
16 Constraint Programming and 
Disjunctive Scheduling 

Constraint propagation is an elementary method for reducing the search space of 
combinatorial search and optimization problems which has become more and 
more important in the last decades. The basic idea of constraint propagation is to 
detect and remove inconsistent variable assignments that cannot participate in 
any feasible solution through the repeated analysis and evaluation of the varia-
bles, domains and constraints describing a specific problem instance. 

 This chapter is based on Dorndorf et al. [DPP00] and its contribution is 
twofold. The first contribution is a description of efficient constraint propagation 
methods also known as consistency tests for the disjunctive scheduling problem 
(DSP) which is a generalization of the classical job shop scheduling problem 
(JSP). By applying an elementary constraint based approach involving a limited 
number of search variables, we will derive consistency tests that ensure 3-b-
consistency. We will further present and analyze both new and classical con-
sistency tests which to some extent are generalizations of the aforementioned 
consistency tests involving a higher number of variables, but still can be imple-
mented efficiently with a polynomial time complexity. Further, the concepts of 
energetic reasoning and shaving are analyzed and discussed. 

The other contribution is a classification of the consistency tests derived ac-
cording to the domain reduction achieved. The particular strength of using con-
sistency tests is based on their repeated application, so that the knowledge de-
rived is propagated, i.e. reused for acquiring additional knowledge. The deduc-
tion of this knowledge can be described as the computation of a fixed point. 
Since this fixed point depends upon the order of the application of the tests, we 
first derive a necessary condition for its uniqueness. We then develop a concept 
of dominance which enables the comparison of different consistency tests as well 
as a simple method for proving dominance. An extensive comparison of all con-
sistency tests is given. Quite surprisingly, we will find out that some apparently 
stronger consistency tests are subsumed by apparently weaker ones. At the same 
time an open question regarding the effectiveness of energetic reasoning is an-
swered.  

16.1 Introduction 

Exact solution methods for solving combinatorial search and optimizations prob-
lems generally consist of two components: (a) a search strategy which organizes 
the enumeration of all potential solutions and (b) a search space reduction strate-
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gy which diminishes the number of potential solutions. However, due to the ex-
ponentially growing size of the search space, even an intelligent organization of 
the search will eventually fail, so that only the application of efficient search 
space reduction mechanisms will allow the solution of more difficult problems. 
Consequently, as an elementary method of search space reduction, constraint 
propagation has become more and more important in the last decades. Constraint 
propagation has its origins in the popular field of constraint programming which 
models combinatorial search problems as special instances of the constraint sat-
isfaction problem (CSP) . The basic idea of constraint propagation is to evaluate 
implicit constraints through the repeated analysis of the variables, domains and 
constraints that describe a specific problem instance. This analysis makes it pos-
sible to detect and remove inconsistent variable assignments that cannot partici-
pate in any solution by a merely partial problem analysis. 

One of our main objectives is to present and derive efficient constraint prop-
agation techniques also known as consistency tests for the disjunctive scheduling 
problem (DSP)  which is a generalization of the classical job shop scheduling 
problem (JSP). The DSP constitutes a perfect object of study due to the trade-off 
between its computational complexity and its simple description. On the one 
hand, within the class of NP-hard problems the DSP has been termed to be one 
of the most intractable problems. This view is best supported by the notorious 
10 × 10 problem instance of the JSP introduced by Muth and Thompson [MT63] 
which resisted any solution attempts for several decades and was only solved 
more than 25 years later by Carlier and Pinson [CP89]. On the other hand, the 
disjunctive model introduced by Roy and Sussman [RS64] provides an illustra-
tive and simple representation of the DSP which is only based on two types of 
constraints which in scheduling are known as precedence and disjunctive con-
straints. 

An elementary analysis of the DSP involving a limited number of search 
variables derives the consistency tests that ensure 3-b-consistency. These con-
sistency tests can be generalized and, although their application does not estab-
lish a higher level of consistency, they enable powerful domain reductions in 
polynomial time. Notice, that establishing n-consistency for any n is NP-hard, 
thus the existence of a polynomial algorithm is not very probable. Furthermore 
the concepts of energetic reasoning and shaving are presented. 

The other objective of this chapter is a classification of the consistency tests 
derived according to the domain reduction achieved. A new dominance criterion 
that allows a comparison of consistency tests in the aforementioned sense and 
simple methods for proving dominance are presented. An extensive study of all 
consistency tests is given. Quite surprisingly, comparing the extent of the search 
space reduction induced, we will find out that some apparently stronger con-
sistency tests are subsumed by apparently weaker ones. 

The remainder of this chapter is organized as follows. Section 16.2 introduc-
es the CSP. Several concepts of consistency are proposed which may serve as a 
theoretical basis for constraint propagation techniques. We define consistency 
tests and present the aforementioned dominance criterion for comparing them. 
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Section 16.3 describes the DSP and examines its relation to the CSP. Section 
16.4 extensively describes constraint propagation techniques for the DSP. Notice 
that although we focus on the basic DSP, the results of this work also apply in an 
unchanged manner to some important extensions of the DSP, for instance, the 
DSP with release times and due dates. Section 16.5 finally summarizes the re-
sults. 

16.2 Constraint Satisfaction 

Search and optimization problems such as the disjunctive scheduling problem 
are generally modelled as special subclasses of the constraint satisfaction prob-
lem (CSP) or the constraint optimization problem (COP) . We will give a short 
introduction to these problem classes in subsection 16.2.1. In subsection 16.2.2 
we will then describe constraint propagation methods and different concepts of 
consistency. 

16.2.1 The Constraint Satisfaction and Optimization Problem 

The CSP can be roughly described as follows: ''Given a domain specification, 
find a solution x, such that x is a member of a set of possible solutions and it sat-
isfies the problem conditions'' [Ama70]. The COP additionally requires that the 
solution found optimizes some objective function. 

The CSP was first formalized and studied by Huffman [Huf71], Clowes 
[Clo71] and Waltz [Wal75] in vision research for solving line-labelling prob-
lems. Haralick and Shapiro [HS79, HS80] and Mackworth [Mac92] discuss gen-
eral algorithms and applications of CSP solving. Van Hentenryck [Hen92] and 
Cohen [Coh90] tackle the CSP from a constraint logic programming viewpoint. 
Comprehensive overviews on the CSP are provided by Meseguer [Mes89] and 
Kumar [Kum92]. An exhaustive study of the theory of constraint satisfaction and 
optimization can be found in [Tsa93]. We will only present the necessary aspects 
and start with some basic definitions. 

The domain of a variable is the set of all values that can be assigned to the 
variable. We will assume in this section that domains are finite and later allow 
for infinite but discrete domains. The domain associated with the variable x is 
denoted by D (x). If V  = {x1 ,...,  xn} is a set of variables and DOM = { D (x1),
..., D (xn) }  the set of domains, then an assignment a = {a1 ,...,  an} is an element 
of the Cartesian product D (x1) ×...× D (xn) ; in other words, an assignment in-
stantiates each variable xi with a value ai � D (xi) from its domain. 

A constraint c on DOM is a function c : D (xi1) ×...× D (xik) � {true, false} , 
where V ' := {xi1 ,..., xik} is a non empty set of variables. The cardinality | V ' | is 
also called the arity of c. If | V ' | = 1 or | V ' | = 2 then we speak of unary and bina-
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ry constraints respectively. An assignment a = D (x1) ×...× D (xn)  satisfies c iff 
c(ai1 ,...,aik) = true.  

Definition 16.2.1   
An instance I of the constraint satisfaction problem (CSP) is defined by a tuple 
I = (V , DOM , CONS), where V is a finite set of variables, DOM the set of associ-
ated domains and CONS a finite set of constraints on DOM. An assignment a is 
feasible iff it satisfies all constraints in CONS. A feasible assignment is also 
called a solution of I. We denote with F (I ) the set of all feasible assignments 
(solutions) of I. 

Given an instance I of the CSP, the associated problem is to find a solution a � 
F (I ) or to prove that I has no solution.     

As distinguished from the constraint satisfaction problem, the constraint op-
timization problem searches for a solution which optimizes a given objective 
function. We will only consider the case of minimization, as maximization can 
be handled symmetrically. 

Definition 16.2.2   
An instance of the constraint optimization problem (COP) is defined by a tuple 
I  = (V , DOM , CONS, z), where (V , DOM , CONS) is an instance of the CSP and z 
an objective function z : D (x1) ×...× D (xn)  � IR .  Defining  

zmin(I ) :=  { min
b�F (I )

 z(b)  if F (I ) ≠ �, 

#  otherwise, 

an assignment a is called an optimal solution of I  iff a is feasible and z(a) =  
zmin(I ). 

Given an instance I  of the COP, the associated problem is to find an optimal 
solution of I  and to determine zmin(I ).  

It is not hard to see that the CSP and the COP are intractable and belong to 
the class of NP-hard problems (c.f. Section 2.2).  

An instance of the CSP can be represented by means of a graph (constraint 
graph) which visualizes the interdependencies between variables that are in-
duced by the constraints. If we restrict our attention to unary and binary con-
straints then the definition of a constraint graph G is quite straightforward. The 
vertex set of G corresponds to the set of all variables V, while the edge set is 
defined as follows: two vertices xi , xj � V,  i ≠ j, are connected by an undirected 
edge iff there exists a constraint c(xi , xj) � CONS. This can be generalized to 
constraints of arbitrary arity using the notion of hypergraphs [Tsa93].  Figure 
16.2.1 shows a typical CSP instance and the corresponding constraint graph. 
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16.2.2 Constraint Propagation 

From a certain point of view, the CSP and the COP are quite simple problems. 
Since we assumed that the domains of a CSP instance I  are finite which for most 
interesting problems is not a serious restriction, I can be solved by a simple gen-
erate-and-test algorithm that works as follows: enumerate all assignments 
a � D (x1) ×...× D (xn)  and verify whether a satisfies all constraints c � CONS; 
stop if the answer is "yes''. The COP can be solved by enumerating all feasible 
assignments and storing the one with minimal objective function value. 

Unfortunately, this method is not practicable due to the size of the search 
space which grows exponentially with the number of variables. In the worst case, 
all assignments of a CSP instance have to be tested which cannot be carried out 
efficiently except for problem instances too small to be of any practical value. 
Thus, it suggests itself to examine methods which reduce the search space prior 
to starting (or during) the search process. 

One such method of search space reduction which only makes use of simple 
inference mechanisms and does not rely on problem specific knowledge is 
known as constraint propagation. The origins of constraint propagation go back 
to Waltz [Wal72] who more than three decades ago developed a now well-
known filtering algorithm for labelling three-dimensional line diagrams. 

The basic idea of constraint propagation is to make implicit constraints more 
visible through the repeated analysis and evaluation of the variables, domains 
and constraints describing a specific problem instance. This makes it possible to 
detect and remove inconsistent variable assignments that cannot participate in 
any solution by a merely partial problem analysis. 

Two complexity related problems arise when performing constraint propaga-
tion. One problem depends upon the number of variables and constraints that are 
examined simultaneously, while the other problem is caused by the size of the 
domains. These problems are usually tackled by limiting the number of variables 
and constraints (local consistency with respect to all subsets of k variables) and 
the number of domain assignments (domain- or d-consistency, bound- or b-
consistency) that are considered in the examination. These different concepts 
will be discussed further below. We start with some simple examples, as this is 
the easiest way to introduce constraint propagation. 

Example 16.2.3  

Let I = (V , DOM , CONS) be the CSP instance shown in Figure 16.2.1. A simple 
analysis of the constraints (i) to (vi) allows us to reduce the domains of the varia-
bles x1 , x2 and x3 . We distinguish between the domains D (xi) and the reduced 
domains ,(xi). At the beginning, of course, ,(xi) = D (xi) for i � {1 , 2 , 3}. 
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V = {x1 , x2 , x3}, 
D(x1) = {1,...,10}, 
D(x2) = {1,...,10}, 
D(x3) = {1,...,10}, 
(i) 1 � x1 � 4, 
(ii) 1 � x2 � 4, 
(iii) 1 � x3 � 4, 
(iv) x1 + x2 = 4, 
(v) x1 + x3 = 5, 
(vi) x2 + x3 � 6. 

1

2 3

{1,...,10}

{1,...,10} {1,...,10} 

Figure 16.2.1   Example 16.2.3. 

1

2 3

{1 , 2 , 3 , 4}

{1 , 2 , 3 , 4} {1 , 2 , 3 , 4} 
Figure 16.2.2   Step 1. 

1

2 3

{1 , 2 , 3}

{1 , 2 , 3} {3 , 4} 
Figure 16.2.3   Steps 2, 3 and 4. 

1. The unary constraints (i) - (iii) yield the trivial but considerable reduction 
,(x1) := ,(x2) := ,(x3) := {1 , 2 , 3 , 4} (see Figure 16.2.2). 

2. We next examine pairs of variables. Let us start with the pair (x1 , x2) and 
the constraint (iv). If we choose, for instance, the assignment a1 = 4 then 
there obviously exists no assignment a2 � ,(x2) = {1,..., 4} which satis-
fies (iv) x1 + x2 = 4. Hence, the value 4 can be removed from ,(x1). The 
same argument is not applicable to a1 = 1 , 2 , 3, so we currently can only 
deduce ,(x1) := {1 , 2 , 3}.  

3. Since (iv) is symmetric in x1 and x2 , we can as well set ,(x2) := {1 , 2 , 3}.  
4. Consider now the pair (x2 , x3) and constraint (vi). As a2 � {1 , 2 , 3},  i.e.  

a2 � 3, the constraint (vi), x2 + x3 � 6, is only satisfied for a3 � 3. We 
therefore obtain ,(x3) := {3 , 4} (see Figure 16.2.3).  

5. Now let us turn to the pair (x1 , x3) and constraint (v). Since a3 = 3 or a3
 = 4, constraint (v), x1 + x3 = 5, yields a1 ≠ 3, and we can set ,(x1) 
:= {1 , 2}.  

6. Finally, studying constraint (iv) once more, we can remove a2 = 1 and set 
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,(x2) := {2 , 3} (see Figure 16.2.4).  

1

2 3

{1 , 2 }

{2 , 3} {3 , 4} 
Figure 16.2.4   Steps 5 and 6. 

1

2 3

{1}

{3} {4}  
Figure 16.2.5    The final step. 

At this point, no more values can be excluded from the current domains through 
the examination of pairs of variables. If we stop propagation now then the search 
space reduction is already of a considerable size. Prior to our simple analysis, the 
search space was of cardinality | D (x1) × D (x2) × D (x3) | = 10&10&10 = 1000,     
afterwards the cardinality dropped down to | ,(x1) × ,(x2) × ,(x3) | = 2&2&2 = 8. 

Extending our analysis to triples of variables reduces the search space even 
more. Given, for instance, a1 = 2, constraint (iv) implies a2 = 2, while (v) implies 
a3 = 3. Since a2 + a3 = 5 < 6, this is a contradiction to the constraint (vi). Reduc-
ing ,(x1) to {1}, we can immediately deduce ,(x2) = {3} and ,(x3) = {4} which 
is shown in Figure 16.2.5. Hence, only the assignment a = (1 , 3 , 4) is feasible and 
F (I ) = {(1 , 3 , 4)} is the solution space of  I .   

Example 16.2.4   
Consider now the CSP instance I  = (V , DOM , CONS) shown in Figure 16.2.6. 
Here, the constraint a mod b = c yields true, if a divided by b has a remainder of 
c. It is possible to show that this CSP instance has eight feasible solutions: 

F (I ) = {(4 , 7 , 5), (4 , 7 , 10), (5 , 6 , 1), (5 , 6 , 6), (9 , 2 , 5), (9 , 2 , 10), (10 , 1 , 1), 
(10 , 1 , 6)}  

V = {x1 , x2 , x3}, 
D (x1) = {1,...,10}, 
D (x2) = {1,...,10}, 
D (x3) = {1,...,10}, 
(i) (x1 + x2)  mod 10 = 1, 
(ii) (x1 & x3)  mod 5   = 0, 
(iii) (x2 + x3)  mod 5   = 2. 

1

2 3

{1,...,10}

{1,...,10} {1,...,10} 
Figure 16.2.6   Example 16.2.4. 

