
 

5  Scheduling on Parallel Processors 

This chapter is devoted to the analysis of scheduling problems in a parallel pro-
cessor environment. As before the three main criteria to be analyzed are schedule 
length, mean flow time and lateness. Then, some more developed models of mul-
tiprocessor systems and lot size scheduling are described. Corresponding results 
are presented in the four following sections. 

5.1 Minimizing Schedule Length 

In this section we will analyze the schedule length criterion. Complexity analysis 
will be complemented, wherever applicable, by a description of the most im-
portant approximation as well as enumerative algorithms. The presentation of the 
results will be divided into subcases depending on the type of processors used, 
the type of precedence constraints, and to a lesser extent task processing times 
and the possibility of task preemption. 

5.1.1 Identical Processors 

Problem P | | Cmax 

The first problem considered is P | | Cmax where a set of independent tasks is to be 
scheduled on identical processors in order to minimize schedule length. We start 
with complexity analysis of this problem which leads to the conclusion that the 
problem is not easy to solve, since even simple cases such as scheduling on two 
processors can be proved to be NP-hard [Kar72]. 

Theorem 5.1.1  Problem P2 | | Cmax is NP-hard. 

Proof. As a known NP-complete problem we take PARTITION [Kar72] which is 
formulated as follows. 

Instance: Finite set A  and a size s(ai) � IN for each ai � A . 

Answer: "Yes" if there exists a subset A' � A  such that  
 �

ai �A'
s(ai) = �

ai �A � A'
s(ai) .  

 Otherwise "No". 
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Given any instance of PARTITION defined by the positive integers s(ai), ai � A , 
we define a corresponding instance of the decision counterpart of P2 | | Cmax by 
assuming n = |A |, pj = s(aj), j = 1, 2,..., n, and a threshold value for the schedule 

length, y = 1
2

 �
ai �A

s(ai) . It is obvious that there exists a subset A' with the desired 

property for the instance of PARTITION if and only if, for the corresponding 
instance of P2 | | Cmax , there exists a schedule with Cmax � y (cf. Figure 5.1.1). 
This proves the theorem.  

P A'  

A   A'

1

P2

t 
Figure 5.1.1 A schedule for Theorem 5.1.1. 

Since there is no hope of finding an optimization polynomial time algorithm for 
P | | Cmax , one may try to solve the problem along the lines presented in Section 
3.2. First, one may try to find an approximation algorithm for the original prob-
lem and evaluate its worst case as well as its mean behavior. We will present 
such an analysis below. 

One of the most often used general approximation strategies for solving 
scheduling problems is list scheduling, whereby a priority list of the tasks is giv-
en, and at each step the first available processor is selected to process the first 
available task on the list [Gra66] (cf. Section 3.2). The accuracy of a given list 
scheduling algorithm depends on the order in which tasks appear on the list. One 
of the simplest algorithms is the LPT algorithm in which the tasks are arranged 
in order of non-increasing pj . 

Algorithm 5.1.2  LPT Algorithm for P | | Cmax. 

begin 
Order tasks on a list in non-increasing order of their processing times; 
 -- i.e. p1 �...� pn 

for i = 1 to m do si := 0; 

 -- processors Pi are assumed to be idle from time si = 0 on, i = 1,..., m 

j := 1; 
repeat 
 sk := min{si}; 

 Assign task Tj to processor Pk at time sk; 

  -- the first non-assigned task from the list is scheduled on the first processor  
  -- that becomes free 
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 sk := sk + pj; j := j + 1; 

until j = n + 1; -- all tasks have been scheduled 

end; 

It is easy to see that the time complexity of this algorithm is O(nlog n) since its 
most complex activity is to sort the set of tasks. The worst case behavior of the 
LPT rule is analyzed in Theorem 5.1.3. 

Theorem 5.1.3 [Gra69]  If the LPT algorithm is used to solve problem P | | Cmax, 
then 

RLPT = 
4

3
 � 

1

3m . (5.1.1) 

  

Space limitations prevent us from including here the proof of the upper bound in 
the above theorem. However, we will give an example showing that this bound 
can be achieved. Let n = 2m + 1, p = [2m � 1, 2m � 1, 2m � 2, 2m � 2,..., m + 1, 
m + 1, m, m, m]. For m = 3, Figure 5.1.2 shows two schedules, an optimal one and 
an LPT schedule.  

We see that in the worst case an LPT schedule can be up to 33% longer than 
an optimal schedule. However, one is led to expect better performance from the 
LPT algorithm than is indicated by (5.1.1), especially when the number of tasks 
becomes large. In [CS76] another absolute performance ratio for the LPT rule 
was proved, taking into account the number k of tasks assigned to a processor 
whose last task terminates the schedule. 

Theorem 5.1.4  For the assumptions stated above, we have  

RLPT(k) = 1 + 1k � 
1

km . (5.1.2) 
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Figure 5.1.2 Schedules for Theorem 5.1.3 
 (a) an optimal schedule, 

 (b) LPT schedule. 

This result shows that the worst-case performance bound for the LPT algorithm 
approaches one as fast as 1 + 1/k. 
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On the other hand, it would be of interest to know how good the LPT algo-
rithm is on the average. Such a result was obtained by [CFL84], where the rela-
tive error was found for two processors on the assumption that task processing 
times are independent samples from the uniform distribution on [0, 1] . 

Theorem 5.1.5  Under the assumptions already stated, we have the following 
bounds for the mean value of schedule length for the LPT algorithm, E(CLPT

max), for 
problem P2 | | Cmax . 

n
4 + 

1
4(n+1)  �  E(CLPT

max)  �� 
n
4 +  e

2(n+1) , (5.1.3) 

where e = 2.7... is the base of the natural logarithm.   

Taking into account that n/4 is a lower bound on E(C *  
max) we get  

E(CLPT
max)/E(C *  

max)  <  1 + O(1/n2
) .  

Therefore, as n increases, E(CLPT
max) approaches the optimum no more slowly than 

1 + O(1/n2) approaches 1. The above bound can be generalized to cover also the 
case of m processors for which we have [CFL83]:  

E(CLPT
max)  �� 

n
2m + (m

n) . 

Moreover, it is also possible to prove [FRK86, FRK87] that CLPT
max � C *  

max almost 
surely converges to 0 as n � # if the task processing time distribution has a fi-
nite mean and a density function f satisfying f(0) > 0. It is also shown that if the 
distribution is uniform or exponential, the rate of convergence is O(log(log n)/n). 
This result, obtained by a complicated analysis, can also be guessed from simula-
tion studies. Such an experiment was reported by Kedia [Ked70] and we present 
the summary of the results in Table 5.1.1. The last column presents the ratio of 
schedule lengths obtained by the LPT algorithm and the optimal preemptive one. 
Task processing times are drawn from the uniform distribution of the given pa-
rameters. 

To conclude the above analysis we may say that the LPT algorithm behaves 
quite well and may be useful in practice. However, if one wants to have better 
performance guarantees, other approximation algorithms should be used, as for 
example MULTIFIT introduced by Coffman et al. [CGJ78] or the algorithm pro-
posed by Hochbaum and Shmoys [HS87]. A comprehensive treatment of approx-
imation algorithms for this and related problems is given by Coffman et al. 
[CGJ84]. 
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n, m 
Intervals of task processing 

time distribution Cmax CLPT
max 4 C *  

max 

6 
9 

15 
6 
9 

15 

3 
3 
3 
3 
3 
3 

1, 20 
1, 20 
1, 20 

20, 50 
20, 50 
20, 50 

20 
32 
65 
59 

101 
166 

1.00 
1.00 
1.00 
1.05 
1.03 
1.00 

8 
12 
20 
8 

12 
20 

4 
4 
4 
4 
4 
4 

1, 20 
1, 20 
1, 20 

20, 50 
20, 50 
20, 50 

23 
30 
60 
74 

108 
185 

1.09 
1.00 
1.00 
1.04 
1.02 
1.01 

10 
15 
20 
10 
15 
25 

5 
5 
5 
5 
5 
5 

1, 20 
1, 20 
1, 20 

20, 50 
20, 50 
20, 50 

25 
38 
49 
65 

117 
198 

1.04 
1.03 
1.00 
1.06 
1.03 
1.01 

Table 5.1.1 Mean performance of the LPT algorithm. 

We now pass to the second way of analyzing problem P | | Cmax. Theorem 5.1.1 
gave a negative answer to the question about the existence of an optimization 
polynomial time algorithm for solving P2 | | Cmax. However, we have not proved 
that our problem is NP-hard in the strong sense and we may try to find a pseudo-
polynomial optimization algorithm. It appears that, based on a dynamic pro-
gramming approach, such an algorithm can be constructed using ideas presented 
by Rothkopf [Rot66]. Below the algorithm is presented for P | | Cmax; it uses 
Boolean variables xj(t1 , t2 ,..., tm), j = 1, 2,..., n, ti = 0, 1,..., C, i = 1, 2,..., m, 

where C denotes an upper bound on the optimal schedule length C *  
max . The 

meaning of these variables is the following 

xj(t1, t2,..., tm) = 

�.
�
.  

 
 
 

 

true if tasks T1 , T2 ,..., Tj can be scheduled on 
processors P1 , P2 ,..., Pm in such a way that Pi 
is busy in time interval [0, ti], i = 1, 2,..., m , 

false otherwise. 

Now, we are able to present the algorithm. 
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Algorithm 5.1.6  Dynamic programming for P | | Cmax [Rot66]. 

begin 
for all (t1, t2,..., tm) � {0, 1,..., C}

m do x0(t1, t2,..., tm) := false; 

x0(0, 0,..., 0) := true; 

 -- initial values for Boolean variables are now assigned 

for j = 1 to n do 

 for all (t1, t2,..., tm) � {0, 1,..., C}
m do 

xj(t1, t2,..., tm) = V
i=1

m
xj�1(t1, t2,..., ti�1, ti � pj, ti+1,..., tm); (5.1.4) 

C *  
max := min{max{t1, t2,..., tm} | xn(t1, t2,..., tm) = true}; (5.1.5) 

 -- optimal schedule length has been calculated 

Starting from the value C *  
max, assign tasks Tn, Tn�1,..., T1 to appropriate  

processors using formula (5.1.4) backwards; 
end; 

The above procedure solves problem P | | Cmax in O(nCm) time; thus for fixed m it 
is a pseudopolynomial time algorithm. As a consequence, for small values of m 
and C the algorithm can be used even in computer applications. To illustrate the 
use of the above algorithm let us consider the following example. 

Example 5.1.7  Let n = 3, m = 2 and p = [2, 1, 2]. Assuming bound C = 5 we get 
the cube given in Figure 5.1.3(a) where particular values of variables xj(t1 , t2 ,...,
 tm) are stored. In Figures 5.1.3(b) through 5.1.3(e) these values are shown, re-
spectively, for j = 0, 1, 2, 3 (only true values are depicted). Following Figure 
5.1.3(e) and equation (5.1.5), an optimal schedule is constructed as shown in 
Figure 5.1.3(f).  

The interested reader may find a survey of some other enumerative approaches 
for the problem in question in [LLR+93]. 

Problem P | pmtn | Cmax 

Now one may try the third way of analyzing the problem P | | Cmax (as suggested 
in Section 3.2), i.e. on may relax some constraints imposed on problem P | | Cmax 
and allow preemptions of tasks. It appears that problem P | pmtn | Cmax can be 
solved very efficiently. It is easy to see that the length of a preemptive schedule 
cannot be smaller than the maximum of two values: the maximum processing 
time of a task and the mean processing requirement on a processor [McN59], i.e.:  

C *  
max = max{max

j
{pj}, 1

m 5
j=1

n
 pj} . (5.1.6) 
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Figure 5.1.3 An application of dynamic programming for Example 5.1.7  

(a) a cube of Boolean variables, 
(b)-(e) values of xj(t1,t2) for j = 0, 1, 2, 3, respectively (here T 
stands for true), 
(f) an optimal schedule. 
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The following algorithm given by McNaughton [McN59] constructs a schedule 

whose length is equal to C *  
max . 

Algorithm 5.1.8  McNaughton's rule for P | pmtn | Cmax [McN59]. 

begin 
C *  

max := max{5
j=1

n
 pj /m, max

j
{pj}}; -- minimum schedule length 

t := 0; i := 1; j := 1; 
repeat 
 if t + pj � C *  

max 

 then 

  begin 
  Assign task Tj to processor Pi , starting at time t; 

  t := t + pj; j := j + 1; 
   -- task Tj can be fully assigned to processor Pi, 
   -- assignment of the next task will continue at time t + pj 
  end 
 else 
  begin 
  Starting at time t, assign task Tj for C *  

max � t units to processor Pi; 

   -- task Tj is preempted at time C *  
max, 

   -- processor Pi is now busy until C *  
max, 

   -- assignment of Tj will continue on the next processor at time 0 
  pj := pj � (C *  

max � t); t := 0; i := i + 1; 

  end; 
until j = n + 1; -- all tasks have been scheduled 

end; 
Note that the above algorithm is an optimization procedure since it always finds 
a schedule whose length is equal to C *  

max . Its time complexity is O(n) . 
We see that by allowing preemptions we made the problem easy to solve. 

