
 

2  Basics 

In this chapter we provide the reader with basic notions used throughout the 
book. After a short introduction into sets and relations, decision problems, opti-
mization problems and the encoding of problem instances are discussed. The way 
algorithms will be represented and problem membership of complexity classes 
are other essential issues which will be discussed. Afterwards graphs, especially 
certain types such as precedence graphs and networks that are important for 
scheduling problems, are presented. The last two sections deal with algorithmic 
methods used in scheduling such as enumerative algorithms (e. g. dynamic pro-
gramming and branch and bound) and heuristic approaches (e. g. tabu search, 
simulated annealing, ejection chains, and genetic algorithms).  

2.1 Sets and Relations 

Sets are understood to be any collection of distinguishable objects, such as the set 
{1, 2,...} of natural numbers, denoted by IN , the set IN0 of non-negative integers, 
the set of real numbers, IR , or the set of non-negative reals IR�0 . Given real num-
bers a and b, a � b, then [a, b] denotes the closed interval from a to b, i.e. the set 
of reals {x � a � x � b}. Open intervals ((a, b) := {x � a < x < b}) and half open in-
tervals are defined similarly.  

In scheduling theory we are normally concerned with finite sets; so, unless 
infinity is stated explicitly, the sets are assumed to be finite.  

For set S, �S � denotes its cardinality. The power set of S (i.e. the set of all 
subsets of S) is denoted by P (S). For an integer k, 0 � k � �S �, the set of all sub-
sets of cardinality k is denoted by Pk(S). 

The Cartesian product S1 �...� Sk of sets S1 ,..., Sk is the set of all tuples of 
the form (s1 , s2 ,..., sk) where si � Si , i = 1,..., k, i.e. S1 �...� Sk = {(s1 ,..., sk) � 
si � Si , i = 1,..., k}. The k-fold Cartesian product S �...� S is denoted by S k. 

Given sets S
1 ,..., Sk , a subset Q  of S

1 �...� Sk is called a relation over 
S

1 ,..., Sk . In the case k = 2, Q  is called a binary relation. For a binary relation Q  
over S1 and S2 , the sets S1 and S2 are called domain and range, respectively. If Q  
is a relation over S1 ,..., Sk , with S1 = ... = Sk = S, then we simply say: Q  is a (k-
ary) relation over S. For example, the set of edges of a directed graph (see Sec-
tion 2.3) is a binary relation over the vertices of the graph. 
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Let S  be a set, and Q  be a binary relation over S. Then, Q �1
 = {(a, b) � (b, a) 

� Q } is the inverse to Q . Relation Q  is symmetric if (a, b) � Q  implies (b, a) � 

Q . Q  is antisymmetric if for a � b, (a, b) � Q  implies (b, a) 	 Q . Q  is reflexive if 
(a, a) � Q  for all a � S. Q  is irreflexive if (a, a) 	 Q  for all a � S. Q  is transitive 
if for all a, b, c � S, (a, b) � Q  and (b, c) � Q  implies (a, c) � Q . 

A binary relation over S represents a partial order. A set with a binary rela-
tion is called a partially ordered set or poset if and only if it is reflexive, anti-
symmetric and transitive. A binary relation over S is called an equivalence rela-
tion (over S) if it is reflexive, symmetric, and transitive.  

Given set J of n closed intervals of reals, J = {Ii � Ii = [ai , bi], ai � bi , i = 
1,..., n}, a partial order �I on J can be defined by 

Ii �I Ij   
�� (Ii = Ij)  or  (bi � aj ),  i, j � {1,..., n} .  

A poset Q over S is called an interval order if and only if there exists a bijection 
from S to a set of intervals, si  � Ii  = [ai , bi ], such that for any si , sj � S we have 
(si , sj ) � Q exactly when  bi  <  aj . 

Let l = (n1 ,..., nk) and l' = (n'1 ,..., n'k') be sequences of integers, and k, k' � 
0. If k = 0 then l is the empty sequence. We say that l is lexicographically smaller 
than l', written l <. l', if 
(i) the two sequences agree up to some index j, but nj+1 < n'j+1 (i.e. there exists j, 
0 � j � k, such that for all i, 1 � i � j, ni = n'i and nj+1 < n'j+1) , or if 

(ii) sequence l is shorter, and the two sequences agree up to the length of l (i.e. k 
< k' and ni = n'i for all i, 1 � i � k). 

Let Q  and P be binary relations over set S. Then the relational product 
Q °P , defined as {(a, b) � �x � S, (a, x) � Q, (x, b) � P }, is a relation over S. 
Generally, we write Q � for {(a, a) � a � S}, Q �

 = Q , and Q i+1
 = Q i

 °Q  for i > 1. 
The union Q * = �{Q i

 � i � 0} is called the transitive closure of Q .  
A function from A  to B  (A � B  ; A  and B  are not necessarily finite) is a re-

lation F over A  and B  such that for each a � A  there exists just one b � B  for 
which (a, b) � F; instead of (a, b) � F we usually write F(a) = b. Set A is called 
the domain of F and set {b � b � B ,  a � A , (a, b) � F} is called the range of F. 
F is called surjective, or onto B  if for each element b � B  there is at least one el-
ement a � A  such that F(a) = b. Function F is said to be injective, or one-one if 
for each pair of elements, a1 , a2 � A , F(a1) = F(a2) implies a1 = a2 . A function 
that is both surjective and injective is called bijective. A bijective function F: A 
� A  is called a permutation of A . Though we are able to represent functions in 
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special cases by means of tables we usually specify functions in a more or less 
abbreviated way that specifies how the function values are to be determined. For 
example, for n � IN, the factorial function n! denotes the set of pairs {(n, m) � n � 
IN,  m = n.(n � 1).. .3.2}. Other examples of functions are polynomials, exponen-
tial functions and logarithms. 

We will say that function f : IN � IR �
  is of order g, written O(g(k)), if there 

exist constants c and k� � IN such that f(k) � cg(k) for all k � k� . 

2.2 Problems, Algorithms, Complexity 

2.2.1 Problems and Their Encoding 

In general, the scheduling problems we consider belong to a broader class of 
combinatorial search problems. A combinatorial search problem � is a set of 
pairs (I, A), where I is called an instance of a problem, i.e. a finite set of parame-
ters (understood generally, e.g. numbers, sets, functions, graphs) with specified 
values, and A is an answer (solution) to the instance. As an example of a search 
problem let us consider merging two sorted sequences of real numbers. Any in-
stance of this problem consists of two finite sequences of reals e and f sorted in 
non-decreasing order. The answer is the sequence g consisting of all the elements 
of e and f arranged in non-decreasing order. 

Let us note that among search problems one may also distinguish two sub-
classes: optimization and decision problems. An optimization problem is defined 
in such a way that an answer to its instance specifies a solution for which a value 
of a certain objective function is at its optimum (an optimal solution). On the 
other hand, an answer to an instance of a decision problem may take only two 
values, either "yes" or "no". It is not hard to see, that for any optimization prob-
lem, there always exists a decision counterpart, in which we ask (in the case of 
minimization) if there exists a solution with the value of the objective function 
less than or equal to some additionally given threshold value y. (If in the basic 
problem the objective function has to be maximized, we ask if there exists a so-
lution with the value of the objective function � y.) The following example clari-
fies these notions. 

Example 2.2.1  Let us consider an optimization knapsack problem. 
Knapsack 
Instance: A finite set of elements A  = {a1 , a2 ,..., an}, each of which has an in-
teger weight w(ai) and value v(ai), and an integer capacity b of a knapsack. 
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Answer: Subset A' � A  for which �
ai �A'

 v(ai) is at its maximum, subject to the 

constraint �
ai �A'

 w(ai) � b (i.e. the total value of chosen elements is at its maxi-

mum and the sum of weights of these elements does not exceed knapsack capaci-
ty b). 

The corresponding decision problem is denoted as follows. (To distinguish opti-
mization problems from decision problems the latter will be denoted using capi-
tal letters.) 

KNAPSACK 
Instance: A finite set of elements A  = {a1 , a2 ,..., an}, each of which has an in-
teger weight w(ai) and value v(ai) , an integer knapsack capacity b and threshold 
value y. 
Answer: "Yes" if there exists subset A' � A  such that  

�
ai �A'

 v(ai) � y and �
ai �A'

 w(ai) � b.  

Otherwise "No".  

When considering search problems, especially in the context of their solution by 
computer algorithms, one of the most important issues that arises is a question of 
data structures used to encode problems. Usually to encode instance I of problem 
� (that is particular values of parameters of problem �) one uses a finite string 
of symbols x(I). These symbols belong to a predefined finite set � (usually called 
an alphabet) and the way of coding instances is given as a set of encoding rules 
(called encoding scheme e). By input length (input size) �I� of instance I we mean 
here the length of string x(I). Let us note that the requirement that an instance of 
a problem is encoded by a finite string of symbols is the only constraint imposed 
on the class of search problems which we consider here. However, it is rather a 
theoretical constraint, since we will try to characterize algorithms and problems 
from the viewpoint of the application of real computers. 

Now the encoding scheme and its underlying data structure is defined in a 
more precise way. For representation of mathematical objects we use set � that 
contains the usual characters, i.e. capital and small Arabic letters, capital and 
small Greek letters, digits (0,..., 9), symbols for mathematical operations such as 
+, �, ×, /, and various types of parentheses and separators. The class of mathe-
matical objects, A , is then mapped to the set �* of words over the alphabet � by 
means of a function �: A � �*, where �* denotes the set of all finite strings 
(words) made up of symbols belonging to �. Each mathematical object A � A  is 
represented as a structured string in the following sense: Integers are represented 
by their decimal representation. A square matrix of dimension n with integer el-
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ements will be represented as a finite list whose first component represents ma-
trix dimension n, and the following n2 components represent the integer matrix 
elements in some specific order. For example, the list is a structured string of the 
form (n, a(1, 1),...,  a(1, n), a(2, 1),...,  a(2, n),...,  a(n, n)) where n and all the 
a(i, j) are structured strings representing integers. The length of encoding (i.e. the 
complexity of storing) an integer k would then be of order logk, and that of a ma-
trix would be of order n2

logk where k is an upper bound for the absolute value of 
each matrix element. Real numbers will be represented either in decimal notation 
(e.g. 3.14159) or in half-logarithmic representation using mantissa and exponent 
(e.g. 0.314159.10

1
). Functions may be represented by tables which specify the 

function (range) value for each domain value. Representations of more compli-
cated objects (e.g. graphs) will be introduced later, together with the definition of 
these types of objects. 

As an example let us consider encoding of a particular instance of the knap-
sack problem defined in Example 2.2.1. Let the number n of elements be equal to 
6 and let an encoding scheme define values of parameters in the following order: 
n, weights of elements, values of elements, knapsack's capacity b. A string cod-
ing an exemplary instance is: 6, 4, 2, 12, 15, 3, 7, 1, 4, 8, 12, 5, 7, 28. 

The above remarks do not exclude the usage of any other reasonable encod-
ing scheme which does not cause an exponential growth of the input length as 
compared with other encoding schemes. For this reason one has to exclude unary 
encoding in which each integer k is represented as a string of k 1's. We see that 
the length of encoding this integer would be k which is exponentially larger, as 
compared to the above decimal encoding. 

In practice, it is worthwhile to express the input length of an instance as a 
function depending on the number of elements of some set whose cardinality is 
dominating for that instance. For the knapsack problem defined in Example 2.2.1 
this would be the number of elements n, for the merging problem - the total 
number of elements in the two sequences, for the scheduling problem - the num-
ber of tasks. This assumption, usually made, in most cases reduces practically to 
the assumption that a computer word is large enough to contain any of the binary 
encoded numbers comprising an instance. However, in some problems, for ex-
ample those in which graphs are involved, taking as input size the number of 
nodes may appear too great a simplification since the number of edges in a graph 
may be equal to n(n � 1)/2. Nevertheless, in practice one often makes this simpli-
fication to unify computational results. Let us note that this simplification causes 
no exponential growth of input length. 

2.2.2 Algorithms 

Let us now pass to the notion of an algorithm and its complexity function. An al-
gorithm is any finite procedure for solving a problem (i.e. for giving an answer). 
We will say that an algorithm solves search problem �, if it finds a solution for 
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any instance I of �. In order to keep the representation of algorithms easily un-
derstandable we follow a structural approach that uses language concepts known 
from structural programming, such as case statements, or loops of various kinds. 
Like functions or procedures, algorithms may also be called in an algorithm. Pa-
rameters may be used to import data to or export data from the algorithm. Be-
sides these, we also use mathematical notations such as set-theoretic notations. 