However, finding these solutions using only constraint propagation is not as easy 
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as in Example 16.2.3. It is not hard to see that the corresponding current domains 
,(x1), ,(x2) and ,(x3) cannot be reduced by examining pairs of variables. Consid-
er, for instance, the pair (x1 , x2) and constraint (i): for each assignment a1 � ,(x1), 
there exists an assignment a2 � ,(x2) such that (i) is satisfied. Similar conclu-
sions can be drawn if the roles of x1 and x2 are interchanged or if we study the 
pairs (x2 ,  x3) and (x1 ,  x3). 

To derive further information, we have to examine pairs of assignments. We 
may, for instance, find out that the assignments {1} × {1,..., 9} of the variables 
x1 and x2 cannot participate in any feasible solution, since they do not satisfy 
constraint (i). Thus given a1 = 1, the only interesting assignment is a2 = 10. Simi-
lar results can be obtained for a1 = 2, etc.  This analysis, however, increases the 
overhead in terms of computational complexity and storage capacity considera-
bly, since pairs of assignments have to be dealt with, and it is not clear at all 
whether this additional overhead can be offset by the search space reduction 
achieved.   

These examples demonstrate that constraint propagation can be quite powerful, 
reducing the search space of a "favourable'' CSP instance to a great extent after a 
few steps of propagation. In the worst case, however, constraint propagation 
does not yield a substantial reduction of the search space and even slows down 
the complete solution process due to the additional computations. In general, the 
outcome of constraint propagation lies between these two extremes: some but not 
all infeasible solutions can be discarded if constraint propagation is restricted to 
techniques which can be implemented efficiently. Thus, constraint propagation 
complements, but does not replace a systematic search. 

After this intuitive introduction to constraint propagation, it is now neces-
sary to provide a theoretical environment which allows us to design and assess 
constraint propagation techniques. We have informally described constraint 
propagation as "the reduction of the search space of a CSP instance through the 
analysis of variables, domains and constraints''. The question how far this reduc-
tion should be carried out, we would readily answer "as far as possible''. Re-
member, however, that any CSP instance is uniquely determined through its var-
iables, domains and constraints. Thus, if we took this description literally then 
constraint propagation would just be a synonym to solving the CSP which of 
course is not sensible, because we initially have introduced constraint propaga-
tion in order to simplify the solution of the CSP. Further, we already have seen 
that constraint propagation is only useful up to a certain extent due to an increas-
ing computational complexity. We therefore present different concepts of con-
sistency which may serve as a theoretical basis for propagation techniques. 
Roughly speaking, a concept of consistency defines the maximal search space 
reduction that is possible regarding some specific criteria. 
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k-Consistency  

The first concepts of consistency have been presented in the early seventies by 
Montanari [Mon74], who introduced the notions of node-, arc- and path-
consistency. Roughly speaking, these concepts are based on the examination of 
constraints containing k variables, where k = 1, 2, 3, with their names being de-
rived from the representation of a CSP instance as a constraint graph. Notice, 
that in the last section examples have been given of how to achieve node- and 
arc-consistency which will be seen more clearly further below. These concepts of 
consistency have been generalized by Freuder [Fre78] in a natural manner to the 
notion of k-consistency. For a detailed analysis of k-consistency see for instance 
[Tsa93]. We will only describe the basic ideas in an informal way. 

In order to define k-consistency we have to introduce the notion of k-
feasibility. Let a = (a1,...,an) be an assignment of a given CSP instance. A par-
tial assignment of k variables (ai1,...,  aik) is k-feasible, if it satisfies all con-
straints which contain these variables only (or any subset of them). The motiva-
tion of the definition of k-consistency is based on the following observation: a 
can only be feasible, if for a given k any partial assignment (ai1,...,  aik) is k-
feasible. Inversely, any partial assignment of k variables, that is not feasible, is 
not interesting and hints at an inconsistent state. 

In Freuder's words [Fre78] k-consistency is achieved if for any (k – 1)-
feasible assignment of k – 1 variables (taken from a set ,(xi1,...,  xik�1

) � D (xi1) 
× ... × D (xik�1

)) and any choice of a k 
th variable, there exists an assignment of 

the k 
th variable (taken from a set ,(xik) � D (xik)), such that the assignment of the 

k variables taken together is k-feasible. 
Note that the property of k-consistency is always relative to the sets ,(xi1,

...,  xik�1
)  and ,(xik). Thus, in order to establish k-consistency, starting from an 

inconsistent state, this implicitly requires a (k – 1)-dimensional administration of 
these sets. At the beginning, these sets contain all assignments, that is, ,(xi1,
...,  xik�1

) := D (xi1) × ... × D (xik�1
) and ,(xik) := D (xik). Inconsistent assignments 

are then eventually discarded, until k-consistency is reached. 
1-consistency is quite easy to achieve: if xi � V  is a variable and c(xi) is a 

unary constraint then all assignments ai � ,(xi) for which c(ai) = false are re-
moved. In order to establish 2-consistency, pairs of variables xi , xj � V  and bina-
ry constraints c(xi , xj) have to be examined: an assignment ai � ,(xi) can be re-
moved if c(ai , aj) = false for all aj � ,(xj). Analogously, 3-consistency requires 
the examination of triples of variables xi , xj , xk � V  and removes pairs of as-
signments (ai , aj) � ,(xi , xj),  etc.  As already mentioned, 1- and 2-consistency 
coincide with the notions of node- and arc-consistency, whereas 2- and 3-
consistency taken together are equivalent to path-consistency, see e.g.  [Mon74, 
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Mac77, MH86, Tsa93]. 1-, 2- and 3-consistency have also been summarized un-
der the name of  lower-level consistency as opposed to  higher-level consistency, 
since only small subsets of variables, domains and constraints are evaluated sim-
ultaneously. 

Efficient algorithms for establishing 1-, 2- and 3-consistency and an analysis 
of their complexity have been presented, among others, by Montanari [Mon74], 
Mackworth [Mac77], Mackworth and Freuder [MF85], Mohr and Henderson 
[MH86], Dechter and Pearl [DP88], Han and Lee [HL88], Cooper [Coo89] and 
Van Hentenryck et al.  [HDT92]. Improved arc consistency algorithms AC-6 and 
AC-7 have been presented by Bessière [Bes94] and by Bessière et al. [BFR99]. 
Chen [Che99] has proposed a new arc consistency algorithm, AC-8, which re-
quires less computation time and space than AC-6 and AC-7. Cooper developed 
an optimal algorithm which achieves k-consistency for arbitrary k [Coo89]. 
Jeavons et al.[JCC98] have identified a number of constraint classes for which 
some fixed level of local consistency is sufficient to ensure global consistency. 
They characterize all possible constraint types for which strong k-consistency 
guarantees global consistency, for each k � 2. Other methods for solving the CSP 
through the sole application of constraint propagation (solution synthesis) have 
been proposed by Freuder [Fre78], Seidel [Sei81] and Tsang and Foster [TF90]. 
The deductive approach proposed by Bibel [Bib88] is closely related to solution 
synthesis. 

Domain-Consistency 

Cooper's optimal algorithm [Coo89] for achieving k-consistency requires testing 
all subsets ,(xi1,...,  xik�1

) � D (xi1) �...� D (xik�1
) of (k – 1)-feasible assignments 

which is only practicable for small values of k. We therefore describe two weak-
er concepts of consistency. 

The first concept is based on only storing the 1-dimensional sets ,(xi) 
� D (xi) for all variables xi � V . For reasons near at hand, ,(xi) is also called the 
current domain of xi. Intuitively, we can at most discard all values ai � ,(xi) for 
which there exist no assignments aj � ,(xj), j � i, such that (a1 , ...,  ai , ...,  an) is 
feasible. Alternatively, the feasibility condition can be replaced with the suffi-
cient condition of k-feasibility which leads to a lower level of consistency. We 
refer to this concept of consistency as domain-consistency or k-d-consistency. 
Domain-consistency has been used, among others, by Nuijten [Nui94]. Formal 
definitions are provided below. 

Definition 16.2.5  

Let I = (V ,DOM ,CONS ) be an instance of the CSP. If ,(xi) � D (xi) is the cur-
rent domain of the variable xi � V  then ,(xi) is complete iff, for all feasible as-
signments a = (a1 , ...,  an), the value ai is contained in ,(xi).    
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Definition 16.2.6   

Let I = (V ,DOM ,CONS ) be an instance of the CSP and ! := { ,(xi) | xi � V } be 
the set of current domains, so that ,(xi) � D (xi) is complete1. 

1. ! is  k-d-consistent for 1 � k � n iff, for all subsets V' := {xi1,...,  xik�1
} of 

k – 1 variables and any k 
th variable xik 	 V' , the following condition 

holds:  
L aik � ,(xik),  ai1 � ,(xi1),...,  aik�1

 � ,(xik�1
) :  

(ai1,..., aik) is   k-feasible. 

2. ! is strong k-d-consistent for 1 � k � n iff ! is k'-d-consistent for all 
1 � k' � k.  

The following naive algorithm establishes k-d-consistency: start with ,(xi)
:= D (xi) for all xi � V ; choose variable xik and assignment aik � ,(xik); test 
whether there exists a subset of k – 1 variables V' := {xi1,...,  xik�1

} which does 
not contain xik, so that (ai1,..., aik�1

, aik) is not k-feasible for all ai1 � ,(xi1), ..., 
aik�1

 � ,(xik�1
); if the answer is ''yes'' then remove the assignment aik from ,(xik); 

repeat this process with other assignments and/or variables until no more domain 
reductions are possible. 

Example 16.2.7   
Let us reconsider Example 16.2.4. After establishing n-d-consistency, the re-
duced domains ,(xi) contain only assignments ai � D (xi) for which there exists a 
feasible solution (a1 , a2 , a3) � F (I). Since the solution space is  

F (I) = {(4,7,5), (4,7,10), (5,6,1), (5,6,6), (9,2,5), (9,2,10), (10,1,1), (10,1,6)} 

we obtain ,(x1) = {4,5,9,10}, ,(x2) = {1,2,6,7}, and ,(x3) = {1,5,6,10}. After the 
reduction, the search space is of size | ,(x1) � ,(x2) � ,(x3) | = 4&4&4 = 64 as com-
pared to the original search space of size | D (x1) � D (x2) � D (x3) | = 
10&10&10 = 1000 which is considerably larger.   

This gives us an indication of the maximal search space reduction that is possible 
if a solely domain oriented approach is chosen. Notice, however, that we did not 
yet discuss how to establish n-d-consistency other than to apply the naive algo-
rithm, so an important question is whether there exists an efficient implementa-
tion after all. Before we deal with this issue, however, we will first present an-
other concept of consistency. 
                                                 
1 The completeness property which is usually omitted in other definitions of consistency 

ensures that no feasible solutions are removed. Without this property, ∆ := {�, …, �} 
would be n-d-consistent which obviously is not intended. 
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Bound-Consistency 

Storing all values of the current domains ,(x1),...,  ,(xn) still might be too costly. 
An interval oriented encoding of ,(xi) provides an alternative if D (xi) is totally 
ordered, for instance, if D (xi) � IN0. In this case, we can identify ,(xi) with the 
interval ,(xi) := [li , ri] := {li , li + 1,..., ri – 1, ri}, so that only the “left'' and 
“right'' bounds of ,(xi) have to be stored. Therefore, this concept of consistency 
is usually referred to as bound-consistency or k-b-consistency. Bound-
consistency has been discussed, among others, by Moore [Moo66], Davis 
[Dav87], van Beek [Bee92] and Lhomme [Lho93]. 

Definition 16.2.8  (k-b-consistency).  

Let I = (V ,DOM ,CONS ) be an instance of the CSP and ! := { ,(xi) | xi � V }  be 
the set of current domains, so that ,(xi) � D (xi) is complete. 

1. ! is  k-b-consistent for 1 � k � n  iff, for all subsets V ' := {xi1 ,...,xik�1
}    of 

k – 1 variables and any k 
th  variable xik 	 V ', the following condition holds: 

L aik � {lik , rik},  ai1 � ,(xi1),...,aik�1
 � ,(xik�1

) :  

 (ai1 ,...,aik) is k-feasible. 

2. ! is strongly k-b-consistent for 1 � k � n iff ! is k'-b-consistent for all 
1 � k' � k.  

A naive algorithm for establishing k-b-consistency is obtained by slightly modi-
fying the naive k-d-consistency algorithm: instead of choosing aik � ,(xik), we 
may only choose (and remove) aik � {lik , rik}. 

As a negative side effect, only the bounds li and ri , but no intermediate value 
li < ai < ri can be discarded, except, if due to the repeated removal of other as-
signments, ai eventually becomes the left or right bound of the current domain. 
Thus, bound-consistency is a weaker concept than domain-consistency. 

Example 16.2.9   

We again examine the Examples 16.2.4 and 16.2.7. Establishing n-b-consistency 
must lead to the domain intervals ,(x1) = [4,10], ,(x2) = [1,7] and ,(x3) = [1,10]. 
Here, the size of the reduced search space is | ,(x1) � ,(x2) � ,(x3)| = 7&7&10 = 490 
compared with the size of the original search space (1000) and the size of the n-
d-consistent search space (64).    

Unfortunately, the following complexity result applies. 
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Theorem 16.2.10  
Establishing n-b-consistency for the CSP is an NP-hard problem. 

Proof. Consider an instance I of the CSP. Let ! = { ,(xi) | xi � V  } be the corre-
sponding set of current domains, such that ! is N-b-consistent. Obviously, F (I) is 
not empty iff there exists xi � V  satisfying ,(xi) � �.   

A similar proof shows that establishing n-d-consistency is NP-hard as well. 

Consistency Tests  

In general, establishing k-consistency is ruled out due to the complex data struc-
tures that are necessary for the administration of the k-feasible subsets. In the last 
subsection we have further seen that establishing n-d- or n-b-consistency is an 
NP-hard problem. Consequently, using constraint propagation in order to solve 
the CSP is only sensible if we content ourselves with approximations of the con-
cepts of consistency that have been introduced. 

An important problem is to derive simple rules which will lead to efficient 
search space reductions, but at the same time can be implemented efficiently 
with a low polynomial time complexity. These rules are known as consistency 
tests and are generally described through a condition-instruction pair Z  and B . 
Intuitively, the semantics of a consistency test is as follows: whenever condition 
Z  is satisfied, B  has to be executed. Z  may be, for instance, an equation or ine-
quality, while B  may be a domain reduction rule. We will often use the short-
hand notation Z  � B  for consistency tests. 

Example 16.2.11   
Let us derive a consistency test for the CSP instance I described in Example 
16.2.3. Consider the constraint (vi) x2 + x3 � 6. Given an assignment a2 of x2 , we 
can remove a2 from ,(x2) if there exists no assignment a3 = ,(x3) satisfying (vi). 
However, we do not really have to test all assignments in ,(x3), because if (vi) is 
not satisfied for a3 = max ,(x3) then it is not satisfied for any other assignment in 
,(x3) and vice versa. Hence, for any a2 � D (x2),  

 "(a2) : a2 + max ,(x3) < 6  �  ,(x2) := ,(x2) \ {a2}     

defines a consistency test for I.   

Of course, this example is quite simple and it may not seem clear whether any 
advantages can be drawn from such elementary deductions. Surprisingly, how-
ever, an analogously simple analysis will allow us to derive powerful consisten-
cy tests for particular classes of constraints as will be seen in one of the subse-
quent sections. 
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One of our objectives is to compare consistency tests. This requires a condi-
tion which enables us to determine whether certain consistency tests are "at least 
as good'' as certain others. Intuitively, this applies if the deductions implied by a 
set of consistency tests are "at least as good'' as those implied by another set. In 
order to elaborate this rather vague description, we will focus on domain con-
sistency tests, i.e. consistency tests which deduce domain reductions. Similar 
results, however, apply for other types of consistency tests. 

Let us derive a formal definition of domain consistency tests. Let J := 2D(x1)

 �...� 2D(xn), where 2D(xi) denotes the set of all subsets of D (xi). Given !, !' � J, 
that is, ! = { ,(xi) | xi � V } and !' = { ,'(xi) | xi � V }, we say that 

1.  ! � !'  iff ,(xi) � ,'(xi) for all xi � V ,  
2.  ! �

/
 !' iff ! � !', and there exists xi � V , such that ,(xi) �/

 ,'(xi).  
Domain consistency tests have to satisfy two conditions. First, current do-

mains are either reduced or left unchanged. Second, only assignments ai� ,(xi) 
are removed for which no feasible assignment a = (a1 , ..., ai  , ...,  an) exists, be-
cause otherwise solutions would be lost. Since, however, we do not need the 
second condition in order to derive the results of this section, only the first one is 
formalized. 