However, there still remains the question of practical applicability of the solution 
obtained this way. One has to ask if this model of preemptive task scheduling can 
be justified, because it cannot be expected that preemptions are free of cost. Gen-
erally, two kinds of preemption costs have to be considered: time and finance. 
Time delays originating from preemptions are less crucial if the delay caused by 
a single preemption is small compared to the time the task continuously spends 
on the processor. Financial costs connected with preemptions, on the other hand, 
reduce the total benefit gained by preemptive task execution; but again, if the 
profit gained is large compared to the losses caused by the preemptions the 
schedule will be more useful and acceptable. These circumstances suggest the 
introduction of a scheduling model where task preemptions are only allowed af-
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ter the tasks have been processed continuously for some given amount k of time. 
The value for k (preemption granularity) should be chosen large enough so that 
the time delay and cost overheads connected with preemptions are negligible. For 
given granularity k, upper bounds on the preemption overhead can easily be es-
timated since the number of preemptions for a task of processing time p is lim-
ited by �p/k� . In [EH93] the problem P | pmtn | Cmax with k-restricted preemptions 
is discussed: If the processing time pj of a task Tj is less than or equal to k, then 
preemption is not allowed; otherwise preemption may take place after the task 
has been continuously processed for at least k units of time. For the remaining 
part of a preempted task the same condition is applied. Notice that for k = 0 this 
problem reduces to the "classical" preemptive scheduling problem. On the other 
hand, if for a given instance the granularity k is larger than the longest processing 
time among the given tasks, then no preemption is allowed and we end up with 
non-preemptive scheduling. Another variant is the exact-k-preemptive scheduling 
problem where task preemptions are only allowed at those moments when the 
task has been processed exactly an integer multiple of k time units. In [EH93] it 
is proved that, for m = 2 processors, both the k-preemptive and the exact-k-
preemptive scheduling problems can be solved in time O(n). For m > 2 proces-
sors both problems are NP-hard. 

Problem P | prec | Cmax 

Let us now pass to the case of dependent tasks. At first tasks are assumed to be 
scheduled non-preemptively. It is obvious that there is no hope of finding a poly-
nomial time optimization algorithm for scheduling tasks of arbitrary length since 
P | | Cmax is already NP-hard. However, one may try again list scheduling algo-
rithms. Unfortunately, this strategy may result in an unexpected behavior of con-
structed schedules, since the schedule length for problem P | prec | Cmax (with 
arbitrary precedence constraints) may increase if: 
� the number of processors increases, 
� task processing times decrease, 
� precedence constraints are weakened, or 
� the priority list changes. 

Figures 5.1.4 through 5.1.8 indicate the effects of changes of the above men-
tioned parameters. These list scheduling anomalies have been discovered by 
Graham [Gra66], who has also evaluated the maximum change in schedule 
length that may be induced by varying one or more problem parameters. We will 
quote this theorem since its proof is one of the shortest in that area and illustrates 
well the technique used in other proofs of that type. Let there be defined a task 
set T  together with precedence constraints ≺. Let the processing times of the 
tasks be given by vector p, let T  be scheduled on m processors using list L, and 
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let the obtained value of schedule length be equal to Cmax. On the other hand, let 
the above parameters be changed: a vector of processing times p' � p (for all the 
components), relaxed precedence constraints ≺' � ≺, priority list L' and the 
number of processors m'. Let the new value of schedule length be C '   max . Then the 
following theorem is valid. 

(a)
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Figure 5.1.4 (a) A task set, m = 2, L = (T1, T2, T3, T4, T5, T6, T7, T8), 
 (b) an optimal schedule. 
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Figure 5.1.5 Priority list changed: A new list L' = (T1, T2, T3, T4, T5, T6, T8, T7). 
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Figure 5.1.6 Processing times decreased; p'j = pj �� 1, j = 1, 2,..., n. 
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Figure 5.1.7 Number of processors increased, m = 3. 
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Figure 5.1.8 (a) Precedence constraints weakened, 

(b) a resulting list schedule. 

Theorem 5.1.9 [Gra66]  Under the above assumptions,  
C '   max
Cmax

 � 1 + 
m�1

m'  . (5.1.7) 

Proof. Let us consider schedule S' obtained by processing task set T  with primed 
parameters. Let the interval [0, C '   max) be divided into two subsets, A  and B , de-
fined in the following way:  

A  = {t � [0, C '   max) | all processors are busy at time t}, B  = [0, C '   max) � A . 

Notice that both A  and B  are unions of disjoint half-open intervals. Let Tj1 de-
note a task completed in S' at time C '   max , i.e. Cj1 = C '   max . Two cases may occur: 
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1. The starting time sj1 of Tj1 is an interior point of B . Then by the definition of 
B  there is some processor Pi which for some % > 0 is idle during interval [sj1 � %, 

sj1) . Such a situation may only occur if we have Tj2 ≺' Tj1 and Cj2 = sj1 for some 
task Tj2 . 
2. The starting time of Tj1 is not an interior point of B . Let us also suppose that 
sj1 � 0. Define x1 = sup{x | x < sj1 , and x � B } or x1 = 0 if set B  is empty. By the 
construction of A  and B , we see that x1 � A , and processor Pi is idle in time 
interval [x1 � %, x1) for some % > 0 . But again, such a situation may only occur if 
some task Tj2 ' Tj1 is processed during this time interval. 

It follows that either there exists a task Tj2 ≺' Tj1 such that y � [Cj2 , sj1) im-
plies y � A  or we have: x < sj1 implies either x � A  or x < 0 . 

The above procedure can be inductively repeated, forming a chain Tj3 , 
Tj4 ,...,  until we reach task Tjr for which x < sjr implies either x � A  or x < 0. 
Hence there must exist a chain of tasks  

Tjr ≺' Tjr�1
 ≺'... ≺' Tj2 ≺' Tj1 (5.1.8) 

such that at each moment t � B , some task Tjk is being processed in S'. This im-
plies that  

�
6'�S'

 p'  6'  � (m' � 1) �
k=1

r
 p'  jk  (5.1.9) 

where the sum on the left-hand side is made over all idle-time tasks 6' in S'. But 
by (5.1.8) and the hypothesis ≺' � ≺ we have 

Tjr ≺ Tjr�1
 ≺...≺ Tj2 ≺ Tj1 . (5.1.10) 

Hence, 

Cmax � �
k=1

r
 pjk � �

k=1

r
 p'  jk  . (5.1.11) 

Furthermore, by (5.1.9) and (5.1.11) we have  

C '   max = 
1

m' (�k=1

n
 p' k  � �

6'�S'
 p'  6'3 � 

1

m' (m Cmax + (m' � 1) Cmax ) . (5.1.12) 

It follows that 
C '   max
Cmax

 � 1 + 
m�1

m'  

and the theorem is proved.  
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From the above theorem, the absolute performance ratio for an arbitrary list 
scheduling algorithm solving problem P | | Cmax can be derived. 

Corollary 5.1.10 [Gra66]  For an arbitrary list scheduling algorithm LS for 
P | | Cmax we have 

RLS = 2 � 
1

m . (5.1.13) 

Proof. The upper bound of (5.1.13) follows immediately from (5.1.7) by taking 
m' = m and by considering the list leading to an optimal schedule. To show that 
this bound is achievable let us consider the following example: n = (m � 1)m + 1, 
p = [1, 1,..., 1, 1, m], ≺ is empty, L = (Tn , T1 , T2 ,..., Tn�1) and L' = (T1 , T2 , ...,

Tn). The corresponding schedules for m = 4 are shown in Figure 5.1.9.  

(a) (b) 
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Figure 5.1.9 Schedules for Corollary 5.1.10  
 (a) an optimal schedule, 
 (b) an approximate schedule. 

It follows from the above considerations that an arbitrary list scheduling algo-
rithm can produce schedules almost twice as long as optimal ones. However, one 
can solve optimally problems with tasks of unit lengths. 

Problem P | prec, pj = 1 | Cmax 

The first algorithm has been given for scheduling forests, consisting either of in-
trees or of out-trees [Hu61]. We will first present Hu's algorithm for the case of 
an in-tree, i.e. for the problem P | in-tree, pj = 1 | Cmax. The algorithm is based on 

the notion of a task level in an in-tree which is defined as the number of tasks on 

the path to the root of the graph. The algorithm by Hu, which is also called level 
algorithm or critical path algorithm is as follows. 
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Algorithm 5.1.11  Hu's algorithm for P | in-tree, pj = 1 | Cmax [Hu61]. 

begin 
Calculate levels of the tasks; 

t := 0; 
repeat 
 Construct list Lt consisting of all the tasks without predecessors at time t; 

  -- all these tasks either have no predecessors  

  -- or their predecessors have been assigned in time interval [0, t�1] 

 Order Lt in non-increasing order of task levels; 

 Assign m tasks (if any) to processors at time t from the beginning of list Lt; 

 Remove the assigned tasks from the graph and from the list; 

 t := t + 1; 

until all tasks have been scheduled; 

end; 

The algorithm can be implemented to run in O(n) time. An example of its appli-

cation is shown in Figure 5.1.10.  

4

3

2

1

1T 2T 3T 4T 5T

6T 7T 8T T9

T10 T11

T12  

0 2 3 41 5 t

P1

P2

P3

1T

2T

3T

4T

5T

6T

7T

8T

T9

T10

T11

T12

 

Figure 5.1.10 An example of the application of Algorithm 5.1.11 for three pro-
cessors. 

A forest consisting of in-trees can be scheduled by adding a dummy task that is 

an immediate successor of only the roots of in-trees, and then by applying Algo-

rithm 5.1.11. A schedule for an out-tree can be constructed by changing the ori-
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entation of arcs, applying Algorithm 5.1.11 to the obtained in-tree and then read-

ing the schedule backwards, i.e. from right to left.  

It is interesting to note that the problem of scheduling opposing forests (that 

is, combinations of in-trees and out-trees) on an arbitrary number of processors is 

NP-hard [GJTY83]. However, if the number of processors is limited to 2, the 

problem is easily solvable even for arbitrary precedence graphs [CG72, FKN69, 

Gab82]. We present the algorithm given by Coffman and Graham [CG72] since 

it can be further extended to cover the preemptive case. The algorithm uses la-
bels assigned to tasks, which take into account the levels of the tasks and the 

numbers of their immediate successors. The following algorithm assigns labels to 

the tasks, and then uses them to find the shortest schedule for problem P2 | prec, 

pj = 1 | Cmax. 

Algorithm 5.1.12  Algorithm by Coffman and Graham for P2 | prec, pj = 1 | Cmax 

[CG72]. 

begin 
Assign label 1 to any task T0 for which isucc(T0) = �; 
 -- recall that isucc(T) denotes the set of all immediate successors of T 

j := 1; 
repeat 
 Construct set S  of all unlabeled tasks whose successors are labeled; 

 for all T � S  do 

  begin 
  Construct list L(T) consisting of labels of tasks belonging to isucc(T); 

  Order L(T) in decreasing order of the labels; 
  end; 

 Order these lists in increasing lexicographic order L(T[1]) <
. ...<. L(T[�S �]); 

 -- see Section 2.1 for definition of <.  

 Assign label j + 1 to task T[1]; 

 j := j + 1; 

until j = n + 1; -- all tasks have been assigned labels 

call Algorithm 5.1.11; 
 -- here the above algorithm uses labels instead of levels when scheduling tasks 
end; 

A careful analysis shows that the above algorithm can be implemented to run in 

time which is almost linear in n and in the number of arcs in the precedence 

graph [Set76]; thus its time complexity is practically O(n2
). An example of the 

application of Algorithm 5.1.12 is given in Figure 5.1.11.  

It must be stressed that the question concerning the complexity of problem 

Pm | prec, pj = 1 | Cmax with a fixed number m of processors is still open despite 

the fact that many papers have been devoted to solving various subcases of prec-
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edence constraints. If tasks with unit processing times are considered, the follow-

ing results are available. Problems P3 | opposing forest, pj = 1 | Cmax and 

Pk | opposing forest, pj = 1 | Cmax are solvable in time O(n) [GJTY83] and 

O(n2k�2
 logn) [DW85], respectively. On the other hand, if the number of availa-

ble processors is variable, then this problem becomes NP-hard. Some results are 

also available for the subcases in which task processing times may take only two 

values. Problems P2 | prec, pj = 1 or 2 | Cmax and P | prec, pj = 1 or k | Cmax are NP-

hard [DL88], while problems P2 | tree, pj = 1 or 2 | Cmax and P2 | tree, pj = 1 or 

3 | Cmax are solvable in time O(nlogn) [NLH81] and O(n2
logn) [DL89], respec-

tively. Arbitrary processing times result in strong NP-hardness even for the case 

of chains scheduled on two processors (problem P2 | chains | Cmax) [DLY91]. 
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Figure 5.1.11 An example of the application of Algorithm 5.1.12 (tasks are 
denoted by Tj /label). 

