

13 Scheduling under Resource
Constraints

The scheduling model we consider now is more complicated than the previous

ones, because any task, besides processors, may require for its processing some

additional scarce resources. Resources, depending on their nature, may be classi-

fied into types and categories. The classification into types takes into account

only the functions resources fulfill: resources of the same type are assumed to

fulfill the same functions. The classification into categories will concern two

points of view. First, we differentiate three categories of resources from the

viewpoint of resource constraints. We will call a resource renewable, if only its

total usage, i.e. temporary availability at every moment, is constrained. A re-

source is called non-renewable, if only its total consumption, i.e. integral availa-

bility up to any given moment, is constrained (in other words this resource once

used by some task cannot be assigned to any other task). A resource is called

doubly constrained, if both total usage and total consumption are constrained.

Secondly, we distinguish two resource categories from the viewpoint of resource

divisibility: discrete (i.e. discretely-divisible) and continuous (i.e. continuously-

divisible) resources. In other words, by a discrete resource we will understand a

resource which can be allocated to tasks in discrete amounts from a given finite

set of possible allocations, which in particular may consist of one element only.

Continuous resources, on the other hand, can be allocated in arbitrary, a priori

unknown, amounts from given intervals.

In the next three sections we will consider several basic sub-cases of the re-

source constrained scheduling problem. In Sections 13.1 and 13.2 problems with

renewable, discrete resources will be considered. In Section 13.1 it will in partic-

ular be assumed that any task requires one arbitrary processor and some units of

additional resources, while in Section 13.2 tasks may require more than one pro-

cessor at a time (cf. also Chapter 6). Section 13.3 is devoted to an analysis of

scheduling with continuous resources.

13.1 Classical Model

The resources to be considered in this section are assumed to be discrete and re-

newable. Thus, we may assume that s types of additional resources R1 , R2 ,..., Rs

are available in m1 , m2 ,..., ms units, respectively. Each task Tj requires for its

processing one processor and certain fixed amounts of additional resources speci-

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_13

475

https://doi.org/10.1007/978-3-319-99849-7_13
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_13&domain=pdf

476 13 Scheduling under Resource Constraints

fied by the resource requirement vector R(Tj) = [R1(Tj) , R2(Tj) ,..., Rs(Tj)], where

Rl(Tj) (0 � Rl(Tj) � ml) , l = 1, 2,..., s, denotes the number of units of resource Rl

required for the processing of Tj . We will assume here that all required resources

are granted to a task before its processing begins or resumes (in the case of

preemptive scheduling), and they are returned by the task after its completion or

in the case of its preemption. These assumptions define a very simple rule to pre-

vent system deadlocks (see e.g. [CD73]) which is often used in practice, despite

the fact that it may lead to a not very efficient use of the resources.

We see that such a model is of special value in manufacturing systems where

tasks, besides processors, may require additional limited resources for their pro-

cessing, such as manpower, tools, space etc. One should also not forget about

computer applications, where additional resources can stand for primary

memory, mass storage, channels and I/O devices. Before discussing basic results

in that area we would like to introduce a missing part of the notation scheme in-

troduced in Section 3.4 that describes additional resources. In fact, they are de-

noted by parameter *2 � {�, res 0,�}, where

*2 = �: no resource constraints,

*2 = res 0,�: there are specified resource constraints;

0, ,, � � {&, k} denote respectively the number of resource types, resource limits

and resource requirements. If

0, ,, � = & then the number of resource types, resource limits and resource

requirements are respectively arbitrary, and if

0, ,, � = k, then, respectively, the number of resource types is equal to k,

each resource is available in the system in the amount of k units and the re-

source requirements of each task are equal to at most k units.

At this point we would also like to present possible transformations among

scheduling problems that differ only by their resource requirements (see Figure

13.1.1). In this figure six basic resource requirements are presented. All but two

of these transformations are quite obvious. Transformation �(res&&&) � �(res1&&)
has been proved for the case of saturation of machines and additional resources

[GJ75] and will not be presented here. The second, �(res1&&) � �(res&11), has

been proved in [BBKR86]; to sketch its proof, for a given instance of the first

problem we construct a corresponding instance of the second problem by assum-

ing the parameters all the same, except resource constraints. Then for each pair

Ti , Tj such that R1(Ti) + R1(Tj) > m1 (in the first problem), resource Rij available

in the amount of one unit is defined in the second problem. Tasks Ti , Tj require a

unit of Rij , while other tasks do not require this resource. It follows that R1(Ti) +

R1(Tj) � m1 in the first problem if and only if Rk(Ti) + Rk(Tj) � 1 for each resource

Rk in the second problem.

 13.1 Classical Model 477

res&&&

res&&1

res&11

res111

res1&1

res1&&

sat

Figure 13.1.1 Polynomial transformations among resource constrained
scheduling problems.

We will now pass to the presentation of some important results obtained for the

above model of resource constrained scheduling. Space limitations prohibit us

even from only quoting all these results, however, an extensive survey may be

found in [BCSW86, BDM+99, Weg99]. As an example we chose the problem of

scheduling tasks on parallel identical processors to minimize schedule length.

Basic algorithms in this area will be presented.

Let us first consider the case of independent tasks and non-preemptive

scheduling.

Problem P2 | res&&&&, pj = 1 | Cmax

The problem of scheduling unit-length tasks on two processors with arbitrary

resource constraints and requirements can be solved optimally by the following

algorithm.

Algorithm 13.1.1 Algorithm by Garey and Johnson for P2 | res&&&, pj = 1 | Cmax

[GJ75].

begin

Construct an n-node (undirected) graph G with each node labeled as a distinct

task and with an edge joining Ti to Tj if and only if Rl(Ti) + Rl(Tj) � ml ,

l = 1, 2,..., s;

Find a maximum matching F of graph G;

Put the minimal value of schedule length C *
max = n � | F |;

478 13 Scheduling under Resource Constraints

Process in parallel the pairs of tasks joined by the edges comprising set F ;

Process other tasks individually;
end;

Notice that the key idea here is the correspondence between maximum matching

in a graph displaying resource constraints and the minimum-length schedule. The

complexity of the above algorithm clearly depends on the complexity of the algo-

rithm determining the maximum matching. There are several algorithms for find-

ing it, the complexity of the most efficient by Kariv and Even [KE75] being

O(n2.5
). An example of the application of this algorithm is given in Figure 13.1.2

where it is assumed that n = 6, m = 2, s = 2, m1 = 3, m2 = 2, R(T1) = [1, 2],

R(T2) = [0, 2], R(T3) = [2, 0], R(T4) = [1, 1], R(T5) = [2, 1], and R(T6) = [1, 0] .

An even faster algorithm can be found if we restrict ourselves to the one-

resource case. It is not hard to see that in this case an optimal schedule will be

produced by ordering tasks in non-increasing order of their resource requirements

and assigning tasks in that order to the first free processor on which a given task

can be processed because of resource constraints. Thus, problem P2 | res1&&, pj = 1 |

Cmax can be solved in O(nlogn) time.

If in the last problem tasks are allowed only for 0-1 resource requirements,

the problem can be solved in O(n) time even for arbitrary ready times and an

arbitrary number of machines, by first assigning tasks with unit resource re-

quirements up to m1 in each slot, and then filling these slots with tasks having

zero resource requirements [Bla78].

(a) (b) F = {(T1 , T6), (T2 , T3), (T4 , T5)}

T2

T3

T4

T1

T6

T5

T3

T2T1

T6

T4

T5

P1

P2

t0 1 2 3

Cmax
* = n � | | = 3F

Figure 13.1.2 An application of Algorithm 13.1.1:

 (a) graph G corresponding to the scheduling problem,
 (b) an optimal schedule.

 13.1 Classical Model 479

Problem P | res sor, pj = 1 | Cmax

When the number of resource types, resource limits and resource requirements

are fixed (i.e. constrained by positive integers s, o, r, respectively), problem P |

res sor, pj = 1 | Cmax is still solvable in linear time, even for an arbitrary number of

processors [BE83]. We describe this approach below, since it has a more general

application. Depending on the resource requirement vector [R1(Tj) , R2(Tj) ,...,

Rs(Tj)] � {0, 1,..., r}
s
, the tasks can be distributed among a sufficiently large

(and fixed) number of classes. For each possible resource requirement vector we

define one such class. The correspondence between the resource requirement

vectors and the classes will be described by a 1-1 function f : {0, 1,..., r}
s
 �

{1, 2,..., k}, where k is the number of different possible resource requirement

vectors, i.e. k = (r + 1)
s
. For a given instance, let ni denote the number of tasks

belonging to the ith class, i = 1, 2,..., k. Thus all the tasks of class i have the same

resource requirement f �1
(i). Observe that most of the input information describ-

ing an instance of problem P | res sor, pj = 1 | Cmax is given by the resource re-

quirements of n given tasks (we bypass for the moment the number m of proces-

sors, the number s of additional resources and resource limits o). This input may

now be replaced by the vector v = (v1 ,v2 ,..., vk) � IN
k
0 , where vi is the number of

tasks having resource requirements equal to f �1
(i), i = 1, 2,..., k. Of course, the

sum of the components of this vector is equal to the number of tasks, i.e. �
i=1

k
 vi =

n .

We now introduce some definitions useful in the following discussion. An

elementary instance of P | res sor, pj = 1 | Cmax is defined as a sequence R(T1),

R(T2),..., R(Tu), where each R(Ti) � {1, 2,..., r}
s
 � {(0, 0,..., 0)}, with properties

u � m and �
i=1

u
 R(Ti) � (o, o,..., o). Note that the minimal schedule length of an

elementary instance is always equal to 1. An elementary vector is a vector v �

IN
k
0 which corresponds to an elementary instance. If we calculate the number L of

different elementary instances, we see that L cannot be greater than (o + 1)
(r+1)

s�1
,

however, in practice L will be much smaller than this upper bound. Denote the

elementary vectors (in any order) by b1 , b2 ,..., bL .

We observe two facts. First, any input R(T1), R(T2),..., R(Tn) can be consid-

ered as a union of elementary instances. This is because any input consisting of

one task is elementary. Second, each schedule is also constructed from elemen-

tary instances, since all the tasks which are executed at the same time form an

elementary instance.

Now, taking into account the fact that the minimal length of a schedule for

any elementary instance is equal to one, we may formulate the original problem

480 13 Scheduling under Resource Constraints

as that of finding a decomposition of a given instance into the minimal number

of elementary instances. One may easily see that this is equivalent to finding a

decomposition of the vector v = (v1 ,v2 ,..., vk) � IN
k
0 into a linear combination of

elementary vectors b1 , b2 ,..., bL , for which the sum of coefficients is minimal:

Find e1 , e2 ,..., eL � IN
k
0 such that �

i=1

L
 eibi = v and �

i=1

L
 ei is minimal.

Thus, we have obtained a linear integer programming problem, which in the

general case, would be NP-hard. Fortunately, in our case the number of variables

L is fixed. It follows that we can apply a result due to Lenstra [Len83] which

states that the linear programming problem with fixed number of variables can be

solved in polynomial time depending on both, the number of constraints of the

integer linear programming problem and loga, but not on the number of varia-

bles, where a is the maximum of all the coefficients in the linear integer pro-

gramming problem. Thus, the complexity of the problem is O(2
L2

(k loga)
cL

), for

some constant c. In our case the complexity of that algorithm is O(2
L2

(k logn)
cL

) <

O(n). Since the time needed to construct the data for this integer programming

problem is O(2
s
(L + logn)) = O(logn), we conclude that the problem P | res sor,

pj = 1 | Cmax can be solved in linear time.

Problem Pm | res sor | Cmax

Now we generalize the above considerations for the case of non-unit processing

times and tasks belonging to a fixed number k of classes only. That is, the set of

tasks may be divided into k classes and all the tasks belonging to the same class

have the same processing and resource requirements. If the number of processors

m is fixed, then the following algorithm, based on dynamic programming, has

been proposed by B)�la &zewicz et al. [BKS89]. A schedule will be built step by

step. In every step one task is assigned to a processor at a time. All these assign-

ments obey the following rule: if task Ti is assigned after task Tj , then the starting

time of Ti is not earlier than the starting time of Tj . At every moment an assign-

ment of processors and resources to tasks is described by a state of the assign-
ment process. For any state a set of decisions is given each of which transforms

this state into another state. A value of each decision will reflect the length of a

partial schedule defined by a given state to which this decision led. Below, this

method will be described in a more detail.

The state of the assignment process is described by an m × k matrix X, and

vectors Y and Z. Matrix X reflects numbers of tasks from particular classes al-

ready assigned to particular processors. Thus, the maximum number of each en-

try may be equal to n. Vector Y has k entries, each of which represents the num-

ber of tasks from a given class not yet assigned. Finally, vector Z has m entries

 13.1 Classical Model 481

and they represent classes which recently assigned tasks (to particular processors)

belong to.

The initial state is that for which matrices X and Z have all entries equal to 0

and Y has entries equal to the numbers of tasks in the particular classes in a given

instance.

Let S be a state defined by X, Y and Z. Then, there is a decision leading to

state S' consisting of X', Y' and Z' if and only if

 t � {1,..., k} such that Yt > 0 , (13.1.1)

|M | = 1 , (13.1.2)

where M is any subset of

F = {i | �
1�j�k

 Xij pj = min
1�g�m

{ �
1�j�k

 Xgj pj}} ,

and finally

Rl(Tt) � ml � �
1�j�k

 Rl(Tj) �{g | Zg = j}� , l = 1,2,..., s , (13.1.3)

where this new state is defined by the following matrices

X'ij = {
Xij + 1 if i � M and j = t ,

Xij otherwise,

Y'j = {

Yj � 1 if j = t ,
Yj otherwise,

(13.1.4)

Z'i = {

t if i � M ,

Zi otherwise.

