
16 Constraint Programming and
Disjunctive Scheduling

Constraint propagation is an elementary method for reducing the search space of
combinatorial search and optimization problems which has become more and
more important in the last decades. The basic idea of constraint propagation is to
detect and remove inconsistent variable assignments that cannot participate in
any feasible solution through the repeated analysis and evaluation of the varia-
bles, domains and constraints describing a specific problem instance.

 This chapter is based on Dorndorf et al. [DPP00] and its contribution is
twofold. The first contribution is a description of efficient constraint propagation
methods also known as consistency tests for the disjunctive scheduling problem
(DSP) which is a generalization of the classical job shop scheduling problem
(JSP). By applying an elementary constraint based approach involving a limited
number of search variables, we will derive consistency tests that ensure 3-b-
consistency. We will further present and analyze both new and classical con-
sistency tests which to some extent are generalizations of the aforementioned
consistency tests involving a higher number of variables, but still can be imple-
mented efficiently with a polynomial time complexity. Further, the concepts of
energetic reasoning and shaving are analyzed and discussed.

The other contribution is a classification of the consistency tests derived ac-
cording to the domain reduction achieved. The particular strength of using con-
sistency tests is based on their repeated application, so that the knowledge de-
rived is propagated, i.e. reused for acquiring additional knowledge. The deduc-
tion of this knowledge can be described as the computation of a fixed point.
Since this fixed point depends upon the order of the application of the tests, we
first derive a necessary condition for its uniqueness. We then develop a concept
of dominance which enables the comparison of different consistency tests as well
as a simple method for proving dominance. An extensive comparison of all con-
sistency tests is given. Quite surprisingly, we will find out that some apparently
stronger consistency tests are subsumed by apparently weaker ones. At the same
time an open question regarding the effectiveness of energetic reasoning is an-
swered.

16.1 Introduction

Exact solution methods for solving combinatorial search and optimizations prob-
lems generally consist of two components: (a) a search strategy which organizes
the enumeration of all potential solutions and (b) a search space reduction strate-

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_16

609

https://doi.org/10.1007/978-3-319-99849-7_16
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_16&domain=pdf

610 16 Constraint Programming and Disjunctive Scheduling

gy which diminishes the number of potential solutions. However, due to the ex-
ponentially growing size of the search space, even an intelligent organization of
the search will eventually fail, so that only the application of efficient search
space reduction mechanisms will allow the solution of more difficult problems.
Consequently, as an elementary method of search space reduction, constraint
propagation has become more and more important in the last decades. Constraint
propagation has its origins in the popular field of constraint programming which
models combinatorial search problems as special instances of the constraint sat-
isfaction problem (CSP) . The basic idea of constraint propagation is to evaluate
implicit constraints through the repeated analysis of the variables, domains and
constraints that describe a specific problem instance. This analysis makes it pos-
sible to detect and remove inconsistent variable assignments that cannot partici-
pate in any solution by a merely partial problem analysis.

One of our main objectives is to present and derive efficient constraint prop-
agation techniques also known as consistency tests for the disjunctive scheduling
problem (DSP) which is a generalization of the classical job shop scheduling
problem (JSP). The DSP constitutes a perfect object of study due to the trade-off
between its computational complexity and its simple description. On the one
hand, within the class of NP-hard problems the DSP has been termed to be one
of the most intractable problems. This view is best supported by the notorious
10 × 10 problem instance of the JSP introduced by Muth and Thompson [MT63]
which resisted any solution attempts for several decades and was only solved
more than 25 years later by Carlier and Pinson [CP89]. On the other hand, the
disjunctive model introduced by Roy and Sussman [RS64] provides an illustra-
tive and simple representation of the DSP which is only based on two types of
constraints which in scheduling are known as precedence and disjunctive con-
straints.

An elementary analysis of the DSP involving a limited number of search
variables derives the consistency tests that ensure 3-b-consistency. These con-
sistency tests can be generalized and, although their application does not estab-
lish a higher level of consistency, they enable powerful domain reductions in
polynomial time. Notice, that establishing n-consistency for any n is NP-hard,
thus the existence of a polynomial algorithm is not very probable. Furthermore
the concepts of energetic reasoning and shaving are presented.

The other objective of this chapter is a classification of the consistency tests
derived according to the domain reduction achieved. A new dominance criterion
that allows a comparison of consistency tests in the aforementioned sense and
simple methods for proving dominance are presented. An extensive study of all
consistency tests is given. Quite surprisingly, comparing the extent of the search
space reduction induced, we will find out that some apparently stronger con-
sistency tests are subsumed by apparently weaker ones.

The remainder of this chapter is organized as follows. Section 16.2 introduc-
es the CSP. Several concepts of consistency are proposed which may serve as a
theoretical basis for constraint propagation techniques. We define consistency
tests and present the aforementioned dominance criterion for comparing them.

 16.2 Constraint Satisfaction 611

Section 16.3 describes the DSP and examines its relation to the CSP. Section
16.4 extensively describes constraint propagation techniques for the DSP. Notice
that although we focus on the basic DSP, the results of this work also apply in an
unchanged manner to some important extensions of the DSP, for instance, the
DSP with release times and due dates. Section 16.5 finally summarizes the re-
sults.

16.2 Constraint Satisfaction

Search and optimization problems such as the disjunctive scheduling problem
are generally modelled as special subclasses of the constraint satisfaction prob-
lem (CSP) or the constraint optimization problem (COP) . We will give a short
introduction to these problem classes in subsection 16.2.1. In subsection 16.2.2
we will then describe constraint propagation methods and different concepts of
consistency.

16.2.1 The Constraint Satisfaction and Optimization Problem

The CSP can be roughly described as follows: ''Given a domain specification,
find a solution x, such that x is a member of a set of possible solutions and it sat-
isfies the problem conditions'' [Ama70]. The COP additionally requires that the
solution found optimizes some objective function.

The CSP was first formalized and studied by Huffman [Huf71], Clowes
[Clo71] and Waltz [Wal75] in vision research for solving line-labelling prob-
lems. Haralick and Shapiro [HS79, HS80] and Mackworth [Mac92] discuss gen-
eral algorithms and applications of CSP solving. Van Hentenryck [Hen92] and
Cohen [Coh90] tackle the CSP from a constraint logic programming viewpoint.
Comprehensive overviews on the CSP are provided by Meseguer [Mes89] and
Kumar [Kum92]. An exhaustive study of the theory of constraint satisfaction and
optimization can be found in [Tsa93]. We will only present the necessary aspects
and start with some basic definitions.

The domain of a variable is the set of all values that can be assigned to the
variable. We will assume in this section that domains are finite and later allow
for infinite but discrete domains. The domain associated with the variable x is
denoted by D (x). If V = {x1 ,..., xn} is a set of variables and DOM = { D (x1),
..., D (xn) } the set of domains, then an assignment a = {a1 ,..., an} is an element
of the Cartesian product D (x1) ×...× D (xn) ; in other words, an assignment in-
stantiates each variable xi with a value ai � D (xi) from its domain.

A constraint c on DOM is a function c : D (xi1) ×...× D (xik) � {true, false} ,
where V ' := {xi1 ,..., xik} is a non empty set of variables. The cardinality | V ' | is
also called the arity of c. If | V ' | = 1 or | V ' | = 2 then we speak of unary and bina-

612 16 Constraint Programming and Disjunctive Scheduling

ry constraints respectively. An assignment a = D (x1) ×...× D (xn) satisfies c iff
c(ai1 ,...,aik) = true.

Definition 16.2.1
An instance I of the constraint satisfaction problem (CSP) is defined by a tuple
I = (V , DOM , CONS), where V is a finite set of variables, DOM the set of associ-
ated domains and CONS a finite set of constraints on DOM. An assignment a is
feasible iff it satisfies all constraints in CONS. A feasible assignment is also
called a solution of I. We denote with F (I) the set of all feasible assignments
(solutions) of I.

Given an instance I of the CSP, the associated problem is to find a solution a �
F (I) or to prove that I has no solution.

As distinguished from the constraint satisfaction problem, the constraint op-
timization problem searches for a solution which optimizes a given objective
function. We will only consider the case of minimization, as maximization can
be handled symmetrically.

Definition 16.2.2
An instance of the constraint optimization problem (COP) is defined by a tuple
I = (V , DOM , CONS, z), where (V , DOM , CONS) is an instance of the CSP and z
an objective function z : D (x1) ×...× D (xn) � IR . Defining

zmin(I) := { min
b�F (I)

 z(b) if F (I) ≠ �,

otherwise,

an assignment a is called an optimal solution of I iff a is feasible and z(a) =
zmin(I).

Given an instance I of the COP, the associated problem is to find an optimal
solution of I and to determine zmin(I).

It is not hard to see that the CSP and the COP are intractable and belong to
the class of NP-hard problems (c.f. Section 2.2).

An instance of the CSP can be represented by means of a graph (constraint
graph) which visualizes the interdependencies between variables that are in-
duced by the constraints. If we restrict our attention to unary and binary con-
straints then the definition of a constraint graph G is quite straightforward. The
vertex set of G corresponds to the set of all variables V, while the edge set is
defined as follows: two vertices xi , xj � V, i ≠ j, are connected by an undirected
edge iff there exists a constraint c(xi , xj) � CONS. This can be generalized to
constraints of arbitrary arity using the notion of hypergraphs [Tsa93]. Figure
16.2.1 shows a typical CSP instance and the corresponding constraint graph.

 16.2 Constraint Satisfaction 613

16.2.2 Constraint Propagation

From a certain point of view, the CSP and the COP are quite simple problems.
Since we assumed that the domains of a CSP instance I are finite which for most
interesting problems is not a serious restriction, I can be solved by a simple gen-
erate-and-test algorithm that works as follows: enumerate all assignments
a � D (x1) ×...× D (xn) and verify whether a satisfies all constraints c � CONS;
stop if the answer is "yes''. The COP can be solved by enumerating all feasible
assignments and storing the one with minimal objective function value.

Unfortunately, this method is not practicable due to the size of the search
space which grows exponentially with the number of variables. In the worst case,
all assignments of a CSP instance have to be tested which cannot be carried out
efficiently except for problem instances too small to be of any practical value.
Thus, it suggests itself to examine methods which reduce the search space prior
to starting (or during) the search process.

One such method of search space reduction which only makes use of simple
inference mechanisms and does not rely on problem specific knowledge is
known as constraint propagation. The origins of constraint propagation go back
to Waltz [Wal72] who more than three decades ago developed a now well-
known filtering algorithm for labelling three-dimensional line diagrams.

The basic idea of constraint propagation is to make implicit constraints more
visible through the repeated analysis and evaluation of the variables, domains
and constraints describing a specific problem instance. This makes it possible to
detect and remove inconsistent variable assignments that cannot participate in
any solution by a merely partial problem analysis.

Two complexity related problems arise when performing constraint propaga-
tion. One problem depends upon the number of variables and constraints that are
examined simultaneously, while the other problem is caused by the size of the
domains. These problems are usually tackled by limiting the number of variables
and constraints (local consistency with respect to all subsets of k variables) and
the number of domain assignments (domain- or d-consistency, bound- or b-
consistency) that are considered in the examination. These different concepts
will be discussed further below. We start with some simple examples, as this is
the easiest way to introduce constraint propagation.

Example 16.2.3

Let I = (V , DOM , CONS) be the CSP instance shown in Figure 16.2.1. A simple
analysis of the constraints (i) to (vi) allows us to reduce the domains of the varia-
bles x1 , x2 and x3 . We distinguish between the domains D (xi) and the reduced
domains ,(xi). At the beginning, of course, ,(xi) = D (xi) for i � {1 , 2 , 3}.

614 16 Constraint Programming and Disjunctive Scheduling

V = {x1 , x2 , x3},
D(x1) = {1,...,10},
D(x2) = {1,...,10},
D(x3) = {1,...,10},
(i) 1 � x1 � 4,
(ii) 1 � x2 � 4,
(iii) 1 � x3 � 4,
(iv) x1 + x2 = 4,
(v) x1 + x3 = 5,
(vi) x2 + x3 � 6.

1

2 3

{1,...,10}

{1,...,10} {1,...,10}

Figure 16.2.1 Example 16.2.3.

1

2 3

{1 , 2 , 3 , 4}

{1 , 2 , 3 , 4} {1 , 2 , 3 , 4}
Figure 16.2.2 Step 1.

1

2 3

{1 , 2 , 3}

{1 , 2 , 3} {3 , 4}
Figure 16.2.3 Steps 2, 3 and 4.

1. The unary constraints (i) - (iii) yield the trivial but considerable reduction
,(x1) := ,(x2) := ,(x3) := {1 , 2 , 3 , 4} (see Figure 16.2.2).

2. We next examine pairs of variables. Let us start with the pair (x1 , x2) and
the constraint (iv). If we choose, for instance, the assignment a1 = 4 then
there obviously exists no assignment a2 � ,(x2) = {1,..., 4} which satis-
fies (iv) x1 + x2 = 4. Hence, the value 4 can be removed from ,(x1). The
same argument is not applicable to a1 = 1 , 2 , 3, so we currently can only
deduce ,(x1) := {1 , 2 , 3}.

3. Since (iv) is symmetric in x1 and x2 , we can as well set ,(x2) := {1 , 2 , 3}.
4. Consider now the pair (x2 , x3) and constraint (vi). As a2 � {1 , 2 , 3}, i.e.

a2 � 3, the constraint (vi), x2 + x3 � 6, is only satisfied for a3 � 3. We
therefore obtain ,(x3) := {3 , 4} (see Figure 16.2.3).

5. Now let us turn to the pair (x1 , x3) and constraint (v). Since a3 = 3 or a3
 = 4, constraint (v), x1 + x3 = 5, yields a1 ≠ 3, and we can set ,(x1)
:= {1 , 2}.

6. Finally, studying constraint (iv) once more, we can remove a2 = 1 and set

 16.2 Constraint Satisfaction 615

,(x2) := {2 , 3} (see Figure 16.2.4).

1

2 3

{1 , 2 }

{2 , 3} {3 , 4}
Figure 16.2.4 Steps 5 and 6.

1

2 3

{1}

{3} {4}
Figure 16.2.5 The final step.

At this point, no more values can be excluded from the current domains through
the examination of pairs of variables. If we stop propagation now then the search
space reduction is already of a considerable size. Prior to our simple analysis, the
search space was of cardinality | D (x1) × D (x2) × D (x3) | = 10&10&10 = 1000,
afterwards the cardinality dropped down to | ,(x1) × ,(x2) × ,(x3) | = 2&2&2 = 8.

Extending our analysis to triples of variables reduces the search space even
more. Given, for instance, a1 = 2, constraint (iv) implies a2 = 2, while (v) implies
a3 = 3. Since a2 + a3 = 5 < 6, this is a contradiction to the constraint (vi). Reduc-
ing ,(x1) to {1}, we can immediately deduce ,(x2) = {3} and ,(x3) = {4} which
is shown in Figure 16.2.5. Hence, only the assignment a = (1 , 3 , 4) is feasible and
F (I) = {(1 , 3 , 4)} is the solution space of I .

Example 16.2.4
Consider now the CSP instance I = (V , DOM , CONS) shown in Figure 16.2.6.
Here, the constraint a mod b = c yields true, if a divided by b has a remainder of
c. It is possible to show that this CSP instance has eight feasible solutions:

F (I) = {(4 , 7 , 5), (4 , 7 , 10), (5 , 6 , 1), (5 , 6 , 6), (9 , 2 , 5), (9 , 2 , 10), (10 , 1 , 1),
(10 , 1 , 6)}

V = {x1 , x2 , x3},
D (x1) = {1,...,10},
D (x2) = {1,...,10},
D (x3) = {1,...,10},
(i) (x1 + x2) mod 10 = 1,
(ii) (x1 & x3) mod 5 = 0,
(iii) (x2 + x3) mod 5 = 2.

1

2 3

{1,...,10}

{1,...,10} {1,...,10}
Figure 16.2.6 Example 16.2.4.

However, finding these solutions using only constraint propagation is not as easy

616 16 Constraint Programming and Disjunctive Scheduling

as in Example 16.2.3. It is not hard to see that the corresponding current domains
,(x1), ,(x2) and ,(x3) cannot be reduced by examining pairs of variables. Consid-
er, for instance, the pair (x1 , x2) and constraint (i): for each assignment a1 � ,(x1),
there exists an assignment a2 � ,(x2) such that (i) is satisfied. Similar conclu-
sions can be drawn if the roles of x1 and x2 are interchanged or if we study the
pairs (x2 , x3) and (x1 , x3).

To derive further information, we have to examine pairs of assignments. We
may, for instance, find out that the assignments {1} × {1,..., 9} of the variables
x1 and x2 cannot participate in any feasible solution, since they do not satisfy
constraint (i). Thus given a1 = 1, the only interesting assignment is a2 = 10. Simi-
lar results can be obtained for a1 = 2, etc. This analysis, however, increases the
overhead in terms of computational complexity and storage capacity considera-
bly, since pairs of assignments have to be dealt with, and it is not clear at all
whether this additional overhead can be offset by the search space reduction
achieved.

These examples demonstrate that constraint propagation can be quite powerful,
reducing the search space of a "favourable'' CSP instance to a great extent after a
few steps of propagation. In the worst case, however, constraint propagation
does not yield a substantial reduction of the search space and even slows down
the complete solution process due to the additional computations. In general, the
outcome of constraint propagation lies between these two extremes: some but not
all infeasible solutions can be discarded if constraint propagation is restricted to
techniques which can be implemented efficiently. Thus, constraint propagation
complements, but does not replace a systematic search.