Furthermore, several papers deal with approximation algorithms for P | prec, pj =

 1 | Cmax and more general problems. We quote some of the most interesting re-

sults. The application of the level algorithm (Algorithm 5.1.11) to solve P | prec, 

pj = 1 | Cmax has been analyzed by Chen and Liu [CL75] and Kunde [Kun76]. The 

following bound has been proved. 
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Rlevel = 

�
�
  

 

 
 

4

3
 for m = 2 

2 � 
1

m�1
 for m � 3 . 

Algorithm 5.1.12 is slightly better, its bound is R = 2 � 
2

m � 
m � 3

m&Cmax*  
 for m � 3 

[BT94]. In this context one should not forget the results presented in Theorems 

5.1.9 and 5.1.10, where list scheduling anomalies have been analyzed.  

Problem P | pmtn, prec | Cmax 

The analysis also showed that preemptions can be profitable from the viewpoint 

of two factors. First, they can make problems easier to solve, and second, they 

can shorten the schedule. Coffman and Garey [CG91] proved that for problem 

P2 | prec | Cmax the least schedule length achievable by a non-preemptive schedule 

is no more than 4/3 the least schedule length achievable when preemptions are 

allowed. While the proof of this fact seems to be tedious, a very simple example 

showing that this bound is met can easily be given for a set of three independent 

tasks of equal length (cf. Figure 5.1.12).  
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Figure 5.1.12 An example of 4/3 conjecture 
 (a) non-preemptive scheduling, 
 (b) preemptive scheduling. 

In the general case of dependent tasks scheduled on processors in order to mini-

mize schedule length, one can construct optimal preemptive schedules for tasks 

of arbitrary length and with other parameters the same as in Algorithm 5.1.11 or 

5.1.12. The approach again uses the notion of the level of task Tj in a precedence 

graph, by which is now understood the sum of processing times (including pj) of 
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tasks along the longest path between Tj and a terminal task (a task with no suc-

cessors). Let us note that the level of a task being executed is decreasing. We 

have the following algorithm [MC69, MC70] for the problems P2 | pmtn, 

prec | Cmax and P | pmtn, forest | Cmax . The algorithm uses a notion of a processor 
shared schedule, in which a task receives some fraction * (��1) of the processing 

capacity of a processor. 

Algorithm 5.1.13  Algorithm by Muntz and Coffman for P2 | pmtn, prec | Cmax 

and P | pmtn, forest | Cmax [MC69, MC70]. 

begin 
for all T � T do Compute the level of task T; 

t := 0; h := m; 
repeat 

 Construct set Z  of tasks without predecessors at time t; 

 while h > 0 and |Z | > 0 do 

  begin 

  Construct subset S  of Z  consisting of tasks at the highest level; 

  if |S | > h 

  then 
   begin 
   Assign * := h/|S | of a processing capacity to each of the tasks from S ; 

   h := 0; -- a processor shared partial schedule is constructed 
   end 
  else 
   begin 
   Assign one processor to each of the tasks from S ; 

   h := h � |S |; -- a "normal" partial schedule is constructed 

   end; 

  Z  := Z  � S ; 

  end; -- the most "urgent" tasks have been assigned at time t 
Calculate time 7 at which either one of the assigned tasks is finished or a 

point is reached at which continuing with the present partial assignment 

means that a task at a lower level will be executed at a faster rate * than a 

task at a higher level; 

 Decrease levels of the assigned tasks by (7 � t)*; 

 t := 7; h := m; 

  -- a portion of each assigned task equal to (7�t)* has been processed 

until all tasks are finished; 

call Algorithm 5.1.8 to re-schedule portions of the processor shared schedule 

to get a normal one; 
end; 
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The above algorithm can be implemented to run in O(n2
) time. An example of its 

application to an instance of problem P2 | pmtn, prec | Cmax is shown in Figure 

5.1.13. 

At this point let us also consider another class of the precedence graphs for 

which the scheduling problem can be solved in polynomial time. To do this we 

have to present precedence constraints in the form of an activity network (task-

on-arc precedence graph, viz. Section 3.1) whose nodes (events) are ordered in 

such a way that the occurrence of node i is not later than the occurrence of node j, 
if i < j. 
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Figure 5.1.13 An example of the application of Algorithm 5.1.13 
(a) a task set (nodes are denoted by Tj /pj), 

(b) I: a processor-shared schedule, II: an optimal schedule. 
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Now, let S I denote the set of all the tasks which may be performed between the 

occurrence of event (node) I and I + 1. Such sets will be called main sets. Let us 

consider processor feasible sets, i.e. those main sets and those subsets of the 

main sets whose cardinalities are not greater than m, and number these sets from 

1 to some K. Now, let Qj denote the set of indices of processor feasible sets in 

which task Tj may be performed, and let xi denote the duration of the ith feasible 

set. Then, a linear programming problem can be formulated in the straightfor-

ward way [WBCS77, BCSW76b] (another LP formulation for unrelated proces-

sors is presented in Section 5.1.2 as the first phase of a two-phase method): 

Minimize Cmax = �
i=1

K
 xi (5.1.14) 

subject to �
i �Qj

 xi = pj , j = 1, 2,..., n ,  

 xi � 0, i = 1, 2,..., K . 

 

(5.1.15) 

It is clear that the solution of the LP problem depends on the order of nodes 

in the activity network; hence an optimal solution is found when this topological 

order is unique. Such a situation takes place for a uniconnected activity network 

(uan), i.e. one in which any two nodes are connected by a directed path in only 

one direction. An example of a uniconnected activity network together with the 

corresponding precedence graph is shown in Figure 5.1.14. On the other hand, 

the number of variables in the above LP problem depends polynomially on the 

input length, when the number of processors m is fixed. We may then use a non-

simplex algorithm (e.g. from [Kha79] or [Kar84]) which solves any LP problem 

in time polynomial in the number of variables and constraints. Hence, we may 

conclude that the above procedure solves problem Pm | pmtn, uan | Cmax in poly-

nomial time.  

(a) 

T4T1

T2 T5

T3

2

4

3

1

 

(b) 

T2 T5

T1 T4

T3

 

Figure 5.1.14 (a) An example of a simple uniconnected activity network, 
(b) The corresponding precedence graph. 
Main sets S 1 = {T1, T2}, S 2 = {T2, T3, T4}, S 3 = {T4, T5}. 
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Recently another LP formulation has been proposed which enables one to solve 
problem  P | pmtn, uan | Cmax in polynomial time, regardless of a number of pro-
cessors [JMR+04]. 

As we already mentioned the uniconnected activity network has a task-on-
node equivalent representation in a form of the interval order. Below, we present 
a sketch of the proof  [BK02]. Let us start with the following theorem which will 
be given without a proof. 

 
Theorem 5.1.14  Let G be an activity network (task-on-arc graph). G is unicon-
nected if and only if G has a Hamiltonian path.  

 
Now, the following theorems may be proved [BK02]. 

 
Theorem 5.1.15  If  G  is a uan, then  G  is a task-on-arc representation of an 
interval order. 

Proof.  By Theorem 5.1.14,  G = (V , A) is composed of a Hamiltonian path  
W = (v1 , … , vn) with possibly some additional arcs of the form (vi , vj) with  i < j. 
The interval order we are looking for is defined by the following collection of 
intervals (Ia)a�A .  For every arc a = (vi , vj) of A, we put the interval [i , j) into the 
collection. 

We have now to show that  Ia = [i , j)  is entirely to the left of  Ia' = [i' , j')  if 
and only if a has to precede a' in the task precedence constraints represented by 
G. This is easy to show, since: 

Ia = [i , j)  is entirely to the left of  Ia' = [i' , j')  

   j � i’ 

   there is a path from  vj   to  vi'   in G (along W) 

   a with head j has to precede a' with tail  i' .  

If dummy tasks are not allowed, an interval order does not necessarily have a 
task-on-arc representation. Indeed, if we consider the collection of intervals 
{[1,2) , [1,3) , [2,4) , [3,4)}, its task-on-node representation is graph N  in Figure 
2.3.1. It implies that this partial order does not have a task-on-arc representation 
without dummy tasks. But the equivalence of task-on-node and task-on-arc rep-
resentations can be obtained through the use of dummy tasks. Since we allow 
them also here, the following result can be proved. 

 
Theorem 5.1.16  Any interval order has a task-on-arc representation with a 
Hamiltonian path (and therefore corresponds to a uan). 

Proof.  Consider any collection of intervals  (Ia)a�A  with  Ia = [ba , ea). We define 
the following graph  G=(V,E). Set 

V= { ba | a � A } � { ea | a � A }. 
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For any v in V, let next(v) be the vertex w > v such that there is no x in V with  v + 
x + w   (next(v) is not defined for the largest ea).  Set 

A'  = { (v , next(v)) | v � V and  next(v)  defined } 
and 

E = A'  � { (ba , ea) | a � A } . 

The arcs in A'  represent dummy tasks. This graph  G  has indeed a Hamilto-
nian path, starting with the smallest  ba (mina�A ea), following the arcs in  A'  and 
ending at the largest  ea (maxa�A ea). It remains to show that  Ia = [ba , ea)  is en-
tirely to the left of  Ia' = [ba' , ea' ) if and only if arc  (ba , ea)  has to precede arc   
[ba' , ea' )  in the task precedence constraints represented by G. We do not have to 
deal with arcs in  A'  since they represent dummy tasks: 

Ia=[ba , ea)  is entirely to the left of  Ia' = [ba' , ea' )   

  ea � ba' 


  there is a path from  ea to ba'  in G  (using the arcs in A' ) 

  (ba , ea)  with head  ea  has to precede  (ba' , ea' )  with tail ba' . 

  

The following corollary is a direct consequence of Theorems 5.1.15 and 5.1.16 

Corollary 5.1.17   Let Q  be a partial order. If dummy tasks are allowed, Q  is an 
interval order if and only if Q  can be represented as a uan. 

We may now conclude the above considerations with the following result:  

P | pmtn , interval order | Cmax is solvable in polynomial time. 
For general precedence graphs, however, we know from Ullman [Ull76] that the 

problem is NP-hard. In that case a heuristic algorithm such as Algorithm 5.1.13 

my be chosen. The worst-case behavior of Algorithm 5.1.13 applied in the case 

of P | pmtn, prec | Cmax has been analyzed by Lam and Sethi [LS77]: 

RAlg.5.1.13 = 2 � 
2

m , m � 2 . 

5.1.2 Uniform and Unrelated Processors 

Problem Q | pj = 1 | Cmax 

Let us start with an analysis of independent tasks and non-preemptive schedul-

ing. Since the problem with arbitrary processing times is already NP-hard for 

identical processors, all we can hope to find is a polynomial time optimization 

algorithm for tasks with unit standard processing times only. Such an approach 
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has been given by Graham et al. [GLL+79] where a transportation network for-

mulation has been presented for problem Q | pj = 1 | Cmax . We describe it briefly 

below.  

Let there be n sources j, j = 1, 2,..., n, and mn sinks (i, k), i = 1, 2,..., m and 

k = 1, 2,..., n. Sources correspond to tasks and sinks to processors and positions 

of tasks on them. Let cijk = k/bi be the cost of arc (j, (i, k)); this value corresponds 

to the completion time of task Tj processed on Pi in the kth position. The arc flow 

xijk has the following interpretation: 

xijk = 
�
�
  

 

 

 
1 if Tj is processed in the kth position on Pi 

0 otherwise. 

The min-max transportation problem can be now formulated as follows: 

Minimize max 
i, j, k

 {cijk xijk} (5.1.16) 

subject to� �
i=1

m
 �
k=1

n
 xijk = 1 for all j , (5.1.17) 

� �
j=1

n
 xijk � 1 for all i, k , (5.1.18) 

 xijk � 0 for all i, j, k . (5.1.19) 

This problem can be solved by a standard transportation procedure (cf. Section 

2.3) which results in O(n3
) time complexity, or by a procedure due to Sevast-

janov [Sev91]. Below we sketch this last approach. It is clear that the minimum 

schedule length is given as 

C *  
max = sup {t | �

i=1

m
 �tbi� < n/ ' (5.1.20) 

On the other hand, a lower bound on the schedule length for the above problem is 

C' = n / �
i=1

m
 bi � C *  

max . (5.1.21) 

Bound C' can be achieved e.g. by a preemptive schedule. If we assign ki = �C'bi � 
tasks to processor Pi , i = 1, 2,..., m, respectively, then these tasks may be pro-

cessed in time interval [0, C' ]. However, l = n � �
i=1

m
 ki tasks remain unassigned. 

Clearly l � m � 1, since C'bi � �C'bi � < 1 for each i. The remaining l tasks are then 

assigned one by one to those processors Pi for which min
i

{(ki + 1) / bi} is attained 

at a given stage, where, of course, ki is increased by one after the assignment of a 

task to a particular processor Pi . This procedure is repeated until all tasks are 
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assigned. We see that this approach results in an O(m2
)-algorithm for solving 

problem Q | pj = 1 | Cmax . 