In other words, a task from class t may be assigned to processor Pi, if this class is

non-empty (inequality (13.1.1) is fulfilled), there is at least one free processor

(equation (13.1.2)), and resource requirements of this task are satisfied (equation

(13.1.3)).

If one (or more) conditions (13.1.1) through (13.1.3) are not satisfied, then

no task can be assigned at this moment. Thus, one must simulate an assignment

of an idle-time task. This is done by assuming the following new state S" :

X"ij = { Xij if i 	 F ,

Xhj otherwise,

Y" = Y , (13.1.5)

Z"i = {
Zi if i 	 F ,

0 otherwise,

482 13 Scheduling under Resource Constraints

where h is one of these g, 1 � g � m, for which

�
1�j�k

 Xgj pj = min
1�i�m
i	F

 { �
1�j�k

 Xij pj} .

This means that the above decision leads to state S'' which repeats a pattern of

assignment for processor Ph , i.e. one which will be free as the first from among

those which are busy now.

A decision leading from state S to S' has its value equal to

max
1�i�m

{ �
1�j�k

 Xij pj} . (13.1.6)

This value, of course, is equal to a temporary schedule length.

The final state is that for which the matrices Y and Z have all entries equal to

0. An optimal schedule is then constructed by starting from the final state and

moving back, state by state, to the initial state. If there is a number of decisions

leading to a given state, then we choose the one having the least value to move

back along it. More clearly, if state S follows immediately S', and S (S' respec-

tively) consists of matrices X, Y, Z (X', Y', Z' respectively), then this decision

corresponds to assigning a task from Y � Y' at the time min
1�i�m

{ �
1�j�k

 Xij pj }.

The time complexity of this algorithm clearly depends on the product of the

number of states and the maximum number of decisions which can be taken at

the states of the algorithm. A careful analysis shows that this complexity can be

bounded by O(nk(m+1)
), thus, for fixed numbers of task classes k and of processors

m, it is polynomial in the number of tasks.

Let us note that another dynamic programming approach has been described

in [BKS89] in which the number of processors is not restricted, but a fixed upper

bound on task processing times p is specified. In this case the time complexity of

the algorithm is O(nk(p+1)
) .

Problem P | res&&&&, pj = 1 | Cmax

It follows that when we consider the non-preemptive case of scheduling of unit

length tasks we have five polynomial time algorithms and this is probably as

much as we can get in this area, since other problems of non-preemptive schedul-

ing under resource constraints have been proved to be NP-hard. Let us mention

the parameters that have an influence on the hardness of the problem. First, dif-

ferent ready times cause the strong NP-hardness of the problem even for two

processors and very simple resource requirements, i.e. problem P2 | res1&&, rj , pj =

1 | Cmax is already strongly NP-hard [BBKR86] (From Figure 13.1.1 we see that

problem P2 | res&11, rj , pj = 1 | Cmax is strongly NP-hard as well). Second, an in-

crease in the number of processors from 2 to 3 results in the strong NP-hardness

 13.1 Classical Model 483

of the problem. That is, problem P3 | res1&&, rj , pj = 1 | Cmax is strongly NP-hard as

proved by Garey and Johnson [GJ75]. (Note that this is the famous 3-

PARTITION problem, the first strongly NP-hard problem.) Again from Figure

13.1.1 we conclude that problem P3 | res&11, rj , pj = 1 | Cmax is NP-hard in the

strong sense. Finally, even the simplest precedence constraints result in the NP-

hardness of the scheduling problem, that is, the P2 | res111, chains, pj = 1 | Cmax is

NP-hard in the strong sense [BLRK83]. Because all these problems are NP-hard,

there is a need to work out approximation algorithms. We quote some of the re-

sults. Most of the algorithms considered here are list scheduling algorithms

which differ from each other by the ordering of tasks on the list. We mention

three approximation algorithms analyzed for the problem 1.

1. First fit (FF). Each task is assigned to the earliest time slot in such a way that

no resource and processor limits are violated.

2. First fit decreasing (FFD). A variant of the first algorithm applied to a list

ordered in non-increasing order of Rmax(Tj) , where Rmax(Tj) = max{Rl(Tj)/ml | 1 �

l � s} .

3. Iterated lowest fit decreasing (ILFD - applies for s = 1 and pj = 1 only). Order

tasks as in the FFD algorithm. Put C as a lower bound on C *
max. Place T1 in the

first time slot and proceed through the list of tasks, placing Tj in a time slot for

which the total resource requirement of tasks already assigned is minimum. If we

ever reach a point where Tj cannot be assigned to any of C slots, we halt the itera-

tion, increase C by 1, and start over.

Below we will present the main known bounds for the case m < n. In

[KSS75] several bounds have been established. Let us start with the problem P |

res1&&, pj = 1 | Cmax for which the three above mentioned algorithms have the fol-

lowing bounds:

27

10
 � 9 37

10m; < R#
FF < 27

10
 � 24

10m
 ,

R#
FFD = 2 � 2

m
 ,

RILFD �� 2 .

We see that the use of an ordered list improves the bound by about 30%. Let us

also mention here that problem P | res&&&, pj = 1 | Cmax can be solved by the approx-

imation algorithm based on the two machine aggregation approach by Röck and

1 Let us note that the resource constrained scheduling for unit task processing times is

equivalent to a variant of the bin packing problem in which the number of items per bin is

restricted to m. On the other hand, several other approximation algorithms have been ana-

lyzed for the general bin packing problem and the interested reader is referred to [CGJ84]

for an excellent survey of the results obtained in this area.

484 13 Scheduling under Resource Constraints

Schmidt [RS83], as described in Section 7.3.2 in the context of flow shop sched-

uling. The worst case behavior of this algorithm is R = 9m2 ; .

Problem P | res&&& | Cmax

For arbitrary processing times some other bounds have been established. For

problem P | res&&& | Cmax the first fit algorithm has been analyzed by Garey and

Graham [GG75]:

R#
FF = min{m+1

2
 , s + 2 �

2s+1

m
} .

Finally, when dependent tasks are considered, the first fit algorithm has been

evaluated for problem P | res&&&, prec | Cmax by the same authors:

R#
FF = m .

Unfortunately, no results are reported on the probabilistic analysis of approxima-

tion algorithms for resource constrained scheduling.

Problem P | pmtn, res1&1 | Cmax

Now let us pass to preemptive scheduling. Problem P | pmtn, res1&1 | Cmax can be

solved via a modification of McNaughton's rule (Algorithm 5.1.8) by taking

C *
max = max{max

j
{pj}, �

j=1

n
 pj /m, �

Tj �ZR
 pj /m1}

as the minimum schedule length, where ZR is the set of tasks for which R1(Tj) =

1. The tasks are scheduled as in Algorithm 5.1.8, the tasks from ZR being sched-

uled first. The complexity of the algorithm is obviously O(n).

Problem P2 | pmtn, res&&& | Cmax

Let us consider now the problem P2 | pmtn, res&&& | Cmax . This can be solved via a

transformation into the transportation problem [BLRK83].

Without loss of generality we may assume that task Tj , j = 1, 2,..., n, spends

exactly pj /2 time units on each of the two processors. Let (Tj , Ti) , j � i, denote a

resource feasible task pair, i.e. a pair for which Rl(Tj) + Rl(Ti) � ml , l = 1, 2,..., s.

Let Z be the set of all resource feasible pairs of tasks. Z also includes all pairs

of the type (Tj , Tn+1), j = 1, 2,..., n, where Tn+1 is an idle time (dummy) task.

Now we may construct a transportation network. Let n + 1 sender nodes corre-

spond to the n + 1 tasks (including the idle time task) which are processed on

 13.1 Classical Model 485

processor P1 and let n + 1 receiver nodes correspond to the n + 1 tasks processed

on processor P2 . Stocks and requirements of nodes corresponding to Tj, j =

1, 2,..., n, are equal to pj /2, since the amount of time each task spends on each

processor is equal to pj /2. The stock and the requirement of two nodes corre-

sponding to Tn+1 are equal to �
j=1

n
 pj /2, since these are the maximum amounts of

time each processor may be idle. Then, we draw directed arcs (Tj , Ti) and (Ti , Tj)

if and only if (Tj , Ti) � Z , to express the possibility of processing tasks Tj and Ti

in parallel on processors P1 and P2 . In addition we draw an arc (Tn+1 , Tn+1).

Then, we assign for each pair (Tj , Ti) � Z a cost associated with arcs (Tj , Ti) and

(Ti , Tj) equal to 1, and a cost associated with the arc (Tn+1 , Tn+1) equal to 0. (This

is because an interval with idle times on both processors does not lengthen the

schedule). Now, it is quite clear that the solution of the corresponding transporta-

tion problem, i.e. the set of arc flows {x*
ji }, is simply the set of the numbers of

time units during which corresponding pairs of tasks are processed (Tj being pro-

cessed on P1 and Ti on P2) .

The complexity of the above algorithm is O(n4
 log 5 pj) since this is the

complexity of finding a minimum cost flow in a network, with the number of

vertices equal to O(n) .

Problem Pm | pmtn, res&&&& | Cmax

Now let us pass to the problem Pm | pmtn, res&&& | Cmax . This problem can still be

solved in polynomial time via the linear programming approach (5.1.14) -

(5.1.15) but now, instead of the processor feasible set, the notion of a resource
feasible set is used. By the latter we mean the set of tasks which can be simulta-

neously processed because of resource limits (including processor limit). At this

point let us also mention that problem P | pmtn, res&&1 | Cmax can be solved by the

generalization of the other linear programming approach presented in (5.1.24) -

(5.1.27). Let us also add that the latter approach can handle different ready times

and the Lmax criterion. On the other hand, both approaches can be adapted to cov-

er the case of the uniconnected activity network in the same way as that de-

scribed in Section 5.1.1.

Finally, we mention that for the problem P | pmtn, res1&& | Cmax , the approxi-

mation algorithms FF and FFD had been analyzed by Krause et al. [KSS75]:

R#
 FF = 3 �

3

m ,

R #
 FFD = 3 �

3

m .

486 13 Scheduling under Resource Constraints

Surprisingly, the use of an ordered list does not improve the bound.

13.2 Scheduling Multiprocessor Tasks

In this section we combine the model presented in Chapter 6 with the resource

constrained scheduling. That is, each task is assumed to require one or more pro-

cessors at a time, and possibly a number of additional resources during its execu-

tion. The tasks are scheduled preemptively on m identical processors so that

schedule length is minimized.

We are given a set T of tasks of arbitrary processing times which are to be

processed on a set P = {P1 ,..., Pm} of m identical processors. There are also s

additional types of resources, R1 ,..., Rs , in the system, available in the amounts

of m1 ,..., ms � IN units. The task set T is partitioned into subsets,

T j
 = {T1

 j
,..., Tnj

 j
} , j = 1, 2,..., k,

k being a fixed integer � m, denoting a set of tasks each requiring j processors

and no additional resources, and

T jr
 = {T 1

 jr
,..., T nj

r
 jr

} , j = 1, 2,..., k,

k being a fixed integer � m, denoting a set of tasks each requiring j processors

simultaneously and at most ml units of resource type Rl , l = 1,..., s (for simplicity

we write superscript r to denote "resource tasks", i.e. tasks or sets of tasks requir-

ing resources). The resource requirements of any task T i
 jr

 , i = 1, 2,..., nj
r

 , j = 1,

2,..., k, are given by the vector R(T i
 jr

) � (m1 , m2 ,..., ms) .

We will be concerned with preemptive scheduling, i.e. each task may be pre-

empted at any time in a schedule, and restarted later at no cost (in that case, of

course, resources are also preempted). All tasks are assumed to be independent,

i.e. there are no precedence constraints or mutual exclusion constraints among

them. A schedule will be called feasible if, besides the usual conditions each task

from T j
 � T jr

 for j = 1, 2,..., k is processed by j processors at a time, and at

each moment the number of processed T jr
-tasks is such that the numbers of re-

sources used do not exceed the resource limits. Our objective is to find a feasible

schedule of minimum length. Such a schedule will be called optimal.
First we present a detailed discussion of the case of one resource type (s = 1)

available in r units, unit resource requirements, i.e. resource requirement of each

task is 0 or 1, and j � {1, k} processors per task for some k � m. So the task set is

assumed to be T = T 1 � T 1r
 � T k � T kr

 . A scheduling algorithm of complexi-

ty O(nm) where n is the number of tasks in set T , and a proof of its correctness

 13.2 Scheduling Multiprocessor Tasks 487

are presented for k = 2. Finally, a linear programming formulation of the schedul-

ing problem is presented for arbitrary values of s, k, and resource requirements.

The complexity of the approach is bounded from above by a polynomial in the

input length as long as the number of processors is fixed.

Process of Normalization

First we prove that among minimum length schedules there exists always a

schedule in a special normalized form: A feasible schedule of length C for the set

T 1 � T 1r
 � T k � T kr

 is called normalized if and only if w � IN 0, L � [0, C)

such that the number of T k
-, T kr

-tasks executed at time t � [0, L) is w + 1, and

the number of T k
-,T kr

-tasks executed at time t � [L, C) is w (see Figure 13.2.1).

We have the following theorem [BE94].

Theorem 13.2.1 Every feasible schedule for the set of tasks T 1 � T 1r
 � T k �

T kr
 can be transformed into a normalized schedule.

Proof. Divide a given schedule into columns such that within each column there

is no change in task assignment. Note that since the set of tasks and the number

of processors are finite, we may assume that the schedule consists only of a finite

number of different columns. Given two columns A and B of the schedule, sup-

pose for the moment that they are of the same length. Let n j
A , njr

 A , n j
B , njr

 B denote

the number of T j
-, T jr

-tasks in columns A and B, respectively, j � {1, k}. Let n0
A

and n0
B be the numbers of unused processors in A and B, respectively. The proof

is based on the following claim.

