
9 Open Shop Scheduling

The formulation of an open shop scheduling problem is the same as for the flow

shop problem except that the order of processing tasks comprising one job may

be arbitrary.

Thus, the open shop scheduling problem (OSP) can be described as follows:
a finite set of tasks has to be processed on a given set of machines. Each task has
a specific processing time during which it may not be interrupted, i.e. preemption
is not allowed. Tasks are grouped to jobs (sets of tasks), so that each task belongs
to exactly one job. Furthermore, each task requires exactly one machine for pro-
cessing. The objective of the OSP is to schedule all tasks, i.e. determine their
start times, so as to minimize the maximum completion time (makespan) given
the additional constraints that (a) tasks which belong to the same job and (b)
tasks which use the same machine cannot be processed simultaneously.

9.1 Complexity Results

Problem O2 | | Cmax

Let us consider non-preemptive scheduling first. Problem O2 | | Cmax can be

solved in O(n) time [GS76]. We give here a simplified description of the algo-

rithm presented in [LLRK81]. For convenience let us denote aj = p1j , bj = p2j , A

= {Jj | aj � bj}, B = {Jj | aj < bj}, K1 = � aj and K2 = � bj .

Algorithm 9.1.1 Gonzalez-Sahni algorithm for O2 | | Cmax [GS76].

begin

Choose any two jobs Jk and Jl for which ak � max
Jj �A

 {bj} and bl � max
Jj �B

 {aj};

Set A ' := A � {Jk };

Set B ' := B � {Jl };

Construct separate schedules for B ' � {Jl} and A ' � {Jk} using patterns

shown in Figure 9.1.1; -- other tasks from A ' and B ' are scheduled arbitrarily

Join both schedules in the way shown in Figure 9.1.2;

Move tasks from B ' � {Jl} processed on P2 to the right;

 -- it has been assumed that K1 � al � K2 � bk ; the opposite case is symmetric

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_ 9

321

https://doi.org/10.1007/978-3-319-99849-7_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_9&domain=pdf

 9 Open Shop Scheduling 322

Change the order of processing on P2 in such a way that T2k is processed first on

this machine;
end;

The above problem becomes NP-hard as the number of machines increases to 3.

As far as heuristics are concerned we refer to the machine aggregation algorithms

introduced in Section 8.3.2 which use Algorithm 9.1.1 in the case of open shop.

t0

Jl

Jl

B'P1

P2 B'

 t0

A'P1

P2

Jk

JkA'

Figure 9.1.1 A schedule for Algorithm 9.1.1

P1

P2

t0

J l

Jl

Jk

Jk

B'

B'

A'

A'

Figure 9.1.2 A schedule for Algorithm 9.1.1.

Problem O | pmtn | Cmax

Again preemptions result in a polynomial time algorithm. That is, problem O |

pmtn | Cmax can be optimally solved by taking

C *
max = max {max

j
 {�

i=1

m
 pij}, max

i
 {�

j=1

n
 pij}}

and then by applying Algorithm 5.1.20 [GS76].

Problems O2 | | �� Cj and O2 | | Lmax

Let us mention here that problems O2 | | � Cj and O2 | | Lmax are NP-hard, as

proved in [AC82] and [LLRK81], respectively, and problem O | pmtn, rj | Lmax is

solvable via the linear programming approach [CS81].

As far as heuristics are concerned, arbitrary list scheduling and the SPT algo-

rithm have been evaluated for O | | � Cj [AC82]. Their asymptotic performance

ratios are R#
L = n and R#

SPT = m, respectively. Since the number of tasks is usually

much larger than the number of machines, the bounds indicate the advantage of

SPT schedules over arbitrary ones.

 9.2 A Branch and Bound Algorithm 323

A survey of results in open shop scheduling may be found in [DPP01,

KSZ91].

9.2 A Branch and Bound Algorithm for Open
Shop Scheduling

Only few exact solution methods are available for the open shop scheduling
problem. We describe a branch-and-bound algorithm of Dorndorf et al. [DPP01]
for solving this problem which performs better than other existing algorithms.
The key to the efficiency of the algorithm lies in the following approach: instead
of analyzing and improving the search strategies for finding solutions, the au-
thors focus on constraint propagation based methods for reducing the search
space. Extensive computational experiments on several sets of well-known
benchmark problem instances are reported. For the first time, many problem in-
stances are solved to optimality in a short amount of computation time.

9.2.1 The Disjunctive Model of the OSP

Studies have shown that within the class of intractable problems the OSP belongs
to the especially hard ones [BHJW97, GJP00]. As an example, the famous job
shop scheduling problem (JSP) which is a close relative of the OSP is easily
solvable by now for problem instances with up to 100 tasks, see e.g. [AC91,
CP94, CL95, MS96], while there still remain unsolved instances of the OSP with
less than 50 tasks.

In this chapter, we describe a branch-and-bound algorithm for solving the
OSP. Instead of analyzing and improving the search strategies, we especially
focus on constraint propagation based methods for reducing the search space. As
a positive side-effect, the constraint propagation algorithm implicitly calculates
strong lower bounds so that an explicit computation is not necessary. Extensive
computational experiments on several sets of well-known benchmark problem
instances show that this algorithm outperforms other exact solution methods for
the OSP. With this algorithm, for the first time, many problem instances were
solved to optimality within a very short amount of computation time.

The remainder of this chapter is organized as follows. Next we describe the
well-known disjunctive model of the OSP that is due to Roy and Sussmann
[RS64] and its extension by Błażewicz et al. [BPS00] and give a short review on
solution methods for the OSP. Section 9.2.2 introduces the basic concepts of
constraint propagation and presents several consistency tests which are used for
the reduction of the search space. These consistency tests are embedded in a
branch-and-bound algorithm that uses a branching scheme that is due to Brucker
et al. [BHJW97]. A short description of this algorithm is given in section 9.2.3.

324 9 Open Shop Scheduling

Extensive computational results of the branch-and-bound algorithms that use
different consistency tests are then presented in the last section.

The disjunctive model that has been introduced by Roy and Sussmann
[RS64] for the job shop scheduling problem can be easily adapted to the OSP.
Let T = {T1 ,..., Tn} be the set of tasks to be scheduled. The processing time of
task Ti � T is denoted with pi . Choosing sufficiently small time units, we can
always assume that the processing times are positive integer values. Each task is
associated a start time variable sti with domain set IN0. Since we want to mini-
mize the makespan, i.e. the maximum completion time of all tasks, the objective
function is Cmax(st1 ,..., stn) = maxTi�T{sti + pi}.

Let job(i) denote the job associated to a task Ti . Further, let)(imach be the
machine required by task Ti . Obviously, two tasks Ti and Tj cannot be processed
simultaneously at any time, if job(i) = job(j) or mach(i) = mach(j). These two
tasks (as a pair) will belong to set D of forbidden pairs. However, if Ti and Tj
cannot be processed in parallel then either Ti must finish before Tj can start or Tj
must be completed before Ti is started. Thus, given

D = {{i , j} | Ti , Tj � T , i � j, job(i) = job(j) W mach(i) = mach(j)},

the OSP can be written as the following model with disjunctive constraints

min{Cmax(st1 ,..., stn)}, sti � IN0 Ti � T ,
(sti + pi � stj) W (stj + pj � sti) {i , j} � D.

(9.2.1)

A schedule is an assignment S = (st1 ,..., stn) � IN0 � ... � IN0 of all start
time variables. For the sake of simplicity, we will use the same notation for vari-
ables and their assignments. Schedule S is feasible if it satisfies all constraints
given by (9.2.1). Reformulating the OSP, the goal is to find a feasible schedule
with minimal objective function value Cmax(S).

