
 

18  Computer Integrated  
Production Scheduling 

Within all activities of production management, production scheduling is a major 
part covering planning and control functions. By production management we 
mean all activities which are necessary to carry out production. The two main 
decisions to be taken in this field are production planning and production con-
trol. Production scheduling is a common activity of these two areas because 
scheduling is needed not only on the planning level as mainly treated in the pre-
ceding chapters but also on the control level. From the different aspects of pro-
duction scheduling problems we can distinguish predictive production schedul-
ing or offline-planning (OFP) and reactive production scheduling or online-
control (ONC). Predictive production scheduling serves to provide guidance in 
achieving global coherence in the process of local decision making. Reactive 
production scheduling is concerned with revising predictive schedules when un-
expected events force changes. OFP generates the requirements for ONC, and 
ONC creates feedback to OFP. 

Problems of production scheduling can be modeled on the basis of distribut-
ed planning and control loops, where data from the actual manufacturing process 
are used. A further analysis of the problem shows that job release to, job travers-
ing inside the manufacturing system and sequencing in front of the machines are 
the main issues, not only for production control but also for short term produc-
tion planning.  

In practice, scheduling problems arising in manufacturing systems are of 
discrete, distributed, dynamic and stochastic nature and turn out to be very com-
plex. So, for the majority of practical scheduling purposes simple and rigid algo-
rithms are not applicable, and the manufacturing staff has to play the role of the 
flexible problem solver. On the other hand, some kind of Decision Support Sys-
tems (DSS) has been developed to support solving these scheduling problems. 
There are different names for such systems among which "Graphical Gantt Chart 
System" and "Leitstand" are the most popular. Such a DSS is considered to be a 
shop floor scheduling system which can be regarded as a control post mainly 
designed for short term production scheduling. Many support systems of this type 
are commercially available today. A framework for this type of systems can be 
found in [EGS97]. 

Most of the existing shop floor production scheduling systems, however, 
have two major drawbacks. First, they do not have an integrated architecture for 
the solution process covering planning and control decisions, and second, they do 
not take sufficient advantage from the results of manufacturing scheduling theo-
ry. In the following, we concentrate on designing a system that tries to avoid 
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these drawbacks, i.e. we will introduce intelligence to the modeling and to the 
solution process of practical scheduling problems.  

Later in this chapter we suggest a special DSS designed for short term pro-
duction scheduling that works on the planning and on the control level. It makes 
appropriate use of scheduling theory, knowledge-based and simulation tech-
niques. The DSS introduced will also be called "Intelligent Production Schedul-
ing System" or IPS later.  

This chapter is organized as follows. First we give a short idea about the en-
vironment of production scheduling from the perspective of problem solving in 
computer integrated manufacturing (Section 18.1). Based on this we suggest a 
reference model of production scheduling for enterprises (Section 18.2). Consid-
ering the requirements of a DSS for production scheduling we introduce an archi-
tecture for scheduling manufacturing processes (Section 18.3). It can be used 
either for an open interactive (Section 18.3.1) or a closed loop solution approach 
(Section 18.3.2). Based on all this we use an example of a flexible manufacturing 
cell to show how knowledge-based approaches and ideas relying on traditional 
scheduling theory can be integrated within an interactive approach (Section 
18.3.3). Note that, in analogy, the discussion of all these issues can be applied to 
other scheduling areas than manufacturing.  

18.1 Scheduling in Computer Integrated Manu-
facturing 

The concept of Computer Integrated Manufacturing (CIM) is based on the idea 
of combining information flow from technical and business areas of a production 
company [Har73]. All steps of activities, ranging from customer orders to prod-
uct and process design, master production planning, detailed capacity planning, 
predictive and reactive scheduling, manufacturing and, finally, delivery and ser-
vice contribute to the overall information flow. Hence a sophisticated common 
database support is essential for the effectiveness of the CIM system. Usually, the 
database will be distributed among the components of CIM. To integrate all 
functions and data a powerful communication network is required. Examples of 
network architectures are hierarchical, client server, and loosely connected com-
puter systems. Concepts of CIM are discussed in detail by e.g. Ranky [Ran86] 
and Scheer [Sch91]. 

We repeat briefly the main structure of CIM systems. The more technically 
oriented components are Computer Aided Design (CAD) and Computer Aided 
Process Planning (CAP), often comprised within Computer Aided Engineering 
(CAE), Computer Aided Manufacturing (CAM), and Computer Aided Quality 
Control(CAQ). More businesslike components are the Production Planning Sys-
tem (PPS) and the already mentioned IPS. The concept of CIM is depicted in 
Figure 18.1.1 where edges represent data flows in either directions. In CAD, de-
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velopment and design of products is supported. This includes technical or physi-
cal calculations and drafting. CAP supports the preparation for manufacturing 
through process planning and the generation of programs for numeric controlled 
machines. Manufacturing and assembly of products are supported by CAM 
which is responsible for material and part transport, control of machines and 
transport systems, and for supervising the manufacturing process. Requirements 
for product quality and generation of quality review plans are delivered by CAQ. 
The objective of PPS is to take over all planning steps for customer orders in the 
sense of material requirements and resource planning. Within CIM, the IPS or-
ganizes the execution of all job- or task-oriented activities derived from customer 
orders.  

PRODUCTION PLANNING

PRODUCTION CONTROL

CAEBasic data
for planning

Quality
requirements

Basic data for
manufacturingJobs, tasks

Quality
assuranceCAM

C
A
Q

PPS

Orders

IPS

 
Figure 18.1.1 The concept of CIM. 

Problems in production planning and control could theoretically be represented 
in a single model and then solved simultaneously. But even if all input data 
would be available and reliable this approach would not be applicable in general 
because of prohibitive computing times for finding a solution. Therefore a practi-
cal approach is to solve the problems of production planning and control sequen-
tially using a hierarchical scheme. The closer the investigated problems are to the 
bottom of the hierarchy the shorter will be the time scale under consideration and 
the more detailed the needed information. Problems on the top of the hierarchy 
incorporate more aggregated data in connection with longer time scales. Deci-
sions on higher levels serve as constraints on lower levels. Solutions for prob-
lems on lower levels give feedback to problem solutions on higher levels. The 
relationship between PPS, IPS and CAM can serve as an example for a hierarchy 
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which incorporates three levels of problem solving. It is of course obvious that a 
hierarchical solution approach cannot guarantee optimality. The number of levels 
to be introduced in the hierarchy depends on the problem under consideration, 
but for the type of applications discussed here a model with separated tactical 
(PPS), operational (IPS), and physical level (CAM) seems appropriate.  

In production planning the material and resource requirements of the cus-
tomer orders are analyzed, and production data such as ready times, due dates or 
deadlines, and resource assignments are determined. In this way, a midterm or 
tactical production plan based on a list of customer orders to be released for the 
next manufacturing period is generated. This list also shows the actual produc-
tion requirements. The production plan for short term scheduling is the output of 
the production scheduling system IPS on an operational level. IPS is responsible 
for the assignment of jobs or tasks to machines, to transport facilities, and for the 
provision of additional resources needed in manufacturing, and thus organizes 
job and task release for execution. On a physical level CAM is responsible for 
the real time execution of the output of IPS. In that way, IPS represents an inter-
face between PPS and CAM as shown in the survey presented in Figure 18.1.2. 
In detail, there are four major areas the IPS is responsible for [Sch89a]. 
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Order release for scheduling
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Job and task release for execution
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Manufacturing
Assembly
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Figure 18.1.2 Production planning, scheduling and execution. 

(1) Preprocessing: Examination of production prerequisites; the customer orders 
will only be released for manufacturing if all needed resources such as materials, 
tools, machines, pallets, and NC-programs are available.  
(2) System Initialization: The manufacturing  system or parts thereof have to be 
set up such that processing of released orders can be started. Depending on the 
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type of job, NC-programs have to be loaded, tools have to be mounted, and mate-
rials and equipment have to be made available at specific locations. 
(3) System Operation: The main function of short term production scheduling is 
to decide about releasing jobs for entering the manufacturing system, how to 
traverse jobs inside the system, and how to sequence them in front of the ma-
chines in accordance with business objectives and production requirements.  
(4) System Supervision and Monitoring: The current process data allow to check 
the progress of work continuously. The actual state of the system should always 
be observed, in order to be able to react quickly if deviations from a planned state 
are diagnosed. 

Offline planning (OFP) is concerned with preprocessing, system initializa-
tion and system operation on a predictive level, while online control (ONC) is 
focused mainly on system operation on a reactive level and on system supervi-
sion and monitoring. Despite the fact that all these functions have to be per-
formed by the IPS, following the purpose of this chapter we mainly concentrate 
on short term production scheduling on the predictive and the reactive level.  

One of the basic necessities of CIM is an integrated database system. Alt-
hough data are distributed among the various components of a CIM system, they 
should be logically centralized so that the whole system is virtually based on a 
single database. The advantage of such a concept would be redundancy avoid-
ance which allows for easier maintenance of data and hence provides ways to 
assure consistency of data. This is a major requirement of the database manage-
ment system (DBMS). The idea of an integrated data management within CIM is 
shown in Figure 18.1.3. 
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Figure 18.1.3 CIM and the database. 
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The computer architecture for CIM follows the hierarchical approach of problem 
solving which has already been discussed earlier in this section. The hierarchy 
can be represented as a tree structure that covers the following decision oriented 
levels of an enterprise: strategic planning, tactical planning, operational schedul-
ing, and physical manufacturing. At each level a host computer is coordinating 
one or more computers on the next lower level; actions at each level are carried 
out independently, as long as the requirements coming from the supervising level 
are not violated. The output of each subordinated level meets the requirements 
for correspondingly higher levels and provides feedback to the host. The deeper 
the level of the tree is, the more detailed are the processed data and the shorter 
has to be the computing time; in higher levels, on the other hand, the data are 
more aggregated. Figure 18.1.4 shows a distributed computer architecture, where 
the boxes assigned to the three levels PPS, IPS and CAM represent computers or 
computer networks. The leaves of the tree represent physical manufacturing and 
are not further investigated.  

Enterprise
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CAM

Planning Computer

Scheduling
Computer

OFP-
Computer

ONC-
Computer

IPS

Strategic requirements

Storage Handling Machines Tools Transport Quality

 
Figure 18.1.4 Computer system in manufacturing. 

Apart from a vertical information flow, a horizontal exchange of data on the 
same level between different computers must be provided, especially in case of a 
distributed and global environment for production scheduling. Generally, differ-
ent network architectures to meet these requirements may be thought of. Stand-
ard protocols and interfaces should be utilized to allow for the communication 
between computers from different vendors. 
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18.2 A Reference Model for Production  
Scheduling 

In order to implement the solution approaches presented in the previous chapters 
within a framework of an IPS we need a basic description of the scheduling sys-
tem. Here we introduce a modeling approach integrating declarative representa-
tion and algorithmic solution [Sch96]. Problem representation and problem solu-
tion are strongly interconnected, i.e. data structures and solution methods have to 
be designed interdependently [Wir76]. We will suggest a reference model for 
production scheduling and show how problem description and problem solution 
can be integrated. To achieve this we follow the object-oriented modeling para-
digm. 

Object-oriented modeling attempts to overcome the disadvantage of model-
ing data, functions, and communication, separately. The different phases of the 
modeling process are analysis, design, and programming. Analysis serves as the 
main representation formalism to characterize the requirements from the view-
point of the application domain; design uses the results of analysis to obtain an 
implementation-oriented representation, and programming means translating this 
representation using some programming language into code. Comparing object-
oriented modeling with traditional techniques its advantages lie in data abstrac-
tion, reusability and extensibility of the model, better software maintenance, and 
direct compatibility of the models of different phases of the software develop-
ment process. Often it is also claimed that this approach is harmonizing the de-
centralization of organizations and their support by information systems. We will 
now develop an open object-oriented analysis model for production scheduling. 
In comparison to other models of this kind (see e.g. [RM93]) the model present-
ed here is a one to one mapping of the classification scheme of deterministic 
scheduling theory introduced in Chapter 3 to models of information systems for 
production scheduling. Following this approach we hope to achieve a better 
transformation of theoretical results to practical applications. 