In general, an algorithm consists of two parts: a head and a method. The 
head starts with the keyword Algorithm, followed by an identifying number and, 
optionally, a descriptor (a name or a description of the purpose of the algorithm) 
and a reference to the author(s) of the algorithm. Input and output parameters are 
omitted in cases where they are clear from the context. In other cases, they are 
specified as a parameter list. In even more complex cases, two fields, Input (In-
stance): and Output (Answer): are used to describe parameters, and a field Meth-
od: is used to describe the main idea of the algorithm. As in PASCAL, a block is 
embraced by begin and end. Each block is considered as a sequence of instruc-
tions. An instruction itself may again be a block, an assignment-, an else-, or a 
case- operation, or a loop (for, while, repeat ... until, or a general 
loop), a call of another algorithm, or an exit instruction to terminate a loop 
instruction (exit loop, etc.) or the algorithm or procedure (just exit). The 
right hand side of an assignment operation may be any mathematical expression, 
or a function call. Case statements partition actions of the algorithm into several 
branches, depending on the value of a control variable. Loop statements may 
contain formulations such as: "for all a � M  do ..." or " while M ��� 
do ...". If a loop is preempted by an exit statement the algorithm jumps to the 
first statement after the loop. Comments are started with two minus signs and are 
finished at the end of the line. If a comment needs more than one line, each 
comment line starts with '--'.  

Algorithms should reflect the main idea of the method. Details like output 
layouts are omitted. Names for procedures, functions, variables etc. are chosen so 
that they reflect the semantics behind them. As an example let us consider an al-
gorithm solving the problem of merging two sequences as defined at the begin-
ning of this section. 

Algorithm 2.2.2  merge. 
Input: Two sequences of reals, e = (e[1],..., e[n]) and f = (f [1],..., f [m]), both 
sorted in non-decreasing order. 
Output: Sequence g = (g[1],..., g[n + m]) in which all elements are arranged in 
non-decreasing order. 
begin 
i := 1; j := 1; k := 1;  -- initialization of counters 

while (i � n) and (j � m) do 

  -- the while loop merges elements of sequences e and f into g;  
  -- the loop is executed until all elements of one of the sequences are merged 
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 begin 

 if e[i] < f [j]  
 then begin g[k] := e[i]; i := i + 1; end  
 else begin g[k] := f [j]; j := j + 1; end; 

 k := k + 1; 
 end; 

if i � n -- not all elements of sequence e have been merged 

then for l := i to n do g[k + l � i] := e[l] 
else 

 if j � m -- not all elements of sequence f have been merged 

 then for l := j to m do g[k + l � j] := f [l];  
end; 
The above algorithm returns as an answer sequence g of all the elements of e and 
f, sorted in non-decreasing order of the values of all the elements. 

As another example, consider the search problem of sorting in non-
decreasing order a sequence e = (e[1],..., e[n]) of n = 2k reals (i.e. n is a power of 
2). The algorithm sort (Algorithm 2.2.4) uses two other algorithms that operate 
on sequences: msort(i, j) and merge1(i, j, k). If the two parameters of msort, i and 
j, obey 1 � i < j � n, then msort(i, j) sorts the elements of the subsequence 
(e[i],..., e[j]) of e non-decreasingly. Algorithm merge1 is similar to merge (Al-
gorithm 2.2.2): merge1(i, j, k) (1 � i � j < k � n) takes the elements from the two 
adjacent and already sorted subsequences (e[i],..., e[j]) and (e[j+1],..., e[k]) of e, 
and merges their elements into (e[i],..., e[k]). 

Algorithm 2.2.3  msort(i, j). 
begin 
case (i, j) of -- depending on relative values of i and j,  
 -- three subcases are considered 

 i = j: exit; -- terminate msort 
 i = j � 1: if e[i] > e[j] then Exchange e[i] and e[j]; 

 i < j � 1:  
  begin 

  call msort(i, �(j + i)/2�);1  
   -- sorts elements of subsequence (e[i],..., e[�(j + i)/2�])  

  call msort(�(j + i)/2� + 1,�j); 

   -- sorts elements of subsequence (e[�(j + i)/2� + 1],..., e[j])  
  call merge1(i,��(j + i)/2�,�j); 

                                                 
1 �x� denotes the largest number less than or equal to x. 
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   -- merges sorted subsequences into sequence (e[i],..., e[j]) 
  end; 

 end; 

end; 

Algorithm 2.2.4  sort. 
begin 
read(n); 

read((e[1],..., e[n])); 

call msort(1,�n); 

end; 

Notice that in the case of an optimization problem one may also consider an ap-
proximate (sub-optimal) solution that is feasible (i.e. fulfills all the conditions 
specified in the description of the problem) but does not extremize the objective 
function. It follows that one can also consider heuristic (sub-optimal) algorithms 
which tend toward but do not guarantee the finding of optimal solutions for any 
instance of an optimization problem. An algorithm which always finds an opti-
mal solution will be called an optimization or exact algorithm. 

2.2.3 Complexity 

Let us turn now to the analysis of the computational complexity of algorithms. 
By the time complexity function of algorithm A solving problem � we understand 
the function that maps each input length of an instance I of � into a maximal 
number of elementary steps (or time units) of a computer, which are needed to 
solve an instance of that size by algorithm A. 

It is obvious that this function will not be well defined unless the encoding 
scheme and the model of computation (computer model) are precisely defined. It 
appears, however, that the choice of a particular reasonable encoding scheme and 
a particular realistic computer model has no influence on the distinction between 
polynomial- and exponential time algorithms which are the two main types of al-
gorithms from the computational complexity point of view [AHU74]. This is be-
cause all realistic models of computers 2 are equivalent in the sense that if a prob-
lem is solved by some computer model in time bounded from above by a poly-
nomial in the input length (i.e. in polynomial time), then any other computer 
model will solve that problem in time bounded from above by a polynomial 
(perhaps of different degree) in the input length [AHU74]. Thus, to simplify the 

                                                 
2 By "realistic" we mean here such computer models which in unit time may perform a 

number of elementary steps bounded from above by a polynomial in the input length. This 

condition is fulfilled for example by the one-tape Turing machine, the k-tape Turing ma-

chine, or the random access machine (RAM) under logarithmic cost of performing a single 

operation. 
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computation of the complexity of polynomial algorithms, we assume that, if not 
stated otherwise, the operation of writing a number as well as addition, subtrac-
tion and comparison of two numbers are elementary operations of a computer 
that need the same amount of time, if the length of a binary encoded number is 
bounded from above by a polynomial in the computation time of the whole algo-
rithm. Otherwise, a logarithmic cost criterion is assumed. Now, we define the 
two types of algorithms. 

A polynomial time (polynomial) algorithm is one whose time complexity 
function is O(p(k)), where p is some polynomial and k is the input length of an 
instance. Each algorithm whose time complexity function cannot be bounded in 
that way will be called an exponential time algorithm. 

Let us consider two algorithms with time complexity functions k and 3k
 , re-

spectively. Let us assume moreover that an elementary step lasts 1 �s and that the 
input length of the instance solved by the algorithms is k = 60. Then one may 
calculate that the first algorithm solves the problem in 60 �s while the second 
needs 1.3.10

13 centuries. This example illustrates the fact that indeed the differ-
ence between polynomial- and exponential time algorithms is large and justifies 
definition of the first algorithm as a "good" one and the second as a "bad" one 
[Edm65]. 

If we analyze time complexity of Algorithm 2.2.2, we see that the number of 
instructions being performed during execution of the algorithm is bounded by 
c1(n + m) + c2 , where c1 and c2 are suitably chosen constants, i.e. the number of 
steps depends linearly on the total number of elements to be merged. 

Now we estimate the time complexity of Algorithm 2.2.4. The first two read 
instructions together take O(n) steps, where reading one element is assumed to 
take constant (O(1)) time. During execution of msort(1, n), the sequence of ele-
ments is divided into two subsequences, each of length n/2; msort is applied re-
cursively on the subsequences which will thus be sorted. Then, procedure merge1 
is applied, which combines the two sorted subsequences into one sorted se-
quence. Now let T(m) be the number of steps msort performs to sort m elements. 
Then, each call of msort within msort involves sorting of m/2 elements, so it 
takes T(m/2) time. The call of merge1 can be performed in a number of steps 
proportional to m/2 + m/2 = m, as can easily be seen. Hence, we get the recursion 

T(m) = 2T(m/2) + cm , 

where c is some constant. One can easily verify that there is a constant c' such 
that T(m) = c'mlogm solves the recursion 3. Taking all steps of Algorithm 2.2.4 
together we get the time complexity O(logn) + O(n) + O(nlogn) = O(nlogn).  

Unfortunately, it is not always true that we can solve problems by algorithms 
of linear or polynomial time complexity. In many cases only exponential algo-
rithms are available. We will take now a closer look to inherent complexity of 

                                                 
3 We may take any fixed base for the logarithm, e.g. 2 or 10. 
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some classes of search problems to explain the reasons why polynomial algo-
rithms are unlikely to exist for these problems. 

As we said before, there exist two broad subclasses of search problems: de-
cision and optimization problems. From the computational point of view both 
classes may be analyzed much in the same way (strictly speaking when their 
computational hardness is analyzed). This is because a decision problem is com-
putationally not harder than the corresponding optimization problem. That means 
that if one is able to solve an optimization problem in an "efficient" way (i.e. in 
polynomial time), then it will also be possible to solve a corresponding decision 
problem efficiently (just by comparing an optimal value of the objective func-
tion 4 to a given constant y). On the other hand, if the decision problem is compu-
tationally "hard", then the corresponding optimization problem will also be 
"hard" 5. 

Now, we can turn to the definition of the most important complexity classes 
of search problems. Basic definitions will be given for the case of decision prob-
lems since their formulation permits an easier treatment of the subject. One 
should, however, remember the above dependencies between decision and opti-
mization problems. We will also point out the most important implications. In 
order to be independent of a particular type of a computer we have to use an ab-
stract model of computation. From among several possibilities, we choose the 
deterministic Turing machine (DTM) for this purpose. Despite the fact that this 
choice was somehow arbitrary, our considerations are still general because all 
the realistic models of computations are polynomially related. 

Class P consists of all decision problems that may be solved by the deter-
ministic Turing machine in time bounded from above by a polynomial in the in-
put length. Let us note that the corresponding (broader) class of all search prob-
lems solvable in polynomial time, is denoted by FP [Joh90a]. We see that both, 
the problem of merging two sequences and that of sorting a sequence belong to 
that class. In fact, class FP contains all the search problems which can be solved 
efficiently by the existing computers. 

It is worth noting that there exists a large class of decision problems for 
which no polynomial time algorithms are known, for which, however, one can 
verify a positive answer in polynomial time, provided there is some additional 
information. If we consider for example an instance of the KNAPSACK problem 
defined in Example 2.2.1 and a subset A 1 � A  defining additional information, 
we may easily check in polynomial time whether or not the answer is "yes" in the 
case of this subset. This feature of polynomial time verifiability rather than solv-
ability is captured by a non-deterministic Turing machine (NDTM) [GJ79]. 

                                                 
4 Strictly speaking, it is assumed that the objective function may be calculated in polynomial 

time. 
5 Many decision problems and corresponding optimization problems are linked even more 

strictly, since it is possible to prove that a decision problem is not easier than the corre-

sponding optimization problem [GJ79]. 
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We may now define class NP of decision problems as consisting of all deci-
sion problems which may be solved in polynomial time by an NDTM. 

It follows that P � NP. In order to define the most interesting class of deci-
sion problems, i.e. the class of NP-complete problems, one has to introduce the 
definition of a polynomial transformation. A polynomial transformation from 
problem �2 to problem �1 (denoted by �2 � �1) is a function f mapping the set 
of all instances of �2 into the set of instances of �1 , that satisfies the following 
two conditions: 
1. for each instance I2 of �2 the answer is "yes" if and only if the answer for f(I2) 

of �1 is also "yes", 
2. f is computable in polynomial time (depending on problem size �I2�) by a 

DTM. 
We say that decision problem �1 is NP-complete if �1 � NP and for any 

other problem �2 � NP, �2 � �1 [Coo71]. 
It follows from the above that if there existed a polynomial time algorithm 

for some NP-complete problem, then any problem from that class (and also from 
the NP class of decision problems) would be solvable by a polynomial time algo-
rithm. Since NP-complete problems include classical hard problems (as for ex-
ample HAMILTONIAN CIRCUIT, TRAVELING SALESMAN, SATISFI-
ABILITY, INTEGER PROGRAMMING) for which, despite many attempts, no 
one has yet been able to find polynomial time algorithms, probably all these 
problems may only be solved by the use of exponential time algorithms. This 
would mean that P is a proper subclass of NP and the classes P and NP-complete 
problems are disjoint. 

