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FOREWORD 

This handbook1 is a continuation of [1] which has received kind acceptance of 
a wide readership, and, as [1], is the result of a long lasting German-Polish coop-
eration. Its specificity remains the same as it underlines a transition from theory 
to practice in a wide spectrum of scheduling problems. 

However, realizing the suggestion of the Publisher to prepare a new version 
of the handbook, we decided to publish a new textbook rather than only a new 
edition of the previous one. This followed from our conviction based on many 
discussions that some important new subjects should be included. They are char-
acterized in Chapter 1. We also decided to enlarge the group of authors by in-
cluding Małgorzata Sterna. 

We very much hope that in this way the handbook will be of interest to even 
a wider audience than the previous one. 

During the preparation of the book many colleagues have discussed with us 
the different topics presented in it. We are not able to list all of them but we 
would like to express our gratitude towards Nils Boysen, Nadia Brauner, Ed-
mund Burke, Ulrich Dorndorf, Maciej Drozdowski, Toan Phan Huy, Florian 
Jaehn, Joanna Józefowska, Imed Kacem, Graham Kendall, Misha Kovalyov, 
Dominik Kress, Wiesław Kubiak, Sebastian Meiswinkel, Jenny Nossack, Ceyda 
Oğuz, Alena Otto, Denis Trystram and Dominique deWerra. Separate thanks are 
due to Stanisław Gawiejnowicz who revised references and prepared Chapter 12. 
 

References 
[1] J. Błażewicz, K. Ecker, E. Pesch, G. Schmidt, J. Węglarz, Handbook on Scheduling - 

From Theory to Applications, Springer Verlag, Berlin, 2007. 
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1  Introduction 

Scheduling problems can be understood in general as the problems of allocating 
resources over time to perform a set of tasks being parts of some processes, 
among which computational and manufacturing ones are most important. Tasks 
individually compete for resources which can be of a very different nature, e.g. 
manpower, money, processors (machines), energy, tools. The same is true for 
task characteristics, e.g. ready times, due dates, relative urgency weights, func-
tions describing task processing in relation to allotted resources. Moreover, 
a structure of a set of tasks, reflecting relations among them, can be defined in 
different ways. In addition, different criteria which measure the quality of 
the performance of a set of tasks can be taken into account. 

It is easy to imagine that scheduling problems understood so generally ap-

pear almost everywhere in real-world situations. Of course, there are many as-

pects concerning approaches for modeling and solving these problems which are 

of general methodological importance. On the other hand, however, some classes 

of scheduling problems have their own specificity which should be taken into 

account. Since it is rather impossible to treat all these classes with the same at-

tention in a framework of one book, some constraints must be put on the subject 

area considered. In the case of this handbook these constraints are as follows. 

First of all we focus on the problems motivated by applications from indus-

try and service operations management as well as from case studies of real - life 

problems. Among others there is a detailed description of optimization proce-

dures for acrylic-glass production and the production of helicopter parts in 

a flexible manufacturing system. We will describe the backbone of an efficient 

decision support system for airport gate scheduling as well as a flexible flow 

shop scheduling system in order to manufacture screws and car power brakes.  

Second, we deal with deterministic scheduling problems (cf. [Bak74, 

BCSW86, Bru07, BT09, CCLL95, CMM67, Cof76, Eck77, Fre82, Gaw08, 

GK87, Len77, Leu04, LLR+93, Pin16, Rin76, RV09, TB06, TGS94, TSS94]), 

i.e. those in which no variable with a non-deterministic (e.g. probabilistic) de-

scription appears. Let us stress that this assumption does not necessarily mean 

that we deal only with static problems in which all characteristics of a set of 

tasks and a set of resources are known in advance. We consider also dynamic 

problems in which some parameters such as task ready times are unknown in 

advance, and we do not assume any a priori knowledge about them; this ap-

proach is even more realistic in many practical situations.  

Third, we consider problems in which a set of resources always contains 

processors (machines). This means that we take into account the specificity of 

these particular resources in modeling and solving corresponding scheduling 

problems, but it does not mean that all presented methods and approaches are 

restricted to this specificity only. The main reason for which we differentiate 

© Springer Nature Switzerland AG 2019 
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2 1  Introduction  

processors (we even do not call them "resources" for the convenience of a read-

er) is that we like to expose especially two broad (and not exclusive) areas of 

practical applications of the considered problems, namely computer and manu-

facturing systems. 

After the explanation of the handbook's title, we can pass to the description 

of some of its deeper specificities. They can be meant as compromise we accept-

ed in multi-objective decision situations we had to deal with before and during 

the preparation of the text. At the beginning, we found a compromise between 

algorithmic (rather quantitative) and knowledge-based (rather qualitative) ap-

proaches to scheduling. We decided to present in the first chapters the algorith-

mic approach, and at the end to show how it can be integrated with the approach 

coming from the area of Artificial Intelligence, in order to create a pretty general 

and efficient tool for solving a broad class of practical problems. In this way we 

also hopefully found a compromise between rather more computer and rather 

more manufacturing oriented audience.  

The second compromise was concerned with the way of presenting algo-

rithms: formal or descriptive. Basically we decided to adopt a Pascal-like nota-

tion, although we allowed for few exceptions in cases where such a presentation 

would be not efficient. 

Next we agreed that the presented material should realize a reasonable com-

promise between the needs of readers coming from different areas, starting from 

those who are beginners in the field of scheduling and related topics, and ending 

with specialists in the area. Thus we included some preliminaries concerning 

basic notions from discrete mathematics (problems, algorithms and methods), as 

well as, besides the most recent, also the most important classical results. 

Summing up the above compromises, we think that the handbook can be ad-

dressed to a quite broad audience, including practitioners and researchers inter-

ested in scheduling, and also to graduate or advanced undergraduate students in 

computer science/engineering, operations research, industrial engineering, man-

agement science, business administration, information systems, and applied 

mathematics curricula. 

Finally, we present briefly the outline of the handbook. 

In Chapter 2 basic definitions and concepts used throughout the book are 

introduced. One of the main issues studied here is the complexity analysis of 

combinatorial problems. As a unified framework for this presentation the con-

cept of a combinatorial search problem is used. Such notions as: decision and 

optimization problems, their encoding schemes, input length, complexity classes 

of problems, are discussed and illustrated by several examples. Since the majori-

ty of scheduling problems are computationally hard, two general approaches 

dealing with such problems are briefly discussed: enumerative and heuristic. 

First, general enumerative approaches, i.e. dynamic programming and branch 

and bound are shortly presented. Second, heuristic algorithms are introduced and 

the ways of analysis of their accuracy in the worst case and on the average are 

described. Then, we introduce the ideas of general local search metaheuristics 

known under names: simulated annealing, tabu search, and ejection chains as 
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well as genetic algorithms. In contrast with previous approaches (e.g. hill-

climbing) to deal with combinatorially explosive search spaces about which little 

knowledge is known a priori, the above mentioned metaheuristics, in combina-

tion with problem specific knowledge, are able to escape a local optimum. Basi-

cally, the only thing that matters, is the definition of a neighborhood structure in 

order to step from a current solution to a next, probably better one. The neigh-

borhood structure has to be defined within the setting of the specific problem and 

with respect to the accumulated knowledge of the previous search process. Fur-

thermore, frequently some random elements guarantee a satisfactory search di-

versification over the solution space. During the last years the metaheuristics 

turned out to be very successful in the scheduling area; specific applications will 

be described in Chapters 8, 9, 10 and 17. 

The chapter is complemented by a presentation of the notions from sets and 

relations, as well as graphs and networks, which will be used in the later chap-

ters. 

In Chapter 3 definitions, assumptions and motivations for deterministic 

scheduling problems are introduced. We start with the set of tasks, the set of pro-

cessors (machines) and the set of resources, and with two basic models in deter-

ministic scheduling, i.e. parallel processors and dedicated processors. Then, 

schedules and their performance measures (optimality criteria) are described. 

After this introduction, possible ways of analyzing scheduling problems are de-

scribed with a special emphasis put to solution strategies of computationally hard 

problems. Finally, motivations for the use of the deterministic scheduling model 

as well as an interpretation of results, are discussed. Two major areas of applica-

tions, i.e. computer and manufacturing systems are especially taken into account. 

These considerations are complemented by a description of a classification 

scheme which enables one to present deterministic scheduling problems in 

a short and elegant way. 

Chapter 4 deals with single-processor scheduling. The results given here 

are mainly concerned with polynomial time optimization algorithms. Their 

presentation is divided into several sections taking into account especially 

the following optimality criteria: schedule length, mean (and mean weighted) 

flow time, and due date involving criteria, such as maximum lateness, number of 

tardy tasks, mean (and mean weighted) tardiness and a combination of earliness 

and lateness. In each case polynomial time optimization algorithms are present-

ed, taking into account problem parameters such as the type of precedence con-

straints, possibility of task preemption, processing and arrival times of tasks, etc. 

These basic results are complemented by some more advanced ones which take 

into account change-over cost, also called lot size scheduling, and more general 

cost functions. Let us stress that in this chapter we present a more detailed classi-

fication of subcases as compared to the following chapters. This follows from 

the fact that the algorithms for the single-processor model are useful also in more 

complicated cases, whenever a proper decomposition of the latter is carried out. 

On the other hand, its relative easiness makes it possible to solve optimally in 

polynomial time many more subcases than in the case of multiple processors. 
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Chapter 5 carries on an analysis of scheduling problems where multiple 

parallel processors are involved. As in Chapter 4, a presentation of the results is 

divided into several subsections depending mainly on the criterion considered 

and then on problem parameters. Three main criteria are analyzed: schedule 

length, mean flow time and maximum lateness. A further division of the present-

ed results takes in particular into account the type of processors considered, i.e. 

identical, uniform or unrelated processors, and then parameters of a set of tasks. 

Here, scheduling problems are more complicated than in Chapter 4, so not as 

many optimization polynomial time algorithms are available as before. Hence, 

more attention is paid to the presentation of polynomial time heuristic algorithms 

with guaranteed accuracy, as well as to the description of some enumerative al-

gorithms.  

In Chapter 6 new scheduling problems arising in the context of rapidly de-

veloping manufacturing as well as parallel computer systems, are considered. 

When formulating scheduling problems in such systems, one must take into ac-

count the fact that some tasks have to be processed on more than one processor 

at a time. On the other hand, communication issues must be also taken into ac-

count in systems where tasks (program modules) are assigned to different pro-

cessors and exchange information between each other. In the chapter three mod-

els are discussed in a sequel. The first model assumes that each so-called multi-

processor task may require more than one processor at a time and communica-

tion times are implicitly included in tasks' processing times. The second model 

assumes that uniprocessor tasks, each assigned to one processor, communicate 

explicitly via directed links of the task graph. More precise approaches distin-

guish between coarse grain and fine grain parallelism and discuss their impact on 

communication delays. Furthermore, task duplication often leads to shorter 

schedules; this is in particular the case if the communication times are large 

compared to the processing times. The last model is a combination of the first 

two models and involves the so called divisible tasks. 

Chapter 7 deals with another type of scheduling problems where the tasks 

are periodic in the sense that they are processed repeatedly and with given fre-

quencies. Particularly in real-time systems designed for controlling some tech-

nical facility we are confronted with problems where sets of periodic tasks are to 

be processed on a single processor or on a distributed or parallel processor sys-

tem. The chapter starts with a short introduction to real-time systems and dis-

cusses characteristic properties and general functional requirements of such sys-

tems. Then strategies for scheduling sets of periodic tasks on a single processor 

and on a multiprocessor system are presented, and the classical results for 

the rate monotonic and earliest deadline scheduling strategies are discussed from 

their properties and performance points of view. Another important issue regards 

runtime problems that appear if tasks use of non-preemptable (non-

withdrawable) resources. Finally, several variants of the periodic task model 

allowing higher flexibility as compared to the simple periodic task model are 

presented. 
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In Chapter 8 flow shop scheduling problems are described, i.e. scheduling 

a set of jobs (composed of tasks) in shops with a product machine layout. Thus, 

the jobs have the same manufacturing order. Recent local search heuristics as 

well as heuristics relying on the two-machine flow shop scheduling problem - 

which can easily be solved optimally - are considered. Some special flow shops 

are introduced, e.g. permutation and no-wait ones. The hybrid or flexible flow 

shop problem is a generalization of the flow shop in such a way that every job 

can be processed by one among several machines on each machine stage. In re-

cent years a number of effective exact methods have been developed. A major 

reason for this progress is the development of new job and machine based lower 

bounds as well as the rapidly increasing importance of constraint programming. 

We provide a comprehensive and uniform overview on exact solution methods 

for flexible flow shops with branching, bounding and propagation of constraints, 

under two different objective functions: minimizing the makespan of a schedule 

and the mean flow time. For some simple cases we present heuristics with 

known worst case performance and then describe a branch and bound algorithm 

for the general case.  

In Chapter 9 we consider the open shop problem where jobs without any 

precedence constraints are supposed to be scheduled. Only few exact solution 

methods are available and we motivate our presentation with a description of 

optimal results for small open shop scheduling problems. We continue describ-

ing a branch-and-bound algorithm for solving this problem which performs bet-

ter than any other existing algorithm. The key to the efficiency of the algorithm 

lies in the following approach: instead of analyzing and improving the search 

strategies for finding solutions, the focus is on constraint propagation based 

methods for reducing the search space. For the first time, many problem instanc-

es are solved to optimality in a short amount of computation time.  

In Chapter 10 job shop scheduling problems are investigated. This is 

the most general form of manufacturing a set of different jobs on a set of ma-

chines where each job is characterized by its specific machine order reflecting 

the jobs production process. We introduce the commonly used representation of 

the job shop scheduling problems: the disjunctive graph, and its efficient ma-

chine representation: the graph matrix, which can be generalized for any graph. 

The most successful branch and bound ideas are described and we will see that 

their branching structure is reflected in the neighborhood definitions of many 

local search methods. In particular tabu search, ejection chains, genetic algo-

rithms as well as the propagation of constraints - this is closely related to 

the generation of valid inequalities - turned out to become the currently most 

powerful solution approaches. Moreover, we introduce priority rule based sched-

uling and describe a well-known opportunistic approach: the shifting bottleneck 

procedure. 

Chapter 11 deals with scheduling problems where the availabilities of pro-

cessors to process tasks are limited. In the preceding chapters the basic model 

assumes that all machines are continuously available for processing throughout 

the planning horizon. This assumption might be justified in some cases but it 
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does not apply if certain maintenance requirements, breakdowns or other con-

straints that cause the machines not to be available for processing have to be 

considered. In this chapter we generalize the basic model in this direction and 

discuss results related to one machine, parallel machines, and shop scheduling 

problems where machines are not continuously available for processing. 

In Chapter 12 we are focused on time-dependent scheduling problems, 
where job processing times are functions of the job starting times. Problems of 
this kind compose the first group of scheduling problems with variable job pro-
cessing times discussed in the handbook. Another group of such problems, with 
resource-dependent job processing times, is discussed in Chapter 13. We begin 
this chapter with a short description of basics of time-dependent scheduling and 
the main forms of time-dependent job processing times. Next, we review the 
most important results of time-dependent scheduling, diving them into groups 
with respect to machine environment and job processing times form. Whenever 
it is possible, we illustrate our  presentation by examples. As in the whole hand-
book, we discuss only deterministic algorithms and solution methods. Apart time 
complexity and algorithms for time-dependent scheduling problems, we also 
discuss two-agent time-dependent scheduling, bi-criteria time-dependent sched-
uling, properties of mutually related pairs of time-dependent scheduling prob-
lems and applications of matrix methods in time-dependent scheduling. 

Chapter 13 deals with resource constrained scheduling. In the first two sec-

tions it is assumed that tasks require for their processing processors and certain 

fixed amounts of discrete resources. The first section presents the classical model 

where schedule length is to be minimized. In this context several polynomial 

time optimization algorithms are described. In the next section this model is gen-

eralized to cover also the case of multiprocessor tasks. Two algorithms are pre-

sented that minimize schedule length for preemptable tasks under different as-

sumptions concerning resource requirements. The last section deals with prob-

lems in which additional resources are continuous, i.e. continuously-divisible. 

We study three classes of scheduling problems of that type. The first one con-

tains problems with parallel processors and tasks described by continuous func-

tions relating their processing speeds to the resource amount allotted at a time. 

The next two classes are concerned with single processor problems where task 

processing times or ready times, respectively, are continuous functions of the 

allotted resource amount. 

Chapter 14 is devoted to a certain scheduling model - the imprecise compu-

tation model, inspired by practical applications arising in the hard real time envi-

ronment, introduced in Chapter 7. It allows trading off accuracy of computations 

in favor of meeting deadlines imposed on tasks. In the imprecise computation 

model tasks are composed of two subtasks: mandatory and optional ones. The 

mandatory subtask has to be completed before the deadline in order to obtain a 

feasible solution, but the optional subtask can be late or even left unfinished. The 

mandatory subtask corresponds to producing a usable but approximate result 

with the error modeled by the late part of the optional subtask. Completing both 

subtasks on time corresponds to precise result with no error. The chapter starts 
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with exemplary applications which motivated such scheduling problems. Then, 

we briefly present the general imprecise computation model and we pass, in the 

next section, to its special case - the late work model, which assumes that tasks 

consist of optional subtasks only. We present results related to single, parallel 

and dedicated processors. Particularly, we show a few examples of classical so-

lution techniques introduced in Chapter 2, namely: the dynamic programming 

and the polynomial time approximation scheme being a family of approximation 

algorithms. Discussing late work problems, we refer to various topics of the 

scheduling theory involving for example controllable processing times, time-

dependent processing times (i.e. scheduling with learning effect) or multi-agent 

scheduling. In the last section, some related models inspired by the imprecise 

computations, as well as mirror scheduling problems are mentioned.      

The handbook focuses in general on deterministic scheduling models, which 

assume that the complete knowledge of a problem instance is provided to a deci-

sion maker, i.e. to an algorithm, in advance. Chapter 15 introduces the funda-

mentals of online scheduling. The online scheduling can be considered as sched-
uling with incomplete information, because the decisions on executing tasks are 
made without knowing a complete instance of the problem, i.e. the input is being 
revealed to a decision maker piece-by-piece. Online scheduling models can be 
considered as a bridge between deterministic scheduling and stochastic schedul-
ing, which copes with a problem input given as random variables with certain 
probability distributions. Online algorithms compute partial schedules whenever 
a new piece of information requests taking an action from them, i.e. the decisions 
are made without full knowledge of the future. We present basic online schedul-
ing paradigms, such as online-over-list and online-over-time, which assume that 
tasks appear in the system in a given sequence or at a given time moment. We 
show the differences between clairvoyant and non-clairvoyant scheduling mod-
els, which reveal various amount of information on incoming tasks. Moreover, 
we adjust the idea of precedence constraints and preemptions, introduced in 
Chapter 3 for offline mode, to online mode. We present the general idea of de-
terministic and randomized online algorithms and describe the techniques used 
for evaluating their efficiency, based on the competitive analysis and on the low-
er bound analysis involving the adversary method. These basic ideas are illus-
trated with a few examples. Moreover, we introduce some enhanced online 
scheduling models, such as semi-online scheduling, online scheduling with ad-
vice or online scheduling with resource augmentation.   

Constraint propagation is the central topic of Chapter 16. It is an elemen-

tary method for reducing the search space of combinatorial search and optimiza-

tion problems which has become more and more important in the last decades. 

The basic idea of constraint propagation is to detect and remove inconsistent 

variable assignments that cannot participate in any feasible solution through 

the repeated analysis and evaluation of the variables, domains and constraints 

describing a specific problem instance. We describe efficient constraint propaga-

tion methods also known as consistency tests for the disjunctive scheduling prob-

lem (DSP) applications of which will be introduced in machine scheduling chap-
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ters 8 to 10. We will further present and analyze both new and classical con-

sistency tests involving a higher number of variables. They still can be imple-

mented efficiently in a polynomial time. Further, the concepts of energetic rea-

soning and shaving are analyzed and discussed. 

The other contribution is a classification of the consistency tests derived ac-

cording to the domain reduction achieved. The particular strength of using con-

sistency tests is based on their repeated application, so that the knowledge de-

rived is propagated, i.e. reused for acquiring additional knowledge. The deduc-

tion of this knowledge can be described as the computation of a fixed point. 

Since this fixed point depends upon the order of the application of the tests, we 

first derive a necessary condition for its uniqueness. We then develop a concept 

of dominance which enables the comparison of different consistency tests as well 

as a method for proving dominance.  

Chapter 17 is devoted to problems which perhaps closer reflect some spe-

cific features of scheduling in flexible manufacturing systems than other chapters 

do. Dynamic job shops are considered, i.e. such in which some events, particu-

larly job arrivals, occur at unknown times. A heuristic for a static problem with 

mean tardiness as a criterion is described. It solves the problem at each time 

when necessary, and the solution is implemented on a rolling horizon basis. 

The next section deals with simultaneous assignment of machines and vehicles to 

jobs. This model is motivated by the production of helicopter parts in some fac-

tory. First we solve in polynomial time the problem of finding a feasible vehicle 

schedule for a given assignment of tasks to machines, and then present a dynam-

ic programming algorithm for the general case. In the last section we are model-

ing manufacturing of acrylic-glass as a batch scheduling problem on parallel 

processing units under resource constraints. This section introduces the real 

world problem and reveals potential applications of some of the material in the 

previous chapters. In particular, a local search heuristic is described for con-

structing production sequences. 

Chapter 18 serves two purposes. On one hand, we want to introduce a quite 

general solution approach for scheduling problems as they appear not only in 

manufacturing environments. On the other hand, we also want to survey results 

from interactive and knowledge-based scheduling which were not covered in this 

handbook so far. To combine both directions we introduce some broader aspects 

like computer integrated manufacturing and object-oriented modeling. The 

common goal of this chapter is to combine results from different areas to treat 

scheduling problems in order to answer quite practical questions. To achieve this 

we first concentrate on the relationship between the ideas of computer integrated 

manufacturing and the requirements concerning solutions of the scheduling prob-

lems. We present an object-oriented reference model which is used for the im-

plementation of the solution approach. Based on this we discuss the outline of 

an intelligent production scheduling system using open loop interactive and 

closed loop knowledge-based problem solving. For reactive scheduling we sug-

gest to use concepts from soft computing. Finally, we make some proposals con-

cerning the integration of solution approaches discussed in the preceding chap-
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ters with the ideas developed in this chapter. We use an example to clarify 

the approach of integrated problem solving and discuss the impact for computer 

integrated manufacturing.  

Chapter 19 presents some examples of applying the scheduling theory for 

solving problems arising in logistics. Since logistics is strictly related with trans-

portation, for the sake of completeness, we first present a short survey of various 

variants of the famous vehicle routing problem, which concerns designing routes 

for a fleet of vehicles to supply a set of customers. Since this problem is widely 

studied in the literature, we provide numerous references, which can direct 

the readers deeply interested in this field. Then we describe three problems aris-

ing in various modes of transportation, in overland, air and maritime transporta-

tion: the concrete delivery problem, the flight gate scheduling problem, and 

the berth and quay crane allocation problem, respectively. Based on these exam-

ples we show various aspects of incorporating scheduling theory in logistics. 

The concrete delivery problem is a vehicle routing problem in which schedules 
for concrete mixer vehicles are constructed to deliver concrete from depots to 
customers, taking into account the specificity of the perishable material being 

transported. On this example we show the process of modelling complex real 

world problems, providing the graph model and - based on it - the mixed integer 

programming model. Then we present a selected approach for the flight gate 

scheduling problem, concerning assigning aircrafts serving flights to airport 

gates. The described method is an example of transforming a scheduling problem 

to a related combinatorial problem (clique partitioning in this case), in order to 

utilize known algorithms to solve new problems. Finally, on the example of 

the berth and quay crane allocation problem, in which berths and cranes have to 

be assigned to ships for loading/unloading containers transported by them, we 

show a direct application of the scheduling models to solve this logistic case. For 

all three mentioned problems we provide a rich set of references for readers 

deeper interested in these and related subjects.       
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2  Basics 

In this chapter we provide the reader with basic notions used throughout the 
book. After a short introduction into sets and relations, decision problems, opti-
mization problems and the encoding of problem instances are discussed. The way 
algorithms will be represented and problem membership of complexity classes 
are other essential issues which will be discussed. Afterwards graphs, especially 
certain types such as precedence graphs and networks that are important for 
scheduling problems, are presented. The last two sections deal with algorithmic 
methods used in scheduling such as enumerative algorithms (e. g. dynamic pro-
gramming and branch and bound) and heuristic approaches (e. g. tabu search, 
simulated annealing, ejection chains, and genetic algorithms).  

2.1 Sets and Relations 

Sets are understood to be any collection of distinguishable objects, such as the set 
{1, 2,...} of natural numbers, denoted by IN , the set IN0 of non-negative integers, 
the set of real numbers, IR , or the set of non-negative reals IR�0 . Given real num-
bers a and b, a � b, then [a, b] denotes the closed interval from a to b, i.e. the set 
of reals {x � a � x � b}. Open intervals ((a, b) := {x � a < x < b}) and half open in-
tervals are defined similarly.  

In scheduling theory we are normally concerned with finite sets; so, unless 
infinity is stated explicitly, the sets are assumed to be finite.  

For set S, �S � denotes its cardinality. The power set of S (i.e. the set of all 
subsets of S) is denoted by P (S). For an integer k, 0 � k � �S �, the set of all sub-
sets of cardinality k is denoted by Pk(S). 

The Cartesian product S1 �...� Sk of sets S1 ,..., Sk is the set of all tuples of 
the form (s1 , s2 ,..., sk) where si � Si , i = 1,..., k, i.e. S1 �...� Sk = {(s1 ,..., sk) � 
si � Si , i = 1,..., k}. The k-fold Cartesian product S �...� S is denoted by S k. 

Given sets S
1 ,..., Sk , a subset Q  of S

1 �...� Sk is called a relation over 
S

1 ,..., Sk . In the case k = 2, Q  is called a binary relation. For a binary relation Q  
over S1 and S2 , the sets S1 and S2 are called domain and range, respectively. If Q  
is a relation over S1 ,..., Sk , with S1 = ... = Sk = S, then we simply say: Q  is a (k-
ary) relation over S. For example, the set of edges of a directed graph (see Sec-
tion 2.3) is a binary relation over the vertices of the graph. 
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Let S  be a set, and Q  be a binary relation over S. Then, Q �1
 = {(a, b) � (b, a) 

� Q } is the inverse to Q . Relation Q  is symmetric if (a, b) � Q  implies (b, a) � 

Q . Q  is antisymmetric if for a � b, (a, b) � Q  implies (b, a) 	 Q . Q  is reflexive if 
(a, a) � Q  for all a � S. Q  is irreflexive if (a, a) 	 Q  for all a � S. Q  is transitive 
if for all a, b, c � S, (a, b) � Q  and (b, c) � Q  implies (a, c) � Q . 

A binary relation over S represents a partial order. A set with a binary rela-
tion is called a partially ordered set or poset if and only if it is reflexive, anti-
symmetric and transitive. A binary relation over S is called an equivalence rela-
tion (over S) if it is reflexive, symmetric, and transitive.  

Given set J of n closed intervals of reals, J = {Ii � Ii = [ai , bi], ai � bi , i = 
1,..., n}, a partial order �I on J can be defined by 

Ii �I Ij   
�� (Ii = Ij)  or  (bi � aj ),  i, j � {1,..., n} .  

A poset Q over S is called an interval order if and only if there exists a bijection 
from S to a set of intervals, si  � Ii  = [ai , bi ], such that for any si , sj � S we have 
(si , sj ) � Q exactly when  bi  <  aj . 

Let l = (n1 ,..., nk) and l' = (n'1 ,..., n'k') be sequences of integers, and k, k' � 
0. If k = 0 then l is the empty sequence. We say that l is lexicographically smaller 
than l', written l <. l', if 
(i) the two sequences agree up to some index j, but nj+1 < n'j+1 (i.e. there exists j, 
0 � j � k, such that for all i, 1 � i � j, ni = n'i and nj+1 < n'j+1) , or if 

(ii) sequence l is shorter, and the two sequences agree up to the length of l (i.e. k 
< k' and ni = n'i for all i, 1 � i � k). 

Let Q  and P be binary relations over set S. Then the relational product 
Q °P , defined as {(a, b) � �x � S, (a, x) � Q, (x, b) � P }, is a relation over S. 
Generally, we write Q � for {(a, a) � a � S}, Q �

 = Q , and Q i+1
 = Q i

 °Q  for i > 1. 
The union Q * = �{Q i

 � i � 0} is called the transitive closure of Q .  
A function from A  to B  (A � B  ; A  and B  are not necessarily finite) is a re-

lation F over A  and B  such that for each a � A  there exists just one b � B  for 
which (a, b) � F; instead of (a, b) � F we usually write F(a) = b. Set A is called 
the domain of F and set {b � b � B ,  a � A , (a, b) � F} is called the range of F. 
F is called surjective, or onto B  if for each element b � B  there is at least one el-
ement a � A  such that F(a) = b. Function F is said to be injective, or one-one if 
for each pair of elements, a1 , a2 � A , F(a1) = F(a2) implies a1 = a2 . A function 
that is both surjective and injective is called bijective. A bijective function F: A 
� A  is called a permutation of A . Though we are able to represent functions in 



 2.2  Problems, Algorithms, Complexity 13 

special cases by means of tables we usually specify functions in a more or less 
abbreviated way that specifies how the function values are to be determined. For 
example, for n � IN, the factorial function n! denotes the set of pairs {(n, m) � n � 
IN,  m = n.(n � 1).. .3.2}. Other examples of functions are polynomials, exponen-
tial functions and logarithms. 

We will say that function f : IN � IR �
  is of order g, written O(g(k)), if there 

exist constants c and k� � IN such that f(k) � cg(k) for all k � k� . 

2.2 Problems, Algorithms, Complexity 

2.2.1 Problems and Their Encoding 

In general, the scheduling problems we consider belong to a broader class of 
combinatorial search problems. A combinatorial search problem � is a set of 
pairs (I, A), where I is called an instance of a problem, i.e. a finite set of parame-
ters (understood generally, e.g. numbers, sets, functions, graphs) with specified 
values, and A is an answer (solution) to the instance. As an example of a search 
problem let us consider merging two sorted sequences of real numbers. Any in-
stance of this problem consists of two finite sequences of reals e and f sorted in 
non-decreasing order. The answer is the sequence g consisting of all the elements 
of e and f arranged in non-decreasing order. 

Let us note that among search problems one may also distinguish two sub-
classes: optimization and decision problems. An optimization problem is defined 
in such a way that an answer to its instance specifies a solution for which a value 
of a certain objective function is at its optimum (an optimal solution). On the 
other hand, an answer to an instance of a decision problem may take only two 
values, either "yes" or "no". It is not hard to see, that for any optimization prob-
lem, there always exists a decision counterpart, in which we ask (in the case of 
minimization) if there exists a solution with the value of the objective function 
less than or equal to some additionally given threshold value y. (If in the basic 
problem the objective function has to be maximized, we ask if there exists a so-
lution with the value of the objective function � y.) The following example clari-
fies these notions. 

Example 2.2.1  Let us consider an optimization knapsack problem. 
Knapsack 
Instance: A finite set of elements A  = {a1 , a2 ,..., an}, each of which has an in-
teger weight w(ai) and value v(ai), and an integer capacity b of a knapsack. 
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Answer: Subset A' � A  for which �
ai �A'

 v(ai) is at its maximum, subject to the 

constraint �
ai �A'

 w(ai) � b (i.e. the total value of chosen elements is at its maxi-

mum and the sum of weights of these elements does not exceed knapsack capaci-
ty b). 

The corresponding decision problem is denoted as follows. (To distinguish opti-
mization problems from decision problems the latter will be denoted using capi-
tal letters.) 

KNAPSACK 
Instance: A finite set of elements A  = {a1 , a2 ,..., an}, each of which has an in-
teger weight w(ai) and value v(ai) , an integer knapsack capacity b and threshold 
value y. 
Answer: "Yes" if there exists subset A' � A  such that  

�
ai �A'

 v(ai) � y and �
ai �A'

 w(ai) � b.  

Otherwise "No".  

When considering search problems, especially in the context of their solution by 
computer algorithms, one of the most important issues that arises is a question of 
data structures used to encode problems. Usually to encode instance I of problem 
� (that is particular values of parameters of problem �) one uses a finite string 
of symbols x(I). These symbols belong to a predefined finite set � (usually called 
an alphabet) and the way of coding instances is given as a set of encoding rules 
(called encoding scheme e). By input length (input size) �I� of instance I we mean 
here the length of string x(I). Let us note that the requirement that an instance of 
a problem is encoded by a finite string of symbols is the only constraint imposed 
on the class of search problems which we consider here. However, it is rather a 
theoretical constraint, since we will try to characterize algorithms and problems 
from the viewpoint of the application of real computers. 

Now the encoding scheme and its underlying data structure is defined in a 
more precise way. For representation of mathematical objects we use set � that 
contains the usual characters, i.e. capital and small Arabic letters, capital and 
small Greek letters, digits (0,..., 9), symbols for mathematical operations such as 
+, �, ×, /, and various types of parentheses and separators. The class of mathe-
matical objects, A , is then mapped to the set �* of words over the alphabet � by 
means of a function �: A � �*, where �* denotes the set of all finite strings 
(words) made up of symbols belonging to �. Each mathematical object A � A  is 
represented as a structured string in the following sense: Integers are represented 
by their decimal representation. A square matrix of dimension n with integer el-
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ements will be represented as a finite list whose first component represents ma-
trix dimension n, and the following n2 components represent the integer matrix 
elements in some specific order. For example, the list is a structured string of the 
form (n, a(1, 1),...,  a(1, n), a(2, 1),...,  a(2, n),...,  a(n, n)) where n and all the 
a(i, j) are structured strings representing integers. The length of encoding (i.e. the 
complexity of storing) an integer k would then be of order logk, and that of a ma-
trix would be of order n2

logk where k is an upper bound for the absolute value of 
each matrix element. Real numbers will be represented either in decimal notation 
(e.g. 3.14159) or in half-logarithmic representation using mantissa and exponent 
(e.g. 0.314159.10

1
). Functions may be represented by tables which specify the 

function (range) value for each domain value. Representations of more compli-
cated objects (e.g. graphs) will be introduced later, together with the definition of 
these types of objects. 

As an example let us consider encoding of a particular instance of the knap-
sack problem defined in Example 2.2.1. Let the number n of elements be equal to 
6 and let an encoding scheme define values of parameters in the following order: 
n, weights of elements, values of elements, knapsack's capacity b. A string cod-
ing an exemplary instance is: 6, 4, 2, 12, 15, 3, 7, 1, 4, 8, 12, 5, 7, 28. 

The above remarks do not exclude the usage of any other reasonable encod-
ing scheme which does not cause an exponential growth of the input length as 
compared with other encoding schemes. For this reason one has to exclude unary 
encoding in which each integer k is represented as a string of k 1's. We see that 
the length of encoding this integer would be k which is exponentially larger, as 
compared to the above decimal encoding. 

In practice, it is worthwhile to express the input length of an instance as a 
function depending on the number of elements of some set whose cardinality is 
dominating for that instance. For the knapsack problem defined in Example 2.2.1 
this would be the number of elements n, for the merging problem - the total 
number of elements in the two sequences, for the scheduling problem - the num-
ber of tasks. This assumption, usually made, in most cases reduces practically to 
the assumption that a computer word is large enough to contain any of the binary 
encoded numbers comprising an instance. However, in some problems, for ex-
ample those in which graphs are involved, taking as input size the number of 
nodes may appear too great a simplification since the number of edges in a graph 
may be equal to n(n � 1)/2. Nevertheless, in practice one often makes this simpli-
fication to unify computational results. Let us note that this simplification causes 
no exponential growth of input length. 

2.2.2 Algorithms 

Let us now pass to the notion of an algorithm and its complexity function. An al-
gorithm is any finite procedure for solving a problem (i.e. for giving an answer). 
We will say that an algorithm solves search problem �, if it finds a solution for 
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any instance I of �. In order to keep the representation of algorithms easily un-
derstandable we follow a structural approach that uses language concepts known 
from structural programming, such as case statements, or loops of various kinds. 
Like functions or procedures, algorithms may also be called in an algorithm. Pa-
rameters may be used to import data to or export data from the algorithm. Be-
sides these, we also use mathematical notations such as set-theoretic notations. 

In general, an algorithm consists of two parts: a head and a method. The 
head starts with the keyword Algorithm, followed by an identifying number and, 
optionally, a descriptor (a name or a description of the purpose of the algorithm) 
and a reference to the author(s) of the algorithm. Input and output parameters are 
omitted in cases where they are clear from the context. In other cases, they are 
specified as a parameter list. In even more complex cases, two fields, Input (In-
stance): and Output (Answer): are used to describe parameters, and a field Meth-
od: is used to describe the main idea of the algorithm. As in PASCAL, a block is 
embraced by begin and end. Each block is considered as a sequence of instruc-
tions. An instruction itself may again be a block, an assignment-, an else-, or a 
case- operation, or a loop (for, while, repeat ... until, or a general 
loop), a call of another algorithm, or an exit instruction to terminate a loop 
instruction (exit loop, etc.) or the algorithm or procedure (just exit). The 
right hand side of an assignment operation may be any mathematical expression, 
or a function call. Case statements partition actions of the algorithm into several 
branches, depending on the value of a control variable. Loop statements may 
contain formulations such as: "for all a � M  do ..." or " while M ��� 
do ...". If a loop is preempted by an exit statement the algorithm jumps to the 
first statement after the loop. Comments are started with two minus signs and are 
finished at the end of the line. If a comment needs more than one line, each 
comment line starts with '--'.  

Algorithms should reflect the main idea of the method. Details like output 
layouts are omitted. Names for procedures, functions, variables etc. are chosen so 
that they reflect the semantics behind them. As an example let us consider an al-
gorithm solving the problem of merging two sequences as defined at the begin-
ning of this section. 

Algorithm 2.2.2  merge. 
Input: Two sequences of reals, e = (e[1],..., e[n]) and f = (f [1],..., f [m]), both 
sorted in non-decreasing order. 
Output: Sequence g = (g[1],..., g[n + m]) in which all elements are arranged in 
non-decreasing order. 
begin 
i := 1; j := 1; k := 1;  -- initialization of counters 

while (i � n) and (j � m) do 

  -- the while loop merges elements of sequences e and f into g;  
  -- the loop is executed until all elements of one of the sequences are merged 



 2.2  Problems, Algorithms, Complexity 17 

 begin 

 if e[i] < f [j]  
 then begin g[k] := e[i]; i := i + 1; end  
 else begin g[k] := f [j]; j := j + 1; end; 

 k := k + 1; 
 end; 

if i � n -- not all elements of sequence e have been merged 

then for l := i to n do g[k + l � i] := e[l] 
else 

 if j � m -- not all elements of sequence f have been merged 

 then for l := j to m do g[k + l � j] := f [l];  
end; 
The above algorithm returns as an answer sequence g of all the elements of e and 
f, sorted in non-decreasing order of the values of all the elements. 

As another example, consider the search problem of sorting in non-
decreasing order a sequence e = (e[1],..., e[n]) of n = 2k reals (i.e. n is a power of 
2). The algorithm sort (Algorithm 2.2.4) uses two other algorithms that operate 
on sequences: msort(i, j) and merge1(i, j, k). If the two parameters of msort, i and 
j, obey 1 � i < j � n, then msort(i, j) sorts the elements of the subsequence 
(e[i],..., e[j]) of e non-decreasingly. Algorithm merge1 is similar to merge (Al-
gorithm 2.2.2): merge1(i, j, k) (1 � i � j < k � n) takes the elements from the two 
adjacent and already sorted subsequences (e[i],..., e[j]) and (e[j+1],..., e[k]) of e, 
and merges their elements into (e[i],..., e[k]). 

Algorithm 2.2.3  msort(i, j). 
begin 
case (i, j) of -- depending on relative values of i and j,  
 -- three subcases are considered 

 i = j: exit; -- terminate msort 
 i = j � 1: if e[i] > e[j] then Exchange e[i] and e[j]; 

 i < j � 1:  
  begin 

  call msort(i, �(j + i)/2�);1  
   -- sorts elements of subsequence (e[i],..., e[�(j + i)/2�])  

  call msort(�(j + i)/2� + 1,�j); 

   -- sorts elements of subsequence (e[�(j + i)/2� + 1],..., e[j])  
  call merge1(i,��(j + i)/2�,�j); 

                                                 
1 �x� denotes the largest number less than or equal to x. 
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   -- merges sorted subsequences into sequence (e[i],..., e[j]) 
  end; 

 end; 

end; 

Algorithm 2.2.4  sort. 
begin 
read(n); 

read((e[1],..., e[n])); 

call msort(1,�n); 

end; 

Notice that in the case of an optimization problem one may also consider an ap-
proximate (sub-optimal) solution that is feasible (i.e. fulfills all the conditions 
specified in the description of the problem) but does not extremize the objective 
function. It follows that one can also consider heuristic (sub-optimal) algorithms 
which tend toward but do not guarantee the finding of optimal solutions for any 
instance of an optimization problem. An algorithm which always finds an opti-
mal solution will be called an optimization or exact algorithm. 

2.2.3 Complexity 

Let us turn now to the analysis of the computational complexity of algorithms. 
By the time complexity function of algorithm A solving problem � we understand 
the function that maps each input length of an instance I of � into a maximal 
number of elementary steps (or time units) of a computer, which are needed to 
solve an instance of that size by algorithm A. 

It is obvious that this function will not be well defined unless the encoding 
scheme and the model of computation (computer model) are precisely defined. It 
appears, however, that the choice of a particular reasonable encoding scheme and 
a particular realistic computer model has no influence on the distinction between 
polynomial- and exponential time algorithms which are the two main types of al-
gorithms from the computational complexity point of view [AHU74]. This is be-
cause all realistic models of computers 2 are equivalent in the sense that if a prob-
lem is solved by some computer model in time bounded from above by a poly-
nomial in the input length (i.e. in polynomial time), then any other computer 
model will solve that problem in time bounded from above by a polynomial 
(perhaps of different degree) in the input length [AHU74]. Thus, to simplify the 

                                                 
2 By "realistic" we mean here such computer models which in unit time may perform a 

number of elementary steps bounded from above by a polynomial in the input length. This 

condition is fulfilled for example by the one-tape Turing machine, the k-tape Turing ma-

chine, or the random access machine (RAM) under logarithmic cost of performing a single 

operation. 
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computation of the complexity of polynomial algorithms, we assume that, if not 
stated otherwise, the operation of writing a number as well as addition, subtrac-
tion and comparison of two numbers are elementary operations of a computer 
that need the same amount of time, if the length of a binary encoded number is 
bounded from above by a polynomial in the computation time of the whole algo-
rithm. Otherwise, a logarithmic cost criterion is assumed. Now, we define the 
two types of algorithms. 

A polynomial time (polynomial) algorithm is one whose time complexity 
function is O(p(k)), where p is some polynomial and k is the input length of an 
instance. Each algorithm whose time complexity function cannot be bounded in 
that way will be called an exponential time algorithm. 

Let us consider two algorithms with time complexity functions k and 3k
 , re-

spectively. Let us assume moreover that an elementary step lasts 1 �s and that the 
input length of the instance solved by the algorithms is k = 60. Then one may 
calculate that the first algorithm solves the problem in 60 �s while the second 
needs 1.3.10

13 centuries. This example illustrates the fact that indeed the differ-
ence between polynomial- and exponential time algorithms is large and justifies 
definition of the first algorithm as a "good" one and the second as a "bad" one 
[Edm65]. 

If we analyze time complexity of Algorithm 2.2.2, we see that the number of 
instructions being performed during execution of the algorithm is bounded by 
c1(n + m) + c2 , where c1 and c2 are suitably chosen constants, i.e. the number of 
steps depends linearly on the total number of elements to be merged. 

Now we estimate the time complexity of Algorithm 2.2.4. The first two read 
instructions together take O(n) steps, where reading one element is assumed to 
take constant (O(1)) time. During execution of msort(1, n), the sequence of ele-
ments is divided into two subsequences, each of length n/2; msort is applied re-
cursively on the subsequences which will thus be sorted. Then, procedure merge1 
is applied, which combines the two sorted subsequences into one sorted se-
quence. Now let T(m) be the number of steps msort performs to sort m elements. 
Then, each call of msort within msort involves sorting of m/2 elements, so it 
takes T(m/2) time. The call of merge1 can be performed in a number of steps 
proportional to m/2 + m/2 = m, as can easily be seen. Hence, we get the recursion 

T(m) = 2T(m/2) + cm , 

where c is some constant. One can easily verify that there is a constant c' such 
that T(m) = c'mlogm solves the recursion 3. Taking all steps of Algorithm 2.2.4 
together we get the time complexity O(logn) + O(n) + O(nlogn) = O(nlogn).  

Unfortunately, it is not always true that we can solve problems by algorithms 
of linear or polynomial time complexity. In many cases only exponential algo-
rithms are available. We will take now a closer look to inherent complexity of 

                                                 
3 We may take any fixed base for the logarithm, e.g. 2 or 10. 
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some classes of search problems to explain the reasons why polynomial algo-
rithms are unlikely to exist for these problems. 

As we said before, there exist two broad subclasses of search problems: de-
cision and optimization problems. From the computational point of view both 
classes may be analyzed much in the same way (strictly speaking when their 
computational hardness is analyzed). This is because a decision problem is com-
putationally not harder than the corresponding optimization problem. That means 
that if one is able to solve an optimization problem in an "efficient" way (i.e. in 
polynomial time), then it will also be possible to solve a corresponding decision 
problem efficiently (just by comparing an optimal value of the objective func-
tion 4 to a given constant y). On the other hand, if the decision problem is compu-
tationally "hard", then the corresponding optimization problem will also be 
"hard" 5. 

Now, we can turn to the definition of the most important complexity classes 
of search problems. Basic definitions will be given for the case of decision prob-
lems since their formulation permits an easier treatment of the subject. One 
should, however, remember the above dependencies between decision and opti-
mization problems. We will also point out the most important implications. In 
order to be independent of a particular type of a computer we have to use an ab-
stract model of computation. From among several possibilities, we choose the 
deterministic Turing machine (DTM) for this purpose. Despite the fact that this 
choice was somehow arbitrary, our considerations are still general because all 
the realistic models of computations are polynomially related. 

Class P consists of all decision problems that may be solved by the deter-
ministic Turing machine in time bounded from above by a polynomial in the in-
put length. Let us note that the corresponding (broader) class of all search prob-
lems solvable in polynomial time, is denoted by FP [Joh90a]. We see that both, 
the problem of merging two sequences and that of sorting a sequence belong to 
that class. In fact, class FP contains all the search problems which can be solved 
efficiently by the existing computers. 

It is worth noting that there exists a large class of decision problems for 
which no polynomial time algorithms are known, for which, however, one can 
verify a positive answer in polynomial time, provided there is some additional 
information. If we consider for example an instance of the KNAPSACK problem 
defined in Example 2.2.1 and a subset A 1 � A  defining additional information, 
we may easily check in polynomial time whether or not the answer is "yes" in the 
case of this subset. This feature of polynomial time verifiability rather than solv-
ability is captured by a non-deterministic Turing machine (NDTM) [GJ79]. 

                                                 
4 Strictly speaking, it is assumed that the objective function may be calculated in polynomial 

time. 
5 Many decision problems and corresponding optimization problems are linked even more 

strictly, since it is possible to prove that a decision problem is not easier than the corre-

sponding optimization problem [GJ79]. 
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We may now define class NP of decision problems as consisting of all deci-
sion problems which may be solved in polynomial time by an NDTM. 

It follows that P � NP. In order to define the most interesting class of deci-
sion problems, i.e. the class of NP-complete problems, one has to introduce the 
definition of a polynomial transformation. A polynomial transformation from 
problem �2 to problem �1 (denoted by �2 � �1) is a function f mapping the set 
of all instances of �2 into the set of instances of �1 , that satisfies the following 
two conditions: 
1. for each instance I2 of �2 the answer is "yes" if and only if the answer for f(I2) 

of �1 is also "yes", 
2. f is computable in polynomial time (depending on problem size �I2�) by a 

DTM. 
We say that decision problem �1 is NP-complete if �1 � NP and for any 

other problem �2 � NP, �2 � �1 [Coo71]. 
It follows from the above that if there existed a polynomial time algorithm 

for some NP-complete problem, then any problem from that class (and also from 
the NP class of decision problems) would be solvable by a polynomial time algo-
rithm. Since NP-complete problems include classical hard problems (as for ex-
ample HAMILTONIAN CIRCUIT, TRAVELING SALESMAN, SATISFI-
ABILITY, INTEGER PROGRAMMING) for which, despite many attempts, no 
one has yet been able to find polynomial time algorithms, probably all these 
problems may only be solved by the use of exponential time algorithms. This 
would mean that P is a proper subclass of NP and the classes P and NP-complete 
problems are disjoint. 

Another consequence of the above definitions is that, to prove the NP-
completeness of a given problem �, it is sufficient to transform polynomially a 
known NP-complete problem to �. SATISFIABILITY was the first decision 
problem proved to be NP-complete [Coo71]. The current list of NP-complete 
problems contains several thousands, from different areas. Although the choice 
of an NP-complete problem which we use to transform into a given problem in 
order to prove the NP-completeness of the latter, is theoretically arbitrary, it has 
an important influence on the way a polynomial transformation is constructed 
[Kar72]. Thus, these proofs require a good knowledge of NP-complete problems, 
especially characteristic ones in particular areas. 

As was mentioned, decision problems are not computationally harder than 
the corresponding optimization ones. Thus, to prove that some optimization 
problem is computationally hard, one has to prove that the corresponding deci-
sion problem is NP-complete. In this case, the optimization problem belongs to 
the class of NP-hard problems, which includes computationally hard search 
problems. On the other hand, to prove that some optimization problem is easy, it 
is sufficient to construct an optimization polynomial time algorithm. The order of 
performing these two steps follows mainly from the intuition of the researcher, 
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which however, is guided by several hints. In this book, by "open problems" 
from the computational complexity point of view we understand those problems 
which neither have been proved to be NP-complete nor solvable in polynomial 
time. 

Despite the fact that all NP-complete problems are computationally hard, 
some of them may be solved quite efficiently in practice (as for example the 
KNAPSACK problem). This is because the time complexity functions of algo-
rithms that solve these problems are bounded from above by polynomials in two 
variables: the input length �I� and the maximal number max(I) appearing in an in-
stance I. Since in practice max(I) is usually not very large, these algorithms have 
good computational properties. However, such algorithms, called pseudopolyno-
mial, are not really of polynomial time complexity since in reasonable encoding 
schemes all numbers are encoded binary (or in another integer base greater than 
2). Thus, the length of a string used to encode max(I) is log max(I) and the time 
complexity function of a polynomial time algorithm would be O(p(�I�, log 

max(I))) and not O(p(�I�, max(I))), for some polynomial p. It is also obvious that 
pseudopolynomial algorithms may perhaps be constructed for number problems, 
i.e. those problems � for which there does not exist a polynomial p such that 
max(I) � p(�I�) for each instance I of �. The KNAPSACK problem as well as 
TRAVELING SALESMAN and INTEGER PROGRAMMING belong to num-
ber problems; HAMILTONIAN CIRCUIT and SATISFIABILITY do not. How-
ever, there might be number problems for which pseudopolynomial algorithms 
cannot be constructed [GJ78]. 

The above reasoning leads us to a deeper characterization of a class of NP-
complete problems by distinguishing problems which are NP-complete in the 
strong sense [GJ78, GJ79]. 

For a given decision problem � and an arbitrary polynomial p, let �p denote 
the subproblem of � which is created by restricting � to those instances for 
which max(I) � p(�I�). Thus �p is not a number problem. 

Decision problem � is NP-complete in the strong sense (strongly NP-
complete) if � � NP and there exists a polynomial p defined for integers for 
which �p is NP-complete. 

It follows that if � is NP-complete and it is not a number problem, then it is 
NP-complete in the strong sense. Moreover, if � is NP-complete in the strong 
sense, then the existence of a pseudopolynomial algorithm for � would be 
equivalent to the existence of polynomial algorithms for all NP-complete prob-
lems, and thus would be equivalent to the equality P = NP. It has been shown 
that TRAVELING SALESMAN and 3-PARTITION are examples of number 
problems that are NP-complete in the strong sense [GJ79, Pap94]. 