A model built by object-oriented analysis consists of a set of objects com-
municating via messages which represent dynamic relations of pairs of them. 
Each object consists of attributes and methods here also called algorithms. Meth-
ods are invoked by messages and methods can also create messages themselves. 
Objects of the same type are classified using the concept of classes; with this 
concept inheritance of objects can be represented. The main static relations be-
tween pairs of objects are generalization/specialization and aggregation/decom-
position. 

Different methods for generating object-oriented models exist [DTLZ93], 
[WBJ90]. From a practical point of view the method should make it easy to de-
velop and maintain a system; it should assist project management by defining 
deliverables and effective tool support should be available. Without loss of gen-
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erality the object model for production scheduling which will be introduced here 
is based on the modeling approach called Object-Oriented Analysis or OOA sug-
gested by [CY91]. It is easy to use, easy to understand, and fulfils most of the 
above mentioned criteria. 

In Figure 18.2.1 the main classes and objects for production scheduling are 
represented using OOA notation. Relationships between classes or objects are 
represented by arcs and edges; edges with a semi-circle represent generaliza-
tion/specialization relations, edges with triangles represent aggregation/decompo-
sition, and arcs between objects represent communications by message passing. 
The arc direction indicates a transmitter/receiver relationship. The introduced 
classes, objects, attributes, methods, and relations are complete in the sense that 
applying the proposed model a production schedule can be generated; neverthe-
less it is easy to enlarge the model to represent additional business requirements.  

Each customer order is translated into a manufacturing order, also called job, 
using process plans and bill of materials. Without loss of generality we want to 
assume that a job refers always to the manufacturing of one part where different 
tasks have to be carried out using different resources.  

While in Figure 18.2.1 a graphical notation related to OOA is used, we will 
apply in the following a textual notation. We will denote the names of classes 
and objects by capital letters, the names of attributes by dashes, and the names of 
methods by brackets. In OOA notation relationships between classes or objects 
will be represented by arcs and edges; edges with a semi-circle represent general-
ization/specialization relations, edges with triangles represent aggregation, and 
arcs represent communications between objects by message passing. The direc-
tion of the arc indicates a transmitter-receiver relationship. The introduced clas-
ses, objects, attributes, methods, and relations are complete in the sense that ap-
plying the proposed model a production schedule can be generated; nevertheless 
it is easy to enlarge the model to represent additional business requirements. 

The main classes of production scheduling are JOB, BOM (BILL_OF_MA-
TERIALS), PP (PROCESS_PLAN), TASK, RESOURCE, and SCHEDULE. 
Additional classes are ORDER specialized to PURCHASING_ORDER and 
DISPATCH_ORDER and PLANNING specialized to STRATEGIC_P, TACTI-
CAL_P, and OPERATIONAL_P. The class RESOURCE is a generalization of 
MACHINE, TOOL, and STAFF. Without loss of generality we concentrate the 
investigation here only on one type of resources which is MACHINE; all other 
types of resources could be modeled in the same manner. In order to find the at-
tributes of the different classes and objects we use the classification scheme in-
troduced in Chapter 3. 

The objects of class BOM generate all components or parts to be produced 
for a customer order. With this the objects of class JOB will be generated. Each 
object of this class communicates with the corresponding objects of class PP 
which includes a list of the technological requirements to carry out some job. 
According to these requirements all objects of class TASK will be generated, 
which are necessary to process all jobs. 
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Figure 18.2.1 Object-oriented analysis model for production scheduling. 

An object of class JOB is characterized by the attributes "job_number", "ma-
chines", "machine_list", "ready_time", "deadline", "completion_time", "flow_ 
time", "priority", and "status". Some values of the attributes concerning time and 
priority considerations are determined by the earlier mentioned Production Plan-
ning System (PPS). The value of the attribute "machines" refers to these ma-
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chines which have the qualification to carry out the corresponding job; after gen-
erating the final production schedule the value of "machine_list" refers to the 
ordered number of these machines to which the job is assigned. The value of the 
attribute "status" gives an answer to the question if the job is open, scheduled,  or 
finished.  The method used by JOB is here <check_job_processing> which has 
the objective to supervise the progress of processing the job. Communication 
between JOB and SCHEDULE results in determining the values of "ma-
chine_list", "completion_time", "flow_time" and "status". 

Each object of class TASK contains structural attributes like "task_number", 
"resources", "processing_time", "completion_time", "finish_time", "preemption", 
"earliest_start_time", "latest_finish_time" and additional attributes like "prede-
cessor", "successor", and "status". The values of the two attributes referring to 
earliest start and latest finish time are determined by the object-owned method 
<determine_dates>. The parameters for this method are acquired by communica-
tion with objects of the class JOB. Again the attribute "status" is required for 
analyzing the current state of processing of the task under consideration. 

Objects of class MACHINE are described by the attributes "ma-
chine_number", "availability", "speed", "capacity", "qualification", and 
"job_list". The value of "qualification" is the set of tasks which can be carried out 
by the machine. The value of "job_list" is unknown at the beginning; after gener-
ating the schedule the value refers to the set of jobs and corresponding tasks to be 
processed by this machine. In the same sense the values of "availability" and "ca-
pacity" will be altered using the methods <calculate_availability> and <calcu-
late_capacity>. 

The task of the object SCHEDULE is to generate the final production sched-
ule. In order to do this the actual manufacturing situation has to be analyzed in 
terms of objective function and constraints to be considered. This leads to the 
determination of the values for the attributes "objectives" and "constraints" using 
the method <analyze_situation>. The method <generate_schedule> is construct-
ing the desired schedule. Calling this method the communication links to the 
objects of classes RESOURCE, JOB, and TASK respectively, are activated. To 
the attributes "resources" and "tasks" the input values for <generate_schedule> 
are assigned. The result of the method is a depiction of the production schedule 
which is  assigned to the attribute "Gantt_chart". The required data concerning 
tasks and resources like machines, availability, speed, processing times etc. are 
available through the communication links to the objects of classes TASK and 
RESOURCE. 

Example 18.2.1 The following example shows how an object-oriented model for 
production scheduling can be generated. When we refer to the objects of a par-
ticular class the first time we declare the name of the corresponding object, its 
attributes, and the value of the attributes. Later, we only declare the name of the 
object and the value of the attributes. All entries are abbreviated. 
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JOB1 "j_no" J1; 

 "machines" P1, P2; 
 "mach_list" open; 
 "ready" 0; 
 "deadline" open; 
 "prio" none; 
 "stat" open; 
JOB2 (J2; P2; open; 0; open; none; open) 

JOB3 (J3; P1; open; 2; open; none; open) 

There are three jobs which have to be processed. No given sequence for J1 exists 
but J2 can only be processed on P2 and J3 can only be processed on P1. The jobs 
can start to be processed at times 0 and 2; there is no deadline which has to be 
obeyed, all jobs have the same priority. The machine list and status of the jobs 
are open at the beginning; later they will assume the values of the permutation of 
the machines and scheduled, in_process, or finished, respectively. 

TASK11 "t_no" T11; 

 "res" P1, P2; 
 "p_time" 3; 
 "preempt" no; 
 "e_s_t" 0; 
 "l_f_t" open; 
 "pre" �; 
 "suc" T12, T13; 
 "stat" open; 
TASK12 (T12; P1, P2; 13; no; 3; open; T11; �; open) 

TASK13 (T13; P1, P2; 2; no; 3; open; T11; �; open) 

TASK20 (T20; P2; 4; no; 0; open; �; �; open) 

TASK31 (T31; P1; 2; no; 2; open; �; T32, T33, T34; open) 

TASK32 (T32; P1; 4; no; 4; open; T31; �; open) 

TASK33 (T33; P1; 4; no; 4; open; T31; �; open) 

TASK34 (T34; P1; 2; no; 4; open; T31; �; open) 

The three jobs consist of eight tasks; all tasks of job J1 can processed on all ma-
chines, all other tasks are only allowed to be processed on machine P2 or only on 
machine P1. Processing times, precedence constraints and ready times are 
known, preemption is not allowed, and again deadlines do not exist. The status of 
the tasks is open at the beginning; later it will also assume the values scheduled, 
in_process, or finished. 

MACHINE1 "m_no" P1; 

 "avail" [0,#); 
 "speed" 1; 
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 "capac" PC1; 

 "qualif" T11, T12, T13, T31, T32, T33, T34; 
 "j_list" open; 
MACHINE2 (P2; [0, #); 1; PC2; T11, T12, T13, T20; open) 

There are two machines available for processing. Both machines have the same 
speed. They are available throughout the planning horizon, capacity and qualifi-
cation are known. The job list, i.e. the sequence the jobs are processed by the 
machines is not yet determined. 

SCHEDULE "object" makespan; 
 "constr" open; 
 "res" P1, P2; 

 "tasks" T11, T12, T13, T31, T32, T33, T34; 
 "Gantt_chart" open; 

The objective here is to minimize the makespan, i.e. to find a schedule where 
max{Ci} is minimized. Besides task and machine related constraints no other 
constraints have to be taken into account. All input data to generate the desired 
production schedule is given, the schedule itself is not yet known. Calling the 
method <generate_schedule> will result in a time oriented assignment of tasks to 
machines. Doing this the attributes will assume the following values. 

JOB1 (J1; P1, P2; 0; 17; none; scheduled) 

JOB2 (J2; P2; 0; 4; none; scheduled) 

JOB3 (J3; P1; 3; 15; none; scheduled) 

TASK11 (T11; P1; 3; no; 0; 3; �; T12, T13; scheduled) 

TASK12 (T12; P2; 13; no; 4; 17; T11; �; scheduled) 

TASK13 (T13; P1; 2; no; 15; 17; T11; �; scheduled) 

TASK20 (T20; P2; 4; no; 0; 4; �; �; scheduled) 

TASK31 (T31; P1; 2; no; 3; 5; �; T32, T33, T34; scheduled) 

TASK32 (T32; P1; 4; no; 5; 9; T31; �; scheduled) 

TASK33 (T33; P1; 4; no; 9; 13; T31; �; scheduled) 

TASK34 (T34; P1; 2; no; 13; 15; T31; �; scheduled) 

All jobs and the corresponding tasks are now scheduled; job J1 will be processed 
on machines P1 and P2 within the time interval [0,17], job J2 on machine P2 in 
the interval [0,4] and job J3 on machine P1 in the interval [3,15]. 
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MACHINE1 (P1; [17,#); 1; PC1; T11, T12, T13, T31, T32, T33, T34; 

 T11, T31, T32, T33, T34, T13) 

MACHINE2 (P2; [17,#); 1; PC2; T11, T12, T13, T20; T20, T12) 

The availability of machines P1 and P2 has now been changed. Machine P1 is 
processing tasks T11, T13, and all tasks of job J3, machine P2 is processing tasks 
T20 and T12. The processing sequence is also given. 

SCHEDULE "object" makespan; 
 "constr" open; 
 "res" P1, P2; 

 "tasks" T11, T12, T13, T31, T32, T33, T34; 
 "Gantt_chart" generated; 

The schedule has now been generated and is depicted by a Gantt chart shown in 
Figure 18.2.2. adaptation  

P1

P2

T11

T20

T31 T32 T33 T34

T12

T13

t3 4 5 9 13 15 170  
Figure 18.2.2 Gantt chart for the example problem. 

