is a social and deliberate process of engagement with mathematics, involving 
the appropriation of objects of the mathematical culture that has been constructed 
throughout human history: “each new generation reconstructs the meanings of the 
old [generation], and thus ‘culture’ is no fixed collection of objects” (Bishop, 1991, 
pp. 152–153).

Mathematical enculturation is an interpersonal process: when students interact in 
small groups, they share meanings and disagreements, while they appropriate math-
ematical objects to which they give a personal meaning. Hence, Bishop (1991) has 
urged a change in how mathematics education has been and still is perceived: from 
a technical focus that emphasizes doing to a cultural core that privileges understand-
ing, that is, “to promote the transformation from ‘technique’, a way of doing, to 
‘meaning’, a way of knowing” (p. 124 [first italics added]).

According to Leontiev (1978), human activity is social in its essence, and it 
promotes a dialectical relationship between the external reality and the structure of 
the consciousness. The author sustains it is through activity that the appropriation of 
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the objective world is achieved and that activity mediates between the subject and 
the object. Thus, the process of appropriation of the objects of human culture is the 
outcome of an effective activity of the individual on those objects.

Learning is an activity that encompasses needs and motives, and it occurs through 
actions and interactions with a given culture. Such activity involves thinking and 
doing, two actions that feed into each other. Leontiev (1978) emphasizes the essen-
tial role of the individual’s activity to the process of appropriation of knowledge. 
This demands a fundamental attitude on the student’s part towards knowledge: the 
student must be the main character of the pedagogical scene, not a passive element 
whose role is to receive ready-to-use (pieces of) knowledge.

All human activity is mediated by tools. Math@XXI is perceived as a cogni-
tive tool, that is, a technology (in a broad sense) that enables (mediates) students’ 
meaningful and active learning, as they construct knowledge, communicate, col-
laborate, and reflect. The teams (subjects), through their activity, accessed the 
mathematical culture (objects), promoting the development of a process of math-
ematical enculturation. The social mediation occurred amongst the students who 
collaboratively solved the tasks, within their teams and with the help of the gym-
khana’s facilitator and their teachers. Facebook and WebQuests played the role 
of mediation tools.

WebQuests allow for the creation of a stimulating learning environment in which 
the following three elements interact in a mutual way: the student (subject), the 
technology (tool), and the mathematical culture (object). Thus, WebQuests work as 
mediating tools between students and knowledge, in line with the premises of 
Leontiev’s (1978) Activity Theory. They

…are activities of guided research, mainly on the Web, based on authentic, challenging 
tasks. Therefore, they facilitate learning, whether individually or in groups. These are, in 
fact, their main foundations and the ingredients able to motivate students, and to engage 
them, actively, in their own learning at school. (Costa & Carvalho, 2006, p. 10)

There is a general format for the structure of a WebQuest which was followed in 
Math@XXI (Costa & Carvalho, 2006). The introduction presented the overarching 
themes of the WebQuests and provided general guidelines for the students about the 
tasks they would be invited to complete. These tasks were described in detail in a 
second tab. The process tab gave students the outline for the various steps of the 
work they were to engage with, as well as some orientations to complete their work. 
The tab for resources offered students a list of references that should be consulted 
in order to complete the tasks (all resources were available on the Web). The scoring 
criteria for each proposed activity were made explicit in the assessment tab. Finally, 
the conclusion tab asked for a summary of the work that was developed and a reflec-
tion about what was learnt.

Costa and Carvalho (2006) advocate that using WebQuests as a pedagogical 
strategy helps in developing some “essential socio-cognitive competencies that are 
indispensable for an individual’s development in [today’s] society of knowledge” 
(p. 12). In particular, WebQuests support students in developing several skills such 
as research, communication, collaboration, and social participation.
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WebQuests may become significant tools for mediating the teaching and learn-
ing process, in which several aspects concur towards meaningful learning (of 
mathematics): students’ activity is at the core of the teaching and learning process, 
tasks allow students to get involved with complex knowledge, and collaborative 
work is encouraged (Costa & Carvalho, 2006). In fact, when WebQuests are prop-
erly designed and structured, they engage students in modes of work that move 
away from what they are typically called to do at school.

Facebook is a social network of wide usage by youngsters in their daily life, 
having potential as a pedagogical tool and as a means of communication within 
the school scenario. As such, it might promote networks of digital interactions and 
collaborative activity (Allegretti, Hessel, Hardagh, & Silva, 2012), since it widens 
physical and time barriers, and it allows multiple formats of communication (writ-
ten word, figures, digital objects  – photos, videos, etc.). In addition, Facebook 
stimulates the expression of emotions – for example, it allows the use of emoti-
cons which are aimed at sharing emotional states in figurative format.

Facebook offers a friendly and dynamical environment, which invites students to 
share and express ideas and emotions in a spontaneous way. Its flexibility makes it 
possible to engage in this process in different formats: as an individual user, as a 
member of a closed group, or in an open setting – the whole community, including 
the school. As a pedagogical resource, “Facebook allows for a personal and a col-
lective experience with Mathematics, its objects, processes and characters, acting as 
a motivational element to learning” (Moreira, 2016, p. 85).

The first four tournaments of Math@XXI were based on WebQuests. And each 
WebQuest asked the students to collaboratively edit a journal which should include 
the solutions to the tasks of the WebQuests. This product of students’ work intended 
to reinforce students’ authorship, autonomy, and responsibility for their own learn-
ing. The WebQuests were posted on Facebook, in each team’s closed group, which 
contributed to giving students a sense of belonging (a symbolic integration inside 
the group, the team) and to stimulating them to organize themselves and work col-
laboratively. The whole design of the digital tournaments of Math@XXI was 
thought to move away from the usual work of students in school settings, even in 
activities that go beyond the classroom. In particular, the themes of the WebQuests 
and respective tasks were independent from the curriculum, in the sense that they 
were not chosen to fit specific curricular topics. Thus, Math@XXI was expected to 
offer students an innovative experience of learning.

In the design of Math@XXI, the resource to closed groups in Facebook intended 
to use this digital tool as a means of communication and exchange of information 
between the members of each team and the gymkhana’s facilitator and amongst the 
team’s elements as well. In the first case, Facebook was thought to be the prime 
vehicle for disclosing the WebQuests of Math@XXI and for answering any queries 
regarding the work that the teams were expected to complete. In the second case, 
students could share their learning, and, due to the affordances of Facebook, they 
could also freely express their emotions and other affective states. As such, 
“Facebook was thought to offer a virtual environment to developing collaborative 
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learning, with the participation and involvement of all students pursuing a common 
goal: winning the Math@XXI gymkhana as a team” (Moreira, 2016, p. 86).

21.2  Affect in Mathematical Learning

The relationship between affect and cognition has sparked considerable interest 
amongst researchers for a long time. Initially, affective factors were associated with 
causes for the effects on cognition. “Mathematics education, however, need not 
necessarily draw cognition and affect together by means of causal links alone. (…) 
affect, far from being the ‘other’ of thinking, is a part of it. Affect influences think-
ing, just as thinking influences affect. The two interact” (Walshaw & Brown, 2012, 
p. 186). Hannula (2002) corroborates this idea:

Emotion and cognition are seen as two complementary aspects of mind. These two have 
some phenomenological differences that make it reasonable to separate them. Cognition is 
neuron-based information processing, whereas emotions include other physiological reac-
tions, too. However, this splitting of mind into emotion and cognition is only an analytical 
tool, and the interaction between the two is so intense, that neither can be fully understood 
in separation from the other. Rather, emotion and cognition are seen as two sides of the 
same coin. (p. 27)

In addition, affect has a social dimension: “Far from being located inside people’s 
brains, affect is widely dispersed; it involves individuals and their relations in and 
with the world” (Walshaw & Brown, 2012, p. 187). Mathematics is a sociohistorical 
product, a part of the cultural legacy of many different civilizations; it “is a product 
of the human mind and the possibilities of human rational thinking” (Maasz & 
Schloeglmann, 2006, pp. 3–4). Thus, in their learning experiences, students should 
explore the connections of mathematics with life and the culture of various people, 
helping them developing a positive affect towards the discipline and the skill of 
using mathematics to read the world (D’Ambrosio, 2009).

Goldin (2002) emphasizes the central role affect plays in the mathematical activ-
ity, pointing the interaction between affect and cognition and its influence, which 
might be positive or negative, on students’ learning:

When individuals are doing mathematics, the affective system is not merely auxiliary to 
cognition – it is central. However affect as a representational system is intertwined with 
cognitive representation. Affective configurations can stand for, evoke, enhance or subdue, 
and otherwise interact with cognitive configurations in highly context-dependent ways. The 
very metaphors used in thinking may carry positive or negative affect. (p. 60)

Nowadays, research in neuroscience has shed more light into this complex endeav-
our of better understanding the role of affect in learning. According to Damásio 
(2011), mind and body act in an interconnected way. People respond to physical and 
sociocultural stimuli of the environment with the whole of their being, thus con-
demning the separation of cognitive and emotional processes in education.

According to McLeod (1992), an unavoidable reference in the literature on affect 
in mathematics education, the affective domain may be seen as built on three 
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 facets – beliefs, attitudes, and emotions. These facets may be used to “describe a 
wide range of affective responses to mathematics” (p. 578), but they are very diffi-
cult to separate and differentiate, perhaps due to the invisible nature of affect (Leder, 
Pehkonnen, & Törner, 2002). Nevertheless, we can analyse them by looking at their 
stability and intensity.

While beliefs and attitudes are usually stable, emotions are prone to change 
quickly (McLeod, 1992). Beliefs, attitudes, and emotions

also vary in the level of intensity of the affects that they describe, increasing in intensity 
from “cold” beliefs about mathematics to “cool” attitudes related to liking or disliking 
mathematics to “hot” emotional reactions to the frustrations of [not having success in] solv-
ing nonroutine problems. (p. 578)

Thus, emotions can be seen to rest at the stronger end of an intensity continuum, 
with beliefs at the opposite end and attitudes in between. In addition, whereas emo-
tions “may appear and disappear rather quickly” (McLeod, 1992, p. 578), beliefs 
take a long time to develop.

In this chapter, we assume the basic descriptors of affect (beliefs, attitudes, and 
emotions) in the sense of Gómez-Chacón (2003). Mathematical beliefs “are one of 
the components of the subjective knowledge about mathematics and its teaching 
and learning that is implicit in the individual” (p. 20). Students’ beliefs are grounded 
not only on their experiences with mathematics but also on their sociocultural con-
texts. The idea that mathematics is based on formulas and rules is an example of a 
(typical) belief.

Attitude is a positive or negative predisposition “which determines one’s per-
sonal intentions and influences one’s behavior” (Gómez-Chacón, 2003, p.  21). 
Disliking doing geometrical proofs is an example of a (negative) attitude; a positive 
attitude is, for instance, being curious about fractals. Emotions “are organized 
responses that go beyond the boundaries of psychological systems, including the 
physiological, the cognitive, the motivational, and the experiential system” (p. 22). 
Feeling happy and frustrated with the solution process of a problem are examples of 
positive and negative emotions, respectively. In the following section, we pay spe-
cial attention to the affective dimension of emotions, given the stated goal of this 
chapter. We looked for students’ expression of emotions while engaged in the 
WebQuests of Math@XXI and in the Facebook closed groups that were created for 
each participating team and the gymkhana’s facilitator.

21.2.1  Emotions

Despite the numerous approaches to studying emotions and the various definitions 
that have come to the fore, there is large consensus about certain aspects of this 
construct. For example, emotions connect to personal goals in the sense that “they 
code information about progress towards goals and possible blockages, as well as 
suggest strategies for overcoming obstacles” (Hannula, 2006, p.  219). Emotions 
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also involve physiological reactions – for instance, the release of adrenaline in the 
blood is a physiological response to an arousal (Hannula, 2002).

Zan, Brown, Evans, and Hannula (2006) suggest that “emotions affect cognitive 
processing in several ways: they bias attention and activate action tendencies” (p. 6), 
indicating a significant influence of this affective dimension in the learning process. 
Although emotions are always present in human experiences, they become observ-
able only when they are intense. This invisibility makes it quite challenging to study 
the role of emotions in the complex ecology of teaching and learning.

Emotions are unstable (McLeod, 1992) and influenced by several factors. One 
important factor of change “is the cognitive (possibly unconscious) analysis of the 
situation with respect to one’s goals” (Hannula, 2002, p. 28). De Bellis and Goldin 
(2006) also highlight this relationship between emotions and cognition. For them, 
emotions designate affective states that are clearly accessible to consciousness in 
association with precise cognitive contents since we know the motive for fear, 
shame, joy, etc. Students are usually aware of their emotions, and they are able to 
identify their typical emotional reactions in different situations. Hannula suggests 
that “proceeding towards goals induces positive emotions while obstacles that block 
the progress may induce anger, fear, sadness or other unpleasant emotions” (p. 29).

In the view of Goetz, Frenzel, Hall, and Pekrun (2008), “positive emotions play 
a pivotal role within educational settings” (p. 10). The most commonly found emo-
tions, in the context of mathematical learning and achievement, are enjoyment, 
anxiety, anger, and boredom (Frenzel, Pekrun, & Goetz, 2006). All these emotions, 
amongst others, could be triggered during the participation in Math@XXI, as it is 
the case with any innovative experience.

There is a direct relationship between academic emotions in mathematics and 
learning and achievement (Kleine, Goetz, Pekrun, & Hall, 2005). Academic emo-
tions can be classified according to two criteria: valence and activation. “While 
valence is considered as a bipolar dimension (positive vs. negative), activation is 
understood as unipolar in nature, and indicates the extent to which a given emotion 
is activating” (p. 221). Amongst positive emotions, enjoyment, pride, and hope are 
seen as activating emotions and relief and relaxation as deactivating emotions; 
amongst negative emotions, anxiety, anger, and shame/fault are seen as activating 
emotions and boredom and hopelessness as deactivating emotions. Kleine et  al. 
(2005) alert that one cannot assume that positive emotions have a positive effect on 
learning and that negative emotions have a negative effect on learning.

Some emotions are favourable to learning while others hinder this process. Some 
examples of the latter emotions include 

persistent fear and confusion, foreboding, resignation, prolonged uncertainty, lack of self- 
confidence (which leads to withdrawl and alienation), and boredom. Since emotions are 
contagious, favourable emotions to learning should be promoted: comfort experiences, 
good humour, feelings of pleasure and fun, in articulation with a sense of challenge and 
persistency, states of acceptance and ambition, mystery, and curiosity. (Neves & Carvalho, 
2006, p. 206)

Math@XXI strived to prevent such unfavourable emotions from emerging in the 
course of the gymkhana: the supporting teachers and the facilitator were always 
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available to provide help to the participants, whenever they asked for it (asking for 
help was not only allowed but also encouraged in Math@XXI) during all WebQuests; 
the students could only participate in teams, benefiting from working collabora-
tively; and the facilitator offered constant enthusiastic encouragement to keeping 
engaged and completing the tasks, either on-site or via Facebook or the WebQuests 
themselves.

21.2.2  Local and Global Affect

Beliefs, attitudes, and emotions interact with each other in a cyclic way, during the 
learning process. Students’ experiences when engaged in mathematical activities 
give rise to emotions which, in turn, influence their attitudes and beliefs and both 
influence new attitudes and emotions (Gómez-Chacón, 2003). All these elements 
constitute forces that should be intentionally activated in the mathematics education 
of youngsters: “If the goal is to improve the teaching and learning of mathematics, 
it seems convenient to take into consideration students’ and teachers’ affective fac-
tors. Emotions, attitudes, and beliefs act as driving forces of mathematical activity” 
(p. 24).

Gómez-Chacón (2000, 2003) distinguishes two possible approaches to analysing 
the role of affect in mathematics learning. Local affect is related to the affective 
state that a student experiences while solving a specific mathematical task; global 
affect is associated with the affective individual structure that a student constructs 
upon his/her experiences in prior mathematical activities. Thus, local affect has to 
do with the “representation of the information dealing with the emotional reactions 
which affect the conscious processing all through” (Gómez-Chacón, 2000, p. 151), 
while global affect “has to do with the socio-cultural influences on the individual 
and the ways in which this information is internalised, and shapes his belief struc-
ture” (p. 151).

Gómez-Chacón (2000) cautions to the need of combining both approaches in 
understanding the role of affect in mathematics learning. If we wish to “understand 
students’ affective relations with mathematics, it is not enough to observe and know 
the states of change of feeling or emotional reactions (…) and detect cognitive pro-
cesses associated with positive or negative emotions” (p. 166) when solving a spe-
cific task, that is, it is not enough to look at the local affect. We must go further and 
consider “the affective dimension of the student in relation to mathematics in more 
complex scenarios (global affect), which allows us to contextualise the emotional 
reactions in the social reality that produces them” (p. 166).

For example, when we observe a student working on a mathematical task and 
notice that he seems curious and confident, we identify a positive local affective 
state (local affect) of that student. When a student shows enthusiasm and self- 
confidence regarding mathematical activities in general, this reveals a positive iden-
tity that has been constructed throughout his schooling trajectory in mathematics 
(global affect). Goldin’s (2002) perspectives resonate with those of Gómez-Chacón 
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(2000). Affect in mathematics learning may be approached locally, looking at tran-
sient affect, which is connected to a specific context, or globally, looking at long- 
term and multi-contextualized affect.

Damásio’s (2011) ideas on emotions and cognition resonate with what Gómez- 
Chacón (2000) advocates about the importance of looking at affect globally:

Knowing the relevance of emotions in reasoning processes does not mean that reason is less 
important than emotions, that reason should be relegated to the background, or that it 
should be less cultivated. On the contrary, when we look at the broad function of emotions, 
it is possible to increase its positive effects and reduce its negative potential. (Damásio, 
2011, p. 314)

Both the Math@XXI gymkhana and the whole research endeavour developed 
around this competition (Moreira, 2016) were grounded in the premise that stu-
dents’ success in learning mathematics is directly related to developing positive 
affect towards mathematics. Adopting Gómez-Chacón’s (2003) broad notion of 
affect – “a vast category of feelings and humour (moods) that are generally consid-
ered as something different from pure cognition” (p. 20) – we looked at students’ 
expression of emotions in the context of their participation in the Math@XXI gym-
khana and how the work in the WebQuests and the use of Facebook contributed to 
developing a global positive affect towards mathematics.

21.3  Methodological Procedures

The research that was carried out around Math@XXI (Moreira, 2016) was con-
ducted under an overarching design-based research (DBR) methodological approach 
(Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). As Cobb et al. (2003) put it, 
the DBR approach has “both a pragmatic bent – ‘engineering’ particular forms of 
learning – and a theoretical orientation – developing domain specific theories by 
systematically studying those forms of learning and the means of supporting them” 
(p. 9).

Math@XXI was designed with the aim of developing an educational product 
(mediating tool), within the complex ecology of the process of teaching and learn-
ing mathematics. This intervention was grounded on the theoretical principles of 
Bishop’s (1991, 2002) Mathematical Enculturation, Leontiev’s (1978) Activity 
Theory, and the interplay between cognition and affect in mathematics learning 
(Gómez-Chacón, 2003). Each of the four digital tournaments worked as a cycle of 
iteration: the following WebQuest was prepared and developed taking into account 
the feedback received from the participants in the gymkhana as well as their sup-
porting teachers. In addition, the whole intervention successively adapted itself to 
the context and its circumstances, meeting the needs of the participants. Thus, while 
promoting change in educational practices (Wang & Hannafin, 2005), we sought to 
understand how, when, and why educational innovations work (Design-Based 
Research Collective (DBRC), 2003).
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Data were collected from various sources. We gathered all posts placed in the 
Facebook murals of the participating teams, which were posted by the participants 
as well as the gymkhana’s facilitator. We looked at how Facebook was used in the 
heart of the gymkhana, with a focus on how it provided a means to express emo-
tions. Many of these posts contain pictures which were taken by the facilitator, 
either to share instances of the mathematical culture or to document important 
moments of the competition (such as the submission of the journals, participants’ 
collaborative work, meetings with the facilitator, etc.).

The end products of the competition, the journals of the four WebQuests, were 
also gathered and analysed, looking for evidences of the participants’ emotional 
states. At the end of each WebQuest, participants completed a small, anonymous, 
and individual on-line survey aimed at gathering information on how they were 
feeling the competition. Most questions were closed, but the two last ones asked 
them to elaborate on what they were enjoying the most and the least regarding their 
work on Math@XXI. The fourth and final survey included more closed items but 
also open questions. As in the previous surveys, the options for the Likert scale were 
(i) I totally agree, (ii) I partially agree, and (iii) I totally disagree. In this final survey, 
we searched for a more global perspective on the emotions felt throughout the 
competition, as well as for information regarding the participants’ views about 
mathematics and the mathematical learning triggered by their participation in the 
gymkhana. The response rates were 47%, 47%, 50%, and 34%, respectively. The 
surveys were completed by the participants of the teams that were still engaged in 
the competition (the two teams that did not submit any journal did not complete 
these surveys).