From the above definition it follows that to prove NP-completeness in the 
strong sense for some decision problem �, one has to find a polynomial p for 
which �p is NP-complete, which is usually not an easy way. To make this proof 
easier one may use the concept of pseudopolynomial transformation [GJ78]. 
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To end this section, let us stress once more that the membership of a given 
search problem in class FP or in the class of NP-hard problems does not depend 
on the chosen encoding scheme if this scheme is reasonable as defined earlier. 
The differences in input lengths for a given instance that follow from particular 
encoding schemes have only influence on the complexity of the polynomial (if 
the problem belongs to class FP) or on the complexity of the exponential algo-
rithm (if the problem is NP-hard). On the other hand, if numbers are written 
unary, then pseudopolynomial algorithms would become polynomial because of 
the artificial increase in input lengths. However, problems NP-hard in the strong 
sense would remain NP-hard even in the case of such an encoding scheme. Thus, 
they are also called unary NP-hard [LRKB77]. 

2.3 Graphs and Networks  

2.3.1 Basic Notions  

A graph is a pair G = (V , E ) where V  is the set of vertices or nodes, and E  is 
the set of edges. If E  is a binary relation over V , then G is called a directed 
graph (or digraph). If E  is a set of two-element subsets of V , i.e. E  � P 2(V ), 
then G is an undirected graph. 

A graph G' = (V ', E') is a subgraph of G = (V , E ) (denoted by G' � G), if 
V ' � V , and E' is the set of all edges of E  that connect vertices of V ' . 

Let G1 = (V 1 , E
 1) and G2 = (V 2 , E

 2) be graphs whose vertex sets V 1 and 
V 2 are not necessarily disjoint. Then G1 � G2 = (V 1 � V 2 , E

 1 � E
 2) is the un-

ion graph of G1 and G2 , and G1 � G2 = (V 1 � V 2 , E
 1 � E

 2) is the intersection 
graph of G1 and G2 .  

Digraphs G1 and G2 are isomorphic if there is a bijective mapping �: V 1 � 
V 2 such that (v1 , v2) � E

 1 if and only if (�(v1) , �(v2)) � E
 2 . 

A (undirected) path in a graph or in a digraph G = (V , E ) is a sequence 
i1 ,..., ir of distinct nodes of V  satisfying the property that either (ik , ik+1) � E  or 
(ik+1 , ik) � E  for each k = 1,..., r � 1. A directed path is defined similarly, except 
that (ik , ik+1) � E  for each k = 1,..., r � 1. A (undirected) cycle is a path together 
with an edge (ir , i1) or (i1 , ir). A directed cycle is a directed path together with the 
edge (ir , i1). We will call a graph (digraph) G acyclic if it contains no (directed) 
cycle. 

Two vertices i and j of G are said to be connected if there is at least one un-
directed path between i and j. G is connected if all pairs of vertices are connect-
ed; otherwise it is disconnected.  
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Let v and w be vertices of the digraph G = (V , E ). If there is a directed path 
from v to w, then w is called successor of v, and v is called predecessor of w. If 
(v, w) � E , then vertex w is called immediate successor of v, and v is called im-
mediate predecessor of w. The set of immediate successors of vertex v is denoted 
by isucc(v); the sets succ(v), ipred(v), and pred(v) are defined similarly. The car-
dinality of ipred(v) is called in-degree of vertex v, whereas out-degree is the car-
dinality of isucc(v). A vertex v that has no immediate predecessor is called initial 
vertex (i.e. ipred(v) = �); a vertex v having no immediate successors is called fi-
nal (i.e. isucc(v) = �). 

Directed or undirected graphs can be represented by means of their adjacen-
cy matrix. If V  = {v1 ,..., vn}, the adjacency matrix is a binary n�n-matrix A. In 
case of a directed graph, A(i, j) = 1 if there is an edge from vi to vj , and A(i, j) = 0 
otherwise. In case of an undirected graph, A(i, j) = 1 if there is an edge between vi 
and vj , and A(i, j) = 0 otherwise. The complexity of storage (space complexity) is 
O(n2

). If the adjacency matrix is sparse, as e.g. in case of trees, there are better 
ways of representation, usually based on linked lists. For details we refer to 
[AHU74].  

In many situations, it is appropriate to use a generalization of graphs called 
hypergraphs. Following [Ber73] a finite hypergraph is a pair H = (V, H ) where 
V is a finite set of vertices, and H � P (V ) is a set of subsets of V. The elements 
of H are referred to as hyperedges. Hypergraphs can be represented as bipartite 
graphs (see below): Let GH be the graph whose vertex set is V � H, and the set 
of edges is defined as {{v, h} | h � H, and v � h }. 

2.3.2 Special Classes of Digraphs 

A digraph G = (V , E ) is called bipartite if its vertex set V  can be partitioned in-
to two subsets V 1 and V 2 such that for each edge (i, j) � E , i � V 1 and j � V 2 .  

If a digraph G = (V , E ) contains no directed cycle and no transitive edges 
(i.e. pairs (u, w) of vertices for which there exists a different directed path from u 
to w), it will be called a precedence graph. A corresponding binary relation will 
be called a precedence relation ≺ over set V . A precedence graph G = (V , E ) 
(we also write (V , ≺), where ≺ is the corresponding precedence relation) can 
always be enlarged to a partially ordered set (poset, see Section 2.1) ≺* by add-
ing transitive edges and all reflexive pairs (v, v) (v � V ) to E . On the other hand, 
given a poset (V , Q ), where Q  is a partial order over set V , we can always con-
struct a precedence graph (V , E ) in the following way: E  is obtained by taking 
those pairs of elements (u, w), u � w, for which no sequence v1 ,..., vk of elements 
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with (u, v1) � Q , (vi , vi+1) � Q  for i = 1,..., k � 1, and (vk , w) � Q  can be found. It 
can be constructed from a given poset in O(�V  �2.8

) time [AHU74]. 
A digraph G = (V , E ) is called a chain if in the corresponding poset (V , Q ) 

for any two vertices v and v' � V , v � v', either (v, v') � Q  or (v', v) � Q  (such a 
poset is usually called a linear order). An anti-chain is a (directed) graph (V , E ) 
where E  = � .  

An out-tree is a precedence graph where exactly one vertex has in-degree 0, 
and all the other vertices have in-degree 1. If G = (V , E ) is an out-tree, then 
graph G' = (V , E �1

) is called an in-tree. An out-forest (in-forest) is a disjoint un-
ion of out-trees (in-trees), respectively. An opposing forest is a disjoint union of 
in-trees and out-trees. 

A precedence graph ({a, b, c, d}, ≺) has N-structure if a ≺ c, b ≺ c, b ≺ d, 
a ≺ /  d, d ≺ /  a, a ≺ /  b, b ≺ /  a, c ≺ /  d, and d ≺ /  c (see also Figure 2.3.1). A prece-
dence graph P is N-free if it contains no subset isomorphic to an N-structure. 

To define another interesting class of graphs let us consider a finite set V  

and a collection (Iv)v�V  of intervals Iv on the reals. This collection defines a par-

tial order ≺ on V  as follows: 

               v ≺ w  
  Iv is entirely before  Iw . 

Such a partial order is called an interval order. Without loss of generality, we 

may assume that the intervals have the form [n1, n2) with n1 and n2 integral. It can 

be shown that ≺  is an interval order if and only if the transitive closure of this 

order does not contain 2K2 (see Figure 2.3.2) as an induced subgraph [Fis70]. 

a b

c d
 

Figure 2.3.1  N-structured precedence graph. 

       

Figure 2.3.2  Graph 2K2 . 

Finally we introduce a class of precedence graphs that has been considered fre-
quently in literature. Let S = (V , ≺) be a precedence graph, and let for each v � 

V , Pv = (V v , ≺v) be a precedence graph, where all the sets V v (v � V ) and V  

are pair-wise disjoint. Let U = �
v �V

V v . Define (U, ≺U) as the following prece-

dence graph: for p, q � U, p ≺U q if either there are v, v' � V  with v ≺ v' such 
that p is a final vertex in (V v , ≺v) and q is an initial vertex in (V v' , ≺v'), or there 
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is v � V  with p, q � V v , and p ≺v q. Then (U, ≺U) is called the lexicographic 
sum of (Pv)v �V  over S. Notice that each vertex v of the digraph S = (V , ≺) is re-
placed by the digraph (V v , ≺v) , and if vertex v is connected to v' in S (i.e. v ≺ 
v'), then each final vertex of (V v , ≺v) is connected to each initial vertex of (V v' , 

≺v') . 

We need two special cases of lexicographic sums: If S = (V ,≺) is a chain, 
the lexicographic sum of (Pv)v �V  over S is called a linear sum. If S is an anti-
chain (i.e. v1 ≺ v2 � v1 = v2) , then the lexicographic sum of (Pv)v �V  over S is 
called disjoint sum. A series-parallel precedence graph is a precedence graph 
that can be constructed from one-vertex precedence graphs by repeated applica-
tion of the operations linear sum and disjoint sum. Opposing forests are exam-
ples of series-parallel digraphs. Another example is shown in Figure 2.3.3.  

Without proof we mention some properties of series-parallel graphs. A prec-
edence graph G = (V ,E ) is series-parallel if and only if it is N-free. The question 
if a digraph is series-parallel can be decided in O(�V � + �E �) time [VTL82].  

The structure of a series-parallel graph as it is obtained by successive appli-
cations of linear sum and disjoint sum operations can be displayed by a decom-
position tree. Figure 2.3.4 shows a decomposition tree for the series-parallel 
graph of Figure 2.3.3. Each leaf of the decomposition tree is identified with a 
vertex of the series-parallel graph. An S-node represents an application of linear 
sum (series composition) to the sub-graphs identified with its children; the order-
ing of these children is important: we adopt the convention that left precedes 
right. A P-node represents an application of the operation of disjoint sum (paral-
lel composition) to the subgraphs identified with its children; the ordering of 
these children is of no relevance for the disjoint sum. The series or parallel rela-
tionship of any pair of vertices can be determined by finding their least common 
ancestor in the decomposition tree. 

1

5 6 7 8

9

2 3 4

 

Figure 2.3.3 Example of a series-parallel digraph. 
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1

S

P

S S

2 S P P

P 9 3 4 7 8

5 6  

Figure 2.3.4 Decomposition tree of the digraph of Figure 2.3.3. 

2.3.3 Networks 

In this section the problem of finding a maximum flow in a network is consid-
ered. We will analyze the subject rather thoroughly because of its importance for 
many scheduling problems. 

By a network we will mean a directed graph G = (V , E ) without loops and 
parallel edges, where each edge e � E  is assigned a capacity c(e) � IR�0, and 
sometimes a cost of a unit flow. Usually in the network two vertices s and t, 
called a source and a sink, respectively, are specified. 

A real-valued flow function � is to be assigned to each edge such that the fol-
lowing conditions hold for some F � IR�0 : 

0 � �(e) � c(e) for each e � E  , (2.3.1) 

�
e �IN(v)

 �(e)  � �
e �OUT(v)

 �(e) =
�
�
  

 

 

 

 
�F for v = s 

0 for v � V  � {s, t} 

F for v = t , 

 

 (2.3.2) 

where IN(v) and OUT(v) are the sets of edges incoming to vertex v and outgoing 
from vertex v, respectively. The total flow (the value of flow) F of � is defined by 

F := �
e �IN(t)

 �(e)  � �
e �OUT(t)

 �(e) . (2.3.3) 

Given a network, in the maximum flow problem we want to find a flow function 
� which obeys the above conditions and for which total flow F is at its maxi-
mum. 
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Now, some important notions will be defined and their properties will be 
discussed. Let S  be a subset of the set of vertices V  such that s � S and t 	 S, 
and let S  

_
  be the complement of S, i.e. S  

_
  = V  � S. Let (S , S  

_
) denote a set of edg-

es of network G, each of which has its starting vertex in S and its target vertex in 
S
_

. Set (S  

_
, S ) is defined in a similar way. Given some subset S � V , either set, 

(S , S  

_
) and (S  

_
, S ), will be called cut defined by S . 

Following definition (2.3.3) we see that the value of flow is measured at the 
sink of the network. It is however, possible to measure this value at any cut 
[Eve79, FF62]. 

Lemma 2.3.1  For each subset of vertices S � V , we have 

F = �
e �(S , S

_
 )
 �(e) � �

e �(S
_

 , S )
 �(e) . (2.3.4) 

  

Let us denote by c(S) the capacity of a cut defined by S , 

c(S) = �
e �(S , S

_
 )
 c(e) .  (2.3.5) 

It is possible to prove the following lemma, which specifies a relation be-
tween the value of a flow and the capacity of any cut [FF62]. 

Lemma 2.3.2  For any flow function � having the value F and for any cut de-
fined by S we have 

F � c(S) . (2.3.6) 
  

From the above lemma we get immediately the following corollary that specifies 
a relation between maximum flow and a cut of minimum capacity. 

Corollary 2.3.3  If F = c(S), then F is at its maximum, and S defines a cut of 
minimum capacity.  

Let us now define, for a given flow �, an augmenting path as a path from s to t, 
(not necessarily directed), which can be used to increase the value of the flow. If 
an edge e belonging to that path is directed from s to t, then �(e) < c(e), otherwise 
no increase in the flow value on that path would be possible. On the other hand, 
if such an edge e is directed from t to s, then �(e) > 0 must be satisfied in order to 
be able to increase the flow value F by decreasing �(e). 

Example 2.3.4  As an example let us consider the network given in Figure 
2.3.5(a). Each edge of this network is assigned two numbers, c(e) and �(e). It is 
easy to check that flow � in this network obeys conditions (2.3.1) and (2.3.2) and 
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its value is equal to 3. An augmenting path is shown in Figure 2.3.5(b). The flow 
on edge (5, 4) can be decreased by one unit. All the other edge flows on that path 
can be increased by one unit. The resulting network with a new flow is shown in 
Figure 2.3.5(c).  

(a) c(e) / �(e) 
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2/1

3/2

2/2

1/0
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2/1

1/1
1

2

3

4

5

6

ts

 

(b) 
�(2,4) = 1 < c(2,4)

�(5,6) = 1 < c(5,6)

�(1,2) = 1 < c(1,2)

1

2 4

5

6
ts

�(5,4) = 1 > 0

 

(c) c(e) / �'(e) 
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Figure 2.3.5 A network for Example 2.3.4: 
 (a) a flow �(e) is assigned to each edge, 
 (b) an augmenting path, 
 (c) a new flow �'(e).  

The first method proposed for the construction of a flow of a maximum value 
was given by Ford and Fulkerson [FF62]. This method consists in finding an 
augmenting path in a network and increasing the flow value along this path until 
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no such path remains in the network. Convergence of such a general method 
could be proved for integer capacities only. A corresponding algorithm is of 
pseudopolynomial complexity [FF62, Eve79]. 

An important improvement of the above algorithm was made by Edmonds 
and Karp [EK72]. They showed that if the shortest augmenting path is chosen at 
every step, then the complexity of the algorithm reduces to O(�V �3�E �), no matter 
what are the edge capacities. Further improvements in algorithmic efficiency of 
network flow algorithm were made by Dinic [Din70] and Karzanov [Kar74], 
whose algorithms' running times are O(�V �2�E �) and O(�V �3), respectively. An al-
gorithm proposed by Cherkassky [Che77] allows for solving the max-flow prob-
lem in time O(�V �2�E �1/2

) . 
Below, Dinic's algorithm will be described, since despite its relatively high 

worst case complexity function, its average running time is low [Che80], and the 
idea behind it is quite simple. It uses the notion of a layered network which con-
tains all the shortest paths in a network. This allows for a parallel increase of 
flows in all such paths, which is the main reason of the efficiency of the algo-
rithm. 

In order to present this algorithm, the notion of usefulness of an edge for a 
given flow is introduced. We say that edge e having flow �(e) is useful from u to 
v, if one of the following conditions is fulfilled: 
1)  if the edge is directed from u to v then �(e) < c(e) ; 
2)  otherwise, �(e) > 0 . 

For a given network G = (V , E) and flow �, the following algorithm deter-
mines a corresponding layered network. 

Algorithm 2.3.5  Construction of a layered network for a given network G = 
(V , E) and flow function � [Din70]. 

begin 
Set V 0 := {s}; T := {�}; i := 0; 

while t 	 T do 
 begin 
 Construct subset T := {v � v 	 V j for j � i and there exists a useful edge  
  from any of the vertices of V i to v}; 

  -- subset T contains vertices comprising a new layer of the layered network 

 V i+1 := T ; -- a new layer of the network has been constructed 

 i := i+1; 
 if T = � then exit; 

  -- no layered network exists, the flow value F is at its maximum 
 end; 
l := i; V l := {t}; 
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for j := 1 to l do 

 begin 

E j := {e � e is a useful edge from a vertex belonging to layer V j�1 to a vertex 
belonging to layer V j}; 

 for all e � E j do 

  if e = (u,v) and u � V j�1 and v � V j 

  then c~(e) := c(e) � �(e) 
  else  
   if e = (v,u) and u � V j�1 and v � V j 

   then  
    begin 

    c~(e) := �(e); 

    Change the orientation of the edge, so that e = (u,v); 
    end; 

 end; -- a layered network with new edges and capacities has been constructed 

end; 
In such a layered network a new flow function �~ with �~ = 0 for each edge e is as-
sumed. Then a maximal flow is searched for, i.e. one such that for each path 
v0 (= s), v1 , v2 ,..., vl�1 , vl (= t), where ej = (vj�1 , vj) � E j and vj � V j , j = 1, 
2,..., l, there exists at least one edge e such that �~(ej) = c~(ej) . 

Let us note, that such a maximal flow may not be of maximum value. This 
fact is illustrated in Figure 2.3.6 where all capacities c~(e) = 1. The flow depicted 
in this figure is maximal and its value F = 1. It is not hard, however, to construct 
a flow of value F = 2 . 

t

ba

s

c d

� = 1

F = 1

0V 1 2 3

� = 1

� = 1

V V V

 

Figure 2.3.6 An example of a maximal flow which is not of maximum value. 
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The construction of a maximal flow for a given layered network is shown below. 
It consists in finding augmenting paths by means of a labeling procedure. For 
this purpose a depth first search label algorithm is used, that labels all the nodes 
of the layered network, i.e. assigns to node u, if any, a label lab(e) that corre-
sponds to edge e = (v, u) in a layered network. The algorithm uses for each node v 
a list isucc(v) of all immediate successors of v (i.e. all nodes u for which an arc 
(v, u) exists in the layered network). Let us note that, if v belongs to layer V j , 
then u � isucc(v) belongs to layer V i+1 , and edge (v, u) � E j . The algorithm uses 
recursively an algorithm label(v) that labels nodes being successors of v. Boolean 
variable new(v) is used to check whether or not a given node has been visited and 
consequently labeled. The algorithms are as follows. 

Algorithm 2.3.6  label(v). 
begin 
new(v) := false; -- node v has been visited and labeled 

for all u � isucc(v) do 

if new(u) then 

 begin 

 if e = (v, u) � �
j=1

l
 E j then lab(u) := e; 

 call label(u); 

 end; -- all successors of node v have been labeled 

end; 

Algorithm 2.3.7  label. 
begin 
lab(s) := 0; -- a source of layered network has been labeled 

for all v � V do new(v) := true; -- initialization 

call label(s); 

end; -- all successors of s in the layered network are now visited and labeled 

Using the above algorithms as subroutines the following algorithm constructs a 
maximal flow in the layered network. The algorithm will stop whenever no aug-
menting path exists; in this case the flow is maximal [Din70] (see also [Eve79]). 

Algorithm 2.3.8  Construction of a maximal flow in a layered network [Din70]. 
begin 
for all e � �

j=1

l
 E j do 

 begin 
� �1(e) := �~(e) := 0; 

 c1(e) := c~(e); 
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 end; -- initialization phase 

loop 
 call label; -- all nodes, if any, have been labeled 

 if node t is not labeled then exit; 
  -- no augmenting path exists 
  -- a maximal flow in a layered network has been constructed 

 Find an augmenting path ap starting from node t backward and using labels; 

� ! := min{c1(e) � e � ap}; 

 for all e � ap do 

  begin 

� � �1(e) := !; 

� � �~(e) := �~(e) + �1(e); 

  c1(e) := c1(e) � !; 

  end; -- the value of a flow is increased along an augmenting path 

 for all e with c1(e) = 0 do Delete e from the layered network; 

 repeat 
  Delete all nodes which have either no incoming or no outgoing edges; 

  Delete all edges incident with such nodes; 

 until all such edges and nodes are deleted; 

 for all e � �
j=1

l
 E j do �1(e) := 0; 

end loop; 

end; 

The flow constructed by the above algorithm is used to obtain a new flow in the 
original network. Next, a new layered network is created and the above proce-
dure is repeated until no new layered network can be constructed. The obtained 
flow has a maximum value. This is summarized in the next algorithm.  

Algorithm 2.3.9  Construction of a flow of maximum value [Din70]. 
begin 
�(e) := 0 for all e � E ; 

loop 
 call Algorithm 2.3.5; 
  -- a new layered network is constructed for a flow function �  
  -- if no layered network exists, then the flow has maximum value  
 call Algorithm 2.3.8; -- a new maximal flow �~ is constructed 

 for all e � E  do 

  begin 

  if u � V j�1 and v � V j and e = (u, v) � E   
  then �(e) := �(e) + �~(e); 
   -- the value of the flow increases if edge e has the same direction  
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   -- in the original and in the layered network 

  if u � V j�1 and v � V j and e = (v, u) � E   
  then �(e) := �(e) � �~(e); 
   -- the value of the flow decreases if edge e has opposite directions   
   -- in the original and in the layered network 
  end; 
 -- the flow in the original network is augmented using the  
 -- constructed maximal flow values 
end loop; 

end; 

To analyze the complexity of the above approach let us call one loop of Algo-
rithm 2.3.9 a phase. We see that one phase consists of finding a layered network, 
constructing a maximal flow �~ in the latter and improving the flow in the original 
network. It can be proved [Din70, Eve79] that the number of phases is bounded 
from above by O(�V �). The most complex part of each phase is to find a maximal 
flow in a layered network. Since in Algorithm 2.3.8 a depth first search proce-
dure has been used for visiting a network, the complexity of one phase is 
O(�V ��E �). The overall complexity of Dinic's approach is thus O(�V �2�E �) . 

Further generalizations of the subject include networks with lower bounds 
on edge flows, networks with linear total cost function of the flow where a flow 
of maximum value and of minimum total cost is looked for, and a transportation 
problem being a special case of the latter. All these problems can be solved in 
time bounded from above by a polynomial in the number of nodes and edges of 
the network. We refer the reader to [AMO93] or [Law76] where a detailed analy-
sis of the subject is presented. 

2.4 Enumerative Methods  

In this section we describe very briefly two general methods of solving many 
combinatorial problems 6, namely the method of dynamic programming and the 
method of branch and bound. Few remarks should be made at the beginning, 
concerning the scope of this presentation. First, we will not go into details, since 
both methods are broadly treated in literature, including basic scheduling books 
[Bak74, Len77, Rin76a], and our presentation should only fulfill the needs of this 
book. In particular, we will not perform a comparative study of the methods - the 
interested reader is referred to [Cof76]. We will also not present examples, since 
they will be given in the later chapters. 

                                                 
6 Dynamic programming can also be used in a wider context (see e.g. [Den82, How69, 

DL79]). 
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Before passing to the description of the methods let us mention that they are 
of implicit enumeration variety, because they consider certain solutions only in-
directly, without actually evaluating them explicitly. 

2.4.1 Dynamic Programming  

Fundamentals of dynamic programming were elaborated by Bellman in the 
1950's and presented in [Bel57, BD62]. The name "Dynamic Programming" is 
slightly misleading, but generally accepted. A better description would be "recur-
sive" or "multistage" optimization, since it interprets optimization problems as 
multistage decision processes. It means that the problem is divided into a number 
of stages, and at each stage a decision is required which impacts on the decisions 
to be made in later stages. Now, Bellman's principle of optimality is applied to 
draw up a recursive equation which describes the optimal criterion value at a 
given stage in terms of the previously obtained one. This principle can be formu-
lated as follows: Starting from any current stage, an optimal policy for the rest of 
the process, i.e. for subsequent stages, is independent of the policy adopted in the 
previous stages. Of course, not all optimization problems can be presented as 
multistage decision processes for which the above principle is true. However, the 
class of problems for which it works is quite large. For example, it contains prob-
lems with an additive optimality criterion, but also other problems as we will 
show in Sections 5.1.1 and 10.4.3. 

If dynamic programming is applied to a combinatorial problem, then in order 
to calculate the optimal criterion value for any subset of size k, we first have to 
know the optimal value for each subset of size k � 1. Thus, if our problem is 
characterized by a set of n elements, the number of subsets considered is 2n. It 
means that dynamic programming algorithms are of exponential computational 
complexity. However, for problems which are NP-hard (but not in the strong 
sense) it is often possible to construct pseudopolynomial dynamic programming 
algorithms which are of practical value for reasonable instance sizes.  

2.4.2 Branch and Bound  

Suppose that given a finite 7 set S of feasible solutions and a criterion " : S � IR , 
we want to find S* � S such that "(S*) = min

S �S
{"(S)} . 

Branch and bound finds S* by implicit enumeration of all S � S through ex-
amination of increasingly smaller subsets of S. These subsets can be treated as 
sets of solutions of corresponding sub-problems of the original problem. This 

                                                 
7 In general, |S | can be infinite (see, e.g. [Mit70, Rin76b]). 
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way of thinking is especially motivated if the considered problems have a clear 
practical interpretation, and we will adopt this interpretation in the book.  

As its name implies, the branch and bound method consists of two funda-
mental procedures: branching and bounding. Branching is the procedure of parti-
tioning a large problem into two or more sub-problems usually mutually exclu-
sive 8. Furthermore, the sub-problems can be partitioned in a similar way, etc. 
Bounding calculates a lower bound on the optimal solution value for each sub-
problem generated in the branching process. Note that the branching procedure 
can be conveniently represented as a search (or branching) tree. At level 0, this 
tree consists of a single node representing the original problem, and at further 
levels it consists of nodes representing particular sub-problems of the problem at 
the previous level. Edges are introduced from each problem node to each of its 
sub-problems nodes. A list of unprocessed nodes (also called active nodes) corre-
sponding to sub-problems that have not been eliminated and whose own sub-
problems have not yet been generated, is maintained.  

                                                 
8 If this is not the case, we speak rather about a division of S instead of its partition. 

Suppose that at some stage of the branch and bound process a (complete) so-
lution S of criterion value "(S) has been obtained. Suppose also that a node en-
countered in the process has an associated lower bound LB > "(S). Then the node 
needs not be considered any further in the search for S*, since the resulting solu-
tion can never have a value less than "(S). When such a node is found, it is elimi-
nated, and its branch is said to be fathomed, since we do not continue the bound-
ing process from it. The solution used for checking if a branch is fathomed is 
sometimes called a trial solution. At the beginning it may be found using a spe-
cial heuristic procedure, or it can be obtained in the course of the tree search, e.g. 
by pursuing the tree directly to the bottom as rapidly as possible. At any later 
stage the best solution found so far can be chosen as a trial one. The value "(S) 
for a trial solution S is often called an upper bound. Let us mention that a node 
can be eliminated not only on the basis of lower bounds but also by means of so-
called elimination criteria provided by dominance properties or feasibility condi-
tions developed for a given problem.  

The choice of a node from the set of generated nodes which have so far nei-
ther been eliminated nor led to branching is due to the chosen search strategy. 
Two search strategies are used most frequently: jumptracking and backtracking. 
Jumptracking implements a frontier search where a node with a minimal lower 
bound is selected for examination, while backtracking implements a depth first 
search where the descendant nodes of a parent node are examined either in an 
arbitrary order or in order of non-decreasing lower bounds. Thus, in the jump-
tracking strategy the branching process jumps from one branch of the tree to an-
other, whereas in the backtracking strategy it first proceeds directly to the bottom 
along some path to find a trial solution and then retraces that path upward up to 
the first level with active nodes, and so on. It is easy to notice that jumptracking 
tends to construct a fairly large list of active nodes, while backtracking maintains 
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relatively few nodes on the list at any time. However, an advantage of jumptrack-
ing is the quality of its trial solutions which are usually much closer to optimum 
than the trial solutions generated by backtracking, especially at early stages. 
Deeper comparative discussion of characteristics of the search strategies can be 
found in [Agi66, LW66]. 

Summing up the above considerations we can say that in order to implement 
the scheme of the branch and bound method, i.e. in order to construct a branch 
and bound algorithm for a given problem, one must decide about 
(i) the branching procedure and the search strategy,  
(ii) the bounding procedure or elimination criteria. 

Making the above decisions one should explore the problem specificity and 
observe the compromise between the length of the branching process and time 
overhead concerned with computing lower bounds or trial solutions. However, 
the actual computational behavior of branch and bound algorithms remains un-
predictable and large computational experiments are necessary to recognize their 
quality. It is obvious that the computational complexity function of a branch and 
bound algorithm is exponential in problem size when we search for an optimal 
solution. However, the approach is often used for finding suboptimal solutions, 
and then we can obtain polynomial time complexity by stopping the branching 
process at a certain stage or after a certain time period elapsed. 

2.5 Heuristic and Approximation Algorithms  

As already mentioned, scheduling problems belong to a broad class of combina-
torial optimization problems (cf. Section 2.2.1). To solve these problems one 
tends to use optimization algorithms which for sure always find optimal solu-
tions. However, not for all optimization problems, polynomial time optimization 
algorithms can be constructed. This is because some of the problems are NP-
hard. In such cases one often uses heuristic (suboptimal) algorithms which tend 
toward but do not guarantee the finding of optimal solutions for any instance of 
an optimization problem. Of course, the necessary condition for these algorithms 
to be applicable in practice is that their worst-case complexity function is bound-
ed from above by a low-order polynomial in the input length. A sufficient condi-
tion follows from an evaluation of the distance between the solution value they 
produce and the value of an optimal solution. This evaluation may concern the 
worst case or a mean behavior.  

2.5.1 Approximation Algorithms 

We will call heuristic algorithms with analytically evaluated accuracy approxi-
mation algorithms. To be more precise, we give here some definitions, starting  
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with the worst case analysis [GJ79]. 
If � is a minimization (maximization) problem, and I is any instance of it, 

we may define the ratio RA(I) for an approximation algorithm A as 

RA(I) = A(I)
OPT(I) (RA(I) = OPT(I)

A(I) ) , 

where A(I) is the value of the solution constructed by algorithm A for instance I, 
and OPT(I) is the value of an optimal solution for I. The absolute performance 
ratio RA for an approximation algorithm A for problem � is then given as  

RA = inf{r � 1 � RA(I) � r for all instances of �} . 

The asymptotic performance ratio R#
A  for A is given as 

R#
A  = inf{r � 1 � for some positive integer K, RA(I) � r for 

 all instances of � satisfying OPT(I) � K } . 

The above formulas define a measure of the "goodness" of approximation 
algorithms. The closer R#

A  is to 1, the better algorithm A performs.  
More formally, an algorithm A is called �-approximation algorithm for prob-

lem �$�if for all instances I it constructs a feasible solution such that 

|A(I) – OPT(I)| � % & OPT(I), 

where % > 0, � = 1 + % for a minimization problem and � = 1 � %  for a maximiza-
tion problem' For a minimization problem, we have A(I) � (1 + %) OPT(I), while 

for a maximization problem there is A(I) � (1 � %) OPT(I). The worst case ratio � 
(or in other words, the absolute performance ratio RA) is the quality measure for 
an approximation algorithm. However, for some combinatorial problems it can 
be proved that there is no hope of finding an approximation algorithm of a speci-
fied accuracy, i.e. this question is as hard as finding a polynomial time algorithm 
for any NP-complete problem. For other combinatorial problems an approxima-
tion algorithm can be proposed, and even an approximation scheme can be de-
signed. An approximation scheme is a family of (1 + %)-approximation algo-

rithms over all 0 < % < 1 for a minimization problem, or a family of (1 � %)-
approximation algorithms for a maximization problem. A polynomial time ap-
proximation scheme (PTAS) is an approximation scheme of the polynomial time 

complexity in the instance size, while a fully polynomial time approximation 
scheme (FPTAS) is an approximation scheme with the complexity bounded by 

the polynomial in the instance size and in 1/%. Obviously, such types of approxi-

mation methods are especially interesting, since they allow finding a trade-off be-

tween the quality of a solution and the time complexity necessary to construct it. 

Fully polynomial time approximation schemes are the best methods which could 

be proposed for an NP-hard problem.  
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The relations between some classes of problems with respect to the exist-

ence of methods solving them, discussed e.g. by Shuurman and Woeginger 

[SW07], are shown in Figure 2.5.1. It completes the presentation of the basic 

complexity classes of combinatorial problems, given in Section 2.2.3, with some 

algorithmic issues. Particular classes depicted in this figure correspond to prob-

lems from NP possessing polynomial time algorithms (P), pseudopolynomial 

time algorithms, polynomial time approximation algorithms with finite/positive  

worst case ratio � for minimization/maximization case (APX), or approximation 

schemes (PTAS and FPTAS).  

 

 
Figure 2.5.1  Relations between classes of problems possessing various types of 

solution methods [SW07]. 

 
Analysis of the worst-case behavior of an approximation algorithm may be 

complemented by an analysis of its mean behavior. This can be done in two 
ways. The first consists in assuming that the parameters of instances of the con-
sidered problem � are drawn from a certain distribution D and then one analyzes 
the mean performance of algorithm A. 

In such an analysis it is usually assumed that all parameter values are realiza-
tions of independent probabilistic variables of the same distribution function. 
Then, for an instance In of the considered optimization problem (n being a num-
ber of generated parameters) a probabilistic value analysis is performed. The re-
sult is an asymptotic value OPT(In) expressed in terms of problem parameters. 
Then, algorithm A is probabilistically evaluated by comparing solution values 
A(In) it produces (A(In) being independent probabilistic variables) with OPT(In) 
[Rin87]. The two evaluation criteria used are absolute error and relative error. 
The absolute error is defined as a difference between the approximate and opti-
mal solution values 

P 
FPTAS 

PTAS 

APX 

NP pseudo-
polynomial 
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an = A(In) � OPT(In) . 

On the other hand, the relative error is defined as the ratio of the absolute error 
and the optimal solution value 

bn = 
A(In) � OPT(In)

OPT(In)
  . 

Usually, one evaluates the convergence of both errors to zero. Three types of 
convergence are distinguished. The strongest, i.e. almost sure convergence for a 
sequence of probabilistic variables yn which converge to constant c is defined as 

Pr{lim
n�#

yn = c } = 1 . 

The latter implies a weaker convergence in probability, which means that for 
every % > 0 , 

lim
n�#

 Pr {�yn � c� > %} = 0 . 

The above convergence implies the first one if the following additional condition 
holds for every % > 0 : 

�
j=1

#
 Pr {�yn � c� > %} < # . 

Finally, the third type of convergence, convergence in expectation holds if 

lim
n�#

 �E(yn) � c� = 0 , 

where E(yn) is the mean value of yn . 

It follows from the above definitions, that an approximation algorithm A is 
the best from the probabilistic analysis point of view if its absolute error almost 
surely converges to 0. Algorithm A is then called asymptotically optimal. 

At this point one should also mention an analysis of the rate of convergence 
of the errors of approximation algorithms which may be different for algorithms 
whose absolute or relative errors are the same. Of course, the higher the rate, the 
better the performance of the algorithm. 

It is rather obvious that the mean performance can be much better than the 
worst case behavior, thus justifying the use of a given approximation algorithm. 
A main obstacle is the difficulty of proofs of the mean performance for realistic 
distribution functions. Thus, the second way of evaluating the mean behavior of 
heuristic algorithms are computational experiments, which is still used very of-
ten. In the latter approach the values of the given criterion, constructed by the 
given heuristic algorithm and by an optimization algorithm are compared. This 
comparison should be made for a representative sample of instances. There are 
some practical problems which follow from the above statement and they are 
discussed in [SVW80]. 
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2.5.2 Local Search Heuristics 

In recent years more generally applicable heuristic algorithms for combinatorial 
optimization problems became known under the name local search. Primarily, 
they are designed as universal global optimization methods operating on a high-
level solution space in order to guide heuristically lower-level local decision 
rules' performance to their best outcome. Hence, local search heuristics are often 
called meta-heuristics or strategies with knowledge-engineering and learning ca-
pabilities reducing uncertainty while knowledge of the problem setting is ex-
ploited and acquired in order to improve and accelerate the optimization process. 
The desire to achieve a certain outcome may be considered as the basic guide to 
appropriate knowledge modification and inference as a process of transforming 
some input information into the desired goal dependent knowledge. 

Hence, in order to be able to transform knowledge, one needs to perform in-
ference and to have memory which supplies the background knowledge needed 
to perform the inference and records the results of the inference for future use. 
Obviously, an important issue is the extent to which problem-specific knowledge 
must be used in the construction of learning algorithms (in other words the pow-
er and quality of inferencing rules) capable to provide significant performance 
improvements. Very general methods having a wide range of applicability in 
general are weak with respect to their performance. Problem specific methods 
achieve a highly efficient learning but with little use in other problem domains. 
Local search strategies are falling somewhat in between these two extremes, 
where genetic algorithms or neural networks tend to belong to the former catego-
ry while tabu search or simulated annealing etc. are counted as examples of the 
second category. Anyway, these methods can be viewed as tools for searching a 
space of legal alternatives in order to find a best solution within reasonable time 
limitations. What is required are techniques for rapid location of high-quality so-
lutions in large-size and complex search spaces and without any guarantee of op-
timality. When sufficient knowledge about such search spaces is available a pri-
ori, one can often exploit that knowledge (inference) in order to introduce prob-
lem-specific search strategies capable of supporting to find rapidly solutions of 
higher quality. Without such an a priori knowledge, or in cases where close to 
optimum solutions are indispensable, information about the problem has to be 
accumulated dynamically during the search process. Likewise obtained long-term 
as well as short-term memorized knowledge constitutes one of the basic parts in 
order to control the search process and in order to avoid getting stuck in a locally 
optimal solution. Previous approaches dealing with combinatorially explosive 
search spaces about which little knowledge is known a priori are unable to learn 
how to escape a local optimum. For instance, consider a random search. This can 
be effective if the search space is reasonably dense with acceptable solutions, 
such that the probability to find one is high. However, in most cases finding an 
acceptable solution within a reasonable amount of time is impossible because 
random search is not using any knowledge generated during the search process in 
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order to improve its performance. Consider hill-climbing in which better solu-
tions are found by exploring solutions "close" to a current and best one found so 
far. Hill-climbing techniques work well within a search space with relatively 
"few" hills. Iterated hill-climbing from randomly selected solutions can frequent-
ly improve the performance, however, any global information assessed during the 
search will not be exploited. Statistical sampling techniques are typical alterna-
tive approaches which emphasize the accumulation and exploitation of more 
global information. Generally speaking they operate by iteratively dividing the 
search space into regions to be sampled. Regions unlikely to produce acceptable 
solutions are discarded while the remaining ones will be subdivided for further 
sampling. If the number of useful sub-regions is small this search process can be 
effective. However, in case that the amount of a priori search space knowledge is 
pretty small, as is the case for many applications in business and engineering, this 
strategy frequently is not satisfactory.  

Combining hill-climbing as well as random sampling in a creative way and 
introducing concepts of learning and memory can overcome the above mentioned 
deficiencies. The obtained strategies dubbed "local search based learning" are 
known, for instance, under the names tabu search and genetic algorithms. They 
provide general problem solving strategies incorporating and exploiting problem-
specific knowledge capable even to explore search spaces containing an expo-
nentially growing number of local optima with respect to the problem defining 
parameters. 

A brief outline of what follows is to introduce the reader into extensions of 
the hill-climbing concept which are simulated annealing, tabu search, ejection 
chains, and genetic algorithms. Let us mention that they are particular specifica-
tions of the above mentioned knowledge engineering and learning concept re-
viewed in [Hol75, Mic97, Jon90]. Tabu search develops to become the most 
popular and successful general problem solving strategy. Hence, attention is 
drawn to a couple of tabu search issues more recently developed. e.g. ejection 
chains. Parts of this section can also be found embedded within a problem related 
setting in [CKP95, PG97]. 

To be more specific consider the minimization problem min {"(x) | x � S} 
where " is the objective function, i.e. the desired goal, and S is the search space, 
i.e. the set of feasible solutions of the problem. One of the most intuitive solution 
approaches to this optimization problem is to start with a known feasible solution 
and slightly perturb it while decreasing the value of the objective function. In or-
der to realize the concept of slight perturbation let us associate with every x a 
subset N (x) of S, called neighborhood of x. The solutions in N (x), or neighbors 
of x, are viewed as perturbations of x. They are considered to be "close" to x. 
Now the idea of a simple local search algorithm is to start with some initial solu-
tion and move from one neighbor to another neighbor as long as possible while 
decreasing the objective value. This local search approach can be seen as the 
basic principle underlying many classical optimization methods, like the gradient 
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method for continuous non-linear optimization or the simplex method for linear 
programming. Some of the important issues that have to be dealt with when im-
plementing a local search procedure are how to pick the initial solution, how to 
define neighborhoods and how to select a neighbor of a given solution. In many 
cases of interest, finding an initial solution creates no difficulty. But obviously, 
the choice of this starting solution may greatly influence the quality of the final 
outcome. Therefore, local search algorithms may be run several times on the 
same problem instance, using different (e.g. randomly generated) initial solu-
tions. Whether or not the procedure will be able to significantly ameliorate a poor 
solution often depends on the size of the neighborhoods. The choice of neighbor-
hoods for a given problem is conditioned by a trade-off between quality of the 
solution and complexity of the algorithm, and is generally to be resolved by ex-
periments. Another crucial issue in the design of a local search algorithm is the 
selection of a neighbor which improves the value of the objective function. 
Should the first neighbor found improving upon the current solution be picked, 
the best one, or still some other candidate? This question is rarely to be answered 
through theoretical considerations. In particular, the effect of the selection crite-
rion on the quality of the final solution, or on the number of iterations of the pro-
cedure is often hard to predict (although, in some cases, the number of neighbors 
can rule out an exhaustive search of the neighborhood, and hence, the selection 
of the best neighbor). Here again experiments with various strategies are required 
in order to make a decision. The attractiveness of local search procedures stems 
from their wide applicability and (usually) low empirical complexity (see 
[JPY88] and [Yan90] for more information on the theoretical complexity of local 
search). Indeed, local search can be used for highly intricate problems, for which 
analytical models would involve astronomical numbers of variables and con-
straints, or about which little problem-specific knowledge is available. All that is 
needed here is a reasonable definition of neighborhoods, and an efficient way of 
searching them. When these conditions are satisfied, local search can be imple-
mented to quickly produce good solutions for large instances of the problem. 
These features of local search explain that the approach has been applied to a 
wide diversity of situations, see [PV95, GLTW93, Ree93, AL97]. In the scheduling 
area we would like to emphasize on two excellent surveys, [AGP95] as well as 
[VAL96]. 

Nevertheless, local search in its most simple form, the hill-climbing, stops as 
soon as it encounters a local optimum, i.e., a solution x such that "(x) � "(y) for 
all y in N (x). In general, such a local optimum is not a global optimum. Even 
worse, there is usually no guarantee that the value of the objective function at an 
arbitrary local optimum comes close to the optimal value. This inherent short-
coming of local search can be palliated in some cases by the use of multiple re-
starts. But, because NP-hard problems often possess many local optima, even this 
remedy may not be potent enough to yield satisfactory solutions. In view of this 
difficulty, several extensions of local search have been proposed, which offer the 
possibility to escape local optima by accepting occasional deteriorations of the 
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objective function. In what follows we discuss successful approaches based on 
related ideas, namely simulated annealing and tabu search. Another interesting 
extension of local search works with a population of feasible solutions (instead 
of a single one) and tries to detect properties which distinguish good from bad 
solutions. These properties are then used to construct a new population which 
hopefully contains a better solution than the previous one. This technique is 
known under the name genetic algorithm. 

Simulated Annealing 

Simulated annealing was proposed as a framework for the solution of combinato-
rial optimization problems by Kirkpatrick, Gelatt and Vecchi and, independently, 
by Cerny, cf. [KGV83, Cer85]. It is based on a procedure originally devised by 
Metropolis et al. in [MRR+53] to simulate the annealing (or slow cooling) of sol-
ids, after they have been heated to their melting point. In simulated annealing 
procedures, the sequence of solutions does not roll monotonically down towards 
a local optimum, as was the case with local search. Rather, the solutions trace an 
up-and-down random walk through the feasible set S, and this walk is loosely 
guided in a "favorable" direction. To be more specific, we describe the k 

th itera-
tion of a typical simulated annealing procedure, starting from a current solution 
x. First, a neighbor of x, say y � N (x), is selected (usually, but not necessarily, at 
random). Then, based on the amplitude of ! := "(x) � "(y), a transition from x to y 
(i.e., an update of x by y) is either accepted or rejected. This decision is made 
non-deterministically: the transition is accepted with probability apk(!), where 
apk is a probability distribution depending on the iteration count k. The intuitive 
justification for this rule is as follows. In order to avoid getting trapped early in a 
local optimum, transitions implying a deterioration of the objective function (i.e., 
with ! < 0) should be occasionally accepted, but the probability of acceptance 
should nevertheless increase with !. Moreover, the probability distributions are 
chosen so that apk+1(!) � apk(!). In this way, escaping local optima is relatively 
easy during the first iterations, and the procedure explores the set S freely. But, as 
the iteration count increases, only improving transitions tend to be accepted, and 
the solution path is likely to terminate in a local optimum. The procedure stops if 
the value of the objective function remains constant in L (a termination parame-
ter) consecutive iterations, or if the number of iterations becomes too large. In 
most implementations, and by analogy with the original procedure of Metropolis 
et al. [MRR+53], the probability distributions apk take the form:  

apk (!) = 
�
�
  

 

 

 
1 if ! � 0 

eck! if ! < 0 , 
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where ck+1 � ck � 0 for all k, and ck ��# when k ��#. A popular choice for the 
parameter ck is to hold it constant for a number L(k) of consecutive iterations, 
and then to increase it by a constant factor: ck+1 = (k+1c0. Here, c0 is a small posi-
tive number, and ( is slightly larger than 1. The number L(k) of solutions visited 
for each value of ck is based on the requirement to achieve a quasi equilibrium 
state. Intuitively this is reached if a fixed number of transitions is accepted. Thus, 
as the acceptance probability approaches 0 we would expect L(k) ��#. Therefore 
L(k) is supposed to be bounded by some constant B to avoid long chains of trials 
for large values of ck. It is clear that the choice of the termination parameter and 
of the distributions apk (k = 1, 2,...) (the so-called cooling schedule) strongly in-
fluences the performance of the procedure. If the cooling is too rapid (e.g. if B is 
small and ( is large), then simulated annealing tends to behave like local search, 
and gets trapped in local optima of poor quality. If the cooling is too slow, then 
the running time becomes prohibitive. Starting from an initial solution xstart and 
parameters c0 and ( a generic simulated annealing algorithm can be presented as 
follows. 

Algorithm 2.5.1 Simulated annealing [LA87, AK89]. 
begin 
Initialize (xstart, c0, (); 

k := 0; 

x := xstart; 

repeat 
 Define L(k) or B; 

 for t := 1 to L(k) do 

 begin 

  Generate a neighbor y � N (x); 

  ! := "(x) � "(y); 

  apk(!) := eck!; 

  if random[0,1] � apk(!) then x := y 

 end; 

 ck+1 := (ck; 

 k := k + 1; 

until some stopping criterion is met 
end; 

Under some reasonable assumptions on the cooling schedule, theoretical results 
can be established concerning convergence to a global optimum or the complexi-
ty of the procedure (see [LA87, AK89]). In practice, determining appropriate 
values for the parameters is a part of the fine tuning of the implementation, and 
still relies on experiments. We refer to the extensive computational studies in 
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[JAMS89, JAMS91] for the wealth of details on this topic. If the number of itera-
tions during the search process is large, the repeated computation of the ac-
ceptance probabilities becomes a time consuming factor. Hence, threshold ac-
cepting as a deterministic variant of the simulated annealing has been introduced 
in [DS90]. The idea is not to accept transitions with a certain probability that 
changes over time but to accept a new solution if the amplitude �! falls below a 
certain threshold which is lowered over time. Simulated annealing has been ap-
plied to several types of combinatorial optimization problems, with various de-
grees of success (see [LA87, AK89, and JAMS89, JAMS91] as well as the bibli-
ography [CEG88]). 

As a general rule, one may say that simulated annealing is a reliable proce-
dure to use in situations where theoretical knowledge is scarce or appears diffi-
cult to apply algorithmically. Even for the solution of complex problems, simu-
lated annealing is relatively easy to implement, and usually outperforms a hill-
climbing procedure with multiple starts.  

Tabu Search 

Tabu search is a general framework, which was originally proposed by Glover, 
and subsequently expanded in a series of papers [GL97, Glo77, Glo86, Glo89, 
Glo90a, Glo90b, GM86, WH89]. One of the central ideas in this proposal is to 
guide deterministically the local search process out of local optima (in contrast 
with the non-deterministic approach of simulated annealing). This can be done 
using different criteria, which ensure that the loss incurred in the value of the ob-
jective function in such an "escaping" step (a move) is not too important, or is 
somehow compensated for. 

A straightforward criterion for leaving local optima is to replace the im-
provement step in the local search procedure by a "least deteriorating" step. One 
version of this principle was proposed by Hansen under the name steepest de-
scent mildest ascent (see [HJ90], as well as [Glo89]). In its simplest form, the re-
sulting procedure replaces the current solution x by a solution y � N (x) which 
maximizes ! := "(x) � "(y). If during L (a termination parameter) iterations no 
improvements are found, the procedure stops. Notice that ! may be negative, 
thus resulting in a deterioration of the objective function. Now, the major defect 
of this simple procedure is readily apparent. If ! is negative in some transition 
from x to y, then there will be a tendency in the next iteration of the procedure to 
reverse the transition, and go back to the local optimum x (since x improves on 
y). Such a reversal would cause the procedure to oscillate endlessly between x 
and y. Therefore, throughout the search a (dynamic) list of forbidden transitions, 
called tabu list (hence the name of the procedure) is maintained. The purpose of 
this list is not to rule out cycling completely (this would in general result in 
heavy bookkeeping and loss of flexibility), but at least to make it improbable. In 
the framework of the steepest descent mildest ascent procedure, we may for in-
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stance implement this idea by placing solution x in a tabu list TL after every tran-
sition away from x. In effect, this amounts to deleting x from S. But, for reasons 
of flexibility, a solution would only remain in the tabu list for a limited number 
of iterations, and then should be freed again. To be more specific the transition to 
the neighbor solution, i.e. a move, may be described by one or more attributes. 
These attributes (when properly chosen) can become the foundation for creating 
a so-called attribute based memory. For example, in a 0-1 integer programming 
context the attributes may be the set of all possible value assignments (or chang-
es in such assignments) for the binary variables. Then two attributes which de-
note that a certain binary variable is set to 1 or 0, may be called complementary 
to each other. A move may be considered as the assignment of the compliment 
attribute to the binary variable. That is, the complement of a move cancels the ef-
fect of the considered move. If a move and its complement are performed, the 
same solution is reached as without having performed both moves. Moves even-
tually leading to a previously visited solution may be stored in the tabu list and 
are hence forbidden or tabu. The tabu list may be derived from the running list 
(RL), which is an ordered list of all moves (or their attributes) performed 
throughout the search. That is, RL represents the trajectory of solutions encoun-
tered. Whenever the length of RL is limited the attribute based memory of tabu 
search based on exploring RL is structured to provide a short term memory func-
tion. Now, each iteration consist of two parts: The guiding or tabu process and 
the application process. The tabu process updates the tabu list hereby requiring 
the actual RL; the application process chooses the best move that is not tabu and 
updates RL. For faster computation or storage reduction both processes are often 
combined. The application process is a specification on, e.g., the neighborhood 
definition and has to be defined by the user. The tabu navigation method is a ra-
ther simple approach requiring one parameter l called tabu list length. The tabu 
navigation method disallows choosing any complement of the l most recent 
moves of the running list in order to establish the next move. Hence, the tabu list 
consists of a (complementary) copy of the last part of RL. Older moves are disre-
garded. The tabu status derived from the l most recent moves forces the algo-
rithm to go l moves away from any explored solution before the first step back-
wards is allowed. Obviously, this approach may disallow more moves than nec-
essary to avoid returning to a yet visited solution. This encourages the intention 
to keep l as small as possible without disregarding the principle aim of never ex-
ploring a solution twice. Consequently, if l is too small the algorithm probably 
will return to a local optimum just left. If a solution is revisited the same se-
quence of moves may be repeated consecutively until the algorithm eventually 
stops, i.e. the search process is cycling. Thus danger of cycling favors large val-
ues for l. An adequate value for l has to be adopted with respect to the problem 
structure, the cardinality of the considered problem instances (especially problem 
size), the objective, etc. The parameter l is usually fixed but could also be ran-
domly or systematically varied after a certain number of iterations. The fact that 
the tabu navigation method disallows moves which are not necessarily tabu led to 
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the development of a so called aspiration level criterion which may override the 
tabu status of a move. The basic form of the aspiration level criterion is to choose 
a move in spite of its tabu status if it leads to an objective function value better 
than the best obtained in all preceding iterations. Another possible implementa-
tion would be to create a tabu list TL(y) for every solution y within the solution 
space S. After a transition from x to y, x would be placed in the list TL(y), mean-
ing that further transitions from y to x are forbidden (in effect, this amounts to de-
leting x from N (y)). Here again, x should be dropped from TL(y) after a number 
of transitions. For still other possible definitions of tabu lists, see e.g. [Glo86, 
Glo89, GG89, HJ90, HW90]. Tabu search encompasses many features beyond 
the possibility to avoid the trap of local optimality and the use of tabu lists. Even 
though we cannot discuss them all in the limited framework of this survey, we 
would like to mention two of them, which provide interesting links with artificial 
intelligence and with genetic algorithms. In order to guide the search, Glover 
suggests recording some of the salient characteristics of the best solutions found 
in some phase of the procedure (e.g., fixed values of the variables in all, or in a 
majority of those solutions, recurring relations between the values of the varia-
bles, etc.). In a subsequent phase, tabu search can then be restricted to the subset 
of feasible solutions presenting these characteristics. This enforces what Glover 
calls a "regional intensification" of the search in promising "regions" of the fea-
sible set. An opposite idea may also be used to "diversify" the search. Namely, if 
all solutions discovered in an initial phase of the search procedure share some 
common features, this may indicate that other regions of the solution space have 
not been sufficiently explored. Identifying these unexplored regions may be help-
ful in providing new starting solutions for the search. Both ideas, of search inten-
sification or diversification, require the capability of recognizing recurrent pat-
terns within subsets of solutions. In many applications the aforementioned simple 
tabu search strategies are already very successful, cf. [GLTW93, PV95, OK96]. 
A brief outline of the tabu search algorithm can be presented as follows. 

