
  

11 Scheduling with Limited  
Processor Availability1  

                                                 
1 This paper is based on O. Braun, J, Breit, G. Schmidt, Deterministic Machine Scheduling with 

Limited Machine Availability, Discussion paper B0403, Saarland University, 2004. 

In scheduling theory the basic model assumes that all machines are continuously 
available for processing throughout the planning horizon. This assumption might 
be justified in some cases but it does not apply if certain maintenance require-
ments, breakdowns or other constraints that cause the machines not to be availa-
ble for processing have to be considered. In this chapter we discuss results relat-
ed to deterministic scheduling problems where machines are not continuously 
available for processing. 

Examples of such constraints can be found in many areas. Limited availa-
bilities of machines may result from pre-schedules which exist mainly because 
most of the real world resources planning problems are dynamic. A natural ap-
proach to cope with a dynamic environment is to trigger a new planning horizon 
when the changes in the data justify it. However, due to many necessities, as 
process preparation for instance, it is mandatory to take results of earlier plans as 
fixed which obviously limits availability of resources for any subsequent plan. 
Consider e.g. ERP (Enterprise Resource Planning) production planning systems 
when a rolling horizon approach is used for customer order assignment on a tac-
tical level. Here consecutive time periods overlap where planning decisions tak-
en in earlier periods constrain those for later periods. Because of this arrange-
ment orders related to earlier periods are also assigned to time intervals of later 
periods causing the resources not to be available during these intervals for orders 
arriving after the planning decisions have been taken. The same kind of problem 
may be repeated on the operational level of production scheduling. Here pro-
cessing of some jobs is fixed in terms of starting and finishing times and machine 
assignment. When new jobs are released to the shop floor there are already jobs 
assigned to time intervals and machines while the new ones have to be processed 
within the remaining free processing intervals. 

Another application of limited machine availability comes from operating 
systems for mono- and multi-processors, where subprograms with higher priority 
will interfere with the current program executed. A similar problem arises in 
multi-user computer systems where the load changes during the usage. In big 
massively parallel systems it is convenient to change the partition of the proces-
sors among different types of users according to their requirements for the ma-
chine. Fluctuations related to the processing capacity can be modeled by inter-
vals of different processor availability. Numerous other examples exist where the 
investigation of limited machine availability is of great importance and the prac-
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tical need to deal with this type of problem has been proven by a growing de-
mand for commercial software packages. Thus, recently the analysis of these 
problems has attracted many researchers. 

In the following we will investigate scheduling problems with limited ma-
chine availability in greater detail. The research was started by G. Schmidt 
[Sch84]. The review focuses on deterministic models with information about the 
availability constraints. Earlier surveys of this research area can be found in 
[SS98, Sch00, Lee04]. For stochastic scheduling problems with limited machine 
availability and prior distributions of the problem parameters see [GGN00, 
LS95b, LS97]. We will survey results for one machine, parallel machine and 
shop scheduling problems in terms of intractability and polynomial time algo-
rithms. In some places also results from enumerative optimization algorithms 
and heuristics are analyzed. Doing this we will distinguish between non-
preemptive and preemptive scheduling. We will finish with some conclusions 
and some suggestions for future research. 

11.1 Problem Definition 

A machine system with limited availability is a set of machines (processors) 
which does not operate continuously; each machine is ready for processing only 
in certain time intervals of availability. Let P  = {Pi | i = l ,..., m} be the set of 
machines with machine Pi only available for processing within Si given time in-
tervals [Bi

 s, Fi
 s), s = l ,..., Si and Bi     

 s+1 > Fi
 s for all s = l ,..., Si�1 . Bi

 s denotes the 
start time and Fi

 s  the finish time of s th  interval of availability of machine Pi .  
We want to find a feasible schedule if one exists, such that all tasks can be 

processed within the given intervals of machine availability optimizing some 
performance criterion. Such measures considered here are completion time and 
due date related and most of them refer to the maximum completion time, the 
sum of completion times, and the maximum lateness. 

The term preemption is used as defined before. Often the notion of resuma-
bility is used instead of preemption. Under a resumable scenario a task may be 
interrupted when a machine becomes unavailable and resumed as the machine 
becomes available again without any penalty. Under the non-resumable scenario 
task preemption is generally forbidden. The most general scenario is semi-
resumability. Let xj denote the part of task Tj processed before an interruption 
and let , � [0,1] be a given parameter. Under the semi-resumable scenario ,xj 
time units of task Tj have to be re-processed after the non-availability interval. 
The total processing time for task Tj is given by xj + ,xj + (pj � xj) = ,xj + pj . 

In the following we base the discussion on the three field ( | * | " classifica-
tion introduced in Chapter 3. We add some entry denoting machine availability 
and we omit entries which are not relevant for the problems investigated here. 
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The first field ( = (1(2(3 describes the machine (processor) environment. 
In [Sch84] and [LS95a] different patterns of availability are discussed for the 
case of parallel machine systems (parameter (3). These are constant, zigzag, de-
creasing, increasing, and staircase. Let 0 = t1 < t2 < ... < tj < ... < tq be the 
points in time where the availability of a certain machine changes and let m(tj) be 
the number of machines being available during time interval [tj, tj+1) with m(tj) > 
0. It is assumed that the pattern is not changed infinitely often during any finite 
time interval. According to these cases parameter (3 � {�, NCzz , NCinc , NCdec , 
NCinczz , NCdeczz , NCsc , NCwin} denotes the machine availability. NC relates to the 
non-continuous availability of the machines. 
1. If all machines are continuously available (t = 0) then the pattern is called con-
stant; (3 = �. 

2. If there are only k or k�l machines in each interval available then the pattern is 
called zigzag; (3 = NCzz . 
3. A pattern is called increasing (decreasing) if for all j from IN the number of 
machines m(tj) � max1 � u � j�1{m(tu)} (m(tj) � min1 � u � j�1{m(tu)}), i.e. the number 
of machines available in interval [tj-1 , tj) is not more (less) than this number in 
interval [tj , tj+1); (3 = NCinc (NCdec). 

4. A pattern is called increasing (decreasing) zigzag if, for all j from IN, m(tj) � 
max1 � u � j�1{m(tu) � 1} (m(tj) � min1 � u � j�1{m(tu) + 1}); (3 = NCinczz (NCdeczz). 
5. A pattern is called staircase if for all intervals the availability of machine Pi 
implies the availability of machine Pi+1 ; (3 = NCsc . A staircase pattern is shown 
in the lower part of Figure 11.1.1; grayed areas represent intervals of non-
availability. Note that patterns (l)-(4) are special cases of (5). 
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Figure 11.1.1  Rearrangement of arbitrary patterns. 
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6. A pattern is called arbitrary if none of the conditions (l)-(5) applies; (3 = 
NCwin . Such a pattern is shown in the upper part of Figure 11.1.1 for machines 
P1, P2, P3, P4; patterns defined in (l)-(5) are special cases of the one in (6). 

Machine systems with arbitrary patterns of availability can always be trans-
lated to a composite machine system forming a staircase pattern [Sch84]. A 
composite machine is an artificial machine consisting of at most m original ma-
chines. The transformation process works in the following way. An arbitrary 
pattern is separated in as many time intervals as there are distinct points in time 
where the availability of at least one machine changes. Now in every interval 
periods of non-availability are moved from machines with smaller index to ma-
chines with greater index or vice versa. If there are m(tj) machines available in 
some interval [tj , tj+1) then after the transformation machines P1 ,...,Pm(tj) will 
be available in [tj , tj+1) and Pm(tj+1)  ,..., Pm will not be available, where 0 < m(tj) 
< m. Doing this for every interval we generate composite machines. Each of 
them consists of at most m original machines with respect to the planning hori-
zon. 

An example for such a transformation where periods of non-availability are 
moved from machines with greater index to machines with smaller index, con-
sidering m = 4 machines, is given in Figure 11.1.1 Non-availability is represent-
ed by the grayed areas. From machines P1, P2, P3, P4 composite machines P'1, P'2, 
P'3, P'4 are formed. Composite machines which do not have intervals of availabil-
ity can be omitted from the problem description. Then the number of composite 
machines in each interval is the maximum number of machines simultaneously 
available. The time complexity of the transformation is O(qm) where q is the 
number of points in time, where the availability of an original machine is chang-
ing. If this number is polynomial in n or m machine scheduling problems with 
arbitrary patterns of non-availability can be transformed in polynomial time to a 
staircase pattern. This transformation is useful as, first, availability at time t is 
given by the number of available composite machines and, second, some results 
are obtained assuming this hypothesis. 