-tasks

-tasks

CL0

T k T kr

1 1r

Pm

P1

-,

-,
t

T T

Figure 13.2.1 A normalized form of a schedule.

Claim 13.2.2 Let A and B be columns as above of the same length, and nk
B +

nkr
B � nk

A + nkr
A + 2. Then it is always possible to shift tasks between A and B in

such a way that afterwards B contains one task of type T k or T kr less than be-
fore. (The claim is valid for any k � 2.)

488 13 Scheduling under Resource Constraints

Proof. We consider two different types of task shifts, �1 and �2 . They are pre-

sented below in an algorithmic way. Algorithm 13.2.3 tries to perform a shift of

one T k-task from B to A, and, conversely, of some T 1-and T 1r
-tasks from A to

B. Algorithm 13.2.4 tries to perform a shift of some, say j + 1 T kr
-tasks from B

to A, and, conversely, of j T k-tasks and some T 1-, T 1r
-tasks from A to B .

T k

kr

1

1r

k �n0
A

A B

kr

n0
A

k

T

T
T

T

T

Figure 13.2.2 Shift of tasks in Algorithm 13.2.3.

Algorithm 13.2.3 Shift �1 .

begin

if nk
B > 0 -- i.e. B has at least one task of type T k

then

 begin

 Shift one task of type T k from column B to column A;

 -- i.e. remove one of the T k-tasks from B and assign it to A

 if n0
A < k

 then

 begin

 if n1
A + n0

A � k

 then Shift k � n0
A T 1-tasks from A to B

 else

 if There are at least k � n0
A � n1

A unused resources in B

 then

 begin

 Shift n1
A T 1-tasks from A to B;

 Shift k � n0
A�n1

A T 1r
-tasks from A to B;

 end

 else write(' �1 cannot be applied: resource conflict');

 end;

 13.2 Scheduling Multiprocessor Tasks 489

 end

else write(' �1 cannot be applied: B has no T k-task');

end;

Algorithm 13.2.4 Shift �2 .

begin

if nkr
B > 0 -- i.e. B has at least one task of type T kr

then

 begin

 if n1r
A = 0

 then

 begin

 Shift one T kr
-task from B to A;

 if n0
A < k

 then

 if nkr
A < r -- i.e. no resource conflicts in A

 then Shift k � n0
A T 1-tasks from A to B

 else Write(' �2 cannot be applied: resource conflict');

 end

 else -- i.e. in the case of n1r
A > 0

 begin

 if there are numbers j, 01, and 02 such that

� � � � 01 + 02 = k � n0
A if n0

A < k, and 1 otherwise,

 0 � j < 02,

 j � nk
A, j < nkr

B,

� � � � 01 � n1
A, 02 � n1r

A ,

 nkr
B + 02 � j � 1 � r,

 nkr
A + n1r

A + j + 1 � 02 � r

 then -- perform the following shifts simultaneously

 begin

 Shift j + 1 T kr
-tasks from B to A;

 Shift j T k-tasks from A to B;

 Shift 01 T 1-tasks from A to B;

 Shift 02 T 1r
-tasks from A to B;

 end

 else write(' �2 cannot be applied');

 end;

 end

490 13 Scheduling under Resource Constraints

else write(' �2 cannot be applied: B has no T kr
-task');

end;

Before we prove that it is always possible to change columns A and B in the pro-

posed way by means of shifts �1 and �2 we formulate some assumptions and

simplifications on the columns A and B (detailed proofs are left to the reader).

(a1) Without loss of generality we assume that all the tasks in A and B are pair-

wise independent, i.e. they are not parts of the same task.

(a2) nk
A + nkr

A � nk
B + nkr

B � 2 (condition of Claim 13.2.2). From that we get

n1r
A + n1

A + n0
A � n1r

B + n1
B + n0

B + 2k.

(a3) We restrict our considerations to the case n1r
A � n1r

B + k because otherwise

shift �1 or �2 can be applied without causing resource problems.

(a4) Next we can simplify the considerations to the case n1r
B

 = 0. Following (a3)

and the fact that, whatever shift we apply, at most k tasks of type T 1r
 are shifted

from A to B (and none from B to A) we conclude that we can continue our proof

without considering n1r
B tasks of type T 1r

 in both columns.

(a5) Now we assume n0
A = 0 or n0

B = 0 as we can remove all the processors not

used in both columns.

(a6) Again we can simplify our considerations by assuming n0
B = 0 and n1

B = 0.

For suppose n0
B > 0 or n1

B > 0, we can remove all the idle processors and T 1-tasks

from column B and n0
B + n1

B idle processors or tasks of type T 1 or T 1r
 from col-

umn A. This can be done because there are enough tasks T 1 and T 1r
 (or idle pro-

cessors) left in column A .

The two columns are now of the form shown in Figure 13.2.3.

Now we consider four cases (which exhaust all possible situations) and prove

that in each of them either shift �1 or �2 can be applied. Let " = min{n1r
A , max{k

� n0
A , 1}} .

Case I: nkr
B + " � r, nk

B > 0. Here �1 can be applied.

Case II: nkr
B + " � r, nk

B = 0. In this case �2 can be applied.

Case III: nkr
B + " > r, nk

B > 0 .

If 0 � n1r
A � k � n0

A,

or n1r
A > k � n0

A , k � n0
A � 0 ,

or n1r
A > k � n0

A > 0, n0
A + n1

A � k ,

 13.2 Scheduling Multiprocessor Tasks 491

or n1r
A > k � n0

A > 0, n0
A + n1

A < k, nkr
B + k � n0

A � n1
A � r ,

we can always apply �1 . In the remaining sub-case,

n1r
A > k � n0

A > 0, n0
A + n1

A < k, nkr
B + k � n0

A � n1
A > r ,

�1 cannot be applied and, because of resource limits in column B, a �2-shift is

possible only under the additional assumption

nkr
B + k � n0

A � n1
A � nk

A � 1 � r .

What happens in the sub-case nkr
B + k � n0

A � n1
A � nk

A � 1 > r will be discussed in a

moment.

1T
1rT

A B

(n)

(n)

A
1

1r
(n)
(n)

idle (n)
A

A

A
k

kr
A

(n)k

(n)kr

B

B

kT kT

krT
krT

0

Figure 13.2.3 Restructuring columns in Claim 13.2.2.

Case IV: nkr
B + " > r, nk

B = 0 .

Now, �2 can be applied, except when the following conditions hold simultane-

ously:

n1r
A > k � n0

A > 0, n0
A + n1

A < k � 1, and

nkr
B + k � n0

A � n1
A � nk

A � 1 > r .

We recognize that in cases III and IV under certain conditions neither of the

shifts �1 , �2 can be applied. These conditions can be put together as follows:

nk
B � 0, and nkr

B + k � n0
A � n1

A � nk
A � 1 > r .

We prove that this situation can never occur: From resource limits in column A

we get

nkr
B + k � n0

A � n1
A � nk

A � 1 > r � n1r
A + nkr

A .

Together with knkr
B � m we obtain

(k � 1)(n1
A + n1r

A + n0
A) � k(k � 1) < 0 ,

492 13 Scheduling under Resource Constraints

but from (a2) we know n1
A + n1r

A + n0
A � 2k, which contradicts k > 1 .

Having proved Claim 13.2.2, it is not hard to prove Theorem 13.2.1. First, we

observe that the number of different columns in each feasible schedule is finite.

Then, applying shifts �1 or �2 a finite number of times we will get a normalized

schedule (for pairs of columns of different lengths only a part of the longer col-

umn remains unchanged but for one such column this happens only a finite num-

ber of times).

Before we describe an algorithm which determines a preemptive schedule of

minimum length we prove some simple properties of optimal schedules [BE94].

Lemma 13.2.5 In a normalized schedule it is always possible to process the
tasks in such a way that the boundary between T k-tasks and T kr

-tasks contains
at most k steps.

Proof. Suppose there are more than k steps, say k + i, i � 1, and the schedule is of

the form given in Figure 13.2.4. Suppose the step at point L lies between the first

and the last step of the T k-, T kr
-boundary.

k

k
k

C0

I

n +n
+n

n

n
k

1 1r

0
I I

I

I

I

kr

k

nII
kr

n +n
+n

1

0
II

II

II

T

T

T T
1r1

kr

k
nk

II

,
1r

II

L

Figure 13.2.4 k-step boundary between T k- and T kr-tasks.

We try to reduce the location of the first step (or even remove this step) by ex-

changing parts of T kr
-tasks from interval I with parts of T k-tasks from interval

II. From resource limits we know:

n1r
 II + nkr

II � r, n1r
I + nkr

I � r .

As there are k + i steps, we have nkr
I = nkr

II + k + i. Consider possible sub-cases:

 13.2 Scheduling Multiprocessor Tasks 493

(i) If n1r
II + nkr

II < r, then exchange the T k- and T kr
-tasks in question. This ex-

change is possible because in I at least one T kr
-task can be found that is inde-

pendent of all the tasks in II, and in II at least one T k-task can be found that is

independent of all the tasks in I .

(ii) If n1r
II + nkr

II = r, then the shift described in (i) cannot be performed directly.

However, this shift can be performed simultaneously with replacement of a T 1r
-

task from II by a T 1-task (or idle time) from I, as can be easily seen.

If the step at point L in Figure 13.2.4 is the leftmost or rightmost step among

all steps considered so far, then the step removal works in a similar way.

Corollary 13.2.6 In case k = 2 we may assume that the schedule has one of the
forms shown in Figure 13.2.5.

L C L C L C
type A type B type C

,1T 1r ,1T 1rTT ,1T 1rT

2T
2rT

2T

2rT
2T

2rT

Figure 13.2.5 Possible schedule types in Corollary 13.2.6.

Lemma 13.2.7 Let k = 2. In cases (B) and (C) of Figure 13.2.5 the schedule can
be changed in such a way that one of the steps in the boundary between T k and
T kr is located at point L, or it disappears.

Proof. The same arguments as in the proof of Lemma 13.2.5 are used.

Corollary 13.2.8 In case k = 2, every schedule can be transformed into one of
the types given in Figure 13.2.6.

Let us note that if in type B1 (Figure 13.2.6) not all resources are used during

interval [L, C), then the schedule can be transformed into type B2 or C2. If in

type C1 not all resources are used during interval [L, C), then the schedule can be

transformed into type B2 or C2. A similar argument holds for schedules of type

A .

494 13 Scheduling under Resource Constraints

The Algorithm

In this section an algorithm of scheduling preemptable tasks will be presented

and its optimality will then be proved for the case k = 2. Now, a lower bound for

the schedule length can be given. Let

X j
 = �

Ti �T j pi
 j

 , Xjr
 = �

T i
jr �T jr p i

jr
 , j = 1, k .

It is easy to see that the following formula gives a lower bound on the schedule

length,

C = max{C r
max, C'} (13.2.1)

where

C r
max = (X1r

 + Xkr
)/r ,

and C' is the optimum schedule length for all T 1-, T 1r
-, T k-, T kr

-tasks without

considering resource limits (cf. Section 6.1).

L C L C L C

type A

C L C

type B1 type C1

type C2type B2
LL´ L´

T 2r T 2r T 2r

T 2
T 2 T 2

T ,1 1rT T ,1 1rT T ,1 1rT

T ,1 1rTT ,1 1rT

T 2 T 2
T 2r T 2r

Figure 13.2.6 Possible schedule types in Corollary 13.2.8.

In the algorithm presented below we are trying to construct a schedule of type B2

or C2. However, this may not always be possible because of resource constraints

causing "resource overlapping" in certain periods. In this situation we first try to

correct the schedule by exchanging some critical tasks so that resource limits are

not violated, thus obtaining a schedule of type A, B1 or C1. If this is not possible,

i.e. if no feasible schedule exists, we will have to re-compute bound C in order to

remove all resource overlappings.

 13.2 Scheduling Multiprocessor Tasks 495

Let L and L' be the locations of steps as shown in the schedules of type B2 or

C2 in Figure 13.2.6. Then

L c (X2
+ X2r

) mod C, and L' c X2r
 mod C . (13.2.2)

In order to compute resource overlapping we proceed as follows. Assign T 2-

and T 2r
-tasks in such a way that only one step in the boundary between these two

types of tasks occurs; this is always possible because bound C was chosen

properly. The schedule thus obtained is of type B2 or C2. Before the T 1- and

T 1r
-tasks are assigned we partition the free part of the schedule into two areas,

LA (left area) and RA (right area) (cf. Figure 13.2.7). Note that a task from T 1 �

T 1r
 fits into LA or RA only if its length does not exceed L or C � L, respectively.

Therefore, all "long" tasks have to be cut into two pieces, and one piece is as-

signed to LA, and the other one to RA. We do this by assigning a piece of length

C � L of each long task to RA, and the remaining piece to LA (see Section 5.4 for

detailed reasoning). The excess e(Ti) of each such task is defined as e(Ti) = pi �

C + L, if pi > C � L, and 0 otherwise.

LL´ C

LA RA

2r

1

RA

RA
z

n

m1r

try to exchange

OL

T

2T

1T 1rT,

1rT

Figure 13.2.7 Left and right areas in a normalized schedule.

The task assignment is continued by assigning all excesses to LA, and, in addi-

tion, by putting as many as possible of the remaining T 1r
-tasks (so that no re-

source violations occur) and T 1-tasks to LA. However, one should not forget that

if there are more long tasks in T 1 � T 1r
 than z1 + 2 (cf. Figure 13.2.7), then each

such task should be assigned according to the ratio of processing capacities of

both sides LA and RA, respectively. All tasks not being assigned yet are assigned

to RA. Hence only in RA resource limits may be violated. Take the sum OL of

processing times of all T 1r
-tasks violating the resource limit. OL is calculated in

the algorithm given below. Of course, OL is always less than or equal to C � L,

496 13 Scheduling under Resource Constraints

and the T 1r
-tasks in RA can be arranged in such a way that at any time in [L, C)

no more than r + 1 resources are required.