Algorithm 2.5.2 Tabu search [Glo89, Glo90a, Glo90b]. 
begin 
Initialize (x, tabu list TL, running list RL, aspiration function A(!, k)); 

xbest := x; 
k := 1;  
Specify the tabu list length lk at iteration k; 

RL := �; 

TL := �; 

( := #; 
repeat 
 repeat 
  Generate neighbor y � N (x); 

  ! := "(x) � "(y); 
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  Calculate the aspiration value A(!, k); 

 until A(!, k) < ( or ! = max{ "(x) � "(y) | y is not tabu}; 

 Update RL, i.e. RL := RL � {some attributes of y}; 

 TL := {the last lk non-complimentary entries of RL}; 
 if A(!, k) < ( then ( := A(!, k); 

 x := y; 

 if "(y) < "(xbest) then xbest := y; 

 k := k + 1; 

until some stopping criterion is met 
end; 

As mentioned above, tabu search may be applied in a more advanced way to in-
corporate different means for solid theoretical foundations. Other concepts have 
been developed like the reverse elimination method or the reactive tabu search 
incorporating a memory employing simple reactive mechanisms that are activat-
ed when repetitions of solutions are discovered throughout the search, see e.g. 
[GL97]. 

Ejection Chains 

Variable depth methods, whose terminology was popularized by Papadimitriou 
and Steiglitz [PS82], have had an important role in heuristic procedures for op-
timization problems. The origins of such methods go back to prototypes in net-
work and graph theory methods of the 1950s and 1960s. A class of these proce-
dures called ejection chain methods has proved highly effective in a variety of 
applications, see [LK73] which is a special instance of an ejection chain on the 
TSP, and [Glo91, Glo96, DP94, Pes94, PG97, Reg98].  

Ejection chain methods extend ideas exemplified by certain types of shortest 
path and alternating path constructions. The basic moves for a transition from 
one solution to another are compound moves composed of a sequence of paired 
steps. The first component of each paired step in an ejection chain approach in-
troduces a change that creates a dislocation (i.e., an inducement for further 
change), while the second component creates a change designed to restore the 
system. The dislocation of the first component may involve a form of unfeasibil-
ity, or may be heuristically defined to create conditions that can be usefully ex-
ploited by the second component. Typically, the restoration of the second com-
ponent may not be complete, and hence in general it is necessary to link the 
paired steps into a chain that ultimately achieves a desired outcome. The ejection 
terminology comes from the typical graph theory setting where each of the paired 
steps begins by introducing an element (such as a node, edge or path) that dis-
rupts the graph's preferred structure, and then is followed by ejecting a corre-
sponding element, in a way that recovers a critical portion of the structure. A 
chain of such steps is controlled to assure the preferred structure eventually will 
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be fully recovered (and preferably, fully recovered at various intermediate stages 
by means of trial solutions). The candidate element to be ejected in such instanc-
es may not be unique, but normally comes from a limited set of alternatives. The 
alternating path construction [Ber62] gives a simple illustration. Here, the pre-
ferred graph structure requires a degree constraint to be satisfied at each node 
(bounding the number of edges allowed to enter the node). The first component 
of a paired step introduces an edge that violates such a degree constraint, causing 
too many edges to enter a particular node, and thus is followed by a second com-
ponent that ejects one of the current edges at the node so that the indicated con-
straint may again be satisfied. The restoration may be incomplete, since the eject-
ed edge may leave another node with too few edges, and thus the chain is in-
duced to continue. A construction called a reference structure becomes highly 
useful for controlling such a process, in order to restore imbalances at each step 
by means of special trial solution moves, see [Glo91, Glo96, PG97]. Loosely 
speaking, a reference structure is a representation of a (sometimes several) feasi-
ble solution such that, however, a very small number of constraints may be vio-
lated. Finding a feasible solution from a reference structure must be a trivial task 
which should be performable in constant time. Ejection chain processes of course 
are not limited to graph constructions. For example, they can be based on succes-
sively triggered changes in values of variables, as illustrated by a linked sequence 
of zero-one exchanges in multiple choice integer programming applications or by 
linked "bound escalations" in more general integer programs. The approach can 
readily be embedded in a complete tabu search implementation, or in a genetic 
algorithm or simulated annealing implementation. Such a method can also be 
used as a stand-alone heuristic, which terminates when it is unable to find an im-
proved solution at the conclusion of any of its constructive passes. (This follows 
the customary format of a variable depth procedure.) As our construction pro-
ceeds, we therefore note the trial solutions (e.g. feasible tours in case of a TSP) 
that would result by applying these feasibility-recovering transformations after 
each step, keeping track of the best. At the conclusion of the construction we 
simply select this best trial solution to replace the current solution, provided it 
yields an improvement. In this process, the moves at each level cannot be ob-
tained by a collection of independent and non-intersecting moves of previous 
levels. The list of forbidden (tabu) moves grows dynamically during variable 
depth search iteration and is reset at the beginning of the next iteration. In the 
subsequent algorithmic description we designate the lists of variables (in the ba-
sis of a corresponding LP solution) locked in and out of the solution by the 
names tabu-to-drop and tabu-to-add, where the former contains variables added 
by the current construction (hence which must be prevented from being dropped) 
and the latter contains variables dropped by the current construction (hence 
which must be prevented from being added). The resulting ejection chain proce-
dure is shown in Algorithm 2.5.3. We denote the cost of a solution x by "(x). The 
cost difference of a solution x' and x, i.e. "(x) � "(x'), where x' results from x by 
replacing variable i by variable j will be defined by "ij. The reference structure 
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that results by performing d ejection steps, is denoted by x(d), where d is the 
"depth" of the ejection chain (hence x = x(0) for a given starting solution x). 

Algorithm 2.5.3  Ejection chain [PG97]. 
begin 
Start with an initial solution xstart; 

x := xstart; x* := xstart; 

Let s be any variable in x; -- s is the root 

k* := s; 
repeat 
 d := 0;  -- d is the current search depth 

 while there are variables in x(d) that are not tabu-to-drop  
and variables outside of x(d) that are not tabu-to-add do 

  begin 
  i := k*; 

  d := d + 1;  
  Find the best component move that maintains the reference structure,  

where this 'best' is given by the variable pair i, j for which the gain  
"i*j* = max{"ij | j is not a variable in x(d � 1) and i is a variable  
 in x(d � 1); j is not tabu-to-add; i is not tabu-to-drop}; 

  Perform this move, i.e. introduce variable j* and remove variable i*  
thus obtaining x(d) as a new reference structure at search depth d; 

  j* becomes tabu-to-drop and i* becomes tabu-to-add; 
  end; 
 Let d* denote the search depth at which the best solution x*(d*)with  

"(x*(d*)) = min{"(x*(d)) | 0 < d � n} has been found; 

 if d* > 0 then x* := x*(d*); x := x*; 

until d* = 0; 

end; 

The above procedure describes in its inner repeat ... until loop one it-
eration of an ejection chain search. The while ... do describes one com-
ponent move. Starting with an initially best solution x*(0), the procedure exe-
cutes a construction that maintains the reference structure for a certain number of 
component moves. The new currently best trial solution x*(d*), encountered at 
depth d*, becomes the starting point for the next ejection chain iteration. The it-
erations are repeated as long as an improvement is possible. The maximum depth 
of the construction is reached if all variables in the current solution x are set tabu-
to-drop. The step leading from a solution x to a new solution consists of a vary-
ing number d* of component moves, hence motivating the "variable depth" ter-
minology. A continuously growing tabu list avoids cycling of the search proce-
dure. As an extension of the algorithm (not shown here), the whole repeat 
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... until part could easily be embedded in yet another control loop leading 
to a multi-level (parallel) search algorithm, see [Glo96]. 

Genetic Algorithms 

As the name suggests, genetic algorithms are motivated by the theory of evolu-
tion; they date back to the early work described in [Rec73, Hol75, Sch77], see 
also [Gol89] and [Mic97]. They have been designed as general search strategies 
and optimization methods working on populations of feasible solutions. Working 
with populations permits to identify and explore properties which good solutions 
have in common (this is similar to the regional intensification idea mentioned in 
our discussion of tabu search). Solutions are encoded as strings consisting of el-
ements chosen from a finite alphabet. Roughly speaking, a genetic algorithm 
aims at producing near-optimal solutions by letting a set of strings, representing 
random solutions, undergo a sequence of unary and binary transformations gov-
erned by a selection scheme biased towards high-quality solutions. Therefore, the 
quality or fitness value of an individual in the population, i.e. a string, has to be 
defined. Usually it is the value of the objective function or some scaled version 
of it. The transformations on the individuals of a population constitute the re-
combination steps of a genetic algorithm and are performed by three simple op-
erators. The effect of the operators is that implicitly good properties are identified 
and combined into a new population which hopefully has the property that the 
value of the best individual (representing the best solution in the population) and 
the average value of the individuals are better than in previous populations. The 
process is then repeated until some stopping criteria are met. It can be shown that 
the process converges to an optimal solution with probability one (cf. [EAH91]). 
The three basic operators of a classical genetic algorithm when a new population 
is constructed are reproduction, crossover and mutation.  

Via reproduction a new temporary population is generated where each mem-
ber is a replica of a member of the old population. A copy of an individual is 
produced with probability proportional to its fitness value, i.e. better strings 
probably get more copies. The intended effect of this operation is to improve the 
quality of the population as a whole. However, no genuinely new solutions and 
hence no new information are created in the process. The generation of such new 
strings is handled by the crossover operator. 

In order to apply the crossover operator the population is randomly parti-
tioned into pairs. Next, for each pair, the crossover operator is applied with a cer-
tain probability by randomly choosing a position in the string and exchanging the 
tails (defined as the substring starting at the chosen position) of the two strings 
(this is the simplest version of a crossover). The effect of the crossover is that 
certain properties of the individuals are combined to new ones or other properties 
are destroyed. The construction of a crossover operator should also take into con-
sideration that fitness values of offspring are not too far from those of their par-
ents, and that offspring should be genetically closely related to their parents.  
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The mutation operator which makes random changes to single elements of 
the string only plays a secondary role in genetic algorithms. Mutation serves to 
maintain diversity in the population (see the previous section on tabu search). 

Besides unary and binary recombination operators, one may also introduce 
operators of higher arities such as consensus operators, that fix variable values 
common to most solutions represented in the current population. Selection of in-
dividuals during the reproduction step can be realized in a number of ways: one 
could adopt the scenario of [Gol89] or use deterministic ranking. Further it mat-
ters whether the newly recombined offspring compete with the parent solutions 
or simply replace them.  

The traditional genetic algorithm, based on a binary string representation of 
solutions, is often unsuitable for combinatorial optimization problems because it 
is very difficult to represent a solution in such a way that sub-strings have a 
meaningful interpretation. Nevertheless, the number of publications on genetic 
algorithm applications to sequencing and scheduling problems exploded.  

Problems from combinatorial optimization are well within the scope of ge-
netic algorithms and early attempts closely followed the scheme of what Gold-
berg [Gol89] calls a simple genetic algorithm. Compared to standard heuristics, 
genetic algorithms are not well suited for fine-tuning structures which are very 
close to optimal solutions. Therefore, it is essential, if a competitive genetic algo-
rithm is desired, to compensate for this drawback by incorporating (local search) 
improvement operators into the basic scheme. The resulting algorithm has then 
been called genetic local search heuristic or genetic enumeration (cf. [Joh90b, 
UAB+91, Pes94, DP95]). Each individual of the population is then replaced by a 
locally improved one or an individual representing a locally optimal solution, i.e. 
an improvement procedure is applied to each individual either partially (to a cer-
tain number of iterations, [KP94]) or completely. Some type of improvement 
heuristic may also be incorporated into the crossover operator, cf. [KP94]. 

Putting things into a more general framework, a solution of a combinatorial 
optimization problem may be considered as resolution of a sequence of local de-
cisions (such as priority rules or even more complicated ones). In an enumeration 
tree of all possible decision sequences the solutions of the problem are represent-
ed as a path corresponding to the different decisions from the root of the tree to a 
leaf (hence the name genetic enumeration). While a branch and bound algorithm 
learns to find those decisions leading to an optimal solution (with respect to the 
space of all decision sequences) genetics can guide the search process in order to 
learn to find the most promising decision combinations within a reasonable 
amount of time, see [Pes94, DP95]. Hence, instead of (implicitly) enumerating 
all decision sequences a rudimentary search tree will be established. Only a poly-
nomial number of branches can be considered where population genetics drives 
the search process into those regions which more likely contain optimal solu-
tions. The scheme of a genetic enumeration algorithm is subsequently described; 
it requires further refinement in order to design a successful genetic algorithm.  
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Algorithm 2.5.4  Genetic enumeration [DP95, Pes94]. 
begin 
Initialization: Construct an initial population of individuals each of which is a 

string of local decision rules; 

Assessment / Improvement: Assess each individual in the current population  
introducing problem specific knowledge by special purpose heuristics (such as 
local search) which are guided by the sequence of local decisions; 

if special purpose heuristics lead to a new string of local decision rules  
then  
 replace each individual by the new one, for instance, a locally optimal one; 
repeat 

Recombination: Extend the current population by adding individuals obtained 
by unary and binary transformations (crossover, mutation) on one or two 
individuals in the current population; 

Assessment / Improvement: Assess each individual in the current population  
introducing problem specific knowledge by special purpose heuristics 
(such as local search) which are guided by the sequence of local decisions; 

 if special purpose heuristics lead to a new string of local decision rules  
then  
 replace each individual by the new one, for instance, a locally optimal one; 

until some stopping criterion is met 
end; 

It is an easy exercise to recognize that the simple genetic algorithm as well as ge-
netic local search fits into the provided framework. 

For a successful genetic algorithm in combinatorial optimization a genetic 
meta-strategy is indispensable in order to guide the operation of good special 
purpose heuristics and to incorporate problem-specific knowledge. An older con-
cept of a population based search technique which dates back in its origins be-
yond the early days of genetic algorithms is introduced in [Glo95] and called 
scatter search. The idea is to solve 0-1 programming problems departing from a 
solution of a linear programming relaxation. A set of reference points is created 
by perturbing the values of the variables in this solution. Then new points are de-
fined as selected convex combinations of reference points that constitute good 
solutions obtained from previous solution efforts. Non-integer values of these 
points are rounded and then heuristically converted into candidate solutions for 
the integer programming problem. The idea parallels and extends the idea basic 
to the genetic algorithm design, namely, combining parent solutions in some way 
in order to obtain new offspring solutions. One of the issues that differentiates 
scatter search from the early genetic algorithm paradigm is the fact that the for-
mer creates new points strategically rather than randomly. Scatter search does not 
prespecify the number of points it will generate to retain. This can be adaptively 
established by considering the solution quality during the generation process. The 
"data perturbation idea" meanwhile has gained considerable attention within the 
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GA community. In [LB95] it is transferred as a tool for solving resource con-
strained project scheduling problems with different objective functions. The 
basic idea of their approach may be referred to as a "data perturbation" method-
ology which makes use of so-called problem space based neighborhoods. Given 
a well-known concept for deriving feasible solutions (e.g. a priority rule), a 
search approach is employed on account of the problem data and respective per-
turbations. By modifying (i.e. introducing some noise or perturbation) the prob-
lem data used for the priority values of activities, further solutions within a cer-
tain neighborhood of the original data are generated. 

The ideas mentioned above are paving the way in order to do some steps into 
the direction of machine learning. This is in particular true if learning is consid-
ered to be a right combination of employing inference on memory. Thus, local 
search in terms of tabu search and genetic algorithms emphasize such a unified 
approach in all successful applications. This probably resembles most the human 
way of thinking and learning. 
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3 Definition, Analysis and  
Classification of Scheduling  
Problems  

Throughout this book we are concerned with scheduling computer and manufac-

turing processes. Despite the fact that we deal with two different areas of applica-

tions, the same model could be applied. This is because the above processes con-

sist of complex activities to be scheduled, which can be modeled by means of 

tasks (or jobs), relations among them, processors, sometimes additional resources 

(and their operational functions), and parameters describing all these items in 

greater detail. The purpose of the modeling is to find optimal or sub-optimal 

schedules in the sense of a given criterion, by applying best suited algorithms. 

These schedules are then used for the original setting to carry out the various ac-

tivities. In this chapter we introduce basic notions used for such a modeling of 

computer and manufacturing processes. 

3.1 Definition of Scheduling Problems 

In general, scheduling problems considered in this book1 are characterized by 

three sets: set T  = {T1 , T2 ,..., Tn} of n tasks, set P  = {P1 , P2 ,..., Pm} of m pro-
cessors (machines) and set R  = {R1 , R2 ,..., Rs} of s types of additional re-
sources R . Scheduling, generally speaking, means to assign processors from P  

and (possibly) resources from R  to tasks from T  in order to complete all tasks 

under the imposed constraints. There are two general constraints in classical 

scheduling theory. Each task is to be processed by at most one processor at a time 

(plus possibly specified amounts of additional resources) and each processor is 

capable of processing at most one task at a time. In Chapters 6 and 13 we will 

show some new applications in which the first constraint will be relaxed.  

We will now characterize the processors. They may be either parallel, i.e. 

performing the same functions, or dedicated i.e. specialized for the execution of 

certain tasks. Three types of parallel processors are distinguished depending on 

their speeds. If all processors from set P  have equal task processing speeds, then 

we call them identical. If the processors differ in their speeds, but the speed bi of 

                                                 
1 The notation presented in this section is extended in the following chapters of the book. 
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each processor is constant and does not depend on the task in T , then they are 

called uniform. Finally, if the speeds of the processors depend on the particular 

task processed, then they are called unrelated.  

In case of dedicated processors there are three models of processing sets of 

tasks: flow shop, open shop and job shop. To describe these models more pre-

cisely, we assume that tasks form n subsets 2 (chains in case of flow- and job 

shops), each subset called a job. That is, job Jj is divided into nj tasks, T1j , 

T2j ,..., Tnj j , and two adjacent tasks are to be performed on different processors. 

A set of jobs will be denoted by J . In an open shop the number of tasks is the 

same for each job and is equal to m, i.e. nj = m, j = 1, 2,..., n. Moreover, T1j 

should be processed on P1 , T2j on P2 , and so on. A similar situation is found in 

flow shop, but, in addition, the processing of Ti�1 j should precede that of Tij for 

all i = 1,..., nj and for all j = 1, 2,..., n. In a general job shop system the number 

nj is arbitrary. Usually in such systems it is assumed that buffers between proc-

essors have unlimited capacity and a job after completion on one processor may 

wait before its processing starts on the next one. If, however, buffers are of zero 

capacity, jobs cannot wait between two consecutive processors, thus, a no-wait 
property is assumed.  

In general, task Tj � T  is characterized by the following data. 

1. Vector of processing times pj = [p1j , p2j ,..., pmj]
T

 , where pij is the time needed 

by processor Pi to process Tj . In case of identical processors we have pij = pj , i = 

1, 2,..., m. If the processors in P  are uniform, then pij = pj /bi , i = 1, 2,..., m, 

where pj is the standard processing time (usually measured on the slowest pro-

cessor) and bi is the processing speed factor of processor Pi . In case of shop 

scheduling, the vector of processing times describes the processing requirements 

of particular tasks comprising one job; that is, for job Jj we have pj = [p1j , 

p2j ,..., pnj j]
T

 , where pij denotes the processing time of Tij on the corresponding 

processor. 

2. Arrival time (or ready time) rj , which is the time at which task Tj is ready for 

processing. If the arrival times are the same for all tasks from T , then it is as-

sumed that rj = 0 for all j. 

3. Due date dj , which specifies a time limit by which Tj should be completed; 

usually, penalty functions are defined in accordance with due dates. 

4. Deadline d~j , which is a "hard" real time limit by which Tj must be completed. 

5. Weight (priority) wj , which expresses the relative urgency of Tj . 

6. Resource request (if any), as defined in Chapter 13. 

                                                 
2 Thus, the number of tasks in T  is assumed to be � n. 
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Unless stated otherwise we assume that all these parameters, pj , rj , dj , d~j , 

and wj , are integers. In fact, this assumption is not very restrictive, since it is 

equivalent to permitting arbitrary rational values. We assume moreover, that 

tasks are assigned all required resources whenever they start or resume their pro-

cessing and that they release all the assigned resources whenever they are com-

pleted or preempted. These assumptions imply that deadlock cannot occur. 

Next, some definitions concerning task preemptions and precedence con-

straints among tasks are given. A schedule is called preemptive if each task may 

be preempted at any time and restarted later at no cost, perhaps on another pro-

cessor. If preemption of all the tasks is not allowed we will call the schedule non-
preemptive. 

In set T   precedence constraints among tasks may be defined. Ti ≺ Tj means 

that the processing of Ti must be completed before Tj can be started. In other 

words, in set T   a precedence relation ≺ is defined. The tasks in set T   are called 

dependent if the order of execution of at least two tasks in T   is restricted by this 

relation. Otherwise, the tasks are called independent. A task set with precedence 

relation is usually represented as a directed graph (a digraph) in which nodes cor-

respond to tasks and arcs to precedence constraints (a task-on-node graph). It is 

assumed that no transitive arcs exist in precedence graphs. An example of a set 

of dependent tasks is shown in Figure 3.1.1(a) (nodes are denoted by Tj /pj ). Sev-

eral special types of precedence graphs have already been described in Section 

2.3.2. Let us notice that in the case of dedicated processors (except in open shop 

systems) tasks that constitute a job are always dependent, but the jobs themselves 

can be either independent or dependent. There is another way of representing 

task dependencies which is useful in certain circumstances. In this so-called ac-
tivity network, precedence constraints are represented as a task-on-arc graph, 

where arcs represent tasks and nodes time events. Let us mention here a special 

graph of this type called uniconnected activity network (uan), which is defined as 

a graph in which any two nodes are connected by a directed path in one direction 

only. Thus, all nodes are uniquely ordered. For every precedence graph one can 

construct a corresponding activity network (and vice versa), perhaps using dum-

my tasks of zero length. The corresponding activity network for the precedence 

graph from Figure 3.1.1(a), is shown in Figure 3.1.1(b). Note that we will show 

in Section 5.1.1. the equivalence of the uniconnected activity network and the in-

terval order task-on-node representation (cf. also [BK02]). 

Task Tj will be called available at time t if rj � t and all its predecessors 

(with respect to the precedence constraints) have been completed by time t . 

Now we will give the definitions concerning schedules and optimality crite-

ria. A schedule is an assignment of processors from set P  (and possibly resources 

from set R ) to tasks from set T  in time such that the following conditions are 

satisfied: 
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� at every moment each processor is assigned to at most one task and each task is 

processed by at most one processor 3, 

� task Tj is processed in time interval [rj , #) , 

� all tasks are completed, 

� if tasks Ti , Tj are in relation Ti ≺ Tj , the processing of Tj is not started before Ti 

is completed, 

� in the case of non-preemptive scheduling no task is preempted (then the sched-

ule is called non-preemptive), otherwise the number of preemptions of each task 

is finite 4 (then the schedule is called preemptive), 

� resource constraints, if any, are satisfied. 

To represent schedules we will use the so-called Gantt charts. An example 

schedule for the task set of Figure 3.1.1 on three parallel, identical processors is 

shown in Figure 3.1.2. The following parameters can be calculated for each task 

Tj , j = 1, 2,..., n, processed in a given schedule: 

completion time Cj , 

flow time Fj = Cj � rj , being the sum of waiting and processing times; 

lateness Lj = Cj � dj , 

tardiness Dj = max{Cj � dj , 0} ; 

earliness Ej = max{dj � Cj , 0} . 

For the schedule given in Figure 3.1.2 one can easily calculate the two first 

parameters. In vector notation these are C = [3, 4, 5, 6, 1, 8, 8, 8] and F = C. The 

other two parameters could be calculated, if due dates would be defined. Suppose 

that due dates are given by the vector d = [5, 4, 5, 3, 7, 6, 9, 12]. Then the late-

nesses, tardinesses and earliness for the tasks in the schedule are: L = [�2, 0, 0, 3, 

�6, 2, �1, �4], D = [0, 0, 0, 3, 0, 2, 0, 0], E = [2, 0, 0, 0, 6, 0, 1, 4]. 

To evaluate schedules we will use three main performance measures or op-
timality criteria: 

Schedule length (makespan) Cmax = max{Cj} , 

mean flow time F 
_
 = 

1

n �
j=1

n
Fj ,  

or mean weighted flow time F 
_

w = �
j=1

n
wj Fj / �

j=1

n
wj , 

maximum lateness Lmax = max{Lj} . 

                                                 
3 As we mentioned, this assumption can be relaxed. 
4 This condition is imposed by practical considerations only. 
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Figure 3.1.1 An example task set 
 (a) task-on-node representation 

 (b) task-on-arc representation (dummy tasks are primed). 
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Figure 3.1.2 A schedule for the task set given in Figure 3.1.1. 

In some applications, other related criteria may be used, as for example: mean 

tardiness D 
_

 = 
1

n �
j=1

n
Dj , mean weighted tardiness D 

_

w = �
j=1

n
wj Dj / �

j=1

n
wj , mean earli-

ness E 
_
 = 

1

n �
j=1

n
Ej , mean weighted earliness E 

_

w = �
j=1

n
wj Ej / �

j=1

n
wj , number of tardy 

tasks U = �
j=1

n
Uj, where Uj = 1 if Cj > dj , and 0 otherwise, or weighted number of 

tardy tasks Uw = �
j=1

n
wj Uj.  
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Again, let us calculate values of particular criteria for the schedule in Figure 

3.1.2. They are: schedule length Cmax = 8, mean flow time F 
_

 = 43/8, maximum 

lateness Lmax = 3, mean tardiness D
 _

 = 5/8, mean earliness E 
_

 = 13/8, and number 

of tardy jobs U = 2. The other criteria can be evaluated if weights of tasks are 

specified. 

A schedule for which the value of a particular performance measure " is at 

its minimum will be called optimal, and the corresponding value of " will be de-

noted by "*.  

We may now define the scheduling problem � as a set of parameters de-

scribed in this subsection 5 not all of which have numerical values, together with 

an optimality criterion. An instance I of problem � is obtained by specifying par-

ticular values for all the problem parameters.  

We see that scheduling problems are in general of optimization nature (cf. 

Section 2.2.1). However, some of them are originally formulated in decision ver-

sion. An example is scheduling to meet deadlines, i.e. the problem of finding, 

given a set of deadlines, a schedule with no late task. However, both cases are 

analyzed in the same way when complexity issues are considered. 

A scheduling algorithm is an algorithm which constructs a schedule for a 

given problem �. In general, we are interested in optimization algorithms, but 

because of the inherent complexity of many problems of that type, approximation 

or heuristic algorithms will be discussed (cf. Sections 2.2.2 and 2.5). 

Scheduling problems, as defined above, may be analyzed much in the same 

way as discussed in Chapter 2. However, their specificity raises some more de-

tailed questions which will be discussed in the next section. 

3.2 Analysis of Scheduling Problems and  
Algorithms 

Deterministic scheduling problems are a part of a much broader class of combi-

natorial optimization problems. Thus, the general approach to the analysis of 

these problems can follow similar lines, but one should take into account their 

peculiarities. It is rather obvious that very often the time we can devote to solving 

particular scheduling problems is seriously limited so that only low order poly-

nomial time algorithms may be used. Thus, the examination of the complexity of 

these problems should be the basis of any further analysis. 

It has been known for some time [Coo71, Kar72] (cf. Section 2.2) that there 

exists a large class of combinatorial optimization problems for which most prob-

ably no efficient optimization algorithms exist. These are the problems whose de-

cision counterparts (i.e. problems formulated as questions with "yes" or "no" an-

                                                 
5 Parameters are understood generally, including e.g. relation ≺. 



 3.2  Analysis of Scheduling Problems and Algorithms 67 

swers) are NP-complete. The optimization problems are called NP-hard in this 

case. We refer the reader to [GJ79] and to Section 2.2 for a comprehensive 

treatment of the NP-completeness theory, and in the following we assume 

knowledge of its basic concepts like NP-completeness, NP-hardness, polynomial 

time transformation, etc. It follows that the complexity analysis answers the 

question whether or not an analyzed scheduling problem may be solved (i.e. an 

optimal schedule found) in time bounded from above by a polynomial in the in-

put length of the problem (i.e. in polynomial time). If the answer is positive, then 

an optimization polynomial time algorithm must have been found. Its usefulness 

depends on the order of its worst-case complexity function and on the particular 

application. Sometimes, when the worst-case complexity function is not low 

enough, although still polynomial, a mean complexity function of the algorithm 

may be sufficient. This issue is discussed in detail in [AHU74]. On the other 

hand, if the answer is negative, i.e. when the decision version of the analyzed 

problem is NP-complete, then there are several other ways of further analysis. 

First, one may try to relax some constraints imposed on the original problem 

and then solve the relaxed problem. The solution of the latter may be a good ap-

proximation to the solution of the original problem. In the case of scheduling 

problems such a relaxation may consist of  

� allowing preemptions, even if the original problem dealt with non-preemptive 

schedules, 

� assuming unit-length tasks, when arbitrary-length tasks were considered in the 

original problem, 

� assuming certain types of precedence graphs, e.g. trees or chains, when arbi-

trary graphs were considered in the original problem, etc. 

Considering computer applications, especially the first relaxation can be jus-

tified in the case when parallel processors share a common primary memory. 

Moreover, such a relaxation is also advantageous from the viewpoint of certain 

optimality criteria. 

Second, when trying to solve NP-hard scheduling problems one often uses 

approximation algorithms which tend to find an optimal schedule but do not al-

ways succeed. Of course, the necessary condition for these algorithms to be ap-

plicable in practice is that their worst-case complexity function is bounded from 

above by a low-order polynomial in the input length. Their sufficiency follows 

from an evaluation of the difference between the value of a solution they produce 

and the value of an optimal solution. This evaluation may concern the worst case 

or a mean behavior. To be more precise, we use here notions that have been in-

troduced in Section 2.5, i.e. absolute performance ratio RA and asymptotic per-

formance ratio R#
A  of an approximation algorithm A. 

These notions define a measure of "goodness" of approximation algorithms; 

the closer R#
A  is to 1, the better algorithm A performs. However, for some combi-

natorial problems it can be proved that there is no hope of finding an approxima-
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tion algorithm of a certain accuracy, i.e. this question is as hard as finding a pol-

ynomial time algorithm for any NP-complete problem. 

Analysis of the worst-case behavior of an approximation algorithm may be 

complemented by an analysis of its mean behavior. This can be done in two 

ways. The first consists in assuming that the parameters of instances of the con-

sidered problem � are drawn from a certain distribution, and then the mean per-
formance of algorithm A is analyzed. One may distinguish between the absolute 
error of an approximation algorithm, which is the difference between the ap-

proximate and optimal values and the relative error, which is the ratio of these 

two (cf. Section 2.5). Asymptotic optimality results in the stronger (absolute) 

sense are quite rare. On the other hand, asymptotic optimality in the relative 

sense is often easier to establish. It is rather obvious that the mean performance 

can be much better than the worst case behavior, thus justifying the use of a giv-

en approximation algorithm. A main obstacle is the difficulty of proofs of the 

mean performance for realistic distribution functions. Thus, the second way of 

evaluating the mean behavior of approximation algorithms, consisting of exper-

imental studies, is still used very often. In the latter approach, one compares solu-

tions, in the sense of the values of an optimality criterion, constructed by a given 

approximation algorithm and by an optimization algorithm. This comparison 

should be made for a large, representative sample of instances. 

In this context let us mention the most often used approximation scheduling 

algorithm which is the so-called list scheduling algorithm (which is in fact a gen-

eral approach). In this algorithm a certain list of tasks is given and at each step 

the first available processor is selected to process the first available task on the 

list. The accuracy of a particular list scheduling algorithm depends on the given 

optimality criterion and the way the list has been constructed. 

The third and last way of dealing with hard scheduling problems is to use 

exact enumerative algorithms whose worst-case complexity function is exponen-

tial in the input length. However, sometimes, when the analyzed problem is not 

NP-hard in the strong sense, it is possible to solve it by a pseudopolynomial op-

timization algorithm whose worst-case complexity function is bounded from 

above by a polynomial in the input length and in the maximum number appearing 

in the instance of the problem. For reasonably small numbers such an algorithm 

may behave quite well in practice and it can be used even in computer applica-

tions. On the other hand, "pure" exponential algorithms have probably to be ex-

cluded from this application, but they may be used sometimes for other schedul-

ing problems which can be solved by off-line algorithms. 

The above discussion is summarized in a schematic way in Figure 3.2.1. In 

the following chapters we will use the above scheme when analyzing scheduling 

problems. 
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3.3 Motivations for Deterministic Scheduling  
Problems 

In this section, an interpretation of the assumptions and results in deterministic 

scheduling theory which motivate and justify the use of this model, is presented. 

We will underline especially computer applications, but we will also refer to 

manufacturing systems, even if the practical interpretation of the model is not for 

this application area. In a manufacturing environment deterministic scheduling is 

also known as predictive. Its complement is reactive scheduling, which can also 

be regarded as deterministic scheduling with a shorter planning horizon. 

Scheduling problem
(complexity analysis)

NP-hard problem

Relaxation Exact enumerative
algorithms

Approximation 
algorithms

e.g. preemptions, 
unit processing times (also pseudopolynomial-

time)

Performance analysis
- worst case behavior
- mean behavior
  a) probabilistic analysis
  b) simulation studies

Easy problem
Complexity improvement
- in the worst case
- mean (probabilistic analysis)

 

Figure 3.2.1 An analysis of a scheduling problem - schematic view. 

Let us begin with an analysis of processors (machines). Parallel processors  may 

be interpreted as central processors which are able to process every task (i.e. eve-

ry program). Uniform processors differ from each other by their speeds, but they 

do not prefer any type of tasks. Unrelated processors, on the contrary, are spe-

cialized in the sense that they prefer certain types of tasks, for example numerical 

computations, logical programs, or simulation procedures. The processors may 

have different instruction sets, but they are still of comparable processing capaci-

ty so they can process tasks of any type, only processing times may be different. 
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In manufacturing systems, pools of machines exist where all the machines have 

the same capability (except possibly speed) to process tasks.  

Completely different from the above are dedicated processors (dedicated 

machines) which may process only certain types of tasks. The interpretation of 

this model for manufacturing systems is straightforward but it can also be applied 

to computer systems. As an example let us consider a computer system consist-

ing of an input processor, a central processor and an output processor. It is not 

difficult to see that such a system corresponds to a flow shop with m = 3. On the 

other hand, a situation in which each task is to be processed by an input/output 

processor, then by a central processor and at the end again by the input/output 

processor, can easily be modeled by a job shop system with m = 2. As far as an 

open shop is concerned, there is no obvious computer interpretation. But this 

case, like the other shop scheduling problems, has great significance in other ap-

plications, especially in an industrial environment. 

By an additional resource we understand in this book a "facility" besides 

processors the tasks to be performed compete for. The competition aspect in this 

definition should be stressed, since "facilities" dedicated to only one task will not 

be treated as resources in this book. In computer systems, for example, messages 

sent from one task to another specified task will not be considered as resources. 

In manufacturing environments tools, material, transport facilities, etc. can be 

treated as additional resources. 

Let us now consider the assumptions associated with the task set. As men-

tioned in Section 3.1, in deterministic scheduling theory a priori knowledge of 

ready times and processing times of tasks is usually assumed. As opposed to oth-

er practical applications, the question of a priori knowledge of these parameters 

in computer systems needs a thorough comment.  

Ready times are obviously known in systems working in an off-line mode 

and in control systems in which measurement samples are taken from sensing 

devices at fixed time moments. 

As far as processing times are concerned, they are usually not known a priori 

in computer systems. Despite this fact the solution of a deterministic scheduling 

problem may also have an important interpretation in these systems. First, when 

scheduling tasks to meet deadlines, the only approach (when the task processing 

times are not known) is to solve the problem with assumed upper bounds on the 

processing times. Such a bound for a given task may be implied by the worst case 

complexity function of an algorithm connected with that task. Then, if all dead-

lines are met with respect to the upper bounds, no deadline will be exceeded for 

the real task processing times 6. This approach is often used in a broad class of 

computer control systems working in a hard real time environment, where a cer-

tain set of control programs must be processed before taking the next sample 

from the same sensing device.  

                                                 
6 However, one has to take into account list scheduling anomalies which will be explained 

in Section 5.1.  
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Second, instead of exact values of processing times one can take their mean 

values and, using the procedure described by Coffman and Denning in [CD73], 

calculate an optimistic estimate of the mean value of the schedule length. 

Third, one can measure the processing times of tasks after processing a task 

set scheduled according to a certain algorithm A. Taking these values as an input 

in the deterministic scheduling problem, one may construct an optimal schedule 

and compare it with the one produced by algorithm A, thus evaluating the latter. 

Apart from the above, optimization algorithms for deterministic scheduling 

problems give some indications for the construction of heuristics under weaker 

assumptions than those made in stochastic scheduling problems, cf. [BCSW86].  

The existence of precedence constraints in computer systems also requires 

an explanation. In the simplest case the results of certain programs may be the 

input data for others. Moreover, precedence constraints may also concern parts of 

the same program. A conventional, serially written program, may be analyzed by 

a special procedure looking for parallel parts in it (see for example [RG69, 

Rus69], or [Vol70]). These parts may also be defined by the programmer who 

can use special programming languages supporting parallel concepts. Apart from 

this, a solution of certain reliability problems in operating systems, as for exam-

ple the determinacy problem (see [ACM70, Bae74, Ber66]), requires an intro-

duction of additional precedence constraints.  

We will now discuss particular optimality criteria for scheduling problems 

from their practical significance point of view. Minimizing schedule length is 

important from the viewpoint of the owner of a set of processors (machines), 

since it leads to both, the maximization of the processor utilization factor (within 

schedule length Cmax), and the minimization of the maximum in-process time of 

the scheduled set of tasks. This criterion may also be of importance in a comput-

er control system in which a task set arrives periodically and is to be processed in 

the shortest time. 

The mean flow time criterion is important from the user's viewpoint since its 

minimization yields a minimization of the mean response time and the mean in-

process time of the scheduled task set. 

Due date involving criteria are of great importance in manufacturing sys-

tems, especially in those that produce to specific customer orders. Moreover, the 

maximum lateness criterion is of great significance in computer control systems 

working in the hard real time environment since its minimization leads to the 

construction of a schedule with no task late whenever such schedules exist (i.e. 

when L *
  max � 0 for an optimal schedule).  

The criteria mentioned above are basic in the sense that they require specific 

approaches to the construction of schedules. 
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3.4 Classification of Deterministic Scheduling  
Problems 

The great variety of scheduling problems we have seen from the preceding sec-

tion motivates the introduction of a systematic notation that could serve as a ba-

sis for a classification scheme. Such a notation of problem types would greatly 

facilitate the presentation and discussion of scheduling problems. A notation 

proposed by Graham et al. [GLL+79] and B)�la &zewicz  et al. [BLRK83] will be 

presented next and then used throughout the book. 

The notation is composed of three fields ( | * | ". They have the following 

meaning: The first field ( = (1, (2 describes the processor environment. Parame-

ter (1 � {�, P, Q, R, O, F, J} characterizes the type of processor used:  

(1 = ��: single processor 7, 

(1 = P : identical processors, 

(1 = Q : uniform processors, 

(1 = R : unrelated processors, 

(1 = O : dedicated processors: open shop system, 

(1 = F : dedicated processors: flow shop system,  

(1 = J : dedicated processors: job shop system. 

Parameter (2 � {�, k} denotes the number of processors in the problem: 

(2 = ��: the number of processors is assumed to be variable, 

(2 = k : the number of processors is equal to k (k is a positive integer). 

The second field * = *1, *2, *3, *4, *5, *6, *7, *8 describes task and resource 

characteristics. Parameter *1 � {�, pmtn} indicates the possibility of task 

preemption: 

*1 = ��: no preemption is allowed, 

*1 = pmtn : preemptions are allowed. 

Parameter *2 � {�, res} characterizes additional resources:  

*2 = ��: no additional resources exist, 

*2 = res : there are specified resource constraints; they will be described in 

detail in Chapter 13. 

Parameter *3 � {�, prec, uan, tree, chains} reflects the precedence constraints: 

*3 = �, prec, uan, tree, chains : denotes respectively independent tasks, 

general precedence constraints, uniconnected activity networks, precedence 

constraints forming a tree or a set of chains. 

Parameter *4 � {�, rj} describes ready times: 

                                                 
7 In this notation � denotes an empty symbol which will be omitted in presenting problems. 
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*4 = ��: all ready times are zero, 

*4 = rj : ready times differ per task. 

Parameter *5 � {�, pj = p, p_ � pj � p
_
} describes task processing times: 

*5 = ��: tasks have arbitrary processing times, 

*5 = (pj = p) : all tasks have processing times equal to p units, 

*5 = (p_ � pj � p
_

) : no pj is less than p_ or greater than p
_

. 

Parameter *6 � {�, d~} describes deadlines: 

*6 = � : no deadlines are assumed in the system (however, due dates may 

be defined if a due date involving criterion is used to evaluate schedules), 

*6 = d~ : deadlines are imposed on the performance of a task set. 

Parameter *7 � {�, nj � k} describes the maximal number of tasks constituting a 

job in case of job shop systems: 

*7 = � : the above number is arbitrary or the scheduling problem is not a 

job shop problem,  

*7 = (nj � k): the number of tasks for each job is not greater than k.  

Parameter *8 � {�, no-wait} describes a no-wait property in the case of schedul-

ing on dedicated processors: 

*8 = � : buffers of unlimited capacity are assumed, 

*8 = no-wait : buffers among processors are of zero capacity and a job after 

finishing its processing on one processor must immediately start on the 

consecutive processor. 

The third field, ", denotes an optimality criterion (performance measure), i.e. 

" � {Cmax , �Cj , �wj Cj , Lmax , �Dj , �wj Dj , �Ej , �wj Ej , �Uj , �wj Uj , �}, where 

�Cj = F 
_

 , �wj Cj = F 
_

w , �Dj = D
_

, �wj Dj = D
_

w , �Ej = E 
_

, �wj Ej = E 
_

w , �Uj = U, 

�wj Uj = Uw  and "�" means testing for feasibility whenever scheduling to meet 

deadlines is considered. 

The use of this notation is illustrated by Example 3.4.1. 

Example 3.4.1 

(a) Problem P | | Cmax reads as follows: Scheduling of non-preemptable and 
independent tasks of arbitrary processing times (lengths), arriving to the system 
at time 0, on parallel, identical processors in order to minimize schedule length. 

(b) O3 | pmtn, rj | �Cj stands for: Preemptive scheduling of arbitrary length 
tasks arriving at different time moments in the three machine open shop, where 
the objective is to minimize mean flow time.  
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At this point it is worth mentioning that scheduling problems are closely related 

in the sense of polynomial transformation 8. Some basic polynomial transfor-

mations between scheduling problems are shown in Figure 3.4.1. For each graph 

in the figure, the presented problems differ only by one parameter (e.g. by type 

and number of processors, as in Figure 3.4.1(a)) and the arrows indicate the di-

rection of the polynomial transformation. These simple transformations are very 

useful in many situations when analyzing new scheduling problems. Thus, many 

of the results presented in this book can immediately be extended to cover a 

broader class of scheduling problems. 

                                                 
8 This term has been explained in Section 2.2. 
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Figure 3.4.1 Graphs showing interrelations among different values of particu-
lar parameters 

(a) processor environment 
(b) possibility of preemption 
(c) precedence constraints 
(d) ready times 
(e) processing times 
(f) optimality criteria. 
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4  Scheduling on One Processor 

Single machine scheduling (SMS) problems seem to have received substantial 

attention because of several reasons. These types of problems are important both 

because of their own intrinsic value, as well as their role as building blocks for 

more generalized and complex problems. In a multi-processor environment sin-

gle processor schedules may be used in bottlenecks, or to organize task assign-

ment to an expensive processor; sometimes an entire production line may be 

treated as a single processor for scheduling purposes. Also, compared to multiple 

processor scheduling, SMS problems are mathematically more tractable. Hence, 

more problem classes can be solved in polynomial time, and a larger variety of 

model parameters, such as various types of cost functions, or an introduction of 

change-over cost, can be analyzed. Single processor problems are thus of rather 

fundamental character and allow for some insight and development of ideas 

when treating more general scheduling problems. 

The relative simplicity of the single-processor scheduling on one hand, and 

its fundamental character also for multiprocessor scheduling problems on the 

other hand, motivate to discuss the single processor case to a wider extent. In the 

next five sections we will study scheduling problems on one processor with the 

objective to minimize the following criteria: schedule length, mean (and mean 

weighted) flow time, due date involving criteria such as different lateness or tar-

diness functions, change-over cost and different maximum and mean cost func-

tions. 

4.1 Minimizing Schedule Length 

One of the simplest type of scheduling problems considered here is the problem 

1 | prec | Cmax , i.e. one in which all tasks are assumed to be non-preemptable, or-

dered by some precedence relation, and available at time t = 0. It is trivial to ob-

serve that in whatever order in accordance with the precedence relation the tasks 

are assigned to the processor, the schedule length is Cmax = �
j=1

n
 pj . If each task has 

a given release time (ready time), an optimal schedule can easily be obtained by 

a polynomial time algorithm where tasks are scheduled in the order of non-

decreasing release times. Similarly, if each task has a given deadline, the earliest 

deadline scheduling rule would produce an optimal solution provided there exists 

a schedule that meets all the deadlines. Thus in fact, problems 1 | rj  | Cmax and 

1 | | Lmax are equivalent as far as their complexities and solution techniques are 

concerned. The situation becomes considerably more complex from the algo-
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J. Blazewicz et al., Handbook on Scheduling, International Handbooks  
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_4 

77

https://doi.org/10.1007/978-3-319-99849-7_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_4&domain=pdf


78 4  Scheduling on One Processor 

rithmic complexity point of view if both, release times and deadlines restrict task 

processing.  

In the following section, for each task there is specified a release time and a 

deadline by which the task is to be completed. The aim is then to find a schedule 

that meets all the given deadlines and, in addition, minimizes Cmax . 

4.1.1 Scheduling with Release Times and Deadlines 

Problem 1 | rj , d~j | Cmax 

In case of problem 1 | rj , d
~

j | Cmax , i.e. if the tasks are allowed to have unequal 

processing times, a transformation from the 3-PARTITION problem 1 shows that 

the problem is NP-hard in the strong sense, even for integer release times and 

deadlines [LRKB77]. Only if all tasks have unit processing times, an optimiza-

tion algorithm of polynomial time complexity is available.  

The general problem can be solved by applying a branch and bound algo-

rithm. Bratley et al. [BFR71] proposed an algorithm which is shortly described 

below.  

v (T )/r +p (T )/r +p

(T ,T )/ (T ,T )/ (T ,T )/
max{r +p ,r }

1 1 11 2 (T )/r +p2 2 2 n n n n

1 1 32

1 1 2 +p2

12 13
max{r +p ,r }1 1 3 +p3 max{r +p ,r }1 1 n +pn

1 n1n

v

vv v

v

root

 

Figure 4.1.1 Search tree in the branch and bound algorithm of Bratley et al.  
[BFR71]. 

All possible task schedules are implicitly enumerated by a search tree construc-

tion, as shown in Figure 4.1.1. From the root node of the tree we branch to n new 

                                                 
1 The 3-PARTITION problem is defined as follows (see [GJ79]). 

Instance: A finite set A of 3m elements, a bound B � IN, and a "size" s(a) � IN for each 

a � A, such that each s(a) satisfies B/4 < s(a) < B/2 and such that �
 a�A 

s(a) = mB. 

Answer: "Yes" if A can be partitioned into m disjoint sets S1 , S2  ,. . . , Sm such that, for 

1 � i � m, �a�S
 i 
s(a) = B. Otherwise "No". 
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nodes at the first level of descendant nodes. The ith of these nodes, vi , represents 

the assignment of task Ti to be the first in the schedule, i = 1,..., n. Associated 

with each node is the completion time of the corresponding task, i.e. ri + pi for 

node vi . Next we branch from each node on the first level to n � 1 nodes on the 

second level. Each of these represents the assignment of one of the n � 1 unas-

signed tasks to be the second in the schedule. Again, the completion time is asso-

ciated with each of the second level nodes. If vij is the successor node of vi to 

which task Tj is assigned, the associated completion time would be 

max{ri + pi , rj} + pj . This value represents the completion time of the partial 

schedule (Ti , Tj). Continuing that way, on level k, 1 � k � n, there are n � k + 1 

new nodes generated from each node of the preceding level. It is evident that all 

the n! possible different schedules will be enumerated that way.  

The order in which the nodes of the tree are examined is based on a back-

tracking search strategy. However, the algorithm uses two criteria to reduce the 

number of search steps.  

(i) Exceeding deadlines. Consider node v at level k � 1, and its n � k + 1 immedi-

ate successors on level k of the tree. If the completion time associated with at 

least one of these nodes exceeds the deadline of the task added at level k, then all 

n � k + 1 nodes may be excluded from further consideration. This follows from 

the fact that if any of these tasks exceeds its deadline at level k (i.e. this task is at 

k th position in the schedule), it will certainly exceed its deadline if scheduled 

later. Since all the successors of node v represent orderings in which the task in 

question is scheduled later, they may be omitted.  

(ii) Problem decomposition. Consider level k of the search tree and suppose we 

generate a node on that level for task Ti . This is equivalent to assigning task Ti in 

position k of the schedule. If the completion time Ci of Ti in this position is less 

than or equal to the smallest release time rmin among the yet unscheduled tasks, 

then the problem decomposes at level k, and there is no need to enter another 

branch of the search tree, i.e. one doesn't need to backtrack beyond level k. The 

reason for this strong exclusion feature is that the best schedule for the remaining 

n � k tasks may not be started prior to the smallest release time among these 

tasks, and hence not earlier than the completion time Ci of the first k tasks. 

Example 4.1.1  To demonstrate the idea of the branch and bound algorithm de-

scribed above consider the following sample problem of four tasks and vectors 

describing respectively task release times, processing times, and deadlines, r = 

[4, 1, 1, 0], p = [2, 1, 2, 2], and d~ = [7, 5, 6, 4]. The branch and bound algorithm 

would scan the nodes of the search tree shown in Figure 4.1.2 in some order that 

depends on the implementation of the algorithm. At each node the above criteria 

(i) and (ii) are checked. We see that schedules (T4 , T2 , T3 , T1)  and (T4 , T3 , T2 , 

T1),  when started at time 0, obey all release times and deadlines. When a sched-
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ule is obtained, its optimality must be checked (a criterion for doing this is given 

in Lemma 4.1.2).   

root
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(T  T  )/64 1

(T  T  T  )/64 3 1

 

Figure 4.1.2 Complete search tree of the sample problem of Example 4.1.1. 

To recognize an optimal solution we focus our attention on certain groups of 

tasks in a given feasible schedule. A block is a group of tasks such that the first 

task starts at its release time and all the following tasks to the end of the schedule 

are processed without idle times. Thus the length of a block is the sum of pro-

cessing times of the tasks in the block. If a block has the property that the release 

times of all the tasks in the block are greater than or equal to the release time of 

the first task in the block (in that case we will say that "the block satisfies the 

release time property"), then the schedule found for this block is clearly optimal.  

