

3 Definition, Analysis and
Classification of Scheduling
Problems

Throughout this book we are concerned with scheduling computer and manufac-

turing processes. Despite the fact that we deal with two different areas of applica-

tions, the same model could be applied. This is because the above processes con-

sist of complex activities to be scheduled, which can be modeled by means of

tasks (or jobs), relations among them, processors, sometimes additional resources

(and their operational functions), and parameters describing all these items in

greater detail. The purpose of the modeling is to find optimal or sub-optimal

schedules in the sense of a given criterion, by applying best suited algorithms.

These schedules are then used for the original setting to carry out the various ac-

tivities. In this chapter we introduce basic notions used for such a modeling of

computer and manufacturing processes.

3.1 Definition of Scheduling Problems

In general, scheduling problems considered in this book1 are characterized by

three sets: set T = {T1 , T2 ,..., Tn} of n tasks, set P = {P1 , P2 ,..., Pm} of m pro-
cessors (machines) and set R = {R1 , R2 ,..., Rs} of s types of additional re-
sources R . Scheduling, generally speaking, means to assign processors from P

and (possibly) resources from R to tasks from T in order to complete all tasks

under the imposed constraints. There are two general constraints in classical

scheduling theory. Each task is to be processed by at most one processor at a time

(plus possibly specified amounts of additional resources) and each processor is

capable of processing at most one task at a time. In Chapters 6 and 13 we will

show some new applications in which the first constraint will be relaxed.

We will now characterize the processors. They may be either parallel, i.e.

performing the same functions, or dedicated i.e. specialized for the execution of

certain tasks. Three types of parallel processors are distinguished depending on

their speeds. If all processors from set P have equal task processing speeds, then

we call them identical. If the processors differ in their speeds, but the speed bi of

1 The notation presented in this section is extended in the following chapters of the book.

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_3

61

https://doi.org/10.1007/978-3-319-99849-7_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_3&domain=pdf

62 3 Definition, Analysis and Classification of Scheduling Problems

each processor is constant and does not depend on the task in T , then they are

called uniform. Finally, if the speeds of the processors depend on the particular

task processed, then they are called unrelated.

In case of dedicated processors there are three models of processing sets of

tasks: flow shop, open shop and job shop. To describe these models more pre-

cisely, we assume that tasks form n subsets 2 (chains in case of flow- and job

shops), each subset called a job. That is, job Jj is divided into nj tasks, T1j ,

T2j ,..., Tnj j , and two adjacent tasks are to be performed on different processors.

A set of jobs will be denoted by J . In an open shop the number of tasks is the

same for each job and is equal to m, i.e. nj = m, j = 1, 2,..., n. Moreover, T1j

should be processed on P1 , T2j on P2 , and so on. A similar situation is found in

flow shop, but, in addition, the processing of Ti�1 j should precede that of Tij for

all i = 1,..., nj and for all j = 1, 2,..., n. In a general job shop system the number

nj is arbitrary. Usually in such systems it is assumed that buffers between proc-

essors have unlimited capacity and a job after completion on one processor may

wait before its processing starts on the next one. If, however, buffers are of zero

capacity, jobs cannot wait between two consecutive processors, thus, a no-wait
property is assumed.

In general, task Tj � T is characterized by the following data.

1. Vector of processing times pj = [p1j , p2j ,..., pmj]
T

 , where pij is the time needed

by processor Pi to process Tj . In case of identical processors we have pij = pj , i =

1, 2,..., m. If the processors in P are uniform, then pij = pj /bi , i = 1, 2,..., m,

where pj is the standard processing time (usually measured on the slowest pro-

cessor) and bi is the processing speed factor of processor Pi . In case of shop

scheduling, the vector of processing times describes the processing requirements

of particular tasks comprising one job; that is, for job Jj we have pj = [p1j ,

p2j ,..., pnj j]
T

 , where pij denotes the processing time of Tij on the corresponding

processor.

2. Arrival time (or ready time) rj , which is the time at which task Tj is ready for

processing. If the arrival times are the same for all tasks from T , then it is as-

sumed that rj = 0 for all j.