After this intuitive introduction to constraint propagation, it is now neces-
sary to provide a theoretical environment which allows us to design and assess
constraint propagation techniques. We have informally described constraint
propagation as "the reduction of the search space of a CSP instance through the
analysis of variables, domains and constraints''. The question how far this reduc-
tion should be carried out, we would readily answer "as far as possible''. Re-
member, however, that any CSP instance is uniquely determined through its var-
iables, domains and constraints. Thus, if we took this description literally then
constraint propagation would just be a synonym to solving the CSP which of
course is not sensible, because we initially have introduced constraint propaga-
tion in order to simplify the solution of the CSP. Further, we already have seen
that constraint propagation is only useful up to a certain extent due to an increas-
ing computational complexity. We therefore present different concepts of con-
sistency which may serve as a theoretical basis for propagation techniques.
Roughly speaking, a concept of consistency defines the maximal search space
reduction that is possible regarding some specific criteria.

 16.2 Constraint Satisfaction 617

k-Consistency

The first concepts of consistency have been presented in the early seventies by
Montanari [Mon74], who introduced the notions of node-, arc- and path-
consistency. Roughly speaking, these concepts are based on the examination of
constraints containing k variables, where k = 1, 2, 3, with their names being de-
rived from the representation of a CSP instance as a constraint graph. Notice,
that in the last section examples have been given of how to achieve node- and
arc-consistency which will be seen more clearly further below. These concepts of
consistency have been generalized by Freuder [Fre78] in a natural manner to the
notion of k-consistency. For a detailed analysis of k-consistency see for instance
[Tsa93]. We will only describe the basic ideas in an informal way.

In order to define k-consistency we have to introduce the notion of k-
feasibility. Let a = (a1,...,an) be an assignment of a given CSP instance. A par-
tial assignment of k variables (ai1,..., aik) is k-feasible, if it satisfies all con-
straints which contain these variables only (or any subset of them). The motiva-
tion of the definition of k-consistency is based on the following observation: a
can only be feasible, if for a given k any partial assignment (ai1,..., aik) is k-
feasible. Inversely, any partial assignment of k variables, that is not feasible, is
not interesting and hints at an inconsistent state.

In Freuder's words [Fre78] k-consistency is achieved if for any (k – 1)-
feasible assignment of k – 1 variables (taken from a set ,(xi1,..., xik�1

) � D (xi1)
× ... × D (xik�1

)) and any choice of a k
th variable, there exists an assignment of

the k
th variable (taken from a set ,(xik) � D (xik)), such that the assignment of the

k variables taken together is k-feasible.
Note that the property of k-consistency is always relative to the sets ,(xi1,

..., xik�1
) and ,(xik). Thus, in order to establish k-consistency, starting from an

inconsistent state, this implicitly requires a (k – 1)-dimensional administration of
these sets. At the beginning, these sets contain all assignments, that is, ,(xi1,
..., xik�1

) := D (xi1) × ... × D (xik�1
) and ,(xik) := D (xik). Inconsistent assignments

are then eventually discarded, until k-consistency is reached.
1-consistency is quite easy to achieve: if xi � V is a variable and c(xi) is a

unary constraint then all assignments ai � ,(xi) for which c(ai) = false are re-
moved. In order to establish 2-consistency, pairs of variables xi , xj � V and bina-
ry constraints c(xi , xj) have to be examined: an assignment ai � ,(xi) can be re-
moved if c(ai , aj) = false for all aj � ,(xj). Analogously, 3-consistency requires
the examination of triples of variables xi , xj , xk � V and removes pairs of as-
signments (ai , aj) � ,(xi , xj), etc. As already mentioned, 1- and 2-consistency
coincide with the notions of node- and arc-consistency, whereas 2- and 3-
consistency taken together are equivalent to path-consistency, see e.g. [Mon74,

618 16 Constraint Programming and Disjunctive Scheduling

Mac77, MH86, Tsa93]. 1-, 2- and 3-consistency have also been summarized un-
der the name of lower-level consistency as opposed to higher-level consistency,
since only small subsets of variables, domains and constraints are evaluated sim-
ultaneously.

Efficient algorithms for establishing 1-, 2- and 3-consistency and an analysis
of their complexity have been presented, among others, by Montanari [Mon74],
Mackworth [Mac77], Mackworth and Freuder [MF85], Mohr and Henderson
[MH86], Dechter and Pearl [DP88], Han and Lee [HL88], Cooper [Coo89] and
Van Hentenryck et al. [HDT92]. Improved arc consistency algorithms AC-6 and
AC-7 have been presented by Bessière [Bes94] and by Bessière et al. [BFR99].
Chen [Che99] has proposed a new arc consistency algorithm, AC-8, which re-
quires less computation time and space than AC-6 and AC-7. Cooper developed
an optimal algorithm which achieves k-consistency for arbitrary k [Coo89].
Jeavons et al.[JCC98] have identified a number of constraint classes for which
some fixed level of local consistency is sufficient to ensure global consistency.
They characterize all possible constraint types for which strong k-consistency
guarantees global consistency, for each k � 2. Other methods for solving the CSP
through the sole application of constraint propagation (solution synthesis) have
been proposed by Freuder [Fre78], Seidel [Sei81] and Tsang and Foster [TF90].
The deductive approach proposed by Bibel [Bib88] is closely related to solution
synthesis.

Domain-Consistency

Cooper's optimal algorithm [Coo89] for achieving k-consistency requires testing
all subsets ,(xi1,..., xik�1

) � D (xi1) �...� D (xik�1
) of (k – 1)-feasible assignments

which is only practicable for small values of k. We therefore describe two weak-
er concepts of consistency.

The first concept is based on only storing the 1-dimensional sets ,(xi)
� D (xi) for all variables xi � V . For reasons near at hand, ,(xi) is also called the
current domain of xi. Intuitively, we can at most discard all values ai � ,(xi) for
which there exist no assignments aj � ,(xj), j � i, such that (a1 , ..., ai , ..., an) is
feasible. Alternatively, the feasibility condition can be replaced with the suffi-
cient condition of k-feasibility which leads to a lower level of consistency. We
refer to this concept of consistency as domain-consistency or k-d-consistency.
Domain-consistency has been used, among others, by Nuijten [Nui94]. Formal
definitions are provided below.

Definition 16.2.5

Let I = (V ,DOM ,CONS) be an instance of the CSP. If ,(xi) � D (xi) is the cur-
rent domain of the variable xi � V then ,(xi) is complete iff, for all feasible as-
signments a = (a1 , ..., an), the value ai is contained in ,(xi).

 16.2 Constraint Satisfaction 619

Definition 16.2.6

Let I = (V ,DOM ,CONS) be an instance of the CSP and ! := { ,(xi) | xi � V } be
the set of current domains, so that ,(xi) � D (xi) is complete1.

1. ! is k-d-consistent for 1 � k � n iff, for all subsets V' := {xi1,..., xik�1
} of

k – 1 variables and any k
th variable xik 	 V' , the following condition

holds:
L aik � ,(xik), ai1 � ,(xi1),..., aik�1

 � ,(xik�1
) :

(ai1,..., aik) is k-feasible.

2. ! is strong k-d-consistent for 1 � k � n iff ! is k'-d-consistent for all
1 � k' � k.

The following naive algorithm establishes k-d-consistency: start with ,(xi)
:= D (xi) for all xi � V ; choose variable xik and assignment aik � ,(xik); test
whether there exists a subset of k – 1 variables V' := {xi1,..., xik�1

} which does
not contain xik, so that (ai1,..., aik�1

, aik) is not k-feasible for all ai1 � ,(xi1), ...,
aik�1

 � ,(xik�1
); if the answer is ''yes'' then remove the assignment aik from ,(xik);

repeat this process with other assignments and/or variables until no more domain
reductions are possible.

Example 16.2.7
Let us reconsider Example 16.2.4. After establishing n-d-consistency, the re-
duced domains ,(xi) contain only assignments ai � D (xi) for which there exists a
feasible solution (a1 , a2 , a3) � F (I). Since the solution space is

F (I) = {(4,7,5), (4,7,10), (5,6,1), (5,6,6), (9,2,5), (9,2,10), (10,1,1), (10,1,6)}

we obtain ,(x1) = {4,5,9,10}, ,(x2) = {1,2,6,7}, and ,(x3) = {1,5,6,10}. After the
reduction, the search space is of size | ,(x1) � ,(x2) � ,(x3) | = 4&4&4 = 64 as com-
pared to the original search space of size | D (x1) � D (x2) � D (x3) | =
10&10&10 = 1000 which is considerably larger.

This gives us an indication of the maximal search space reduction that is possible
if a solely domain oriented approach is chosen. Notice, however, that we did not
yet discuss how to establish n-d-consistency other than to apply the naive algo-
rithm, so an important question is whether there exists an efficient implementa-
tion after all. Before we deal with this issue, however, we will first present an-
other concept of consistency.

1 The completeness property which is usually omitted in other definitions of consistency

ensures that no feasible solutions are removed. Without this property, ∆ := {�, …, �}
would be n-d-consistent which obviously is not intended.

620 16 Constraint Programming and Disjunctive Scheduling

Bound-Consistency

Storing all values of the current domains ,(x1),..., ,(xn) still might be too costly.
An interval oriented encoding of ,(xi) provides an alternative if D (xi) is totally
ordered, for instance, if D (xi) � IN0. In this case, we can identify ,(xi) with the
interval ,(xi) := [li , ri] := {li , li + 1,..., ri – 1, ri}, so that only the “left'' and
“right'' bounds of ,(xi) have to be stored. Therefore, this concept of consistency
is usually referred to as bound-consistency or k-b-consistency. Bound-
consistency has been discussed, among others, by Moore [Moo66], Davis
[Dav87], van Beek [Bee92] and Lhomme [Lho93].

Definition 16.2.8 (k-b-consistency).

Let I = (V ,DOM ,CONS) be an instance of the CSP and ! := { ,(xi) | xi � V } be
the set of current domains, so that ,(xi) � D (xi) is complete.

1. ! is k-b-consistent for 1 � k � n iff, for all subsets V ' := {xi1 ,...,xik�1
} of

k – 1 variables and any k
th variable xik 	 V ', the following condition holds:

L aik � {lik , rik}, ai1 � ,(xi1),...,aik�1
 � ,(xik�1

) :

 (ai1 ,...,aik) is k-feasible.

2. ! is strongly k-b-consistent for 1 � k � n iff ! is k'-b-consistent for all
1 � k' � k.

A naive algorithm for establishing k-b-consistency is obtained by slightly modi-
fying the naive k-d-consistency algorithm: instead of choosing aik � ,(xik), we
may only choose (and remove) aik � {lik , rik}.

As a negative side effect, only the bounds li and ri , but no intermediate value
li < ai < ri can be discarded, except, if due to the repeated removal of other as-
signments, ai eventually becomes the left or right bound of the current domain.
Thus, bound-consistency is a weaker concept than domain-consistency.

Example 16.2.9

We again examine the Examples 16.2.4 and 16.2.7. Establishing n-b-consistency
must lead to the domain intervals ,(x1) = [4,10], ,(x2) = [1,7] and ,(x3) = [1,10].
Here, the size of the reduced search space is | ,(x1) � ,(x2) � ,(x3)| = 7&7&10 = 490
compared with the size of the original search space (1000) and the size of the n-
d-consistent search space (64).

Unfortunately, the following complexity result applies.

 16.2 Constraint Satisfaction 621

Theorem 16.2.10
Establishing n-b-consistency for the CSP is an NP-hard problem.

Proof. Consider an instance I of the CSP. Let ! = { ,(xi) | xi � V } be the corre-
sponding set of current domains, such that ! is N-b-consistent. Obviously, F (I) is
not empty iff there exists xi � V satisfying ,(xi) � �.

A similar proof shows that establishing n-d-consistency is NP-hard as well.

Consistency Tests

In general, establishing k-consistency is ruled out due to the complex data struc-
tures that are necessary for the administration of the k-feasible subsets. In the last
subsection we have further seen that establishing n-d- or n-b-consistency is an
NP-hard problem. Consequently, using constraint propagation in order to solve
the CSP is only sensible if we content ourselves with approximations of the con-
cepts of consistency that have been introduced.

An important problem is to derive simple rules which will lead to efficient
search space reductions, but at the same time can be implemented efficiently
with a low polynomial time complexity. These rules are known as consistency
tests and are generally described through a condition-instruction pair Z and B .
Intuitively, the semantics of a consistency test is as follows: whenever condition
Z is satisfied, B has to be executed. Z may be, for instance, an equation or ine-
quality, while B may be a domain reduction rule. We will often use the short-
hand notation Z � B for consistency tests.

Example 16.2.11
Let us derive a consistency test for the CSP instance I described in Example
16.2.3. Consider the constraint (vi) x2 + x3 � 6. Given an assignment a2 of x2 , we
can remove a2 from ,(x2) if there exists no assignment a3 = ,(x3) satisfying (vi).
However, we do not really have to test all assignments in ,(x3), because if (vi) is
not satisfied for a3 = max ,(x3) then it is not satisfied for any other assignment in
,(x3) and vice versa. Hence, for any a2 � D (x2),

 "(a2) : a2 + max ,(x3) < 6 � ,(x2) := ,(x2) \ {a2}

defines a consistency test for I.

Of course, this example is quite simple and it may not seem clear whether any
advantages can be drawn from such elementary deductions. Surprisingly, how-
ever, an analogously simple analysis will allow us to derive powerful consisten-
cy tests for particular classes of constraints as will be seen in one of the subse-
quent sections.

622 16 Constraint Programming and Disjunctive Scheduling

One of our objectives is to compare consistency tests. This requires a condi-
tion which enables us to determine whether certain consistency tests are "at least
as good'' as certain others. Intuitively, this applies if the deductions implied by a
set of consistency tests are "at least as good'' as those implied by another set. In
order to elaborate this rather vague description, we will focus on domain con-
sistency tests, i.e. consistency tests which deduce domain reductions. Similar
results, however, apply for other types of consistency tests.

Let us derive a formal definition of domain consistency tests. Let J := 2D(x1)

 �...� 2D(xn), where 2D(xi) denotes the set of all subsets of D (xi). Given !, !' � J,
that is, ! = { ,(xi) | xi � V } and !' = { ,'(xi) | xi � V }, we say that

1. ! � !' iff ,(xi) � ,'(xi) for all xi � V ,
2. ! �

/
 !' iff ! � !', and there exists xi � V , such that ,(xi) �/

 ,'(xi).
Domain consistency tests have to satisfy two conditions. First, current do-

mains are either reduced or left unchanged. Second, only assignments ai� ,(xi)
are removed for which no feasible assignment a = (a1 , ..., ai , ..., an) exists, be-
cause otherwise solutions would be lost. Since, however, we do not need the
second condition in order to derive the results of this section, only the first one is
formalized.

Definition 16.2.12

A domain consistency test " is a function " : J � J satisfying "(!) � ! for all
! � J.

Suppose now that a set of domain consistency tests is given. In order to obtain
the maximal domain reduction possible, these tests have to be applied repeatedly
in an iterative fashion rather than only once. The reason for this is that, after the
reduction of some domains, additional domain adjustments can possibly be de-
rived using some of the tests which have previously failed in deducing any re-
ductions. This has been demonstrated, for instance, in Example 16.2.3. Thus, the
deduction process should be carried out until no more adjustments are possible
or, in other words, until the set ! of current domains becomes a fixed point. The
standard fixed point procedure is shown in Algorithm 16.2.13.

Algorithm 16.2.13 Fixed point

Input: !: set of current domains;
begin
 repeat
 !old := !;
 for all (" � g) do ! := "(!); -- g is a set of consistency tests
 until (! := !old);
end;

 16.2 Constraint Satisfaction 623

It is important to mention that the fixed point computed does not have to be
unique and usually depends upon the order of the application of the consistency
tests. For this reason we will only study monotonous consistency tests for which
the order of application does not affect the outcome of the domain reduction pro-
cess. This result will be derived in the following.

Definition 16.2.14

A consistency test " is monotonous iff the following condition is satisfied:

 L!, !' � J : ! � !' � "(!) � "(!') . (16.2.1)

Let us first define the !-fixed-point mentioned above. Let g be a set of monoto-
nous domain consistency tests. For practical reasons we will always assume that
g is finite. Let "# := ("g)g�IN � gIN be a series of domain consistency tests in g,
such that

L " � g, L h � IN, g > h : "g = " . (16.2.2)

The series "# determines the order of application of the consistency tests. The
last condition ensures that every consistency test in g is (a priori) infinitely often
applied. Starting with an arbitrary set ! of current domains, we define the series
of current domain sets (!g)g�IN induced by "# through the following recursive
equation

!0 := ! ,
!g := "g(!g�1) .

Since all domains D (xi) are finite and !g � !g�1 due to Definition 16.2.12, there
obviously exists g* � IN, such that !g = !g* for all g � g*. We can therefore de-
fine "#(!) := !g* . The next question to answer is whether "#(!) really depends
on the chosen series "# .

Theorem 16.2.15 Unique fixed points. [DPP00].

If g is a set of monotonous domain consistency tests and "# , " '# � gIN are series
satisfying (16.2.2) then "#(!) = " '#(!).

Proof. For reasons of symmetry we only have to show "#(!) � " '#(!).
Let (!g)g�IN and (!' g')g'�IN be the series induced by "# and " '# respectively. It is
sufficient to prove that for all g' � IN, there exists g � IN, such that !g � ! 'g' .
This simple proof will be carried out by induction.