The significance of the disjunctive scheduling model for the development of
efficient solution methods is revealed if we consider its graph theoretical inter-
pretation. The disjunctive graph associated to an OSP instance is a weighted
graph G = (T , D , W) with the node set T , arc set D and the weight set W = { wij =
pi | {i , j} � D }. D is also called the set of disjunctive arcs. Since D is symmetric,
we will represent disjunctive arcs as doubly directed arcs. From now on, we will
further use the suggestive notation i X j for pairs (i , j), (j , i) of disjunctive arcs,
and i � j to specify one of the arc orientations.

A disjunctive graph is transformed into a directed graph by choosing one arc
orientation of each disjunctive arc pair i X j � D. We obtain a complete (partial)
selection if (at most) one arc orientation is chosen from each disjunctive arc pair.
The selection is acyclic if after the removal of all remaining undirected disjunc-
tions the resulting directed graph is acyclic.

There exists a simple and well-known many-to-one relationship between

 9.2 A Branch and Bound Algorithm 325

feasible schedules and complete, acyclic selections which allows us to restate the
OSP as a graph theoretical problem: find a complete and acyclic selection, so that
the longest path in the associated directed graph has a minimum length. Thus, it
is sufficient to search through the space of all selections which is of cardinality
2|D| instead of the space of all schedules which is of cardinality | IN0 |n.

Most solution methods for the OSP are based on this fundamental observa-

tion. However, due to the exceptionally intractable nature of the OSP, mainly

heuristic solution methods have been proposed. Simple list scheduling heuristics

based on priority dispatching rules have been examined by Guéret and Prins

[GP98a]. Matching algorithms are discussed by Bräsel et al. [BTW93] and

Guéret and Prins [GP98a, GP98b]. The shifting bottleneck procedure, originally

designed for the JSP, has been adapted by Ramudhin and Marier [RM96] to the

OSP. Another important class of heuristics are the insertion algorithms which

have been introduced by Werner and Winkler [WW95] for the JSP and general-

ized by Bräsel et al. [BTW93] for the OSP. Local search approaches (tabu

search) and genetic algorithms have been examined by Taillard [Tai93], Liaw

[Lia98] and Prins [Pri00]. Colak and Agarwal [CA05] developed a neural net-

work based meta-heuristic approach that allows integration of domain specific

knowledge. Learning strategies imply improved neighbour solutions. Blum and

Sampels [BS04, Blu05] applied ant colony optimization to shop scheduling.

Some of these heuristics, especially the genetic algorithm of Prins and the ant

colony optimization of Blum and Sampels, show a very good performance, and

for specific classes of OSP instances they often are able to find optimal solutions.

However, in general, the solutions found for arbitrary OSP instances are of

course of a suboptimal nature.

Only few exact solution methods are available for the OSP. A branch-and-
bound algorithm which applies a block-oriented branching scheme and some
basic constraint propagation methods for reducing the search tree has been pro-
posed by Brucker et al. [BHJW97]. Guéret et al. [GJP00] improved this algo-
rithm by using an intelligent backtracking technique which replaces the simple
depth-first search used by the former. They further applied some additional
search tree reduction methods in their branch-and-bound algorithm based on for-
bidden intervals (see Chapter 4.1), i.e. time intervals in which no task can start or
end in an optimal solution [GP98b]. All these exact solution methods are capable
of solving smaller OSP instances for which they naturally show a better perfor-
mance than the heuristic methods. However, even for simple, but larger OSP
instances for which the heuristic methods easily find an optimal solution, the
performance of the exact solution methods is rather poor, since the search space
reduction methods applied are not sufficient to handle the combinatorial explo-
sion. In the next section, we will therefore examine additional concepts for re-
ducing the search space which have been described in Dorndorf et al. [DPP01]. It
will turn out that these constraint propagation based methods are very efficient
and allow solving a large number of simple, hard and very hard OSP benchmark
instances which up to now have not been solved.

326 9 Open Shop Scheduling

9.2.2 Constraint Propagation and the OSP

Constraint propagation is an elementary method of search space reduction which
has become more and more important in the last decades. The basic idea of con-
straint propagation is to evaluate implicit constraints through the repeated analy-
sis of the variables, domains and constraints that describe a specific problem in-
stance. This analysis makes it possible to detect and remove inconsistent variable
assignments that cannot participate in any solution by a merely partial problem
analysis. A whole theory is devoted to the definition of different concepts of con-
sistency which, roughly speaking, define the maximal search space reduction that
is possible regarding some specific criteria and may serve as a theoretical back-
ground for propagation techniques. An exhaustive study of the theory of con-
straint propagation can be found in [Tsa93]. Dorndorf et al. [DPP99, DPP00]
examine constraint propagation techniques for disjunctive and cumulative sched-
uling problems; for the details we refer to Chapter 16.

Removing all inconsistent assignments is in general not possible due to an
exponentially increasing computational complexity, so we usually have to con-
tent ourselves with approximations. The main issue is to describe simple rules
which allow efficient search space reductions, but at the same time can be im-
plemented efficiently. These rules are called consistency tests. In the disjunctive
scheduling community, some of them are also known as immediate selection or
edge-finding rules.

Consistency tests are generally described through a condition and a search
space reduction rule. Whenever the condition is satisfied, the reduction rule is
executed. In order to describe the basic concepts of constraint propagation more
precisely, we will focus on domain consistency tests for the time being. Similar
results, however, apply for other types of consistency tests.

A domain consistency test is a consistency test which deduces domain reduc-
tions. Let !i be the current domain of the start time variable sti . If UB is an upper
bound of the optimal makespan, then we can initially set !i := [0 , UB – pi]. This
is necessary, since most consistency tests can only deduce domain reductions if
the current domains are finite. The upper bound UB can be found by applying a
simple heuristic method or by choosing the trivial value 5Ti �T pi . Given a cur-
rent domain for each start time variable, a domain consistency test maps a set
! = { !i | Ti � T } of current domains into a set !' = { !i' | Ti � T } of hopefully,
but not necessarily reduced current domains. Of course, a domain consistency
test only removes values, for which provably no feasible schedule S exists that
could be developed from ! .

In order to obtain the maximal domain reduction possible, it is not sufficient
to apply each of these tests only once. The reason for this is that after the reduc-
tion of several domains, additional domain adjustments could possibly be derived
using some of the tests which previously have failed in deducing any reductions.

 9.2 A Branch and Bound Algorithm 327

Thus, all consistency tests have to be applied in an iterative fashion rather than
only once until no more updates are possible. This is equivalent to the computa-
tion of a fixed point. Notice that this fixed point does not have to be unique and
in general depends upon the order of the application of the consistency tests.
Thus, for some application orders the domain reductions obtained may be strong-
er than for others. Fortunately, it is possible to show that for consistency tests
which satisfy a quite natural monotony property, the fixed point computed is al-
ways unique [DPP00, Chapter 16]. Since the consistency tests studied are all
monotonous in this sense, the application order is irrelevant regarding the extent
of the domain reduction. Regarding the complexity of the fixed point computa-
tion, however, the application order does play a very crucial role. Notice that the
revision of a single domain already forces all consistency tests to be reapplied in
the next iteration even though only a small number of constraints and variables
are possibly affected by this reduction. Thus, choosing an intelligent order can
decrease the computation time to a large extent. However, we will not deal with
this issue more closely, but choose a quite naive propagation order.