A block satisfying the release time property may be found by scanning the 

given schedule, starting from the last task and attempting to find a group of tasks 

of the described property. In particular, if T(n
 is the last task in the schedule and 

Cmax = r(n
 + p(n

  , then {T(n
} is a block satisfying the release time property. An-

other example is a schedule (T(1
 ,..., T(n

) whose length is min
j

{rj} + � pj . In this 

case the block consists of all the tasks to be performed. 

The following lemma can be used to prove optimality of a schedule. 

Lemma 4.1.2  If a schedule for problem 1 | rj , d
~

j | Cmax  satisfies the release time 
property then it is optimal. 
Proof. The lemma follows immediately from the block definition and the release 

time property.  
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The condition of release time property is sufficient but not necessary, as can be 

seen from simple examples. In this case this lemma cannot be used to prove op-

timality of a schedule constructed in the branch and bound procedure Then the 

completion time C of the schedule can still be used for bounding further solu-

tions. This can be done by reducing all deadlines d~j to be at most C � 1, which 

ensures that if other feasible schedules exist, only those that are better than the 

solution at hand, are generated.  

If task preemption is allowed, the problem 1 | pmtn, rj , d
~

j | Cmax can be formulated 

as a maximum flow problem and can thus be solved in polynomial time 

[BFR71]. 

Problem 1 | rj , pj = 1, d~j | Cmax 

As already mentioned, if all release times are zero, the earliest deadline algo-

rithm would be exact. Now, in the case of unequal and non-integer release times, 

it may happen that task Ti , though available for processing, must give preference 

to another task Tj with larger release time, because of d~j < d~i . Hence, in such a 

situation some idle interval should be introduced in the schedule in order to gain 

feasibility. These idle intervals are called forbidden regions [GJST81]. A forbid-

den region is an interval (f1 , f2) of time (open both on the left and right) during 

which no task is allowed to start if the schedule is to be feasible. Notice that we 

do not forbid execution of a task during (f1 , f2) that had been started at time f1 or 

earlier. Algorithm 4.1.3 shows how forbidden regions are used (a technique how 

forbidden regions can be found is described in Algorithm 4.1.5). Let us assume 

for the moment that we have found a finite set of forbidden regions F1 ,...,Fm . 

The following algorithm represents a basic way of how a feasible schedule 

can be generated. The algorithm schedules n unit time tasks, all of which must be 

completed by some time d~ . Release times are of no concern, but no task is al-

lowed to start within one of the given forbidden regions F1 ,...,Fm . The algo-

rithm finds the latest possible time by which the first task must start if all of them 

are to be completed by time d~ , without starting any task in a forbidden region.  

Algorithm 4.1.3  Backscheduling of a set of unit time tasks {T1 ,...,Tn} with no 
release times and common deadline d~ , considering a set of forbidden regions 

[GJST 81].  

begin 
Order the tasks arbitrarily as T1 ,...,Tn; 

for i := n downto 1 do 

Start Ti at the latest time si � si+1 � 1 (or d~ � 1, if i = n) which does not fall into 

a forbidden region; 
end; 



82 4  Scheduling on One Processor 

Lemma 4.1.4  The starting time s1 found for T1 by Algorithm 4.1.3 is such that, if 
all the given tasks (including T1) were to start at times strictly greater than s1 , 
with none of them starting in one of the given forbidden regions, then at least 
one task would not be completed by time d~ . 

Proof. Consider a schedule found by Algorithm 4.1.3. Let h0 = s1 , and let h1 ,...,

hj be the starting times of the idle periods (if any) in the schedule, and let hj+1 = d~ 

(see Figure 4.1.3). Notice that whenever (t1 , t2) is an idle period, it must be the 

case that (t1 � 1, t2 � 1] is part of some forbidden region, for otherwise Algorithm 

4.1.3 would have scheduled some task to overlap or finish during (t1 , t2]. Now 

consider any interval (hi , hi+1], 0 � i � j. By definition of the times hi, the tasks 

that are finished in the interval are scheduled with no idle periods separating 

them and with the rightmost one finishing at time hi+1 . It follows that Algorithm 

4.1.3 processes the maximum possible number of tasks in each interval (hi , hi+1]. 

Any other schedule that started all the tasks later than time s1 and finished them 

all by time d~ would have to exceed this maximum number of tasks in some inter-

val (hi , hi+1], 1 � i � j, which is a contradiction.  

forbidden 
regions

schedule

h0

F1 F2 F3

T1 T2 T3 T4 T5 T6 T7

h1 h2 h3
t
 

Figure 4.1.3 A schedule with forbidden regions and idle periods. 

We will use Algorithm 4.1.3 as follows. Consider any two tasks Ti and Tj such 

that d~i � d~j . We focus our interest on the interval [ri, d
~

j], and assume that we have 

already found a set of forbidden regions in this interval. We then apply Algo-

rithm 4.1.3, with d~ = d~j and with these forbidden regions, to the set of all tasks Tk 

satisfying ri � rk � d~k � d~j . Let s be the latest possible start time found by Algo-

rithm 4.1.3 in this case. There are two possibilities which are of interest. If s < ri , 

then we know from Lemma 4.1.4 that there can be no feasible schedule since all 

these tasks must be completed by time d~ , none of them can be started before ri , 

but at least one must be started by time s < ri if all are to be completed by d~ . If 

ri � s < ri + 1, then we know that (s � 1, ri) can be declared to be a forbidden re-

gion, since any task started in that region would not belong to our set (its release 



 4.1  Minimizing Schedule Length 83 

 

time is less than ri) and it would force the first task of our set to be started later 

than s, thus preventing these tasks from being completed by d~ .  

The algorithm presented next essentially applies Algorithm 4.1.3 to all such 

pairs of release times and deadlines in such a manner as to find forbidden regions 

from right to left. This is done by "considering the release times" in order from 

largest to smallest. To process a release time ri , for each deadline d~j � d~i the 

number of tasks is determined which cannot start before ri and which must be 

completed by d~j . Then Algorithm 4.1.3 is used (with d~ = d~j) to determine the lat-

est time at which the earliest such task can start. This time is called the critical 
time ej for deadline d~j (with respect to ri). Letting e denote the minimum of all 

these critical times with respect to ri , failure is declared in case of e < ri , or 

(e � 1, ri) is declared to be a forbidden region if ri � e. Notice that by processing 

release times from largest to smallest, all forbidden regions to the right of ri will 

have been found by the time that ri is processed.  

Once the forbidden regions are found in this way, we schedule the full set of 

tasks starting from time 0, using the earliest deadline rule. This proceeds by ini-

tially setting t to the least non-negative time not in a forbidden region and then 

assigning start time t to a task with lowest deadline among those ready at t. At 

each subsequent step, we first update t to the least time which is greater than or 

equal to the finishing time of the last scheduled task, and greater than or equal to 

the earliest ready time of an unscheduled task, and which does not fall into a for-

bidden region. Then we assign start time t to a task with lowest deadline among 

those ready (but not previously scheduled) at t .  

Algorithm 4.1.5  for problem 1 | rj , pj = 1, d~j | Cmax [GJST81]. 

begin 

Order tasks so that r1 � r2 �...� rn; 

F  := �; -- the set of forbidden intervals is initially empty 

for i := n downto 1 do  
 begin 

 for each task Tj with d~j � d~i do 

  begin 

  if ej is undefined then ej := d~j � 1 else ej := ej � 1; 

  while ej � F for some forbidden region F = (f1, f2) � F , do ej := f1; 

  end; 

 if i = 1 or ri�1 < ri 

 then 

  begin  

  e := min{ej | ej is defined}; 

  if e < ri then begin write('No feasible schedule'); exit; end; 

  if ri � e < ri + 1 then F  := F  � (e � 1, ri); 

  end; 
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 end; 

t := 0; 

while T  � � do 

 begin 

 if ri > t for all Ti � T  then t := min
Ti �T 

{ri}; 

 while t � F for some forbidden region F = (f1, f2) � F , do t := f2; 

 Assign Tk � {Ti | Ti � T   such that d~k = min{d~i} and rk � t} next to the  

processor; 

 t := t + 1; 
 end; 

end; 
The following facts concerning Algorithm 4.1.5 can easily be proved [GJST81].  

(i) If the algorithm exits with failure, then there is no feasible schedule.  

(ii) If the algorithm does not declare failure, then it finds a feasible schedule; 

this schedule has minimum makespan among all feasible schedules. 

(iii) The time complexity of the algorithm is O(n2
) . 

In [GJST81], there is also presented an improved version of Algorithm 4.1.5 

which runs in time O(nlogn) .  

Problem 1 | prec, rj, d
~

j | Cmax 

Problem 1 | prec, rj , d
~

j | Cmax is NP-hard in the strong sense because problem 

1 | rj , d
~

j | Cmax already is. However, if all tasks have unit processing times (i.e. 

problem 1 | prec, rj , pj = 1, d~j | Cmax) we can replace the problem by one of type 

1 | rj , pj = 1, d~j | Cmax , which can then be solved optimally in polynomial time. 

We will describe this approach below. 

Given schedule S, let si be the starting time of task Ti , i = 1,..., n. A schedule 

is called normal if, for any two tasks Ti and Tj , si < sj implies that d~i � d~j or rj > 

si . Release times and deadlines are called consistent with the precedence relation 

if Ti  ≺ Tj  implies that ri + 1 � rj and d~i � d~j � 1. The following lemma proves that 

the precedence constraints are not of essential relevance if there is only one pro-

cessor.  

Lemma 4.1.6  If the release times and deadlines are consistent with the prece-
dence relation, then any normal one-processor schedule that satisfies the release 
times and deadlines must also obey the precedence relation.  

Proof. Consider a normal schedule, and suppose that Ti ≺ Tj  but si > sj . By the 

consistency assumption we have ri < rj and d~i < d~j . However, these, together with 
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rj � sj , cause a violation of the assumption that the schedule is normal, a contra-

diction from which the result follows.  

Release times and deadlines can be made consistent with the precedence rela-

tion  if release times are redefined by 

r '(j
 = max ({r(j

} � {r '(i
 + 1 | T(i

 ≺ T(j
}) , 

and deadlines are redefined by  

d~ '(j
 = min ({d~(j

} � {d~ '(i
 � 1 | T(j

 ≺ T(i
}) . 

These changes obviously do not alter the feasibility of any schedule. Further-

more, it follows from Lemma 4.1.6 that a precedence relation is essentially irrel-

evant when scheduling on one processor. Having arrived at a problem of type 

1 | rj , pj = 1, d~j | Cmax we can apply Algorithm 4.1.5 .  

4.1.2 Scheduling with Release Times and Delivery Times 

In this type of problems, task Tj is available for processing at time rj, needs pro-

cessing time pj, and, finally, has to spend some "delivery" time qj in the system 

after its processing. We will generalize the notation introduced in Section 3.4 and 

write 1 | rj , delivery times | Cmax for this type of problems. The aim is to find a 

schedule for tasks T1 ,...,Tn such that the final completion time is minimal.  

One may think of a production process consisting of two stages where the 

first stage is processed on a single processor, and in the second stage some fin-

ishing operations are performed which are not restricted by the bottleneck pro-

cessor. We will see in Section 4.3.1 that maximum lateness problems are very 

closely related to the problem considered here. Numerous authors, e.g. [BS74, 

BFR73, FTM71, Pot80a, Pot80b, LLRK76, and Car82], studied this type of 

scheduling problems. Garey and Johnson [GJ79] proved the problem to be NP-

hard in the strong sense.  

Problem 1 | rj , delivery times | Cmax 

Schrage [Sch71] presented a heuristic algorithm which follows the idea that a 

task of maximal delivery time among those of earliest release time is chosen. The 

algorithm can be implemented with time complexity O(nlogn) .  

Algorithm 4.1.7  Schrage's algorithm for 1 | rj , delivery times | Cmax [Car82]. 

begin 

t := min
Tj �T

{rj}; Cmax := t; 

while T  � � do 
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 begin 

 T ' := {Tj | Tj � T, and rj � t}; 

 Choose Tj � T ' such that pj = max
Tk �T '

{pk | qk = max
Tl �T '

{ql}}; 

 Schedule Tj at time t; 

 T  := T  � {Tj}; 

 Cmax := max{Cmax, t + pj + qj}; 

 t := max{t + pj, min
Tl �T

{rl}}; 

 end; 
end; 
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Figure 4.1.4 A schedule generated by Schrage's algorithm for Example 4.1.8.  

Example 4.1.8 [Car82]  Consider seven tasks with release times r = [10, 13, 11, 

20, 30, 0, 30], processing times p = [5, 6, 7, 4, 3, 6, 2], and delivery times q = [7, 

26, 24, 21, 8, 17, 0]. Schrage's algorithm determines the schedule (T6 , T1 , T2 , T3 , 

T4 , T5 , T7) of length 53, which is shown in Figure 4.1.4. Execution on the single 

processor is represented by solid lines, and delivery times are represented by 

dashed lines. An optimal schedule, however, would be (T6 , T3 , T2 , T4 , T1 , T5 , 

T7), and its total length is 50.  

Carlier [Car82] improved the performance of Schrage's algorithm. Furthermore, 

he presented a branch and bound algorithm for the problem.  

Problem 1 | pmtn, rj , delivery times | Cmax 

If task execution is allowed to be preempted, an optimal schedule can be con-

structed in O(nlogn) time. We simply modify the while-loop in Schrage's al-

gorithm such that processing of a task is preempted as soon as a task with a high-

er priority becomes available ("preemptive version" of Schrage's algorithm). The 

following result is mentioned without a proof (cf. [Car82]).  
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Theorem 4.1.9  The preemptive version of Schrage's algorithm generates opti-
mal preemptive schedules in O(nlog n) time. The number of preemptions is not 
greater than n � 1.   

4.2 Minimizing Mean Weighted Flow Time 

This section deals with scheduling problems subject to minimizing � wj Cj . The 

problem 1 | | � wj Cj can be optimally solved by scheduling the tasks in order of 

non-decreasing ratios pj /wj of processing times and weights. In the special case 

1 | | � Cj (all weights are equal to 1), this reduces to the shortest processing time 

(SPT) rule.  

The problem of minimizing the sum of weighted completion times subject to 

release dates is strongly NP-hard, even if all weights are 1 [LRKB77]. In the 

preemptive case, 1 | pmtn, rj | � Cj can be solved optimally by a simple extension 

of the SPT rule [Smi56], whereas 1 | pmtn, rj | � wj Cj turns again out to be strongly 

NP-hard [LLL+84].  

If deadlines are introduced, the situation is similar: 1 | d~j | � Cj can be solved 

in polynomial time, but the weighted case 1 | d~j | � wj Cj is strongly NP-hard. Sev-

eral elimination criteria and branch and bound algorithms have been proposed 

for this problem.  

If the order of task execution is restricted by arbitrary precedence con-

straints, the problem 1 | prec | � wj Cj  becomes NP-hard [LRK78]. This remains 

true, even if all processing times pj are 1 or all weights wj are 1. For special clas-

ses of precedence constraints, however, polynomial time optimization algorithms 

are known. 

Problem 1 | | �� wj Cj 

Suppose each task Tj � T  has a specified processing time pj and weight wj; the 

problem of determining a schedule with minimal weighted sum of task comple-

tion times, i.e. for which � wj Cj is minimal, can be optimally solved by means of 

Smith's "ratio rule" [Smi56], also known as Smith's weighted shortest processing 
time (WSPT) rule: Any schedule is optimal that puts the tasks in order of non-

decreasing ratios pj /wj . In the special case that all tasks have equal weights, any 

schedule is optimal which places the tasks according to SPT rule, i.e. in non-

decreasing order of processing times.  

In order to prove the optimality of the WSPT rule for 1 | | � wj Cj , we present 

a far more general result due to Lawler [Law83] that includes 1 | | � wj Cj as a spe-
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cial case: Given a set T  of n tasks and a real-valued function " which assigns 

value "(+) to each permutation + of tasks, find a permutation +* such that 

"(+*) = min{"(+) | + is a permutation of task set T } . 

If we know nothing about the structure of function ", there is clearly nothing to 

be done except evaluating "(+) for each of the n! possible different permutations 

of the task set. But for a given function " we can sometimes find a transitive and 

complete relation <
.
 on the set of tasks with the property that for any two tasks Ti , 

Tk , and for any permutation of the form (TiTk, we have 

Ti <
.
 Tk  �  "((TiTk,) � "((TkTi,) . (4.2.1) 

If such a relation exists for a given function ", we say: "" admits the relation <
.
", 

or: "<
.
 is a task interchange relation for "". This means that whenever Ti and Tk 

occur as adjacent tasks with Tk before Ti in a schedule, we are at least as well off 

to interchange their order. This relation is also referred to as the adjacent pair-
wise interchange property. Hence we have the following theorem: 

Theorem 4.2.1  If " admits a task interchange relation <. , then an optimal permu-
tation +* can be found by ordering the tasks according to <.  .  

Consider, for example, Smith's WSPT rule,  

Ti <
.
 Tk  
  pi /wi � pk /wk . (4.2.2) 

If the last task in the subsequence ( in (4.2.1) finishes at time t, the cost � wj Cj of 

(TiTk, will be wi(t�+ pi)�+ wk(t�+ pi�+ pk)�+ C where C considers all the costs of 

tasks in the subsequences ( and ,. If Ti and Tk are interchanged, the cost of 

(TkTi, will be wk(t�+ pk)�+ wi(t�+ pk�+ pi)�+ C. Clearly, because of (4.2.2), the first 

sequence is of smaller cost than the second. As a consequence, the function 

� wj Cj admits Smith's WSPT rule, hence, by Theorem 4.2.1, this rule solves 

1 | | � wj Cj optimally.  

Example 4.2.2  Let T  = {T1 ,...,T10}, with processing times and weights given 

by vectors p = [16, 12, 19, 4, 7, 11, 12, 10, 6, 8] and w = [2, 4, 3, 2, 5, 5, 1, 3, 6, 2]. 

The optimal schedule is obtained by sorting the tasks in order of non-decreasing 

values of pj / wj , i.e. we get the task list (T9 , T5 , T4 , T6 , T2 , T8 , T10 , T3 , T1 , T7) . 

The weighted sum of completion times is 6&6 + 13&5 + 17&2 + 28&5 + 40&4 + 50&3 + 

58&2 + 79&3 + 95&2 + 105&1 = 1233. Note that interchanging any two tasks in the 

schedule causes an increase of � wj Cj .   
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Problem 1 | rj | �� wj Cj 

If the task ready times are not identical, the problem has been proved to be NP-

hard even in the case that all weights are 1 [LRKB77]. We will present two heu-

ristic algorithms for scheduling tasks with equal weights, where each rule speci-

fies priority criteria for adding a task to an existing partial schedule, SU  of al-

ready scheduled tasks U  � T , starting with U = � .  

Suppose that the schedule is constructed by adding one task at a time, start-

ing from the empty schedule. At any point, we have a partial schedule SU  of task 

set U  � T , SU  = (T(1
 ,...,T( �U �

) . The earliest start time of task Tj , sj , and its 

completion time, Cj , satisfy 

 

sj   

�
�
  

 

 

 

 

= rj  if j = (1 

= max{ri , C(j�1
}  if j = (j, j � 1 , 

� max{rj , C( �U �
}  if Tj � T  � U ; 

 

(4.2.3) 

Cj = sj + pj . (4.2.4) 

The two heuristics are as follows. 

A. The earliest completion time (ECT) rule: Select task Tj with Cj = min{Ci | Ti � 

T  � U }. Break ties by choosing Tj with sj = min
i

{si}, and further ties by choosing 

Tj with minimum index j. Update sj and Cj using (4.2.3) and (4.2.4).  

B. The earliest start time (EST) rule: Select task Tj with sj = min{si | Ti � T  � U }. 

Break ties by choosing Tj with Cj = min
i

{Ci}, and further ties by choosing Tj with 

minimum index j. Update sj and Cj using (4.2.3) and (4.2.4).  

For these two heuristics, no accuracy bounds are known. The main difficulty 

arises from the fact that, since rj � 0, idle times may be inserted in the optimal 

schedule. Consider the following example.  

Example 4.2.3  Let T  = {T1 ,...,T5} with processing times p = [3, 18, 17, 21, 25] 

and ready times r = [35, 22, 34, 37, 66]. The ECT rule results in the schedule (T1 , 

T3 , T2 , T4 , T5). The final values of the earliest start time sj and the completion 

times Cj are given by the vectors s = [35, 55, 38, 73, 94] and C = [38, 73, 55, 94, 

119], respectively, and the sum of completion times is 379. An optimal schedule, 

however, would be (T2 , T1 , T3 , T5 , T4) whose sum of completion times is 330.  

An enumerative algorithm for solving the problem with equal weights optimally 

was presented by Dessouky and Deogun [DD81]. This is a branch and bound 

algorithm using a search tree in which a node at level k represents a partial 
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schedule. If SU  is such a partial schedule for a subset U  of k tasks, then let C*
SU 

 

denote the minimal total completion time of any schedule starting with SU  . For 

each node at level k, if SU  = (T(1
 ,...,T(k

 ) is the corresponding partial schedule, 

a lower bound CSU 
 and an upper bound C�SU 

 on C*
SU 

 are computed. A successor 

node at level k + 1 is obtained by selecting a task Ti � T  � U  and adding it to SU  

in position k + 1 to form partial schedule (T(1
 ,...,T(k

 , Ti) .  

At any iteration, the branch and bound search chooses for branching a node 

that has currently the lowest lower bound CSU 
 . Among the nodes generated from 

the same parent node, dominance is tested. A partial schedule Si = (T(1
 ,...,T(k

 ,

Ti) is dominated if another partial schedule Sj = (T(1
 ,...,T(k

 ,Tj) exists, and C*
Si

 � 

C*
Sj

 . A node whose partial schedule has been found dominated by that of another 

node is eliminated from further consideration.  

The crucial steps are indeed those where lower and upper bounds for the to-

tal completion time are estimated. For this, a number of tests are available (see 

[DD81]). 

An extension of this branch and bound algorithm to the case of unequal 

weights is presented in [BR82]. 

The case in which the tasks have unit processing times can be solved in pol-

ynomial time [LRK80]. The preemptive case, 1 | pmtn, rj | � Cj , can be solved op-

timally by a simple modification of Smith's WSPT rule [Smi56], whereas 

1 | pmtn, rj | � wj Cj turns out to be strongly NP-hard [LLL+84]. 

Problem  1 | d~j | �� wj Cj 

Each task Tj becomes available for processing at time zero, has processing time 

pj , a deadline d~j by which it must be completed (i.e. Cj � d~j , j = 1,..., n), and has 

a positive weight wj . The tasks are to be processed without preemption. The ob-

jective is to find a schedule of the tasks which minimizes the sum of weighted 

completion times � wj Cj , subject to meeting all deadlines. This problem was first 

studied by Smith, who found a simple solution procedure for both, situations 

with no deadlines, and those with deadlines, but with equal weights. Emmons 

[Emm75] showed that Smith's procedure does not extend to the case of unequal 

weights, and from Lenstra [Len77] we know that problem 1 | d~j | � wj Cj is NP-

hard. Burns [Bur76] constructed a pairwise interchange heuristic for this problem 

that was improved by Miyazaki [Miy81]. Bansal [Ban80] developed an optimi-

zation algorithm based on a branch and bound approach and dominance criteria, 

and used Smith's WSPT rule to calculate lower bounds. Potts and van Wassen-

hove [PW83] presented a branch and bound algorithm based on a Lagrangian 

relaxation of the problem and found additional dominance criteria. Similar im-

provements have been presented by Kalra and Khurana [KK83], Posner [Pos85] 
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and Bagchi and Ahmadi [BA87]. The latter used a task-splitting procedure to 

compute lower bounds for the weighted sum of completion times. 

In the following we will assume that at least one feasible schedule exists for 

the given problem; this is easily checked by ordering the tasks in non-decreasing 

order of deadlines. If any of the tasks in this sequence is completed after its dead-

line, then no feasible schedule exists. It can be shown that if tasks have agreeable 

deadlines, i.e. pj /wj � pk /wk implies d~j � d~k for all tasks Tj and Tk , then an optimal 

solution is obtained by ordering the tasks in non-decreasing order of their dead-

lines.  

Another interesting heuristic algorithm for 1 | d~j | � wj Cj is Smith's backward 
scheduling rule [Smi56]. Provided there exists a schedule in which all tasks meet 

their deadlines, the algorithm chooses one task with largest ratio pj /wj among all 

tasks Tj with d~j � p1 +...+ pn , and schedules the selected task last. It then contin-

ues by choosing an element of ratio among the remaining n � 1 tasks and placing 

it in front of the already scheduled tasks, etc. 

Algorithm 4.2.4  Smith's backward scheduling rule for 1 | d~j | � wj Cj [Smi56]. 

begin 

p := �
i=1

n
 pi; 

while T  � � do 

 begin 

 T p := {Tj | Tj � T , d~j � p}; 

 Choose task Tj � T p such that pj /wj is maximal; 

 Schedule Tj in position n; 

 n := n � 1; 

 T  := T  � {Tj}; 

 p := p � pj; 

 end; 

end; 

This algorithm can be implemented to run in O(nlog n) time. We also know that 

the algorithm is exact in the following cases (cf. [PW83]): 

(i) unit processing times, i.e. for the problem 1 | pj=1, d~j | � wj Cj, 

(ii) unit weights, i.e. for problem 1 | d~j | � Cj , 

(iii) agreeable weights, i.e. for problems where pi � pj implies wi � wj for all i 
and j � {1,..., n}. 

However, in case of arbitrary weights, simple examples show that this algorithm 

is not exact. 

We will present a branch and bound algorithm for 1 | d~j | � wj Cj . In order to 

reduce the search for an optimal solution, dominance conditions are useful. 
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Dominance theorems usually specify that if certain conditions are satisfied, then 

task Ti precedes task Tj in at least one optimal schedule. When such conditions 

are satisfied, we say that task Ti is a predecessor of task Tj , and Tj is successor of 

Ti . In that way, dominance theorems result in a set of precedence constraints be-

tween pairs of tasks. It is clear that any enumerative algorithm can restrict its 

search to schedules obeying these precedence constraints. Hence, if many prece-

dence constraints are found, the number of schedules to be investigated can be 

considerably reduced. Following [PW83], we formulate without proof three ex-

amples of such constraints. 

Lemma 4.2.5  Let T ' � T  be a subset of tasks chosen such that for any Ti � 

T  � T ' and for any Tj , Tk � T ' with d~j � d~k , pi / wi � pj / wj � pk / wk holds. Then for 
any pair of tasks Ti � T  and Tj � T ' with d~i � d~j , there exists an optimal schedule 
in which task Ti appears before task Tj .  

For the next lemma, let A
 i denote the set of tasks which, according to the prece-

dence condition of Lemma 4.2.5, are successors of task Ti (i = 1,..., n) . 

Lemma 4.2.6  If pi � pj , wi � wj and min{d~i , pj  + �
Tk �T �Aj

 pk} � d~j , then there 

exists an optimal schedule in which task Ti is processed before task Tj .  

Lemma 4.2.7  If the tasks are renumbered so that d~i �...� d~n , and if pj + �
k=1

i
 pk > 

d~i for some j with 1 � i � j � n, then tasks T1 ,...,Ti are scheduled before task Tj 
in any feasible schedule.  

Obviously, each deadline that exceeds the total processing time p = � pi can be 

replaced by p without any changes of the resulting schedule. In addition, after 

some precedence conditions have been derived, the deadline of each task Ti can 

be reset to d~i = min{d~i , p � �
Tk � Ai

 pk} (i = 1,..., n) where A
 i is the set of succes-

sors of task Ti . Furthermore, the deadline of any task Ti which is predecessor of 

another task Tj is reset using d~i = min{d~i , d
~

j � pj � �
Tk �Ai � Bj

 pk}, where Bj is the 

set of predecessors of task Tj .  

Reducing deadlines that way may induce additional precedence conditions 

between tasks. Lemmas 4.2.6 and 4.2.7 are applied repeatedly until no additional 

precedences can be found. It is indeed our aim to find as many precedences as 

possible because they allow to reduce the deadlines, and thus decrease the num-

ber of potential schedules in the branch and bound algorithm. 

Scheduling a set of tasks according to Smith's backward scheduling rule al-

lows to partition the task set T  into blocks T
 1 ,...,T

 k . Assume that the tasks have 
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been renumbered so that the schedule generated by Algorithm 4.2.4 is (T1 ,...,

Tn) . A task Tl' is called final if d~i � Cl' for i = 1,..., l' (implying Cl' = d~l') . The 

reasoning behind this definition is that tasks T1 ,...,Tl' must be scheduled before 

all other tasks in any feasible schedule. A set of tasks T
 i = {T(i

 ,...,T*i
} forms a 

block if the following conditions are satisfied: 

(i) (i = 1, or task T(i � 1 is final, 

(ii) task Ti is not final for i = (i ,...,*i � 1 , 

(iii) T*i
 is final. 

If the deadlines force tasks T1 ,...,T*i
 to be scheduled before all other tasks, 

then the previous deadline adjustment procedures will ensure that d~j � C*i
 for j = 

1,...,*i , and C*i
 = d~*i

 , thus, T*i
 will be the last task in a block.  

The following theorem gives a sufficient condition for a schedule generated 

by Smith's backward scheduling rule to be exact. 

Theorem 4.2.8  A schedule generated by Smith's backward scheduling rule is 
optimal if there is a block partition (in the above sense) of the given task set, the 
tasks within each block being scheduled in non-decreasing order of pj / wj . 

Proof. Suppose that the construction of blocks results in k blocks T
 1 ,...,T

 k . It is 

clear that all tasks in block T
 j must precede all tasks in block T

 j+1 , j = 1,..., k � 1 

in any feasible schedule. Therefore, the problem decomposes into sub-problems 

each of which involves scheduling tasks within a block. From Smith's backward 

scheduling rule we know that if the tasks within a block are scheduled in non-

decreasing order of pj / wj , then the schedule is optimal.  

Example 4.2.9  Let T = {T1 ,...,T8} with processing times, deadlines and 

weights as follows: p = [4, 3, 8, 2, 4, 7, 5, 4], d ~ = [13, 8, 38, 14, 9, 40, 25, 22], w = 

[2, 6, 3, 3, 4, 2, 9, 2]. A feasible schedule is (T2 , T5 , T1 , T4 , T8 , T7 , T3 , T6). Apply-

ing Lemmas 4.2.5-4.2.7 allows to reduce the deadlines to d ~ = [13, 8, 37, 13, 9, 37, 

22, 22], and Algorithm 4.2.4 defines the heuristic schedule (T2 , T4 , T5 , T1 , T7 , T8 , 

T3 , T6). We see that tasks T1 and T6 are final, hence both, the first four and the 

last four tasks define a partial schedule. As within the partial schedules the val-

ues of pj / wj are non-decreasing, both partial schedules are optimal; hence the 

total schedule is optimal.  

In general we will not be able to partition the given set of tasks into blocks. Al-

gorithm 4.2.4 will then produce a schedule S that is not necessarily optimal. 

However, as this schedule may be considered as an approximate solution, its val-

ue "S = � wj Cj serves as an upper bound for the value of an optimal schedule.  

A branch and bound method can now be applied in the following way: a 

node at level l of the search tree corresponds to a final partial schedule in which 
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tasks are scheduled in the last l positions. The value of the partial schedule repre-

sents a lower bound for the schedule that can be obtained by descending from 

that node. Hence, if the lower bound is greater than or equal to any upper bound 
"S , the node can be discarded from further consideration. 

An interesting modification of the problem is to allow tasks to be tardy up to 

a given maximum allowable tardiness D � 0, i.e. the objective is to minimize 

� wj Cj subject to Cj � d~j � D for j = 1,..., n. This problem is called constrained 
weighted completion time (CWCT) problem [CS86]. This has been shown to be 

NP-hard by Lenstra et al. [LRKB77]. From Chand and Schneeberger [CS86] we 

know that the CWCT problem can be solved optimally, e.g. in the case that the 

weight wj of each task is a non-increasing function of the processing time pj . 

Furthermore they discussed a worst-case analysis of the WSPT heuristic and 

showed that the accuracy performance ratio can become arbitrarily large in the 

worst case. 

The case where tasks have unit processing times and both, release times and 

deadlines, is solvable as a linear assignment problem in O(n3
) time [LRK80]. As 

can easily be shown there is no advantage to preempt task execution, as any solu-

tion that is optimal for 1 | d~j | � wj Cj is also optimal for 1 | pmtn, d~j | � wj Cj . Conse-

quently 1 | pmtn, d~j | � Cj can be solved in polynomial time, and the problems 

1 | pmtn, d~j | � wj Cj and 1 | pmtn, rj , d
~

j | � wj Cj are NP-hard.  

Problem 1 | prec | �� wj Cj 

For general precedence constraints, Lawler [Law78] and Lenstra and Rinnooy 

Kan [LRK78] showed that the problem is NP-hard. Sidney [Sid75] presented a 

decomposition approach which produces an optimal schedule. Among others, 

Potts [Pot85] presented an especially interesting branch and bound algorithm 

where lower bounds are derived using a Lagrangian relaxation technique in 

which the multipliers are determined by the cost reduction method. Optimization 

scheduling algorithms running in polynomial time have been presented for tree-

like precedences [Hor72, AH73], for series-parallel precedences [Sid75, IIN81], 

and for more general precedence relations [BM83, MS89].  

Following [Sid75], a subset U - T is said to have precedence over subset 

V - T if there exist tasks Ti � U and Tj � V such that Tj � succ(Ti). If this is the 

case we will write U � V . A set U - T is said to be initial in (T , ≺) if (T  � U) 

�/  U, i.e. if (T  � U) � U is not true. In effect, no task from T  � U has a succes-

sor in U, or, in other words, for each task in U, all its predecessors are in U, too. 

Obviously, there exists a feasible task order in which the elements of set U are 

arranged before that of T��� U.  
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For a non-empty set U  - T , define p(U) = �
Ti �U 

 pi, w(U) = �
Ti �U 

 wi, and 

�(U) = p(U) /w(U). We are interested in initial task sets that have some minimal-

ity property. Set U - T  is said to be �*-minimal for (T , ≺) if  

(i) U is initial in (T , ≺) , 

(ii) �(U) � �(V ) for any V  which is initial in (T , ≺), and 

(iii) �(U) < �(V ) for each proper initial subset V - U. 

With these notations we are able to formulate the following algorithm. 

Algorithm 4.2.10  Sidney's decomposition algorithm for 1 | prec | � wj Cj [Sid75, 

IIN81]. 

begin 

while T  � � do 

 begin 

 Determine task set U that is �*-minimal for (T , ≺); 

 Schedule the members of task set U optimally; 

 T  := T  � U; 

 end; 
end; 
From Sidney [Sid75] we know that a schedule is optimal if and only if it can be 

generated by this algorithm. Instead of proving this fact, we give an intuitive ex-

planation why the algorithm works. Observe that at each step of the iteration, the 

next subset added to the current schedule is an available subset (i.e. an initial 

subset) that minimizes �(U) = p(U)/w(U). Thus, subsets containing tasks with 

small processing times will be favored, which is consistent with the fact that such 

tasks delay future tasks by relatively little amounts of time. Also, subsets con-

taining tasks with high deferral rates are favored, as we would expect from the 

fact that it is costly to delay such tasks.  

For implementing the first instruction of the while-loop, Ichimori et al. 

[IIN81] gave an algorithm of time complexity O(n4
). Consequently, because of 

the NP-hardness of the problem, the second step of Algorithm 4.2.10 must be of 

exponential time complexity. Only for special types of precedence graphs such 

as series parallel graphs, the second step of the Algorithm 4.2.10 can be imple-

mented to run in time polynomially bounded in the number of tasks.  

Note that in the special case for which there are no precedence constraints 

(i.e. ≺ is empty), Algorithm 4.2.10 reduces to the Smith's ratio rule introduced in 

(4.2.2). 

Example 4.2.11 [Sid75]  Let T  = {T1 ,...,T7}, and let the processing times and 

weights be given by the vectors p = [5, 8, 3, 5, 3, 7, 6] and w = [1, 1, 1, 1, 1, 1, 1]. 

The precedence constraints are shown in Figure 4.2.1. The subset U  = {T1 , T3} is 
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initial, and p(U) = 8, w(U) = 2, �(U) = 4. It is easy to verify that there is no other 

initial subset V with the property �(V ) < �(U). Furthermore, the only proper 

subset of U that is initial in (T , ≺) is {T1}, with �(T1) = p1 = 5 > �(U). Hence U 

is �*-minimal. 

If U is the first subset selected in the while-loop of Algorithm 4.2.10, the 

schedule will start with tasks T1 and T3 , and the algorithm proceeds with task set 

{T2 , T4 , T5 , T6 , T7}. Next the �*-minimal subset {T2 , T4 , T5} could be chosen, 

which gives the partial schedule (T1 , T3 , T2 , T5 , T4) , etc.  

T1 T2

T3 T4 T5

T6

T7  

Figure 4.2.1 A precedence graph for Example 4.2.11. 

A series of branch and bound algorithms have been developed for problem 

1 | prec | � wj Cj during the last decades. A more recent algorithm was presented 

by Potts [Pot85] where lower bounds are derived using a Lagrangian relaxation 

technique in which the multipliers are determined by a cost reduction method. A 

zero-one programming formulation of the problem uses variables xij (i, j = 

1,..., n) defined by 

xij = 
�.
�
.  

 
 
1 if i � j , and task Ti is scheduled before task Tj ,  

0 otherwise. 
 

The values of some xij are implied by the precedence constraints, while others 

need to be determined. Let eij = 1 when the precedence constraints specify that 

task Ti is a predecessor of task Tj and let eij = 0 otherwise. Now, since the com-

pletion of task Tj occurs at time �
i

 pi xij + pj , the problem can be written as 

minimize  �
i
 �

j
 pi xij wj (4.2.5) 

subject to xij � eij (i, j = 1,..., n) , (4.2.6) 

 xij + xji = 1 (i, j = 1,..., n; i � j) , (4.2.7) 
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 xij + xjk + xki � 2 (i, j, k = 1,..., n; i � j; i � k; j � k) , (4.2.8) 

 xij � {0, 1} (i, j = 1,..., n) , (4.2.9) 

 xii = 1  (i = 1,..., n) . (4.2.10) 

The constraints (4.2.6) ensure that xij = 1 whenever the precedence con-

straints specify that task Ti is a predecessor of task Tj . The fact that any task Ti is 

to be scheduled either before or after any other task Tj is presented by (4.2.7). 

The matrix X = [xij] may be regarded as the adjacency matrix of a complete 

graph GX in which each edge has one of the two possible orientations, and where 

G is a sub-graph of GX. As a matter of fact, each such graph GX has the property 

that if it contains a cycle, then it contains a directed cycle with three edges. Thus 

the constraints (4.2.7) and (4.2.8) ensure that GX contains no cycles. When all 

constraints are satisfied, GX defines a complete ordering of the tasks in which 

case GX is called the order graph of X .  

Using (4.2.7) and (4.2.8), it is possible to derive more general cycle elimina-

tion constraints involving r edges. They are of the form 

�
h=1

r
xih ih+1

 � r � 1 , (4.2.11) 

where i1 ,..., ir correspond to r different tasks and where ir+1 = i1 . For example, 

adding the constraints xhi + xij + xjh � 2 and xhj + xjk + xkh � 2, and using xjh + xhj = 

1 yields xhi + xij + xjk + xkh � 3 .  

The coefficient piwj of xij in (4.2.5) may be regarded as the cost of schedul-

ing task Ti before Tj . It is convenient to define the cost matrix C = [cij], where 

the cost of scheduling task Ti before task Tj is 

cij = 
�.
�
.  

 
 
piwj if eji = 0 

# if eji = 1 
(i, j = 1,..., n, i � j). (4.2.12) 

Whenever the precedence constraints specify that task Tj is a predecessor of task 

Ti , we have cij = # which ensures that constraints (4.2.6) are satisfied without 

applying them explicitly. The problem can now be written as 

minimize �
i
 �

j
 cij xij 

subject to (4.2.7)-(4.2.10). 

For special classes of precedence constraints optimization scheduling algo-

rithms running in polynomial time are known. Horn [Hor72] and Adolphson and 

Hu [AH73] discussed the problem for tree-like precedence graphs. For series-

parallel precedence graphs, Lawler [Law78] presented an O(nlogn) time algo-

rithm where an interchange relation similar to that presented in (4.2.1) is applied. 

Ichimori et al. [IIN81] considered classes of graphs for which Algorithm 4.2.10 
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has polynomial time complexity. They showed that if the precedence constraints 

≺ are such that the �*-minimal subsets for (T , ≺) are series-parallel, Algorithm 

4.2.10 can be implemented to run in O(n5
) time. In fact, Lawler [Law78] was 

able to prove the existence of exact algorithms for scheduling problems with far 

more general optimization criteria than � wj Cj . Let again " be a real-valued func-

tion on permutations. Note that a schedule for one processor is defined by a per-

mutation of the given task set, hence, as the order of task execution is restricted 

by the given precedence constraints, only "feasible" permutations are allowed. A 

permutation + is called feasible if Ti ≺ Tk implies that task Ti precedes task Tk 

under +. The objective is to find a feasible permutation +* such that 

"(+*) = min{"(+) | + feasible} . 

Unfortunately, the task interchange relation introduced in (4.2.1) is not general 

enough to solve this problem. Instead considering pairs of tasks, we should ra-

ther deal with pairs of strings of tasks: A string interchange relation is a transi-

tive and complete relation <
.
 on strings with the property that for any two disjoint 

strings , and ,' of tasks, and any permutation of the form (,,'* we have 

, <
.
 ,'  �  "((,,'*) � "((,',*) . 

Smith's WSPT rule can again be used to define a string interchange relation: for 

any string ,, define �, = �
Tj �,

 pj / �Tj �,
 wj , and , <

.
 ,' 
 �, � �,' . A reasoning simi-

lar to that following (4.2.2) proves that function � wj Cj admits this string inter-

change relation <
.
. 

Clearly, a string interchange relation implies a task interchange relation; but it 

is not true in general that every function " which admits a task interchange rela-

tion also has a string interchange relation. Lawler's result is the following. 

Theorem 4.2.12 [Law78]  If " admits a string interchange relation <.  and if the 
precedence constraints ≺ are series-parallel, then an optimal permutation +* 
can be found by an algorithm which requires O(nlogn) comparisons of strings 
with respect to <.  .  

Recall from Section 2.3 that series-parallel precedences can be described by 

means of a decomposition tree (see for example Figure 2.3.4). Working from the 

bottom of the tree upward, we can compute a set of strings of tasks for each node 

of the tree from the sets of strings obtained for its children. The objective is to 

obtain a set of strings at the root such that concatenating these strings in order 

according to <
.
 yields an optimal feasible schedule. We will accomplish this ob-

jective if each set S of strings obtained satisfies two conditions. 

(i) Any concatenation of the strings in a set S in order according to <
.
 does not 

contradict the order given by the precedence constraint ≺, and 
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(ii) At any point in the computation, let S1 ,...,Sk be the sets of strings computed 

for nodes such that sets have not yet been computed for their parents. Then some 

ordering of the strings in the set S
1 �...� Sk yields an optimal feasible sub-

schedule. 

If the strings computed at the root are concatenated in order according to <
.
, 

then condition (i) ensures that the resulting schedule is feasible, and condition 
(ii) ensures that it is optimal. 

There is another class of promising scheduling algorithms. These algorithms ob-

tain optimal schedules by finding optimal sub-schedules for progressively larger 

modules of tasks until all tasks are scheduled. This idea can be, for example, ap-

plied to series-parallel graphs which can be built up recursively from modules as 

specified by the decomposition tree (see Section 2.3.2). Möhring and Raderma-

cher [MR85] generalized the notion of a decomposition tree to arbitrary prece-

dence graphs. For the class of all precedence graphs built up by substitution from 

prime (indecomposable) modules of size � k, k arbitrary, there is an optimization 

algorithm of complexity O(n(k2
)
) to minimize � wj Cj . Sidney and Steiner [SS86] 

improved this algorithm to run in O(nw+1
) time, where w denotes the maximum 

width of a prime module.  

The idea of decomposing posets into prime modules can also be applied to 

optimization criteria other than � wj Cj , as for example for the exponential cost 

function criterion (see Section 4.4.2). Monma and Sidney [MS87] proved that if 

the objective function obeys certain interchange properties then the so-called job 
module property is satisfied. The job module property says that any optimal solu-

tion to a sub-problem defined by a task module is consistent with at least one 

optimal schedule for the entire problem. 

Problems 1 | prec, rj | �� wj Cj and 1 | prec, d~j | � wj Cj 

Lenstra and Rinnooy Kan [LRK80] proved that the problems 1 | chains, rj , pj = 1 | 

� wj Cj  and 1 | chains, d~j , pj = 1 | � wj Cj  of scheduling unit time tasks subject to 

chain-like precedence constraints and either arbitrary release dates or arbitrary 

deadlines so as to minimize � wj Cj  are both NP-hard.  

4.3 Minimizing Due Date Involving Criteria 

In this section scheduling problems with optimization criteria involving due 

dates will be considered. These include: maximum lateness Lmax , weighted num-

ber of tardy tasks � wj Uj , mean weighted tardiness � wj Dj , and a combination of 

earliness-tardiness criteria. 
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4.3.1 Maximum Lateness 

Whereas the problem 1 | | Lmax can easily be solved in polynomial time by Jack-

son's earliest due date algorithm, other cases turn out to be more complex. The 

problem 1 | rj | Lmax is strongly NP-hard [LRKB77]. For this, and for 1 | prec, rj | 

Lmax as well, solution methods based on branch and bound are known. If tasks 

are preemptable or have unit processing time, the problem is easy, even if the 

order of task execution is constrained by a precedence relation [Bla76, Sid78, 

Mon82]. 

Problem 1 | | Lmax 

The earliest due date algorithm (EDD rule) of Jackson [Jac55] provides a simple 

and elegant solution to this problem. In this algorithm, tasks are scheduled in 

order of non-decreasing due dates. The optimality of this rule can be proved by a 

simple interchange argument. Let S be any schedule and S* be an EDD schedule. 

If S � S* then there exist two tasks Tj and Tk with dk � dj , such that Tj immediate-

ly precedes Tk in S, but Tk precedes Tj in S*. Since dk � dj , interchanging the po-

sitions of Tj and Tk in S cannot increase the value of Lmax . A finite number of 

such changes transforms S into S*, showing that S* is optimal. The EDD rule 

minimizes maximum lateness and maximum tardiness as well.  

Problem 1 | rj | Lmax 

The problem 1 | rj | Lmax is known to be NP-hard in the strong sense [LRKB77]. 

Many exact algorithms have been proposed for this problem, but they are all 

based on enumerative methods and their computation time grows exponentially 

with the size of the problem. Research on this problem has focused on reducing 

the computational time for scheduling large task sets. Achieving this goal will 

also improve the efficiency of algorithms used to solve the more difficult Pm | rj | 

Lmax problem by using the optimal solutions to the 1 | rj | Lmax problem [LLRK76].  

There is certain symmetry inherent in the problem which becomes apparent 

if the model is presented in an alternative way. In this delivery time model, there 

are three processors, P1 , P2 , and P3 , where P1 and P3 are assumed to be non-
bottleneck processors of infinite capacity, and P2 is a bottleneck processor of 

capacity 1 (i.e. only one task can be processed at a time). Each task Tj has to visit 

P1 , P2 , P3 in that order and has to spend 

� a head T
 j    
 (1)

 on P1 during time interval [0, rj) , 

� a body T j   
 (2)

 on P2 from time sj � rj to Cj = sj + pj , 

� a tail T j   
 (3)

 on P3 from time Cj to Lj' = Cj + qj , 
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where the processing time qj of tail T j   
 (3)

 is assumed to be K � dj for some constant 

K � max
i

 {di}. The objective is to minimize the maximum completion time Lmax'    = 

max
i

 {Li'} = Lmax + K. Notice that this model is exactly the same as the delivery 

time model discussed in Section 4.1.2. Whereas the head part of a task simply 

realizes the release time, the body part corresponds to the actual task to be pro-

cessed on the single processor, and the tail part represents the delivery time of 

the task. 

We will refer to the delivery time model as (r, p, q) where r, p, q are vectors 

of dimension n specifying release times (heads), processing times (bodies), and 

tails, respectively, for the tasks. It is interesting to note that problem (r, p, q) can 

be reversed: the inverse problem is defined by (q, p, r), and an optimal schedule 

for (q, p, r) can be reversed to obtain an optimal schedule for (r, p, q), with the 

same value of Lmax . 

Of particular importance are the algorithms of Bratley et al. [BFR73], Baker 

and Su [BS74], and McMahon and Florian [MF75]. The algorithm of McMahon 

and Florian (in the following referred to as MF algorithm) follows a novel ap-

proach in the way it applies the branch and bound method to scheduling prob-

lems. It searches for an optimal schedule over a tree of all possible schedules. 

Unlike other branch and bound algorithms in which most nodes in the tree repre-

sent partial schedules, the MF tree defines a complete schedule on each node. 

The schedule is used to derive a lower bound (LB) and an upper bound (UB) on 

the optimal solution at that node. In addition, the value  of the maximum lateness 

of all tasks (Lmax) in the schedule is computed. The search strategy is of the 

jumptracking type and follows always the node with the current lowest LB (the 

current node). From that node, only schedules which can potentially reduce the 

value of Lmax are generated. The current lowest upper bound (LUB) is continually 

updated, and a node is eliminated if its LB � LUB. The search stops when the 

current node passes an optimality test. The algorithm derives its efficiency from 

the procedures which perform the following functions:  

(1) construct a complete schedule at each node, including the initial schedule; 

(2) test each schedule for optimality and compute the lower bound if the current 

solution is not proven optimal; 

(3) generate successor of a node. 

The MF algorithm can be characterized as a forward scheduling procedure 

since it starts by placing a task in the first position and continues to place tasks in 

succeeding positions until it reaches the task in the last position. It turns out that 

the MF algorithm tends to be inefficient when the problem (r, p, q) has a particu-

lar structure, for example when the range of ready times is less than that of due 

dates. Recognizing this difficulty, Lenstra [Len77] reversed the problem to (q, p, 

r). Since the ready times (rj) are exchanged with the values qj , the ranges of 

ready times and due dates are exchanged, too. As a consequence, the perfor-

mance of the MF algorithm was improved considerably. 
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Erschler et al. [EFMR83] introduced a new dominance concept which per-

mits a restricted set of schedules (the "most feasible ones") to be established on 

the basis of the ordering of ready times and due dates only. In particular, this 

dominance property is independent of task processing times, which is especially 

attractive if the data are not reliable. Carlier [Car82] and Larson et al. [LDD85] 

improved the previous algorithms with approaches following the MF algorithm, 

where the principles of branching are quite different and fully exploiting the 

problems' symmetrical features.  

Compared to the branch and bound algorithms known for the problem in 

question, heuristic algorithms such as special list scheduling algorithms can be 

extremely efficient and often provide solutions adequate for practical applica-

tions. They can also be used to provide upper bounds on the criterion values of 

optimal schedules. This practical and theoretical importance of the problem mo-

tivates the search for efficient approximation algorithms with guaranteed accura-

cies. Larson and Dessouky [LD78] considered eleven heuristic algorithms and 

compared them experimentally. Kise et al. [KIM79] discussed several heuristic 

strategies from a more theoretical point of view. Among them are simple heuris-

tics such as Jackson's EDD rule, or an algorithm where tasks are scheduled in 

order of their ready times, or combinations of these two strategies. The main re-

sult of [KIM79] is that the relative deviation Lmax /L*  
max of the approximate solu-

tions is not larger than 2 � 2/p where p is the sum of processing times of the tasks. 

For an iterative version of Jackson's rule (IJ) Potts [Pot80b] was able to prove 

Lmax(IJ) /L *  max � 3/2 . 

Hall and Shmoys [HS88] proved that a modification of IJ, MIJ, where the roles 

of release times and delivery times are interchanged, guarantees 

Lmax(MIJ) /L*  max � 4/3 . 

In the same paper, the authors also presented two algorithms A1k and A2k that 

guarantee 

Lmax(Aik) /L *  max � 1 + 1/k for i = 1, 2 and natural k .  

A1k runs in O(nlogn + nk16k2
+8k

) time, whereas A2k runs in O(2
4k

(nk)
4k+3

) time. 

The case of equal due dates is equivalent to 1 | rj | Cmax which can be solved 

optimally by scheduling the tasks in order of non-decreasing release dates (see 

Section 4.1).  

