

5 Scheduling on Parallel Processors

This chapter is devoted to the analysis of scheduling problems in a parallel pro-
cessor environment. As before the three main criteria to be analyzed are schedule
length, mean flow time and lateness. Then, some more developed models of mul-
tiprocessor systems and lot size scheduling are described. Corresponding results
are presented in the four following sections.

5.1 Minimizing Schedule Length

In this section we will analyze the schedule length criterion. Complexity analysis
will be complemented, wherever applicable, by a description of the most im-
portant approximation as well as enumerative algorithms. The presentation of the
results will be divided into subcases depending on the type of processors used,
the type of precedence constraints, and to a lesser extent task processing times
and the possibility of task preemption.

5.1.1 Identical Processors

Problem P | | Cmax

The first problem considered is P | | Cmax where a set of independent tasks is to be
scheduled on identical processors in order to minimize schedule length. We start
with complexity analysis of this problem which leads to the conclusion that the
problem is not easy to solve, since even simple cases such as scheduling on two
processors can be proved to be NP-hard [Kar72].

Theorem 5.1.1 Problem P2 | | Cmax is NP-hard.

Proof. As a known NP-complete problem we take PARTITION [Kar72] which is
formulated as follows.

Instance: Finite set A and a size s(ai) � IN for each ai � A .

Answer: "Yes" if there exists a subset A' � A such that
 �

ai �A'
s(ai) = �

ai �A � A'
s(ai) .

 Otherwise "No".

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_ 5

141

https://doi.org/10.1007/978-3-319-99849-7_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_5&domain=pdf

142 5 Scheduling on Parallel Processors

Given any instance of PARTITION defined by the positive integers s(ai), ai � A ,
we define a corresponding instance of the decision counterpart of P2 | | Cmax by
assuming n = |A |, pj = s(aj), j = 1, 2,..., n, and a threshold value for the schedule

length, y = 1
2

 �
ai �A

s(ai) . It is obvious that there exists a subset A' with the desired

property for the instance of PARTITION if and only if, for the corresponding
instance of P2 | | Cmax , there exists a schedule with Cmax � y (cf. Figure 5.1.1).
This proves the theorem.

P A'

A A'

1

P2

t
Figure 5.1.1 A schedule for Theorem 5.1.1.

Since there is no hope of finding an optimization polynomial time algorithm for
P | | Cmax , one may try to solve the problem along the lines presented in Section
3.2. First, one may try to find an approximation algorithm for the original prob-
lem and evaluate its worst case as well as its mean behavior. We will present
such an analysis below.

One of the most often used general approximation strategies for solving
scheduling problems is list scheduling, whereby a priority list of the tasks is giv-
en, and at each step the first available processor is selected to process the first
available task on the list [Gra66] (cf. Section 3.2). The accuracy of a given list
scheduling algorithm depends on the order in which tasks appear on the list. One
of the simplest algorithms is the LPT algorithm in which the tasks are arranged
in order of non-increasing pj .

Algorithm 5.1.2 LPT Algorithm for P | | Cmax.

begin
Order tasks on a list in non-increasing order of their processing times;
 -- i.e. p1 �...� pn

for i = 1 to m do si := 0;

 -- processors Pi are assumed to be idle from time si = 0 on, i = 1,..., m

j := 1;
repeat
 sk := min{si};

 Assign task Tj to processor Pk at time sk;

 -- the first non-assigned task from the list is scheduled on the first processor
 -- that becomes free

 5.1 Minimizing Schedule Length 143

 sk := sk + pj; j := j + 1;

until j = n + 1; -- all tasks have been scheduled

end;

It is easy to see that the time complexity of this algorithm is O(nlog n) since its
most complex activity is to sort the set of tasks. The worst case behavior of the
LPT rule is analyzed in Theorem 5.1.3.

Theorem 5.1.3 [Gra69] If the LPT algorithm is used to solve problem P | | Cmax,
then

RLPT =
4

3
 �

1

3m . (5.1.1)

Space limitations prevent us from including here the proof of the upper bound in
the above theorem. However, we will give an example showing that this bound
can be achieved. Let n = 2m + 1, p = [2m � 1, 2m � 1, 2m � 2, 2m � 2,..., m + 1,
m + 1, m, m, m]. For m = 3, Figure 5.1.2 shows two schedules, an optimal one and
an LPT schedule.

We see that in the worst case an LPT schedule can be up to 33% longer than
an optimal schedule. However, one is led to expect better performance from the
LPT algorithm than is indicated by (5.1.1), especially when the number of tasks
becomes large. In [CS76] another absolute performance ratio for the LPT rule
was proved, taking into account the number k of tasks assigned to a processor
whose last task terminates the schedule.

Theorem 5.1.4 For the assumptions stated above, we have

RLPT(k) = 1 + 1k �
1

km . (5.1.2)

(a)

 30 5 6 9 t

P1

P2

P3

1T

2T

5T 6T

3T

4T

7T

(b)

 30 5 6 9 t

P1

P2

P3

1T

2T

5T 6T

3T

4T

7T

Figure 5.1.2 Schedules for Theorem 5.1.3
 (a) an optimal schedule,

 (b) LPT schedule.

This result shows that the worst-case performance bound for the LPT algorithm
approaches one as fast as 1 + 1/k.

144 5 Scheduling on Parallel Processors

On the other hand, it would be of interest to know how good the LPT algo-
rithm is on the average. Such a result was obtained by [CFL84], where the rela-
tive error was found for two processors on the assumption that task processing
times are independent samples from the uniform distribution on [0, 1] .

Theorem 5.1.5 Under the assumptions already stated, we have the following
bounds for the mean value of schedule length for the LPT algorithm, E(CLPT

max), for
problem P2 | | Cmax .

n
4 +

1
4(n+1) � E(CLPT

max) ��
n
4 + e

2(n+1) , (5.1.3)

where e = 2.7... is the base of the natural logarithm.

Taking into account that n/4 is a lower bound on E(C *
max) we get

E(CLPT
max)/E(C *

max) < 1 + O(1/n2
) .

Therefore, as n increases, E(CLPT
max) approaches the optimum no more slowly than

1 + O(1/n2) approaches 1. The above bound can be generalized to cover also the
case of m processors for which we have [CFL83]:

E(CLPT
max) ��

n
2m + (m

n) .

Moreover, it is also possible to prove [FRK86, FRK87] that CLPT
max � C *

max almost
surely converges to 0 as n � # if the task processing time distribution has a fi-
nite mean and a density function f satisfying f(0) > 0. It is also shown that if the
distribution is uniform or exponential, the rate of convergence is O(log(log n)/n).
This result, obtained by a complicated analysis, can also be guessed from simula-
tion studies. Such an experiment was reported by Kedia [Ked70] and we present
the summary of the results in Table 5.1.1. The last column presents the ratio of
schedule lengths obtained by the LPT algorithm and the optimal preemptive one.
Task processing times are drawn from the uniform distribution of the given pa-
rameters.

To conclude the above analysis we may say that the LPT algorithm behaves
quite well and may be useful in practice. However, if one wants to have better
performance guarantees, other approximation algorithms should be used, as for
example MULTIFIT introduced by Coffman et al. [CGJ78] or the algorithm pro-
posed by Hochbaum and Shmoys [HS87]. A comprehensive treatment of approx-
imation algorithms for this and related problems is given by Coffman et al.
[CGJ84].

 5.1 Minimizing Schedule Length 145

n, m
Intervals of task processing

time distribution Cmax CLPT
max 4 C *

max

6
9

15
6
9

15

3
3
3
3
3
3

1, 20
1, 20
1, 20

20, 50
20, 50
20, 50

20
32
65
59

101
166

1.00
1.00
1.00
1.05
1.03
1.00

8
12
20
8

12
20

4
4
4
4
4
4

1, 20
1, 20
1, 20

20, 50
20, 50
20, 50

23
30
60
74

108
185

1.09
1.00
1.00
1.04
1.02
1.01

10
15
20
10
15
25

5
5
5
5
5
5

1, 20
1, 20
1, 20

20, 50
20, 50
20, 50

25
38
49
65

117
198

1.04
1.03
1.00
1.06
1.03
1.01

Table 5.1.1 Mean performance of the LPT algorithm.

We now pass to the second way of analyzing problem P | | Cmax. Theorem 5.1.1
gave a negative answer to the question about the existence of an optimization
polynomial time algorithm for solving P2 | | Cmax. However, we have not proved
that our problem is NP-hard in the strong sense and we may try to find a pseudo-
polynomial optimization algorithm. It appears that, based on a dynamic pro-
gramming approach, such an algorithm can be constructed using ideas presented
by Rothkopf [Rot66]. Below the algorithm is presented for P | | Cmax; it uses
Boolean variables xj(t1 , t2 ,..., tm), j = 1, 2,..., n, ti = 0, 1,..., C, i = 1, 2,..., m,

where C denotes an upper bound on the optimal schedule length C *
max . The

meaning of these variables is the following

xj(t1, t2,..., tm) =

�.
�
.

true if tasks T1 , T2 ,..., Tj can be scheduled on
processors P1 , P2 ,..., Pm in such a way that Pi
is busy in time interval [0, ti], i = 1, 2,..., m ,

false otherwise.

Now, we are able to present the algorithm.

146 5 Scheduling on Parallel Processors

Algorithm 5.1.6 Dynamic programming for P | | Cmax [Rot66].

begin
for all (t1, t2,..., tm) � {0, 1,..., C}

m do x0(t1, t2,..., tm) := false;

x0(0, 0,..., 0) := true;

 -- initial values for Boolean variables are now assigned

for j = 1 to n do

 for all (t1, t2,..., tm) � {0, 1,..., C}
m do

xj(t1, t2,..., tm) = V
i=1

m
xj�1(t1, t2,..., ti�1, ti � pj, ti+1,..., tm); (5.1.4)

C *
max := min{max{t1, t2,..., tm} | xn(t1, t2,..., tm) = true}; (5.1.5)

 -- optimal schedule length has been calculated

Starting from the value C *
max, assign tasks Tn, Tn�1,..., T1 to appropriate

processors using formula (5.1.4) backwards;
end;

The above procedure solves problem P | | Cmax in O(nCm) time; thus for fixed m it
is a pseudopolynomial time algorithm. As a consequence, for small values of m
and C the algorithm can be used even in computer applications. To illustrate the
use of the above algorithm let us consider the following example.

Example 5.1.7 Let n = 3, m = 2 and p = [2, 1, 2]. Assuming bound C = 5 we get
the cube given in Figure 5.1.3(a) where particular values of variables xj(t1 , t2 ,...,
 tm) are stored. In Figures 5.1.3(b) through 5.1.3(e) these values are shown, re-
spectively, for j = 0, 1, 2, 3 (only true values are depicted). Following Figure
5.1.3(e) and equation (5.1.5), an optimal schedule is constructed as shown in
Figure 5.1.3(f).

The interested reader may find a survey of some other enumerative approaches
for the problem in question in [LLR+93].

Problem P | pmtn | Cmax

Now one may try the third way of analyzing the problem P | | Cmax (as suggested
in Section 3.2), i.e. on may relax some constraints imposed on problem P | | Cmax
and allow preemptions of tasks. It appears that problem P | pmtn | Cmax can be
solved very efficiently. It is easy to see that the length of a preemptive schedule
cannot be smaller than the maximum of two values: the maximum processing
time of a task and the mean processing requirement on a processor [McN59], i.e.:

C *
max = max{max

j
{pj}, 1

m 5
j=1

n
 pj} . (5.1.6)

 5.1 Minimizing Schedule Length 147

(a)

 C=5

C=5

n=30
1t

t 2

(b) j = 0, x0(t1,t2) (c) j = 1, x1(t1,t2)

t1
0 1 2 3 4 5

0
1
2
3
4
5

T

t2

T

T

0 1 2 3 4 5

0
1
2
3
4
5

t1

t2
(d) j = 2, x2(t1,t2) (e) j = 3, x3(t1,t2)

T
T

T
T

0 1 2 3 4 5

0
1
2
3
4
5

t1

t2

T
T

T
T

0 1 2 3 4 5

0
1
2
3
4
5

t1

t2

T
T

(f)

 t0 2 3

= 3
P1

P2

1T T2

T3

Cmax
*

Figure 5.1.3 An application of dynamic programming for Example 5.1.7

(a) a cube of Boolean variables,
(b)-(e) values of xj(t1,t2) for j = 0, 1, 2, 3, respectively (here T
stands for true),
(f) an optimal schedule.

148 5 Scheduling on Parallel Processors

The following algorithm given by McNaughton [McN59] constructs a schedule

whose length is equal to C *
max .

Algorithm 5.1.8 McNaughton's rule for P | pmtn | Cmax [McN59].

begin
C *

max := max{5
j=1

n
 pj /m, max

j
{pj}}; -- minimum schedule length

t := 0; i := 1; j := 1;
repeat
 if t + pj � C *

max

 then

 begin
 Assign task Tj to processor Pi , starting at time t;

 t := t + pj; j := j + 1;
 -- task Tj can be fully assigned to processor Pi,
 -- assignment of the next task will continue at time t + pj
 end
 else
 begin
 Starting at time t, assign task Tj for C *

max � t units to processor Pi;

 -- task Tj is preempted at time C *
max,

 -- processor Pi is now busy until C *
max,

 -- assignment of Tj will continue on the next processor at time 0
 pj := pj � (C *

max � t); t := 0; i := i + 1;

 end;
until j = n + 1; -- all tasks have been scheduled

end;
Note that the above algorithm is an optimization procedure since it always finds
a schedule whose length is equal to C *

max . Its time complexity is O(n) .
We see that by allowing preemptions we made the problem easy to solve.