 The assertion is obviously true for g' = 0. For g' > 0, we have ! 'g' = " 'g' (!' g'�1).
By the induction hypothesis, there exists h � IN, such that !h � !' g'�1. Further,
(16.2.2) implies that there exists g > h satisfying "g = " 'g' . Since g > h, we know

624 16 Constraint Programming and Disjunctive Scheduling

that !g�1 � !h . Using the monotony property of "g , we can conclude

!g = "g(!g�1) � "g(!h) � "g(!' g'�1) = " 'g' (!' g'�1) = ! 'g' .

This completes the induction proof.

Definition 16.2.16

Let g be a set of monotonous domain consistency tests, ! a set of current do-
mains and "# � gIN an arbitrary series satisfying (16.2.2). We define g(!) := "#
(!) to be the unique !-fixed-point induced by g and !.

Based on these observations, we can now propose a dominance criterion for do-
main consistency tests.

Definition 16.2.17

Let g, g' be sets of monotonous consistency tests.

 1. g dominates g' (g ≻= g') iff g(!) � g'(!) for all ! � J .

2. g strictly dominates g' (g ≻ g') iff g ≻= g', and there exists ! � J, such
that g(!) �/ g'(!).

 3. g is equivalent to g' (g ~ g') iff (g ≻= g') and (g' ≻= g).

The next theorem provides a simple condition for testing dominance of domain
consistency tests. Basically, the theorem states that a set of domain consistency
tests g dominates another set g' if all domain reductions implied by the tests in g'
can be simulated by a finite number of tests in g.

Theorem 16.2.18

Let g, g' be sets of monotonous consistency tests. If for all "' � g' and all ! � J,
there exist "1, ..., " d � g, so that

 (" d h...h "1)(!) � "'(!) (16.2.3)

then g ≻= g'.

Proof. Let "# and " '# � gIN be series satisfying (16.2.2) . Let, further, (!g)g�IN
and (!' g')g'�IN be the series induced by "# and " '# respectively. Again, we will
prove by induction that for all g' � IN, there exists g � IN, such that !g � ! 'g' ,
since this immediately implies g(!) � g'(!).

The assertion is obviously true for g' = 0. Therefore, let g' > 0 and ! 'g' = " 'g'
(!' g'�1). By the induction hypothesis, there exists h � IN, such that !h � !' g'�1 .

Let "1, ..., " d � g be the sequence of consistency tests satisfying (16.2.3) for

 16.3 The Disjunctive Scheduling Problem 625

" 'g' and !h . There exist gd >...> g1 > h satisfying "g1
 = "1, ..., "gd

 = " d due to
(16.2.2). Without loss of generality, we assume that gd = h + d, ..., g1 = h + 1, so
that

!h+d = ("h+d h...h "h+1)(!h) � " 'g' (!h) � " 'g' (!' g'�1) = !' g'

which proves the induction step. This verifies the dominance relation g ≻= g'.

Example 16.2.19
Let us reconsider the consistency tests derived in Example 16.2.11:

"(a2) : a2 + max ,(x3) < 6 � ,(x2) := ,(x2) \ {a2} .

Instead of defining a consistency test for each a2 � D (x2), it is sufficient to apply
a single consistency test to obtain the same effects. Observe that if a2 can be re-
moved then all assignments a'2 < a2 can be removed as well, so that we can re-
place a2 � ,(x2) with min ,(x2). This leads to the consistency test:

" : min ,(x2) + max ,(x3) < 6 � ,(x2) := ,(x2) \ { min ,(x2) } .

Obviously, if a2 can be removed from ,(x2) using "(a2) then " removes a2 after at
most a2 – min ,(x2) + 1 steps. Thus, g := {"} dominates g' := { "(a2) | a2
 � D (x2) }. Accordingly, g' dominates g, because g' i g. This proves that g and
g' are equivalent.

16.3 The Disjunctive Scheduling Problem

The disjunctive scheduling problem (DSP) is a natural generalization of im-
portant scheduling problems like the job shop scheduling problem (JSP) which
has been extensively studied in the last decades, or the open shop scheduling
problem (OSP) which only in recent years has attracted more attention in sched-
uling research.

The DSP can be described as follows [Pha00]: a finite set of tasks each of
which has a specific processing time, has to be scheduled with the objective of
minimizing the makespan, i.e. the maximum of the completion times of all tasks.
Preemption is not allowed which means that tasks must not be interrupted during
their processing. In general, tasks cannot be processed independently from each
other due to additional technological requirements or scarcity of resources. The
DSP considers two kinds of constraints between pairs of tasks which model spe-
cial classes of restrictions: precedence and disjunctive constraints.
T Precedence constraints which are also known as temporal constraints specify

a fixed processing order between pairs of tasks. Precedence constraints cover
technological requirements of the kind that some task Ti must finish before

626 16 Constraint Programming and Disjunctive Scheduling

another task Tj can start, for instance, if the output of Ti is the input of Tj .

T Disjunctive constraints prevent the simultaneous or overlapping processing of
tasks without, however, specifying the processing order. If a disjunctive con-
straint is defined between two tasks Ti and Tj then one of the alternatives "Ti
before Tj'' or "Tj before Ti'' must be enforced, but which one is not predeter-
mined. Disjunctive constraints model the resource demand of tasks in a
scheduling environment with scarce resource supply. More precisely, the ca-
pacity of each resource like special machines, tools or working space is one
unit per period of processing time. Tasks use at most a (constant) unit amount
of each resource per processing period. Due to the limited amount of re-
sources, two tasks requiring the same resource cannot be processed in parallel.

Note that the term disjunctive constraint, as introduced here and as common-
ly used in scheduling, is a special case of the general concept of disjunctive con-
straints.

The DSP and its subclasses have been extensively studied in academic re-
search, since its simple formulation, on the one hand, and its intractability, on the
other hand, make it a perfect candidate for the development and analysis of effi-
cient solution techniques. Indeed, the solution techniques that have been derived
for the DSP have contributed a lot to the improvement of methods for less ideal-
ized and more practice oriented problems. Extensions of the DSP generally con-
sider sequence-dependent setup times, minimal and maximal time lags, multi-
purpose and parallel machines, non-unit resource supply and demand, machine
breakdowns, stochastic processing times, etc.

Section 16.3.1 formulates the DSP as a constraint optimization problem with
disjunctive constraints as proposed by Roy and Sussman [RS64] for the JSP. The
strength of this model becomes apparent later once the common graph theoretical
interpretation of the disjunctive scheduling model is presented. In Section 16.3.2,
solution methods for the DSP that are based on constraint propagation are briefly
discussed.

16.3.1 The Disjunctive Model

Let B = {1, ..., n} be the index set of tasks to be scheduled. The processing time
of task Ti , i � B is denoted with pi . By choosing sufficiently small time units, we
can always assume that the processing times are positive integer values. With
each task there is associated a start time domain variable sti with domain set
D(sti) = IN0 .

If a precedence or disjunctive constraint is defined between two tasks then
we say that these tasks are in conjunction or disjunction respectively. The tasks
in conjunction are specified by a relation C � B � B . If (i , j) � C then task Ti has
to finish before task Tj can start. Instead of writing (i , j) � C we will therefore
use the more suggestive i � j � C. The tasks in disjunction are specified by a

 16.3 The Disjunctive Scheduling Problem 627

symmetric relation D � B � B . Whenever (i , j) � D, tasks Ti and Tj cannot be
processed in parallel. Since (i , j) � D implies (j , i) � D, we will write i X j � D.
Finally, let Z = { pi | i � B } be the set of processing times.

An instance of the DSP is uniquely determined by the tuple I = (B , C , D , Z).
Since we want to minimize the makespan, i.e. the maximal completion time of
all tasks, the objective function is Cmax(I) = max

 i�B{sti + pi}. The DSP can be
written as follows:

minimize {Cmax(I)}
sti � D(sti) = IN0 i � B,
(i) sti + pi � stj i � j � C,
(ii) sti + pi � stj W stj + pi � sti i X j � D.

Let us first define an assignment ST = (st1, ..., stn) � D(st1) �...�D(stn) of
all start time variables. For the sake of simplicity, we will use the same notation
for variables and their assignments. An assignment ST is feasible, i.e. it defines a
schedule (cf. Section 3.1), if it satisfies all precedence constraints (i) and all dis-
junctive constraints (ii). Reformulating the DSP, the problem is to find a feasible
schedule with minimal objective function value Cmax(I). Obviously, for each in-
stance of the DSP, there exists a feasible and optimal schedule.

A Graph Theoretical Approach

The significance of the disjunctive scheduling model for the development of ef-
ficient solution methods is revealed if we consider its graph theoretical interpre-
tation. In analogy to Section 10.1, a disjunctive graph is a weighted graph
G = (B , C , D , W) with node set B, arc sets C, D � B � B where D is symmetric,
and weight set W. C is called the set of precedence arcs, D the set of disjunctive
arcs. Each arc i � j � C � D is labelled with a weight wi� j � W. Since D is
symmetric, we will represent disjunctive arcs as doubly directed arcs and some-
times refer to i X j as a disjunctive edge. Notice that i X j � D is labelled with
two possibly different weights, wi� j and wj� i .

Let I = (B , C , D , Z) be an instance of the DSP. In order to define the associ-
ated disjunctive graph G(I), we first introduce two dummy tasks start (0) and
end (*) so as to obtain a connected graph. Obviously, start precedes all tasks,
while end succeeds all tasks. Further, the processing times of start and end are
zero.

Definition 16.3.1

If I = (B , C , D , Z) is an instance of the DSP then G(I) := (B*
 , C *

 , D , W) is the
associated disjunctive graph, where
 B* := B � {0 , *},

628 16 Constraint Programming and Disjunctive Scheduling

 C * := C � { 0 � i | i � B � {*} } � { i � * | i � B � {0} },
 W = { wi� j = pi | i � j � C * � D } .

Example 16.3.2

Let I = (B , C , D , Z) be an instance of the DSP with B = {1, ..., 8}, C = { 1 � 2

� 3, 4 � 5, 6 � 7 � 8 } and D = { 1 X 4, 1 X 6, 4 X 6, 2 X 7, 3 X 5, 3 X 8,
5 X 8 }. The corresponding disjunctive graph G = (B*

 , C *
 , D , W) is shown in

Figure 16.3.1.2

0

1 2 3

4 5

6

*

7 8
Figure 16.3.1 A disjunctive graph.

A disjunctive graph is transformed into a directed graph by orienting disjunctive
edges.

Definition 16.3.3

Let G = (B , C , D , W) be a disjunctive graph, and S � D.
1. S is a partial selection iff i � j � S implies j � i 	 S for all

i X j � D.
2. S is a complete selection iff either i � j � S or j � i � S for all

i X j � D.
3. A complete selection S is acyclic iff the directed graph GS = (B, C � S)

is acyclic.

Thus, we obtain a complete (partial) selection if (at most) one edge orientation is
chosen from each disjunctive edge i X j � D. The selection is acyclic if the re-
sulting directed graph is acyclic, ignoring any remaining undirected disjunctive
edges. There is a close relationship between complete selections and schedules
(let us remind that schedules are always feasible, as defined in Section 3.1). In-
deed, if we are only interested in optimal schedules, then it is sufficient to search
through the space of all selections which is of cardinality 2|D| instead of the space
of all schedules which is of cardinality |IN0|

n. The DSP can thus be restated as a
graph theoretical problem: find a complete and acyclic selection, such that the
length of the longest path in the associated directed graph is minimal.

2 We have not depicted all of the trivial edges involving the dummy operations start and

end. Further, the specification of the weights has been omitted.

 16.4 Constraint Propagation and the DSP 629

16.3.2 Solution Methods for the DSP

Countless is the number of solution methods proposed for the JSP which consti-
tutes the most famous subclass of the DSP. A detailed survey is provided by
Błażewicz et al. in [BDP96]. We only focus on solution methods which have
incorporated constraint propagation techniques in some way or another. Particu-
larly, constraint propagation has been used in exact solution methods most of
which are based on a search space decomposition approach of the branch-and-
bound kind. It seems fair to say that the advances in solving the JSP that have
been made in the last decade can be attributed to a large extent to the develop-
ment of efficient constraint propagation techniques. Undoubtedly, the algorithm
of Carlier and Pinson presented in [CP89] marked a milestone in the JSP history,
since for the first time an optimal solution for the notorious 10 � 10 problem
instance proposed by Muth and Thompson [MT63] has been found and its opti-
mality proven. Amazingly, due to the evolution of solution techniques and grow-
ing computational power, this formerly unsolvable instance can now be solved
within several seconds. Important contributions towards this state of the art have
been made among others by Applegate and Cook [AC91], Carlier and Pinson
[CP90], Brucker et al. [BJS94, BJK94], Caseau and Laburthe [CL95], Baptiste
and Le Pape [BL95] and Martin and Shmoys [MS96], to name only a few. In
addition to using constraint propagation techniques in exact solution methods,
the opinion eventually gains ground that combining constraint propagation with
heuristic solution methods is most promising. Advances in this direction have
been reported by Nuijten [Nui94], Pesch and Tetzlaff [PT96], Phan Huy [Pha96]
and Nuijten and Le Pape [NL98].

16.4 Constraint Propagation and the DSP

In Section 16.2.2, constraint propagation has been introduced as an elementary
method of search space reduction for the CSP or the COP. In this section, we
examine how constraint propagation techniques can be adapted to the DSP. An
important issue is the computational complexity of the techniques applied which
has to be weighed against the search space reduction obtained. Recall that estab-
lishing n-, n-d- and n-b-consistency for instances of the CSP or the COP are NP-
hard problems. It is not difficult to show that the same complexity result applies
if we confine ourselves to the more special DSP. Thus, if constraint propagation
is to be of any use in solving the DSP, we will have to content ourselves with
approximations of the consistency levels mentioned above.

In the past years, two constraint propagation approaches have been studied
with respect to the DSP: a time oriented and a sequence oriented approach. The
time oriented approach is based on the concept of domain or bound-consistency.
Each task has a current domain of possible start times. Domain consistency tests
remove inconsistent start time assignments from current domains and, by this,

630 16 Constraint Programming and Disjunctive Scheduling

reduce the set of schedules that have to be examined. In contrast to the time ori-
ented approach, the sequence oriented approach reduces the set of complete se-
lections by detecting sequences of tasks, i.e. selecting disjunctive edge orienta-
tions which must occur in every optimal solution. Hence, the latter approach has
been often labelled immediate selection (see e.g. [CP89, BJK94]) or edge-finding
(see e.g. [AC91]). We will use the term sequence consistency test as used in
[DPP99].

Domain and sequence consistency tests are two different concepts which
complement each other. Often, a situation occurs in which either only reductions
of the current domains or only edge orientations are deducible. The best results,
in fact, are obtained by applying both types of consistency tests, as fixing dis-
junctive edges may initiate additional domain reductions and vice versa.

Section 16.4.1 introduces some notation which will be used later. The sub-
sequent sections are concerned with the definition of domain and sequence con-
sistency tests for the DSP. For the sake of simplicity, precedence and disjunctive
constraints will be treated separately. At first, the simple question of how to im-
plement constraint propagation techniques for precedence constraints is dis-
cussed in Sections 16.4.2.

In Sections 16.4.3 through 16.4.8, disjunctive constraints are examined, and
both already known and new consistency tests will be presented. We assume that
precedence constraints are not defined and that all tasks are in disjunction which
leads to the special case of a single-machine scheduling problem [Car82].

Section 16.4.3 examines which consistency tests have to be applied in order
to establish lower-level bound-consistency, that is, strong 3-b-consistency. Sec-
tions 16.4.4 and 16.4.5 present the well-known input/output and input/output
negation consistency tests first proposed by Carlier and Pinson [CP89] and com-
pare different time bound adjustments. Section 16.4.6 describes a class of new
consistency tests which is based on the input-or-output conditions and is due to
Dorndorf et al. [DPP99]. Section 16.4.7 takes a closer look at the concept of en-
ergetic reasoning proposed by Erschler et al. [ELT91] and classifies this concept
with respect to the other consistency tests defined. Section 16.4.8, finally, deals
with a class of consistency tests known as shaving which has been introduced by
Carlier and Pinson [CP94] and Martin and Shmoys [MS96].

In Section 16.4.9, the results for the disjunctive constraints are summarized.
Finally, Section 16.4.10 discusses how to interleave the application of the prece-
dence and disjunctive consistency tests derived. It is worthwhile to mention that
a separate analysis of precedence and disjunctive constraints leads to weaker
consistency tests as compared to cases where both classes of constraints are sim-
ultaneously evaluated. However, it remains an open question whether simple and
efficient consistency tests can be developed in this case.

16.4.1 Some Basic Definitions

For the rest of this subsection, let I = (B , C , D , Z) be an instance of the DSP. Each

 16.4 Constraint Propagation and the DSP 631

task Ti , i � B has a current domain ,(sti) � D(sti). In order to avoid misinterpre-
tations between the start time variable sti and its assignment (for which the nota-
tion sti is used as well), we will write ,i instead of ,(sti). We assume that some
real or hypothetical upper bound UB on the optimal makespan is known or giv-
en, so that actually ,i � [0 , UB – pi]. This is necessary, since most of the con-
sistency tests derived only deduce domain reductions or edge orientations if the
current domains are finite. In general, the tighter the upper bound, the more in-
formation can be derived.

The earliest and latest start time of task Ti are given by esti := min ,i and lsti
 := max ,i . We will interpret ,i as an interval of start times, i.e. ,i = [esti , lsti]
 = { esti , esti + 1, ..., lsti � 1, lsti}, although a set oriented interpretation is possi-
ble as well. We also need the earliest and latest completion time ecti := esti + pi
and lcti := lsti + pi of task Ti .