The second field * = *1 ,...,*8 describes task (job) and resource characteris-
tics. We will only refer here to parameter *1. 
Parameter *1 � {�, t � pmtn, pmtn} indicates the possibilities of preemption: 
T *1 = �: no preemption is allowed, 
T *1 = t � pmtn: tasks may be preempted, but each task must be processed by 

only one machine, 
T *1 = pmtn: tasks may be arbitrarily preempted. 
Here we assume that not only task (*1 = t � pmtn) but also arbitrary (task and 
machine) preemptions are possible (*1 = pmtn). If there is only one machine ded-
icated to each task then task preemptions and arbitrary preemptions become 
equivalent. For single machine and shop problems this difference has not to be 
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considered. Of course the rearrangement of an arbitrary pattern to a staircase 
pattern is only used when arbitrary preemption is allowed. In what follows the 
number of preemptions may be a criterion to appreciate the value of an algo-
rithm. When the algorithm applies to staircase patterns, the number of preemp-
tions for an arbitrary pattern is increased by at most mq. 

The third field, ", denotes a single optimality criterion (performance meas-
ure). In some recent papers multiple criteria scheduling models with limited ma-
chine availability are investigated, see e.g. [QBY02, LY03]. We will further in-
vestigate models with single optimality criteria.  

Many of the problems considered later are solved applying simple priority 
rules which can be executed in O(n log n) time. The rules order the tasks in some 
way and then iteratively assign them to the most lightly loaded machine. The 
following rules as already introduced in Chapter 3 are the most prominent. 
T Shortest Processing Time (SPT) rule. With this rule the tasks are ordered ac-

cording to non-decreasing processing times. 
T Longest Processing Time (LPT) rule. The tasks are ordered according to non-

increasing processing times. 
T Earliest Due Date (EDD) rule. Applying this rule all tasks are ordered accord-

ing to non-decreasing due dates. 

11.2 One Machine Problems 

One machine problems are of fundamental character. They can be interpreted as 
building blocks for more complex problems. Such formulations may be used to 
represent bottleneck machines or an aggregation of a machine system. For one 
machine scheduling problems the only availability pattern which has to be inves-
tigated is a special case of zigzag with k = 1. 

Let us consider first problems where preemption of tasks (jobs) is not al-
lowed. If there is only a single interval of non-availability and 5Cj is the objec-
tive (l, NCzz | | 5Cj) [ABFR89] show that the problem is NP-hard. The Shortest 
Processing Time (SPT) rule leads to a tight relative error of RSPT < 2/7 for this 
problem [LL92]. [SPR+05] presents a modified SPT-heuristic with an improved 
relative error of 3/17. He also develops a dynamic programming algorithm for 
the same problem capable of solving problem instances with up to 25000 tasks. It 
is easy to see that also problem l, NCwin | | Cmax is NP-hard [Lee96]. 

If preemption is allowed the scheduling problem becomes easier. For 
l, NCwin | pmtn | Cmax , it is obvious that every schedule is optimal which starts at 
time zero and has no unforced idle time, that is, the machine never remains idle 
while some task is ready for processing. Preemption is never useful except when 
some task cannot be finished before an interval of non-availability occurs. This 
property is still true for completion time based criteria if there is no precedence 
constraint and no release date, as it is assumed in the rest of this section. 
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While the sum of completion times (l , NCwin | pmtn | 5Cj) is minimized by 
the SPT rule the problem of minimizing the weighted sum (l , NCwin

 | pmtn | 5wjCj) is NP-hard [Lee96]. Note that without availability constraints 
Smith's rule [Smi56] solves the problem. Maximum lateness is minimized by the 
Earliest Due Date (EDD) rule [Lee96]. If the number of tardy tasks has to be 
minimized (l , NCwin | pmtn | 5Uj) the EDD rule of Moore and Hodgson's algo-
rithm [Moo68] can be modified to solve this problem also in O(n log n) time 
[Lee96]. Note that if we add release times or weights for the jobs the problem is 
NP-hard already for a continuously available machine ([LRB77] or [Kar72]). 
Details can be found in Chapter 4. 

Lorigeon et al. [LBB02a] investigate a one-machine problem where each 
task has a release date rj and a delivery duration qj . The machine is not available 
for processing during a single given interval. A task may only be preempted for 
the duration of the non-availability interval and resumed as the machine becomes 
available again. The objective is to find a schedule minimizing maxj{Cj+qj}. The 
problem is a generalization of a well-known NP-hard problem studied by Carlier 
[Car82]. Lorigeon et al. provide a branch-and-bound algorithm which solves 
2133 out of 2250 problems instances with up to 50 tasks. 

There are also results concerning problems where an interval of non-
availability is regarded as a decision variable. Qi et al. [QCT99] study a model in 
which the machine has to be maintained after a maximum of ,1 time units. Each 
such maintenance activity has a constant duration of ,2 time units. The goal is to 
find a non-preemptive schedule which obeys the maintenance restrictions and 
minimizes 5Cj . The problem is proved to be NP-hard in the strong sense. Qi et 
al. propose heuristics and a branch-and-bound algorithm. 

Graves and Lee [GL99] study several variants of the same problem. Besides 
processing a task requires a setup operation on the machine. If a task is preempt-
ed by an interval of non-availability an additional (second) setup is required be-
fore the processing of the task can be resumed. Maintenance activities have to be 
carried out after a maximum of ,1 time units. If there are at most two mainte-
nance periods then the problem is NP-hard in the ordinary sense for the objec-
tives Cmax , 5Cj , 5wjCj , and Lmax . Dynamic programming algorithms are pro-
vided to solve the problems in pseudo-polynomial time. If there is exactly one 
period of maintenance the problem is polynomially solvable for the objectives 
5Cj  (by a modification of the SPT rule) and Lmax (by a modification of the EDD 
rule). Minimizing 5wjCj turns out to be NP-hard in the ordinary sense. Two 
pseudo-polynomial time dynamic programming algorithms are provided to solve 
this problem. 

Lee and Leon [LL01] study a problem in which a production rate modifying 
activity of a given duration has to be scheduled in addition to n tasks. A task Tj 
processed before the activity requires pj time units on the machine while the pro-
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cessing time of the same task becomes 2j pj if it is scheduled after the production 
rate modifying activity. Preemption is not allowed. The objective is to find a 
starting time for the rate-modifying activity and a task sequence such that several 
regular functions are optimized. The problem can be solved in polynomial time 
for the objectives Cmax and 5Cj . For the objective 5wjCj the authors develop 
pseudo-polynomial dynamic programming algorithms. For the objective Lmax the 
EDD rule is optimal for the practical case where the production rate is increased 
by the activity. The general case with arbitrary 2j is NP-hard. 

11.3 Parallel Machine Problems 

In this section we cover formulations of parallel machine scheduling problems 
with availability constraints.  

11.3.1 Minimizing the Sum of Completion Times 

In case of continuous availability of the machines (P | | 5Cj) the problem can be 
solved applying the SPT rule. If machines have only different beginning times Bi 
(this corresponds to an increasing pattern of availability) the problem can also be 
solved by the SPT rule [KM88, Lim91]. If m = 2 and there is only one finish time 
Fi

 s on one machine which is finite (this corresponds to a zigzag pattern of availa-
bility) the problem becomes NP-hard [LL93]. In the same paper Lee and Liman 
show that for P2, NCZZ | | 5Cj , where machine P2 is continuously available and 
machine P1 has one finish time which is smaller than infinity, the SPT rule with 
the following modification leads to a tight relative error of RSPT < 1/2: 

Step 1: Assign the shortest task to P2 . 
Step 2: Assign the remaining tasks in SPT order alternately to both machines 

until some time when no other task can be assigned to P1 without vi-
olating F1 .  

Step 3: Assign the remaining tasks to P1 . 
Figure 11.3.1 illustrates how that bound can be reached asymptotically 

(when %% tends toward 0). In both examples, the modified SPT rule leads to a 
large idle time for machine P1 . For fixed m the SPT rule is asymptotically opti-
mal if there is no more than one interval of non-availability for each machine 
[Mos94]. 

In case there is only one interval of non-availability for each machine, the 
problem is NP-hard. In [LC00] a branch and bound algorithm based on the col-
umn generation approach is given which also solves the problem where 5wjCj is 
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minimized. 
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Figure 11.3.1  Examples for the modified SPT rule. 

11.3.2 Minimizing the Makespan 

Let us first investigate non-preemptive scheduling. J. D. Ullman [Ull75] analyses 
the complexity of the problem P, NCwin | | Cmax . It is NP-hard in the strong sense 
for arbitrary m (3-partition is a special case) even if the machines are continuous-
ly available. If machines have different beginning times Bi (P, NCinc | | Cmax) the 
Longest Processing Time (LPT) rule leads to a relative error of RLPT < 1/2 � 
l/(2m) or of RMLPT < 1/3 if the rule is appropriately modified [Lee91]. The first 
bound is tight. The modification uses dummy tasks to simulate the different ma-
chine starting times Bi . For each machine Pi a task Tj with processing time pj = Bi 
is inserted. The dummy tasks are merged into the original task set and then all 
tasks are scheduled according to the LPT rule under an additional restriction that 
only one dummy task is assigned to each machine. After finishing the schedule, 
all dummy tasks are moved to the head of the machines followed by the remain-
ing tasks assigned to each Pi . The MLPT rule runs in O((n + m)&log(n + m) + 
(n + m)&m) time. In [LHYL97] Lee's bound of 1/3 reached by MLPT is improved 
to 1/4. 