Resource overlapping (OL) of T 1r
- and T 2r

-tasks cannot be removed by ex-

changing T 1r
-tasks in RA with T 1-tasks in LA, because the latter are only the

excesses of long tasks. So the only possibility to remove the resource overlapping

is to exchange T 2r
-tasks in RA with T 2-tasks in LA (cf. Figure 13.2.7). Suppose

that 7 (� OL) is the maximal amount of T 2-, T 2r
-tasks that can be exchanged in

that way. Thus resource overlapping in RA is reduced to the amount OL � 7. If
OL � 7 = 0, then all tasks are scheduled properly and we are done. If OL � 7 > 0,

however, a schedule of length C does not exist. In order to remove the remaining

resource overlapping (which is in fact OL � 7) we have to increase the schedule

length again.

Let nRA be the number of T 2- or T 2r
-tasks executed at the same time during [L,

C). Furthermore, let z1 be the number of processors not used by T 2- or T 2r
-tasks

at time 0, let m 1r
RA be the number of processors executing T 1r

-tasks in RA (cf.

Figure 13.2.7), and let l1
RA be the number of T 1-tasks executed in RA and having

excess in LA. The schedule length is then increased by some amount !C, i.e.

C = C + !C, where !C = min {!Ca, !Cb, !Cc} , (13.2.3)

and !Ca, !Cb, and !Cc are determined as follows.

(a) !Ca = OL � 7

m 1r
RA + (m � z1 � 2)/2 + l1

RA
 .

This formula considers the fact that the parts of T 1r
-tasks violating resource lim-

its have to be distributed among other processors. By lengthening the schedule

the following processors will contribute processing capacity:

� m 1r
RA processors executing T 1r

-tasks on the right hand side of the schedule,

� (m � z1� 2)/2 pairs of processors executing T 2- or T 2r
-tasks and contributing

to a decrease of L (and thus lengthening part RA),

� l1
RA processors executing T 1-tasks whose excesses are processed in LA (and

thus decreasing their excesses, and hence allowing part of T 1r
 to be processed

in LA).

(b) If the schedule length is increased by some ! then L will be decreased by

nRA!, or, as the schedule type may switch from C2 to B2 (provided L was small

enough, cf. Figure 13.2.6), L would be replaced by C + ! + L � nRA!. In order to

avoid the latter case we choose ! in such a way that the new value of L will be 0,

i.e. !Cb = L /nRA .

 13.2 Scheduling Multiprocessor Tasks 497

Notice that with the new schedule length C + !C, !C � {!Ca , !Cb}, the

length of the right area RA, will be increased by !C(nRA + 1) .

(c) Consider all tasks in T 1 with non-zero excesses. All tasks in T 1 whose ex-

cesses are less than !C(nRA + 1) will have no excess in the new schedule. Howev-

er, if there are tasks with larger excess, then the structure of a schedule of length

C + !C will be completely different and we are not able to conclude that the new

schedule will be optimal. Therefore we take the shortest task Ts of T 1 with non-

zero excess and choose the new schedule length so that Ts will fit exactly into the

new RA, i.e.

!Cc =
ps � C + L
1 + nRA

 .

The above reasoning leads to the following algorithm [BE94].

Algorithm 13.2.9
Input: Number m of processors, number r of resource units, sets of tasks T 1 ,

T 1r
 , T 2 , T 2r

 .

Output: Schedule for T 1 � T 1r
 � T 2 � T 2r

 of minimum length.

begin

 Compute bound C according to formula (13.2.1);
 repeat

 Compute L, L' according to (13.2.2), and the excesses for the tasks of

T 1 � T 1r,

 Using bound C, find a normalized schedule for T 2- and T 2r
-tasks by assign-

ing T 2r
-tasks from the top of the schedule (processors Pm, Pm�1,...,) and

from left to right, and by assigning T 2-tasks starting at time L, to the pro-

cessors Pz1+1 and Pz1+2 from right to left (cf. Figure 13.2.8);

 if the number of long T 1- and T 1r
-tasks is � z1+ 2

 then

Take the excesses e(T) of long T 1- and T 1r
-tasks, and assign them to the left

area LA of the schedule in the way depicted in Figure 13.2.8
else
Assign these tasks according to the processing capacities of both sides LA and

RA of the schedule, respectively;

 if LA is not completely filled

 then Assign T 1r
-tasks to LA as long as resource constraints are not violat-

ed;

 if LA is not completely filled

498 13 Scheduling under Resource Constraints

 then Assign T 1-tasks to LA;

 Fill the right area RA with the remaining tasks in the way shown in Figure

13.2.8;

 if resource constraints are violated in interval [L, C)

 then

 Compute resource overlapping OL � 7 and correct bound C according to

(13.2.3);

 until OL � 7 = 0;

end;

L0

LA RA

m

z1

1
C

P

P

P

1T

2rT

1rT

1T

1rT

2T

Figure 13.2.8 Construction of an optimal schedule.

The optimality of Algorithm 13.2.9 is proved by the following theorem [BE94].

Theorem 13.2.10 Algorithm 13.2.9 determines a preemptive schedule of mini-
mum length for T 1 � T 1r

 � T 2 � T 2r in time O(nm) .

The following example demonstrates the use of Algorithm 13.2.9.

Example 13.2.11 Consider a processor system with m = 8 processors, and r = 3

units of resource. Let the task set contain 9 tasks, with processing requirements

as given in the following table:

 T1 T2 T3 T4 T5 T6 T7 T8 T9

processing times

number of processors

number of resource units

10

2

1

5

2

0

5

2

0

5

2

0

10

1

1

8

1

1

2

1

1

3

1

0

7

1

0

Table 13.2.1.

Then,

X1
 = 10 , X1r

 = 20 , X2
 = 15 , X2r

 = 10 ,

C r
max = (X1r

 + X2r
)/r = 10 , C' = (X1

 + X1r
 + 2X2

 + 2X2r
)/m = 10 ,

 13.2 Scheduling Multiprocessor Tasks 499

i.e. C = 10 and L = 5. The first loop of Algorithm 13.2.9 yields the schedule

shown in Figure 13.2.9. In the schedule thus obtained a resource overlapping

occurs in the interval [8,10). There is no way to exchange tasks, so 7 = 0, and an

overlapping of amount 2 remains. From equation (13.2.3) we obtain !Ca = 1/3,

!Cb = 5/2, and !Cc = 2/3. Hence the new schedule length will be C = 10 + !Ca =

10.33, and L = 4.33, L' = 10.0. In the second loop the algorithm determines the

schedule shown in Figure 13.2.10, which is now optimal.

OL

1T

P1
0 2 5 8 10

P8 2r

2T 2
3T 2

4T 2

9T 1

5T 1r
6T 1r

8T 1
7T 1r

9T 1

Figure 13.2.9 Example schedule after the first loop of Algorithm 13.2.9.

0 10.33109.674.670.33 2.671 7.33

P8

P1

L = 4.33

1T 2r

9T 1

2T 2
3T 2

4T 2

6
T1r

2T 2

7T
1r

8T 1

9T 1
7T 1r

6T 1r

5T 1r

4T 2

Figure 13.2.10 Example schedule after the second loop of Algorithm 13.2.9.

Linear Programming Approach to the General Case

In this section we will show that for a much larger class of scheduling problems

one can find schedules of minimum length in polynomial time. We will consider

tasks having arbitrary resource and processor requirements. That is, the task set T

is now composed of the following subsets:

500 13 Scheduling under Resource Constraints

T j
, j = 1,..., k, tasks requiring j processors each and no resources, and

T jr
, j = 1,..., k, tasks requiring j processors each and some resources.

We present a linear programming formulation of the problem. Our approach

is similar to the LP formulation of the project scheduling problem, cf. (5.1.15)-

(5.1.16). We will need a few definitions. By a resource feasible set we mean here

a subset of tasks that can be processed simultaneously because of their total re-

source and processor requirements. Let M be the number of different resource

feasible sets. By variable xi we denote the processing time of the i th resource fea-

sible set, and by Q j we denote the set of indices of those resource feasible sets

that contain task Tj � T . Thus the following linear programming problem can be

formulated:

Minimize �
i=1

M
 xi

subject to �
i�Q j

 xi = pj for each Tj � T ,

 xi � 0, i = 1, 2,..., M .

As a solution of the above problem we get optimal values x*
i of interval

lengths in an optimal schedule. The tasks processed in the intervals are members

of the corresponding resource feasible subsets. As before, the number of con-

straints of the linear programming problem is equal to n, and the number of vari-

ables is O(nm
). Thus, for a fixed number of processors the complexity is bounded

from above by a polynomial in the number of tasks. On the other hand, a linear

programming problem may be solved (using e.g. Karmarkar's algorithm [Kar84])

in time bounded from above by a polynomial in the number of variables, the

number of constraints, and the sum of logarithms of all the coefficients in the LP

problem. Thus for a fixed number of processors, our scheduling problem is solv-

able in polynomial time.

13.3 Scheduling with Continuous Resources

In this section we consider scheduling problems in which, apart from processors,

also continuously-divisible resources are required to process tasks. Basic results

will be given for problems with parallel, identical processors (Section 13.3.2) or

a single processor (Sections 13.3.3, 13.3.4) and one additional type of continu-

ous, renewable resource. This order of presentation follows from the specificity

of task models used in each case.

 13.3 Scheduling with Continuous Resources 501

13.3.1 Introductory Remarks

Let us start with some comments concerning the concept of a continuous re-

source. As we remember, this is a resource which can be allotted to a task in an

arbitrary, unknown in advance amount from a given interval. We will deal with

renewable resources, i.e. such for which only usage, i.e. temporary availability is

constrained at any time. This "temporary" character is important, since in practice

it is often ignored for some doubly constrained resources which are then treated

as non-renewable. For example, this is the case of money for which usually only

the consumption is considered, whereas they have also a "temporary" nature.

Namely, money treated as a renewable resource mean in fact a "flow" of money,

called rate of spending or rate of investment, i.e. an amount available in a given

period of a fixed length (week, month). The most typical example of a (renewa-

ble) continuous resource is power (electric, hydraulic, pneumatic) which, howev-

er, is in general doubly constrained since apart from the usage, also its consump-

tion, i.e. energy, is constrained. Other examples we get when parallel "proces-

sors" are driven by a common power source. "Processors" mean here e.g. ma-

chines with proper drives, electrolytic tanks, or pumps for refueling navy boats.

We should also stress that sometimes it is purposeful to treat a discrete (i.e.

discretely-divisible) resource as a continuous one, since this assumption can sim-

plify scheduling algorithms. Such an approach is allowed when there are many

alternative amounts of (discrete) resource available for processing each task. This

is, for example, the case in multiprocessor systems where a common primary

memory consists of hundreds of pages (see [Weg80]). Treating primary memory

as a continuous resource we obtain a scheduling problem from the class we are

interested in.

In the next two sections we will study scheduling problems with continuous

resources for two models of task processing characteristic (time or speed) vs.

(continuous) resource amount allotted. The first model is given in the form of a

continuous function: task processing speed vs. resource amount allotted at a giv-

en time (Section 13.3.2), whereas the second one is given in the form of a con-

tinuous function: task processing time vs. resource amount allotted (Section

13.3.3). The first model is more natural in majority of practical situations, since it

reflects directly the "temporary" nature of renewable resources. It is also more

general and allows a deep a priori analysis of properties of optimal schedules due

to the form of the function describing task processing speed in relation to the

allotted amount of resource. This analysis leads even to analytical results in some

cases, and in general to the simplest formulations of mathematical programming

problems for finding optimal schedules. However, in situations when all tasks

use constant resource amounts during their execution, both models are equiva-

lent. Then rather the second model is used as the direct generalization of the tra-

ditional, discrete model.

In Section 13.3.4 we will consider another type of problems, where task pro-

cessing times are constant, but their ready times are functions of a continuous

502 13 Scheduling under Resource Constraints

resource. This is another generalization of the traditional scheduling model

which is important in some practical situations.

13.3.2 Processing Speed vs. Resource Amount Model

Assume that we have m identical, parallel processors P1 , P2 ,..., Pm , and one

additional, (continuous, renewable) resource available in amount Û. For its pro-

cessing task Tj � T requires one of the processors and an amount of a continuous

resource uj(t) which is arbitrary and unknown in advance within interval (0, Û] .

The task processing model is given in the form:

x
.
j(t) = dxj(t) /dt = fj[uj(t)], xj(0) = 0, xj(Cj) = x~j (13.3.1)

where xj(t) is the state of Tj at time t, fj is a (positive) continuous, non-decreasing

function, fj(0) = 0, Cj is the (unknown in advance) completion time of Tj , and

x~j > 0 is the known final state, or processing demand, of Tj . Since a continuous

resource is assumed to be renewable, we have

�
j=1

n
 uj(t) � Û for each t . (13.3.2)

As we see, the above model relates task processing speed to the (continuous)

resource amount allotted to this task at time t. Let us interpret the concept of a

task state. By the state of task Tj at time t, xj(t), we mean a measure of progress of

the processing of Tj up to time t or a measure of work related to this processing.

This can be, for example, the number of standard instructions of a computer pro-

gram already processed, the volume of a fuel bunker already refueled, the amount

of a product resulting from the performance of Tj up to time t, the number of

man-hours or kilowatt-hours already spent in processing Tj , etc.

Let us point out that in practical situations it is often quite easy to construct

this model, i.e. to define fj , j = 1, 2,..., n. For example, in computer systems ana-

lyzed in [Weg80], the fj's are progress rate functions of programs, closely related

to their lifetime curves, whereas in problems in which processors use electric

motors, the fj's are functions: rotational speed vs. current density.