Example 18.2.2 We now want to use the classical job shop scheduling problem 
as an example to show how the approach can be applied to dedicated models. 
Here we will concentrate especially on the interaction between problem represen-
tation and problem solution. The general job shop problem is treated in Chapter 
8. The object model is characterized by the classes JOB, TASK, MACHINE and 
SCHEDULE. Investigating attributes of the objects we only concentrate on some 
selection of them. The class JOB can be described as follows. 

JOB "j_no" Jj; 

 "machines " Permutation over Pi; 
 "mach_list" open; 
 "ready" 0; 
 "deadline" open; 
 "prio" none; 
 "stat" open; 

As we are investigating a simple job shop problem each job is assigned to all 
machines following some pre-specified sequence, ready times for all jobs are 
zero; deadlines and priorities have not to be considered. 

Each job consists of different tasks which are characterized by the machine 
where the task has to be processed and the corresponding processing time; 
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preemption is not allowed. Each task can be described by its predecessor or suc-
cessor task. Input data for the algorithm are the values of the attributes "res", 
"p_time", "pre" and "suc". The values of "e_s_t" are not obligatory because they 
can be derived from the values of the attributes "pre" and "suc". With this the 
class TASK can be described as follows. 

TASK "t_no" Tij; 

 "res" Pi; 

 "p_time" pij; 
 "preempt" no; 
 "e_s_t" rij; 
 "l_f_t" open; 
 "pre" Tkj; 

 "suc" Tlj; 
 "stat" open; 

MACHINE "m_no" Pi; 

 "avail" [0,#); 
 "speed" 1; 
 "capac" PCi; 

 "qualif" Tij; 
 "j_list" open; 

All machines are continuously available in the planning period under considera-
tion. The value of the attribute "capac" is not necessary to apply the algorithm, it 
is only introduced for completeness reasons. 
SCHEDULE "object" makespan; 
 "constr" open; 
 "res" P1,..., Pm; 

 "tasks" Tij; 
 "Gantt_chart" open; 
 <generate_schedule> simulated annealing;   

The objective is again to find a production schedule which minimizes the maxi-
mum completion time. Additional information for describing the scheduling situ-
ation is not available. The input data for the algorithm are the available ma-
chines, the processing times of all jobs on all machines and the corresponding 
sequence of task assignment. After the application of an appropriate algorithm 
(compare to Chapter 8) the corresponding values describing the solution of the 
scheduling problem are assigned to the attributes and the Gantt chart will be gen-
erated. 

We have shown using some examples that the object-oriented model can be 
used for representing scheduling problems which correspond to those investigat-
ed in the theory of scheduling. It is quite obvious that the model can be specified 
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to various individual problem settings. Thus we can use it as some reference for 
developing production scheduling systems. 

18.3 IPS: An Intelligent Production Scheduling 
System 

The problems of short term production scheduling are highly complex. This is 
not only caused by the inherent combinatorial complexity of the scheduling prob-
lem but also by the fact that input data are dynamic and rapidly changing. For 
example, new customer orders arrive, others are cancelled, or the availability of 
resources may change suddenly. This lack of stability requires permanent revi-
sions, and previous solutions are due to continuous adaptations. Scheduling 
models for manufacturing processes must have the ability to partially predict the 
behavior of the entire shop, and, if necessary, to react quickly by revising the 
current schedule. Solution approaches to be applied in such an environment must 
have especially short computing times, i.e. time- and resource-consuming models 
and methods are not appropriate on an operational level of production schedul-
ing.  

All models and methods for these purposes so far developed and partially 
reviewed in the preceding chapters are either of descriptive or of constructive 
nature. Descriptive models give an answer to the question "what happens if ...?", 
whereas constructive models try to answer the question "what has to happen so 
that ...?". Constructive models are used to find best possible or at least feasible 
solutions; descriptive models are used to evaluate decision alternatives or solu-
tion proposals, and thus help to get a deeper insight into the problem characteris-
tics. Examples of descriptive models for production scheduling are queuing net-
works on an analytical and discrete simulation on an empirical basis; construc-
tive models might use combinatorial optimization techniques or knowledge of 
human domain experts.  

For production scheduling problems one advantage of descriptive models is 
the possibility to understand more about the dynamics of the manufacturing sys-
tem and its processes, whereas constructive models can be used to find solutions 
directly. Coupling both model types the advantages of each would be combined. 
The quality of a solution generated by constructive models could then be evaluat-
ed by descriptive ones. Using the results, the constructive models could be re-
vised until an acceptable schedule is found. In many cases there is not enough 
knowledge available about the manufacturing system to build a constructive 
model from the scratch. In such situations descriptive models can be used to get a 
better understanding of the relevant problem parameters.  

From another perspective there also exist approaches trying to change the 
system in order to fit into the scheduling model, others simplify the model in 
order to permit the use of a particular solution method. In the meantime more 
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model realism is postulated. Information technology should be used to model the 
problem without distortion and destruction. In particular it can be assumed that in 
practical settings there exists not only one scheduling problem all the time and 
there is not only one solution approach to each problem, but there are different 
problems at different points in time. On the other hand the analysis of the compu-
tational complexity of scheduling problems gives also hints how to simplify a 
manufacturing process if alternatives for processing exist. 

Short term production scheduling is supported by shop floor information 
systems. Using data from an aggregated production plan a detailed decision is 
made in which sequence the jobs are released to the manufacturing system, how 
they traverse inside the system, and how they are sequenced in front of the ma-
chines. The level of shop floor scheduling is the last step in which action can be 
taken on business needs for manufacturing on a predictive and a reactive level.  

One main difference between these two scheduling levels is the liability of 
the input data. For predictive scheduling input data are mainly based on expecta-
tions and assumptions. Unforeseen circumstances like rush orders, machine 
breakdowns, or absence of employees can only be considered statistically, if at 
all. This situation is different in reactive scheduling where actual data are availa-
ble. If they are not in coincidence with the estimated data, situation-based revi-
sions of previous decisions have to be made. Predictive scheduling has to go 
hand in hand with reactive scheduling.  

Shop floor information systems available commercially today are predomi-
nately data administration systems. Moreover, they collect and monitor data 
available from machines and the shop floor. Mainly routine operations are car-
ried out by the shop floor system; the production manager is supported by offer-
ing the preliminary tools necessary for the development of a paperless planning 
and control process. Additionally, some systems are also offering various sched-
uling strategies but with limited performance and without advice when to apply 
them. It can be concluded that the current shop floor information systems are 
good at data administration, but for the effective solution of production schedul-
ing problems they are of very little help [MS92a, MS92b].  

An intuitive job processing schedule, based solely upon the experience of 
skilled production managers, does not take advantage of the potential strengths of 
an integrated IPS. Thus, the development of an intelligent system which inte-
grates planning and control within scheduling for the entire operation and sup-
ports effectively the shop floor management, becomes necessary. Such a system 
could perform all of the functions of the current shop floor scheduling systems 
and would also be able to generate good proposals for production schedules, 
which also take deviations from the normal routine into consideration. With the 
help of such concepts the problems involved in initializing and operating a man-
ufacturing system should be resolved.  

Practical approaches to production scheduling on the planning and control 
level must take also into account the dynamic and unpredictable environment of 
the shop floor. Due to business and technical considerations, most decisions must 
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be made before all the necessary information has been gathered. Production 
scheduling must be organized in advance. Predictive scheduling is the task of 
production planning and the basis for production control; where reactive schedul-
ing has to be able to handle unexpected events. In such a situation, one attempt is 
to adapt to future developments using a chronological and functional hierarchy 
within the decision making steps of production scheduling. This helps to create a 
representation of the problem that considers all available information [Sch89a].  

The chronological hierarchy leads to the separation of offline planning 
(OFP) and online control (ONC). Problems involved in production scheduling 
are further separated on a conceptual and a specific level in order to produce a 
functional hierarchy, too. The purpose of the chronological approach to prioriti-
zation is to be able to come to a decision through aggregated and detailed model-
ing, even if future information is unspecific or unavailable. Aside from fulfilling 
the functional needs of the organization, the basic concept behind the functional 
hierarchy is to get a better handle on the combinatorial difficulties that emerge 
from the attempt of simultaneously solving all problems arising in a manufactur-
ing environment. The IPS should follow hierarchical concepts in both, the chron-
ological and the functional aspect. The advantage of such a procedure consists 
not only in getting a problem-specific approach for investigation of the actual 
decision problem, but also in the representation of the decision making process 
within the manufacturing organization.  

Models and methods for the hierarchically structured scheduling of produc-
tion with its planning and control parts have been developed over the years and 
are highly advanced; see e.g. [KSW86, Kus86, Ste85, LGW86]. However, they 
lack integration in the sense of providing a concept, which encompasses the en-
tire planning and control process of scheduling. With our proposal for an IPS we 
try to bring these methods and models one step closer to practical application. 
The rudimentary techniques of solving predictive scheduling problems presented 
here work on a closed Analysis-Construction-Evaluation loop (ACE loop). This 
loop has a feedback mechanism creating an IPS on the levels of OFP and ONC 
[Sch92]. An overview over the system is shown in Figure 18.3.1.  

The OFP module consists of an analysis, a construction and an evaluation 
component. First, the problem instance is analyzed (A) in terms of objectives, 
constraints and further characteristics. In order to do this the first step for (A) is 
to describe the manufacturing environment with the scheduling situation as de-
tailed as necessary. In a second step from this description a specific model has to 
be chosen from a set of scheduling models in the library of the system. The anal-
ysis component (A) can be based upon knowledge-based approaches, such as 
those used for problems like classification.  

The problem analysis defines the parameters for the construction (C) phase. 
From the basic model obtained in (A), a solution for the scheduling problem is 
generated by (C) using some generic or specific algorithms. The result is a com-
plete schedule that has then to be evaluated by (E). Here the question has to be 
answered if the solution can be implemented in the sense that manufacturing ac-
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cording to the proposed solution meets business objectives and fulfils all con-
straints coming from the application. If the evaluation is satisfactory to the user, 
the proposed solution will be implemented. If not, the process will repeat itself 
until the proposed solution delivers a desirable outcome or no more improve-
ments appear to be possible in reasonable time. 

Problem

Analysis Construction

Evaluation

Strategy

Adaptation

Ad-hoc-
decisions

OFP

ONC

(A) (C)

(E)

System
status  

Figure 18.3.1 Intelligent problem solving in manufacturing. 

The construction component (C) of the ACE loop generates solutions for OFP. It 
bases its solution upon exact and heuristic problem solving methods. Unfortu-
nately, with this approach we only can solve static representations of quite gen-
eral problems. The dynamics of the production process can at best be only ap-
proximately represented. In order to obtain the necessary answers for a dynamic 
process, the evaluation component (E) builds up descriptive models in the form 
of queuing networks at aggregated levels [BY86] or simulation on a specific lev-
el [Bul82, Ca86]. With these models one can evaluate the various outcomes and 
from this if necessary new requirements for problem solution are set up.  

Having generated a feasible and satisfactory predictive schedule the ONC 
module will be called. This module takes the OFP schedule and translates its 
requirements to an ONC strategy, which will be followed as long as the schedul-
ing problem on the shop floor remains within the setting investigated in the anal-
ysis phase of OFP. If temporary disturbances occur, a time dependent strategy in 
the form of an ad-hoc decision must be devised. If the interruption continues for 
such a long time that a new schedule needs to be generated, the system will re-
turn to the OFP module and seek for an alternative strategy on the basis of a new 
problem instance with new requirements and possibly different objectives within 
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the ACE loop. Again a new ONC strategy has to be found which will then be 
followed until again major disturbances occur.  