Sometimes, it is important to distinguish between the earliest and latest start
time before and after a domain reduction. We will then use the notation est i

 * and
lst i

 * for the adjusted earliest and latest start times. We will often examine subsets
A � B of tasks and define p(A) := 5 i�A pi , ESTmin(A) := min i�A esti , and
LCTmax(A) := max i�A lcti . Finally, Cmax(p,(A)) and Cmax(p ,

 pr(A)) denote the op-
timal makespan if all tasks in A are scheduled within their current domains with-
out preemption or with preemption allowed.

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

10 11 1232
x

lstest lctect
Figure 16.4.1 Two tasks Ti , Tj with pi = 4 and pj = 3.

Examples of consistency tests will be illustrated as in Figure 16.4.1 [Nui94]
which shows two tasks Ti and Tj . For task Tj , the interval [estj , lctj] = [0,8] of
times at which Tj may be in process is shown as a horizontal line segment. Possi-
ble start times [estj , lstj] = [0,5] are depicted as black circles, while the remaining
times [lstj+1 , lctj] = [6,8] are marked with tick marks. A piston shaped bar of size
pj = 3, starting at estj = 0, indicates the processing time of task Tj . The chosen
representation is especially well-suited for describing the effect of domain con-
sistency tests. If a starting time is proven to be inconsistent then the correspond-
ing time will be marked with an x, as for instance the start time 2 on the time
scale of task Ti .

632 16 Constraint Programming and Disjunctive Scheduling

16.4.2 Precedence Consistency Tests

Precedence constraints determine the order in which two specific tasks Ti and Tj
have to be processed. If, for instance, task Ti has to finish before task Tj can start,
then the earliest start time of Tj has to be greater than or equal to the earliest
completion time of Ti. Likewise, an upper bound of the latest completion time of
Ti is the latest start time of Tj . This proves the following well-known theorem.

Theorem 16.4.1 Precedence consistency test.

If i, j � B and i � j � C then the following domain reduction rules apply:

estj := max{ estj , esti + pi }, (16.4.1)

lsti := min{ lsti , lstj � pi }. (16.4.2)

Of course, applying the consistency tests (16.4.1) and (16.4.2) until no more up-
dates are possible is equivalent to the computation of a longest (precedence) path
in the disjunctive graph, see [Chr75] for a standard algorithm. This algorithm
traverses all tasks in a topological order which ensures that (16.4.1) and (16.4.2)
only have to be applied once for each precedence arc.

16.4.3 Lower-Level Bound-Consistency

From this Section through Section 16.4.8, we will study the more interesting
class of disjunctive constraints. For the sake of simplicity, we assume that B is a
clique, i.e. all tasks in B are in disjunctions. We, further, assume that the set of
precedence constraints is empty. We will, at first, discuss how disjunctive con-
straints interact with respect to some concept of consistency. For two reasons we
opted for bound-consistency as the concept of consistency to work with. First of
all, bound-consistency requires the least amount of storage capacity, since the
current domains can be interpreted as intervals, so only the earliest and latest
start times have to be memorized. Second, the most powerful consistency tests
described in the following only affect/use the earliest and latest start times. In-
deed, no efficient consistency tests which make use of "inner'' start times are
currently known.

 16.4 Constraint Propagation and the DSP 633

Symbol Description

 "(h)
A,i h � 4: output consistency test for the couple (A , i),

h � 5: input negation consistency test for the couple (A , i)
,i current domain of Ti : ,i � IN0
esti earliest start time of Ti : esti = min ,i
est i

 * adjusted earliest start time of Ti
ecti earliest completion time of Ti : ecti = esti + pi
lcti latest completion time of Ti : lcti = lsti + pi
lsti latest start time of Ti : lsti = max ,i
lst i

 * adjusted latest start time of Ti
pi(t1, t2) interval processing time of Ti in the time interval [t1, t2)
[t1, t2) time interval: [t1, t2) = { t1, t1 + 1, ..., t2 � 1 }
[t1, t2] time interval: [t1, t2] = { t1, t1 + 1, ..., t2 }
A subset of tasks: A � B
A � i (i � A) Ti has to be processed after (before) all tasks in A
Cmax(p,(A)) optimal makespan if all tasks in A are scheduled without

preemption
Cmax(p ,

 pr(A)) optimal makespan if all tasks in A are scheduled with
preemption allowed

g¬ in (h) set of input negation consistency tests
gout (h) set of output consistency tests
ESTmin(A) minimal earliest start time in A : ESTmin(A) = min i�A{esti}
LBh(A) time bound adjustment for output consistency tests
LBh(A, i) time bound adjustment for input negation consistency tests
LCTmax(A) maximal latest completion time in A :

LCTmax(A) = max i�A{lcti}
B(t1,t2) subset of tasks which must be processed completely or par-

tially in the time interval [t1, t2) :
B(t1,t2) = { i � B | pi (t1, t2) > 0 }

p(A) sum of processing times in A : p(A) = 5 i�A pi
p(A, t1, t2) sum of interval processing times in A in the time interval

[t1, t2) : p(A, t1, t2) = 5 i�A pi(t1, t2)
T (A) task set of A : T (A) = T (ESTmin(A), LCTmax(A))
T (t1, t2) task set: T (t1, t2) = { i � B | t1 � esti , lcti � t2 }

Table 16.4.1: List of symbols.

Our goal is to examine which domain consistency tests have to be applied in or-
der to establish strong 3-b-consistency which is also known as lower-level
bound-consistency. 1-b-consistency is trivially established, since unary con-

634 16 Constraint Programming and Disjunctive Scheduling

straints are not involved, so only 2-b- and 3-b-consistency remain to be studied.
The corresponding consistency tests will be derived through an elementary

and systematic evaluation of all constraints. This “bottom up'' approach is quite
technical, but it closes the gap that is usually left by the consistency tests which
are due to the researcher's inspiration and insight into the problem's nature. As a
consequence, we will rediscover most of these consistency tests which have been
“derived'' in a “top down'' fashion in a slightly stronger version.

2-b-Consistency

In order to test for 2-b-consistency, pairs of different tasks have to be examined.
If Ti , i � B is a task and sti � {esti , lsti} an assignment of its start time, then sti is
(currently) consistent and cannot be removed if there exists another task Tj ,
j � B, and an assignment stj � ,j , such that sti and stj satisfy the disjunctive con-
straint i X j :

 stj � ,j : sti + pi � stj W stj + pj � sti . (16.4.3)

Of course, if (16.4.3) is satisfied for all pairs (i , j) then 2-b-consistency is es-
tablished. Since ,j = [estj , lstj], this condition can be simplified as follows:

sti + pi � lstj W estj + pj � sti . (16.4.4)

Suppose now that 2-b-consistency is not yet established. We will first show
how to derive a well-known consistency test which removes an inconsistent as-
signment sti = esti through a simple evaluation of (16.4.4). Similar arguments
lead to a consistency test for removing the assignment sti = lsti . These consisten-
cy tests have been first proposed by Carlier and Pinson [CP89]. Obviously, if
(16.4.4) is not satisfied for sti = esti then we can remove esti , i.e.

esti + pi > lstj ^ estj + pj > esti � esti = esti + 1. (16.4.5)

Observe that after adjusting esti , the condition esti + pi > lstj on the left side
of (16.4.5) is still satisfied. Therefore, we can increase esti as long as estj + pj
 > esti , i.e. until estj + pj � esti . This leads to the improved consistency test

esti + pi > lstj � esti = max{ esti , estj + pj }. (16.4.6)

Analogously, testing sti = lsti leads to the consistency test

estj + pj > lsti � lsti = min{ lsti , lstj � pi }. (16.4.7)

Let g2 be the set of consistency tests defined by (16.4.6) and (16.4.7) for all tasks
Ti � Tj . The next lemma in combination with Theorem 16.2.15 ensures that there
exists a unique fixed point g2(!), i.e. applying the consistency tests in g2 in an
arbitrary order until no more updates are possible will always result in the same
set of current domains.

 16.4 Constraint Propagation and the DSP 635

Lemma 16.4.2

g2 is a set of monotonous consistency tests.

Proof. For reasons of symmetry, it is sufficient to examine the consistency tests
given by (16.4.6). Let ! = { [estl , lstl] | l � B } and !' = { [estl ' , lstl '] | l � B }. If
! � !', that is, estl ' � estl and lstl � lstl ' for all l � B then

esti ' + pi > lstj ' � esti + pi > lstj

 �
(13.4.6)

 est i
 * = max{ esti , estj + pj }

 � est i
 * � max{ esti ' , estj ' + pj }

 � est i
 * � esti '

 *
As all other earliest and latest start times remain unchanged, estl '

 * � est l
 * and

lst l
 * � lstl '

 * for all l � B which proves the monotony property.

Altogether, the following theorem has been proven, see also [Nui94].

Theorem 16.4.3

For all ! � J, g2(!) is 2-b-consistent.

Example 16.4.4
Consider the situation that has been depicted in Figure 16.4.1. Since esti + pi
 = 6 > 5 = lstj , we can adjust esti = max{esti , estj + pj} = max{2,3} = 3 accord-
ing to (16.4.6). Note that the current domain of task Tj remains unchanged if
(16.4.7) is applied.

g2(!) can be computed by repeatedly testing all pairs i , j � B, i � j, until no more
updates are possible. We will discuss other algorithms which subsume the tests
for 2-b-consistency at a later time. As a generalization of the pair test Focacci
and Nuijten [FN00] have proposed two consistency tests for shop scheduling,
with sequence dependent setup times between pairs of tasks processed by the
same disjunctive resource.

3-b-Consistency

In order to test for 3-b-consistency, triples of pairwise different tasks have to be
examined. Again, let Ti , i � B, be a task, and sti � {esti , lsti}. The start time sti is
(currently) consistent and cannot be removed if there exist j, k � B, such that i, j,
k are indices of pairwise different tasks, and there exist assignments stj � ,j , stk
� ,k , such that sti , stj , and stk satisfy the disjunctive constraints i X j, i X k,

636 16 Constraint Programming and Disjunctive Scheduling

and j X k. Let us first consider this condition for sti = esti :

 stj� ,j , stk � ,k : { (esti + pi � stj W stj + pj � esti) ^
(esti + pi � stk W stk + pk � esti) ^
(stj + pj � stk W stk + pk � stj) .

(16.4.8)

Again, if (16.4.8) is satisfied for all triples (i , j , k) then 3-b-consistency is estab-
lished. This condition is equivalent to

 stj� ,j , stk � ,k :

(esti + pi � stj ^ stj + pj � stk) W
(esti + pi � stk ^ stk + pk � stj) W
(stj + pj � esti ^ esti + pi � stk) W
(stk + pk � esti ^ esti + pi � stj) W
(stj + pj � stk ^ stk + pk � esti) W
(stk + pk � stj ^ stj + pj � esti) .

(16.4.9)

Each line of (16.4.9) represents a permutation of the tasks Ti , Tj , Tk , e.g. the first
line corresponds to the sequence i � j � k. Since ,j = [estj , lstj] and ,k = [estk ,
 lstk], (16.4.9) is equivalent to:

 stj� ,j , stk � ,k :

(esti + pi � stj ^ stj + pj � lstk) W (i)
(esti + pi � stk ^ stk + pk � lstj) W (ii)
(estj + pj � esti ^ esti + pi � lstk) W (iii)
(estk + pk � esti ^ esti + pi � lstj) W (iv)
(estj + pj � stk ^ stk + pk � esti) W (v)
(estk + pk � stj ^ stj + pj � esti) . (vi)

 (16.4.10)

In analogy to the case of establishing 2-b-consistency, we can increase esti := esti
 + 1 if (16.4.10) is not satisfied. However, in spite of the previous simplifica-
tions, testing (16.4.10) still is too costly, since the expression on the right side
has to be evaluated for all stj � ,j and stk � ,k . In the following lemmas, we
therefore replace the conditions (i), (ii), (v) and (vi) which either contain stj or stk
with simpler conditions.

Lemma 16.4.5

If ! is 2-b-consistent and the conditions (iii) and (vi) are not satisfied then the
following equivalence relations hold:

 stj� ,j , stk � ,k : { (esti + pi � stj ^ stj + pj � lstk) W (i)
(esti + pi � stk ^ stk + pk � lstj) (ii)

(16.4.11)

 16.4 Constraint Propagation and the DSP 637

 esti + pi + pj � lstk W esti + pi + pk � lstj (16.4.12)

 max{ lctj � esti , lctk � esti } � pi + pj + pk (16.4.13)

Proof. Let us prove the first equivalence. The direction � is obvious, so only j
has to be shown. Let (16.4.12) be satisfied. Without loss of generality, we can
assume that either (a) esti + pi + pj � lstk and esti + pi + pk > lstj , or that (b) lstk �
lstj if both, esti + pi + pj � lstk and esti + pi + pk � lstj . Studying the two cases esti
 + pi � estj and esti + pi < estj separately, we can show that in both cases there
exists stj � ,j , such that condition (i) is satisfied.

Case 1: Let esti + pi � estj . If we can prove that esti + pi � lstj then choosing stj
 := esti + pi is possible, as then stj � [estj , lstj] = ,j , esti + pi � stj and stj + pj
 = esti + pi + pj � lstk . Thus, condition (i) is satisfied. In order to prove esti + pi �
lstj , we use the assumption that condition (iii) is not satisfied, i.e. that estj + pj >
esti or esti + pi > lstk . It follows from esti + pi < esti + pi + pj � lstk that the second
inequality cannot be satisfied, so that actually estj + pj > esti . Thus, indeed, esti
 + pi � lstj , as we have assumed 2-b-consistency (see (16.4.6)).

Case 2: Let esti + pi � estj . If estj + pj � lstk , setting stj := estj � ,j again satisfies
condition (i). We now have to show that, in fact, estj + pj � lstk . Again, we will
use the assumption that 2-b-consistency is established. If estj + pj > lstk then
(16.4.7) implies lstk � lstj � pk and lstk < lstj . Further, as esti + pi + pj � lstk � lstj
 � pk we can conclude esti + pi + pk � lstj . So both inequalities of (16.4.12) are
satisfied, but lstk < lstj . This is a contradiction to the assumption (b).

The second equivalence is easily proven by adding pk and pj , respectively,
on both sides of inequalities (16.4.12) .

Lemma 16.4.6

If ! is 2-b-consistent then the following equivalence relations hold:

 stj� ,j , stk � ,k : { (estj + pj � stk ^ stk + pk � esti) W (v)
(estk + pk � stj ^ stj + pj � esti) (vi)

 (16.4.14)

esti � max{estj + pj + pk , estk + pk} W
esti � max{estk + pk + pj , estj + pj}

(16.4.15)

 esti � max{min {estj , estk} + pj + pk , estj + pj , estk + pk} (16.4.16)

Proof. We prove the first equivalence. Again, the direction � is obvious, so we
only have to show j. Let (16.4.15) be satisfied. We assume without loss of gen-
erality that estj � estk . This implies max{ estk + pk + pj , estj + pj } � estk + pk + pj
 � max{ estj + pj + pk , estk + pk }, so that esti � max{ estj + pj + pk , estk + pk } (*).

638 16 Constraint Programming and Disjunctive Scheduling

Case 1: Let estj + pj � estk . If estj + pj > lstk then the 2-b-consistency (16.4.6)
implies estj � estk + pk and estj � estk which is a contradiction, so that actually estj
 + pj < lstk . We can set stk := estj + pj � [estk , lstk] = ,k , and condition (v) is satis-
fied due to (*).
Case 2: Let estj + pj < estk . Choosing stk := estk � ,k again satisfies condition (v)
due to (*). A standard proof verifies the second equivalence.

Given that 2-b-consistency is established, we can therefore replace (16.4.10)
with the following equivalent and much simpler condition which can be tested in
constant time:

(max{lctj � esti , lctk � esti} � pi + pj + pk) W (i + ii)
(estj + pj � esti ^ esti + pi � lstk) W (iii)
(estk + pk � esti ^ esti + pi � lstj) W (iv)
(esti � max{min{estj , estk} + pj + pk , estj + pj , estk + pk}) . (v + vi)

(16.4.17)

Resuming our previous thoughts, we can increase esti := esti + 1 if (16.4.17) is
not satisfied. Observe that if (i + ii) is not satisfied before increasing esti then it is
not satisfied after increasing esti . Therefore, we can proceed as follows: first,
test whether (i + ii) holds. If this is not the case then increase esti until one of the
conditions (iii), (iv) or (v + vi) is satisfied. Fortunately, this incremental process
can be accelerated by defining appropriate time bound adjustments.

Deriving the correct time bound adjustments requires a rather lengthy and
painstaking analysis which is provided in Section 16.6 (Appendix). At the mo-
ment, we will only present an intuitive development of the results which avoids
the distraction of the technical details.

Two cases have to be distinguished. In the first case, increasing esti will
never satisfy conditions (i + ii), (iii) and (iv). This can be interpreted as the situa-
tion in which Ti can neither be processed at the first, nor at the second position,
but must be processed after Tj and Tk. We then have to increase esti until condi-
tion (v + vi) is satisfied. Notice that this is always possible by choosing esti suffi-
ciently large, i.e. by setting

esti := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} .

However, it is possible to show that the seemingly weaker adjustment

esti := max{esti , min{estj , estk} + pj + pk}

is sufficient if it is combined with the tests for establishing 2-b-consistency or,
more precisely, if after the application of this adjustment the 2-b-consistency
tests are again applied. This leads to the following two consistency tests:

 16.4 Constraint Propagation and the DSP 639

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} < pi + pj + pk

� esti := max{esti , min{estj , estk} + pj + pk},
(16.4.18)

esti + pi > max{lstj , lstk}
� esti := max{esti , min{estj , estk} + pj + pk} .

(16.4.19)

It is both important to establish 2-b-consistency prior and after the application of
these consistency tests, since the application of the latter test can lead to a 2-b-
inconsistent state.