Using the bin-packing algorithm called the MULTIFIT it is shown in [CH98] 
that the bound of this algorithm is 2/7 + 2�k, where k is the selected number of 
the major iterations in MULTIFIT. 

Note that the LPT algorithm leads to a relative error of RLPT < 1/3 � l/(3m) 
for continuously available machines [Gra69]. H. Kellerer [Kel98] presents a dual 
approximation algorithm using a bin packing approach leading to a tight bound 
of 1/4, too. 

In [LSL05] a problem with two machines and one interval of non-
availability is considered. For non-resumable and resumable cases the problem is 
solved by enumerative techniques. 
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Now let us investigate results for preemptive scheduling. If all machines are 
only available in one and the same time interval [B, F) and tasks are independent 
the problem is of type P | pmtn | Cmax Following [McN59] it can be shown that 
there exists a feasible machine preemptive schedule if and only if maxj{pj} � (F 
� B) and 5j pj � m(F � B). There exists an O(n) algorithm which generates at 
most m � l preemptions to construct this schedule. If all machines are available in 
an arbitrary number S = 5i Si of time intervals [Bi

s
 , Fi

 s), s = l ,..., Si and the ma-
chine system forms a staircase pattern, it is possible to generalize McNaughton's 
condition and show that a feasible preemptive schedule exists if and only if the 
following m conditions are met [Sch84]: 

5j=1
k    pj  �  5i=1

k    PCi Lk = 1,..., m � 1,   (11.3.1-k) 

5j=1
n    pj  �  5i=1

m    PCi  (11.3.1-m) 

with p1 � p2 � ... � pn and PC1 � PC2 � ... � PCm , where PCj is the total pro-
cessing capacity of machine Pi . Such a schedule can be constructed in O(n + 
m&log m) time after the processing capacities PCi are computed, with at most 
S � 1 preemptions in case of a staircase pattern (remember that any arbitrary pat-
tern of availability can be converted into a staircase one at the price of additional 
preemptions). Note that in the case of the same availability interval [B, F) for all 
machines McNaughton's conditions are obtained from (11.3.1-1) and (11.3.1-m) 
alone. This remains true for zigzag patterns as then (11.3.1-2) ,...,  (11.3.1-m�1) 
are always verified if (11.3.1-1) is true (there is one availability interval for all 
machines but Pm). The algorithm to solve the problem applies five rules which 
are explained now. 

Let us consider two arbitrary processors Pk and Pl with PCk > PCl as shown 
in Figure 11.3.2. Let [k

a
 , [k

b
 , and [k

c denote the processing capacities of proces-
sor Pk in the intervals [Bk

1
 , Bl

1], [Bl
1

 , F l    
N(l)], and [Fl    

N(l), F k    
N(k)], respectively. Then 

obviously, PCk = [k
a

 + [k
b

 + [k
c
 . 

P

F FB B

l

1 1
ll ll

N(l) N(l)

B F

P
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Figure 11.3.2  Staircase pattern for two arbitrary processors. 
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Assume that the tasks are ordered according to non-increasing processing times 
and that the processors form a staircase pattern as defined above. All tasks Tj are 
scheduled in the given order one by one using one of the five rules given below. 
Rules 1 - 4 are applied in the case where 1 � j < m, pj > min

i
 {PCi}, and if there 

are two processors Pk and Pl such that PCl = max
i

 {PCi | PCi < pj} and PCk = 

min
i

 {PCi | PCi � pj}. Rule 5 is used if m � j � n or pj � min
i

 {PCi}. First we de-

scribe the rules, and after that we prove that their application always constructs a 
feasible schedule, if one exists. To avoid cumbersome notation we present the 
rules in a semi-formal way. 

Rule 1. Condition: pj = PCk . 
Schedule task Tj on processor Pk such that all the intervals [Bk

 r, Fk
 r], r = 

1,..., N(k), are completely filled; combine processors Pk and Pl to form a compo-
site processor, denoted again by Pk , which is available in all free processing in-
tervals of the original processor Pl , i.e. define PCk = PCl and PCl = 0 .  

Rule 2. Condition: pj � PCl > max{[k
a

 , [k
c} and pj � [k

b � min{[k
a

 , [k
c} .  

Schedule task Tj on processor Pk in its free processing intervals within [Bl
1, F l    

N(l)]. 
If [k

a (respectively [k
c) is minimum use all the free processing intervals of Pk in 

[Bk
1, Bl

1] ([F l    
N(l), F k    

N(k)]) to schedule Tj , and schedule the remaining processing re-
quirements of that task (if there is any) in the free processing intervals of Pk 
within [F l    

N(l), F k    
N(k)] ([Bk

1, Bl
1]) from left to right (right to left) such that the rth pro-

cessing interval is completely filled with Tj before the r + 1st (r � 1st) interval is 
used, respectively. Combine processors Pk and Pl to a composite processor Pk 
which is available in the remaining free processing intervals of the original pro-
cessors Pk and Pl , i.e. define PCk = PCk + PCl � pj and PCl = 0 . 

Rule 3. Condition: pj � PCl > max{[k
a

 , [k
c} and pj � [k

b < min{[k
a

 , [k
c} . 

If [k
a ([k

c) is minimum, schedule task Tj on processor Pk such that its free pro-
cessing intervals in [Bk

1, Bl
1] ([F l    

N(l), F k    
N(k)]) are completely filled with Tj, further 

fill processor Pk in the intervals [Bl
 r, Fl

 r], r = 1,..., N(l), completely with Tj and 
use the remaining processing capacity of Pk in the interval [Bl

1, F l    
N(l)] to schedule 

task Tj with its remaining processing requirement such that Tj is scheduled from 
left to right (right to left) where the r + 1st (r � 1st) interval is not used before the 
rth interval has been completely filled with Tj , respectively. After doing this there 
will be some time t in the interval [Bl

1, F l    
N(l)] up to (after) this time task Tj is con-

tinuously scheduled on processor Pk . Time t always exists because pj � min{[k
a

 , 
[k

c} < [k
b

 . Now move Tj with its processing requirement which is scheduled after 
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(before) t on processor Pk to processor Pl in the corresponding time intervals. 
Combine processors Pk and Pl to a composite processor Pk which is available in 
the remaining free processing intervals of the original processors Pk and Pl , i.e. 
define PCk = PCk + PCl � pj and PCl = 0 . 

Rule 4. Condition: pj � PCl � max{[k
a

 , [k
c} . 

Schedule task Tj on processor Pl such that all its intervals [Bl
r, Fl

r], r = 1 ,..., N(l) 
are completely filled with Tj . If [k

a ([k
c) is maximum, schedule task Tj with its 

remaining processing requirement on processor Pk in the free processing inter-
vals of [Bk

1, Bl
1] ([F l    

N(l), F k    
N(k)]) from left to right (right to left) such that the rth pro-

cessing interval is completely filled with Tj before the r + 1st (r � 1st) interval is 
used, respectively. Combine processors Pk and Pl to a composite processor Pk 
which is available in the remaining free processing intervals of the original pro-
cessor Pk , i.e. define PCk = PCk + PCl � pj and PCl = 0 . 

Rule 5. Condition: remaining cases. 
Schedule task Tj and the remaining tasks in any order in the remaining free pro-
cessing intervals successively from left to right starting with processor Pk , switch 
to a processor Pi , i < k only if the i + 1st processor is already completely filled. 

To show the optimality of rules 1 - 5 one may use the following lemma and theo-
rem [Sch84]. 

Lemma 11.3.1  After having scheduled a task Tj , j � {1 ,..., m � 1}, on some 
processor Pk according to rules 1 or 2, or on Pk and Pl according to rules 3 or 4, 
the following observations are true:  
(1) The remaining free processing intervals of processors Pk and Pl are disjoint. 
(2) Combining processors Pk and Pl to a composite processor Pk results in a 

new staircase pattern. 
(3) If all inequalities of (11.3.1-k), k = 1,..., m hold before scheduling task Tj , 

the remaining processing requirements and processing capacities after 
scheduling Tj still satisfy inequalities (11.3.1-k), k = 1,..., m . 

(4) The number of completely filled or completely empty intervals is �
i=1

m
 N(i) � K 

where K is the number of only partially filled intervals, K � j < m.  