As already mentioned, production scheduling problems are changing over 
time; a major activity of the problem analysis is to characterize the problem set-
ting such that one or more scheduling problems can be modeled and the right 
method or a combination of methods for constructing a solution can be chosen 
from a library of scheduling methods or from knowledge sources coming from 
different disciplines. With this there are three things to be done; first the manu-
facturing situation has to be described, second the underlying problem has to be 
modeled and third an appropriate solution approach has to be chosen. From this 
point of view one approach is using expert knowledge to formulate and model 
the problem using the reference model presented in the preceding section, and 
then using "deep"-knowledge from the library to solve it.  

The function of OFP is providing flexibility in the development and imple-
mentation of desirable production schedules. OFP applies algorithms which can 
either be selected from the library or may also be developed interactively on the 
basis of simulation runs using all components of the ACE loop. The main activi-
ty of the interaction of the three components of the loop is the resolution of con-
flicts between the suggested solution and the requirements coming from the deci-
sion maker. Whenever the evaluation of some schedule generated by (C) is not 
satisfactory then there exists at least some conflict between the requirements or 
business objectives of a problem solution and the schedule generated so far. 
Methods to detect and resolve these conflicts are discussed in the next section. 

The search for a suitable strategy within ONC should not be limited to rou-
tine situations, rather it should also consider e.g. breakdowns and their predicta-
ble consequences. ONC takes into consideration the scheduling requirements 
coming from OFP and the current state of the manufacturing system. To that end, 
it makes the short term adjustments, which are necessary to handle failures in 
elements of the system, the introduction of new requirements for manufacturing 
like rush orders or the cancellation of jobs. An algorithmic reaction on this level 
of problem solving based on sophisticated combinatorial considerations is gener-
ally not possible because of prohibitive computing times of such an approach. 
Therefore, the competence of human problem solvers in reaching quality, real-
time decisions is extremely important.  

OFP and ONC require suitable diagnostic experience for high quality deci-
sion making. Schedules generated in the past should be recorded and evaluated, 
for the purpose of using this experience to find solutions for actual problems to 
be solved. Knowledge-based systems, which could be able to achieve the quality 
of "self-learning" in the sense of case-based reasoning [Sch98], can make a sig-
nificant contribution along these lines. 

Solution approaches for scheduling problems mainly come from the fields of 

Operations Research (OR) and Artificial Intelligence (AI). In contrast to OR-

approaches to scheduling, which are focused on optimization and which were 

mainly covered in the preceding chapters, AI relies on satisfaction, i.e. it is suffi-
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cient to generate solutions which are accepted by the decision maker. Disregard-

ing the different paradigm of either disciplines the complexity status of the 

scheduling problems remains the same, as it can be shown that the decision vari-

ant of a problem is not easier than the corresponding optimization problem (see 

Section 2.2). Although the OR- and AI-based solution approaches are different, 

many efforts of either disciplines for investigating scheduling problems are simi-

lar; examples are the development of priority rules, the investigation of bottle-

neck resources and constraint-based scheduling. With priority scheduling as a 

job- or task-oriented approach, and with bottleneck scheduling as a resource-

oriented one, two extremes for rule-based schedule generation exist.  

Most of the solution techniques can be applied not only for predictive but al-

so for reactive scheduling. Especially for the latter case priority rules concerning 

job release to the system and job traversing inside the system are very often used 

[BPH82, PI77]. Unfortunately, for most problem instances these rules do not 

deliver best possible solutions because they belong to the wide field of heuristics. 

Heuristics are trying to take advantage from special knowledge about the charac-

teristics of the domain environment or problem description respectively and 

sometimes from analyzing the structure of known good solutions. Many AI-

based approaches exist which use domain knowledge to solve predictive and 

reactive scheduling problems, especially when modeled as constraint-based 

scheduling. 

OR approaches are built on numerical constraints, the AI approach is con-

sidering also non-numerical constraints distinguishing between soft and hard 
constraints. In this sense scheduling problems also can be considered as con-
straint satisfaction problems with respect to hard and soft constraints. Speaking 

of hard constraints we mean constraints which represent necessary conditions 

that must be obeyed. Among hard constraints are given precedence relations, 

routing conditions, resource availability, ready times, and setup times. In contrast 

to these, soft constraints such as desirable precedence constraints, due dates, 

work-in-process inventory, resource utilization, and the number of tool changes, 

represent rather preferences the decision maker wants to be considered. From an 

OR point of view they represent the aspect of optimization with respect to an 

objective function. Formulating these preferences as constraints too, will convert 

the optimization problem under consideration into a feasibility or a decision 

problem. In practical cases it turns out very often that it is less time consuming to 

decide on the feasibility of a solution than to give an answer to an optimization 

problem.  

The constraint satisfaction problem (CSP) deals with the question of finding 

values for the variables of a set X  = {x1 ,..., xn} such that a given collection C  of 

constraints c1 ,..., cm is satisfied. Each variable xi is assigned a domain zi which 

defines the set of values xi may assume. Each constraint is a subset of the Carte-

sian product z1 � z2 �...� zn that specifies conditions on the values of the varia-
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bles x1 ,..., xn . A subset Y � z1 � z2 �...� zn is called a feasible solution of the 

constraint satisfaction problem if Y meets all constraints of C , i.e. if Y  � �
j=1

n
 cj . 

The analysis of a constraint satisfaction problem either leads to feasible solu-

tions or to the result that for a given constraint set no such solution exists. In the 

latter case conflict resolution techniques have to be applied. The question in-

duced by a constraint satisfaction problem is an NP-complete problem [GJ79] 

and one of the traditional approaches to solve it is backtracking. In order to detect 

unfeasibility it is sometimes possible to avoid this computationally expensive 

approach by carrying out some preprocessing steps where conflicts between con-

straints are detected in advance.  

Example 18.3.1  For illustration purposes consider the following example prob-

lem with X  = {x1 , x2 , x3}, z1 = z2 = z3 = {0, 1}, and C  = {c1 , c2 , c3} represent-

ing the constraints  

x1 + x2 = 1 (18.3.1) 

x2 + x3 = 1 (18.3.2) 

x1 + x3 = y  for y � {0, 2} . (18.3.3) 

Feasible solutions for this example constraint satisfaction problem are given by 

Y11 = {(0, 1, 0)} and Y12 = {(1, 0, 1)}. If a fourth constraint represented by  

x2 + x3 = 0 (18.3.4) 

is added to C , conflicts arise between (18.3.2) and (18.3.4) and between (18.3.1), 

(18.3.3), and (18.3.4). From these we see that no feasible solution exists. Notice 

that no backtracking approach was needed to arrive at this result.  

To solve constraint satisfaction problems most AI scheduling systems construct a 

search tree and apply some search technique to find a feasible solution. A com-

mon technique to find feasible solutions quickly is constraint directed search. 

The fundamental philosophy uses a priori consistency checking techniques 

[DP88, Fre78, Mac77, Mon74]. The basic concept is to prune the search space 

before unfeasible combinations of variable values are generated. This technique 

is also known as constraint propagation. 

Apart from the discussed focus on constraints, AI emphasizes the role of 

domain specific knowledge in decomposing the initial problem according to sev-

eral perspectives like bottleneck resources, hierarchies of constraints, conflicting 

subsets of constraints, while ignoring less important details. Existing AI-based 

scheduling systems differentiate between knowledge representation (models) and 

scheduling methodology (algorithms). They focus rather on a particular applica-

tion than on general problems. The scheduling knowledge refers to the manufac-

turing system itself, to constraints and to objectives or preferences. Possible rep-
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resentation techniques are semantic networks (declarative knowledge), predicate 

logic (especially for constraints), production rules (procedural knowledge) and 

frames (all of it). Scheduling methodology used in AI is mainly based on produc-

tion rules (operators), heuristic search (guides the application of operators), op-

portunistic reasoning (different views of problem solving, e.g. resource-based or 

job-based), hierarchical decomposition (sub-problem solution, abstraction and 

distributed problem solving), pattern matching (e.g. using the status of the manu-

facturing system and given objectives for the application of priority rules), con-

straint propagation, reinforcement or relaxation techniques.  

In the next three sections we describe two approaches which use AI-based 
solution techniques to give answers to production scheduling problems. In Sec-
tion 18.3.1 we demonstrate open loop interactive scheduling and in Section 
18.3.2 we discuss some closed loop approaches using expert knowledge in the 
solution process of scheduling problems. In Section 18.3.3 we present an exam-
ple for integrated problem solving combining OR- and AI-based solution ap-
proaches. 

18.3.1 Interactive Scheduling  

We now want to describe how a constraint-based approach can be used within 
the ACE-loop to solve predictive scheduling problems interactively. Following 
Schmidt [Sch89b], decomposable problems can be solved via a heuristic solution 
procedure based on a hierarchical "relax and enrich" strategy (REST) with look 
ahead capabilities. Using REST we start with a solution of some relaxed feasibil-
ity problem considering hard constraints only. Then we enrich the problem for-
mulation step by step by introducing preferences from the decision maker. These 
preferences can be regarded as soft constraints. We can, however, not expect in 
general that these additional constraints can be met simultaneously, due to possi-
ble conflicts with hard constraints or with other preferences. In this case we have 
to analyze all the preferences by some conflict detection procedure. Having dis-
covered conflicting preferences we must decide which of them should be omitted 
in order to resolve contradictions. This way a feasible and acceptable solution 
can be generated.  

REST appears to be appealing in a production scheduling environment for 
several reasons. The separation of hard constraints from preferences increases 
scheduling flexibility. Especially, preferences very often change over time so that 
plan revisions are necessary. If relaxation and enrichment techniques are applied, 
only some preferences have to be altered locally while very often major parts of 
the present schedule satisfying hard constraints can be kept unchanged. A similar 
argument applies for acceptable partial schedules which may be conserved and 
the solution procedure can concentrate on the unsatisfactory parts of the schedule 
only.  
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This problem treatment can be incorporated into the earlier mentioned DSS 
framework for production scheduling which then includes an algorithmic module 
to solve the problem under the set of hard constraints, and a knowledge-based 
module to take over the part of conflict detection and implementation of con-
sistent preferences. Without loss of generality and for demonstration purposes 
only we want to assume in the following that the acceptability of a solution is the 
greater the more preferences are incorporated into the final schedule. For sim-
plicity reasons it is assumed that all preferences are of equal importance. 

In this section we describe the basic ideas of REST quite generally and 
demonstrate its application using an example from precedence constrained 
scheduling. We start with a short discussion of the types of constraints we want 
to consider. Then we give an overview on how to detect conflicts between con-
straints and how to resolve them. Finally, we give a simple example and present 
the working features of the scheduling system based on REST. 

Analyzing Conflicts 

Given a set of tasks T  = {T1 ,..., Tn}, let us assume that preferences concern the 
order in which tasks are processed. Hence the set of preferences PR  is defined as 
a subset of the Cartesian product, T  � T . Conflicts occur among contradictory 
constraints. We assume that the given hard constraints are not contradictory 
among themselves, and hence that and thus a feasible schedule that obeys all the 
hard constraints always exists. Obviously, conflicts can only be induced by the 
preferences. Then, two kinds of contradictions have to be taken into account: 
conflicts between the preferences and the hard constraints, and conflicts among 
preferences themselves. Following the strategy of REST we will not extract all of 
these conflicts in advance. We rather start with a feasible schedule and aim to 
add as many preferences as possible to the system.  

The conflicting preferences are mainly originated from desired task order-
ings, time restrictions and limited resource availabilities. Consequently, we dis-
tinguish between logically conflicting preferences, time conflicting preferences, 
and resource conflicting preferences.  

Logical conflicts between preferences occur if a set of preferred task order-
ings contains incompatible preferences. Logical conflicts can easily be detected 
by investigating the directed graph G = (T , P R ). This analysis can be carried out 
by representing the set of preferences as a directed graph G = (T , LC ) where T  is 
the set of tasks and LC � T  � T  represents the preferred processing orders 
among them.  