3. Due date dj , which specifies a time limit by which Tj should be completed;

usually, penalty functions are defined in accordance with due dates.

4. Deadline d~j , which is a "hard" real time limit by which Tj must be completed.

5. Weight (priority) wj , which expresses the relative urgency of Tj .

6. Resource request (if any), as defined in Chapter 13.

2 Thus, the number of tasks in T is assumed to be � n.

 3.1 Definition of Scheduling Problems 63

Unless stated otherwise we assume that all these parameters, pj , rj , dj , d~j ,

and wj , are integers. In fact, this assumption is not very restrictive, since it is

equivalent to permitting arbitrary rational values. We assume moreover, that

tasks are assigned all required resources whenever they start or resume their pro-

cessing and that they release all the assigned resources whenever they are com-

pleted or preempted. These assumptions imply that deadlock cannot occur.

Next, some definitions concerning task preemptions and precedence con-

straints among tasks are given. A schedule is called preemptive if each task may

be preempted at any time and restarted later at no cost, perhaps on another pro-

cessor. If preemption of all the tasks is not allowed we will call the schedule non-
preemptive.

In set T precedence constraints among tasks may be defined. Ti ≺ Tj means

that the processing of Ti must be completed before Tj can be started. In other

words, in set T a precedence relation ≺ is defined. The tasks in set T are called

dependent if the order of execution of at least two tasks in T is restricted by this

relation. Otherwise, the tasks are called independent. A task set with precedence

relation is usually represented as a directed graph (a digraph) in which nodes cor-

respond to tasks and arcs to precedence constraints (a task-on-node graph). It is

assumed that no transitive arcs exist in precedence graphs. An example of a set

of dependent tasks is shown in Figure 3.1.1(a) (nodes are denoted by Tj /pj). Sev-

eral special types of precedence graphs have already been described in Section

2.3.2. Let us notice that in the case of dedicated processors (except in open shop

systems) tasks that constitute a job are always dependent, but the jobs themselves

can be either independent or dependent. There is another way of representing

task dependencies which is useful in certain circumstances. In this so-called ac-
tivity network, precedence constraints are represented as a task-on-arc graph,

where arcs represent tasks and nodes time events. Let us mention here a special

graph of this type called uniconnected activity network (uan), which is defined as

a graph in which any two nodes are connected by a directed path in one direction

only. Thus, all nodes are uniquely ordered. For every precedence graph one can

construct a corresponding activity network (and vice versa), perhaps using dum-

my tasks of zero length. The corresponding activity network for the precedence

graph from Figure 3.1.1(a), is shown in Figure 3.1.1(b). Note that we will show

in Section 5.1.1. the equivalence of the uniconnected activity network and the in-

terval order task-on-node representation (cf. also [BK02]).

Task Tj will be called available at time t if rj � t and all its predecessors

(with respect to the precedence constraints) have been completed by time t .

Now we will give the definitions concerning schedules and optimality crite-

ria. A schedule is an assignment of processors from set P (and possibly resources

from set R) to tasks from set T in time such that the following conditions are

satisfied:

64 3 Definition, Analysis and Classification of Scheduling Problems

� at every moment each processor is assigned to at most one task and each task is

processed by at most one processor 3,

� task Tj is processed in time interval [rj , #) ,

� all tasks are completed,

� if tasks Ti , Tj are in relation Ti ≺ Tj , the processing of Tj is not started before Ti

is completed,

� in the case of non-preemptive scheduling no task is preempted (then the sched-

ule is called non-preemptive), otherwise the number of preemptions of each task

is finite 4 (then the schedule is called preemptive),

� resource constraints, if any, are satisfied.

To represent schedules we will use the so-called Gantt charts. An example

schedule for the task set of Figure 3.1.1 on three parallel, identical processors is

shown in Figure 3.1.2. The following parameters can be calculated for each task

Tj , j = 1, 2,..., n, processed in a given schedule:

completion time Cj ,

flow time Fj = Cj � rj , being the sum of waiting and processing times;

lateness Lj = Cj � dj ,

tardiness Dj = max{Cj � dj , 0} ;

earliness Ej = max{dj � Cj , 0} .