A generalization of these tests will be later described under the name in-
put/output consistency tests. Trivial though it may seem, it should nevertheless
be mentioned that the consistency tests (16.4.18) and (16.4.19) are not equiva-
lent. Furthermore, observe that if the left side of (16.4.19) is satisfied then the
consistency tests for pairs of tasks (16.4.6) can be applied to both (i , j) and (i , k),
but may lead to weaker domain adjustments. We will give some examples which
confirm these assertions.

Example 16.4.7
Consider the example depicted in Figure 16.4.2. Since

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} = 9 < 10 = pi + pj + pk ,

we can adjust esti := max{esti , min{estj , estk} + pj + pk} = max{3,7} = 7 accord-
ing to (16.4.18). By comparison, no deductions are possible using (16.4.19), as
esti + pi = 6 < 7 = max{lstj , lstk}.

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

10 11 12
xx

9 10 11

Tk 2 3 4 5 6 7 8 9

xx
3

Figure 16.4.2 Consistency test (16.4.18).

Example 16.4.8
In Figure 16.4.3 another example is shown. Here, the consistency test (16.4.18)
fails, as

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} = 9 = pi + pj + pk .

The consistency test for pairs of tasks described in (16.4.6) can be applied to (i , j)
and (i , k), but leaves estj unchanged, since estj + pj = estk + pk = 3 < 4 = esti . On-
ly the consistency test (16.4.19) correctly adjusts esti := max{esti , min{estj , estk}

640 16 Constraint Programming and Disjunctive Scheduling

+ pj + pk} = max{4,6} = 6.

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

10 11 12
xx

9

Tk 10 2 3 4 5 6 7 8 9
Figure 16.4.3 Consistency test (16.4.19).

Let us now turn to the second case in which the condition (i + ii) is not satisfia-
ble, but increasing esti will eventually satisfy (iii) or (iv). This can be interpreted
as the situation in which Ti cannot be processed first, but either j � i � k or
k � i � j are feasible. The corresponding consistency test is as follows:

max
v�{j,k}

{lctv � esti} < pi + pj + pk

� esti := max{esti , min{ectj , ectk}}.
(16.4.20)

A generalization of this test will be later described under the name input/output
negation consistency test.

Example 16.4.9
Consider the example of Figure 16.4.4. No domain reductions are possible using
the consistency tests (16.4.18) and (16.4.19). Since, however, maxv�{j,k}{lctv
 � esti} = 7 < 9 = pi + pj + pk , we can adjust esti := max{esti , min{ectj , ectk}} =
max{2, 3} = 3 using the consistency test (16.4.20).

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

3
x

9

Tk 1 2 3 4 5 6 7 8 9

2

Figure 16.4.4 Consistency test (16.4.20).

The adjustments of the latest start times can be handled symmetrically. The same
line of argumentation allows us to derive the following three consistency tests:

max
u�{j,k}, v�{i,j,k}, u�v

{lctv � estu} < pi + pj + pk

� lsti := min{lsti , max{lctj , lctk} � pj � pk � pi},
(16.4.21)

min{estj + pj , estk + pk} > lsti (16.4.22)

 16.4 Constraint Propagation and the DSP 641

� lsti := min{lsti , max{lctj , lctk} � pj � pk � pi},

max
u�{j,k}

{lcti � estu} < pi + pj + pk

� lsti := min{lsti , max{lstj , lstk} � pi}.
(16.4.23)

Let g3 be the set of consistency tests defined in (16.4.18)-(16.4.23) for all pair-
wise different triples of tasks with indices i, j, k � B, and let g2,3 := g2 � g3 . It
can be shown that all consistency tests in g2,3 are monotonous, so g2,3(!) is well
defined. We have proven the following theorem.

Theorem 16.4.10

For all ! � J, g2,3(!) is strongly 3-b-consistent.

Notice that g3(g2(!)) does not have to be strongly 3-b-consistent, since the ap-
plication of some of the consistency tests in g3 can result in current domains
which are not 2-b-consistent. So, indeed, the consistency tests in g2 and g3 have
to be applied in alternation.

Obviously, g2,3(!) can be computed by repeatedly testing all pairwise dif-
ferent pairs and triples of tasks. However, as will be seen in the following sec-
tions, there exist more efficient algorithms.

16.4.4 Input/Output Consistency Tests

In the last section, domain consistency tests for pairs and triples of tasks have
been described. It suggests itself to derive domain consistency tests for a greater
number of tasks through a systematic evaluation of a greater number of disjunc-
tive constraints. For the sake of simplicity, we will refrain from this rather tech-
nical approach and follow the historical courses which finally leads to the defini-
tion of these powerful consistency tests. Note, however, that we must not expect
that the consistency tests derived will establish some higher level of bound-
consistency, since great store has been set on an efficient implementation.

At first, we will present generalizations of the consistency tests (16.4.18)
and (16.4.19). A closer look at these tests reveals that not only domain reduc-
tions but also processing orders of tasks can be deduced. It is convenient to first
introduce these sequence consistency tests so as to simplify the subsequent
proofs.

Sequence Consistency Tests

Given a subset of task indices A �/ B and an additional task Ti , i 	 A, Carlier and
Pinson [CP89] were the first to derive conditions which imply that Ti has to be

642 16 Constraint Programming and Disjunctive Scheduling

processed before or after all tasks Tj , j � A. In the first case, they called i the
input of A, in the second case, the output of A, and so the name input/output
conditions seems justified.

Theorem 16.4.11 (Input/Output Sequence Consistency Tests).

Let A �/ B and i 	 A. If the input condition

max
u�A, v�A�{i}, u�v

{lctv � estu < p(A � {i}) (16.4.24)

is satisfied then task Ti has to be processed before all tasks in A, for short, i � A.
Likewise, if the output condition

max
u�A�{i}, v�A, u�v

{lctv � estu} < p(A � {i}) (16.4.25)

is satisfied then task Ti has to be processed after all tasks in A, for short, A � i.

Proof. If Ti is not processed before all tasks in A then the maximal amount of
time for processing all tasks in A � {i} is bounded by maxu�A, v�A�{i}, u�v {lctv �
estu}. This leads to a contradiction if (16.4.24) is satisfied. Analogously, the sec-
ond assertion can be shown.

The original definition of Carlier and Pinson is slightly weaker. It replaces the
input condition with

LCTmax(A � {i}) � ESTmin(A) < p(A � {i}). (16.4.26)

Likewise, the output condition is replaced with

LCTmax(A) � ESTmin(A � {i}) < p(A � {i}). (16.4.27)

We will term these conditions the modified input/output conditions.. There are
situations in which only the input/output conditions in their stricter form lead to a
domain reduction. For a discussion of the computational complexity of algo-
rithms that implement these tests see the end of Section 16.4.

Example 16.4.12
In Example 16.4.7 (see Figure 16.4.2), we have seen that

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} = 9 < 10 = pi + pj + pk ,

so that the output (16.4.25) implies {j , k} � i. By comparison, the modified
output condition is not satisfied since

LCTmax({ j , k }) � ESTmin({ i , j , k}) = lctj � estj = 11 > 10 = pi + pj + pk .

 16.4 Constraint Propagation and the DSP 643

Domain Consistency Tests

Domain consistency tests that are based on the input/output conditions can now
be simply derived. Here and later, we will only examine the adjustment of the
earliest start times, since the adjustment of the latest start times can be handled
analogously. Clearly, if i is the output of a subset A then Ti cannot start before all
tasks of A have finished. Therefore, the earliest start time of Ti is at least
Cmax(p,(A)), i.e. the makespan if all tasks in A are scheduled without preemption.
Unfortunately, however, determining Cmax(p,(A)) requires the solution of the
NP-hard single-machine scheduling problem [GJ79]. Thus, if the current do-
mains are to be updated efficiently, we have to content ourselves with approxi-
mations of this bound. Some of these approximations are proposed in the next
theorem which is a generalization of the consistency test (16.4.19) derived in the
last subsection. This theorem is mainly due to Carlier and Pinson [CP90],
Nuijten [Nui94], Caseau and Laburthe [CL95] and Martin and Shmoys [MS96].
The proof is obvious and is omitted.

Theorem 16.4.13 (output domain consistency tests, part 1).

If the output condition is satisfied for A �/ B and i 	 A then the earliest start time
of Ti can be adjusted to esti := max{esti , LBh(A)}, h � {1 , 2 , 3 , 4}, where

 (i) LB1(A) := maxu�A{ ectu},

 (ii) LB2(A) := ESTmin(A) + p(A),

 (iii) LB3(A) := Cmax(p,
 pr(A)),

 (iv) LB4(A) := Cmax(p,(A)) .

Dominance Relations

Let us compare the domain reductions that are induced by the output domain
consistency tests and the different bounds. For each h � {1 , 2 , 3 , 4}, we denote
with gout (h) := { "A,i

 (h) | A �/ B, i 	 A } the set of output domain consistency tests
defined in Theorem 16.4.13:

"A,i
 (h) := max

u�A�{i}, v�A, u�v
{lctv � estu} < p(A � {i}) � esti := max{esti , LBh(A)}.

Lemma 16.4.14
The following dominance relations hold:

1. gout(1) ≺= gout(3) ≺= gout(4) ,
2. gout(2) ≺= gout(3) ≺= gout(4) .

644 16 Constraint Programming and Disjunctive Scheduling

Proof. As LB3(A) � LB4(A), the relation "A,i
 (4)(!) � "A,i

 (3)(!) holds for all A �/ B,
i 	 A and ! � J. Theorem 16.2.18 then implies that gout(3) ≺= gout(4). Further,
Carlier [Car82] has shown the following identity for the preemptive bound:

LB3(A) = max
��V�A

{ESTmin(V) + p(V) }. (16.4.28)

Since the maximum expression in (16.4.28) considers all single-elemented sets
and A itself, LB1(A) � LB3(A) and LB2(A) � LB3(A). Again, using Theorem
16.2.18, we can conclude that gout(1) ≺= gout(3) and gout(2) ≺= gout(3).

Intuitively, it seems natural to assume that gout(1) is strictly dominated by
gout(3), while gout(3) is strictly dominated by gout(4). Indeed, this is true. Re-
member that, since gout(1) ≺= gout(3) has already been shown, we only have to
find an example in which gout(3) leads to a stronger domain reduction than
gout(1) in order to verify gout(1) ≺ gout(3). The same naturally holds for gout(3)
and gout(4).

Example 16.4.15
Consider the situation illustrated in Figure 16.4.5 with five tasks with indices i, j,
k, l, m. The table in Figure 16.4.5 lists all feasible sequences and the associated
schedules. Examining the start times of the feasible schedules shows that the
domains ,j , ,k , ,l , ,m cannot be reduced. Likewise, it can be seen that i is the
output of A = {j , k , l , m} with the earliest start time being LB4(A) = 10. In fact,
the output condition holds, as

max
u�A�{i}, v�A, u�v

{lctv � estu} = 10 < 11 = p(A � {i}) ,

so that we can adjust esti using one of the bounds of Theorem 16.4.13. Apart
from LB4(A) = 10, it is possible to show that LB1(A) = 7, LB2(A) = 9 and LB3(A)
 = 9. Obviously, LB1(A) < LB3(A) < LB4(A) = 10. Notice that, after the adjust-
ment of esti , no other adjustments are possible if the same lower bound is used
again, so that a fixed point is reached. This confirms the conjecture gout(1) ≺ gout
(3) ≺ gout(4).

It remains to classify gout(2). Comparing LB1(A) and LB2(A) shows that all three
cases LB1(A) < LB2(A), LB1(A) = LB2(A) and LB1(A) > LB2(A) can occur. Further,
comparing LB2(A) and LB3(A) reveals that LB2(A) � LB3(A) and sometimes LB2
(A) < LB3(A). So we would presume that gout(1) and gout(2) are not comparable,
while gout(2) is strictly dominated by gout(3). This time, however, our intuition
fails, since in fact gout(2) and gout(3) are equivalent.

 16.4 Constraint Propagation and the DSP 645

Ti

10 2 3 4

4 5 6 7 8 9

Tj

3
x

Tk 1 2 3 4 5 6 7 8 9

210

3 4 5 6 7 8
Tl

9

Tm 5 6 7 8

10 11 12

10

10

0

x x x x xx x x x

sequence sti stj stk stl stm
j � k � m � l � i 10 0 2 7 5
j � l � m � k � i 10 0 8 3 6
k � j � m � l � i 10 2 0 7 5

Figure 16.4.5 Comparing gout(1), gout(3) and gout(4).

Theorem 16.4.16 (dominance relations for output consistency tests). [DPP00]

gout(1) ≺ gout(2) ~ gout(3) ≺ gout(4).

Proof. We only have to prove gout(3) ≺= gout(2). It is sufficient to show that for all
A �/ B, i 	 A and all ! � J, one of the following cases applies:

(1) "A,i
 (3)(!) = "A,i

 (2)(!) ,

(2) V �/ A : "A,i
 (3)(!) = "V,i

 (2)("A,i
 (2)(!)) .

Once more, Theorem 16.2.18 will then lead to the desired result. Let us assume
that the output condition (16.4.25) is satisfied for some A �/ B and i 	 A. We
have to compare the bounds:

(i) LB2(A) = ESTmin(A) + p(A) ,

(ii) LB3(A) = max��V�A{ESTmin(V) + p(V)} ,

If LB2(A) = LB3(A) then "A,i
 (2) and "A,i

 (3) deduce the same domain reductions and
case (1) applies. Let us therefore assume that LB2(A) < LB3(A). Since the
preemptive bound is determined by (16.4.28) , there exists V - A, V � �, such
that LB3(A) = ESTmin(V) + p(V). Since LB2(A) < LB3(A), this is equivalent to

ESTmin(A) + p(A) < ESTmin(V) + p(V) . (16.4.29)

Subtracting p(V) from both sides yields

ESTmin(A) + p(A � V) < ESTmin(V) (16.4.30)

646 16 Constraint Programming and Disjunctive Scheduling

The last inequality will be used at a later time. Assume now that esti has been
adjusted by applying "A,i

 (2)
 . Note that this means that esti is increased or remains

unchanged. Thus, if the output condition is satisfied for the couple (A , i) prior
the adjustment of esti then it is satisfied after the adjustment, so that

max
u�A�{i},v�A,u�v

{lctv � estu
 *} < p(A � {i}) (16.4.31)

still holds for est i
 * := max{esti , LB2(A)} and estu

 * = estu for all u � i. If we do not
maximize over all but only a subset of values then we obtain a lower bound of
the left side of this inequality and

max
u�A,v�V,u�v

{lctv � estu
 *} < p(A � {i}) . (16.4.32)

Rewriting p(A � {i}) = p(V � {i}) + p(A � V) then leads to

max
u�A,v�V,u�v

{lctv � (estu
 * + p(A � V)} < p(A � {i}) . (16.4.33)

The left side of (16.4.33) can be simplified using the identity

max
u�A,v�V,u�v

{lctv � (estu
 * + p(A � V))}

= max
v�V

{lctv � (ESTmin
 * (A) + p(A � V))}. (16.4.34)

This is not apparent at once and requires some explanations. At first, the
term on the left side of (16.4.34) seems to be less than or equal to the term on the
right side, since ESTmin

 * (A) � estu
 * for all u � A. We now choose u' � A such that

estu'
 * = ESTmin

 * (A). If u' � V - A then ESTmin
 * (V) = ESTmin

 * (A). Since the earliest
start times of all tasks with indices in A did not change, this is a contradiction to
(16.4.30). Thus, the left side of (16.4.34) assumes the maximal value for u =
u' 	 V , and both terms are indeed identical. Therefore, (16.4.33) is equivalent to

max
v�V

{lctv � (ESTmin
 * (A) + p(A � V))} < p(V � {i}). (16.4.35)

The left side of (16.4.35) can be approximated using (16.4.30) which tells us that
for all u � V :

estu
 * > ESTmin

 * (A) + p(A � V) (16.4.36)

Likewise, we can deduce

est i
 * � LB2(A) = ESTmin

 * (A) + p(A) > ESTmin
 * (A) + p(A � V) . (16.4.37)

So, ESTmin
 * (A) + p(A � V) in (16.4.35) can be replaced by estu

 * for all u � V � {i}
which yields

max
u�V�{i},v�V,u�v

{lctv � estu
 *} < p(V � {i}) (16.4.38)

Observe that this is nothing but the output condition for the couple (V , i).

 16.4 Constraint Propagation and the DSP 647

Since LB2(V) = ESTmin
 * (V) + p(V) = LB3(A), a subsequent application of "V,i

 (2) leads
to the same domain reduction and the second case (2) applies. This completes
our proof.

Sequence Consistency Tests Revisited

It has already been mentioned that applying both sequence and domain con-
sistency tests together can lead to better search space reductions. Quite evidently,
any domain reductions deduced by Theorem 16.4.13 can lead to additional edge
orientations deduced by Theorem 16.4.11. We will now discuss the case in
which the inverse is also true.

Imagine a situation in which A � i can be deduced for a subset of tasks, but
in which the output condition does not hold for the couple (A , i). Such a situation
can actually occur as has, for instance, been shown in Example 16.4.8 for the
three tasks Ti , Tj , Tk : while j � i and k � i can be separately deduced without,
however, implying a domain reduction, the output condition fails for the couple
({j , k} , i). This motivates the following obvious theorem as an extension of Theo-
rem 16.4.13.

Theorem 16.4.17 (Input/Output Domain Consistency Tests, part 2).

Let A �/ B and i 	 A. If A � i then the earliest start time of task Ti can be adjust-
ed to esti := max{esti, LBh(A)}, h � {1 , 2 , 3 , 4}.