Another consequence of the above definitions is that, to prove the NP-
completeness of a given problem �, it is sufficient to transform polynomially a 
known NP-complete problem to �. SATISFIABILITY was the first decision 
problem proved to be NP-complete [Coo71]. The current list of NP-complete 
problems contains several thousands, from different areas. Although the choice 
of an NP-complete problem which we use to transform into a given problem in 
order to prove the NP-completeness of the latter, is theoretically arbitrary, it has 
an important influence on the way a polynomial transformation is constructed 
[Kar72]. Thus, these proofs require a good knowledge of NP-complete problems, 
especially characteristic ones in particular areas. 

As was mentioned, decision problems are not computationally harder than 
the corresponding optimization ones. Thus, to prove that some optimization 
problem is computationally hard, one has to prove that the corresponding deci-
sion problem is NP-complete. In this case, the optimization problem belongs to 
the class of NP-hard problems, which includes computationally hard search 
problems. On the other hand, to prove that some optimization problem is easy, it 
is sufficient to construct an optimization polynomial time algorithm. The order of 
performing these two steps follows mainly from the intuition of the researcher, 
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which however, is guided by several hints. In this book, by "open problems" 
from the computational complexity point of view we understand those problems 
which neither have been proved to be NP-complete nor solvable in polynomial 
time. 

Despite the fact that all NP-complete problems are computationally hard, 
some of them may be solved quite efficiently in practice (as for example the 
KNAPSACK problem). This is because the time complexity functions of algo-
rithms that solve these problems are bounded from above by polynomials in two 
variables: the input length �I� and the maximal number max(I) appearing in an in-
stance I. Since in practice max(I) is usually not very large, these algorithms have 
good computational properties. However, such algorithms, called pseudopolyno-
mial, are not really of polynomial time complexity since in reasonable encoding 
schemes all numbers are encoded binary (or in another integer base greater than 
2). Thus, the length of a string used to encode max(I) is log max(I) and the time 
complexity function of a polynomial time algorithm would be O(p(�I�, log 

max(I))) and not O(p(�I�, max(I))), for some polynomial p. It is also obvious that 
pseudopolynomial algorithms may perhaps be constructed for number problems, 
i.e. those problems � for which there does not exist a polynomial p such that 
max(I) � p(�I�) for each instance I of �. The KNAPSACK problem as well as 
TRAVELING SALESMAN and INTEGER PROGRAMMING belong to num-
ber problems; HAMILTONIAN CIRCUIT and SATISFIABILITY do not. How-
ever, there might be number problems for which pseudopolynomial algorithms 
cannot be constructed [GJ78]. 

The above reasoning leads us to a deeper characterization of a class of NP-
complete problems by distinguishing problems which are NP-complete in the 
strong sense [GJ78, GJ79]. 

For a given decision problem � and an arbitrary polynomial p, let �p denote 
the subproblem of � which is created by restricting � to those instances for 
which max(I) � p(�I�). Thus �p is not a number problem. 

Decision problem � is NP-complete in the strong sense (strongly NP-
complete) if � � NP and there exists a polynomial p defined for integers for 
which �p is NP-complete. 

It follows that if � is NP-complete and it is not a number problem, then it is 
NP-complete in the strong sense. Moreover, if � is NP-complete in the strong 
sense, then the existence of a pseudopolynomial algorithm for � would be 
equivalent to the existence of polynomial algorithms for all NP-complete prob-
lems, and thus would be equivalent to the equality P = NP. It has been shown 
that TRAVELING SALESMAN and 3-PARTITION are examples of number 
problems that are NP-complete in the strong sense [GJ79, Pap94]. 

From the above definition it follows that to prove NP-completeness in the 
strong sense for some decision problem �, one has to find a polynomial p for 
which �p is NP-complete, which is usually not an easy way. To make this proof 
easier one may use the concept of pseudopolynomial transformation [GJ78]. 
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To end this section, let us stress once more that the membership of a given 
search problem in class FP or in the class of NP-hard problems does not depend 
on the chosen encoding scheme if this scheme is reasonable as defined earlier. 
The differences in input lengths for a given instance that follow from particular 
encoding schemes have only influence on the complexity of the polynomial (if 
the problem belongs to class FP) or on the complexity of the exponential algo-
rithm (if the problem is NP-hard). On the other hand, if numbers are written 
unary, then pseudopolynomial algorithms would become polynomial because of 
the artificial increase in input lengths. However, problems NP-hard in the strong 
sense would remain NP-hard even in the case of such an encoding scheme. Thus, 
they are also called unary NP-hard [LRKB77]. 

2.3 Graphs and Networks  

2.3.1 Basic Notions  

A graph is a pair G = (V , E ) where V  is the set of vertices or nodes, and E  is 
the set of edges. If E  is a binary relation over V , then G is called a directed 
graph (or digraph). If E  is a set of two-element subsets of V , i.e. E  � P 2(V ), 
then G is an undirected graph. 

A graph G' = (V ', E') is a subgraph of G = (V , E ) (denoted by G' � G), if 
V ' � V , and E' is the set of all edges of E  that connect vertices of V ' . 

Let G1 = (V 1 , E
 1) and G2 = (V 2 , E

 2) be graphs whose vertex sets V 1 and 
V 2 are not necessarily disjoint. Then G1 � G2 = (V 1 � V 2 , E

 1 � E
 2) is the un-

ion graph of G1 and G2 , and G1 � G2 = (V 1 � V 2 , E
 1 � E

 2) is the intersection 
graph of G1 and G2 .  

Digraphs G1 and G2 are isomorphic if there is a bijective mapping �: V 1 � 
V 2 such that (v1 , v2) � E

 1 if and only if (�(v1) , �(v2)) � E
 2 . 

A (undirected) path in a graph or in a digraph G = (V , E ) is a sequence 
i1 ,..., ir of distinct nodes of V  satisfying the property that either (ik , ik+1) � E  or 
(ik+1 , ik) � E  for each k = 1,..., r � 1. A directed path is defined similarly, except 
that (ik , ik+1) � E  for each k = 1,..., r � 1. A (undirected) cycle is a path together 
with an edge (ir , i1) or (i1 , ir). A directed cycle is a directed path together with the 
edge (ir , i1). We will call a graph (digraph) G acyclic if it contains no (directed) 
cycle. 

Two vertices i and j of G are said to be connected if there is at least one un-
directed path between i and j. G is connected if all pairs of vertices are connect-
ed; otherwise it is disconnected.  
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Let v and w be vertices of the digraph G = (V , E ). If there is a directed path 
from v to w, then w is called successor of v, and v is called predecessor of w. If 
(v, w) � E , then vertex w is called immediate successor of v, and v is called im-
mediate predecessor of w. The set of immediate successors of vertex v is denoted 
by isucc(v); the sets succ(v), ipred(v), and pred(v) are defined similarly. The car-
dinality of ipred(v) is called in-degree of vertex v, whereas out-degree is the car-
dinality of isucc(v). A vertex v that has no immediate predecessor is called initial 
vertex (i.e. ipred(v) = �); a vertex v having no immediate successors is called fi-
nal (i.e. isucc(v) = �). 

Directed or undirected graphs can be represented by means of their adjacen-
cy matrix. If V  = {v1 ,..., vn}, the adjacency matrix is a binary n�n-matrix A. In 
case of a directed graph, A(i, j) = 1 if there is an edge from vi to vj , and A(i, j) = 0 
otherwise. In case of an undirected graph, A(i, j) = 1 if there is an edge between vi 
and vj , and A(i, j) = 0 otherwise. The complexity of storage (space complexity) is 
O(n2

). If the adjacency matrix is sparse, as e.g. in case of trees, there are better 
ways of representation, usually based on linked lists. For details we refer to 
[AHU74].  

In many situations, it is appropriate to use a generalization of graphs called 
hypergraphs. Following [Ber73] a finite hypergraph is a pair H = (V, H ) where 
V is a finite set of vertices, and H � P (V ) is a set of subsets of V. The elements 
of H are referred to as hyperedges. Hypergraphs can be represented as bipartite 
graphs (see below): Let GH be the graph whose vertex set is V � H, and the set 
of edges is defined as {{v, h} | h � H, and v � h }. 

2.3.2 Special Classes of Digraphs 

A digraph G = (V , E ) is called bipartite if its vertex set V  can be partitioned in-
to two subsets V 1 and V 2 such that for each edge (i, j) � E , i � V 1 and j � V 2 .  

If a digraph G = (V , E ) contains no directed cycle and no transitive edges 
(i.e. pairs (u, w) of vertices for which there exists a different directed path from u 
to w), it will be called a precedence graph. A corresponding binary relation will 
be called a precedence relation ≺ over set V . A precedence graph G = (V , E ) 
(we also write (V , ≺), where ≺ is the corresponding precedence relation) can 
always be enlarged to a partially ordered set (poset, see Section 2.1) ≺* by add-
ing transitive edges and all reflexive pairs (v, v) (v � V ) to E . On the other hand, 
given a poset (V , Q ), where Q  is a partial order over set V , we can always con-
struct a precedence graph (V , E ) in the following way: E  is obtained by taking 
those pairs of elements (u, w), u � w, for which no sequence v1 ,..., vk of elements 
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with (u, v1) � Q , (vi , vi+1) � Q  for i = 1,..., k � 1, and (vk , w) � Q  can be found. It 
can be constructed from a given poset in O(�V  �2.8

) time [AHU74]. 
A digraph G = (V , E ) is called a chain if in the corresponding poset (V , Q ) 

for any two vertices v and v' � V , v � v', either (v, v') � Q  or (v', v) � Q  (such a 
poset is usually called a linear order). An anti-chain is a (directed) graph (V , E ) 
where E  = � .  

An out-tree is a precedence graph where exactly one vertex has in-degree 0, 
and all the other vertices have in-degree 1. If G = (V , E ) is an out-tree, then 
graph G' = (V , E �1

) is called an in-tree. An out-forest (in-forest) is a disjoint un-
ion of out-trees (in-trees), respectively. An opposing forest is a disjoint union of 
in-trees and out-trees. 

A precedence graph ({a, b, c, d}, ≺) has N-structure if a ≺ c, b ≺ c, b ≺ d, 
a ≺ /  d, d ≺ /  a, a ≺ /  b, b ≺ /  a, c ≺ /  d, and d ≺ /  c (see also Figure 2.3.1). A prece-
dence graph P is N-free if it contains no subset isomorphic to an N-structure. 

To define another interesting class of graphs let us consider a finite set V  

and a collection (Iv)v�V  of intervals Iv on the reals. This collection defines a par-

tial order ≺ on V  as follows: 

               v ≺ w  
  Iv is entirely before  Iw . 

Such a partial order is called an interval order. Without loss of generality, we 

may assume that the intervals have the form [n1, n2) with n1 and n2 integral. It can 

be shown that ≺  is an interval order if and only if the transitive closure of this 

order does not contain 2K2 (see Figure 2.3.2) as an induced subgraph [Fis70]. 

a b

c d
 

Figure 2.3.1  N-structured precedence graph. 

       

Figure 2.3.2  Graph 2K2 . 

Finally we introduce a class of precedence graphs that has been considered fre-
quently in literature. Let S = (V , ≺) be a precedence graph, and let for each v � 

V , Pv = (V v , ≺v) be a precedence graph, where all the sets V v (v � V ) and V  

are pair-wise disjoint. Let U = �
v �V

V v . Define (U, ≺U) as the following prece-

dence graph: for p, q � U, p ≺U q if either there are v, v' � V  with v ≺ v' such 
that p is a final vertex in (V v , ≺v) and q is an initial vertex in (V v' , ≺v'), or there 
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is v � V  with p, q � V v , and p ≺v q. Then (U, ≺U) is called the lexicographic 
sum of (Pv)v �V  over S. Notice that each vertex v of the digraph S = (V , ≺) is re-
placed by the digraph (V v , ≺v) , and if vertex v is connected to v' in S (i.e. v ≺ 
v'), then each final vertex of (V v , ≺v) is connected to each initial vertex of (V v' , 

≺v') . 

We need two special cases of lexicographic sums: If S = (V ,≺) is a chain, 
the lexicographic sum of (Pv)v �V  over S is called a linear sum. If S is an anti-
chain (i.e. v1 ≺ v2 � v1 = v2) , then the lexicographic sum of (Pv)v �V  over S is 
called disjoint sum. A series-parallel precedence graph is a precedence graph 
that can be constructed from one-vertex precedence graphs by repeated applica-
tion of the operations linear sum and disjoint sum. Opposing forests are exam-
ples of series-parallel digraphs. Another example is shown in Figure 2.3.3.  