For the schedule given in Figure 3.1.2 one can easily calculate the two first

parameters. In vector notation these are C = [3, 4, 5, 6, 1, 8, 8, 8] and F = C. The

other two parameters could be calculated, if due dates would be defined. Suppose

that due dates are given by the vector d = [5, 4, 5, 3, 7, 6, 9, 12]. Then the late-

nesses, tardinesses and earliness for the tasks in the schedule are: L = [�2, 0, 0, 3,

�6, 2, �1, �4], D = [0, 0, 0, 3, 0, 2, 0, 0], E = [2, 0, 0, 0, 6, 0, 1, 4].

To evaluate schedules we will use three main performance measures or op-
timality criteria:

Schedule length (makespan) Cmax = max{Cj} ,

mean flow time F
_
 =

1

n �
j=1

n
Fj ,

or mean weighted flow time F
_

w = �
j=1

n
wj Fj / �

j=1

n
wj ,

maximum lateness Lmax = max{Lj} .

3 As we mentioned, this assumption can be relaxed.
4 This condition is imposed by practical considerations only.

 3.1 Definition of Scheduling Problems 65

(a)

/3

/4

/1

/2

/1

/2

/3

/2

3T
T1

2T

5T

4T

7T

8T

6T

(b)

T /31

T /42

T /15

T' /02

T /24

T /13 T /26

T /37

T /28

Figure 3.1.1 An example task set
 (a) task-on-node representation

 (b) task-on-arc representation (dummy tasks are primed).

0 1 2 3 4 5 6 7 8

T1

T2

T3

T4

T8

T7

T6

T5

t

P1

P2

P3

Figure 3.1.2 A schedule for the task set given in Figure 3.1.1.

In some applications, other related criteria may be used, as for example: mean

tardiness D
_

 =
1

n �
j=1

n
Dj , mean weighted tardiness D

_

w = �
j=1

n
wj Dj / �

j=1

n
wj , mean earli-

ness E
_
 =

1

n �
j=1

n
Ej , mean weighted earliness E

_

w = �
j=1

n
wj Ej / �

j=1

n
wj , number of tardy

tasks U = �
j=1

n
Uj, where Uj = 1 if Cj > dj , and 0 otherwise, or weighted number of

tardy tasks Uw = �
j=1

n
wj Uj.

66 3 Definition, Analysis and Classification of Scheduling Problems

Again, let us calculate values of particular criteria for the schedule in Figure

3.1.2. They are: schedule length Cmax = 8, mean flow time F
_

 = 43/8, maximum

lateness Lmax = 3, mean tardiness D
 _

 = 5/8, mean earliness E
_

 = 13/8, and number

of tardy jobs U = 2. The other criteria can be evaluated if weights of tasks are

specified.

A schedule for which the value of a particular performance measure " is at

its minimum will be called optimal, and the corresponding value of " will be de-

noted by "*.

We may now define the scheduling problem � as a set of parameters de-

scribed in this subsection 5 not all of which have numerical values, together with

an optimality criterion. An instance I of problem � is obtained by specifying par-

ticular values for all the problem parameters.

We see that scheduling problems are in general of optimization nature (cf.

Section 2.2.1). However, some of them are originally formulated in decision ver-

sion. An example is scheduling to meet deadlines, i.e. the problem of finding,

given a set of deadlines, a schedule with no late task. However, both cases are

analyzed in the same way when complexity issues are considered.

A scheduling algorithm is an algorithm which constructs a schedule for a

given problem �. In general, we are interested in optimization algorithms, but

because of the inherent complexity of many problems of that type, approximation

or heuristic algorithms will be discussed (cf. Sections 2.2.2 and 2.5).

Scheduling problems, as defined above, may be analyzed much in the same

way as discussed in Chapter 2. However, their specificity raises some more de-

tailed questions which will be discussed in the next section.