We used content analysis and statistical procedures to analyse the data collected. 
In the next section, we analyse the participants’ emotional engagement with the 
WebQuests and their expressed emotions on Facebook.

21.4  Expressing Emotions in the Math@XXI Gymkhana

During the Math@XXI gymkhana, there were many moments in which students 
expressed various emotions. The journals that were constructed, as end products of 
the WebQuests, contained several elements that revealed, direct or indirectly, the 
students’ emotional states. The murals of the Facebook closed groups of all teams 
were full of posts in which the students and the gymkhana’s facilitator expressed 
various kinds of emotions, both positive and negative. And this was reflected in the 
students’ answers to the on-line surveys.

At the end of each WebQuest, students were invited to respond to an on-line 
survey. These surveys shared some of the items, but we also looked for different 
kinds of information in each of them. In all surveys, participants were asked to indi-
cate their degree of agreement with four sentences: (i) The tasks you completed on 
Math@XXI were challenging and interesting; (ii) Participating in Math@XXI is 
being fun; (iii) The tasks in Math@XXI contributed to my learning of Mathematics; 
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and (iv) My experience in Math@XXI has increased my enjoyment of Mathematics. 
In general, students expressed a very positive assessment of the gymkhana and quite 
stable throughout the four digital tournaments, as shown in Fig. 21.2.

The last survey, which called for a global assessment of the whole experience of 
participating in Math@XXI, reinforced the positive appreciation of the gymkhana 
that was made after each digital tournament. Using NVivo software, considering the 
word as a unit of analysis, we generated a cloud of words relative to what the partici-
pants enjoyed the most in Math@XXI. The two most frequent words were “every-
thing” and “I enjoyed”, suggesting a high degree of satisfaction with the gymkhana 
(Fig.  21.3). Interestingly, when participants were asked to indicate what they 
enjoyed the least in the gymkhana, the most common response was “nothing”!

Fig. 21.2 Participants’ assessment of Math@XXI after each digital tournament

Fig. 21.3 Cloud of words about what students enjoyed the most in Math@XXI
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More than 60% of the students said that what they had enjoyed the most was 
having “the opportunity to work as a team” and “to learn more about mathematics” 
and “know new things”. Several students appreciated “having found things about 
mathematics that, if it weren’t the gymkhana we wouldn’t even guess they were 
connected to mathematics”. Math@XXI allowed “to face mathematics in a funnier 
[interesting] way”. In fact, some “were amazed at what [they] had learned” in the 
competition. Math@XXI also seemed to have contributed to a better relationship 
with mathematics: “I liked everything, learning much about mathematics”, “I loved 
everything, it is impossible not to enjoy everything we went through”, “[Math@
XXI] is a good competition to learn more about mathematics and, above all, to learn 
enjoying mathematics”. In the following sections, we will describe how emotions 
emerged in the Math@XXI gymkhana, looking at both the WebQuests and the 
Facebook as means to express emotions.

21.4.1  The Emotional Engagement with the WebQuests

As we will see next, students’ engagement with the tasks of the WebQuests was 
always very high. They organized themselves to complete the tasks, found the time 
to meet and work collaboratively on the WebQuests, and worried about submitting 
their journals, the end products of the WebQuests, with an interesting and careful 
graphic look.

The direct expression of emotions in the productions derived from students’ 
work on the WebQuests was not very frequent. Yet, in some cases, it was possible to 
observe or infer students’ emotional states. In general, those emotions were positive 
and activating, in the sense of Kleine et al. (2005).

For example, the pages of some journals suggested feelings of affection towards 
mathematics. In Fig. 21.4, we can see the first page of the third journal edited by the 
GENIOUS OF MATH team (left) and a page of another journal of this team (right). 
In both cases, the students drew a heart as a symbol for affection within a sentence 
or a greeting. Though one might argue that drawing a heart does not mean loving 
mathematics, the fact is that these students spontaneously decided to express such a 
feeling in the cover page of their journal.

Fig. 21.4 Pages of 
journals edited by the 
GENIOUS OF MATH 
team
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In one of its journals, TEAM LOPES decided to include a page to thank those 
who contributed to their accomplishment (Fig. 21.5). These students thanked their 
parents, their mathematics teacher, the gymkhana’s facilitator, and the school and its 
staff for their help, guidance, support, and encouragement. The use of an emoticon 
conveys the students’ emotion of gratitude expressed in their thank you note.

In these examples, the expression of emotions was direct and explicit. However, 
this was not the most frequent case. Indeed, we could only infer students’ emotions 
while engaged in Math@XXI from their work in the WebQuests. The fact that the 
journals, the products of the WebQuests, were elaborated with time and care by the 
teams withdraws the possibilities of expressing emotional states in a spontaneous 
way. Thus, WebQuests were not the best vehicle to express emotions. Nevertheless, 
we could find some indirect evidences of the presence of emotions in students’ work 
on the WebQuests. For instance, we could find emotions in some drawings the stu-
dents made while working on the WebQuests.

At the end of each WebQuest, students were challenged to solve a bonus 
task. In general, these tasks stimulated students’ imagination. For example, the 
first WebQuest asked students to create an artistic object of any kind (drawing, 
painting, sculpture, poetry, etc.) having the triangle as its inspiring element. 
Figure 21.6 shows the production of the PROSTUDENTS team (on the left) 

Fig. 21.5 A thank you page included in the journal of the TEAM LOPES team
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and those of the 7SETE (on the right, above) and the OS MERCENÁRIOS team 
(on the right, below).

Figure 21.7 presents two illustrations that the MARRETAS team used in two 
different journals. These drawings represented the mathematical objects “seven” 
(on the left) and “infinity” (on the right), which were the themes for the second and 
third WebQuests, respectively. Such drawings reveal students’ proximity to the 
mathematical objects in a relaxed state of mind. In addition, it suggests an approxi-
mation of mathematics to students’ daily lives. All of these elements favour 
learning.

Though indirectly, the drawings depicted in the previous figures transmit positive 
emotions. Happiness seems to emerge in Fig. 21.6, and fun is the emotional state 
triggered by the giraffe (Fig. 21.7). In this figure, the symbol for infinity is presented 

Fig. 21.6 Drawings of the PROSTUDENTS, the 7SETE, and the OS MERCENÁRIOS teams in 
response to the bonus task of the first WebQuest

Fig. 21.7 Illustrations 
made by the MARRETAS 
team for their second and 
third journals, respectively
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in an embellished way, suggesting students were feeling the beauty in mathematics. 
Such emotions are conveyed indirectly, but they are activating, positive emotions, 
thus contributing to a positive global affect towards mathematics.

As we have seen earlier, students were generally enthusiastic about participating 
in the gymkhana and about engaging in its activities. Occasionally, it was difficult to 
get organized and start working or to find the time to work collaboratively. However, 
students’ interest on Math@XXI and enthusiasm about the tasks pushed them to 
overcome these difficulties and to actually gather in school and work together. 
Sometimes, the whole team was gathered around a table; other times, students 
worked divided in smaller groups. Figure 21.8 illustrates how the members of the 
7SETE team worked throughout the gymkhana and their group spirit (the bottom 
right picture on Fig. 21.8 was taken by the facilitator on the students’ request).

All teams showed interest and engagement with Math@XXI. Even those which 
did not complete the WebQuests or which dropped out of the competition gathered 
at the school library to work on the WebQuests. In fact, TEAM LOPES submitted 
the journal corresponding to the first WebQuest only, and the CRAQUES DA 
MATEMÁTICA, the MATEMATIX, and the OS MATRAQUILHOS teams did not 
submit any journal. However, as part of the inclusive character of Math@XXI, they 
were all admitted to the final tournament. The two latter teams did not show up in 
the final tournament.

In Fig. 21.9, we can see students of CRAQUES DA MATEMÁTICA team (on 
the left) and several elements of the MATEMATIX team (on the right) gathered 
around a computer, working on the tasks. Hence, we can witness students’ interest 
and engagement with the WebQuests of Math@XXI. These positive attitudes were 
associated with emotions of happiness and enthusiasm, reflected in these students’ 
joyful facial expressions, whether while working in groups or simply standing for a 

Fig. 21.8 Different moments of work of the 7SETE team
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Kodak moment. Thus, even the students of those teams which did not succeed much 
in the digital part of the Math@XXI gymkhana expressed positive and activating 
emotions (Kleine et al., 2005).

At the end of the fourth digital tournament, the on-line survey included a ques-
tion (While solving the Math@XXI gymkhana’s tasks, I was (felt)…) in which stu-
dents should choose as many options as they felt necessary about their emotional 
states while engaged in the WebQuests’ tasks. Given the question posed, as well as 
its timing, all options related to global affect, in Gómez-Chacon’s (2000, 2003) 
terms. The emotional states that received a higher number of choices were (i) curi-
ous (75,6%), (ii) cheered up (68,9%), and (iii) fun (51,1%). All these positive and 
activating emotional states favour students’ mathematical learning and aid the con-
struction of a positive relationship with mathematics. The options for bored, cheer-
less, and disoriented, which expressed negative and deactivating emotions, did not 
get any mark (Fig. 21.10).

Fig. 21.9 The interest of CRAQUES DA MATEMÁTICA and MATEMATIX students
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Fig. 21.10 Students’ emotional states while engaged with the tasks of the WebQuests
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21.4.2  The Emotional Murals of Facebook

The presence of digital communication, via Facebook, was evident throughout the 
Math@XXI gymkhana. This communication was made in various formats and with 
different purposes. Many posts, amongst the students and with the gymkhana’s 
facilitator, were registered at times that went much beyond the usual schedule of 
school life. Here, we use the term posts to refer to all communications which 
Facebook identifies as units, with a specific date and time; one single post may con-
tain references to several events. During Math@XXI, Facebook was also used as a 
channel for private messages between the students and the facilitator, as well as 
amongst themselves. There were also several communication processes between the 
personal profiles of individual students. Such messages were not considered as data 
sources.

By looking at all eligible Facebook communication situations of all teams, in 
their closed groups with the facilitator, during the course of the gymkhana, we broke 
down the teams’ posts into (research) units, which were later regrouped, by analogy, 
into categories. Five categories of Facebook usage, as a communication artefact 
within Math@XXI, emerged from the data: (i) publication of the gymkhana’s tasks 
(the WebQuests); (ii) dissemination of mathematical culture; (iii) weekly records of 
various moments and information; (iv) manifestation of students’ appropriation of 
mathematical objects; and (v) expression of emotions (Moreira, 2016; Moreira & 
Tomás Ferreira, 2016). In this chapter we look at this latter usage of Facebook in the 
context of Math@XXI, which was one of the most significant usages of Facebook.

The participating students and the facilitator expressed their emotions in differ-
ent situations of the Math@XXI gymkhana. In fact, unlike the relatively scarce 
expression of emotions in the WebQuests (i.e. in the journals edited by the partici-
pating teams), the Facebook murals of all teams contained several posts in which, in 
a much more explicit way, students expressed their emotions. All emotions were 
expressed freely and spontaneously. We must, though, bear in mind that the facilita-
tor might have had some influence in those students’ emotional manifestations in 
the sense that her posts always had an emotional charge.

Most expressed emotions were activating emotions, both positive and negative 
with a prevalence of the former. For example, the members of the MARRETAS 
team showed joy and pride for their achievements within the gymkhana (Fig. 21.11). 
Almost all members of the team placed likes in this post, the expression “We are the 
greatest…”, followed by several emoticons and expression of agreement attest the 
presence of such positive and activating emotions.

In Fig. 21.12, the members of the OS MERCENÁRIOS team exhibited joy and 
satisfaction for participating of Math@XXI. This picture was taken after one of the 
many meetings with the gymkhana’s facilitator; in particular, the OS 
MERCENÁRIOS asked the facilitator to photograph the moment in which they 
submitted one of their journals. These students were happy about their achieve-
ments and confident in succeeding in the competition. Such emotional states that we 
also have mentioned in the previous section (see Figs. 21.8 and 21.9) were recorded 
in the Facebook murals of all the teams, by the facilitator.
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Fig. 21.11 Expression of 
joy and pride in the mural 
of the MARRETAS team

Fig. 21.12 Expression of 
joy and satisfaction for 
participating in Math@
XXI

Figure 21.13 reveals feelings of cheerfulness. Indeed, a member of the 7SETE team 
indicated “feeling cheerful” due to Pythagoras! In fact, the students in this team were 
all 7th graders, and Pythagoras (his life and legacy) and the Pythagorean theorem were 
totally new themes for them. Apparently, the work completed within the gymkhana 
helped the student in widening his knowledge of mathematics and in improving his 
grades in a history test. And the same happened with other team mates.

The expression of joyful emotions occurred frequently associated with other 
activating emotions. We have seen an example of joy associated with pride in 
Fig. 21.11 and with satisfaction in Fig. 21.12. Figure 21.14 exhibits the manifesta-
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tion of joy, fun, and anxiety. A student from the GENIOUS OF MATH team, in a 
Facebook dialogue with the gymkhana’s facilitator, expresses joy for the work 
already completed, which she refers being fun, as well as some anxiety (in the sense 
of expectancy) towards the following tournament of the competition. Both emotions 
are activating, but joy is a positive one and anxiety a negative emotion.

The gymkhana’s facilitator published several posts in Facebook to stimulate stu-
dents’ curiosity towards the mathematics around them and important mathematical 
characters as well. Figure 21.15 depicts an excerpt of the dialogue that followed one 
of those publications in the mural of TEAM LOPES. Students engaged in a playful 
dialogue around how they easily found the answer for the question posed: “Who is 
this man?”, exhibiting fun, a playful emotional state.

Sometimes, anxiety was the main emotional state evident in the posts and dia-
logues in Facebook. For example, in a dialogue with the gymkhana’s facilitator 
(Fig. 21.16), a member of the MARRETAS team showed her anxiety about know-
ing her team’s scores in the WebQuests. Though being a negative emotion, its 
 activating character reveals the students’ interest in the work accomplished in the 
gymkhana. A negative, activating emotion is associated with a positive attitude.

Fig. 21.13 Expression of cheerfulness in the mural of the 7SETE team

Fig. 21.14 Expression of activating emotions in the mural of the GENIOUS OF MATH team
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Fig. 21.15 Playful emotional states in the Facebook mural of TEAM LOPES

Fig. 21.16 Expression of anxiety in the mural of the MARRETAS team

Perseverance is another positive attitude towards learning mathematics. This 
attitude was also found in the realm of emotional states expressed in the teams’ 
Facebook murals, as we can see in Fig. 21.17, in which an element of the GENIOUS 
OF MATH team reveals her, and her team’s, perseverance in completing the tasks.

We did not observe the manifestation of negative emotions, which could hinder 
the participation in the gymkhana, prejudice the mathematical enculturation process 
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of the students, or suggest boredom, helplessness, or rejection of the gymkhana’s 
activities. All instances of negative emotions were associated with students’ interest 
in Math@XXI and engagement or commitment with the tasks. The expressions of 
anxiety in Figs. 21.14 and 21.16 were all related to students’ interest in knowing 
their scores or to students’ enthusiasm in engaging in the following challenges.

Also associated with interest and commitment, there were manifestations of dis-
contentment in the Facebook murals of some teams. For example, in Fig. 21.18, the 
KINGS excuse themselves for failing to have met the gymkhana’s facilitator, 
expressing their dissatisfaction for this failure, both in written form and resorting to 
emoticons. Again, though negative, discontentment was an activating emotion.

In fact, students’ interest and commitment towards Math@XXI, which we have 
already highlighted in the previous section, were also recorded in many Facebook 
posts by the gymkhana’s facilitator. For example, in Fig. 21.19, we can observe two 
Facebook posts revealing students’ engagement with the tasks proposed in the 

Fig. 21.17 Expression of interest and perseverance in the mural of the GENIOUS OF MATH 
team

Fig. 21.18 Expression of discontentment in the mural of the KINGS team
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WebQuests. On the left, some elements of the GENIOUS OF MATH team work 
together in a task, using their notes and the computer; on the right, the facilitator 
stresses, with an image, the importance of paying attention to the work that is being 
done. Thus, Facebook also served as a testimony of students’ engagement with the 
mathematics behind the WebQuests, as well as a witness of the students’ mathemat-
ics enculturation.

As it can be seen in many of the presented evidences, very frequently, students 
resorted to emoticons and other figurative symbols that Facebook makes available 
to its users. Smiling, sad, happy, or cheerful faces, as well as likes and other symbols 
were often used to express emotions in a pictorial way. We must bear in mind that 
the usage of such tools, which are part of the affordances of Facebook, is made 
freely, spontaneously, by the participants in Math@XXI. It is their choice to com-
municate their emotions.

In Fig. 21.20, we can see the use of such elements to express emotional states. In 
the same post, some elements of the 7SETE team used gestures to express them-
selves, manifesting their joy for handing in their journal to the gymkhana’s facilita-
tor at the school. Here, Facebook allowed for the combination of several means to 
express emotions.

Fig. 21.19 Students’ engagement with the tasks proposed in the WebQuests
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21.5  Facebook and WebQuests: A Promising Association 
in the Promotion of Positive Global Affect 
Towards Mathematics

Facebook was intended to be used as a virtual space for collaborative learning where 
the main theoretical pillars of Mathematical Enculturation (Bishop, 1991), Activity 
Theory (Leontiev, 1978), and the interplay between cognition and affect (Damásio, 
2011; Gómez-Chacón, 2003) informed and sustained the design of the Math@XXI 
gymkhana. Associated with the WebQuests that constituted the digital part of this 
competition, Facebook contributed to the development of several abilities, such as 
communication, sharing, and collaborative work (Moreira, 2016), which are essen-
tial for coping with the demands of the society of the twenty-first century (Allegretti 
et al., 2012; Costa & Carvalho, 2006).

Technology is transparent to today’s youth. Youngsters are used to acting and 
interacting with many technological devices and platforms, and social networks are 
no exception. Thus, associating Facebook, which most students utilize in their daily, 
personal communications, with their work on the WebQuests of Math@XXI, 
favoured the inclusion of mathematics as a topic of their on-line conversations. This, 
in turn, made the mathematical culture become nearer their lives.

Fig. 21.20 Expression of emotions by different means in the mural of the 7SETE team
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Indeed, students’ opinion about the use of Facebook and WebQuests in the 
Math@XXI gymkhana was largely favourable. At the end of the competition, they 
were invited to respond, individually, to express their degree of agreement with two 
sentences: (S1) Being able to communicate with my colleagues and the teacher/
facilitator through Facebook in the Math@XXI gymkhana was nice, and (S2) I 
enjoyed learning and completing tasks through the digital environment (WebQuests) 
of the Math@XXI gymkhana. Figure 21.21 summarizes the results of this part of the 
survey, which suggest students were highly satisfied with the affordances of both 
the WebQuests and Facebook, within Math@XXI.

Facebook played different roles in supporting the development of Math@XXI. In 
a prior study, the least significant role of Facebook was that of exhibiting manifesta-
tions of students’ appropriation of the mathematical objects that were at the core of 
the four WebQuests of Math@XXI (Moreira & Tomás Ferreira, 2016). Not surpris-
ingly, those manifestations were necessarily feeble; in fact, phenomena are much 
more observable in other data sources, namely, the answers to the final tournament 
and the journals that were the end products of the WebQuests, than in the posts 
found in the closed groups of the participating teams. Similarly, the expression of 
emotions was much more present in the Facebook murals of the participating teams, 
rather than in the productions resulting from the WebQuests. In fact, there were 
some direct expressions of emotions in the WebQuests, such as the appreciation for 
mathematics reflected in the cover pages of the journals. But most of the emotions 
found in students’ work on the WebQuests were indirect. Students’ interest and 
commitment towards their work were the most observable attitudes, in association 
with joy and enthusiasm for that work, even on the part of the teams that scored 
poorly in the digital part of the gymkhana or that dropped out the competition. The 
characteristics of these two technological tools, WebQuests and Facebook, seem to 
be related to the spontaneous expression of emotions and to the ways in which those 
emotions are conveyed. The social dimension of Facebook seems to have favoured 
the expression of emotions, and it evidenced the social experience of participating 
in Math@XXI. Further research is needed to better understand how technological 
tools such as WebQuests and Facebook, in similar and distinct contexts as that of 
Math@XXI, can promote positive emotions towards mathematics and mathematical 
activity and make those emotions visible.