Without proof we mention some properties of series-parallel graphs. A prec-
edence graph G = (V ,E ) is series-parallel if and only if it is N-free. The question 
if a digraph is series-parallel can be decided in O(�V � + �E �) time [VTL82].  

The structure of a series-parallel graph as it is obtained by successive appli-
cations of linear sum and disjoint sum operations can be displayed by a decom-
position tree. Figure 2.3.4 shows a decomposition tree for the series-parallel 
graph of Figure 2.3.3. Each leaf of the decomposition tree is identified with a 
vertex of the series-parallel graph. An S-node represents an application of linear 
sum (series composition) to the sub-graphs identified with its children; the order-
ing of these children is important: we adopt the convention that left precedes 
right. A P-node represents an application of the operation of disjoint sum (paral-
lel composition) to the subgraphs identified with its children; the ordering of 
these children is of no relevance for the disjoint sum. The series or parallel rela-
tionship of any pair of vertices can be determined by finding their least common 
ancestor in the decomposition tree. 

1

5 6 7 8

9

2 3 4

 

Figure 2.3.3 Example of a series-parallel digraph. 
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1

S

P

S S

2 S P P

P 9 3 4 7 8

5 6  

Figure 2.3.4 Decomposition tree of the digraph of Figure 2.3.3. 

2.3.3 Networks 

In this section the problem of finding a maximum flow in a network is consid-
ered. We will analyze the subject rather thoroughly because of its importance for 
many scheduling problems. 

By a network we will mean a directed graph G = (V , E ) without loops and 
parallel edges, where each edge e � E  is assigned a capacity c(e) � IR�0, and 
sometimes a cost of a unit flow. Usually in the network two vertices s and t, 
called a source and a sink, respectively, are specified. 

A real-valued flow function � is to be assigned to each edge such that the fol-
lowing conditions hold for some F � IR�0 : 

0 � �(e) � c(e) for each e � E  , (2.3.1) 

�
e �IN(v)

 �(e)  � �
e �OUT(v)

 �(e) =
�
�
  

 

 

 

 
�F for v = s 

0 for v � V  � {s, t} 

F for v = t , 

 

 (2.3.2) 

where IN(v) and OUT(v) are the sets of edges incoming to vertex v and outgoing 
from vertex v, respectively. The total flow (the value of flow) F of � is defined by 

F := �
e �IN(t)

 �(e)  � �
e �OUT(t)

 �(e) . (2.3.3) 

Given a network, in the maximum flow problem we want to find a flow function 
� which obeys the above conditions and for which total flow F is at its maxi-
mum. 
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Now, some important notions will be defined and their properties will be 
discussed. Let S  be a subset of the set of vertices V  such that s � S and t 	 S, 
and let S  

_
  be the complement of S, i.e. S  

_
  = V  � S. Let (S , S  

_
) denote a set of edg-

es of network G, each of which has its starting vertex in S and its target vertex in 
S
_

. Set (S  

_
, S ) is defined in a similar way. Given some subset S � V , either set, 

(S , S  

_
) and (S  

_
, S ), will be called cut defined by S . 

Following definition (2.3.3) we see that the value of flow is measured at the 
sink of the network. It is however, possible to measure this value at any cut 
[Eve79, FF62]. 

Lemma 2.3.1  For each subset of vertices S � V , we have 

F = �
e �(S , S

_
 )
 �(e) � �

e �(S
_

 , S )
 �(e) . (2.3.4) 

  

Let us denote by c(S) the capacity of a cut defined by S , 

c(S) = �
e �(S , S

_
 )
 c(e) .  (2.3.5) 

It is possible to prove the following lemma, which specifies a relation be-
tween the value of a flow and the capacity of any cut [FF62]. 

Lemma 2.3.2  For any flow function � having the value F and for any cut de-
fined by S we have 

F � c(S) . (2.3.6) 
  

From the above lemma we get immediately the following corollary that specifies 
a relation between maximum flow and a cut of minimum capacity. 

Corollary 2.3.3  If F = c(S), then F is at its maximum, and S defines a cut of 
minimum capacity.  

Let us now define, for a given flow �, an augmenting path as a path from s to t, 
(not necessarily directed), which can be used to increase the value of the flow. If 
an edge e belonging to that path is directed from s to t, then �(e) < c(e), otherwise 
no increase in the flow value on that path would be possible. On the other hand, 
if such an edge e is directed from t to s, then �(e) > 0 must be satisfied in order to 
be able to increase the flow value F by decreasing �(e). 

Example 2.3.4  As an example let us consider the network given in Figure 
2.3.5(a). Each edge of this network is assigned two numbers, c(e) and �(e). It is 
easy to check that flow � in this network obeys conditions (2.3.1) and (2.3.2) and 
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its value is equal to 3. An augmenting path is shown in Figure 2.3.5(b). The flow 
on edge (5, 4) can be decreased by one unit. All the other edge flows on that path 
can be increased by one unit. The resulting network with a new flow is shown in 
Figure 2.3.5(c).  

(a) c(e) / �(e) 

3/1

2/1

3/2

2/2

1/0
1/0

2/2
2/1

1/1
1

2

3

4

5

6
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(b) 
�(2,4) = 1 < c(2,4)

�(5,6) = 1 < c(5,6)

�(1,2) = 1 < c(1,2)

1

2 4

5

6
ts

�(5,4) = 1 > 0

 

(c) c(e) / �'(e) 
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2/2
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2/2

1/0
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Figure 2.3.5 A network for Example 2.3.4: 
 (a) a flow �(e) is assigned to each edge, 
 (b) an augmenting path, 
 (c) a new flow �'(e).  

The first method proposed for the construction of a flow of a maximum value 
was given by Ford and Fulkerson [FF62]. This method consists in finding an 
augmenting path in a network and increasing the flow value along this path until 
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no such path remains in the network. Convergence of such a general method 
could be proved for integer capacities only. A corresponding algorithm is of 
pseudopolynomial complexity [FF62, Eve79]. 

An important improvement of the above algorithm was made by Edmonds 
and Karp [EK72]. They showed that if the shortest augmenting path is chosen at 
every step, then the complexity of the algorithm reduces to O(�V �3�E �), no matter 
what are the edge capacities. Further improvements in algorithmic efficiency of 
network flow algorithm were made by Dinic [Din70] and Karzanov [Kar74], 
whose algorithms' running times are O(�V �2�E �) and O(�V �3), respectively. An al-
gorithm proposed by Cherkassky [Che77] allows for solving the max-flow prob-
lem in time O(�V �2�E �1/2

) . 
Below, Dinic's algorithm will be described, since despite its relatively high 

worst case complexity function, its average running time is low [Che80], and the 
idea behind it is quite simple. It uses the notion of a layered network which con-
tains all the shortest paths in a network. This allows for a parallel increase of 
flows in all such paths, which is the main reason of the efficiency of the algo-
rithm. 

In order to present this algorithm, the notion of usefulness of an edge for a 
given flow is introduced. We say that edge e having flow �(e) is useful from u to 
v, if one of the following conditions is fulfilled: 
1)  if the edge is directed from u to v then �(e) < c(e) ; 
2)  otherwise, �(e) > 0 . 

For a given network G = (V , E) and flow �, the following algorithm deter-
mines a corresponding layered network. 

Algorithm 2.3.5  Construction of a layered network for a given network G = 
(V , E) and flow function � [Din70]. 

begin 
Set V 0 := {s}; T := {�}; i := 0; 

while t 	 T do 
 begin 
 Construct subset T := {v � v 	 V j for j � i and there exists a useful edge  
  from any of the vertices of V i to v}; 

  -- subset T contains vertices comprising a new layer of the layered network 

 V i+1 := T ; -- a new layer of the network has been constructed 

 i := i+1; 
 if T = � then exit; 

  -- no layered network exists, the flow value F is at its maximum 
 end; 
l := i; V l := {t}; 
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for j := 1 to l do 

 begin 

E j := {e � e is a useful edge from a vertex belonging to layer V j�1 to a vertex 
belonging to layer V j}; 

 for all e � E j do 

  if e = (u,v) and u � V j�1 and v � V j 

  then c~(e) := c(e) � �(e) 
  else  
   if e = (v,u) and u � V j�1 and v � V j 

   then  
    begin 

    c~(e) := �(e); 

    Change the orientation of the edge, so that e = (u,v); 
    end; 

 end; -- a layered network with new edges and capacities has been constructed 

end; 
In such a layered network a new flow function �~ with �~ = 0 for each edge e is as-
sumed. Then a maximal flow is searched for, i.e. one such that for each path 
v0 (= s), v1 , v2 ,..., vl�1 , vl (= t), where ej = (vj�1 , vj) � E j and vj � V j , j = 1, 
2,..., l, there exists at least one edge e such that �~(ej) = c~(ej) . 

Let us note, that such a maximal flow may not be of maximum value. This 
fact is illustrated in Figure 2.3.6 where all capacities c~(e) = 1. The flow depicted 
in this figure is maximal and its value F = 1. It is not hard, however, to construct 
a flow of value F = 2 . 

t

ba

s

c d

� = 1

F = 1

0V 1 2 3

� = 1

� = 1

V V V

 

Figure 2.3.6 An example of a maximal flow which is not of maximum value. 
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The construction of a maximal flow for a given layered network is shown below. 
It consists in finding augmenting paths by means of a labeling procedure. For 
this purpose a depth first search label algorithm is used, that labels all the nodes 
of the layered network, i.e. assigns to node u, if any, a label lab(e) that corre-
sponds to edge e = (v, u) in a layered network. The algorithm uses for each node v 
a list isucc(v) of all immediate successors of v (i.e. all nodes u for which an arc 
(v, u) exists in the layered network). Let us note that, if v belongs to layer V j , 
then u � isucc(v) belongs to layer V i+1 , and edge (v, u) � E j . The algorithm uses 
recursively an algorithm label(v) that labels nodes being successors of v. Boolean 
variable new(v) is used to check whether or not a given node has been visited and 
consequently labeled. The algorithms are as follows. 

Algorithm 2.3.6  label(v). 
begin 
new(v) := false; -- node v has been visited and labeled 

for all u � isucc(v) do 

if new(u) then 

 begin 

 if e = (v, u) � �
j=1

l
 E j then lab(u) := e; 

 call label(u); 

 end; -- all successors of node v have been labeled 

end; 

Algorithm 2.3.7  label. 
begin 
lab(s) := 0; -- a source of layered network has been labeled 

for all v � V do new(v) := true; -- initialization 

call label(s); 

end; -- all successors of s in the layered network are now visited and labeled 

Using the above algorithms as subroutines the following algorithm constructs a 
maximal flow in the layered network. The algorithm will stop whenever no aug-
menting path exists; in this case the flow is maximal [Din70] (see also [Eve79]). 

Algorithm 2.3.8  Construction of a maximal flow in a layered network [Din70]. 
begin 
for all e � �

j=1

l
 E j do 

 begin 
� �1(e) := �~(e) := 0; 

 c1(e) := c~(e); 
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 end; -- initialization phase 

loop 
 call label; -- all nodes, if any, have been labeled 

 if node t is not labeled then exit; 
  -- no augmenting path exists 
  -- a maximal flow in a layered network has been constructed 

 Find an augmenting path ap starting from node t backward and using labels; 

� ! := min{c1(e) � e � ap}; 

 for all e � ap do 

  begin 

� � �1(e) := !; 

� � �~(e) := �~(e) + �1(e); 

  c1(e) := c1(e) � !; 

  end; -- the value of a flow is increased along an augmenting path 

 for all e with c1(e) = 0 do Delete e from the layered network; 

 repeat 
  Delete all nodes which have either no incoming or no outgoing edges; 

  Delete all edges incident with such nodes; 

 until all such edges and nodes are deleted; 

 for all e � �
j=1

l
 E j do �1(e) := 0; 

end loop; 

end; 

The flow constructed by the above algorithm is used to obtain a new flow in the 
original network. Next, a new layered network is created and the above proce-
dure is repeated until no new layered network can be constructed. The obtained 
flow has a maximum value. This is summarized in the next algorithm.  