3.2 Analysis of Scheduling Problems and
Algorithms

Deterministic scheduling problems are a part of a much broader class of combi-

natorial optimization problems. Thus, the general approach to the analysis of

these problems can follow similar lines, but one should take into account their

peculiarities. It is rather obvious that very often the time we can devote to solving

particular scheduling problems is seriously limited so that only low order poly-

nomial time algorithms may be used. Thus, the examination of the complexity of

these problems should be the basis of any further analysis.

It has been known for some time [Coo71, Kar72] (cf. Section 2.2) that there

exists a large class of combinatorial optimization problems for which most prob-

ably no efficient optimization algorithms exist. These are the problems whose de-

cision counterparts (i.e. problems formulated as questions with "yes" or "no" an-

5 Parameters are understood generally, including e.g. relation ≺.

 3.2 Analysis of Scheduling Problems and Algorithms 67

swers) are NP-complete. The optimization problems are called NP-hard in this

case. We refer the reader to [GJ79] and to Section 2.2 for a comprehensive

treatment of the NP-completeness theory, and in the following we assume

knowledge of its basic concepts like NP-completeness, NP-hardness, polynomial

time transformation, etc. It follows that the complexity analysis answers the

question whether or not an analyzed scheduling problem may be solved (i.e. an

optimal schedule found) in time bounded from above by a polynomial in the in-

put length of the problem (i.e. in polynomial time). If the answer is positive, then

an optimization polynomial time algorithm must have been found. Its usefulness

depends on the order of its worst-case complexity function and on the particular

application. Sometimes, when the worst-case complexity function is not low

enough, although still polynomial, a mean complexity function of the algorithm

may be sufficient. This issue is discussed in detail in [AHU74]. On the other

hand, if the answer is negative, i.e. when the decision version of the analyzed

problem is NP-complete, then there are several other ways of further analysis.

First, one may try to relax some constraints imposed on the original problem

and then solve the relaxed problem. The solution of the latter may be a good ap-

proximation to the solution of the original problem. In the case of scheduling

problems such a relaxation may consist of

� allowing preemptions, even if the original problem dealt with non-preemptive

schedules,

� assuming unit-length tasks, when arbitrary-length tasks were considered in the

original problem,

� assuming certain types of precedence graphs, e.g. trees or chains, when arbi-

trary graphs were considered in the original problem, etc.

Considering computer applications, especially the first relaxation can be jus-

tified in the case when parallel processors share a common primary memory.

Moreover, such a relaxation is also advantageous from the viewpoint of certain

optimality criteria.

Second, when trying to solve NP-hard scheduling problems one often uses

approximation algorithms which tend to find an optimal schedule but do not al-

ways succeed. Of course, the necessary condition for these algorithms to be ap-

plicable in practice is that their worst-case complexity function is bounded from

above by a low-order polynomial in the input length. Their sufficiency follows

from an evaluation of the difference between the value of a solution they produce

and the value of an optimal solution. This evaluation may concern the worst case

or a mean behavior. To be more precise, we use here notions that have been in-

troduced in Section 2.5, i.e. absolute performance ratio RA and asymptotic per-

formance ratio R#
A of an approximation algorithm A.

These notions define a measure of "goodness" of approximation algorithms;

the closer R#
A is to 1, the better algorithm A performs. However, for some combi-

natorial problems it can be proved that there is no hope of finding an approxima-

68 3 Definition, Analysis and Classification of Scheduling Problems

tion algorithm of a certain accuracy, i.e. this question is as hard as finding a pol-

ynomial time algorithm for any NP-complete problem.