18,5%
1,5%

80%

24,6%

I totally agree

I totally disagree
I partially agree

1,5%

73,8%

S1 S2

Fig. 21.21 Students’ opinions about the use of Facebook and WebQuests in Math@XXI
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Using the murals of their Facebook closed groups, students expressed their 
emotions while participating in Math@XXI in many forms (using direct speech or 
the tools made available by Facebook, such as emoticons and other figurative sym-
bols) and in many moments. The vast majority of shared emotions were activating 
emotions (Kleine et al., 2005), like joy, pride, and cheerfulness, but not all expressed 
emotions were positive. For example, several students expressed some anxiety in 
finding the time to complete the tasks or in knowing the scores of the competition. 
Others expressed discontentment for failing their commitments. Nevertheless, such 
negative emotions revealed students’ interest, engagement, and enthusiasm in 
participating of Math@XXI; thus, though negative, they favoured learning (Neves 
& Carvalho, 2006).

In many instances, it was possible to observe students’ local affective positive 
states, in Gómez-Chacón’s (2003) terms: when they were enthusiastically engaged 
in completing the WebQuests,1 when they manifested interest in fulfilling the 
requirements, and when they showed joy and pride in handing in their journals to 
the gymkhana’s facilitator. Due to limitations in the instruments that were used, the 
evidences for participants’ development of a positive local affect towards mathe-
matics were not very strong – future investigations should look more carefully at 
how such local affect is developed and, in particular, how technological tools like 
WebQuests and Facebook favour that development. In this chapter, we have anal-
ysed only a small part of the data collected in the context of Math@XXI, which 
mainly pointed out evidences of the contribution of Math@XXI for students’ con-
struction of a positive global affect (Gómez-Chacón, 2003) towards mathematics 
and its learning.

In particular, the association of WebQuests and Facebook in this gymkhana, with 
the valences of each one of these two technological tools, showed promise in sup-
porting that construction. Facebook benefits from instantaneity and interactivity, 
two characteristics that lack in the WebQuests but which favour the expression of 
emotions. In turn, WebQuests provide an environment that triggers positive and 
activating emotions, thus contributing to constructing positive global affect towards 
mathematics. The students’ significant usage of Facebook during Math@XXI, their 
enthusiasm in participating in all activities of the gymkhana (not only in the 
WebQuests but also in the final tournament), and the several instances in which the 
students evidenced the necessary self-confidence to succeed in the activities pro-
posed support the claim that the association of Facebook and the WebQuests in the 
gymkhana helped students in developing a positive global affect towards mathemat-
ics. Yet, again, further research is needed, in similar and distinct contexts of that of 
Math@XXI, to provide stronger evidences for the aforementioned claim and to 
better understand the processes of developing positive global affect towards 
mathematics.

1 The WebQuests may be found in https://sites.google.com/site/matematicxxi/home, https://sites.
google.com/site/matematicxxi2/home, https://sites.google.com/site/matematicxxi3/ home, and 
https://sites.google.com/site/matematicxxi4/home.
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Chapter 22
On the Edges of Flow: Student Problem- 
Solving Behavior

Peter Liljedahl

22.1  Flow and the Optimal Experience

In the early 1970s, Mihály Csíkszentmihályi became interested in studying, what he 
referred to as, the optimal experience (1990, 1996, 1998):

a state in which people are so involved in an activity that nothing else seems to matter; the 
experience is so enjoyable that people will continue to do it even at great cost, for the sheer 
sake of doing it. (Csíkszentmihályi, 1990, p. 4)

The optimal experience is something we are all familiar with. It is that moment 
where we are so focused and so absorbed in an activity that we lose all track of time, 
we are un-distractible, and we are consumed by the enjoyment of the activity. As 
educators we have glimpses of this in our teaching and value it when we see it.

Csíkszentmihályi, in his pursuit to understand the optimal experience, studied 
this phenomenon across a wide and diverse set of contexts (1990, 1996, 1998). In 
particular, he looked at the phenomenon among musicians, artists, mathematicians, 
scientists, and athletes. Out of this research emerged a set of elements common to 
every such experience (Csíkszentmihályi, 1990):

 1. There are clear goals every step of the way.
 2. There is immediate feedback to one’s actions.
 3. There is a balance between challenges and skills.
 4. Action and awareness are merged.
 5. Distractions are excluded from consciousness.
 6. There is no worry of failure.
 7. Self-consciousness disappears.
 8. The sense of time becomes distorted.
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 9. The activity becomes an end in itself.

The last six elements on this list are characteristics of the internal experience of the 
doer. That is, in describing an optimal experience, a doer would claim that their 
sense of time had become distorted, that they were not easily distracted, and that 
they were not worried about failure. They would also describe a state in which their 
awareness of their actions faded from their attention and, as such, they were not 
self-conscious about what they were doing. Finally, they would say that the value in 
the process was in the doing – that the activity becomes an end in itself.

In contrast, the first three elements on this list can be seen as characteristics 
external to the doer, existing in the environment of the activity, and crucial to occa-
sioning of the optimal experience. The doer must be in an environment wherein 
there are clear goals and immediate feedback and there is a balance between the 
challenge of the activity and the abilities of the doer.

This balance between challenge and ability is central to Csíkszentmihályi’s analy-
sis of the optimal experience (1990, 1996, 1998) and comes into sharp focus when we 
consider the consequences of having an imbalance in this system. For example, if the 
challenge of the activity far exceeds a person’s ability, they are likely to experience a 
feeling of frustration. Conversely, if their ability far exceeds the challenge offered by 
the activity, they are apt to become bored.1 When there is a balance in this system, a 
state of, what Csíkszentmihályi refers to as, flow is created (see Fig. 22.1). Flow is, in 
brief, the term Csíkszentmihályi used to encapsulate the essence of optimal experience 
and the nine aforementioned elements into a single emotional- cognitive construct.

22.1.1  Flow in Mathematics Education

Flow is one of the only ways for us, as mathematics education researchers, to talk 
productively about the phenomenon of engagement. The nine aforementioned ele-
ments of flow give us not only a vocabulary for talking about aspects of the subjec-
tive personal experience of engagement, but it also gives us a way to think about the 
potential environments that occasion engagement in our classrooms.

Having said that, not much empirical work has been done at the intersection of 
flow and mathematics education. Williams (2001) used Csíkszentmihályi’s idea of 
flow and applied it to a specific instance of problem-solving that she refers to as 
discovered complexity. Discovered complexity is a state that occurs when a 
problem- solver, or a group of problem-solvers, encounters complexities that were 
not evident at the onset of the task and are within their zone of proximal develop-
ment (Vygotsky, 1978). This occurs when the solver(s) “spontaneously formulate a 
question (intellectual challenge) that is resolved as they work with unfamiliar math-
ematical ideas” (p. 378). Such an encounter will capture, and hold, the engagement 

1 It is important to note that frustration and boredom are names that Csíkszentmihályi (1990, 1996, 
1998) assigned to these states where there is an imbalance between ability and challenge. As such, 
for Csíkszentmihályi, frustration and boredom are defined by these imbalances.
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of the problem-solver(s) in a way that satisfies the conditions of flow. What Williams’ 
framework describes is the deep engagement that is sometimes observed in students 
working on a problem-solving task during a single problem-solving session.

Extending this work, I used the notion of flow to look at situations of engagement 
extended over several days or weeks wherein students return to the same task, again 
and again, until a problem is solved (Liljedahl, 2006). The results of this work 
showed that although flow was present in each of the discrete problem-solving 
encounters, what allowed the engagement to sustain itself across multiple encoun-
ters was a series of discovered complexities in each session linking together to form 
what I referred to as a chain of discovery.

22.1.2  Flow as a Framework for Describing Teaching

In prior research (Liljedahl, 2016a), I looked at the practices of two teachers through 
the lens of flow2 in general and their ability to set clear goals, provide instant feed-
back, and maintain a balance between challenge and skill in particular. From this a 
number of conclusions emerged. First, thinking about flow as existing in that bal-
ance between skill and challenge, as represented in Fig. 22.1, obfuscates the fact 
that this is not a static relationship. Flow is not the range of fixed ability-challenge 
pairings wherein the difference between skill and challenge is within some accept-
able range. Flow is, in fact, a dynamic process. As students engage in an activity, 
their skills will, invariably, improve. In order for these students to stay in flow, the 
challenge of the task must similarly increase (see Fig. 22.2).

In a mathematics classroom, these timely increases of challenge often fall to 
the teacher. But this is not without obstacles. For example, if a student’s skill 

2 I am not the first to do this. Schmidt et al. (1996) used flow as a framework for investigating 
mathematics and science teaching across six countries – France, Japan, Norway, Spain, Switzerland, 
and the United States – between 1991 and 1995.

Fig. 22.1 Graphical 
representation of the 
balance between challenge 
and skill
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Fig. 22.2 Graphical 
representation of the 
balance between challenge 
and skill as a dynamic 
process

Fig. 22.3 Too fast increase 
in skill

Fig. 22.4 Too great 
increase in challenge

increases either too quickly or too covertly for the teacher to notice, that student 
may slip into a state of boredom (see Fig. 22.3). Likewise, when the teacher does 
increase the challenge, if that increase is too great, the student may become frus-
trated (see Fig. 22.4).
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This leads to the second conclusion from the aforementioned research (Liljedahl, 
2016a). How teachers manage these situations of boredom and frustration is impor-
tant. In the study one of the teachers managed such situations synchronously, either 
giving extensions or hints to the class as a whole, usually after three groups finished, 
or she got three of the same questions, respectively. For most groups the timing of 
these hints and extensions was off and not helpful in maintaining flow. The second 
teacher, however, managed these situations asynchronously, dealing with groups 
individually as they got stuck or completed a problem. Student engagement in the 
second teacher’s class was visibly higher as he was maintaining flow through the 
constant and timely maintenance of the balance between ability and complexity for 
each group. In short, timing matters.

22.1.3  The Next Stage

Given the importance of timing, the reality is that the teacher is not always going to 
be able to get to every student or every group just as an imbalance between chal-
lenge and skill occurs. In the research presented in this chapter, I look more closely 
at this phenomenon in general and how students cope autonomously with an imbal-
ance between their skills and the challenge of the task at hand.

22.2  Methodology

To answer this question, I observed student collaborative and individual problem- 
solving work within two carefully selected classrooms. In what follows I describe 
this setting as well as the methods I use to capture and analyze the data.

22.2.1  The Problem-Solving Setting

To get at the answers to this question, I needed to observe students in settings that 
were natural to them and where their work was visible. To this end I strategically 
selected two classrooms belonging to two different teachers  – Cameron and 
Charmaine. Both of these teachers conducted their classrooms according to a teach-
ing framework called building thinking classrooms (Liljedahl, 2014, 2016b, 2016c).3

This framework is predicated on a desire to design “a classroom that is not only 
conducive to thinking but also occasions thinking, a space that is inhabited by think-
ing individuals as well as individuals thinking collectively, learning together and 

3 The second teacher in the prior research study (Liljedahl, 2016a) was also teaching according to 
this framework.
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constructing knowledge and understanding through activity and discussion. It is a 
space wherein the teacher not only fosters thinking but also expects it, both implic-
itly and explicitly” (Liljedahl, 2016b, p. 364).

My earlier empirical work on the design of such spaces emerged a collection of 
nine elements that both describes a thinking classroom and offers a prescriptive 
framework for teachers to building such a classroom. For both Cameron and 
Charmaine, five of these elements are particularly salient for describing their class-
room norms (Yackel & Rasmussen, 2002).

 1. At the beginning of every class, students are assigned to a visibly random group 
(Liljedahl, 2014, 2016b, 2016c) of two to four students. These groups will work 
together on assigned problem-solving tasks for the duration of the lesson.

 2. Once in groups, the lessons begin with the assignment of tasks to be solved. In 
the beginning of the school year, these tasks are highly engaging, non-curricular, 
collaborative tasks that drive students to want to talk with each other as they try 
to solve them (Liljedahl, 2008). After a period of time (usually 1–2 weeks), these 
are gradually replaced with curricular problem-solving tasks that permeate the 
entirety of the lesson and emerge rich mathematics (Schoenfeld, 1985) that can 
be linked to the curriculum content to be “taught” that day.4

 3. The work on these aforementioned problem-solving activities is done with 
groups standing on vertical nonpermanent surfaces such as whiteboards, black-
boards, or windows (Liljedahl, 2016b, 2016c). This makes visible all work being 
done, not just to the teacher but to the groups doing the work. To facilitate discus-
sion, there is only one felt pen or piece of chalk per group.

 4. Throughout this work, student engagement is maintained through the teacher’s 
judicious and timely use of hints and extensions (Liljedahl, 2016a, 2016b). 
Csíkszentmihályi’s theory of flow (1990, 1996, 1998) is the framework for think-
ing about this. Hints and extensions need to be given so as to keep students in a 
perfect balance between the challenge of the current task and their abilities in 
working on it.

 5. At some point within this sequence of tasks, the teacher will pull the students 
together to debrief what they have been doing. At this time the teacher will either 
go over one or more of the students’ solutions or work through a new problem 
together with the class as a whole. This helps reify the work the students have 
been doing and is timed so that every group is able to participate in discussion 
and benefit from the reification. In the building thinking classroom framework, 
this activity is called leveling to the bottom (Liljedahl, 2016b).5

4 Although the curricula tasks are simply questions from the textbook, I characterize them as prob-
lem-solving tasks because they are often new to the students, present something that is problematic 
for them, and often cause them to be stuck. However, as will be seen in the presentation of results, 
in some cases the tasks become rudimentary for the students.
5 The term leveling originally comes from Schoenfled (1985) and refers to that moment when a 
teacher will go over the solution to a problem or exercise students have been working on. Leveling 
to the bottom specifies when that leveling is to occur.
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Both Cameron’s and Charmaine’s classrooms are guided by these principles of 
teaching. This is not to say that their classrooms are identical. Charmaine, for exam-
ple, makes regular use of non-curricular tasks for the beginning part of her lesson 
(two to three times a week). She finds these motivate the students. Charmaine levels 
to the bottom with about 25–30 min left in class after which she assigns five to eight 
questions for students to check their understanding if they wish. Generally, the stu-
dents take advantage of the time allotted (usually 20 min) for this to complete them 
in class. About half of the students do so in self-identified groups working at a 
board. The other half of the class completes these sitting in their desks either on 
their own or in small self-determined groups.

Cameron, on the other hand, tends to use only curricular problems. And rather 
than assign practice questions, he just keeps the students working on progressively 
harder curricular problems in their random groups for the whole period. He feels 
that this is sufficient practice for the students and feels no need to assign further 
work for them to do. Cameron tends to level to the bottom twice in every lesson – 
once after all groups have gotten through two to three problems and once at the very 
end of the lesson.

For the purposes of the research presented here, both of these classrooms offered 
the affordances for me to easily observe students working within and an environ-
ment designed to occasion flow. The teachers were both managing engagement 
through the timely use of hints and extensions to maintain a balance between the 
challenge of an activity and the ability of each group. The student work was visible, 
and there was enough autonomy afforded in the room that the students would need 
to take action when they found themselves in a situation where challenge and ability 
may be out of balance.

22.2.2  The Data

Data for the research presented in this classroom were collected in Cameron’s grade 
12 precalculus class and Charmaine’s grade 11 precalculus class.6 Each class was 
visited five times over a 7-week period in the middle of the second semester.7

When doing the aforementioned research on teachers’ actions vis-à-vis their 
efforts to occasion flow (Liljedahl, 2016a), I used video recorded data. This was a 

6 In the province where this research was conducted, these are the academic streams of mathemat-
ics laddering toward university-level calculus. Grade 11 students are typically 16 or 17 years old, 
and grade 12 students are typically 17 or 18 years old.
7 In the province where this research was done, schools are either semestered or linear. Linear 
schools have students taking eight classes on a rotation schedule over the course of the whole year. 
Semestered schools have students taking the same four classes every day for the first half of the 
school year (first semester) and another four classes every day for the second half of the school 
year (second semester).
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natural fit as I had only one subject to track. For the research presented here, how-
ever, video turned out to be prohibitive for two reasons. First, as I was looking for 
very specific situations within the classroom, I needed to be constantly monitoring 
student activity around the room. Trying to do so through a digital video recorder 
narrowed my field of view too much to quickly scan what was emerging around the 
room. As such, I used instead a variant of the methodology of noticing (Jacobs, 
Lamb, & Philipp, 2010; Mason, 2002, 2011; van Es, 2011). Rather than scanning 
the room for emergent phenomena, however, I was looking for one of two very 
particular phenomena – situations where a group of individual student’s abilities 
exceeded the challenge of the task (see Fig.  22.3) and the challenge of the task 
exceeded the ability of the group or individual student (see Fig. 22.4). I call these 
moments of imbalance.

Once a moment of imbalance was identified, I would focus in on that group or 
that individual. I initially tried video recording these instances of imbalance, but this 
was too intrusive for the students. I learned early that these instances are very deli-
cate and the slightest disturbance would collapse the moment. Instead, I would 
observe silently, taking detailed field notes and occasional photographs – both of 
which the students were used to having their teachers do as a regular part of their 
teaching. When these moments seemed to be waning, I would then conduct short 
in-the-moment interviews.

There is an efficiency in this methodology in that all of the data that was gener-
ated was relevant to the phenomenon of interest.

All three of these forms of data (field notes, photographs, and audio recordings) 
were accomplished using an iPad app called Notability™. This app not only allows 
for the simultaneous taking of handwritten notes, photographs, and audio record-
ings but synchronizes the artifacts of notes and photographs with the audio track. 
That is, upon playback the selection of any one note or photo will cue the audio to 
the instance when those artifacts were created.

22.2.3  Analysis of Data

Csíkszentmihályi’s theory of flow (1990, 1996, 1998) in general and the imbalance 
between student ability and task challenge in particular were central to the identi-
fication of moments of interest. The analysis of these moments, however, was 
focused more on students’ actions and reactions in these moments of imbalance. To 
this end, the data were also analyzed using analytic deduction (Patton, 2002). That 
is, I was looking for the emergence of codes through a constant comparative 
method in general and the emergence of similar behaviors under similar moments 
of imbalance in particular.
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22.3  Results and Analysis

From this analysis a series of six nuanced moments of imbalance emerged, each 
marked by a different type of student action or reaction. In what follows I present 
cases exemplifying each of these moments as well as some general comments about 
similar such cases. These six nuanced moments of imbalanced are broken into two 
main categories – moment wherein the skill of the students exceeds the challenge of 
the task at hand and moments wherein the challenge of the task at hand exceeds the 
skills of the students.

22.3.1  When Skills Exceed Challenge

There were three distinct types of reactions by individual or groups of students 
when faced with a situation wherein their skills exceeded the challenge of the task 
at hand. Contrary to Csíkszentmihályi’s theory of flow (1990, 1996, 1998), how-
ever, not all of these resulted in boredom.

22.3.1.1  The Case of Quitting

Within the data there were several moments wherein students quit. A portion of 
these cases were a result of the students being bored with the activity at hand. To 
exemplify this, I present the case of Mikaela and Allison, two students in 
Charmaine’s class.

As mentioned, at the end of each lesson, Charmain assigned five to eight ques-
tions for the students to work on with whomever they wished and on whatever sur-
face they wished. During the five lessons I observed in Charmaine’s class, I noticed 
that during this phase of the lesson about half of the students chose to work at their 
desks and half of the student chose to work on the vertical spaces. At each location, 
a few students worked on their own, while the rest worked in groups of two or three. 
At the end of one of these lessons I observed in Charmaine’s class, my attention was 
drawn to Mikaela and Allison.

These two girls had not been in the same group during the random grouping dur-
ing the main part of the lesson, but for this portion of the class, they had chosen to 
work together, and they had chosen to do so sitting down at their desks. What drew 
my attention to them was that they seemed to be off task, animatedly talking about 
something not related to mathematics. As I start to attend to them, I notice that they 
had finished the first two questions assigned to them. After some period of non- 
mathematical discussion Mikaela says, “Ok. Let’s do the next one.”
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The two girls looked at the textbook they were sharing, wrote down the third 
question, and then independently solved it quickly and without difficulty. They 
compared answers and then resumed their previous off task conversation. I lingered 
behind them waiting to see if one or the other would prompt the other to do the next 
question. After 10 min without a return to the mathematics assigned, I decide to 
interview the pair.

Researcher I notice you are not working on the assigned questions. What’s up?
Mikaela We did some of them.
Researcher I saw that. I noticed that you did two very quickly. Took a little break  

from the math and then went back and did another one. I was sort of  
waiting to see if you would get back to it.