However, there still remains the question of practical applicability of the solution
obtained this way. One has to ask if this model of preemptive task scheduling can
be justified, because it cannot be expected that preemptions are free of cost. Gen-
erally, two kinds of preemption costs have to be considered: time and finance.
Time delays originating from preemptions are less crucial if the delay caused by
a single preemption is small compared to the time the task continuously spends
on the processor. Financial costs connected with preemptions, on the other hand,
reduce the total benefit gained by preemptive task execution; but again, if the
profit gained is large compared to the losses caused by the preemptions the
schedule will be more useful and acceptable. These circumstances suggest the
introduction of a scheduling model where task preemptions are only allowed af-

 5.1 Minimizing Schedule Length 149

ter the tasks have been processed continuously for some given amount k of time.
The value for k (preemption granularity) should be chosen large enough so that
the time delay and cost overheads connected with preemptions are negligible. For
given granularity k, upper bounds on the preemption overhead can easily be es-
timated since the number of preemptions for a task of processing time p is lim-
ited by �p/k� . In [EH93] the problem P | pmtn | Cmax with k-restricted preemptions
is discussed: If the processing time pj of a task Tj is less than or equal to k, then
preemption is not allowed; otherwise preemption may take place after the task
has been continuously processed for at least k units of time. For the remaining
part of a preempted task the same condition is applied. Notice that for k = 0 this
problem reduces to the "classical" preemptive scheduling problem. On the other
hand, if for a given instance the granularity k is larger than the longest processing
time among the given tasks, then no preemption is allowed and we end up with
non-preemptive scheduling. Another variant is the exact-k-preemptive scheduling
problem where task preemptions are only allowed at those moments when the
task has been processed exactly an integer multiple of k time units. In [EH93] it
is proved that, for m = 2 processors, both the k-preemptive and the exact-k-
preemptive scheduling problems can be solved in time O(n). For m > 2 proces-
sors both problems are NP-hard.

Problem P | prec | Cmax

Let us now pass to the case of dependent tasks. At first tasks are assumed to be
scheduled non-preemptively. It is obvious that there is no hope of finding a poly-
nomial time optimization algorithm for scheduling tasks of arbitrary length since
P | | Cmax is already NP-hard. However, one may try again list scheduling algo-
rithms. Unfortunately, this strategy may result in an unexpected behavior of con-
structed schedules, since the schedule length for problem P | prec | Cmax (with
arbitrary precedence constraints) may increase if:
� the number of processors increases,
� task processing times decrease,
� precedence constraints are weakened, or
� the priority list changes.

Figures 5.1.4 through 5.1.8 indicate the effects of changes of the above men-
tioned parameters. These list scheduling anomalies have been discovered by
Graham [Gra66], who has also evaluated the maximum change in schedule
length that may be induced by varying one or more problem parameters. We will
quote this theorem since its proof is one of the shortest in that area and illustrates
well the technique used in other proofs of that type. Let there be defined a task
set T together with precedence constraints ≺. Let the processing times of the
tasks be given by vector p, let T be scheduled on m processors using list L, and

150 5 Scheduling on Parallel Processors

let the obtained value of schedule length be equal to Cmax. On the other hand, let
the above parameters be changed: a vector of processing times p' � p (for all the
components), relaxed precedence constraints ≺' � ≺, priority list L' and the
number of processors m'. Let the new value of schedule length be C ' max . Then the
following theorem is valid.

(a)

T /42 T /23

T /44 T /45 T /26

T /31

T /28T /137

(b)

P

P

0 3 4 5 9 13 15 17

1T 3T 4T 5T 6T 8T

2T 7T

1

2

t
Figure 5.1.4 (a) A task set, m = 2, L = (T1, T2, T3, T4, T5, T6, T7, T8),
 (b) an optimal schedule.

1T 3T 4T 6

2T 8T 5T 7T

t

1P

2P

0 3 4 5 6 9 10 11 23

T

Figure 5.1.5 Priority list changed: A new list L' = (T1, T2, T3, T4, T5, T6, T8, T7).

t

1T 4T 6T 8T

7T5T2T

1P

2P

0 2 3 6 7 8 18

3T

Figure 5.1.6 Processing times decreased; p'j = pj �� 1, j = 1, 2,..., n.

 5.1 Minimizing Schedule Length 151

0 2 3 4 6 7 8 19

3P

t

1T 5T

2T 6T 7T

8T4T3T

2P

1P

Figure 5.1.7 Number of processors increased, m = 3.

(a)

T /23

T /26T /45T /44

T /42T /31

T /137 T /28

(a)

 0 3 4 5 8 9 10 12 22 t

P2

P1 T1

T2

T3

T4

T5

T6 T8

T7

Figure 5.1.8 (a) Precedence constraints weakened,

(b) a resulting list schedule.

Theorem 5.1.9 [Gra66] Under the above assumptions,
C ' max
Cmax

 � 1 +
m�1

m' . (5.1.7)

Proof. Let us consider schedule S' obtained by processing task set T with primed
parameters. Let the interval [0, C ' max) be divided into two subsets, A and B , de-
fined in the following way:

A = {t � [0, C ' max) | all processors are busy at time t}, B = [0, C ' max) � A .

Notice that both A and B are unions of disjoint half-open intervals. Let Tj1 de-
note a task completed in S' at time C ' max , i.e. Cj1 = C ' max . Two cases may occur:

152 5 Scheduling on Parallel Processors

1. The starting time sj1 of Tj1 is an interior point of B . Then by the definition of
B there is some processor Pi which for some % > 0 is idle during interval [sj1 � %,

sj1) . Such a situation may only occur if we have Tj2 ≺' Tj1 and Cj2 = sj1 for some
task Tj2 .
2. The starting time of Tj1 is not an interior point of B . Let us also suppose that
sj1 � 0. Define x1 = sup{x | x < sj1 , and x � B } or x1 = 0 if set B is empty. By the
construction of A and B , we see that x1 � A , and processor Pi is idle in time
interval [x1 � %, x1) for some % > 0 . But again, such a situation may only occur if
some task Tj2 ' Tj1 is processed during this time interval.

It follows that either there exists a task Tj2 ≺' Tj1 such that y � [Cj2 , sj1) im-
plies y � A or we have: x < sj1 implies either x � A or x < 0 .

The above procedure can be inductively repeated, forming a chain Tj3 ,
Tj4 ,..., until we reach task Tjr for which x < sjr implies either x � A or x < 0.
Hence there must exist a chain of tasks

Tjr ≺' Tjr�1
 ≺'... ≺' Tj2 ≺' Tj1 (5.1.8)

such that at each moment t � B , some task Tjk is being processed in S'. This im-
plies that

�
6'�S'

 p' 6' � (m' � 1) �
k=1

r
 p' jk (5.1.9)

where the sum on the left-hand side is made over all idle-time tasks 6' in S'. But
by (5.1.8) and the hypothesis ≺' � ≺ we have

Tjr ≺ Tjr�1
 ≺...≺ Tj2 ≺ Tj1 . (5.1.10)

Hence,

Cmax � �
k=1

r
 pjk � �

k=1

r
 p' jk . (5.1.11)

Furthermore, by (5.1.9) and (5.1.11) we have

C ' max =
1

m' (�k=1

n
 p' k � �

6'�S'
 p' 6'3 �

1

m' (m Cmax + (m' � 1) Cmax) . (5.1.12)

It follows that
C ' max
Cmax

 � 1 +
m�1

m'

and the theorem is proved.

 5.1 Minimizing Schedule Length 153

From the above theorem, the absolute performance ratio for an arbitrary list
scheduling algorithm solving problem P | | Cmax can be derived.

Corollary 5.1.10 [Gra66] For an arbitrary list scheduling algorithm LS for
P | | Cmax we have

RLS = 2 �
1

m . (5.1.13)

Proof. The upper bound of (5.1.13) follows immediately from (5.1.7) by taking
m' = m and by considering the list leading to an optimal schedule. To show that
this bound is achievable let us consider the following example: n = (m � 1)m + 1,
p = [1, 1,..., 1, 1, m], ≺ is empty, L = (Tn , T1 , T2 ,..., Tn�1) and L' = (T1 , T2 , ...,

Tn). The corresponding schedules for m = 4 are shown in Figure 5.1.9.

(a) (b)

t0 1 2 3 4

P1

P2

P3

P4

T13

1T 4T 7T T10

2T 5T 8T T11

3T 6T T9 T12

 0 31 2 7 t
4T

P1

P2

P3

P4

1T

2T

3T

5T T9 T13

6T T10

7T T11

8T T12

Figure 5.1.9 Schedules for Corollary 5.1.10
 (a) an optimal schedule,
 (b) an approximate schedule.

It follows from the above considerations that an arbitrary list scheduling algo-
rithm can produce schedules almost twice as long as optimal ones. However, one
can solve optimally problems with tasks of unit lengths.

Problem P | prec, pj = 1 | Cmax

The first algorithm has been given for scheduling forests, consisting either of in-
trees or of out-trees [Hu61]. We will first present Hu's algorithm for the case of
an in-tree, i.e. for the problem P | in-tree, pj = 1 | Cmax. The algorithm is based on

the notion of a task level in an in-tree which is defined as the number of tasks on

the path to the root of the graph. The algorithm by Hu, which is also called level
algorithm or critical path algorithm is as follows.

154 5 Scheduling on Parallel Processors

Algorithm 5.1.11 Hu's algorithm for P | in-tree, pj = 1 | Cmax [Hu61].

begin
Calculate levels of the tasks;

t := 0;
repeat
 Construct list Lt consisting of all the tasks without predecessors at time t;

 -- all these tasks either have no predecessors

 -- or their predecessors have been assigned in time interval [0, t�1]

 Order Lt in non-increasing order of task levels;

 Assign m tasks (if any) to processors at time t from the beginning of list Lt;

 Remove the assigned tasks from the graph and from the list;

 t := t + 1;

until all tasks have been scheduled;

end;

The algorithm can be implemented to run in O(n) time. An example of its appli-

cation is shown in Figure 5.1.10.

4

3

2

1

1T 2T 3T 4T 5T

6T 7T 8T T9

T10 T11

T12

0 2 3 41 5 t

P1

P2

P3

1T

2T

3T

4T

5T

6T

7T

8T

T9

T10

T11

T12

Figure 5.1.10 An example of the application of Algorithm 5.1.11 for three pro-
cessors.

A forest consisting of in-trees can be scheduled by adding a dummy task that is

an immediate successor of only the roots of in-trees, and then by applying Algo-

rithm 5.1.11. A schedule for an out-tree can be constructed by changing the ori-

 5.1 Minimizing Schedule Length 155

entation of arcs, applying Algorithm 5.1.11 to the obtained in-tree and then read-

ing the schedule backwards, i.e. from right to left.

It is interesting to note that the problem of scheduling opposing forests (that

is, combinations of in-trees and out-trees) on an arbitrary number of processors is

NP-hard [GJTY83]. However, if the number of processors is limited to 2, the

problem is easily solvable even for arbitrary precedence graphs [CG72, FKN69,

Gab82]. We present the algorithm given by Coffman and Graham [CG72] since

it can be further extended to cover the preemptive case. The algorithm uses la-
bels assigned to tasks, which take into account the levels of the tasks and the

numbers of their immediate successors. The following algorithm assigns labels to

the tasks, and then uses them to find the shortest schedule for problem P2 | prec,

pj = 1 | Cmax.

Algorithm 5.1.12 Algorithm by Coffman and Graham for P2 | prec, pj = 1 | Cmax

[CG72].

begin
Assign label 1 to any task T0 for which isucc(T0) = �;
 -- recall that isucc(T) denotes the set of all immediate successors of T

j := 1;
repeat
 Construct set S of all unlabeled tasks whose successors are labeled;

 for all T � S do

 begin
 Construct list L(T) consisting of labels of tasks belonging to isucc(T);

 Order L(T) in decreasing order of the labels;
 end;

 Order these lists in increasing lexicographic order L(T[1]) <
. ...<. L(T[�S �]);

 -- see Section 2.1 for definition of <.

 Assign label j + 1 to task T[1];

 j := j + 1;

until j = n + 1; -- all tasks have been assigned labels

call Algorithm 5.1.11;
 -- here the above algorithm uses labels instead of levels when scheduling tasks
end;

A careful analysis shows that the above algorithm can be implemented to run in

time which is almost linear in n and in the number of arcs in the precedence

graph [Set76]; thus its time complexity is practically O(n2
). An example of the

application of Algorithm 5.1.12 is given in Figure 5.1.11.

It must be stressed that the question concerning the complexity of problem

Pm | prec, pj = 1 | Cmax with a fixed number m of processors is still open despite

the fact that many papers have been devoted to solving various subcases of prec-

156 5 Scheduling on Parallel Processors

edence constraints. If tasks with unit processing times are considered, the follow-

ing results are available. Problems P3 | opposing forest, pj = 1 | Cmax and

Pk | opposing forest, pj = 1 | Cmax are solvable in time O(n) [GJTY83] and

O(n2k�2
 logn) [DW85], respectively. On the other hand, if the number of availa-

ble processors is variable, then this problem becomes NP-hard. Some results are

also available for the subcases in which task processing times may take only two

values. Problems P2 | prec, pj = 1 or 2 | Cmax and P | prec, pj = 1 or k | Cmax are NP-

hard [DL88], while problems P2 | tree, pj = 1 or 2 | Cmax and P2 | tree, pj = 1 or

3 | Cmax are solvable in time O(nlogn) [NLH81] and O(n2
logn) [DL89], respec-

tively. Arbitrary processing times result in strong NP-hardness even for the case

of chains scheduled on two processors (problem P2 | chains | Cmax) [DLY91].