Example 18.3.2  To illustrate the approach we investigate an example problem 
where a set T  = {T1 , T2 , T3 , T4} of four tasks has to be scheduled. Let the pre-
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ferred task orderings be given by PR  = {PR1 , PR2 , PR3 , PR4 , PR5} with PR1 = 

(T1 , T2), PR2 = (T2 , T3), PR3 = (T3 , T2), PR4 = (T3 , T4), and PR5 = (T4 , T1).  

T1 T2

T3 T4

PR5

PR1

PR3

PR2

PR4  
Figure 18.3.2 G = (T , PR ) representing preferences in Example 18.3.2. 

Logical conflicts in G = (T , PR ) can be detected by finding all cycles of G (see 
Figure 18.3.2). From this we get two sets of conflicts, LC1 = {PR2 , PR3} and 

LC2 = {PR1 , PR2 , PR4 , PR5}.   

Time conflicts occur if a set of preferences is not consistent with time restrictions 
following from the initial solution obtained on the basis of the hard constraints. 
To detect time conflicts we must explicitly check all time conditions between the 
tasks. Hard constraints implying earliest beginning times EBj , latest beginning 
times LBj and processing times pj restrict the preferences that can be realized. So, 
if  

EBu + pu > LBv  (18.3.5) 

for tasks Tu and Tv , the preference (Tu , Tv) , would violate the time restrictions. 
More generally, suppose that for some k � IN and for tasks Tu1

 ,...,  Tuk
  and Tu 

there are preferences (Tu1
 , Tu2

 ), (Tu2
 , Tu3

 ) ,...,  (Tuk�1
 , Tuk

 ) and (Tuk
 , Tv ). These 

preferences imply that the tasks should be processed in order (Tu1
 ,...,  Tuk

 , Tv ). 
However, if this task sequence has the property  

Zuk
 + puk

 > LBv (18.3.6) 

where  

Zuk
 = max {EBuk

, max
l

{EBul
 + �

j=l

k�1

 pj}}  

then obviously the given set of preferences is conflicting. If (18.3.6) is true the 
time constraint coming from the last task of the chain will be violated.  
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Example 18.3.2 - continued - To determine time conflicts, assume that each task 
Tj has a given earliest beginning time EBj and a latest beginning time LBj as spec-
ified together with processing times pj in the following Table 18.3.1. 

Tj EBj LBj pj 

T1 7 7 5 
T2 3 12 4 
T3 13 15 2 
T4 12 15 0 

Table 18.3.1 Time parameters for Example 18.3.2. 

To check time conflicts we have to investigate time compatibility of the prefer-
ences PRi , i = 1,..., 5. Following (18.3.5), a first consistency investigation shows 
that each of the preferences, PR3 and PR5 , is in conflict with the time constraints. 
The remaining preferences, PR1 , PR2 , and PR4 would suggest execution of the 
tasks in order (T1 , T2 , T3 , T4). To verify feasibility of this sequence we have to 
check all its subsequences against (18.3.6). The subsequences of length 2 are 
time compatible because the only time conflicting sequences would be (T3 , T2) 
and (T4 , T1). For the total sequence (T1 , T2 , T3 , T4) we get Z3 = max {EB3 , EB1 + 

p1 + p2 , EB2 + p2} = 15 and Z3 + p3 > LB4 , thus the subset {PR1 , PR2 , PR4 } of 
preferences creates a time conflict. Similarly the two subsequences of length 3 
are tested: the result is that sequence (T1 , T2 , T3) realized by preferences PR1 and 
PR2 establishes a time conflict, whereas (T2 , T3 , T4) does not. So we end up with 
four time conflicting sets of preferences, TC1 = {PR3}, TC2 = {PR5}, TC3 = 
{PR1 , PR2}, and TC4 = {PR1 , PR2 , PR4}.  

If the implementation of some preference causes a resource demand at some time 
t such that it exceeds resource limits at this time, i.e. 

�
Ti �Tt

 Rk(Tj) > mk, k = 1,..., s , (18.3.7) 

then a resource conflict occurs. Here T t denotes the set of tasks being processed 
at time t, Rk(Tj) the requirement of resource of type Rk of task Tj , and mk the cor-
responding resource maximum supply.  

Example 18.3.2 - continued - As to the resource conflicts, assume that s = 1, m1
 = 1, and R1(Tj) = 1 for all j = 1,..., 4. Taking the given time constraints into ac-
count, we detect a conflict for PR1 from (18.3.7) since T2 cannot be processed in 
parallel with tasks T3 and T4 . Thus an additional conflicting set RC1 = {PR1} has 
to be introduced.   
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Coping with Conflicts 

Let there be given a set T  of tasks, and a set PR of preferences concerning the 
processing order of tasks. Assume that logical conflicting sets LC1 ,..., LC0 , 
time conflicting sets TC1 ,...,TC7 , and resource conflicting sets RC1 ,..., RC� 

have been detected. We then want to find out if there is a solution schedule that 
meets all the restrictions coming from these conflicting sets. This means that we 
need to find a subset PR ' of PR  of maximal cardinality such that none of the 
conflicting sets LCi , TCj , RCk contradicts PR ', i.e. is contained in PR '. 

Let LC := {LC1 ,..., LC0} be the set of all logically conflicting sets; the set 
TC of time conflicting sets and the set RC of resource conflicting sets are defined 
analogously. Define C  := LC � TC � RC , i.e. C  contains all the conflicting sets 
of the system. The pair IH := (PR , C) represents a hypergraph with vertices PR  
and hyperedges C . Since IH describes all conflicts arising in the system we refer 
to IH as the conflict hypergraph.  

Our aim is to find a suitable subset PR ', i.e. one that does not contain any of 
the hyperedges. We notice that if H1 � H2 for hyperedges H1 and H2, we need 
not to consider H2 since H1 represents the more restrictive conflicting set. Ob-
serving this we can simplify the hypergraph by eliminating all hyperedges that 
are supersets of other hyperedges. The hypergraph then obtained is referred to as 
the reduced conflict hypergraph.  

According to our measure of acceptability we are interested in the maximum 
number of preferences that can be accepted without loosing feasibility. This is 
justified if all preferences are of equal importance. If the preferences have differ-
ent weights we might be interested in a subset of preferences of maximum total 
weight. All these practical questions result in NP-hard problems [GJ79].  

To summarize the discussion we have to perform three steps to solve the 
problem. 
Step 1: Detect all the logically, time, and resource conflicting sets. 
Step 2: Build the reduced conflict hypergraph. 
Step 3: Apply some conflict resolution algorithm. 

Algorithm 18.3.3  frame (IH = (PR , C)); 

begin 
S := �; -- initialization of the solution set 
while PR  � � do 
begin 
Reduce hypergraph (PR , C); 
Following some underlying heuristic, choose preference PR � PR ; (18.3.8) 
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PR  := PR  � {PR}; 
if C �/  S � {PR} for all C � C then S := S � {PR}; 

-- P R  is accepted if the temporal solution set does not contain any conflicting preferences 

for all C � C do C := C � (PR  � PR ); 

-- the hypergraph is restricted to the new (i.e. smaller) set of vertices 
end; 

end; 

The algorithm is called frame because it has to be put in concrete form by intro-
ducing some specific heuristics in line (18.3.8). Based on the conflict hypergraph 
IH = (PR , C) heuristic strategies can easily be defined. We also mention that if 
preferences are of different importance their weight should be considered in the 
definition of the heuristics in (18.3.8).  

In the following we give a simple example of how priority driven heuristics 
can be defined. Each time (18.3.8) is performed, the algorithm chooses a prefer-
ence of highest priority. In order to gain better adaptability we allow that priori-
ties are re-computed before the next choice is taken. This kind of dynamics is 
important in cases where the priority values are computed from the hypergraph 
structure, because as the hypergraph gets smaller step by step its structure chang-
es during the execution of the algorithm, too. 

Heuristic DELTA-decreasing (,dec): Let ,: PR  � IN 
0 be the degree that as-

signs - in analogy to the notion of degree in graphs - each vertex PR � PR the 
number of incident hyperedges, i.e. the number of hyperedges containing vertex 
PR. The heuristic ,dec then arranges the preferences in order of non-increasing 
degree. This strategy follows the observation that the larger the degree of a pref-
erence is, the more subsets of conflicting preferences exist; thus such a prefer-
ence has less chance to occur in the solution set. To increase this chance we give 
such preference a higher priority.  

Heuristic DELTA-increasing (,inc): Define ,inc := � ,dec . This way preferences 
of lower degree get higher priority. This heuristic was chosen for comparison 
against the ,dec strategy. 

Heuristic GAMMA-increasing ("inc): Define ": PR  � IN 0 as follows: For PR 
� PR , let "(PR) be the number of vertices that do not have any common hy-
peredge with PR. The heuristic "inc then arranges the preferences in order of non-
decreasing cardinalities. The idea behind this strategy is that a preference with 
small "-value has less chance to be selected to the solution set. To increase this 
chance we give such preference a higher priority.  

Heuristic GAMMA-decreasing ("dec): Define "dec := � "inc . This heuristic was 
chosen for comparison against the "inc strategy. 
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The above heuristics have been compared by empirical evaluation [ES93]. 
There it turned out that DELTA-decreasing, GAMMA-increasing behave consid-
erably better than DELTA-increasing and GAMMA-decreasing.  

Example 18.3.2 - continued - Summarizing all conflicts we get the conflict hy-
pergraph IH := (PR , C) where the set C contains the hyperedges 

{PR2 , PR3} 
{PR1 , PR2 , PR4 , PR5} 

(logically conflicting sets) 

{PR3} 
{PR5} 
{PR1 , PR2} 
{PR1 , PR2 , PR4} 

(time conflicting sets) 

{PR1} (resource conflicting set). 

Figure 18.3.3 shows the hypergraph where encircled vertices are hyperedges.  

PR2

PR5

PR4

PR3

PR1

 

Figure 18.3.3 IH = (PR , C) representing conflicts of the example problem. 

PR1 PR2

PR4

PR5 PR3
 

Figure 18.3.4 Reduced hypergraph representing conflicts of the example prob-
lem. 
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Since each of the hyperedges of cardinality > 1 contains a conflicting set of car-
dinality one, the reduced hypergraph has only the three hyperedges {PR1}, {PR3} 
and {PR5}, see Figure 18.3.4. A subset of maximal cardinality that is not in con-
flict with any of the conflicting sets is {PR2 , PR4}. Each of the above algorithms 
finds this solution as can easily be verified.   

Below we present a more complex example where not only the heuristics can be 
nontrivially applied; the example also demonstrates the main idea behind an in-
teractive schedule generation. 

Working Features of an Interactive Scheduling System 

The above described approach of REST with conflict detection mechanisms can 
be integrated into a DSS [EGS97]. Its general outline is shown in Figure 18.3.5. 

CONSTRUCTIONANALYSIS

EVALUATION

conflict 
detection

provisional
final schedule

basic 
schedule

hard 
constraints

soft
constraints

1

3 4

2

5

6

predictive
schedule

 
Figure 18.3.5 A DSS for the REST-approach. 

The DSS consists of four major modules: problem analysis, schedule generation, 
conflict detection and evaluation. Their working features can be organized by 
incorporating six phases. The first phase starts with some problem analysis inves-
tigating the hard constraints which have to be taken into account for any problem 
solution. Then, in the second phase a first feasible solution (basic schedule) is 
generated by applying some scheduling algorithm. The third phase takes over the 
part of analyzing the set of preferences of task constraints. In the fourth phase 
their interaction with the results of the basic schedule is clarified via the conflict 
detection module. In the fifth phase a compatible subset of soft constraints ac-
cording to the objectives of the decision maker is determined, from which a re-
vised schedule is generated. In the last phase the revised evaluated. If the evalua-
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tion is satisfactory a solution for the predictive scheduling problem is found; if 
not, the schedule has to be revised by considering new constraints from the deci-
sion maker. The loop stops as soon as a satisfactory solution has been found.  