Definition 16.2.12  

A domain consistency test " is a function " : J � J satisfying "(!) � ! for all 
! � J. 

Suppose now that a set of domain consistency tests is given. In order to obtain 
the maximal domain reduction possible, these tests have to be applied repeatedly 
in an iterative fashion rather than only once. The reason for this is that, after the 
reduction of some domains, additional domain adjustments can possibly be de-
rived using some of the tests which have previously failed in deducing any re-
ductions. This has been demonstrated, for instance, in Example 16.2.3. Thus, the 
deduction process should be carried out until no more adjustments are possible 
or, in other words, until the set ! of current domains becomes a fixed point. The 
standard fixed point procedure is shown in Algorithm 16.2.13. 

Algorithm 16.2.13  Fixed point 

Input: !: set of current domains;  
begin 
  repeat  
    !old := !;  
    for all (" � g)  do ! := "(!);  -- g is a set of consistency tests 
  until (! := !old);   
end; 
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It is important to mention that the fixed point computed does not have to be 
unique and usually depends upon the order of the application of the consistency 
tests. For this reason we will only study monotonous consistency tests for which 
the order of application does not affect the outcome of the domain reduction pro-
cess. This result will be derived in the following. 

Definition 16.2.14    

A consistency test " is  monotonous iff the following condition is satisfied:  

 L!, !' � J : ! � !'  �  "(!) � "(!') .  (16.2.1) 

Let us first define the !-fixed-point mentioned above. Let g be a set of monoto-
nous domain consistency tests. For practical reasons we will always assume that 
g is finite. Let "# := ("g)g�IN � gIN be a series of domain consistency tests in g, 
such that  

L " � g, L h � IN,  g > h : "g = " .   (16.2.2) 

The series "# determines the order of application of the consistency tests. The 
last condition ensures that every consistency test in g is (a priori) infinitely often 
applied. Starting with an arbitrary set ! of current domains, we define the series 
of current domain sets (!g)g�IN induced by "# through the following recursive 
equation  

!0 := ! , 
!g := "g(!g�1) . 

Since all domains D (xi) are finite and !g � !g�1 due to Definition 16.2.12, there 
obviously exists g* � IN, such that !g = !g* for all g � g*. We can therefore de-
fine "#(!) := !g* . The next question to answer is whether "#(!) really depends 
on the chosen series "# . 

Theorem 16.2.15  Unique fixed points. [DPP00].  

If g is a set of monotonous domain consistency tests and "# , " '# � gIN are series 
satisfying  (16.2.2) then "#(!) = " '#(!). 

Proof. For reasons of symmetry we only have to show "#(!) � " '#(!). 
Let (!g)g�IN and (!' g')g'�IN be the series induced by "# and " '# respectively. It is 
sufficient to prove that for all g' � IN, there exists g � IN, such that !g � ! 'g' . 
This simple proof will be carried out by induction. 

 The assertion is obviously true for g' = 0. For g' > 0, we have ! 'g' = " 'g' (!'    g'�1). 
By the induction hypothesis, there exists h � IN, such that !h � !'    g'�1. Further, 
(16.2.2) implies that there exists g > h satisfying "g = " 'g' . Since g > h, we know 
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that !g�1 � !h . Using the monotony property of "g , we can conclude  

!g = "g(!g�1) � "g(!h) � "g(!'    g'�1) = " 'g' (!'    g'�1) = ! 'g' . 

This completes the induction proof.  

Definition 16.2.16  

Let g be a set of monotonous domain consistency tests, ! a set of current do-
mains and "# � gIN an arbitrary series satisfying (16.2.2). We define g(!) := "#
(!) to be the unique !-fixed-point induced by g and !.    

Based on these observations, we can now propose a dominance criterion for do-
main consistency tests. 

Definition 16.2.17   

Let g, g' be sets of monotonous consistency tests. 

 1. g  dominates g'  (g ≻= g') iff g(!) � g'(!) for all ! � J .  

2. g  strictly dominates g'  (g ≻ g') iff g ≻= g', and there exists ! � J, such 
that g(!) �/  g'(!).    

 3. g is  equivalent to g'  (g ~ g') iff  (g ≻= g') and (g' ≻= g).  

The next theorem provides a simple condition for testing dominance of domain 
consistency tests. Basically, the theorem states that a set of domain consistency 
tests g dominates another set g' if all domain reductions implied by the tests in g' 
can be simulated by a finite number of tests in g. 

Theorem 16.2.18    

Let g, g' be sets of monotonous consistency tests. If for all "' � g' and all ! � J, 
there exist "1, ..., " d � g, so that  

 (" d h...h "1)(!) � "'(!)     (16.2.3) 

then g ≻= g'. 

Proof. Let "# and " '# � gIN be series satisfying  (16.2.2) . Let, further, (!g)g�IN 
and (!' g')g'�IN be the series induced by "# and " '# respectively. Again, we will 
prove by induction that for all g' � IN, there exists g � IN, such that !g � ! 'g' , 
since this immediately implies g(!) � g'(!). 

The assertion is obviously true for g' = 0. Therefore, let g' > 0 and ! 'g' = " 'g'
(!'    g'�1). By the induction hypothesis, there exists h � IN, such that !h � !'    g'�1 . 

Let "1, ...,  " d � g be the sequence of consistency tests satisfying (16.2.3) for 
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" 'g' and !h . There exist gd >...> g1 > h satisfying "g1
 = "1, ...,  "gd

 = " d due to 
(16.2.2). Without loss of generality, we assume that gd = h + d, ...,  g1 = h + 1, so 
that  

!h+d = ("h+d h...h "h+1)(!h) � " 'g' (!h) � " 'g' (!'    g'�1) = !'  g'   

which proves the induction step. This verifies the dominance relation g ≻= g'.      

Example 16.2.19    
Let us reconsider the consistency tests derived in Example 16.2.11:  

"(a2) : a2 + max ,(x3) < 6  �  ,(x2) :=  ,(x2) \ {a2} . 

Instead of defining a consistency test for each a2 � D (x2), it is sufficient to apply 
a single consistency test to obtain the same effects. Observe that if a2 can be re-
moved then all assignments a'2 < a2 can be removed as well, so that we can re-
place a2 � ,(x2) with min ,(x2). This leads to the consistency test:  

" : min ,(x2) + max ,(x3) < 6  �  ,(x2) := ,(x2) \ { min ,(x2) } . 

Obviously, if a2 can be removed from ,(x2) using "(a2) then " removes a2 after at 
most a2 – min ,(x2) + 1 steps. Thus, g := {"} dominates g' := { "(a2) | a2
 � D (x2) }. Accordingly, g' dominates g, because g' i g. This proves that g and 
g' are equivalent.  

16.3 The Disjunctive Scheduling Problem 

The disjunctive scheduling problem (DSP) is a natural generalization of im-
portant scheduling problems like the job shop scheduling problem (JSP) which 
has been extensively studied in the last decades, or the open shop scheduling 
problem (OSP) which only in recent years has attracted more attention in sched-
uling research. 

The DSP can be described as follows [Pha00]: a finite set of tasks each of 
which has a specific processing time, has to be scheduled with the objective of 
minimizing the makespan, i.e. the maximum of the completion times of all tasks. 
Preemption is not allowed which means that tasks must not be interrupted during 
their processing. In general, tasks cannot be processed independently from each 
other due to additional technological requirements or scarcity of resources. The 
DSP considers two kinds of constraints between pairs of tasks which model spe-
cial classes of restrictions:  precedence and disjunctive constraints. 
T Precedence constraints which are also known as temporal constraints specify 

a fixed processing order between pairs of tasks. Precedence constraints cover 
technological requirements of the kind that some task Ti must finish before 
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another task Tj can start, for instance, if the output of Ti is the input of Tj .  

T Disjunctive constraints prevent the simultaneous or overlapping processing of 
tasks without, however, specifying the processing order. If a disjunctive con-
straint is defined between two tasks Ti and Tj then one of the alternatives "Ti 
before Tj'' or "Tj before Ti'' must be enforced, but which one is not predeter-
mined. Disjunctive constraints model the resource demand of tasks in a 
scheduling environment with scarce resource supply. More precisely, the ca-
pacity of each resource like special machines, tools or working space is one 
unit per period of processing time. Tasks use at most a (constant) unit amount 
of each resource per processing period. Due to the limited amount of re-
sources, two tasks requiring the same resource cannot be processed in parallel. 

Note that the term disjunctive constraint, as introduced here and as common-
ly used in scheduling, is a special case of the general concept of disjunctive con-
straints.  

The DSP and its subclasses have been extensively studied in academic re-
search, since its simple formulation, on the one hand, and its intractability, on the 
other hand, make it a perfect candidate for the development and analysis of effi-
cient solution techniques. Indeed, the solution techniques that have been derived 
for the DSP have contributed a lot to the improvement of methods for less ideal-
ized and more practice oriented problems. Extensions of the DSP generally con-
sider sequence-dependent setup times, minimal and maximal time lags, multi-
purpose and parallel machines, non-unit resource supply and demand, machine 
breakdowns, stochastic processing times, etc.  

Section 16.3.1 formulates the DSP as a constraint optimization problem with 
disjunctive constraints as proposed by Roy and Sussman [RS64] for the JSP. The 
strength of this model becomes apparent later once the common graph theoretical 
interpretation of the disjunctive scheduling model is presented. In Section 16.3.2, 
solution methods for the DSP that are based on constraint propagation are briefly 
discussed. 

16.3.1 The Disjunctive Model 

Let B = {1, ...,  n} be the index set of tasks to be scheduled. The processing time 
of task Ti , i � B is denoted with pi . By choosing sufficiently small time units, we 
can always assume that the processing times are positive integer values. With 
each task there is associated a start time domain variable sti with domain set 
D(sti) = IN0 . 

If a precedence or disjunctive constraint is defined between two tasks then 
we say that these tasks are in conjunction or disjunction respectively. The tasks 
in conjunction are specified by a relation C � B � B . If (i , j) � C then task Ti has 
to finish before task Tj can start. Instead of writing (i , j) � C we will therefore 
use the more suggestive i � j � C. The tasks in disjunction are specified by a 
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symmetric relation D � B � B . Whenever (i , j) � D, tasks Ti and Tj cannot be 
processed in parallel. Since (i , j) � D implies (j , i) � D, we will write i X j � D. 
Finally, let Z = { pi | i � B }  be the set of processing times. 

An instance of the DSP is uniquely determined by the tuple I = (B , C , D , Z). 
Since we want to minimize the makespan, i.e. the maximal completion time of 
all tasks, the objective function is Cmax(I) = max

 i�B{sti + pi}. The DSP can be 
written as follows: 

minimize {Cmax(I)} 
sti � D(sti) = IN0 i � B, 
(i) sti + pi � stj i � j � C, 
(ii) sti + pi � stj   W   stj + pi � sti i X j � D. 

Let us first define an assignment ST = (st1, ...,  stn) � D(st1) �...�D(stn) of 
all start time variables. For the sake of simplicity, we will use the same notation 
for variables and their assignments. An assignment ST is feasible, i.e. it defines a 
schedule (cf. Section 3.1), if it satisfies all precedence constraints (i) and all dis-
junctive constraints (ii). Reformulating the DSP, the problem is to find a feasible 
schedule with minimal objective function value Cmax(I). Obviously, for each in-
stance of the DSP, there exists a feasible and optimal schedule. 

A Graph Theoretical Approach  

The significance of the disjunctive scheduling model for the development of ef-
ficient solution methods is revealed if we consider its graph theoretical interpre-
tation. In analogy to Section 10.1, a disjunctive graph is a weighted graph 
G  = (B , C , D , W) with node set B, arc sets C, D � B � B where D is symmetric, 
and weight set W. C is called the set of precedence arcs, D the set of disjunctive 
arcs. Each arc i � j � C � D  is labelled with a weight wi� j � W. Since D is 
symmetric, we will represent disjunctive arcs as doubly directed arcs and some-
times refer to i X j  as a disjunctive edge. Notice that i X j � D is labelled with 
two possibly different weights, wi� j and wj� i . 

Let I = (B , C , D , Z) be an instance of the DSP. In order to define the associ-
ated disjunctive graph G(I), we first introduce two dummy tasks start (0) and 
end (*) so as to obtain a connected graph. Obviously, start precedes all tasks, 
while end succeeds all tasks. Further, the processing times of start and end are 
zero.  

Definition 16.3.1   

If I = (B , C , D , Z) is an instance of the DSP then G(I) := (B*
 , C *

 , D , W) is the 
associated disjunctive graph, where  
 B* := B � {0 , *}, 
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 C * := C � { 0 � i | i � B � {*} } � { i � * | i � B � {0} }, 
 W = { wi� j = pi | i � j � C * � D } . 

Example 16.3.2    

Let I = (B , C , D ,  Z) be an instance of the DSP with B = {1, ...,  8}, C = { 1 � 2 

� 3, 4 � 5, 6 � 7 � 8 } and D = { 1 X 4, 1 X 6, 4 X 6, 2 X 7, 3 X 5, 3 X 8, 
5 X 8 }. The corresponding disjunctive graph G  = (B*

 , C *
 , D , W) is shown in 

Figure 16.3.1.2    

0

1 2 3

4 5

6

*

7 8  
Figure 16.3.1   A disjunctive graph. 

A disjunctive graph is transformed into a directed graph by orienting disjunctive 
edges.  

Definition 16.3.3   

Let G  = (B , C , D , W) be a disjunctive graph, and S � D. 
1. S is a  partial selection iff  i � j � S implies j � i 	 S for all 

i X j � D.  
2. S is a complete selection iff either i � j � S or j � i � S for all 

i X j � D.  
3. A complete selection S is acyclic iff the directed graph GS = (B, C � S) 

is acyclic.  

Thus, we obtain a complete (partial) selection if (at most) one edge orientation is 
chosen from each disjunctive edge i X j � D. The selection is acyclic if the re-
sulting directed graph is acyclic, ignoring any remaining undirected disjunctive 
edges. There is a close relationship between complete selections and schedules 
(let us remind that schedules are always feasible, as defined in Section 3.1). In-
deed, if we are only interested in optimal schedules, then it is sufficient to search 
through the space of all selections which is of cardinality 2|D| instead of the space 
of all schedules which is of cardinality |IN0|

n. The DSP can thus be restated as a 
graph theoretical problem: find a complete and acyclic selection, such that the 
length of the longest path in the associated directed graph is minimal. 
                                                 
2 We have not depicted all of the trivial edges involving the dummy operations start and 

end. Further, the specification of the weights has been omitted. 
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16.3.2 Solution Methods for the DSP 

Countless is the number of solution methods proposed for the JSP which consti-
tutes the most famous subclass of the DSP. A detailed survey is provided by 
Błażewicz et al. in [BDP96]. We only focus on solution methods which have 
incorporated constraint propagation techniques in some way or another. Particu-
larly, constraint propagation has been used in exact solution methods most of 
which are based on a search space decomposition approach of the branch-and-
bound kind. It seems fair to say that the advances in solving the JSP that have 
been made in the last decade can be attributed to a large extent to the develop-
ment of efficient constraint propagation techniques. Undoubtedly, the algorithm 
of Carlier and Pinson presented in [CP89] marked a milestone in the JSP history, 
since for the first time an optimal solution for the notorious 10 � 10 problem 
instance proposed by Muth and Thompson [MT63] has been found and its opti-
mality proven. Amazingly, due to the evolution of solution techniques and grow-
ing computational power, this formerly unsolvable instance can now be solved 
within several seconds. Important contributions towards this state of the art have 
been made among others by Applegate and Cook [AC91], Carlier and Pinson 
[CP90], Brucker et al. [BJS94, BJK94], Caseau and Laburthe [CL95], Baptiste 
and Le Pape [BL95] and Martin and Shmoys [MS96], to name only a few. In 
addition to using constraint propagation techniques in exact solution methods, 
the opinion eventually gains ground that combining constraint propagation with 
heuristic solution methods is most promising. Advances in this direction have 
been reported by Nuijten [Nui94], Pesch and Tetzlaff [PT96], Phan Huy [Pha96] 
and Nuijten and Le Pape [NL98]. 