Allison This stuff is easy. I’ll finish it at home on my own.
Mikaela Its actually too easy. I don’t even think I will bother finishing it  

at home.
Allison …Yeah. I probably won’t either.
Researcher It’s easy? Is that why you stopped working on it?
Mikaela Yeah.
Researcher I saw you two work together before at the end of class. I don’t recall  

seeing you two giving up before.
Allison We aren’t giving up. Sometimes we don’t finish all the questions  

because they are hard and we run out of time. But these are easy.
Researcher What makes them easy?
Mikaela They just are. The first three are exactly the same and we could do  

them no problem.

In my conversation with Charmaine after class, she confirmed for me that these 
girls often work together but was surprised when I told her about my conversation 
with them.

Charmaine Allison and Mikaela always work together at the end of class  
and they are usually very diligent. I’m surprised that they were  
off task. That’s not their style.

During the ten lessons I observed in Cameron’s and Charmaine’s classes, I only 
managed to capture three other instances that I would say fall into the same cate-
gory – quitting because the students were bored by seemingly too easy collection of 
tasks. Each of these cases occurred in Charmaine’s class, occurred during the last 
phase of the class where students worked on questions out of the text, involved stu-
dents who were sitting down, and involved students who were not normally off task. 
And in each case, the students perceived the questions they were working on to 
either be easy or redundant. I say perceived because in the case of Mikaela and 
Allison, for example, although the first three questions were easy and redundant, the 
next three questions were not redundant and were quite a bit more challenging.
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22.3.1.2  The Case of Seeking Increased Challenge

Quitting out of boredom was not the only reaction to a situation where the skills of 
a group or of an individual exceeded the challenge of the task at hand. Some stu-
dents opted, instead, to autonomously seek increased challenge. To exemplify this, 
I look at a case from Cameron’s class captured while students were working at the 
whiteboards in randomly assigned groups. During this part of the lesson, Cameron 
was circulating the room helping groups that were stuck (or had made a mistake) 
and giving more challenging questions to groups that were done. Cameron is very 
deliberate about how he does this. Before a group can get his help or the next ques-
tion, he engages the group in conversation to assess where the group’s thinking is 
at – both as a collective and individually. This takes time, and sometimes groups that 
are done are left waiting.

During one of my visits to his class, my attention was drawn to a group of three 
boys – Carl, Ameer, and Colton. What I had noticed about them was that these three 
boys were smoothly moving through all of the questions in Cameron’s repertoire 
and they were doing so without Cameron having once visited them to give them the 
next question. What they were doing was pulling the questions from the visible 
work of groups that Cameron had visited and given the next question to. I watched 
them do this for 30 min during which I began to discern the modus operandi of the 
group.

In essence, this group of boys used the visible work of others around them to not 
only pull new questions but to also check solutions to questions they had already 
solved. Sometimes they did this remotely, just through observation. Other times, 
especially when answers didn’t match, they engaged their peers in discussions.

After 30 min of watching them work like this, I decide to ask them about what 
they were doing.

Researcher So, I notice that you guys are now on question 5 and your teacher  
has not visited you once. How are you getting your questions?

Ameer We just look around and see what the next question is and do  
that one.

Researcher What would your teacher say about that?
Carl Um…he’d probably want to check to see that we got the previous  

one before giving us the next one…
Ameer …but we are doing that.
Researcher Why don’t you just wait for your teacher to get here and give you  

the next question?
Carl We’re on a roll. And sometimes we have to wait a long time.
Researcher Do you realize that you are doing the problems out of sequence  

from the order your teacher is giving them?
Colton Oh really? That’s probably why some were so hard.

It turns out that this was a very common behavior in both Cameron’s and 
Charmaine’s classrooms. Rather than wait for their teacher to give them the next 
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questions, groups were opting, instead, to move on their own. For the most part, 
they did this just by pulling the next question from groups that were ahead of them. 
This was facilitated by the visible nature of the work afforded by the vertical non-
permanent surfaces that the classes were working on.

Related to this behavior, but much less common, was the phenomenon of stu-
dents creating their own extensions to problems they had been working on. In the 
ten lessons I observed, I only saw this happen twice. In both situations the groups 
made a change to the problem they had just solved. In one of these cases, the group 
did this every time they were waiting for the teacher. It could be argued that this is 
a form of problem posing (Brown & Walters, 1983), but my sense was that the stu-
dents were more trying to anticipate the teacher’s next type of question than pursue 
a curiosity.

22.3.1.3  The Case of Tolerance in the Face of the Mundane

An altogether different reaction to being tasked with doing easy and redundant 
questions is to just do them – without quitting and without seeking to increase the 
challenge. I observed such behavior in the case of Jennifer, who always worked at 
her desk on her own at the end of Charmaine’s lessons.

What drew my attention to Jennifer was that she seemed to be moving through the 
questions with great easy, never asking for help. Upon closer inspection I also 
noticed that, in addition to the assigned questions, she was also completing questions 
that were not assigned. Toward the end of one of the class, I asked her about this.

Researcher I have been watching you while I have been here. I notice that you  
always do a lot of questions. Can you tell me about that?

Jennifer Yeah. I like to do a lot of questions. It’s good practice. It’s how  
I learn.

Researcher So, are you looking for harder and harder questions to challenge  
yourself?

Jennifer Not really. I just do all of them. So, if the teacher asks us to do 4a,  
I will also do 4bc and d and so on.

Researcher Do you find them easy?
Jennifer Yeah.
Researcher How many do you do?
Jennifer I just work the whole time at the end of class and then for maybe  

an hour at home.

Jennifer uses practice as a way to ensure that she is learning the content of the 
day. Unlike the students who quit in the face of boredom, Jennifer seems to be per-
fectly content working on questions that she considers to be easy for long periods of 
time. Her tolerance for the mundane is high.

In my time in Charmaine’s class, I saw two other girls who I suspect were very 
much like Jennifer in their approach to learning and their tolerance for the mundane. 
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These girls also worked alone in their desks in the last part of every lesson. I also 
observed similar behaviors in a pair of boys working at a whiteboard toward the end 
of one of Charmaine’s lessons.

From my conversations with Charmaine, I learned that these boys, Kirk and 
Philip, always worked together on a whiteboard to complete the end of class assign-
ment. In the third lesson, I observed I saw them exhibiting much of the same behav-
ior I had seen in Jennifer and the other two girls. That is, they were doing questions 
beyond what was assigned.

Researcher I don’t think you were asked to do that question?
Kirk We know. Sometimes it is good to check that you really know what  

you are doing by doing a few more just like it.
Researcher Do you always do that?
Kirk Not always. Usually only if we are not sure.

Like Jennifer, Kirk and Philip are staying within equally challenging tasks to 
build up their understanding of the mathematics. Unlike Jennifer, however, they 
seem to be doing so as a way to continue to build their understanding, as opposed to 
just practicing.

22.3.2  When Challenge Exceeds Skills

There were three distinct types of reactions by individual or groups of students 
when faced with a situation wherein the challenge of the task at hand exceeded their 
skills. According to Csíkszentmihályi’s theory of flow (1990, 1996, 1998), such an 
imbalance should result in frustration. This was rarely the case, however.

22.3.2.1  The Case of Quitting

Of course, frustration is a likely result of such an imbalance, and as such, I was on 
the lookout for such a reaction. I found it in three students in Cameron’s classroom 
work on the first question of the day.

Sometimes at the beginning of a lesson, both Cameron and Charmaine begin 
with a small lesson or a short example. But they both claim that they do this rarely 
and only in situations where the lesson pertains to entirely new content. As a result, 
most lessons begin with groups being tasked with the solving of a problem. Often, 
these problems are similar to questions from a previous lesson (not necessarily the 
lesson immediately before) or a small extension from a question encountered previ-
ously. During one of my visits to Cameron’s class, I observed a group of three stu-
dents – Shannon, Katrina, and Robert – who seemed to be lost. After about 3 min, 
they became quite exasperated and quit.
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Researcher I have been watching your group for a bit and I notice that you aren’t  
working?

Robert We gave up. This question is stupid.
Katrina We tried, but we weren’t getting anywhere. So we gave up.
Researcher What do you think the problem is?
Shannon This question is too hard.
Robert …too hard. We don’t get it.
Katrina And the teacher hasn’t come over to help us.
Researcher What kind of help are you looking for?
Shannon You know, a hint or something.
Researcher What would a hint do for you?
Shannon Help us understand the question.
Katrina …or remind us a little bit about how to do it.

For this group the question they have been asked to solve exceeded their abilities, 
and without any help from the teacher they gave up. Interestingly, the type of help 
they were seeking was either to reduce the complexity of the task (understand the 
question) or increase their ability (remind us of what we have done in the past).

Surprisingly, in the ten lessons I observed, I only managed to capture a total of 
four instances of a group giving up. In each of these cases, there was visible exas-
peration and disengagement present as well as a marked lack of progress on the 
task. And in each of these cases, the groups claimed that the task was too difficult 
for them.

I also managed to capture two cases of individual students, working on questions 
at the end of one of Charmaine’s lessons, giving up. These were harder to capture as 
there were many instances of students not working during this autonomous time. As 
expected, during such freedom some students will choose to not do anything. Most 
of these students told me that they were taking a break or planning to work on these 
questions at home. Only two students admitted to me that the questions were too 
difficult and they were giving up, with one of these stating, “I’ll just do them at 
home with my tutor.”.

22.3.2.2  The Case of Getting Help

A much more common reaction to facing too great challenge was for students in 
both classes to seek help. What this looked like, however, was much more subtle 
than simply calling on the teacher. Like the case of students autonomously seeking 
increased challenge, many groups who were stuck sought help from the groups 
around them. This is nicely exemplified by the random group of Mikaela, Lena, and 
Michael working on a question in Charmaine’s class.

I watched this particular group for an entire class. What stands out from these 
observations was how much they interacted with the groups around them, both pas-
sively and actively. This interaction fell into two main categories – checking answers 
and getting ideas.
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Checking answers involved passively looking around the room and seeing if any 
other groups had arrived at the same answer as them. This became much more 
active if they saw an answer that differed from theirs. This happened twice during 
the lesson I observed. In the first instance, they had a quick conversation with the 
group next to them. This resulted in their neighboring group changing their answer. 
In the second instance, it involved them crossing the classroom to another group and 
having a lengthy discussion and then together redoing the problem as a group of six 
and arriving at an answer that they were all happy with.

Similarly, getting ideas passively involved one or more members of the group 
looking around the room at other groups’ work. Interestingly, Lena did this for 
every problem regardless if they were stuck or not. A much more active approach 
was used on their last question together. For this task, they were stuck for quite a 
while, and Lena’s scanning of the class had not helped the group move forward. At 
this point Mikaela walked over to Allison’s group8 and asked her if she knew what 
to do. Allison’s group was making good progress and was confident about the direc-
tion they were going in, but Mikaela didn’t understand what they were doing. 
Eventually, Lena and Michael joined Mikaela in trying to understand what was hap-
pening. Michael quickly caught on and urged both Lena and Mikaela to return to 
their station where he explained it to them.

After 40 min of observing this group, I interviewed them.

Researcher I notice that you have been moving about the room a bit. Why?
Michael Oh. We were just stuck so we went over there to get some ideas.
Researcher Did it help?
Michael Oh yeah. We got it now.
Mikaela Michael got it. It took me a little longer, but I’m good now.
Researcher You were also moving around a little bit earlier in the class?
Mikaela Oh, you mean when we were checking answers? Yeah, we thought  

we were doing something wrong, but we were good.
Researcher Lena, you like to look around a lot.
Lena I do? What do you mean?
Researcher You know, when Michael was working on the board you look  

around a lot at the other groups.
Lena Right. I am just making sure we are on the right track.

This sort of behavior was endemic in both classrooms with too many occurrences 
for me to track. The vertical work spaces facilitated the ability for groups to pas-
sively check their answers and get ideas. The random groups created the porosity 
(Liljedahl, 2014) that made the more active interactions and movement of ideas 
possible. Together it meant that groups were never helpless if they were stuck – 
thereby avoiding becoming frustrated.

8 Recall that Mikaela and Allison regularly worked together when given the opportunity.
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22.3.2.3  The Case of Perseverance in the Face of Challenge

But not all groups sought help when they were stuck. In the ten lessons I observed, 
I captured a few instances where a group or an individual opted to not seek help, 
neither passively nor actively, from the groups around them. One such group was a 
pair of boys working on the assignments at the end of one of Charmaine’s classes. 
These boys, Oliver and Connor, worked persistently on one of the questions for 
15  min without making progress. Even when Charmaine approached them, they 
resisted her offering of help. At the end of class, I asked them about this question.

Researcher Question #5 was a tough one, huh?
Oliver Yeah, that one took us a while.
Connor In the end it wasn’t that hard though. We were just missing  

something.
Researcher Oh really. How did you figure it out?
Connor We just kept at it and then we saw it.
Researcher I noticed that your teacher came over to help. Did she help you?
Oliver No, we wouldn’t let her. We knew we knew how to do it and we  

wanted to figure it out ourselves.

I observed similar behavior in Stephanie, who worked on the assignment by 
herself at a whiteboard. She spent 10 min on the same question before moving on to 
other questions and then returned several times to try it again. In the end she never 
did solve it in class, but she never sought any form of help from either the people 
around her or the teacher. I spoke to her as the bell rang.

Researcher Did you ever get it?
Stephanie 7a? Not yet. I’ll work on it at home.
Researcher Until you get it?
Stephanie Until I get it.
Researcher What if you don’t. Will you get some help?
Stephanie I always get it eventually.

Stephanie showed great perseverance with this task. From the interview it seems 
like this is a normal occurrence that she is comfortable with. Her confidence in that 
she will eventually solve it indicates that she is willing to persevere for long periods 
of time.

There were no such occurrences in Cameron’s class. I suspect this is because 
there were no times in Cameron’s lesson where the students were not immersed in 
an environment saturated with potential help afforded by the vertical spaces and 
random groups. This is not to say that the students in Cameron’s class were not 
capable of such perseverance but only that Charmaine’s class offered an opportunity 
for me to observe such perseverance.
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22.4  Discussion

The aforementioned six nuanced moments of imbalance show that for different 
individuals and different groups the transitions from flow to boredom or frustration 
have variable immediacy. Mikaela and Allison became bored and got off task as 
soon as their groups abilities exceeded the challenge of the task at hand. Similarly, 
Shannon, Katrina, and Robert became frustrated and gave up as soon as the chal-
lenge exceeded their ability. For these two groups and the groups and individuals 
who reacted similarly to an imbalance between ability and challenge, 
Csíkszentmihályi’s original representation of flow holds (see Fig. 22.5).

For Jennifer and Stephanie, this transition was not as abrupt. Jennifer spent long 
periods of time within a space where her ability far exceeded the challenge posed 
by the tasks she was working on without getting off task or quitting. The groups 
and individuals like Jennifer had, what I have come to call, a tolerance for the 
mundane that prevented them from sliding into boredom. Likewise, Stephanie 
worked persistently without giving up on a task that presented a too great chal-
lenge for her ability. Groups and individuals who demonstrated the same tenacity 
had, what I have come to call, perseverance in the face of challenge that prevented 
them from becoming frustrated. Taken together, these two cases, and the cases like 
them, indicate that for some students the boundary between flow and boredom and 
frustration is not as thin as Csíkszentmihályi’s (1990, 1996, 1998) theory of flow 
would imply (see Fig. 22.6).

Other students used the buffer created by perseverance and tolerance to avoid 
frustration or boredom as they sought to correct the imbalance between skill and 
challenge that they were experiencing. Carl, Ameer, and Colton used the groups 
around them to passively and actively check their own answers and to seek out more 
challenging tasks when they were done. Similarly, Mikaela, Lena, and Michael used 
the groups around them to both passively and actively access help when they were 
stuck. These groups, and the groups and individuals like them, managed to autono-
mously maintain the balance between challenge and ability. When their ability was 

Fig. 22.5 Csíkszentmihályi’s 
representation of the balance 
between challenge and skill
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too great, they autonomously sought to increase the challenge (see Fig. 22.7), and 
when the challenge was becoming too great, they autonomously sought to increase 
their ability or decrease the challenge (see Fig. 22.8).

To what degree these groups had tolerance or perseverance was not evident 
from the data as they too quickly managed to right the balance between skill and 
challenge. What was evident, however, was that when there was an imbalance, 

Fig. 22.7 Reaction to a 
too great ability

Fig. 22.8 Reaction to a 
too great challenge

Fig. 22.6 Modified 
representation of the 
balance between challenge 
and skill
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these groups did not quit out of boredom or give up out of frustration. The 
highly visible and collaborative environments created by the use of vertical 
nonpermanent surfaces and visibly random groups, no doubt, facilitated the 
management of this balance.

22.5  Conclusions

I began the research presented here as an extension of research wherein I used 
Csíkszentmihályi’s theory of flow (1990, 1996, 1998) as a lens for looking at how 
teachers used hints and extensions to create and maintain engagement in their class-
rooms. This prior research showed that flow, as articulated by Csíkszentmihályi 
(1990, 1996, 1998), is a usefull lens for describing effective and ineffective teach-
ers’ actions and reactions to student work.

In the research presented here, however, Csíkszentmihályi’s theory of flow 
(1990, 1996, 1998) was insufficient for predicting the majority of student reactions 
when faced with an imbalance between challenge and skill. Although some students 
did quit out of boredom and frustration, very few did so. Instead, they showed resil-
ience to these kinds of imbalances in the form of either perseverance in the face of 
challenge or tolerance in the face of the mundane. And they often used this resil-
ience as a buffer while they autonomously corrected these imbalances by actively 
and passively seeking help or increased challenges.

To a great degree, this resilience was facilitated by the collaborative and visible 
structures created by the participating teachers’ adherence to the building thinking 
classrooms framework of teaching (Liljedahl, 2014, 2016b, 2016c). These struc-
tures filled the space with opportunities to either access help or increase the chal-
lenge as needed.
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Chapter 23
Positioning and Emotions in Tackling 
Algebra Problems with Technology: 
The Case of High- and Middle-Achieving 
Students

Wajeeh Daher, Osama Swidan, and Amani Masarwa

23.1  Introduction

Affective aspects in learning and teaching have become a growing area in educa-
tional research, due to its relationships with other aspects of students’ learning. In 
particular, in the mathematics classroom, affective aspects have a mutual relation-
ship with the cognitive aspect. This puts the study of the affective aspect of stu-
dents’ learning on the agenda of mathematics education research. In the present 
chapter, we study students’ emotions in context. More specifically, we present our 
insights about students’ emotions in relation to their positioning when they engaged 
in solving problems involving the quadratic function as a product of two linear 
functions using dynamic software. This issue of students’ affect has not been 
widely studied. Moreover, in this study, we intend to broaden the insights we have 
gained in our previous research, in which we examined students’ positioning and 
emotions in one group learning geometry (Daher, Swidan, & Shahbari, 2015). 
Following that study, we wondered whether and how emotions and positioning 
interplay among high- achieving and middle-achieving students when they learn 
algebraic topics with a dynamic digital tool. This chapter intends to examine this 
issue using the discursive positioning and emotions framework developed by 
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Evans, Morgan and Tsatsaroni (2006). Using this framework enables us to characterize 
students’ positioning and related emotions in groups of high- and middle-achieving 
students during mathematical problem-solving and to compare the positionings and 
emotions in the two different groups.

23.2  Literature Review

23.2.1  Emotions in Mathematics Education

Hannula (2015) points to the role of affective elements in mathematical problem- 
solving as being widely acknowledged, starting from Pólya (1957) who addressed 
the necessity to consider emotions as affecting the problem-solving process. 
Beginning from the 1980s of the twentieth century, researchers considered affect 
as a significant component of students’ mathematical problem-solving (e.g. 
Goldin, 1988; McLeod, 1988; Schoenfeld, 1985). This consideration of affective 
elements in mathematical problem-solving was supported by studies from other 
fields of research such as psychology (e.g. Salovey & Mayer, 1990) and neuro-
science (e.g. Damasio, 1996). These studies influenced how we look at the role 
of affective elements in education, so they turned to have mutual relationships 
with other elements in mathematics education, such as the cognitive and the 
social elements.

Emotion is one of the fundamental elements of the affective aspect (Hannula, 
2004). Hannula (2004) describes the aspects that have reached agreement regarding 
emotions. First, emotions are connected to personal goals. Second, emotions involve 
physiological reactions. Third, emotions are functional regarding human coping and 
adaptation. Moreover, emotions, when managed appropriately, become a potential for 
effective thinking rather than a disturbance to this thinking (Antognazza, Di Martino, 
Pellandini, & Sbaragli, 2015; Salovey & Mayer, 1990).