Algorithm 2.3.9  Construction of a flow of maximum value [Din70]. 
begin 
�(e) := 0 for all e � E ; 

loop 
 call Algorithm 2.3.5; 
  -- a new layered network is constructed for a flow function �  
  -- if no layered network exists, then the flow has maximum value  
 call Algorithm 2.3.8; -- a new maximal flow �~ is constructed 

 for all e � E  do 

  begin 

  if u � V j�1 and v � V j and e = (u, v) � E   
  then �(e) := �(e) + �~(e); 
   -- the value of the flow increases if edge e has the same direction  
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   -- in the original and in the layered network 

  if u � V j�1 and v � V j and e = (v, u) � E   
  then �(e) := �(e) � �~(e); 
   -- the value of the flow decreases if edge e has opposite directions   
   -- in the original and in the layered network 
  end; 
 -- the flow in the original network is augmented using the  
 -- constructed maximal flow values 
end loop; 

end; 

To analyze the complexity of the above approach let us call one loop of Algo-
rithm 2.3.9 a phase. We see that one phase consists of finding a layered network, 
constructing a maximal flow �~ in the latter and improving the flow in the original 
network. It can be proved [Din70, Eve79] that the number of phases is bounded 
from above by O(�V �). The most complex part of each phase is to find a maximal 
flow in a layered network. Since in Algorithm 2.3.8 a depth first search proce-
dure has been used for visiting a network, the complexity of one phase is 
O(�V ��E �). The overall complexity of Dinic's approach is thus O(�V �2�E �) . 

Further generalizations of the subject include networks with lower bounds 
on edge flows, networks with linear total cost function of the flow where a flow 
of maximum value and of minimum total cost is looked for, and a transportation 
problem being a special case of the latter. All these problems can be solved in 
time bounded from above by a polynomial in the number of nodes and edges of 
the network. We refer the reader to [AMO93] or [Law76] where a detailed analy-
sis of the subject is presented. 

2.4 Enumerative Methods  

In this section we describe very briefly two general methods of solving many 
combinatorial problems 6, namely the method of dynamic programming and the 
method of branch and bound. Few remarks should be made at the beginning, 
concerning the scope of this presentation. First, we will not go into details, since 
both methods are broadly treated in literature, including basic scheduling books 
[Bak74, Len77, Rin76a], and our presentation should only fulfill the needs of this 
book. In particular, we will not perform a comparative study of the methods - the 
interested reader is referred to [Cof76]. We will also not present examples, since 
they will be given in the later chapters. 

                                                 
6 Dynamic programming can also be used in a wider context (see e.g. [Den82, How69, 

DL79]). 
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Before passing to the description of the methods let us mention that they are 
of implicit enumeration variety, because they consider certain solutions only in-
directly, without actually evaluating them explicitly. 

2.4.1 Dynamic Programming  

Fundamentals of dynamic programming were elaborated by Bellman in the 
1950's and presented in [Bel57, BD62]. The name "Dynamic Programming" is 
slightly misleading, but generally accepted. A better description would be "recur-
sive" or "multistage" optimization, since it interprets optimization problems as 
multistage decision processes. It means that the problem is divided into a number 
of stages, and at each stage a decision is required which impacts on the decisions 
to be made in later stages. Now, Bellman's principle of optimality is applied to 
draw up a recursive equation which describes the optimal criterion value at a 
given stage in terms of the previously obtained one. This principle can be formu-
lated as follows: Starting from any current stage, an optimal policy for the rest of 
the process, i.e. for subsequent stages, is independent of the policy adopted in the 
previous stages. Of course, not all optimization problems can be presented as 
multistage decision processes for which the above principle is true. However, the 
class of problems for which it works is quite large. For example, it contains prob-
lems with an additive optimality criterion, but also other problems as we will 
show in Sections 5.1.1 and 10.4.3. 

If dynamic programming is applied to a combinatorial problem, then in order 
to calculate the optimal criterion value for any subset of size k, we first have to 
know the optimal value for each subset of size k � 1. Thus, if our problem is 
characterized by a set of n elements, the number of subsets considered is 2n. It 
means that dynamic programming algorithms are of exponential computational 
complexity. However, for problems which are NP-hard (but not in the strong 
sense) it is often possible to construct pseudopolynomial dynamic programming 
algorithms which are of practical value for reasonable instance sizes.  

2.4.2 Branch and Bound  

Suppose that given a finite 7 set S of feasible solutions and a criterion " : S � IR , 
we want to find S* � S such that "(S*) = min

S �S
{"(S)} . 

Branch and bound finds S* by implicit enumeration of all S � S through ex-
amination of increasingly smaller subsets of S. These subsets can be treated as 
sets of solutions of corresponding sub-problems of the original problem. This 

                                                 
7 In general, |S | can be infinite (see, e.g. [Mit70, Rin76b]). 
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way of thinking is especially motivated if the considered problems have a clear 
practical interpretation, and we will adopt this interpretation in the book.  

As its name implies, the branch and bound method consists of two funda-
mental procedures: branching and bounding. Branching is the procedure of parti-
tioning a large problem into two or more sub-problems usually mutually exclu-
sive 8. Furthermore, the sub-problems can be partitioned in a similar way, etc. 
Bounding calculates a lower bound on the optimal solution value for each sub-
problem generated in the branching process. Note that the branching procedure 
can be conveniently represented as a search (or branching) tree. At level 0, this 
tree consists of a single node representing the original problem, and at further 
levels it consists of nodes representing particular sub-problems of the problem at 
the previous level. Edges are introduced from each problem node to each of its 
sub-problems nodes. A list of unprocessed nodes (also called active nodes) corre-
sponding to sub-problems that have not been eliminated and whose own sub-
problems have not yet been generated, is maintained.  

                                                 
8 If this is not the case, we speak rather about a division of S instead of its partition. 

Suppose that at some stage of the branch and bound process a (complete) so-
lution S of criterion value "(S) has been obtained. Suppose also that a node en-
countered in the process has an associated lower bound LB > "(S). Then the node 
needs not be considered any further in the search for S*, since the resulting solu-
tion can never have a value less than "(S). When such a node is found, it is elimi-
nated, and its branch is said to be fathomed, since we do not continue the bound-
ing process from it. The solution used for checking if a branch is fathomed is 
sometimes called a trial solution. At the beginning it may be found using a spe-
cial heuristic procedure, or it can be obtained in the course of the tree search, e.g. 
by pursuing the tree directly to the bottom as rapidly as possible. At any later 
stage the best solution found so far can be chosen as a trial one. The value "(S) 
for a trial solution S is often called an upper bound. Let us mention that a node 
can be eliminated not only on the basis of lower bounds but also by means of so-
called elimination criteria provided by dominance properties or feasibility condi-
tions developed for a given problem.  

The choice of a node from the set of generated nodes which have so far nei-
ther been eliminated nor led to branching is due to the chosen search strategy. 
Two search strategies are used most frequently: jumptracking and backtracking. 
Jumptracking implements a frontier search where a node with a minimal lower 
bound is selected for examination, while backtracking implements a depth first 
search where the descendant nodes of a parent node are examined either in an 
arbitrary order or in order of non-decreasing lower bounds. Thus, in the jump-
tracking strategy the branching process jumps from one branch of the tree to an-
other, whereas in the backtracking strategy it first proceeds directly to the bottom 
along some path to find a trial solution and then retraces that path upward up to 
the first level with active nodes, and so on. It is easy to notice that jumptracking 
tends to construct a fairly large list of active nodes, while backtracking maintains 
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relatively few nodes on the list at any time. However, an advantage of jumptrack-
ing is the quality of its trial solutions which are usually much closer to optimum 
than the trial solutions generated by backtracking, especially at early stages. 
Deeper comparative discussion of characteristics of the search strategies can be 
found in [Agi66, LW66]. 

Summing up the above considerations we can say that in order to implement 
the scheme of the branch and bound method, i.e. in order to construct a branch 
and bound algorithm for a given problem, one must decide about 
(i) the branching procedure and the search strategy,  
(ii) the bounding procedure or elimination criteria. 

Making the above decisions one should explore the problem specificity and 
observe the compromise between the length of the branching process and time 
overhead concerned with computing lower bounds or trial solutions. However, 
the actual computational behavior of branch and bound algorithms remains un-
predictable and large computational experiments are necessary to recognize their 
quality. It is obvious that the computational complexity function of a branch and 
bound algorithm is exponential in problem size when we search for an optimal 
solution. However, the approach is often used for finding suboptimal solutions, 
and then we can obtain polynomial time complexity by stopping the branching 
process at a certain stage or after a certain time period elapsed. 

2.5 Heuristic and Approximation Algorithms  

As already mentioned, scheduling problems belong to a broad class of combina-
torial optimization problems (cf. Section 2.2.1). To solve these problems one 
tends to use optimization algorithms which for sure always find optimal solu-
tions. However, not for all optimization problems, polynomial time optimization 
algorithms can be constructed. This is because some of the problems are NP-
hard. In such cases one often uses heuristic (suboptimal) algorithms which tend 
toward but do not guarantee the finding of optimal solutions for any instance of 
an optimization problem. Of course, the necessary condition for these algorithms 
to be applicable in practice is that their worst-case complexity function is bound-
ed from above by a low-order polynomial in the input length. A sufficient condi-
tion follows from an evaluation of the distance between the solution value they 
produce and the value of an optimal solution. This evaluation may concern the 
worst case or a mean behavior.  

2.5.1 Approximation Algorithms 

We will call heuristic algorithms with analytically evaluated accuracy approxi-
mation algorithms. To be more precise, we give here some definitions, starting  
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with the worst case analysis [GJ79]. 
If � is a minimization (maximization) problem, and I is any instance of it, 

we may define the ratio RA(I) for an approximation algorithm A as 

RA(I) = A(I)
OPT(I) (RA(I) = OPT(I)

A(I) ) , 

where A(I) is the value of the solution constructed by algorithm A for instance I, 
and OPT(I) is the value of an optimal solution for I. The absolute performance 
ratio RA for an approximation algorithm A for problem � is then given as  

RA = inf{r � 1 � RA(I) � r for all instances of �} . 

The asymptotic performance ratio R#
A  for A is given as 

R#
A  = inf{r � 1 � for some positive integer K, RA(I) � r for 

 all instances of � satisfying OPT(I) � K } . 

The above formulas define a measure of the "goodness" of approximation 
algorithms. The closer R#

A  is to 1, the better algorithm A performs.  
More formally, an algorithm A is called �-approximation algorithm for prob-

lem �$�if for all instances I it constructs a feasible solution such that 

|A(I) – OPT(I)| � % & OPT(I), 

where % > 0, � = 1 + % for a minimization problem and � = 1 � %  for a maximiza-
tion problem' For a minimization problem, we have A(I) � (1 + %) OPT(I), while 

for a maximization problem there is A(I) � (1 � %) OPT(I). The worst case ratio � 
(or in other words, the absolute performance ratio RA) is the quality measure for 
an approximation algorithm. However, for some combinatorial problems it can 
be proved that there is no hope of finding an approximation algorithm of a speci-
fied accuracy, i.e. this question is as hard as finding a polynomial time algorithm 
for any NP-complete problem. For other combinatorial problems an approxima-
tion algorithm can be proposed, and even an approximation scheme can be de-
signed. An approximation scheme is a family of (1 + %)-approximation algo-

rithms over all 0 < % < 1 for a minimization problem, or a family of (1 � %)-
approximation algorithms for a maximization problem. A polynomial time ap-
proximation scheme (PTAS) is an approximation scheme of the polynomial time 

complexity in the instance size, while a fully polynomial time approximation 
scheme (FPTAS) is an approximation scheme with the complexity bounded by 

the polynomial in the instance size and in 1/%. Obviously, such types of approxi-

mation methods are especially interesting, since they allow finding a trade-off be-

tween the quality of a solution and the time complexity necessary to construct it. 

Fully polynomial time approximation schemes are the best methods which could 

be proposed for an NP-hard problem.  
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The relations between some classes of problems with respect to the exist-

ence of methods solving them, discussed e.g. by Shuurman and Woeginger 

[SW07], are shown in Figure 2.5.1. It completes the presentation of the basic 

complexity classes of combinatorial problems, given in Section 2.2.3, with some 

algorithmic issues. Particular classes depicted in this figure correspond to prob-

lems from NP possessing polynomial time algorithms (P), pseudopolynomial 

time algorithms, polynomial time approximation algorithms with finite/positive  

worst case ratio � for minimization/maximization case (APX), or approximation 

schemes (PTAS and FPTAS).  

 

 
Figure 2.5.1  Relations between classes of problems possessing various types of 

solution methods [SW07]. 

 
Analysis of the worst-case behavior of an approximation algorithm may be 

complemented by an analysis of its mean behavior. This can be done in two 
ways. The first consists in assuming that the parameters of instances of the con-
sidered problem � are drawn from a certain distribution D and then one analyzes 
the mean performance of algorithm A. 