16.4 Constraint Propagation and the DSP 

In Section 16.2.2, constraint propagation has been introduced as an elementary 
method of search space reduction for the CSP or the COP. In this section, we 
examine how constraint propagation techniques can be adapted to the DSP. An 
important issue is the computational complexity of the techniques applied which 
has to be weighed against the search space reduction obtained. Recall that estab-
lishing n-, n-d- and n-b-consistency for instances of the CSP or the COP are NP-
hard problems. It is not difficult to show that the same complexity result applies 
if we confine ourselves to the more special DSP. Thus, if constraint propagation 
is to be of any use in solving the DSP, we will have to content ourselves with 
approximations of the consistency levels mentioned above. 

In the past years, two constraint propagation approaches have been studied 
with respect to the DSP: a time oriented and a sequence oriented approach. The 
time oriented approach is based on the concept of domain or bound-consistency. 
Each task has a current domain of possible start times. Domain consistency tests 
remove inconsistent start time assignments from current domains and, by this, 
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reduce the set of schedules that have to be examined. In contrast to the time ori-
ented approach, the sequence oriented approach reduces the set of complete se-
lections by detecting sequences of tasks, i.e. selecting disjunctive edge orienta-
tions which must occur in every optimal solution. Hence, the latter approach has 
been often labelled immediate selection (see e.g. [CP89, BJK94]) or edge-finding 
(see e.g. [AC91]). We will use the term sequence consistency test as used in 
[DPP99]. 

Domain and sequence consistency tests are two different concepts which 
complement each other. Often, a situation occurs in which either only reductions 
of the current domains or only edge orientations are deducible. The best results, 
in fact, are obtained by applying both types of consistency tests, as fixing dis-
junctive edges may initiate additional domain reductions and vice versa. 

Section 16.4.1 introduces some notation which will be used later. The sub-
sequent sections are concerned with the definition of domain and sequence con-
sistency tests for the DSP. For the sake of simplicity, precedence and disjunctive 
constraints will be treated separately. At first, the simple question of how to im-
plement constraint propagation techniques for precedence constraints is dis-
cussed in Sections 16.4.2. 

In Sections 16.4.3 through 16.4.8, disjunctive constraints are examined, and 
both already known and new consistency tests will be presented. We assume that 
precedence constraints are not defined and that all tasks are in disjunction which 
leads to the special case of a single-machine scheduling problem [Car82]. 

Section 16.4.3 examines which consistency tests have to be applied in order 
to establish lower-level bound-consistency, that is, strong 3-b-consistency. Sec-
tions 16.4.4 and 16.4.5 present the well-known input/output and input/output 
negation consistency tests first proposed by Carlier and Pinson [CP89] and com-
pare different time bound adjustments. Section 16.4.6 describes a class of new 
consistency tests which is based on the input-or-output conditions and is due to 
Dorndorf et al. [DPP99]. Section 16.4.7 takes a closer look at the concept of en-
ergetic reasoning proposed by Erschler et al. [ELT91] and classifies this concept 
with respect to the other consistency tests defined. Section 16.4.8, finally, deals 
with a class of consistency tests known as shaving which has been introduced by 
Carlier and Pinson [CP94] and Martin and Shmoys [MS96]. 

In Section 16.4.9, the results for the disjunctive constraints are summarized. 
Finally, Section 16.4.10 discusses how to interleave the application of the prece-
dence and disjunctive consistency tests derived. It is worthwhile to mention that 
a separate analysis of precedence and disjunctive constraints leads to weaker 
consistency tests as compared to cases where both classes of constraints are sim-
ultaneously evaluated. However, it remains an open question whether simple and 
efficient consistency tests can be developed in this case. 

16.4.1 Some Basic Definitions 

For the rest of this subsection, let I = (B , C , D , Z) be an instance of the DSP. Each 
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task Ti , i � B has a current domain ,(sti) � D(sti). In order to avoid misinterpre-
tations between the start time variable sti and its assignment (for which the nota-
tion sti is used as well), we will write ,i instead of ,(sti). We assume that some 
real or hypothetical upper bound UB on the optimal makespan is known or giv-
en, so that actually ,i � [0 , UB – pi]. This is necessary, since most of the con-
sistency tests derived only deduce domain reductions or edge orientations if the 
current domains are finite. In general, the tighter the upper bound, the more in-
formation can be derived. 

The earliest and latest start time of task Ti are given by esti := min ,i and lsti
 := max ,i . We will interpret ,i as an interval of start times, i.e. ,i = [esti , lsti]
 = { esti , esti + 1, ...,  lsti � 1, lsti}, although a set oriented interpretation is possi-
ble as well. We also need the earliest and latest completion time ecti := esti + pi 
and lcti := lsti + pi  of task Ti . 

Sometimes, it is important to distinguish between the earliest and latest start 
time  before and after a domain reduction. We will then use the notation est i

 * and 
lst i

 * for the adjusted earliest and latest start times. We will often examine subsets 
A � B of tasks and define p(A) := 5 i�A  pi , ESTmin(A) := min i�A  esti , and 
LCTmax(A) := max i�A  lcti . Finally, Cmax(p,(A)) and Cmax(p , 

 pr(A)) denote the op-
timal makespan if all tasks in A are scheduled within their current domains with-
out preemption or with preemption allowed. 

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

10 11 1232
x

lstest lctect  
Figure 16.4.1    Two tasks Ti , Tj with pi = 4 and pj = 3.   

Examples of consistency tests will be illustrated as in Figure 16.4.1 [Nui94] 
which shows two tasks Ti and Tj . For task Tj , the interval [estj , lctj] = [0,8] of 
times at which Tj may be in process is shown as a horizontal line segment. Possi-
ble start times [estj , lstj] = [0,5] are depicted as black circles, while the remaining 
times [lstj+1 , lctj] = [6,8] are marked with tick marks. A piston shaped bar of size 
pj = 3, starting at estj = 0, indicates the processing time of task Tj . The chosen 
representation is especially well-suited for describing the effect of domain con-
sistency tests. If a starting time is proven to be inconsistent then the correspond-
ing time will be marked with an x, as for instance the start time 2 on the time 
scale of task Ti . 
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16.4.2 Precedence Consistency Tests 

Precedence constraints determine the order in which two specific tasks Ti and Tj 
have to be processed. If, for instance, task Ti has to finish before task Tj can start, 
then the earliest start time of Tj has to be greater than or equal to the earliest 
completion time of Ti. Likewise, an upper bound of the latest completion time of 
Ti is the latest start time of Tj . This proves the following well-known theorem. 

Theorem 16.4.1  Precedence consistency test.  

If i, j � B and i � j � C then the following domain reduction rules apply:  

estj := max{ estj , esti + pi },  (16.4.1) 

lsti := min{ lsti , lstj � pi }.  (16.4.2) 

Of course, applying the consistency tests (16.4.1) and (16.4.2) until no more up-
dates are possible is equivalent to the computation of a longest (precedence) path 
in the disjunctive graph, see [Chr75] for a standard algorithm. This algorithm 
traverses all tasks in a topological order which ensures that (16.4.1) and (16.4.2) 
only have to be applied once for each precedence arc. 

16.4.3 Lower-Level Bound-Consistency 

From this Section through Section 16.4.8, we will study the more interesting 
class of disjunctive constraints. For the sake of simplicity, we assume that B is a 
clique, i.e. all tasks in B are in disjunctions. We, further, assume that the set of 
precedence constraints is empty. We will, at first, discuss how disjunctive con-
straints interact with respect to some concept of consistency. For two reasons we 
opted for bound-consistency as the concept of consistency to work with. First of 
all, bound-consistency requires the least amount of storage capacity, since the 
current domains can be interpreted as intervals, so only the earliest and latest 
start times have to be memorized. Second, the most powerful consistency tests 
described in the following only affect/use the earliest and latest start times. In-
deed, no efficient consistency tests which make use of "inner'' start times are 
currently known. 
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Symbol Description 

 "(h)
A,i    h � 4: output consistency test for the couple (A , i),   

h � 5: input negation consistency test for the couple (A , i)  
,i    current domain of Ti : ,i � IN0    
esti  earliest start time of Ti : esti = min ,i  
est i

 *  adjusted earliest start time of Ti 
ecti earliest completion time of Ti : ecti = esti + pi  
lcti  latest completion time of Ti : lcti = lsti + pi  
lsti latest start time of Ti : lsti = max ,i 
lst i

 *    adjusted latest start time of Ti 
pi(t1, t2)    interval processing time of Ti in the time interval [t1, t2) 
[t1, t2) time interval: [t1, t2) = { t1, t1 + 1, ...,  t2 � 1 }  
[t1, t2] time interval: [t1, t2] =  { t1, t1 + 1, ...,  t2 }  
A subset of tasks: A � B 
A � i  (i � A)  Ti has to be processed after (before) all tasks in A  
Cmax(p,(A))  optimal makespan if all tasks in A are scheduled without 

preemption  
Cmax(p , 

 pr(A))  optimal makespan if all tasks in A are scheduled with 
preemption allowed 

g¬ in (h)  set of input negation consistency tests 
gout (h)  set of output consistency tests 
ESTmin(A) minimal earliest start time in A : ESTmin(A) = min i�A{esti}  
LBh(A)  time bound adjustment for output consistency tests  
LBh(A, i)  time bound adjustment for input negation consistency tests 
LCTmax(A) maximal latest completion time in A :  

LCTmax(A) = max i�A{lcti}  
B(t1,t2)   subset of tasks which must be processed completely or par-

tially in the time interval [t1, t2) :  
B(t1,t2) = { i � B | pi (t1, t2) > 0 }  

p(A) sum of processing times in A : p(A) = 5 i�A pi 
p(A, t1, t2) sum of interval processing times in A in the time interval  

[t1, t2) : p(A, t1, t2) = 5 i�A pi(t1, t2) 
T (A)    task set of A : T (A) = T (ESTmin(A), LCTmax(A) )     
T (t1, t2) task set: T (t1, t2) = { i � B | t1 � esti , lcti � t2 }   

Table 16.4.1:  List of symbols.   

Our goal is to examine which domain consistency tests have to be applied in or-
der to establish strong 3-b-consistency which is also known as lower-level 
bound-consistency. 1-b-consistency is trivially established, since unary con-
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straints are not involved, so only 2-b- and 3-b-consistency remain to be studied. 
The corresponding consistency tests will be derived through an elementary 

and systematic evaluation of all constraints. This “bottom up'' approach is quite 
technical, but it closes the gap that is usually left by the consistency tests which 
are due to the researcher's inspiration and insight into the problem's nature. As a 
consequence, we will rediscover most of these consistency tests which have been 
“derived'' in a “top down'' fashion in a slightly stronger version. 

2-b-Consistency  

In order to test for 2-b-consistency, pairs of different tasks have to be examined. 
If Ti , i � B is a task and sti � {esti , lsti} an assignment of its start time, then sti is 
(currently) consistent and cannot be removed if there exists another task Tj , 
j � B, and an assignment stj � ,j , such that sti and stj satisfy the disjunctive con-
straint i X j :  

 stj � ,j : sti + pi � stj   W   stj + pj � sti .  (16.4.3) 

Of course, if (16.4.3) is satisfied for all pairs (i , j) then 2-b-consistency is es-
tablished. Since ,j = [estj , lstj], this condition can be simplified as follows:  

sti + pi � lstj   W   estj + pj � sti .  (16.4.4) 

Suppose now that 2-b-consistency is not yet established. We will first show 
how to derive a well-known consistency test which removes an inconsistent as-
signment sti = esti through a simple evaluation of (16.4.4). Similar arguments 
lead to a consistency test for removing the assignment sti = lsti . These consisten-
cy tests have been first proposed by Carlier and Pinson [CP89]. Obviously, if 
(16.4.4) is not satisfied for sti = esti then we can remove esti ,  i.e.  

esti + pi > lstj  ^  estj + pj > esti   �   esti = esti + 1. (16.4.5) 

Observe that after adjusting esti , the condition esti + pi > lstj on the left side 
of (16.4.5) is still satisfied. Therefore, we can increase esti as long as estj + pj
 > esti , i.e. until estj + pj � esti . This leads to the improved consistency test  

esti + pi > lstj    �    esti = max{ esti , estj + pj }. (16.4.6) 

Analogously, testing sti = lsti leads to the consistency test  

estj + pj > lsti    �    lsti = min{ lsti , lstj � pi }. (16.4.7) 

Let g2 be the set of consistency tests defined by (16.4.6) and (16.4.7) for all tasks 
Ti � Tj . The next lemma in combination with Theorem 16.2.15 ensures that there 
exists a unique fixed point g2(!), i.e. applying the consistency tests in g2 in an 
arbitrary order until no more updates are possible will always result in the same 
set of current domains. 
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Lemma 16.4.2   

g2 is a set of monotonous consistency tests. 

Proof. For reasons of symmetry, it is sufficient to examine the consistency tests 
given by (16.4.6). Let ! = { [estl , lstl] | l � B }  and !' = { [estl ' , lstl '] | l � B }. If 
! � !', that is, estl ' � estl and lstl � lstl ' for all l � B  then  

esti ' + pi > lstj ' � esti + pi > lstj 

 �
(13.4.6)

 est i
 * = max{ esti , estj + pj } 

 � est i
 * � max{ esti ' , estj ' + pj } 

 � est i
 * � esti   ' 

 * 
As all other earliest and latest start times remain unchanged, estl   ' 

 * � est l
 * and 

lst l
 * � lstl   ' 

 * for all l � B which proves the monotony property.  

Altogether, the following theorem has been proven, see also [Nui94]. 

Theorem 16.4.3   

For all ! � J, g2(!) is 2-b-consistent.   

Example 16.4.4    
Consider the situation that has been depicted in Figure 16.4.1. Since esti + pi
 = 6 > 5 = lstj , we can adjust esti = max{esti , estj + pj} = max{2,3} = 3 accord-
ing to (16.4.6). Note that the current domain of task Tj remains unchanged if 
(16.4.7) is applied.   

g2(!) can be computed by repeatedly testing all pairs i , j � B, i � j, until no more 
updates are possible. We will discuss other algorithms which subsume the tests 
for 2-b-consistency at a later time. As a generalization of the pair test Focacci 
and Nuijten [FN00] have proposed two consistency tests for shop scheduling, 
with sequence dependent setup times between pairs of tasks processed by the 
same disjunctive resource. 

3-b-Consistency 

In order to test for 3-b-consistency, triples of pairwise different tasks have to be 
examined. Again, let Ti , i � B, be a task, and sti � {esti , lsti}. The start time sti is 
(currently) consistent and cannot be removed if there exist j, k � B, such that i, j, 
k are indices of pairwise different tasks, and there exist assignments stj � ,j ,  stk 
� ,k , such that sti , stj , and stk satisfy the disjunctive constraints i X j, i X k, 
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and j X k. Let us first consider this condition for sti = esti :  

 stj� ,j ,  stk � ,k : { ( esti + pi � stj W   stj + pj � esti ) ^ 
( esti + pi � stk W   stk + pk � esti ) ^ 
( stj + pj � stk W   stk + pk � stj ) . 

(16.4.8) 

Again, if (16.4.8) is satisfied for all triples (i , j , k) then 3-b-consistency is estab-
lished. This condition is equivalent to  

 stj� ,j ,  stk � ,k : 

( esti + pi � stj ^   stj + pj � stk ) W 
( esti + pi � stk ^   stk + pk � stj ) W 
( stj + pj � esti ^   esti + pi � stk ) W 
( stk + pk � esti ^   esti + pi � stj )  W 
( stj + pj � stk ^   stk + pk � esti )  W 
( stk + pk � stj ^   stj + pj � esti ) . 

(16.4.9) 

Each line of (16.4.9) represents a permutation of the tasks Ti , Tj , Tk , e.g. the first 
line corresponds to the sequence i �  j � k. Since ,j = [estj , lstj] and ,k = [estk ,
 lstk],  (16.4.9) is equivalent to:  

 stj� ,j ,  stk � ,k : 

( esti + pi � stj ^   stj + pj � lstk ) W (i) 
( esti + pi � stk ^   stk + pk � lstj ) W (ii) 
( estj + pj � esti ^   esti + pi � lstk ) W (iii) 
( estk + pk � esti ^   esti + pi � lstj )  W (iv) 
( estj + pj � stk ^   stk + pk � esti )  W (v) 
( estk + pk � stj ^   stj + pj � esti ) .   (vi) 

  (16.4.10) 

In analogy to the case of establishing 2-b-consistency, we can increase esti := esti
 + 1 if (16.4.10) is not satisfied. However, in spite of the previous simplifica-
tions, testing (16.4.10) still is too costly, since the expression on the right side 
has to be evaluated for all stj � ,j and stk � ,k . In the following lemmas, we 
therefore replace the conditions (i), (ii), (v) and (vi) which either contain stj or stk 
with simpler conditions. 