Researchers suggest different approaches to study students’ emotions. Op’t 
Eynde (2004) suggests a socio-constructivist perspective and a situated approach 
for the study of emotions in mathematics education. Brown and Reid (2004) sug-
gest emotional orientations and somatic markers for that study. Roth and Radford 
(2011) suggest a cultural-historical framework to study students’ emotions dur-
ing learning mathematics. Evans, Morgan, and Tsatsaroni (2006) suggest discur-
sive positioning as the context in which students’ emotions are studied when 
learning mathematics. In the present research, we intend to use the discursive 
positioning framework to explore students’ positioning and emotions in groups 
of high-achieving students and groups of middle-achieving students. Our interest 
in the framework is based on our belief that emotions are discursively and 
socially based.
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23.2.2  The Discursive Positioning Framework for Studying 
Students’ Emotions

Evans et al. (2006) describe the characteristics of the discursive positioning frame-
work for studying students’ emotions. This framework assumes that meaning making 
occurs in social practices, using language and other semiotic resources. The interac-
tion related to the social practices has an emotional dimension that helps maintain-
ing social identity. Moreover, empirical data in this framework is seen as text, the 
analysis of which demands attention to its context(s). This analysis entails a combi-
nation of structural and textual phases that each informs the other.

The structural analysis considers the positions available to or claimed by the 
participants. Analysis of the available or claimed positions displays the ways emo-
tions occur to the participants. In more detail, positions are associated with power in 
relation to others, as well as with differing values within the discourse, which cre-
ates spaces within which emotion may arise. Usually, there is more than one avail-
able position for a participant, either within a single discourse or several competing 
discourses. In this case, potential for conflict between positions may result in emo-
tionally charged positions.

Evans, Morgan, and Tsatsaroni, in their writings about discursive analysis, 
describe the positionings considered in the structural analysis: helper and seeker of 
help (helper positioned more powerfully), collaborator and solitary worker, leader 
of activity and follower of directions (the latter less powerful), evaluator and evalu-
ated and insider and outsider.

The textual analysis considers the exchange of meanings. This phase has two 
functions (Evans, 2006): (a) showing how positionings in social interactions are 
actually taken up by the participants and (b) providing indicators of emotional expe-
rience. Furthermore, in the textual analysis, indicators of interpersonal relationship 
and emotional experience are considered (Tsatsaroni, Evans, & Morgan, 2007). 
This analysis has two stages. In the first stage, the focus is to identify the interper-
sonal aspects of the text that establish the positions of the participants. Indicators at 
this stage include reference to self and others, reference to valued statuses (e.g. 
claiming understanding or correctness), modality (indicating degrees of (un)cer-
tainty), hidden agency (e.g. passive voice) or repetition. The second stage of the 
textual analysis attends to (a) indicators of emotional experience generally under-
stood/used within the (sub)culture: direct verbal expression (e.g. “I feel anxious”); 
the use of particular metaphors (e.g. claiming to be “coasting”); emphasis by words, 
gesture, intonation or repetition (indicating strong feelings); and body language 
(e.g. facial expression or blushing) and (b) indicators suggested by psychoanalytic 
theory, as indicators of defences against strong emotions like anxiety, or conflicts 
between positionings (as “Freudian slips”), surprising error in problem-solving, 
behaving strangely (as laughing nervously) and denial (e.g. of anxiety).

23 Positioning and Emotions in Tackling Algebra Problems with Technology…



528

23.3  Research Rationale and Goals

In spite of the acknowledgement of the role of affective aspects in mathematical 
education in general and mathematical problem-solving in particular, research 
related to this aspect is still not widespread (Antognazza et al., 2015). This is espe-
cially true when talking about emotions as a significant factor in problem-solving. 
We intend to study this issue using the two phases of the discursive framework 
developed by Evans et al. (2006). In more detail, we intend, in the present chapter, 
to analyse the positionings taken by ninth grade students and their related emotions 
when working collaboratively, with the help of GeoGebra, on problems involving 
the quadratic function as a product of two linear functions. Doing so, we will com-
pare high-achieving and middle-achieving students’ positioning and emotions. This 
will shed light on the influence of knowledge on the two constructs. Thus, the pres-
ent chapter will give us insight regarding different affective and social issues related 
to students’ learning of mathematics.

23.3.1  Research Questions

 1. How are positionings taken up by high-achieving and middle-achieving ninth 
grade students, working in group so to solve problems involving the quadratic 
function as a product of two linear functions, in the presence of technology?

 2. How are high-achieving and middle-achieving ninth grade students’ emotions 
associated with the positionings that they claim, when using technology to tackle 
problems involving the quadratic function as a product of two linear functions?

23.4  Methodology

23.4.1  Research Setting and Participants

We analysed in the present study the affective aspect of the learning of six groups of 
grade 9 students, aged between 14 and 15 years old. The students in three groups 
were high-achieving students, while the students in the other three groups were 
middle-achieving students. All the participating students had not work with 
GeoGebra before, and they were introduced to it in 2 h’ time. Furthermore, the stu-
dents had learned some issues in the topic of the quadratic function (e.g. whether the 
function has maximum or minimum, how to find the vertex of the function and the 
domain in which the function is increasing or decreasing), but not the quadratic 
function as a product of two linear functions. The third author taught the six groups 
in a middle school in Israel. She did that in the frame of after-school lessons as 
mathematics enrichment. Before doing that, she took the permission from the stu-
dents’ parents and the school headmaster.
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23.4.2  Data Collecting and Analysing Tools

We collected our data using observations of the learning of the six groups. We also 
conducted interviews with their members. Every group’s learning was videoed, and 
at the end of each lesson, the three students in each group were interviewed indi-
vidually regarding their positionings and emotions during the work on algebra prob-
lems with technology. We analysed the two types of collected data using the 
discursive analysis framework presented above. Moreover, we combined the analy-
ses of the data collected by the two tools. For examples, on analysing students’ 
positioning and emotions using the framework, refer to the various writings of 
Evans, Morgan and Tsatsaroni. The findings section in this chapter also sheds light 
on this method.

The Task
The six groups of seventh grade students worked with a sequence of activities, all 
related to the quadratic function as a product of two linear functions. The following 
is an example on these activities.

In the same coordinate system, we want to draw the three functions: y  =  x, 
y = x + 2 and y = x(x + 2).

What are the algebraic characteristics of the linear function:y = x?
What are the graphical characteristics of the linear function:y = x?
What are the algebraic characteristics of the linear function: y = x + 2?
What are the graphical characteristics of the linear function:y = x + 2?
What are the algebraic characteristics of the quadratic function: y = x(x + 2)?
What are the graphical characteristics of the quadratic function:y = x(x + 2)?
What are the similarities and the differences between the characteristics of the two 

above linear functions and the characteristics of the quadratic function?

Note: Algebraic characteristics are related to the parameters of the equation, 
while the graphical characteristics are related to the intersection points with the 
axes, increasing or decreasing of the function, etc.

23.4.3  Findings

The present chapter aimed at characterizing groups of students’ positioning and 
emotions when using technology to tackle algebra problems. A second aim was to 
distinguish between these characteristics in high-achieving and middle-achieving 
groups of students. Analysing students’ positioning and related emotions in high- 
and middle-achieving groups of students, we found that mainly the students had the 
following positionings: leader, collaborator, evaluator, seeker of help and outsider. 
We will describe how the students in the high-achieving and the middle- achieving 
groups claimed each of the positionings and experienced their emotions in each 
positioning. Doing so, we will address the following aspects of learning that the 
positioning related to behavioural, cognitive, metacognitive, social and linguistic. 
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The emotional aspect of learning will be considered in light of the positioning taken. 
Furthermore, addressing the different aspects of learning, we will describe the simi-
larities and differences in the regularities colouring the middle-achieving and high-
achieving group members’ claiming of positioning and the related emotions.

23.4.4  Collaborator’s Functioning

The different groups, high-achieving as well as middle-achieving, utilized collabo-
ration to learn the conceptions related to the quadratic function as a product of two 
linear functions. This is exhibited in that generally the members of each of the par-
ticipating groups claimed the collaborator positioning to pursue, with the help of the 
activity and the mathematical software, their learning of the quadratic function. This 
claiming resulted in making the group’s members enthusiastically understanding 
the appropriate mathematical relations. Learning enthusiastically made the group 
members enjoy their learning as they said in the interview. For example, Asis said 
in the interview: “Working collaboratively made us enthusiastic to perform the 
activities. This made us enjoy our learning to a great degree”. Thus, the group col-
laboration helped to make the students’ emotions concerning their mathematical 
learning positive ones.

To claim the collaborator positioning, the group members were involved with 
behavioural processes (working with GeoGebra), social processes (class discus-
sions) as well as cognitive processes (mathematical reasoning). These three types of 
processes not only helped the group members claim the positioning of the collabo-
rator and actualized this positioning but, at the same time, supported their attempts, 
as described above, to perceive the conceptions related to the quadratic function as 
a product of two linear functions. In the interview, the students associated their 
behavioural processes, i.e. working with GeoGebra, with positive and negative 
emotions: enjoyment of their work when the software helped them to solve the 
mathematical problem and frustration when finding difficulty to operate the soft-
ware. In the interview, Sana expressed her enjoyment of working with GeoGebra: 
“GeoGebra is a fantastic program; it allows us to see relationships between func-
tions. I really enjoyed working with GeoGebra”.

Excerpt 23.1 shows the members of one middle-achieving group as they claim 
the collaborator positioning.

Excerpt 23.1 Claiming the collaborator positioning

A1 Sana We need to find the intersection with x for the three functions.
A2 Amal What’s the first function?
A3 Asis 3x − 2
A4 Sana [drew the first function in GeoGebra]
A5 Amal What’s the second function?
A6 Asis 2x + 3
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A7 Sana [drew the second function in GeoGebra]
A8 Asis The third function is (3x − 2)(2x + 3).
A9 Sana [drew the third function] Let’s find the intersection points  

with x [she seemed enthusiastic and enjoying the activity].

Excerpt 23.1 shows how the group members claimed the collaborator’s posi-
tioning. This positioning is related here to the behavioural aspect of the group’s 
learning. This aspect is expressed by the students’ action with the GeoGebra 
software (e.g. A4, A7 and A9). However, this positioning is also concerned with 
the metacognitive aspect. The utterances of Sana in lines A1 and A9 and Amal 
in lines A2 and A5 suggest that they were regulating the processes of how to 
solve the mathematical problem. Claiming the collaborator positioning, through 
working with GeoGebra, made the group members enthusiastic and enjoy their 
learning [A9].

23.4.5  Leader’s Functioning

The leader’s positioning in the high- and middle-achieving groups was utilized to 
direct the learning of the group. Moreover, the leader worked to advance the group 
learning towards perceiving the conceptions related to the quadratic function as a 
product of two linear functions, including the solution of the related mathematical 
problems.

Leaders in the high-achieving as well as in the middle-achieving groups claimed 
their positioning through carrying out processes related to the different aspects of 
learning, mainly the cognitive, metacognitive, meta-emotional, social and linguistic 
aspects. Below, we elaborate on these processes.

The group leader’s cognitive functioning was actualized through demonstrating 
knowledge during carrying out the mathematical activity. See, for example, excerpt 
23.2, where Fairouz, a leader in a middle-achieving group, argues regarding the 
conditions of drawing a quadratic function:

Excerpt 23.2 Cognitive activity of the leader

B1 Salim What do you think the similarity is between two linear  
functions and their product?

B2 Noura You mean graphically?
B3 Fairouz We only need to know the intersection points of  

the two linear functions with the x-axis in order to know  
the intersection points of the resulting quadratic function.

The group leader’s metacognitive functioning was actualized through asking 
questions during the group learning as means to decide upon the method of solving 
a problem. For example, Sema, a leader in a high-achieving group, asked the teacher: 
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“Shouldn’t we use the previous solution method?” In the interview, Sema said she 
asked the question in order to decide what solution method was most appropriate for 
solving the mathematical problem. Moreover, she reported that this made her more 
confident to suggest how to proceed in solving the task and, as a result, to be content 
of her role in the group.

The group leader’s meta-emotional functioning was actualized through trying to 
change the negative mood of the group when encountering a difficulty. For example, 
Alaa, a leader in a middle-achieving group, tried to lessen the anxiety of group (C3). 
Moreover, this meta-emotional functioning contributed to the positive emotions of 
all the group members, as it converted their negative emotions into neutral or posi-
tive ones as content. In the interview, Alaa said: “the group got anxious because we 
did not get what we expected. Simplifying the product of the linear functions again, 
we arrived at the mistake. This changed the negative mood of the group and made 
us content”.

Excerpt 23.3 Meta-emotional activity of the leader

C1 Siham The intersection points of the quadratic function are not as the  
intersection points of the linear functions [she seemed anxious].

C2 Amin [murmured something inaudible, looking anxious too]
C3 Alaa Don’t worry. It’s O.K. Sure we made a mistake. 

 Let’s read again our solution to find it.

The group leader’s social functioning was actualized through answering other 
members’ questions, asking questions and requesting actions from the group mem-
bers to keep the group learning going. For example, Sema, a leader in a high- 
achieving group, requested Lina to work with GeoGebra and Huda to write in order 
to organize the work of the group [see excerpt 23.4]. In the interview, Sema said: 
“I made my requests from the other members, so that the group could succeed in 
solving the mathematical problem”.

Regarding the linguistic aspect of the leader’s functioning, the leaders in the two 
types of groups used the first person plural pronoun to talk about the mathematical 
actions that they needed to perform, which showed them as collaborators with the 
other members of the group. This happened in the high-achieving groups more than 
in the middle-achieving ones. For example, in excerpt 23.4 that describes the begin-
ning of a high-achieving group working with activity 1, Lina and Sema who claimed 
the positioning of the leader used the first person plural pronoun to talk about the 
mathematical actions that the group needed to perform (D1-D5). On the other hand, 
the middle-achieving group in excerpt 23.5 did not use first person plural pronoun 
numerously as the high-achieving one in excerpt 23.4.

Furthermore, generally speaking, the leader’s functioning resulted in different 
emotions, but generally speaking, this functioning resulted in enjoying the activity 
by the leader during the successful solution process of the mathematical problem; 
frustration, when not being able to find a way for solving the activity; and content 
when finally solving the activity.
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23.4.6  Alternating Between Positions: Leaders, Evaluators, 
Seekers of Help, Outsiders and Collaborators

The groups differed in alternating among positions, where by alternating we mean 
interchanging repeatedly and regularly with one another in positions. At the begin-
ning of the activity, members in the high-achieving groups claimed different posi-
tions that included seekers of help and outsiders. In excerpt 23.4, the group consisted 
of Lina, Sema and Huda, where Lina claimed first the leadership of the group, ask-
ing group to start solving the activity (D1). She did that showing confidence, point-
ing at the activity text and holding the mouse in order to work with GeoGebra as a 
tool for solving the activity (D1). At the same time, Huda was shaking her pen, 
pointing with tension at the question (D2), which showed her as requesting help 
from the other group members. Sema seemed quiet, reading the activity text with 
concentration that indicated her intention to understand the activity. She did that, 
not paying attention to the rest of the group members (D2), which showed she was 
a momentary outsider to the group learning.

Excerpt 23.4 Alternating between positions at the beginning of the activity

D1 Lina [holding the mouse, saying loudly with confidence] 
 Let’s start.

D2 Huda and Sema [Huda seems tense, pointing at the first question of the  
activity, while Sema seems concentrating quietly  
on the activity text]

D3 Sema The question says we should draw the three  
functions:y = x, y = x + 2 and y = x(x + 2) in the  
same coordinate system

D4 Lina [draws the three functions in GeoGebra]
D5 Sema A moment please to see what the question requests  

[..3..] we need to write the parameters a and b.
D6 Lina [Lina held the pen in confidence and intended to write  

the answer of the question on the  
copybook that was in front of Huda].

D7 Sema [talking to Lina] Look, would you work with  
the mouse and Huda writes?

D8 Huda [took the pen from Lina, saying in a low voice]  
a? what does she mean by a?

D9 Sema a is the coefficient of x.

Excerpt 23.4 shows how the leadership alternated from Lina to Sema, where 
both of them claimed the leadership by initiation. Further, Sema claimed her 
leadership also by taking decisions regarding the group learning (D5) and knowl-
edge (D9).

As the activity proceeded, the group members kept alternating among positions 
that were confined to leaders, evaluators and collaborators. This claiming of the 
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advanced positions was enabled due to the members’ knowledge possessed gener-
ally by all the group members. This knowledge, associated with the cognitive aspect 
of learning, enabled the group members to lead the solving process of the mathe-
matical problem and to function as evaluators of each other’s mathematical actions 
performed during the solving process. Moreover, the knowledge of the group mem-
bers supported their inclusion in the group learning, so being outsider to the group 
learning in the high-achieving groups happened only at the beginning of the activity 
and as a result of not controlling the group’s problem-solving, due to unfamiliarity 
with the problem situation. Being insiders, the members of the high-achieving 
groups enjoyed their learning, as Huda said in the interview: “I enjoyed being active 
the whole solution process”.

In comparison with the high-achieving groups, members in the middle-achieving 
groups also alternated, at the beginning of the activity, between different positions 
that included leaders, seekers of help, collaborators and outsiders. This alternating 
was due to carrying out behavioural, cognitive and metacognitive processes to pur-
sue the group’s learning. More specifically, the alternating happened in working 
with GeoGebra, which is a behavioural process, demonstrating knowledge which is 
a cognitive process, and planning which is a metacognitive process.

As the activity proceeded, the discursive positioning in the middle-achieving 
groups was not similar to that in the high-achieving groups. This was presented in 
the middle-achieving group’s leader claiming her position almost during the whole 
learning of the group, while the other members alternated among the different posi-
tions mentioned above. This claiming of leadership was due, as mentioned above, to 
the leader’s attention to the cognitive, social, metacognitive and meta-emotional 
aspects of the group’s learning.

The positions claimed by the members of the high-achieving groups by means of 
knowledge affected their emotions throughout the learning process. Having the 
knowledge to solve the mathematical problem resulted in the group members hav-
ing more positive emotions (as content and calmness) than negative emotions (as 
anxiety, tension and confusion). The members in these groups got anxious when 
they stopped to lead the solution process. In that case, they responded in one of three 
ways: discussing the solution, working with GeoGebra and approaching the teacher. 
Getting help from one of the three previous resources and returning to lead the solu-
tion process lessened or stopped the negative emotions of the group members. In the 
interview, the members of the high-achieving groups described their content with 
their problem-solving more than did the members of the middle-achieving groups. 
Sema, a member in a high-achieving group, said she was content from the whole 
process of problem-solving, though they encountered difficulties throughout this 
process. On the other hand, Salim, a member of a middle-achieving group, said he 
did not enjoy the problem-solving in the entire time, but he was content at the end 
because the group managed to solve the problem.
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23.4.7  Encountering Difficulties and Its Effect on Group 
Members’ Emotions

Upon encountering a difficulty that was not easy to solve in the high-achieving 
group, the group members approached the teacher requesting her help or the teacher 
identified their need for help and approached them to discuss the difficulty. In the 
discursive situations characterized by encountering difficulties, the group members 
of the high-achieving groups turned into seekers of help, while their teacher turned 
into their leader in overcoming the difficulties.

The members of the middle-achieving groups, due to the lack of appropriate 
previous knowledge, whether in content knowledge or in the technological knowl-
edge, encountered more difficulties in claiming the positions of leaders and collabo-
rators during the solution process of the mathematical problem than the 
high-achieving groups. This led to their experiencing more negative emotions than 
the high-achieving groups. In addition, the members of the middle-achieving groups 
started the activity being anxious because they could not claim the positioning of 
leading the activity or, at least, behaving as collaborators. Moreover, the members 
of the high-achieving groups experienced calmness in the same manner and extent, 
while the members of the middle-achieving groups experienced calmness in two 
ways. First, they experienced calmness in relation to the leader’s calmness. In other 
words, the members of the middle-achieving groups experienced calmness when 
their leader experienced it and experienced anxiety and confusion also when their 
leader experienced it. On the other hand, the collaborators in the middle-achieving 
groups experienced frequently the loss of control when (1) working with GeoGebra, 
related to the behavioural aspect; (2) trying to remember the characteristics of the 
linear functions, related to the cognitive aspect; or (3) trying to explore the charac-
teristics of the quadratic functions, related mainly to the cognitive aspect.

Working with a dynamic technological tool, the members of the two types of 
groups encountered at the beginning difficulties that relate to the behavioural aspect 
of the group’s learning, where the middle-achieving groups encountered more dif-
ficulties. Salim, Noura and Fairouz were the members of a middle-achieving group. 
They wanted to draw the function (2x − 9)(3x − 4) in GeoGebra [E1] but found 
difficulty doing that due to not writing correctly appropriate number of brackets 
[E2-E5].