In the next subsections, we will describe the set of consistency tests used in
the algorithm. In addition to domain consistency tests, the disjunctive scheduling
model and its graph theoretical interpretation allow the definition of consistency
tests which operate on the set of complete selections. These consistency tests
reduce the set of complete selections by detecting sequences of tasks which must
occur in every optimal solution. Since this is done by selecting disjunctive arc
orientations, the latter approach has been often labeled immediate selection (see
e.g. [CP89, BJK94]) or edge-finding (see e.g. [AC91]). We will use the term
sequence consistency test as opposed to domain consistency tests and as used in
[DPP99,DPP00]. Domain and sequence consistency tests are two different con-
cepts which complement each other. Often, a situation occurs in which either
only reductions of the current domains or only arc orientations are deducible. The
best results, in fact, are obtained by applying both types of consistency tests, as
fixing disjunctive arcs may initiate additional domain reductions and vice versa,
cf. Chapter 16.

Input/Output Consistency Tests

Quite important for the development of efficient consistency tests for the OSP is
the concept of disjunctive cliques or cliques for short. We will say that Oc � T is
a clique if any pair of tasks in Oc cannot be processed in parallel, i.e. if all tasks
in Oc either belong to the same job or require the same machine. A clique Oc is
said to be maximal, if no true superset of Oc is a clique. Therefore, there exist |J |
maximal job cliques, where J denotes the set of jobs, and |P | maximal machine
cliques, where P denotes the set of machines (processors).

For the rest of this section, we will assume that Oc � T is a maximal clique

328 9 Open Shop Scheduling

and that all subsets A (tasks Ti) are subsets (elements) of this clique. Without loss
of generality we will number the indices of the elements of Oc by 1 , 2 ,..., | Oc |.
Let further esti := min !i and lsti := max !i denote the earliest and latest start time
of task Ti , and let ecti := esti + pi and lcti := lsti + pi denote the earliest and latest
completion time of task Ti . Finally, for a subset A - Oc of tasks, let ESTmin(A)
 := minTi�A esti , LCTmax(A) := maxTi�A lcti , and p(A) := 5Ti �A pi .

Given a clique of tasks A - Oc and an additional task Ti � Oc \ A, Carlier and
Pinson [CP89] were the first to derive conditions which imply that Ti has to be
processed before or after all tasks Tj � A. In the first case, they called Ti the
input of A, in the second case, the output of A, and so Dorndorf et al. [DPP00]
have chosen the name input/output conditions.

Theorem 9.2.1 (Input/Output Sequence Consistency Tests). Let A - Oc and Ti

 � Oc \ A. If the input condition

LCTmax(A � {Ti}) � ESTmin(A) < p(A � {Ti}) (9.2.2)

is satisfied then task Ti has to be processed before all tasks in A, for short, Ti �
A. Likewise, if the output condition

LCTmax(A) � ESTmin(A � {Ti}) < p(A � {Ti}) (9.2.3)

is satisfied then task Ti has to be processed after all tasks in A, A � Ti .

Domain consistency tests that are based on the input/output conditions can now
be simply derived. We will only examine the adjustment of the earliest start
times, as the adjustment of the latest start times can be handled analogously. Ob-
viously, if task Ti is the output of a clique A then Ti can only start if all tasks in A
have finished. Thus, the earliest start time of Ti is at least the maximum comple-
tion time of all tasks in A being scheduled without preemption. Unfortunately,
however, the computation of this makespan requires the solution of an NP-hard
single-machine scheduling problem. Therefore, if the current domains are to be
updated efficiently, we have to content ourselves with approximations of this
bound. The following theorem is due to Carlier and Pinson [CP89, CP90].

Theorem 9.2.2 (Output Domain Consistency Tests, part 1). If the output condi-
tion is satisfied for A - Oc and Ti � Oc \ A then the earliest start time of Ti can be
adjusted to esti := max{esti , Cmax

pr (A)}, where Cmax
pr (A) is the maximum comple-

tion time of all tasks in A being scheduled with preemption allowed.

Notice that the computation of Cmax
pr (A) has time complexity O(| A | log | A |)

[Jac56].

 9.2 A Branch and Bound Algorithm 329

It has already been mentioned that applying both sequence and domain con-
sistency tests together can lead to better search space reductions. Quite evidently,
any domain reductions deduced by Theorem 9.2.2 can lead to additional arc ori-
entations deduced by Theorem 9.2.1. We will now discuss the case in which the
inverse is also true. Imagine a situation in which A � Ti can be deduced for a
subset of tasks, but in which the output condition does not hold for the couple (A ,

Ti). Such a situation can actually occur as can be seen in the following example.
In Figure 9.2.1, an example with three tasks is shown. The earliest start time

of Ti is esti = 4, while its latest completion time is lcti = 9. The earliest start and
latest completion times of Tj and Tk are estj = estk = 0 and lctj = lctk = 9, respec-
tively. The processing times of Ti , Tj and Tk are pi = pj = pk = 3. Notice that we
can both deduce Tj � Ti and Tk � Ti using the input conditions for the couple
({Ti},Tj) and ({Ti},Tk), since e.g. LCTmax({Ti , Tj}) – esti = 5 < 6 = pi + pj . Thus,
we know that {Tj , Tk} � Ti . However, the output condition is not satisfied for
the couple ({Tj , Tk}, Ti) because LCTmax({Tj , Tk}) – ESTmin(Ti , Tj , Tk) = 9 = pi + pj
 + pk .

Ti

10 2 3 4 5 6 7 8 9

10 2 3 4 5 6 7 8 9

4 5 6 7 8 9

Tj

Tk

Figure 9.2.1 An example with three tasks.

This example motivates the following theorem as an extension of Theorem
9.2.2.

Theorem 9.2.3 (Input/Output Domain Consistency Tests, part 2). Let A - Oc and
Ti � Oc \ A. If A � Ti then the earliest start time of Ti can be adjusted to

esti := max{esti , Cmax
pr (A)} .

Here, the reader should recall once more that the subset A mentioned in the last
theorem does not have to coincide with the subset for which the input or the out-
put condition is satisfied.

An important question to answer now is whether there exist efficient algo-
rithms that implement the input/output consistency tests. An efficient implemen-
tation is obviously not possible if all pairs (A , Ti) of subsets A - Oc and tasks Ti

� Oc \ A are to be tested separately. Fortunately, it is not necessary to do so as has
been first shown by Carlier and Pinson [CP90] who have developed an O(|Oc|

2)

330 9 Open Shop Scheduling

algorithm for applying the input/output consistency tests described in Theorem
9.2.1 and Theorem 9.2.2 (It is common practice to only report the time complex-
ity for applying the consistency tests once for all couples (A , Ti). In general, how-
ever, the number of iterations necessary for computing the fixed point of current
domains has to be considered as well. This accounts for an additional factor c
which depends upon the size of the current domains, but is omitted here.) Several
years later, O(|Oc| log |Oc|) algorithms have been proposed by Carlier and Pinson
[CP94] and Brucker et al. [BJK94] which until now have the best asymptotic
performance, but are less efficient for smaller problem instances and require
quite complex data structures.