Let us also notice that in the case of a continuous resource changes of the re-

source amount allotted to a task within interval (0, Û] does not mean a task

preemption.

To compare formally the model (13.3.1) with the model

pj = 6j(uj), uj � (0, Û] (13.3.3)

where pj is the processing time of Tj and 6j is a (positive) continuous, non-

increasing function, notice that the condition xj(Cj) = x~j is equivalent to

 13.3 Scheduling with Continuous Resources 503

de
0

Cj

 fj[uj(t)]dt = x~j . (13.3.4)

Thus, if uj(t) = uj, i.e. is constant for t � (0,Cj], we have

Cj = pj = x~j /fj(uj), i.e. 6j = x~j /fj(uj) . (13.3.5)

In consequence, if Tj is processed using a constant resource amount uj , (13.3.5)

defines the relation between both models. It is worth to underline that, as we will

see, on the basis of the model (13.3.1) one can easily and naturally find the con-

ditions under which tasks are processed using constant resource amounts in an

optimal schedule.

Assume now that the number n of tasks is less than or equal to the number m

of machines, and that tasks are independent. The first assumption implies that in

fact we deal only with the allocation of a continuous resource, since the assign-

ment of tasks to machines is trivial. This is a "pure" (continuous) resource alloca-

tion problem, as opposed to a "mixed" (discrete-continuous) problem, when we

have to deal simultaneously with scheduling on machines (considered as a dis-

crete resource) and the allocation of a continuous resource.

If n � m (then it is sufficient to assume n = m, since for n < m, m � n ma-

chines are idle) our goal is to find a piece-wise continuous vector function u*(t) =

(u*
1(t), u*

2(t),..., u*
n(t)), u*

j (t) � 0, j = 1, 2,..., n, such that (13.3.1) and (13.3.2) are

satisfied, and Cmax = max{Cj} reaches its minimum C *
max . This problem was

studied in a number of papers (see [Weg82] as a survey) under different assump-

tions concerning task and resource characteristics. Below we present few basic

results useful in our future considerations. To this end we need some additional

denotations.

Let us denote by U the set of resource allocations, i.e. all values of a vector

function u(t), or all points u = (u1 , u2 ,..., un) � IRn
 , uj � 0 for j = 1, 2,..., n, satis-

fying the relation

�
j=1

n
 uj � Û .

Further, we will denote by V the set defined as follows:

v = (v1, v2,..., vn) � V if and only if u � U ,

and vj = fj(uj), j = 1, 2,..., n .
(13.3.6)

As the functions fj are monotonic for j = 1, 2,..., n, it is obvious that (13.3.5) de-

fines a univalent mapping between U and V , and thus we can call the points v

transformed resource allocations. It is easy to prove (see, e.g. [Weg82]) that

C *
max as a function of final states of tasks x~ = (x~1 , x~2 ,..., x~n) can always be ex-

pressed as

504 13 Scheduling under Resource Constraints

C *
max(x

~) = min{Cmax > 0 | x~/Cmax � coV } (13.3.7)

where coV is the convex hull of V , i.e. the set of all convex combinations of the

elements of V . Notice that (13.3.7) gives a simple geometrical interpretation of

an optimal solution of our problem. Namely, it says that C *
max is always reached

at the intersection point of the straight line given by the parametric equations

vj = x~j /Cmax, j = 1, 2,..., n (13.3.8)

and the boundary of set coV . Since, according to (13.3.6), the shape of V , and

thus coV , depends on functions fj , j = 1, 2,..., n, we can study the form of opti-

mal solutions in relation to these functions. Let us consider two special, but very

important cases:

(i) concave fj, j = 1, 2,..., n, and

(ii) fj � cj uj, cj = fj(Û)/Û, j = 1, 2,..., n .

It is easy to check that in case (i) set V is already convex, i.e. coV = V . Thus,

the intersection point defined above is always a transformed resource allocation

(see Figure 13.3.1 for n = 2).

Û

u0 1

u2

 U

Û f (Û)1

f (Û)2
v = x/Cmax

v 1
*

v 2
*

 V

v0 1

v2

~

f concave, j = 1, 2j

Figure 13.3.1 The case of concave fj , j = 1, 2.

This means that in the optimal solution tasks are processed fully in parallel using

constant resource amounts u*
j , j = 1, 2,..., n. To find these amounts let us notice

that the equation of the boundary of V has the form �
j=1

n
 fj

�1
(vj) = Û (we substitute

uj from (13.3.6) for the equation of the boundary of U , i.e. �
j=1

n
 uj = Û), where fj

�1

is the function inverse to fj , j = 1, 2,..., n. Substituting vj from (13.3.8), we get

for the above equation

 13.3 Scheduling with Continuous Resources 505

�
j=1

n
 fj
�1

(x~j /Cmax) = Û . (13.3.9)

For given x~j , j = 1, 2,..., n, the (unique) positive root of this equation is equal to

the minimum value C *
max of Cmax . Of course

u*
j = fj

�1
(x~j /C *

max), j = 1, 2,..., n . (13.3.10)

It is worth to note that equation (13.3.9) can be solved analytically for some im-

portant cases. In particular, this is the case of fj = cj u
1/(j
j , cj > 0, (j � {1, 2, 3, 4},

j = 1, 2,..., n, when (13.3.9) reduces to an algebraic equation of an order � 4.

Furthermore, if (j = (� 1, j = 1, 2,..., n, we have

C *
max = [

1

Û �
j=1

n
 (x~j

/cj)
(]1/(

. (13.3.11)

Û

Û

u0 1

u2

f (Û)2

f (Û)1

S

v0 1

v2

f � c u , j = 1, 2j j j

 V
 U

v = x/Cmax
~

Figure 13.3.2 The case of fj � cjuj, cj = fj (Û)/Û, j = 1, 2.

Let us pass to the case (ii). It is easy to check that now set V lies entirely inside

simplex S spanned on the points (0,..., 0, fj (Û), 0,..., 0), where fj (Û) appears on

the jth position, j = 1, 2,..., n (see Figure 13.3.2 for n = 2). This clearly means

that coV = S , and that the intersection point of the straight line defined by

(13.3.7) and the boundary of S most probably is not a transformed resource allo-

cation (except for the case of linear fj , j = 1, 2,..., n). However, one can easily

verify that the same value C *
max is obtained using transformed resource alloca-

tions whose convex combination yields the intersection point just discussed.

These always are, of course, the extreme points on which simplex S is spanned.

This fact implies directly that in case (ii) there always exists the solution of the

length C *
max = �

j=1

n
 x~j /fj(Û) in which single tasks are processed consecutively (i.e.

506 13 Scheduling under Resource Constraints

on a single machine) using the maximum resource amount Û. Of course, this

solution is not unique if we assume that there is no time loss concerned with a

task preemption. However, there is no reason to preempt a task if preemption

does not decrease C *
max .

Thus, in both cases, (i) and (ii), there exist optimal solutions in which each

task is processed using a constant resource amount. Consequently, in these cases

the model (13.3.1) is mathematically equivalent to the model (13.3.3).

In the general case of arbitrary functions fj , j = 1, 2,..., n, one must search

for transformed resource allocations whose convex combination fulfills (13.3.8)

and gives the minimum value of Cmax .

Assume now that tasks are dependent, i.e. that a non-empty relation is de-

fined on T . To represent we will use task-on-arc digraphs, also called activity

networks (see Section 3.1). In this representation we can order nodes, i.e. events

in such a way that the occurrence of node i is not later than the occurrence of

node j if i < j. As is well known, such an ordering is always possible (although

not always unique) and can be found in time O(n2
) (see, e.g. [Law76]). Using this

ordering one can utilize the results obtained for independent tasks to solve corre-

sponding resource allocation problems for dependent tasks. To show how it

works we will need some further denotations. Denote by T k the subset of tasks

which can be processed in the interval between the occurrence of nodes k and k +

1, by x~jk � 0 a part of Tj � T k (i.e. a part of x~j) processed in the above interval, by

!*
k({x~jk}Tj �T k) the minimum length of this interval as a function of task parts

{x~jk}Tj �T k , and by K j the set of indices of T k's such that Tj � T k .

Of course, task parts {x~jk}Tj �T k are independent for each k = 1, 2,..., K � 1; K

being the total number of nodes in the network, and thus for calculating of !k's as

functions of these parts, we can utilize the results obtained for independent tasks.

To illustrate this approach let us start with the case (ii) discussed previously.

Considering the optimal solution in which task parts are processed consecutively

in each interval k we see that this is equivalent to the consecutive processing of

entire tasks in an order defined by relation . Moreover, this result is independ-

ent on the ordering of nodes in the network. Unfortunately, the last statement is

not true in general for other cases of fj's.

Consider now the case (i) of concave fj , j = 1, 2,..., n, and assume that nodes

are ordered in the way defined above. Thus, for calculating !*
k({x~jk}Tj �T k) , k = 1,

2,..., K � 1, one must solve for each T k an equation of type (13.3.9)

�
Tj �T k

 fj
�1

(x~jk
/!k) = Û . (13.3.12)

of which !*k is the (unique) positive root for given {x~jk}Tj �T k . As already men-

tioned before, this equation can be solved analytically for some important cases.

 13.3 Scheduling with Continuous Resources 507

The step which remains is to find a division of x~j's into parts x~*
jk , j = 1, 2,..., n;

k � K j ensuring the minimum value of Cmax . This is equivalent to the solution of

the following non-linear programming problem:

Minimize Cmax = �
k=1

K�1

 !*
k({x~jk}Tj �T k) (13.3.13)

subject to �
k�K j

x~jk = x~j, j = 1, 2,..., n , (13.3.14)

 x~jk � 0, j = 1, 2,..., n, k � K j . (13.3.15)

It can be proved (see e.g. [Weg82]) that Cmax given by (13.3.13) is a convex

function of x~jk's for arbitrary fj's, thus we have a convex programming problem

with linear constraints. Its solution is the optimal solution of our problem for the

preemptive case and given ordering of nodes. Using the Lagrange theorem one

can verify that for fj = cj uj
1/(

, (> 1, when C *
max is given by (13.3.11), the solution

does not depend on the ordering of nodes. Of course, this is always true when the

ordering of nodes is unique, i.e. for a uan (cf. Section 3.1). In general, however,

in order to find a solution which is optimal over all possible orderings of nodes

one must solve the corresponding convex programming problem for each of

these orderings and choose a solution with the smallest value of Cmax .

To illustrate the way of formulating the optimization problem (13.3.13)-

(13.3.15) let us consider a simple example.

1

2

3

4

T4

0

T5

T3

T1

T2

2! 3!1! t

Figure 13.3.3 Example of a uniconnected activity network.

Example 13.3.1 Consider the uan given in Figure 13.3.3. Let Û = 1, fj = uj for

j = 1, 3, 5, and fj = 2u1/2
j for j = 2, 4. Subsets of tasks which can be processed be-

tween the occurrence of consecutive nodes are:

T 1 = {T1 , T2}, T 2 = {T2 , T3 , T4}, T 3 = {T4 , T5}

508 13 Scheduling under Resource Constraints

Sets of indices of T k's such that Tj � T k are:

K 1 = {1}, K 2 = {1, 2}, K 3 = {2}, K 4 = {2, 3}, K 5 = {3} .

Since all the functions fj are concave, we use equation (13.3.12) to calculate

!*
k({x~jk}Tj �T k) for k = 1, 2, 3. For !*

1 we have

x~11/!*
1 + x~ 2

21
/4!*

1
2
 = 1 ,

and thus !*
1(x~11 , x~21) = (x~11 + x~ 2

11 + x~ 2
21)

/2. Similarly,

x~ 2
22

/4!*
2

2
 + x~32

/!*
2 + x~ 2

42
/4!*

2
2
 = 1 ,

!*
2(x~22 , x~32 , x~42) = (x~32 + x~ 2

22 + x~ 2
32 + x~ 2

42)
/2

and

x~ 2
43

/4!*
3

2
 + x~53

/!*
3 = 1 ,

!*
3(x~43 , x~53) = (x~53 + x~ 2

43 + x~ 2
53)

/2 .

The problem is to minimize the sum of the above functions subject to the con-

straints x~11 = x~1 , x~21 + x~22 = x~2 , x~32 = x~3 , x~42 + x~43 = x~4 , x~53 = x~5 , x~jk � 0 for all j,
k. Eliminating five of the variables from the above constraints, a problem with

two variables remains.

Notice that the reasoning performed above for dependent tasks remains valid if

we replace the assumption n � m by �T k� � m, k =1, 2,..., K � 1 .

Let us now consider the case that the number of machines is less than the

number of tasks which can be processed simultaneously 2. We start with inde-

pendent tasks and n > m. To solve the problem optimally for the preemptive case

we must, in general, consider all possible assignments of machines to tasks, i.e.

all m-element combinations of tasks from T . Keeping for them denotation T k ,

k = 1, 2,..., M
O

P
Rn

m , we obtain a new optimization problem of type (13.3.13)-

(13.3.15).

For the non-preemptive case we consider all maximal sequences of T k's such

that each task appears in at least one T k and all T k's containing the same task are

consecutively indexed (non-preemptability!). Such sequences will be called fea-
sible. It is easy to notice that a feasible sequence consists of n � m + 1 elements

(i.e. sets T k). To find an optimal schedule in the general case we have to solve

2 Recall that this assumption is not needed when in the optimal solution tasks are processed

on a single machine, i.e. if fj � cjuj, cj = fj(Û)/Û, j = 1, 2, ..., n.

 13.3 Scheduling with Continuous Resources 509

the problem of type (13.3.13)-(13.3.15) for each of the feasible sequences and to

choose the best solution.