Analysis of the worst-case behavior of an approximation algorithm may be

complemented by an analysis of its mean behavior. This can be done in two

ways. The first consists in assuming that the parameters of instances of the con-

sidered problem � are drawn from a certain distribution, and then the mean per-
formance of algorithm A is analyzed. One may distinguish between the absolute
error of an approximation algorithm, which is the difference between the ap-

proximate and optimal values and the relative error, which is the ratio of these

two (cf. Section 2.5). Asymptotic optimality results in the stronger (absolute)

sense are quite rare. On the other hand, asymptotic optimality in the relative

sense is often easier to establish. It is rather obvious that the mean performance

can be much better than the worst case behavior, thus justifying the use of a giv-

en approximation algorithm. A main obstacle is the difficulty of proofs of the

mean performance for realistic distribution functions. Thus, the second way of

evaluating the mean behavior of approximation algorithms, consisting of exper-

imental studies, is still used very often. In the latter approach, one compares solu-

tions, in the sense of the values of an optimality criterion, constructed by a given

approximation algorithm and by an optimization algorithm. This comparison

should be made for a large, representative sample of instances.

In this context let us mention the most often used approximation scheduling

algorithm which is the so-called list scheduling algorithm (which is in fact a gen-

eral approach). In this algorithm a certain list of tasks is given and at each step

the first available processor is selected to process the first available task on the

list. The accuracy of a particular list scheduling algorithm depends on the given

optimality criterion and the way the list has been constructed.

The third and last way of dealing with hard scheduling problems is to use

exact enumerative algorithms whose worst-case complexity function is exponen-

tial in the input length. However, sometimes, when the analyzed problem is not

NP-hard in the strong sense, it is possible to solve it by a pseudopolynomial op-

timization algorithm whose worst-case complexity function is bounded from

above by a polynomial in the input length and in the maximum number appearing

in the instance of the problem. For reasonably small numbers such an algorithm

may behave quite well in practice and it can be used even in computer applica-

tions. On the other hand, "pure" exponential algorithms have probably to be ex-

cluded from this application, but they may be used sometimes for other schedul-

ing problems which can be solved by off-line algorithms.

The above discussion is summarized in a schematic way in Figure 3.2.1. In

the following chapters we will use the above scheme when analyzing scheduling

problems.

 3.3 Motivations for Deterministic Scheduling Problems 69

3.3 Motivations for Deterministic Scheduling
Problems

In this section, an interpretation of the assumptions and results in deterministic

scheduling theory which motivate and justify the use of this model, is presented.

We will underline especially computer applications, but we will also refer to

manufacturing systems, even if the practical interpretation of the model is not for

this application area. In a manufacturing environment deterministic scheduling is

also known as predictive. Its complement is reactive scheduling, which can also

be regarded as deterministic scheduling with a shorter planning horizon.

Scheduling problem
(complexity analysis)

NP-hard problem

Relaxation Exact enumerative
algorithms

Approximation
algorithms

e.g. preemptions,
unit processing times (also pseudopolynomial-

time)

Performance analysis
- worst case behavior
- mean behavior
 a) probabilistic analysis
 b) simulation studies

Easy problem
Complexity improvement
- in the worst case
- mean (probabilistic analysis)

Figure 3.2.1 An analysis of a scheduling problem - schematic view.

Let us begin with an analysis of processors (machines). Parallel processors may

be interpreted as central processors which are able to process every task (i.e. eve-

ry program). Uniform processors differ from each other by their speeds, but they

do not prefer any type of tasks. Unrelated processors, on the contrary, are spe-

cialized in the sense that they prefer certain types of tasks, for example numerical

computations, logical programs, or simulation procedures. The processors may

have different instruction sets, but they are still of comparable processing capaci-

ty so they can process tasks of any type, only processing times may be different.

70 3 Definition, Analysis and Classification of Scheduling Problems

In manufacturing systems, pools of machines exist where all the machines have

the same capability (except possibly speed) to process tasks.

Completely different from the above are dedicated processors (dedicated

machines) which may process only certain types of tasks. The interpretation of

this model for manufacturing systems is straightforward but it can also be applied

to computer systems. As an example let us consider a computer system consist-

ing of an input processor, a central processor and an output processor. It is not

difficult to see that such a system corresponds to a flow shop with m = 3. On the

other hand, a situation in which each task is to be processed by an input/output

processor, then by a central processor and at the end again by the input/output

processor, can easily be modeled by a job shop system with m = 2. As far as an

open shop is concerned, there is no obvious computer interpretation. But this

case, like the other shop scheduling problems, has great significance in other ap-

plications, especially in an industrial environment.