Nuijten [Nui94], Caseau and Laburthe [CL95] and Martin and Shmoys
[MS96] have chosen a solely domain oriented approach and have derived differ-
ent algorithms for implementing the input/output consistency tests that are based
on Theorem 9.2.2. Nuijten developed an algorithm with time complexity O(|Oc|

2)
which can be generalized to scheduling problems with discrete resource capacity.
Caseau and Laburthe presented an O(|Oc|

3) algorithm which works in an incre-
mental fashion, so that O(|Oc|

3) is a worst case, since not all consistency tests are
applied within an iteration of the fixed point computation. The algorithm pro-
posed by Martin and Shmoys [MS96] also has a time complexity of O(|Oc|

2).
Dorndorf et al. [DPP01] have implemented the input/output tests described

in Theorems 9.2.1 and 9.2.2. They could have used the O(|Oc|
2) algorithm of Car-

lier and Pinson for implementing Theorem 9.2.1 and then adjusted the current
domains according to Theorem 9.2.3. However, the algorithm of Carlier and Pin-
son already requires the adjustment of some of the domains and, in fact, is a
combination of the consistency tests described in Theorems 9.2.1 and 9.2.2.
Thus, many of these domain adjustments would be recomputed if Dorndorf et al.
afterwards applied the consistency tests described in Theorem 9.2.3. They have
therefore developed two algorithms which work in a purely sequential fashion,
one of which has a time complexity of O(|Oc|

3), while the other has a time-
complexity of O(|Oc|

2). These algorithms are based on the definition of task sets
as introduced by Caseau and Laburthe [CL95]. A detailed description of the algo-
rithms is given in [Pha00].

Given the arc orientations derived, the domain adjustments of Theorem 9.2.3
can then be applied with effort O(|Oc|

2
 log |Oc|) using Jackson's famous algorithm

[Jac56].
Note that the approach by Dorndorf et al. of first deducing the arc orienta-

tions and then applying the domain adjustments implies a higher time complexity
than for algorithms based on the purely domain oriented approach. However,
stronger domain reductions may be achieved, as demonstrated by the previous
example.

 9.2 A Branch and Bound Algorithm 331

Input/Output Negation Consistency Tests

In the last subsection, a condition has been described which implies that a task
has to be processed before (after) another set of tasks. In this subsection, the in-
verse situation, that a task cannot be processed first (last), is studied. The follow-
ing theorem is due to Carlier and Pinson [CP89, CP90]. For reasons near at hand,
Dorndorf et al. have chosen the name input/output negation for the conditions
described in this theorem.

Theorem 9.2.4 (Input/Output Negation Sequence Consistency Tests). Let A - Oc
and Ti � Oc \ A. If the input negation condition

LCTmax(A) – esti < p(A � {Ti}) (9.2.4)

is satisfied then task Ti cannot be processed before all tasks in A. Likewise, if the
output negation condition

LCTmax – ESTmin (A) < p(A � {Ti}) (9.2.5)

is satisfied then task Ti cannot be processed after all other tasks in A.

This theorem allows a reduction of the current domains which, in general, is
weaker than the one that has been described in Theorem 9.2.3. However, since
the input/output negation conditions are more often satisfied than the in-
put/output conditions, they will turn out to be quite important for solving the
OSP efficiently.

Let us study the input negation condition and the adjustments of earliest start
times. If (9.2.4) is satisfied for A - Oc and Ti � Oc \ A, there must be a task in A
which starts and finishes before Ti , although we generally do not know which
one. This proves the following theorem [CP89, CP90].

Theorem 9.2.5 (Input/Output Negation Domain Consistency Tests). If the input
negation condition is satisfied for A - Oc and Ti � Oc \ A then the earliest start
time of task Ti can be adjusted to esti := max{esti , minTu�A ectu} .

Input/output negation consistency tests have been applied by Nuijten [Nui94],
Baptiste and Le Pape [BL95] and Caseau and Laburthe [CL95] for the JSP. All
these algorithms only test some, but not all interesting couples (A , Ti). An algo-
rithm which deduces all domain reductions with a time complexity of O(|Oc|

2)
has only recently been developed by Baptiste and Le Pape [BL96]. Dorndorf et
al. [DPP01] have developed another algorithm which also performs all possible
domain adjustments in O(|Oc|

2). This algorithm uses some main ideas of Baptiste
and Le Pape, but can be better combined with the algorithms that Dorndorf et al.
have developed for the other consistency tests, since some computations can be

332 9 Open Shop Scheduling

reused, see again [Pha00] for the details.

Shaving

A closer look at the consistency tests presented so far reveals that they all share
the following common and simple idea: a hypothesis (e.g. task Ti starts at time
sti) can be refuted, if there exists no schedule so that this hypothesis is satisfied.
Consistency tests only differ in the kind of hypotheses that are made and the
proof for showing that no schedule can exist under these hypotheses. The input
negation consistency test, for instance, verifies for a given clique A of tasks
whether there exists a schedule in which some task Ti is started within the time
interval [esti , minTu�A ectu – 1]. This verification is carried out through a simple
test which compares the length of the time interval [esti , LCTmax(A)] with the
sum of processing times p(A � {Ti}). Replacing this simple test with other and
possibly more sophisticated tests leads to different and probably more powerful
consistency tests.

A general approach in which all hypotheses are of the kind: ''task Ti starts at
its earliest start time'' or ''task Ti starts at its latest start time'' has been proposed
by Martin and Shmoys under the name shaving [MS96]. In exact one-machine
shave the verification is carried out by solving an instance of a one-machine
scheduling problem in which sti := esti or, alternatively, sti := lsti. One-machine
shave relaxes the non-preemption requirement and tests whether a possibly
preemptive schedule exists under the aforementioned hypothesis. Carlier and
Pinson [CP94] and Martin and Shmoys [MS96] both proposed the computation
of fixed points as a method for proving that a feasible schedule cannot exist un-
der a certain hypothesis. More precisely, the hypothesis is falsified if a current
domain becomes empty during the fixed point computation.

Dorndorf et al, [DPP01] apply shaving by testing the hypotheses sti > t � !i
and sti < t � !i . Test values for t are chosen during a combination of bisection
and incremental search. Apparently, the application of shaving techniques can be
very costly. However, the search space reduction obtained by shaving by far off-
sets these costs.

9.2.3 The Algorithm and Its Performance

In general, the single application of constraint propagation is not sufficient for
solving the OSP. Although for certain problem instances the search space reduc-
tion may be of a considerable size, a branch-and-bound search is usually still
necessary for finding an optimal solution. In this section, we give a short descrip-
tion of the block branching scheme which has been described by Brucker et al.
[BJS94] for the JSP and, for instance, by [BHJW97] for the OSP and which we

 9.2 A Branch and Bound Algorithm 333

have used as well in our branch-and-bound algorithm. A deeper insight into the
nature of the block branching scheme is given by Phan Huy [Pha00], who dis-
cusses a generalization for shop scheduling problems with arbitrary disjunctive
constraints.

The block branching scheme requires the computation of a heuristic solution
(complete and acyclic selection) in each node of the branching tree that is com-
patible with the arc orientations already chosen. Dorndorf et al. [DPP01] chose as
a heuristic solution method the priority rule based dispatching heuristic that has
been described by Brucker et al. [BHJW97] in their algorithm B&B1. Given a
complete and acyclic selection, a critical path B, i.e. a path of maximal length is
chosen within the associated directed graph. This critical path is then decom-
posed into so-called maximal blocks, the definition of which is given in the fol-
lowing. A subpath B' = u1 � ... � ul of B of length l � 2 is a block iff, for all
i � j, we have ui X uj � D, i.e. iff two pairwise different tasks in B' are always
in disjunction, since they belong to the same job or require the same machine. A
block B' is said to be maximal, iff extending B' by even only one node (task) al-
ready violates the block condition. Obviously, given a critical path, there always
exists a unique decomposition into maximal blocks. Given this block decomposi-
tion, the block branching scheme as described by Brucker et al. [BJS94] is based
on the following observation:

Let S be a complete and acyclic selection and B a critical path in the corre-
sponding directed graph. If S is not optimal, i.e. there exists a selection S ' with a
smaller makespan, then there is a maximal block in B so that in S ' a task within
this block is processed before the first or after the last task of this block.