Lemma 16.4.5  

If ! is 2-b-consistent and the conditions (iii) and (vi) are not satisfied then the 
following equivalence relations hold:  

 stj� ,j ,  stk � ,k : { ( esti + pi � stj ^   stj + pj � lstk ) W (i) 
( esti + pi � stk ^   stk + pk � lstj )  (ii) 

(16.4.11) 
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  esti + pi + pj � lstk   W   esti + pi + pk � lstj (16.4.12) 

  max{ lctj � esti , lctk � esti } �  pi + pj + pk (16.4.13) 

Proof. Let us prove the first equivalence. The direction � is obvious, so only j 
has to be shown. Let (16.4.12) be satisfied. Without loss of generality, we can 
assume that either (a) esti + pi + pj � lstk and esti + pi + pk > lstj , or that (b) lstk � 
lstj if both, esti + pi + pj � lstk and esti + pi + pk � lstj . Studying the two cases esti
 + pi � estj and esti + pi < estj separately, we can show that in both cases there 
exists stj � ,j , such that condition (i) is satisfied. 

Case 1: Let esti + pi � estj . If we can prove that esti + pi � lstj then choosing stj
 := esti + pi is possible, as then stj � [estj , lstj] = ,j , esti + pi � stj and stj + pj
 = esti + pi + pj � lstk . Thus, condition (i) is satisfied. In order to prove esti + pi � 
lstj , we use the assumption that condition (iii) is not satisfied, i.e. that estj + pj >  
esti or esti + pi > lstk . It follows from esti + pi < esti + pi + pj � lstk that the second 
inequality cannot be satisfied, so that actually estj + pj > esti . Thus, indeed, esti
 + pi � lstj , as we have assumed 2-b-consistency (see (16.4.6)). 

Case 2: Let esti + pi � estj . If estj + pj � lstk , setting stj := estj � ,j again satisfies 
condition (i). We now have to show that, in fact, estj + pj � lstk . Again, we will 
use the assumption that 2-b-consistency is established. If estj + pj > lstk then 
(16.4.7) implies lstk � lstj � pk and lstk < lstj . Further, as esti + pi + pj � lstk � lstj
 � pk we can conclude esti + pi + pk � lstj . So both inequalities of (16.4.12) are 
satisfied, but lstk < lstj . This is a contradiction to the assumption (b). 

The second equivalence is easily proven by adding pk and pj , respectively, 
on both sides of inequalities (16.4.12) .  

Lemma 16.4.6   

If ! is 2-b-consistent then the following equivalence relations hold:  

 stj� ,j ,  stk � ,k : { ( estj + pj � stk   ^   stk + pk � esti ) W (v) 
( estk + pk � stj   ^   stj + pj � esti )  (vi) 

 (16.4.14) 


 
esti � max{estj + pj + pk , estk + pk}   W 
esti � max{estk + pk + pj , estj + pj} 

    
(16.4.15) 

  
    esti � max{min {estj , estk} + pj + pk , estj + pj , estk + pk} (16.4.16) 

Proof. We prove the first equivalence. Again, the direction � is obvious, so we 
only have to show j. Let (16.4.15) be satisfied. We assume without loss of gen-
erality that estj � estk . This implies max{ estk + pk + pj , estj + pj } � estk + pk + pj
 � max{ estj + pj + pk , estk + pk }, so that esti � max{ estj + pj + pk , estk + pk } (*).  
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Case 1: Let estj + pj � estk . If estj + pj > lstk then the 2-b-consistency (16.4.6) 
implies estj � estk + pk and estj � estk which is a contradiction, so that actually estj
 + pj < lstk . We can set stk := estj + pj � [estk , lstk] = ,k , and condition (v) is satis-
fied due to (*). 
Case 2: Let estj + pj < estk . Choosing stk := estk � ,k again satisfies condition (v) 
due to (*). A standard proof verifies the second equivalence.  

Given that 2-b-consistency is established, we can therefore replace (16.4.10) 
with the following equivalent and much simpler condition which can be tested in 
constant time:  

(max{lctj � esti , lctk � esti} � pi + pj + pk)   W   (i + ii) 
(estj + pj � esti   ^  esti + pi � lstk)   W     (iii) 
(estk + pk � esti   ^  esti + pi � lstj)   W     (iv) 
(esti � max{min{estj , estk} + pj + pk , estj + pj , estk + pk}) . (v + vi) 

(16.4.17) 

Resuming our previous thoughts, we can increase esti := esti + 1 if  (16.4.17) is 
not satisfied. Observe that if (i + ii) is not satisfied before increasing esti then it is 
not satisfied after increasing  esti . Therefore, we can proceed as follows: first, 
test whether (i + ii) holds. If this is not the case then increase esti until one of the 
conditions (iii), (iv) or (v + vi) is satisfied. Fortunately, this incremental process 
can be accelerated by defining appropriate time bound adjustments. 

Deriving the correct time bound adjustments requires a rather lengthy and 
painstaking analysis which is provided in Section 16.6 (Appendix). At the mo-
ment, we will only present an intuitive development of the results which avoids 
the distraction of the technical details.  

Two cases have to be distinguished. In the first case, increasing esti will 
never satisfy conditions (i + ii), (iii) and (iv). This can be interpreted as the situa-
tion in which Ti can neither be processed at the first, nor at the second position, 
but must be processed after Tj and Tk. We then have to increase esti until condi-
tion (v + vi) is satisfied. Notice that this is always possible by choosing esti suffi-
ciently large, i.e. by setting  

esti := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . 

However, it is possible to show that the seemingly weaker adjustment  

esti := max{esti , min{estj , estk} + pj + pk}  

is sufficient if it is combined with the tests for establishing 2-b-consistency or, 
more precisely, if after the application of this adjustment the 2-b-consistency 
tests are again applied. This leads to the following two consistency tests:  
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max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} < pi + pj + pk 

�   esti := max{esti , min{estj , estk} + pj + pk}, 
(16.4.18) 

esti + pi > max{lstj , lstk}    
�   esti := max{esti , min{estj , estk} + pj + pk} . 

(16.4.19) 

It is both important to establish 2-b-consistency prior and after the application of 
these consistency tests, since the application of the latter test can lead to a 2-b-
inconsistent state. 

A generalization of these tests will be later described under the name in-
put/output consistency tests. Trivial though it may seem, it should nevertheless 
be mentioned that the consistency tests (16.4.18) and (16.4.19) are not equiva-
lent. Furthermore, observe that if the left side of (16.4.19) is satisfied then the 
consistency tests for pairs of tasks (16.4.6) can be applied to both (i , j) and (i , k), 
but may lead to weaker domain adjustments. We will give some examples which 
confirm these assertions. 

Example 16.4.7   
Consider the example depicted in Figure 16.4.2. Since  

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} = 9 < 10 =  pi + pj + pk , 

we can adjust esti := max{esti , min{estj , estk} + pj + pk} = max{3,7} = 7 accord-
ing to (16.4.18). By comparison, no deductions are possible using (16.4.19), as 
esti + pi = 6 < 7 = max{lstj , lstk}.   

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

10 11 12
xx

9 10 11

Tk 2 3 4 5 6 7 8 9

xx
3

 
Figure 16.4.2   Consistency test (16.4.18). 

Example 16.4.8  
In Figure 16.4.3 another example is shown. Here, the consistency test (16.4.18) 
fails, as  

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} = 9 = pi + pj + pk . 

The consistency test for pairs of tasks described in (16.4.6) can be applied to (i , j)  
and (i , k), but leaves estj unchanged, since estj + pj = estk + pk = 3 < 4 = esti . On-
ly the consistency test (16.4.19) correctly adjusts esti := max{esti , min{estj , estk} 
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+ pj + pk} = max{4,6} = 6.   

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

10 11 12
xx

9

Tk 10 2 3 4 5 6 7 8 9  
Figure 16.4.3   Consistency test (16.4.19). 

Let us now turn to the second case in which the condition (i + ii) is not satisfia-
ble, but increasing esti will eventually satisfy (iii) or (iv). This can be interpreted 
as the situation in which Ti cannot be processed first, but either j � i � k or 
k � i � j are feasible. The corresponding consistency test is as follows:  

max
v�{j,k}

{lctv � esti} < pi + pj + pk 

�   esti := max{esti , min{ectj , ectk}}. 
(16.4.20) 

A generalization of this test will be later described under the name input/output 
negation consistency test. 

Example 16.4.9   
Consider the example of Figure 16.4.4. No domain reductions are possible using 
the consistency tests (16.4.18) and (16.4.19). Since, however, maxv�{j,k}{lctv
 � esti} = 7 < 9 = pi + pj + pk , we can adjust esti := max{esti , min{ectj , ectk}} = 
max{2, 3} = 3 using the consistency test (16.4.20).  

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

3
x

9

Tk 1 2 3 4 5 6 7 8 9

2

 
Figure 16.4.4   Consistency test (16.4.20).   

The adjustments of the latest start times can be handled symmetrically. The same 
line of argumentation allows us to derive the following three consistency tests: 

max
u�{j,k}, v�{i,j,k}, u�v

{lctv � estu} < pi + pj + pk 

�   lsti := min{lsti , max{lctj , lctk} � pj � pk � pi}, 
(16.4.21) 

min{estj + pj , estk + pk} > lsti (16.4.22) 
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�   lsti := min{lsti , max{lctj , lctk} � pj � pk � pi}, 

max
u�{j,k}

{lcti � estu} < pi + pj + pk 

�   lsti := min{lsti , max{lstj , lstk} � pi}. 
(16.4.23) 

Let g3 be the set of consistency tests defined in (16.4.18)-(16.4.23) for all pair-
wise different triples of tasks with indices i, j, k � B, and let g2,3 := g2 � g3 . It 
can be shown that all consistency tests in g2,3 are monotonous, so g2,3(!) is well 
defined. We have proven the following theorem. 

Theorem 16.4.10   

For all ! � J, g2,3(!) is strongly 3-b-consistent.     

Notice that g3(g2(!)) does not have to be strongly 3-b-consistent, since the ap-
plication of some of the consistency tests in g3 can result in current domains 
which are not 2-b-consistent. So, indeed, the consistency tests in g2 and g3 have 
to be applied in alternation. 

Obviously, g2,3(!) can be computed by repeatedly testing all pairwise dif-
ferent pairs and triples of tasks. However, as will be seen in the following sec-
tions, there exist more efficient algorithms. 

16.4.4 Input/Output Consistency Tests 

In the last section, domain consistency tests for pairs and triples of tasks have 
been described. It suggests itself to derive domain consistency tests for a greater 
number of tasks through a systematic evaluation of a greater number of disjunc-
tive constraints. For the sake of simplicity, we will refrain from this rather tech-
nical approach and follow the historical courses which finally leads to the defini-
tion of these powerful consistency tests. Note, however, that we must not expect 
that the consistency tests derived will establish some higher level of bound-
consistency, since great store has been set on an efficient implementation. 

At first, we will present generalizations of the consistency tests (16.4.18) 
and (16.4.19). A closer look at these tests reveals that not only domain reduc-
tions but also processing orders of tasks can be deduced. It is convenient to first 
introduce these sequence consistency tests so as to simplify the subsequent 
proofs. 

Sequence Consistency Tests  

Given a subset of task indices A �/  B and an additional task Ti , i 	 A, Carlier and 
Pinson [CP89] were the first to derive conditions which imply that Ti has to be 
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processed  before or  after all tasks Tj , j � A. In the first case, they called i the  
input of A, in the second case, the  output of A, and so the name  input/output 
conditions seems justified. 

Theorem 16.4.11  (Input/Output Sequence Consistency Tests).  

Let A �/  B and i 	 A. If the input condition  

max
u�A, v�A�{i}, u�v

{lctv � estu < p(A � {i})  (16.4.24) 

is satisfied then task Ti has to be processed before all tasks in A, for short, i � A. 
Likewise, if the output condition  

max
u�A�{i}, v�A, u�v

{lctv � estu} < p(A � {i})  (16.4.25) 

is satisfied then task Ti has to be processed after all tasks in A, for short, A � i. 

Proof. If Ti is not processed before all tasks in A then the maximal amount of 
time for processing all tasks in A � {i} is bounded by maxu�A, v�A�{i}, u�v {lctv � 
estu}. This leads to a contradiction if (16.4.24) is satisfied. Analogously, the sec-
ond assertion can be shown.           

The original definition of Carlier and Pinson is slightly weaker. It replaces the 
input condition with  

LCTmax( A � {i}) � ESTmin(A) < p(A � {i}).  (16.4.26) 

Likewise, the output condition is replaced with  

LCTmax(A) � ESTmin( A � {i}) < p(A � {i}).  (16.4.27) 

We will term these conditions the modified input/output conditions.. There are 
situations in which only the input/output conditions in their stricter form lead to a 
domain reduction. For a discussion of the computational complexity of algo-
rithms that implement these tests see the end of Section 16.4. 

Example 16.4.12     
In Example 16.4.7 (see Figure 16.4.2), we have seen that  

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} = 9 < 10 =  pi + pj + pk , 

so that the output  (16.4.25) implies {j , k} � i. By comparison, the modified 
output condition is not satisfied since  

LCTmax({ j , k }) � ESTmin({ i , j , k}) = lctj � estj = 11 > 10 = pi + pj + pk .  
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Domain Consistency Tests  

Domain consistency tests that are based on the input/output conditions can now 
be simply derived. Here and later, we will only examine the adjustment of the 
earliest start times, since the adjustment of the latest start times can be handled 
analogously. Clearly, if i is the output of a subset A then Ti cannot start before all 
tasks of A have finished. Therefore, the earliest start time of Ti is at least 
Cmax(p,(A)), i.e. the makespan if all tasks in A are scheduled without preemption. 
Unfortunately, however, determining Cmax(p,(A)) requires the solution of the 
NP-hard single-machine scheduling problem [GJ79]. Thus, if the current do-
mains are to be updated efficiently, we have to content ourselves with approxi-
mations of this bound. Some of these approximations are proposed in the next 
theorem which is a generalization of the consistency test (16.4.19) derived in the 
last subsection. This theorem is mainly due to Carlier and Pinson [CP90], 
Nuijten [Nui94], Caseau and Laburthe [CL95] and Martin and Shmoys [MS96]. 
The proof is obvious and is omitted. 

Theorem 16.4.13  (output domain consistency tests, part 1).  

If the output condition is satisfied for A �/  B and i 	 A then the earliest start time 
of Ti can be adjusted to esti := max{esti , LBh(A)}, h � {1 , 2 , 3 , 4}, where 

     (i)  LB1(A) := maxu�A{ ectu},  

     (ii)  LB2(A) := ESTmin(A) + p(A),  

     (iii)  LB3(A) := Cmax(p,  
 pr(A)),  

     (iv)  LB4(A) := Cmax(p,(A)) .   

Dominance Relations  

Let us compare the domain reductions that are induced by the output domain 
consistency tests and the different bounds. For each h � {1 , 2 , 3 , 4}, we denote 
with gout (h) := { "A,i

 (h) | A �/  B, i 	 A } the set of output domain consistency tests 
defined in  Theorem 16.4.13:  

"A,i
 (h) := max

u�A�{i}, v�A, u�v
{lctv � estu} < p(A � {i}) � esti := max{esti , LBh(A)}. 

Lemma 16.4.14    
The following dominance relations hold: 

1.  gout(1) ≺= gout(3) ≺= gout(4) ,   
2.  gout(2) ≺= gout(3) ≺= gout(4) .  
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Proof. As LB3(A) � LB4(A), the relation "A,i
 (4)(!) � "A,i

 (3)(!) holds for all A �/  B, 
i 	 A and ! � J.  Theorem 16.2.18 then implies that gout(3) ≺= gout(4). Further, 
Carlier [Car82] has shown the following identity for the preemptive bound:  

LB3(A) = max
��V�A

{ESTmin(V) + p(V) }.  (16.4.28) 

Since the maximum expression in (16.4.28) considers all single-elemented sets 
and A itself, LB1(A) � LB3(A) and LB2(A) � LB3(A). Again, using Theorem 
16.2.18, we can conclude that gout(1) ≺= gout(3) and gout(2) ≺= gout(3).  