By an additional resource we understand in this book a "facility" besides

processors the tasks to be performed compete for. The competition aspect in this

definition should be stressed, since "facilities" dedicated to only one task will not

be treated as resources in this book. In computer systems, for example, messages

sent from one task to another specified task will not be considered as resources.

In manufacturing environments tools, material, transport facilities, etc. can be

treated as additional resources.

Let us now consider the assumptions associated with the task set. As men-

tioned in Section 3.1, in deterministic scheduling theory a priori knowledge of

ready times and processing times of tasks is usually assumed. As opposed to oth-

er practical applications, the question of a priori knowledge of these parameters

in computer systems needs a thorough comment.

Ready times are obviously known in systems working in an off-line mode

and in control systems in which measurement samples are taken from sensing

devices at fixed time moments.

As far as processing times are concerned, they are usually not known a priori

in computer systems. Despite this fact the solution of a deterministic scheduling

problem may also have an important interpretation in these systems. First, when

scheduling tasks to meet deadlines, the only approach (when the task processing

times are not known) is to solve the problem with assumed upper bounds on the

processing times. Such a bound for a given task may be implied by the worst case

complexity function of an algorithm connected with that task. Then, if all dead-

lines are met with respect to the upper bounds, no deadline will be exceeded for

the real task processing times 6. This approach is often used in a broad class of

computer control systems working in a hard real time environment, where a cer-

tain set of control programs must be processed before taking the next sample

from the same sensing device.

6 However, one has to take into account list scheduling anomalies which will be explained

in Section 5.1.

 3.3 Motivations for Deterministic Scheduling Problems 71

Second, instead of exact values of processing times one can take their mean

values and, using the procedure described by Coffman and Denning in [CD73],

calculate an optimistic estimate of the mean value of the schedule length.

Third, one can measure the processing times of tasks after processing a task

set scheduled according to a certain algorithm A. Taking these values as an input

in the deterministic scheduling problem, one may construct an optimal schedule

and compare it with the one produced by algorithm A, thus evaluating the latter.

Apart from the above, optimization algorithms for deterministic scheduling

problems give some indications for the construction of heuristics under weaker

assumptions than those made in stochastic scheduling problems, cf. [BCSW86].

The existence of precedence constraints in computer systems also requires

an explanation. In the simplest case the results of certain programs may be the

input data for others. Moreover, precedence constraints may also concern parts of

the same program. A conventional, serially written program, may be analyzed by

a special procedure looking for parallel parts in it (see for example [RG69,

Rus69], or [Vol70]). These parts may also be defined by the programmer who

can use special programming languages supporting parallel concepts. Apart from

this, a solution of certain reliability problems in operating systems, as for exam-

ple the determinacy problem (see [ACM70, Bae74, Ber66]), requires an intro-

duction of additional precedence constraints.

We will now discuss particular optimality criteria for scheduling problems

from their practical significance point of view. Minimizing schedule length is

important from the viewpoint of the owner of a set of processors (machines),

since it leads to both, the maximization of the processor utilization factor (within

schedule length Cmax), and the minimization of the maximum in-process time of

the scheduled set of tasks. This criterion may also be of importance in a comput-

er control system in which a task set arrives periodically and is to be processed in

the shortest time.

The mean flow time criterion is important from the user's viewpoint since its

minimization yields a minimization of the mean response time and the mean in-

process time of the scheduled task set.

Due date involving criteria are of great importance in manufacturing sys-

tems, especially in those that produce to specific customer orders. Moreover, the

maximum lateness criterion is of great significance in computer control systems

working in the hard real time environment since its minimization leads to the

construction of a schedule with no task late whenever such schedules exist (i.e.

when L *
 max � 0 for an optimal schedule).

The criteria mentioned above are basic in the sense that they require specific

approaches to the construction of schedules.