Thus, child nodes are created by moving tasks of a block to the beginning or
end of the block. Consequently, 2&(l – 1) child nodes are generated for each block
of length l > 2, while for blocks of length 2 obviously only one child node is gen-
erated. Improving this branching scheme, Brucker et al. [BJS94] described how
to fix additional arcs depending on the search nodes that have been already visit-
ed prior to the generation of the actual search node. Further they described the
particular role played by the first and the last block of the maximal block decom-
position, since the number of tasks to be moved to the beginning or end of these
blocks can be reduced. The search strategy of their branching algorithm has been
organized in a depth-first manner. For further details on the block branching
scheme we refer the reader to the work of Brucker et al. [BJS94, BHJW97].
Dorndorf et al. [DPP01] have used this branching scheme except for some minor
modifications regarding the branching order, i.e. the sequence in which the child
nodes are generated, see [Pha00] for the technical details.

Upon finding an improved solution in a node (initial solution in the root
node) of the branching tree, the makespan of this solution is, of course, used as
upper bound UB. The lower bounds used within the branch-and-bound algorithm
are the preemptive one-machine (one-job) lower bounds which are computed
using Jackson's algorithm [Jac56]. Notice, however, that stronger bounds are

334 9 Open Shop Scheduling

calculated in an implicit manner by the application of constraint propagation:
whenever an inconsistency is detected, for instance, if a current domain becomes
empty, we know that no solution can be generated from the actual search tree
node with a makespan of UB and, therefore, UB is indeed a lower bound for this
search tree node.

Dorndorf et al. [DPP01] have implemented the branch-and-bound algorithm
together with the constraint propagation techniques in C on Pentium II (333
MHz) in MSDOS environment. They have tested the algorithm on a large set of
benchmark problems that have been generated by Taillard [Tai93] (Tai-n-*) and
Brucker et al. [BHJW97] (Hur-n-*). All test instances are quadratic of size n
jobs and n machines, with n ranging from 6 to 20. We will see below that, on the
one hand, most of the quite large instances of Taillard are easily solved by Dorn-
dorf et al.’s algorithm. They have solved all the 10 � 10 instances, something
which none of the current exact algorithms is capable of, and even do so with an
average run time of less than a minute. Further, they have solved most of the
15 � 15 instances in several minutes and most of the 20 � 20 instances in less
than an hour. Among these instances, three instances (Tai-15-5, Tai-15-9, Tai-
20-6) have not been solved prior the start of their experiments. On the other
hand, the rather small instance Hur-7-1 of size 7 � 7 still remains open, although
they have been able to improve the current best lower bound from 1000 to 1021.

Brucker et al. [BHJW97] have proposed an explanation for this phenomenon
which is based on the work load of a problem instance. The work load of an OSP
instance is defined as follows: given a set of jobs J and a set of machines P . Let
OY be the maximal clique of tasks belonging to job JY and O� be the maximal
clique of tasks requiring machine P� . Let, further, LB := max{ max{ p(OY) | JY
� J }, max{ { p(O�) | P� � P } } define the trivial lower bound which is the
maximum of the job and machine bounds (the sum of processing times of tasks
belonging to a job or machine clique). The average work load WL is then defined
as

WL =
5

JY�J
 p(OY) + 5

P��P
 p(O�)

(| J | + |P |)&LB

If the work load of an OSP instance is close to 1 then all job and machine bounds
are not much smaller than LB, so that finding a solution with a makespan close to
LB is not very probable. On the contrary, an OSP instance with a low work load
tends to have an optimal solution with a makespan equal to the lower bound LB.
These problem instances are less hard to solve, since an optimal solution can be
more easily verified.

Considering this intuitive interpretation, it is possible to use the work load to
guide the choice of an appropriate solution strategy. The alternatives that are giv-
en are a top-down and a bottom-up strategy. Both strategies use the branch-and-
bound algorithm and only differ in the way of choosing the initial upper

 9.2 A Branch and Bound Algorithm 335

bound(s). The top-down strategy starts with a real upper bound which, in
[DPP01], is determined by the heuristic solution method and tries to improve
(decrease) this upper bound by applying the branch-and-bound algorithm. The
bottom-up approach uses a lower bound as a hypothetical upper bound and,
whenever the branch-and-bound algorithm does not find a solution which is con-
sistent with this upper bound, increases it by one time unit. This process is re-
peated until a solution is found.

Notice, that the top-down approach only applies the branch-and-bound algo-
rithm once, but that constraint propagation is less effective since the current do-
mains are less tight due to the high initial upper bound. Hence, searching the
whole search tree may require a higher computation time. The bottom-up ap-
proach, on the contrary, reinitializes the branch-and-bound algorithm several
times, but allows more constraint propagation since the current domains are
smaller. Therefore, the search trees that are created are smaller. Altogether, the
top-down approach seems to be more suited, if the optimal makespan is far from
the lower bound LB, since the multiple application of the branch-and-bound al-
gorithm within a bottom-up approach would offset its propagation advantages.
Also, according to this logic, the bottom-up approach is to be preferred if the
optimal makespan is near to the lower bound LB. Thus, it is straightforward to
choose the top-down approach whenever the work load of an OSP instance is
high and the bottom-up approach whenever the work load is low.

At first, however, we will only evaluate the top-down approach since this al-
lows to analyze better the impact of the different consistency tests. It seems justi-
fied to say that instances of the OSP, especially those with a high work load, are
generally more difficult to solve than instances of the JSP with the same number
of tasks, jobs and machines. To one part, this is due to the larger solution space:
not only machine sequences, but also job sequences have to be determined. Thus,
Dorndorf et al. [DPP01] have often encountered a situation in which the search
process was trapped in an unfavorable region of the search space from which it
could not escape within a reasonable amount of time. Another reason for the in-
tractability of the OSP, however, is the lack of strong lower bounds. In fact, if no
search is carried out, the lower bound LB is already the best bound one is able to
find. Thus, constraint propagation plays a more important role in reducing the
search space.

In the beginning, the experiments for the two different classes of consistency
tests (input/output and input/output negation consistency tests), have been carried
out for a set of smaller instances, namely, the instances Tai-7-* and Hur-6-*. The
results are shown in Table 9.2.1. CP1 applies the input/output tests as described
in Theorem 9.2.1 and Theorem 9.2.3, while CP2 applies both the input/output
tests and the input/output negation tests. Since [DPP01] have applied a top-down
strategy for CP1 and CP2 , they report for each problem instance the initial
upper bound found by the heuristic solution method (UBinit) in addition to the
optimal makespan (UBbest). They further report the number of search tree nodes
generated by each of the algorithms and the total run time. All of the instances

336 9 Open Shop Scheduling

have naturally been solved to optimality.

problem UBbest UBinit
CP1 CP2

nodes time nodes time
Hur-6-1 1056 1528 55634 149.7 s 36876 133.0 s
Hur-6-2 1045 1377 3291 7.3 s 1711 5.2 s
Hur-6-3 1063 1536 9737 23.9 s 5401 18.0 s
Hur-6-4 1005 1481 8553 20.3 s 4356 14.4 s
Hur-6-5 1021 1647 2983 6.4 s 1562 4.6 s
Hur-6-6 1012 1276 8406 19.7 s 4263 13.8 s
Hur-6-7 1000 1454 4557 11.5 s 3205 10.7 s
Hur-6-8 1000 1636 169 0.4 s 132 0.4 s
Hur-6-9 1000 1524 525 1.2 s 326 1.0 s
Tai-7-1 435 609 147 0.4 s 130 0.4 s
Tai-7-2 443 614 309 1.1 s 225 0.9 s
Tai-7-3 468 632 8789 36.6 s 5661 30.9 s
Tai-7-4 463 664 1892 7.5 s 1040 5.3 s
Tai-7-5 416 551 521 2.0 s 409 2.0 s
Tai-7-6 451 581 28347 124.5 s 16464 95.8 s
Tai-7-7 422 693 61609 254.5 s 30101 167.7 s
Tai-7-8 424 637 1467 5.9 s 961 5.0 s
Tai-7-9 458 551 237 0.8 s 194 0.8 s

Tai-7-10 398 576 25837 107.2 s 9427 53.2 s

Table 9.2.1 Results for some smaller instances (top-down).