It is easy to see that finding an optimal schedule is computationally very dif-

ficult in general, and thus it is purposeful to construct heuristics. For the non-

preemptive case the idea of a heuristic approach can be to choose one or several

feasible sequences of m-tuples of tasks described above and solve a problem of

type (13.3.13)-(13.3.15) for each of them. These sequences can be chosen in

many different ways. A general advise is based on the following reasoning. As-

sume n = 5 and m = 3. Then, a feasible sequence consists of 5 � 3 + 1 = 3 sets T k

of 3 elements each. Exemplary feasible sequences are: S 1 = ({T1, T2, T3}, {T2,

T3, T4}, {T3, T4, T5}), S 2 = ({T1, T2, T3}, {T1, T2, T4}, {T1, T2, T5}).

Define now the structure of a sequence as the vector (|K 1|, |K 2|, ..., |K n|)

where |K j| is the cardinality of the set of indices of those T k's for which Tj � T k .

It is easy to see that the structure of S 1 is (1, 2, 3, 2, 1), whereas that of S 2 is (3,

3, 1, 1, 1). The basic idea is to study the correspondence between the structure of

feasible sequences and the vector of processing demands x~ of tasks in order to

achieve possibly uniform workload for particular machines. If all fi are concave

and identical then we can even identify optimal sequences. For example, under

the above assumptions, and n = 5, m = 3, x~ = (10, 20, 30, 20, 10), sequence S 1 is

optimal, whereas S 2 is optimal for x~ = (30, 30, 10, 10, 10). This follows from the

fact that the division of processing demands of tasks defined as x~j /|K j|, j = 1, 2,

..., 5, corresponds exactly to the uniform workload. Particular algorithms, their

worst case behavior and computational results are given in [JW98].

Another idea, for an arbitrary problem type, consists of two steps:

(a) Schedule task from T on machines from P for task processing times pj =

x~j /fj(ûj) , j = 1, 2,..., n, where the ûj's are fixed resource amounts.

(b) Allocate the continuous resource among parts of tasks in the schedule ob-

tained in step (a).

Usually in both steps we take into account the same optimization criterion

(Cmax in our case), although heuristics with different criteria can also be consid-

ered. Of course, we can solve each step optimally or heuristically. In the majority

of cases step (b) can easily be solved (numbers of task parts processed in parallel

are less than or equal to m; see Figure 13.3.4 for m = 2, n = 4) when, as we re-

member, even analytic results can be obtained for the sets T k . However, the

complexity of step (a) is radically different for preemptive and non-preemptive

scheduling. In the first case, the problem under consideration can be solved ex-

actly in O(n) time using McNaughton's algorithm, whereas in the second one it is

NP-hard for any fixed value of m ([Kar72]; see also Section 5.1). In the latter

case approximation algorithms as described in Section 5.1, or dynamic pro-

510 13 Scheduling under Resource Constraints

gramming algorithms similar to that presented in Section 13.1 can be applied

(here tasks are divided into classes with equal processing times).

The question remains how to define resource amounts ûj , j = 1, 2,..., n, in

step (a). There are many ways to do this; some of them were described in

[BCSW86] and checked experimentally in the preemptive case. Computational

experiments show that solutions produced by this heuristic differ from the opti-

mum by several percent on average. However, further investigations in this area

are still needed. Notice also that we can change the amounts û when performing

steps (a) and (b) iteratively.

t0

P2

P1 T1

T3 T4

T2

Figure 13.3.4 Parts of tasks processed in parallel in an example schedule.

Let us stress once again that the above two-step approach is pretty general, since

it combines (discrete) scheduling problems (step (a)) with problems of continu-

ous resource allocation among independent tasks (step (b)). Thus, in step (a) we

can utilize all the algorithms presented so far in this book, as well as many oth-

ers, e.g. from constrained resource project scheduling (see, e.g. [W99]). On the

other hand, in step (b) we can utilize several generalizations of the results pre-

sented in this section. We will mention some of them below, but first we say few

words about dependent tasks and �T k� > m for at least one k. In this case one has

to combine the reasoning presented for dependent tasks and n � m, and that for

independent tasks and n > m. This means, in particular, that in order to solve the

preemptive case, each problem of type (13.3.13)-(13.3.15) must be solved for all

m-elementary subsets of sets T k , k = 1, 2,..., K � 1.

We end this section with few remarks concerning generalizations of the re-

sults presented for continuous resource allocation problems. First of all we can

deal with a doubly constrained resource, when, apart from (13.3.2), also the con-

straint �
j=1

n

de
0

Cj

 fj[uj(t)]dt � V^ is imposed, V^ being the consumption constraint

[Weg81]. Second, each task may require many continuous resource types. The

processing speed of task Tj is then given by x
.
j(t) = fj[uj1(t), uj2(t),..., ujs(t)], where

ujl(t) is the amount of resource Rl allotted to Tj at time t, and s is the number of

different resource types. Thus in general we obtain multi-objective resource allo-

cation problems of the type formulated in [Weg91]. Third, other optimality crite-

ria can be considered, such as de
0

Cmax

 g[u(t)]dt [NZ81], �wjCj [NZ84a, NZ84b] or

 13.3 Scheduling with Continuous Resources 511

Lmax [Weg89]. Finally, sequences of sets of dependent tasks can be studied

[JS88].

Let us also mention about an application to Grid Scheduling [MWW04]. An

extensive survey pf the results concerning scheduling under resource constraints

can be found in [WJMW11].

13.3.3 Processing Time vs. Resource Amount Model

In this section we consider problems of scheduling non-preemptable tasks on a

single machine, where task processing times are linear, decreasing and continu-

ous functions of a continuous resource. The task processing model is given in the

form

pj = bj � ajuj , u
~j � uj � u~j, j = 1, 2,..., n (13.3.16)

where aj > 0, bj > 0, and u
~j and u~j � [0, bj /aj] are known constants. The continu-

ous resource is available in maximal amount Û, i.e. �
j=1

n
 uj � Û. Although now the

resource is not necessarily renewable (this is not a temporary model), we will

keep denotations as introduced in Section 13.3.2. Scheduling problems using the

above model were broadly studied by Janiak in a number of papers we will refer

to in the sequel. Without loss of generality we can restrict our considerations to

the case that lower bounds u
~j of resource amounts allotted to the particular tasks

are zero. This follows from the fact that in case of u
~j > 0 the model can be re-

placed by an equivalent one in the following way: replace bj by bj � aju~j and u~j by

u~j � u
~j , j = 1, 2,..., n, and Û by Û � �

i=1

n
 u
~ i , finally, set all u

~j = 0. Given a set of

tasks T = {T1 ,..., Tn}, let z = [z(1),..., z(n)] denote a permutation of task indices

that defines a feasible task order for the scheduling problem, and let Z be the set

of all such permutations (partial or complete ones). A schedule for T can then be

characterized by a pair (z, u) � Z � U . The value of a schedule (z, u) with re-

spect to the optimality criterion " will be denoted by "(z, u). A schedule with an

optimal value of " will briefly be denoted by (z*, u*).

Let us start with the problem of minimizing Cmax for the case of equal ready

times and arbitrary precedence constraints [Jan88a]. Using a slight modification

of the notation introduced in Section 3.4, we denote this type of problems by 1 |
prec, pj = bj � ajuj , �uj � Û | Cmax . It is easy to verify that an optimal solution (z*,

u*) of the problem is obtained if we chose an arbitrary permutation z � Z and

allocate the continuous resource according to the following algorithm.

512 13 Scheduling under Resource Constraints

Algorithm 13.3.2 for finding u* for 1 | prec, pj = bj � ajuj , �uj � Û | Cmax

[Jan88a].
begin
for j := 1 to n do u*

j := 0;

while T � � and Û > 0 do

 begin

 Find Tk � T for which ak = max
j

{aj};

 u*
k := min{u~k,Û};

 Û := Û � u*
k;

 T := T � {Tk};

 end;
u* := [u*

1,..., u*
n]; -- u* is an optimal resource allocation

end;

Obviously, the time complexity of this algorithm is O(n log n).

Consider now the problem with arbitrary ready times, i.e. 1 | prec, rj , pj = bj �

ajuj , �uj � Û | Cmax . One can easily prove that an optimal solution (z*,u*) of the

problem is always found if we first schedule tasks according to an obvious modi-

fication of Algorithm 4.5.2 by Lawler - thus having determined z* - and then al-

locate the resources according to Algorithm 13.3.3.

Algorithm 13.3.3 for finding u* for 1 | prec, rj, pj = bj � ajuj , �uj � Û | Cmax

[Jan88a].
begin
for j := 1 to n do u*

j := 0;

Sz*(1) := rz*(1);

l := 1;

for j := 2 to n do Sz*(j) := max{rz*(j), Sz*(j�1) + bz*(j�1)};

 -- starting times of tasks in permutation z* for u* have been calculated

J := {z*}; -- construct set J

while J ��� and Û � 0 do

 begin

 Find the biggest index k, l � k � n, for which rz*(k) = Sz*(k);

 J := {z*(j) | k � j � n, and u * z*(j) < u~z*(j)};

 Find index t for which az*(t) = max{az*(j) | z*(j) � J };

 d := min{Sz*(i) � rz*(i) | t < i � n};

 y := min{u~z*(t), Û, d/az*(t)};

 u * z*(t) := u * z*(t) + y;

 Û := Û � y;

 for i := t to n do Sz*(i) := Sz*(i) � yaz*(t);

 13.3 Scheduling with Continuous Resources 513

 l := k;
 -- new resource allocation and task starting times have been calculated
 end;

u* := [u*
1,..., u*

n]; -- u* is an optimal resource allocation

end;

The complexity of this algorithm is O(n2
), and this is the complexity of the whole

approach for finding (z*, u*), since Algorithm 4.5.2 is also of complexity O(n2
) .

Let us now pass to the problems of minimizing maximum lateness Lmax.

Since problem 1 | prec, pj = bj � ajuj , �uj � Û | Lmax is equivalent to problem 1 |

prec, rj , pj = bj � ajuj , �uj � Û | Cmax (as in the case without additional resources),

its optimal solution can always be obtained by finding z* according to the Algo-

rithm 4.5.2 and u* according to a simple modification of Algorithm 13.3.3.

It is also easy to see that problem 1 | rj , pj = bj � ajuj , �uj � Û | Lmax is strongly

NP-hard, since the restricted version 1 | rj | Lmax is already strongly NP-hard (see

Section 4.3). For the problem 1 | prec, rj , pj = bj � ajuj , �uj � Û | Lmax where in

addition precedence constraints are given, an exact branch and bound algorithm

was presented by Janiak [Jan86c].

Finally, consider problems with the optimality criteria �Cj and �wjCj. Prob-

lem 1 | prec, pj = bj � ajuj , �uj � Û | �Cj is NP-hard, and problem 1 | rj , pj = bj �

ajuj , �uj � Û | �Cj is strongly NP-hard, since the corresponding restricted versions

1 | prec | �Cj and 1 | rj | �Cj are NP-hard and strongly NP-hard, respectively (see

Section 4.2). The complexity status of problem 1 | pj = bj � ajuj , �uj � Û | �wjCj is

still an open question. It is easy to verify for any given z � Z the minimum value

of �wjCj in this problem is always obtained by allocating the resource according

to the following algorithm of complexity O(nlogn) .

Algorithm 13.3.4 for finding u* for 1 | pj = bj � ajuj , �uj � Û | �wjCj [Jan88a].

begin

J := { z }; -- construct set J
while J ��	 do

 begin

Find z(k) � J for which az(k)
j=k

n
wz(j) = max

z(i)�J
{az(i)
j=i

n
wz(j)};

 u*
z(k) := min{u~z(k), max{0, Û}};

 Û := Û � u*
z(k);

 J := J � { z(k) };

 end;

514 13 Scheduling under Resource Constraints

u* := [u*
1 ,..., u*

n]; -- u* is an optimal resource allocation

end;

An exact algorithm of the same complexity can also be given for this problem if

for any two tasks Ti , Tj either Ti <& Tj or Tj <& Ti , where Ti <& Tj means that bi � bj ,

ai � aj , u~i � u~j , and wi � wj . In this case the optimal permutation z* is obtained by

ordering the jobs according to <&, and the algorithm of the optimal resource allo-

cation is as follows: u *
z*(j) = min{u~z*(j) , max{0, Ûj}} for j = 1, 2,..., n, where Û1 =

Û, Ûj+1 = Ûj � u *
z*(j) , j = 1, 2,..., n � 1 .

Now let us pass to the criterion which is specific to scheduling problems

with additional continuous resources, namely to the criterion denoting the total

resource utilization, i.e. U = �
j=1

n
 uj . This criterion should be minimized subject to

the constraint " < "^ where " is a classical schedule performance measure and "^ is a

given value of ". Of course, scheduling problems of minimizing �uj are closely

related to corresponding problems with criterion ". Additionally, we use the fact

that for the considered problems it is easy to calculate the maximum value "~ of " .

We illustrate this idea for the criterion " = Cmax , i.e. for problem 1 | prec, pj =

bj � ajuj , Cmax < C^ | �uj . It is obvious that the upper bound for Cmax , C~ max =

min
z �Z

 {Cmax(z, 0)} = Cmax(z*, 0). Thus, we have the following modification of Al-

gorithm 13.3.2.