The DSS can be extended to handle a dynamic environment. Whenever hard 
constraints have to be revised or the set of preferences is changing we can apply 
this approach on a rolling basis. 

Example 18.3.4  To demonstrate the working feature of the scheduling system 
consider an extended example. Let there be given a set of tasks T  = {T1 , T2 , T3 , 
T4 , T5 , T6 , T7 , T8}, and hard constraints as shown in Figure 18.3.6(a). Processing 
times and earliest and latest beginning times are given as triples (pj , EBj , LBj) 
next to the task nodes. In addition, concurrent task execution is restricted by two 
types of resources and resource requirements of the tasks are R(T1) = [2, 0], 
R(T2) = [2, 4], R(T3) = [0, 1], R(T4) = [4, 2], R(T5) = [1, 0], R(T6) = [2, 5], 
R(T7) = [3, 0], R(T8) = [0, 1]. The total resource supply is m = [5, 5].  

(a)

 

T6

T8

T7

T4

T2

T5

T3

T1

(2;0,0)

(3;2,5)

(4;1,8)

(3;2,7)

(2;4,5)

(2;6,11)

(4;7,9)

(1;8,12)

 

(b)

 

T1 T4T3

T5

T6

T7

T8

t0 5 11 12

T2

1 2 7 9  
Figure 18.3.6 Illustration of Example 18.3.4 : 
 (a) hard constraints, 
 (b) a basic schedule. 

Having analyzed the hard constraints we generate a feasible basic schedule by 
applying some scheduling algorithm. The result is shown in Figure 18.3.6(b). 
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Feasibility of the schedule is gained by assigning a starting time sj to each task 
such that EBj � sj � LBj and the resource constraints are met. 

Describing the problem in terms of the constraint satisfaction problem, the 
variables refer to the starting times of the tasks, their domains to the intervals of 
corresponding earliest and latest beginning times and the constraints to the set of 
preferences. Let the set of preferences be given by PR  = {PR1 ,..., PR7} with 
PR1 = (T3 , T4) , PR2 = (T2 , T3) , PR3 = (T4 , T3) , PR4 = (T7 , T5) , PR5 = (T5 , T2) , 
PR6 = (T5 , T6) , and PR7 = (T4 , T5) (see Figure 18.3.7). Notice that the basic 
schedule of Figure 18.3.6(b) realizes just two of the preferences.  

Analyzing conflicts we start with the detection of logical conflicts. From the 
cycles of the graph in Figure 18.3.7 we get the logically conflicting sets LC1 = 
{PR1 , PR3} and LC2 = {PR1 ,  PR2 ,  PR5 , PR7}.  

T4

T1 T2

T3T8

T7

T6 T5

PR3

PR4
PR1

PR2

PR7

PR8

PR6
PR5

PR9

PR10

 
Figure 18.3.7 G = (T , PR ) representing preferences in Example 18.3.4. 

Task sequence Time conflicting set of preferences 

(T4 , T3) TC1 = {PR3} 

(T2 , T3 , T4) TC2 = {PR1 , PR2} 

(T7 , T5 , T6) TC3 = {PR4 , PR6} 

(T2 , T3 , T4, T5) TC4 = {PR1 , PR2 , PR7}  

(T3 , T4 , T5, T2) TC5 = {PR1 , PR5 , PR7} 

(T4 , T5 , T2, T3) TC6 = {PR2 , PR5 , PR7}  

(T5, T2 , T3 , T4) TC7 = {PR1 , PR2 , PR5} 

Table 18.3.2 Subsets of preferences being in time conflict. 
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For the analysis of time constraints we start with task sequences of length 2. We 
see that there is only one such conflict, TC1 . Next, task sequences of length 
greater than 2 are checked. Table 18.3.2 summarizes non-feasible task sequences 
and their corresponding time conflicting subsets of preferences.  

So far we found 2 logically conflicting sets and 7 time conflicting sets of prefer-
ences. In order to get the reduced hypergraph, all sets that already contain a con-
flicting set must be eliminated. Hence there remain 5 conflicting sets of prefer-
ences, {PR3}  {PR1 , PR2}, {PR4 , PR6}, {PR1 , PR5 , PR7} and {PR2 , PR5 , PR7}. 
The corresponing hypergraph is sketched in Figure 18.3.8.  

PR1 PR3PR2

PR7

PR4 PR5 PR6

 
Figure 18.3.8 Gc = (PR, E) representing logical and time conflicts of Example 

18.3.4. 

We did, however, not consider the resource constraints so far. To detect resource 
conflicts we had to find all combinations of tasks which cannot be scheduled 
simultaneously because of resource conflicts. Since in general the number of 
these sets increases exponentially with the number of tasks, we follow another 
strategy: First create a schedule without considering resource conflicts, then 
check for resource conflicts and introduce additional precedence constraints be-
tween tasks being in resource conflict. In this manner we proceed until a feasible 
solution is found. 

t0 5 10 121 2 7 8 9

T 5 T 6T 2

T 1 T 4T 3 T 7 T 8

 
Figure 18.3.9 Schedule for Example 18.3.4 without considering resource con-

flicts. 

To construct a first schedule, we aim to find a set of non-conflicting preferences 
of maximum cardinality, i.e. a maximum set that does not contain any of the hy-



 18.3  IPS: An Intelligent Production Scheduling System 745 

 

peredges of the above hypergraph. For complexity reasons we content ourselves 
with an approximate solution and apply algorithm frame. Heuristics GAMMA-
increasing, for example, selects the subset {PR1 , PR5 , PR6}  and we result in the 
schedule presented in Figure 18.3.9. Remember that we assumed for simplicity 
reasons that all preferences are equally weighted.  

The schedule of Figure 18.3.9 shows two resource conflicts, for T2 , T4 and 
for T6 , T8 . Hence T2 and T4 (and analogously T6 and T8) cannot be processed 
simultaneously, and we have to choose an order for these tasks. This way we end 
up with two additional hard constraints in the precedence graph shown in figure 
18.3.10(a). Continuing the analysis of constraints we result in a schedule that 
realizes the preferences PR5  and PR6 (Figure 18.3.10(b)).   

(a)

 

T6

T8

T7

T4

T2

T5

T3

T1

(2;0,0)

(3;2,5)

(4;1,8)

(3;2,7)

(2;4,5)

(2;6,11)

(4;7,9)

(1;8,12)

 

(b)

 

T1 T3 T6T7 T8

t0 5

T2T4

1 2 4 6 8 9 13

T5

 
Figure 18.3.10 Final schedule for Example 18.3.4 : 
 (a) precedence graph of Figure 18.3.6(a) with additional hard 

constraints (T4, T2) and (T8, T6), 
 (b) a corresponding schedule. 

We can now summarize our approach by the following algorithm: 

Algorithm 18.3.5  for interactive scheduling. 
begin 
Initialize 'Basic Schedule'; 

Collect preferences; 
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Detect conflicts; 
while conflicts exist do Apply frame; 
Generate final schedule; 
end; 

Reactive Scheduling 

Now assume that the predictive schedule has been implemented and some un-
foreseen disturbance occurs. In this case within the ACE loop (compare Figure 
18.3.1) reactive scheduling is concerned with revising predictive schedules as 
unexpected events force changes. Now we want to present some ideas how to 
interactively model parts of the reactive scheduling process using fuzzy logic. 
The idea is to apply this approach for monitoring and diagnosing purposes only. 
Based on the corresponding observations detailed reactive scheduling actions can 
be taken by the decision maker [Sch94]. 

An algorithmic reaction on the reactive level of problem solving based on 
sophisticated combinatorial considerations is generally not possible because of 
prohibitive computing times; therefore, the competence of human problem solv-
ers in reaching quality, real-time decisions is extremely important. The human 
problem solver should be supported by advanced modeling techniques. In order 
to achieve this we suggest the application of fuzzy logic because it allows to rep-
resent the vague, qualitative view of the human scheduler most conveniently. The 
underlying theory of fuzzy sets [Zad65] concentrates on modeling vagueness due 
to common sense interpretation, data aggregation and vague relations. Examples 
for common sense interpretation in terms of a human production scheduler are 
e.g. 'long queues of jobs' or 'high machine processing speed'. Data aggregation is 
used in expressions like 'skilled worker' or 'difficult situation' and vague relations 
are represented by terms like 'not much more urgent than' or 'rather equal'. 

Reactive scheduling requires suitable diagnostic support for quick decision 
making. This is intended with our approach modeling reactive scheduling by 
fuzzy logic. The two main components of the model we use are (1) linguistic 
variables [Zad73] and (2) fuzzy rules or better decision tables [Kan86]. A lin-
guistic variable L can be represented by the tuple L = (X, U, f) where set X repre-
sents the feasible values of L, set U represents the domain of L, and f is the mem-
bership function of L which assigns to each element x � X a fuzzy set 
A(x)={u, fx(u)} where fx(u) � [0, 1].  

A decision table (DT) consists of a set of conditions (if-part) and a set of ac-
tions (then-part). In case of multi conditions or multi actions conditions or ac-
tions respectively have to be connected by operators. If all conditions have only 
one precise value we speak of deterministic DT. In case we use fuzzy variables 
for representing conditions or actions we also can build non-deterministic DT. 
These tables are very much alike of how humans think. In order to represent the 
interaction of linguistic variables in DT we have to introduce set-theoretic opera-
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tions to find the resulting membership function. The most common operations 
are union, intersection and complement. In case of an union we have fC(u) = 
max{fA(u), fB(u)}, in case of an intersection fD(u) = min{fA(u), fB(u)}, and in case 
of the complement A° of A we have fA°(u) = 1 � fA(u). To understand the approach 
of modeling reactive scheduling by fuzzy logic better consider the following sce-
nario. 

There are queues of jobs in front of machines on the shop floor. For each job 
Jj the number of jobs Nj waiting ahead in the queue, its due date dj and its slack 
time sj = dj � t are known where t is the current time. Processing times of the jobs 
are subject to disturbances. Due date and machine assignment of the jobs are 
determined by predictive scheduling. The objective is to diagnose critical jobs, 
i.e. jobs which are about to miss their due dates in order to reschedule them. Nj 
and sj are the linguistic input variables and "becomes critical" is the output varia-
ble of the DT. Membership functions for the individual values of the variables 
are determined by a knowledge acquisition procedure which will not be de-
scribed here. The following DT shown in Table 18.3.3 represents the fuzzy rule 
system. 

AND Small Medium Great 
Few soon later not to see 

Some now later not to see 
Many now soon not to see 
Very now soon later 

Table 18.3.3 Decision table for fuzzy rule system. 

The rows represent the values of the variable Nj and the columns represent the 
values of the variable sj. Both variables are connected by an AND-operator in any 
rule. With the above Table 18.3.3 twelve rules are represented. Each element of 
the table gives one value of the output variable "becomes critical" depending on 
the rule. To find these results the membership functions of the input variables are 
merged by intersection operations to a new membership function describing the 
output variable of each rule. The resulting fuzzy sets of all rules are then com-
bined by operations which are applied for the union of sets. This procedure was 
tested to be most favorable from an empirical point of view. 

As a result the decision maker on the shop floor gets the information which 
jobs have to be rescheduled now, soon, later, or probably not at all. From this 
two possibilities arise; either a complete new predictive schedule has to be gen-
erated or local ad-hoc decisions can be taken on the reactive scheduling level. 
Control decisions based on this fuzzy modeling approach and their consequences 
should be recorded and evaluated, for the purpose of using these past decisions to 
find better solutions to current problems. Fuzzy case-based reasoning systems, 
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which should be able to achieve the quality of a self-learning system, could make 
a significant contribution along these lines. 