Excerpt 23.5 Students’ difficulties in working with GeoGebra and related 
emotions

E1 Fairouz We should write 3x − 4 multiplied by 2x − 9.
[Noura started to write the expressions]

E2 Salim Perhaps the brackets can be put afterwards,  
wait Noura, wait, it keeps moving.

E3 Fairouz Write it from the beginning.
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E4 Salim No, no [he takes the mouse from Noura who seemed  
annoyed by the act of Salim. Salim works on GeoGebra]  
O.K. Now write it again.
[Noura puts her hand on her mouth with boredom]

E5 Fairouz [Fairouz worked on GeoGebra, and then she said with  
annoyance] Something wrong with the brackets.

E6 Teacher Don’t get anxious. Brackets, at the beginning, are tricky.  
Everything will get O.K.

Excerpt 23.5 shows some of the difficulties encountered by the middle-achieving 
groups, as a result of their behavioural functioning, specifically when working with 
the technological tool. Fairouz, in the interview, said they felt out of control and thus 
frustrated for not being able to draw the graph of the function

f(x) = (2x − 9)(3x − 4) easily in GeoGebra.
Salim pointed at the teacher’s interference as supporting them in having back 

control over their work with GeoGebra and returning to be satisfied with their work 
on the mathematical activity.

Encountering difficulties in approaching the quadratic function as a product of 
two linear functions not only influenced students positioning and emotions, as 
described above, but also coloured the linguistic aspect of their learning. Specifically, 
it coloured their use of pronouns. For example, when the students got anxious for 
not being able to proceed with the carrying out of the activity, they approached 
another group member using a singular first or second person pronoun or no pro-
noun at all. This is the case in Excerpt 23.6, where a middle-achieving group 
encountered difficulties simplifying an algebraic expression.

Excerpt 23.6 Having difficulty in simplifying an algebraic expression

F1 Siham We want to draw the quadratic function
y = (2x − 9)(−x − 4).

F2 Amin Multiply first the brackets.
F3 Alaa  (−x − 4)(2x − 9) =  − 2x2 + 9x − 8x + 36,

Now we compute +9 − 8.
F4 Amin −17
F5 Siham Minus 8 plus 9.
F6 Amin Minus 17, plus
F7 Alaa What?
F8 Amin Minus one or plus one.
F9 Alaa What?
F10 Siham Plus 1.
F11 Alaa Write −2x2 + x − 36.

Excerpt 23.6 shows that in time of difficulty that constrains the group’s sense of 
control, and thus produces anxiety, singular pronouns or no pronouns are used.
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23.5  Discussion

Research on students’ emotions in mathematics learning is growing (e.g. Antognazza 
et al., 2015; Daher, 2011; Hannula, 2004). In the present chapter, we present our 
insights about students’ emotions in relation to their positioning when they solved 
problems involving the quadratic function as a product of two linear functions using 
dynamic software. To elaborate more, the present chapter had two aims: first, char-
acterizing students’ positioning and emotions when tackling algebra problems with 
technology, and, second, distinguishing between these characteristics in high- 
achieving and middle-achieving groups of students. The research findings indicated 
that to claim the collaborator positioning, the high- and middle-achieving group 
members were involved with behavioural processes (working with GeoGebra), 
social processes (class discussions) as well as cognitive processes (mathematical 
reasoning). These processes helped them reach their learning goal, thus resulting in 
positive emotions. It could be said that the collaborator position was associated with 
positive emotions, though negative emotions were experienced when having diffi-
culty in solving the mathematical problem, i.e. when the collaborators experienced 
difficulties in arriving at the learning goal.

To claim the leader positioning, the high- and middle-achieving group members 
were involved with different types of learning processes, but their functioning was 
distinguished from the other group members by their performance of metacognitive 
and meta-emotional processes. These processes helped plan, monitor, evaluate and 
take decisions regarding the group learning, especially in time of difficulty in arriv-
ing at the learning goals. At the same time, these processes helped maintain the 
leader positioning (Black, Soto, & Spurlin, 2016) for they affected critically the 
group learning including their emotions. In this case, not only positioning influ-
enced emotions, but emotions influenced positions too.

In addition, the leader metacognitive functioning was actualized by asking ques-
tions as means to decide upon the method of solving a problem. This decision- 
making could be looked at as a social process (Vroom & Jago, 1974) with the goal 
to advance the group learning. Moreover, it seems that critical thinking skills, actu-
alized in decision-making, were needed to claim the leader’s positioning. 
Furthermore, the goal of the leader meta-emotional functioning was to change the 
negative mood of the group when encountering a difficulty. This meta-emotional 
functioning, expressed in the leader being attentive to the members’ emotions, is 
also pointed at as one function of the successful leader who motivates the members’ 
work (Leithwood, Louis, Anderson, & Wahlstrom, 2004). So, we argue that the 
leader positioning was claimed by paying attention to different aspects of the group 
learning. Of those, the metacognitive and meta-emotional processes are of critical 
importance to the leader’s functioning (Zaccaro, 2007).

The alternating between positions in the two types of groups, which occurred at 
the beginning of the activity, happened through performing different types of pro-
cesses. More specifically, this altering happened through working with GeoGebra 
which is a behavioural process, demonstrating knowledge which is a cognitive 
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process and planning which is a metacognitive process. Moreover, in maintaining 
the leader’s positioning, knowledge demonstration; a cognitive process, and 
knowledge evaluation; a metacognitive process, were needed. Thus, to maintain 
the leader’s positioning, two types of processes were needed: “regular processes” 
and “meta” processes.

Furthermore, knowledge being possessed by all the members of the high- 
achieving groups resulted in the changing of leaders in these groups. At the same 
time, it resulted in the fixation of leaders in the middle-achieving groups. It could be 
argued that possessing knowledge also helped make evaluations of other members’ 
performance. Thus the cognitive aspect of students’ learning, more than any other 
aspect, was behind the difference between claiming positioning in the two types of 
groups. This aspect is emphasized by Evans et  al. (2006) as affecting who is in 
authority in the group and, as a result, as affecting students’ experiencing of 
emotions.

Students encountered sometimes difficulties in learning the quadratic function as 
a product of linear functions. This encounter not only influenced students’ position-
ing and emotions but also their linguistic use of pronouns. This was expressed in 
their use of singular pronouns or no pronoun at all when getting anxious for not 
being able to proceed with the carrying out of the activity. It could be claimed that 
when experiencing negative emotions, students lack the feeling of the social 
climate.

23.6  Conclusions

High- and middle-achieving groups of students utilized GeoGebra to tackle problems 
involving the quadratic function as a product of two linear functions. Doing so, they 
showed similarities as well as differences regarding their positioning and related 
emotions. These similarities and differences could be related to the different aspects 
of learning expressed in the learning processes performed by the two types of 
groups in order to achieve their learning goal. These learning processes could be 
categorized as “regular” processes, consisting of cognitive, social and behavioural 
processes, and as “meta” processes, consisting mainly of metacognitive and meta- 
emotional processes. The two main types of learning processes were performed by 
the students to claim their positioning, where leaders were concerned more than 
the other group members in performing the meta processes, more specifically the 
metacognitive and meta-emotional processes.

Knowledge demonstration and evaluation were behind the difference between 
the high-achieving and the middle-achieving groups regarding the claiming of lead-
ership in the group. Generally, all the group members in the high-achieving groups 
could demonstrate and evaluate knowledge, so the high-achieving group’s members 
could alternate in claiming the leader positioning.

Students’ emotions were related to their positioning and the success or difficulty 
to proceed in the problem-solving activity as group leaders or collaborators. 
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The middle-achieving groups experienced more difficulties in solving the mathematical 
problems than the middle-achieving groups, and thus the leaders of those groups as 
well as the collaborating members experienced more negative emotions than the 
high-achieving groups.

One limitation of the study is that it did not consider positioning and emotions in 
low-achieving groups of students. Future research is needed to explore this issue.
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Chapter 24
Affect and Aesthetics in Mathematical 
Problem-Solving: New Trends, 
Methodologies, Results and Critical 
Aspects

Pietro Di Martino

Research on mathematics-related affect has grown exponentially in the last decades, 
as showed by recently published overviews (Hannula et al., 2016; Hannula, Pantziara 
& Di Martino, 2018).

The beginning of the modern interest towards affect in mathematics education 
research is around the 1980s when, exactly in order to understand and interpret the 
students’ failures in problem-solving activities, different researchers underlined the 
need to go beyond a purely cognitive approach. The main focus is the failure in 
problem-solving activities of students who seem to have the required cognitive 
resources.

In the volume Teaching and Learning Mathematical Problem Solving: Multiple 
Research Perspectives (Silver, 1985a), Silver included affect within the issues he 
considered need to be addressed in the development of the research on mathemati-
cal problem-solving:

The first issue may appear to be out of place in the current climate of cognitive research on 
human problem solving [...] However, it is precisely because of the current climate that the 
issue is so important [...] Anyone who has worked with students in mathematics classes 
knows that affective considerations have a substantial face validity and such weak research 
support deserves to be studied in more detail. The time has to come to renew our efforts to 
uncover the affective/cognitive links in problem solving. (Silver, 1985b, p. 253–354)

In the same volume, McLeod affirmed:

Limiting one’s research perspective to the purely cognitive seems acceptable for those 
interested mainly in the performance of machines; however, researchers who are interested 
in human performance need to go beyond the purely cognitive if their theories and investi-
gations are to be important for problem-solving in mathematics classrooms. (McLeod, 
1985, p. 268)
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Four years later, the volume Affect and Mathematical Problem Solving: A New 
Perspective (McLeod & Adams, 1989) was published. In the volume, for the first 
time in the field of mathematics education, the affective factors were taken into 
account to analyse students’ behaviour and difficulties internal to a specific math-
ematical activity: problem-solving. In some sense, the publication of Affect and 
Mathematical Problem Solving: A New Perspective represented the beginning of a 
new era in mathematics education, despite that – as Mayer (1982, p. 36) claims – it 
“raises interesting questions but provides few answers”.

Our community has come a long way since the end of the 1980s: different 
answers have been found to the questions posed in Affect and Mathematical Problem 
Solving: A New Perspective, and new challenges in the field of affect emerged. The 
present volume is proof of that new relevant issues, approaches, methodologies and 
results concerning affect and problem-solving are presented and described (see 
Table 24.1).

I will try to discuss briefly and schematically all these aspects, also highlighting 
some theoretical and methodological critical issues that arise.

Two of the six chapters of the section affect and aesthetics in mathematical 
problem- solving concern aesthetic issues. They offer a really interesting picture of 
the related research, discussing the role of the aesthetic in mathematics education 
and the relationship between aesthetic and affect.

Concerning this latter issue, essentially we can recognize two theoretical 
approaches:

 1. Aesthetic is seen as a part of affect. According to Goldin (2000), affect has a 
tetrahedral nature, it includes the three dimensions (emotions, beliefs and atti-
tudes) considered by McLeod in the very famous 1992 Handbook (McLeod, 
1992) and a fourth dimension related to values. In this theoretical model, aes-
thetic falls in this fourth dimension.

Table 24.1 Synthesis of chapters in Sect. 3: affect and aesthetics in mathematical 
problem-solving

Chapter Focuses Sample Methodology

18 Attitude, mathematical 
competition, 
problem-solving

Grade 5, 6, 7, 8 
students

Mixed: interviews, questionnaires, 
e-mails,

19 Aesthetic, affect, 
problem-solving

Graduate students Qualitative: interviews

20 Aesthetic, 
problem-solving

Primary preservice 
teachers

Qualitative: journals

21 Emotions, mathematical 
competition, 
problem-solving

Students of the third 
cycle of basic 
education

Mixed: students’ mathematical 
products, journals, Facebook posts, 
online survey

22 Engagement, 
problem-solving

Grade 11 and grade 
12 students

Qualitative: direct observation

23 Emotions, technology, 
problem-solving

Grade 9 students Qualitative: video recorded data, 
interviews
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 2. Aesthetic and affect are closely intertwined but different domains with different 
functions. According to Sinclair (2008), the aesthetics functions as a nonlogical 
form of knowing, drawing the attention of the perceiver to a phenomenon, while 
the affective can active the awareness of these perceptions.

Sinclair and Rouleau stress another dichotomy in the research on aesthetic: aes-
thetic can be seen as an objective and absolute judgement reflecting the view of a 
cultural elite, or researchers can assume a contextual and democratic view of the 
aesthetic. This latter approach appears to be more significant for mathematics edu-
cation: the classroom has to be the environment where the judgement (also the aes-
thetic one) is negotiated and shared.

The two chapters discuss the role of aesthetic in the problem-solving process, 
starting from the role of aesthetic in the work of research mathematicians. This 
approach is complex because – as Sinclair and Rouleau underline – few mathemati-
cians write about their problem-solving processes, and still fewer explicit aesthetic 
(or affective) considerations.

This interesting approach is based on an epistemological assumption: if some-
thing is relevant in the work of professional mathematicians, then it can (have to?) 
be relevant in mathematics education. This assumption has also driven relevant 
research in the field of affect, for example, Liljedahl research about the Aha! experi-
ence (Liljedahl, 2008).

Anyway, the researcher needs to explicit why (and subsequently how) they sup-
pose to use their knowledge of the mathematicians’ problem-solving experiences 
for promoting aesthetic and affective responses in the mathematics classroom. 
Concerning aesthetic, the mathematicians’ experience reveals the connection 
between aesthetic considerations and decisions or evaluations. Since decisions and 
evaluations are crucial in the problem-solving process, and the development of the 
problem-solving competence is a crucial goal of mathematics instruction, it appears 
relevant to promote aesthetic responses in the teaching of mathematics. Moreover, 
to promote aesthetic experiences can be a teaching strategy in repairing a negative 
relationship with mathematics.

The attention on aesthetic issues in mathematics education is therefore fully jus-
tified. How to promote aesthetic responses in the students’ mathematical experi-
ences is still an outstanding issue.

Presmeg and Sinclair and Rouleau discuss some possibilities to promote aes-
thetic responses in problem-solving activities (both with students and with preser-
vice teachers). All the authors stress how the level of difficulty of the problem is a 
key factor: it is crucial that the problem appears neither too easy nor too hard.

This observation appears to be strictly related to the idea of flow introduced by 
Liljedahl in his chapter. According to the theory developed by Csíkszentmihályi 
(1990), flow is a state in which people are so involved in an activity that nothing else 
seems to matter. Using Peter’s words, flow is one of the only ways for mathematics 
education researchers to talk productively about engagement.

24 Affect and Aesthetics in Mathematical Problem-Solving: New Trends…
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Flow is possible only when there is a balance between challenge and individual’s 
ability. Therefore, the theory of flow is useful for interpreting student reactions 
when faced with an imbalance between challenge and their skill.

Liljedahl’s approach is particularly interesting because it is not only theoretical 
but also directly linked to practice. In particular, he discusses the flow is facilitated 
by specific problem-solving settings, for example, when a classroom is conducted 
according to the building thinking classrooms framework of teaching (Liljedahl, 
2016).

The theory of flow is particularly stimulating because it describes the balance 
between challenge and ability as a dynamic process where teachers play a crucial 
role. As a matter of fact, through appropriate feedbacks, teachers have to manage 
two different dangerous situations: when challenge exceeds skills (frustration) and 
when skills exceed challenge (boredom).

In this volume, also the chapter developed by Daher, Swidan and Masarwa is 
focused on the dynamics aspects of affect. In particular, scholars compare position-
ing and emotions in learning algebra with technology of high- and middle- achieving 
students.

This kind of studies is particularly relevant but also complex from a method-
ological point of view.

They are relevant because on the one hand studies that focus on the dynamics of 
affective states in classroom are still rare (Hannula, 2012); on the other hand, further 
evidence of the dynamic progression of motivational and emotional states through 
the problem-solving process is needed (Lewis, 2017).

They are complex because the data are collected through direct observation of 
students during problem-solving activities, and direct observation is confronted 
with the issue of circularity. Lester was the first to discuss this issue in relation to 
the research on beliefs, but his considerations are easily generalizable to other affec-
tive constructs:

For researchers to claim that students behave in a particular manner because of their beliefs 
and then infer the students’ beliefs from how they behave involves circular reasoning. The 
reasoning goes something like this: Question: How do you know that students’ beliefs influ-
ence how they do mathematics? Answer: Because in our study students did mathematics in 
a certain way. Question: But how do you know that the students'beliefs contributed to this 
behavior? Answer: Because they would not have behaved this way if they did not hold these 
beliefs. (Lester, 2002, p. 348)

We have discussed the issue of circularity related to methodologies based on direct 
observation, but more in general, for their nature, it is difficult to infer affective 
states or traits. If it is true that affective constructs are not directly observable, it is 
also true that individuals themselves are often not conscious of these processes 
(Hannula, Pantziara & Di Martino, 2018): studies based on self-report are not how-
ever without their methodological critical aspects.

Chapters 18 and 21 of this book describe studies based on different kinds of self- 
report: some of these self-reports (e.g. the students’ posts on Facebook) are particu-
larly original, and I believe they deserve a special attention for the future of the 
interpretative research about affect.
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The two studies are focused on the potential of mathematical problem-solving 
competitions for promoting positive emotions and attitudes towards mathematics. 
The main goal of these competitions is affective: they are seen as way of motivating 
participants to engage with mathematics and therefore of developing appreciation 
for mathematics.

As already mentioned, these studies are based on the collection of self-reports 
before, during and after the competition.

On the one hand, these studies are interesting because they monitor the students’ 
evolution in the period. On the other hand, the comparison between initial and final 
self-report  – particularly relevant in order to monitor the evolution of attitude 
towards mathematics  – has a clear problematic: typically the final self-report is 
filled by a minority of participants, and this minority is likely representative of those 
for whom the competition was a good experience.

Methodological issues a part, these competitions certainly have interesting fea-
tures. They are inclusive: the students’ participation is voluntary, and the problems 
have to be intended for all. But they are also detached by the official curriculum: 
there is more choice for the selection of the problems. In this frame, it is easier to 
develop realistic mathematically rich problems having more connections with other 
areas.

These features certainly can contribute to develop a positive attitude towards this 
kind of mathematical competition. It remains unexplored and problematic if and 
how these experiences (out of school) can have effects on the students’ attitude 
towards mathematics at school.

In conclusion, the six chapters of the section affect and aesthetics in mathemati-
cal problem-solving of the present volume offer an interesting and diverse contrib-
ute. They deal with significant issues, offering new theoretical approaches and new 
methodologies but also highlighting new critical aspects in the research about affect, 
aesthetic and problem-solving.

I want to replicate the hope that Silver stated in his introduction to the volume 
Teaching and Learning Mathematical Problem Solving: Multiple Research 
Perspectives (Silver, 1985a, p. ix): “If this volume leads to an increased understand-
ing of the nature of past problem-solving research, or an increased appreciation of 
the potential benefits of cross-fertilization of ideas among workers in different 
fields, or a renewed enthusiasm for attacking some of the underrepresented themes 
and issues from previous research, then it will have served its purpose”.
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Chapter 25
A-Musing with Chess and the Eight Queens 
Math Puzzle: Looking for Connections 
Between Problem-Solving, Technology, 
Creativity, and Affect in Mathematics 
Education

Viktor Freiman

25.1  Introduction

It is probably not often that students in mathematics have a chance to deal with tasks 
that require more than one mathematics lesson to solve, or a whole day, or a month, 
or a year. Similarly, students in mathematics may not experience problems that 
cannot be solved or are completely open-ended. This raises the issue of how 
students’ curiosity and perseverance can be fostered to pursue investigating one 
particular mathematical problem over a long period of time or to move beyond the 
solutions already found while looking for new strategies or other possible solutions. 
Likewise, there is the issue of ways to push the boundary of students’ creativity 
beyond questions formulated by someone else so that they become active problem 
seekers and posers. Such endeavours are likely to involve teaching them to take 
risks by attempting unknown tasks and helping them in mindset growth (Yeager & 
Dweck, 2012) while promoting resilience facing difficult challenges.

There exists a category of mathematical problems which are very well-known 
(some have a long history), which are being used as part of recreational activities 
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(mathematics for fun) yet contain (or lead to) very complex and advanced mathe-
matics theories; some remain at the heart of modern debates and even unsolved. 
Being explored in depth by the creative work of generations of mathematicians and 
amateurs of mathematics, they still trigger the interest of today’s scientists, educa-
tors, and ordinary people who like intellectual challenges and enjoy looking for 
answers to difficult questions.