Algorithm 13.3.5 for finding u* for 1 | prec, pj = bj � ajuj , Cmax � C^ | �uj [Jan91a].

begin

for j := 1 to n do u*
j := 0;

U := 0;

Cmax := C~ max;

while T ��� and Cmax > C^ do

begin

Find Tk � T for which ak = max
j

{aj};

u*
k := min{u~k, max{0, (Cmax � C^) /ak}};

U := U + u*
k;

Cmax := Cmax � aku*
k;

T := T � {Tk};

end;

if T = � and Cmax > C^
then no solution exists
else u* := [u*

1 ,..., u*
n]; -- u* is an optimal resource allocation

end;

 13.3 Scheduling with Continuous Resources 515

Knowing how to solve a problem for criteria " and �uj , one can also find the set

of all Pareto-optimal (i.e. efficient or non-dominated) solutions (zP
 , uP) for bi-

criterion problems ([Jan91a]). As an example, consider the problem 1 | prec, pj =

bj � ajuj | Cmax ^ �uj . Of course, C
~ max = min

z �Z
 {Cmax(z, u~)} = �

j=1

n
 (bj � aju

~
j) is a lower

bound for Cmax . In our problem, for each value Cmax � [C
~ max , C~ max], any feasible

permutation z � Z can be taken as Pareto-optimal permutation zP. In order to

find the set U
P of all Pareto-optimal resource allocations uP, we determine the

Pareto curve (which is a convex, decreasing and piece-wise linear function) from

the following algorithm of time complexity O(nlogn).

Algorithm 13.3.6 for finding the Pareto curve in 1 | prec, pj = bj � ajuj |

Cmax ^ �uj [Jan91a].

begin

for j := 1 to n do u*
z(j) := 0;

i := 0;

C 0
max := C~ max;

U 0
 := 0;

while T ��� do

begin

i := i + 1;

Find Tk � T for which ak = max
j

{aj};

u*
k := u~k;

C i
max := C i�1

max � aku
~

k;

U i
 := U i�1

 + u~k;

ai
 := 1/ak;

T := T � {Tk};

for l := 1 to n do ui
l := u*

l;

end;

end;

Obtained pairs (C0
max , U 0

) , (C1
max , U 1

) ,..., (Cn
max , U n

) are consecutive break-

points of the Pareto curve; ai
 is the slope of the ith segment of this curve, i = 1,

2,..., n. The set U P is the sum of n segments joining the points ui
 , ui+1

 , i = 0, 1,

2,..., n � 1 , where u0
 = 0.

In [JK96] the problem was considered with given deadlines d ~j and minimi-

zation of the total weighted resource consumption, i.e. the problem 1 | pj = bj � aj

516 13 Scheduling under Resource Constraints

uj , Cj � d ~j | 5 wjuj . This problem is solvable in O(n log n) time for a continuous-

ly-divisible resource and is NP-hard for a discrete resource. A fully polynomial

approximation scheme is presented for the last case.

The paper [CJK98] is devoted to the following machine scheduling prob-

lems with linear models of task processing times and with a discrete resource: 1 |

pj = bj � ajuj , F1 � K | F2 , 1 | pj = bj � ajuj , F2 � K | F1 and 1 | pj = bj � ajuj | F1 ^

F2 , where F1 and F2 is a criterion of resource and completion time type, respec-

tively. More precisely, F1 � {gmax , 5 uj , 5 wjuj} and F2 � {Cmax , cmax , 5 Uj ,

5 wjUj , 5 Cj , 5 wjCj }, where gmax = max{gj(uj)} (gj(uj) is a nondecreasing re-

source cost function), cmax = max{cj(Cj)} (cj(Cj) is a nondecreasing penalty cost

function), and 5 wjUj is the weighted number of tardy tasks (see Section 3.1).

Computational complexities of the problems and the general scheme for the con-

struction of Pareto sets and Pareto set ε-approximations were also presented.

 In [Jan99] the model (13.3.16) was extended to one with pj = bj + a'j Sj � ajuj ,

where Sj is a task starting time and a'j is a task model parameter. The problems of

minimization of the makespan, the total completion time and the lateness with

the extended model including the constraint on the maximal resource amount U^ ,

and also their inverse versions, were investigated e.g. in [IJR00].

Further generalizations concern the application of the model (13.3.16) for

machine setup times [Jan99]. Single machine batch scheduling with resource

dependent setup and processing time was examined in [CJK01], where polyno-

mial time algorithms were presented to find an optimal batch sequence and re-

source allocations such that either the total weighted consumption 5 wjuj is min-

imized subject to meeting task deadlines dj , or the maximum task lateness is

minimized subject to an upper bound on the total weighted resource consump-

tion. Next, single machine group scheduling with resource dependent setup and

processing times with continuous or discrete resource were considered in [NCJK

05, JKP05] for various criteria.

To end this section let us mention some results obtained for the processing time

vs. resource amount model in case of dedicated processors. Two-machine flow

shop problems with linear task models were studied by Janiak [Jan88b, Jan89a],

where it was proved that the problem is NP-hard for the single criteria " = Cmax

and " = ��uj , even for identical values of aj on one of the machines and fixed pro-

cessing times on the second machine. Approximation algorithms and an exact

branch and bound algorithm were also presented in these papers. Flow shop and

job shop problems with convex task models were considered in [GJ87, Jan86b,

Jan88c, Jan88d, JS94, JP98, CJ00].

 13.3 Scheduling with Continuous Resources 517

13.3.4 Ready Time vs. Resource Amount Model

In this section we assume that task processing times are given constants but ready

times are continuously dependent on the amount of allocated continuous re-

source, i.e.

rj = fj(uj), u~j � uj � u~j, j = 1, 2,..., n , (13.3.17)

where all the lower and upper bounds of resource allocations, u
~j and u~j , are

known constants.

As in Section 13.3.3 tasks are assumed to be non-preemptable, and we con-

sider single machine problems only. Problems of this type appear e.g. in the ingot

preheating process in steel mills [Jan91b].

Problem 1 | rj = fj(uj), ��uj � Û | Cmax

This problem is strongly NP-hard even in the special case of linear functions fj
(see (13.3.16)) and u

~j = 0, j = 1, 2,..., n, and is NP-hard in the case of aj = a, j =

1, 2,..., n [Jan91b]. However, for identical models of rj , i.e. for fj = f, u
~j = u

~
 and

u~j = u~ for all j, the problem can be solved in polynomial time. In this case we

know from [Jan86c] that an optimal solution (z*,u*) is obtained by scheduling

tasks according to non-increasing processing times pj (thus defining permutation

z*) and by allocating the continuous resource for z* according to the following

formulas: if

f(u~z*(1)) + �
j=1

n
 pz*(j) � f(u

~
) + �

j=2

n
 pz*(j)

where

u~z*(1) = min{(Û � (n � 1)u
~
) , u~} ,

then

u *
z*(1) = u~z*(1), u*

z(j) = u
~
, j = 2, 3,..., n .

Otherwise,

u *
z*(j) = f �1(r � (�

i=j

k�1

 pz*(i) + d)), j = 1, 2,..., k � 1 ,

u *
z*(k) = f �1

(r � d) , u *
z*(j) = u

~
, j = k + 1, k + 2,..., n ,

where r = f(u
~
), and k � 1 is the maximal natural number such that

(�
j=1

k�1

 f �1(r � �
i=j

k�1

 pz*(i)) + (n � (k � 1))u
~
 � Û) and (f �1(r � �

j=1

k�1

 pz*(j)) � u~) ,

518 13 Scheduling under Resource Constraints

d = min{(r � �
j=1

k�1

 pz*(j) � f(u~)), d'} ,

with d' following from the equation

�
j=1

k�1

 f �1(r � �
i=j

k�1

 pz*(i) � d') + f �1
(r � d') + (n � k)u

~
 = Û .

Thus, if we are able to calculate f, f �1
 and d' in time O(g(n)), then (z*, u*) is cal-

culated in O(max{g(n), nlogn}) time, i.e. this time is polynomial if g(n) is poly-

nomial. For example, this is the case if f is linear. In special situations where fj is

linear and bj = b for j = 1,2,..., n, algorithms of time complexity O(nlogn) exist.

These situations are as follows:

(i) u~j = u~, pj = p, j = 1, 2,..., n ,

(ii) aj = a, pj = p, j = 1, 2,..., n .

An optimal solution (z*, u*) is obtained by scheduling the tasks according to non-

increasing values of aj in case (i), non-increasing u~j in case (ii), and by allocating

the continuous resource using corresponding modifications of the above formu-

lae [Jan89b].

For arbitrary linear functions fj , Janiak [Jan89b] was able to prove that for

given z � Z , an optimal resource allocation uz
* can be calculated in O(n2

) time

using the following algorithm.

Algorithm 13.3.7 for finding u* for 1 | rj = bj � ajuj, �uj � Û | Cmax [Jan89b].

begin
for j := 1 to n do

 begin
 u* z(j) := 0;

 Cz(j) := bz(j) + �
i=j

n
 pz(i);

 end;
J := {z(j) | j = 1, 2,..., n};

l := 0;

C0 := 0;

J 0 := 0;

while J � � do

 begin
 l := l + 1;

 Find set J l = {z(j) | z(j) � J and Cz(j) = min
z(i)�J

 {Cz(i)}};

 J = J � J l;

 13.3 Scheduling with Continuous Resources 519

 end;
Q := J l;

while (Û ≠ 0 and l ≠ 0 and min
j �Q

 {u~j � u*
j} ≠ 0) do

 begin
 x := min {Cq � Cp, Û/ �

j �Q
 (1/aj) , min

j �Q
 {aj(u

~
j � u*

j)}};

 -- p and q are indices of tasks belonging to sets Q and J l�1, respectively

 for j � Q do u*
j := u*

j + x/aj;

 Û := Û � �
j �Q

 x/aj;

 l := l � 1;

 Q := Q � J l;

 end;
u*

z := [u*
1 ,..., u*

n]; -- uz
* is an optimal resource allocation for permutation z

end;
In the same paper it has been shown that in the case of aj = a, u~j = u~ , pj = p for j =

1, 2,..., n, an optimal solution (z*, u*) is obtained when tasks are scheduled in

order of non-decreasing bj and the resource is allocated according to Algorithm

13.3.7. The same is also true for problems in which the above permutation is in

accordance with the non-increasing orders of aj , u~j and pj . Of course, Algorithm

13.3.7 can also be used for finding resource allocations for permutations z � Z

defined heuristically. In [Jan89b] 25 such heuristics with the (best possible)

worst case bound 2 were compared experimentally. The best results for "low"

resource level (Û = 0.2&�
j=1

n
 u~j) were produced by ordering tasks according to non-

decreasing bj , whereas for "high" resource level (Û = 0.9&�
j=1

n
 u~j) sorting tasks ac-

cording to non-decreasing values of bj � aju
~

j turned out to be most efficient.

Problem 1 | rj = fj(uj), Cmax �� C^ | �uj

Similarly as for 1 | rj = fj(uj) , �uj � Û | Cmax it can be proved that the considered

problem is already strongly NP-hard for fj = bj � ajuj , j = 1, 2,..., n, and NP-hard

for aj = a, j = 1, 2,..., n (see [Jan91b]). Also similarly to the solution of the first

problem, if fj = f, u
~j = u

~
 for all j, the problem is solved optimally by scheduling

tasks according to non-increasing pj (thus defining permutation z*) and by allo-

cating the resource according to the following condition. If

r + �
j=1

n
 pj � C^ � pz*(1), where r = f(u

~
) ,

520 13 Scheduling under Resource Constraints

then

u *
z*(1) = f �1(C^ � �

j=1

n
 pj), u *

z*(j) = u
~
, j = 2, 3,..., n ,

and otherwise

u *
z*(j) = f �1(C^ � �

i=j

n
 pz*(i)) = f �1(r � �

i=j

k�1

 pz*(i) � d) for j = 1, 2,..., k � 1 ,

u *
z*(k) = f �1(C^ � �

i=k

n
 pz*(i)) = f �1

(r � d) ,

u *
z*(j) = f �1

(r) = u
~
, j = k + 1, k + 2,..., n ,

where k is the maximal natural number such that

�
i=1

k�1

 pz*(i) � r + �
j=1

n
 pj � C^ ,

d = r + �
j=1

n
 pj � C^ � �

i=1

k�1

 pz*(i) = r + �
i=k

n
 pz*(i) � C^ .

Thus, if we are able to calculate f and f �1
 in O(g(n)) time, then finding (z*, u*)

needs O(max{g(n), nlogn}) time.

Notice that it is generally sufficient to consider C^ for which C
~ max � C^ �

C~ max , where C
~ max = min

z�Z
 Cmax(z, u~) and C~ max = min

z�Z
 Cmax(z, u

~
). In particular, for

identical fj , u
~j , u~j , j = 1, 2,..., n, we have

Cmax(z, u~) = C
~ max= f(u~) + �

j=1

n
 pj

and

Cmax(z, u
~

) = C~ max = f(u
~
) + �

j=1

n
 pj for each z � Z .

If functions fj are not identical and linear, then for given z � Z an optimal uz
*

is obtained in O(n) time using the formula [Jan91b]

u* z(j) = max{0, (bz(j) + �
i=j

n
 pz(i) � C^)/az(j)}, j = 1, 2,..., n . (13.3.18)

This follows simply from the linear programming formulation of the problem.

On the same basis it is easy to see that the cases:

(i) bj = b, u~j = u~, pj = p, j = 1, 2,..., n ,

(ii) bj = b, aj = a, pj = p, j = 1, 2,..., n ,

(iii) aj = a, u~j = u~, pj = p, j = 1, 2,..., n

 References 521

are solvable in O(nlogn) time by scheduling tasks according to non-increasing aj

in case (i), non-increasing u~j in case (ii), and non-increasing bj in case (iii), and

by allocating the resource according to (13.3.18). For each of these cases z* does

not depend on C^ , and C
~ max = Cmax(z*, u~) , C~ max = Cmax(z*, 0) .

Heuristics in which z is defined heuristically and uz
* is calculated according

to (13.3.18) were studied in [Jan91b]. The best results were obtained by schedul-

ing tasks according to non-decreasing bj . Unfortunately, the worst-case perfor-

mance of these heuristics is not known.