If all execution times pj  are equal (but due dates are different), a polynomial 

time method is not available, unless pj  = 1 for all tasks Tj . If all tasks have unit 

execution times (1 | rj , pj = 1 | Lmax ), an optimal schedule is generated in polyno-

mial time by involving repeated application of Jackson's EDD rule.  
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Algorithm 4.3.1  Modification of EDD rule for 1 | rj , pj = 1 | Lmax [LLRK76]. 

begin 

t := 0; 

while T � � do 

 begin 

 t := max{t, min
Tj �T

{rj}}; 

 T ' := {Tj | Tj � T , rj � t}; 

 Choose Ti � {Tj | Tj � T ' for which dj = min{dk | Tk � T '}}; 

 T := T  � {Ti}; 

 Schedule Ti at time t; 

 t := t + 1; 
 end; 
end; 

The proof of this result is straightforward and depends on the fact that no task 

can become available during the processing of another one, so that it is never 

advantageous to postpone processing the selected task Ti (recall that all rj's are 

assumed to be integer).  

If pj = p, where p is an arbitrary integer, Algorithm 4.3.1 is not exact if p 

does not divide all rj . For example, if n = p = 2, r1 = 0, r2 = 1, d1 = 7, d2 = 5, 

postponing T1 is clearly advantageous. Simons [Sim78] presented a more sophis-

ticated approach to solve the problem 1 | rj , pj = p | Lmax , where p is an arbitrary 

integer.  

Problem 1 | pmtn,  rj | Lmax 

For the preemptive case, 1 | pmtn, rj | Lmax , a modification of Jackson's rule due to 

Horn [Hor74] solves the problem optimally in polynomial time.  

Algorithm 4.3.2  for problem 1 | pmtn, rj | Lmax [Hor74]. 

begin 

repeat 

 �1 := min
Tj �T

{rj}; 

 if all tasks are available at time �1  

 then �2 := #  

 else �2 := min{rj | rj  � �1};  

 E := {Tj | rj = �1}; 

 Choose Tk � E such that dk = min
Tj �E

{dj}; 

� l := min{pk$ �2 � �1/; 
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 Assign Tk to the interval [�1, �1  + l); 

 if pk � l  
 then T  := T  � {Tk}  

 else pk := pk � l; 

 for all Tj � E do rj := �1 + l; 

until T  = �; 

end; 

Problem 1 | prec,  rj | Lmax 

We first emphasize that the considerations concerning symmetry of problems 

1 | rj | Lmax can be generalized to the case of precedence constraints. If a problem 

is specified by a triple of vectors (r, p, q) and - in addition - a precedence relation 

≺, this is clearly equivalent to the inverse problem defined by (q, p, r) and ≺' 
with Ti ≺' Tj if Tj ≺ Ti. Again, an optimal schedule for a problem can be reversed 

to obtain an optimal schedule for the original problem, with the same criterion 

value.  

Let us now examine the introduction of precedence constraints in the prob-

lem in detail. As a general principle, release times rj and tails qj may be replaced 

by 

rj = max {rj, max{ri + pi | Ti ≺ Tj}} 

qj = min {qj, min{pi + qi | Tj ≺ Ti}} ,  

because in every feasible schedule sj � Ci � ri + pi for all Tj with Ti ≺ Tj and Li' � 

Cj + pi � qi for all  Tj with Tj ≺ Ti . Hence, if Ti ≺ Tj , we may assume that ri + pi � 

rj and qi � qj + pj . 

It follows that the case in which all due dates are equal is again solved by 

ordering the tasks according to non-decreasing rj . Such an ordering will respect 

all precedence constraints in view of the preceding argument. If we apply this 

method to the problem in which all rj's are equal, i.e. for 1 | prec | Lmax , the result-

ing algorithm can be interpreted as a special case of Lawler's more general algo-

rithm to minimize max
j

{Gj(Cj)} for arbitrary non-decreasing cost functions Gj 

(cf. Section 4.5). A similar observation can be made with respect to the case pj = 

1 for all j, where Algorithm 4.3.1 will produce a schedule respecting the prece-

dence constraints.  

In the general case, however, the precedence constraints are not respected 

automatically. Consider for example five tasks with release times r = [0, 2, 3, 0, 

7], processing times p = [2, 1, 2, 2, 2], and tales q = [5, 2, 6, 3, 2], and the prece-

dence constraint T4 ≺ T2 (cf. [LRK73]); note that r4 + p4 � r2 and q4 � p2 + q2. If 

the constraint T4 ≺ T2 is ignored, the unique optimal schedule is given by (T1 , 



 4.3  Minimizing Due Date Involving Criteria 105 

 

T2 , T3 , T4 , T5) with value L *  
max = 11. Explicit inclusion of this constraint leads to 

L *  
max = 12 . 

The MF algorithm introduced by McMahon and Florian [MF75] can easily 

be adapted to deal with given precedence constraints. Since we may assume that 

ri < rj and qi > qj if Ti ≺ Tj , they are respected by the MF algorithm, and obvi-

ously, the lower bound remains valid.  

Problem 1 | pmtn,  prec, rj | Lmax 

This problem can be solved in O(n2
) time by an application of the algorithm giv-

en in [Bla76], which combines the ideas of Lawler's approach to the solution of 

problem 1 | prec | Lmax and these of Algorithm 4.3.2. We mention here that in fact 

the much larger class of problems 1 | pmtn, prec, rj | Gmax , where quite arbitrary 

cost functions are assigned to the tasks and maximum cost is to be minimized, 

can be optimally solved in time O(n2
). This will be discussed in Section 4.5. 

Minimizing Lateness Range 

The usual type of scheduling problems considered in literature involves penalty 

functions which are non-decreasing in task completion times. Conway et al. 

[CMM67] refer to such functions as regular performance criteria. There are, 

however, many applications in which non-regular criteria are appropriate. One 

of them is the problem of minimizing the difference between maximum and min-

imum task lateness which is important in real life whenever it is desirable to give 

equal treatment to all customers (tasks). That is, the delays in filling the customer 

orders should be as nearly equal as possible for all customers. Another example 

are file organization problems the objective is to minimize the variance of re-

trieval times for records in a file.  

In spite of the importance of non-regular performance measures, very little 

analytical work has been done in this area. Gupta and Sen [GS84] studied the 

problem 1 | | Lmax � Lmin where the tasks are pair-wise independent, ready at time 

zero, each having a due date dj and processing time pj . They used a heuristic rule 

in which tasks are ordered according to non-decreasing values of dj � pj (mini-
mum slack time rule, MST), and ties are broken according to earliest due dates. 

This heuristic allows to compute lower bounds for Lmax � Lmin which are then 

used in a branch and bound algorithm to eliminate nodes from further considera-

tion.  

A more general objective function has been considered by Raiszadeh et al. 

[RDS87]. Their aim was to minimize the convex combination Z = 0(Lmax � 

Lmin) + (1 � 0)Lmax , 0 � 0 � 1, of range of minimum and maximum lateness. 
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Let all the tasks be arranged in the earliest due date order (EDD) and in-

dexed accordingly (T1 ,...,Tn). Thus for any two tasks Ti , Tj � T , if di < dj , we 

must have i < j. Ties are broken such that di � pi � dj � pj , i.e. in the minimum 

slack time (MST) order. If there is still a tie, it can be broken arbitrarily.  

Let S be a schedule in which task Ti immediately precedes task Tj , and let S' 
be constructed from S by interchanging tasks Ti and Tj without changing the po-

sition of any other task in S. Then, due to [RDS87], we have the following result 

for the values Z of S and S' . 

Lemma 4.3.3 (a) If di � pi � dj � pj , then Z(S) � Z(S') . 

(b) If di � pi > dj � pj , then Z(S) � Z(S') � 0((di � pi) � (dj � pj)) .  

Lemma 4.3.3 can be used to find lower bounds for an optimal solution. This 

computation is illustrated in the following example. 

Example 4.3.4 [RDS87]  Consider n = 4 tasks with processing times and due 

dates given by p = [6, 9, 11, 10] and d = [17, 18, 19, 20], respectively. For the 

EDD ordering S = (T1 , T2 , T3 , T4) , the value of the optimization criterion is 

Z(S) = 16 + 110. Call this ordering "primary". A "secondary" ordering (this nota-

tion is due to Townsend [Tow78]) is obtained by repeatedly interchanging 

neighboring tasks Ti , Tj with di � pi > dj � pj , until tasks are in MST order. From 

Lemma 4.3.3(b) we see that such an exchange operation will improve the criteri-

on value of the schedule by at most 0((di � pi) � (dj � pj)). For each interchange 

operation the maximum potential reduction (MPR) of the objective function is 

given in Table 4.3.1. Obviously, the value Z(S) of the primary order can never be 

improved by more than 70, hence Z(S) � 70 = 16 + 40 is a lower bound on the 

optimal solution.  

Original Schedule Interchange Changed Schedule MPR 

(T1, T2, T3, T4) T1 and T2 (T2, T1, T3, T4) 20 

(T2, T1, T3, T4) T1 and T3 (T2, T3, T1, T4) 30 

(T2, T3, T1, T4) T1 and T4 (T2, T3, T4, T1) 10 

(T2, T3, T4, T1) T2 and T3 (T3, T2, T4, T1) 10 

  total 70 

Table 4.3.1.  

This bounding procedure is used in a branch and bound algorithm where a search 

tree is constructed according to the following scheme. A node at the r 
th level of 

the tree corresponds to a particular schedule with the task arrangement of the 

first r positions fixed. One of the remaining n � r tasks is then selected for the 
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(r + 1)st position. The lower bound for the node is then computed as discussed 

above. For this purpose the primary ordering will have the first r + 1 positions 

fixed and the remaining n � r � 1 positions in the MST order. Pairwise inter-

changes of tasks are executed among the last n � r � 1 positions. At each step the 

branching is done from a node having the least lower bound. 

A performance measure similar to the one considered above is the average 

deviation of task completion times. Under the restriction that tasks have a com-

mon due date d, a schedule which minimizes �
j=1

n
�Cj � d� has to be constructed. 

This type of criterion has applications e.g. in industrial situations involving 

scheduling, where the completion of a task either before or after its due date is 

costly. It is widely recognized that completion after a due date is likely to incur 

costs in the loss of the order and of customer goodwill. On the other hand, com-

pletion before the due date may lead to higher inventory costs and, if goods are 

perishable, potential losses.  

Raghavachari [Rag86] proved that optimal schedules are "V-shaped". Let Tk 

be a task with the smallest processing time among all the tasks to be scheduled. 

A schedule is V-shaped if all tasks placed before task Tk are in descending order 

of processing time and the tasks placed after Tk are in ascending order of pro-

cessing time. For the special case of d = �
j=1

n
 pj , an optimal schedule for 

1 | | � �Cj � d� can be obtained in the following way.  

Algorithm 4.3.5  for problem 1 | | � �Cj � d� [Kan81]. 

Method: The algorithm determines two schedules, S �
 and S >

 . The tasks of S �
 are 

processed without idle times, starting at time d � �
Tj �S � 

 pj$ the tasks of S >
 are pro-

cessed without idle times, starting at time d . 

begin 

S �
 := �; S >

  := �; -- initialization: empty schedules 

while T  � � do 

 begin 

 Choose Tl � T  such that pl = max
j

 {pj | Tj � T  }; 

 T  := T  � {Tl}; S �
 := S �

 1 (Tl); 

  -- Task Tl is inserted into the last position in sub-schedule S  � 

 if T  � � do 

  begin 

  Choose Tl � T  such that pl = max
j

 {pj | Tj � T  }; 

  T  := T  � {Tl}; S >
  := (Tl) 1 S >

 ; 

   -- Task Tl is inserted before the first task of sub-schedule S  � 
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  end; 
 end; 
end; 
Bagchi et al. [BSC86] generalized this algorithm to the case  

d � 
�
�
  

 

 

  p1 + p3 +...+ pn�1 + pn if n is even 

 p2 + p4 +...+ pn�1 + pn if n is odd, 

where tasks are numbered in non-decreasing order of processing times, p1 � 

p2 �...� pn . 

An interesting extension of the above criteria is a combination of the late-

ness and earliness. To be more precise, one of the possible extensions is mini-

mizing the sum of earliness and absolute lateness for a set of tasks scheduled 

around a common restrictive due date. This problem, known also as the mean 

absolute deviation (MAD) one, is quite natural in just-in-time inventory systems 

or in scheduling a sequence of experiments that depends on a predetermined ex-

ternal event [GTW88]. In [KLS90] it has been proved that this problem is equiv-

alent to the scheduling problem with the mean flow time criterion. Thus, all the 

algorithms valid for the latter problem can be also used for the MAD problem. 

On the other hand, however, if a due date is a restrictive one, the MAD problem 

starts to be NP-hard (in the ordinary sense) even for one processor [HKS91]. A 

pseudopolynomial time algorithm based on dynamic programming has been also 

given for this case [HKS91].  

On the other hand, one may consider minimizing total squared deviation 

about a common unrestrictive due date. This problem is equivalent to the prob-

lem of minimizing the completion time variance and has been transformed to the 

maximum cut problem in a complete weighted graph [Kub95]. Its NP-hardness 

in the ordinary sense has been also proved [Kub93]. 

4.3.2 Number of Tardy Tasks 

The problem of finding a schedule that minimizes the weighted number � wj Uj 

of tardy tasks is NP-hard [Kar72], whereas the unweighted case is simple. Given 

arbitrary ready times, i.e. in the case 1 | rj | � Uj , the problem is strongly NP-hard, 

as was proved by Lenstra et al. [LRKB77]. If precedence constraints are intro-

duced between tasks then the problem is NP-hard, even in the special case of 

equal processing times and chain-like precedence constraints. In [IK78], a heu-

ristic algorithm for problem 1 | tree, pj = 1 | � Uj is presented. 

Problem 1 | | �� Uj 

Several special cases do admit exact polynomial time algorithms. The most 

common special case occurs when all weights are equal. Moore [Moo68] pub-
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lished an optimization algorithm that solves the problem in polynomial time. 

This algorithm sorts the tasks according to EDD rule (tasks with earlier due dates 

first, also known as Hodgson's algorithm). 

Algorithm 4.3.6  Hodgson's algorithm for 1 | | � Uj [Law82]. 

Input: Task set T  = {T1,..., Tn}. 

Method: The algorithm operates in two steps: first, the subset T  � of tasks of T 
that can be processed on time is determined; then a schedule is constructed for 

the subsets T  � , and T  >
 = T � T  � . 

begin 
Sort tasks in EDD order; -- w.l.o.g. assume that d1 � d2 �...� dn 

T  � := �; 

p := 0; -- p keeps track of the execution time of tasks of T � 
for j := 1 to n do 
 begin 

 T  � := T  � � {Tj}; 

 p := p + pj; 

 if p > dj -- i.e. task Tj doesn't meet its due date 

 then 
  begin 
  Let Tk be a task in T  � with maximal processing time,  

   i.e. with pk = max{pi | Ti � T  �}; 

  p := p � pk; 

  T  � := T  � � {Tk};  

  end; 
 end; 

Schedule the tasks in T  � according to EDD rule; 

Schedule the remaining tasks (T  � T  �) in an arbitrary order; 

end; 

Without proof we mention that this algorithm generates a schedule with the min-

imal number of tardy tasks. The algorithm can easily be implemented to run in 

O(nlogn) time. 

Example 4.3.7  Suppose there are eight tasks with processing times p = [10, 6, 3, 

1, 4, 8, 7, 6] and due dates d = [35, 20, 11, 8, 6, 25, 28, 9]. Set T  � will be {T5 , T4 , 

T3 , T2 , T7 , T1}, and the schedule is (T5 , T4 , T3 , T2 , T7 , T1 , T6 , T8). Table 4.3.2 

compares the due dates and completion times; note that the due dates of the last 

two tasks are violated.  
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 T5 T4 T3 T2 T7 T1 T6 T8 

Due date dj 6 8 11 20 28 35 25 9 

Completion time Cj 4 5 8 14 21 31 39 45 

Table 4.3.2 Due dates and completion times in Example 4.3.7. 

Problem 1 | |  �� wj Uj  

Karp [Kar72] included the decision version of minimizing the weighted sum of 

tardy tasks in his list of 21 NP-complete problems. Even if all the due dates dj 

are equal, the problem is NP-hard; in fact, this problem is equivalent to the knap-

sack problem and thus is not strongly NP-hard. An optimal solution for 

1 | | � wj Uj can be specified by a partition of the task set T into two subsets T  � 

and T  >  as defined above. Thus it suffices to find an optimal partition of the task 

set T .  
Sahni [Sah76] developed an exact pseudopolynomial time algorithm for 

1 | | � wj Uj with different due-dates which is based on dynamic programming and 

requires O(n� wj) time. Using digit truncation, depending from which digit on the 

weights are truncated, a series of approximation algorithms A1 ,...,Ak (a so-

called approximation scheme) with O(n3k) running time can be derived such that  

� (wjU 
�

j(Ak)) / U �*
w � 1 � 1/k , 

where U �j = 1 � Uj . Note that � wjU 
�

j is the weighted sum of on-time tasks. It is 

possible to decide in polynomial time whether � wj U*
j  = 0. Gens and Levner 

[GL78] developed an algorithm Bk with running time O(n3
) such that 

UBk
w   / U*

w � 1 + 1/k . 

The same authors improved the implementation of algorithm Bk to run in 

O(n2
logn + n2k) time [GL81].  

When all processing times are equal, the problem 1 | pj = 1 | � wj Uj can easily 

be solved. For the more general case of 1 | | � wj Uj where processing times and 

weights are agreeable, i.e. pi < pj implies wi � wj , an exact O(nlog n) time algo-

rithm can be obtained by a simple modification of the Hodgson's algorithm 

[Law76]. We will present this algorithm below.  

Suppose tasks are placed and indexed in EDD order. For j � {1,..., n}, T  � 

is said to be j-optimal if T  � � {T1 ,...,Tj} and the sum of weights of tasks in T  � 

is maximal with respect to all feasible sets having that property. Thus, an optimal 

solution is obtained from an n-optimal set T  � processed in non-decreasing due 
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date order, and then executing the tasks of T  � T  � in any order. Lawler's algo-

rithm is a variation of Algorithm 4.3.6 for the construction of j-optimal sets. The 

following algorithm uses a linear ordering <&&  induced on tasks by their relative 
desirability, for inclusion in an on-time set, i.e.:  

Ti <
&  Tj if and only if pi > pj , or 

 pi = pj and wi < wj , or 

 pi = pj and wi = wj and i < j . 

Algorithm 4.3.8  for problem 1 | | � wj Uj with agreeable weights [Law76]. 

begin 

Sort tasks according to EDD rule; -- w.l.o.g. assume that d1 � d2 �...� dn 

T  0
 := �; 

for j := 0 to n – 1 do 

 if p(T  j�1
) + pj � dj 

   -- p(T  j�1
) denotes the sum of processing times of tasks in T  j�1 

 then T  j
 := T  j�1

 � {Tj} 

 else 

  begin 

  Choose Tl � T  j�1
 � {Tj} minimal with respect to <&; 

  T  j
 := (T  j�1

 � {Tj}) � {Tl}; 

  end; 
end; 

It is easy to prove that for all j, T  j
 is a j-optimal set. Hence, T  n

 presents an exact 

solution in the sense that all tasks of T  n
 are completed on time, and the tasks of 

T � T  n
 are tardy.  

Another special case considered by Sidney [Sid73] assumes that the tasks of 

a given subset T ' � T  must be completed on time. This problem can be formu-

lated as 1 | | � wj Uj where the weights wj are 0 or 1. Sidney presented two algo-

rithms of polynomial time complexity which generalize the Hodgson's algorithm 

and solve the problem optimally.  

Problem 1 | rj | � wj Uj 

This scheduling problem is known to be NP-hard in the strong sense [LRKB77]. 

If, however, all weights are 1 and there are certain dependencies between ready 

times and due dates, optimal schedules can be constructed in polynomial time. 

Kise et al. [KIM78] used a variation of Lawler's Algorithm 4.3.8, and Lawler 

[Law82] proved that the algorithm can be improved to run in O(nlog n) time. For 
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a given set of tasks, the release times and due dates are called consistent, if ri < rj 

implies di � dj for all tasks Ti , Tj . We start with ordering tasks according to both, 

non-decreasing ready times and non-decreasing due dates. Without loss of gen-

erality we may assume that the tasks are already indexed appropriately, i.e. r1 � 

r2 � ...� rn and d1 � d2 � ...� dn . Any schedule S can again be described by a 

partition of task set T into on-time set T  � and tardy set T  > . Tasks of T  � are pro-

cessed in EDD order, so they are ordered according to their indices. Let T  � 
{Tk1

 ,...,Tkm
}, k1 < ...< km . The completion time Cki

 of task Tki
 in this schedule is 

given by 

Ck1
 = rk1

 + pk1
 

Cki
 = max{Cki�1

, rki
} + pki

 (i = 2,..., m) . 

Then the last task of T  � is completed at time C(T  �) = Ckm
 . 

The following algorithm generates optimal schedules for the subsets 

{T1 ,...,Ti} in the order of i = 1,..., n. Let an optimal schedule for {T1 ,...,Ti} be 

specified by the subset Ei � {T1,..., Ti} of on-time tasks. Then, set En will yield 

an optimal schedule for T.  

Algorithm 4.3.9  for computing En [KIM78]. 

begin 

Order tasks according to both, non-decreasing ready times and non-decreasing 

due dates; 
E0 := �;  

for j := 1 to n do 
 begin 

 Ej := Ej�1 � {Tj}; 
  -- a sub-schedule S(Ej) is obtained by sequencing the tasks of Ej in EDD order 

 if C(Ej) > dj  

  -- C(Ej) denotes the completion time of the last task in S(Ej) 

 then 
  begin 

Choose Tk � Ej such that the sub-schedule obtained for Ej � {Tk} in EDD 

order is of minimal length; 

  Ej := Ej � {Tk}; 

  end; 
 end; 

end; 
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We mention that, under the condition of consistent release times and due dates, 

Algorithm 4.3.9 determines an optimal schedule for problem 1 | rj  | � Uj in O(n2
) 

time. 

Example 4.3.10  Let 6 tasks already be ordered according to increasing ready 

times, p = [4, 3, 3, 7, 7, 4], r = [0, 0, 4, 4, 5, 8], d = [4, 5, 7, 11, 14, 15]. Algorithm 

4.3.9 determines set En to be En = {T2 , T3 , T6}, and the corresponding optimal 

schedule is (T2 , T3 , T6 , T1 , T4 , T5) where the last three tasks are tardy.  

If task preemptions are allowed, dynamic programming algorithms can be ap-

plied to solve 1 | pmtn, rj | � Uj in O(n5
) time, and 1 | pmtn, rj | � wj Uj in time 

O(n3
(� wj)

2
). We refer the interested reader to [Law82]. 

Problem 1 | prec | �� wj Uj 

Lenstra and Rinnooy Kan [LRK80] proved that the 3-PARTITION problem (see 

Section 4.1.1) is reducible to the decision version of the problem 1 | chains, pj = 

1 | � Uj. Hence, scheduling unit time tasks on a single processor subject to chain-

like precedence constraints so as to minimize the unweighted number of late 

tasks is NP-hard in the strong sense. For 1 | forest | � wj Uj , Ibarra and Kim [IK78] 

discussed an algorithm that finds for any positive integer k an approximate 

schedule Sk
 such that 

Uk
w /U*

w < 1 + 
�

k+1 . 

The approximate solution is found in O(knk+2
) time. They give also examples 

showing that the algorithm is not applicable to tasks forming an arbitrary prece-

dence graph.  

4.3.3 Mean Tardiness  

In this section we will consider problems concerned with the minimization of 

mean or mean weighted tardiness. 

Problem 1 | | � wj Dj 

McNaughton [McN59] has shown that preemption cannot reduce mean weighted 

tardiness for any given set of tasks. Thus, an optimal preemptive schedule has 

the same value of mean weighted tardiness as an optimal, non-preemptive sched-

ule. It has been shown by Lawler [Law77] and by Lenstra et al. [LRKB77] that 

the problem of minimizing mean weighted tardiness is NP-hard in the strong 
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sense. If all weights are equal, the problem is still NP-hard in the ordinary sense 

[DL90]. If unit processing times are assumed but weights are arbitrary, the prob-

lem can be formulated as a linear assignment problem, and hence it can be 

solved in O(n3
) time [GLL+79]. If in addition all tasks have unit weights, simply 

sequencing tasks in non-decreasing order of their due dates minimizes the total 

tardiness, and hence this special problem can be solved in O(nlog n) time.  

In more detail we will consider another special problem of type 1 | | � wj Dj 

where weights of tasks are agreeable (see Section 4.3.2) and processing times 

are integer. Lawler [Law77] presented a pseudopolynomial dynamic program-

ming algorithm of the worst-case running time O(n4p) or O(n5pmax) , if p = � pj , 

and pmax = max{pj}, respectively. The algorithm is pseudopolynomial because its 

time complexity is polynomial only with respect to an encoding in which pj val-

ues are expressed in unary notation (see Section 2.2). We are going to present 

this algorithm. 

Recall from Section 4.3.2 that weights of tasks of a set {T1 ,...,Tn} are 

called agreeable iff pi < pj implies wi � wj for all i, j � {1,..., n}. The algorithm 

is based on the following theorem which claims an important property of an op-

timal schedule for 1 | | � wj Dj . 

Theorem 4.3.11 [Law77]  Suppose the tasks are agreeably weighted and num-
bered in non-decreasing due date order, i.e. d1 � d2 �...� dn . Let task Tk be such 
that pk = max{pj | j = 1,..., n}. Then there is some index 2, k � 2 � n, such that 
there exists an optimal schedule S in which Tk is preceded by all tasks Tj with j � 

2 and j � k, and followed by all tasks Tj with j > 2 .  

Tk

t

T1 Tk�1 Tk+1 T2 T2+1 Tn

0 C2  

Figure 4.3.1 An illustration of Theorem 4.3.11. 

Thus, if Tk is a task with largest processing time, then for some task T2 , k � 2 � 

n, there exists an optimal schedule where (see Figure 4.3.1) 

(i) tasks T1 , T2 ,...,Tk�1 , Tk+1 ,...,T2 form a partial schedule starting at time 0, 

which are followed by 

(ii) task Tk, with completion time C2 = �
j � 2

 pj , followed by 

(iii) tasks T2+1 , T2+2 ,...,Tn , forming another partial schedule starting at time C2 .  

The overall schedule is optimal only if the partial schedules in (i) and (iii) are 

optimal, for starting times 0 and C2 , respectively. This observation suggests a 
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dynamic programming algorithm for the problem solution. For any given subset 

T ' of tasks and starting time t � 0, there is a well-defined scheduling problem. 

An optimal schedule for problem (T , t) can be found recursively from the opti-

mal schedules for problems of the form (T ', t'), where T ' is a proper subset of T , 

and t' � t .  

Algorithm 4.3.12  for problem 1 | | � wj Dj [Law77]. 

Method: The algorithm calls the recursive procedure sequence with parameters t, 
denoting the start time of the sub-schedule to be determined, T ' representing a 

subset of tasks numbered in non-decreasing due date order, and S' being an opti-

mal schedule for the tasks in T ' .  

Procedure sequence(t, T ' ; var S'); 

begin 

if T ' = � then S' is the empty schedule  

else 
 begin 

 Let T1,..., Tm be the tasks of T ' , and d1 � d2 �...� dm; 

 Choose Tk with maximum processing time among the tasks of T '; 

 for 2 := k to m do 
  begin 

  Let T  �2
 be the subset {Tj | j � 2, j � k} of T ' tasks; 

  Let T  >2
 be the subset {Tj | j > 2} of T ' tasks; 

  Call sequence(t, T  �2
, S �2

); 

  C2 := t + � 
j�2

 pj; 

  Call sequence(C2,T  >2
, S >2

); 

   -- optimal sub-schedules for T �2 and T >2 are created 

  S2 := S �2
 1 (Tk) 1 S >2; 

   -- concatenation of sub-schedules and task Tk is constructed 

Compute value D 
_
2
w = � wj Dj of sub-schedule S2; 

  end; 

Choose S' with minimum value D 
_
2
w among the schedules S2, k � 2 � m; 

 end; 

end; 

begin -- main algorithm 

Order (and index) tasks of T  in non-decreasing due date order; 

T := (T1,...,Tn); 
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Call sequence(0, T , S); 
 -- this call generates an optimal schedule S for T , starting at time 0 
end; 

It is easy to establish an upper bound on the worst-case running time required to 

compute an optimal schedule for the complete set of n tasks. The subsets T ' 
which enter into the recursion are of a very restricted type. Each subset consists 

of tasks whose subscripts are indexed consecutively, say from i to j, where pos-

sibly one of the indices, k, is missing, and where the processing times pi ,...,pj of 

the tasks Ti ,...,Tj are less than or equal to pk. There are no more than O(n3
) such 

subsets T ', because there are no more than n values for each of the indices, i, j, k; 

moreover, several distinct choices of the indices may specify the same subset of 

tasks. There are surely no more than p = �
j=1

n
 pj � npmax possible values of t. Hence 

there are no more than O(n3p) or O(n4pmax) different calls of procedure sequence 

in Algorithm 4.3.12. Each call of sequence requires minimization over at most n 

alternatives, i.e. in addition O(n) running time. Therefore the overall running 

time is bounded by O(n4p) or O(n5pmax) . 

Example 4.3.13 [Law77]  The following example illustrates performance of the 

algorithm. Let T  = {T1 ,...,T8}, and processing times, due dates and weights be 

given by p = [121, 79, 147, 83, 130, 102, 96, 88], d = [260, 266, 269, 336, 337, 400, 

683, 719] and w = [3, 8, 1, 6, 3, 3, 5, 6], respectively. Notice that task weights are 

agreeable. Algorithm 4.3.12 calls procedure sequence with T  = (T1 ,...,T8), T3 is 

the task with largest processing time, so in the for-loop procedure sequence will 

be called again for 2 = 3,..., 8. Table 4.3.3 shows the respective optimal sched-

ules if task T3 is placed in positions 2 = 3,..., 8 .  

Problem 1 | prec | �� wj Dj 

Lenstra and Rinnooy Kan [LRK78] studied the complexity of the mean tardiness 

problem when precedence constraints are introduced. They showed that 1 | prec, 

pj = 1 | � Dj is NP-hard in the strong sense. For chain-like precedence constraints, 

they proved problem 1 | chains, pj = 1 | � wj Dj to be NP-hard.  
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2 sequence(C2, T', S') optimal schedule value D�2
w 

3 sequence(0, {T1,T2}, S�3
) 

sequence(347, {T4,T5,T6,T7,T8}, S>3
) 

(T1,T2,T3,T4,T6,T7,T8,T5) 2565 

4 sequence(0, {T1,T2,T4}, S�4
) 

sequence(430, {T5,T6,T7,T8}, S>4
) 

(T1,T2,T4,T3,T6,T7,T8,T5) 2084 

5 sequence(0, {T1,T2,T4,T5}, S�5
) 

sequence(560, {T6,T7,T8}, S>5
) 

(T1,T2,T4,T5,T3,T7,T8,T6) 2007 

6 sequence(0, {T1,T2,T4,T5,T6}, S�6
) 

sequence(662, {T7,T8}, S>6
) 

(T1,T2,T4,T6,T5,T3,T7,T8) 1928 

7 sequence(0, {T1,T2,T4,T5,T6,T7}, S�7
) 

sequence(758, {T8}, S>7
) 

(T1,T2,T4,T6,T5,T7,T3,T8) 1785 

8 sequence(0, {T1,T2,T4,T5,T6,T7,T8}, S�8
) 

sequence(846, �, S>8
) 

(T1,T2,T4,T6,T5,T7,T8,T3) 1111 

Table 4.3.3 Calls of procedure sequence in Example 4.3.13. 

4.3.4 Mean Earliness  

It was pointed out by [DL90] that this problem is equivalent to the mean tardi-

ness problem. To see this, we replace the given mean earliness problem by an 

equivalent mean tardiness scheduling problem. 

Let C = �
j=1

n
 pj . We construct an instance T ' = {T'1 ,..., T'n} of the mean tardi-

ness problem, where p'j = pj for j = 1,..., n, and where the due dates are defined 

by d'j = C � dj + pj . Suppose S is an optimal schedule for T . Define a schedule S' 
for T ' as follows. If Tj is the kth task scheduled in S, then T'j will be the (n � k 

+ 1)th task scheduled in S'. Clearly, we have C'j = C � Cj + pj , and hence 

D'j = max{0, C'j � d'j} 

 = max{0, (C � Cj + pj) � (C � dj + pj)} 

 = max{0, dj � Cj} = Ej . 

Thus, E� = D� '. Similarly, if S' is a schedule for T ' such that D� ' is minimum we can 

construct a schedule S for T  such that E� = D� '. Therefore, the minimum mean ear-

liness of T  is the same as the minimum mean tardiness for T '. Hence, as we 
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know that the mean tardiness problem on one processor is NP-hard, the mean 

earliness problem must also be NP-hard. 

4.4 Minimizing Change-Over Cost 

This section deals with the scheduling of tasks on a single processor where under 

certain circumstances a cost is inferred when the processor switches from one 

task to another. The reason for such "change-over" cost might be machine setup 

operations required if tasks of different types are processed in sequence.  

First we present a more theoretical approach where a set of tasks subject to 

precedence constraints is given. In this section the purpose of the precedence 

relation ≺ is twofold: on one hand it defines the usual precedence constraints of 

the form Ti ≺ Tj where task Tj cannot be started before task Ti has been complet-

ed. On the other hand, if Ti ≺ Tj , then we say that processing Tj immediately af-

ter Ti does not require any additional setup on the processor, so processing Tj 

does not incur any change-over cost. But if Ti ⊀ Tj , i.e. Tj is not an immediate 

successor of Ti , then processing Tj immediately after Ti will require processor 

setup and hence will cause change-over cost. 

The types of problems we are considering in Section 4.4.1 assume unit 

change-over cost for the setups. The problem then is to find schedules that mini-

mize the number of setups. 

In Section 4.4.2 we discuss a practically motivated model where jobs of dif-

ferent types are considered, and each job consists of a number of tasks. Processor 

setup is required, and consequently change-over cost is incurred, if the processor 

changes from one job type to another. Hence the tasks of each job type should be 

scheduled in sequences or lots of certain sizes on the processor. The objective is 

then to determine sizes of task lots, where each lot is processed non-

preemptively, such that certain inventory and deadline conditions are observed, 

and change-over cost is minimized.  

4.4.1 Setup Scheduling 

Consider a finite partially ordered set G = (T, ≺*), where ≺* is the reflexive, an-

tisymmetric and transitive binary relation obtained from a given precedence rela-

tion ≺ as described in Section 2.3.2. Then, a linear extension of G is a linear or-

der (T , ≺*
L ) that extends (T , ≺*), i.e. for all T', T" � T , T' ≺* T" implies T' ≺*

L 

 T". For T  = {T1 , T2 ,...,Tn}, if the sequence (T(1
 , T(2

 ,...,T(n
 ) from left to right 

defines the linear order ≺*
L , i.e. T(1

 ≺*
L T(2

 ≺*
L ... 

*
L T(n

 , then (T(1
 , T(2

 ,...,  T(n
 ) 

is obviously a schedule for (T , ) . 
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Let L = (T(1
 , T(2

 ,...,T(n
 ) be a linear extension of G = (T , ≺*) where ≺* is 

determined from precedence relation ≺. Two consecutive elements T(i
 , T(i+1

 of 

L are separated by a jump (or setup) if and only if T(i
 ⊀ T(i+1

 . The total number 

of jumps of L is denoted by s(L, G). The jump number s(G) of G is the minimum 

number of jumps in some linear extension, i.e. 

s(G) = min{s(L, G) | L is a linear extension of G} . 

A linear extension L of G with s(L, G) = s(G) is called jump- (or setup-) optimal. 
The problem of finding a schedule with minimum number of setups is often 

called jump number problem.  

If we assume that a jump causes change-over cost in the schedule, a jump-

optimal schedule for (T , ≺) would obviously be one in which the total change-

over cost is at minimum.  

The notion of jump number has been introduced by Chein and Martin 

[CM72]. The problem of determining the setup number s(G) and producing an 

optimal linear extension for any given ordered set G has been considered by nu-

merous authors. While good algorithms have been found for certain restricted 

classes of ordered sets, it has been shown by W. R. Pulleyblank [Pul75] that 

finding the setup number even for partial orders of height one 2 is an NP-hard 

problem.  

For a general poset G = (T , ≺*), let K1 , K2 ,...,Kr be any minimum family 

of disjoint chains (for definition of a chain we refer to Chapter 2.3.2) whose set 

union of tasks is T . The concatenation K1 1 K2 1...1 Kr of these chains obvi-

ously is not necessarily a linear extension of G. On the other hand, any linear 

extension L of a finite poset G can be expressed as a linear sum K1 1 K2 1...1 

Kr of chains, chosen so that in each chain neighboring tasks Th and Tk are in rela-

tion Th ≺ Tk , and, for chains Ki , Ki+1 (i = 1,...,  r � 1), the last task of Ki does not 

precede the first task of Ki+1 . Notice that a linear extension represents a schedule 

for (T , ≺) in an obvious way. Setups occur exactly between two neighboring 

chains, i.e. between Ki and Ki+1 for i = 1,...,  r � 1 .  

The problem of scheduling precedence constrained tasks so that the number 

of setups is minimum is now formalized to the question of finding a linear exten-

sion that consists of a minimum number of chains.  

One way of solving this problem heuristically is to determine so-called 

greedy linear extensions.  

Algorithm 4.4.1  Greedy linear extension of a partially ordered set (T , ≺*) . 

begin 

i := 0;  

                                                 
2 A partial order G is of height one if each directed path in G has at most two vertices. 
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while T  � � do 

 begin i := i + 1; 

Let Ti � T  be a task such that T k := { T � T  | T ≺* Ti } forms a maximal 

chain, i.e. there is no successor task T' of Ti for which { T � T | T ≺* T' } is 

a chain; 

 Let Ki be the chain of tasks of T i; 

 T := T   � T i; 

 end; 

r := i; -- r is the number of chains obtained 

L := K1 1 K2 1...1 Kr; 

end; 

From the way the chains are constructed in this algorithm it is clear that L = K1 1 

K2 1...1 Kr is a linear extension of G = (T , ≺*), and hence it is a schedule for 

(T , ≺). Greedy linear extensions can be characterized in the following way. 

A linear extension L of G is greedy if and only if, for some r, L can be repre-

sented as L = K1 1 K2 1...1 Kr , where each Ki is a chain in G, the last task of 

Ki does not precede the first task of Ki+1 (for i = 1,...,  r � 1), and for each Ki and 

for any T � T  which succeeds immediately the last task of Ki in G, there is a task 

T' � Ki+1 �...� Kr such that T' ≺ T .  

Example 4.4.2  To demonstrate how Algorithm 4.4.1 works, consider the prece-

dence graph shown in Figure 4.4.1(a). The algorithm first chooses task T3 , thus 

getting the first chain K1 = (T3). If the tasks chosen next are T2 and T1 , then we 

get chains K2 and K3 shown encircled in Figure 4.4.1(a). The corresponding 

schedule is presented in Figure 4.4.1(b).  

It can be shown that for any finite poset G there is a greedy linear extension L of 

G satisfying s(G) = s(L, G). On the other hand, optimal linear extensions need 

not to be greedy. Also, greedy linear extensions may be far from optimum. So, 

for example, the setup number for the direct product of a two-element chain with 

an n-element chain is 1, yet there is a greedy linear extension with n � 1 setups. 

For some special classes of precedence graphs greedy linear extensions are 

known to be always optimal with respect to number of setups. Series-parallel 

graphs and N-free graphs are examples of such classes. For other examples and 

results we refer the interested reader to [ER85] and [RZ86].  

Another important class of precedence graphs are interval orders (see Sec-

tions 2.1 and 2.3.2). Since interval orders model the sequential and overlapping 

structure of a set of intervals on the real line, they have many applications in sev-

eral fields such as scheduling, VLSI routing in computer science, and in differ-

ence relations in measurement theory [Fis85, Gol80]. Faigle and Schrader 
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[FS85a and FS85b] presented a heuristic algorithm for the jump number problem 

for an interval order. But Ali and Deogun [AD90] were able to develop an opti-

mization algorithm of time complexity O(n2
) for n elements. They also presented 

a simple formula that allows to determine the minimal number of setups directly 

from the given interval order. 

(a) 

T2T1
T3

T4 T5

T6 T7

K K K123

(b) 

T3 T2 T1T5 T4T7 T6

t 
Figure 4.4.1 An example for Algorithm 4.4.1 

 (a) precedence graph and a chain decomposition, 
 (b) corresponding schedule; crosses (×) mark setups. 

4.4.2 Lot Size Scheduling 

The problem investigated in this subsection arises if tasks are scheduled in lots 

due to time and cost considerations. Let us consider for example the production 

of gearboxes of different types on a transfer line. The time required to manufac-

ture one gearbox is assumed to be the same for all types. Changing from produc-

tion of one gearbox type to another requires a change of machine (processor) 

installment to another state. As these change-overs are costly and time consum-

ing the objective is to minimize the number of change-overs or the sum of their 

cost. The whole situation may be complicated by additional productional or envi-

ronmental constraints. For example, there are varying demands of gearbox types 

over time. Storage capacity for in-process inventory of the produced items is lim-

ited. In-process inventory always increases if the production of a gearbox is fin-

ished; it is always decreased if produced items are delivered at given points in 

time where demand has to be fulfilled. A feasible schedule will assign gearbox 
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productions to the processor in such a way that lots of gearboxes of the same 

type are manufactured without change-overs.  

The problem can also be regarded as a special instance of the so-called mul-
ti-product lot scheduling problem with capacity constraints. For a detailed analy-

sis of this problem and its various special modifications we refer e.g. to [BY82, 

FLRK80] and [Sch82]. All these models consider setup cost. Generally speaking, 

setups are events that may occur every time processing of a task or job is initiat-

ed again after a pause in processing. In many real processing systems such setups 

are connected with change-over costs.  

Now, the lot size scheduling problem can be formulated as follows. Consid-

er K deadlines and n different types of jobs. Set Jj includes all jobs of the jth type, 

j = 1,..., n, and let J  = �
j=1

n
 Jj be the set of all jobs. Set Jj includes the jobs J 1

j  ,..., 

J K
j  with deadlines d~j1 ,..., d~jK , respectively. Each job J k

j  itself consists of a num-

ber njk of unit processing time tasks. Whereas task preemption is not allowed, the 

processor may switch between jobs, even of different types. Only changing from 

a job of one type to that of another type is assumed to induce change-over cost. 

For each job type an upper bound Bj � IN0 on in-process inventory is given. 

Starting with some initial job inventory we want to find a feasible lot size sched-

ule for the set J of jobs such that all deadlines are met, upper bounds on invento-

ry are not exceeded, and the sum of all unit change-over cost is minimized. 

For the above manufacturing example this model means that the transfer line 

is represented by the processor, and gearbox types relate to job types. Jobs J k
j  

with deadlines d~jk represent demands for gearbox types at different points in 

time. The number njk of tasks of each job J k
j  represents the number of items of 

gearbox type j required to be finished by time d~jk . Bound Bj relates to the limited 

storage capacity for in-process inventory of the different types of gearboxes. At 

each time d~jk the in-process inventory of job type j is decreased by njk .  

Let us assume that H = max
jk

{d~jk} and that the processing capacity of the pro-

cessor during the interval [0, H] is decomposed in discrete unit time intervals 

(UTI) numbered by h = 1,..., H. To ensure both, feasible production of all jobs 

and a feasible schedule without idle time we assume that H = �
j=1

n
 nj where nj = 

�
k=1

K
 njk represents the total number of tasks of Jj . The lot size scheduling problem 

can now be formulated by the following mathematical programming problem. 

Let xjh be a variable which represents the assignment of a job of type j to some 

UTI h such that xjh = 1 if a job of this type is produced during interval h and xjh = 

0 otherwise. Let yjh be a variable which represents unit change-over cost such 

that yjh = 1 if jobs of different types are processed in UTI h � 1 and UTI h, and 

yjh = 0 otherwise. Obviously, yjh represents unit change-over cost. Ijh represents 
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in-process inventory of job type j at the end of UTI h, and njh is the correspond-

ing processing requirement (we set njh = 0 if there is no job with deadline d~jk = 

h). Let again Bj denote the upper bound on inventory of job type j . 

Minimize �
j=1

n
 �
h=1

H
 yjh  (4.4.1) 

subject to Ijh�1 + xjh � Ijh = njh   j = 1,..., n;  h = 1,..., H , (4.4.2) 

 �
j=1

n
 xjh � 1   h = 1,..., H , (4.4.3) 

 0 � Ijh � Bj   j = 1,..., n;  h = 1,..., H , (4.4.4) 

 xjh � {0, 1}   j = 1,..., n;  h = 1,..., H , (4.4.5) 

yjh = 
�
�
  

 

 

 
1 if xjh � xjh�1 > 0 

0 otherwise  
 j = 1,..., n;  h = 1,..., H . (4.4.6) 

 

The above constraints can be interpreted as follows. Equations (4.4.2) assure 

that the deadlines of all jobs are observed, (4.4.3) assure that at no time more 

than one job type is being processed, (4.4.4) restrict the in-process inventory to 

the given upper bounds. Equations (4.4.5) and (4.4.6) constrain all variables to 

binary numbers. The objective function (4.4.1) minimizes the total number of 

change-overs, respectively the sum of their unit cost. Note that for (4.4.1)-(4.4.6) 

a feasible solution only exists if the cumulative processing capacity up to each 

deadline is not less than the total number of tasks to be finished by this time. 

The problem of minimizing the number of change-overs under the assump-

tion that different jobs of different types have also different deadlines was first 

solved in [Gla68] by applying some enumerative method. There exist also dy-

namic programming algorithms for both, the problem with sequence-independent 

change-over cost [GL88, Mit72] and for the problem with sequence-dependent 

change-over cost [DE77]. For other enumerative methods see [MV90] and the 

references given therein. A closely related question to the problem discussed 

here has been investigated in [BD78], where each task has a fixed completion 

deadline and an integer processing time. The question studied is whether there 

exists a non-preemptive schedule that meets all deadlines and has minimum sum 

of change-over cost. For arbitrary integer processing times the problem is already 

NP-hard for unit change-over cost, three tasks per job type and two distinct dead-

lines, i.e. K = 2. Another similar problem was investigated in [HKR87] where the 

existence of unit change-over cost depends on some given order of tasks, i.e. 

tasks are indexed with 1, 2,..., and change-over cost occurs only if a task is fol-

lowed by some other task with larger index. This problem is solvable in polyno-

mial time.  
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Schmidt [Sch92] proved that the lot size scheduling problem formulated by 

(4.4.1)-(4.4.6) is NP-hard for n = 3 job types. Now we show that it can be solved 

in polynomial time if n = 2 job types have to be considered only. The algorithm 

uses an idea which can be described by the rule "schedule all jobs such that no 

unforced change-overs occur". This rule always generates an optimal schedule if 

the earliest deadline has to be observed only by jobs of the same type. In case the 

earliest deadline has to be observed by jobs of either type the rule by itself is not 

necessarily optimal. 

To find a feasible schedule with minimum sum of change-over cost we must 

assign all jobs to a number Z � H of non-overlapping production intervals such 

that all deadlines are met, upper bounds on inventory are not exceeded, and the 

number of all change-overs is minimum. Each production interval z � {1,..., Z} 

represents the number of consecutive UTIs assigned only to jobs of the same 

type, i.e. there exists only one setup for each z.  

For simplicity reasons we now denote the two job types by q and r. Consid-

ering any production interval z, we may assume that a job of type q (r) is pro-

cessed in UTIs h, h + 1, h*; if h* < H it has to be decided whether to continue 
processing of jobs q (r) at h*+1 or start a job of type r (q) in this UTI. Let 

Urh* = min{ (i � h*) � ( �
h=h*+1

i
 nrh � Irh*) | i = h* + 1,..., H } (4.4.7) 

be the remaining available processing capacity minus the processing capacity 

required to meet all future deadlines of Jr , 

Vqh* = �
h=1

H
 nqh � �

h=1

h*

 xqh (4.4.8) 

be the number of not yet processed tasks of Jq, and 

Wqh* = Bq � Iqh* (4.4.9) 

be the remaining storage capacity available for job type q at the end of UTI h*. 

In-process inventory is calculated according to 

Iqh* = �
h=1

h*

 (xqh � nqh) . (4.4.10) 

To generate a feasible schedule for job types q and r it is sufficient to change 

the assignment from type q (r) to type r (q) at the beginning of UTI h* + 1, 1 � 

h* < H, if Urh*&Vqh*&Wqh* = 0 for the corresponding job types in UTI h*. Applying 

this UVW-rule is equivalent to scheduling according to the above mentioned "no 

unforced change-overs" strategy. The following algorithm makes appropriate use 

of the UVW-rule. 

Algorithm 4.4.3  Lot size scheduling of two job types on a single processor 
[Sch92]. 
begin 

i := 1; x := r; y := q; 
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while i < 3 do 
 begin 
 for h := 1 to H do 

  begin 

  Calculate Uxh, Vyh, Wyh according to (4.4.7)-(4.4.9); 

  if Uxh&Vyh&Wyh = 0 

  then 
   begin 

   Assign a job of type x; 

   Calculate the number of change-overs; 

   Exchange x and y; 
   end 

  else Assign a job of type y; 
  end; 

 i := i + 1; x := q; y := r; 
 end; 

Choose the schedule with minimum number of change-overs; 
end; 

Using Algorithm 4.4.3 we generate for each job type Jj a number Zj of produc-

tion intervals zj = 1,..., Zj which are called q-intervals in case jobs of type q are 

processed, and r-intervals else, where Zq + Zr = Z . We first show that there is no 

schedule having less change-overs than the one generated by the UVW-rule, if 

the assignment of the first UTI (h = 1) and the length of the first production in-

terval (z = 1; either a q- or an r-interval) are fixed. For n = 2 there are only two 

possibilities to assign a job type to h = 1. It can be shown by a simple exchange 

argument that there does not exist a schedule with less change-overs and the first 

production interval (z = 1) does not have UVW-length, if we fix the job type to be 

processed in the first UTI. Note that fixing the job type for h = 1 corresponds to 

an application of the UVW-rule considering an assignment of h = 0 to a job of 

types q or r. From this we conclude that if there is no such assignment of h = 0 

then for finding the optimal schedule it is necessary to apply the UVW-rule twice 

and either assign job types q or r to h = 1. Let us first assume that z = 1 is fixed 

by length and job type assignment. We have the following lemmas [Sch92]. 

Lemma 4.4.4  Changing the length of any production interval z > 1, as generat-
ed by the UVW-rule, cannot decrease the total number of change-overs.   

Lemma 4.4.5  Having generated an UVW-schedule it might be possible to re-
duce the total number of production intervals by changing assignment and length 
of the first production interval z = 1 .   

Using the results of Lemmas 4.4.4 and 4.4.5 we simply apply the UVW-rule 

twice, if necessary, starting with either job types. To get the optimal schedule we 
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take that with less change-overs. This is exactly what Algorithm 4.4.3 does. As 

the resulting number of production intervals is minimal the schedule is optimal 

under the unit change-over cost criterion. For generating each schedule we have 

to calculate U, V, and W at most H times. The calculations of each V and W re-

quire constant time. Hence it follows that the time complexity of calculating all 

U is not more than O(H) if appropriate data structures are used. The following 

example problem demonstrates the approach of Algorithm 4.4.3.  

Example 4.4.6  J = {J1, J2}, d~11 = 3, d~12 = 7, d~13 = 10, d~21 = 3, d~22 = 7, d~23 = 10, 

B1 = B2 = 10, n11 = 1, n12 = 2, n13 = 1, n21 = 1, n22 = 1, n23 = 4, and zero initial 

inventory. Table 4.4.1 shows the two schedules obtained when starting with ei-

ther job type. Schedule S2 has minimum number of change-overs and thus is op-

timal.  

 h: 1 2 3 4 5 6 7 8 9 10 

Schedule S1: J1 J1 J2 J2 J2 J2 J1 J1 J2 J2 

Schedule S2: J2 J2 J1 J1 J1 J1 J2 J2 J2 J2 

Table 4.4.1 Two schedules for Example 4.4.6. 

4.5 Other Criteria 

In this section we are concerned with single processor scheduling problems 

where each task Tj of the given task set T  = {T1 ,...,Tn} is assigned a non-

decreasing cost function Gj. Instead of a due date, function Gj specifies the cost 

Gj(Cj) that is incurred by the completion of task Tj at time Cj . We will discuss 

two objective functions, maximum cost Gmax and total cost � Gj(Cj). 