Algorithms and Implementation Issues

An important question to answer now is whether there exist efficient algorithms
that implement the input/output consistency tests. There are two obstacles which
have to be overcome: the computation of the domain adjustments and the detec-
tion of the couples (A , i) which satisfy the input/output conditions.

Regarding the former, computing the non-preemptive bound is ruled out due
to the NP-hardness result. At the other extreme, the “earliest completion time
bound'' (LB1) is a too weak approximation. Therefore, only the “sum bound''
(LB2) or the preemptive bound (LB3) remain candidates for the domain adjust-
ments. Recall that both bounds are equivalent with respect to the induced !-
fixed-point. Regarding the computational complexity, however, the two bounds
are quite different: on the one hand, computing LB2 requires linear time com-
plexity O(|A |) in contrast to the O(|A | log |A |) time complexity for computing
LB3 . On the other hand, establishing the !-fixed-point, LB2 usually has to be
computed more often than LB3 , and it is not clear which factor - complexity of
bound computation or number of iterations - dominates the other.

Let us turn to the second problem. An efficient implementation of the in-
put/output consistency tests is obviously not possible if all pairs (A , i) of subsets

648 16 Constraint Programming and Disjunctive Scheduling

A �
/
 B and tasks Ti , i 	 A are to be tested separately. Fortunately, it is not neces-

sary to do so as has been first shown by Carlier and Pinson [CP90]. They devel-
oped an O(n2) algorithm (with n = | B |) which deduces all edge orientations and
all domain reductions that are implied by the modified input/output conditions
and the preemptive bound adjustment3. The fundamental idea was to test the
modified input/output conditions and to compute the preemptive bound adjust-
ments simultaneously. Several years later, Carlier and Pinson [CP94] and Bruck-
er et al. [BJK94] presented O(n log n) algorithms which until now have the best
asymptotic performance, but require quite complex data structures.

Nuijten [Nui94], Caseau and Laburthe [CL95] and Martin and Shmoys
[MS96] have chosen a solely domain oriented approach and proposed different
algorithms for implementing Theorem 16.4.13 based again on the modified in-
put/output conditions. Nuijten developed an O(n2) algorithm which as well can
be applied to scheduling problems with discrete resource capacity. Caseau and
Laburthe presented an O(n3) algorithm based on the concept of task sets which
works in an incremental fashion, so that O(n3) is a seldom worst case. The algo-
rithm introduced by Martin and Shmoys [MS96] has a time complexity of O(n2).

An O(n3) algorithm which deduces all edge orientations implied by Theorem
16.4.11 has been derived by Phan Huy [Pha00]. He also presents an O(n2

 log n)
for deriving all domain adjustments implied by Theorem 16.4.17.

16.4.5 Input/Output Negation Consistency Tests

In the last subsection, conditions have been described which imply that a task
has to be processed before (after) another set of tasks. In this subsection, the in-
verse situation that a task cannot be processed first (last) is studied.

Sequence Consistency Tests

The following theorem is due to Carlier and Pinson [CP89]. For reasons near at
hand, we have chosen the name input/output negation for the conditions de-
scribed in this theorem.

Theorem 16.4.18 (Input/Output Negation Sequence Consistency Tests).

Let A �/ B and i 	 A. If the input negation condition

3 It is common practice to only report the time complexity for applying all consistency tests

once. In general, the number of iterations necessary for computing the ∆-fixed-point has to
be considered as well. In the worst case, this accounts for an additional factor c which de-
pends upon the size of the current domains. In practice, however, c is a rather small con-
stant.

 16.4 Constraint Propagation and the DSP 649

LCTmax(A) � esti < p(A � {i}) (16.4.39)

is satisfied then task Ti cannot be processed before all tasks Tj , j � A. Likewise,
if the output negation condition

lcti � ESTmin(A) < p(A � {i}) (16.4.40)

is satisfied then task Ti cannot be processed after all other tasks Tj , j � A.

Proof. If Ti is processed before Tj , j � A then all tasks with indices in A have to
be processed within the time interval [esti , LCTmax(A)). This leads to a contradic-
tion if (16.4.39) is satisfied. The second assertion can be shown analogously.

The input/output negation conditions are a relaxation of the input/output condi-
tions and so are more often satisfied. However, the conclusions drawn in Theo-
rem 16.4.18 are usually weaker than those drawn in Theorem 16.4.11, except for
A contains a single task4. An important issue is therefore the development of
strong domain reduction rules based on the limited information deduced.

Domain Consistency Tests

We will only study the input negation condition and the adjustments of earliest
start times. Let us suppose that (16.4.39) is satisfied for A �/ B and i 	 A. Since,
then, Ti cannot be processed before all tasks Tj , j � A, there must be a task in A
which starts and finishes before Ti , although we generally do not know which
one. Thus, a lower bound of the earliest start time of Ti is

LB5(A , i) = min
u�A

{ectu} (16.4.41)

Caseau and Laburthe [CL95] made the following observation: if Ti cannot be
processed first then, in any feasible schedule, there must exist a subset
� � V � A, so that V � i � A � V. As a necessary condition, this subset V has to
satisfy

LCTmax((A � V) � {i}) � ESTmin(V) � p(A � {i}) . (16.4.42)

Consequently, they proposed

LB6(A , i) = min
��V�A

{ LB2(V) | V satisifies (16.4.42) } (16.4.43)

as a lower bound for the earliest start time of Ti . Notice, however, that if V satis-
fies (16.4.42) then the one-elemented set V' := {u} � V with estu = ESTmin(V)
satisfies (16.4.42) as well. Further, LB2(V) = ESTmin(V) + p(V) = estu + p(V)

4 In this case, the input/output negation sequence consistency test coincides with the in-

put/output sequence consistency test for pairs of operations.

650 16 Constraint Programming and Disjunctive Scheduling

� estu + pu = LB2(V'), so that the expression in (16.4.43) is minimal for a one-
element set. Therefore, setting Au := (A � {u}) � {i} we can rewrite

 LB6(A , i) = min
u�A

{ ectu | LCTmax(Au) � estu � p(Au � {u}} (16.4.44)

This bound has a quite simple interpretation: the minimal earliest completion
time is only chosen among all tasks which do not satisfy the input negation con-
dition, because those who do, cannot start at the first position.

Up to now, esti has been adjusted to the earliest completion time of some
single task. The time bound adjustment can be improved if a condition is derived
that detects a situation in which more than one task have to be processed before
Ti . Observe that if for a subset � � V � A the sequence V � i � A � V is feasi-
ble then the following condition must hold:

LCTmax((A � V) � {i}) � esti � p((A � V) � {i}) . (16.4.45)

This implies the lower bounds on the earliest start time:

LB7(A , i) := min
��V�A

{ LB2(V) | V satisfies (16.4.45)} (16.4.46)

LB8(A , i) := min
��V�A

{ LB3(V) | V satisfies (16.4.45)} (16.4.47)

Finally, we can try to find the exact earliest start time of task Ti by computing

LB9(A , i) := min
��V�A

{ LB4(V) | V � i � A � V is feasible} . (16.4.48)

The following theorem which is a generalization of the consistency test
(16.4.20) summarizes the results derived above.

Theorem 16.4.19 (Input/Output Negation Domain Consistency Tests).

If the input negation condition is satisfied for A �/ B and i 	 A then the earliest
start time of task Ti can be adjusted to esti := max{esti , LBh(A , i)}, h � {5 , 6 , 7 ,

8 , 9}.

Dominance Relations

For h � {5 , 6 , 7 , 8 , 9}, let g¬in(h) := { "A,i
 (h) | A �/ B, i 	 A} denote the set of input

negation domain consistency tests defined in Theorem 16.4.19:

"A,i
 (h) : LCTmax(A) � esti < p(A � {i}) � esti := max{esti , LBh(A , i)} .

Lemma 16.4.20
The following dominance relations hold:
 1. g¬in(5) ≺= g¬in(6) ≺= g¬in(9),

 16.4 Constraint Propagation and the DSP 651

 2. g¬in(5) ≺= g¬in(7) ≺= g¬in(8) ≺= g¬in(9).

Lemma 16.4.21

g¬in(5) ~ g¬in(6).

Proof. We only have to prove that g¬in(6) ≺= g¬in(5). It is sufficient to show that
for all A �/ B, i 	 A and ! � J, there exist A1

 ,..., Ar �/ B such that

("Ar,i
 (5) h...h "A1,i

 (5))(!) � "A,i
 (6)(!) (16.4.49)

For the sake of simplicity, we omit an exact proof but only describe the basic
ideas. Let U � A denote the index set of tasks satisfying the input negation condi-
tion, i.e. U := { u � A | LCTmax(Au) � estu < p(Au � {u})} with Au := (A � {u}) �
{i}.

Recall that

(i) LB5(A , i) = min
u�A

{ectu} ,

(ii) LB6(A , i) = min
u�A�U

{ ectu} .

If both bounds are identical then, obviously, "A,i
 (6)(!) = "A,i

 (5)(!). This identity, for
instance, holds if U is empty. Thus, in the following, we restrict our attention to
the case | U | > 0. If u � A is a task satisfying ectu = LB5(A , i) < LB6(A , i) then
u � U and

estu + p(Au � {u}) = ectu + p(Au) > LCTmax(Au) .

If the earliest start time of Ti has been adjusted to est i
 * := max{esti, LB5(A , i)} by

applying "A,i
 (5) then we have est i

 * � ectu , so

est i
 * + p(Au) > LCTmax(Au) � LCTmax(Au � {i})

or
est i

 * + p((A � {u}) � {i}) > LCTmax(A � {u})

which is the input negation condition for the couple (A � {u} , i). Therefore, est i
 *

can be adjusted once more to LB5(A � {u}, i). If LB5(A � {u}, i) = LB6(A � {u}, i)
then we are done, since LB6(A � {u}, i) � LB6(A, i). Otherwise, we are in the
same situation as above which allows us to continue in the same manner. Finally,
observe that the number of adjustments is finite and bounded by | A |.

Example 16.4.22
Consider the example shown in Figure 16.4.6 with four tasks indexed as i, j, k, l.
A closer look at the set of feasible schedules reveals that ,j , ,k and ,l cannot be
reduced. Likewise, it can be seen that i cannot be the input of A = {j , k , l} which

652 16 Constraint Programming and Disjunctive Scheduling

is detected by the input negation condition, since LCTmax(A) � esti = 11 –
5 < 11 = p(A � {i}). Using LB5 , no time bound adjustment is possible, since LB5
(A , i) = 3. However, there exists no feasible schedule in which only one task is
processed before Ti . Indeed, LB7(A , i) = 6 leads to a stronger time bound adjust-
ment. After the domain reduction, a fixed point is reached, so this example and
Lemma 16.4.20 prove that g¬in(5) ≺ g¬in(7).

Ti

10 2 3 4

5 6 7 8 9

Tj

Tk 2 3 4 5 6 7 8 9

5 6 7 8
Tl

9

10 11 12

10

10

x
13

5 6 7 8 9 10 11

11

11

sequence sti stj stk stl
j � k � i � l 6 0 3 8
j � k � l � i 9 0 3 6
j � l � k � i 11 0 8 5
k � j � l � i 11 5 2 8
k � l � j � i 11 8 2 5

Figure 16.4.6 Comparing g¬in(5) and g¬in(7).

Lemma 16.4.23

g¬in(7) ~ g¬in(8) .

Proof. Similar to Theorem 16.4.16.

Example 16.4.24
Consider the situation in Figure 16.4.7 with five tasks indexed as i, j, k, l, m.
Again, ,j, ,k, ,l and ,m cannot be reduced. Further, it can be seen that i is the
output of A = {j , k , l , m} with the earliest start time being LB9(A , i) = 9. However,
the output condition is not satisfied for the couple (A , i). The input negation con-
dition holds, since LCTmax(A) – esti = 11 – 1 < 11 = p(A � {i}), but LBh(A , i) = 1
for all h � {5 , 6 , 7 , 8). Thus, the current domain of Ti remains unchanged if these
bound adjustments are applied, i.e. a fixed point is reached. This and Lemma
16.4.20 prove the relation g¬in(8) ≺ g¬in(9).

 16.4 Constraint Propagation and the DSP 653

Ti

10 2

4 5 6 7 8 9

Tj

3
x

Tk 1 2 3 4 5 6 7 8 9

21

3 4 5 6 7 8
Tl

9

Tm 5 6 7

10 11 12

10

x x x xx x x
13

4 5 6 7 8 93 10 11

11

2

4

sequence sti stj stk stl stm
j � k � m � l � i 9 0 1 6 4
j � l � m � k � i 10 0 7 2 5
k � m � l � j � i 10 9 1 6 4
l � m � j � k � i 11 7 8 2 5
l � m � k � j � i 11 10 7 2 5

Figure 16.4.7 Comparing g¬in(8) and g¬in(9).

Altogether, we have proven the following theorem.

Theorem 16.4.25 (dominance relations for input negation consistency tests).

g¬in(5) ~ g¬in(6) ≺ g¬in(7) ~ g¬in(8) ≺ g¬in(9) .

Algorithms and Implementation Issues

Input negation consistency tests which use the “simple earliest completion time
bound'' (LB5) as time bound adjustment and their output negation counterparts
have been applied by Nuijten [Nui94], Baptiste and Le Pape [BL95] and Caseau
and Laburthe [CL95]. Caseau and Laburthe have integrated the tests in their
scheduling environment based on task sets in a straightforward manner which
yields an algorithm with time complexity O(n3). All these algorithms only test
some, but not all interesting couples (A , i). An algorithm which deduces all do-
main reductions with time complexity O(n2) has only been developed by Baptiste
and Le Pape [BL96]. A similar implementation is proposed by Phan Huy in
[Pha00]. Nuijten and Le Pape [NL98] derived several consistency tests which are
similar to the input/output negation consistency tests with the time bound ad-
justment LB8 and can be implemented with time complexity O(n2 log n) and
O(n3) respectively.

654 16 Constraint Programming and Disjunctive Scheduling

16.4.6 Input-or-Output Consistency Tests

In this subsection, some new consistency tests are presented which are not sub-
sumed by the consistency tests presented in the previous subsections. They are
based on the input-or-output conditions which have been introduced by Dorndorf
et al. [DPP99].

Domain and Sequence Consistency Tests

The input-or-output conditions detect situations in which either (a) a task Ti has
to be processed first or (b) a task Tj has to be processed last within a set of tasks.
There exists a sequence and a domain oriented consistency test based on the in-
put-or-output condition. Both tests are summarized in the next theorem.

Theorem 16.4.26 (input-or-output consistency tests).

Let A �/ B and i, j 	 A. If the input-or-output condition

max
u�A�{j},v�A�{i},u�v

{lctv � estu} < p(A � {i , j}) (16.4.50)

is satisfied then either task Ti has to be processed first or task Tj has to be pro-
cessed last within A � {i , j}. If i � j then task Ti has to be processed before Tj
and the domains of Ti and Tj can be adjusted as follows:

estj := max{estj , esti + pi} ,

lstj := min{lsti , lstj � pi} .

Proof. If Ti is neither processed before, nor Tj processed after all other tasks in
A � {i , j} then all tasks in A � {i , j} have to be processed within a time interval
of maximal size

max
u�A�{j},v�A�{i},u�v

{lctv � estu}.

This is a contradiction to (16.4.50).
 Now, since Ti has to be processed first or Tj processed last within A � {i , j},

we can deduce that Ti has to be processed before Tj if i � j. This immediately
implies the domain deductions described above.

By substituting (16.4.50) with

LCTmax((A � {i}) � ESTmin(A � {j}) < p(A � {i , j}) , (16.4.51)

we obtain the modified input-or-output conditions which can be tested more easi-
ly, but are less often satisfied than the input-or-output conditions.

 16.4 Constraint Propagation and the DSP 655

Example 16.4.27
In Figure 16.4.8 an example for the application of the input-or-output consisten-
cy tests with four tasks indexed as i, j, k, l is shown.
Since

max
u�{j,k,l},v�{i,k,l},u�v

{lctv � estu} = 6 < 7 = p({i , j , k , l})

we can conclude that Ti has to be processed before Tj . Thus, we can adjust estj :=
4 and lsti := 4.

Ti

3 4

5 6 7 8

Tj

Tk
2 3 4 5 6 7 8

Tl

x

5 6 7 8 9

1 2 3 4

2 3 4 5 6 7 8

x

Figure 16.4.8 The input-or-output consistency test.

Algorithms and Implementation Issues

Deweß [Dew92] and Brucker et al. [BJK94] discuss conditions which examine
all permutations of a fixed length r and which are thus called r-set conditions.
Brucker et al. [BJK94] developed an O(n2) algorithm for testing all 3-set condi-
tions which is equivalent to testing all input-or-output conditions for triples of
tasks. Phan Huy [Pha00] developed an O(n3) algorithm for deriving all edge ori-
entations implied by the modified input-or-output conditions. This algorithm can
be generalized to an O(n4) algorithm which deduces all edge orientations implied
by the input-or-output conditions.

16.4.7 Energetic Reasoning

The conditions described in the previous subsections for testing consistency were
all founded on the principle of comparing a time interval in which a set of tasks
A has to be processed with the total processing time p(A) of these tasks. The time
intervals chosen were defined through the earliest start and latest completion
times of some of the tasks. This fundamental principle can be generalized by
considering arbitrary time intervals [t1 , t2), on the one hand, and replacing simple
processing time p(A) with interval processing time p(A , t1 , t2), on the other hand.
Erschler et al. [ELT91], see also [LEE92], were the first to introduce this idea
under the name of energetic reasoning. Indeed, the interval processing time can

656 16 Constraint Programming and Disjunctive Scheduling

be interpreted as resource energy demand which encounters a limited resource
energy supply that is defined through the time interval. The original concept of
Erschler et al. considered cumulative scheduling problems with discrete resource
capacity. Their results have been improved by Baptiste and Le Pape [BL95] for
disjunctive constraints. We will take a closer look at these results and compare
them to the consistency tests described so far.