/ 11

/ 12

/ 13

/ 8

/ 9

/ 10

/ 5

/ 6

/ 3

/ 2

/ 1/ 7

/ 4

2T

1T

3T

4T

5T

6T

T9

T10

7T

8T

T11

T12

T13

0 2 3 41 5 76

*

t

P1

P2

3T

2T

1T

6T

5T

4T

T9

7T

8T

T10

T11

T12

T13
Cmax = 7

Figure 5.1.11 An example of the application of Algorithm 5.1.12 (tasks are
denoted by Tj /label).

Furthermore, several papers deal with approximation algorithms for P | prec, pj =

 1 | Cmax and more general problems. We quote some of the most interesting re-

sults. The application of the level algorithm (Algorithm 5.1.11) to solve P | prec,

pj = 1 | Cmax has been analyzed by Chen and Liu [CL75] and Kunde [Kun76]. The

following bound has been proved.

 5.1 Minimizing Schedule Length 157

Rlevel =

�
�

4

3
 for m = 2

2 �
1

m�1
 for m � 3 .

Algorithm 5.1.12 is slightly better, its bound is R = 2 �
2

m �
m � 3

m&Cmax*
 for m � 3

[BT94]. In this context one should not forget the results presented in Theorems

5.1.9 and 5.1.10, where list scheduling anomalies have been analyzed.

Problem P | pmtn, prec | Cmax

The analysis also showed that preemptions can be profitable from the viewpoint

of two factors. First, they can make problems easier to solve, and second, they

can shorten the schedule. Coffman and Garey [CG91] proved that for problem

P2 | prec | Cmax the least schedule length achievable by a non-preemptive schedule

is no more than 4/3 the least schedule length achievable when preemptions are

allowed. While the proof of this fact seems to be tedious, a very simple example

showing that this bound is met can easily be given for a set of three independent

tasks of equal length (cf. Figure 5.1.12).

(a)

0 1 2

tnpCmax =

P1

P2

T1

T2

T3

(b)

0 1

t
1/2 3/2

pCmax

4/3=
np

p

=

P1

P2

T1 T3

T3 T2

Cmax

Cmax

Figure 5.1.12 An example of 4/3 conjecture
 (a) non-preemptive scheduling,
 (b) preemptive scheduling.

In the general case of dependent tasks scheduled on processors in order to mini-

mize schedule length, one can construct optimal preemptive schedules for tasks

of arbitrary length and with other parameters the same as in Algorithm 5.1.11 or

5.1.12. The approach again uses the notion of the level of task Tj in a precedence

graph, by which is now understood the sum of processing times (including pj) of

158 5 Scheduling on Parallel Processors

tasks along the longest path between Tj and a terminal task (a task with no suc-

cessors). Let us note that the level of a task being executed is decreasing. We

have the following algorithm [MC69, MC70] for the problems P2 | pmtn,

prec | Cmax and P | pmtn, forest | Cmax . The algorithm uses a notion of a processor
shared schedule, in which a task receives some fraction * (��1) of the processing

capacity of a processor.

Algorithm 5.1.13 Algorithm by Muntz and Coffman for P2 | pmtn, prec | Cmax

and P | pmtn, forest | Cmax [MC69, MC70].

begin
for all T � T do Compute the level of task T;

t := 0; h := m;
repeat

 Construct set Z of tasks without predecessors at time t;

 while h > 0 and |Z | > 0 do

 begin

 Construct subset S of Z consisting of tasks at the highest level;

 if |S | > h

 then
 begin
 Assign * := h/|S | of a processing capacity to each of the tasks from S ;

 h := 0; -- a processor shared partial schedule is constructed
 end
 else
 begin
 Assign one processor to each of the tasks from S ;

 h := h � |S |; -- a "normal" partial schedule is constructed

 end;

 Z := Z � S ;

 end; -- the most "urgent" tasks have been assigned at time t
Calculate time 7 at which either one of the assigned tasks is finished or a

point is reached at which continuing with the present partial assignment

means that a task at a lower level will be executed at a faster rate * than a

task at a higher level;

 Decrease levels of the assigned tasks by (7 � t)*;

 t := 7; h := m;

 -- a portion of each assigned task equal to (7�t)* has been processed

until all tasks are finished;

call Algorithm 5.1.8 to re-schedule portions of the processor shared schedule

to get a normal one;
end;

 5.1 Minimizing Schedule Length 159

The above algorithm can be implemented to run in O(n2
) time. An example of its

application to an instance of problem P2 | pmtn, prec | Cmax is shown in Figure

5.1.13.

At this point let us also consider another class of the precedence graphs for

which the scheduling problem can be solved in polynomial time. To do this we

have to present precedence constraints in the form of an activity network (task-

on-arc precedence graph, viz. Section 3.1) whose nodes (events) are ordered in

such a way that the occurrence of node i is not later than the occurrence of node j,
if i < j.

(a)

T /27

11
T /4

12
T /3

13T /3

10T /5

T /39

T /48

T /66

T /55

T /43

T /22

T /31

T /14

(b)

0 2 4 9 10 11 13 17 18 22.5

11T 11T

10T
10T

12T

13T

T8

T7
10T

T9T9T6

T4T1

T6

T5

T3 T3

T2 T1

*=2/3

*=2/3

*=2/3

*=1/2
*=1/2

P2

P1

I.

t

t0 2 4 9 10 11 13 15 17 18 19.5 21 22.5

T3

T2 T1

T6

T5

T9 T8

T1 T4 T710T

11T 12T

10T 12T 13TP2

P1

II.

Figure 5.1.13 An example of the application of Algorithm 5.1.13
(a) a task set (nodes are denoted by Tj /pj),

(b) I: a processor-shared schedule, II: an optimal schedule.

160 5 Scheduling on Parallel Processors

Now, let S I denote the set of all the tasks which may be performed between the

occurrence of event (node) I and I + 1. Such sets will be called main sets. Let us

consider processor feasible sets, i.e. those main sets and those subsets of the

main sets whose cardinalities are not greater than m, and number these sets from

1 to some K. Now, let Qj denote the set of indices of processor feasible sets in

which task Tj may be performed, and let xi denote the duration of the ith feasible

set. Then, a linear programming problem can be formulated in the straightfor-

ward way [WBCS77, BCSW76b] (another LP formulation for unrelated proces-

sors is presented in Section 5.1.2 as the first phase of a two-phase method):

Minimize Cmax = �
i=1

K
 xi (5.1.14)

subject to �
i �Qj

 xi = pj , j = 1, 2,..., n ,

 xi � 0, i = 1, 2,..., K .

(5.1.15)

It is clear that the solution of the LP problem depends on the order of nodes

in the activity network; hence an optimal solution is found when this topological

order is unique. Such a situation takes place for a uniconnected activity network

(uan), i.e. one in which any two nodes are connected by a directed path in only

one direction. An example of a uniconnected activity network together with the

corresponding precedence graph is shown in Figure 5.1.14. On the other hand,

the number of variables in the above LP problem depends polynomially on the

input length, when the number of processors m is fixed. We may then use a non-

simplex algorithm (e.g. from [Kha79] or [Kar84]) which solves any LP problem

in time polynomial in the number of variables and constraints. Hence, we may

conclude that the above procedure solves problem Pm | pmtn, uan | Cmax in poly-

nomial time.

(a)

T4T1

T2 T5

T3

2

4

3

1

(b)

T2 T5

T1 T4

T3

Figure 5.1.14 (a) An example of a simple uniconnected activity network,
(b) The corresponding precedence graph.
Main sets S 1 = {T1, T2}, S 2 = {T2, T3, T4}, S 3 = {T4, T5}.

 5.1 Minimizing Schedule Length 161

Recently another LP formulation has been proposed which enables one to solve
problem P | pmtn, uan | Cmax in polynomial time, regardless of a number of pro-
cessors [JMR+04].

As we already mentioned the uniconnected activity network has a task-on-
node equivalent representation in a form of the interval order. Below, we present
a sketch of the proof [BK02]. Let us start with the following theorem which will
be given without a proof.

Theorem 5.1.14 Let G be an activity network (task-on-arc graph). G is unicon-
nected if and only if G has a Hamiltonian path.

Now, the following theorems may be proved [BK02].

Theorem 5.1.15 If G is a uan, then G is a task-on-arc representation of an
interval order.

Proof. By Theorem 5.1.14, G = (V , A) is composed of a Hamiltonian path
W = (v1 , … , vn) with possibly some additional arcs of the form (vi , vj) with i < j.
The interval order we are looking for is defined by the following collection of
intervals (Ia)a�A . For every arc a = (vi , vj) of A, we put the interval [i , j) into the
collection.

We have now to show that Ia = [i , j) is entirely to the left of Ia' = [i' , j') if
and only if a has to precede a' in the task precedence constraints represented by
G. This is easy to show, since:

Ia = [i , j) is entirely to the left of Ia' = [i' , j')

 j � i’

 there is a path from vj to vi' in G (along W)

 a with head j has to precede a' with tail i' .

If dummy tasks are not allowed, an interval order does not necessarily have a
task-on-arc representation. Indeed, if we consider the collection of intervals
{[1,2) , [1,3) , [2,4) , [3,4)}, its task-on-node representation is graph N in Figure
2.3.1. It implies that this partial order does not have a task-on-arc representation
without dummy tasks. But the equivalence of task-on-node and task-on-arc rep-
resentations can be obtained through the use of dummy tasks. Since we allow
them also here, the following result can be proved.

Theorem 5.1.16 Any interval order has a task-on-arc representation with a
Hamiltonian path (and therefore corresponds to a uan).

Proof. Consider any collection of intervals (Ia)a�A with Ia = [ba , ea). We define
the following graph G=(V,E). Set

V= { ba | a � A } � { ea | a � A }.

162 5 Scheduling on Parallel Processors

For any v in V, let next(v) be the vertex w > v such that there is no x in V with v +
x + w (next(v) is not defined for the largest ea). Set

A' = { (v , next(v)) | v � V and next(v) defined }
and

E = A' � { (ba , ea) | a � A } .

The arcs in A' represent dummy tasks. This graph G has indeed a Hamilto-
nian path, starting with the smallest ba (mina�A ea), following the arcs in A' and
ending at the largest ea (maxa�A ea). It remains to show that Ia = [ba , ea) is en-
tirely to the left of Ia' = [ba' , ea') if and only if arc (ba , ea) has to precede arc
[ba' , ea') in the task precedence constraints represented by G. We do not have to
deal with arcs in A' since they represent dummy tasks:

Ia=[ba , ea) is entirely to the left of Ia' = [ba' , ea')

 ea � ba'

 there is a path from ea to ba' in G (using the arcs in A')

 (ba , ea) with head ea has to precede (ba' , ea') with tail ba' .

The following corollary is a direct consequence of Theorems 5.1.15 and 5.1.16

Corollary 5.1.17 Let Q be a partial order. If dummy tasks are allowed, Q is an
interval order if and only if Q can be represented as a uan.

We may now conclude the above considerations with the following result:

P | pmtn , interval order | Cmax is solvable in polynomial time.
For general precedence graphs, however, we know from Ullman [Ull76] that the

problem is NP-hard. In that case a heuristic algorithm such as Algorithm 5.1.13

my be chosen. The worst-case behavior of Algorithm 5.1.13 applied in the case

of P | pmtn, prec | Cmax has been analyzed by Lam and Sethi [LS77]:

RAlg.5.1.13 = 2 �
2

m , m � 2 .

5.1.2 Uniform and Unrelated Processors

Problem Q | pj = 1 | Cmax

Let us start with an analysis of independent tasks and non-preemptive schedul-

ing. Since the problem with arbitrary processing times is already NP-hard for

identical processors, all we can hope to find is a polynomial time optimization

algorithm for tasks with unit standard processing times only. Such an approach

 5.1 Minimizing Schedule Length 163

has been given by Graham et al. [GLL+79] where a transportation network for-

mulation has been presented for problem Q | pj = 1 | Cmax . We describe it briefly

below.

Let there be n sources j, j = 1, 2,..., n, and mn sinks (i, k), i = 1, 2,..., m and

k = 1, 2,..., n. Sources correspond to tasks and sinks to processors and positions

of tasks on them. Let cijk = k/bi be the cost of arc (j, (i, k)); this value corresponds

to the completion time of task Tj processed on Pi in the kth position. The arc flow

xijk has the following interpretation:

xijk =
�
�

1 if Tj is processed in the kth position on Pi

0 otherwise.

The min-max transportation problem can be now formulated as follows:

Minimize max
i, j, k

 {cijk xijk} (5.1.16)

subject to� �
i=1

m
 �
k=1

n
 xijk = 1 for all j , (5.1.17)

� �
j=1

n
 xijk � 1 for all i, k , (5.1.18)

 xijk � 0 for all i, j, k . (5.1.19)

This problem can be solved by a standard transportation procedure (cf. Section

2.3) which results in O(n3
) time complexity, or by a procedure due to Sevast-

janov [Sev91]. Below we sketch this last approach. It is clear that the minimum

schedule length is given as

C *
max = sup {t | �

i=1

m
 �tbi� < n/ ' (5.1.20)

On the other hand, a lower bound on the schedule length for the above problem is

C' = n / �
i=1

m
 bi � C *

max . (5.1.21)

Bound C' can be achieved e.g. by a preemptive schedule. If we assign ki = �C'bi �
tasks to processor Pi , i = 1, 2,..., m, respectively, then these tasks may be pro-

cessed in time interval [0, C']. However, l = n � �
i=1

m
 ki tasks remain unassigned.

Clearly l � m � 1, since C'bi � �C'bi � < 1 for each i. The remaining l tasks are then

assigned one by one to those processors Pi for which min
i

{(ki + 1) / bi} is attained

at a given stage, where, of course, ki is increased by one after the assignment of a

task to a particular processor Pi . This procedure is repeated until all tasks are

164 5 Scheduling on Parallel Processors

assigned. We see that this approach results in an O(m2
)-algorithm for solving

problem Q | pj = 1 | Cmax .