4.5.1 Maximum Cost 

First we consider the problem of minimizing the maximum cost that is incurred 

by the completion of the tasks. We already know that the problem 1 | rj | Gmax with 

Gj(Cj) = Lj = Cj � dj for given due dates dj for the tasks, is NP-hard in the strong 

sense (cf. Section 4.3.1). On the other hand, if task preemptions are allowed, the 

problem becomes easy if the cost functions depend non-decreasingly on the task 

completion times. Also, the cases 1 | prec | Gmax and 1 | pmtn, prec, rj | Gmax are 

solvable in polynomial time. 
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Problem 1 | pmtn, rj | Gmax 

Consider the case where task preemptions are allowed. Since cost functions are 

non-decreasing, it is never advantageous to leave the processor idle when un-

scheduled tasks are available. Hence, the time at which all tasks will be complet-

ed can be determined in advance by scheduling the tasks in order of non-

decreasing release times rj . This schedule naturally decomposes into blocks, 

where block B � T  is defined as the minimal set of tasks processed without idle 

time from time r(B) = min {rj | Tj � B} until C(B) = r(B) + �
Tj �B

 pj such that each 

task Tk 	 B is either completed not later than r(B) (i.e. Ck � r(B)) or not released 

before C(B) (i.e. rk � C(B)) .  

It is easily seen that, when minimizing Gmax , we can consider each block B 

separately. Let G *  
max(B) be the value of Gmax in an optimal schedule for the tasks 

in block B . Then G *  
max(B) satisfies the following inequalities:  

G *  
max(B) � min

Tj �B
 {Gj(C(B))} ,  

and  

G *  
max(B) � G *  max(B � {Tj}) for all Tj � B.  

Let task Tl � B be such that  

Gl(C(B)) = min
Tj �B

 {Gj(C(B))} . (4.5.1) 

Consider a schedule for block B which is optimal subject to the condition 

that task Tl is processed only if no other task is available. This schedule consists 

of two complementary parts:  

(i) An optimal schedule for the set B � {Tl,} which decomposes into a number 

of sub-blocks B1 ,...,Bb , 

(ii) A schedule for task Tl , where Tl is preemptively scheduled during the differ-

ence of time intervals given by [r(B), C(B)3 � �
j=1

b
[r(Bj), C(Bj)3 .  

For any such schedule we have  

Gmax(B) = max{Gl(C(B)), G *  max(B � {Tl})} � Gmax(B).  

It hence follows that there is an optimal schedule in which task Tl is scheduled as 

described above.  

The problem can now be solved in the following way. First, order the tasks 

according to non-decreasing rj . Next, determine the initial block structure by 

scheduling the tasks in order of non-decreasing rj . For each block B , select task 

Tl � B subject to (4.5.1). Determine the block structure for the set B  � {Tl} by 
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scheduling the tasks in this set in order of non-decreasing rj , and construct the 

schedule for task Tl as described above. By repeated application of this procedure 

to each of the sub-blocks one obtains an optimal schedule. The algorithm is as 

follows. 

Algorithm 4.5.1  for problem 1 | pmtn, rj | Gmax [BLL+83]. 

Method: The algorithm recursively uses procedure oneblock which is applied to 

blocks of tasks as described above. 

Procedure oneblock(B � T ); 

begin 

Select task Tl � B such that Gl(C(B)) = min
Tj �B

 {Gj(C(B))}; 

Determine sub-blocks B1 ,...,Bb of the set B � {Tl}; 

Schedule task Tl in the intervals [r(B), C(B)3 � �
j=1

b
[r(Bj), C(Bj)3;  

for j := 1 to b do call oneblock(Bj); 

end; 

begin -- main algorithm 

Order tasks so that r1 � r2 � ... � rn; 

oneblock(T ); 
end; 

We just mention that the time complexity of Algorithm 4.5.1 can be proved to be 

O(n2
). Another fact is that the algorithm generates at most n � 1 preemptions. 

This is easily proved by induction: It is obviously true for n = 1. Suppose it is 

true for blocks of size smaller than |B |. The schedule for block B contains at 

most |B i| � 1 preemptions for each sub-block B i , i = 1,..., b, and at most b 

preemptions for the selected tasks Tl . Hence, and also considering the fact that 

Tl 	 �
i=1

b
 B i , we see that the total number of preemptions is no more than 

�
i=1

b
 (|B i|  � 1) + b = |B | � 1. This bound on the number of preemptions is best possi-

ble. It is achieved by the class of problem instances defined by rj = j, pj = 2, 

Gj(t) = 0 if t � 2n � j, and Gj(t) = 1 otherwise (j = 1,..., n). The only way to incur 

zero cost is to schedule task Tj in the intervals [j � 1, j) and [2n � j, 2n � j + 1), j = 

1,..., n. This uniquely optimal schedule contains n � 1 preemptions. 

Note that the use of preemptions is essential in the algorithm. If no preemp-

tion is allowed, it is not possible to determine the block structure of an optimal 

schedule in advance. 
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Problem 1 | prec | Gmax  

Suppose now that the order of task execution is restricted by given precedence 

constraints ≺ and tasks are processed without preemption. Problems of this type 

can be optimally solved by an algorithm presented by Lawler [Law73]. The basic 

idea of the algorithm is as follows: From among all tasks that are eligible to be 

scheduled last, i.e. those without successors under  the precedence relation , put 

that task last that will incur the smallest cost in that position. Then repeat this 

procedure on the set of n � 1 remaining tasks, etc. This rule is justified as follows: 

Let T = {T1 ,...,Tn} be the set of all tasks, and let L � T  be the subset of tasks 

without successors. For any T ' � T  let G*(T ') be the maximum task completion 

cost in an optimal schedule for T '. If p denotes the completion time of the last 

task, i.e. p = p1 + p2 +...+ pn , task Tl � L is chosen such that Gl(p) = 

min
Tj �L

 {Gj(p)}. Then the optimal value of a schedule subject to the condition that 

task Tl is processed last is given by max{G*(L � {Tl}), Gl(p)}. Since both, 

G*(L � {Tl}) � G*(L) and Gl(p) � G*(L), the rule is proved. 

The following algorithm finds a task that can be placed last in schedule S. 

Then, having this task removed from the problem, the algorithm determines a 

task that can be placed last among the remaining n �1 tasks and second-to-last in 

the complete schedule, and so on. 

Algorithm 4.5.2  for problem 1 | prec | Gmax [Law73]. 

begin 
Let S be the empty schedule; 

while T � � do 

 begin 

 p := �
Tj �T

  pj; 

 Let L � T be the subset of tasks with no successors; 

 Choose task Tk � L such that Gk(p) = min
Tj �L

 {Gj(p)}; 

� S := Tk 1 S; -- task Tk is placed in front of the first element of schedule S 

 T  := T  � {Tk}; 

 end; 
end; 

Notice that this algorithm requires O(n2
) steps, where n is the number of tasks. 

Example 4.5.3  Suppose there are five tasks {T1 ,...,T5} with processing times 

p = [1, 2, 2, 2, 3] and precedence constraints as shown in Figure 4.5.1(a), and cost 

functions as indicated in Figure 4.5.1(b). The last task in a schedule for this prob-

lem will finish at time p = 10. Among the tasks having no successors the algo-
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rithm chooses T3 to be placed last because G3(10) is minimum. Note that in the 

final schedule, T3 will be started at time 8. Among the remaining tasks, {T1 , T2 , 

T4 , T5}, T4 and T5 have no successors, so these two tasks are the candidates for 

being placed immediately before T3. The algorithm chooses T5 because at time 8 

this task incurs lower cost to the schedule. Continuing this way Algorithm 4.5.2 

will terminate with the schedule (T2 , T1 , T4 , T5 , T3) .  

(a) T2T1

T5T4T3  

(b) 

ta2 a1 a4 a5 a3
0 2 3 5 8 10

G4
G2
G5

G3

G1

Gi(t)

 

Figure 4.5.1 An example problem for Algorithm 4.5.2 
 (a) task set with precedence constraints, 

(b) cost functions specifying penalties associated with task com-
pletion times. 

Problem 1 | pmtn,  prec, rj | Gmax 

In case 1 | pmtn, prec, rj | Gmax , i.e. if preemptions are permitted, the problem is 

much easier. Baker et al. [BLL+83] presented an algorithm which is an extension 

of Algorithm 4.5.1. First, release dates are modified so that rj + pj � rk whenever 

Tj precedes Tk . This is being done by replacing rk by max{rk , max{rj + pj | Tj +
 Tk}} for k = 2,..., n. The block structures are obtained as in Algorithm 4.5.1. As 

the block structures are determined by scheduling tasks in order of non-

decreasing values of rj , this implies that we can ignore precedence constraints at 

that level. Then, for each block B , the subset L � B of tasks that have no succes-

sor in B is determined. The selection of task Tl � B subject to equation (4.5.1) is 
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replaced by the selection of task Tl � B such that Gl(C(B)) = min
Tj �L

 {Gj(C(B))}. 

This ensures that the selected task has no successors within block B. We mention 

that this algorithm can still be implemented to run in O(n2
) time.  

Example 4.5.4 [BLL+83] To illustrate the last algorithm consider five tasks {T1,

..., T5} whose processing times and release times are given by the vectors p = [4, 

2, 4, 2, 4] and r = [0, 2, 0, 8, 14], respectively. The precedence constraints and cost 

functions are specified in Figure 4.5.2(a) and (b), respectively. From the prece-

dence constraints we obtain the modified release dates r' = [0, 2, 4, 8, 14]. Taking 

modified release dates instead of r, Algorithm 4.5.1 determines two blocks, B1 = 

{T1 , T2 , T3 , T4} from time 0 to 12, and B2 = {T5} from 14 until 18 (Figure 

4.5.2(c)). Block B2 consists of a single task and therefore represents an optimal 

part of the schedule. For block B1 , we find the subset of tasks without successors 

L1 = {T3 , T4} and select task T3 since G3(12) < G4(12). By re-scheduling the 

tasks in B1 while processing task T3 (only if no other task is available), we obtain 

two sub-blocks: B11 = {T1 , T2} from time 0 to 6, and B12 = {T4} from 8 until 10 

(viz. Figure 4.5.2(c)). Block B12 needs no further attention. For block B11 we 

find L11 = {T1 , T2} and select task T1 since G1(6) < G2(6). By rescheduling the 

tasks in B11 again we finally obtain an optimal schedule (Figure 4.5.2(c)).  

4.5.2 Total Cost 

From [LRKB77] we know that the general problem 1 | | � Gj of scheduling tasks, 

such that the sum of values Gj(Cj) is minimal, is NP-hard. If tasks have unit pro-

cessing times, i.e. for 1 | pj = 1 | � Gj , the problem is equivalent to finding a per-

mutation ((1 ,...,(n) of the task indices 1,..., n that minimizes � Gj(C(j 
). This is 

a weighted bipartite matching problem, which can be solved in O(n3
) time 

[LLR+93]. For the case of arbitrary processing times, Rinnooy Kan et al. 

[RKLL75] presented a branch an bound algorithm. The computation of lower 

bounds on the costs of an optimal schedule follows an idea similar to that used in 

the pj = 1 case.  
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(a) T2T1

T3 T4

T5  

(b) 

t0 4 6 10 12 18

Gi(t) G4

G2

G5

G3

G1

 

(c) 

t0 4 6 10 12 1814

T1 T2 T3 T4 T5
Initial 
schedule

B B  1 2  

t0 4 6 10 128

T1 T2 T3 T4 T3
1

New Schedule
for block B

B  B  1211  

t0 4 6 10 12 182 8 14

T1 T2 T1 T3 T4 T3 T5
Optimal 
schedule

 

Figure 4.5.2 An example problem 1 | pmtn, prec, rj | Gmax 
 (a) task set with precedence constraints, 

(b) cost functions specifying penalties associated with task com-
pletion times, 
(c) block schedules and an optimal preemptive schedule. 
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Suppose that p1 �... � pn , and define tk = p1 +...+ pk for k = 1,..., n. Then Gj(tk) 
is a lower bound on the cost of scheduling Tj in position k, and an overall lower 

bound is obtained by solving the weighted bipartite matching problem with coef-

ficients Gj(tk). In addition to lower bounds, elimination criteria are used to dis-

card partial schedules in the search tree. These criteria are generally of the form: 

if the cost functions and processing times of Ti and Tj satisfy a certain relation-

ship, then there is an optimal schedule in which Ti precedes Tj .  

A number of results are available for special kinds of cost functions. If all 

cost functions depend linearly on the task completion times, Smith [Smi56] 

proved that an optimal schedule is obtained by scheduling the tasks in order of 

non-decreasing values of Gj(p)/pj where p = � pj .  

For the case that cost of each task Tj is a quadratic function of its completion 

time, i.e. Gj(Cj) = cj Cj
2
 for some constant cj , branch and bound algorithms were 

developed by Townsend [Tow78] and by Bagga and Kalra [BK81]. Both make 

use of task interchange relations similar to those discussed in Section 4.2 (see 

equation (4.2.1)) to obtain sufficient conditions for the preference of a task Ti 

over another task Tj . For instance, following [BK81], if ci � cj and pi � pj for 

tasks Ti , Tj , then there will always be a schedule where Ti is performed prior to 

Tj , and whose total cost will not be greater than the cost of any other schedule 

where Ti is started later than Tj . Such a rule can be obviously used to reduce the 

number of created nodes in the tree of a branch and bound procedure.  

A similar problem was discussed by Gupta and Sen [GS83] where each task 

has a given due date, and the objective is to minimize the sum of squares of late-

ness values, �
j=1

n
 Lj

2
 . If tasks can be arranged in a schedule such that every pair of 

adjacent tasks Ti , Tj (i.e. Ti is executed immediately before Tj) satisfies the condi-

tions 

pi � pj   and   
di
pi

  �� dj
pj

 , 

then the schedule can be proved to be optimal. For general processing times and 

due dates, a branch and bound algorithm was presented in [GS83].  

The problems of minimizing total cost are equivalent to maximization prob-

lems where each task is assigned a profit that urges tasks to finish as early as 

possible. The profit of a task is described by a non-increasing and concave func-

tion Gj on the finishing time of the task. Fisher and Krieger [FK84] discussed a 

class of heuristics for scheduling n tasks on a single processor to maximize the 

sum of profits � Gj(Cj � pj) . The heuristic used in [FK84] is based on linear ap-

proximations of the functions Gj. Suppose several tasks have already been 

scheduled for processing in the interval [0, t), and we must choose one of the re-

maining tasks to start at time t. Then the approximation of Gj is the linear func-
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tion through the points (t, Cj(t)) and (p, Cj(p)) where p = �
j=1

n
 pj . The task chosen 

maximizes (Cj(t) � Cj(p))/t. The main result presented in [FK84] is that the heu-

ristic always obtains at least 2/3 of the optimal profit.  

Finally we mention that there are few results available for the case that, in 

addition to the previous assumptions, precedence constraints restrict the order of 

task execution. For the total weighted exponential cost function criterion 

�
j=1

n
 wj exp(� cCj)), where c is some given "discount rate", Monma and Sidney 

[MS87] were able to prove that the job module property (see end of Section 4.2) 

is satisfied. As a consequence, for certain classes of precedence constraints that 

are built up iteratively from prime modules, the problem 1 | prec | � (wj exp(�cCj)) 

can be solved in polynomial time. As an example, series-parallel precedence 

constraints are of that property. For more details we refer the reader to [MS87].  

Dynamic programming algorithms for general precedence constraints and 

for the special case of series-parallel precedence graphs can be found in [BS78a, 

BS78b, and BS81], where each task is assigned an arbitrary cost function that is 

non-negative and non-decreasing in time. 
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5  Scheduling on Parallel Processors 

This chapter is devoted to the analysis of scheduling problems in a parallel pro-
cessor environment. As before the three main criteria to be analyzed are schedule 
length, mean flow time and lateness. Then, some more developed models of mul-
tiprocessor systems and lot size scheduling are described. Corresponding results 
are presented in the four following sections. 

5.1 Minimizing Schedule Length 

In this section we will analyze the schedule length criterion. Complexity analysis 
will be complemented, wherever applicable, by a description of the most im-
portant approximation as well as enumerative algorithms. The presentation of the 
results will be divided into subcases depending on the type of processors used, 
the type of precedence constraints, and to a lesser extent task processing times 
and the possibility of task preemption. 

5.1.1 Identical Processors 

Problem P | | Cmax 

The first problem considered is P | | Cmax where a set of independent tasks is to be 
scheduled on identical processors in order to minimize schedule length. We start 
with complexity analysis of this problem which leads to the conclusion that the 
problem is not easy to solve, since even simple cases such as scheduling on two 
processors can be proved to be NP-hard [Kar72]. 

Theorem 5.1.1  Problem P2 | | Cmax is NP-hard. 

Proof. As a known NP-complete problem we take PARTITION [Kar72] which is 
formulated as follows. 

Instance: Finite set A  and a size s(ai) � IN for each ai � A . 

Answer: "Yes" if there exists a subset A' � A  such that  
 �

ai �A'
s(ai) = �

ai �A � A'
s(ai) .  

 Otherwise "No". 
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Given any instance of PARTITION defined by the positive integers s(ai), ai � A , 
we define a corresponding instance of the decision counterpart of P2 | | Cmax by 
assuming n = |A |, pj = s(aj), j = 1, 2,..., n, and a threshold value for the schedule 

length, y = 1
2

 �
ai �A

s(ai) . It is obvious that there exists a subset A' with the desired 

property for the instance of PARTITION if and only if, for the corresponding 
instance of P2 | | Cmax , there exists a schedule with Cmax � y (cf. Figure 5.1.1). 
This proves the theorem.  

P A'  

A   A'

1

P2

t 
Figure 5.1.1 A schedule for Theorem 5.1.1. 

Since there is no hope of finding an optimization polynomial time algorithm for 
P | | Cmax , one may try to solve the problem along the lines presented in Section 
3.2. First, one may try to find an approximation algorithm for the original prob-
lem and evaluate its worst case as well as its mean behavior. We will present 
such an analysis below. 

One of the most often used general approximation strategies for solving 
scheduling problems is list scheduling, whereby a priority list of the tasks is giv-
en, and at each step the first available processor is selected to process the first 
available task on the list [Gra66] (cf. Section 3.2). The accuracy of a given list 
scheduling algorithm depends on the order in which tasks appear on the list. One 
of the simplest algorithms is the LPT algorithm in which the tasks are arranged 
in order of non-increasing pj . 

Algorithm 5.1.2  LPT Algorithm for P | | Cmax. 

begin 
Order tasks on a list in non-increasing order of their processing times; 
 -- i.e. p1 �...� pn 

for i = 1 to m do si := 0; 

 -- processors Pi are assumed to be idle from time si = 0 on, i = 1,..., m 

j := 1; 
repeat 
 sk := min{si}; 

 Assign task Tj to processor Pk at time sk; 

  -- the first non-assigned task from the list is scheduled on the first processor  
  -- that becomes free 
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 sk := sk + pj; j := j + 1; 

until j = n + 1; -- all tasks have been scheduled 

end; 

It is easy to see that the time complexity of this algorithm is O(nlog n) since its 
most complex activity is to sort the set of tasks. The worst case behavior of the 
LPT rule is analyzed in Theorem 5.1.3. 

Theorem 5.1.3 [Gra69]  If the LPT algorithm is used to solve problem P | | Cmax, 
then 

RLPT = 
4

3
 � 

1

3m . (5.1.1) 

  

Space limitations prevent us from including here the proof of the upper bound in 
the above theorem. However, we will give an example showing that this bound 
can be achieved. Let n = 2m + 1, p = [2m � 1, 2m � 1, 2m � 2, 2m � 2,..., m + 1, 
m + 1, m, m, m]. For m = 3, Figure 5.1.2 shows two schedules, an optimal one and 
an LPT schedule.  

We see that in the worst case an LPT schedule can be up to 33% longer than 
an optimal schedule. However, one is led to expect better performance from the 
LPT algorithm than is indicated by (5.1.1), especially when the number of tasks 
becomes large. In [CS76] another absolute performance ratio for the LPT rule 
was proved, taking into account the number k of tasks assigned to a processor 
whose last task terminates the schedule. 

Theorem 5.1.4  For the assumptions stated above, we have  

RLPT(k) = 1 + 1k � 
1

km . (5.1.2) 
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Figure 5.1.2 Schedules for Theorem 5.1.3 
 (a) an optimal schedule, 

 (b) LPT schedule. 

This result shows that the worst-case performance bound for the LPT algorithm 
approaches one as fast as 1 + 1/k. 
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On the other hand, it would be of interest to know how good the LPT algo-
rithm is on the average. Such a result was obtained by [CFL84], where the rela-
tive error was found for two processors on the assumption that task processing 
times are independent samples from the uniform distribution on [0, 1] . 

Theorem 5.1.5  Under the assumptions already stated, we have the following 
bounds for the mean value of schedule length for the LPT algorithm, E(CLPT

max), for 
problem P2 | | Cmax . 

n
4 + 

1
4(n+1)  �  E(CLPT

max)  �� 
n
4 +  e

2(n+1) , (5.1.3) 

where e = 2.7... is the base of the natural logarithm.   

Taking into account that n/4 is a lower bound on E(C *  
max) we get  

E(CLPT
max)/E(C *  

max)  <  1 + O(1/n2
) .  

Therefore, as n increases, E(CLPT
max) approaches the optimum no more slowly than 

1 + O(1/n2) approaches 1. The above bound can be generalized to cover also the 
case of m processors for which we have [CFL83]:  

E(CLPT
max)  �� 

n
2m + (m

n) . 

Moreover, it is also possible to prove [FRK86, FRK87] that CLPT
max � C *  

max almost 
surely converges to 0 as n � # if the task processing time distribution has a fi-
nite mean and a density function f satisfying f(0) > 0. It is also shown that if the 
distribution is uniform or exponential, the rate of convergence is O(log(log n)/n). 
This result, obtained by a complicated analysis, can also be guessed from simula-
tion studies. Such an experiment was reported by Kedia [Ked70] and we present 
the summary of the results in Table 5.1.1. The last column presents the ratio of 
schedule lengths obtained by the LPT algorithm and the optimal preemptive one. 
Task processing times are drawn from the uniform distribution of the given pa-
rameters. 

To conclude the above analysis we may say that the LPT algorithm behaves 
quite well and may be useful in practice. However, if one wants to have better 
performance guarantees, other approximation algorithms should be used, as for 
example MULTIFIT introduced by Coffman et al. [CGJ78] or the algorithm pro-
posed by Hochbaum and Shmoys [HS87]. A comprehensive treatment of approx-
imation algorithms for this and related problems is given by Coffman et al. 
[CGJ84]. 
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n, m 
Intervals of task processing 

time distribution Cmax CLPT
max 4 C *  

max 

6 
9 

15 
6 
9 

15 

3 
3 
3 
3 
3 
3 

1, 20 
1, 20 
1, 20 

20, 50 
20, 50 
20, 50 

20 
32 
65 
59 

101 
166 

1.00 
1.00 
1.00 
1.05 
1.03 
1.00 

8 
12 
20 
8 

12 
20 

4 
4 
4 
4 
4 
4 

1, 20 
1, 20 
1, 20 

20, 50 
20, 50 
20, 50 

23 
30 
60 
74 

108 
185 

1.09 
1.00 
1.00 
1.04 
1.02 
1.01 

10 
15 
20 
10 
15 
25 

5 
5 
5 
5 
5 
5 

1, 20 
1, 20 
1, 20 

20, 50 
20, 50 
20, 50 

25 
38 
49 
65 

117 
198 

1.04 
1.03 
1.00 
1.06 
1.03 
1.01 

Table 5.1.1 Mean performance of the LPT algorithm. 

We now pass to the second way of analyzing problem P | | Cmax. Theorem 5.1.1 
gave a negative answer to the question about the existence of an optimization 
polynomial time algorithm for solving P2 | | Cmax. However, we have not proved 
that our problem is NP-hard in the strong sense and we may try to find a pseudo-
polynomial optimization algorithm. It appears that, based on a dynamic pro-
gramming approach, such an algorithm can be constructed using ideas presented 
by Rothkopf [Rot66]. Below the algorithm is presented for P | | Cmax; it uses 
Boolean variables xj(t1 , t2 ,..., tm), j = 1, 2,..., n, ti = 0, 1,..., C, i = 1, 2,..., m, 

where C denotes an upper bound on the optimal schedule length C *  
max . The 

meaning of these variables is the following 

xj(t1, t2,..., tm) = 

�.
�
.  

 
 
 

 

true if tasks T1 , T2 ,..., Tj can be scheduled on 
processors P1 , P2 ,..., Pm in such a way that Pi 
is busy in time interval [0, ti], i = 1, 2,..., m , 

false otherwise. 

Now, we are able to present the algorithm. 
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Algorithm 5.1.6  Dynamic programming for P | | Cmax [Rot66]. 

begin 
for all (t1, t2,..., tm) � {0, 1,..., C}

m do x0(t1, t2,..., tm) := false; 

x0(0, 0,..., 0) := true; 

 -- initial values for Boolean variables are now assigned 

for j = 1 to n do 

 for all (t1, t2,..., tm) � {0, 1,..., C}
m do 

xj(t1, t2,..., tm) = V
i=1

m
xj�1(t1, t2,..., ti�1, ti � pj, ti+1,..., tm); (5.1.4) 

C *  
max := min{max{t1, t2,..., tm} | xn(t1, t2,..., tm) = true}; (5.1.5) 

 -- optimal schedule length has been calculated 

Starting from the value C *  
max, assign tasks Tn, Tn�1,..., T1 to appropriate  

processors using formula (5.1.4) backwards; 
end; 

The above procedure solves problem P | | Cmax in O(nCm) time; thus for fixed m it 
is a pseudopolynomial time algorithm. As a consequence, for small values of m 
and C the algorithm can be used even in computer applications. To illustrate the 
use of the above algorithm let us consider the following example. 

Example 5.1.7  Let n = 3, m = 2 and p = [2, 1, 2]. Assuming bound C = 5 we get 
the cube given in Figure 5.1.3(a) where particular values of variables xj(t1 , t2 ,...,
 tm) are stored. In Figures 5.1.3(b) through 5.1.3(e) these values are shown, re-
spectively, for j = 0, 1, 2, 3 (only true values are depicted). Following Figure 
5.1.3(e) and equation (5.1.5), an optimal schedule is constructed as shown in 
Figure 5.1.3(f).  

The interested reader may find a survey of some other enumerative approaches 
for the problem in question in [LLR+93]. 

Problem P | pmtn | Cmax 

Now one may try the third way of analyzing the problem P | | Cmax (as suggested 
in Section 3.2), i.e. on may relax some constraints imposed on problem P | | Cmax 
and allow preemptions of tasks. It appears that problem P | pmtn | Cmax can be 
solved very efficiently. It is easy to see that the length of a preemptive schedule 
cannot be smaller than the maximum of two values: the maximum processing 
time of a task and the mean processing requirement on a processor [McN59], i.e.:  

C *  
max = max{max

j
{pj}, 1

m 5
j=1

n
 pj} . (5.1.6) 
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Figure 5.1.3 An application of dynamic programming for Example 5.1.7  

(a) a cube of Boolean variables, 
(b)-(e) values of xj(t1,t2) for j = 0, 1, 2, 3, respectively (here T 
stands for true), 
(f) an optimal schedule. 
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The following algorithm given by McNaughton [McN59] constructs a schedule 

whose length is equal to C *  
max . 

Algorithm 5.1.8  McNaughton's rule for P | pmtn | Cmax [McN59]. 

begin 
C *  

max := max{5
j=1

n
 pj /m, max

j
{pj}}; -- minimum schedule length 

t := 0; i := 1; j := 1; 
repeat 
 if t + pj � C *  

max 

 then 

  begin 
  Assign task Tj to processor Pi , starting at time t; 

  t := t + pj; j := j + 1; 
   -- task Tj can be fully assigned to processor Pi, 
   -- assignment of the next task will continue at time t + pj 
  end 
 else 
  begin 
  Starting at time t, assign task Tj for C *  

max � t units to processor Pi; 

   -- task Tj is preempted at time C *  
max, 

   -- processor Pi is now busy until C *  
max, 

   -- assignment of Tj will continue on the next processor at time 0 
  pj := pj � (C *  

max � t); t := 0; i := i + 1; 

  end; 
until j = n + 1; -- all tasks have been scheduled 

end; 
Note that the above algorithm is an optimization procedure since it always finds 
a schedule whose length is equal to C *  

max . Its time complexity is O(n) . 
We see that by allowing preemptions we made the problem easy to solve. 

However, there still remains the question of practical applicability of the solution 
obtained this way. One has to ask if this model of preemptive task scheduling can 
be justified, because it cannot be expected that preemptions are free of cost. Gen-
erally, two kinds of preemption costs have to be considered: time and finance. 
Time delays originating from preemptions are less crucial if the delay caused by 
a single preemption is small compared to the time the task continuously spends 
on the processor. Financial costs connected with preemptions, on the other hand, 
reduce the total benefit gained by preemptive task execution; but again, if the 
profit gained is large compared to the losses caused by the preemptions the 
schedule will be more useful and acceptable. These circumstances suggest the 
introduction of a scheduling model where task preemptions are only allowed af-
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ter the tasks have been processed continuously for some given amount k of time. 
The value for k (preemption granularity) should be chosen large enough so that 
the time delay and cost overheads connected with preemptions are negligible. For 
given granularity k, upper bounds on the preemption overhead can easily be es-
timated since the number of preemptions for a task of processing time p is lim-
ited by �p/k� . In [EH93] the problem P | pmtn | Cmax with k-restricted preemptions 
is discussed: If the processing time pj of a task Tj is less than or equal to k, then 
preemption is not allowed; otherwise preemption may take place after the task 
has been continuously processed for at least k units of time. For the remaining 
part of a preempted task the same condition is applied. Notice that for k = 0 this 
problem reduces to the "classical" preemptive scheduling problem. On the other 
hand, if for a given instance the granularity k is larger than the longest processing 
time among the given tasks, then no preemption is allowed and we end up with 
non-preemptive scheduling. Another variant is the exact-k-preemptive scheduling 
problem where task preemptions are only allowed at those moments when the 
task has been processed exactly an integer multiple of k time units. In [EH93] it 
is proved that, for m = 2 processors, both the k-preemptive and the exact-k-
preemptive scheduling problems can be solved in time O(n). For m > 2 proces-
sors both problems are NP-hard. 

Problem P | prec | Cmax 

Let us now pass to the case of dependent tasks. At first tasks are assumed to be 
scheduled non-preemptively. It is obvious that there is no hope of finding a poly-
nomial time optimization algorithm for scheduling tasks of arbitrary length since 
P | | Cmax is already NP-hard. However, one may try again list scheduling algo-
rithms. Unfortunately, this strategy may result in an unexpected behavior of con-
structed schedules, since the schedule length for problem P | prec | Cmax (with 
arbitrary precedence constraints) may increase if: 
� the number of processors increases, 
� task processing times decrease, 
� precedence constraints are weakened, or 
� the priority list changes. 

Figures 5.1.4 through 5.1.8 indicate the effects of changes of the above men-
tioned parameters. These list scheduling anomalies have been discovered by 
Graham [Gra66], who has also evaluated the maximum change in schedule 
length that may be induced by varying one or more problem parameters. We will 
quote this theorem since its proof is one of the shortest in that area and illustrates 
well the technique used in other proofs of that type. Let there be defined a task 
set T  together with precedence constraints ≺. Let the processing times of the 
tasks be given by vector p, let T  be scheduled on m processors using list L, and 
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let the obtained value of schedule length be equal to Cmax. On the other hand, let 
the above parameters be changed: a vector of processing times p' � p (for all the 
components), relaxed precedence constraints ≺' � ≺, priority list L' and the 
number of processors m'. Let the new value of schedule length be C '   max . Then the 
following theorem is valid. 

(a)
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Figure 5.1.4 (a) A task set, m = 2, L = (T1, T2, T3, T4, T5, T6, T7, T8), 
 (b) an optimal schedule. 
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Figure 5.1.5 Priority list changed: A new list L' = (T1, T2, T3, T4, T5, T6, T8, T7). 
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Figure 5.1.6 Processing times decreased; p'j = pj �� 1, j = 1, 2,..., n. 
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Figure 5.1.7 Number of processors increased, m = 3. 
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Figure 5.1.8 (a) Precedence constraints weakened, 

(b) a resulting list schedule. 

Theorem 5.1.9 [Gra66]  Under the above assumptions,  
C '   max
Cmax

 � 1 + 
m�1

m'  . (5.1.7) 

Proof. Let us consider schedule S' obtained by processing task set T  with primed 
parameters. Let the interval [0, C '   max) be divided into two subsets, A  and B , de-
fined in the following way:  

A  = {t � [0, C '   max) | all processors are busy at time t}, B  = [0, C '   max) � A . 

Notice that both A  and B  are unions of disjoint half-open intervals. Let Tj1 de-
note a task completed in S' at time C '   max , i.e. Cj1 = C '   max . Two cases may occur: 
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1. The starting time sj1 of Tj1 is an interior point of B . Then by the definition of 
B  there is some processor Pi which for some % > 0 is idle during interval [sj1 � %, 

sj1) . Such a situation may only occur if we have Tj2 ≺' Tj1 and Cj2 = sj1 for some 
task Tj2 . 
2. The starting time of Tj1 is not an interior point of B . Let us also suppose that 
sj1 � 0. Define x1 = sup{x | x < sj1 , and x � B } or x1 = 0 if set B  is empty. By the 
construction of A  and B , we see that x1 � A , and processor Pi is idle in time 
interval [x1 � %, x1) for some % > 0 . But again, such a situation may only occur if 
some task Tj2 ' Tj1 is processed during this time interval. 

It follows that either there exists a task Tj2 ≺' Tj1 such that y � [Cj2 , sj1) im-
plies y � A  or we have: x < sj1 implies either x � A  or x < 0 . 

The above procedure can be inductively repeated, forming a chain Tj3 , 
Tj4 ,...,  until we reach task Tjr for which x < sjr implies either x � A  or x < 0. 
Hence there must exist a chain of tasks  

Tjr ≺' Tjr�1
 ≺'... ≺' Tj2 ≺' Tj1 (5.1.8) 

such that at each moment t � B , some task Tjk is being processed in S'. This im-
plies that  

�
6'�S'

 p'  6'  � (m' � 1) �
k=1

r
 p'  jk  (5.1.9) 

where the sum on the left-hand side is made over all idle-time tasks 6' in S'. But 
by (5.1.8) and the hypothesis ≺' � ≺ we have 

Tjr ≺ Tjr�1
 ≺...≺ Tj2 ≺ Tj1 . (5.1.10) 

Hence, 

Cmax � �
k=1

r
 pjk � �

k=1

r
 p'  jk  . (5.1.11) 

Furthermore, by (5.1.9) and (5.1.11) we have  

C '   max = 
1

m' (�k=1

n
 p' k  � �

6'�S'
 p'  6'3 � 

1

m' (m Cmax + (m' � 1) Cmax ) . (5.1.12) 

It follows that 
C '   max
Cmax

 � 1 + 
m�1

m'  

and the theorem is proved.  
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From the above theorem, the absolute performance ratio for an arbitrary list 
scheduling algorithm solving problem P | | Cmax can be derived. 

Corollary 5.1.10 [Gra66]  For an arbitrary list scheduling algorithm LS for 
P | | Cmax we have 

RLS = 2 � 
1

m . (5.1.13) 

Proof. The upper bound of (5.1.13) follows immediately from (5.1.7) by taking 
m' = m and by considering the list leading to an optimal schedule. To show that 
this bound is achievable let us consider the following example: n = (m � 1)m + 1, 
p = [1, 1,..., 1, 1, m], ≺ is empty, L = (Tn , T1 , T2 ,..., Tn�1) and L' = (T1 , T2 , ...,

Tn). The corresponding schedules for m = 4 are shown in Figure 5.1.9.  
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Figure 5.1.9 Schedules for Corollary 5.1.10  
 (a) an optimal schedule, 
 (b) an approximate schedule. 

It follows from the above considerations that an arbitrary list scheduling algo-
rithm can produce schedules almost twice as long as optimal ones. However, one 
can solve optimally problems with tasks of unit lengths. 

Problem P | prec, pj = 1 | Cmax 

The first algorithm has been given for scheduling forests, consisting either of in-
trees or of out-trees [Hu61]. We will first present Hu's algorithm for the case of 
an in-tree, i.e. for the problem P | in-tree, pj = 1 | Cmax. The algorithm is based on 

the notion of a task level in an in-tree which is defined as the number of tasks on 

the path to the root of the graph. The algorithm by Hu, which is also called level 
algorithm or critical path algorithm is as follows. 
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Algorithm 5.1.11  Hu's algorithm for P | in-tree, pj = 1 | Cmax [Hu61]. 

begin 
Calculate levels of the tasks; 

t := 0; 
repeat 
 Construct list Lt consisting of all the tasks without predecessors at time t; 

  -- all these tasks either have no predecessors  

  -- or their predecessors have been assigned in time interval [0, t�1] 

 Order Lt in non-increasing order of task levels; 

 Assign m tasks (if any) to processors at time t from the beginning of list Lt; 

 Remove the assigned tasks from the graph and from the list; 

 t := t + 1; 

until all tasks have been scheduled; 

end; 

The algorithm can be implemented to run in O(n) time. An example of its appli-

cation is shown in Figure 5.1.10.  
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Figure 5.1.10 An example of the application of Algorithm 5.1.11 for three pro-
cessors. 

A forest consisting of in-trees can be scheduled by adding a dummy task that is 

an immediate successor of only the roots of in-trees, and then by applying Algo-

rithm 5.1.11. A schedule for an out-tree can be constructed by changing the ori-
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entation of arcs, applying Algorithm 5.1.11 to the obtained in-tree and then read-

ing the schedule backwards, i.e. from right to left.  

It is interesting to note that the problem of scheduling opposing forests (that 

is, combinations of in-trees and out-trees) on an arbitrary number of processors is 

NP-hard [GJTY83]. However, if the number of processors is limited to 2, the 

problem is easily solvable even for arbitrary precedence graphs [CG72, FKN69, 

Gab82]. We present the algorithm given by Coffman and Graham [CG72] since 

it can be further extended to cover the preemptive case. The algorithm uses la-
bels assigned to tasks, which take into account the levels of the tasks and the 

numbers of their immediate successors. The following algorithm assigns labels to 

the tasks, and then uses them to find the shortest schedule for problem P2 | prec, 

pj = 1 | Cmax. 

Algorithm 5.1.12  Algorithm by Coffman and Graham for P2 | prec, pj = 1 | Cmax 

[CG72]. 

begin 
Assign label 1 to any task T0 for which isucc(T0) = �; 
 -- recall that isucc(T) denotes the set of all immediate successors of T 

j := 1; 
repeat 
 Construct set S  of all unlabeled tasks whose successors are labeled; 

 for all T � S  do 

  begin 
  Construct list L(T) consisting of labels of tasks belonging to isucc(T); 

  Order L(T) in decreasing order of the labels; 
  end; 

 Order these lists in increasing lexicographic order L(T[1]) <
. ...<. L(T[�S �]); 

 -- see Section 2.1 for definition of <.  

 Assign label j + 1 to task T[1]; 

 j := j + 1; 

until j = n + 1; -- all tasks have been assigned labels 

call Algorithm 5.1.11; 
 -- here the above algorithm uses labels instead of levels when scheduling tasks 
end; 

A careful analysis shows that the above algorithm can be implemented to run in 

time which is almost linear in n and in the number of arcs in the precedence 

graph [Set76]; thus its time complexity is practically O(n2
). An example of the 

application of Algorithm 5.1.12 is given in Figure 5.1.11.  

It must be stressed that the question concerning the complexity of problem 

Pm | prec, pj = 1 | Cmax with a fixed number m of processors is still open despite 

the fact that many papers have been devoted to solving various subcases of prec-
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edence constraints. If tasks with unit processing times are considered, the follow-

ing results are available. Problems P3 | opposing forest, pj = 1 | Cmax and 

Pk | opposing forest, pj = 1 | Cmax are solvable in time O(n) [GJTY83] and 

O(n2k�2
 logn) [DW85], respectively. On the other hand, if the number of availa-

ble processors is variable, then this problem becomes NP-hard. Some results are 

also available for the subcases in which task processing times may take only two 

values. Problems P2 | prec, pj = 1 or 2 | Cmax and P | prec, pj = 1 or k | Cmax are NP-

hard [DL88], while problems P2 | tree, pj = 1 or 2 | Cmax and P2 | tree, pj = 1 or 

3 | Cmax are solvable in time O(nlogn) [NLH81] and O(n2
logn) [DL89], respec-

tively. Arbitrary processing times result in strong NP-hardness even for the case 

of chains scheduled on two processors (problem P2 | chains | Cmax) [DLY91]. 
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Figure 5.1.11 An example of the application of Algorithm 5.1.12 (tasks are 
denoted by Tj /label). 

Furthermore, several papers deal with approximation algorithms for P | prec, pj =

 1 | Cmax and more general problems. We quote some of the most interesting re-

sults. The application of the level algorithm (Algorithm 5.1.11) to solve P | prec, 

pj = 1 | Cmax has been analyzed by Chen and Liu [CL75] and Kunde [Kun76]. The 

following bound has been proved. 
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Rlevel = 

�
�
  

 

 
 

4

3
 for m = 2 

2 � 
1

m�1
 for m � 3 . 

Algorithm 5.1.12 is slightly better, its bound is R = 2 � 
2

m � 
m � 3

m&Cmax*  
 for m � 3 

[BT94]. In this context one should not forget the results presented in Theorems 

5.1.9 and 5.1.10, where list scheduling anomalies have been analyzed.  

Problem P | pmtn, prec | Cmax 

The analysis also showed that preemptions can be profitable from the viewpoint 

of two factors. First, they can make problems easier to solve, and second, they 

can shorten the schedule. Coffman and Garey [CG91] proved that for problem 

P2 | prec | Cmax the least schedule length achievable by a non-preemptive schedule 

is no more than 4/3 the least schedule length achievable when preemptions are 

allowed. While the proof of this fact seems to be tedious, a very simple example 

showing that this bound is met can easily be given for a set of three independent 

tasks of equal length (cf. Figure 5.1.12).  
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Figure 5.1.12 An example of 4/3 conjecture 
 (a) non-preemptive scheduling, 
 (b) preemptive scheduling. 

In the general case of dependent tasks scheduled on processors in order to mini-

mize schedule length, one can construct optimal preemptive schedules for tasks 

of arbitrary length and with other parameters the same as in Algorithm 5.1.11 or 

5.1.12. The approach again uses the notion of the level of task Tj in a precedence 

graph, by which is now understood the sum of processing times (including pj) of 
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tasks along the longest path between Tj and a terminal task (a task with no suc-

cessors). Let us note that the level of a task being executed is decreasing. We 

have the following algorithm [MC69, MC70] for the problems P2 | pmtn, 

prec | Cmax and P | pmtn, forest | Cmax . The algorithm uses a notion of a processor 
shared schedule, in which a task receives some fraction * (��1) of the processing 

capacity of a processor. 

Algorithm 5.1.13  Algorithm by Muntz and Coffman for P2 | pmtn, prec | Cmax 

and P | pmtn, forest | Cmax [MC69, MC70]. 

begin 
for all T � T do Compute the level of task T; 

t := 0; h := m; 
repeat 

 Construct set Z  of tasks without predecessors at time t; 

 while h > 0 and |Z | > 0 do 

  begin 

  Construct subset S  of Z  consisting of tasks at the highest level; 

  if |S | > h 

  then 
   begin 
   Assign * := h/|S | of a processing capacity to each of the tasks from S ; 

   h := 0; -- a processor shared partial schedule is constructed 
   end 
  else 
   begin 
   Assign one processor to each of the tasks from S ; 

   h := h � |S |; -- a "normal" partial schedule is constructed 

   end; 

  Z  := Z  � S ; 

  end; -- the most "urgent" tasks have been assigned at time t 
Calculate time 7 at which either one of the assigned tasks is finished or a 

point is reached at which continuing with the present partial assignment 

means that a task at a lower level will be executed at a faster rate * than a 

task at a higher level; 

 Decrease levels of the assigned tasks by (7 � t)*; 

 t := 7; h := m; 

  -- a portion of each assigned task equal to (7�t)* has been processed 

until all tasks are finished; 

call Algorithm 5.1.8 to re-schedule portions of the processor shared schedule 

to get a normal one; 
end; 



 5.1  Minimizing Schedule Length 159 

 

The above algorithm can be implemented to run in O(n2
) time. An example of its 

application to an instance of problem P2 | pmtn, prec | Cmax is shown in Figure 

5.1.13. 

At this point let us also consider another class of the precedence graphs for 

which the scheduling problem can be solved in polynomial time. To do this we 

have to present precedence constraints in the form of an activity network (task-

on-arc precedence graph, viz. Section 3.1) whose nodes (events) are ordered in 

such a way that the occurrence of node i is not later than the occurrence of node j, 
if i < j. 
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Figure 5.1.13 An example of the application of Algorithm 5.1.13 
(a) a task set (nodes are denoted by Tj /pj), 

(b) I: a processor-shared schedule, II: an optimal schedule. 
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Now, let S I denote the set of all the tasks which may be performed between the 

occurrence of event (node) I and I + 1. Such sets will be called main sets. Let us 

consider processor feasible sets, i.e. those main sets and those subsets of the 

main sets whose cardinalities are not greater than m, and number these sets from 

1 to some K. Now, let Qj denote the set of indices of processor feasible sets in 

which task Tj may be performed, and let xi denote the duration of the ith feasible 

set. Then, a linear programming problem can be formulated in the straightfor-

ward way [WBCS77, BCSW76b] (another LP formulation for unrelated proces-

sors is presented in Section 5.1.2 as the first phase of a two-phase method): 

Minimize Cmax = �
i=1

K
 xi (5.1.14) 

subject to �
i �Qj

 xi = pj , j = 1, 2,..., n ,  

 xi � 0, i = 1, 2,..., K . 

 

(5.1.15) 

It is clear that the solution of the LP problem depends on the order of nodes 

in the activity network; hence an optimal solution is found when this topological 

order is unique. Such a situation takes place for a uniconnected activity network 

(uan), i.e. one in which any two nodes are connected by a directed path in only 

one direction. An example of a uniconnected activity network together with the 

corresponding precedence graph is shown in Figure 5.1.14. On the other hand, 

the number of variables in the above LP problem depends polynomially on the 

input length, when the number of processors m is fixed. We may then use a non-

simplex algorithm (e.g. from [Kha79] or [Kar84]) which solves any LP problem 

in time polynomial in the number of variables and constraints. Hence, we may 

conclude that the above procedure solves problem Pm | pmtn, uan | Cmax in poly-

nomial time.  
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Figure 5.1.14 (a) An example of a simple uniconnected activity network, 
(b) The corresponding precedence graph. 
Main sets S 1 = {T1, T2}, S 2 = {T2, T3, T4}, S 3 = {T4, T5}. 

 



 5.1  Minimizing Schedule Length 161 

 

Recently another LP formulation has been proposed which enables one to solve 
problem  P | pmtn, uan | Cmax in polynomial time, regardless of a number of pro-
cessors [JMR+04]. 

As we already mentioned the uniconnected activity network has a task-on-
node equivalent representation in a form of the interval order. Below, we present 
a sketch of the proof  [BK02]. Let us start with the following theorem which will 
be given without a proof. 

 
Theorem 5.1.14  Let G be an activity network (task-on-arc graph). G is unicon-
nected if and only if G has a Hamiltonian path.  

 
Now, the following theorems may be proved [BK02]. 

 
Theorem 5.1.15  If  G  is a uan, then  G  is a task-on-arc representation of an 
interval order. 

Proof.  By Theorem 5.1.14,  G = (V , A) is composed of a Hamiltonian path  
W = (v1 , … , vn) with possibly some additional arcs of the form (vi , vj) with  i < j. 
The interval order we are looking for is defined by the following collection of 
intervals (Ia)a�A .  For every arc a = (vi , vj) of A, we put the interval [i , j) into the 
collection. 

We have now to show that  Ia = [i , j)  is entirely to the left of  Ia' = [i' , j')  if 
and only if a has to precede a' in the task precedence constraints represented by 
G. This is easy to show, since: 

Ia = [i , j)  is entirely to the left of  Ia' = [i' , j')  

   j � i’ 

   there is a path from  vj   to  vi'   in G (along W) 

   a with head j has to precede a' with tail  i' .  

If dummy tasks are not allowed, an interval order does not necessarily have a 
task-on-arc representation. Indeed, if we consider the collection of intervals 
{[1,2) , [1,3) , [2,4) , [3,4)}, its task-on-node representation is graph N  in Figure 
2.3.1. It implies that this partial order does not have a task-on-arc representation 
without dummy tasks. But the equivalence of task-on-node and task-on-arc rep-
resentations can be obtained through the use of dummy tasks. Since we allow 
them also here, the following result can be proved. 

 
Theorem 5.1.16  Any interval order has a task-on-arc representation with a 
Hamiltonian path (and therefore corresponds to a uan). 

Proof.  Consider any collection of intervals  (Ia)a�A  with  Ia = [ba , ea). We define 
the following graph  G=(V,E). Set 

V= { ba | a � A } � { ea | a � A }. 
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For any v in V, let next(v) be the vertex w > v such that there is no x in V with  v + 
x + w   (next(v) is not defined for the largest ea).  Set 

A'  = { (v , next(v)) | v � V and  next(v)  defined } 
and 

E = A'  � { (ba , ea) | a � A } . 

The arcs in A'  represent dummy tasks. This graph  G  has indeed a Hamilto-
nian path, starting with the smallest  ba (mina�A ea), following the arcs in  A'  and 
ending at the largest  ea (maxa�A ea). It remains to show that  Ia = [ba , ea)  is en-
tirely to the left of  Ia' = [ba' , ea' ) if and only if arc  (ba , ea)  has to precede arc   
[ba' , ea' )  in the task precedence constraints represented by G. We do not have to 
deal with arcs in  A'  since they represent dummy tasks: 

Ia=[ba , ea)  is entirely to the left of  Ia' = [ba' , ea' )   

  ea � ba' 


  there is a path from  ea to ba'  in G  (using the arcs in A' ) 

  (ba , ea)  with head  ea  has to precede  (ba' , ea' )  with tail ba' . 

  

The following corollary is a direct consequence of Theorems 5.1.15 and 5.1.16 

Corollary 5.1.17   Let Q  be a partial order. If dummy tasks are allowed, Q  is an 
interval order if and only if Q  can be represented as a uan. 

We may now conclude the above considerations with the following result:  

P | pmtn , interval order | Cmax is solvable in polynomial time. 
For general precedence graphs, however, we know from Ullman [Ull76] that the 

problem is NP-hard. In that case a heuristic algorithm such as Algorithm 5.1.13 

my be chosen. The worst-case behavior of Algorithm 5.1.13 applied in the case 

of P | pmtn, prec | Cmax has been analyzed by Lam and Sethi [LS77]: 

RAlg.5.1.13 = 2 � 
2

m , m � 2 . 

5.1.2 Uniform and Unrelated Processors 

Problem Q | pj = 1 | Cmax 

Let us start with an analysis of independent tasks and non-preemptive schedul-

ing. Since the problem with arbitrary processing times is already NP-hard for 

identical processors, all we can hope to find is a polynomial time optimization 

algorithm for tasks with unit standard processing times only. Such an approach 
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has been given by Graham et al. [GLL+79] where a transportation network for-

mulation has been presented for problem Q | pj = 1 | Cmax . We describe it briefly 

below.  

Let there be n sources j, j = 1, 2,..., n, and mn sinks (i, k), i = 1, 2,..., m and 

k = 1, 2,..., n. Sources correspond to tasks and sinks to processors and positions 

of tasks on them. Let cijk = k/bi be the cost of arc (j, (i, k)); this value corresponds 

to the completion time of task Tj processed on Pi in the kth position. The arc flow 

xijk has the following interpretation: 

xijk = 
�
�
  

 

 

 
1 if Tj is processed in the kth position on Pi 

0 otherwise. 

The min-max transportation problem can be now formulated as follows: 

Minimize max 
i, j, k

 {cijk xijk} (5.1.16) 

subject to� �
i=1

m
 �
k=1

n
 xijk = 1 for all j , (5.1.17) 

� �
j=1

n
 xijk � 1 for all i, k , (5.1.18) 

 xijk � 0 for all i, j, k . (5.1.19) 

This problem can be solved by a standard transportation procedure (cf. Section 

2.3) which results in O(n3
) time complexity, or by a procedure due to Sevast-

janov [Sev91]. Below we sketch this last approach. It is clear that the minimum 

schedule length is given as 

C *  
max = sup {t | �

i=1

m
 �tbi� < n/ ' (5.1.20) 

On the other hand, a lower bound on the schedule length for the above problem is 

C' = n / �
i=1

m
 bi � C *  

max . (5.1.21) 

Bound C' can be achieved e.g. by a preemptive schedule. If we assign ki = �C'bi � 
tasks to processor Pi , i = 1, 2,..., m, respectively, then these tasks may be pro-

cessed in time interval [0, C' ]. However, l = n � �
i=1

m
 ki tasks remain unassigned. 