Example 5.1.18  To illustrate the above algorithm let us assume that n = 9 tasks 

are to be processed on m = 3 uniform processors whose processing speeds are 

given by the vector b = [3, 2, 1]. We get C' = 9/6 = 1.5. The numbers of tasks 

assigned to processors at the first stage are, respectively, 4, 3, and 1. A corre-

sponding schedule is given in Figure 5.1.15(a), where task T9 has not yet been 

assigned. An optimal schedule is obtained if this task is assigned to processor P1 , 

cf. Figure 5.1.15(b).  
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Figure 5.1.15 Schedules for Example 5.1.18 

 (a) a partial schedule, 
 (b) an optimal schedule. 

Problem Q | | Cmax 

Since other problems of non-preemptive scheduling of independent tasks are NP-

hard, one may be interested in applying certain heuristics. One heuristic algo-

rithm which is a list scheduling algorithm, has been presented by Liu and Liu 

[LL74a]. Tasks are ordered on the list in non-increasing order of their processing 

times and processors are ordered in non-increasing order of their processing 

speeds. Now, whenever a machine becomes free it gets the first non-assigned 

task of the list; if there are two or more free processors, the fastest is chosen. The 

worst-case behavior of the algorithm has been evaluated for the case of an m + 1 

processor system, m of which have processing speed factor equal to 1 and the 

remaining processor has processing speed factor b. The bound is as follows. 
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R = 

�
�
  

 

 

 

 

 

2(m+b)

b+2
 for b � 2 

m+b
2

 for b > 2 . 

It is clear that the algorithm does better if, in the first case (b � 2), m decreases 

faster than b, and if b and m decrease in case of b > 2. Other algorithms have 

been analyzed by Liu and Liu [LL74b, LL74c] and by Gonzalez et al. [GIS77].  

Problem Q | pmtn | Cmax 

By allowing preemptions, i.e. for the problem Q | pmtn | Cmax , one can find opti-

mal schedules in polynomial time. We present an algorithm given by Horvath et 

al. [HLS77] despite the fact that there is a more efficient one by Gonzalez and 

Sahni [GS78]. We do this because the first algorithm covers also precedence 

constraints, and it generalizes the ideas presented in Algorithm 5.1.13. The algo-

rithm is based on two concepts: the task level, defined as previously as pro-

cessing requirement of the unexecuted portion of a task, but now expressed in 

terms of a standard processing time, and processor sharing, i.e. the possibility of 

assigning only a fraction * (0 � * � max{bi}) of processing capacity to some 

task. Let us assume that tasks are indexed in order of non-increasing pj's and pro-

cessors are in order of non-increasing values of bi . It is quite clear that the mini-

mum schedule length can be estimated by  

C *  
max � C = max{ max

1 � k � m
{

Xk
Bk

}, {
Xn
Bm

} }   (5.1.22) 

where Xk is the sum of processing requirements (i.e. standard processing times 

pj) of the first k tasks, and Bk is the collective processing capacity (i.e. the sum of 

processing speed factors bi) of the first k processors. The algorithm presented 

below constructs a schedule of length equal to C for the problem Q | pmtn | Cmax . 

Algorithm 5.1.19  Algorithm by Horvath, Lam and Sethi for Q | pmtn | Cmax 

[HLS77]. 

begin 
for all T � T do Compute level of task T; 

t := 0; h := m; 
repeat 
 while h > 0 do 

  begin 

  Construct subset S  of T  consisting of tasks at the highest level; 

   -- the most "urgent" tasks are chosen 
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  if |S | > h 

  then 
   begin 

Assign the tasks of set S  to the h remaining processors to be processed 

at the same rate * = �
i = m�h+1

m
 bi / 

|S |; 

   h := 0; -- tasks from set S  share the h slowest processors 
   end 
  else 
   begin 

Assign tasks from set S  to be processed at the same rate * on the fastest 

|S | processors; 

   h := h � |S |; -- tasks from set S  share the fastest | S | processors 

   end; 
  end; -- the most urgent tasks have been assigned at time t 

Calculate time moment 7 at which either one of the assigned tasks is finished 

or a point is reached at which continuing with the present partial assign-

ment causes that a task at a lower level will be executed at a faster rate * 

than a higher level task; 
  -- note, that the levels of the assigned tasks decrease during task execution 

Decrease levels of the assigned tasks by (7 � t)*; 

t := 7 ; h := m; 
  -- a portion of each assigned task equal to (7 � t)* has been processed 

until all tasks are finished; 
 -- the schedule constructed so far consists of a sequence of intervals during each  

 -- of which certain tasks are assigned to the processors in a shared mode. 

 -- In the next loop task assignment in each of these intervals is determined 

for each interval of the processor shared schedule do 

 begin 
 Let y be the length of the interval; 

 if g tasks share g processors 

 then Assign each task to each processor for y/g time units 
 else 

  begin 

Let p be the processing requirement of each of the g tasks in the inter-

val; 

Let b be the processing speed factor of the slowest processor; 

  if p/b < y 

  then call Algorithm 5.1.8 
 -- tasks can be assigned as in McNaughton's rule,  
 -- ignoring different processor speeds 
  else 
   begin 
   Divide the interval into g subintervals of equal lengths; 
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Assign the g tasks so that each task occurs in exactly h intervals, each 

time on a different processor; 
   end; 
  end; 
 end; 
 -- a normal preemptive schedule has now been constructed 
end; 

The time complexity of Algorithm 5.1.19 is O(mn2
). An example of its applica-

tion is shown in Figure 5.1.16. 
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Figure 5.1.16 An example of the application of Algorithm 5.1.19: n = 6, m = 2,  

p = [20, 24, 10, 12, 5, 4], b = [4, 1] 
(a) a processor shared schedule, 
(b) an optimal schedule. 

Problem Q | pmtn, prec | Cmax 

When considering dependent tasks, only preemptive polynomial time optimiza-

tion algorithms are known. Algorithm 5.1.19 also solves problem Q2 | pmtn, 

prec | Cmax , if the level of a task is understood as in Algorithm 5.1.13 where 

standard processing times for all the tasks were assumed. When considering this 

problem one should also take into account the possibility of solving it for uni-

connected activity networks and interval orders via the slightly modified linear 

programming approach (5.1.14)-(5.1.15). It is also possible to solve the problem 

by using another LP formulation which is described for the case of R | pmtn | 

Cmax.  

It is also possible to solve problem Q | pmtn, prec | Cmax approximately by the 

two machine aggregation approach, developed in the framework of flow shop 
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scheduling [RS83] (cf. Chapter 8). In this case the two fastest processors are used 

only, and the worst case bound is 

Cmax
C *  

max
  ��� 

�.
�
. 

 

 

 

 

 

 

�
i=1

m/2

 max{b2i�1 /b1 , b2i /b2} if m is even, 

�
i=1

�m/2�
 max{b2i�1 /b1 , b2i /b2} + bm /b1 if m is odd. 

Problem R | pmtn | Cmax 

Let us pass now to the case of unrelated processors. This case is the most diffi-

cult. We will not speak about unit-length tasks, because unrelated processors 

with unit length tasks would reduce to the case of identical or uniform proces-

sors. Hence, no polynomial time optimization algorithms are known for prob-

lems other than preemptive ones. Also, very little is known about approximation 

algorithms for this case. Some results have been obtained by Ibarra and Kim 

[IK77], but the obtained bounds are not very encouraging. Thus, we will pass to 

the preemptive scheduling model.  

Problem R | pmtn | Cmax can be solved by a two-phase method. The first phase 

consists in solving a linear programming problem formulated independently by 

B)�la &zewicz et al. [BCSW76a, BCW77] and by Lawler and Labetoulle [LL78]. 

The second phase uses the solution of this LP problem and produces an optimal 

preemptive schedule. 

Let xij � [0, 1] denote the part of Tj processed on Pi . The LP formulation is 

as follows: 

Minimize Cmax (5.1.23) 

subject to Cmax � �
j=1

n
 pij xij � 0 ,  i = 1, 2,..., m (5.1.24) 

 Cmax � �
i=1

m
 pij xij � 0 ,  j = 1, 2,..., n (5.1.25) 

� �
i=1

m
 xij = 1 ,  j = 1, 2,..., n . (5.1.26) 

Solving the above problem, we get Cmax = C *  
max and optimal values x* 

ij  . 

However, we do not know how to schedule the task parts, i.e. how to assign these 

parts to processors in time. A schedule may be constructed in the following way. 

Let T = [t* 
ij ] be the m � n matrix defined by t* 

ij  = pij x* 
ij  , i = 1, 2,..., m, j = 1, 

2,..., n. Notice that the elements of T reflect optimal values of processing times 

of particular tasks on the processors. The jth column of T corresponding to task Tj 
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will be called critical if �
i=1

m
 t* 

ij  = C *  
max. By Y we denote an m � m diagonal matrix 

whose element ykk is the total idle time on processor Pk, i.e. ykk = C *  
max � �

j=1

n
 t* 

kj  . 

Columns of Y correspond to dummy tasks. Let V = [T,Y] be an m � (n + m) ma-

trix. Now set U  containing m positive elements of matrix V is defined as having 

exactly one element from each critical column and at most one element from 

other columns, and having exactly one element from each row. We see that U  

corresponds to a task set which may be processed in parallel in an optimal sched-

ule. Thus, it may be used to construct a partial schedule of some length , > 0. An 

optimal schedule is then produced as the union of the partial schedules. This pro-

cedure is summarized in Algorithm 5.1.20 [LL78].  

Algorithm 5.1.20  Construction of an optimal schedule corresponding to LP 
solution for R | pmtn | Cmax. 

begin 

C := C *  
max; 

while C > 0 do 

 begin 

 Construct set U ; 
  -- thus a subset of tasks to be processed in a partial schedule has been chosen 

 vmin := min
vij � U

 {vij}; 

 vmax := maxj � {j' | vij' 	U  for i = 1,...,m}{�i v
ij
}; 

 if C � vmin � vmax  

 then , := vmin 

 else , := C � vmax; 
  -- the length of the partial schedule is equal to , 

 C := C � ,; 

 for each vij � U do vij := vij � ,; 
  -- matrix V is changed; notice that due to the way , is defined,  

  -- the elements of V can never become negative  
 end; 
end; 
The proof of correctness of the algorithm can be found in [LL78]. 

Now we only need an algorithm that finds set U  for a given matrix V. One of the 

possible algorithms is based on the network flow approach. In this case the net-

work has m nodes corresponding to machines (rows of V) and n + m nodes corre-

sponding to tasks (columns of V), cf. Figure 5.1.17. A node i from the first group 

is connected by an arc to a node j of the second group if and only if vij > 0. Arc 
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flows are constrained by b from below and by c = 1 from above, where the value 

of b is 1 for arcs joining the source with processor-nodes and critical task nodes 

with the sink, and b = 0 for the other arcs. Obviously, finding a feasible flow in 

this network is equivalent to finding set U . The following example illustrates the 

second phase of the described method. 

SOURCE SINK

Processors
Tasks

1

2

m

1

n

n+1

n+m

n+2

 

Figure 5.1.17 Finding set U   by the network flow approach. 
 

Example 5.1.21  Suppose that for a certain scheduling problem a linear pro-

gramming solution of the two phase method has the form given in Figure 

5.1.18(a). An optimal schedule is then constructed in the following way. First, 

matrix V is calculated. 

        T1 T2 T3 T4 T5      T6 T7 T8 

V  =  

P1

P2

P3

 
�
8
8
9

�
:
:
;  3  2  1  4  0 

  2  2  0  2  2 

  2  1  4  0  1 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  2  0 

  0  0  2 
 

         7  5  5  6  3         0  2  2  

Then elements constituting set U  are chosen according to Algorithm 5.1.20, 

as depicted above. The value of a partial schedule length is , = 2. Next, the 

while-loop of Algorithm 5.1.20 is repeated yielding the following sequence of 

matrices Vi . 

V1 =  
�
8
8
9

�
:
:
;  1  2  1  4  0 

  2  2  0  0  2 

  2  1  2  0  1 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  2  0 

  0  0  2 
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V2 =  
�
8
8
9

�
:
:
;  1  2  1  2  0 

  2  0  0  0  2 

  0  1  2  0  1 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  2  0 

  0  0  2 
 

V3 =  
�
8
8
9

�
:
:
;  1  0  1  2  0 

  0  0  0  0  2 

  0  1  0  0  1 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  2  0 

  0  0  2 
 

V4 =  
�
8
8
9

�
:
:
;  1  0  1  1  0 

  0  0  0  0  1 

  0  0  0  0  1 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  2  0 

  0  0  2 
 

V5 =  
�
8
8
9

�
:
:
;  0  0  1  1  0 

  0  0  0  0  0 

  0  0  0  0  1 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  2  0 

  0  0  1 
 

V6 =  
�
8
8
9

�
:
:
;  0  0  0  1  0 

  0  0  0  0  0 

  0  0  0  0  0 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  1  0 

  0  0  1 
 . 