We are now ready to prove the following theorem. The proof is constructive and 
leads to an algorithm that solves our problem. 
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Theorem 11.3.2  For a system of m semi-identical processors with staircase 
pattern of availability and a given set T  of n tasks there will always be a feasible 
preemptive schedule if and only if all inequalities (11.3.1) hold. 

Proof. We assume that pj > min
i

 {PCi} for j = 1,..., m � 1; otherwise the theorem 

is always true if and only if the inequality (11.3.1-m) holds, as can easily be seen. 
There always exists a feasible preemptive schedule for T1 . Now assume that the 
first z tasks have been scheduled feasibly according to rules 1 - 4. We show that 
Tz+1 also can be scheduled feasibly: 

(i) 1 < z < m: after scheduling task Tz all inequalities (11.3.1) hold according to 
Lemma 11.3.1. Then pz+1 � PC1

z
 , hence task Tz+1 can be scheduled feasibly on 

processor P1 . 

(ii) m � z � n: after scheduling the first m � 1 tasks using rules 1-4, m � 1 proces-
sors are completely filled with tasks. Since PC2     

z�1  = PC3     
z�1  = ... = PCm     

z�1  = 0 

and PC1     
z�1  � �

j=z

n
 pj, task Tz can be scheduled on processor P1 , and the remaining 

tasks can also be scheduled on this processor by means of rule 5.  

The following algorithm makes appropriate use of the five scheduling rules. 

Algorithm 11.3.3  Algorithm by Schmidt [Sch84] for semi-identical processors. 
begin 
Order the m largest tasks Tj according to non-increasing processing times and 

schedule them in the given order; 

for all i � {1,..., m} do PCi := �
r=1

N(i)
 PCi

 r; 

repeat 
 if j < m and pj > min

i
 {PCi} 

 then 
  begin 

Find processor Pl with PCl = max
i

 {PCi | PCi < pj} and processor Pk with  

PCk = min
i

 {PCi | PCi � pj}; 

  if PCk = pj 
  then call rule 1 
  else 
   begin 
   Calculate [k

a, [k
b, and [k

c; 
   if pj � PCl > max{[k

a, [k
c} 

   then 
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    if pj � [k
b � min {[k

a, [k
c} 

    then call rule 2 else call rule 3; 
   else call rule 4; 
   end; 
  end 
 else call rule 5; 
until j = n; 
end; 

The number of preemptions generated by the above algorithm and its complexity 
are estimated by the following theorems [Sch84]. 

Theorem 11.3.4  Given a system of m processors P1 ,...,Pm of non-continuous 
availability, where each processor Pi is available in N(i) time intervals. Then, if 
the processor system forms a staircase pattern and the tasks satisfy the inequali-
ties (11.3.1), Algorithm 11.3.3 generates a feasible preemptive schedule with at 

most (�
i=1

m
 N(i)) � 1 preemptions.  

Theorem 11.3.5  The time complexity of Algorithm 11.3.3 is O(n + m log m) .  

Notice that if all processors are only available in a single processing interval and 
all these intervals have the staircase property the algorithm generates feasible 
schedules with at most m � 1 preemptions. If we further assume that Bi = B and 
Fi = F for all i = 1 ,...,  m Algorithm 11.3.3 reduces to McNaughton's rule 
[McN59] with time complexity O(n) and at most m � 1 preemptions.  
There is a number of more general problems that can be solved by similar ap-
proaches.  
(1) Consider the general problem where the intervals of m semi-identical proces-
sors are arbitrarily distributed as shown in Figure 11.3.3(a) for an example prob-
lem with m = 3 processors. Reordering the original intervals leads to a staircase 
pattern which is illustrated in Figure 11.3.3(b). Now each processor P'i , with 
PC'i > 0 is a composite processor combining processors Pi, Pi+1 ,...,Pm, and each 
interval [B' r

i , F' ri ] is a composite interval combining intervals of availability of 
processors Pi, Pi+1 ,...,  Pm. The numbers in the different intervals of Figure 
11.3.3(b) correspond to the number of original processors where that interval of 
availability is related to. After reordering the original intervals this way the prob-

lem consists of at most Q' � Q = �
i=1

m
 N(i) intervals of availability. Using Algo-

rithm 11.3.3, O(m) preemptions are possible in each interval and thus O(mQ) is 
an upper bound on the number of preemptions which will be generated for the 
original problem. 



416 11  Scheduling with Limited Processor Availability 

(a) 

P2

P3

P1

t 

(b) 

P'2

P'3

P'1

t

T1 T2 T1 T1T2 T2 T2

T2T2 T2

T3 T3

T3

T3

T3 T3

T3

 
Figure 11.3.3  Example for arbitrary processing intervals 

(a) general intervals of availability, 
(b) corresponding staircase pattern. 

(2) If there is no feasible preemptive schedule for the problem at least one of the 
inequalities of (11.3.1) is violated; this means that the processing capacity of at 
least one processor is insufficient. We now increase the processing capacity in 
such a way that all the tasks can be feasibly processed. An overtime cost function 
might be introduced that measures the required increase of processing capacity. 
Assume that an increase of one time unit of processing capacity results in an in-
crease of one unit of cost. If some inequality (11.3.1-q) is violated we have to 

increase the total capacity of the first q processors by �
j=1

q
 (pj � PCj) in case of 1 � 

q < m; hence the processing capacity of each of the processors P1,..., Pq is in-

creased by 1
q �

j=1

q
(pj � PCj) . If inequality (11.3.1-m) is violated, the cost minimum 

increase of all processing capacities is achieved if the processing capacity of 

each processor is increased by 1
m (�

j=1

n
 pj � �

j=1

m
 PCj). Now Algorithm 11.3.3 can be 

used to construct a feasible preemptive schedule of minimum total overtime cost. 
Checking and adjusting the m inequalities can be done in O(m) time, and then 
Algorithm 11.3.3 can be applied. Hence a feasible schedule of minimal overtime 
cost can be constructed in O(n + mlogm) time. 
(3) If each task Tj also has a deadline d~j the problem is not only to meet start and 
finish times of all intervals but also all deadlines. The problem can be solved by 
using a similar approach where the staircase patterns and the given deadlines are 
considered. Since all the tasks may have different deadlines, the resulting time 
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complexity is O(nmlogn). A detailed description of this procedure can be found 
in [Sch88]. It is also proved there that the algorithm generates at most 
Q + m(s � 1) � 1 preemptions if the semi-identical processor system forms a stair-
case pattern, and m(Q + s � 1) � 1 preemptions in the general case, where s is the 
number of different deadlines. We mention that this approach is not only dedi-
cated to the deadline problem. It can also be applied to a problem where all the 
tasks have different ready times and the same deadline, as these two situations 
are of the same structure. 

The corresponding optimization problem (P, NCsc | pmtn | Cmax) is solved by 
an algorithm that first computes the lower bounds LB1 , LB2 , ..., LBm obtained 
from the conditions above (see Figure 11.3.4). Cmax cannot be smaller than LBk , 
k = l ,..., m � l, obtained from (11.3.1-k). The sum of availabilities of machines 
P1 , ..., Pk during time interval [0, LBk) may not be smaller than the sum of pro-
cessing times of tasks T1 , ..., Tk . The sum of all machine availabilities during 
time interval [0, LBm) must also be larger than or equal to the sum of processing 
times of all tasks. In the example of Figure 11.3.4, Cmax = LB3 . The number of 
preemptions is S � 2. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13
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P3

P4

T2 T2

T2

T3

T3T3

T1

T4 T5

LB3  

 T1 T2 T3 T4 T5 

pj 12 7 7 2 1 
LBj 12 11 38/3 149/12 38/3 

Figure 11.3.4   Minimizing the makespan on a staircase pattern. 

When precedence constraints are added, Liu and Sanlaville [LS95a] show that 
problems with chains and arbitrary patterns of non-availability (i.e. P, NCwin |
 pmtn, chains | Cmax) can be solved in polynomial time applying the Longest Re-
maining Path (LRP) first rule and the processor sharing procedure of [MC70]. In 
the same paper it is also shown that the LRP rule could be used to solve problems 
with decreasing (increasing) zigzag patterns and tasks forming an outforest (in-
forest) (P, NCdeczz | pmtn, out-forest | Cmax or P, NCinczz | pmtn, in-forest | Cmax). In 
case of only two machines and arbitrary (which means zigzag for m = 2) patterns 
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of non-availability (P2, NCwin | pmtn, prec | Cmax ) this rule also solves problems 
with arbitrary task precedence constraints with time complexity and number of 
preemptions of O(n 2). These results are deduced from those obtained for unit 
execution time scheduling by list algorithms (see Dolev and Warmuth [DW85b, 
DW85a]). The LRP algorithm is nearly on-line, as are all priority algorithms 
which extend list algorithms to preemption [Law82]. Indeed these algorithms 
first build a schedule admitting processor sharing. These schedules execute tasks 
of the same priority at the same speed. This property is respected when 
McNaughton's rule is applied. If machine availability changes unexpectedly, the 
property does not hold any more. 