Obviously, CP2 generates less search tree nodes and has a lower total run time
than CP1, although more constraint propagation is applied in each of the single
nodes. On average, CP2 generates approximately 40 % less search tree nodes
than CP1 and has a run time which is lower by about 25 %. Note, that a different
observation has been made for the JSP, see [Pha00]: although the number of
search tree nodes decreases as well, the total run time increases (for smaller in-
stances) due to the additional propagation effort. Thus, the additional application
of the input/output negation tests is more efficient for the OSP than for the JSP.
This can be explained as follows: the input/output tests, if applied on their own,
deduce only few arc orientations for the OSP in the beginning of the branch-and-
bound process, because at that time most of the current domains are just too large
and coincide with the trivial interval [0 , UB – pi]. Only at a certain depth of the
search tree, more arc orientations are deduced, however, the portion of the search
tree that can be pruned by that time is rather small. Consequently, the additional
application of the input/output negation tests improves the efficiency of the in-
put/output tests since the former are a relaxation of the latter and so are capable
of deducing domain reductions at an earlier stage of the branching process.

Next Dorndorf et al. [DPP01] tested the better algorithm CP2 on the larger
OSP instances Tai-10-* and the harder instances Hur-7-*. They further tested a
shaving variant of CP2, i.e. in each of the search tree nodes they applied the
shaving procedure described in Section 9.2.2 and used the input/output and in-

 9.2 A Branch and Bound Algorithm 337

put/output negation tests for detecting inconsistencies. The results for CP2 are
shown in Table 9.2.2 and those for the branch-and-bound algorithm with shaving
CPS2 in Table 9.2.3. In addition to the usual information listed further above,
they report for each problem instance the best upper bound found (UBfound) with-
in a time limit of 5 hours. Upper bounds shown in parentheses are either non
optimal or optimal, but could not be verified. As an example, 1048 is the best
upper bound known for the instance Hur-7-1 and 1052 is the best bound found by
CP2 within 5 hours of computation time.

Problem UBbest UBinit
CP2

UBfound nodes time
Hur-7-1 (1048) 1487 (1052) 2677448 18000.0 s
Hur-7-2 1055 1839 (1055) 2916573 18000.0 s
Hur-7-3 1056 1839 (1056) 2993406 18000.0 s
Hur-7-4 1013 1418 1013 960092 5796.4 s
Hur-7-5 1000 1188 1000 775960 4420.6 s
Hur-7-6 1011 1545 (1011) 2897640 18000.0 s
Hur-7-7 1000 1419 1000 1628 8.8 s
Hur-7-8 1005 1510 1005 208340 1197.6 s
Hur-7-9 1003 1435 1003 1807635 10797.5 s
Tai-10-1 637 949 637 418594 5455.7 s
Tai-10-2 588 751 588 123104 2219.9 s
Tai-10-3 598 854 (607) 1025042 18000.0 s
Tai-10-4 577 856 577 64244 1175.8 s
Tai-10-5 640 1057 640 8173 126.0 s
Tai-10-6 538 770 (555) 1012887 18000.0 s
Tai-10-7 616 904 (827) 2136045 18000.0 s
Tai-10-8 595 853 595 164977 2255.7 s
Tai-10-9 595 880 595 6036 98.1 s

Tai-10-10 596 894 (639) 1162480 18000.0 s

Table 9.2.2 Results for some larger instances (top-down).

Regarding the instances of Taillard, CP2 solves 6 of them. The run times for all
the instances that have been solved have a high standard deviation and vary from
2 minutes to 2 hours. This is because the optimal makespan may be hard to find,
but once found it is easily verified and in all cases coincides with the trivial low-
er bound LB. Regarding the instances of Brucker et al., CP2 solves 5 instances,
but none of the very hard instances Hur-7-1, Hur-7-2 and Hur-7-3. It finds, how-
ever, the optimal makespans of Hur-7-2 and Hur-7-3 without proof of optimality.

The results for CPS2 are much better. To the best of our knowledge, it is the
first exact algorithm which solves all 10 � 10 OSP instances of Taillard. It even
does so with an average run time of slightly above 10 minutes starting with a
rather high upper bound. Further, CPS2 solves nearly all instances of Brucker et
al. except the instance Hur7-1 which is still unsolved. The quality of CPS2 relies
on the fact that the extensive application of constraint propagation results in a
drastic reduction of the search tree. Quite impressively, the number of search tree

338 9 Open Shop Scheduling

nodes generated by CPS2 on average only amounts to 0.1% of the number of
nodes generated by CP2 . Therefore, the probability of getting lost in unfavoura-
ble regions of the search tree is significantly cut down. This underlines the im-
portance and effectiveness of enhanced constraint propagation techniques for
solving the OSP.

Problem UBbest UBinit
CPS2

UBfound nodes time
Hur-7-1 (1048) 1487 (1058) 4575 18000.0
Hur-7-2 1055 1839 1055 3364 9421.8
Hur-7-3 1056 1839 1056 3860 9273.5
Hur-7-4 1013 1418 1013 1123 2781.9
Hur-7-5 1000 1188 1000 742 1563.0
Hur-7-6 1011 1545 1011 5195 15625.1
Hur-7-7 1000 1419 1000 88 48.8
Hur-7-8 1005 1510 1005 209 318.8
Hur-7-9 1003 1435 1003 788 2184.9
Tai-10-1 637 949 637 612 1398.6
Tai-10-2 588 751 588 396 981.7
Tai-10-3 598 854 598 520 2664.3
Tai-10-4 577 856 577 496 847.1
Tai-10-5 640 1057 640 392 724.5
Tai-10-6 538 770 538 415 1101.5
Tai-10-7 616 904 616 565 982.8
Tai-10-8 595 853 595 461 837.3
Tai-10-9 595 880 595 222 655.1

Tai-10-10 596 894 596 562 993.8

Table 9.2.3 Results for some larger instances using shaving (top-down).

Up to now, we have applied a top-down solution approach which starts with an
initial upper bound and tries to improve, i.e decrease this upper bound. As an
alternative, we will now consider a bottom-up approach which starts with a lower
bound as hypothetical upper bound and increases this bound by one time unit
until a solution is found. The trivial job and machine based lower bound LB is
chosen as an initial lower bound. For the computation of more sophisticated
lower bounds which involves some search, we refer the reader to the work of
Guéret and Prins [GP99].