A corresponding optimal schedule is presented in Figure 5.1.18(b).  

(a) 

0 42 6 8 10

T5

T5T4

T3 T4T2T1

T1 T2

T1 T2 T3
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t

Cmax
* = 10

 

(b) 

P1
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P3

0 42 6 8 10 t
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T2
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T2

T1

T3

T4

T5

T2

T1

T5

T3 T4

T5

 

Figure 5.1.18 (a) A linear programming solution for an instance of 
R | pmtn | Cmax , 
(b) an optimal schedule. 
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The overall complexity of the above approach is bounded from above by a poly-

nomial in the input length. This is because the transformation to the LP problem 

is polynomial, and the LP problem may be solved in polynomial time using Kha-

chiyan's algorithm [Kha79]; the loop in Algorithm 5.1.20 is repeated at most 

O(mn) times and solving the network flow problem requires O(z3
) time, where z 

is the number of network nodes [Kar74]. 

Problem R | pmtn, prec | Cmax 

If dependent tasks are considered, i.e. in the case R | pmtn, prec | Cmax , linear pro-

gramming problems similar to those discussed in (5.1.14)-(5.1.15) or (5.1.23)-

(5.1.26) and based on the activity network presentation, can be formulated. For 

example, in the latter formulation one defines xijk as a part of task Tj processed on 

processor Pi in the main set Sk . Solving the LP problem for xijk , one then applies 

Algorithm 5.1.20 for each main set. If the activity network is uniconnected (a 

corresponding task-on-node graph represents an interval order), an optimal 

schedule is constructed in this way, otherwise only an approximate schedule is 

obtained. Notice that in [JMR+04] a two-phase method has been proposed for 

problem P | pmtn, uan | Cmax with the McNaughton algorithm applied for each 

main set. This reduces the complexity of the second phase to O(n2
). In this paper 

also several heuristics for ordering network nodes have been proposed and tested 

experimentally, leading finally to an almost optimal algorithm for problem 

P | pmtn, prec | Cmax . 

We complete this chapter by remarking that introduction of ready times into the 

model considered so far is equivalent to the problem of minimizing maximum 

lateness. We will consider this type of problems in Section 5.3. 

5.2 Minimizing Mean Flow Time 

5.2.1 Identical Processors 

Problem P | | �� Cj 

In the case of identical processors and equal ready times preemptions are not 

profitable from the viewpoint of the value of the mean flow time [McN59]. Thus, 

we can limit ourselves to considering non-preemptive schedules only. 

When analyzing the nature of criterion � Cj , one might expect that, as in the 

case of one processor (cf. Section 4.2), by assigning tasks in non-decreasing or-

der of their processing times the mean flow time will be minimized. In fact, a 
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proper generalization of this simple rule leads to an optimization algorithm for 

P | | � Cj (Conway et al. [CMM67]). It is as follows. 

Algorithm 5.2.1  SPT rule for problem P | | � Cj [CMM67]. 

begin 
Order tasks on list L in non-decreasing order of their processing times; 

while L � � do 
 begin 

Take the m first tasks from the list (if any) and assign these tasks arbitrarily to 

the m different processors; 

 Remove the assigned tasks from list L; 
 end; 
Process tasks assigned to each processor in SPT order; 
end; 
The complexity of the algorithm is obviously O(nlogn). 

In this context let us also mention that introducing different ready times 

makes the problem strongly NP-hard even for the case of one processor (see Sec-

tion 4.2 and [LRKB77]). Also, if we introduce different weights, then the 2-

processor problem without release times, P2 | | � wjCj , is already NP-hard 

[BCS74]. 

Problem P | prec | �� Cj 

Let us now pass to the case of dependent tasks. Here, P | out-tree, pj = 1 | � Cj is 

solved by an adaptation of Algorithm 5.1.11 (Hu's algorithm) to the out-tree case 

[Ros�], and P2 | prec, pj = 1 | � Cj is strongly NP-hard [LRK78]. In the case of 

arbitrary processing times results by Du et al. [DLY91] indicate that even sim-

plest precedence constraints result in computational hardness of the problem. 

That is problem P2 | chains | � Cj is already NP-hard in the strong sense. On the 

other hand, it was also proved in [DLY91] that preemptions cannot reduce the 

mean weighted flow time for a set of chains. Together with the last result this 

implies that problem P2 | chains, pmtn | � Cj is also NP-hard in the strong sense. 

Unfortunately, no approximation algorithms for these problems are evaluated 

from their worst-case behavior point of view. 

5.2.2 Uniform and Unrelated Processors 

The results of Section 5.2.1 also indicate that scheduling dependent tasks on uni-

form or unrelated processors is an NP-hard problem in general. No approxima-

tion algorithms have been investigated either. Thus, we will not consider this 

subject. On the other hand, in the case of independent tasks, preemptions may be 
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worthwhile, thus we have to treat non-preemptive and preemptive scheduling 

separately.  

Problem Q | | �� Cj 

Let us start with uniform processors and non-preemptive schedules. In this case 

the flow time has to take into account processor speed; so the flow time of task 

Ti[k] processed in the kth position on processor Pi is defined as Fi[k] = 
1

bi
 �
j=1

k
 pi[j] . 

Let us denote by ni the number of tasks processed on processor Pi. Thus, n = 

�
i=1

m
 ni . The mean flow time is then given by  

F
_

  =  

�
i=1

m
 
1

bi
 �
k=1

ni

(ni � k + 1)pi[k]

n   . (5.2.1) 

It is easy to see that the numerator in the above formula is the sum of n terms 

each of which is the product of a processing time and one of the following coef-

ficients: 

1

b1
n1, 

1

b1
(n1 � 1) ,...,

1

b1
, 1

b2
n2, 

1

b2
(n2 � 1) ,...,

1

b2
,...,  

1

bm
nm, 

1

bm
(nm � 1) ,...,  

1

bm
 . 

It is known from [CMM67] that such a sum is minimized by matching n smallest 

coefficients in non-decreasing order with processing times in non-increasing or-

der. An O(nlogn) implementation of this rule has been given by Horowitz and 

Sahni [HS76]. 

Problem Q | pmtn | � Cj 

In the case of preemptive scheduling, it is possible to show that there exists an 

optimal schedule for Q | pmtn | � Cj in which Cj � Ck if pj < pk . On the basis of 

this observation, the following algorithm has been proposed by Gonzalez 

[Gon77].  

Algorithm 5.2.2  Algorithm by Gonzalez for Q | pmtn | � Cj [Gon77]. 

begin 
Order processors in non-increasing order of their processing speed factors; 

Order tasks in non-decreasing order of their standard processing times; 

for j = 1 to n do 

 begin 
Schedule task Tj to be completed as early as possible, preempting when  

necessary; 
  -- tasks will create a staircase pattern "jumping" to a faster processor  

  -- whenever a shorter task has been finished 
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 end; 

end; 

t

Tm+2Tm+1Tm

T4T3 T5

T1

T2

T2

T3

T3

T4

T4P1

P2

P3

Pm

0  

Figure 5.2.1 An example of the application of Algorithm 5.2.2. 

The complexity of this algorithm is O(nlog n + mn). An example of its application 

is given in Figure 5.2.1. 

Problem R | | �� Cj 

Let us now turn to the case of unrelated processors and consider problem 

R | | � Cj . An approach to its solution is based on the observation that task Tj � 

{T1 ,..., Tn} processed on processor Pi � {P1 ,..., Pm} as the last task contributes 

its processing time pij to F
 _

. The same task processed in the last but one position 

contributes 2pij , and so on [BCS74]. This reasoning allows one to construct an 

(m n) � n matrix Q presenting contributions of particular tasks processed in dif-

ferent positions on different processors to the value of F
_

: 

Q = 

�
8
8
9

�
:
:
;[pij] 

2[pij] 

.

.

.

n[pij] 

 

The problem is now to choose n elements from matrix Q such that 

� exactly one element is taken from each column, 

� at most one element is taken from each row, 

� the sum of selected elements is minimum. 

We see that the above problem is a variant of the assignment problem (cf. 

[Law76]), which may be solved in a natural way via the transportation problem. 

The corresponding transportation network is shown in Figure 5.2.2. 
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Careful analysis of the problem shows that it can be solved in O(n3
) time 

[BCS74]. The following example illustrates this technique. 

Example 5.2.3  Let us consider the following instance of problem R | | � Cj : 

n = 5, m = 3, and matrix p of processing times 

p = 

�
8
8
9

�
:
:
; 3  2  4  3  1 

 4  3  1  2  1 

 2  4  5  3  4 
 . 

Using this data the matrix Q is constructed as follows: 

Q =  

�
8
8
8
8
8
8
8
9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 2 4 3 1 

 4 3 1 2 1 

 2 4 5 3 4 

 6 4 8 6 2 

 8 6 2 4 2 

 4 8 10 6 8 

 9 6 12 9 3 

 12 9 3 6 3 

 6 12 15 9 12 

 12 8 16 12 4 

 16 12 4 8 4 

 8 16 20 12 16 

 15 10 20 15 5 

 20 15 5 10 5 

 10 20 25 15 20 �
:
:
:
:
:
:
:
;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

On the basis of this matrix a network as shown in Figure 5.2.2 is constructed. 

1 1

i j

mn n

source
s t

sink

n n�m
arcs

(1,q  )

total flow (n,0)

(1,0)

ij

arcs

n n�m
arcs

(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

arcs

 

Figure 5.2.2 The transportation network for problem R | | � Cj : arcs are denot-
ed by (c, y), where c is the capacity and y is the cost of unit flow. 



 5.3  Minimizing Due Date Involving Criteria 177 

 

Solving the transportation problem results in the selection of the underlined ele-

ments of matrix Q. They correspond to the schedule shown in Figure 5.2.3.   

A very surprising result has been recently obtained by Sitters. Problem  R | pmtn | 

� Cj has been proved to be strongly NP-hard [Sit05]. 

0 1 2 3 t

T4

T1

T5 T2

T3

P1

P2

P3

F   =    �Cj = 10/5 = 2* 1�
n

�

 

Figure 5.2.3 An optimal schedule for Example 5.2.3. 

5.3 Minimizing Due Date Involving Criteria 

5.3.1 Identical Processors 

In Section 4.3 we have seen that single processor problems with due date optimi-

zation criteria involving due dates are NP-hard in most cases. In the following we 

will concentrate on minimization of Lmax criterion. It seems to be quite natural 

that in this case the general rule should be to schedule tasks according to their 

earliest due dates (EDD-rule, cf. Section 4.3.1). However, this simple rule of 

Jackson [Jac55] produces optimal schedules under very restricted assumptions 

only. In other cases more sophisticated algorithms are necessary, or the problems 

are NP-hard.  

Problem P | | Lmax 

Let us start with non-preemptive scheduling of independent tasks. Taking into 

account simple transformations between scheduling problems (cf. Section 3.4) 

and the relationship between the Cmax and Lmax criteria, we see that all the prob-

lems that are NP-hard under the Cmax criterion remain NP-hard under the Lmax 

criterion. Hence, for example, P2 | | Lmax is NP-hard. On the other hand, unit pro-

cessing times of tasks make the problem easy, and P | pj = 1, rj | Lmax can be solved 

by an obvious application of the EDD rule [Bla77]. Moreover, problem P | pj = p, 

rj | Lmax can be solved in polynomial time by an extension of the single processor 

algorithm (see Section 4.3.1 and [GJST81]). Unfortunately very little is known 

about the worst-case behavior of approximation algorithms for the NP-hard prob-

lems in question. 



178 5  Scheduling on Parallel Processors 

 

Problem P | pmtn, rj | Lmax 

The preemptive mode of processing makes the solution of the scheduling prob-

lem much easier. The fundamental approach in that area is testing feasibility of 

problem P | pmtn, rj , d
~

j | � via the network flow approach [Hor74]. Using this ap-

proach repetitively, one can then solve the original problem P | pmtn, rj | Lmax by 

changing due dates (deadlines) according to a binary search procedure.  

Let us now describe Horn's approach for testing feasibility of problem 

P | pmtn, rj , d
~

j | �, i.e. deciding whether or not for a given set of ready times and 

deadlines there exists a schedule with no late task. Let the values of ready times 

and deadlines of an instance of P | pmtn, rj , d
~

j | � be ordered on a list in such a 

way that e0 < e1 <...< ek , k < 2n, where ei stands for some rj or d~j . We construct a 

network that has two sets of nodes, besides source and sink (cf. Figure 5.3.1). 