Applying the LRP rule results in a time complexity of O(n&log n + nm) and a 
number of preemptions of O((n + m) 2 � nm) which both can be improved. There-
fore in [BDF+00] an algorithm is given which solves problem P, NCwin |
 pmtn, chains | Cmax with N < n chains in O(N + m&log m) time generating a num-
ber of preemptions which is not greater than the number of intervals of availabil-
ity of all machines. If all machines are only available in one processing interval 
and all intervals are ordered in a staircase pattern the algorithm generates feasible 
schedules with at most m � l preemptions. This result is based on the observation 
that preemptive scheduling of chains for minimizing schedule length can be 
solved by applying an algorithm for the independent tasks problem. Having more 
than two machines in the case of arbitrary precedence constraints or an arbitrary 
number of machines in the case of a tree precedence structure makes the problem 
NP-complete [BDF+00]. 

When tasks require more than one processor they are called multiprocessor 
tasks. In [BDDM03] polynomial algorithms are given for the following cases: 

T tasks have various ready times and require either one or all processors; 
T sizes of the tasks are powers of 2. 

11.3.3 Dealing with Due Date Involving Criteria 

In [Hor74] it is shown that P | pmtn, rj, d ~j | �  can be solved in O(n 3&min{n 2, 
log n + log pmax}) time. The same flow-based approach can be coupled with a 
bisection search to minimize maximum lateness Lmax (see [LLLR79], where the 
method is also extended to uniform machines). A slightly modified version of the 
algorithm still applies to the corresponding problem where the machines are not 
continuously available. If the number of changes of machine availabilities during 
any time interval is linear in the length of the interval this approach can be im-
plemented in O(n 3pmax

    3&(log n + log pmax)) [San95]. When no ready times are giv-
en but due dates have to be considered, maximum lateness can be minimized for 
the problem (P, NCwin | pmtn | Lmax) using the approach suggested by [Sch88] in 
O(nm&log n) time. The method needs to know all possible events before the next 
due date. 
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If there are not only due dates but also ready times are to be considered 
(problem P, NCwin | rj, pmtn | Lmax ) Sanlaville [San95] suggests a nearly on-line 
priority algorithm with an absolute error of A � (m � l/m)pmax if the availability of 
the machines follows a constant pattern and of A � pmax if machine availability 
refers to an increasing zigzag pattern. The priority is calculated according to the 
Smallest Laxity First (SLF) rule, where laxity (or slack time) is the difference 
between the task's due date and its remaining processing time. The SLF algo-
rithm runs in O(n 2pmax) time and is optimal in the case of a zigzag pattern and no 
release dates. 

[LS95a] shows that results for Cmax minimization in cae of in-forest prece-
dence graphs and increasing zigzag patterns (P, NCinczz | pmtn, in-forest | Cmax) 
can be extended to Lmax , using the SLF rule on the modified due dates. Figure 
11.3.5 shows an optimal SLF schedule for the given precedence constraints. 
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Figure 11.3.5   Minimizing Lmax on an increasing zigzag pattern. 
 
The modified due date is given by dj ' = min{dj ' , ds(j)'   + ps(j)} where Ts(j) is the 
successor of Tj when it exists. In the same way, minimizing Lmax on two ma-
chines with availability constraints is achieved using SLF with a different modi-
fication scheme. If there are due dates, release dates and chain precedence con-
straints to be considered (P, NCwin | rj ,chains, pmtn | Lmax) the problem can be 
solved using a binary search procedure in combination with a linear program-
ming formulation [BDF+00]. In case of multiprocessor tasks there exists a poly-
nomial algorithm to minimize Lmax if the number of processors is fixed 
[BDDM03]. 

Lawler and Martel [LM89] solved the weighted number of tardy jobs prob-
lem on two uniform machines, i.e. Q2 | pmtn | 5wjUj . The originality of their 
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paper comes from the fact that they show a stronger result, as the speeds of the 
processors may change continuously (and even be 0) during the execution. 
Hence, it includes as a special case availability constraints on two uniform ma-
chines. They use dynamic programming to propose pseudo-polynomial algo-
rithms (O(5wj n2), or O(n2pmax) to minimize the number of tardy jobs). Nothing 
however is said about the effort needed to compute processing capacity in one 
interval. 

If there are more than two uniform machines to be considered and the prob-
lem is to minimize maximum lateness for jobs which have different release dates 
(Q, NCwin | rj , pmtn | Lmax) the problem can be solved in polynomial time by a 
combined strategy of binary search and network flow [BDF+00]. In the same 
paper the problem is generalized taking unrelated machines, i.e. machine speeds 
cannot be represented by constant factors, into account. This problem can also be 
solved in polynomial time applying a combination of binary search and the two-
phase method given in [BEP+96]. 

11.4 Shop Problems 

The literature on shop scheduling problems with limited machine availability is 
concentrated on flow shops and open shops. We are aware of only two papers 
dealing with the job shop. The paper of Aggoune [Agg04b] studies the two-job 
special case of this problem under the makespan criterion. He proposes exten-
sions of the well known geometric algorithm by Akers and Friedman [AF55] for 
problems J, NCwin | pmtn, n = 2 | Cmax and J, NCwin | n = 2 | Cmax . The algorithms 
run in polynomial time. Braun et al. [BLS05] investigate problem J2, NCwin |
 pmtn | Cmax and derive sufficient conditions for the optimality of Jackson's rule. 

11.4.1 Flow Shop Problems 

The flow shop scheduling problem for two machines with a constant pattern of 
availability minimizing Cmax (F2 | | Cmax and F2 | pmtn | Cmax) can be solved in 
polynomial time by Johnson's rule [Joh54]. C.-Y. Lee [Lee97] has shown that 
this problem becomes already NP-hard if there is a single interval of non-
availability on one machine only. For the case where the tasks can be resumed he 
also gives approximation algorithms which have relative errors of 1/2 if this in-
terval is on machine P1 or of 1/3 if the interval of non-availability is on machine 
P2 . The approximation algorithms are based on a combination of Johnson's rule 
and a modification of the ratio rule given in [MP93]. Lee also proposes a dynam-
ic programming algorithm for the case with one interval only. 

Improved approximation algorithms for the resumable problem with one in-
terval are presented in [CW00], [Bre04a] and [NK04]. In the first paper a 1/3-
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approximation for the case with the interval on P1 is presented. The second paper 
provides a 1/4-approximation for the case with the interval occurring on P2 . The 
third paper finally describes a fully polynomial-time approximation scheme for 
the general case with one interval of non-availability, no matter on which ma-
chine. Ng and Kovalyov show that these two problems are in fact symmetrical. A 
polynomial-time approximation scheme for the case where general preemption is 
allowed (not only resumability) is presented in [Bre04b]. 

In [KBF+02] it is shown that the existence of approximation algorithms for 
flow shop scheduling problems with limited machine availability is more of an 
exception. It is proved that no polynomial time heuristic with a finite worst case 
bound can exist for F2, NCwin | pmtn | Cmax when at least two intervals of non-
availability are allowed to occur. Furthermore it is shown that makespan minimi-
zation becomes NP-hard in the strong sense if an arbitrary number of intervals 
occurs on one machine only. On the other hand, there always exists an optimal 
schedule where the permutation of jobs scheduled between any two consecutive 
intervals obeys Johnson's order. However, the question which jobs to assign be-
tween which intervals remains intractable. 

Due to these negative results a branch and bound algorithm is developed in 
[KBF+02] to solve F2, NCwin | pmtn | Cmax . The approach uses Johnson's order 
property of jobs scheduled between two consecutive intervals. This property 
helps to reduce the number of solutions to be enumerated. Computational exper-
iments were carried out to evaluate the performance of the branch-and-bound 
algorithm. In the test problem instances intervals of non-availability were al-
lowed to occur either only on P1 , or only on P2 , or on both machines. The first 
result of the tests was that these instances were equally difficult to solve. The 
second result was that the algorithm performed very well when run on randomly 
generated problem instances; 1957 instances out of 2000 instances could be 
solved to optimality within a time limit of 1000 seconds. However, it could also 
be shown that there exist problem instances which are much harder to solve for 
the algorithm. These were instances in which the processing time of a job on the 
second machine was exactly twice its processing time on the first machine. 

In order to speed up the solution process, a parallel implementation of the 
branch and bound algorithm is presented in [BFKS97]. Computations have been 
performed on l, 2, 3, up to 8 processors. The experiment has been based on in-
stances for which computational times of the sequential version of the algorithm 
were long. The maximum speed up gained was between 1.2 and 4.8 in compari-
son to the sequential version for 8 processors being involved in the computation. 