We have implemented our approach of modeling reactive scheduling by 
fuzzy logic as a demonstration prototype. Two screens serve as the user interface. 
On the first screen the jobs waiting in a machine queue and the slack time of the 
job under investigation are shown. An example problem is shown in Figure 
18.3.11. 

0 120 240 360 [Min]

few some many very small medium great

 
Figure 18.3.11 Interface of fuzzy scheduler. 

There are ten jobs waiting in a queue to be processed by some machine Pi, the 
job under consideration Jj is shown by a white rectangle. Above the queue the 
different fuzzy sets concerning the linguistic variable Nj and the values of the 
corresponding membership functions are represented. The slack time sj of job Jj 
is currently 130 minutes; again fuzzy sets and membership functions of this lin-
guistic variable are represented above the scale. 

Applying the rules of the DT results in a representation which is shown in 
Figure 18.3.12. The result of the first part of inference shows that for job Jj the 
output variable "becomes critical" is related to some positive values for "soon" 
and for "later" shown by white segments. From this it is concluded by the second 
part of inference that this job has to be checked again before it is about to be re-
scheduled. 

soon now

not to seelater
 

Figure 18.3.12 Result of inference. 
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18.3.2 Knowledge-based Scheduling 

Expert Systems are special kinds of knowledge-based systems. Expert systems 
are designed to support problem modeling and solving with the intention to 
simulate the capabilities of domain experts, e.g. problem understanding, problem 
solving, explaining the solution, knowledge acquisition, and knowledge restruc-
turing. Most expert systems use two types of knowledge: descriptive knowledge 
or facts, and procedural knowledge or knowledge about the semantics behind 
facts. The architecture of expert systems is mainly based on a closed loop solu-
tion approach. This consists of the four components storing knowledge, 
knowledge acquisition, explanation of results, and problem solution. In the fol-
lowing we will concentrate on such a closed loop problem solution processes. 
There is an important difference between expert systems and conventional prob-
lem solving systems. In most expert systems the model of the problem descrip-
tion and basic elements of problem solving are stored in a knowledge base. The 
complete solution process is carried out by some inference module interacting 
with the knowledge base. Conventional systems do not have this kind of separat-
ed structure; they are rather a mixture of both parts in one program. 

In order to implement an expert system one needs three types of models: a 
model of the domain, a model of the elementary steps to be taken, and a model of 
inference that defines the sequence of elementary steps in the process of problem 
solution. The domain is represented using descriptive knowledge about objects, 
their attributes and their relations as introduced in Section 18.2. In production 
scheduling for example, objects are machines, jobs, tasks or tools, attributes are 
machine states, job and task characteristics or tool setup times, and relations 
could be the subsumption of machines to machine types or tasks to jobs. The 
model of elementary steps uses production rules or other representations of pro-
cedural knowledge. For if-then rules there exists a unique input-output descrip-
tion. The model of inference uses combinations or sets of elementary steps to 
represent the solution process where a given start state is transformed to a desired 
goal state. This latter type of knowledge can also be knowledge of domain ex-
perts or domain independent knowledge. The goal of the expert system approach 
is mainly to improve the modeling part of the solution process to get closer to 
reality. 

To give a better understanding of this view we refer to an example given by 
Kanet and Adelsberger [KA87]: "... consider a simple scheduling situation in 
which there is a single machine to process jobs that arrive at different points in 
time within the planning period. The objective might be to find a schedule which 
minimizes mean tardiness. An algorithmic approach might entertain simplifying 
the formulation by first assuming all jobs to be immediately available for pro-
cessing. This simplified problem would then be solved and perhaps some heuris-
tic used to alter the solution so that the original assumption of dynamic arrivals is 
back in tack. The approach looks at reformulation as a means to 'divide et im-
pera'. On the other hand a reformulative approach may ... seek to find a 'richer' 
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problem formulation. For example the question might be asked 'is working over-
time a viable alternative?', or 'does there exist another machine that can accom-
plish this task?', or 'is there a subset of orders that are less critical than others?', 
and so on." 

On the other hand systems for production scheduling should not only repli-
cate the expert's schedule but extend the capabilities by doing more problem 
solving. In order to achieve this AI systems separate the scheduling model from a 
general solution procedure. In [Fox90] the shop floor scheduling model de-
scribed uses terms from AI. It is considered to be time based planning where 
tasks or jobs must be selected, sequenced, and assigned to resources and time 
intervals for execution. Another view is that of a multi agent planning problem, 
where each task or job represents a separate agent for which a schedule is to be 
created; the agents are uncooperative, i.e. each is attempting to maximize its own 
goals. It is also claimed that expert systems appear inappropriate for the purpose 
of problem solution especially for two reasons: (1) problems like production 
scheduling tend to be so complex that they are beyond the cognitive capabilities 
of the human scheduler, and (2) even if the problem is relatively easy, factory 
environments change often enough so that any expertise built up over time be-
comes obsolete very quickly. 

We believe that it is nevertheless possible to apply an expert system ap-
proach for the solution of production scheduling problems but with a different 
perspective on problem solving. Though, as already stated, expert systems are not 
appropriate for solving combinatorial search problems, they are quite reasonable 
for the analysis of models and their solutions. In this way expert systems can be 
used for building or selecting models for scheduling problems. An appropriate 
solution procedure can be selected for the model, and then the expert system can 
again support the evaluation of the solution.  

The scheduling systems reviewed next are not expert systems in their purest 
sense and thus we will use the more general term knowledge-based system. ISIS 
[SFO86, Fox87, FS84], OPIS [SPP+90] and CORTES [FS90] are a family of 
systems with the goal of modeling knowledge of the manufacturing environment 
using mainly constraints to support constraint guided search; knowledge about 
constraints is used in the attempt to decrease the underlying search space. The 
systems are designed for both, predictive and reactive scheduling. 

ISIS-1 uses pure constraint guided search, but was not very successful in 
solving practical scheduling problems. ISIS-2 uses a more sophisticated search 
technique. Search is divided into the four phases job selection, time analysis, 
resource analysis, and resource assignment. Each phase consists in turn of the 
three sub-phases pre-search analysis (model construction), search (construction 
of the solution), and post-search analysis (evaluation of the solution). In the job 
selection phase a priority rule is applied to select the next job from the given set 
of available jobs. This job is passed to the second phase. Here earliest start and 
latest finish times for each task of the job are calculated without taking the re-
source requirements into account. In phases three and four the assignment of re-
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sources and the calculation of the final start and finish times of all tasks of the 
job under consideration is carried out. The search is organized by some beam 
search method. Each solution is evaluated within a rule-based post-search analy-
sis. ISIS-3 tries to schedule each job using more information from the shop floor, 
especially about bottleneck-resources. With this information the job-centered 
scheduling approach as it is realized in ISIS-2 was complemented by a resource-
centered scheduler. 

As the architecture of ISIS is inflexible as far as modifications of given 
schedules are concerned, a new scheduling system called OPIS-1 was developed. 
It uses a blackboard approach for the communication of the two knowledge 
sources analysis and decision. These use the blackboard as shared memory to 
post messages, partial results and any further information needed for the problem 
solution. The blackboard is the exclusive medium of communication. Within 
OPIS-1 the "analyzer" constructs a rough schedule using some balancing heuris-
tic and then determines the bottlenecks. Decision is then taken by the resource 
and the job scheduler already implemented in ISIS-3. Search is centrally con-
trolled. OPIS-1 is also capable to deal with reactive scheduling problems, be-
cause all events can be communicated through the blackboard. In OPIS-2 this 
event management is supported by two additional knowledge sources which are a 
"right shifter" and a "demand swapper". The first one is responsible for pushing 
jobs forward in the schedule, and the second for exchanging jobs. Within the 
OPIS systems it seems that the most difficult operation is to decide which 
knowledge source has to be activated.  

The third system of the family we want to introduce briefly is CORTES. 
Whereas the ISIS systems are primarily job-based and OPIS switches between 
job-based and resource-based considerations, CORTES takes a task-oriented 
point of view, which provides more flexibility at the cost of greater search effort. 
Within a five step heuristic procedure a task is assigned to some resource over 
some time interval. 

Knowledge-based systems using an expert system approach should concen-
trate on finding good models for the problem domain and the description of ele-
mentary steps to be taken during the solution process. The solution process itself 
may be implemented by a different approach. One example for model develop-
ment considering knowledge about the domain and elementary steps to be taken 
can be found in [SS90]. Here a reactive scheduling problem is solved along the 
same line as OPIS works using the following problem categorization: (1) ma-
chine breakdown, (2) rush jobs, (3) new batch of jobs, (4) material shortage, (5) 
labor absenteeism, (6) job completion at a machine, and (7) change in shift. 
Knowledge is modularized into independent knowledge sources, each of them 
designed to solve a specific problem. If a new event occurs it is passed to some 
meta-analyzer and then to the appropriate knowledge source to give a solution to 
the analyzed scheduling problem. For instance, the shortage of some specific raw 
material may result in the requirement of rearranging the jobs assigned to a par-
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ticular machine. This could be achieved by using the human scheduler's heuristic 
or by an appropriate algorithm to determine some action to be taken. 

As a representative for many other knowledge-based scheduling systems - 
see [Ata91] for a survey - we want to describe SONIA which integrates both pre-
dictive and reactive scheduling on the basis of hard and soft constraints [CPP88]. 
The scheduling system is designed to detect and react to inconsistencies (con-
flicts) between a predictive schedule and the actual events on the shop floor. 
SONIA consists of two analyzing components, a capacity analyzer and an ana-
lyzer of conflicts, and further more a predictive and a reactive component, each 
containing a set of heuristics, and a component for managing schedule descrip-
tions. 

For representing a schedule in SONIA the resources needed for processing 
jobs are described at various levels of detail. Individual resources like machines 
are elements of resource groups called work areas. Resource reservation con-
straints are associated with resources. To give an example for such a constraint, 
(res; t1, t2, n; list-of-motives) means that n resources from resource group res are 
not available during the time interval (t1, t2) for the reasons given in the list-of-
motives. 

Each job is characterized by a ready time, a due date, precedence constraints, 
and by a set of tasks, each having resource requirements. To describe the pro-
gress of work the notions of an actual status and a schedule status are introduced. 
The actual status is of either kind "completed", "in-process", "not started", and 
the schedule status can be "scheduled", "selected" or (deliberately) "ignored". 
There may also be temporal constraints for tasks. For example, such a constraint 
can be described by the expression (time � t1t2 , k) where t1 and t2 are points in 
time which respectively correspond to the start and the finish time of processing 
a task, and k represents the number of time units; if there have to be at least t 
time units between processing of tasks Tj and Tj+1 , the corresponding expression 
would be (time � (end Tj)(start Tj+1), t). To represent actual time values, the 
origin of time and the current time have to be known. 

SONIA uses constraint propagation which enables the detection of incon-
sistencies or conflicts between predictive decisions and events happening on the 
shop floor. Let us assume that as a result of the predictive schedule it is known 
that task Tj could precede task Tj+1 while the actual situation in the workshop is 
such that Tj is in schedule status "ignored" and Tj+1 is in actual status "in pro-
cess". From this we get an inconsistency between these temporal constraints de-
scribing the predictive schedule and the ones which come from the actual situa-
tion. The detection of conflicts through constraint propagation is carried out us-
ing propagation axioms which indicate how constraints and logic expressions can 
be combined and new constraints or conflicts can be derived. The axioms are 
utilized by an interpreter. 