Example 5.1.18 To illustrate the above algorithm let us assume that n = 9 tasks

are to be processed on m = 3 uniform processors whose processing speeds are

given by the vector b = [3, 2, 1]. We get C' = 9/6 = 1.5. The numbers of tasks

assigned to processors at the first stage are, respectively, 4, 3, and 1. A corre-

sponding schedule is given in Figure 5.1.15(a), where task T9 has not yet been

assigned. An optimal schedule is obtained if this task is assigned to processor P1 ,

cf. Figure 5.1.15(b).

(a) P1

0 1.0 1.50.5 t

P2

P3

T2 T3T1

T5 T6

T8

T4

T7

1 3 2 3 4 3/ / /

(b)

0 0.5 1.0 1.5 t

P1

P2

P3

T1 T2 T3 T4 T9

T5 T6 T7

T8

1 2 4 5

Cmax
* = 5 3/

Figure 5.1.15 Schedules for Example 5.1.18

 (a) a partial schedule,
 (b) an optimal schedule.

Problem Q | | Cmax

Since other problems of non-preemptive scheduling of independent tasks are NP-

hard, one may be interested in applying certain heuristics. One heuristic algo-

rithm which is a list scheduling algorithm, has been presented by Liu and Liu

[LL74a]. Tasks are ordered on the list in non-increasing order of their processing

times and processors are ordered in non-increasing order of their processing

speeds. Now, whenever a machine becomes free it gets the first non-assigned

task of the list; if there are two or more free processors, the fastest is chosen. The

worst-case behavior of the algorithm has been evaluated for the case of an m + 1

processor system, m of which have processing speed factor equal to 1 and the

remaining processor has processing speed factor b. The bound is as follows.

 5.1 Minimizing Schedule Length 165

R =

�
�

2(m+b)

b+2
 for b � 2

m+b
2

 for b > 2 .

It is clear that the algorithm does better if, in the first case (b � 2), m decreases

faster than b, and if b and m decrease in case of b > 2. Other algorithms have

been analyzed by Liu and Liu [LL74b, LL74c] and by Gonzalez et al. [GIS77].

Problem Q | pmtn | Cmax

By allowing preemptions, i.e. for the problem Q | pmtn | Cmax , one can find opti-

mal schedules in polynomial time. We present an algorithm given by Horvath et

al. [HLS77] despite the fact that there is a more efficient one by Gonzalez and

Sahni [GS78]. We do this because the first algorithm covers also precedence

constraints, and it generalizes the ideas presented in Algorithm 5.1.13. The algo-

rithm is based on two concepts: the task level, defined as previously as pro-

cessing requirement of the unexecuted portion of a task, but now expressed in

terms of a standard processing time, and processor sharing, i.e. the possibility of

assigning only a fraction * (0 � * � max{bi}) of processing capacity to some

task. Let us assume that tasks are indexed in order of non-increasing pj's and pro-

cessors are in order of non-increasing values of bi . It is quite clear that the mini-

mum schedule length can be estimated by

C *
max � C = max{ max

1 � k � m
{

Xk
Bk

}, {
Xn
Bm

} } (5.1.22)

where Xk is the sum of processing requirements (i.e. standard processing times

pj) of the first k tasks, and Bk is the collective processing capacity (i.e. the sum of

processing speed factors bi) of the first k processors. The algorithm presented

below constructs a schedule of length equal to C for the problem Q | pmtn | Cmax .

Algorithm 5.1.19 Algorithm by Horvath, Lam and Sethi for Q | pmtn | Cmax

[HLS77].

begin
for all T � T do Compute level of task T;

t := 0; h := m;
repeat
 while h > 0 do

 begin

 Construct subset S of T consisting of tasks at the highest level;

 -- the most "urgent" tasks are chosen

166 5 Scheduling on Parallel Processors

 if |S | > h

 then
 begin

Assign the tasks of set S to the h remaining processors to be processed

at the same rate * = �
i = m�h+1

m
 bi /

|S |;

 h := 0; -- tasks from set S share the h slowest processors
 end
 else
 begin

Assign tasks from set S to be processed at the same rate * on the fastest

|S | processors;

 h := h � |S |; -- tasks from set S share the fastest | S | processors

 end;
 end; -- the most urgent tasks have been assigned at time t

Calculate time moment 7 at which either one of the assigned tasks is finished

or a point is reached at which continuing with the present partial assign-

ment causes that a task at a lower level will be executed at a faster rate *

than a higher level task;
 -- note, that the levels of the assigned tasks decrease during task execution

Decrease levels of the assigned tasks by (7 � t)*;

t := 7 ; h := m;
 -- a portion of each assigned task equal to (7 � t)* has been processed

until all tasks are finished;
 -- the schedule constructed so far consists of a sequence of intervals during each

 -- of which certain tasks are assigned to the processors in a shared mode.

 -- In the next loop task assignment in each of these intervals is determined

for each interval of the processor shared schedule do

 begin
 Let y be the length of the interval;

 if g tasks share g processors

 then Assign each task to each processor for y/g time units
 else

 begin

Let p be the processing requirement of each of the g tasks in the inter-

val;

Let b be the processing speed factor of the slowest processor;

 if p/b < y

 then call Algorithm 5.1.8
 -- tasks can be assigned as in McNaughton's rule,
 -- ignoring different processor speeds
 else
 begin
 Divide the interval into g subintervals of equal lengths;

 5.1 Minimizing Schedule Length 167

Assign the g tasks so that each task occurs in exactly h intervals, each

time on a different processor;
 end;
 end;
 end;
 -- a normal preemptive schedule has now been constructed
end;

The time complexity of Algorithm 5.1.19 is O(mn2
). An example of its applica-

tion is shown in Figure 5.1.16.

(a)

1510.29.25.241.330

T1
T 1

T1

t

T1T2 T2
T2
T4

T2 T1 T4 T3

T 2
T 4
T5

T3
T2 T1 T4
T3 T5 T6

(b)

1510.29.25.241.330 t

T1T2T2

T1 T1 T2

T2 T1 T4 T3

T1 T4 T3 T2

T2 T1 T4 T3 T5 T6

T1 T4 T3 T5 T6 T2

T5T3T4T1T2

T1T4T3T5T2

T2T1 T4

T4T2 T1

Figure 5.1.16 An example of the application of Algorithm 5.1.19: n = 6, m = 2,

p = [20, 24, 10, 12, 5, 4], b = [4, 1]
(a) a processor shared schedule,
(b) an optimal schedule.

Problem Q | pmtn, prec | Cmax

When considering dependent tasks, only preemptive polynomial time optimiza-

tion algorithms are known. Algorithm 5.1.19 also solves problem Q2 | pmtn,

prec | Cmax , if the level of a task is understood as in Algorithm 5.1.13 where

standard processing times for all the tasks were assumed. When considering this

problem one should also take into account the possibility of solving it for uni-

connected activity networks and interval orders via the slightly modified linear

programming approach (5.1.14)-(5.1.15). It is also possible to solve the problem

by using another LP formulation which is described for the case of R | pmtn |

Cmax.

It is also possible to solve problem Q | pmtn, prec | Cmax approximately by the

two machine aggregation approach, developed in the framework of flow shop

168 5 Scheduling on Parallel Processors

scheduling [RS83] (cf. Chapter 8). In this case the two fastest processors are used

only, and the worst case bound is

Cmax
C *

max
 ���

�.
�
.

�
i=1

m/2

 max{b2i�1 /b1 , b2i /b2} if m is even,

�
i=1

�m/2�
 max{b2i�1 /b1 , b2i /b2} + bm /b1 if m is odd.

Problem R | pmtn | Cmax

Let us pass now to the case of unrelated processors. This case is the most diffi-

cult. We will not speak about unit-length tasks, because unrelated processors

with unit length tasks would reduce to the case of identical or uniform proces-

sors. Hence, no polynomial time optimization algorithms are known for prob-

lems other than preemptive ones. Also, very little is known about approximation

algorithms for this case. Some results have been obtained by Ibarra and Kim

[IK77], but the obtained bounds are not very encouraging. Thus, we will pass to

the preemptive scheduling model.

Problem R | pmtn | Cmax can be solved by a two-phase method. The first phase

consists in solving a linear programming problem formulated independently by

B)�la &zewicz et al. [BCSW76a, BCW77] and by Lawler and Labetoulle [LL78].

The second phase uses the solution of this LP problem and produces an optimal

preemptive schedule.

Let xij � [0, 1] denote the part of Tj processed on Pi . The LP formulation is

as follows:

Minimize Cmax (5.1.23)

subject to Cmax � �
j=1

n
 pij xij � 0 , i = 1, 2,..., m (5.1.24)

 Cmax � �
i=1

m
 pij xij � 0 , j = 1, 2,..., n (5.1.25)

� �
i=1

m
 xij = 1 , j = 1, 2,..., n . (5.1.26)

Solving the above problem, we get Cmax = C *
max and optimal values x*

ij .

However, we do not know how to schedule the task parts, i.e. how to assign these

parts to processors in time. A schedule may be constructed in the following way.

Let T = [t*
ij] be the m � n matrix defined by t*

ij = pij x*
ij , i = 1, 2,..., m, j = 1,

2,..., n. Notice that the elements of T reflect optimal values of processing times

of particular tasks on the processors. The jth column of T corresponding to task Tj

 5.1 Minimizing Schedule Length 169

will be called critical if �
i=1

m
 t*

ij = C *
max. By Y we denote an m � m diagonal matrix

whose element ykk is the total idle time on processor Pk, i.e. ykk = C *
max � �

j=1

n
 t*

kj .

Columns of Y correspond to dummy tasks. Let V = [T,Y] be an m � (n + m) ma-

trix. Now set U containing m positive elements of matrix V is defined as having

exactly one element from each critical column and at most one element from

other columns, and having exactly one element from each row. We see that U

corresponds to a task set which may be processed in parallel in an optimal sched-

ule. Thus, it may be used to construct a partial schedule of some length , > 0. An

optimal schedule is then produced as the union of the partial schedules. This pro-

cedure is summarized in Algorithm 5.1.20 [LL78].

Algorithm 5.1.20 Construction of an optimal schedule corresponding to LP
solution for R | pmtn | Cmax.

begin

C := C *
max;

while C > 0 do

 begin

 Construct set U ;
 -- thus a subset of tasks to be processed in a partial schedule has been chosen

 vmin := min
vij � U

 {vij};

 vmax := maxj � {j' | vij' 	U for i = 1,...,m}{�i v
ij
};

 if C � vmin � vmax

 then , := vmin

 else , := C � vmax;
 -- the length of the partial schedule is equal to ,

 C := C � ,;

 for each vij � U do vij := vij � ,;
 -- matrix V is changed; notice that due to the way , is defined,

 -- the elements of V can never become negative
 end;
end;
The proof of correctness of the algorithm can be found in [LL78].

Now we only need an algorithm that finds set U for a given matrix V. One of the

possible algorithms is based on the network flow approach. In this case the net-

work has m nodes corresponding to machines (rows of V) and n + m nodes corre-

sponding to tasks (columns of V), cf. Figure 5.1.17. A node i from the first group

is connected by an arc to a node j of the second group if and only if vij > 0. Arc

170 5 Scheduling on Parallel Processors

flows are constrained by b from below and by c = 1 from above, where the value

of b is 1 for arcs joining the source with processor-nodes and critical task nodes

with the sink, and b = 0 for the other arcs. Obviously, finding a feasible flow in

this network is equivalent to finding set U . The following example illustrates the

second phase of the described method.

SOURCE SINK

Processors
Tasks

1

2

m

1

n

n+1

n+m

n+2

Figure 5.1.17 Finding set U by the network flow approach.

Example 5.1.21 Suppose that for a certain scheduling problem a linear pro-

gramming solution of the two phase method has the form given in Figure

5.1.18(a). An optimal schedule is then constructed in the following way. First,

matrix V is calculated.

 T1 T2 T3 T4 T5 T6 T7 T8

V =

P1

P2

P3

�
8
8
9

�
:
:
; 3 2 1 4 0

 2 2 0 2 2

 2 1 4 0 1

�
8
8
9

�
:
:
; 0 0 0

 0 2 0

 0 0 2

 7 5 5 6 3 0 2 2

Then elements constituting set U are chosen according to Algorithm 5.1.20,

as depicted above. The value of a partial schedule length is , = 2. Next, the

while-loop of Algorithm 5.1.20 is repeated yielding the following sequence of

matrices Vi .

V1 =
�
8
8
9

�
:
:
; 1 2 1 4 0

 2 2 0 0 2

 2 1 2 0 1

�
8
8
9

�
:
:
; 0 0 0

 0 2 0

 0 0 2

 5.1 Minimizing Schedule Length 171

V2 =
�
8
8
9

�
:
:
; 1 2 1 2 0

 2 0 0 0 2

 0 1 2 0 1

�
8
8
9

�
:
:
; 0 0 0

 0 2 0

 0 0 2

V3 =
�
8
8
9

�
:
:
; 1 0 1 2 0

 0 0 0 0 2

 0 1 0 0 1

�
8
8
9

�
:
:
; 0 0 0

 0 2 0

 0 0 2

V4 =
�
8
8
9

�
:
:
; 1 0 1 1 0

 0 0 0 0 1

 0 0 0 0 1

�
8
8
9

�
:
:
; 0 0 0

 0 2 0

 0 0 2

V5 =
�
8
8
9

�
:
:
; 0 0 1 1 0

 0 0 0 0 0

 0 0 0 0 1

�
8
8
9

�
:
:
; 0 0 0

 0 2 0

 0 0 1

V6 =
�
8
8
9

�
:
:
; 0 0 0 1 0

 0 0 0 0 0

 0 0 0 0 0

�
8
8
9

�
:
:
; 0 0 0

 0 1 0

 0 0 1
 .