Intuitively, it seems natural to assume that gout(1) is strictly dominated by 
gout(3), while gout(3) is strictly dominated by gout(4). Indeed, this is true. Re-
member that, since gout(1) ≺= gout(3) has already been shown, we only have to 
find an example in which gout(3) leads to a stronger domain reduction than 
gout(1) in order to verify gout(1) ≺ gout(3). The same naturally holds for gout(3) 
and gout(4). 

Example 16.4.15    
Consider the situation illustrated in Figure 16.4.5 with five tasks with indices i, j, 
k, l, m. The table in Figure 16.4.5 lists all feasible sequences and the associated 
schedules. Examining the start times of the feasible schedules shows that the 
domains ,j , ,k , ,l , ,m cannot be reduced. Likewise, it can be seen that i is the 
output of A = {j , k , l , m} with the earliest start time being LB4(A) = 10. In fact, 
the output condition holds, as 

max
u�A�{i}, v�A, u�v

{lctv � estu} = 10 < 11 = p(A � {i}) , 

so that we can adjust esti using one of the bounds of Theorem 16.4.13. Apart 
from LB4(A) = 10, it is possible to show that LB1(A) = 7, LB2(A) = 9 and LB3(A)
 = 9. Obviously, LB1(A) < LB3(A) < LB4(A) = 10. Notice that, after the adjust-
ment of esti , no other adjustments are possible if the same lower bound is used 
again, so that a fixed point is reached. This confirms the conjecture gout(1) ≺ gout
(3) ≺ gout(4).  

It remains to classify gout(2). Comparing LB1(A) and LB2(A) shows that all three 
cases LB1(A) < LB2(A), LB1(A) = LB2(A) and LB1(A) > LB2(A) can occur. Further, 
comparing LB2(A) and LB3(A) reveals that LB2(A) � LB3(A) and sometimes LB2
(A) < LB3(A). So we would presume that gout(1) and gout(2) are not comparable, 
while gout(2) is strictly dominated by gout(3). This time, however, our intuition 
fails, since in fact gout(2) and gout(3) are equivalent.  
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Ti
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sequence    sti stj stk stl stm 
j � k � m � l � i  10 0 2 7 5 
j � l � m � k � i  10 0 8 3 6 
k � j � m � l � i  10 2 0 7 5 

Figure 16.4.5   Comparing gout(1), gout(3) and gout(4).   

Theorem 16.4.16  (dominance relations for output consistency tests). [DPP00] 

gout(1) ≺ gout(2) ~ gout(3) ≺ gout(4).     

Proof. We only have to prove gout(3) ≺= gout(2). It is sufficient to show that for all 
A �/  B, i 	 A and all ! � J, one of the following cases applies: 

(1)   "A,i
 (3)(!) = "A,i

 (2)(!) ,  

(2)    V �/  A :  "A,i
 (3)(!) = "V,i

 (2)("A,i
 (2)(!)) .  

Once more, Theorem 16.2.18 will then lead to the desired result. Let us assume 
that the output condition (16.4.25) is satisfied for some A �/  B and i 	 A. We 
have to compare the bounds: 

(i)  LB2(A) = ESTmin(A) + p(A) , 

(ii)  LB3(A) = max��V�A{ESTmin(V) + p(V)} , 

If LB2(A) = LB3(A) then "A,i
 (2) and "A,i

 (3) deduce the same domain reductions and 
case (1) applies. Let us therefore assume that LB2(A) < LB3(A). Since the 
preemptive bound is determined by (16.4.28) , there exists V - A, V � �, such 
that LB3(A) = ESTmin(V) + p(V). Since LB2(A) < LB3(A), this is equivalent to  

ESTmin(A) + p(A) < ESTmin(V) + p(V) .  (16.4.29) 

Subtracting p(V) from both sides yields  

ESTmin(A) + p(A � V) < ESTmin(V)    (16.4.30) 
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The last inequality will be used at a later time. Assume now that esti has been 
adjusted by applying "A,i

 (2)
 . Note that this means that esti is increased or remains 

unchanged. Thus, if the output condition is satisfied for the couple (A , i)  prior 
the adjustment of esti then it is satisfied  after the adjustment, so that  

max 
u�A�{i},v�A,u�v

{lctv � estu
 *} < p(A � {i})  (16.4.31) 

still holds for est i
 * := max{esti , LB2(A)} and estu

 * = estu for all u � i. If we do not 
maximize over all but only a subset of values then we obtain a lower bound of 
the left side of this inequality and  

max 
u�A,v�V,u�v

{lctv � estu
 *} < p(A � {i}) .  (16.4.32) 

Rewriting p(A � {i}) = p(V � {i}) + p(A � V) then leads to  

max 
u�A,v�V,u�v

{lctv � (estu
 * + p(A � V)} < p(A � {i}) . (16.4.33) 

The left side of (16.4.33) can be simplified using the identity   

max 
u�A,v�V,u�v

{lctv � (estu
 * + p(A � V))}  

= max 
v�V

{lctv � (ESTmin
 *  (A) + p(A � V))}. (16.4.34) 

This is not apparent at once and requires some explanations. At first, the 
term on the left side of (16.4.34) seems to be less than or equal to the term on the 
right side, since ESTmin

 *  (A) � estu
 * for all u � A. We now choose u' � A such that 

estu'
 *  = ESTmin

 *  (A). If u' � V - A then ESTmin
 *  (V) = ESTmin

 *  (A). Since the earliest 
start times of all tasks with indices in A did not change, this is a contradiction to 
(16.4.30). Thus, the left side of (16.4.34) assumes the maximal value for u = 
u' 	 V , and both terms are indeed identical. Therefore, (16.4.33) is equivalent to  

max 
v�V

{lctv � (ESTmin
 *  (A) + p(A � V))} < p(V � {i}). (16.4.35) 

The left side of (16.4.35) can be approximated using (16.4.30) which tells us that 
for all u � V :  

estu
 * > ESTmin

 *  (A) + p(A � V)  (16.4.36) 

Likewise, we can deduce  

est i
 * � LB2(A) = ESTmin

 *  (A) + p(A) > ESTmin
 *  (A) + p(A � V) . (16.4.37) 

So, ESTmin
 *  (A) + p(A � V) in (16.4.35) can be replaced by estu

 * for all u � V � {i} 
which yields  

max 
u�V�{i},v�V,u�v

{lctv � estu
 *} < p(V � {i})  (16.4.38) 

Observe that this is nothing but the output condition for the couple (V , i). 
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Since LB2(V) = ESTmin
 *  (V) + p(V) = LB3(A), a subsequent application of "V,i

 (2) leads 
to the same domain reduction and the second case (2) applies. This completes 
our proof.   

Sequence Consistency Tests Revisited  

It has already been mentioned that applying both sequence and domain con-
sistency tests together can lead to better search space reductions. Quite evidently, 
any domain reductions deduced by Theorem 16.4.13 can lead to additional edge 
orientations deduced by Theorem 16.4.11. We will now discuss the case in 
which the inverse is also true. 

Imagine a situation in which A � i can be deduced for a subset of tasks, but 
in which the output condition does not hold for the couple (A , i). Such a situation 
can actually occur as has, for instance, been shown in Example 16.4.8 for the 
three tasks Ti , Tj , Tk : while j � i and k � i can be separately deduced without, 
however, implying a domain reduction, the output condition fails for the couple 
({j , k} , i). This motivates the following obvious theorem as an extension of Theo-
rem 16.4.13. 

Theorem 16.4.17  (Input/Output Domain Consistency Tests, part 2).  

Let A �/  B and i 	 A. If A � i then the earliest start time of task Ti can be adjust-
ed to esti := max{esti, LBh(A)}, h � {1 , 2 , 3 , 4}.  

Algorithms and Implementation Issues  

An important question to answer now is whether there exist efficient algorithms 
that implement the input/output consistency tests. There are two obstacles which 
have to be overcome: the computation of the domain adjustments and the detec-
tion of the couples (A , i) which satisfy the input/output conditions. 

Regarding the former, computing the non-preemptive bound is ruled out due 
to the NP-hardness result. At the other extreme, the “earliest completion time 
bound'' (LB1) is a too weak approximation. Therefore, only the “sum bound'' 
(LB2) or the preemptive bound (LB3) remain candidates for the domain adjust-
ments. Recall that both bounds are equivalent with respect to the induced !-
fixed-point. Regarding the computational complexity, however, the two bounds 
are quite different: on the one hand, computing LB2 requires linear time com-
plexity O(|A |) in contrast to the O(|A | log |A |) time complexity for computing 
LB3 . On the other hand, establishing the !-fixed-point, LB2 usually has to be 
computed more often than LB3 , and it is not clear which factor - complexity of 
bound computation or number of iterations - dominates the other. 

Let us turn to the second problem. An efficient implementation of the in-
put/output consistency tests is obviously not possible if all pairs (A , i) of subsets 
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A �
/
 B and tasks Ti , i 	 A are to be tested separately. Fortunately, it is not neces-

sary to do so as has been first shown by Carlier and Pinson [CP90]. They devel-
oped an O(n2) algorithm (with n = | B |) which deduces all edge orientations and 
all domain reductions that are implied by the modified input/output conditions 
and the preemptive bound adjustment3. The fundamental idea was to test the 
modified input/output conditions and to compute the preemptive bound adjust-
ments simultaneously. Several years later, Carlier and Pinson [CP94] and Bruck-
er et al.  [BJK94] presented O(n log n) algorithms which until now have the best 
asymptotic performance, but require quite complex data structures. 

Nuijten [Nui94], Caseau and Laburthe [CL95] and Martin and Shmoys 
[MS96] have chosen a solely domain oriented approach and proposed different 
algorithms for implementing Theorem 16.4.13 based again on the modified in-
put/output conditions. Nuijten developed an O(n2) algorithm which as well can 
be applied to scheduling problems with discrete resource capacity. Caseau and 
Laburthe presented an O(n3) algorithm based on the concept of task sets which 
works in an incremental fashion, so that O(n3) is a seldom worst case. The algo-
rithm introduced by Martin and Shmoys [MS96] has a time complexity of O(n2). 

An O(n3) algorithm which deduces all edge orientations implied by Theorem 
16.4.11 has been derived by Phan Huy [Pha00]. He also presents an O(n2

 log n) 
for deriving all domain adjustments implied by Theorem 16.4.17. 

16.4.5 Input/Output Negation Consistency Tests 

In the last subsection, conditions have been described which imply that a task 
has to be processed before (after) another set of tasks. In this subsection, the in-
verse situation that a task cannot be processed first (last) is studied. 

Sequence Consistency Tests  

The following theorem is due to Carlier and Pinson [CP89]. For reasons near at 
hand, we have chosen the name input/output negation for the conditions de-
scribed in this theorem. 

Theorem 16.4.18  (Input/Output Negation Sequence Consistency Tests).  

Let A �/  B and i 	 A. If the input negation condition  

                                                 
3 It is common practice to only report the time complexity for applying all consistency tests 

once. In general, the number of iterations necessary for computing the ∆-fixed-point has to 
be considered as well. In the worst case, this accounts for an additional factor c which de-
pends upon the size of the current domains. In practice, however, c is a rather small con-
stant. 
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LCTmax(A) � esti < p(A � {i})  (16.4.39) 

is satisfied then task Ti cannot be processed before all tasks Tj , j � A. Likewise, 
if the output negation condition   

lcti � ESTmin(A) < p(A � {i})  (16.4.40) 

is satisfied then task Ti cannot be processed after all other tasks Tj , j � A. 

Proof. If Ti is processed before Tj , j � A then all tasks with indices in A have to 
be processed within the time interval [esti , LCTmax(A)). This leads to a contradic-
tion if (16.4.39) is satisfied. The second assertion can be shown analogously.  

The input/output negation conditions are a relaxation of the input/output condi-
tions and so are more often satisfied. However, the conclusions drawn in Theo-
rem 16.4.18 are usually weaker than those drawn in Theorem 16.4.11, except for 
A contains a single task4. An important issue is therefore the development of 
strong domain reduction rules based on the limited information deduced. 

Domain Consistency Tests  

We will only study the input negation condition and the adjustments of earliest 
start times. Let us suppose that (16.4.39) is satisfied for A �/  B and i 	 A. Since, 
then, Ti cannot be processed before all tasks Tj , j � A, there must be a task in A 
which starts and finishes before Ti , although we generally do not know which 
one. Thus, a lower bound of the earliest start time of Ti is  

LB5(A , i) = min
u�A

{ectu}  (16.4.41) 

Caseau and Laburthe [CL95] made the following observation: if Ti cannot be 
processed first then, in any feasible schedule, there must exist a subset 
� � V � A, so that V � i � A � V. As a necessary condition, this subset V has to 
satisfy  

LCTmax((A � V) � {i}) � ESTmin(V) � p(A � {i}) . (16.4.42) 

Consequently, they proposed  

LB6(A , i) = min 
��V�A

{ LB2(V) | V satisifies (16.4.42) } (16.4.43) 

as a lower bound for the earliest start time of Ti . Notice, however, that if V satis-
fies (16.4.42) then the one-elemented set V' := {u} � V with estu = ESTmin(V) 
satisfies (16.4.42) as well. Further, LB2(V) = ESTmin(V) + p(V) = estu + p(V) 
                                                 
4 In this case, the input/output negation sequence consistency test coincides with the in-

put/output sequence consistency test for pairs of operations. 
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� estu + pu = LB2(V'), so that the expression in (16.4.43) is minimal for a one-
element set. Therefore, setting Au := (A � {u}) � {i} we can rewrite 

 LB6(A , i) = min
u�A

{ ectu | LCTmax(Au) � estu � p(Au � {u}} (16.4.44) 

This bound has a quite simple interpretation: the minimal earliest completion 
time is only chosen among all tasks which do not satisfy the input negation con-
dition, because those who do, cannot start at the first position. 

Up to now, esti has been adjusted to the earliest completion time of some 
single task. The time bound adjustment can be improved if a condition is derived 
that detects a situation in which more than one task have to be processed before 
Ti . Observe that if for a subset � � V � A the sequence V � i � A � V  is feasi-
ble then the following condition must hold:  

LCTmax((A � V) � {i}) � esti � p((A � V) � {i}) . (16.4.45) 

This implies the lower bounds on the earliest start time:   

LB7(A , i) := min
��V�A

{ LB2(V) | V satisfies (16.4.45)} (16.4.46) 

LB8(A , i) := min
��V�A

{ LB3(V) | V satisfies (16.4.45)} (16.4.47) 

Finally, we can try to find the exact earliest start time of task Ti by computing  

LB9(A , i) := min
��V�A

{ LB4(V) | V � i � A � V is feasible} . (16.4.48) 

The following theorem which is a generalization of the consistency test 
(16.4.20) summarizes the results derived above. 

Theorem 16.4.19   (Input/Output Negation Domain Consistency Tests).  

If the input negation condition is satisfied for A �/  B and i 	 A then the earliest 
start time of task Ti can be adjusted to esti := max{esti , LBh(A , i)}, h � {5 , 6 , 7 ,  

8 , 9}.  

Dominance Relations  

For h � {5 , 6 , 7 , 8 , 9}, let g¬in(h) := { "A,i
 (h) | A �/  B, i 	 A} denote the set of input 

negation domain consistency tests defined in Theorem 16.4.19:  

"A,i
 (h) : LCTmax(A) � esti < p(A � {i})  �  esti := max{esti , LBh(A , i)} .  

Lemma 16.4.20    
The following dominance relations hold: 
    1. g¬in(5) ≺= g¬in(6) ≺= g¬in(9), 
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    2. g¬in(5) ≺= g¬in(7) ≺= g¬in(8) ≺= g¬in(9). 

Lemma 16.4.21    

g¬in(5) ~ g¬in(6). 

Proof. We only have to prove that g¬in(6) ≺= g¬in(5). It is sufficient to show that 
for all A �/  B, i 	 A and ! � J, there exist A1

 ,...,  Ar �/  B such that   

("Ar,i
 (5) h...h "A1,i

 (5))(!) � "A,i
 (6)(!)   (16.4.49) 

For the sake of simplicity, we omit an exact proof but only describe the basic 
ideas. Let U � A denote the index set of tasks satisfying the input negation condi-
tion, i.e. U := { u � A | LCTmax(Au) � estu < p(Au � {u})} with Au := (A � {u}) � 
{i}. 