Based on the above results in [BBF+01] constructive and improvement heu-
ristics are designed for F2, NCwin | pmtn | Cmax . They are empirically evaluated 
using test data from [KBF+02] and new difficult test data. It turned out that a 
combination of two constructive heuristics and a simulated annealing algorithm 
could solve 5870 out of 6000 easy problem instances and 41 out of 100 difficult 
instances. The experiments were run on a PC and the time limit to achieve this 
result was roughly 60 seconds per instance. The worst relative errors were 2.6% 
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and 44.4% above the optimum, respectively. The combination of two construc-
tive heuristics could only solve 5812 out of 6000 easy instances and 13 out 100 
difficult instances with an average computation time of 0.33 seconds and 3.96 
seconds per instance, respectively. These results in [BBF+01] suggest that the 
heuristic algorithms are very good options for solving flow shop scheduling 
problems with limited machine availability. 

In [Bra02] and [BLSS02] sufficient conditions for the optimality of John-
son's rule in the case of one or more intervals of non-availability (i.e. for 
F2, NCwin | pmtn | Cmax) are derived. To find the results the technique of stability 
analysis is used and it is shown that in most cases Johnson's permutation remains 
optimal. These results are comparable to [KBF+02] but improve the running time 
for finding optimal solutions, such that instances with 10,000 jobs and 1,000 
intervals of non-availability can be treated. 

The non-preemptive case of the two-machine flow shop with limited ma-
chine availability is studied by [CW99]. In general, this problem is not approxi-
mable for the makespan criterion if at least two intervals of non-availability may 
occur. Cheng and Wang investigate the case where there are exactly two such 
intervals. One of them starts at the same time when the other one ends (consecu-
tive intervals). They provide a 2/3-approximation algorithm for this problem. 

[Lee99] studies the two-machine flow shop with one interval of non-
availability under the semi-resumable scenario. He provides dynamic program-
ming algorithms for this problem as well as approximation algorithms with worst 
case errors of l and 1/2, depending on whether the interval occurs on the first or 
on the second machine. 

Quite a few papers exist on the two-machine no-wait flow shop. For con-
stant machine availability and the makespan criterion this problem is polynomi-
ally solvable [GG64, HS96]. Espinouse et al. [EFP99, EFP01] study the case 
with one interval of non-availability. They show that the problem is NP-hard no 
matter if preemption is allowed or not, and not approximable if at least two in-
tervals occur. They also provide approximation algorithms with a worst-case 
error of 1. Improved heuristics with worst-case errors of 1/2 are presented by 
[CL03a]. They also treat the case where each of the two machines has an interval 
of non-availability and these two intervals overlap. In the second paper [CL03b] 
provides a polynomial-time approximation scheme for this problem. [KS04] also 
study the case with one interval of non-availability. They provide a 1/2-
approximation algorithm capable of handling the semi-resumable scenario and a 
1/3-approximation algorithm for the resumable scenario. The non-preemptive m-
machine flow shop with two intervals of non-availability on each machine and 
the makespan objective is studied by [Agg04a] and [AP03]. In [Agg04a] two 
cases are considered. In the first case, intervals of non-availability are fixed 
while in the second case intervals are assigned to time windows and their actual 
start times are decision variables. A genetic algorithm and a tabu search proce-
dure are evaluated for test data with up to 20 jobs and 10 machines. The most 
important result is that flexible start times of the intervals of non-availability 
result in considerably shorter schedules. In [AP03] intervals of non-availability 
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have fixed start and finish times. The proposed heuristic is based on the approach 
presented in [Agg04b]. The jobs in a sequence are grouped in pairs. Each pair is 
scheduled optimally using the algorithm in [Agg04b]. This approach is embed-
ded into a tabu search algorithm. Experiments indicate that the heuristic is capa-
ble of finding good solutions for problem instances with up to 20 jobs. 

11.4.2 Open Shop Problems 

The literature on open shop scheduling problems (for a survey see also [BF97]) 
with limited machine availability is focused on the two-machine case and the 
objective of makespan minimization. The case with constant pattern of machine 
availability (O2 | | Cmax) can be solved in linear time by an algorithm due to 
[GS76]. 

It is essential to distinguish between two kinds of preemption. The less re-
strictive case is investigated by [VS95]. They use a model where the processing 
of a job may be interrupted and later resumed on the same machine. In the inter-
val between interruption and resumption the job may be processed on a different 
machine. It is shown that under this assumption the problem is polynomially 
solvable even for arbitrary numbers of machines and intervals of non-
availability. 

In the more restrictive case the processing of a job on a machine may be in-
terrupted by the processing of other jobs or by intervals of non-availability. In 
the interval between the start and the end of a task, no other task of the same job 
may be processed. This model is similar to the open shop with no-pass con-
straints as introduced by Cho and Sahni [CS81]. 

J. Breit [Bre00] proves that this latter problem is NP-hard even for a single 
interval of non-availability and not approximable within a constant factor if at 
least three such intervals occur. For the case with one interval there exists a 
pseudopolynomial dynamic programming algorithm [LBB02b] as well as a line-
ar time approximation algorithm with an error bound of 1/3 [BSS01]. The special 
case in which the interval occurs at the beginning of the planning horizon is 
solved by a linear time algorithm due to [LP93]. M. A. Kubzin et al. [KSBS02] 
present polynomial-time approximation schemes for the case with an arbitrary 
number of intervals on one machine and a continuously available second ma-
chine, as well as for the case with exactly one interval on each machine. The 
non-preemptive model is studied by J. Breit et al. [BSS03]. They provide a linear 
time 1/3-approximation algorithm and show that the problem with at least two 
intervals is not approximable within a constant factor. 

11.5 Conclusions 

We reviewed results on scheduling problems with limited machine availability. 



424 11  Scheduling with Limited Processor Availability 

The number of results shows that scheduling with availability constraints attracts 
more and more researchers, as the importance of the applications is recognized. 
The results presented here are of various kinds. In particular, when preemption is 
not authorized it will logically entail NP-hardness of the problem. If one is inter-
ested in solutions for non-preemptive problems enumerative algorithms have to 
be applied; otherwise approximation algorithms are a good choice. Performance 
bounds may often be obtained, but their quality will depend on the kind of avail-
ability patterns considered. If worst case bounds cannot be found, heuristics 
which can only be evaluated empirically have to be applied.  

Most of the results reviewed are summarized in Table 11.5.1. The table dif-
fers for a given problem type between performance criteria entailing NP-
hardness and those for which a polynomial algorithm exists.  

Problem Polynomially solvable NP-hard 
1, NCwin  5Cj , Cmax 

1, NCwin | pmtn 5Cj , Cmax , Lmax , 5Uj 
5wj Cj , 5wj Uj (constant 

availability) 
P, NCinc 5Cj  
P, NCzz  5Cj 
P2, NCwin | pmtn, prec Cmax , Lmax  
P, NCzz | pmtn, tree Cmax , Lmax (in-tree) Cmax (for NCwin) 
P, NCwin | pmtn, chains Cmax , Lmax  
P, NCwin | pmtn, rj Cmax , Lmax  
Q, NCwin | pmtn, rj Cmax , Lmax  

F2, NCwin | pmtn  Cmax (single non-
availability interval) 

O, NCwin | pmtn Cmax  

O2, NCwin | pmtn(no-pass)  Cmax (single non-
availability interval) 

J, NCwin | n = 2 Cmax  
J, NCwin | pmtn, n = 2 Cmax  

Table 11.5.1  Summary of results. 

There are many interesting fields for future research. 

1. As our review indicates there are many open questions in shop scheduling, 
e.g., for job shop models comparatively few results are available. 

2. Stability analysis introduces sufficient conditions for schedules to be optimal 
in the case of machine availability restrictions. Extensions to open shops and job 
shops seem to be interesting in this field. 

3. In almost all papers reviewed in this chapter machine availability restrictions 
are regarded as problem input. There are, however, many cases in which decision 
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makers have some influence on these restrictions. For example, one may think of 
a situation where the start time of a maintenance activity for a machine can be 
chosen within certain limits. In such situations machine availability restrictions 
become decision variables. 

4. To the best of our knowledge there exist no papers dealing with limited ma-
chine availability and multiple objective functions. Such models may, however, 
be very interesting, especially in cases where machine availability restrictions are 
decision variables. For example, in a case where several machines have to un-
dergo a maintenance activity it may be desirable to minimize the time span be-
tween start of the first and end of the last activity while a different objective 
function is applied for the task scheduling. 