The first set corresponds to time intervals in a schedule, i.e. node wi corresponds 

to interval [ei�1 , ei], i = 1, 2,..., k. The second set corresponds to the task set. The 

capacity of an arc joining the source of the network to node wi is equal to m(ei � 

ei�1) and thus corresponds to the total processing capacity of m processors in this 

interval. If task Tj could be processed in interval [ei�1 , ei] (because of its ready 

time and deadline) then wi is joined to Tj by an arc of capacity ei � ei�1 . Node Tj 

is joined to the sink of the network by an arc with capacity equal to pj and with a 

lower bound on arc flow which is also equal to pj . We see that finding a feasible 

flow pattern corresponds to constructing a feasible schedule and this test can be 

made in O(n3
) time (cf. Section 2.3.3). A schedule is constructed on the basis of 

flow values on arcs between interval and task nodes. Let us consider the follow-

ing example. 

c  = m(e �e    ) c=e �e

w1

w2

wk

T1

T2

Tn

k-1kk

b=p
c=p2

2

c =m(e �e )1 1 0

c =m(e  �e )12 2

c = e �e1 0
b=p
c=p

1
1

b=p
c=p

n
n

k-1k

 

Figure 5.3.1 Network corresponding to problem P | pmtn, rj, d
~

j | � ' 

Example 5.3.1  Let n = 5, m = 2, p = [5, 2, 3, 3, 1], r = [2, 0, 1, 0, 2], and d = [8, 2, 

4, 5, 8]. The corresponding network is shown in Figure 5.3.2(a), and a feasible 
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flow pattern is depicted in Figure 5.3.2(b). On the basis of this flow the feasible 

schedule shown in Figure 5.3.2(c) is constructed.   

(a)
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(c)

      t0 1 2 4 5 8

T2 T2 T3 T1 T1

T4 T3 T4 T1 T4 T5

P1

P2

 

Figure 5.3.2 Finding a feasible schedule via network flow approach (Example 
5.3.1) 
(a) a corresponding network, 
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(b) a feasible flow pattern, 
(c) a schedule. 

In the next step a binary search can be conducted on the optimal value of Lmax, 

with each trial value of Lmax inducing deadlines which are checked for feasibility 

by means of the above network flow computation. This procedure can be imple-

mented to solve problem P | pmtn, rj | Lmax in O(n3
 min{n2

, logn + log max{pj}}) 

time [LLL+84]. 

Problem P | prec, pj = 1 | Lmax 

Let us now pass to dependent tasks. A general approach in this case consists in 

assigning modified due dates to tasks, depending on the number and due dates of  

their successors. Of course, the way in which modified due dates are calculated 

depends on the parameters of the problem in question. If scheduling non-

preemptable tasks on a multiple processor system only unit processing times can 

result in polynomial time scheduling algorithms. Let us start with in-tree prece-

dence constraints and assume that if Ti ≺ Tj then i > j. The following algorithm 

minimizes Lmax (isucc(j) denotes the immediate successor of Tj) [Bru76b]. 

Algorithm 5.3.2  Algorithm by Brucker for P | in-tree, pj = 1 | Lmax [Bru76b]. 

begin 
d*

1 := 1 � d1; -- the due date of the root node is modified 

for k = 2 to n do 

 begin 
 Calculate modified due date of Tk according to the formula  

  d *k  := max {1 + d *       
isucc(k) , 1 � dk}; 

 end; 

Schedule tasks in non-increasing order of their modified due dates subject to 

precedence constraints; 
end; 

This algorithm can be implemented to run in O(nlogn) time. An example of its 

application is given in Figure 5.3.3. Surprisingly out-tree precedence constraints 

result in the NP-hardness of the problem [BGJ77].  

However, when we limit ourselves to two processors, a different way of 

computing modified due dates can be proposed which allows one to solve the 

problem in O(n2
) time [GJ76]. In the algorithm below g(k, d *i ) is the number of 

successors of Tk having modified due dates not greater than d *i .  
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Figure 5.3.3 An example of the application of Algorithm 5.3.2;  

n = 32, m = 4, d = [16, 20, 4, 3, 15, 14, 17, 6, 6, 4, 10, 8, 9, 7, 10, 9, 10, 8, 

2, 3, 6, 5, 4, 11, 12, 9, 10, 8, 7, 5, 3, 5] 
(a) the task set, 
(b) an optimal schedule. 
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Algorithm 5.3.3   Algorithm by Garey and Johnson for problem P2 | prec,  

pj = 1 | Lmax [GJ76]. 

begin 
Z  := T ; 

while Z  � � do 

 begin 
Choose Tk � Z  which is not yet assigned a modified due date and all of whose 

successors have been assigned modified due dates; 

 Calculate a modified due date of Tk as: 

  d *k  := min{dk , min{(d *i  � 91
2 g(k, d *i ); ) � Ti � succ(Tk)}}; 

 Z  := Z  � {Tk}; 

 end; 

Schedule tasks in non-decreasing order of their modified due dates subject to 

precedence constraints; 
end; 

For m > 2 this algorithm may not lead to optimal schedules, as demonstrated in 

the example in Figure 5.3.4. However, the algorithm can be generalized to cover 

the case of different ready times too, but the running time is then O(n3
) [GJ77] 

and this is as much as we can get in non-preemptive scheduling.  

Problem P | pmtn, prec | Lmax 

Preemptions allow one to solve problems with arbitrary processing times. In 

[Law82b] algorithms have been presented that are preemptive counterparts of 

Algorithms 5.3.2 and 5.3.3 and the one presented by Garey and Johnson [GJ77] 

for non-preemptive scheduling and unit-length tasks. Hence problems P | pmtn, 

in-tree | Lmax , P2 | pmtn, prec | Lmax and P2 | pmtn, prec, rj | Lmax are solvable in 

polynomial time. Algorithms for these problems employ essentially the same 

techniques for dealing with precedence constraints as the corresponding algo-

rithms for unit-length tasks. However, the algorithms are more complex and will 

not be presented here. 
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5.3.2 Uniform and Unrelated Processors 

Problem Q | | Lmax 

From the considerations of Section 5.3.1 we see that non-preemptive scheduling 

to minimize Lmax is in general a hard problem. Only for the problem Q | pj = 

1 | Lmax a polynomial time optimization algorithm is known. This problem can be 

solved via a transportation problem formulation as in (5.1.16) - (5.1.19), where 

now cijk = k/bi � dj . Thus, from now on we will concentrate on preemptive sched-

uling. 
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Figure 5.3.4 Non-optimal schedules generated by Algorithm 5.3.3 for m=3, 
n=15, and all due dates dj = 5 
(a) a task set (all tasks are denoted by Tj /d 

*
j ), 

(b) a schedule constructed by Algorithm 5.3.3, 
(c) an optimal schedule. 
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Problem Q | pmtn | Lmax 

One of the most interesting algorithms in that area has been presented for prob-

lem Q | pmtn, rj | Lmax by Federgruen and Groenevelt [FG86]. It is a generalization 

of the network flow approach to the feasibility testing of problem P | pmtn, rj , 

d~j | � described above. The feasibility testing procedure for problem Q | pmtn, rj , 

d~j | � uses tripartite network formulation of the scheduling problem, where the 

first set of nodes corresponds to tasks, the second corresponds to processor-

interval (period) combination and the third corresponds to interval nodes. The 

source is connected to each task node, the arc to the jth node having capacity pj , 

j = 1, 2,..., n. A task node is connected to all processor-interval nodes for all in-

tervals during which the task is available. All arcs leading to a processor-interval 

node that corresponds to a processor of type r (processors of the same speed may 

be represented by one node only) and an interval of length 7, have capacity (br � 

br+1)7, with the convention bm+1 = 0. Every node (wi , r) corresponding to proces-

sor type r and interval wi of length 7i , i = 1, 2,..., k , is connected to interval node 

wi and has capacity �j=1

r  
 mj(br � br+1)7i , where mj denotes the number of proces-

sors of the jth type (cf. Figure 5.3.5). Finally, all interval nodes are connected to 

the sink with incapacitated arcs. Finding a feasible flow with value �j=1

n  
 pj in such 

a network corresponds to a construction of a feasible schedule for Q | pmtn, rj , 

d~j | � . This can be done in O(mn3
) time. 

Problem Q | pmtn, prec | Lmax 

In case of precedence constraints, Q2 | pmtn, prec | Lmax and Q2 | pmtn, prec, rj |

 Lmax can be solved in O(n2
) and O(n6

) time, respectively, by the algorithms al-

ready mentioned [Law82b].  

Problem R | pmtn | Lmax 

As far as unrelated processors are concerned, problem R | pmtn | Lmax can be 

solved by a linear programming formulation similar to (5.1.23) - (5.1.26) [LL78], 

where xij
k
 denotes the amount of Tj processed on Pi in time interval [dk�1 + Lmax , 

dk + Lmax], and where due dates are assumed to be ordered, d1 < d2 <...< dn . 

Thus, we have the following formulation: 

Minimize Lmax (5.3.1) 
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Figure 5.3.5 A network corresponding to scheduling problem Q | pmtn, rj, d
~

j | � 
for three processor types.
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subject to � �
i=1

m
 pij x(1)

ij   � d1 + Lmax , j = 1, 2,..., n (5.3.2) 

� �
i=1

m
 pij x(k)

ij   � dk � dk�1 , j = k, k + 1,..., n; k = 2, 3,..., n (5.3.3) 

� �
j=1

n
 pij x(1)

ij   � d1 + Lmax , i = 1, 2,..., m (5.3.4) 

� �
j=k

n
 pij x(k)

ij   � dk � dk�1 , i = 1, 2,..., m; k = 2, 3,..., n (5.3.5) 

� �
i=1

m
 �
k=1

j
 x(k)

ij   = 1  j = 1, 2,..., n . (5.3.6) 

Solving the LP problem we obtain n matrices T(k)
 = [t(k)*

ij   ], k = 1,..., n; then 

an optimal solution is constructed by an application of Algorithm 5.1.20 to each 

matrix separately.  

In this context let us also mention that the case when precedence constraints 

form a uniconnected activity network (or interval order in a different presenta-

tion), can also be solved via the same modification of the LP problem as de-

scribed for the Cmax criterion [Slo81]. 

5.4 Lot Size Scheduling 

In this section the more advanced model of lot size scheduling on parallel pro-

cessors is presented. Consider the same problem as discussed in Section 4.4.2 but 
now instead of one processor there are m processors available for processing all 
tasks of all job types. Recall that the lot size scheduling problem can be solved in 
O(H) time for one processor and two job types only, where H is the sum of tasks 
of the two given jobs. In the following we want to investigate the problem in-
stance with two job types again but now allowing multiple identical processors. 
First we introduce some basic notation. Then the algorithm is presented without 
considering inventory restriction; later we show how to take these limitations 
into account.  

Assume that m identical processors Pi , i = 1, ..., m are available for pro-
cessing the set of jobs J which consist of two types only; due to capacity re-
strictions we want to assume that the final schedule is tight. Considering a num-
ber m > 1 of processors we must determine to which unit time interval (UTI) on 
which processors a job has to be assigned. Because of continuous production 
requirements we might also assume an assignment of UTI h = 0 to some job type; 
this can be interpreted as an assignment of some job type to the last UTI of the 
preceding schedule. 
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The idea of the algorithm is to assign task after task of the two job types, 
now denoted by q and r, to empty UTI such that all deadlines are met and no oth-
er assignment can reduce change-over cost. In order to do this we have to classify 
UTIs appropriately. Based on this classification we will present the algorithm. 
With respect to each deadline dk we define a "sequence of empty UTI" (SEU) as 
a processing interval [h*, h*

 + u � 1] on some processor consisting of u consecu-
tive and empty UTI. UTI h*

 � 1 is assigned to some job; UTI h*
 + u is either also 

assigned to some job or it is the first UTI after the occurrence of the deadline. 
Each SEU can be described by a 3-tuple (i , h*, u) where i is the number of the 
processor on which the SEU exists, h* the first empty UTI and u the number of 
the UTI in this SEU. 

We differentiate between "classes" of SEU by considering the job types as-
signed to neighboring UTI h*

 � 1 and h*
 + u of each SEU. In case h*

 + u has no 
assignment we denote this by "E"; all other assignments of UTI are denoted by 
the number of the corresponding job type. Now a "class" is denoted by a pair [x , 
y] where x, y � {q , r , E}. This leads to nine possible classes of SEU from which 
only classes [q , r], [q , E], [r , q], and [r , E], have to be considered. 

Figure 5.4.1 illustrates these definitions using an example with an assign-
ment for UTI h = 0. For d1 = 6 we have a SEU (2,6,1) of class [1, E]; for d2 = 11 
we have (1, 9, 3) of class [1, E], (2, 6, 2) of class [1, 2], (2, 10, 2) of class [2, E]. 

For each dk we have to schedule nqk � 0 and nrk � 0 tasks. We schedule the 
corresponding jobs according to non-decreasing deadlines with positive time 
orientation starting with k = 1 up to k = K by applying the following algorithm. 
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0 1 2 3 4 5 6 7 8 9 t

J1 J2J1 J1
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J1 J1 J1

J2J2

J2

J2

 
Figure 5.4.1 Example schedule showing different SEU. 