Recall that   

(i) LB5(A , i) = min
u�A

{ectu} , 

(ii) LB6(A , i) = min
u�A�U

{ ectu} . 

If both bounds are identical then, obviously, "A,i
 (6)(!) = "A,i

 (5)(!). This identity, for 
instance, holds if U is empty. Thus, in the following, we restrict our attention to 
the case | U | > 0. If u � A is a task satisfying ectu = LB5(A , i) < LB6(A , i) then 
u � U  and   

estu + p(Au � {u}) = ectu + p(Au) > LCTmax(Au) .  

If the earliest start time of Ti has been adjusted to est i
 * := max{esti, LB5(A , i)} by 

applying "A,i
 (5) then we have est i

 * � ectu , so  

est i
 * + p(Au) > LCTmax(Au) � LCTmax(Au � {i}) 

or  
est i

 * + p((A � {u}) � {i}) > LCTmax(A � {u}) 

which is the input negation condition for the couple (A � {u} , i). Therefore, est i
 * 

can be adjusted once more to LB5(A � {u}, i). If LB5(A � {u}, i) = LB6(A � {u}, i) 
then we are done, since LB6(A � {u}, i) � LB6(A, i). Otherwise, we are in the 
same situation as above which allows us to continue in the same manner. Finally, 
observe that the number of adjustments is finite and bounded by | A |.  

Example 16.4.22    
Consider the example shown in Figure 16.4.6 with four tasks indexed as i, j, k, l. 
A closer look at the set of feasible schedules reveals that ,j , ,k and ,l cannot be 
reduced. Likewise, it can be seen that i cannot be the input of A = {j , k , l} which 
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is detected by the input negation condition, since LCTmax(A) � esti = 11 –
5 < 11 = p(A � {i}). Using LB5 , no time bound adjustment is possible, since LB5
(A , i) = 3. However, there exists no feasible schedule in which only one task is 
processed before Ti . Indeed, LB7(A , i) = 6 leads to a stronger time bound adjust-
ment. After the domain reduction, a fixed point is reached, so this example and 
Lemma 16.4.20 prove that g¬in(5) ≺ g¬in(7).    

Ti

10 2 3 4

5 6 7 8 9

Tj

Tk 2 3 4 5 6 7 8 9

5 6 7 8
Tl

9

10 11 12

10

10

x
13

5 6 7 8 9 10 11

11

11  

sequence sti stj stk stl 
j � k � i � l 6 0 3 8 
j � k � l � i 9 0 3 6 
j � l � k � i 11 0 8 5 
k � j � l � i 11 5 2 8 
k � l � j � i  11 8 2 5 

Figure 16.4.6   Comparing g¬in(5) and g¬in(7). 

Lemma 16.4.23    

g¬in(7) ~ g¬in(8) . 

Proof. Similar to Theorem 16.4.16.   

Example 16.4.24    
Consider the situation in Figure 16.4.7 with five tasks indexed as i, j, k, l, m. 
Again, ,j, ,k, ,l and ,m cannot be reduced. Further, it can be seen that i is the 
output of A = {j , k , l , m} with the earliest start time being LB9(A , i) = 9. However, 
the output condition is not satisfied for the couple (A , i). The input negation con-
dition holds, since LCTmax(A) – esti = 11 – 1 < 11 = p(A � {i}), but LBh(A , i) = 1 
for all h � {5 , 6 , 7 , 8). Thus, the current domain of Ti remains unchanged if these 
bound adjustments are applied, i.e. a fixed point is reached. This and Lemma 
16.4.20 prove the relation g¬in(8) ≺ g¬in(9).   



 16.4  Constraint Propagation and the DSP 653 

Ti

10 2

4 5 6 7 8 9

Tj

3
x

Tk 1 2 3 4 5 6 7 8 9

21

3 4 5 6 7 8
Tl

9

Tm 5 6 7

10 11 12

10

x x x xx x x
13

4 5 6 7 8 93 10 11

11

2

4  

sequence sti stj stk stl stm 
j � k � m � l � i 9 0 1 6 4 
j � l � m � k � i 10 0 7 2 5 
k � m � l � j � i 10 9 1 6 4 
l � m � j � k � i 11 7 8 2 5 
l � m � k � j � i 11 10 7 2 5 

Figure 16.4.7   Comparing g¬in(8) and g¬in(9).   

Altogether, we have proven the following theorem. 

Theorem 16.4.25   (dominance relations for input negation consistency tests).  

g¬in(5) ~ g¬in(6) ≺ g¬in(7) ~ g¬in(8) ≺ g¬in(9) .  

Algorithms and Implementation Issues  

Input negation consistency tests which use the “simple earliest completion time 
bound'' (LB5) as time bound adjustment and their output negation counterparts 
have been applied by Nuijten [Nui94], Baptiste and Le Pape [BL95] and Caseau 
and Laburthe [CL95]. Caseau and Laburthe have integrated the tests in their 
scheduling environment based on task sets in a straightforward manner which 
yields an algorithm with time complexity O(n3). All these algorithms only test 
some, but not all interesting couples (A , i). An algorithm which deduces all do-
main reductions with time complexity O(n2) has only been developed by Baptiste 
and Le Pape [BL96]. A similar implementation is proposed by Phan Huy in 
[Pha00]. Nuijten and Le Pape [NL98] derived several consistency tests which are 
similar to the input/output negation consistency tests with the time bound ad-
justment LB8 and can be implemented with time complexity O(n2 log n) and 
O(n3) respectively. 
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16.4.6 Input-or-Output Consistency Tests 

In this subsection, some new consistency tests are presented which are not sub-
sumed by the consistency tests presented in the previous subsections. They are 
based on the input-or-output conditions which have been introduced by Dorndorf 
et al.  [DPP99]. 

Domain and Sequence Consistency Tests  

The input-or-output conditions detect situations in which either (a) a task Ti has 
to be processed first or (b) a task Tj has to be processed last within a set of tasks. 
There exists a sequence and a domain oriented consistency test based on the in-
put-or-output condition. Both tests are summarized in the next theorem. 

Theorem 16.4.26   (input-or-output consistency tests).  

Let A �/  B and i, j 	 A. If the input-or-output condition  

max 
u�A�{j},v�A�{i},u�v

{lctv � estu} < p(A � {i , j}) (16.4.50) 

is satisfied then either task Ti has to be processed first or task Tj has to be pro-
cessed last within A � {i , j}. If i � j then task Ti has to be processed before Tj 
and the domains of Ti and Tj can be adjusted as follows:  

estj := max{estj , esti + pi} , 

lstj := min{lsti , lstj � pi} . 

Proof. If Ti is neither processed before, nor Tj processed after all other tasks in 
A � {i , j} then all tasks in A � {i , j} have to be processed within a time interval 
of maximal size  

max 
u�A�{j},v�A�{i},u�v

{lctv � estu}. 

This is a contradiction to (16.4.50). 
 Now, since Ti has to be processed first or Tj processed last within A � {i , j}, 

we can deduce that Ti has to be processed before Tj if i � j. This immediately 
implies the domain deductions described above.   

By substituting  (16.4.50) with  

LCTmax((A � {i}) � ESTmin(A � {j}) < p(A � {i , j}) , (16.4.51) 

we obtain the modified input-or-output conditions which can be tested more easi-
ly, but are less often satisfied than the input-or-output conditions. 
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Example 16.4.27    
In Figure 16.4.8 an example for the application of the input-or-output consisten-
cy tests with four tasks indexed as i, j, k, l is shown. 
Since  

max 
u�{j,k,l},v�{i,k,l},u�v

{lctv � estu} = 6 < 7 = p({i , j , k , l}) 

we can conclude that Ti has to be processed before Tj . Thus, we can adjust estj := 
4 and lsti := 4.   

Ti

3 4

5 6 7 8

Tj

Tk
2 3 4 5 6 7 8

Tl

x

5 6 7 8 9

1 2 3 4

2 3 4 5 6 7 8

x

 
Figure 16.4.8   The input-or-output consistency test.  

Algorithms and Implementation Issues  

Deweß [Dew92] and Brucker et al. [BJK94] discuss conditions which examine 
all permutations of a fixed length r and which are thus called r-set conditions. 
Brucker et  al.  [BJK94] developed an O(n2) algorithm for testing all 3-set condi-
tions which is equivalent to testing all input-or-output conditions for triples of 
tasks. Phan Huy [Pha00] developed an O(n3) algorithm for deriving all edge ori-
entations implied by the modified input-or-output conditions. This algorithm can 
be generalized to an O(n4) algorithm which deduces all edge orientations implied 
by the input-or-output conditions. 

16.4.7 Energetic Reasoning 

The conditions described in the previous subsections for testing consistency were 
all founded on the principle of comparing a time interval in which a set of tasks 
A has to be processed with the total processing time p(A) of these tasks. The time 
intervals chosen were defined through the earliest start and latest completion 
times of some of the tasks. This fundamental principle can be generalized by 
considering arbitrary time intervals [t1 , t2), on the one hand, and replacing simple 
processing time p(A) with interval processing time p(A , t1 , t2), on the other hand. 
Erschler et al. [ELT91], see also [LEE92], were the first to introduce this idea 
under the name of energetic reasoning. Indeed, the interval processing time can 
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be interpreted as resource energy demand which encounters a limited resource 
energy supply that is defined through the time interval. The original concept of 
Erschler et al. considered cumulative scheduling problems with discrete resource 
capacity. Their results have been improved by Baptiste and Le Pape [BL95] for 
disjunctive constraints. We will take a closer look at these results and compare 
them to the consistency tests described so far. 

Interval Processing Time  

Let us first define the interval processing time of a task Ti for a given time inter-
val [t1 , t2), t1 < t2 . The interval processing time pi(t1 , t2) is the smallest amount of 
time during which Ti has to be processed within [t1 , t2). Figure 16.4.9 shows four 
possible situations: (1) Ti can be completely contained within the interval, (2) 
overlap the entire interval, (3) have a minimum processing time in the interval 
when started as early as possible or (4) have a minimum processing time when 
started as late as possible. The fifth situation not depicted applies whenever, giv-
en the current domains, Ti does not necessarily have to be processed within the 
given time interval. Consequently,  

pi(t1 , t2) := max{ 0, min{pi , t2 � t1 , ecti � t1 , t2 � lsti }}. (16.4.52) 

3 4

5 6

3 4 5

5 6 8 9

3 4

1

4 5 6 8

(1)

(2)

(3)

(4)

1

9 107

2

2 7

 
Figure 16.4.9   Types of relations between a task and a time interval. 

The interval processing time of a subset of tasks A is given by p(A , t1 , t2) :=  
5i�A pi(t1 , t2). Finally, let B(t1,t2) := { i � B | pi(t1 , t2) > 0 } denote the set of tasks 
which have to be processed completely or partially within [t1 , t2). 

Energetic Input/Output Consistency Tests  

Baptiste and Le Pape [BL95] examined situations in which the earliest start time 
of a task Ti can be updated using the concept of interval processing times. As-
sume, for instance, that Ti finishes before t2 . The interval processing time of Ti in 
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[t1 , t2) would then be pi'(t1 , t2) = min{pi , t2 � t1 , ecti � t1}.5 However, if t2 � t1
 < p(B � {i} , t1 , t2) + pi'(t1 , t2) then the assumption cannot be true, so that Ti has to 
finish after t2. Baptiste and Le Pape showed that esti can be then updated to  

esti := max{esti , t1 +  p(B � {i} , t1 , t2) }.  (16.4.53) 

A stronger domain reduction rule is presented in the following theorem. 

Theorem 16.4.28   Energetic output conditions.  

Let i � B and t1 < t2. If the energetic output condition  

t2 � t1 < p(B � {i} , t1 , t2) + min{pi , t2 � t1 , ecti � t1}  (16.4.54) 

is satisfied then B(t1,t2) � {i} is not empty, and Ti has to be processed after all 
tasks of B(t1,t2) � {i} . Consequently, esti can be adjusted to esti := max{esti ,  
LBh(B(t1,t2) � {i})}, h � {1 , 2 , 3 , 4} . 

Proof. If (16.4.54) is satisfied then p(B � {i} , t1 , t2) > 0 and B(t1,t2) � {i} is not 
empty. Furthermore, Ti must finish after t2 . By definition, all tasks in B(t1,t2) � {i} 
have positive processing times in the interval [t1 , t2) and so must start and finish 
before Ti . This proves B(t1,t2) � {i} � i from which follows the domain reduction 
rule.   

Energetic input conditions can be defined in a similar way. Observe that the do-
main adjustment in Theorem 16.4.28 is stronger than the one defined in (16.4.53) 
if the "sum bound'' (LB2) or a stronger bound is used. We omit the simple proof 
due to the observations made in the following. 

Up to now, it remained an open question which time intervals were especial-
ly suited for testing the energetic input/output conditions in order to derive 
strong domain reductions. We will sharpen this question and ask whether Theo-
rem 16.4.28 really leads to stronger domain reductions at all if compared with 
other known consistency tests. Quite surprisingly, the answer is “no''. 

Theorem 16.4.29   (comparing output and energetic output conditions).  
If the energetic output condition  

 t2 � t1 < p(B � {i} , t1 , t2) + min{pi , t2 � t1 , ecti � t1} 

is satisfied for a task Ti , i � B and the time interval [t1 , t2) then the output condi-
tion  

max 
u�A�{i},v�A,u�v

{lctv � estu} < p(A � {i}) 

                                                 
5 Here and later, we will assume that pi'(t1 , t2) � 0 which is not a serious restriction. 
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is satisfied for the couple (B(t1,t2) � {i} , i). 

Proof. If the energetic output condition is satisfied then B(t1,t2) � {i} is not empty, 
and there exists a task Tv with v � B(t1,t2) � {i}. Let us first consider the case 
u � B(t1,t2) � {i}, u � v. We can approximate the right side of (16.4.54) and obtain  

t2 � t1 < p(B � {i} , t1 , t2) + pi  

  = p(B � {i , u , v} , t1 , t2) + pu(t1 , t2) + pv(t1 , t2) + pi . (16.4.55) 

Since u, v � B(t1,t2) , we know from (16.4.52) that t2 � lstv � pv(t1 , t2) and ectu � t1
 � pu(t1 , t2), and we can approximate  

t2 � t1 < p(B � {i , u , v} , t1 , t2) + ectu � t1 + t2 � lstv + pi (16.4.56) 

which is equivalent to  

lstv � ectu < p(B � {i , u , v} , t1 , t2) + pi .  (16.4.57) 

Note that p(B � {i , u , v} , t1 , t2) � p(B(t1,t2) � {i , u , v}), so we arrive at  

lstv � ectu < p(B(t1,t2) � {u , v}) .  (16.4.58) 

or, equivalently,  

lctv � estu < p(B(t1,t2)) .  (16.4.59) 

Now, consider the case u = i � v. Using  (16.4.54) , we have 

 t2 � t1 < p(B � {i} , t1 , t2) + ecti � t1 

   = p(B � {i , v} , t1 , t2) + pv(t1 , t2) + ecti � t1 . (16.4.60) 

We can, again, substitute pv(t1 , t2) with t2 � lstv and obtain  

lstv � ecti < p(B � {i , v} , t1 , t2) .  (16.4.61) 

A similar line of argumentation as above leads to  

lctv � esti < p(B(t1,t2)) .  (16.4.62) 

Finally, combining  (16.4.59) and  (16.4.62) leads to the output condition for the 
couple (B(t1,t2) � {i} , i) which proves our assertion.  

A similar result applies for the energetic input condition. Inversely, a quite sim-
ple proof which is omitted shows that the input/output conditions are subsumed 
by the energetic generalizations, so that both concepts are in fact equivalent. 
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Other Energetic Consistency Tests  

It is possible to derive input/output negation conditions and input-or-output con-
ditions that are based on energetic reasoning. However, as in the case of the in-
put/output conditions, they do not imply additional domain reductions which are 
not also deduced by the corresponding non-energetic conditions. We therefore 
omit a detailed presentation of these conditions. 