 Map colouring, Konigsberg bridges, Goldbach’s conjecture, Collatz conjecture, 
Tour of the Knight on a Chessboard, and Eight Queens puzzle are very popular 
examples of this type of problems.  They have drawn attention of  famous 
mathematicians of the past (such as Gauss and Euler) and of modern times (including 
Erdős and Tao) who, among many others, attempted (or are still attempting) solving 
them, thus pushing boundaries of our knowledge even further. Moreover, some of 
the problems are recently overtaken by computer scientists and programmers who 
enrich them with novel and creative solutions using technology.  What is most 
intriguing is that all these problems can be tackled (at least in some adapted forms) 
by very young learners, even at the primary level.

When teaching a challenging mathematics curriculum to kindergarten and pri-
mary students (Freiman, 2006, 2018), I noticed a particular value of the above- 
mentioned problems in that they are quite simple in terms of initial access but 
potentially very rich in the mathematics involved. For instance, one of the Grade 3 
problems from the textbook Défi mathématique 3 (1981) is the famous Eight Queens 
chess puzzle. In asking students to first put six queens, then seven queens, and then 
eight queens on the 8 × 8 chessboard in a way that no queen was crossing the path 
on any other, all the students started working enthusiastically. They were easily able 
to find the solution with six queens and many, after some trials and error, succeeded 
with seven queens. Yet, adding the eighth one seemed to be a big challenge, not only 
for young learners. The question that arises is why this problem is so challenging 
and how it can be solved.

In fact, already the initial problem with six queens allows students to see that a 
steplike (following the knight jump) disposition of queens turns out to be a plausible 
strategy: a1, b3, c5, d7, with addition of e2 and f4, gives a correct solution. The 
students are then puzzled about why the same strategy does not work for eight 
queens. Students quickly see that after placing first four queens (a1, b3, c5, and d7), 
then adding two more (e2 and f4), the placing of two further queens turns out to be 
difficult, and, in the end, impossible. They then wonder what to do or how to (re-)
organize their search for a solution. When finally a solution is found, new questions 
may arise such as the number of different solutions that might exist, or what happens 
if the chessboard is not 8 × 8 but 7 × 7 or 9 × 9; how would such changes impact on 
the number (set) of solutions?

Another example of such challenges, accessible to all, is so-called Sudoku puz-
zles, which have become very popular in recent times and can be found in recre-
ational  sections of many modern newspapers almost on a daily basis (e.g. one 
Sudoku puzzle was published on 15 May 2018 in a local New Brunswick, Canada, 
French Acadian newspaper, L’Acadie Nouvelle, https://www.pressreader.com/
canada/acadie-nouvelle/20180515/281861529150574). When pointing to many 
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people’s passion in solving Sudoku puzzles, Crook (2009) asks why interest in 
solving them continues if today’s computer technology allows for simply putting 
the numbers into an app and getting an almost instant solution.  Recreational by 
nature, problems like a Sudoku puzzle and the Eight Queens chessboard puzzle not 
only have interesting historical roots demonstrating how the collective creative 
scientific mind was affected by seemingly simplistic entry-level rules that constantly 
show multiple deep connections to serious mathematical theories, they also attract 
today’s mathematicians and computer scientists who look for unknown paths and 
novel ways of investigation. For the amateur, and for educators who want to instil 
love for mathematics and pleasure from taking on challenges in their students, such 
puzzles remain, as is mentioned by Crook (2009), sources both of enjoyment and 
opportunity for (hopefully productive) struggle by posing a ‘serious mental 
challenge’ and by giving the solvers ‘an encouragement to persist’ (p. 460). In this 
sense, Danesi (2009) argues that “satisfaction that comes from solving a puzzle 
seems to provide ‘relief’ from the large-scale puzzles inherent in everyday life’1, an 
observation that might explain the phenomenon the author labels ‘puzzle crazes”2, 
referring to a surprising growth in popularity which was also remarkable around the 
chessboard puzzles in different moments of human history and which I briefly 
outline in the next section.

25.2  170 Years Ago: It All Starts with a Chess Puzzle

The history of the Eight Queens puzzle is believed to have started in 1848 when 
there was a first publication in a Berliner Chess Magazine (Schachzeitung). It reads 
in German as follows:

Wie viele Steine mit der Wirksamkeit der Dame können auf das im Uebrigen leere Brett in 
der Art aufgestellt werden, dass keiner den andern angreift und deckt, und wie müssen sie 
aufgestellt werden?

(Free English translation: How many stones representing a Queen can be placed on an 
otherwise empty chessboard in such a way that no one attacks or covers any other one, and 
how can they be placed?)

While the editors (referring to an anonymous author – ‘Schachfreund’) think the 
solutions are not very difficult (‘allerdings nicht sehr schwierig’) to find, they still 
think that collecting readers’ voices will be a pleasant endeavour (‘angenehme 
Pflicht’).

While its author was anonymous, many sources attribute the problem to the 
German chess player Max Bezzel. Few solutions were submitted to the magazine in 
the following year, and, overall, about 40 of them were reported between 1849 and 
1854. It turns out that the problem was republished (or independently published) in 
June 1850  in the Leipziger Illustrated Magazine with reference, this time, to 

1 https://www.psychologytoday.com/us/blog/brain-workout/200906/the-appeal-sudoku.
2 Idem.
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Dr. Nauck who was long time considered as the one who was the first to publish it 
and even to suggest it to Gauss. In fact, the issue dated 1 June 1850 of the magazine 
(p. 352) gives a short article entitled ‘Eine in dass Gebiet der Mathematik fallende 
Aufgabe von Herrn Dr. Nauck in Schleusingen’ (One problem from the field of 
mathematics given by Dr. Nauck from Schleusingen). The text of the problem reads 
as follows:

Man kann acht Schachfiguren, von jede den Rang einer Koenigin hat, auf dem Schachbrete 
so aufstellen, dass keine von einer anderen geshlagen warden kann.

(In English: It is possible to put eight chess pieces, each of them representing a queen, 
on a chessboard, so no one can capture any other one.)

Nauck comments that, given many existing solutions, it would be interesting to find 
in which boxes the queens can be placed if two of them are already on the board: in 
boxes B4 and D5 (the rule remains the same: no queen can capture any other queen).

Nauck also mentions that it is often thought (and I saw it many times with young 
children trying the puzzle) that if seven queens are already placed, it would be easy 
to add one more. At the end of the notice, Nauck indicates that he has found 60 
different solutions while working on the problem in a mathematical way and discov-
ering some interesting rules. Finally, the article says that “a happy Doctor will be 
pleased to provide his solution to friends of chess or of mathematics who will be 
interesting in the problem” (idem, p. 352).

In the September of the same year (1850), Nauck published all solutions of the 
problem and corrected himself regarding the number of solutions (92 rather than 
60). He also demonstrates an ingenious way of recording the solutions using digits 
(instead of letters) for the rows on the chessboard and thus discovering many 
interesting patterns in numbers representing positions of queens that helped him in 
his search for different solutions.

25.3  Gauss and Schumacher3 Jump in: Search for Initial 
Solutions

While the puzzle can be analysed by chess players and by mathematicians from 
their own perspectives and goals, this was yet another opportunity in linking 
chess and mathematics (something which was not new in the middle of the nine-
teenth century). In fact, already a century before, at least two famous chess puz-
zles were studied in-depth by Euler, one of which is finding a path for a Knight 
on a chessboard to visit each box on the board exactly once and to return to the 
same box. The second one was a similar problem to the one of eight queens but 
for eight rooks (Euler, 1759).

3 An exchange of letters between a mathematician C. F. Gauss and an astronomer H. C. Schumacher 
was published by C. A. F. Peters in 1860 (C. A. F. Peters (Hrsg.) Briher. Erster Sechster Band. 
Altona, Druck von Gustav Esch).
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It is therefore not surprising to learn that Gauss, who is said to be an active reader 
of the Illustrated Magazine, got interested in Nauck’s challenge and, according to 
several authors, without investing all his time, made a number of attempts at working 
on the problem, each time sharing his findings by exchanging letters with his friend 
the astronomer, Schumacher. The first letter of the series (dated 1 September 1850) 
refers to the June 1st issue of the magazine and to the puzzle as being ‘similar to one 
of finding the Knight Paths on the chessboard (‘Rösselsprung’). Along with the text 
of the problem, Gauss mentions that Nauck reports having first successfully found 
queens on b5 and d4 squares (Fig. 25.1) before finding a total of 60 solutions. On 
his side Gauss (mentioning that it is easy to find the way to put seven queens but 
difficult to see how to add one more), after spending some time on the puzzle and 
trying different possibilities of specific cases, said he could easily find different 
solutions, and their total number is actually more than 60. Namely, he has found 76 
solutions. After making this comment, Gauss concludes the letter with other matters 
(not related to the problem). In his response (dated 4 September 1850), Schumacher 
makes some comments of his own about the problem, saying that it is very interesting 
but appears to be more difficult than seems to be on a first sight. He asks if he can 
share it (without mentioning Gauss) with his friend Staunton, an editor of Chess 
Chronicle magazine. He also asks whether 76 solutions are those to the original 
problem or its particular case with queens on b5 and d4. He also says that sometimes 
small masterpieces of mind challenges can be found in chess magazines (he 
mentioned three of them, Chess Chronicle, la Régence, and Berliner Schachzeitung), 
and now knowing Gauss’s interest for them, he would have the pleasure to share 
such puzzles with him next time.

The exchange between the two scientists continues with Gauss’s letter of 12 
September 1859 where he confirms that the case with queens on b5 and d4 gives 
only one solution, but he also mentions that he needs to correct his initial number of 
solution bringing it down to 72 (from 76). He provides more details about his way 
of handling the problem: finding nine completely different solutions, each generating 
eight positions that can be obtained by the symmetries of the chessboard (using 
reflection and rotations, even by looking on the reverse of the sheet of paper). Yet 

Fig. 25.1 One solution 
with queens on B4 and D5 
shared by Gauss with 
Schumacher
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Gauss says he believes that some symmetrical solutions could exist which would 
bring eight solutions down to four, two, or even one. He thought he had found one 
of them (with 4 solutions but after having sent the letter, he realized the solution was 
incorrect; therefore there are 72 of them instead of 76). He concludes the letter by 
saying that it is plausible to imagine that the symmetrical solution does not exist.

From the subsequent response by Schumacher, it becomes clear that Gauss suc-
ceeded to trigger in Schumacher a great interest in the problem so that he attempted 
to provide a more detailed analysis of how the solutions (or more precisely, their 
number) can be found. For Schumacher, the positioning of queens in the columns a 
and b would be critical in determining a total number of solutions since he believed 
that once queens are correctly placed in the two columns, there would be only one 
original (without taking symmetries into account) solution. Moreover, he argues 
that of eight squares in the column, only the first four (a1, a2, a3, and a4) matter, 
because of the 180° rotation. Now, he is not quite sure how to handle the corners. 
Hence, depending on counting a1 (with other six options) or not (so, five options 
with a2, a3, a4), Schumacher estimates either 21  ×  8  =  168 or 15  ×  8  =  120. 
Schumacher admits of perhaps counting, mistakenly, solutions that do not exist. 
While considering nine as base solutions suggested by Gauss, he says he would be 
thankful if Gauss could teach him a correct way to handle the problem. Later in the 
same letter, Schumacher returns to the problem insisting that his conclusions are 
based on the conjecture that any disposition of queens in columns a and b produce 
only one solution, a conjecture which might not be correct he once again admits.

The discussion goes further with Gauss providing much more detailed analysis 
of the problem in which he gives six examples of positions (Fig.  25.2) which 
illustrate some important discoveries he had made, the first of which is finding an 
example of a correct symmetric solution (number 1). This one has only 4 symmetries, 
instead of 8.

Furthermore, Gauss takes up two assumptions made by Schumacher, one that for 
all placements of two queens in the columns a and b one solution exist, and the 
second that this existing solution is the only one. Indeed, Schumacher was right to 
argue that having both conjectures right, one could find six more. This gives 42 
possible solutions. Then 42 divided by 2 (for reflections) would give a total of 
21 × 8 = 168 solutions.

However, both assumptions are, in fact, incorrect. The first one is disproved by 
position 4 (no solution for queens a1 and b3). Positions 2 and 3 illustrate the cases 
where the second assumption does not work; here there are two distinct solutions 
with two queens in a2 and b5.

After having invalidated Schumacher’s conjectures, Gauss makes reference to a 
recent correction made by Nauck in the September 1850 issue of Illustrated 
Magazine that brought the number of solutions to 92 as being produced by 11 
distinct positions with 8 symmetries and one with 4 symmetries. While stating that 
the proof that 92 is a maximum number of solutions was not provided by Nauck, 
Gauss uses his way of recording solutions using numbers (digits) to designate rows 
and columns thus ‘arithmetizing’ the problem in a quest for a systematic (almost 
automatic) producing of all solutions which would satisfy two conditions: (1) the 
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sums of the digits designating a column plus corresponding row with the queen are 
all different; and (2) the sums of the digits designating rows are added to the numbers 
of columns reordered in a decreasing order are also different.

Hence, Gauss gives, as example of this procedure (algorithm, using today’s ter-
minology), the sums for the solution 15863724 (position 5), as following:

1 2 3 4 5 6 7 8
1 5 8 6 3 7 2 4

The sums are 2, 7, 11, 10, 8, 13, 9, 12 – all different.
And in decreasing order:

8 7 6 5 4 3 2 1
1 5 8 6 3 7 2 4

The sums here are 9, 12, 14, 11, 7, 10, 4, 5 – also all different.

Gauss also shows how these two rules can help in a systematic search for solu-
tions (which makes it very easy, with the investment of ‘1–2 hours of time’) (idem, 
p. 119):

One can begin, for instance, with 1 and 3. What could be next? There are only 
four options for the next number (row): 5, 6, 7, or 8. Let’s try 5 in the third place 
(column). Then, for the fourth place, 4 and 6 are to be excluded (4 + 4 = 8, the sum 
which already exists in the column 3 (3 + 5 = 8) or, in decreasing order, 6 + 5 = 11 
is the same as 5 + 6 for the column 3. If none of the numbers work, then one could 
go back to the beginning and continue trying other candidates; this method would 

Fig. 25.2 Six solutions given by Gauss
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eventually lead to finding all solutions. Gauss adds that using a grid for noticing 
possibilities would help to make verification faster.

In a step that adds finesse to his analysis, Gauss connects the puzzle to the field 
of complex numbers by reformulating its text as finding all complex numbers in a 
form a + bi in a such a way that (1) a and b have values 1–8; (2) all values of a are 
different, same for values of b; (3) the sums a + b are different; and (4) the differences 
a − b are also different. According to Gauss, this wraps up the problem in ‘its most 
elegant way’ (idem, p. 120).

By connecting the example of the Eight Queens problem to the discussion of 
mathematical problem-solving, technology, creativity, and affect, several lessons 
can be learned from this story of correspondence between two scientists.

25.4  Lessons We Learn from the History

There are several lessons to learn from this historical example regarding how tech-
nology, creativity, and affect ignite and shape a collective interest in solving math-
ematical problems.

First, the publication of a problem in a magazine not specifically devoted either 
to chess (which was the case of Bezzel’s) or to mathematics. It was presented by 
Nauck as a chess puzzle of a recreational nature, thus addressing to a wide readership. 
Yet eventually it triggered the interest of not only of chess amateurs but also those 
who love mathematics.

Second, there is the noticeable and particular attention (interest) that the problem 
drew in Gauss who spent considerable time analysing it.

Third, there was an obvious desire (or even a need) to share common passion 
with the  friend.  It is also remarquable to see how this shared interest initiated a 
rich discussion (at least an exchange of comments) between them.

Fourth, even though Schumacher was not a mathematician (but rather an astron-
omer), Gauss used his interest in chess as a motivational ‘hook’; so the first call was 
not a mathematical one but rather from the chess context.

Fifth, the discussion moved from the initial representation (and clarification) of 
the problem, through the first mutual (not necessary successful) attempts at finding 
solutions (or more solutions) to succeeding finally in bringing (at least at first 
glance) a certain degree of a shared understanding of the problem without necessarily 
coming to a conclusion (that leaves space for eventual continuation; an open-ended 
process).

Sixth, the solution process is interesting in terms of patterns of creativity as it 
provides an interplay of different representations (diagrams, letters, numbers), a use 
of a variety of mathematical concepts (symmetries, arithmetic operations, complex 
numbers) and strategies (estimations, systematic trial and error), as well as numerous 
remarks that demonstrate affective attachment to the problem (recognizing errors, 
admitting possible lack of detail or proof, while, at the same time, recognizing the 
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problem as ‘interesting’, ‘easy to handle’, and ‘elegant’ with a connection to com-
plex numbers (idem., p. 120).

Seventh, the way of finding solutions indicated by Gauss (with reference to 
Nauck), while showing the approach to the search for solutions, is clearly inductive 
and procedural (and thus technological).

In what follows, my further analysis of the future development on this problem 
provides more details of each of the aspects that can be identified from the initial 
steps of its history. The problem was posed more than 170 years ago and still keeps 
many scientists from different fields (mathematics, computer science, and artificial 
intellect) busy with its (still) intriguing complexity. In terms of its complexity, I do 
not mean the original version of the problem as it was initially published by Bezzel 
in 1848, or investigated by Nauck, Gauss, and Schumacher. I mean its continuous 
generalizations which generate new types of questioning, new ways of looking for 
creative solutions, use of new (twentieth and twenty-first century) technological 
affordances, and the sheading of light on the affective features of problem-solving. 
The latter, as a focus of analysis, can involve the pleasure of challenge and the joy 
of working hard on trying to advance on solutions, as development, which enhances 
perception of an ever-increasing beauty of the fireworks of creative human 
endeavour.

25.5  Chess Puzzles as a Part of Recreational Problems 
in Mathematics: Rich Source for Pleasure 
and Challenge

After having been extensively studied by mathematicians in the second part of the 
nineteenth century, the problem of eight queens has become a (almost necessary) 
part of collections of recreational mathematical problems. Namely, in 1852, a 
French mathematician Eugène Lionnet, who founded, in 1848, a philotechnical 
association (Association philotechnique, https://www.philotechnique.org/) in Paris, 
France, to provide training for adults, has included the Eight Queens problem from 
the magazine for candidates for the examination (Journal des candidats aux écoles 
polytechnique et normale) (Question 251, Lionnet, 1852, pp. 114–115).

Lionnet used the mathematical context of placing the first eight (natural) num-
bers in a row in such a way that the difference between any two of them would be 
unequal to the difference of their ranks in the row. He asks how many of such com-
binations exist while mentioning that the problem provides, as a direct consequence, 
all the solutions to the problem of putting eight queens on a chessboard without 
having any of them attacking the other seven. Without providing detailed solutions, 
it is mentioned in the same book (p. 148) that, in response to Lionnet’s problem, M. 
(Monsieur) Koralek, using empirical methods, found 92 solutions. Some 17 years 
later, the problem (also authored by Lionnet, 1869, Question 963, p. 560) was posed 
for any number (n) of squares on a chessboard (in arithmetical form, it is a search 
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for numbers 1, 2, 3, …, n, satisfying the above-mentioned conditions). Giusto 
Bellavitis, an Italian mathematician (1803–1880), found 12 basic (essentially 
different) solutions for question 251 posed by Lionnet in the third edition of the 
works of the French Science Academy (Terza rivista di alcuni articoli dei comptes 
rendu della Accademia delle sienze di Francia, 1861, p. 41).

In 1862, a Russian mathematician and chess player, Carl Jaenisch (Carl Ferdinand 
von Jaenisch), has published a book devoted to mathematical analysis of the game 
of chess in which he provides a detailed solution to the Eight Queens problem (von 
Jaenisch, 1862). Jaenisch’s work, in general, and his solution of the queens puzzle, 
as a “troublesome and difficult task” (Lehman, 1862, p. LXXXVII), were praised 
during The Chess Congress in 1862 in a commentary by Lehman who valued “a rare 
combination of great mathematical knowledge’ with ‘great proficiency in Chess” 
(idem).

The work of Cretaine (1865) on the problems of the Knight tour (extensively 
studied by Euler, among others) brought a very interesting and creative geometric 
representation of the Eight Queens problem. By cutting the square by 2 diagonals 
into 8 rectangular triangles, Cretaine noticed that inside of each triangle there are 10 
parts, a complete square or half of it (from 16 squares divided by 2 by diagonals; for 
a total of 80 parts) (Fig. 25.3). Beyond a very original way of searching for solutions, 
Cretaine (1865) used a particular mnemonic sentence, for example, one shown on 
the position below: ‘Ma CHère anNa Fait La QuéTe’ (there is no particular sense in 
this sentence) to help a better orientation in different spatial configurations which 
lead to different solutions.