Algorithm 5.4.1  Lot size scheduling of two job types on identical processors 
(LIM) [PS96]. 
begin 
for k := 1 to K do 
 while tasks required at d~k are not finished do 
  begin 
 if class [j , E] is not empty 
 then Assign job type j to UTI h* of a SEU (i , h*, u) of class [j , E] with 

minimum u 
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 else  
  if classes [q , r] or [r , q] are not empty 
  then Assign job type q(r) to UTI h* of a SEU (i , h*, u) of class  

[q , r] ([r , q]) or if this class is empty to UTI h*
 + u � 1 of a 

SEU (i , h*, u) of class [r , q] ([q , r]) 
  else Assign job type q(r) to UTI h*

 + u � 1 of a SEU (i , h*, u) of 
   class [r , E] ([q , E]) with maximum u; 

Use new task assignment to calculate SEU of classes [r , E], [r , q], [q , r], 
and [q , E]; 

  end; 
end; 

In case the "while"-loop cannot be carried out no feasible schedule for the 
problem under consideration exists. It is necessary to update the classes after 
each iteration because after a task assignment the number u of consecutive and 
empty UTI of the concerned SEU decreases by one and thus the SEU might even 
disappear. Furthermore an assignment of UTI h* or h*

 + u � 1 might force the 
SEU to change the class. 

Let us demonstrate the approach by the following example. Let m = 3, J = 
{J1, J2}, d~1 = 4, d~2 = 8, d~3 = 11, n11 = 3, n12 = 7, n13 = 5, n21 = 5, n22 = 6, n23 = 7 
and zero initial inventory. Let us assume that there is a pre-assignment for h = 0 
such that J1 is processed by P1 and J2 is processed by P2 and P3. In Figure 5.4.2 
the optimal schedule generated by Algorithm 5.4.1 is given. 
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0 1 2 3 4 5 6 7 8 9 t

J1

J2

J1 J1
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10 11
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J2

J1 J1 J1

J2J2 J2J2J2J2

J2 J2J2 J2

J1

J2

J2

12  

Figure 5.4.2 Optimal schedule for the example problem. 

It can be shown that Algorithm 5.4.1 generates an optimal schedule if one exists. 
Feasibility of the algorithm is guaranteed by scheduling the job types according 
to earliest deadlines using only free UTI of the interval [0, dk]. To prove optimal-
ity of the algorithm one has to show that the selection of the UTI for assigning 
the task under consideration is best possible. These facts have been proved in the 
following lemmas [PS96] which are formulated and proved for job type q, but 
they also hold in case of job type r.  
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Lemma 5.4.2  There exists an optimal solution that can be built such that job 
type q is assigned to UTI h* on processor Pi in case the selected SEU belongs to 
classes [q , E] or [q , r]. If the SEU belongs to class [r , E] or [r , q] then q is as-
signed to UTI h*

 + u � 1 on processor Pi .  

Lemma 5.4.3  Algorithm 5.4.1 generates schedules with a minimum number of 
change-overs for two types of jobs.   

The complexity of Algorithm 5.4.1 is O(Hm). 
Let us now investigate how we can consider inventory restrictions for both 

job types, i.e. for each job type an upper bound Bj on in-process inventory is giv-
en. If there are only two job types, limited in-process storage capacity can be 
translated to updated demands of unit time tasks referring to given deadlines dk. 
If processing of some job type has to be stopped because of storage limitations, 
processing of the other job has to be started as Hm = 5j=1,...,n nj. This can be 
achieved by increasing the demand of the other job type, appropriately. 

Assume that a demand and inventory feasible and tight schedule exists for 
the problem instance. Let Njk be the updated demand after some preprocessing 
step now used as input for the algorithm. To define this input more precisely let 
us first consider how many unit time tasks of some job type, e.g. q, have to be 
processed up to some deadline dk:  
� at most the number of tasks of job type q which does not exceed storage limit, 

i.e. Lq = Bq � 5
 i=1,...,k�1 (Nqi � nqi); 

� at least the number of required tasks of job type q, i.e.  
 Dq = nqk � 5

 i=1,...,k�1 (Nqi � nqi); 
� at least the remaining processing capacity reduced by the number of tasks of 

job type r which can be processed feasibly. From this we get Rq = ck � 
5

 i=1,...,k�1 (Nq
i
 + nqi) � (Br � 5

 i=1,...,k�1 (Nri + nri)), where ck = mdk is the total pro-
cessing capacity in the intervals [0, dk] on m processors. 

The same considerations hold respectively for the other job type r. 
With the following lemmas we show how the demand has to be updated 

such that not only feasibility (Lemma 5.4.4) but also optimality (Lemma 5.4.6) 
concerning change-overs is retained. We start with showing that Lj can be omit-
ted if we calculate Njk. 

Lemma 5.4.4 In case that a feasible and tight schedule exists, Lj = Bj � 
5i=1,...,k�1 (Nji � nji) can be neglected.   

From the result of Lemma 5.4.4 we can define Njk more precisely by 



190 5  Scheduling on Parallel Processors 

 

 

Nqk := max{ nqk � 5
 i=1,...,k�1 (Nqi � nqi),  

 ck � 5
 i=1,...,k�1 (Nqi + Nri) � (Br � 5

 i=1,...,k�1 (Nri � nri)} (5.4.1) 

Nrk := max{ nrk � 5
 i=1,...,k�1 (Nri � nri),  

 ck � 5
 i=1,...,k�1 (Nri + Nq

i
) � (Bq � 5i=1,...,k�1 (Nqi � nqi)} (5.4.2) 

One may show [PS96] that after updating all demands of unit time jobs of type q 
according to (5.4.1) the new problem instance is equivalent to the original one. 
We omit the case of job type r and (5.4.2), which directly follows in an analo-
gous way. Notice that the demand will only be updated, if inventory restrictions 
limit assignment possibilities up to a certain deadline dk. Only in this case the k th 
interval will be completely filled with jobs. If no inventory restrictions have to be 
considered equations (5.4.1) and (5.4.2) result in the original demand pattern.  

Lemma 5.4.5  After adapting Nqk according to (5.4.1) the feasibility of the solu-
tion according to the inventory constraints on r is guaranteed.   

Lemma 5.4.6  If  
(i) nqk � 5

 i=1,...,k�1 (Nqi � nqi) �  
ck � 5

 i=1,...,k�1 (Nqi + Nri) � (Br � 5
 i=1,...,k�1 (Nri � nri) 

or  
(ii) nqk � 5

 i=1,...,k�1 (Nqi � nqi) <  
ck � 5

 i=1,...,k�1 (Nqi + Nri) � (Br � 5
 i=1,...,k�1 (Nri � nri) 

for some deadline dk then a demand feasible and optimal schedule can be con-
structed.  

The presented algorithm also solves the corresponding problem instance with 
arbitrary positive change-over cost because for two job types only, minimizing 
the number of change-overs is equivalent to minimizing the sum of their positive 
change-over cost. In order to solve the practical gear-box manufacturing problem 
where more than two job types have to be considered a heuristic has been im-
plemented which uses the ideas of the presented approach. The corresponding 
scheduling rule is considered to be that no unforced change-overs should occur. 
The resulting algorithm is part of a scheduling system, which incorporates a 
graphical representation scheme using Gantt-charts and further devices to give 
the manufacturing staff an effective tool for decision support. For more results on 
the implementation of scheduling systems on the shop floor we refer to Chap-
ter 18. 
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BCSW76b J. Błażewicz, W. Cellary, R. S)�lowiński, J. W,eglarz, Deterministic problems of 
scheduling on parallel processors, Part II. Sets of dependent jobs, Podstawy 
Sterowania 6, 1976, 297-320 (in Polish). 

BCW77 J. Błażewicz, W. Cellary, J. W,eglarz, A strategy for scheduling splittable tasks 

to reduce schedule length, Acta Cybernetica 3, 1977, 99-106. 

BGJ77 P. Brucker, M. R. Garey, D. S. Johnson, Scheduling equal-length tasks under 

treelike precedence constraints to minimize maximum lateness, Math. Oper. 
Res. 2, 1977, 275-284. 

BK00 J. Błażewicz, D. Kobler, On the ties between different graph representation for 

scheduling problems, Report, Poznan University of Technology, Poznan, 2000. 

BK02 J. Błażewicz, D. Kobler,  Review of properties of different precedence  graphs 

for scheduling problems, Eur. J. of Oper. Res. 142, 2002, 435-443. 

Bla77 J. Błażewicz, Simple algorithms for multiprocessor scheduling to meet dead-

lines, Inf. Process. Lett. 6, 1977, 162-164. 

Bru76a J. Bruno, Scheduling algorithms for minimizing the mean weighted flow-time, 

in: E. G. Coffman, Jr. (ed.), Computer and Job-Shop Scheduling Theory, 

J. Wiley, New York, 1976. 

Bru76b P. J. Brucker, Sequencing unit-time jobs with treelike precedence on m proces-

sors to minimize maximum lateness, Proceedings of the IX. International Sym-
posium on Mathematical Programming, Budapest, 1976. 

BT94 B. Braschi, D. Trystram, A new insight into the Coffman-Graham algorithm, 

SIAM J. Comput. 23, 1994, 662-669. 

CD73 E. G. Coffman, Jr., P. J. Denning, Operating Systems Theory, Prentice-Hall, 

Englewood Cliffs, N. J., 1973. 

CFL83 E. G. Coffman, Jr., G. N. Frederickson, G. S. Lueker, Probabilistic analysis of 

the LPT processor scheduling heuristic, unpublished paper, 1983. 



192 5  Scheduling on Parallel Processors 

 

 

CFL84 E. G. Coffman, Jr., G. N. Frederickson, G. S. Lueker, A note on expected 

makespans for largest-first sequences of independent task on two processors, 

Math. Oper. Res. 9, 1984, 260-266. 

CG72 E. G. Coffman, Jr., R. L. Graham, Optimal scheduling for two-processor sys-

tems, Acta Inform. 1, 1972, 200-213. 

CG91 E. G. Coffman, Jr., M. R. Garey, Proof of the 4/3 conjecture for preemptive 

versus nonpreemptive two-processor scheduling, Report, Bell Laboratories, 

Murray Hill, 1991. 

CGJ78 E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, An application of bin-packing 

to multiprocessor scheduling, SIAM J. Comput. 7, 1978, 1-17. 

CGJ84 E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, Approximation algorithms for 

bin packing - an updated survey, in: G. Ausiello, M. Lucertini, P. Serafini 

(eds.), Algorithm Design for Computer System Design, Springer, Vienna, 

1984, 49-106. 

CL75 N.-F. Chen, C. L. Liu, On a class of scheduling algorithms for multiprocessor 

computing systems, in: T.-Y. Feng (ed.), Parallel Processing, Lect. Notes Com-
put. Sc. 24, 1975, 1-16. 

CMM67 R. W. Conway, W. L. Maxwell, L. W. Miller, Theory of Scheduling, Addison-

Wesley, Reading, Mass., 1967. 

Cof73 E. G. Coffman, Jr., A survey of mathematical results in flow-time scheduling 

for computer systems, GI - 3. Jahrestagung, Hamburg, Springer, Berlin, 1973, 

25-46. 

Cof76 E. G. Coffman, Jr. (ed.), Scheduling in Computer and Job Shop Systems, 

J. Wiley, New York, 1976. 

CS76 E. G. Coffman, Jr., R. Sethi, A generalized bound on LPT sequencing, RAIRO-
Informatique 10, 1976, 17-25.  

DL88 J. Du, J. Y-T. Leung, Scheduling tree-structured tasks with restricted execution 

times, Inf. Process. Lett. 28, 1988, 183-188. 

DL89 J. Du, J. Y-T. Leung, Scheduling tree-structured tasks on two processors to 

minimize schedule length, SIAM Discret Math. 2, 1989, 176-196. 

DLY91 J. Du, J. Y-T. Leung, G. H. Young, Scheduling chain structured tasks to mini-

mize makespan and mean flow time, Inform. Comput. 92, 1991, 219-236. 

DW85 D. Dolev, M. K. Warmuth, Scheduling flat graphs, SIAM J. Comput. 14, 1985, 

638-657. 

EH93 K. H. Ecker, R. Hirschberg, Task scheduling with restricted preemptions, in: 

A. Bode, M. Reeve, G. Wolf (eds.), Proceedings of PARLE93 - Parallel Archi-

tectures and Languages, Lect. Notes Comput. Sc. 694, 1993, 464-475.  

FB73 E. B. Fernandez, B. Bussel, Bounds on the number of processors and time for 

multiprocessor optimal schedules, IEEE Trans. Comput. 22, 1973, 745-751. 

FG86 A. Federgruen, H. Groenevelt, Preemptive scheduling of uniform processors 

by ordinary network flow techniques, Manage. Sci. 32, 1986, 341-349. 



 References 193 

 

FKN69 M. Fujii, T. Kasami, K. Ninomiya, Optimal sequencing of two equivalent pro-

cessors, SIAM J. Appl. Math. 17, 1969, 784-789 (Erratum: SIAM J. Appl. 
Math. 20, 1971, 141). 