The results of this subsection have an important implication. They tell us 
that for the disjunctive scheduling problem, all known consistency tests that are 
based on energetic reasoning are not more powerful than their non-energetic 
counterparts. It is not clear whether this holds for arbitrary consistency tests, alt-
hough we strongly assume this. A step towards proving this conjecture has been 
made in [DPP99] where it has been shown that, regardless of the chosen con-
sistency tests, the interval processing times p(A , t1 , t2) can always be replaced by 
the simple processing times p(A). 

16.4.8 Shaving 

All consistency tests presented so far share the common idea that a possible start 
time sti of a task Ti can be removed from its current domain ,i if there exists no 
feasible schedule in which Ti actually starts at that time. In this context, the con-
sistency tests that have been introduced in the Sections 16.4.3 through 16.4.7 can 
be interpreted as sufficient conditions for proving that no feasible schedule can 
exist which involve a specific start time assignment sti . In Section 16.4.3, for 
instance, we have tested the sufficient condition whether there exists a 2- or 3-
feasible start time assignment. 

This general approach has been summarized by Martin and Shmoys under 
the name shaving [MS96]. They proposed additional shaving variants. Exact 
one-machine shave verifies whether a non-preemptive schedule exists by solving 
an instance of the one-machine scheduling problem in which the start time sti 
� {esti , lsti} is fixed. Quite obviously, exact one-machine shave is NP-hard and 
equivalent to establishing n-b-consistency. One-machine shave relaxes the non-
preemption requirement and searches for a (possibly) preemptive schedule. 

Carlier and Pinson [CP94] and Martin and Shmoys [MS96] independently 
proposed the computation of !-fixed-points as a method for proving the non-
existence of a feasible schedule. Given a set of consistency tests g and a set of 
current domains, say !', a feasible schedule cannot exist if a current domain in 
g(!') is empty. Carlier and Pinson, and Martin and Shmoys who coined the name 
C-P shave have chosen the modified input/output domain consistency tests and 
the precedence consistency tests as underlying set of consistency tests. Martin 
and Shmoys have further proposed double shave which applies C-P shave for 
detecting inconsistencies. Torres and Lopez [TL00] review possible extensions 
of shaving techniques that have been proposed for job shop scheduling. Dorndorf 
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et al. [DPP01] very successfully apply shaving techniques to the open shop 
scheduling problem (OSP), which is a special case of the DSP (cf. Chapter 9). 

16.4.9 A Comparison of Disjunctive Consistency Tests 

Let us summarize the results derived so far. In Figure 16.4.10, the dominance 
relations between different levels of bound-consistency and classes of consisten-
cy tests are shown6. A strict dominance is represented by an arc �, while X 
stands for an equivalence relation. An encircled "+'' means that the correspond-
ing classes of consistency tests taken together imply a dominance relation. Since 
the dominance relation is transitive, we do not display all relations explicitly. 

Let us start with the upper half of the figure. Obviously, n-b-consistency and 
exact one-machine shave are equivalent and strictly dominate all other consisten-
cy tests. On the left side, n-b-consistency, of course, subsumes all levels of k-b-
consistency for k � n. 

In the center of the figure, the consistency tests with an input/output compo-
nent in their names are shown. As has been proven in Section 16.4.7, the ener-
getic consistency tests are equivalent to the non-energetic ones. In Example 
16.4.12, we have verified that the input/output consistency tests dominate the 
modified input/output consistency tests. The same dominance relation holds for 
the input-or-output tests when compared to the modified tests. In Section 16.4.3 
we have shown that the input/output and input/output negation consistency tests 
taken together establish strong 3-b-consistency if for the former the "sum bound'' 
(LB2) and for the latter the "simple earliest completion time bound'' (LB5) are 
applied for adjusting the current domains. The input/output and input/output ne-
gation tests usually imply more than 3-b-consistency as can be seen in Example 
16.4.15. However, if only pairs and triples of tasks are considered then the 
equivalence relation holds. Further, it has been shown in Section 16.4.3 that ap-
plying the input/output consistency tests for pairs of tasks is equivalent to estab-
lishing 2-b-consistency if the "earliest completion time bound'' (LB1) is used as 
time bound adjustment. 

Let us now turn to the right side of the figure. It is not hard to show that 
double shave strictly dominates C-P shave which in turn strictly dominates one-
machine shave. Apart from this, there exists no particular relationship between 
double shave and C-P shave and the other consistency tests. However, double 
shave and C-P shave usually lead to significantly stronger domain reductions as 
has been verified empirically. Finally, Martin and Shmoys [MS96] have shown 
that one-machine shave is equivalent to the modified input/output domain con-
sistency tests. 

                                                 
6 Although the dominance relation has only been defined for sets of consistency tests, it can be 

extended in a straightforward manner to the levels of bound-consistency. 
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Figure 16.4.10   Dominance relations. 
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16.4.10 Precedence vs. Disjunctive Consistency Tests 

The consistency tests which have been developed for the disjunctive constraints 
can be applied to an instance of the DSP by decomposing this instance into 
(preferably maximal) cliques. Since all consistency tests presented are monoto-
nous, they can be applied in an arbitrary order and always result in the same !-
fixed-point. However, the runtime behaviour differs extremely depending on the 
order of application that has been chosen. 

An ordering rule which has been proven to be quite effective is to perform 
the sequence consistency tests that are likely to deduce more edge orientations 
and have a lower time complexity in the beginning. A particular set of consisten-
cy tests is only triggered if all "preceding'' consistency tests do not imply any 
deductions any more. This ensures that the more costly consistency tests are only 
seldomly applied and contribute less in the overall computational costs. 

Finally, Nuijten and Sourd [NS00] have recently described consistency 
checking techniques for the DSP that are based on the simultaneous considera-
tion of precedence constraints and disjunctive constraints. 

16.5 Conclusions 

Constraint propagation is an elementary method which reduces the search space 
of a search or optimization problem by analyzing the interdependencies between 
the variables, domains and constraints that define the set of feasible solutions. 
Instead of achieving full consistency with respect to some concept of consisten-
cy, we generally have to content ourselves with approximations due to reasons of 
complexity. In this context, we have evaluated classical and new consistency 
tests for the DSP which are simple rules that reduce the domains of variables 
(domain consistency tests) or derive knowledge in a different form, e.g. by de-
termining the processing sequences of a set of tasks (sequence consistency tests). 

The particular strength of this approach is based on the repeated application 
of the consistency tests, so that the knowledge derived is propagated, i.e. reused 
for acquiring additional knowledge. The deduction of this knowledge can be de-
scribed as the computation of a fixed point. Since this fixed point depends upon 
the order of the application of the consistency tests, Dorndorf et al. [DPP00] at 
first have derived a necessary condition for its uniqueness and have developed a 
concept of dominance which enables to compare different consistency tests. 
With respect to this dominance relation, they have examined the relationship 
between several concepts of consistency (bound-consistency, energetic reasoning 
and shaving) and the most powerful consistency tests known as the input/output, 
input/output negation and input-or-output consistency tests. They have been able 
to improve the well-known result that the input/output consistency tests for pairs 
of tasks imply 2-b-consistency by deriving the tests which establish strong 3-b-
consistency. These consistency tests are slightly stronger than the famous ones 
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derived by Carlier and Pinson [CP89, CP90]. Dorndorf et al. [DPP00] have ana-
lyzed the input/output, input/output negation and input-or-output consistency 
tests and have classified different lower bounds which are used for the reduction 
of domains. They have shown that apparently weaker bounds still induce the 
same fixed point. Finally, an open question regarding the concept of energetic 
reasoning has been answered. In contrast to scheduling problems with discrete 
resource supply, they have shown that the known consistency tests based on en-
ergetic reasoning are equivalent to the tests based on simple processing times. 

16.6 Appendix: Bound Consistency Revisited 

In this section, we derive the time bound adjustments for establishing 3-b-
consistency as has been announced in Section 16.4.3. Let us assume that the fol-
lowing condition  

(max{lctj � esti , lctk � esti} � pi + pj + pk)   W (i + ii) 

(estj + pj � esti   ^   esti + pi � lstk)   W  (iii) 

(estk + pk � esti   ^   esti + pi � lstj)   W  (iv) 

(esti � max{min{estj , estk + pj + pk , estj + pj , estk + pk}) (v+ vi) 
     (16.6.1) 

is not satisfied given the current earliest and latest start times. As already men-
tioned, there exist two cases. In the first case, increasing esti will never satisfy 
conditions (i + ii), (iii) and (iv). Therefore, we have to adjust esti so as to satisfy 
condition (v+ vi). In the second case, condition (i + ii) is not satisfiable, but in-
creasing iest  eventually satisfies (iii), (iv) or (v+ vi). Here, the minimal earliest 
start time for which (iii) or (iv) holds is not greater than the minimal earliest start 
time for which (v+ vi) holds. This will be proven in the remainder of this subsec-
tion. 

We will first deal with the problem of how to distinguish between the two 
cases. The corresponding time bound adjustments will then be derived at a later 
time. In Lemma 16.6.1, a necessary and sufficient condition for the existence of  
est i

 * � esti satisfying condition (iii) is described. 

Lemma 16.6.1   (condition (iii)).  

There exists est i
 * � esti such that condition (iii) is satisfied iff  

max{estj + pj + pi , esti + pi}� lstk .  (16.6.2) 

The smallest start time which then satisfies (iii) is est i
 * = max{esti , estj + pj}. 
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Proof. If condition (iii) is satisfied for est i
 * � esti then estj + pj � est i

 * and est i
 * + pi

 � lstk , so that max{estj + pj + pi , esti + pi} � lstk . This proves the direction �. In 
order to show j, let max{estj + pj + pi , esti + pi} � lstk . If esti < estj + pj then 
est i

 * = estj + pj is the smallest value which satisfies (iii). Otherwise, if esti � estj
 + pj then est i

 * = esti is the smallest value which satisfies (iii).  

Changing the roles of j and k in Lemma 16.6.1 leads to a similar result for condi-
tion (iv). 

Corollary 16.6.2   (conditions (iii) and (iv)). 

There exists est i
 * � esti which satisfies (iii) or (iv) iff  

(max{estj + pj + pi , esti + pi} � lstk)   W 
(max{estk + pk + pi , esti + pi} � lstj) 

(16.6.3) 

If ! is 2-b-consistent then (16.6.3) is equivalent to  

(estj + pj + pi � lstk  W  estk + pk + pi � lstj)   ^ 
(esti + pi � lstk  W  esti + pi � lstj) 

(16.6.4) 

Proof. The first assertion follows directly from Lemma 16.6.1. Let us show the 
second equivalence and assume that 2-b-consistency is established. Obviously, 
(16.6.3) immediately implies (16.6.4). The other direction, however, is not ap-
parent at once. 

Hence, let (16.6.4) be satisfied. It is sufficient to study the case estj + pj + pi
 � lstk , since estk + pk + pi � lstj leads to a similar conclusion. Given (16.6.4), we 
can deduce that esti + pi � lstk or esti + pi � lstj (k ).  

Now, if esti + pi � lstk then the first condition max{estj + pj + pi , esti + pi}� 
lstk of (16.6.3) is satisfied. If, however, esti + pi > lstk then 2-b-consistency im-
plies estk + pk � esti . Further, esti + pi � lstj due to (k ). Therefore, estk + pk + pi
 � lstj , and the second condition max{estk + pk + pi , esti + pi} � lstj of  (16.6.3) is 
satisfied.   

Given these results, it is now quite easy to describe the adjustments of the earli-
est start times. 

Lemma 16.6.3   (adjusting earliest start times, part 1).  

Let ! be 2-b-consistent. If  

max 
u�{j,k},v�{i,j,k},u�v

{lctv � estu} < pi + pj + pk  (16.6.5) 

or  
 esti + pi > max{lstj , lstk}    (16.6.6) 
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then (i+ii), (iii), (iv) are not satisfiable for any est i
 * � esti . The minimal earliest 

start time est i
 * � esti satisfying (v+vi) is then defined by  

est i
 * := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . (16.6.7) 

Proof. We have shown in Lemma 16.4.5 that there exists no est i
 * � esti satisfying 

condition (i + ii) iff  

max
v�{j,k}

{lctv � esti} < pi + pj + pk .  (16.6.8) 

Likewise, we have shown in Lemma 16.6.1 that there exists no est i
 * � esti satisfy-

ing condition (iii) or (iv) iff (16.6.4) is not satisfied, i.e. iff  

(estj + pj + pi > lstk  ^  estk + pk + pi > lstj)   W 
(esti + pi > lstk  ^  esti + pi > lstj) 

(16.6.9)

which is equivalent to  

(lctk � estj < pi + pj + pk  ^  lctj � estk < pi + pj + pk)   W 
esti + pi > max{lstj , lstk}) . (16.6.10) 

(16.6.8) and  (16.6.10) together imply that (i + ii), (iii) and (iv) are not satisfiable, 
so we have to choose the minimal earliest start time est i

 * satisfying condition 
(v + vi) which leads to  

est i
 * := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . (16.6.11) 

It remains to combine (16.6.8) and (16.6.10) to one single condition. Making use 
of the fact that esti + pi > max{lstj , lstk} already implies (16.6.8), we can deduce 
that these two conditions are equivalent to:  

( max 
u�{j,k},v�{i,j,k},u�v

{lctv � estu} < pi + pj + pk)  W  (esti + pi > max{lstj , lstk}) . 

This completes the proof.    

Lemma 16.6.4   (adjusting earliest start times, part 2).  

Let ! be 2-b-consistent. If (16.6.5) and (16.6.6) are not satisfied but  

max
u�{j,k}

{lcti � estu} < pi + pj + pk  (16.6.12) 

then (i + ii) is not satisfiable for any est i
 * � esti . The minimal earliest start time 

est i
 * � esti satisfying (iii), (iv) or (v + vi) is then defined through  

est i
 * := max{esti , min{vj , vk}} ,   (16.6.13) 

where  

vj := { estj + pj if  max{estj + pj + pi , esti + pi} � lstk , 
estk + pk otherwise, 
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vk := { estk + pk if  max{estk + pk + pi , esti + pi} � lstj , 
estj + pj otherwise. 

 
Proof. The assumptions imply that (i + ii) is not satisfiable. From Lemma 16.6.1, 
we know that est i

 * := max{esti , min{v1 , v2}} is the minimal earliest start time 
which satisfies (iii) or (iv). Further, Lemma 16.6.3 implies that there exists no 
smaller est i

 * satisfying (v + vi), so indeed est i
 * is the correct adjustment.    

Lemma 16.6.3 leads to the consistency tests  

max
u�{i,j,k},v�{j,k},u�v

{lctv � estu} < pi + pj + pk  � 

esti := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} , (16.6.14) 

esti + pi > max{lstj , lstk}  � 

esti := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . (16.6.15) 

which correspond with the two different versions of the output domain con-
sistency tests for triples of tasks (see Theorems 16.4.13 and 16.4.17). Observe 
that 

LB3({j , k}) = max{min{estj , estk} + pj + pk , estj + pj , estk + pk} 

is the optimal makespan if the tasks Tj and Tk are scheduled with preemption 
allowed. From Theorem 16.4.16, we know that the time bound adjustment  
LB3({j , k}) can be replaced with LB2({j , k}) = min{estj , estk} + pj + pk , so that 
instead of (16.6.14) the following consistency test can be applied:  

max
u�{i,j,k},v�{j,k},u�v

{lctv � estu} < pi + pj + pk  � 

esti := max{esti , min{estj , estk} + pj + pk} . (16.6.16) 

Likewise, we can replace (16.6.15) with the equivalent consistency test  

esti + pi > max{lstj , lstk}  � 

esti := max{esti , min{estj , estk} + pj + pk} . (16.6.17) 

This follows from the fact that the 2-b-consistency tests already ensure  

esti � max{estj + pj , estk + pk}  if  esti + pi > max{lstj , lstk} . 

Lemma 16.6.4 derives the consistency test  

max
u�{j,k}

{lctv � esti} < pi + pj + pk   �   esti := max{esti , min{vj , vk}} (16.6.18) 

which corresponds to the input negation domain consistency test for triples of 
tasks (see Theorem 16.4.19). Again, we can replace the time bound adjustment 
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LB6({j , k}) = min{vj , vk} with LB5({j , k}) = min{ectj , ectk} due to Lemma 
16.4.21 which leads to the equivalent consistency test  

max
u�{j,k}

{lctv � esti} < pi + pj + pk � esti := max{esti , min{ectj , ectk}} (16.6.19) 

This proves the assertions made in Section 16.4.3.  
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