5. There are many practical cases where periods of non-availability are not 
known in advance. In these cases we might apply online scheduling. Some re-
sults are already available. In [AS01] it is shown that there are instances where 
no on-line algorithm can construct optimal makespan schedules if machines 
change availability at arbitrary points in time. It is also impossible for such an 
algorithm to guarantee that the solution is within a constant ratio c if there may 
be time intervals where no machine is available. Albers and Schmidt also report 
that things look better if the algorithm is allowed to be nearly on-line. In such a 
case we assume that the algorithm always knows the next point in time when the 
set of available machines changes. Now optimal schedules can be constructed. 
The algorithm presented has a running time of O(qn + S), where q is the number 
of time instances where the set of available machines changes and S is the total 
number of intervals where machines are available. If at any time at least one ma-
chine is available, an on-line algorithm can construct schedules which differ by 
an absolute error c from an optimal schedule for any c > 0. This implies, that not 
knowing machine availabilities does not really hurt the performance of an algo-
rithm, if arbitrary preemptions are allowed. 

References 

ABFR89 I. Adiri, J. Bruno, E. Prostig, A. H. G. Rinnooy Kan, Single machine flow-time 
scheduling with a single breakdown, Acta Inform. 26, 1989, 679-696. 

AF55 S. B. Akers, J. Friedman, A non-numerical approach to production scheduling 
Problems, Oper. Res. 3, 1955, 429-442. 

Agg04a R. Aggoune, Minimizing the makespan for the flow shop scheduling problem 
with availability constraints, Eur. J. Oper. Res. 153, 2004, 534-543. 

Agg04b R. Aggoune, Two-job shop scheduling problems with availability constraints, 
Proceedings of the 14th International Conference on Automated Planning and 
Scheduling, AAAI Press, 2004, 253-259. 

AP03 R. Aggoune, M.-C. Portmann, Flow shop scheduling problem with limited 
machine availability: a heuristic approach, International Conference on Indus-
trial Engineering and Production Management, l, 2003, 140-149. 



426 11  Scheduling with Limited Processor Availability 

AS01 S. Albers, G. Schmidt, Scheduling with unexpected machine breakdowns. Dis-
cret Appl. Math. 110, 2001, 85-99. 

BBF+01 J. Blazewicz, J. Breit, P. Formanowicz, W. Kubiak, G. Schmidt, Heuristic 
algorithms for the two-machine flowshop with limited machine availability, 
Omega-Int. J. Manage. Sci. 29, 2001, 599-608. 

BDDM03 J. Blazewicz, P. Dell'Olmo, M. Drozdowski, P. Maczka, Scheduling multipro-
cessor tasks on parallel processors with limited availability, Eur. J. Oper. Res. 
149, 2003, 377-389. 

BDF+00 J. Blazewicz, M. Drozdowski, P. Formanowicz, W. Kubiak, G. Schmidt, 
Scheduling preemptable tasks on parallel processors with limited availability, 
Parallel Comput. 26, 2000, 1195-1211. 

BEP+96 J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, J. Weglarz, Scheduling Com-
puter and Manufacturing Processes, Springer, Berlin, 1996. 

BF97 J. Blazewicz, P. Formanowicz, Scheduling jobs on open shops with limited 
machine availability, Rairo-Oper. Res. 36, 1997, 149-156. 

BFKS97 J. Blazewicz, P. Formanowicz, W. Kubiak, G. Schmidt, A note on a parallel 
branch and bound algorithm for the flow shop problem with limited machine 
availability, Working paper, Poznan University of Technology, Poznan, 1997. 

BLS05 O. Braun, N. M. Leshchenko, Y. N. Sotskov, Optimality of Jackson's permuta-
tions with respect to limited machine availability, Int. Trans. Oper. Res. 13, 
2006, 59-74.  

BLSS02 O. Braun, T.-C. Lai, G. Schmidt, Y. N. Sotskov, Stability of Johnson's sched-
ule with respect to limited machine availability, Int. J. Prod. Res. 40, 2002, 
4381-4400. 

Bra02 O. Braun, Scheduling Problems with Limited Available Processors and Limited 
Number of Preemptions, Ph.D. thesis, Saarland University, 2002 (in German). 

Bre00 J. Breit, Heuristic Scheduling Algorithms for Flow Shops and Open Shops with 
Limited Machine Availability, Ph.D. thesis, Saarland University, 2000 (in 
German). 

Bre04a J. Breit, An improved approximation algorithm for two-machine flow shop 
scheduling with an availability constraint, Inf. Process. Lett. 90, 2004, 
273-278. 

Bre04b J. Breit, A polynomial-time approximation scheme for the two-machine flow 
shop scheduling problem with an availability constraint, Comput. Oper. Res. 
33, 2006, 2143-2153. 

BSS01 J. Breit, G. Schmidt, V. A. Strusevich, Two-machine open shop scheduling 
with an availability constraint, Oper. Res. Lett. 29, 2001, 65-77. 

BSS03 J. Breit, G. Schmidt, V. A. Strusevich, Non-preemptive two-machine open 
shop scheduling with non-availability constraints, Math. Meth. Oper. Res. 57, 
2003, 217-234. 

Car82 J. Carlier, The one machine sequencing problem. Eur. J. Oper. Res. 11, 1982, 
42-47. 



 References 427 

CH98 S.-Y. Chang, H.-C. Hwang, The worst-case analysis of the multifit algorithm 
for scheduling nonsimultaneous parallel machines, Working paper, Department 
of Industrial Engineering, Pohang University of Science and Technology, 
1998. 

CL03a T.-C. E. Cheng, Z. Liu. 3/2-approximation for two-machine no-wait flowshop 
scheduling with availability constraints, Inf. Process. Lett. 88, 2003, 161-165. 

CL03b T.-C. E. Cheng, Z. Liu. Approximability of two-machine no-wait flowshop 
scheduling with availability constraints, Oper. Res. Lett. 31, 2003, 319-322. 

CS81 Y. Cho, S. Sahni, Preemptive scheduling of independent jobs with release and 
due dates times on open, flow and job shop, Oper. Res. 29, 1981, 511-522. 

CW99 T.-C. E. Cheng, G. Wang, Two-machine flowshop scheduling with consecutive 
availability constraints, Inf. Process. Lett. 71, 1999, 49-54. 

CW00 T.-C. E. Cheng, G. Wang, An improved heuristic for two-machine flowshop 
scheduling with an availability constraint, Oper. Res. Lett. 26, 2000, 223-229. 

DW85a D. Dolev, M. K. Warmuth, Profile scheduling of opposing forests and level 
orders, SIAM J. Algebra. Discr. 6, 1985, 665-687. 

DW85b D. Dolev, M. K. Warmuth, Scheduling flat graphs, SIAM J. Comput. 14, 1985, 
638-657. 

EFP99 M. L. Espinouse, P. Formanowicz, B. Penz, Minimzing the makespan in the 
two-machine no-wait flow-shop with limited machine availability, Comput. 
Ind. Eng. 37, 1999, 497-500. 

EFP01 M. L. Espinouse, P. Formanowicz, B. Penz, Complexity results and approx-
imation algorithms for the two machine no-wait flow-shop with limited ma-
chine availability, J. Oper. Res. Soc. 52, 2001, 116-121. 

GG64 P. C Gilmore, R. E. Gomory, Sequencing a one-state variable machine: a solv-
able case of the traveling salesman problem, Oper. Res. 12, 1964, 655-679. 

GGN00 M. Gourgand, N. Grangeon, S. Norre, A review of the stochastic flow-shop 
scheduling problem, Journal of Decision Systems 9, 2000, 183-213. 

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, W. H. Freeman, San Francisco, 1979. 

GL99 G. H. Graves, C.-Y. Lee, Scheduling maintenance and semi-resumable jobs on 
a single machine, Nav. Res. Log. 46, 1999, 845-863. 

Gra69 R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. 
Math. 17, 1969, 416-429. 

GS76 T. Gonzalez, S. Sahni, Open shop scheduling to minimize finish time, J. ACM 
23, 1976, 665-679. 

Hor74 W. A. Horn, Some simple scheduling algorithms, Nav. Res. Log. 21, 1974, 
177-185. 

HS96 N. G. Hall, C. Sriskandarajah, A survey of machine scheduling problems with 
blocking and no-wait in process, Oper. Res. 44, 1996, 510-525. 

Joh54 S. M. Johnson, Optimal two- and three-stage production schedules with setup 
times included, Nav. Res. Logist. Quart. 1, 1954, 61-68. 



428 11  Scheduling with Limited Processor Availability 

Kar72 R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller, 
J. W. Thatcher (eds.), Complexity of Computer Computations, 1972, 85-103. 

KBF+02 W. Kubiak, J. Blazewicz, P. Formanowicz, J. Breit, G. Schmidt, Two-machine 
flow shops with limited machine availability, Eur. J. Oper. Res.136, 2002, 
528-540. 