72 3 Definition, Analysis and Classification of Scheduling Problems

3.4 Classification of Deterministic Scheduling
Problems

The great variety of scheduling problems we have seen from the preceding sec-

tion motivates the introduction of a systematic notation that could serve as a ba-

sis for a classification scheme. Such a notation of problem types would greatly

facilitate the presentation and discussion of scheduling problems. A notation

proposed by Graham et al. [GLL+79] and B)�la &zewicz et al. [BLRK83] will be

presented next and then used throughout the book.

The notation is composed of three fields (| * | ". They have the following

meaning: The first field (= (1, (2 describes the processor environment. Parame-

ter (1 � {�, P, Q, R, O, F, J} characterizes the type of processor used:

(1 = ��: single processor 7,

(1 = P : identical processors,

(1 = Q : uniform processors,

(1 = R : unrelated processors,

(1 = O : dedicated processors: open shop system,

(1 = F : dedicated processors: flow shop system,

(1 = J : dedicated processors: job shop system.

Parameter (2 � {�, k} denotes the number of processors in the problem:

(2 = ��: the number of processors is assumed to be variable,

(2 = k : the number of processors is equal to k (k is a positive integer).

The second field * = *1, *2, *3, *4, *5, *6, *7, *8 describes task and resource

characteristics. Parameter *1 � {�, pmtn} indicates the possibility of task

preemption:

*1 = ��: no preemption is allowed,

*1 = pmtn : preemptions are allowed.

Parameter *2 � {�, res} characterizes additional resources:

*2 = ��: no additional resources exist,

*2 = res : there are specified resource constraints; they will be described in

detail in Chapter 13.

Parameter *3 � {�, prec, uan, tree, chains} reflects the precedence constraints:

*3 = �, prec, uan, tree, chains : denotes respectively independent tasks,

general precedence constraints, uniconnected activity networks, precedence

constraints forming a tree or a set of chains.

Parameter *4 � {�, rj} describes ready times:

7 In this notation � denotes an empty symbol which will be omitted in presenting problems.

 3.4 Classification of Deterministic Scheduling Problems 73

*4 = ��: all ready times are zero,

*4 = rj : ready times differ per task.

Parameter *5 � {�, pj = p, p_ � pj � p
_
} describes task processing times:

*5 = ��: tasks have arbitrary processing times,

*5 = (pj = p) : all tasks have processing times equal to p units,

*5 = (p_ � pj � p
_

) : no pj is less than p_ or greater than p
_

.

Parameter *6 � {�, d~} describes deadlines:

*6 = � : no deadlines are assumed in the system (however, due dates may

be defined if a due date involving criterion is used to evaluate schedules),

*6 = d~ : deadlines are imposed on the performance of a task set.

Parameter *7 � {�, nj � k} describes the maximal number of tasks constituting a

job in case of job shop systems:

*7 = � : the above number is arbitrary or the scheduling problem is not a

job shop problem,

*7 = (nj � k): the number of tasks for each job is not greater than k.

Parameter *8 � {�, no-wait} describes a no-wait property in the case of schedul-

ing on dedicated processors:

*8 = � : buffers of unlimited capacity are assumed,

*8 = no-wait : buffers among processors are of zero capacity and a job after

finishing its processing on one processor must immediately start on the

consecutive processor.

The third field, ", denotes an optimality criterion (performance measure), i.e.

" � {Cmax , �Cj , �wj Cj , Lmax , �Dj , �wj Dj , �Ej , �wj Ej , �Uj , �wj Uj , �}, where

�Cj = F
_

 , �wj Cj = F
_

w , �Dj = D
_

, �wj Dj = D
_

w , �Ej = E
_

, �wj Ej = E
_

w , �Uj = U,

�wj Uj = Uw and "�" means testing for feasibility whenever scheduling to meet

deadlines is considered.

The use of this notation is illustrated by Example 3.4.1.

Example 3.4.1

(a) Problem P | | Cmax reads as follows: Scheduling of non-preemptable and
independent tasks of arbitrary processing times (lengths), arriving to the system
at time 0, on parallel, identical processors in order to minimize schedule length.