Clearly l � m � 1, since C'bi � �C'bi � < 1 for each i. The remaining l tasks are then 

assigned one by one to those processors Pi for which min
i

{(ki + 1) / bi} is attained 

at a given stage, where, of course, ki is increased by one after the assignment of a 

task to a particular processor Pi . This procedure is repeated until all tasks are 
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assigned. We see that this approach results in an O(m2
)-algorithm for solving 

problem Q | pj = 1 | Cmax . 

Example 5.1.18  To illustrate the above algorithm let us assume that n = 9 tasks 

are to be processed on m = 3 uniform processors whose processing speeds are 

given by the vector b = [3, 2, 1]. We get C' = 9/6 = 1.5. The numbers of tasks 

assigned to processors at the first stage are, respectively, 4, 3, and 1. A corre-

sponding schedule is given in Figure 5.1.15(a), where task T9 has not yet been 

assigned. An optimal schedule is obtained if this task is assigned to processor P1 , 

cf. Figure 5.1.15(b).  
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Figure 5.1.15 Schedules for Example 5.1.18 

 (a) a partial schedule, 
 (b) an optimal schedule. 

Problem Q | | Cmax 

Since other problems of non-preemptive scheduling of independent tasks are NP-

hard, one may be interested in applying certain heuristics. One heuristic algo-

rithm which is a list scheduling algorithm, has been presented by Liu and Liu 

[LL74a]. Tasks are ordered on the list in non-increasing order of their processing 

times and processors are ordered in non-increasing order of their processing 

speeds. Now, whenever a machine becomes free it gets the first non-assigned 

task of the list; if there are two or more free processors, the fastest is chosen. The 

worst-case behavior of the algorithm has been evaluated for the case of an m + 1 

processor system, m of which have processing speed factor equal to 1 and the 

remaining processor has processing speed factor b. The bound is as follows. 
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R = 

�
�
  

 

 

 

 

 

2(m+b)

b+2
 for b � 2 

m+b
2

 for b > 2 . 

It is clear that the algorithm does better if, in the first case (b � 2), m decreases 

faster than b, and if b and m decrease in case of b > 2. Other algorithms have 

been analyzed by Liu and Liu [LL74b, LL74c] and by Gonzalez et al. [GIS77].  

Problem Q | pmtn | Cmax 

By allowing preemptions, i.e. for the problem Q | pmtn | Cmax , one can find opti-

mal schedules in polynomial time. We present an algorithm given by Horvath et 

al. [HLS77] despite the fact that there is a more efficient one by Gonzalez and 

Sahni [GS78]. We do this because the first algorithm covers also precedence 

constraints, and it generalizes the ideas presented in Algorithm 5.1.13. The algo-

rithm is based on two concepts: the task level, defined as previously as pro-

cessing requirement of the unexecuted portion of a task, but now expressed in 

terms of a standard processing time, and processor sharing, i.e. the possibility of 

assigning only a fraction * (0 � * � max{bi}) of processing capacity to some 

task. Let us assume that tasks are indexed in order of non-increasing pj's and pro-

cessors are in order of non-increasing values of bi . It is quite clear that the mini-

mum schedule length can be estimated by  

C *  
max � C = max{ max

1 � k � m
{

Xk
Bk

}, {
Xn
Bm

} }   (5.1.22) 

where Xk is the sum of processing requirements (i.e. standard processing times 

pj) of the first k tasks, and Bk is the collective processing capacity (i.e. the sum of 

processing speed factors bi) of the first k processors. The algorithm presented 

below constructs a schedule of length equal to C for the problem Q | pmtn | Cmax . 

Algorithm 5.1.19  Algorithm by Horvath, Lam and Sethi for Q | pmtn | Cmax 

[HLS77]. 

begin 
for all T � T do Compute level of task T; 

t := 0; h := m; 
repeat 
 while h > 0 do 

  begin 

  Construct subset S  of T  consisting of tasks at the highest level; 

   -- the most "urgent" tasks are chosen 
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  if |S | > h 

  then 
   begin 

Assign the tasks of set S  to the h remaining processors to be processed 

at the same rate * = �
i = m�h+1

m
 bi / 

|S |; 

   h := 0; -- tasks from set S  share the h slowest processors 
   end 
  else 
   begin 

Assign tasks from set S  to be processed at the same rate * on the fastest 

|S | processors; 

   h := h � |S |; -- tasks from set S  share the fastest | S | processors 

   end; 
  end; -- the most urgent tasks have been assigned at time t 

Calculate time moment 7 at which either one of the assigned tasks is finished 

or a point is reached at which continuing with the present partial assign-

ment causes that a task at a lower level will be executed at a faster rate * 

than a higher level task; 
  -- note, that the levels of the assigned tasks decrease during task execution 

Decrease levels of the assigned tasks by (7 � t)*; 

t := 7 ; h := m; 
  -- a portion of each assigned task equal to (7 � t)* has been processed 

until all tasks are finished; 
 -- the schedule constructed so far consists of a sequence of intervals during each  

 -- of which certain tasks are assigned to the processors in a shared mode. 

 -- In the next loop task assignment in each of these intervals is determined 

for each interval of the processor shared schedule do 

 begin 
 Let y be the length of the interval; 

 if g tasks share g processors 

 then Assign each task to each processor for y/g time units 
 else 

  begin 

Let p be the processing requirement of each of the g tasks in the inter-

val; 

Let b be the processing speed factor of the slowest processor; 

  if p/b < y 

  then call Algorithm 5.1.8 
 -- tasks can be assigned as in McNaughton's rule,  
 -- ignoring different processor speeds 
  else 
   begin 
   Divide the interval into g subintervals of equal lengths; 
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Assign the g tasks so that each task occurs in exactly h intervals, each 

time on a different processor; 
   end; 
  end; 
 end; 
 -- a normal preemptive schedule has now been constructed 
end; 

The time complexity of Algorithm 5.1.19 is O(mn2
). An example of its applica-

tion is shown in Figure 5.1.16. 

(a) 
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T2T1 T4

T4T2 T1

 
Figure 5.1.16 An example of the application of Algorithm 5.1.19: n = 6, m = 2,  

p = [20, 24, 10, 12, 5, 4], b = [4, 1] 
(a) a processor shared schedule, 
(b) an optimal schedule. 

Problem Q | pmtn, prec | Cmax 

When considering dependent tasks, only preemptive polynomial time optimiza-

tion algorithms are known. Algorithm 5.1.19 also solves problem Q2 | pmtn, 

prec | Cmax , if the level of a task is understood as in Algorithm 5.1.13 where 

standard processing times for all the tasks were assumed. When considering this 

problem one should also take into account the possibility of solving it for uni-

connected activity networks and interval orders via the slightly modified linear 

programming approach (5.1.14)-(5.1.15). It is also possible to solve the problem 

by using another LP formulation which is described for the case of R | pmtn | 

Cmax.  

It is also possible to solve problem Q | pmtn, prec | Cmax approximately by the 

two machine aggregation approach, developed in the framework of flow shop 
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scheduling [RS83] (cf. Chapter 8). In this case the two fastest processors are used 

only, and the worst case bound is 

Cmax
C *  

max
  ��� 

�.
�
. 

 

 

 

 

 

 

�
i=1

m/2

 max{b2i�1 /b1 , b2i /b2} if m is even, 

�
i=1

�m/2�
 max{b2i�1 /b1 , b2i /b2} + bm /b1 if m is odd. 

Problem R | pmtn | Cmax 

Let us pass now to the case of unrelated processors. This case is the most diffi-

cult. We will not speak about unit-length tasks, because unrelated processors 

with unit length tasks would reduce to the case of identical or uniform proces-

sors. Hence, no polynomial time optimization algorithms are known for prob-

lems other than preemptive ones. Also, very little is known about approximation 

algorithms for this case. Some results have been obtained by Ibarra and Kim 

[IK77], but the obtained bounds are not very encouraging. Thus, we will pass to 

the preemptive scheduling model.  

Problem R | pmtn | Cmax can be solved by a two-phase method. The first phase 

consists in solving a linear programming problem formulated independently by 

B)�la &zewicz et al. [BCSW76a, BCW77] and by Lawler and Labetoulle [LL78]. 

The second phase uses the solution of this LP problem and produces an optimal 

preemptive schedule. 

Let xij � [0, 1] denote the part of Tj processed on Pi . The LP formulation is 

as follows: 

Minimize Cmax (5.1.23) 

subject to Cmax � �
j=1

n
 pij xij � 0 ,  i = 1, 2,..., m (5.1.24) 

 Cmax � �
i=1

m
 pij xij � 0 ,  j = 1, 2,..., n (5.1.25) 

� �
i=1

m
 xij = 1 ,  j = 1, 2,..., n . (5.1.26) 

Solving the above problem, we get Cmax = C *  
max and optimal values x* 

ij  . 

However, we do not know how to schedule the task parts, i.e. how to assign these 

parts to processors in time. A schedule may be constructed in the following way. 

Let T = [t* 
ij ] be the m � n matrix defined by t* 

ij  = pij x* 
ij  , i = 1, 2,..., m, j = 1, 

2,..., n. Notice that the elements of T reflect optimal values of processing times 

of particular tasks on the processors. The jth column of T corresponding to task Tj 
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will be called critical if �
i=1

m
 t* 

ij  = C *  
max. By Y we denote an m � m diagonal matrix 

whose element ykk is the total idle time on processor Pk, i.e. ykk = C *  
max � �

j=1

n
 t* 

kj  . 

Columns of Y correspond to dummy tasks. Let V = [T,Y] be an m � (n + m) ma-

trix. Now set U  containing m positive elements of matrix V is defined as having 

exactly one element from each critical column and at most one element from 

other columns, and having exactly one element from each row. We see that U  

corresponds to a task set which may be processed in parallel in an optimal sched-

ule. Thus, it may be used to construct a partial schedule of some length , > 0. An 

optimal schedule is then produced as the union of the partial schedules. This pro-

cedure is summarized in Algorithm 5.1.20 [LL78].  

Algorithm 5.1.20  Construction of an optimal schedule corresponding to LP 
solution for R | pmtn | Cmax. 

begin 

C := C *  
max; 

while C > 0 do 

 begin 

 Construct set U ; 
  -- thus a subset of tasks to be processed in a partial schedule has been chosen 

 vmin := min
vij � U

 {vij}; 

 vmax := maxj � {j' | vij' 	U  for i = 1,...,m}{�i v
ij
}; 

 if C � vmin � vmax  

 then , := vmin 

 else , := C � vmax; 
  -- the length of the partial schedule is equal to , 

 C := C � ,; 

 for each vij � U do vij := vij � ,; 
  -- matrix V is changed; notice that due to the way , is defined,  

  -- the elements of V can never become negative  
 end; 
end; 
The proof of correctness of the algorithm can be found in [LL78]. 

Now we only need an algorithm that finds set U  for a given matrix V. One of the 

possible algorithms is based on the network flow approach. In this case the net-

work has m nodes corresponding to machines (rows of V) and n + m nodes corre-

sponding to tasks (columns of V), cf. Figure 5.1.17. A node i from the first group 

is connected by an arc to a node j of the second group if and only if vij > 0. Arc 
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flows are constrained by b from below and by c = 1 from above, where the value 

of b is 1 for arcs joining the source with processor-nodes and critical task nodes 

with the sink, and b = 0 for the other arcs. Obviously, finding a feasible flow in 

this network is equivalent to finding set U . The following example illustrates the 

second phase of the described method. 

SOURCE SINK

Processors
Tasks

1

2

m

1

n

n+1

n+m

n+2

 

Figure 5.1.17 Finding set U   by the network flow approach. 
 

Example 5.1.21  Suppose that for a certain scheduling problem a linear pro-

gramming solution of the two phase method has the form given in Figure 

5.1.18(a). An optimal schedule is then constructed in the following way. First, 

matrix V is calculated. 

        T1 T2 T3 T4 T5      T6 T7 T8 

V  =  

P1

P2

P3

 
�
8
8
9

�
:
:
;  3  2  1  4  0 

  2  2  0  2  2 

  2  1  4  0  1 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  2  0 

  0  0  2 
 

         7  5  5  6  3         0  2  2  

Then elements constituting set U  are chosen according to Algorithm 5.1.20, 

as depicted above. The value of a partial schedule length is , = 2. Next, the 

while-loop of Algorithm 5.1.20 is repeated yielding the following sequence of 

matrices Vi . 

V1 =  
�
8
8
9

�
:
:
;  1  2  1  4  0 

  2  2  0  0  2 

  2  1  2  0  1 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  2  0 

  0  0  2 
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V2 =  
�
8
8
9

�
:
:
;  1  2  1  2  0 

  2  0  0  0  2 

  0  1  2  0  1 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  2  0 

  0  0  2 
 

V3 =  
�
8
8
9

�
:
:
;  1  0  1  2  0 

  0  0  0  0  2 

  0  1  0  0  1 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  2  0 

  0  0  2 
 

V4 =  
�
8
8
9

�
:
:
;  1  0  1  1  0 

  0  0  0  0  1 

  0  0  0  0  1 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  2  0 

  0  0  2 
 

V5 =  
�
8
8
9

�
:
:
;  0  0  1  1  0 

  0  0  0  0  0 

  0  0  0  0  1 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  2  0 

  0  0  1 
 

V6 =  
�
8
8
9

�
:
:
;  0  0  0  1  0 

  0  0  0  0  0 

  0  0  0  0  0 
  
�
8
8
9

�
:
:
;  0  0  0 

  0  1  0 

  0  0  1 
 . 

A corresponding optimal schedule is presented in Figure 5.1.18(b).  
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Figure 5.1.18 (a) A linear programming solution for an instance of 
R | pmtn | Cmax , 
(b) an optimal schedule. 
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The overall complexity of the above approach is bounded from above by a poly-

nomial in the input length. This is because the transformation to the LP problem 

is polynomial, and the LP problem may be solved in polynomial time using Kha-

chiyan's algorithm [Kha79]; the loop in Algorithm 5.1.20 is repeated at most 

O(mn) times and solving the network flow problem requires O(z3
) time, where z 

is the number of network nodes [Kar74]. 

Problem R | pmtn, prec | Cmax 

If dependent tasks are considered, i.e. in the case R | pmtn, prec | Cmax , linear pro-

gramming problems similar to those discussed in (5.1.14)-(5.1.15) or (5.1.23)-

(5.1.26) and based on the activity network presentation, can be formulated. For 

example, in the latter formulation one defines xijk as a part of task Tj processed on 

processor Pi in the main set Sk . Solving the LP problem for xijk , one then applies 

Algorithm 5.1.20 for each main set. If the activity network is uniconnected (a 

corresponding task-on-node graph represents an interval order), an optimal 

schedule is constructed in this way, otherwise only an approximate schedule is 

obtained. Notice that in [JMR+04] a two-phase method has been proposed for 

problem P | pmtn, uan | Cmax with the McNaughton algorithm applied for each 

main set. This reduces the complexity of the second phase to O(n2
). In this paper 

also several heuristics for ordering network nodes have been proposed and tested 

experimentally, leading finally to an almost optimal algorithm for problem 

P | pmtn, prec | Cmax . 

We complete this chapter by remarking that introduction of ready times into the 

model considered so far is equivalent to the problem of minimizing maximum 

lateness. We will consider this type of problems in Section 5.3. 

5.2 Minimizing Mean Flow Time 

5.2.1 Identical Processors 

Problem P | | �� Cj 

In the case of identical processors and equal ready times preemptions are not 

profitable from the viewpoint of the value of the mean flow time [McN59]. Thus, 

we can limit ourselves to considering non-preemptive schedules only. 

When analyzing the nature of criterion � Cj , one might expect that, as in the 

case of one processor (cf. Section 4.2), by assigning tasks in non-decreasing or-

der of their processing times the mean flow time will be minimized. In fact, a 
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proper generalization of this simple rule leads to an optimization algorithm for 

P | | � Cj (Conway et al. [CMM67]). It is as follows. 

Algorithm 5.2.1  SPT rule for problem P | | � Cj [CMM67]. 

begin 
Order tasks on list L in non-decreasing order of their processing times; 

while L � � do 
 begin 

Take the m first tasks from the list (if any) and assign these tasks arbitrarily to 

the m different processors; 

 Remove the assigned tasks from list L; 
 end; 
Process tasks assigned to each processor in SPT order; 
end; 
The complexity of the algorithm is obviously O(nlogn). 

In this context let us also mention that introducing different ready times 

makes the problem strongly NP-hard even for the case of one processor (see Sec-

tion 4.2 and [LRKB77]). Also, if we introduce different weights, then the 2-

processor problem without release times, P2 | | � wjCj , is already NP-hard 

[BCS74]. 

Problem P | prec | �� Cj 

Let us now pass to the case of dependent tasks. Here, P | out-tree, pj = 1 | � Cj is 

solved by an adaptation of Algorithm 5.1.11 (Hu's algorithm) to the out-tree case 

[Ros�], and P2 | prec, pj = 1 | � Cj is strongly NP-hard [LRK78]. In the case of 

arbitrary processing times results by Du et al. [DLY91] indicate that even sim-

plest precedence constraints result in computational hardness of the problem. 

That is problem P2 | chains | � Cj is already NP-hard in the strong sense. On the 

other hand, it was also proved in [DLY91] that preemptions cannot reduce the 

mean weighted flow time for a set of chains. Together with the last result this 

implies that problem P2 | chains, pmtn | � Cj is also NP-hard in the strong sense. 

Unfortunately, no approximation algorithms for these problems are evaluated 

from their worst-case behavior point of view. 

5.2.2 Uniform and Unrelated Processors 

The results of Section 5.2.1 also indicate that scheduling dependent tasks on uni-

form or unrelated processors is an NP-hard problem in general. No approxima-

tion algorithms have been investigated either. Thus, we will not consider this 

subject. On the other hand, in the case of independent tasks, preemptions may be 
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worthwhile, thus we have to treat non-preemptive and preemptive scheduling 

separately.  

Problem Q | | �� Cj 

Let us start with uniform processors and non-preemptive schedules. In this case 

the flow time has to take into account processor speed; so the flow time of task 

Ti[k] processed in the kth position on processor Pi is defined as Fi[k] = 
1

bi
 �
j=1

k
 pi[j] . 

Let us denote by ni the number of tasks processed on processor Pi. Thus, n = 

�
i=1

m
 ni . The mean flow time is then given by  

F
_

  =  

�
i=1

m
 
1

bi
 �
k=1

ni

(ni � k + 1)pi[k]

n   . (5.2.1) 

It is easy to see that the numerator in the above formula is the sum of n terms 

each of which is the product of a processing time and one of the following coef-

ficients: 

1

b1
n1, 

1

b1
(n1 � 1) ,...,

1

b1
, 1

b2
n2, 

1

b2
(n2 � 1) ,...,

1

b2
,...,  

1

bm
nm, 

1

bm
(nm � 1) ,...,  

1

bm
 . 

It is known from [CMM67] that such a sum is minimized by matching n smallest 

coefficients in non-decreasing order with processing times in non-increasing or-

der. An O(nlogn) implementation of this rule has been given by Horowitz and 

Sahni [HS76]. 

Problem Q | pmtn | � Cj 

In the case of preemptive scheduling, it is possible to show that there exists an 

optimal schedule for Q | pmtn | � Cj in which Cj � Ck if pj < pk . On the basis of 

this observation, the following algorithm has been proposed by Gonzalez 

[Gon77].  

Algorithm 5.2.2  Algorithm by Gonzalez for Q | pmtn | � Cj [Gon77]. 

begin 
Order processors in non-increasing order of their processing speed factors; 

Order tasks in non-decreasing order of their standard processing times; 

for j = 1 to n do 

 begin 
Schedule task Tj to be completed as early as possible, preempting when  

necessary; 
  -- tasks will create a staircase pattern "jumping" to a faster processor  

  -- whenever a shorter task has been finished 
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 end; 

end; 

t

Tm+2Tm+1Tm

T4T3 T5
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T3
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P3

Pm

0  

Figure 5.2.1 An example of the application of Algorithm 5.2.2. 

The complexity of this algorithm is O(nlog n + mn). An example of its application 

is given in Figure 5.2.1. 

Problem R | | �� Cj 

Let us now turn to the case of unrelated processors and consider problem 

R | | � Cj . An approach to its solution is based on the observation that task Tj � 

{T1 ,..., Tn} processed on processor Pi � {P1 ,..., Pm} as the last task contributes 

its processing time pij to F
 _

. The same task processed in the last but one position 

contributes 2pij , and so on [BCS74]. This reasoning allows one to construct an 

(m n) � n matrix Q presenting contributions of particular tasks processed in dif-

ferent positions on different processors to the value of F
_

: 

Q = 

�
8
8
9

�
:
:
;[pij] 

2[pij] 

.

.

.

n[pij] 

 

The problem is now to choose n elements from matrix Q such that 

� exactly one element is taken from each column, 

� at most one element is taken from each row, 

� the sum of selected elements is minimum. 

We see that the above problem is a variant of the assignment problem (cf. 

[Law76]), which may be solved in a natural way via the transportation problem. 

The corresponding transportation network is shown in Figure 5.2.2. 
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Careful analysis of the problem shows that it can be solved in O(n3
) time 

[BCS74]. The following example illustrates this technique. 

Example 5.2.3  Let us consider the following instance of problem R | | � Cj : 

n = 5, m = 3, and matrix p of processing times 

p = 

�
8
8
9

�
:
:
; 3  2  4  3  1 

 4  3  1  2  1 

 2  4  5  3  4 
 . 

Using this data the matrix Q is constructed as follows: 

Q =  

�
8
8
8
8
8
8
8
9
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 10 20 25 15 20 �
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:
:
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. 

On the basis of this matrix a network as shown in Figure 5.2.2 is constructed. 

1 1

i j

mn n

source
s t

sink

n n�m
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(1,q  )

total flow (n,0)

(1,0)

ij

arcs

n n�m
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(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

arcs

 

Figure 5.2.2 The transportation network for problem R | | � Cj : arcs are denot-
ed by (c, y), where c is the capacity and y is the cost of unit flow. 
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Solving the transportation problem results in the selection of the underlined ele-

ments of matrix Q. They correspond to the schedule shown in Figure 5.2.3.   

A very surprising result has been recently obtained by Sitters. Problem  R | pmtn | 

� Cj has been proved to be strongly NP-hard [Sit05]. 

0 1 2 3 t

T4

T1

T5 T2

T3

P1

P2

P3

F   =    �Cj = 10/5 = 2* 1�
n

�

 

Figure 5.2.3 An optimal schedule for Example 5.2.3. 

5.3 Minimizing Due Date Involving Criteria 

5.3.1 Identical Processors 

In Section 4.3 we have seen that single processor problems with due date optimi-

zation criteria involving due dates are NP-hard in most cases. In the following we 

will concentrate on minimization of Lmax criterion. It seems to be quite natural 

that in this case the general rule should be to schedule tasks according to their 

earliest due dates (EDD-rule, cf. Section 4.3.1). However, this simple rule of 

Jackson [Jac55] produces optimal schedules under very restricted assumptions 

only. In other cases more sophisticated algorithms are necessary, or the problems 

are NP-hard.  

Problem P | | Lmax 

Let us start with non-preemptive scheduling of independent tasks. Taking into 

account simple transformations between scheduling problems (cf. Section 3.4) 

and the relationship between the Cmax and Lmax criteria, we see that all the prob-

lems that are NP-hard under the Cmax criterion remain NP-hard under the Lmax 

criterion. Hence, for example, P2 | | Lmax is NP-hard. On the other hand, unit pro-

cessing times of tasks make the problem easy, and P | pj = 1, rj | Lmax can be solved 

by an obvious application of the EDD rule [Bla77]. Moreover, problem P | pj = p, 

rj | Lmax can be solved in polynomial time by an extension of the single processor 

algorithm (see Section 4.3.1 and [GJST81]). Unfortunately very little is known 

about the worst-case behavior of approximation algorithms for the NP-hard prob-

lems in question. 
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Problem P | pmtn, rj | Lmax 

The preemptive mode of processing makes the solution of the scheduling prob-

lem much easier. The fundamental approach in that area is testing feasibility of 

problem P | pmtn, rj , d
~

j | � via the network flow approach [Hor74]. Using this ap-

proach repetitively, one can then solve the original problem P | pmtn, rj | Lmax by 

changing due dates (deadlines) according to a binary search procedure.  

Let us now describe Horn's approach for testing feasibility of problem 

P | pmtn, rj , d
~

j | �, i.e. deciding whether or not for a given set of ready times and 

deadlines there exists a schedule with no late task. Let the values of ready times 

and deadlines of an instance of P | pmtn, rj , d
~

j | � be ordered on a list in such a 

way that e0 < e1 <...< ek , k < 2n, where ei stands for some rj or d~j . We construct a 

network that has two sets of nodes, besides source and sink (cf. Figure 5.3.1). 

The first set corresponds to time intervals in a schedule, i.e. node wi corresponds 

to interval [ei�1 , ei], i = 1, 2,..., k. The second set corresponds to the task set. The 

capacity of an arc joining the source of the network to node wi is equal to m(ei � 

ei�1) and thus corresponds to the total processing capacity of m processors in this 

interval. If task Tj could be processed in interval [ei�1 , ei] (because of its ready 

time and deadline) then wi is joined to Tj by an arc of capacity ei � ei�1 . Node Tj 

is joined to the sink of the network by an arc with capacity equal to pj and with a 

lower bound on arc flow which is also equal to pj . We see that finding a feasible 

flow pattern corresponds to constructing a feasible schedule and this test can be 

made in O(n3
) time (cf. Section 2.3.3). A schedule is constructed on the basis of 

flow values on arcs between interval and task nodes. Let us consider the follow-

ing example. 

c  = m(e �e    ) c=e �e

w1

w2

wk

T1

T2

Tn

k-1kk

b=p
c=p2

2

c =m(e �e )1 1 0

c =m(e  �e )12 2

c = e �e1 0
b=p
c=p

1
1

b=p
c=p

n
n

k-1k

 

Figure 5.3.1 Network corresponding to problem P | pmtn, rj, d
~

j | � ' 

Example 5.3.1  Let n = 5, m = 2, p = [5, 2, 3, 3, 1], r = [2, 0, 1, 0, 2], and d = [8, 2, 

4, 5, 8]. The corresponding network is shown in Figure 5.3.2(a), and a feasible 
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flow pattern is depicted in Figure 5.3.2(b). On the basis of this flow the feasible 

schedule shown in Figure 5.3.2(c) is constructed.   
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Figure 5.3.2 Finding a feasible schedule via network flow approach (Example 
5.3.1) 
(a) a corresponding network, 
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(b) a feasible flow pattern, 
(c) a schedule. 

In the next step a binary search can be conducted on the optimal value of Lmax, 

with each trial value of Lmax inducing deadlines which are checked for feasibility 

by means of the above network flow computation. This procedure can be imple-

mented to solve problem P | pmtn, rj | Lmax in O(n3
 min{n2

, logn + log max{pj}}) 

time [LLL+84]. 

Problem P | prec, pj = 1 | Lmax 

Let us now pass to dependent tasks. A general approach in this case consists in 

assigning modified due dates to tasks, depending on the number and due dates of  

their successors. Of course, the way in which modified due dates are calculated 

depends on the parameters of the problem in question. If scheduling non-

preemptable tasks on a multiple processor system only unit processing times can 

result in polynomial time scheduling algorithms. Let us start with in-tree prece-

dence constraints and assume that if Ti ≺ Tj then i > j. The following algorithm 

minimizes Lmax (isucc(j) denotes the immediate successor of Tj) [Bru76b]. 

Algorithm 5.3.2  Algorithm by Brucker for P | in-tree, pj = 1 | Lmax [Bru76b]. 

begin 
d*

1 := 1 � d1; -- the due date of the root node is modified 

for k = 2 to n do 

 begin 
 Calculate modified due date of Tk according to the formula  

  d *k  := max {1 + d *       
isucc(k) , 1 � dk}; 

 end; 

Schedule tasks in non-increasing order of their modified due dates subject to 

precedence constraints; 
end; 

This algorithm can be implemented to run in O(nlogn) time. An example of its 

application is given in Figure 5.3.3. Surprisingly out-tree precedence constraints 

result in the NP-hardness of the problem [BGJ77].  

However, when we limit ourselves to two processors, a different way of 

computing modified due dates can be proposed which allows one to solve the 

problem in O(n2
) time [GJ76]. In the algorithm below g(k, d *i ) is the number of 

successors of Tk having modified due dates not greater than d *i .  
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Figure 5.3.3 An example of the application of Algorithm 5.3.2;  

n = 32, m = 4, d = [16, 20, 4, 3, 15, 14, 17, 6, 6, 4, 10, 8, 9, 7, 10, 9, 10, 8, 

2, 3, 6, 5, 4, 11, 12, 9, 10, 8, 7, 5, 3, 5] 
(a) the task set, 
(b) an optimal schedule. 
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Algorithm 5.3.3   Algorithm by Garey and Johnson for problem P2 | prec,  

pj = 1 | Lmax [GJ76]. 

begin 
Z  := T ; 

while Z  � � do 

 begin 
Choose Tk � Z  which is not yet assigned a modified due date and all of whose 

successors have been assigned modified due dates; 

 Calculate a modified due date of Tk as: 

  d *k  := min{dk , min{(d *i  � 91
2 g(k, d *i ); ) � Ti � succ(Tk)}}; 

 Z  := Z  � {Tk}; 

 end; 

Schedule tasks in non-decreasing order of their modified due dates subject to 

precedence constraints; 
end; 

For m > 2 this algorithm may not lead to optimal schedules, as demonstrated in 

the example in Figure 5.3.4. However, the algorithm can be generalized to cover 

the case of different ready times too, but the running time is then O(n3
) [GJ77] 

and this is as much as we can get in non-preemptive scheduling.  

Problem P | pmtn, prec | Lmax 

Preemptions allow one to solve problems with arbitrary processing times. In 

[Law82b] algorithms have been presented that are preemptive counterparts of 

Algorithms 5.3.2 and 5.3.3 and the one presented by Garey and Johnson [GJ77] 

for non-preemptive scheduling and unit-length tasks. Hence problems P | pmtn, 

in-tree | Lmax , P2 | pmtn, prec | Lmax and P2 | pmtn, prec, rj | Lmax are solvable in 

polynomial time. Algorithms for these problems employ essentially the same 

techniques for dealing with precedence constraints as the corresponding algo-

rithms for unit-length tasks. However, the algorithms are more complex and will 

not be presented here. 
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5.3.2 Uniform and Unrelated Processors 

Problem Q | | Lmax 

From the considerations of Section 5.3.1 we see that non-preemptive scheduling 

to minimize Lmax is in general a hard problem. Only for the problem Q | pj = 

1 | Lmax a polynomial time optimization algorithm is known. This problem can be 

solved via a transportation problem formulation as in (5.1.16) - (5.1.19), where 

now cijk = k/bi � dj . Thus, from now on we will concentrate on preemptive sched-

uling. 
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Figure 5.3.4 Non-optimal schedules generated by Algorithm 5.3.3 for m=3, 
n=15, and all due dates dj = 5 
(a) a task set (all tasks are denoted by Tj /d 

*
j ), 

(b) a schedule constructed by Algorithm 5.3.3, 
(c) an optimal schedule. 
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Problem Q | pmtn | Lmax 

One of the most interesting algorithms in that area has been presented for prob-

lem Q | pmtn, rj | Lmax by Federgruen and Groenevelt [FG86]. It is a generalization 

of the network flow approach to the feasibility testing of problem P | pmtn, rj , 

d~j | � described above. The feasibility testing procedure for problem Q | pmtn, rj , 

d~j | � uses tripartite network formulation of the scheduling problem, where the 

first set of nodes corresponds to tasks, the second corresponds to processor-

interval (period) combination and the third corresponds to interval nodes. The 

source is connected to each task node, the arc to the jth node having capacity pj , 

j = 1, 2,..., n. A task node is connected to all processor-interval nodes for all in-

tervals during which the task is available. All arcs leading to a processor-interval 

node that corresponds to a processor of type r (processors of the same speed may 

be represented by one node only) and an interval of length 7, have capacity (br � 

br+1)7, with the convention bm+1 = 0. Every node (wi , r) corresponding to proces-

sor type r and interval wi of length 7i , i = 1, 2,..., k , is connected to interval node 

wi and has capacity �j=1

r  
 mj(br � br+1)7i , where mj denotes the number of proces-

sors of the jth type (cf. Figure 5.3.5). Finally, all interval nodes are connected to 

the sink with incapacitated arcs. Finding a feasible flow with value �j=1

n  
 pj in such 

a network corresponds to a construction of a feasible schedule for Q | pmtn, rj , 

d~j | � . This can be done in O(mn3
) time. 

Problem Q | pmtn, prec | Lmax 

In case of precedence constraints, Q2 | pmtn, prec | Lmax and Q2 | pmtn, prec, rj |

 Lmax can be solved in O(n2
) and O(n6

) time, respectively, by the algorithms al-

ready mentioned [Law82b].  

Problem R | pmtn | Lmax 

As far as unrelated processors are concerned, problem R | pmtn | Lmax can be 

solved by a linear programming formulation similar to (5.1.23) - (5.1.26) [LL78], 

where xij
k
 denotes the amount of Tj processed on Pi in time interval [dk�1 + Lmax , 

dk + Lmax], and where due dates are assumed to be ordered, d1 < d2 <...< dn . 

Thus, we have the following formulation: 

Minimize Lmax (5.3.1) 
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Figure 5.3.5 A network corresponding to scheduling problem Q | pmtn, rj, d
~

j | � 
for three processor types.
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subject to � �
i=1

m
 pij x(1)

ij   � d1 + Lmax , j = 1, 2,..., n (5.3.2) 

� �
i=1

m
 pij x(k)

ij   � dk � dk�1 , j = k, k + 1,..., n; k = 2, 3,..., n (5.3.3) 

� �
j=1

n
 pij x(1)

ij   � d1 + Lmax , i = 1, 2,..., m (5.3.4) 

� �
j=k

n
 pij x(k)

ij   � dk � dk�1 , i = 1, 2,..., m; k = 2, 3,..., n (5.3.5) 

� �
i=1

m
 �
k=1

j
 x(k)

ij   = 1  j = 1, 2,..., n . (5.3.6) 

Solving the LP problem we obtain n matrices T(k)
 = [t(k)*

ij   ], k = 1,..., n; then 

an optimal solution is constructed by an application of Algorithm 5.1.20 to each 

matrix separately.  

In this context let us also mention that the case when precedence constraints 

form a uniconnected activity network (or interval order in a different presenta-

tion), can also be solved via the same modification of the LP problem as de-

scribed for the Cmax criterion [Slo81]. 

5.4 Lot Size Scheduling 

In this section the more advanced model of lot size scheduling on parallel pro-

cessors is presented. Consider the same problem as discussed in Section 4.4.2 but 
now instead of one processor there are m processors available for processing all 
tasks of all job types. Recall that the lot size scheduling problem can be solved in 
O(H) time for one processor and two job types only, where H is the sum of tasks 
of the two given jobs. In the following we want to investigate the problem in-
stance with two job types again but now allowing multiple identical processors. 
First we introduce some basic notation. Then the algorithm is presented without 
considering inventory restriction; later we show how to take these limitations 
into account.  

Assume that m identical processors Pi , i = 1, ..., m are available for pro-
cessing the set of jobs J which consist of two types only; due to capacity re-
strictions we want to assume that the final schedule is tight. Considering a num-
ber m > 1 of processors we must determine to which unit time interval (UTI) on 
which processors a job has to be assigned. Because of continuous production 
requirements we might also assume an assignment of UTI h = 0 to some job type; 
this can be interpreted as an assignment of some job type to the last UTI of the 
preceding schedule. 
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The idea of the algorithm is to assign task after task of the two job types, 
now denoted by q and r, to empty UTI such that all deadlines are met and no oth-
er assignment can reduce change-over cost. In order to do this we have to classify 
UTIs appropriately. Based on this classification we will present the algorithm. 
With respect to each deadline dk we define a "sequence of empty UTI" (SEU) as 
a processing interval [h*, h*

 + u � 1] on some processor consisting of u consecu-
tive and empty UTI. UTI h*

 � 1 is assigned to some job; UTI h*
 + u is either also 

assigned to some job or it is the first UTI after the occurrence of the deadline. 
Each SEU can be described by a 3-tuple (i , h*, u) where i is the number of the 
processor on which the SEU exists, h* the first empty UTI and u the number of 
the UTI in this SEU. 

We differentiate between "classes" of SEU by considering the job types as-
signed to neighboring UTI h*

 � 1 and h*
 + u of each SEU. In case h*

 + u has no 
assignment we denote this by "E"; all other assignments of UTI are denoted by 
the number of the corresponding job type. Now a "class" is denoted by a pair [x , 
y] where x, y � {q , r , E}. This leads to nine possible classes of SEU from which 
only classes [q , r], [q , E], [r , q], and [r , E], have to be considered. 

Figure 5.4.1 illustrates these definitions using an example with an assign-
ment for UTI h = 0. For d1 = 6 we have a SEU (2,6,1) of class [1, E]; for d2 = 11 
we have (1, 9, 3) of class [1, E], (2, 6, 2) of class [1, 2], (2, 10, 2) of class [2, E]. 

For each dk we have to schedule nqk � 0 and nrk � 0 tasks. We schedule the 
corresponding jobs according to non-decreasing deadlines with positive time 
orientation starting with k = 1 up to k = K by applying the following algorithm. 

P1

P2

0 1 2 3 4 5 6 7 8 9 t

J1 J2J1 J1

J1 J1 J1 J1

J1 J1 J1

J2J2

J2

J2

 
Figure 5.4.1 Example schedule showing different SEU. 

Algorithm 5.4.1  Lot size scheduling of two job types on identical processors 
(LIM) [PS96]. 
begin 
for k := 1 to K do 
 while tasks required at d~k are not finished do 
  begin 
 if class [j , E] is not empty 
 then Assign job type j to UTI h* of a SEU (i , h*, u) of class [j , E] with 

minimum u 



188 5  Scheduling on Parallel Processors 

 

 

 else  
  if classes [q , r] or [r , q] are not empty 
  then Assign job type q(r) to UTI h* of a SEU (i , h*, u) of class  

[q , r] ([r , q]) or if this class is empty to UTI h*
 + u � 1 of a 

SEU (i , h*, u) of class [r , q] ([q , r]) 
  else Assign job type q(r) to UTI h*

 + u � 1 of a SEU (i , h*, u) of 
   class [r , E] ([q , E]) with maximum u; 

Use new task assignment to calculate SEU of classes [r , E], [r , q], [q , r], 
and [q , E]; 

  end; 
end; 

In case the "while"-loop cannot be carried out no feasible schedule for the 
problem under consideration exists. It is necessary to update the classes after 
each iteration because after a task assignment the number u of consecutive and 
empty UTI of the concerned SEU decreases by one and thus the SEU might even 
disappear. Furthermore an assignment of UTI h* or h*

 + u � 1 might force the 
SEU to change the class. 

Let us demonstrate the approach by the following example. Let m = 3, J = 
{J1, J2}, d~1 = 4, d~2 = 8, d~3 = 11, n11 = 3, n12 = 7, n13 = 5, n21 = 5, n22 = 6, n23 = 7 
and zero initial inventory. Let us assume that there is a pre-assignment for h = 0 
such that J1 is processed by P1 and J2 is processed by P2 and P3. In Figure 5.4.2 
the optimal schedule generated by Algorithm 5.4.1 is given. 
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0 1 2 3 4 5 6 7 8 9 t
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10 11
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J1

J2

J1 J1 J1

J2J2 J2J2J2J2

J2 J2J2 J2

J1

J2

J2

12  

Figure 5.4.2 Optimal schedule for the example problem. 

It can be shown that Algorithm 5.4.1 generates an optimal schedule if one exists. 
Feasibility of the algorithm is guaranteed by scheduling the job types according 
to earliest deadlines using only free UTI of the interval [0, dk]. To prove optimal-
ity of the algorithm one has to show that the selection of the UTI for assigning 
the task under consideration is best possible. These facts have been proved in the 
following lemmas [PS96] which are formulated and proved for job type q, but 
they also hold in case of job type r.  
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Lemma 5.4.2  There exists an optimal solution that can be built such that job 
type q is assigned to UTI h* on processor Pi in case the selected SEU belongs to 
classes [q , E] or [q , r]. If the SEU belongs to class [r , E] or [r , q] then q is as-
signed to UTI h*

 + u � 1 on processor Pi .  

Lemma 5.4.3  Algorithm 5.4.1 generates schedules with a minimum number of 
change-overs for two types of jobs.   

The complexity of Algorithm 5.4.1 is O(Hm). 
Let us now investigate how we can consider inventory restrictions for both 

job types, i.e. for each job type an upper bound Bj on in-process inventory is giv-
en. If there are only two job types, limited in-process storage capacity can be 
translated to updated demands of unit time tasks referring to given deadlines dk. 
If processing of some job type has to be stopped because of storage limitations, 
processing of the other job has to be started as Hm = 5j=1,...,n nj. This can be 
achieved by increasing the demand of the other job type, appropriately. 

Assume that a demand and inventory feasible and tight schedule exists for 
the problem instance. Let Njk be the updated demand after some preprocessing 
step now used as input for the algorithm. To define this input more precisely let 
us first consider how many unit time tasks of some job type, e.g. q, have to be 
processed up to some deadline dk:  
� at most the number of tasks of job type q which does not exceed storage limit, 

i.e. Lq = Bq � 5
 i=1,...,k�1 (Nqi � nqi); 

� at least the number of required tasks of job type q, i.e.  
 Dq = nqk � 5

 i=1,...,k�1 (Nqi � nqi); 
� at least the remaining processing capacity reduced by the number of tasks of 

job type r which can be processed feasibly. From this we get Rq = ck � 
5

 i=1,...,k�1 (Nq
i
 + nqi) � (Br � 5

 i=1,...,k�1 (Nri + nri)), where ck = mdk is the total pro-
cessing capacity in the intervals [0, dk] on m processors. 

The same considerations hold respectively for the other job type r. 
With the following lemmas we show how the demand has to be updated 

such that not only feasibility (Lemma 5.4.4) but also optimality (Lemma 5.4.6) 
concerning change-overs is retained. We start with showing that Lj can be omit-
ted if we calculate Njk. 

Lemma 5.4.4 In case that a feasible and tight schedule exists, Lj = Bj � 
5i=1,...,k�1 (Nji � nji) can be neglected.   

From the result of Lemma 5.4.4 we can define Njk more precisely by 
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Nqk := max{ nqk � 5
 i=1,...,k�1 (Nqi � nqi),  

 ck � 5
 i=1,...,k�1 (Nqi + Nri) � (Br � 5

 i=1,...,k�1 (Nri � nri)} (5.4.1) 

Nrk := max{ nrk � 5
 i=1,...,k�1 (Nri � nri),  

 ck � 5
 i=1,...,k�1 (Nri + Nq

i
) � (Bq � 5i=1,...,k�1 (Nqi � nqi)} (5.4.2) 

One may show [PS96] that after updating all demands of unit time jobs of type q 
according to (5.4.1) the new problem instance is equivalent to the original one. 
We omit the case of job type r and (5.4.2), which directly follows in an analo-
gous way. Notice that the demand will only be updated, if inventory restrictions 
limit assignment possibilities up to a certain deadline dk. Only in this case the k th 
interval will be completely filled with jobs. If no inventory restrictions have to be 
considered equations (5.4.1) and (5.4.2) result in the original demand pattern.  

Lemma 5.4.5  After adapting Nqk according to (5.4.1) the feasibility of the solu-
tion according to the inventory constraints on r is guaranteed.   

Lemma 5.4.6  If  
(i) nqk � 5

 i=1,...,k�1 (Nqi � nqi) �  
ck � 5

 i=1,...,k�1 (Nqi + Nri) � (Br � 5
 i=1,...,k�1 (Nri � nri) 

or  
(ii) nqk � 5

 i=1,...,k�1 (Nqi � nqi) <  
ck � 5

 i=1,...,k�1 (Nqi + Nri) � (Br � 5
 i=1,...,k�1 (Nri � nri) 

for some deadline dk then a demand feasible and optimal schedule can be con-
structed.  

The presented algorithm also solves the corresponding problem instance with 
arbitrary positive change-over cost because for two job types only, minimizing 
the number of change-overs is equivalent to minimizing the sum of their positive 
change-over cost. In order to solve the practical gear-box manufacturing problem 
where more than two job types have to be considered a heuristic has been im-
plemented which uses the ideas of the presented approach. The corresponding 
scheduling rule is considered to be that no unforced change-overs should occur. 
The resulting algorithm is part of a scheduling system, which incorporates a 
graphical representation scheme using Gantt-charts and further devices to give 
the manufacturing staff an effective tool for decision support. For more results on 
the implementation of scheduling systems on the shop floor we refer to Chap-
ter 18. 
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6 Communication Delays and  
Multiprocessor Tasks 

6.1 Introductory Remarks 

One of the assumptions imposed in Chapter 3 was that each task is processed on 
at most one processor at a time. However, in recent years, with the rapid devel-
opment of manufacturing as well as microprocessor and especially multi-
microprocessor systems, the above assumption has ceased to be justified in some 
important applications. There are, for example, self-testing multi-microprocessor 
systems in which one processor is used to test others, or diagnostic systems in 
which testing signals stimulate the tested elements and their corresponding out-
puts are simultaneously analyzed [Avi78, DD81]. When formulating scheduling 
problems in such systems, one must take into account the fact that some tasks 
have to be processed on more than one processor at a time. On the other hand, 
communication issues must be also taken into account in systems where tasks (e. 
g. program modules) are assigned to different processors and exchange infor-
mation between each other. 

Nowadays, parallel and distributed systems are distinguished. In parallel sys-
tems, processors work cooperatively on parts of the same "big" job. A set of pro-
cessors is tightly coupled to establish a large multiprocessor system. Due to ra-
ther short communication links between processors, communication times are 
small as compared to that in distributed systems, where several independent 
computers are connected via a local or wide area network. 

In general, one may distinguish two approaches to handle processor assign-
ment problems arising in the above context 1 [BEPT00, Dro96a, Vel93]. The first 
approach, the so-called load balancing and mapping, assumes a program to be 
partitioned into tasks forming an undirected graph [Bok81]. Adjacent tasks 
communicate with each other, thus, their assignment to different processors 
causes certain communication delay. The problem is to allocate tasks to proces-
sors in such a way that the total interprocessor communication is minimized, 
while processor loads are balanced. This approach is based on graph theoretic 
methods and is not considered in the following. 

                                                 
1 We will neither be concerned here with the design of proper partition of programs into 

module tasks, nor with programming languages parallelism. 
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The other approach (discussed in this Chapter) assumes that, as in the classi-
cal scheduling theory, a program is partitioned into tasks forming a directed 
graph. Here, nodes of the graph represent tasks and directed arcs show a one way 
communication between predecessor tasks and successor tasks. Basically, there 
exist three models describing the communication issues in scheduling. 

In the first model [BDW84, BDW86, Llo81] each task may require more 
than one processor at a time. During an execution of these multiprocessor tasks 
communication among processors working on the same task is implicitly hidden 
in a "black box" denoting an assignment of this task to a subset of processors 
during some time interval. The second model assumes that uniprocessor tasks, 
each assigned to one of the processors, need to communicate. If two such tasks 
are assigned to different processors communication is explicitly performed via 
links of the processor network [Ray87a, Ray87b, LVV96], and connected with 
this some communication delay occurs. The last model is a combination of the 
first two models and involves the so-called divisible tasks [CR88, SRL95]. A 
divisible task (load) is a task that can be partitioned into smaller parts that are 
distributed among the processors. Communication and computation phases are 
interleaved during the execution of a task. Such a model is particularly suited in 
cases where large data files are involved, such as in image processing, experi-
mental data processing or Kalman filtering.  

In the following three sections basic results concerning the above three mod-
els will be presented. Before doing this processor, communication and task sys-
tems respectively, will be described in a greater detail. 

As far as processor systems are concerned, they may be divided (as before) 
into two classes: parallel and dedicated. Usually each processor has its local 
memory. Parallel processors are functionally identical, but may differ from each 
other by their speeds. On the other hand, dedicated processors are usually spe-
cialized to perform specific computations (functions). Several models of pro-
cessing task sets on dedicated processors are distinguished; flow shop, open shop 
and job shop being the most representative. As defined in Chapter 3, in these 
cases the set of tasks is partitioned into subsets called jobs. However, in the con-
text of the considered multiprocessor systems, dedication of processors may also 
denote a preallocation feature of certain tasks to functionally identical processors. 
As will be discussed later a task can be preallocated to a single processor or to 
several processors at a time. 

The property of a processor network with respect to communication perfor-
mance depends greatly on its specific topological structure. Examples of standard 
network topologies are: linear arrays (processor chains), rings, meshes, trees, 
hypercubes (Figure 6.1.1). Other, more recent network structures are the 
de Bruijn [Bru46] or the Benes multiprocessor networks [Ben64]. Besides these, 
a variety of so-called multistage interconnection networks [SH89] had been in-
troduced; examples are perfect shuffle networks [Sto71], banyans [Gok76], and 
delta networks [KS86]. Finally, many more kinds of network structures like 
combinations of the previous network types such as the cube connected cycles 
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networks [PV81], or network hierarchies (e.g. master-slave networks) can be 
found in the literature.  

(a)  (b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 
Figure 6.1.1 Basic interconnection networks: 

(a) linear array, 
(b) ring, 
(c) mesh, 
(d) hypercube, 
(e) tree 
(f) cube connected cycles network. 

An important feature of a communication network is the ability (or lack) of a 
single processing element to compute tasks and to communicate at the same 
time. If this is possible we will say that each processing element has a communi-
cation coprocessor. Another important feature of the communication system is 
the ability (or lack) of each processing element to communicate with other pro-
cessing elements via several communication links (or several ports) at the same 
time. We will not discuss here message routing strategies in communication net-
works. However, we refer the interested reader to [BT89] where such strategies 
like store-and-forward, wormhole routing, circuit switching, and virtual-cut-
through are presented and their impact on communication delays is discussed.  

We will now discuss differences between the model of a task system as pre-
sented in Chapter 3 and the one proposed for handling communication issues in 
multiprocessor systems. The main difference is caused by the fact that tasks (or a 
task) processed by different processors must exchange information and such an 
exchange introduces communication delays. These delays may be handled either 
implicitly or explicitly. In the first case, the communication times are already 
included in the task processing times. Usually, a task requires then more than one 
processor at a time, thus, we may call it a multiprocessor task. Multiprocessor 
tasks may specify their processor requirements either in terms of number of sim-
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ultaneously required processors, or in terms of an explicit specification of a pro-
cessor subset (or processor subsets) which is or are required for processing. In 
the first case we will speak about parallel processor requirement, whereas in the 
second we will speak about dedicated processor requirement.  

An interesting question is the specification of task processing times. In case 
of parallel processors one may define several functions describing the dependen-
cy of this time on the size of the processor system required by a task. In the fol-
lowing we will assume that the task processing time is inversely proportional to 
the processor set size, i.e. pj

k = pj
1/k, where k is the size of a required processor 

set. We refer the interested reader to [Dro96a] where more complicated models 
are analyzed. In this context let us mention the processing systems where task 
processing times are arbitrary functions of a number of processors allocated. Two 
tasks are distinguished: malleable and moldable task models [Len04]. In the first 
case, a number of processors allocated to a task may change during the execution 
of this task. In the second case, this number is constant during the task execution. 

In case of dedicated processors each task processing time must be explicitly 
associated with the processor set required, i.e. with each processor set D which 
can be assigned to task Tj processing time p j

D is associated. As in the classical 
scheduling theory a preemptable task is completed if all its parts processed on 
different sets of processors sum up to 1 if normalized to fractions of a unit. 

As far as an explicit handling of communication delays is concerned one 
may distinguish two subcases. In the first case each uniprocessor task requires 
only one processor at a time and after its completion sends a message (results of 
the computations) to all its successors in the precedence graph. We assume here 
that each task represents some amount of computational activity. If two tasks, Ti 
and Tj are in precedence relation, i.e. Ti ≺ Tj , then Tj will partly use information 
produced by task Ti . Thus, only if both tasks are processed on different proces-
sors, transmission of the required data will be due, and a communication delay 
will occur.  

In the deterministic scheduling paradigm, we assume that communication 
delays are predictable. If required we may assume that the delays depend on vari-
ous parameters like the amount of data, or on the distance between source and 
target processor.  

The transfer of data between tasks Ti and Tj can be represented by a data set 
associated with the pair (Ti , Tj). Each transmission activity causes a certain delay 
that is assumed to be fixed. If we assume that Ti and Tj are processed on Pk and 
Pl , respectively, let c(Ti , Pk ; Tj , Pl) denote the delay due to transmitting the re-
quired data of Ti from Pk to Pl . That means we assume that after this time 
elapsed the data are available at processor Pk . This delay takes into account the 
involved tasks and the particular processors the tasks are processed on. However, 
it is normally assumed to be independent of the actual communication workload 
in the network.  
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The third case is concerned with the allocation of divisible tasks to different 
processors. In fact, this model combines multiprocessor task scheduling with 
explicit communication delays.  