 The results for this approach are shown in Table 9.2.4. There are only the
results for the best algorithm, namely CPS2. UBbest denotes the best lower bound
found within a maximum run time of 5 hours. If LBbest is not written in paren-
theses then it also has been verified to be an upper bound. Again, all 10 � 10 in-
stances of Taillard are solved, however, this time with an average run time of less
than a minute. The results for the instances of Brucker are less impressive if
compared with the top-down approach. Studying the work load WL of each in-
stance, we can observe that the bottom-up approach is more efficient for instanc-
es with a lower work load, while the top-down approach shows better results for

 9.2 A Branch and Bound Algorithm 339

those with a higher work load. This perfectly fits with the intuitive remarks made
at the beginning of this section: instances with a lower work load tend to have an
optimal makespan close or equal to LB, so that only a few lower bounds have to
be tested in a bottom-up approach. On the contrary, instances with a higher work
load tend to have an optimal makespan which is far from the initial lower bound.
For these instances, the top-down approach is more efficient. Dorndorf et al. pro-
pose that the bottom-up approach is the favourite choice for problem instances
with a work load of less than 0.9, while the top-down approach is to be preferred
for instances with a work load greater than 0.95. For problem instances with a
work load between 0.9 and 0.95, the situation is less clear, see e.g. the problem
instance Hur-7-5 with a work load of 0.944 (bottom-up performs better) and Hur-
7-9 with a work load of 0.925 (top-down performs better).

Problem UBbest LB WL
CPS2

LBbest nodes time
Hur-7-1 (1048) 1000 1.000 (1021) 3974 18000.0
Hur-7-2 1055 1000 1.000 (1045) 5988 18000.0
Hur-7-3 1056 1000 1.000 (1042) 7057 18000.0
Hur-7-4 1013 1000 0.958 1013 5692 15178.1
Hur-7-5 1000 1000 0.944 1000 146 314.7
Hur-7-6 1011 1000 0.951 (1006) 5797 18000.0
Hur-7-7 1000 1000 0.879 1000 10 5.0
Hur-7-8 1005 1000 0.931 1005 194 625.5
Hur-7-9 1003 1000 0.925 1003 1376 4073.0
Tai-10-1 637 637 0.861 637 12 30.2
Tai-10-2 588 588 0.834 588 22 70.6
Tai-10-3 598 598 0.850 598 23 185.5
Tai-10-4 577 577 0.828 577 21 29.7
Tai-10-5 640 640 0.834 640 17 32.0
Tai-10-6 538 538 0.857 538 17 32.7
Tai-10-7 616 616 0.838 616 18 30.9
Tai-10-8 595 595 0.823 595 17 44.1
Tai-10-9 595 595 0.846 595 14 39.8

Tai-10-10 596 596 0.834 596 14 29.1

Table 9.2.4 Results for some larger instances using shaving (bottom-up).

Dorndorf et al. have also tested the bottom-up variant of CPS2 on the remaining
15 � 15 and 20 � 20 instances of Taillard for which no other results of exact so-
lution approaches have been reported in literature. These results are shown in
Table 9.2.5. Again, the bottom-up approach shows very good results. All 15 � 15
instances except one and 7 of the 20 � 20 instances have been solved, among
others the instances Tai-15-5, Tai-15-9 and Tai-20-6 that have not been solved
before. Except for the unsolved instances, the run time is always less than 12
minutes for the 15 � 15 instances and about an hour for the 20 � 20 instances.

Let us finally compare the results of the algorithms from [DPP01] with those
of some other branch-and-bound algorithms for the OSP. B&B1 of Brucker et al.

340 9 Open Shop Scheduling

[BHJW97] is a typical representative of their 6 slightly different algorithms and
the algorithm B&Bi of Guéret et al. [GJP00], where ‘i’ stands for intelligent
backtracking. These algorithms are compared with Dorndorf et al.’s combined
top-down/bottom-up approach which works as follows: whenever the work load
of an instance is at most 0.9, the bottom-up version of CPS2 is applied; for in-
stances with a work load greater than 0.9, on the contrary, the top-down version
of CPS2 is used.

Problem UBbest LB WL
CPS2

LBbest nodes time
Tai-15-1 937 937 0.800 937 42 481.4 s
Tai-15-2 918 918 0.834 (918) 193 18000.0 s
Tai-15-3 871 871 0.824 871 44 611.6 s
Tai-15-4 934 934 0.794 934 45 570.1 s
Tai-15-5 946 946 0.842 946 34 556.3 s
Tai-15-6 933 933 0.795 933 51 574.5 s
Tai-15-7 891 891 0.828 891 52 724.6 s
Tai-15-8 893 893 0.813 893 46 614.0 s
Tai-15-9 899 899 0.830 899 36 646.9 s

Tai-15-10 902 902 0.824 902 34 720.1 s
Tai-20-1 1155 1155 0.820 1155 59 3519.8 s
Tai-20-2 1241 1241 0.838 (1241) 69 18000.0 s
Tai-20-3 1257 1257 0.803 1257 77 4126.3 s
Tai-20-4 1248 1248 0.825 (1248) 92 18000.0 s
Tai-20-5 1256 1256 0.809 1256 56 3247.3 s
Tai-20-6 1204 1204 0.810 1204 65 3393.0 s
Tai-20-7 1294 1294 0.807 1294 48 2954.8 s
Tai-20-8 (1171) 1169 0.854 (1169) 69 18000.0 s
Tai-20-9 1289 1289 0.800 1289 69 3593.8 s

Tai-20-10 1241 1241 0.817 1241 65 4936.2 s

Table 9.2.5 Results for even larger instances using shaving (bottom-up).

The results have been summarized in Table 9.2.6. A dash indicates that the cor-
responding data have not been available. Brucker et al. chose a time limit of 50
hours on a Sun 4/20 workstation, whereas Guéret et al. stopped the search after
250000 backtracks which according to their time measurements corresponds to
approximately 3 hours on a Pentium PC with a clock pulse of 133 MHz. As the
results have been established on different platforms, they have to be interpreted
with care. However, especially regarding the Taillard instances, it seems fair to
say that the algorithm of Dorndorf et al. has a much better performance. While
neither B&B1 and B&Bi solve more than 3 of the 10 � 10 instances of Taillard to
optimality, they solve all 10 instances in an average run time of less than a mi-
nute. Notice further that even the version of CPS2 which works in a purely top-
down fashion as well solves all ten instances and that CP2 which does not use
shaving all the same solves 6 instances to optimality. Since the branching
schemes employed by all these exact algorithms are basically the same (except

 References 341

for the branching order in the algorithm of Dorndorf et al. and the intelligent
backtracking component in the algorithm of Guéret et al.), we can conclude that
the application of strong constraint propagation techniques sheds a new light on
the solvability of the OSP and allows to cope with instances of the OSP that for-
merly seemed intractable. Computational experiments on some famous test sets
of benchmark problem instances taken from literature demonstrate the efficiency
of this approach. For the first time, many problem instances are solved in a short
amount of computation time.

Problem UBbest B&B1a B&B1b CPS2c

nodes time nodes time nodes time
Hur-7-1 (1048) - >50 h - - 4575 >5 h
Hur-7-2 1055 - 35451.5 s - - 3364 9421.8 s
Hur-7-3 1056 - 176711.1 s - - 3860 9273.5 s
Hur-7-4 1013 - 77729.2 s - - 1123 2781.9 s
Hur-7-5 1000 - 6401.6 s - - 742 1563.0 s
Hur-7-6 1011 - 277271.1 s - - 5195 15625.1 s
Tai-10-1 637 - >50 h >250000 >3 h 12 30.2 s
Tai-10-2 588 44332 10671.5 s >250000 >3 h 22 70.6 s
Tai-10-3 598 - >50 h >250000 >3 h 23 185.5 s
Tai-10-4 577 163671 40149.4 s 26777 - 21 29.7 s
Tai-10-5 640 - >50 h >250000 >3 h 17 32.0 s
Tai-10-6 538 - >50 h >250000 >3 h 17 32.7 s
Tai-10-7 616 - >50 h 4843 - 18 30.9 s
Tai-10-8 595 - >50 h >250000 >3 h 17 44.1 s
Tai-10-9 595 97981 24957.0 s 245100 - 14 39.8 s

Tai-10-10 596 - >50 h >250000 >3 h 14 29.1 s
a Run time on a Sun 4/20 Workstation
b,c Run time on a Pentium II/133

Table 9.2.6 A comparison of computational results.