(b) O3 | pmtn, rj | �Cj stands for: Preemptive scheduling of arbitrary length
tasks arriving at different time moments in the three machine open shop, where
the objective is to minimize mean flow time.

74 3 Definition, Analysis and Classification of Scheduling Problems

At this point it is worth mentioning that scheduling problems are closely related

in the sense of polynomial transformation 8. Some basic polynomial transfor-

mations between scheduling problems are shown in Figure 3.4.1. For each graph

in the figure, the presented problems differ only by one parameter (e.g. by type

and number of processors, as in Figure 3.4.1(a)) and the arrows indicate the di-

rection of the polynomial transformation. These simple transformations are very

useful in many situations when analyzing new scheduling problems. Thus, many

of the results presented in this book can immediately be extended to cover a

broader class of scheduling problems.

8 This term has been explained in Section 2.2.

(a)

1

R

P

Q Rk

Qk

Pk

(b)

pmtn�

(c)

prec

tree

chain

�

(d)

�

rj

(e)

�p��p ��pj�

�

p = pj

p = 1j

 References 75

(f)

Fw
�

Dw
������ U

D , E����� U

F�

Lmax

Cmax

w, Ew

Figure 3.4.1 Graphs showing interrelations among different values of particu-
lar parameters

(a) processor environment
(b) possibility of preemption
(c) precedence constraints
(d) ready times
(e) processing times
(f) optimality criteria.

References

ACM70 ACM Record of the project MAC conference on concurrent system and paral-

lel computation, Wood's Hole, Mass., 1970.

AHU74 A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

Bae74 J. L. Baer, Optimal scheduling on two processors of different speeds, in:

E. Gelenbe, R. Mahl (eds.), Computer Architecture and Networks, North-

Holland, Amsterdam, 1974.

BCSW86 J. B)la
.
zewicz, W. Cellary, R. S)�lowiński, J. W,eglarz, Scheduling under Re-

source Constraints: Deterministic Models, J. C. Baltzer, Basel, 1986.

Ber66 A. J. Bernstein, Analysis of programs for parallel programming, IEEE Trans.
Comput. EC-15, 1966, 757-762.

BK02 J. Blazewicz, D. Kobler, Review of properties of different precedence graphs

for scheduling problems, Eur. J. Oper. Res. 142, 2002, 435-443.

BLRK83 J. B)la
.
zewicz, J. K. Lenstra, A. H. G. Rinnooy Kan, Scheduling subject to re-

source constraints: classification and complexity, Discret Appl. Math. 5, 1983,

11-24.

76 3 Definition, Analysis and Classification of Scheduling Problems

CD73 E. G. Coffman, Jr., P. J. Denning, Operating Systems Theory, Prentice-Hall,

Englewood Cliffs, N.J., 1973.

Coo71 S. A. Cook, The complexity of theorem proving procedures, Proceedings of
the 3rd ACM Symposium on Theory of Computing, 1971, 151-158.

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

GLL+79 R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimiza-

tion and approximation in deterministic sequencing and scheduling theory: a

survey, Annals of Discrete Mathematics 5, 1979, 287-326.

Kar72 R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,

J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press,

New York, 1972, 85-103.

RG69 C. V. Ramamoorthy, M. J. Gonzalez, A survey of techniques for recognizing

parallel processable streams in computer programs, AFIPS Conference Pro-
ceedings, Fall Joint Computer Conference, 1969, 1-15.

Rus69 E. C. Russel, Automatic Program Analysis, Ph.D. thesis, Department of Engi-

neering, University of California, Los Angeles, 1969.

Vol70 S. Volansky, Graph Model Analysi and Implementation of Computational Se-
quences, Ph.D. thesis, Report No. UCLA-ENG-7048, School of Engineering

Applied Sciences, University of California, Los Angeles, 1970.

	3 Definition, Analysis and Classification of Scheduling Problems
	3.1 Definition of Scheduling Problems
	3.2 Analysis of Scheduling Problems and Algorithms
	3.3 Motivations for Deterministic Scheduling Problems
	3.4 Classification of Deterministic Scheduling Problems
	References