Kel98 H. Kellerer, Algorithms for multiprocessor scheduling with machine release 
time, IIE Trans. 31, 1998, 991-999. 

KM88 M. Kaspi, B. Montreuil, On the scheduling of identical parallel processes with 
arbitrary initial processor available time, Research report 88-12, School of In-
dustrial Engineering, Purdue University, 1988. 

KS04 M. A. Kubzin, V. A. Strusevich, Two-machine flow shop no-wait scheduling 
with a nonavailability interval, Nav. Res. Log. 51, 2004, 613-631. 

KSBS02 M. A. Kubzin, V. A. Strusevich, J. Breit, G. Schmidt, Polynomial-time ap-
proximation schemes for the open shop scheduling problem with non-
availability constraints, Paper 02/IM/100, School of Computing and Mathemat-
ical Science, University of Greenwich, 2002. 

Law82 E. L. Lawler, Preemptive scheduling of precedence constrained jobs on parallel 
machines, in: Dempster et al. (eds.), Deterministic and Stochastic Scheduling, 
Reidel, Dordrecht, 1982, 101-123. 

LBB02a T. Lorigeon, J.-C. Billaut, J.-L. Bouquard, Availability constraint for a single 
machine problem with heads and tails, Proceedings of the 8th International 
Workshop on Project Management and Scheduling, 2002, 240-243. 

LBB02b T. Lorigeon, J.-C. Billaut, J.-L. Bouquard, A dynamic programming algorithm 
for scheduling jobs in a two-machine open shop with an availability constraint, 
J. Oper. Res. Soc. 53, 2002, 1239-1246. 

LC00 C.-Y. Lee, Z.-L. Chen, Scheduling jobs and maintenance activities on parallel 
machines, Nav. Res. Log. 47, 2000, 145-165. 

Lee91 C.-Y. Lee, Parallel machine scheduling with non-simultaneous machine avail-
able time, Discret Appl. Math. 30, 1991, 53-61. 

Lee96 C.-Y. Lee, Machine scheduling with an availability constraint, J. Global Op-
tim. 9, 1996, 363-384. 

Lee97 C.-Y. Lee, Minimizing the makespan in the two-machine flowshop scheduling 
problem with an availability constraint, Oper. Res. Lett. 20, 1997, 129-139. 

Lee99 C.-Y. Lee, Two-machine flowshop scheduling with availability constraints, 
Eur. J. Oper. Res. 114, 1999, 420-429. 

Lee04 C.-Y. Lee, Machine scheduling with availability constraints, in: J. Y.-T. Leung 
(ed.), Handbook of Scheduling, Chapman & Hall/CRC Press, 2004, 22.1-22.13. 

LHYL97 G. Lin, Y. He, Y. Yao, H. Lu, Exact bounds of the modified LPT algorithm 
applying to parallel machines scheduling with nonsimultaneous machine avail-
able times, Applied Mathematics Journal of Chinese Universities 12, 1997, 
109-116. 

Lim91 S. Liman, Scheduling with Capacities and Due-Dates, Ph.D. thesis, University 
of Florida, 1991. 



 References 429 

LL92 C.-Y. Lee, S. D. Liman, Single machine flow-time scheduling with scheduled 
maintenance, Acta Inform. 29, 1992, 375-382. 

LL93 C.-Y. Lee, S. D. Liman, Capacitated two-parallel machine scheduling to mini-
mize sum of job completion time, Discret Appl. Math. 41, 1993, 211-222. 

LL01 C.-Y. Lee, V. J. Leon, Machine scheduling with a rate-modifying activity, Eur. 
J. Oper. Res. 128, 2001, 119-128. 

LLLR79 J. Labetoulle, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Preemptive 
scheduling of uniform machines subject to due dates, Technical Paper B W 
99/79, Centrum Wiskunde & Informatica, Amsterdam, 1979. 

LM89 E. L. Lawler, C. U. Martel, Preemptive scheduling of two uniform machines to 
minimize the number of late jobs, Oper. Res. 37, 1989, 314-318. 

LP93 L. Lu, M. E. Posner, An NP-hard open shop scheduling problem with poly-
nomial average time complexity, Math. Oper. Res. 18, 1993, 12-38. 

LRB77 J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Complexity of processor 
scheduling problems, Annals of Discrete Mathematics 1, 1977, 343-362. 

LS95a Z. Liu, E. Sanlaville, Preemptive scheduling with variable profile, precedence 
constraints and due dates, Discret Appl. Math. 58, 1995, 253-280. 

LS95b Z. Liu, E. Sanlaville, Profile scheduling of list algorithms, in: P. Chretienne et 
al. (eds.) Scheduling Theory and its Applications, Wiley, 1995, 91-110. 

LS97 Z. Liu, E. Sanlaville, Stochastic scheduling with variable profile and prece-
dence constraints, SIAM J. Comput. 26, 1997, 173-187. 

LSL05 C.-J. Liao, D.-L. Shyur, C.-H. Lin, Makespan minimization for two parallel 
machines with an availability constraint, Eur. J. Oper. Res. 160, 2005, 
445-456. 

LY03 C.-Y. Lee, G. Yu, Logistics scheduling under disruptions, working paper, De-
partment of Industrial Engineering and Engineering Management, The Hong 
Kong University of Science and Technology, Hong Kong, 2003. 

MC70 R. Muntz, E. G. Coffman, Preemptive scheduling of real-time tasks on mul-
tiprocessor systems, J. ACM 17, 1970, 324-338. 

McN59 R. McNaughton, Scheduling with deadlines and loss functions, Manage. Sci. 6, 
1959, 1-12. 

Moo68 J. M. Moore, An n job one machine sequencing algorithm for minimizing the 
number of late jobs, Manage. Sci. 15, 1968, 102-109. 

Mos94 G. Mosheiov, Minimizing the sum of job completion times on capacitated 
parallel machines, Math. Comput. Model. 20, 1994, 91-99. 

MP93 T. E. Morton, D. W. Pentico, Heuristic Scheduling Systems, J. Wiley, New 
York, 1993. 

NK04 C. T. Ng, M. Y. Kovalyov, An FPTAS for scheduling a two-machine flowshop 
with one unavailability interval, Nav. Res. Logist. 51, 2004, 307-315. 

QBY02 X. Qi, J. F. Bard, G. Yu, Disruption management for machine scheduling: the 
case of SPT schedules, Working paper, Department of Management Science 
and Infomation Systems, College of Business Administration, The University 
of Texas, 2002. 



430 11  Scheduling with Limited Processor Availability 

QCT99 X. Qi, T. Chen, F. Tu, Scheduling the maintenance on a single machine, J. 
Oper. Res. Soc. 50, 1999, 1071-1078. 

SPR+05 C. Sadfi, B. Penz, C. Rapine, J. Blazewicz, P. Formanowicz, An improved 
approximation algorithm for the single machine total completion time schedul-
ing problem with availability constraints, Eur. J. Oper. Res. 161, 2005, 3-10. 

San95 E. Sanlaville, Nearly on line scheduling of preemptive independent tasks, Dis-
cret Appl. Math. 57, 1995, 229-241. 

Sch84 G. Schmidt, Scheduling on semi-identical processors, Zeitschrift für Opera-
tions Research A28, 1984, 153-162. 

Sch88 G. Schmidt, Scheduling independent tasks with deadlines on semi-identical 
processors, J. Oper. Res. Soc. 39, 1988, 271-277. 

Sch00 G. Schmidt, Scheduling with limited machine availability, Eur. J. Oper. Res. 
121, 2000, 1-15. 

Smi56 W. E. Smith, Various optimizers for single-stage production, Nav. Res. Log. 
Quart. 3, 1956, 59-66. 

SS98 E. Sanlaville, G. Schmidt, Machine scheduling with availability constraints, 
Acta Inform. 35, 1998, 795-811. 

ST95 D. D. Sleator, R. E. Tarjan, Amortized efficiency of list update and paging 
rules, Commun. ACM 28, 1995, 202-208. 

U1175 J. D. Ullman, NP-complete scheduling problems, J. Comput. Syst. Sci. 10, 
1975, 384-393. 

VS95 G. Vairaktarakis, S. Sahni, Dual criteria preemptive open-shop problems with 
minimum makespan, Nav. Res. Log. 42, 1995, 103-121. 

 


	11 Scheduling with Limited Processor Availability
	11.1 Problem Definition
	11.2 One Machine Problems
	11.3 Parallel Machine Problems
	11.3.1 Minimizing the Sum of Completion Times
	11.3.2 Minimizing the Makespan
	11.3.3 Dealing with Due Date Involving Criteria

	11.4 Shop Problems
	11.4.1 Flow Shop Problems
	11.4.2 Open Shop Problems

	11.5 Conclusions
	References