A corresponding optimal schedule is presented in Figure 5.1.18(b).

(a)

0 42 6 8 10

T5

T5T4

T3 T4T2T1

T1 T2

T1 T2 T3

P1

P2

P3

t

Cmax
* = 10

(b)

P1

P2

P3

0 42 6 8 10 t

T1

T4

T3

T4

T2

T1

T2

T1

T3

T4

T5

T2

T1

T5

T3 T4

T5

Figure 5.1.18 (a) A linear programming solution for an instance of
R | pmtn | Cmax ,
(b) an optimal schedule.

172 5 Scheduling on Parallel Processors

The overall complexity of the above approach is bounded from above by a poly-

nomial in the input length. This is because the transformation to the LP problem

is polynomial, and the LP problem may be solved in polynomial time using Kha-

chiyan's algorithm [Kha79]; the loop in Algorithm 5.1.20 is repeated at most

O(mn) times and solving the network flow problem requires O(z3
) time, where z

is the number of network nodes [Kar74].

Problem R | pmtn, prec | Cmax

If dependent tasks are considered, i.e. in the case R | pmtn, prec | Cmax , linear pro-

gramming problems similar to those discussed in (5.1.14)-(5.1.15) or (5.1.23)-

(5.1.26) and based on the activity network presentation, can be formulated. For

example, in the latter formulation one defines xijk as a part of task Tj processed on

processor Pi in the main set Sk . Solving the LP problem for xijk , one then applies

Algorithm 5.1.20 for each main set. If the activity network is uniconnected (a

corresponding task-on-node graph represents an interval order), an optimal

schedule is constructed in this way, otherwise only an approximate schedule is

obtained. Notice that in [JMR+04] a two-phase method has been proposed for

problem P | pmtn, uan | Cmax with the McNaughton algorithm applied for each

main set. This reduces the complexity of the second phase to O(n2
). In this paper

also several heuristics for ordering network nodes have been proposed and tested

experimentally, leading finally to an almost optimal algorithm for problem

P | pmtn, prec | Cmax .

We complete this chapter by remarking that introduction of ready times into the

model considered so far is equivalent to the problem of minimizing maximum

lateness. We will consider this type of problems in Section 5.3.

5.2 Minimizing Mean Flow Time

5.2.1 Identical Processors

Problem P | | �� Cj

In the case of identical processors and equal ready times preemptions are not

profitable from the viewpoint of the value of the mean flow time [McN59]. Thus,

we can limit ourselves to considering non-preemptive schedules only.

When analyzing the nature of criterion � Cj , one might expect that, as in the

case of one processor (cf. Section 4.2), by assigning tasks in non-decreasing or-

der of their processing times the mean flow time will be minimized. In fact, a

 5.2 Minimizing Mean Flow Time 173

proper generalization of this simple rule leads to an optimization algorithm for

P | | � Cj (Conway et al. [CMM67]). It is as follows.

Algorithm 5.2.1 SPT rule for problem P | | � Cj [CMM67].

begin
Order tasks on list L in non-decreasing order of their processing times;

while L � � do
 begin

Take the m first tasks from the list (if any) and assign these tasks arbitrarily to

the m different processors;

 Remove the assigned tasks from list L;
 end;
Process tasks assigned to each processor in SPT order;
end;
The complexity of the algorithm is obviously O(nlogn).

In this context let us also mention that introducing different ready times

makes the problem strongly NP-hard even for the case of one processor (see Sec-

tion 4.2 and [LRKB77]). Also, if we introduce different weights, then the 2-

processor problem without release times, P2 | | � wjCj , is already NP-hard

[BCS74].

Problem P | prec | �� Cj

Let us now pass to the case of dependent tasks. Here, P | out-tree, pj = 1 | � Cj is

solved by an adaptation of Algorithm 5.1.11 (Hu's algorithm) to the out-tree case

[Ros�], and P2 | prec, pj = 1 | � Cj is strongly NP-hard [LRK78]. In the case of

arbitrary processing times results by Du et al. [DLY91] indicate that even sim-

plest precedence constraints result in computational hardness of the problem.

That is problem P2 | chains | � Cj is already NP-hard in the strong sense. On the

other hand, it was also proved in [DLY91] that preemptions cannot reduce the

mean weighted flow time for a set of chains. Together with the last result this

implies that problem P2 | chains, pmtn | � Cj is also NP-hard in the strong sense.

Unfortunately, no approximation algorithms for these problems are evaluated

from their worst-case behavior point of view.

5.2.2 Uniform and Unrelated Processors

The results of Section 5.2.1 also indicate that scheduling dependent tasks on uni-

form or unrelated processors is an NP-hard problem in general. No approxima-

tion algorithms have been investigated either. Thus, we will not consider this

subject. On the other hand, in the case of independent tasks, preemptions may be

174 5 Scheduling on Parallel Processors

worthwhile, thus we have to treat non-preemptive and preemptive scheduling

separately.

Problem Q | | �� Cj

Let us start with uniform processors and non-preemptive schedules. In this case

the flow time has to take into account processor speed; so the flow time of task

Ti[k] processed in the kth position on processor Pi is defined as Fi[k] =
1

bi
 �
j=1

k
 pi[j] .

Let us denote by ni the number of tasks processed on processor Pi. Thus, n =

�
i=1

m
 ni . The mean flow time is then given by

F
_

 =

�
i=1

m

1

bi
 �
k=1

ni

(ni � k + 1)pi[k]

n . (5.2.1)

It is easy to see that the numerator in the above formula is the sum of n terms

each of which is the product of a processing time and one of the following coef-

ficients:

1

b1
n1,

1

b1
(n1 � 1) ,...,

1

b1
, 1

b2
n2,

1

b2
(n2 � 1) ,...,

1

b2
,...,

1

bm
nm,

1

bm
(nm � 1) ,...,

1

bm
 .

It is known from [CMM67] that such a sum is minimized by matching n smallest

coefficients in non-decreasing order with processing times in non-increasing or-

der. An O(nlogn) implementation of this rule has been given by Horowitz and

Sahni [HS76].

Problem Q | pmtn | � Cj

In the case of preemptive scheduling, it is possible to show that there exists an

optimal schedule for Q | pmtn | � Cj in which Cj � Ck if pj < pk . On the basis of

this observation, the following algorithm has been proposed by Gonzalez

[Gon77].

Algorithm 5.2.2 Algorithm by Gonzalez for Q | pmtn | � Cj [Gon77].

begin
Order processors in non-increasing order of their processing speed factors;

Order tasks in non-decreasing order of their standard processing times;

for j = 1 to n do

 begin
Schedule task Tj to be completed as early as possible, preempting when

necessary;
 -- tasks will create a staircase pattern "jumping" to a faster processor

 -- whenever a shorter task has been finished

 5.2 Minimizing Mean Flow Time 175

 end;

end;

t

Tm+2Tm+1Tm

T4T3 T5

T1

T2

T2

T3

T3

T4

T4P1

P2

P3

Pm

0

Figure 5.2.1 An example of the application of Algorithm 5.2.2.

The complexity of this algorithm is O(nlog n + mn). An example of its application

is given in Figure 5.2.1.

Problem R | | �� Cj

Let us now turn to the case of unrelated processors and consider problem

R | | � Cj . An approach to its solution is based on the observation that task Tj �

{T1 ,..., Tn} processed on processor Pi � {P1 ,..., Pm} as the last task contributes

its processing time pij to F
 _

. The same task processed in the last but one position

contributes 2pij , and so on [BCS74]. This reasoning allows one to construct an

(m n) � n matrix Q presenting contributions of particular tasks processed in dif-

ferent positions on different processors to the value of F
_

:

Q =

�
8
8
9

�
:
:
;[pij]

2[pij]

.

.

.

n[pij]

The problem is now to choose n elements from matrix Q such that

� exactly one element is taken from each column,

� at most one element is taken from each row,

� the sum of selected elements is minimum.

We see that the above problem is a variant of the assignment problem (cf.

[Law76]), which may be solved in a natural way via the transportation problem.

The corresponding transportation network is shown in Figure 5.2.2.

176 5 Scheduling on Parallel Processors

Careful analysis of the problem shows that it can be solved in O(n3
) time

[BCS74]. The following example illustrates this technique.

Example 5.2.3 Let us consider the following instance of problem R | | � Cj :

n = 5, m = 3, and matrix p of processing times

p =

�
8
8
9

�
:
:
; 3 2 4 3 1

 4 3 1 2 1

 2 4 5 3 4
 .

Using this data the matrix Q is constructed as follows:

Q =

�
8
8
8
8
8
8
8
9

 3 2 4 3 1

 4 3 1 2 1

 2 4 5 3 4

 6 4 8 6 2

 8 6 2 4 2

 4 8 10 6 8

 9 6 12 9 3

 12 9 3 6 3

 6 12 15 9 12

 12 8 16 12 4

 16 12 4 8 4

 8 16 20 12 16

 15 10 20 15 5

 20 15 5 10 5

 10 20 25 15 20 �
:
:
:
:
:
:
:
;

.

On the basis of this matrix a network as shown in Figure 5.2.2 is constructed.

1 1

i j

mn n

source
s t

sink

n n�m
arcs

(1,q)

total flow (n,0)

(1,0)

ij

arcs

n n�m
arcs

(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

arcs

Figure 5.2.2 The transportation network for problem R | | � Cj : arcs are denot-
ed by (c, y), where c is the capacity and y is the cost of unit flow.

 5.3 Minimizing Due Date Involving Criteria 177

Solving the transportation problem results in the selection of the underlined ele-

ments of matrix Q. They correspond to the schedule shown in Figure 5.2.3.

A very surprising result has been recently obtained by Sitters. Problem R | pmtn |

� Cj has been proved to be strongly NP-hard [Sit05].

0 1 2 3 t

T4

T1

T5 T2

T3

P1

P2

P3

F = �Cj = 10/5 = 2* 1�
n

�

Figure 5.2.3 An optimal schedule for Example 5.2.3.

5.3 Minimizing Due Date Involving Criteria

5.3.1 Identical Processors

In Section 4.3 we have seen that single processor problems with due date optimi-

zation criteria involving due dates are NP-hard in most cases. In the following we

will concentrate on minimization of Lmax criterion. It seems to be quite natural

that in this case the general rule should be to schedule tasks according to their

earliest due dates (EDD-rule, cf. Section 4.3.1). However, this simple rule of

Jackson [Jac55] produces optimal schedules under very restricted assumptions

only. In other cases more sophisticated algorithms are necessary, or the problems

are NP-hard.

Problem P | | Lmax

Let us start with non-preemptive scheduling of independent tasks. Taking into

account simple transformations between scheduling problems (cf. Section 3.4)

and the relationship between the Cmax and Lmax criteria, we see that all the prob-

lems that are NP-hard under the Cmax criterion remain NP-hard under the Lmax

criterion. Hence, for example, P2 | | Lmax is NP-hard. On the other hand, unit pro-

cessing times of tasks make the problem easy, and P | pj = 1, rj | Lmax can be solved

by an obvious application of the EDD rule [Bla77]. Moreover, problem P | pj = p,

rj | Lmax can be solved in polynomial time by an extension of the single processor

algorithm (see Section 4.3.1 and [GJST81]). Unfortunately very little is known

about the worst-case behavior of approximation algorithms for the NP-hard prob-

lems in question.

178 5 Scheduling on Parallel Processors

Problem P | pmtn, rj | Lmax

The preemptive mode of processing makes the solution of the scheduling prob-

lem much easier. The fundamental approach in that area is testing feasibility of

problem P | pmtn, rj , d
~

j | � via the network flow approach [Hor74]. Using this ap-

proach repetitively, one can then solve the original problem P | pmtn, rj | Lmax by

changing due dates (deadlines) according to a binary search procedure.

Let us now describe Horn's approach for testing feasibility of problem

P | pmtn, rj , d
~

j | �, i.e. deciding whether or not for a given set of ready times and

deadlines there exists a schedule with no late task. Let the values of ready times

and deadlines of an instance of P | pmtn, rj , d
~

j | � be ordered on a list in such a

way that e0 < e1 <...< ek , k < 2n, where ei stands for some rj or d~j . We construct a

network that has two sets of nodes, besides source and sink (cf. Figure 5.3.1).

The first set corresponds to time intervals in a schedule, i.e. node wi corresponds

to interval [ei�1 , ei], i = 1, 2,..., k. The second set corresponds to the task set. The

capacity of an arc joining the source of the network to node wi is equal to m(ei �

ei�1) and thus corresponds to the total processing capacity of m processors in this

interval. If task Tj could be processed in interval [ei�1 , ei] (because of its ready

time and deadline) then wi is joined to Tj by an arc of capacity ei � ei�1 . Node Tj

is joined to the sink of the network by an arc with capacity equal to pj and with a

lower bound on arc flow which is also equal to pj . We see that finding a feasible

flow pattern corresponds to constructing a feasible schedule and this test can be

made in O(n3
) time (cf. Section 2.3.3). A schedule is constructed on the basis of

flow values on arcs between interval and task nodes. Let us consider the follow-

ing example.

c = m(e �e) c=e �e

w1

w2

wk

T1

T2

Tn

k-1kk

b=p
c=p2

2

c =m(e �e)1 1 0

c =m(e �e)12 2

c = e �e1 0
b=p
c=p

1
1

b=p
c=p

n
n

k-1k

Figure 5.3.1 Network corresponding to problem P | pmtn, rj, d
~

j | � '

Example 5.3.1 Let n = 5, m = 2, p = [5, 2, 3, 3, 1], r = [2, 0, 1, 0, 2], and d = [8, 2,

4, 5, 8]. The corresponding network is shown in Figure 5.3.2(a), and a feasible

 5.3 Minimizing Due Date Involving Criteria 179

flow pattern is depicted in Figure 5.3.2(b). On the basis of this flow the feasible

schedule shown in Figure 5.3.2(c) is constructed.