Interval Processing Time

Let us first define the interval processing time of a task Ti for a given time inter-
val [t1 , t2), t1 < t2 . The interval processing time pi(t1 , t2) is the smallest amount of
time during which Ti has to be processed within [t1 , t2). Figure 16.4.9 shows four
possible situations: (1) Ti can be completely contained within the interval, (2)
overlap the entire interval, (3) have a minimum processing time in the interval
when started as early as possible or (4) have a minimum processing time when
started as late as possible. The fifth situation not depicted applies whenever, giv-
en the current domains, Ti does not necessarily have to be processed within the
given time interval. Consequently,

pi(t1 , t2) := max{ 0, min{pi , t2 � t1 , ecti � t1 , t2 � lsti }}. (16.4.52)

3 4

5 6

3 4 5

5 6 8 9

3 4

1

4 5 6 8

(1)

(2)

(3)

(4)

1

9 107

2

2 7

Figure 16.4.9 Types of relations between a task and a time interval.

The interval processing time of a subset of tasks A is given by p(A , t1 , t2) :=
5i�A pi(t1 , t2). Finally, let B(t1,t2) := { i � B | pi(t1 , t2) > 0 } denote the set of tasks
which have to be processed completely or partially within [t1 , t2).

Energetic Input/Output Consistency Tests

Baptiste and Le Pape [BL95] examined situations in which the earliest start time
of a task Ti can be updated using the concept of interval processing times. As-
sume, for instance, that Ti finishes before t2 . The interval processing time of Ti in

 16.4 Constraint Propagation and the DSP 657

[t1 , t2) would then be pi'(t1 , t2) = min{pi , t2 � t1 , ecti � t1}.5 However, if t2 � t1
 < p(B � {i} , t1 , t2) + pi'(t1 , t2) then the assumption cannot be true, so that Ti has to
finish after t2. Baptiste and Le Pape showed that esti can be then updated to

esti := max{esti , t1 + p(B � {i} , t1 , t2) }. (16.4.53)

A stronger domain reduction rule is presented in the following theorem.

Theorem 16.4.28 Energetic output conditions.

Let i � B and t1 < t2. If the energetic output condition

t2 � t1 < p(B � {i} , t1 , t2) + min{pi , t2 � t1 , ecti � t1} (16.4.54)

is satisfied then B(t1,t2) � {i} is not empty, and Ti has to be processed after all
tasks of B(t1,t2) � {i} . Consequently, esti can be adjusted to esti := max{esti ,
LBh(B(t1,t2) � {i})}, h � {1 , 2 , 3 , 4} .

Proof. If (16.4.54) is satisfied then p(B � {i} , t1 , t2) > 0 and B(t1,t2) � {i} is not
empty. Furthermore, Ti must finish after t2 . By definition, all tasks in B(t1,t2) � {i}
have positive processing times in the interval [t1 , t2) and so must start and finish
before Ti . This proves B(t1,t2) � {i} � i from which follows the domain reduction
rule.

Energetic input conditions can be defined in a similar way. Observe that the do-
main adjustment in Theorem 16.4.28 is stronger than the one defined in (16.4.53)
if the "sum bound'' (LB2) or a stronger bound is used. We omit the simple proof
due to the observations made in the following.

Up to now, it remained an open question which time intervals were especial-
ly suited for testing the energetic input/output conditions in order to derive
strong domain reductions. We will sharpen this question and ask whether Theo-
rem 16.4.28 really leads to stronger domain reductions at all if compared with
other known consistency tests. Quite surprisingly, the answer is “no''.

Theorem 16.4.29 (comparing output and energetic output conditions).
If the energetic output condition

 t2 � t1 < p(B � {i} , t1 , t2) + min{pi , t2 � t1 , ecti � t1}

is satisfied for a task Ti , i � B and the time interval [t1 , t2) then the output condi-
tion

max
u�A�{i},v�A,u�v

{lctv � estu} < p(A � {i})

5 Here and later, we will assume that pi'(t1 , t2) � 0 which is not a serious restriction.

658 16 Constraint Programming and Disjunctive Scheduling

is satisfied for the couple (B(t1,t2) � {i} , i).

Proof. If the energetic output condition is satisfied then B(t1,t2) � {i} is not empty,
and there exists a task Tv with v � B(t1,t2) � {i}. Let us first consider the case
u � B(t1,t2) � {i}, u � v. We can approximate the right side of (16.4.54) and obtain

t2 � t1 < p(B � {i} , t1 , t2) + pi

 = p(B � {i , u , v} , t1 , t2) + pu(t1 , t2) + pv(t1 , t2) + pi . (16.4.55)

Since u, v � B(t1,t2) , we know from (16.4.52) that t2 � lstv � pv(t1 , t2) and ectu � t1
 � pu(t1 , t2), and we can approximate

t2 � t1 < p(B � {i , u , v} , t1 , t2) + ectu � t1 + t2 � lstv + pi (16.4.56)

which is equivalent to

lstv � ectu < p(B � {i , u , v} , t1 , t2) + pi . (16.4.57)

Note that p(B � {i , u , v} , t1 , t2) � p(B(t1,t2) � {i , u , v}), so we arrive at

lstv � ectu < p(B(t1,t2) � {u , v}) . (16.4.58)

or, equivalently,

lctv � estu < p(B(t1,t2)) . (16.4.59)

Now, consider the case u = i � v. Using (16.4.54) , we have

 t2 � t1 < p(B � {i} , t1 , t2) + ecti � t1

 = p(B � {i , v} , t1 , t2) + pv(t1 , t2) + ecti � t1 . (16.4.60)

We can, again, substitute pv(t1 , t2) with t2 � lstv and obtain

lstv � ecti < p(B � {i , v} , t1 , t2) . (16.4.61)

A similar line of argumentation as above leads to

lctv � esti < p(B(t1,t2)) . (16.4.62)

Finally, combining (16.4.59) and (16.4.62) leads to the output condition for the
couple (B(t1,t2) � {i} , i) which proves our assertion.

A similar result applies for the energetic input condition. Inversely, a quite sim-
ple proof which is omitted shows that the input/output conditions are subsumed
by the energetic generalizations, so that both concepts are in fact equivalent.

 16.4 Constraint Propagation and the DSP 659

Other Energetic Consistency Tests

It is possible to derive input/output negation conditions and input-or-output con-
ditions that are based on energetic reasoning. However, as in the case of the in-
put/output conditions, they do not imply additional domain reductions which are
not also deduced by the corresponding non-energetic conditions. We therefore
omit a detailed presentation of these conditions.

The results of this subsection have an important implication. They tell us
that for the disjunctive scheduling problem, all known consistency tests that are
based on energetic reasoning are not more powerful than their non-energetic
counterparts. It is not clear whether this holds for arbitrary consistency tests, alt-
hough we strongly assume this. A step towards proving this conjecture has been
made in [DPP99] where it has been shown that, regardless of the chosen con-
sistency tests, the interval processing times p(A , t1 , t2) can always be replaced by
the simple processing times p(A).

16.4.8 Shaving

All consistency tests presented so far share the common idea that a possible start
time sti of a task Ti can be removed from its current domain ,i if there exists no
feasible schedule in which Ti actually starts at that time. In this context, the con-
sistency tests that have been introduced in the Sections 16.4.3 through 16.4.7 can
be interpreted as sufficient conditions for proving that no feasible schedule can
exist which involve a specific start time assignment sti . In Section 16.4.3, for
instance, we have tested the sufficient condition whether there exists a 2- or 3-
feasible start time assignment.

This general approach has been summarized by Martin and Shmoys under
the name shaving [MS96]. They proposed additional shaving variants. Exact
one-machine shave verifies whether a non-preemptive schedule exists by solving
an instance of the one-machine scheduling problem in which the start time sti
� {esti , lsti} is fixed. Quite obviously, exact one-machine shave is NP-hard and
equivalent to establishing n-b-consistency. One-machine shave relaxes the non-
preemption requirement and searches for a (possibly) preemptive schedule.

Carlier and Pinson [CP94] and Martin and Shmoys [MS96] independently
proposed the computation of !-fixed-points as a method for proving the non-
existence of a feasible schedule. Given a set of consistency tests g and a set of
current domains, say !', a feasible schedule cannot exist if a current domain in
g(!') is empty. Carlier and Pinson, and Martin and Shmoys who coined the name
C-P shave have chosen the modified input/output domain consistency tests and
the precedence consistency tests as underlying set of consistency tests. Martin
and Shmoys have further proposed double shave which applies C-P shave for
detecting inconsistencies. Torres and Lopez [TL00] review possible extensions
of shaving techniques that have been proposed for job shop scheduling. Dorndorf

660 16 Constraint Programming and Disjunctive Scheduling

et al. [DPP01] very successfully apply shaving techniques to the open shop
scheduling problem (OSP), which is a special case of the DSP (cf. Chapter 9).

16.4.9 A Comparison of Disjunctive Consistency Tests

Let us summarize the results derived so far. In Figure 16.4.10, the dominance
relations between different levels of bound-consistency and classes of consisten-
cy tests are shown6. A strict dominance is represented by an arc �, while X
stands for an equivalence relation. An encircled "+'' means that the correspond-
ing classes of consistency tests taken together imply a dominance relation. Since
the dominance relation is transitive, we do not display all relations explicitly.

Let us start with the upper half of the figure. Obviously, n-b-consistency and
exact one-machine shave are equivalent and strictly dominate all other consisten-
cy tests. On the left side, n-b-consistency, of course, subsumes all levels of k-b-
consistency for k � n.

In the center of the figure, the consistency tests with an input/output compo-
nent in their names are shown. As has been proven in Section 16.4.7, the ener-
getic consistency tests are equivalent to the non-energetic ones. In Example
16.4.12, we have verified that the input/output consistency tests dominate the
modified input/output consistency tests. The same dominance relation holds for
the input-or-output tests when compared to the modified tests. In Section 16.4.3
we have shown that the input/output and input/output negation consistency tests
taken together establish strong 3-b-consistency if for the former the "sum bound''
(LB2) and for the latter the "simple earliest completion time bound'' (LB5) are
applied for adjusting the current domains. The input/output and input/output ne-
gation tests usually imply more than 3-b-consistency as can be seen in Example
16.4.15. However, if only pairs and triples of tasks are considered then the
equivalence relation holds. Further, it has been shown in Section 16.4.3 that ap-
plying the input/output consistency tests for pairs of tasks is equivalent to estab-
lishing 2-b-consistency if the "earliest completion time bound'' (LB1) is used as
time bound adjustment.

Let us now turn to the right side of the figure. It is not hard to show that
double shave strictly dominates C-P shave which in turn strictly dominates one-
machine shave. Apart from this, there exists no particular relationship between
double shave and C-P shave and the other consistency tests. However, double
shave and C-P shave usually lead to significantly stronger domain reductions as
has been verified empirically. Finally, Martin and Shmoys [MS96] have shown
that one-machine shave is equivalent to the modified input/output domain con-
sistency tests.

6 Although the dominance relation has only been defined for sets of consistency tests, it can be

extended in a straightforward manner to the levels of bound-consistency.

 16.4 Constraint Propagation and the DSP 661

n-
b-

C
on

si
st

en
cy

Ex
ac

t O
ne

-M
ac

hi
ne

Sh
av

e

D
ou

bl
e

Sh
av

e
En

er
ge

tic
 In

pu
t/O

ut
pu

t
N

eg
at

io
n

En
er

ge
tic

In
pu

t/O
ut

pu
t

En
er

ge
tic

In
pu

t-o
r-

O
ut

pu
t

C
-P

 S
ha

ve

In
pu

t/O
ut

pu
t N

eg
at

io
n

In
pu

t/O
ut

pu
t

In
pu

t-o
r-

O
ut

pu
t

M
od

ifi
ed

In
pu

t-o
r-

O
ut

pu
t

+

St
ro

ng
 3

-b
-C

on
si

st
en

cy

fo
r p

ai
rs

 a
nd

 tr
ip

le
s o

f
op

er
at

io
ns

 (L
B 2

 ,
LB

5)
M

od
ifi

ed
In

pu
t/O

ut
pu

t
O

ne
-M

ac
hi

ne
 S

ha
ve

2-
b-

C
on

si
st

en
cy

fo
r p

ai
rs

 o
f

op
er

at
io

ns
 (L

B 1
)

Figure 16.4.10 Dominance relations.

662 16 Constraint Programming and Disjunctive Scheduling

16.4.10 Precedence vs. Disjunctive Consistency Tests

The consistency tests which have been developed for the disjunctive constraints
can be applied to an instance of the DSP by decomposing this instance into
(preferably maximal) cliques. Since all consistency tests presented are monoto-
nous, they can be applied in an arbitrary order and always result in the same !-
fixed-point. However, the runtime behaviour differs extremely depending on the
order of application that has been chosen.

An ordering rule which has been proven to be quite effective is to perform
the sequence consistency tests that are likely to deduce more edge orientations
and have a lower time complexity in the beginning. A particular set of consisten-
cy tests is only triggered if all "preceding'' consistency tests do not imply any
deductions any more. This ensures that the more costly consistency tests are only
seldomly applied and contribute less in the overall computational costs.

Finally, Nuijten and Sourd [NS00] have recently described consistency
checking techniques for the DSP that are based on the simultaneous considera-
tion of precedence constraints and disjunctive constraints.

16.5 Conclusions

Constraint propagation is an elementary method which reduces the search space
of a search or optimization problem by analyzing the interdependencies between
the variables, domains and constraints that define the set of feasible solutions.
Instead of achieving full consistency with respect to some concept of consisten-
cy, we generally have to content ourselves with approximations due to reasons of
complexity. In this context, we have evaluated classical and new consistency
tests for the DSP which are simple rules that reduce the domains of variables
(domain consistency tests) or derive knowledge in a different form, e.g. by de-
termining the processing sequences of a set of tasks (sequence consistency tests).

The particular strength of this approach is based on the repeated application
of the consistency tests, so that the knowledge derived is propagated, i.e. reused
for acquiring additional knowledge. The deduction of this knowledge can be de-
scribed as the computation of a fixed point. Since this fixed point depends upon
the order of the application of the consistency tests, Dorndorf et al. [DPP00] at
first have derived a necessary condition for its uniqueness and have developed a
concept of dominance which enables to compare different consistency tests.
With respect to this dominance relation, they have examined the relationship
between several concepts of consistency (bound-consistency, energetic reasoning
and shaving) and the most powerful consistency tests known as the input/output,
input/output negation and input-or-output consistency tests. They have been able
to improve the well-known result that the input/output consistency tests for pairs
of tasks imply 2-b-consistency by deriving the tests which establish strong 3-b-
consistency. These consistency tests are slightly stronger than the famous ones

 16.6 Appendix: Bound Consistency Revisted 663

derived by Carlier and Pinson [CP89, CP90]. Dorndorf et al. [DPP00] have ana-
lyzed the input/output, input/output negation and input-or-output consistency
tests and have classified different lower bounds which are used for the reduction
of domains. They have shown that apparently weaker bounds still induce the
same fixed point. Finally, an open question regarding the concept of energetic
reasoning has been answered. In contrast to scheduling problems with discrete
resource supply, they have shown that the known consistency tests based on en-
ergetic reasoning are equivalent to the tests based on simple processing times.

16.6 Appendix: Bound Consistency Revisited

In this section, we derive the time bound adjustments for establishing 3-b-
consistency as has been announced in Section 16.4.3. Let us assume that the fol-
lowing condition

(max{lctj � esti , lctk � esti} � pi + pj + pk) W (i + ii)

(estj + pj � esti ^ esti + pi � lstk) W (iii)

(estk + pk � esti ^ esti + pi � lstj) W (iv)

(esti � max{min{estj , estk + pj + pk , estj + pj , estk + pk}) (v+ vi)
 (16.6.1)

is not satisfied given the current earliest and latest start times. As already men-
tioned, there exist two cases. In the first case, increasing esti will never satisfy
conditions (i + ii), (iii) and (iv). Therefore, we have to adjust esti so as to satisfy
condition (v+ vi). In the second case, condition (i + ii) is not satisfiable, but in-
creasing iest eventually satisfies (iii), (iv) or (v+ vi). Here, the minimal earliest
start time for which (iii) or (iv) holds is not greater than the minimal earliest start
time for which (v+ vi) holds. This will be proven in the remainder of this subsec-
tion.

We will first deal with the problem of how to distinguish between the two
cases. The corresponding time bound adjustments will then be derived at a later
time. In Lemma 16.6.1, a necessary and sufficient condition for the existence of
est i

 * � esti satisfying condition (iii) is described.

Lemma 16.6.1 (condition (iii)).

There exists est i
 * � esti such that condition (iii) is satisfied iff

max{estj + pj + pi , esti + pi}� lstk . (16.6.2)

The smallest start time which then satisfies (iii) is est i
 * = max{esti , estj + pj}.

664 16 Constraint Programming and Disjunctive Scheduling

Proof. If condition (iii) is satisfied for est i
 * � esti then estj + pj � est i

 * and est i
 * + pi

 � lstk , so that max{estj + pj + pi , esti + pi} � lstk . This proves the direction �. In
order to show j, let max{estj + pj + pi , esti + pi} � lstk . If esti < estj + pj then
est i

 * = estj + pj is the smallest value which satisfies (iii). Otherwise, if esti � estj
 + pj then est i

 * = esti is the smallest value which satisfies (iii).