References

AC82 J. O. Achugbue, F. Y. Chin, Scheduling the open shop to minimize mean flow

time, SIAM J. Comput. 11, 1982, 709-720.

AC91 D. Applegate, W. Cook, A computational study of the job shop scheduling

problem, ORSA Journal on Computing 3, 1991, 149-156.

BHJW97 P. Brucker, J. Hurink, B. Jurisch, B. Wöstmann, A branch and bound algo-

rithm for the open shop problem, Discret Appl. Math. 76, 1997, 43-59.

BJK94 P. Brucker, B. Jurisch, A. Krämer, The job shop problem and immediate selec-

tion, Ann. Oper. Res. 50, 1994, 73-114.

BJS94 P. Brucker, B. Jurisch, B. Sievers, A fast branch and bound algorithm for the

job shop scheduling problem, Discret Appl. Math. 49, 1994, 107-127.

342 9 Open Shop Scheduling

BL95 P. Baptiste, C. Le Pape, A theoretical and experimental comparison of con-

straint propagation techniques for disjunctive scheduling, Proceedings of the
14th International Joint Conference on Artificial Intelligence, Montreal, 1995,

136-140.

BL96 P. Baptiste, C. Le Pape, Edge-finding constraint propagation algorithms for

disjunctive and cumulative scheduling, Proceedings of the 15th Workshop of
the U. K. Planning Special Interest Group, Liverpool, 1996.

Blu05 C. Blum, Beam-ACO – Hybridizing ant colony optimization with beam search:

An application to open shop scheduling, Comput. Oper. Res. 32, 2005,

1565-1591.

BPS00 J. Błażewicz, E. Pesch, M. Sterna, The disjunctive graph machine representa-

tion of the job shop scheduling problem, Eur. J. Oper. Res. 127, 2000,

317-331.

BS04 C. Blum, M. Sampels, An ant colony optimization algorithm for shop schedul-

ing problems, Journal of Mathematical Modelling and Algorithms 3, 2004,

285-308.

BTW93 H. Bräsel, T. Tautenhahn and F. Werner, Constructive heuristic algorithms for

the open shop problem, Computing 51, 1993, 95-110.

CA05 S. Colak, A. Agarwal, Non-greedy heuristics and augmented neural networks

for the open-shop scheduling problem, Nav. Res. Logist. 52, 2005, 631-644.

CL95 Y. Caseau, F. Laburthe, Disjunctive scheduling with task intervals, Technical

report 95-25, Laboratoire d'Informatique de l'Ecole Normale Superieure, Paris,

1995.

CP89 J. Carlier, E. Pinson, An algorithm for solving the job shop problem, Manage.
Sci. 35, 1989, 164-176.

CP90 J. Carlier, E. Pinson, A practical use of Jackson's preemptive schedule for solv-

ing the job shop problem, Ann. Oper. Res. 26, 1990, 269-287, 1990.

CP94 J. Carlier, E. Pinson, Adjustments of heads and tails for the job shop problem,

Eur. J. Oper. Res. 78, 1994, 146-161.

CS81 Y. Cho, S. Sahni, Preemptive scheduling of independent jobs with release and

due times on open, flow and job shops, Oper. Res. 29, 1981, 511-522.

DPP99 U. Dorndorf, T. Phan-Huy, E. Pesch, A survey of interval capacity consistency

tests for time and resource constrained scheduling, in: J. Weglarz (ed.), Project
Scheduling - Recent Models, Algorithms and Applications, Kluwer Academic

Publishers, Boston, 1999, 213-238.

DPP00 U. Dorndorf, E. Pesch, T. Phan-Huy, Constraint propagation techniques for

disjunctive scheduling problems, Artif. Intell. 122, 2000, 189-240.

DPP01 U. Dorndorf, E. Pesch, T. Phan-Huy, Solving the open shop scheduling prob-

lem, J. Sched. 4, 2001, 157-174.

GJP00 C. Gueret, N. Jussien, C. Prins, Using intelligent backtracking to improve

branch and bound methods: an application to open shop problems, Eur. J.
Oper. Res. 127, 2000, 344-354.

 References 343

GP98a C. Gueret, C. Prins. Classical and new heuristics for the open shop problem: a

computational evaluation, Eur. J. Oper. Res. 107, 1998, 306-314, 1998.

GP98b C. Gueret, C. Prins. Forbidden intervals for open-shop problems, Research

report 98/10/AUTO, Ecole de Mines de Nantes, Nantes, 1998.

GP99 C. Gueret, C. Prins, A new lower bound for the open-shop problem, Ann.
Oper. Res. 92, 1999, 165-183.

GS76 T. Gonzalez, S. Sahni, Open shop scheduling to minimize finish time, J. ACM

23, 1976, 665-679.

Jac56 J. Jackson, An extension on Johnson's results on job lot scheduling, Nav. Res.
Logist. Quart. 3, 1956, 201-203.

KSZ91 W. Kubiak, C. Srishkandarajah, K. Zaras, A note on the complexity of open

shop scheduling problems, Infor 29, 1991, 284-294.

Lia98 C. F. Liaw, An iterative improvement approach for nonpreemptive open shop

scheduling problem, Eur. J. Oper. Res. 111, 1998, 509-517.

LLRK81 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Minimizing maximum

lateness in a two-machine open shop, Math. Oper. Res. 6, 1981, 153-158 (Erra-

tum: Math. Oper. Res. 7, 1982, 635).

MS96 P. Martin, D. B. Shmoys, A new approach to computing optimal schedules for

the job shop scheduling problem, Proceedings of the 5th International Confer-
ence on Integer Programming and Combinatorial Optimization, 1996.

Nui94 W. P. M. Nuijten, Time and Resource Constrained Scheduling: A Constraint
Satisfaction Approach, Ph.D. thesis, Eindhoven University of Technology,

1994.

Pha00 T. Phan-Huy, Constraint Propagation in Flexible Manufacturing, Springer,

Heidelberg, 2000.

Pri00 C. Prins, Competitive genetic algorithms for the open-shop scheduling problem

Math. Meth. Oper. Res. 52, 2000, 389-411.

RM96 A. Ramudhin, P. Marier, The generalized shifting bottleneck procedure, Eur. J.
Oper. Res. 93, 1996, 34-48.

RS64 B. Roy, B. Sussmann, Les problemes d`ordonnancement avec contraintes dis-

jonctives, Note D. S. 9, SEMA, Paris, 1964.

Tai93 E. Taillard, Benchmarks for basic scheduling problems, Eur. J. Oper. Res., 64,

1993, 278-285.

Tsa93 E. Tsang, Foundations of Constraint Satisfaction. Academic Press, Essex,

1993.

WW95 F. Werner, A. Winkler, Insertion techniques for the heuristic solution of the job

shop problem, Discret Appl. Math. 58, 1995, 191-211.

	9 Open Shop Scheduling
	9.1 Complexity Results
	9.2 A Branch and Bound Algorithm for Open Shop Scheduling
	9.2.1 The Disjunctive Model of the OSP
	9.2.2 Constraint Propagation and the OSP
	9.2.3 The Algorithm and Its Performance

	References