(a)

c=6

c=2

c=4

c=2

c=2

c=1

c=1
c=1

c=1
c=1

c=2

c=1

c=1

c=1

c=3

c=2

c=2

c=3

c=2
b=5
c=5

b=2
c=2

b=3
c=3

b=3
c=3

b=1
c=1

S S1 2

1T

2T

3T

4T

5T

[0,1]

[1,2]

[2,4]

[4,5]

[5,8]

(b)

S1 S2

[0,1]

[1,2]

[2,4]

[4,5]

[5,8] 5T

4T

3T

2T

1T

2

2

4

2

4

1

1
1

1

1

2

11

1
3

1

5

2

3

3

1

(c)

 t0 1 2 4 5 8

T2 T2 T3 T1 T1

T4 T3 T4 T1 T4 T5

P1

P2

Figure 5.3.2 Finding a feasible schedule via network flow approach (Example
5.3.1)
(a) a corresponding network,

180 5 Scheduling on Parallel Processors

(b) a feasible flow pattern,
(c) a schedule.

In the next step a binary search can be conducted on the optimal value of Lmax,

with each trial value of Lmax inducing deadlines which are checked for feasibility

by means of the above network flow computation. This procedure can be imple-

mented to solve problem P | pmtn, rj | Lmax in O(n3
 min{n2

, logn + log max{pj}})

time [LLL+84].

Problem P | prec, pj = 1 | Lmax

Let us now pass to dependent tasks. A general approach in this case consists in

assigning modified due dates to tasks, depending on the number and due dates of

their successors. Of course, the way in which modified due dates are calculated

depends on the parameters of the problem in question. If scheduling non-

preemptable tasks on a multiple processor system only unit processing times can

result in polynomial time scheduling algorithms. Let us start with in-tree prece-

dence constraints and assume that if Ti ≺ Tj then i > j. The following algorithm

minimizes Lmax (isucc(j) denotes the immediate successor of Tj) [Bru76b].

Algorithm 5.3.2 Algorithm by Brucker for P | in-tree, pj = 1 | Lmax [Bru76b].

begin
d*

1 := 1 � d1; -- the due date of the root node is modified

for k = 2 to n do

 begin
 Calculate modified due date of Tk according to the formula

 d *k := max {1 + d *
isucc(k) , 1 � dk};

 end;

Schedule tasks in non-increasing order of their modified due dates subject to

precedence constraints;
end;

This algorithm can be implemented to run in O(nlogn) time. An example of its

application is given in Figure 5.3.3. Surprisingly out-tree precedence constraints

result in the NP-hardness of the problem [BGJ77].

However, when we limit ourselves to two processors, a different way of

computing modified due dates can be proposed which allows one to solve the

problem in O(n2
) time [GJ76]. In the algorithm below g(k, d *i) is the number of

successors of Tk having modified due dates not greater than d *i .

 5.3 Minimizing Due Date Involving Criteria 181

(a)

T8

T9

T7

T6

T1

T2

T3

T4

T10

T19

T18

T17

T16

T15

T11

T12

T13

T14

T5

T20

T23

T22

T21

T30

T32

T31

T29

T28

T27

T26

T25

T24

(b)

T1T2T5

T6T7

T3T4

T9 T8T20

T32 T31 T30

T23 T22 T21 T29 T28

T24T19 T10 T16 T15 T11

T18 T17

T14 T13 T12

T27 T26 T25

P1

P2

P3

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 t

Figure 5.3.3 An example of the application of Algorithm 5.3.2;

n = 32, m = 4, d = [16, 20, 4, 3, 15, 14, 17, 6, 6, 4, 10, 8, 9, 7, 10, 9, 10, 8,

2, 3, 6, 5, 4, 11, 12, 9, 10, 8, 7, 5, 3, 5]
(a) the task set,
(b) an optimal schedule.

182 5 Scheduling on Parallel Processors

Algorithm 5.3.3 Algorithm by Garey and Johnson for problem P2 | prec,

pj = 1 | Lmax [GJ76].

begin
Z := T ;

while Z � � do

 begin
Choose Tk � Z which is not yet assigned a modified due date and all of whose

successors have been assigned modified due dates;

 Calculate a modified due date of Tk as:

 d *k := min{dk , min{(d *i � 91
2 g(k, d *i);) � Ti � succ(Tk)}};

 Z := Z � {Tk};

 end;

Schedule tasks in non-decreasing order of their modified due dates subject to

precedence constraints;
end;

For m > 2 this algorithm may not lead to optimal schedules, as demonstrated in

the example in Figure 5.3.4. However, the algorithm can be generalized to cover

the case of different ready times too, but the running time is then O(n3
) [GJ77]

and this is as much as we can get in non-preemptive scheduling.

Problem P | pmtn, prec | Lmax

Preemptions allow one to solve problems with arbitrary processing times. In

[Law82b] algorithms have been presented that are preemptive counterparts of

Algorithms 5.3.2 and 5.3.3 and the one presented by Garey and Johnson [GJ77]

for non-preemptive scheduling and unit-length tasks. Hence problems P | pmtn,

in-tree | Lmax , P2 | pmtn, prec | Lmax and P2 | pmtn, prec, rj | Lmax are solvable in

polynomial time. Algorithms for these problems employ essentially the same

techniques for dealing with precedence constraints as the corresponding algo-

rithms for unit-length tasks. However, the algorithms are more complex and will

not be presented here.

 5.3 Minimizing Due Date Involving Criteria 183

5.3.2 Uniform and Unrelated Processors

Problem Q | | Lmax

From the considerations of Section 5.3.1 we see that non-preemptive scheduling

to minimize Lmax is in general a hard problem. Only for the problem Q | pj =

1 | Lmax a polynomial time optimization algorithm is known. This problem can be

solved via a transportation problem formulation as in (5.1.16) - (5.1.19), where

now cijk = k/bi � dj . Thus, from now on we will concentrate on preemptive sched-

uling.

(a)

3
T /0

2
T /0

4
T /0

7
T /1

5
T /4

8
T /3

9
T /3

T /310

T /513

T /514

T /515

T /511

T /512

1
T /3

6
T /4

(b)

L = 1max

t0 1 2 3 4 5 6

P1

P2

P3

T4

T3

T2

T7

T1

T8

T9

T5

T6

T10 T13

T14

T15

T11

T12

(c)

L = 0max
*

t0 1 2 3 4 5

T1

T4

T3

T2

T5

T6

T7 T8

T9T11

T12 T10

T13

T14

T15

P1

P2

P3

Figure 5.3.4 Non-optimal schedules generated by Algorithm 5.3.3 for m=3,
n=15, and all due dates dj = 5
(a) a task set (all tasks are denoted by Tj /d

*
j),

(b) a schedule constructed by Algorithm 5.3.3,
(c) an optimal schedule.

184 5 Scheduling on Parallel Processors

Problem Q | pmtn | Lmax

One of the most interesting algorithms in that area has been presented for prob-

lem Q | pmtn, rj | Lmax by Federgruen and Groenevelt [FG86]. It is a generalization

of the network flow approach to the feasibility testing of problem P | pmtn, rj ,

d~j | � described above. The feasibility testing procedure for problem Q | pmtn, rj ,

d~j | � uses tripartite network formulation of the scheduling problem, where the

first set of nodes corresponds to tasks, the second corresponds to processor-

interval (period) combination and the third corresponds to interval nodes. The

source is connected to each task node, the arc to the jth node having capacity pj ,

j = 1, 2,..., n. A task node is connected to all processor-interval nodes for all in-

tervals during which the task is available. All arcs leading to a processor-interval

node that corresponds to a processor of type r (processors of the same speed may

be represented by one node only) and an interval of length 7, have capacity (br �

br+1)7, with the convention bm+1 = 0. Every node (wi , r) corresponding to proces-

sor type r and interval wi of length 7i , i = 1, 2,..., k , is connected to interval node

wi and has capacity �j=1

r
 mj(br � br+1)7i , where mj denotes the number of proces-

sors of the jth type (cf. Figure 5.3.5). Finally, all interval nodes are connected to

the sink with incapacitated arcs. Finding a feasible flow with value �j=1

n
 pj in such

a network corresponds to a construction of a feasible schedule for Q | pmtn, rj ,

d~j | � . This can be done in O(mn3
) time.

Problem Q | pmtn, prec | Lmax

In case of precedence constraints, Q2 | pmtn, prec | Lmax and Q2 | pmtn, prec, rj |

 Lmax can be solved in O(n2
) and O(n6

) time, respectively, by the algorithms al-

ready mentioned [Law82b].

Problem R | pmtn | Lmax

As far as unrelated processors are concerned, problem R | pmtn | Lmax can be

solved by a linear programming formulation similar to (5.1.23) - (5.1.26) [LL78],

where xij
k
 denotes the amount of Tj processed on Pi in time interval [dk�1 + Lmax ,

dk + Lmax], and where due dates are assumed to be ordered, d1 < d2 <...< dn .

Thus, we have the following formulation:

Minimize Lmax (5.3.1)

 5.3 Minimizing Due Date Involving Criteria 185

3

2

�#

�#

�pn

�p1

�p2

source task nodes processor interval interval nodes sink

S1 S2

1T

2T

nT

kw

4w

3w

2w

1w

(w ,1)3

(w ,2)
3

(w ,3)

(w ,1)
2

(w ,2)2

(w ,3)

(w ,1)1

(w ,2)1

(w ,3)1

�b 73 2

�b 73 1

�(b �b)71 12

�(b �b)7132

�(m +m)(b �b)71 k2 2 3

�(m +m +m)b 721 k3 3

�m (b �b)71 21 k

�m (b �b)71 21 1

�(m +m)(b �b)71 12 2 3

�(m +m +m)b 721 13 3

�(b �b)7221

�(b �b)7
232

(w ,3)k

(w ,3)
4

(w ,1)k

(w ,2)k

(w ,2)4

(w ,1)
4

Figure 5.3.5 A network corresponding to scheduling problem Q | pmtn, rj, d
~

j | �
for three processor types.

186 5 Scheduling on Parallel Processors

subject to � �
i=1

m
 pij x(1)

ij � d1 + Lmax , j = 1, 2,..., n (5.3.2)

� �
i=1

m
 pij x(k)

ij � dk � dk�1 , j = k, k + 1,..., n; k = 2, 3,..., n (5.3.3)

� �
j=1

n
 pij x(1)

ij � d1 + Lmax , i = 1, 2,..., m (5.3.4)

� �
j=k

n
 pij x(k)

ij � dk � dk�1 , i = 1, 2,..., m; k = 2, 3,..., n (5.3.5)

� �
i=1

m
 �
k=1

j
 x(k)

ij = 1 j = 1, 2,..., n . (5.3.6)

Solving the LP problem we obtain n matrices T(k)
 = [t(k)*

ij], k = 1,..., n; then

an optimal solution is constructed by an application of Algorithm 5.1.20 to each

matrix separately.

In this context let us also mention that the case when precedence constraints

form a uniconnected activity network (or interval order in a different presenta-

tion), can also be solved via the same modification of the LP problem as de-

scribed for the Cmax criterion [Slo81].

5.4 Lot Size Scheduling

In this section the more advanced model of lot size scheduling on parallel pro-

cessors is presented. Consider the same problem as discussed in Section 4.4.2 but
now instead of one processor there are m processors available for processing all
tasks of all job types. Recall that the lot size scheduling problem can be solved in
O(H) time for one processor and two job types only, where H is the sum of tasks
of the two given jobs. In the following we want to investigate the problem in-
stance with two job types again but now allowing multiple identical processors.
First we introduce some basic notation. Then the algorithm is presented without
considering inventory restriction; later we show how to take these limitations
into account.

Assume that m identical processors Pi , i = 1, ..., m are available for pro-
cessing the set of jobs J which consist of two types only; due to capacity re-
strictions we want to assume that the final schedule is tight. Considering a num-
ber m > 1 of processors we must determine to which unit time interval (UTI) on
which processors a job has to be assigned. Because of continuous production
requirements we might also assume an assignment of UTI h = 0 to some job type;
this can be interpreted as an assignment of some job type to the last UTI of the
preceding schedule.

 5.4 Lot Size Scheduling 187

The idea of the algorithm is to assign task after task of the two job types,
now denoted by q and r, to empty UTI such that all deadlines are met and no oth-
er assignment can reduce change-over cost. In order to do this we have to classify
UTIs appropriately. Based on this classification we will present the algorithm.
With respect to each deadline dk we define a "sequence of empty UTI" (SEU) as
a processing interval [h*, h*

 + u � 1] on some processor consisting of u consecu-
tive and empty UTI. UTI h*

 � 1 is assigned to some job; UTI h*
 + u is either also

assigned to some job or it is the first UTI after the occurrence of the deadline.
Each SEU can be described by a 3-tuple (i , h*, u) where i is the number of the
processor on which the SEU exists, h* the first empty UTI and u the number of
the UTI in this SEU.

We differentiate between "classes" of SEU by considering the job types as-
signed to neighboring UTI h*

 � 1 and h*
 + u of each SEU. In case h*

 + u has no
assignment we denote this by "E"; all other assignments of UTI are denoted by
the number of the corresponding job type. Now a "class" is denoted by a pair [x ,
y] where x, y � {q , r , E}. This leads to nine possible classes of SEU from which
only classes [q , r], [q , E], [r , q], and [r , E], have to be considered.

Figure 5.4.1 illustrates these definitions using an example with an assign-
ment for UTI h = 0. For d1 = 6 we have a SEU (2,6,1) of class [1, E]; for d2 = 11
we have (1, 9, 3) of class [1, E], (2, 6, 2) of class [1, 2], (2, 10, 2) of class [2, E].