In such an analysis it is usually assumed that all parameter values are realiza-
tions of independent probabilistic variables of the same distribution function. 
Then, for an instance In of the considered optimization problem (n being a num-
ber of generated parameters) a probabilistic value analysis is performed. The re-
sult is an asymptotic value OPT(In) expressed in terms of problem parameters. 
Then, algorithm A is probabilistically evaluated by comparing solution values 
A(In) it produces (A(In) being independent probabilistic variables) with OPT(In) 
[Rin87]. The two evaluation criteria used are absolute error and relative error. 
The absolute error is defined as a difference between the approximate and opti-
mal solution values 

P 
FPTAS 

PTAS 

APX 

NP pseudo-
polynomial 
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an = A(In) � OPT(In) . 

On the other hand, the relative error is defined as the ratio of the absolute error 
and the optimal solution value 

bn = 
A(In) � OPT(In)

OPT(In)
  . 

Usually, one evaluates the convergence of both errors to zero. Three types of 
convergence are distinguished. The strongest, i.e. almost sure convergence for a 
sequence of probabilistic variables yn which converge to constant c is defined as 

Pr{lim
n�#

yn = c } = 1 . 

The latter implies a weaker convergence in probability, which means that for 
every % > 0 , 

lim
n�#

 Pr {�yn � c� > %} = 0 . 

The above convergence implies the first one if the following additional condition 
holds for every % > 0 : 

�
j=1

#
 Pr {�yn � c� > %} < # . 

Finally, the third type of convergence, convergence in expectation holds if 

lim
n�#

 �E(yn) � c� = 0 , 

where E(yn) is the mean value of yn . 

It follows from the above definitions, that an approximation algorithm A is 
the best from the probabilistic analysis point of view if its absolute error almost 
surely converges to 0. Algorithm A is then called asymptotically optimal. 

At this point one should also mention an analysis of the rate of convergence 
of the errors of approximation algorithms which may be different for algorithms 
whose absolute or relative errors are the same. Of course, the higher the rate, the 
better the performance of the algorithm. 

It is rather obvious that the mean performance can be much better than the 
worst case behavior, thus justifying the use of a given approximation algorithm. 
A main obstacle is the difficulty of proofs of the mean performance for realistic 
distribution functions. Thus, the second way of evaluating the mean behavior of 
heuristic algorithms are computational experiments, which is still used very of-
ten. In the latter approach the values of the given criterion, constructed by the 
given heuristic algorithm and by an optimization algorithm are compared. This 
comparison should be made for a representative sample of instances. There are 
some practical problems which follow from the above statement and they are 
discussed in [SVW80]. 



 2.5  Heuristic and Approximation Algorithms 41 

2.5.2 Local Search Heuristics 

In recent years more generally applicable heuristic algorithms for combinatorial 
optimization problems became known under the name local search. Primarily, 
they are designed as universal global optimization methods operating on a high-
level solution space in order to guide heuristically lower-level local decision 
rules' performance to their best outcome. Hence, local search heuristics are often 
called meta-heuristics or strategies with knowledge-engineering and learning ca-
pabilities reducing uncertainty while knowledge of the problem setting is ex-
ploited and acquired in order to improve and accelerate the optimization process. 
The desire to achieve a certain outcome may be considered as the basic guide to 
appropriate knowledge modification and inference as a process of transforming 
some input information into the desired goal dependent knowledge. 

Hence, in order to be able to transform knowledge, one needs to perform in-
ference and to have memory which supplies the background knowledge needed 
to perform the inference and records the results of the inference for future use. 
Obviously, an important issue is the extent to which problem-specific knowledge 
must be used in the construction of learning algorithms (in other words the pow-
er and quality of inferencing rules) capable to provide significant performance 
improvements. Very general methods having a wide range of applicability in 
general are weak with respect to their performance. Problem specific methods 
achieve a highly efficient learning but with little use in other problem domains. 
Local search strategies are falling somewhat in between these two extremes, 
where genetic algorithms or neural networks tend to belong to the former catego-
ry while tabu search or simulated annealing etc. are counted as examples of the 
second category. Anyway, these methods can be viewed as tools for searching a 
space of legal alternatives in order to find a best solution within reasonable time 
limitations. What is required are techniques for rapid location of high-quality so-
lutions in large-size and complex search spaces and without any guarantee of op-
timality. When sufficient knowledge about such search spaces is available a pri-
ori, one can often exploit that knowledge (inference) in order to introduce prob-
lem-specific search strategies capable of supporting to find rapidly solutions of 
higher quality. Without such an a priori knowledge, or in cases where close to 
optimum solutions are indispensable, information about the problem has to be 
accumulated dynamically during the search process. Likewise obtained long-term 
as well as short-term memorized knowledge constitutes one of the basic parts in 
order to control the search process and in order to avoid getting stuck in a locally 
optimal solution. Previous approaches dealing with combinatorially explosive 
search spaces about which little knowledge is known a priori are unable to learn 
how to escape a local optimum. For instance, consider a random search. This can 
be effective if the search space is reasonably dense with acceptable solutions, 
such that the probability to find one is high. However, in most cases finding an 
acceptable solution within a reasonable amount of time is impossible because 
random search is not using any knowledge generated during the search process in 
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order to improve its performance. Consider hill-climbing in which better solu-
tions are found by exploring solutions "close" to a current and best one found so 
far. Hill-climbing techniques work well within a search space with relatively 
"few" hills. Iterated hill-climbing from randomly selected solutions can frequent-
ly improve the performance, however, any global information assessed during the 
search will not be exploited. Statistical sampling techniques are typical alterna-
tive approaches which emphasize the accumulation and exploitation of more 
global information. Generally speaking they operate by iteratively dividing the 
search space into regions to be sampled. Regions unlikely to produce acceptable 
solutions are discarded while the remaining ones will be subdivided for further 
sampling. If the number of useful sub-regions is small this search process can be 
effective. However, in case that the amount of a priori search space knowledge is 
pretty small, as is the case for many applications in business and engineering, this 
strategy frequently is not satisfactory.  

Combining hill-climbing as well as random sampling in a creative way and 
introducing concepts of learning and memory can overcome the above mentioned 
deficiencies. The obtained strategies dubbed "local search based learning" are 
known, for instance, under the names tabu search and genetic algorithms. They 
provide general problem solving strategies incorporating and exploiting problem-
specific knowledge capable even to explore search spaces containing an expo-
nentially growing number of local optima with respect to the problem defining 
parameters. 

A brief outline of what follows is to introduce the reader into extensions of 
the hill-climbing concept which are simulated annealing, tabu search, ejection 
chains, and genetic algorithms. Let us mention that they are particular specifica-
tions of the above mentioned knowledge engineering and learning concept re-
viewed in [Hol75, Mic97, Jon90]. Tabu search develops to become the most 
popular and successful general problem solving strategy. Hence, attention is 
drawn to a couple of tabu search issues more recently developed. e.g. ejection 
chains. Parts of this section can also be found embedded within a problem related 
setting in [CKP95, PG97]. 

To be more specific consider the minimization problem min {"(x) | x � S} 
where " is the objective function, i.e. the desired goal, and S is the search space, 
i.e. the set of feasible solutions of the problem. One of the most intuitive solution 
approaches to this optimization problem is to start with a known feasible solution 
and slightly perturb it while decreasing the value of the objective function. In or-
der to realize the concept of slight perturbation let us associate with every x a 
subset N (x) of S, called neighborhood of x. The solutions in N (x), or neighbors 
of x, are viewed as perturbations of x. They are considered to be "close" to x. 
Now the idea of a simple local search algorithm is to start with some initial solu-
tion and move from one neighbor to another neighbor as long as possible while 
decreasing the objective value. This local search approach can be seen as the 
basic principle underlying many classical optimization methods, like the gradient 
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method for continuous non-linear optimization or the simplex method for linear 
programming. Some of the important issues that have to be dealt with when im-
plementing a local search procedure are how to pick the initial solution, how to 
define neighborhoods and how to select a neighbor of a given solution. In many 
cases of interest, finding an initial solution creates no difficulty. But obviously, 
the choice of this starting solution may greatly influence the quality of the final 
outcome. Therefore, local search algorithms may be run several times on the 
same problem instance, using different (e.g. randomly generated) initial solu-
tions. Whether or not the procedure will be able to significantly ameliorate a poor 
solution often depends on the size of the neighborhoods. The choice of neighbor-
hoods for a given problem is conditioned by a trade-off between quality of the 
solution and complexity of the algorithm, and is generally to be resolved by ex-
periments. Another crucial issue in the design of a local search algorithm is the 
selection of a neighbor which improves the value of the objective function. 
Should the first neighbor found improving upon the current solution be picked, 
the best one, or still some other candidate? This question is rarely to be answered 
through theoretical considerations. In particular, the effect of the selection crite-
rion on the quality of the final solution, or on the number of iterations of the pro-
cedure is often hard to predict (although, in some cases, the number of neighbors 
can rule out an exhaustive search of the neighborhood, and hence, the selection 
of the best neighbor). Here again experiments with various strategies are required 
in order to make a decision. The attractiveness of local search procedures stems 
from their wide applicability and (usually) low empirical complexity (see 
[JPY88] and [Yan90] for more information on the theoretical complexity of local 
search). Indeed, local search can be used for highly intricate problems, for which 
analytical models would involve astronomical numbers of variables and con-
straints, or about which little problem-specific knowledge is available. All that is 
needed here is a reasonable definition of neighborhoods, and an efficient way of 
searching them. When these conditions are satisfied, local search can be imple-
mented to quickly produce good solutions for large instances of the problem. 
These features of local search explain that the approach has been applied to a 
wide diversity of situations, see [PV95, GLTW93, Ree93, AL97]. In the scheduling 
area we would like to emphasize on two excellent surveys, [AGP95] as well as 
[VAL96]. 

Nevertheless, local search in its most simple form, the hill-climbing, stops as 
soon as it encounters a local optimum, i.e., a solution x such that "(x) � "(y) for 
all y in N (x). In general, such a local optimum is not a global optimum. Even 
worse, there is usually no guarantee that the value of the objective function at an 
arbitrary local optimum comes close to the optimal value. This inherent short-
coming of local search can be palliated in some cases by the use of multiple re-
starts. But, because NP-hard problems often possess many local optima, even this 
remedy may not be potent enough to yield satisfactory solutions. In view of this 
difficulty, several extensions of local search have been proposed, which offer the 
possibility to escape local optima by accepting occasional deteriorations of the 
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objective function. In what follows we discuss successful approaches based on 
related ideas, namely simulated annealing and tabu search. Another interesting 
extension of local search works with a population of feasible solutions (instead 
of a single one) and tries to detect properties which distinguish good from bad 
solutions. These properties are then used to construct a new population which 
hopefully contains a better solution than the previous one. This technique is 
known under the name genetic algorithm. 

Simulated Annealing 

Simulated annealing was proposed as a framework for the solution of combinato-
rial optimization problems by Kirkpatrick, Gelatt and Vecchi and, independently, 
by Cerny, cf. [KGV83, Cer85]. It is based on a procedure originally devised by 
Metropolis et al. in [MRR+53] to simulate the annealing (or slow cooling) of sol-
ids, after they have been heated to their melting point. In simulated annealing 
procedures, the sequence of solutions does not roll monotonically down towards 
a local optimum, as was the case with local search. Rather, the solutions trace an 
up-and-down random walk through the feasible set S, and this walk is loosely 
guided in a "favorable" direction. To be more specific, we describe the k 

th itera-
tion of a typical simulated annealing procedure, starting from a current solution 
x. First, a neighbor of x, say y � N (x), is selected (usually, but not necessarily, at 
random). Then, based on the amplitude of ! := "(x) � "(y), a transition from x to y 
(i.e., an update of x by y) is either accepted or rejected. This decision is made 
non-deterministically: the transition is accepted with probability apk(!), where 
apk is a probability distribution depending on the iteration count k. The intuitive 
justification for this rule is as follows. In order to avoid getting trapped early in a 
local optimum, transitions implying a deterioration of the objective function (i.e., 
with ! < 0) should be occasionally accepted, but the probability of acceptance 
should nevertheless increase with !. Moreover, the probability distributions are 
chosen so that apk+1(!) � apk(!). In this way, escaping local optima is relatively 
easy during the first iterations, and the procedure explores the set S freely. But, as 
the iteration count increases, only improving transitions tend to be accepted, and 
the solution path is likely to terminate in a local optimum. The procedure stops if 
the value of the objective function remains constant in L (a termination parame-
ter) consecutive iterations, or if the number of iterations becomes too large. In 
most implementations, and by analogy with the original procedure of Metropolis 
et al. [MRR+53], the probability distributions apk take the form:  

apk (!) = 
�
�
  

 

 

 
1 if ! � 0 

eck! if ! < 0 , 
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where ck+1 � ck � 0 for all k, and ck ��# when k ��#. A popular choice for the 
parameter ck is to hold it constant for a number L(k) of consecutive iterations, 
and then to increase it by a constant factor: ck+1 = (k+1c0. Here, c0 is a small posi-
tive number, and ( is slightly larger than 1. The number L(k) of solutions visited 
for each value of ck is based on the requirement to achieve a quasi equilibrium 
state. Intuitively this is reached if a fixed number of transitions is accepted. Thus, 
as the acceptance probability approaches 0 we would expect L(k) ��#. Therefore 
L(k) is supposed to be bounded by some constant B to avoid long chains of trials 
for large values of ck. It is clear that the choice of the termination parameter and 
of the distributions apk (k = 1, 2,...) (the so-called cooling schedule) strongly in-
fluences the performance of the procedure. If the cooling is too rapid (e.g. if B is 
small and ( is large), then simulated annealing tends to behave like local search, 
and gets trapped in local optima of poor quality. If the cooling is too slow, then 
the running time becomes prohibitive. Starting from an initial solution xstart and 
parameters c0 and ( a generic simulated annealing algorithm can be presented as 
follows. 