Fre82 S. French, Sequencing and Scheduling: An Introduction to the Mathematics of 
the Job-Shop, Horwood, Chichester, 1982. 

FRK86 J. B. G. Frenk, A. H. G. Rinnooy Kan, The rate of convergence to optimality of 

the LPT rule, Discret Appl. Math. 14, 1986, 187-197. 

FRK87 J. B. G. Frenk, A. H. G. Rinnooy Kan, The asymptotic optimality of the LPT 

rule, Math. Oper. Res. 12, 1987, 241-254.  

Gab82 H. N. Gabow, An almost linear algorithm for two-processor scheduling, 

J. ACM 29, 1982, 766-780. 

Gar - M. R. Garey, Unpublished result. 

Gar73 M. R. Garey, Optimal task sequencing with precedence constraints, Discrete 
Math. 4, 1973, 37-56. 

GG73 M. R. Garey, R. L. Graham, Bounds on scheduling with limited resources, 

ACM SIGOPS Operating Systems Review, 1973, 104-111. 

GG75 M. R. Garey, R. L. Graham, Bounds for multiprocessor scheduling with re-

source constraints, SIAM J. Comput. 4, 1975, 187-200. 

GIS77 T. Gonzalez, O. H. Ibarra, S. Sahni, Bounds for LPT schedules on uniform 

processors, SIAM J. Comput. 6, 1977, 155-166. 

GJ76 M. R. Garey, D. S. Johnson, Scheduling tasks with nonuniform deadlines on 

two processors, J. ACM 23, 1976, 461-467. 

GJ77 M. R. Garey, D. S. Johnson, Two-processor scheduling with start-times and 

deadlines, SIAM J. Comput. 6, 1977, 416-426. 

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the 
Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979. 

GJST81 M. R. Garey, D. S. Johnson, B. B. Simons, R. E. Tarjan, Scheduling unit time 

tasks with arbitrary release times and deadlines, SIAM J. Comput. 10, 1981, 

256-269. 

GJTY83 M. R. Garey, D. S. Johnson, R. E. Tarjan, M. Yannakakis, Scheduling oppos-

ing forests, SIAM J. Algebra. Discr. 4, 1983, 72-93. 

GLL+79 R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimiza-

tion and approximation in deterministic sequencing and scheduling theory: a 

survey, Annals of Discrete Mathematics 5, 1979, 287-326. 

Gon77 T. Gonzalez, Optimal mean finish time preemptive schedules, Technical report 

220, Computer Science Department, Pennsylvania State University, 1977. 

Gra66 R. L. Graham, Bounds for certain multiprocessing anomalies, Bell Labs Tech. 
J. 45, 1966, 1563-1581.  

Gra69 R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. 
Math. 17, 1969, 416-429.  



194 5  Scheduling on Parallel Processors 

 

 

Gra76 R. L. Graham, Bounds on performance of scheduling algorithms, Chapter 5 in: 

E. G. Coffman, Jr. (ed.), Scheduling in Computer and Job Shop Systems, 

J. Wiley, New York, 1976. 

GS78 T. Gonzalez, S. Sahni, Preemptive scheduling of uniform processor systems, 

J. ACM 25, 1978, 92-101. 

HLS77 E. G. Horvath, S. Lam, R. Sethi, A level algorithm for preemptive scheduling, 

J. ACM 24, 1977, 32-43. 

Hor73 W. A. Horn, Minimizing average flow time with parallel processors, Oper. 
Res. 21, 1973, 846-847. 

Hor74 W. A. Horn, Some simple scheduling algorithms, Nav. Res. Logist. Quart. 21, 

1974, 177-185.  

HS76 E. Horowitz, S. Sahni, Exact and approximate algorithms for scheduling non-

identical processors, J. ACM 23, 1976, 317-327. 

HS87 D. S. Hochbaum, D. B. Shmoys, Using dual approximation algorithms for 

scheduling problems: theoretical and practical results, J. ACM 34, 1987, 

144-162. 

Hu61 T. C. Hu, Parallel sequencing and assembly line problems, Oper. Res. 9, 1961, 

841-848. 

IK77 O. H. Ibarra, C. E. Kim, Heuristic algorithms for scheduling independent tasks 

on nonidentical processors, J. ACM 24, 1977, 280-289. 

Jac55 J. R. Jackson, Scheduling a production line to minimize maximum tardiness, 

Research report 43, Management Research Project, University of California, 

Los Angeles, 1955. 

JMR+04 J. Jozefowska, M. Mika, R. Rozycki, G. Waligora, J. Weglarz,  An almost 

optimal heurisitc for preemptive Cmax scheduling of dependent tasks on paral-

lel identical machines, Ann. Oper. Res. 129, 2004, 205-216. 

Joh83 D. S. Johnson, The NP-completeness column: an ongoing guide, J. Algorithms 

4, 1983, 189-203. 

Kar72 R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller, 

J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press, 

New York, 1972, 85-103. 

Kar74 A. W. Karzanov, Determining the maximal flow in a network by the method of 

preflows, Dokl. Akad. Nauk. SSSR 215, 1974, 434-437 (in Russian). 

Kar84 N. Karmarkar, A new polynomial-time algorithm for linear programming, 

Combinatorica 4, 1984, 373-395. 

KE75 O. Kariv, S. Even. An O(n2.5) algorithm for maximum matching in general 

graphs, Proceedings of the 16th Annual Symposium on Foundations of Com-
puter Science, 1975, 100-112. 

Ked70 S. K. Kedia, A job scheduling problem with parallel processors, Unpublished 

report, Department of Industrial Engineering, University of Michigan, Ann Ar-

bor, 1970. 



 References 195 

 

Kha79 L. G. Khachiyan, A polynomial algorithm for linear programming, Dokl. Akad. 
Nauk SSSR, 244, 1979, 1093-1096 (in Russian). 

KK82 N. Karmarkar, R. M. Karp, The differencing method of set partitioning, Report 

UCB/CSD 82/113, Computer Science Division, University of California, 

Berkeley, 1982. 

Kun76 M. Kunde, Beste Schranke beim LP-Scheduling, Bericht 7603, Institut für 

Informatik und Praktische Mathematik, Universität Kiel, 1976. 

Law73 E. L. Lawler, Optimal sequencing of a single processor subject to precedence 

constraints, Manage. Sci. 19, 1973, 544-546. 

Law76 E. L. Lawler, Combinatorial optimization: Networks and Matroids, Holt, 

Rinehart and Winston, New York, 1976. 

Law82a E. L. Lawler, Recent results in the theory of processor scheduling, in: 

A. Bachem, M. Grötschel, B. Korte (eds.) Mathematical Programming: The 
State of Art, Springer, Berlin, 1982, 202-234. 

Law82b E. L. Lawler, Preemptive scheduling in precedence-constrained jobs on parallel 

processors, in: M. A. H. Dempster, J. K. Lenstra, A. H. G. Rinnooy Kan (eds.), 

Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 1982, 101-123.  

Lee91 C.-Y. Lee, Parallel processor scheduling with nonsimultaneous processor 

available time, Discret Appl. Math. 30, 1991, 53-61. 

Len77 J. K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre Tract 

69, Mathematisch Centrum, Amsterdam, 1977. 

LL74a J. W. S. Liu, C. L. Liu, Performance analysis of heterogeneous multiprocessor 

computing systems, in: E. Gelenbe, R. Mahl (eds.), Computer Architecture and 
Networks, North Holland, Amsterdam, 1974, 331-343. 

LL74b J. W. S. Liu, C. L. Liu, Bounds on scheduling algorithms for heterogeneous 

computing systems, Technical report UIUCDCS-R-74-632, Department of 

Computer Science, University of Illinois at Urbana-Champaign, 1974. 

LL78 E. L. Lawler, J. Labetoulle, Preemptive scheduling of unrelated parallel pro-

cessors by linear programming, J. ACM 25, 1978, 612-619. 

LLL+84 J. Labetoulle, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Preemptive 

scheduling of uniform processors subject to release dates, in: W. R. Pulley-

blank (ed.), Progress in Combinatorial Optimization, Academic Press, New 

York, 1984, 245-261. 

LLRK82 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Recent developments in 

deterministic sequencing and scheduling: a survey, in: M. A. H. Dempster, 

J. K. Lenstra, A. H. G. Rinnooy Kan (eds.), Deterministic and Stochastic 
Scheduling, Reidel, Dordrecht, 1982, 35-73. 

LLR+93 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, Sequencing 

and scheduling: Algorithms and complexity, in: S. C. Graves, A. H. G. 

Rinnooy Kan, P. H. Zipkin (eds.), Handbook in Operations Research and 
Management Science, Vol. 4: Logistics of Production and Inventory, Elsevier, 

Amsterdam, 1993. 



196 5  Scheduling on Parallel Processors 

 

 

LRK78 J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity of scheduling under prece-

dence constraints, Oper. Res. 26, 1978, 22-35. 

LRK84 J. K. Lenstra, A. H. G. Rinnooy Kan, Scheduling theory since 1981: an anno-

tated bibliography, in: M. O'h Eigearthaigh, J. K. Lenstra, A. H. G. Rinnooy 

Kan (eds.), Combinatorial Optimization: Annotated Bibliographies, J. Wiley, 

Chichester, 1984. 

LRKB77 J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Complexity of processor 

scheduling problems, Annals of Discrete Mathematics 1, 1977, 343-362. 

LS77 S. Lam, R. Sethi, Worst case analysis of two scheduling algorithms, SIAM J. 
Comput. 6, 1977, 518-536. 

MC69 R. Muntz, E. G. Coffman, Jr., Optimal preemptive scheduling on two-

processor systems, IEEE Trans. Comput. 18, 1969, 1014-1029. 

MC70 R. Muntz, E. G. Coffman, Jr., Preemptive scheduling of real time tasks on 

multiprocessor systems, J. ACM 17, 1970, 324-338. 

McN59 R. McNaughton, Scheduling with deadlines and loss functions, Manage. Sci. 6, 

1959, 1-12. 

NLH81 K. Nakajima, J. Y-T. Leung, S. L. Hakimi, Optimal two processor scheduling 

of tree precedence constrained tasks with two execution times, Performance 
Evaluation 1, 1981, 320-330. 

PS96 M. Pattloch, G. Schmidt, Lotsize scheduling of two job types on identical pro-
cessors, Discret Appl. Math., 1996, 409-419. 

Rin78 A. H. G. Rinnooy Kan, Processor Scheduling Problems: Classification, Com-
plexity and Computations, Nijhoff, The Hague, 1978. 

RG69 C. V. Ramamoorthy, M. J. Gonzalez, A survey of techniques for recognizing 

parallel processable streams in computer programs, AFIPS Conference Pro-
ceedings, Fall Joint Computer Conference, 1969, 1-15. 

Ros� P. Rosenfeld, unpublished result. 

Rot66 M. H. Rothkopf, Scheduling independent tasks on parallel processors, Man-
age. Sci. 12, 1966, 347-447. 

RS83 H. Röck, G. Schmidt, Processor aggregation heuristics in shop scheduling, 

Methods of Operations Research 45, 1983, 303-314. 

Sah79 S. Sahni, Preemptive scheduling with due dates, Oper. Res. 5, 1979, 925-934. 

SC80 S. Sahni, Y. Cho, Scheduling independent tasks with due times on a uniform 

processor system, J. ACM 27, 1980, 550-563. 

Sch84 G. Schmidt, Scheduling on semi-identical processors, Zeitschrift für OR A28, 

1984, 153-162. 

Sch88 G. Schmidt, Scheduling independent tasks with deadlines on semi-identical 

processors, J. Oper. Res. Soc. 39, 1988, 271-277. 

Set76 R. Sethi, Algorithms for minimal-length schedules, Chapter 2 in: E. G. Coff-

man, Jr. (ed.), Scheduling in Computer and Job Shop Systems, J. Wiley, New 

York, 1976. 



 References 197 

 

Set77 R. Sethi, On the complexity of mean flow time scheduling, Math. Oper. Res. 2, 

1977, 320-330. 

Sev91 S. V. Sevastjanov, Private communication, 1991. 

Sit05 R. Sitters,  Complexity of preemptive minsum scheduling on unrelated parallel 

machines,  J. Algorithms 57, 2005, 37-48. 

Slo78 R. Słowiński, Scheduling preemptible tasks on unrelated processors with addi-

tional resources to minimise schedule length, in: G. Bracci, R. C. Lockemann 

(eds.), Information Systems Methodology, Lect. Notes Comput. Sc. 65, 1978, 

536-547. 

SW77 R. Słowiński, J. Węglarz, Time-minimal network model with different modes 

of the execution of activities, Przeglad Statystyczny 24, 1977, 409-416 (in 

Polish). 

Ull76 J. D. Ullman, Complexity of sequencing problems, Chapter 4 in: E. G. Coff-

man, Jr. (ed.), Scheduling in Computer and Job Shop Systems, J. Wiley, New 

York, 1976. 

WBCS77 J. Węglarz, J. Błażewicz, W. Cellary, R. S)�lowiński, An automatic revised sim-
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