SONIA distinguishes between the three major kinds of conflicts: delays, ca-
pacity conflicts and breakdowns. The class of delays contains all conflicts which 
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result from unexpected delays. There are four subclasses to be considered, "Task 
Delay" if the expected finish time of a task cannot be respected, "Due-Date De-
lay" if the due date of a manufacturing job cannot be met, "Interruption Delay" if 
some task cannot be performed in a work shift determined by the predictive 
schedule, and "Global Tardiness Conflict" if it is not possible to process all of the 
selected tasks by the end of the current shift. The class of capacity conflicts refers 
to all conflicts that come from reservation constraints. There are three subclasses 
to be considered. If reservations for tasks have to be cancelled because of break-
downs we speak of "Breakdown Capacity Conflicts". In case a resource is as-
signed to a task during a work shift where this resource is not available, an "Out-
Of-Shift Conflict" occurs. A capacity conflict is an "Overload" if the number of 
tasks assigned to a resource during a given interval of time is greater than the 
available capacity. The third class consists of breakdowns which contains all 
subclasses from delays and capacity conflicts caused only by machine break-
downs. In the following we give a short overview of the main components of the 
SONIA system and its control architecture.  

(i) Predictive Components The predictive components are responsible for gener-
ating an off-line schedule and consist of a selection and an ordering component. 
First a set of tasks is selected and resources are assigned to them. The selection 
depends on other already selected tasks, shop status, open work shifts and jobs to 
be completed. Whenever a task is selected its schedule status is "selected" and 
the resulting constraints are created by the schedule management system. The 
ordering component then uses an iterative constraint satisfaction process utilizing 
heuristic rules. If conflicts arise during schedule generation, backtracking is car-
ried out, i.e. actions coming from certain rules are withdrawn. If no feasible 
schedule can be found for all the selected tasks a choice is made for the tasks that 
have to be rejected. Their schedule status is set to "ignored" and the correspond-
ing constraints are deleted.  

(ii) Reactive Components. For reactive scheduling three approaches to resolve 
conflicts between the predictive schedule and the current situation on the shop 
floor are possible: Predictive components can generate a complete new schedule, 
the current schedule is modified globally forward from the current date, or local 
changes are made. The first approach is the case of predictive scheduling which 
already been described above. The easiest reaction to modify the current schedule 
is to reject tasks, setting their scheduling status to "ignored" and deleting all re-
lated constraints. Of course, the rejected task should be that one causing the con-
flicts. If several rejections are possible the problem gets far more difficult and 
applicable strategies have still to be developed. Re-scheduling forward from the 
current date is the third possibility of reaction considered here. In this case very 
often due dates or ends of work shifts have to be modified. An easy reaction 
would simply by a right shift of all tasks without modifying their ordering and 
the resource assignments. In a more sophisticated approach some heuristics are 
applied to change the order of tasks.  
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(iii) Analysis Components. The purpose of the analyzers is to determine which of 
the available predictive and reactive components should be applied for schedule 
generation and how they should be used. Currently, there are two analysis com-
ponents implemented, a capacity analyzer and a conflict analyzer. The capacity 
analyzer has to detect bottleneck and under-loaded resources. These detections 
lead to the application of scheduling heuristics, e.g. of the kind that the most crit-
ical resources have to be scheduled first; in the same sense, under-loaded re-
sources lead to the selection of additional tasks which can exploit the resources. 
The conflict analyzer chooses those available reactive components which are 
most efficient in terms of conflict resolution. 

(iv) Control Architecture. Problem solving and evaluating knowledge have to be 
integrated and adjusted to the problem solving context. A blackboard architecture 
is used for these purposes. Each component can be considered as an independent 
knowledge source which offers its services as soon as predetermined conditions 
are satisfied. The blackboard architecture makes it possible to have a flexible 
system when new strategies and new components have to be added and integrat-
ed. The domain blackboard contains capacity of the resources determined by the 
capacity analyzer, conflicts which are updated by the schedule management, and 
results given by predictive and reactive components. The control blackboard con-
tains the scheduling problem, the sub-problems to be solved, strategies like heu-
ristic rules or meta-rules, an agenda where all the pending actions are listed, poli-
cies to choose the next pending action and a survey of actions which are currently 
processed. 

SONIA is a knowledge-based scheduling system which relies on constraint satis-
faction where the constraints come from the problem description and are then 
further propagated. It has a very flexible architecture, generates predictive and 
reactive schedules and integrates both solution approaches. A deficiency is that 
nothing can be said from an ex-ante point of view about the quality of the solu-
tions generated by the conflict resolution techniques. Unfortunately also a 
judgement from an ex-post point of view is not possible because there is no em-
pirical data available up to now which gives reference to some quality measure of 
the schedule. Also nothing is known about computing times. As far as we know, 
this lack of evaluation holds for many knowledge-based scheduling systems de-
veloped until today. 

18.3.3 Integrated Problem Solving 

In this last section we first want to give an example to demonstrate the approach 
of integrating algorithms and knowledge within an interactive approach for OFP 
and ONC relying on the ACE loop. For clarity purposes, the example is very 
simple. Let us assume, we have to operate a flexible manufacturing cell that con-
sists of identically tooled machines all processing with the same speed. These 



 18.3  IPS: An Intelligent Production Scheduling System 755 

 

kinds of cells are also called pools of machines. From the production planning 
system we know the set of jobs that have to be processed during the next period 
of time e.g. in the next shift. As we have identical machines we will now speak 
of tasks instead of jobs which have to be processed. The business need is that all 
tasks have to be finished at the end of the next eight hour shift. With this the 
problem is roughly stated. 

Using further expert knowledge from scheduling theory for the analysis of 
the problem we get some insights using the following knowledge sources (see 
Chapter 5 for details): 

(1) The schedule length is influenced mainly by the sequence the tasks enter 
the system, by the decision to which machine an entering task is assigned next, 
and by the position an assigned task is then given in the corresponding machine 
queue. 

(2) As all machines are identically tooled each task can be processed by all 
machines and with this also preemption of tasks between machines might be pos-
sible. 

(3) The business need of processing all tasks within the next eight hour shift 
can be translated in some objective which says that we want to minimize sched-
ule length or makespan. 

(4) It is well known that for identical machines, independent tasks and the 
objective of minimizing makespan, schedules with preemptions of tasks exist 
which are never worse than schedules where task preemption is not allowed. 

From the above knowledge sources (1)-(4) we conclude within the problem 
analysis phase to choose McNaughton's rule [McN59] to construct a first basic 
schedule. From an evaluation of the generated schedule it turns out that all tasks 
could be processed within the next shift. Another observation is that there is still 
enough idle time to process additional tasks in the same shift. To evaluate the 
dynamics of the above manufacturing environment we simulate the schedule 
taking also transportation times of the preempted tasks to the different machines 
into account. From the results of simulation runs we now get a better understand-
ing of the problem. It turns out that considering transportation of tasks the sched-
ule constructed by McNaughton's rule is not feasible, i.e. in conflict according to 
the restriction to finish all tasks within the coming shift. The transport times 
which were neglected during static schedule generation have a major impact on 
the schedule length. 

From this we must analyze the problem again and with the results from the 
evaluation process we derive the fact that the implemented schedule should not 
have machine change-overs of any task, to avoid transport times between ma-
chines. 

Based on this new constraint and further knowledge from scheduling theory 
we decide now to use the longest processing time heuristic to schedule all tasks. 
It is shown in Chapter 5 that LPT gives good performance guarantees concerning 
schedule length and problem settings with identical machines. Transport times 
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between machines do not have to be considered any more as each task is only 
assigned to one machine. Let us assume the evaluation of the LPT-schedule is 
satisfactory. 

Now, we use earliest start and latest finish times for each task as constraints 
for ONC. These time intervals can be determined using the generated OFP-
schedule. Moreover we translate the LPT rule into a more operational scheduling 
rule which says: release all the tasks in a non-increasing order of processing 
times to the flexible manufacturing cell and always assign a task to the queue of a 
machine which has least actual total work to process. The machine itself selects 
tasks from its own queue according to a first-come-first-served (FCFS) strategy. 

As long as the flexible manufacturing cell has no disturbances ONC can 
stick to the given translation of the LPT-strategy. Now, assume a machine breaks 
down and that the tasks waiting in the queue have to be assigned to queues of the 
remaining machines. Let us further assume that under the new constraints not all 
the tasks can be finished in the current shift. From this a new objective occurs for 
reactive scheduling which says that as many tasks as possible should be finished. 
Now, FCFS would not be the appropriate scheduling strategy any longer; a suita-
ble ad-hoc decision for local repair of the schedule has to be made. Finding this 
decision on the ONC-level means again to apply some problem analysis also in 
the sense of diagnosis and therapy, i.e. also ad-hoc decisions follow some analy-
sis-construction sequence. If there is enough time available also some simulation 
runs could be applied, but in general this is not possible. To show a way how the 
problem can be resolved similar rules as these from Table 18.3.4 could be used.  

For the changed situation, the shortest processing time (SPT) rule would 
now be applied. The SPT rule is proposed due to the expectation that this rule 
helps to finish as many tasks as possible within the current shift. In case of fur-
ther disturbances that cause major deviations from the current system status, OFP 
has to be reactivated for a global repair of the schedule. 

At the end of this section we want to discuss shortly the relationship of our 
approach to solve production scheduling problems and the requirements of inte-
grated problem solving within computer integrated manufacturing. The IPS has 
to be connected to existing information systems of an enterprise. It has interfaces 
to the production planning systems on a tactical level of decision making and the 
real-time oriented CAM-systems. It represents this part of the production sched-
uling system which carries out the feedback loop between planning and execu-
tion. The vertical decision flow is supplemented by a horizontal information flow 
from CAE and CAQ. The position of the IPS within CIM is shown in Figure 
18.3.13. 

We gave a short introduction to an IPS which uses an interactive scheduling 
approach based on the ACE loop. Analysis and evaluation are carried out mainly 
by the decision maker, construction is mainly supported by the system. To that 
end a number of models and methods for analysis and construction have been 
devised, from which an appropriate selection should be possible. The modular 
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and open architecture of the system offers the possibility of a step by step imple-
mentation which can be continuously adapted to changing requirements. 

/* Goal rule

Rule 0100

IF         Machine.Sequence = known
THEN  Machine.Schedule = completed
END

/* Determine the scheduling strategy

/* SPT-rule to reduce system overload

Rule 1000

IF         Machine.Status = overloaded
AND    Queue.Orders = not_late
AND    System.Status = overloaded
THEN  Machine.Sequence = 
             proc(SPT_Processing, Machine.Duration)

/* FCFS-default strategy

Rule 1500 SELFREF

IF         Machine.Sequence = notknown
THEN  Machine.Sequence = 
             proc(FCFS_Processing, Machine.Arrival)
END

/* Determine the status of the machine

Rule 2000

IF        Machine.Backlog > 40
THEN  Machine.Status = overloaded
END

/* Determine the status of the queue

Rule 3000

IF         Queue.Minbuffer > 20
THEN  Queue.Jobs = not_late
END

/* Determine the status of the system

Rule 4000

IF         System.Jobs > 30
AND    Machine.Number_overloaded > 4
THEN  System.Status = overloaded
END

 
Table 18.3.4 Example problem for reactive scheduling. 

PPS CAE

CAM CAQ

ONC

IPS

OFP

 
Figure 18.3.13 IPS within CIM. 
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A further application of the system lies in a distributed production scheduling 
environment. The considered manufacturing system has to be modeled and ap-
propriately decomposed into subsystems. For the manufacturing system and each 
of its subsystems corresponding IPS apply, which are implemented on different 
computers connected by an appropriate communication network. The IPS on the 
top level of the production system serves as a coordinator of the subsystem IPS. 
Each IPS on the subsystem level works independently fulfilling the requirements 
from the master level and communicating also with the other IPS on this level. 
Only if major decisions which requires central coordination the master IPS is 
also involved. 
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