On the basis of the presented results, the set of all Pareto-optimal solutions

can be constructed for some bi-criterion problems of type 1 | rj = fj(uj) | Cmax ^

� uj using the ideas described in [JC94]. For linear models this set was con-

structed in [Jan 91b].

The problems considered in this section were generalized in [Jan 97] for the

case with arbitrary precedence constraints, where it was proved that they are NP-

hard even for identical linear models of rj . When additionally all processing

times are identical, the optimal solution (z*, u*) can be constructed in O(n2
) time.

In [JL94, Jan99] the single and parallel machine scheduling problems with

nonlinear function: release time vs. resource consumption, common for all tasks,

with different task resource consumption rates were considered. The following

criteria were minimized: the total weighted task completion time subject to a

constrained maximal resource amount [JL94], the total resource utilization sub-

ject to a constrained total weighted completion time, and the bi-criteria approach

[Jan99]. The borders between NP-hard and polynomially solvable cases were

found.

Further generalization of the release time model was made in [Jan99], where

the single machine scheduling problem with the model (13.3.1) applied to release

times was considered. Due to some problem properties, the difficult dynamic

resource allocation problem was reduced to a simple convex programming one.

Some approximation algorithms with the worst case analysis were also present-

ed.

References

BBKR86 J. B)�la

.
zewicz, J. Barcelo, W. Kubiak, H. Röck, Scheduling tasks on two pro-

cessors with deadlines and additional resources, Eur. J. Oper. Res. 26, 1986,

364-370.

BCSW86 J. B)�la

.
zewicz, W. Cellary, R. S)�lowiński, J. W,eglarz, Scheduling under Re-

source Constraints: Deterministic Models, J. C. Baltzer, Basel, 1986.

BDM+99 P. Brucker, A. Drexl, R. Möhring, K. Neumann, E. Pesch, Resource-

constrained project scheduling: notation, classification, models, and methods,

Eur. J. Oper. Res. 112, 1999, 3-41.

522 13 Scheduling under Resource Constraints

BE83 J. B)�la

.
zewicz, K. Ecker, A linear time algorithm for restricted bin packing and

scheduling problems, Oper. Res. Lett. 2, 1983, 80-83.

BE94 J. B)�la

.
zewicz, K. Ecker, Multiprocessor task scheduling with resource require-

ments, Real-Time Syst. 6, 1994, 37-54.

BKS89 J. B)�la

.
zewicz, W. Kubiak, J. Szwarcfiter, Scheduling independent fixed-type

tasks, in: R. S)�lowiński, J. W,eglarz (eds.), Advances in Project Scheduling,

Elsevier, Amsterdam, 1989, 225-236.

Bla78 J. B)�la

.
zewicz, Complexity of computer scheduling algorithms under resource

constraints, Proceedings of the 1st Meeting AFCET - SMF on Applied Mathe-
matics, Palaiseau, 1978, 169-178.

BLRK83 J. B)�la

.
zewicz, J. K. Lenstra, A. H. G. Rinnooy Kan, Scheduling subject to re-

source constraints: classification and complexity, Discret Appl. Math. 5, 1983,

11-24.

CD73 E. G. Coffman Jr., P. J. Denning, Operating Systems Theory, Prentice-Hall,

Englewood Cliffs, N. J., 1973.

CGJ84 E. G. Coffman Jr., M. R. Garey, D. S. Johnson, Approximation algorithms for

bin-packing - an updated survey, in: G. Ausiello, M. Lucertini, P. Serafini

(eds.), Algorithms Design for Computer System Design, Springer, Vienna,

1984, 49-106.

CGJP83 E. G. Coffman Jr., M. R. Garey, D. S. Johnson, A. S. La Paugh, Scheduling

file transfers in a distributed network, Proceedings of the 2nd ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, Montreal, 1983.

CJ00 T.-C. E. Cheng, A. Janiak, A permutation flow-shop scheduling problem with

convex models of operation processing times, Ann. Oper. Res. 96, 2000, 39-60.

CJK98 T.-C. E. Cheng, A. Janiak , M.Y. Kovalyov, Bicriterion single machine sched-

uling with resource dependent processing times, SIAM J. Optim. 8, 1998,

617-630.

CJK01 T.-C. E. Cheng, A. Janiak , M.Y. Kovalyov, Single machine batch scheduling

with resource dependent setup and processing times, Eur. J. Oper. Res. 135,

2001, 177-183.

GG75 M. R. Garey, R. L. Graham, Bounds for multiprocessor scheduling with re-

source constraints, SIAM J. Comput. 4, 1975, 187-200.

GJ75 M. R. Garey, D. S. Johnson, Complexity results for multiprocessor scheduling

under resource constraints, SIAM J. Comput. 4, 1975, 397-411.

GJ87 J. Grabowski, A. Janiak, Job-shop scheduling with resource-time models of

operations, Eur. J. Oper. Res. 28, 1987, 58-73.

IJR00 D. Iwanowski, A. Janiak, A. Rogala, Scheduling jobs with start time and re-

source dependent processing times, in: K. Inderfurth, G. Schwodianer,

W. Domschke, F. Juhnke, P. Kleinschmidt, G. Wascher (eds), Operations Re-
search Proceedings 1999, Springer, Berlin, 2000, 389-396.

Jan86a A. Janiak, One-machine scheduling problems with resource constraints, in:

A. Prékopa, J. Szelezán, B. Strazicky (eds.), System Modelling and Optimiza-

tion, Lect. Notes Contr. Inf. 84, 1986, 358-364.

 References 523

Jan86b A. Janiak, Flow-shop scheduling with controllable operation processing times,

in: H. P. Geering, M. Mansour (eds.), Large Scale Systems: Theory and Appli-
cations, Pergamon Press, 1986, 602-605.

Jan86c A. Janiak, Time-optimal control in a single machine problem with resource

constraints, Automatica 22, 1986, 745-747.

Jan88a A. Janiak, Single machine sequencing with linear models of jobs subject to

precedence constraints, Archiwum Automatyki i Telemechaniki 33, 1988,

203-210.

Jan88b A. Janiak, Permutation flow shop problem with linear models of operations,
Zeszyty Naukowe Politechniki Śl

 YYaskiej, Automatyka 94, 1988, 125-138 (in

Polish).

Jan88c A. Janiak, Minimization of the total resource consumption in permutation

flow-shop sequencing subject to a given makespan, Journal of Modelling,
Simulation and Control 13, 1988, 1-11.

Jan88d A. Janiak, General flow-shop scheduling with resource constraints, Int. J.
Prod. Res. 26, 1988, 1089-1103.

Jan89a A. Janiak, Minimization of resource consumption under a given deadline in

two-processor flow-shop scheduling problem, Inf. Process. Lett. 32, 1989,

101-112.

Jan89b A. Janiak, Minimization of the blooming mill standstills - mathematical model.

Suboptimal algorithms, Zeszyty Naukowe AGH, Mechanika 8, 1989, 37-49.

Jan91a A. Janiak, Exact and Approximation Algorithms of Job Scheduling and Re-
source Allocation in Discrete Industrial Processes, Prace Naukowe Instytutu

Cybernetyki Technicznej Politechniki Wrocławskiej 87, Monografie 20,

Wrocław, 1991 (in Polish).

Jan91b A. Janiak, Single machine scheduling problem with a common deadline and

resource dependent release dates, Eur. J. Oper. Res. 53, 1991, 317-325.

Jan97 A. Janiak, Computational complexity analysis of single machine scheduling

problems with job release dates dependent on resources, in: U. Zimmermann,

U. Derigs, W. Gaul, R.H. Möhring, K.P. Schuster (eds.), Operations Research
Proceedings 1996, Springer, Berlin, 1997, 203-207.

Jan98a A. Janiak, Single machine sequencing with linear models of release dates, Nav.
Res. Logist. 45, 1998, 99-113.

Jan98b A. Janiak, Minimization of the makespan in a two-machine problem under

given resource constraints, Eur. J. Oper. Res. 107, 1988, 325-337.

Jan99 A. Janiak, Selected Problems and Algorithms of Scheduling and Resource
Allocation, Akademicka Oficyna Wydawnicza PLJ, Warszawa 1999 (in

Polish).

JC94 A. Janiak, T.-C. E. Cheng, Resource optimal control in some simple-machine

scheduling problems, IEEE Trans. Aut. Contr. 39, 1994, 1243-1246.

JK96 A. Janiak, M. Y. Kovalyov, Single machine scheduling subject to deadlines

and resource dependent processing times, Eur. J. Oper. Res. 94, 1996,

284-291.

524 13 Scheduling under Resource Constraints

JKP05 A. Janiak , M. Y. Kovalyov, M.-C. Portmann, Single machine group schedul-

ing with resource dependent setups and processing times, Eur. J. Oper. Res.

162, 2005, 112-121.

JL94 A. Janiak, C.-L. Li, Scheduling to minimize the total weighted completion time

with a constraint on the release time resource consumption, Math. Comput.
Model. 20, 1994, 53-58.

JP98 A. Janiak, M.-C. Portmann, Genetic algorithm for the permutation flow-shop

scheduling problem with linear models of operations, Ann. Oper. Res. 83,

1998, 95-114.

JS88 A. Janiak, A. Stankiewicz, On time-optimal control of a sequence of projects

of activities under time-variable resource, IEEE Trans. Aut. Contr. 33, 1988,

313-316.

JS94 A. Janiak, T. Szkodny, Job-shop scheduling with convex models of operations,

Math. Comput. Model. 20, 1994, 59-68.

JW98 J. Józefowska, J. W,eglarz, On a methodology for discrete-continuous schedul-

ing, Euro. J. Oper. Res. 107, 1998, 338-353.

Kar72 R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,

J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press,

New York, 1972, 85-103.

Kar84 N. Karmarkar, A new polynomial-time algorithm for linear programming,

Combinatorica 4, 1984, 373-395.

KE75 O. Kariv, S. Even, An O(n2) algorithm for maximum matching in general

graphs, Proceedings of the 16th Annual IEEE Symposium on Foundations of
Computer Science, 1975, 100-112.

KSS75 K. L. Krause, V. Y. Shen, H. D. Schwetman, Analysis of several task-

scheduling algorithms for a model of multiprogramming computer systems, J.
ACM 22, 1975, 522-550 (Erratum: J. ACM 24, 1977, 527).

Law76 E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,

Rinehart and Winston, New York 1976.

Len83 H. W. Lenstra, Jr., Integer programming with a fixed number of variables,

Math. Oper. Res. 8, 1983, 538-548.

McN59 R. McNaughton, Scheduling with deadlines and loss functions, Manage. Sci.
12, 1959, 1-12.

MWW04 M. Mika, G. Waligóra, J. Węglarz, A metaheuristic approach to scheduling

workflow jobs on a grid, in: J. Nabrzyski, J. M. Schopf, J. Węglarz (eds.), Grid
Resource Management, Kluwer, Boston 2004, 295-318.

NCJK05 C.T. Ng, T.-C. E. Cheng, A. Janiak, M. Y. Kovalyov, Group scheduling with

controllable setup and processing times, Minimizing total weighted completion

time, Ann. Oper. Res. 133, 2005, 163-174.

NZ81 E. Nowicki, S. Zdrzalka, Optimal control of a complex of independent opera-

tions, Int. J. Syst. Sci. 12, 1981, 77-93.

 References 525

NZ84a E. Nowicki, S. Zdrzalka, Optimal control policies for resource allocation in an

activity network, Eur. J. Oper. Res. 16, 1984, 198-214.

NZ84b E. Nowicki, S. Zdrzalka, Scheduling jobs with controllable processing times as

an optimal control problem, Int. J. Contr. 39, 1984, 839-848.

SW89 R. S)�lowiński, J. W,eglarz (eds.), Advances in Project Scheduling, Elsevier,

Amsterdam, 1989.

WBCS77 J. W,eglarz, J. B)�la

.
zewicz, W. Cellary, R. S)�lowiński, An automatic revised sim-

plex method for constrained resource network scheduling, ACM Trans. Math.
Softw. 3, 295-300, 1977.

Weg80 J. W,eglarz, Multiprocessor scheduling with memory allocation - a determinis-

tic approach, IEEE Trans. Comput. C-29, 1980, 703-709.

Weg81 J. W,eglarz, Project scheduling with continuously-divisible, doubly constrained

resources, Manage. Sci. 27, 1981, 1040-1052.

Weg82 J. W,eglarz, Modelling and control of dynamic resource allocation project

scheduling systems, in: S. G. Tzafestas (ed.), Optimization and Control of Dy-
namic Operational Research Models, North-Holland, Amsterdam, 1982.

Weg89 J. W,eglarz, Project scheduling under continuous processing speed vs. resource

amount functions, 1989. in: R. S)�lowiński, J. W,eglarz (eds.), Advances in Pro-
ject Scheduling, Elsevier, 1989, 273-277.

Weg91 J. W,eglarz, Synthesis problems in allocating continuous, doubly constrained

resources, in: H. E. Bradley (ed.), Operational Research '90 - Selected Papers
from the 12th IFORS International Conference, Pergamon Press, Oxford,

1991, 715-725.

Weg99 J. W,eglarz (ed.), Project Scheduling - Recent Models, Algorithms and Applica-
tions, Kluwer Academic Publ., 1999.

WJMW11 J. Węglarz, J. Józefowska, M. Mika, G. Waligóra, Project scheduling with

finite or infinite number of activity processing modes, Eur. J. Oper. Res. 208,

2011, 177-205.

	13 Scheduling under Resource Constraints
	13.1 Classical Model
	13.2 Scheduling Multiprocessor Tasks
	13.3 Scheduling with Continuous Resources
	13.3.1 Introductory Remarks
	13.3.2 Processing Speed vs. Resource Amount Model
	13.3.3 Processing Time vs. Resource Amount Model
	13.3.4 Ready Time vs. Resource Amount Model

	References