For each dk we have to schedule nqk � 0 and nrk � 0 tasks. We schedule the
corresponding jobs according to non-decreasing deadlines with positive time
orientation starting with k = 1 up to k = K by applying the following algorithm.

P1

P2

0 1 2 3 4 5 6 7 8 9 t

J1 J2J1 J1

J1 J1 J1 J1

J1 J1 J1

J2J2

J2

J2

Figure 5.4.1 Example schedule showing different SEU.

Algorithm 5.4.1 Lot size scheduling of two job types on identical processors
(LIM) [PS96].
begin
for k := 1 to K do
 while tasks required at d~k are not finished do
 begin
 if class [j , E] is not empty
 then Assign job type j to UTI h* of a SEU (i , h*, u) of class [j , E] with

minimum u

188 5 Scheduling on Parallel Processors

 else
 if classes [q , r] or [r , q] are not empty
 then Assign job type q(r) to UTI h* of a SEU (i , h*, u) of class

[q , r] ([r , q]) or if this class is empty to UTI h*
 + u � 1 of a

SEU (i , h*, u) of class [r , q] ([q , r])
 else Assign job type q(r) to UTI h*

 + u � 1 of a SEU (i , h*, u) of
 class [r , E] ([q , E]) with maximum u;

Use new task assignment to calculate SEU of classes [r , E], [r , q], [q , r],
and [q , E];

 end;
end;

In case the "while"-loop cannot be carried out no feasible schedule for the
problem under consideration exists. It is necessary to update the classes after
each iteration because after a task assignment the number u of consecutive and
empty UTI of the concerned SEU decreases by one and thus the SEU might even
disappear. Furthermore an assignment of UTI h* or h*

 + u � 1 might force the
SEU to change the class.

Let us demonstrate the approach by the following example. Let m = 3, J =
{J1, J2}, d~1 = 4, d~2 = 8, d~3 = 11, n11 = 3, n12 = 7, n13 = 5, n21 = 5, n22 = 6, n23 = 7
and zero initial inventory. Let us assume that there is a pre-assignment for h = 0
such that J1 is processed by P1 and J2 is processed by P2 and P3. In Figure 5.4.2
the optimal schedule generated by Algorithm 5.4.1 is given.

P1

P2

0 1 2 3 4 5 6 7 8 9 t

J1

J2

J1 J1

J2

J1

J2J2

J2

J2 J2

10 11

P3

J1 J1 J1 J1 J1 J1 J1

J1

J2

J1 J1 J1

J2J2 J2J2J2J2

J2 J2J2 J2

J1

J2

J2

12

Figure 5.4.2 Optimal schedule for the example problem.

It can be shown that Algorithm 5.4.1 generates an optimal schedule if one exists.
Feasibility of the algorithm is guaranteed by scheduling the job types according
to earliest deadlines using only free UTI of the interval [0, dk]. To prove optimal-
ity of the algorithm one has to show that the selection of the UTI for assigning
the task under consideration is best possible. These facts have been proved in the
following lemmas [PS96] which are formulated and proved for job type q, but
they also hold in case of job type r.

 5.4 Lot Size Scheduling 189

Lemma 5.4.2 There exists an optimal solution that can be built such that job
type q is assigned to UTI h* on processor Pi in case the selected SEU belongs to
classes [q , E] or [q , r]. If the SEU belongs to class [r , E] or [r , q] then q is as-
signed to UTI h*

 + u � 1 on processor Pi .

Lemma 5.4.3 Algorithm 5.4.1 generates schedules with a minimum number of
change-overs for two types of jobs.

The complexity of Algorithm 5.4.1 is O(Hm).
Let us now investigate how we can consider inventory restrictions for both

job types, i.e. for each job type an upper bound Bj on in-process inventory is giv-
en. If there are only two job types, limited in-process storage capacity can be
translated to updated demands of unit time tasks referring to given deadlines dk.
If processing of some job type has to be stopped because of storage limitations,
processing of the other job has to be started as Hm = 5j=1,...,n nj. This can be
achieved by increasing the demand of the other job type, appropriately.

Assume that a demand and inventory feasible and tight schedule exists for
the problem instance. Let Njk be the updated demand after some preprocessing
step now used as input for the algorithm. To define this input more precisely let
us first consider how many unit time tasks of some job type, e.g. q, have to be
processed up to some deadline dk:
� at most the number of tasks of job type q which does not exceed storage limit,

i.e. Lq = Bq � 5
 i=1,...,k�1 (Nqi � nqi);

� at least the number of required tasks of job type q, i.e.
 Dq = nqk � 5

 i=1,...,k�1 (Nqi � nqi);
� at least the remaining processing capacity reduced by the number of tasks of

job type r which can be processed feasibly. From this we get Rq = ck �
5

 i=1,...,k�1 (Nq
i
 + nqi) � (Br � 5

 i=1,...,k�1 (Nri + nri)), where ck = mdk is the total pro-
cessing capacity in the intervals [0, dk] on m processors.

The same considerations hold respectively for the other job type r.
With the following lemmas we show how the demand has to be updated

such that not only feasibility (Lemma 5.4.4) but also optimality (Lemma 5.4.6)
concerning change-overs is retained. We start with showing that Lj can be omit-
ted if we calculate Njk.

Lemma 5.4.4 In case that a feasible and tight schedule exists, Lj = Bj �
5i=1,...,k�1 (Nji � nji) can be neglected.

From the result of Lemma 5.4.4 we can define Njk more precisely by

190 5 Scheduling on Parallel Processors

Nqk := max{ nqk � 5
 i=1,...,k�1 (Nqi � nqi),

 ck � 5
 i=1,...,k�1 (Nqi + Nri) � (Br � 5

 i=1,...,k�1 (Nri � nri)} (5.4.1)

Nrk := max{ nrk � 5
 i=1,...,k�1 (Nri � nri),

 ck � 5
 i=1,...,k�1 (Nri + Nq

i
) � (Bq � 5i=1,...,k�1 (Nqi � nqi)} (5.4.2)

One may show [PS96] that after updating all demands of unit time jobs of type q
according to (5.4.1) the new problem instance is equivalent to the original one.
We omit the case of job type r and (5.4.2), which directly follows in an analo-
gous way. Notice that the demand will only be updated, if inventory restrictions
limit assignment possibilities up to a certain deadline dk. Only in this case the k th
interval will be completely filled with jobs. If no inventory restrictions have to be
considered equations (5.4.1) and (5.4.2) result in the original demand pattern.

Lemma 5.4.5 After adapting Nqk according to (5.4.1) the feasibility of the solu-
tion according to the inventory constraints on r is guaranteed.

Lemma 5.4.6 If
(i) nqk � 5

 i=1,...,k�1 (Nqi � nqi) �
ck � 5

 i=1,...,k�1 (Nqi + Nri) � (Br � 5
 i=1,...,k�1 (Nri � nri)

or
(ii) nqk � 5

 i=1,...,k�1 (Nqi � nqi) <
ck � 5

 i=1,...,k�1 (Nqi + Nri) � (Br � 5
 i=1,...,k�1 (Nri � nri)

for some deadline dk then a demand feasible and optimal schedule can be con-
structed.

The presented algorithm also solves the corresponding problem instance with
arbitrary positive change-over cost because for two job types only, minimizing
the number of change-overs is equivalent to minimizing the sum of their positive
change-over cost. In order to solve the practical gear-box manufacturing problem
where more than two job types have to be considered a heuristic has been im-
plemented which uses the ideas of the presented approach. The corresponding
scheduling rule is considered to be that no unforced change-overs should occur.
The resulting algorithm is part of a scheduling system, which incorporates a
graphical representation scheme using Gantt-charts and further devices to give
the manufacturing staff an effective tool for decision support. For more results on
the implementation of scheduling systems on the shop floor we refer to Chap-
ter 18.

 References 191

References

AH73 D. Adolphson, T. C. Hu, Optimal linear ordering, SIAM J. Appl. Math. 25,

1973, 403-423.

AHU74 A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

Ash72 S. Ashour, Sequencing Theory, Springer, Berlin, 1972.

Bak74 K. Baker, Introduction to Sequencing and Scheduling, J. Wiley, New York,

1974.

BCS74 J. Bruno, E. G. Coffman, Jr., R. Sethi, Scheduling independent tasks to reduce

mean finishing time, Commun. ACM 17, 1974, 382-387.

BCSW76a J. Błażewicz, W. Cellary, R. S)�lowiński, J. W,eglarz, Deterministic problems of
scheduling on parallel processors, Part I. Sets of independent jobs, Podstawy
Sterowania 6, 1976, 155-178 (in Polish).

BCSW76b J. Błażewicz, W. Cellary, R. S)�lowiński, J. W,eglarz, Deterministic problems of
scheduling on parallel processors, Part II. Sets of dependent jobs, Podstawy
Sterowania 6, 1976, 297-320 (in Polish).

BCW77 J. Błażewicz, W. Cellary, J. W,eglarz, A strategy for scheduling splittable tasks

to reduce schedule length, Acta Cybernetica 3, 1977, 99-106.

BGJ77 P. Brucker, M. R. Garey, D. S. Johnson, Scheduling equal-length tasks under

treelike precedence constraints to minimize maximum lateness, Math. Oper.
Res. 2, 1977, 275-284.

BK00 J. Błażewicz, D. Kobler, On the ties between different graph representation for

scheduling problems, Report, Poznan University of Technology, Poznan, 2000.

BK02 J. Błażewicz, D. Kobler, Review of properties of different precedence graphs

for scheduling problems, Eur. J. of Oper. Res. 142, 2002, 435-443.

Bla77 J. Błażewicz, Simple algorithms for multiprocessor scheduling to meet dead-

lines, Inf. Process. Lett. 6, 1977, 162-164.

Bru76a J. Bruno, Scheduling algorithms for minimizing the mean weighted flow-time,

in: E. G. Coffman, Jr. (ed.), Computer and Job-Shop Scheduling Theory,

J. Wiley, New York, 1976.

Bru76b P. J. Brucker, Sequencing unit-time jobs with treelike precedence on m proces-

sors to minimize maximum lateness, Proceedings of the IX. International Sym-
posium on Mathematical Programming, Budapest, 1976.

BT94 B. Braschi, D. Trystram, A new insight into the Coffman-Graham algorithm,

SIAM J. Comput. 23, 1994, 662-669.

CD73 E. G. Coffman, Jr., P. J. Denning, Operating Systems Theory, Prentice-Hall,

Englewood Cliffs, N. J., 1973.

CFL83 E. G. Coffman, Jr., G. N. Frederickson, G. S. Lueker, Probabilistic analysis of

the LPT processor scheduling heuristic, unpublished paper, 1983.

192 5 Scheduling on Parallel Processors

CFL84 E. G. Coffman, Jr., G. N. Frederickson, G. S. Lueker, A note on expected

makespans for largest-first sequences of independent task on two processors,

Math. Oper. Res. 9, 1984, 260-266.

CG72 E. G. Coffman, Jr., R. L. Graham, Optimal scheduling for two-processor sys-

tems, Acta Inform. 1, 1972, 200-213.

CG91 E. G. Coffman, Jr., M. R. Garey, Proof of the 4/3 conjecture for preemptive

versus nonpreemptive two-processor scheduling, Report, Bell Laboratories,

Murray Hill, 1991.

CGJ78 E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, An application of bin-packing

to multiprocessor scheduling, SIAM J. Comput. 7, 1978, 1-17.

CGJ84 E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, Approximation algorithms for

bin packing - an updated survey, in: G. Ausiello, M. Lucertini, P. Serafini

(eds.), Algorithm Design for Computer System Design, Springer, Vienna,

1984, 49-106.

CL75 N.-F. Chen, C. L. Liu, On a class of scheduling algorithms for multiprocessor

computing systems, in: T.-Y. Feng (ed.), Parallel Processing, Lect. Notes Com-
put. Sc. 24, 1975, 1-16.

CMM67 R. W. Conway, W. L. Maxwell, L. W. Miller, Theory of Scheduling, Addison-

Wesley, Reading, Mass., 1967.

Cof73 E. G. Coffman, Jr., A survey of mathematical results in flow-time scheduling

for computer systems, GI - 3. Jahrestagung, Hamburg, Springer, Berlin, 1973,

25-46.

Cof76 E. G. Coffman, Jr. (ed.), Scheduling in Computer and Job Shop Systems,

J. Wiley, New York, 1976.

CS76 E. G. Coffman, Jr., R. Sethi, A generalized bound on LPT sequencing, RAIRO-
Informatique 10, 1976, 17-25.

DL88 J. Du, J. Y-T. Leung, Scheduling tree-structured tasks with restricted execution

times, Inf. Process. Lett. 28, 1988, 183-188.

DL89 J. Du, J. Y-T. Leung, Scheduling tree-structured tasks on two processors to

minimize schedule length, SIAM Discret Math. 2, 1989, 176-196.

DLY91 J. Du, J. Y-T. Leung, G. H. Young, Scheduling chain structured tasks to mini-

mize makespan and mean flow time, Inform. Comput. 92, 1991, 219-236.

DW85 D. Dolev, M. K. Warmuth, Scheduling flat graphs, SIAM J. Comput. 14, 1985,

638-657.

EH93 K. H. Ecker, R. Hirschberg, Task scheduling with restricted preemptions, in:

A. Bode, M. Reeve, G. Wolf (eds.), Proceedings of PARLE93 - Parallel Archi-

tectures and Languages, Lect. Notes Comput. Sc. 694, 1993, 464-475.

FB73 E. B. Fernandez, B. Bussel, Bounds on the number of processors and time for

multiprocessor optimal schedules, IEEE Trans. Comput. 22, 1973, 745-751.