Changing the roles of j and k in Lemma 16.6.1 leads to a similar result for condi-
tion (iv).

Corollary 16.6.2 (conditions (iii) and (iv)).

There exists est i
 * � esti which satisfies (iii) or (iv) iff

(max{estj + pj + pi , esti + pi} � lstk) W
(max{estk + pk + pi , esti + pi} � lstj)

(16.6.3)

If ! is 2-b-consistent then (16.6.3) is equivalent to

(estj + pj + pi � lstk W estk + pk + pi � lstj) ^
(esti + pi � lstk W esti + pi � lstj)

(16.6.4)

Proof. The first assertion follows directly from Lemma 16.6.1. Let us show the
second equivalence and assume that 2-b-consistency is established. Obviously,
(16.6.3) immediately implies (16.6.4). The other direction, however, is not ap-
parent at once.

Hence, let (16.6.4) be satisfied. It is sufficient to study the case estj + pj + pi
 � lstk , since estk + pk + pi � lstj leads to a similar conclusion. Given (16.6.4), we
can deduce that esti + pi � lstk or esti + pi � lstj (k).

Now, if esti + pi � lstk then the first condition max{estj + pj + pi , esti + pi}�
lstk of (16.6.3) is satisfied. If, however, esti + pi > lstk then 2-b-consistency im-
plies estk + pk � esti . Further, esti + pi � lstj due to (k). Therefore, estk + pk + pi
 � lstj , and the second condition max{estk + pk + pi , esti + pi} � lstj of (16.6.3) is
satisfied.

Given these results, it is now quite easy to describe the adjustments of the earli-
est start times.

Lemma 16.6.3 (adjusting earliest start times, part 1).

Let ! be 2-b-consistent. If

max
u�{j,k},v�{i,j,k},u�v

{lctv � estu} < pi + pj + pk (16.6.5)

or
 esti + pi > max{lstj , lstk} (16.6.6)

 16.6 Appendix: Bound Consistency Revisted 665

then (i+ii), (iii), (iv) are not satisfiable for any est i
 * � esti . The minimal earliest

start time est i
 * � esti satisfying (v+vi) is then defined by

est i
 * := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . (16.6.7)

Proof. We have shown in Lemma 16.4.5 that there exists no est i
 * � esti satisfying

condition (i + ii) iff

max
v�{j,k}

{lctv � esti} < pi + pj + pk . (16.6.8)

Likewise, we have shown in Lemma 16.6.1 that there exists no est i
 * � esti satisfy-

ing condition (iii) or (iv) iff (16.6.4) is not satisfied, i.e. iff

(estj + pj + pi > lstk ^ estk + pk + pi > lstj) W
(esti + pi > lstk ^ esti + pi > lstj)

(16.6.9)

which is equivalent to

(lctk � estj < pi + pj + pk ^ lctj � estk < pi + pj + pk) W
esti + pi > max{lstj , lstk}) . (16.6.10)

(16.6.8) and (16.6.10) together imply that (i + ii), (iii) and (iv) are not satisfiable,
so we have to choose the minimal earliest start time est i

 * satisfying condition
(v + vi) which leads to

est i
 * := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . (16.6.11)

It remains to combine (16.6.8) and (16.6.10) to one single condition. Making use
of the fact that esti + pi > max{lstj , lstk} already implies (16.6.8), we can deduce
that these two conditions are equivalent to:

(max
u�{j,k},v�{i,j,k},u�v

{lctv � estu} < pi + pj + pk) W (esti + pi > max{lstj , lstk}) .

This completes the proof.

Lemma 16.6.4 (adjusting earliest start times, part 2).

Let ! be 2-b-consistent. If (16.6.5) and (16.6.6) are not satisfied but

max
u�{j,k}

{lcti � estu} < pi + pj + pk (16.6.12)

then (i + ii) is not satisfiable for any est i
 * � esti . The minimal earliest start time

est i
 * � esti satisfying (iii), (iv) or (v + vi) is then defined through

est i
 * := max{esti , min{vj , vk}} , (16.6.13)

where

vj := { estj + pj if max{estj + pj + pi , esti + pi} � lstk ,
estk + pk otherwise,

666 16 Constraint Programming and Disjunctive Scheduling

vk := { estk + pk if max{estk + pk + pi , esti + pi} � lstj ,
estj + pj otherwise.

Proof. The assumptions imply that (i + ii) is not satisfiable. From Lemma 16.6.1,
we know that est i

 * := max{esti , min{v1 , v2}} is the minimal earliest start time
which satisfies (iii) or (iv). Further, Lemma 16.6.3 implies that there exists no
smaller est i

 * satisfying (v + vi), so indeed est i
 * is the correct adjustment.

Lemma 16.6.3 leads to the consistency tests

max
u�{i,j,k},v�{j,k},u�v

{lctv � estu} < pi + pj + pk �

esti := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} , (16.6.14)

esti + pi > max{lstj , lstk} �

esti := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . (16.6.15)

which correspond with the two different versions of the output domain con-
sistency tests for triples of tasks (see Theorems 16.4.13 and 16.4.17). Observe
that

LB3({j , k}) = max{min{estj , estk} + pj + pk , estj + pj , estk + pk}

is the optimal makespan if the tasks Tj and Tk are scheduled with preemption
allowed. From Theorem 16.4.16, we know that the time bound adjustment
LB3({j , k}) can be replaced with LB2({j , k}) = min{estj , estk} + pj + pk , so that
instead of (16.6.14) the following consistency test can be applied:

max
u�{i,j,k},v�{j,k},u�v

{lctv � estu} < pi + pj + pk �

esti := max{esti , min{estj , estk} + pj + pk} . (16.6.16)

Likewise, we can replace (16.6.15) with the equivalent consistency test

esti + pi > max{lstj , lstk} �

esti := max{esti , min{estj , estk} + pj + pk} . (16.6.17)

This follows from the fact that the 2-b-consistency tests already ensure

esti � max{estj + pj , estk + pk} if esti + pi > max{lstj , lstk} .

Lemma 16.6.4 derives the consistency test

max
u�{j,k}

{lctv � esti} < pi + pj + pk � esti := max{esti , min{vj , vk}} (16.6.18)

which corresponds to the input negation domain consistency test for triples of
tasks (see Theorem 16.4.19). Again, we can replace the time bound adjustment

 References 667

LB6({j , k}) = min{vj , vk} with LB5({j , k}) = min{ectj , ectk} due to Lemma
16.4.21 which leads to the equivalent consistency test

max
u�{j,k}

{lctv � esti} < pi + pj + pk � esti := max{esti , min{ectj , ectk}} (16.6.19)

This proves the assertions made in Section 16.4.3.

References

AC91 D. Applegate, W. Cook, A computational study of the job shop scheduling
problem, ORSA Journal on Computing 3, 1991, 149-156.

Ama70 S. Amarel, On the representation of problems and goal-directed procedures for
computers, in: R. Banerji, M. Mesarovic (eds.), Theoretical Approaches to Non-
Numerical Problem Solving, Springer, Heidelberg, 1970, 179-244.

BDP96 J. Błażewicz, W. Domschke, E. Pesch, The job shop scheduling problem: con-
ventional and new solution techniques, Eur. J. Oper. Res. 93, 1996, 1-33.

Bee92 P. van Beek, Reasoning about qualitative temporal information, Artif. Intell. 58,
1992, 297-326.

Bes94 C. Bessiere, Arc-consistency and arc-consistency again, Artif. Intell. 65, 1994,
179-190.

BFR99 C. Bessiere, E. C. Freuder, J.-C. Regin, Using constraint metaknowledge to
reduce arc consistency computation, Artif. Intell. 107, 1999, 125-148.

Bib88 W. Bibel, Constraint satisfaction from a deductive viewpoint, Artif. Intell. 35,
1988, 401-413.

BJK94 P. Brucker, B. Jurisch, Z. Krämer, The job shop problem and immediate selec-
tion, Ann. Oper. Res. 50, 1994, 73-114.

BJS94 P. Brucker, B. Jurisch, B. Sievers, A fast branch and bound algorithm for the
job shop scheduling problem, Discret Appl. Math. 49, 1994, 107-127.

BL95 P. Baptiste, C. LePape, A theoretical and experimental comparison of constraint
propagation techniques for disjunctive scheduling, in: Proceedings of the 14th
International Joint Conference on Artificial Intelligence, Montreal, 1995,
136-140.

BL96 P. Baptiste, C. LePape. Edge-finding constraint propagation algorithms for
disjunctive and cumulative scheduling, in Proceedings of the 15th Workshop of
the U. K. Planning Special Interest Group, Liverpool, 1996.

Car82 J. Carlier, The one machine sequencing problem, Eur. J. Oper. Res. 11, 1982,
42-47.

Che99 Y. Chen, Arc consistency revisited, Inf. Process. Lett. 70, 1999, 175-184.

Chr75 N. Christofides, Graph Theory: An Algorithmic Approach, Academic Press,
London, 1975.

CL95 Y. Caseau, F. Laburthe, Disjunctive scheduling with task intervals, Technical
report 95-25, Laboratoire d'Informatique de l'Ecole Normale Superieure, Paris,
1995.

668 16 Constraint Programming and Disjunctive Scheduling

Clo71 M. B. Clowes, On seeing things, Artif. Intell. 2, 1971, 179-185.

Coh90 J. Cohen, Constraint logic programming languages, Commun. ACM 33, 1990,
52-68.

Coo89 M. C. Cooper, An optimal k -consistency algorithm, Artif. Intell. 41, 1989,
89-95.

CP89 J. Carlier, E. Pinson, An algorithm for solving the job shop problem, Manage.
Sci. 35, 1989, 164-176.

CP90 J. Carlier, E. Pinson, A practical use of Jackson's preemptive schedule for solv-
ing the job shop problem, Ann. Oper. Res. 26, 1990, 269-287.

CP94 J. Carlier, E. Pinson, Adjustments of heads and tails for the job shop problem,
Eur. J. Oper. Res. 78, 1994, 146-161.

Dav87 E. Davis, Constraint propagation with interval labels, Artif. Intell. 32, 1987,
281-331.

Dew92 G. Deweß, An existence theorem for packing problems with implications for
the computation of optimal machine schedules, Optimization 25, 1992,
261-269.

DP88 R. Dechter, J. Pearl, Network-based heuristics for constraint satisfaction prob-
lems, Artif. Intell. 34, 1988, 1-38.

DPP99 U. Dorndorf, T. Phan-Huy, E. Pesch, A survey of interval capacity consistency
tests for time and resource constrained scheduling, in: J. Weglarz (ed.), Project
Scheduling - Recent Models, Algorithms and Applications, Kluwer Academic
Publishers, Boston, 1999, 213-238.

DPP00 U. Dorndorf, E. Pesch, T. Phan-Huy, Constraint propagation techniques for
disjunctive scheduling problems, Artif. Intell. 122, 2000, 189-240.

DPP01 U. Dorndorf, E. Pesch, T. Phan-Huy, Solving the open shop scheduling prob-
lem, J. Sched. 4, 2001, 157-174.

ELT91 J. Erschler, P. Lopez, C. Thuriot, Raisonnement temporel sous contraintes de
ressource et problèmes d'ordonnancement, Revue d'Intelligence Artificielle 5,
1991, 7-32.

FN00 F. Focacci, W. Nuijten, A constraint propagation algorithm for scheduling with
sequence dependent setup times, in: U. Junker, S.E. Karisch, S. Tschöke (eds.),
Proceedings of the 2nd International Workshop on the Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems, Paderborn, March 8-10, 2000, 53-55.

Fre78 E. C. Freuder, Synthesizing constraint expressions, J. ACM 21, 1978, 958-966.

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, Freeman, San Francisco, 1979.

HDT92 P. van Hentenryck, Y. Deville, C.-M. Teng, A generic arc consistency algo-
rithm and its specializations, Artif. Intell. 57, 1992, 291-321.

Hen92 P. van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press,
Cambridge, 1992.

HL88 C.-C. Han, C.-H. Lee, Comments on Mohr and Henderson's path consistency
algorithm, Artif. Intell. 36, 1988, 125-130.

 References 669

HS79 R. M. Haralick, L. G. Shapiro, The consistent labelling problem: Part I, IEEE
Trans. Pattern Anal. Mach. Intell. 1, 1979,173-184.

HS80 R. M. Haralick, L. G. Shapiro, The consistent labelling problem: Part II, IEEE
Trans. Pattern Anal. Mach. Intell. 2, 1980, 193-203.

Huf71 D. Z. Huffman, Impossible objects as nonsense sentences, Machine Intelligence
6, 1971, 295-323.

JCC98 P. Jeavons, D. Cohen, M.C. Cooper, Constraints, consistency and closure, Artif.
Intell. 101, 1998, 251-265.

Kum92 V. Kumar, Algorithms for constraint satisfaction problems, AI Mag. 13, 1992,
32-44.

LEE92 P. Lopez, J. Erschler, P. Esquirol, Ordonnancement de tâches sous contraintes:
une approche énergétique, RAIRO Automatique, Productique, Informatique In-
dustrielle 26, 1992, 453-481.

Lho93 O. Lhomme, Consistency techniques for numeric CSPs, Proceedings of the 13th
International Joint Conference on Artificial Intelligence, Chambery, France,
1993, 232-238.

Mac77 Z. K. Mackworth, Consistency in networks of relations, Artif. Intell. 8, 1977,
99-118.

Mac92 Z. K. Mackworth, The logic of constraint satisfaction, Artif. Intell. 58, 1992,
3-20.

Mes89 P. Meseguer, Constraint satisfaction problems: an overview, AI Commun. 2,
1989, 3-17.

MF85 Z. K. Mackworth, E. C. Freuder, The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems, Artif. Intell. 25,
1985, 65-74.

MH86 R. Mohr, T. C. Henderson, Arc and path consistency revisited, Artif. Intell. 28,
1986, 225-233.

Mon74 U. Montanari, Networks of constraints: fundamental properties and applications
to picture processing, Inf. Sci. 7, 1974, 95-132.

Moo66 R. E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.

MS96 P. Martin, D. B. Shmoys, A new approach to computing optimal schedules for
the job shop scheduling problem, Proceedings of the 5th International IPCO
Conference, 1996.

MT63 J. F. Muth, G. L. Thompson (eds.), Industrial Scheduling, Prentice Hall, Eng-
lewood Cliffs, 1963.

NL98 W. P. M. Nuijten, C. Le Pape. Constraint-based job shop scheduling with ILOG
scheduler, J. Heuristics 3, 1998, 271-286.

NS00 W. Nuijten, F. Sourd, New time bound adjustment techniques for shop schedul-
ing, in: P. Brucker, S. Heitmann, J. Hurink, S. Knust (eds.), Proceedings of the
7th International Workshop on Project Management and Scheduling, 2000,
224-226.

Nui94 W. P. M. Nuijten, Time and Resource Constrained Scheduling: A Constraint
Satisfaction Approach, Ph.D. thesis, Eindhoven University of Technology, 1994.

670 16 Constraint Programming and Disjunctive Scheduling

Pha96 T. Phan-Huy, Wissensbasierte Methoden zur Optimierung von Produktions-
abläufen, Master's thesis, University of Bonn, 1996.

Pha00 T. Phan-Huy, Constraint Propagation in Flexible Manufacturing, Springer,
2000.

PT96 E. Pesch, U. Tetzlaff, Constraint propagation based scheduling of job shops,
INFORMS J. Comput. 8, 1996, 144-157.

RS64 B. Roy, B. Sussman, Les problèmes d`ordonnancement avec contraintes disjonc-
tives, Note D. S. 9, SEMA, Paris, 1964.

Sei81 R. Seidel, A new method for solving constraint satisfaction problems, Proceed-
ings of the 7th International Joint Conference on AI, 1981, 338-342.

TF90 E. P. K. Tsang, N. Foster, Solution synthesis in the constraint satisfaction prob-
lem, Technical report csm-142, Department of Computer Sciences, University of
Essex, Essex, 1990.

TL00 P. Torres, P. Lopez, Overview and possible extensions of shaving techniques for
job-shop problems, in: U. Junker, S. E. Karisch, S. Tschöke (eds), Proceedings
of the 2nd International Workshop on the Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, Pader-
born, March 8-10, 2000, 181-186.

Tsa93 E. Tsang, Foundations of Constraint Satisfaction, Academic Press, Essex, 1993.

Wal72 D. L. Waltz, Generating semantic descriptions from drawings of scenes with
shadows, Technical report AI-TR-271, M.I.T., 1972.

Wal75 D. L. Waltz. Understanding line drawings of scenes with shadows, in P. H. Win-
ston (ed.), The Psychology of Computer Vision, McGraw-Hill, 1975, 19-91.

	16 Constraint Programming and Disjunctive Scheduling
	16.1 Introduction
	16.2 Constraint Satisfaction
	16.2.1 The Constraint Satisfaction and Optimization Problem
	16.2.2 Constraint Propagation

	16.3 The Disjunctive Scheduling Problem
	16.3.1 The Disjunctive Model
	16.3.2 Solution Methods for the DSP

	16.4 Constraint Propagation and the DSP
	16.4.1 Some Basic Definitions
	16.4.2 Precedence Consistency Tests
	16.4.3 Lower-Level Bound-Consistency
	16.4.4 Input/Output Consistency Tests
	16.4.5 Input/Output Negation Consistency Tests
	16.4.6 Input-or-Output Consistency Tests
	16.4.7 Energetic Reasoning
	16.4.8 Shaving
	16.4.9 A Comparison of Disjunctive Consistency Tests
	16.4.10 Precedence vs. Disjunctive Consistency Tests

	16.5 Conclusions
	16.6 Appendix: Bound Consistency Revisited
	References