Algorithm 2.5.1 Simulated annealing [LA87, AK89]. 
begin 
Initialize (xstart, c0, (); 

k := 0; 

x := xstart; 

repeat 
 Define L(k) or B; 

 for t := 1 to L(k) do 

 begin 

  Generate a neighbor y � N (x); 

  ! := "(x) � "(y); 

  apk(!) := eck!; 

  if random[0,1] � apk(!) then x := y 

 end; 

 ck+1 := (ck; 

 k := k + 1; 

until some stopping criterion is met 
end; 

Under some reasonable assumptions on the cooling schedule, theoretical results 
can be established concerning convergence to a global optimum or the complexi-
ty of the procedure (see [LA87, AK89]). In practice, determining appropriate 
values for the parameters is a part of the fine tuning of the implementation, and 
still relies on experiments. We refer to the extensive computational studies in 
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[JAMS89, JAMS91] for the wealth of details on this topic. If the number of itera-
tions during the search process is large, the repeated computation of the ac-
ceptance probabilities becomes a time consuming factor. Hence, threshold ac-
cepting as a deterministic variant of the simulated annealing has been introduced 
in [DS90]. The idea is not to accept transitions with a certain probability that 
changes over time but to accept a new solution if the amplitude �! falls below a 
certain threshold which is lowered over time. Simulated annealing has been ap-
plied to several types of combinatorial optimization problems, with various de-
grees of success (see [LA87, AK89, and JAMS89, JAMS91] as well as the bibli-
ography [CEG88]). 

As a general rule, one may say that simulated annealing is a reliable proce-
dure to use in situations where theoretical knowledge is scarce or appears diffi-
cult to apply algorithmically. Even for the solution of complex problems, simu-
lated annealing is relatively easy to implement, and usually outperforms a hill-
climbing procedure with multiple starts.  

Tabu Search 

Tabu search is a general framework, which was originally proposed by Glover, 
and subsequently expanded in a series of papers [GL97, Glo77, Glo86, Glo89, 
Glo90a, Glo90b, GM86, WH89]. One of the central ideas in this proposal is to 
guide deterministically the local search process out of local optima (in contrast 
with the non-deterministic approach of simulated annealing). This can be done 
using different criteria, which ensure that the loss incurred in the value of the ob-
jective function in such an "escaping" step (a move) is not too important, or is 
somehow compensated for. 

A straightforward criterion for leaving local optima is to replace the im-
provement step in the local search procedure by a "least deteriorating" step. One 
version of this principle was proposed by Hansen under the name steepest de-
scent mildest ascent (see [HJ90], as well as [Glo89]). In its simplest form, the re-
sulting procedure replaces the current solution x by a solution y � N (x) which 
maximizes ! := "(x) � "(y). If during L (a termination parameter) iterations no 
improvements are found, the procedure stops. Notice that ! may be negative, 
thus resulting in a deterioration of the objective function. Now, the major defect 
of this simple procedure is readily apparent. If ! is negative in some transition 
from x to y, then there will be a tendency in the next iteration of the procedure to 
reverse the transition, and go back to the local optimum x (since x improves on 
y). Such a reversal would cause the procedure to oscillate endlessly between x 
and y. Therefore, throughout the search a (dynamic) list of forbidden transitions, 
called tabu list (hence the name of the procedure) is maintained. The purpose of 
this list is not to rule out cycling completely (this would in general result in 
heavy bookkeeping and loss of flexibility), but at least to make it improbable. In 
the framework of the steepest descent mildest ascent procedure, we may for in-
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stance implement this idea by placing solution x in a tabu list TL after every tran-
sition away from x. In effect, this amounts to deleting x from S. But, for reasons 
of flexibility, a solution would only remain in the tabu list for a limited number 
of iterations, and then should be freed again. To be more specific the transition to 
the neighbor solution, i.e. a move, may be described by one or more attributes. 
These attributes (when properly chosen) can become the foundation for creating 
a so-called attribute based memory. For example, in a 0-1 integer programming 
context the attributes may be the set of all possible value assignments (or chang-
es in such assignments) for the binary variables. Then two attributes which de-
note that a certain binary variable is set to 1 or 0, may be called complementary 
to each other. A move may be considered as the assignment of the compliment 
attribute to the binary variable. That is, the complement of a move cancels the ef-
fect of the considered move. If a move and its complement are performed, the 
same solution is reached as without having performed both moves. Moves even-
tually leading to a previously visited solution may be stored in the tabu list and 
are hence forbidden or tabu. The tabu list may be derived from the running list 
(RL), which is an ordered list of all moves (or their attributes) performed 
throughout the search. That is, RL represents the trajectory of solutions encoun-
tered. Whenever the length of RL is limited the attribute based memory of tabu 
search based on exploring RL is structured to provide a short term memory func-
tion. Now, each iteration consist of two parts: The guiding or tabu process and 
the application process. The tabu process updates the tabu list hereby requiring 
the actual RL; the application process chooses the best move that is not tabu and 
updates RL. For faster computation or storage reduction both processes are often 
combined. The application process is a specification on, e.g., the neighborhood 
definition and has to be defined by the user. The tabu navigation method is a ra-
ther simple approach requiring one parameter l called tabu list length. The tabu 
navigation method disallows choosing any complement of the l most recent 
moves of the running list in order to establish the next move. Hence, the tabu list 
consists of a (complementary) copy of the last part of RL. Older moves are disre-
garded. The tabu status derived from the l most recent moves forces the algo-
rithm to go l moves away from any explored solution before the first step back-
wards is allowed. Obviously, this approach may disallow more moves than nec-
essary to avoid returning to a yet visited solution. This encourages the intention 
to keep l as small as possible without disregarding the principle aim of never ex-
ploring a solution twice. Consequently, if l is too small the algorithm probably 
will return to a local optimum just left. If a solution is revisited the same se-
quence of moves may be repeated consecutively until the algorithm eventually 
stops, i.e. the search process is cycling. Thus danger of cycling favors large val-
ues for l. An adequate value for l has to be adopted with respect to the problem 
structure, the cardinality of the considered problem instances (especially problem 
size), the objective, etc. The parameter l is usually fixed but could also be ran-
domly or systematically varied after a certain number of iterations. The fact that 
the tabu navigation method disallows moves which are not necessarily tabu led to 
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the development of a so called aspiration level criterion which may override the 
tabu status of a move. The basic form of the aspiration level criterion is to choose 
a move in spite of its tabu status if it leads to an objective function value better 
than the best obtained in all preceding iterations. Another possible implementa-
tion would be to create a tabu list TL(y) for every solution y within the solution 
space S. After a transition from x to y, x would be placed in the list TL(y), mean-
ing that further transitions from y to x are forbidden (in effect, this amounts to de-
leting x from N (y)). Here again, x should be dropped from TL(y) after a number 
of transitions. For still other possible definitions of tabu lists, see e.g. [Glo86, 
Glo89, GG89, HJ90, HW90]. Tabu search encompasses many features beyond 
the possibility to avoid the trap of local optimality and the use of tabu lists. Even 
though we cannot discuss them all in the limited framework of this survey, we 
would like to mention two of them, which provide interesting links with artificial 
intelligence and with genetic algorithms. In order to guide the search, Glover 
suggests recording some of the salient characteristics of the best solutions found 
in some phase of the procedure (e.g., fixed values of the variables in all, or in a 
majority of those solutions, recurring relations between the values of the varia-
bles, etc.). In a subsequent phase, tabu search can then be restricted to the subset 
of feasible solutions presenting these characteristics. This enforces what Glover 
calls a "regional intensification" of the search in promising "regions" of the fea-
sible set. An opposite idea may also be used to "diversify" the search. Namely, if 
all solutions discovered in an initial phase of the search procedure share some 
common features, this may indicate that other regions of the solution space have 
not been sufficiently explored. Identifying these unexplored regions may be help-
ful in providing new starting solutions for the search. Both ideas, of search inten-
sification or diversification, require the capability of recognizing recurrent pat-
terns within subsets of solutions. In many applications the aforementioned simple 
tabu search strategies are already very successful, cf. [GLTW93, PV95, OK96]. 
A brief outline of the tabu search algorithm can be presented as follows. 

Algorithm 2.5.2 Tabu search [Glo89, Glo90a, Glo90b]. 
begin 
Initialize (x, tabu list TL, running list RL, aspiration function A(!, k)); 

xbest := x; 
k := 1;  
Specify the tabu list length lk at iteration k; 

RL := �; 

TL := �; 

( := #; 
repeat 
 repeat 
  Generate neighbor y � N (x); 

  ! := "(x) � "(y); 
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  Calculate the aspiration value A(!, k); 

 until A(!, k) < ( or ! = max{ "(x) � "(y) | y is not tabu}; 

 Update RL, i.e. RL := RL � {some attributes of y}; 

 TL := {the last lk non-complimentary entries of RL}; 
 if A(!, k) < ( then ( := A(!, k); 

 x := y; 

 if "(y) < "(xbest) then xbest := y; 

 k := k + 1; 

until some stopping criterion is met 
end; 

As mentioned above, tabu search may be applied in a more advanced way to in-
corporate different means for solid theoretical foundations. Other concepts have 
been developed like the reverse elimination method or the reactive tabu search 
incorporating a memory employing simple reactive mechanisms that are activat-
ed when repetitions of solutions are discovered throughout the search, see e.g. 
[GL97]. 

Ejection Chains 

Variable depth methods, whose terminology was popularized by Papadimitriou 
and Steiglitz [PS82], have had an important role in heuristic procedures for op-
timization problems. The origins of such methods go back to prototypes in net-
work and graph theory methods of the 1950s and 1960s. A class of these proce-
dures called ejection chain methods has proved highly effective in a variety of 
applications, see [LK73] which is a special instance of an ejection chain on the 
TSP, and [Glo91, Glo96, DP94, Pes94, PG97, Reg98].  