FG86 A. Federgruen, H. Groenevelt, Preemptive scheduling of uniform processors

by ordinary network flow techniques, Manage. Sci. 32, 1986, 341-349.

 References 193

FKN69 M. Fujii, T. Kasami, K. Ninomiya, Optimal sequencing of two equivalent pro-

cessors, SIAM J. Appl. Math. 17, 1969, 784-789 (Erratum: SIAM J. Appl.
Math. 20, 1971, 141).

Fre82 S. French, Sequencing and Scheduling: An Introduction to the Mathematics of
the Job-Shop, Horwood, Chichester, 1982.

FRK86 J. B. G. Frenk, A. H. G. Rinnooy Kan, The rate of convergence to optimality of

the LPT rule, Discret Appl. Math. 14, 1986, 187-197.

FRK87 J. B. G. Frenk, A. H. G. Rinnooy Kan, The asymptotic optimality of the LPT

rule, Math. Oper. Res. 12, 1987, 241-254.

Gab82 H. N. Gabow, An almost linear algorithm for two-processor scheduling,

J. ACM 29, 1982, 766-780.

Gar - M. R. Garey, Unpublished result.

Gar73 M. R. Garey, Optimal task sequencing with precedence constraints, Discrete
Math. 4, 1973, 37-56.

GG73 M. R. Garey, R. L. Graham, Bounds on scheduling with limited resources,

ACM SIGOPS Operating Systems Review, 1973, 104-111.

GG75 M. R. Garey, R. L. Graham, Bounds for multiprocessor scheduling with re-

source constraints, SIAM J. Comput. 4, 1975, 187-200.

GIS77 T. Gonzalez, O. H. Ibarra, S. Sahni, Bounds for LPT schedules on uniform

processors, SIAM J. Comput. 6, 1977, 155-166.

GJ76 M. R. Garey, D. S. Johnson, Scheduling tasks with nonuniform deadlines on

two processors, J. ACM 23, 1976, 461-467.

GJ77 M. R. Garey, D. S. Johnson, Two-processor scheduling with start-times and

deadlines, SIAM J. Comput. 6, 1977, 416-426.

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

GJST81 M. R. Garey, D. S. Johnson, B. B. Simons, R. E. Tarjan, Scheduling unit time

tasks with arbitrary release times and deadlines, SIAM J. Comput. 10, 1981,

256-269.

GJTY83 M. R. Garey, D. S. Johnson, R. E. Tarjan, M. Yannakakis, Scheduling oppos-

ing forests, SIAM J. Algebra. Discr. 4, 1983, 72-93.

GLL+79 R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimiza-

tion and approximation in deterministic sequencing and scheduling theory: a

survey, Annals of Discrete Mathematics 5, 1979, 287-326.

Gon77 T. Gonzalez, Optimal mean finish time preemptive schedules, Technical report

220, Computer Science Department, Pennsylvania State University, 1977.

Gra66 R. L. Graham, Bounds for certain multiprocessing anomalies, Bell Labs Tech.
J. 45, 1966, 1563-1581.

Gra69 R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl.
Math. 17, 1969, 416-429.

194 5 Scheduling on Parallel Processors

Gra76 R. L. Graham, Bounds on performance of scheduling algorithms, Chapter 5 in:

E. G. Coffman, Jr. (ed.), Scheduling in Computer and Job Shop Systems,

J. Wiley, New York, 1976.

GS78 T. Gonzalez, S. Sahni, Preemptive scheduling of uniform processor systems,

J. ACM 25, 1978, 92-101.

HLS77 E. G. Horvath, S. Lam, R. Sethi, A level algorithm for preemptive scheduling,

J. ACM 24, 1977, 32-43.

Hor73 W. A. Horn, Minimizing average flow time with parallel processors, Oper.
Res. 21, 1973, 846-847.

Hor74 W. A. Horn, Some simple scheduling algorithms, Nav. Res. Logist. Quart. 21,

1974, 177-185.

HS76 E. Horowitz, S. Sahni, Exact and approximate algorithms for scheduling non-

identical processors, J. ACM 23, 1976, 317-327.

HS87 D. S. Hochbaum, D. B. Shmoys, Using dual approximation algorithms for

scheduling problems: theoretical and practical results, J. ACM 34, 1987,

144-162.

Hu61 T. C. Hu, Parallel sequencing and assembly line problems, Oper. Res. 9, 1961,

841-848.

IK77 O. H. Ibarra, C. E. Kim, Heuristic algorithms for scheduling independent tasks

on nonidentical processors, J. ACM 24, 1977, 280-289.

Jac55 J. R. Jackson, Scheduling a production line to minimize maximum tardiness,

Research report 43, Management Research Project, University of California,

Los Angeles, 1955.

JMR+04 J. Jozefowska, M. Mika, R. Rozycki, G. Waligora, J. Weglarz, An almost

optimal heurisitc for preemptive Cmax scheduling of dependent tasks on paral-

lel identical machines, Ann. Oper. Res. 129, 2004, 205-216.

Joh83 D. S. Johnson, The NP-completeness column: an ongoing guide, J. Algorithms

4, 1983, 189-203.

Kar72 R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,

J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press,

New York, 1972, 85-103.

Kar74 A. W. Karzanov, Determining the maximal flow in a network by the method of

preflows, Dokl. Akad. Nauk. SSSR 215, 1974, 434-437 (in Russian).

Kar84 N. Karmarkar, A new polynomial-time algorithm for linear programming,

Combinatorica 4, 1984, 373-395.

KE75 O. Kariv, S. Even. An O(n2.5) algorithm for maximum matching in general

graphs, Proceedings of the 16th Annual Symposium on Foundations of Com-
puter Science, 1975, 100-112.

Ked70 S. K. Kedia, A job scheduling problem with parallel processors, Unpublished

report, Department of Industrial Engineering, University of Michigan, Ann Ar-

bor, 1970.

 References 195

Kha79 L. G. Khachiyan, A polynomial algorithm for linear programming, Dokl. Akad.
Nauk SSSR, 244, 1979, 1093-1096 (in Russian).

KK82 N. Karmarkar, R. M. Karp, The differencing method of set partitioning, Report

UCB/CSD 82/113, Computer Science Division, University of California,

Berkeley, 1982.

Kun76 M. Kunde, Beste Schranke beim LP-Scheduling, Bericht 7603, Institut für

Informatik und Praktische Mathematik, Universität Kiel, 1976.

Law73 E. L. Lawler, Optimal sequencing of a single processor subject to precedence

constraints, Manage. Sci. 19, 1973, 544-546.

Law76 E. L. Lawler, Combinatorial optimization: Networks and Matroids, Holt,

Rinehart and Winston, New York, 1976.

Law82a E. L. Lawler, Recent results in the theory of processor scheduling, in:

A. Bachem, M. Grötschel, B. Korte (eds.) Mathematical Programming: The
State of Art, Springer, Berlin, 1982, 202-234.

Law82b E. L. Lawler, Preemptive scheduling in precedence-constrained jobs on parallel

processors, in: M. A. H. Dempster, J. K. Lenstra, A. H. G. Rinnooy Kan (eds.),

Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 1982, 101-123.

Lee91 C.-Y. Lee, Parallel processor scheduling with nonsimultaneous processor

available time, Discret Appl. Math. 30, 1991, 53-61.

Len77 J. K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre Tract

69, Mathematisch Centrum, Amsterdam, 1977.

LL74a J. W. S. Liu, C. L. Liu, Performance analysis of heterogeneous multiprocessor

computing systems, in: E. Gelenbe, R. Mahl (eds.), Computer Architecture and
Networks, North Holland, Amsterdam, 1974, 331-343.

LL74b J. W. S. Liu, C. L. Liu, Bounds on scheduling algorithms for heterogeneous

computing systems, Technical report UIUCDCS-R-74-632, Department of

Computer Science, University of Illinois at Urbana-Champaign, 1974.

LL78 E. L. Lawler, J. Labetoulle, Preemptive scheduling of unrelated parallel pro-

cessors by linear programming, J. ACM 25, 1978, 612-619.

LLL+84 J. Labetoulle, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Preemptive

scheduling of uniform processors subject to release dates, in: W. R. Pulley-

blank (ed.), Progress in Combinatorial Optimization, Academic Press, New

York, 1984, 245-261.

LLRK82 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Recent developments in

deterministic sequencing and scheduling: a survey, in: M. A. H. Dempster,

J. K. Lenstra, A. H. G. Rinnooy Kan (eds.), Deterministic and Stochastic
Scheduling, Reidel, Dordrecht, 1982, 35-73.

LLR+93 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, Sequencing

and scheduling: Algorithms and complexity, in: S. C. Graves, A. H. G.

Rinnooy Kan, P. H. Zipkin (eds.), Handbook in Operations Research and
Management Science, Vol. 4: Logistics of Production and Inventory, Elsevier,

Amsterdam, 1993.

196 5 Scheduling on Parallel Processors

LRK78 J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity of scheduling under prece-

dence constraints, Oper. Res. 26, 1978, 22-35.

LRK84 J. K. Lenstra, A. H. G. Rinnooy Kan, Scheduling theory since 1981: an anno-

tated bibliography, in: M. O'h Eigearthaigh, J. K. Lenstra, A. H. G. Rinnooy

Kan (eds.), Combinatorial Optimization: Annotated Bibliographies, J. Wiley,

Chichester, 1984.

LRKB77 J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Complexity of processor

scheduling problems, Annals of Discrete Mathematics 1, 1977, 343-362.

LS77 S. Lam, R. Sethi, Worst case analysis of two scheduling algorithms, SIAM J.
Comput. 6, 1977, 518-536.

MC69 R. Muntz, E. G. Coffman, Jr., Optimal preemptive scheduling on two-

processor systems, IEEE Trans. Comput. 18, 1969, 1014-1029.

MC70 R. Muntz, E. G. Coffman, Jr., Preemptive scheduling of real time tasks on

multiprocessor systems, J. ACM 17, 1970, 324-338.

McN59 R. McNaughton, Scheduling with deadlines and loss functions, Manage. Sci. 6,

1959, 1-12.

NLH81 K. Nakajima, J. Y-T. Leung, S. L. Hakimi, Optimal two processor scheduling

of tree precedence constrained tasks with two execution times, Performance
Evaluation 1, 1981, 320-330.

PS96 M. Pattloch, G. Schmidt, Lotsize scheduling of two job types on identical pro-
cessors, Discret Appl. Math., 1996, 409-419.

Rin78 A. H. G. Rinnooy Kan, Processor Scheduling Problems: Classification, Com-
plexity and Computations, Nijhoff, The Hague, 1978.

RG69 C. V. Ramamoorthy, M. J. Gonzalez, A survey of techniques for recognizing

parallel processable streams in computer programs, AFIPS Conference Pro-
ceedings, Fall Joint Computer Conference, 1969, 1-15.

Ros� P. Rosenfeld, unpublished result.

Rot66 M. H. Rothkopf, Scheduling independent tasks on parallel processors, Man-
age. Sci. 12, 1966, 347-447.

RS83 H. Röck, G. Schmidt, Processor aggregation heuristics in shop scheduling,

Methods of Operations Research 45, 1983, 303-314.

Sah79 S. Sahni, Preemptive scheduling with due dates, Oper. Res. 5, 1979, 925-934.

SC80 S. Sahni, Y. Cho, Scheduling independent tasks with due times on a uniform

processor system, J. ACM 27, 1980, 550-563.

Sch84 G. Schmidt, Scheduling on semi-identical processors, Zeitschrift für OR A28,

1984, 153-162.

Sch88 G. Schmidt, Scheduling independent tasks with deadlines on semi-identical

processors, J. Oper. Res. Soc. 39, 1988, 271-277.

Set76 R. Sethi, Algorithms for minimal-length schedules, Chapter 2 in: E. G. Coff-

man, Jr. (ed.), Scheduling in Computer and Job Shop Systems, J. Wiley, New

York, 1976.

 References 197

Set77 R. Sethi, On the complexity of mean flow time scheduling, Math. Oper. Res. 2,

1977, 320-330.

Sev91 S. V. Sevastjanov, Private communication, 1991.

Sit05 R. Sitters, Complexity of preemptive minsum scheduling on unrelated parallel

machines, J. Algorithms 57, 2005, 37-48.

Slo78 R. Słowiński, Scheduling preemptible tasks on unrelated processors with addi-

tional resources to minimise schedule length, in: G. Bracci, R. C. Lockemann

(eds.), Information Systems Methodology, Lect. Notes Comput. Sc. 65, 1978,

536-547.

SW77 R. Słowiński, J. Węglarz, Time-minimal network model with different modes

of the execution of activities, Przeglad Statystyczny 24, 1977, 409-416 (in

Polish).

Ull76 J. D. Ullman, Complexity of sequencing problems, Chapter 4 in: E. G. Coff-

man, Jr. (ed.), Scheduling in Computer and Job Shop Systems, J. Wiley, New

York, 1976.

WBCS77 J. Węglarz, J. Błażewicz, W. Cellary, R. S)�lowiński, An automatic revised sim-

plex method for constrained resource network scheduling, ACM Trans. Math.
Softw. 3, 1977, 295-300.

Wer84 D. de Werra, Preemptive scheduling, linear programming and network flows,

SIAM J. Algebra. Discr. 5, 1984, 11-20.

	5 Scheduling on Parallel Processors
	5.1 Minimizing Schedule Length
	5.1.1 Identical Processors
	5.1.2 Uniform and Unrelated Processors

	5.2 Minimizing Mean Flow Time
	5.2.1 Identical Processors
	5.2.2 Uniform and Unrelated Processors

	5.3 Minimizing Due Date Involving Criteria
	5.3.1 Identical Processors
	5.3.2 Uniform and Unrelated Processors

	5.4 Lot Size Scheduling
	References