While presenting a detailed analysis (including presenting an ingenious techno-
logical tool) given by Cretaine is beyond the scope of this chapter, he makes an 
important observation regarding the affective side of his work. Namely, he says that 
the first trial is not always successful since there is the work of turning the position 
around in different sense, but with some practice, especially making connections 
between the sides of the square and mnemonic text, the orientation becomes clearer 
and more rapidly accessible. The second comment is also interesting since Cretaine 
mentions that his work on the problem had a more recreational (than purely math-
ematical, VF) nature with the goal to surprise those who, over the previous 15 years, 
had tried to find all solutions to the puzzle. In this, he recognized the importance of 
the results of many mathematicians who worked on the problem during this period 
and whose findings he also presents in his text (the reference is made particularly to 
the solutions obtained by Solvyns and Jaenisch). For the purpose of this chapter, and 
the complex relationship between affect, technology, creativity, and mathematical 
problem-solving, it is the comment about recreational nature of Cretaine’s work that 
prompts the need to look closely at this aspect of mathematics and its interesting 
connections to chess.

The literature on recreational mathematics shows that it has rich historical roots 
and, according to some authors, is not dissociable from mathematics itself. It is a 
form of mathematical problem-solving in a creative way that can bring much 
pleasure to professional mathematicians but also to everyone who loves mathematics 
and its challenges when presented in a context of games, puzzles, and other forms 
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of intellectual entertainment. Recreational problems can be found in very ancient 
cultures, in the Middle Ages, and in more recent times. For example, the first printed 
book published by Bachet in 1612 contains several problems identified, already, in 
the title as ‘pleasant’ and ‘delectable’ (Bachet & de Méziriac, 1884).

Not being limited to the potential impact on solvers, the problems from Bachet’s 
book, as well as the author’s commentaries with the analysis of possible solutions 
and strategies (such as producing magic squares), were sources of the development 
of mathematical ideas and theories and its further popularization. Yet, the extending 
of puzzles is not limited to the growth of mathematical, or more generally scientific, 
thought; it also had a great impact on the spiritual life of earlier mathematicians thus 
extending the affective value of such problems in terms of appreciation of beauty 
and magical power.

Among the problems that have its firm place as classics of recreational mathe-
matics, there are different chess puzzles. One of them, known as Chess Knight Tour, 
seems to have drawn the attention of several mathematicians early in the eighteenth 
century (Stewart, 1997). Euler (1766; English translation, 2017) reports getting 
involved in the solution of the puzzle in a context of a chess game where someone 

Fig. 25.3 Cretaine’s (1865) representation of solutions: cutting chessboard into triangles and 
using mnemonic techniques for checking out solutions
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suggested a problem of the knight visiting all squares of the chessboard but never 
landing twice on the same square. To play the game, it was decided to use chips 
placed on each square, and someone playing the game was challenged to collect all 
chips by removing them one by one once they are found on a square visited by the 
knight.

The participants were convinced the game was an easy one and were surprised at 
not being able to complete the tour, despite of several attempts. The person who 
offered the challenge knew the problem and had to show the solution to the group; 
yet, Euler admits that it was difficult to follow the path and remember the order of 
squares on it. Euler himself says that he had to make several tries to get at least one 
solution, but this was difficult to repeat. One solution that Euler gives in his paper 
presents a path which begins in a corner of the board but admits it provides little 
help when the path was to begin from a different square.

Euler then analyses the challenge in more depth, finds some patterns that help in 
doing a more systematic search, yet a number of solutions seems to be too high to 
get a more precise analysis. Hence, Euler decides to look into simpler cases; for 
example, ones with 4-, 9-, 16-, and 25-squares board. While the first three sizes of 
board lead to a negative answer that a complete Knight tour does not exist, the last 
one (with 5 × 5 board) gives a possibility to discover some patterns. As an example, 
one of the solutions which allows for an intriguing pattern based on 180° symmetry 
meaning that two symmetric numbers (like ones in the opposite diagonal corners) 
always make a total of 26 (Fig. 25.4):

Besides the appreciation of the beauty of the mathematical pattern on this board, 
it helped Euler in finding new solutions derived from this one (http://eulerarchive.
maa.org/docs/originals/E309.pdf, p. 334).

On a wave of increasing popularity of puzzles and logical games at the end of the 
nineteenth century, both chess puzzles and their numerous variations and 
generalizations have found their firm place in many recreational mathematics books 
as part of their collections of challenging problems. A famous book of this kind was 
a recreational mathematics book by Lucas (1891) that is discussed in more in detail 
in the next section.

Fig. 25.4 Euler’s solution 
of the Knight’s Paths 
puzzle: looking for number 
patterns
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25.6  The Eight Queens Puzzle as Part of a Collection 
of Recreational Mathematics Problems

Before going in more depth into Lucas’s analysis of the Eight Queens puzzle, it is 
worth noting a few comments from the preface of the book which justifies its value 
as the following: (1) the author being proud of finishing his first book as product of 
his spirit which creates a first affective attachment to it as for a father to his first 
child; (2) even if a first look at the title of the book could lead to a conclusion that it 
is just a game or amusement, it is still plausible to expect that some knowledge of 
science of number going beyond a mediocre level is necessary to take full benefit of 
the explanations given in the book and also get some deeper insight into small 
inventions shared by the author; and (3) it is also a question of the utility of such a 
book, question that arises in many (also scientific) contexts; yet Lucas grounds his 
beliefs of so-to say ‘utility’ of his work into the perspective of empowerment (power 
of knowledge):

En disséquant les résultats du calcul, en créant des abstractions, en les combinant, variant, 
tourmentant, le géomètre fortifie le raisonnement et acquiert sur cet universel outil un 
pouvoir infini. (page VIII)

(English loose translation): in collecting results of calculations, in creating abstraction, 
in combining both, in modifying, in mixing up, the geometer solidifies reasoning and 
acquire an infinite power over this universal tool.

Even more interesting are the final remarks made by Lucas (idem) in which he 
emphasizes the socio-affective components of his work as conversation with an 
unknown friend. This is a very important aspect to the author who already sees the 
fruits of recognition being the peers who express their empathies and also of 
collaborations that were initiated following the first edition of the book.

By bridging the past and modern issues of mathematics and natural philosophy, 
in the introduction to Volume 1 of his book, Lucas expresses a need for a new 
geometry, one of the situations (Géométrie de situation, or Geometria situs) to 
which he connects the Eight Queens puzzle. This geometry, which had been 
envisioned by Leibnitz, would allow calculations to be done on different groups of 
numbers according to their place. As an example, Lucas cited Euler’s work on 
puzzles (as already mentioned above), one of which was related to the Knight’s 
Tours on a chessboard and the second a magic square (a predecessor of Sudoku). 
Lucas mentions that, without providing a solution to the Knight Tour Puzzle, Euler 
succeeded in describing a method to generate solutions. It appears that the problem 
attracted many mathematicians who made important progresses. Among such 
progresses, Lucas cites the success in finding a Knight Tour which, being represented 
by numbers, forms a magic square. As noted above in the section about the exchange 
between Gauss and Schumacher, Gauss had identified the Eight Queens as having 
an analogy to the Knight Tour.

While engaging the reader in a pleasure of analysing the Eight Queens puzzle, 
Lucas begins with the historical account with reference to the correspondence 
between Gauss and Schumacher (mistakenly thought as being originally posed by 
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Nauck to Gauss; this error, along with ones committed by some other authors who 
even thought it to be firstly posed by Gauss, the whole matter is analysed in depth 
by Campbell, 1977). By making reference to Lionnet and Belavitis, the authors 
mentioned above, Lucas informs the readers about the contributions made by 
Glaisher (1874) and Parmentier (1884) while focusing in more detail on the methods 
suggested by Gűnther (1874) and de La Noë.

The first method (by Gűnther) is illustrated by an example of 5 × 5 matrix inge-
nious representation where each case is labelled by a letter (a–f) and an index (1–5) 
in a way that the same letters are aligned parallel to one diagonal and the same 
indices are aligned parallel to the other diagonal (p. 70) (Fig. 25.5):

Then, according to the method, one can make a list of five terms of the matrix 
which do not contain the two elements either from the same row or from the same 
column. This obtains 120 solutions of the five-rook puzzle (this has the same 
conditions as for five queens but applied to the rooks, according to the rules of 
moving a rook). The next step is to eliminate the records containing the same letters 
or the same indices which would leave the remaining combinations presenting all 
solutions of the Five Queens puzzle. For chessboards larger than 5 × 5 (such as 
6 × 6, 7 × 7, or 8 × 8), an algebraic method from the theory of determinants could 
be helpful yet seems to be hardly applicable to even bigger boards (9 × 9 or 10 × 10).

Another ingenious method given by de La Noë was also discussed by Lucas. 
This time, representational creativity led to decomposing the chessboard into 
concentric squares (Fig. 25.6):

By placing the first queen (a) in the middle square, for example, one can notice 
that it attacks 28 cases, the same number as the number of squares in the outer 
stripe. Then, one could try to put as many queens as possible in the second stripe 
eventually finding two symmetric dyads (b, c) and (b1, c1). Applying the same rule 
to the third stripe, squares (d) and (e) can be found. Yet, no more squares remain to 
complete the puzzle. An interesting observation is shared by Lucas; in fact, no solu-
tion exists with queens simultaneously placed in the first two squares, a pattern 
which apparently holds for all chessboards with an even number of cases, up to 
8 × 8, but not for one of 10 × 10.

Lucas concludes his analysis with a rather recreational note by giving a list of 12 
basic solutions along with mnemonic procedures of how to memorize them; for 

Fig. 25.5 Gűnther’s 
method using determinants
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instance, for the first 3 solutions (Fig. 25.7), he gives for the first one a mnemonic 
sentence:

Then, one can obtain solutions 2 and 3 by moving each queen one row down thus 
subtracting 1 from each of 8 digits (in the case of a number 1 – queen is moved to 
the row 8) (Fig. 25.8).

For the solutions 4, 5, and 6, the method would be moving all queens one rank 
towards the right (e.g. 3, the last digit in the solution 3 would be the first in the 
solution 4, and so on).

In the twentieth century, the queens puzzle continues to occupy an important 
place in recreational mathematical books, each bringing something particularly 
amazing. For example, in the first decade, the Russian mathematician Ignatiev 
(1908) gives a complete list of 92 solutions (p. 147) and then provides an interesting 
method of construction of the table (a loose summary from Russian):

Put a queen on the lower possible square in the first column; then the same for the second 
column, same for the next one (always referring to the position of a queen in the closest 
column on the left and taking the lowest possible row). This can be repeated until no more 
move is possible. Then we can go back to the previous column, move the queen one, two, 
three … squares up, then continue the same procedure.

Fig. 25.6 de La Noë’s 
method of searching for 
solutions

Fig. 25.7 Lucas: vertical pattern in verifying solutions
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The 1940 edition of the Ball’s book (first edition dated 1892, revised by Coxter 
1938, reprinted 1940) has an interesting reference to Guenther’s work with 
determinants arguing that the method would not be possible to apply to a bigger 
chessboard: for the 8 × 8 one, the determinant would contain 8! = 40,320 terms – 
impossible to handle unless a wiser method applies, for example, one given by 
Glaisher (1874); if all solutions for the n×n board are known, then for some types, 
solutions can be obtained for (n + 1) × (n + 1) board; afterwards, all other solutions 
can be easily produced (p. 166).

The more the collective search for the solutions of the Eight Queens (or a more 
generalized N-queens puzzle), as well as its endless modifications and extensions, 
moved towards the second part of the twentieth century and continued on into the 
twenty-first century, the more its computational or algorithmic nature was drawing 
attention to the point the puzzle has become an (almost) mandatory part of computer 
scientists’ activities. In the next section is a brief survey of developments from 
hand-made calculations to computing algorithms, along with other affordances of 
digital technology.

25.7  From Hand-Made Calculations to Sophisticated 
Computing Algorithms

One of the most popular methods of algorithmizing the search for solutions for an 
n × n board is called ‘backtracking’. This principle can be more easily shown on 
a 4 × 4 board, as it was done, among others, by Knuth (1968, p. 42) (Fig. 25.9):

The principle is based on a ‘search tree’ methodology which can be explained as 
follows:

 1. Starting from an empty board, first place a queen in column one. There are four 
positions for the queen, which correspond to the four children at the root of the 
tree.

 2. In column one, first try the queen in row 1, then row 2, etc., from left to right of 
the tree.

 3. After successfully placing a queen in some column, then proceed to the next 
column and recursively try again. If stuck at some column k, then backtrack to 
the previous column k – 1, and again try to advance the queen in column k − 1 
from its current position.

 4. All nodes at level n represent solutions; for n = 4 there are two solutions.

Fig. 25.8 Lucas: 
horizontal pattern in 
verifying solutions
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This principle works for all n, but finding solutions for a bigger n, such as n = 8 
(as already described using a determinant-based method), it becomes impossible to 
handle manually. Hence, it is meaningful to turn to computer programming as an aid 
for a complete search.

In fact, Wirth (1985), who took the Knight Tours Puzzle and N-Queens puzzle as 
examples to illustrate the power of computer programming to help in a search for 
solutions, noticed, among other things, that the absence of an analytic solution is a 
common characteristic of these problems (p. 97):

they require large amounts of exacting labor, patience, and accuracy. Such algorithms have 
therefore gained relevance almost exclusively through the automatic computer, which 
possesses these properties to a much higher degree than people, and even geniuses, do.

At the same time, construction of (an efficient) algorithm is not an easy task and 
requires some very particular and creative strategies which, for the Eight Queens 
puzzle, were described in a very general way by Dijkstra (1971).

First of all, Dijkstra points to the following two conditions:

 1. There are eight queens on the board
 2. No two of the queens can take each other.

If a ‘first-glance’ approach would be to think about looking for ‘all positions 
with eight queens on board’ and for ‘all configurations where, among N queens, no 
two could attack each other’, this approach would lead to a huge amount of possible 
configurations and eventually to an inefficient algorithm.

According to the author, adding other conditions that add more restrictions to the 
search could help:

 3. No row may contain more than one queen; and each row is to contain precisely 
one queen. The same for the columns.

Fig. 25.9 Knuth (1968): 
an example of a tree for 
searching solutions for a 
4 × 4 chessboard
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 4. There are 15 ‘upward’ diagonals, each of them containing at most one queen; i.e. 
eight upward diagonals contain precisely one queen and seven upward diagonals 
are empty. The same for downward diagonals.

 5. Given any non-empty configuration of queens such that no two of them can take 
each other, removal of any of these queens results in a configuration sharing that 
property.

As result of continuous process of refining the procedure, and finally reaching 
the programming stage which would lead to the 92 well-known solutions, Dijkstra 
concludes his description with several remarks that emphasize not exactly knowing 
how to program the puzzle but rather how to extract from the process of construction 
the algorithm’s important qualities which identify the process and a learning 
process, when learning means making discoveries.

The first type of discovery is related to the method (not learning the method, in 
this case backtracking, but learning to discover the method which would reinforce 
someone’s capabilities, when facing with a different problem to be solved by a 
different method, to be able to see how the latter may be discovered by a very 
similar method). The second type of discovery is related to the use of recursion 
which is a very common element of construction of this kind of algorithms. Again, 
according to Dijkstra, the matter is less about learning the technique of recursion, 
and of how it works in a concrete program, but rather a ‘collection of considerations 
leading to the discovery that in this case recursion was an appropriate tool’ (idem). 
Finally, Dijkstra argues for applying an approach which prioritizes thinking about 
algorithms in much detail prior to putting it into a concrete representation. This puts 
a lot of emphasis on an analysis of a problem.

When going back to the history of the puzzle, and to the approaches used to find-
ing solutions, many aspects can be seen of this kind of thinking. Today these forms 
of thinking are called ‘algorithmic thinking’ or even in more modern manner ‘com-
putational thinking’. Whatever the term, these forms of thinking become a crucial 
part of learning that combines affective components (such as pleasure of taking on 
challenges, or perseverance in attending the goals), creativity (here capacity to make 
important discoveries out of the in-depth analysis of the problem), and technology 
(affordances which are available at a certain moment in time). This observation 
leads to the conclusive notes on the educational value of recreational mathematics 
in general and chess puzzles, in particular.

25.8  Conclusion: On the Educational Value of the Eight 
Queens Puzzles and Their Multiple Connections 
to Mathematics, Computer Science, and More Largely 
Lifetime Skills and Attitudes

While reflecting on the educational value of recreational mathematics, it is plau-
sible to affirm that it does have potential to increase students’ motivation to learn. 
Unsurprisingly, according to Kulkarni (2013), who makes reference to the work of 
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Novak and Reiter, students who enjoy solving number puzzles, similar to Sudoku, 
(Gomez & Novak, 2014; Murawska, 2018; Reiter, et al, 2013) “can develop posi-
tive attitudes toward other forms of math in non-puzzle contexts as well”.4 This 
is particularly true when recreational problems are presented in a form which is 
called ‘low floor and high ceiling’ which means using, as an entry point, a context 
which does not require high-level skills; rather, it helps to engage all students, even 
weaker ones, into the process of problem-solving, yet it should have several levels 
of complexity, to challenge ‘high-flying’ students (https://www.edutopia.org/article/
encouraging-persistence-math), and overall, making math “an enjoyable experi-
ence” (Kulkarni, 2013).

Yet enlarging learners’ opportunities to more challenging and rich mathematics 
using puzzles is not only a matter of capabilities. It is also a way of introducing 
learners of all ages into the beautiful world of mathematics and showing them that 
navigating in this world can be real pleasure. Our research on introducing Bachet’s 
game with elementary school students (Applebaum & Freiman, 2014) shows that 
playing with 15 counters, and using simple rules of taking a number of them and of 
determining a winner, can lead to important mathematical discoveries and 
conjectures, along with opportunities to reason and to attempt to prove them.

Moreover, it can introduce them to a culture of investigation where the rules of 
the game could be modified, new questions can be asked, and solving a problem 
could be a continuous process which, eventually, would shape students’ minds in 
terms of curiosity, self-determination, and appreciation of the beauty of mathematical 
thinking, other qualities which Kruteskii (1976) includes into a concept of 
mathematical habit of mind and which needs to be developed from a very early age. 
For instance, Nickerson (2011, p.  284) cites the example from the biography of 
Wiles who said to have been introduced to the Last Theorem of Fermat when he was 
7–8 years old and got interested in finding the proof. Another example cited is one 
of Alain Connes who is said to have discovered an ‘intense pleasure’ and ‘joy of 
mathematics’ when he was a young boy.

A particular value of recreational puzzles, such as the Eight Queens problem, is 
also remarkable in a context of a possibility to bring more advanced mathematical 
content into the classroom, such as combinatorics, graph theory, optimization 
theory, and number theory (Petkovic, 2009). Wildenberg (2002) reports how modern 
aspects of chess puzzles (such as Knight Tours), introducing backtracking and heu-
ristics, can be brought into a classroom in a form of a project.

Besides the learning about algorithms and methods of programming, modern 
technology can provide students with an access to rich resources of challenging 
mathematics (NRICH-project, Recreomath, CAMI), along with the affordances of 
social media and dynamic software which enhances modelling and investigations; 
all this can contribute to five aspects of mathematical creativity: enabling, enriching, 
engaging, encouraging, and empowering (Freiman & Tassell, 2018, in press). As 
recent example of such opportunities, Tabesh, in a lecture given during the 13th 
ICME Congress (2016), discusses a case study of a digital learning platform that 

4 https://www.edutopia.org/blog/recreational-educational-value-math-puzzles-deepak-kulkarni.
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enables creative engagement, develops mathematical skills, supports a growth 
mathematical mindset, and helps to become collaborative and social.

Nevertheless, there is a need to adopt a very selective approach to the choice of 
examples if these are to support the very complex venture of looking for connections 
between problem-solving, affect, technology, and creativity in mathematics. By 
choosing recreational problems, and, more specifically, chess puzzles to illustrate 
this complexity, my intention is to highlight the role of the history in providing not 
only explanations about the origins of the puzzles and details of their analysis by 
renowned mathematicians but also in featuring multiple representations, 
observations, rigorous investigations, and observations that go beyond finding a 
solution of particular problem towards elaboration of new methods and theories 
while sharing feelings, emotions, trials, and errors, along with endless pleasures of 
continued engagement in an intellectual endeavour, thus contributing to opening up 
the beauty of mathematical challenges and discoveries and finally constructing 
bridges to modern times. In brief, an ongoing collective human enterprise that needs 
to be investigated more deeply.
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