Ejection chain methods extend ideas exemplified by certain types of shortest 
path and alternating path constructions. The basic moves for a transition from 
one solution to another are compound moves composed of a sequence of paired 
steps. The first component of each paired step in an ejection chain approach in-
troduces a change that creates a dislocation (i.e., an inducement for further 
change), while the second component creates a change designed to restore the 
system. The dislocation of the first component may involve a form of unfeasibil-
ity, or may be heuristically defined to create conditions that can be usefully ex-
ploited by the second component. Typically, the restoration of the second com-
ponent may not be complete, and hence in general it is necessary to link the 
paired steps into a chain that ultimately achieves a desired outcome. The ejection 
terminology comes from the typical graph theory setting where each of the paired 
steps begins by introducing an element (such as a node, edge or path) that dis-
rupts the graph's preferred structure, and then is followed by ejecting a corre-
sponding element, in a way that recovers a critical portion of the structure. A 
chain of such steps is controlled to assure the preferred structure eventually will 
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be fully recovered (and preferably, fully recovered at various intermediate stages 
by means of trial solutions). The candidate element to be ejected in such instanc-
es may not be unique, but normally comes from a limited set of alternatives. The 
alternating path construction [Ber62] gives a simple illustration. Here, the pre-
ferred graph structure requires a degree constraint to be satisfied at each node 
(bounding the number of edges allowed to enter the node). The first component 
of a paired step introduces an edge that violates such a degree constraint, causing 
too many edges to enter a particular node, and thus is followed by a second com-
ponent that ejects one of the current edges at the node so that the indicated con-
straint may again be satisfied. The restoration may be incomplete, since the eject-
ed edge may leave another node with too few edges, and thus the chain is in-
duced to continue. A construction called a reference structure becomes highly 
useful for controlling such a process, in order to restore imbalances at each step 
by means of special trial solution moves, see [Glo91, Glo96, PG97]. Loosely 
speaking, a reference structure is a representation of a (sometimes several) feasi-
ble solution such that, however, a very small number of constraints may be vio-
lated. Finding a feasible solution from a reference structure must be a trivial task 
which should be performable in constant time. Ejection chain processes of course 
are not limited to graph constructions. For example, they can be based on succes-
sively triggered changes in values of variables, as illustrated by a linked sequence 
of zero-one exchanges in multiple choice integer programming applications or by 
linked "bound escalations" in more general integer programs. The approach can 
readily be embedded in a complete tabu search implementation, or in a genetic 
algorithm or simulated annealing implementation. Such a method can also be 
used as a stand-alone heuristic, which terminates when it is unable to find an im-
proved solution at the conclusion of any of its constructive passes. (This follows 
the customary format of a variable depth procedure.) As our construction pro-
ceeds, we therefore note the trial solutions (e.g. feasible tours in case of a TSP) 
that would result by applying these feasibility-recovering transformations after 
each step, keeping track of the best. At the conclusion of the construction we 
simply select this best trial solution to replace the current solution, provided it 
yields an improvement. In this process, the moves at each level cannot be ob-
tained by a collection of independent and non-intersecting moves of previous 
levels. The list of forbidden (tabu) moves grows dynamically during variable 
depth search iteration and is reset at the beginning of the next iteration. In the 
subsequent algorithmic description we designate the lists of variables (in the ba-
sis of a corresponding LP solution) locked in and out of the solution by the 
names tabu-to-drop and tabu-to-add, where the former contains variables added 
by the current construction (hence which must be prevented from being dropped) 
and the latter contains variables dropped by the current construction (hence 
which must be prevented from being added). The resulting ejection chain proce-
dure is shown in Algorithm 2.5.3. We denote the cost of a solution x by "(x). The 
cost difference of a solution x' and x, i.e. "(x) � "(x'), where x' results from x by 
replacing variable i by variable j will be defined by "ij. The reference structure 
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that results by performing d ejection steps, is denoted by x(d), where d is the 
"depth" of the ejection chain (hence x = x(0) for a given starting solution x). 

Algorithm 2.5.3  Ejection chain [PG97]. 
begin 
Start with an initial solution xstart; 

x := xstart; x* := xstart; 

Let s be any variable in x; -- s is the root 

k* := s; 
repeat 
 d := 0;  -- d is the current search depth 

 while there are variables in x(d) that are not tabu-to-drop  
and variables outside of x(d) that are not tabu-to-add do 

  begin 
  i := k*; 

  d := d + 1;  
  Find the best component move that maintains the reference structure,  

where this 'best' is given by the variable pair i, j for which the gain  
"i*j* = max{"ij | j is not a variable in x(d � 1) and i is a variable  
 in x(d � 1); j is not tabu-to-add; i is not tabu-to-drop}; 

  Perform this move, i.e. introduce variable j* and remove variable i*  
thus obtaining x(d) as a new reference structure at search depth d; 

  j* becomes tabu-to-drop and i* becomes tabu-to-add; 
  end; 
 Let d* denote the search depth at which the best solution x*(d*)with  

"(x*(d*)) = min{"(x*(d)) | 0 < d � n} has been found; 

 if d* > 0 then x* := x*(d*); x := x*; 

until d* = 0; 

end; 

The above procedure describes in its inner repeat ... until loop one it-
eration of an ejection chain search. The while ... do describes one com-
ponent move. Starting with an initially best solution x*(0), the procedure exe-
cutes a construction that maintains the reference structure for a certain number of 
component moves. The new currently best trial solution x*(d*), encountered at 
depth d*, becomes the starting point for the next ejection chain iteration. The it-
erations are repeated as long as an improvement is possible. The maximum depth 
of the construction is reached if all variables in the current solution x are set tabu-
to-drop. The step leading from a solution x to a new solution consists of a vary-
ing number d* of component moves, hence motivating the "variable depth" ter-
minology. A continuously growing tabu list avoids cycling of the search proce-
dure. As an extension of the algorithm (not shown here), the whole repeat 
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... until part could easily be embedded in yet another control loop leading 
to a multi-level (parallel) search algorithm, see [Glo96]. 

Genetic Algorithms 

As the name suggests, genetic algorithms are motivated by the theory of evolu-
tion; they date back to the early work described in [Rec73, Hol75, Sch77], see 
also [Gol89] and [Mic97]. They have been designed as general search strategies 
and optimization methods working on populations of feasible solutions. Working 
with populations permits to identify and explore properties which good solutions 
have in common (this is similar to the regional intensification idea mentioned in 
our discussion of tabu search). Solutions are encoded as strings consisting of el-
ements chosen from a finite alphabet. Roughly speaking, a genetic algorithm 
aims at producing near-optimal solutions by letting a set of strings, representing 
random solutions, undergo a sequence of unary and binary transformations gov-
erned by a selection scheme biased towards high-quality solutions. Therefore, the 
quality or fitness value of an individual in the population, i.e. a string, has to be 
defined. Usually it is the value of the objective function or some scaled version 
of it. The transformations on the individuals of a population constitute the re-
combination steps of a genetic algorithm and are performed by three simple op-
erators. The effect of the operators is that implicitly good properties are identified 
and combined into a new population which hopefully has the property that the 
value of the best individual (representing the best solution in the population) and 
the average value of the individuals are better than in previous populations. The 
process is then repeated until some stopping criteria are met. It can be shown that 
the process converges to an optimal solution with probability one (cf. [EAH91]). 
The three basic operators of a classical genetic algorithm when a new population 
is constructed are reproduction, crossover and mutation.  

Via reproduction a new temporary population is generated where each mem-
ber is a replica of a member of the old population. A copy of an individual is 
produced with probability proportional to its fitness value, i.e. better strings 
probably get more copies. The intended effect of this operation is to improve the 
quality of the population as a whole. However, no genuinely new solutions and 
hence no new information are created in the process. The generation of such new 
strings is handled by the crossover operator. 

In order to apply the crossover operator the population is randomly parti-
tioned into pairs. Next, for each pair, the crossover operator is applied with a cer-
tain probability by randomly choosing a position in the string and exchanging the 
tails (defined as the substring starting at the chosen position) of the two strings 
(this is the simplest version of a crossover). The effect of the crossover is that 
certain properties of the individuals are combined to new ones or other properties 
are destroyed. The construction of a crossover operator should also take into con-
sideration that fitness values of offspring are not too far from those of their par-
ents, and that offspring should be genetically closely related to their parents.  
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The mutation operator which makes random changes to single elements of 
the string only plays a secondary role in genetic algorithms. Mutation serves to 
maintain diversity in the population (see the previous section on tabu search). 

Besides unary and binary recombination operators, one may also introduce 
operators of higher arities such as consensus operators, that fix variable values 
common to most solutions represented in the current population. Selection of in-
dividuals during the reproduction step can be realized in a number of ways: one 
could adopt the scenario of [Gol89] or use deterministic ranking. Further it mat-
ters whether the newly recombined offspring compete with the parent solutions 
or simply replace them.  

The traditional genetic algorithm, based on a binary string representation of 
solutions, is often unsuitable for combinatorial optimization problems because it 
is very difficult to represent a solution in such a way that sub-strings have a 
meaningful interpretation. Nevertheless, the number of publications on genetic 
algorithm applications to sequencing and scheduling problems exploded.  

Problems from combinatorial optimization are well within the scope of ge-
netic algorithms and early attempts closely followed the scheme of what Gold-
berg [Gol89] calls a simple genetic algorithm. Compared to standard heuristics, 
genetic algorithms are not well suited for fine-tuning structures which are very 
close to optimal solutions. Therefore, it is essential, if a competitive genetic algo-
rithm is desired, to compensate for this drawback by incorporating (local search) 
improvement operators into the basic scheme. The resulting algorithm has then 
been called genetic local search heuristic or genetic enumeration (cf. [Joh90b, 
UAB+91, Pes94, DP95]). Each individual of the population is then replaced by a 
locally improved one or an individual representing a locally optimal solution, i.e. 
an improvement procedure is applied to each individual either partially (to a cer-
tain number of iterations, [KP94]) or completely. Some type of improvement 
heuristic may also be incorporated into the crossover operator, cf. [KP94]. 

Putting things into a more general framework, a solution of a combinatorial 
optimization problem may be considered as resolution of a sequence of local de-
cisions (such as priority rules or even more complicated ones). In an enumeration 
tree of all possible decision sequences the solutions of the problem are represent-
ed as a path corresponding to the different decisions from the root of the tree to a 
leaf (hence the name genetic enumeration). While a branch and bound algorithm 
learns to find those decisions leading to an optimal solution (with respect to the 
space of all decision sequences) genetics can guide the search process in order to 
learn to find the most promising decision combinations within a reasonable 
amount of time, see [Pes94, DP95]. Hence, instead of (implicitly) enumerating 
all decision sequences a rudimentary search tree will be established. Only a poly-
nomial number of branches can be considered where population genetics drives 
the search process into those regions which more likely contain optimal solu-
tions. The scheme of a genetic enumeration algorithm is subsequently described; 
it requires further refinement in order to design a successful genetic algorithm.  
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Algorithm 2.5.4  Genetic enumeration [DP95, Pes94]. 
begin 
Initialization: Construct an initial population of individuals each of which is a 

string of local decision rules; 

Assessment / Improvement: Assess each individual in the current population  
introducing problem specific knowledge by special purpose heuristics (such as 
local search) which are guided by the sequence of local decisions; 

if special purpose heuristics lead to a new string of local decision rules  
then  
 replace each individual by the new one, for instance, a locally optimal one; 
repeat 

Recombination: Extend the current population by adding individuals obtained 
by unary and binary transformations (crossover, mutation) on one or two 
individuals in the current population; 

Assessment / Improvement: Assess each individual in the current population  
introducing problem specific knowledge by special purpose heuristics 
(such as local search) which are guided by the sequence of local decisions; 

 if special purpose heuristics lead to a new string of local decision rules  
then  
 replace each individual by the new one, for instance, a locally optimal one; 

until some stopping criterion is met 
end; 

It is an easy exercise to recognize that the simple genetic algorithm as well as ge-
netic local search fits into the provided framework. 

For a successful genetic algorithm in combinatorial optimization a genetic 
meta-strategy is indispensable in order to guide the operation of good special 
purpose heuristics and to incorporate problem-specific knowledge. An older con-
cept of a population based search technique which dates back in its origins be-
yond the early days of genetic algorithms is introduced in [Glo95] and called 
scatter search. The idea is to solve 0-1 programming problems departing from a 
solution of a linear programming relaxation. A set of reference points is created 
by perturbing the values of the variables in this solution. Then new points are de-
fined as selected convex combinations of reference points that constitute good 
solutions obtained from previous solution efforts. Non-integer values of these 
points are rounded and then heuristically converted into candidate solutions for 
the integer programming problem. The idea parallels and extends the idea basic 
to the genetic algorithm design, namely, combining parent solutions in some way 
in order to obtain new offspring solutions. One of the issues that differentiates 
scatter search from the early genetic algorithm paradigm is the fact that the for-
mer creates new points strategically rather than randomly. Scatter search does not 
prespecify the number of points it will generate to retain. This can be adaptively 
established by considering the solution quality during the generation process. The 
"data perturbation idea" meanwhile has gained considerable attention within the 
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GA community. In [LB95] it is transferred as a tool for solving resource con-
strained project scheduling problems with different objective functions. The 
basic idea of their approach may be referred to as a "data perturbation" method-
ology which makes use of so-called problem space based neighborhoods. Given 
a well-known concept for deriving feasible solutions (e.g. a priority rule), a 
search approach is employed on account of the problem data and respective per-
turbations. By modifying (i.e. introducing some noise or perturbation) the prob-
lem data used for the priority values of activities, further solutions within a cer-
tain neighborhood of the original data are generated. 

The ideas mentioned above are paving the way in order to do some steps into 
the direction of machine learning. This is in particular true if learning is consid-
ered to be a right combination of employing inference on memory. Thus, local 
search in terms of tabu search and genetic algorithms emphasize such a unified 
approach in all successful applications. This probably resembles most the human 
way of thinking and learning. 
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