The ( | * | " - notation of scheduling problems introduced in Section 3.4 will 
now be enhanced to capture the different features of multiprocessor systems dis-
cussed above. Such changes were first introduced in [Vel93, Dro96a]. 

In the first field (() describing processor environment two parameters (3 and 
(4 are added. Parameter (3 � {�, conn, linear array, ring, tree, mesh, hyper-
cube} describes the architecture of a communication network. The network types 
mentioned here are only examples; the notation is open for other network types. 

(3 = �: denotes a communication network in which communication delays 
- either are negligible, or 
- they are included in processing times of multiprocessor tasks, or 
- for a given network they are included in communication times be-

tween two dependent tasks assigned to different processors.  
(3 = conn: denotes an arbitrary network. 
(3 = linear array, ring, tree, mesh, hypercube: denotes respectively a linear 

array, ring, tree, mesh, or hypercube. 
Parameter (4 � {�, no-overlap} describes the ability of a processor to com-
municate and to process a task in parallel. 

(4 = �: parallel processing and communications are possible, 
(4 = no-overlap: no overlapping of processing and communication. 

In the second field (*) describing task characteristics, parameter *1 takes 
more values than described in Section 3.4, and three new parameters *9, *10 and 
*11 are added. Parameter *1 � {�, pmtn, div} indicates the possibility of task 
preemptability or divisibility. 

*1 = �: no preemption is allowed, 
*1 = pmtn: preemptions are allowed, 
*1 = div: tasks are divisible (by definition preemptions are also possible). 

Parameter *9 � {spdp-lin, spdp-any, sizej , cubej , meshj , fixj , setj , �} describes 
the type of a multiprocessor task. The first five-symbols are concerned with par-
allel processors, the next two with dedicated ones.  

*9 = spdp-lin: denotes multiprocessor tasks which processing times are in-
versely proportional to the number of processors assigned, 

*9 = spdp-any: processing times arbitrarily depend on the number of pro-
cessors granted (malleable and moldable are subproblems of this prob-
lem), 

*9 = sizej : means that each task requires a fixed number of processors at a 
time, 
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*9 = cubej : each task requires a sub-hypercube of a hypercube processor 
network, 

*9 = meshj : each task requires a submesh for its processing,  
*9 = fixj : each task can be processed on exactly one subgraph of the multi-

processor system, 
*9 = setj : each task has its own collection of subgraphs of the multiproces-

sor system on which it can be processed, 
*9 = �: each task can be processed on any single processor. 

Parameter *10 � {com, cjk , cj* , c*k , c, c = 1, �} concerns the communication 
delays that occur due to data dependencies. 

*10 = com: communication delays are arbitrary functions of data sets to be 
transmitted, 

*10 = cjk : whenever Tj  Tk, and Tj and Tk are assigned to different proces-
sors, a communication delay of a given duration cjk occurs, 

*10 = cj* : the communication delays depend on the broadcasting task only, 
*10 = c*k : the communication delays depend on the receiving task only, 
*10= c: the communication delays are equal, 
*10 = c = 1: each communication delay takes unit time, 
*10 = �: no communication delays occur. 

Parameter *11 � {dup, �}. 

*11 = dup: task duplication is allowed. 
*11 = �: task duplication is not allowed.  

The third field " describing criteria is not changed.  
Some additional changes describing more deeply architectural constraints of 

multiprocessor systems have been introduced in [Dro96a] and we refer the read-
ers to this position. 

In the following three sections scheduling multiprocessor tasks, scheduling 
uniprocessor tasks with communication delays and scheduling divisible tasks 
(i.e. multiprocessor tasks with communication delays) respectively, are dis-
cussed. 



 6.2  Scheduling Multiprocessor Tasks 205 

 

6.2 Scheduling Multiprocessor Tasks 

In this Section we will discuss separately parallel and dedicated processors. 

6.2.1 Parallel Processors 

We start a discussion with an analysis of the simplest problems in which each 
task requires a fixed number of parallel processors during execution, i.e. proces-
sor requirement denoted by sizej . Following B)�la &zewicz et al. [BDW84, BDW86] 
we will set up the subject more precisely. Tasks are to be processed on a set of 
identical processors. The set of tasks is divided into k subsets T 1 = {T1

 1, T2
 1,...,

Tn1
1 }, T 2 = {T1

 2, T2
 2,..., Tn2

2 },..., T k = {T1
 k, T2

 k,..., Tnk
 k} where n = n1 + n2+...+ nk. 

Each task T i
 1, i = 1,...,  ni, requires exactly one of the processors for its pro-

cessing and its processing time is equal to pi
1. Similarly, each task Ti

 l, where 1 < l 
� k, requires l arbitrary processors simultaneously for its processing during a pe-
riod of time whose length is equal to pi

l. We will call tasks from T l width-l tasks 
or T l-tasks. For the time being tasks are assumed to be independent, i.e. there are 
no precedence constraints among them. A schedule will be called feasible if, be-
sides the usual conditions, each T l-task is processed by l processors at a time, l = 
1,..., k. Minimizing the schedule length is taken as optimality criterion.  

Problem P | pj = 1, sizej | Cmax 

Let us start with non-preemptive scheduling. The general problem is NP- hard 
(cf. Section 5.1), and starts to be strongly NP-hard for m = 5 processors [DL89]. 
Thus, we may concentrate on unit-length tasks. Let us start with the problem of 
scheduling tasks which belong to two sets only: T 1 and T k, for arbitrary k, i.e. 
problem P | pj = 1, sizej � {1, k} | Cmax. This problem can be solved optimally by 
the following algorithm.  

Algorithm 6.2.1  Scheduling unit tasks from sets T 1 and T k to minimize Cmax 
[BDW86]. 

begin 
Calculate the length of an optimal schedule according to the formula 

 C *  
max = max{ 9n1 + knk

m ; ,  9nk /�mk � ; }; (6.2.1) 
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Schedule T k-tasks in time interval [0, C *  
max] using first-fit algorithm; 

  -- see Section 13.1 for the description of the first-fit algorithm 
Assign T 1-tasks to the remaining free processors; 
end; 

It should be clear that (6.2.1) gives a lower bound on the schedule length of an 
optimal schedule and this bound is always met by a schedule constructed by Al-
gorithm 6.2.1.  

If tasks belong to sets T 1, T 2 , ...,  T k, where k is a fixed integer, the prob-
lem can be solved by an approach similar to that for the problem of non-
preemptive scheduling of unit processing time tasks under fixed resource con-
straints [BE83]. We will describe that approach in Section 13.1.  

Problem P | pmtn, sizej | Cmax 

Now, we will pass to preemptive scheduling. First, let us consider the problem of 
scheduling tasks from sets T 1 and T k in order to minimize schedule length, i.e. 
problem P | pmtn, sizej � {1, k} | Cmax . In [BDW84, BDW86] it has been proved 
that among minimum-length schedules for the problem there always exists a fea-
sible normalized schedule, i.e. one in which first all T k-tasks are assigned in time 
interval [0, C *  

max] using McNaughton's rule (Algorithm 5.1.8), and then all T 1-
tasks are assigned, using the same rule, in the remaining part of the schedule (cf. 
Figure 6.2.1). 

 

T  k

r Cmax
t0

1P

kP

kl+1P

k(l+1)P

mP
*

1m

-tasks

 
Figure 6.2.1 An example normalized schedule. 
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Following the above result, we will concentrate on finding an optimal schedule 
among normalized ones. A lower bound on the schedule length Cmax can be ob-
tained as follows. Define  

X  =  �
i=1

n1

 pi
1

 ,   Y  =  �
i=1

nk

 pi
k
 ,   Z  =  X + kY , 

pmax
1     =  max

Ti
 1 � T 1

 {pi
1} ,   pmax

k     =  max
Ti

 k � T k
 {pi

k} . 

Then, 

Cmax  �� C  =  max{Z/m, Y/ �m/k� , pmax
1   

 , pmax
k   } . (6.2.2) 

It is clear that no feasible schedule can be shorter than the maximum of the above 
values, i.e. mean processing requirement on one processor, mean processing re-
quirement of T k-tasks on k processors, the maximum processing time among T 1-
tasks, and the maximum processing time among T k-tasks. If mC > Z, then in any 
schedule there will be an idle time of minimum length IT = mC � Z. On the basis 
of bound (6.2.2) and the reasoning preceding it one can try to construct a preemp-
tive schedule of minimum length equal to C. However, this will not always be 
possible, and one has to lengthen the schedule. Below we present the reasoning 
that allows finding the optimal schedule length. Let l = �Y/C�. It is quite clear 
that the optimal schedule length C *  

max must obey the inequality 

C � C *  
max  �  Y/l . 

We know that there exists an optimal normalized schedule where tasks are 
arranged in such a way that kl processors are devoted entirely to T k-tasks, k pro-
cessors are devoted to T k-tasks in time interval [0, r], and T 1-tasks are scheduled 
in the remaining time (cf. Figure 6.2.1). Let m1 be the number of processors that 
can process T 1-tasks during time interval [0, r], i.e. m1 = m � (l + 1)k. In a normal-
ized schedule which completes all tasks by some time B, where C � B � Y/l, we 
will have r = Y � Bl. Thus, the optimum value C *  

max will be the smallest value of 
B (B � C) such that the T 1-tasks can be scheduled on m1 processors available 
during the interval [0, B] and on m1 + k processors available in the interval [r, B]. 
Below we give necessary and sufficient conditions for the unit width tasks to be 
scheduled. To do this, let us assume that these tasks are ordered in such a way 
that p1

1 � p2
1 �...� pn1

1 . For a given pair B, r with r = Y � Bl, let p1
1, p2

1,..., pj
1 be the 

only processing times greater than B � r. Consider now two cases. 

Case 1: j � m1 + k. Then T 1-tasks can be scheduled if and only if 
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�
i=1

j
 [pi

1 � (B � r)]  �  m1r .  (6.2.3) 

To prove that this condition is indeed necessary and sufficient, let us first observe 
that if (6.2.3) is violated the T 1-tasks cannot be scheduled. Suppose now that 
(6.2.3) holds. Then one should schedule the excesses (exceeding B � r) of "long" 
tasks T1

 1
 , T2

 1
 , ...,  T j

 1
 , and (if (6.2.3) holds without equality) some other tasks on 

m1 processors in time interval [0, r] using McNaughton's rule. After this opera-
tion the interval is completely filled with unit width tasks on m1 processors. 

Case 2: j > m1 + k. In that case T 1-tasks can be scheduled if and only if  

�
i=1

m1+k
 [pi

1 � (B � r)]  �� m1r .  (6.2.4) 

Other long tasks will have enough space on the left hand side of the schedule 
because condition (6.2.2) is obeyed. 

Next we describe how the optimum value of schedule length (C *  
max) can be 

found. Let Wj = �
i=1

j
 pi

1
 . Inequality (6.2.3) may then be rewritten as 

Wj � j(B � r)  �  m1(Y � Bl) . 

Solving it for B we get 

B  �� (j � m1)Y + Wj
(j � m1)l + j   . 

Define 

Hj  =  (j � m1)Y + Wj
(j � m1)l + j   .  

Thus, we may write 

C *  
max  =  max{C , Hm1+1 , Hm2+1 , ...,  Hn1

} . 

Let us observe that we do not need to consider values H1, H2,..., Hm1
 since the 

m1 longest T 1-tasks will certainly fit into the schedule of length C (cf. (6.2.2)). 
Finding the above maximum can clearly be done in O(n1 log n1) time by sorting 
the unit width tasks by pi

1
 . But one can do better by taking into account the fol-

lowing facts. 
1. Hi � C  for  i � m1 + k . 

2. Hi has no local maximum for i = m1 + 1,..., m1  + k � 1 . 
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Thus, to find a maximum over Hm1+1 , ...,  Hm1+k�1 and C we only need to apply a 
linear time median finding algorithm [AHU74] and a binary search. This will 
result in an O(n1) algorithm that calculates C *  

max . (Finding the medians takes 
O(n1) the first time, O(n1 /2) the second time, O(n1 /4) the third time, etc. Thus the 
total time to find the medians is O(n1) .) 

Now we are in the position to present an optimization algorithm for schedul-
ing width-1 and width-k tasks. 

Algorithm 6.2.2  Scheduling preemptable tasks from sets T 1 and T k to minimize 
Cmax [BDW86]. 

begin 
Calculate the minimum schedule length C *  

max; 
Schedule T k-tasks in the interval [0, C *  

max] using McNaughton's rule (Algorithm 
5.1.8); 

l := �Y / C *  
max�;  m1 := m � (l+1)k;  r := Y � C *  

maxl; 
Calculate the number j of long T 1-tasks that exceed C *  

max � r; 
if j � m1 + k then 
begin 
Schedule the excesses of the long tasks and possibly some other parts of tasks 

on m1 processors using McNaughton's rule to fill interval [0, r] complete-
ly; 

Schedule the remaining processing requirement in interval [r, C *  
max] on  

m1 + k processors using McNaughton's rule; 
end 

else 
begin 
Schedule part ((m1 + k)(C *  

max � r) /�i=1
j
   pi

1) ph
1 of each long task (plus possibly 

parts of smaller tasks T 1
z  with processing times p1

z, r < p1
z � Cmax � r) in in-

terval [r, C *  
max] on m1 + k processors using McNaughton's rule; 

-- if among smaller tasks not exceeding (C *   
max � r) there are some tasks longer than r,  

-- then this excess must be taken into account in the denominator of the above rate 
Schedule the rest of the task set in interval [0, r] on m1 processors using 

McNaughton's algorithm; 
end; 

end; 

The optimality of the above algorithm follows from the preceding discussion. Its 
time complexity is O(n1 + nk), thus we get O(n) . 
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Considering the general case of preemptively scheduling tasks from sets T 1 , 

T 2,..., T k , i.e. the problem Pm | pmtn, sizej � {1,..., k} | Cmax , we can use a 
proper linear programming approach to solve this problem in polynomial time.  

Problem P | prec, sizej | Cmax 

Let us now consider the case of non-empty precedence constraints. Arbitrary 
processing times result in the strong NP-hardness of the problem, even for chains 
and two processors [DL89]. In case of unit processing times the last problem can 
be solved for arbitrary precedence constraints using basically the same approach 
as in the Coffman-Graham algorithm (Algorithm 5.1.12) [Llo81]. On the other 
hand, three processors result in a computational hardness of the problem even for 
chains, i.e. problem P3 | chain, pj = 1, sizej | Cmax is strongly NP-hard [BL96]. 
However, if task requirements of processors are either uniform or monotone de-
creasing (or increasing) in each chain then the problem can be solved in 
O(nlog n) time even for an arbitrary number m of processors (m < 2sizej for the 
case of monotone chains) [BL96, BL02]. 

Problem Q | pmtn, sizej | Cmax 

In [BDSW94] a scheduling problem has been considered for a multiprocessor 
built up of uniform k-tuples of identical parallel processors. The processing time 
of task Ti is the ratio pi 

/bi, where bi is the speed of the slowest processor that 
executes Ti. It is shown that this problem is solvable in O(nm + n log n) time if the 
sizes are such that sizej � {1, k}, j = 1, 2,..., n. For a fixed number of processors, 
a linear programming formulation is proposed for solving this problem in poly-
nomial time for sizes belonging to {1, 2,..., k}. 

Problem Pm | pmtn, rj, sizej | Lmax 

Minimization of other criteria has not been considered yet, except for maximum 
lateness. In this context problem Pm | pmtn, rj, sizej | Lmax has been formulated as 
a modified linear programming problem (5.1.14) - (5.1.15). Thus, it can be 
solved in polynomial time for fixed m [BDWW96]. 

Let us consider now a variant of the above problem in which each task re-
quires a fixed number of processors being a power of 2, thus requiring a cube of 
a certain dimension. Because of the complexity of the problem we will only con-
sider the preemptive case. 
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Problem P | pmtn, cubej | Cmax 

In [CL88b] an O(n2) algorithm is proposed for building the schedule (if any ex-
ists) for tasks with a common deadline C. This algorithm builds so-called stair-
like schedules. A schedule is said to be stairlike if there is a function f (i) (i = 
1,..., m) such that processor Pi is busy before time moment f (i) and idle after, 
and f is non-increasing. Function f is called a profile of the schedule. Tasks are 
scheduled in the order of non-increasing number of required processors. A task is 
scheduled in time interval [C � pj , C], utilizing the first of the subcubes of the 
task's size on each "stair" of the stairlike partial schedule. Using a binary search, 
the C *  

max is calculated in time O(n2(log n + log(max{pj}))). The number of 
preemptions is at most n(n � 1)/2. 

In [Hoe89], a feasibility-testing algorithm of the complexity O(n log n) is 
given. To calculate C *  

max with this algorithm O(n log n (log n + log(max{pj}))) time 
is needed. This algorithm uses a different method for scheduling; it builds so-
called pseudo-stairlike schedules. In this case f(i) < f(j) < C, for i, j = 1,..., m, 
implies that i > j. Each task is feasibly scheduled on at most two subcubes. Thus 
the number of generated preemptions is at most n � 1. 

A similar result is presented in [AZ90], but the number of preemptions is re-
duced to n � 2 because the last job is scheduled on one subcube, without preemp-
tion. This work was the basis for the paper [SR91] in which a new feasibility 
testing algorithm is proposed, with running time O(mn). The key idea is to 
schedule tasks in the order of non-increasing execution times, in sets of tasks of 
the same size (number of required processors). Based on the claim that there ex-
ists some task in each optimal schedule utilizing all the remaining processing 
time on one of the processors in the schedule profile, an O(n2m2) algorithm is 
proposed to calculate C *  

max. 

Problem P | pmtn, cubej | Lmax 

Again minimization of Lmax can be solved via linear programming formulation 
[BDWW96]. 

Let us consider now the most complicated case of parallel processor re-
quirements specified by numbers of processors required, where task processing 
times depend on numbers of processors assigned. 

Problem P | spdp-any | Cmax 

A dynamic programming approach leads to the observation that P2 | spdp-
any | Cmax and P3 | spdp-any | Cmax are solvable in pseudopolynomial time 
[DL89]. Arbitrary schedules for instances of these problems can be transformed 
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into so called canonical schedules. A canonical schedule on two processors is 
one that first processes the tasks using both processors. It is completely deter-
mined by three numbers: the total execution times of the single-processor tasks 
on processor P1 and P2, respectively, and the total execution time of the bipro-
cessor tasks. For the case of three processors, similar observations are made. 
These characterizations are the basis for the development of the pseudopolyno-
mial algorithms. The problem P4 | spdp-any | Cmax remains open; no pseudopoly-
nomial algorithm is given. 

Surprisingly preemptions do not result in polynomial time algorithms 
[DL89]. 

Problem P | pmtn, spdp-any | Cmax 

Problem P | pmtn, spdp-any | Cmax is proved to be strongly NP-hard by a reduction 
from 3-Partition [DL89]. With restriction to two processors, P2 | pmtn, spdp-
any | Cmax is still NP-hard, as is shown by a reduction from PARTITION. Using 
Algorithm 6.2.2 [BDW86], Du and Leung [DL89] show that for any fixed num-
ber of processors Pm | pmtn, spdp-any | Cmax is also solvable in pseudopolynomial 
time. The basic idea of the algorithm is as follows. For each schedule S of 
Pm | pmtn, sizej | Cmax , there is a corresponding instance of Pm | pmtn, spdp-
any | Cmax with sizes belonging to {1,..., k}, in which task Ti is an l-processor 
task if it uses l processors with respect to S. An optimal schedule for the latter 
problem can be found in polynomial time by Algorithm 6.2.2. What remains to 
be done is to generate optimal schedules for instances of Pm | pmtn, sizej | Cmax 
that correspond to schedules of Pm | pmtn, spdp-any | Cmax , and choose the short-
est among all. It is shown by a dynamic programming approach that the number 
of schedules generated can be bounded from above by a pseudopolynomial func-
tion of the size of Pm | pmtn, spdp-any | Cmax . 

If in the above problem one assumes a linear model of dependency of task 
processing times on a number of processors assigned, the problem starts to be 
solvable in polynomial time. That is problem P | pmtn, spdp-lin | Cmax is solvable 
in O(n) time [DK99] and P | pmtn, rj, spdp-lin | Cmax is solvable in O(n2) time 
[Dro96b]. 

On the other hand, the special case of malleable tasks received recently quite 
considerable attention. It was proved that in the case of convex speed functions 
(relating processing speed to the number of processors allocated), an optimal 
schedule can be constructed by a sequential performance of tasks (being assigned 
all available processors) [BKM+04]. The case of concave functions for all the 
tasks is solvable in polynomial time for a fixed number of processors [BKM+06]. 
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6.2.2 Dedicated Processors 

In this section we will consider dedicated processor case. Following the remarks 
of Section 6.1 we will denote here by T D the set of tasks each of which requires 
set D of processors simultaneously. Task Ti � T D has processing time p i

D. For 
the sake of simplicity we define by pD = �

Ti�T D
 p i

D the total time required by all 

tasks which use set of processors D. Thus, e.g. p1,2,3 is the total processing time 2 
of tasks each of which requires processors P1, P2, and P3 simultaneously. We 
will start with task requirements concerning only one subset of processors for 
each task, i.e. fixj requirements. 

Problem P | pj = 1, fixj | Cmax 

The problem with unit processing times can be proved to be strongly NP-hard for 
an arbitrary number of processors [KK85]. Moreover, in [HVV94] it has been 
proved that even the problem of deciding whether an instance of the problem has 
a schedule of length at most 3 is strongly NP-hard. As a result there is no poly-
nomial time algorithm with worst case performance ratio smaller than 4/3 for 
P | pj = 1, fixj | Cmax, unless P = NP. On the other hand, if the number of proces-
sors is fixed, then again an approach for non-preemptive scheduling of unit 
length tasks under fixed resource constraints [BE93] (cf. Section 13.1) can be 
used to solve the problem in polynomial time. 

Problem P | fixj | Cmax 

It is trivial to observe that the problem of non-preemptive scheduling tasks on 
two processors under fixed processor requirements is solvable in polynomial 
time. On the other hand, if the number of processors is increased to three, the 
problem starts to be strongly NP-hard [BDOS92]. Despite the fact that the gen-
eral problem is hard we will show below that there exist polynomially solvable 
cases of three processor scheduling [BDOS92]. Let us denote by R i the total time 
processor Pi processes tasks. For instance, R1 = p1

 + p1,2
 + p1,3. 

Moreover, let us denote by RR the total time during which two processors 
must be used simultaneously, i.e. RR = p1,2

 + p1,3
 + p2,3. We obviously have the 

following: 

Lemma 6.2.3 [BDOS92] Cmax � max{max
i

{R i}, RR} for problem P3 | fixj | Cmax.  

                                                 
2 For simplicity reasons we write p1,2,3 instead of p{1,2,3}. 
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Now we consider the case for which p1 � p2,3. The result given below also covers 
cases p2 � p1,3 and p3 � p1,2, if we take into account renumbering of processors. 

Theorem 6.2.4. [BDOS92]  If p1 � p2,3, then P3 | fixj | Cmax can be solved in poly-
nomial time. The minimum makespan is then 

Cmax = max{max
i

{R i}, RR}}. 

Proof. The proof is constructive in nature and we consider four different subcas-
es. 

Case a: p2 � p1,3 and p3 � p1,2. In Figure 6.2.2 a schedule is shown which can 
always be obtained in polynomial time for this case. The schedule is such that 
Cmax = RR, and thus, by Lemma 6.2.3, it is optimal. 

1,3T

2T

1,3T

3T

1,2T
T 1

2,3T
 

Figure 6.2.2 Case a of Theorem 6.2.4. 

Case b: p2 � p1,3 and p3 = p1,2. Observe that in this case R3 = max
i

{R i}. Hence, a 

schedule which can be found in polynomial time is shown in Figure 6.2.3. The 
length of the schedule is Cmax = R3 = max

i
{R i}, and thus this schedule is optimal 

(cf. Lemma 6.2.3). 

Case c: p2 � p1,3 and p3 � p1,2. Observe that R1 � R2 and R1 � R3. Two subcases 
have to be considered here. 

Case c': R2 � R3. The schedule which can be obtained in this case in poly-
nomial time is shown in Figure 6.2.4(a). Its length is Cmax = R3 = max

i
{R i}. 

Case c": R2 = R3. The schedule which can be obtained in this case in poly-
nomial time is shown in Figure 6.2.4(b). Its length is Cmax = R2 = max

i
{R i}. 
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Figure 6.2.3 Case b of Theorem 6.2.4. 
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Figure 6.2.4 Case c of Theorem 6.2.4. 

Case d: p2 � p1,3 and p3 � p1,2. Note that the optimal schedule would be the same 
as in Case b if we renumbered the processors.   

It follows that the hard problem instances are those for which p1 > p2,3, p2 > p1,3 
and p3 > p1,2. Let us call these cases the Hard-C subcases. However, also among 
the problem instances which satisfy the Hard-C property, some particular cases 
can be found which are solvable in polynomial time. 

Theorem 6.2.5 [BDOS92]  If Hard-C holds and 

R1 � p2
 + p3

 +  p2,3  or  p1 � p2
 +  p2,3 , 

then problem P3 | fixj | Cmax can be solved in polynomial time, and Cmax = 
max

i
{R i}. 

 (a) 
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Figure 6.2.5 Two cases for Theorem 6.2.5. 
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Proof. Observe that if R1 � p2
 + p3

 + p2,3 then R1 � R2 and R1 � R3. The schedule 
which can be immediately obtained in this case is shown in Figure 6.2.5(a). As 
Cmax = R1, the schedule is optimal by Lemma 6.2.3. 

If p1 � p2
 + p2,3, the optimal schedule is as shown in Figure 6.2.5(b). In this 

case Cmax = max{R1, R3}.  

Observe that the optimal schedules found for the polynomial cases in Theorems 
6.2.4 and 6.2.5 are all normal schedules, i.e. those in which all tasks requiring the 
same set of processors are scheduled consecutively. Let us denote by C S  

max the 
schedule length of the best normal schedule for P3 | fixj | Cmax and by C *  

max the 
value of the minimum schedule length for the same instance of the problem. 
Then [BDOS92] 

C S  max
C *  max

 < 
4
3  . 

Since the best normal schedule can be found in polynomial time [BDOS92], 
we have defined a polynomial time approximation algorithms with the worst case 
behavior not worse than 4/3. Recently this bound has been improved. In [OST93] 
and in [Goe95] new approximation algorithms have been proposed with bounds 
equal to 5/4 and 7/6, respectively. 

An interesting approach to the solution of the above problem is concerned 
with the graph theoretic approach. The computational complexity of the problem 
P | fixj | Cmax where |fixj| = 2 is analyzed in [CGJP85]. The problem is modeled by 
the use of the so-called file transfer graph. In such a graph, nodes correspond to 
processors, and edges correspond to tasks. A weight equal to the execution time 
is assigned to each edge. A range of computational-complexity results have been 
established. For example, the problem P | pj = 1, fixj | Cmax is easy when the file 
transfer graph is one of the following types of a graph: bipartite, tree, one cycle 
graph, star, caterpillar, cycle, path; but, in general, the problem is NP-hard. It is 
proved that the makespan C LS 

max of the schedule obtained with any list-scheduling 
algorithm satisfies C LS 

max � 2C *  
max + max{0, max{pj}(1 � 2/d)}, where d is the max-

imum degree of any vertex in the graph. 
In [Kub87], the problem is modeled by means of weighted edge coloring. 

The graph model is extended in such a way that a task requiring one processor is 
represented as a loop which starts and ends in the same node. The problem 
P | fixj | Cmax, where |fixj| � {1,2} is NP-hard for the graph, which is either a star 
with a loop at each non-central vertex or a caterpillar with only one loop. In 
[BOS91] the problem P | fixj | Cmax is also analyzed with the use of the graph ap-
proach. This time, however, the graph reflecting the instance of the problem, 
called a constraint graph, has nodes corresponding to tasks, and edges join two 
tasks which cannot be executed in parallel. An execution time is associated with 
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each node. It is shown that the problem P | pj = 1, fixj | Cmax is NP-hard but can be 
solved polynomially for m = 4 (P4 | pj = 1, fixj | Cmax). Next, when the constraint 
graph is a comparability graph, the transitive orientation of such a graph gives an 
optimal solution. In this case, Cmax is equal to the weight of the maximum weight 
clique. The transitive orientation (if any exists) can be found in time O(dn2). For 
the general case, when the constraint graph is not a comparability graph, a branch 
and bound algorithm is proposed. In this case, the problem consists in adding 
(artificial) edges such that the new graph is a comparability graph. The search is 
directed by the weight of the heaviest clique in the new graph. Results of compu-
tational experiments are reported. 

Another constrained version of the problem is considered in [HVV94]. It is 
assumed that in problem P3 | fixj | Cmax all biprocessor tasks that require the same 
processors are scheduled consecutively (the so-called block constraint). Under 
this assumption this problem is solvable in pseudopolynomial time.  

Problem P | pmtn, fixj | Cmax 

Let us consider now preemptive case. In general the problem P | pmtn, fixj | Cmax 
is strongly NP-hard [Kub90]. For simpler cases of the problem, however, linear 
time algorithms have been proposed [BBDO94]. An optimal schedule for the 
problem P2 | pmtn, fixj | Cmax does not differ from a schedule for the non-
preemptive case. For three processors (P3 | pmtn, fixj | Cmax), an optimal schedule 
has the following form: biprocessor tasks of the same type are scheduled consec-
utively (without gaps and preemptions) and uniprocessor tasks are scheduled in 
the free-processing capacity, in parallel with appropriate biprocessor tasks. The 
excess of the processing time of uniprocessor tasks is scheduled at the end of the 
schedule. The complexity of the algorithm is O(n). In a similar way, optimal 
schedules can be found for P4 | pmtn, fixj | Cmax . When m is limited, the problem 
Pm | pmtn, fixj | Cmax can be solved in polynomial time using feasible sets and a 
linear programming approach [BBDO94]. 

Problem P | prec, fixj | Cmax 

If we consider precedence constrained task sets, the problem immediately starts 
to be computationally hard, since even problem P2 | chain, pj = 1, fixj | Cmax is 
strongly NP-hard [HVV94] (cf.[BLRK83] where a similar proof has been used 
for the resource constrained scheduling).  
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Problem P | fixj | ��Cj 

Let us consider now minimization of mean flow time. Problem Pk | pj = 1, fixj | 
�Cj is still open. The general version of the problem has been considered in 
[HVV94]. The main result is establishing NP-hardness in the ordinary sense for 
P2 | fixj | �Cj . The question whether this problem is solvable in pseudopolynomial 
time or NP-hard in the strong sense still has to be resolved. The weighted ver-
sion, however, is shown to be NP-hard in the strong sense. The problem with unit 
processing times is NP-hard in the strong sense if the number of processors is a 
part of the problem instance, but the complexity is still open in case of a fixed 
number of processors. As could be expected, the introduction of precedence con-
straints does not simplify the computational complexity. It is shown that even the 
problem with two processors, unit processing times, and chain-type precedence 
constraints, is NP-hard in the strong sense. 

Problem P | pmtn, fixj | Lmax 

Since the non-preemptive scheduling problem with the Lmax criterion is already 
strongly NP-hard for two processors [HVV94], more attention has been paid to 
preemptive case. In [BBDO97a] linear time algorithms have been proposed for 
problem P2 | pmtn, fixj | Lmax and for some special subcases of three and four pro-
cessor scheduling. More general cases can be solved by linear programming ap-
proach [BBDO97b] even for different ready times for tasks. 

Problem P | setj | Cmax 

Let us consider now the case of setj processor requirements. In [CL88b] this 
problem is restricted to single-processor tasks of unit length. In the paper match-
ing technique is used to construct optimal solutions in O(n2m2) time. In [CC89] 
the same problem is solved in O(min{ n, m}nmlog n) time by use of network 
flow approach. More general cases have been considered in [BBDO95].  

Problem P2 | setj | Cmax is NP-hard, but can be solved in pseudopolynomial 
time by a dynamic programming procedure. In this case, the schedule length de-
pends on three numbers: total execution time of tasks requiring P1 (p1), tasks 

requiring P2 (p2), and tasks requiring P1 and P2 (p1
2). In an optimal schedule, T 12 

tasks are executed first, then uniprocessor tasks are processed in any order with-
out gaps. A similar procedure is proposed for a restricted version of P3 | setj | Cmax 

in which one type of dual-processor task is absent (e.g., T 13). On the other hand, 
for the problem P | setj | Cmax, the shortest processing time (SPT) heuristic is pro-
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posed. Thus, tasks are scheduled in any order, in their shortest-time processing 
configuration. A tight performance bound for this algorithm is m. 

Some other cases, mostly restricted to | setj | = 1, are analyzed in [Bru95]. 

Problem Pm | pmtn, setj | Cmax 

In case of preemptions again linear programming approach can be used to solve 
the problem in polynomial time for fixed m [BBDO95]. 

Problem Pm | pmtn, setj | Lmax 

Following the results for fixj processor requirements, most of the other cases for 
setj requirements are computationally hard. One of the few exceptions is problem 
Pm | pmtn, setj | Lmax which can be solved by linear programming formulation 
[BBDO97b]. 

6.2.3 Refinement Scheduling 

Usually deterministic scheduling problems are formulated on a single level of 
abstraction. In this case all information about the processor system and the tasks 
is known in advance and can thus be taken into account during the scheduling 
process. We also know that generating a schedule that is optimal under a given 
optimization criterion, is usually very time consuming in case of large task sys-
tems, due to the inherent computational complexity of the problem.  

On the other hand, in many applications it turns out that detailed information 
about the task system is not available at the beginning of the scheduling process. 
One example is the construction of complex real-time systems that is only possi-
ble if the dependability aspects are taken into account from the very beginning; 
adding non-functional constraints at a later stage does not work. Another exam-
ple are large projects that run over long periods; in order to settle the contract, 
reasonable estimates must be made in an early stage when probably only the 
coarse structure of the project and a rough estimate of the necessary resources are 
known. A similar situation occurs in many manufacturing situations; the delivery 
time must be estimated as part of the order although the detailed shop floor and 
machine planning is not yet known. 

A rather coarse grained knowledge of the task system in the beginning is re-
fined during later planning stages. This leads to a stepwise refinement technique 
where intermediate results during the scheduling process allows to recognize 
trends in 
� processing times of global steps 
� total execution time 
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� resource requirements 
� feasibility of the task system. 
 In more detail, we first generate a schedule for the coarse grained (global) 
tasks. For these we assume that estimates of processing times and resource re-
quirements are known. Next we go into details and analyze the structure of the 
global tasks (refinement of tasks). Each global task is considered as a task system 
by itself consisting of a set of sub-tasks, each having certain (may be estimated) 
processing time and resource requirement. For each such sub-task a schedule is 
generated which then replaces the corresponding global task. Proceeding this 
way from larger to smaller tasks we are able to correct the task completion times 
from earlier planning stages by more accurate values, and we get more reliable 
information about the feasibility of the task system.  

Algorithm 6.2.6 Refinement scheduling [EH94]. 
begin 
Define the task set in terms of its structure (precedence relations), its estimated 

resource consumption (execution times) and its deadlines; 
-- Note that the deadlines are initially defined at the highest level (level 0)  
-- as part of the external requirements.  
-- During the refinement process it might be convenient to refine these  
-- deadlines too; i.e. to assign deadlines to lower level tasks.  
-- Depending on the type of problem, it might, however, be sufficient to prove  
-- that an implementation at a particular level of refinement obeys the deadlines  
-- at some higher level. 

Schedule the given task set according to some discipline, e.g. earliest deadline 
first; 

repeat 
Refine the task set, again in terms of its structure, its resource consumption 

and possibly also its deadlines; 
Try to schedule the refinement of each task within the frame that is defined by 

the higher level schedule;  
-- Essentially this boils down to introducing a virtual deadline that is the  
-- finishing time of the higher level task under consideration.  
-- Note also that the refined schedule might use more resources (processors)  
-- than the initial one. 
-- If no feasible schedule can be found, backtracking must take place.  
-- In our case this means, that the designer has to find another task structure,  
-- e.g. by redefining the functionality of the tasks or by exploiting additional  
-- parallelism [VWHS95] (introduction of additional processors,  
-- cloning of resources and replacement of synchronous by asynchronous  
-- procedure calls).  

Optimize the resulting refined schedule by shifting tasks; 
-- This step aims at restructuring (compacting) the resulting schedule  
-- in such a way that the number of resources (processors) is as small as possible. 
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until the finest task level is reached; 
end; 
The algorithm essentially defines a first schedule from the initial given task set 
and refines it recursively. At each refinement step a preliminary schedule is de-
veloped that is refined (detailed) in the next step. This way, we will finally end 
up with a schedule at the lowest level. The tasks are now the elementary actions 
that have to be taken in order to realize all the initially given global tasks. 

6.3 Scheduling Uniprocessor Tasks with  
Communication Delays 

The following simple example serves as an introduction to the problems we deal 
with in the present section. Let there be given three tasks with precedences as 
shown in Figure 6.3.1(a). The computational results of task T1 are needed by both 
successor tasks, T2 and T3 . We assume unit processing times. For task execution 
there are two identical processors, connected by a communication link. To 
transmit the results of computation T1 along the link takes 1.5 units of time. The 
schedule in Figure 6.3.1(b) shows a schedule where communication delays are 
not considered. The schedule (c) is obtained from (b) by introducing a communi-
cation delay between T1 and T3 . Schedule (d) demonstrates that there are situa-
tions where a second processor does not help to gain a shorter schedule. The 
fourth schedule, (e), demonstrates another possibility: if task T1 is processed on 
both processors, an even shorter schedule is obtained. The latter case is usually 
referred to as task duplication.  

The problems considered in this area are often simplified by assuming that 
communication delays are the same for all tasks (so-called uniform delay sched-
uling). Other approaches distinguish between coarse grain and fine grain paral-
lelism: In contrast to the latter, a high computation-communication ratio can be 
expected in coarse grain parallelism. As pointed out before, task duplication of-
ten leads to shorter schedules; this is in particular the case if the communication 
times are large compared to the processing times.  

In Section 6.3.1, we discuss briefly recent results concerning algorithms and 
complexity of task scheduling with communication delays, but without task du-
plication. The corresponding problems with task duplication are considered in 
Section 6.3.2. Finally, in Section 6.3.3, we discuss the influence of particular 
network structures on schedules.  
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Figure 6.3.1 (a) Precedence graph 

(b) Schedule without consideration of communication delays 
(c) Schedule considering communication from T1 to T3 
(d) Optimal schedule without task duplication 
(e) Optimal schedule with task duplication. 

6.3.1 Scheduling without Task Duplication 

Problem P | prec, c = 1, pj = 1 | Cmax 

This problem was first discussed by Rayward-Smith in [Ray87a] who established 
its strong NP-hardness. The question if P | prec, c = 1, pj = 1 | Cmax is NP-hard 
for fixed m � 2 is still open. If the width of the precedence graph, i.e. the largest 
number of incomparable tasks in (T ,≺), is bounded, then the problem can be 
solved in polynomial time [Moh89, Vel93]. Picouleau [Pic91] proved that the 
problem of deciding whether an instance has a schedule of makespan at most 3 
can be decided in polynomial time. From Hoogeveen et al. [HLV94] we know, 
however, that the same problem for schedules with Cmax at most equal to 4 is NP-
complete, even for bipartite graphs. As a consequence of this result we see that 
there is no polynomial-time algorithm with performance bound < 5/4, unless P = 
NP. Otherwise, for instances with Cmax = 4 the polynomial-time algorithm would 
construct a schedule of length < 5 which would be optimal. 
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There are also results available for cases where the number m of processors 
is unrestricted, i.e. if n � m. In such a case deciding whether Cmax < l can be done 
in polynomial time for l � 5, but is NP-complete for l � 6 [Vel93]. 

Rayward-Smith [Ray87a] discussed the performance of demand schedules 
(called greedy). The makespan CG   

max of a demand schedule as compared to that of 

an optimal schedule can be proved to be C
G   
max

C *   max
 � 3 � 2m . 

In case of tree-like precedences, Lenstra et al. [LVV96] proved the problem 
P | tree, c = 1, pj = 1 | Cmax to be NP-hard. However, for a fixed number of proces-
sors, i.e. for the problem Pm | tree, c = 1, pj = 1 | Cmax , an optimal algorithm of 
polynomial time complexity exists [VRK92]. In case of an unbounded number of 
processors (m � n), the problem can be solved in O(n) time [Chr89a]. 

In [BBGT96], the problem Q2 | in-tree, c = 1, pj = 1 | Cmax with two uniform 
processors of speeds 2 and 1, respectively, was considered. Thus, the execution 
of a task takes two units of time on the slower processor (P1) and one unit of 
time on the faster processor (P2). The in-tree is assumed to be complete. If two 
tasks being in relation ≺ are processed on different processors, the communica-
tion delay is one unit of time. An O(h) time algorithm is presented for this prob-
lem for trees of height h. 

For the case of interval order precedences, the problem P | interval order, 
c = 1, pj = 1 | Cmax can be solved in polynomial time [Pic92]. 

Problem P | prec, c, pj = 1 | Cmax 

Assuming first an unbounded number of processors, we know from Jakoby et al. 
[JR92] that the problem is NP-hard, in contrast to Chretienne's linear-time solu-
tion [CHR89a] for the same type of problem with c = 1. 

If the number of processors is finite the problem of course remains hard. In 
situations where the communication delays are large it can be useful to get in-
formation about how far the makespan is influenced by the largest communica-
tion delay. From [BGK96] it is known that the problem P | prec, c, pj = 1 | Cmax 
with Cmax � c + 2 can be solved in polynomial time, whereas problem P | prec, c, 
pj = 1 | Cmax with the question "Cmax= � c + 3" is NP-complete, even if prec = bi-
partite graph. Furthermore, there is a lower bound on the performance of approx-
imation algorithms. There exists no polynomial-time algorithm with performance 
bound smaller than 1 + 1/(c + 3) for P | prec, c, pj = 1 | Cmax , unless P = NP. This 
result holds even in the special case that the precedence relation is of bipartite 
type. 

For the same problem but where the precedence relation is a complete k-ary 
tree, Jakoby and Reischuk [JR92] presented an O(n2log n)-time algorithm. If 
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completeness of the tree is not guaranteed, the problem is NP-hard even for in-
trees where each task has in-degree at most 2. 

Problem P | prec, cjk | Cmax 

The problem is shown to be strongly NP-hard for binary tree precedences by a 
transformation from Exact-3-Cover [JR92]. Only for the very restricted problem 
P | tree, cjk | Cmax where trees are of depth 1, and under the assumption of infinite 
number of processors, Picouleau [Pic92] was able to present an O(nlog n) time 
algorithm. For general tree-like precedences and unit time tasks, the problem is 
NP-hard even if the number of processors is unlimited. 

Several other results for the general communication delay case make as-
sumptions on the relationship between the sizes of processing times and commu-
nication times: The granularity g of an instance can be defined as g := 
min

i
 {pi} /max

i, j
 {ci j}. An instance is said to be coarse grained if g � 1. Another 

also useful definition is that of the grain of a task: The grain gj of task Tj is de-
fined by gj = min

i�ipred(Tj)
{pi}/ max

i�ipred(Tj)
{ci j}. Based on this notion, Chretienne and 

Picouleau [CP91] use a less restrictive definition of instance granularity: An in-
stance is of coarse-grained type if gj � 1 for all j = 1,..., n. We will distinguish 
between these two definitions by writing "g � 1" in the first and "gj � 1" in the 
second case.  

The problem P | prec, cjk , g � 1 | Cmax with an unlimited number of processors 
was independently studied by Gerasoulis and Yang [GY92] and Picouleau 
[Pic91]. Both presented approximation algorithms of performance 1+1/g. For 
tree-like precedences, this problem can be solved in O(n) time [Chr89a, AHC90]. 
For P | prec, c, g � 1 | Cmax with c � 1 and again an unlimited number of processors 
we know from [Pic91] and [Vel93] that it is NP-complete to decide whether an 
instance has a schedule of length Cmax � 5 + 3c or Cmax � 6c, respectively. 

From [CP91] we know that problem P | prec, cjk , gj � 1 | Cmax with an unlim-
ited number of processors and bipartite or series-parallel precedence constraints 
is solvable in polynomial time.  

Problem P | pmtn, c | Cmax 

Rayward-Smith [Ray87b] studied problem P | pmtn, c | Cmax with unlimited num-
ber of processors, and where preemptions are allowed at integer points. It turns 
out that the communication delays cause an increase of C *  

max by at most c � 1 
units of time. Thus problem P | pmtn, c = 1 | Cmax can be solved optimally by 
McNaughton's rule (see Section 5.1). Surprisingly, the problem is strongly NP-
hard for any fixed c � 2.  
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6.3.2 Scheduling with Task Duplication 

In this section the problem of scheduling single processor tasks with communica-
tion delays and task duplications will be considered. Most results available here 
are obtained under the unrealistic assumption that the number of processors is 
unlimited. This assumption allows to process copies of a task as often as required 
in order to avoid communication, so that the maximum makespan is minimized. 
A more realistic approach, however, would be one where the number of proces-
sors is m < n. The then required careful decision between the two options of task 
duplication vs. acceptation of communication delay makes the problem much 
more difficult.  

Problem P | prec, c, dup | Cmax 

The NP-completeness proof of Hoogeveen et al. [HLV94] for deciding whether 
P | prec, c = 1, pj = 1 | Cmax has a schedule of the length is � 4 implies that answer-
ing the same question for problem P | prec, c = 1, pj = 1, dup | Cmax is NP-complete, 
too.  

Papadimitriou and Yannakakis showed that the problem P | prec, c, pj
 = 1, dup | Cmax, with an unlimited number of processors is NP-hard [PY90]. Even 
more, the problem of deciding whether an instance of P | prec, c, pj = 1, dup | Cmax 
has a solution with makespan Cmax � c + 3 is NP-complete [BGK96]. Following 
[JKS89], P | prec, c, dup | Cmax can be solved via a dynamic programming ap-
proach in time O(nc+1). 

Problem P | prec, cjk, dup | Cmax 

An approximation algorithm proposed in [PY90] for problem P | prec, cjk ,
 dup | Cmax , under the assumption that the number of processors is unlimited, 
brings out quite interesting ideas on the way to design heuristics that take com-
munication times into account. The algorithm proposed has time complexity 
O(n2(e + nlog n)) where e denotes the number of precedence constraint task pairs. 
An interesting fact is that this method can also be used to solve coarse-grained 
problems (gj � 1 for j = 1,..., n) optimally in O(n2) time [CC91]. 

For out-tree precedences, scheduling tasks on an unlimited number of pro-
cessors can be done in polynomial time. In the case of in-tree precedence con-
straints, the problem can be transformed into an equivalent problem with out-tree 
precedence constraints and duplications not allowed. From [Chr94] this problem 
is known to be NP-hard. 
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6.3.3 Scheduling in Processor Networks 

Picouleau [Pic92] studied a variant of problem P | tree, cjk | Cmax where the num-
ber of processors is unlimited, the precedence relation can be represented as a 
tree of depth 1, and a distance function is specified. For a pair of processors, Ph , 
Pi , their distance dhi is defined by dhi = |h � i|. The communication time c(Tj , Ph , 
Tk , Pi) is assumed as cjkdhi , provided that Tj ≺ Tk . The problem is shown to be 
NP-hard by a transformation from PARTITION. 

The distance function defined by Picouleau can be motivated as being ap-
propriate for linear array networks. For general network structures a distance 
between two processors may be defined as the length of a shortest path that con-
nects a pair of processors. Such a model has been considered in [EH96]. El-
Rewini and Lewis [ERL90] also considered a distance function, and in addition 
took contention into account. By contention we understand the event that two or 
more data transmissions simultaneously have to pass a single communication 
channel whose limited capacity enforces serialized transmission.  

Hwang et al. [HCAL89] studied approximation list algorithms for schedul-
ing problems where the communication times depend both on the involved tasks 
and on the processors which execute the tasks. The underlying communication 
system model allows covering several types of systems such as fully connected 
systems, hypercubes, or local area networks. The communication is assumed to 
be contention free. The authors examined a simple strategy called extended list 
scheduling, ELS, which is a straightforward extension of list scheduling. The 
ELS method adopts a two-phase strategy. First tasks are allocated to processors 
by applying list scheduling as if the underlying system were free of communica-
tion overhead. Second, the necessary communication is added to the schedule 
obtained in the first phase. Denoting by CELS the makespan of a schedule derived 
by applying the ELS method, and by C*           

nocomm the makespan of an optimal sched-
ule for the same instance where communication delays are not considered, 
Hwang et al. proved the following bound 

CELS � (2 � 1n) C*           
nocomm + 7max 5

T�T
T'�isucc(T)

>(T , T') . 

Here, 7max = max{7 (P , P')} is the maximum time to transmit a packet of unit 
length from one processor the another, >(T , T') is the length of a packet of data to 
be sent from T to T' . It is also shown that this bound cannot be improved in gen-
eral. 

Since the performance of ELS is unsatisfactory, an improved strategy called 
the earliest task first, (ETF) was proposed in [HCAL89]. This algorithm uses a 
greedy strategy where the earliest ready task is scheduled first. The strategy is 
improved by the ability to postpone a scheduling decision to the next decision 
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moment if a task completion between two decision points may make a more ur-
gent task schedulable. The performance ratio obtained from a detailed analysis is 

CETF � (2 � 1n) C *          
nocomm + cmax 

where cmax is the maximum communication requirement along all chains of T , 
that is 

cmax = max{7max 5
k = 1

l�1
>(Tci

 , Tci+1 
) | (Tc1

 , ..., Tcl 
) is a chain in T } . 

Very little is known about the design of efficient approximation algorithms 
for the scheduling of task on a real multiprocessor topology. Of particular practi-
cal interest are also problems with constraints on communication channel capaci-
ties or unequal processor distances.  

Ecker and Hodam [EH96] considered a similar model where communication 
packets are of various lengths and transmission times per unit length message 
depend on the given network topology. If Tj and Tk are processed on processors 
Ph and Pi , respectively, the time for transmitting the required data of Tj to Tk is 
c(Tj , Ph  , Tk , Pi) = ?(Tj , Tk)d(Ph  , Pi), where d(Ph , Pi), the distance between proces-
sors Ph and Pi , is the length of a shortest path from Ph to Pi . As further simplifi-
cation it is assumed that for Tj ≺ Tk the length of transmitted data ?(Tj , Tk) de-
pends only on task Tj . Moreover, in many applications it makes sense to say that 
the amount of data produced by a task increases linearly with the processing time 
of the task. This assumptions lead to the simplification ?(Tj , Tk) = +L pj where +L 
� IR�0 is a packet length coefficient that measures the amount of data produced in 
unit time by Tj , and pj is the processing time of this task. Six heuristic algorithms 
were empirically compared. These include: hill-climbing, threshold accepting, 
great deluge algorithm, record-to-record travel, simulated annealing, and tabu 
search. The seed solution used in these heuristics is obtained by generating a crit-
ical path schedule. The paper [EH96] compares the performance of the heuristic 
strategies for different network topologies. 

To obtain a model that takes the network structure more accurately into ac-
count, Ecker and Hirschberg [EH93] introduced a formal description of net-
works. It was shown that hypergraphs are a useful tool to model the structural 
and behavioral properties of networks that are needed for optimal organization of 
communication in networks. The approach is very general in the sense that it can 
be applied to different kinds of networks under various assumptions about the 
transmission capabilities of links. Essentially the communication hypergraph 
informs about maximal sets of simultaneous communication in the network. In 
[EH93] this approach was used to develop scheduling strategies for "pure" com-
munication problems, i.e. problems where each task merely has to transmit data 
of a certain amount from one processor to another. Several approximation algo-
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rithms for this problem have been defined, and their performances have been 
compared against each other. Notice that such problems occur in different areas. 
In synchronized multiprocessor systems, for example, processes are usually or-
ganized in alternating phases of computation and communication [BT89]. Here 
the hypergraph approach can be applied to optimize the communication phase. 

6.4 Scheduling Divisible Tasks 

In this section we will consider the problem of scheduling divisible tasks. The 
study of divisible load theory started from the consideration of intelligent sensor 
networks by Cheng and Robertazzi [CR88]. An intelligent sensor is a single pro-
cessor based unit which can make measurements, compute and communicate 
with other intelligent sensors. Later this intelligent sensor network application 
was replaced by the application of load sharing in a multiprocessor environment. 
The main problem in this research is to determine the optimal fraction of the 
workload to assign to each processor. That is, when a network receives a burst of 
data to process, one must decide what portion of the entire workload should be 
kept by the distributing processor and what portion of the entire workload should 
be distributed to each processor in order to minimize the total processing time. 

In [CR88], recursive expressions for calculating the optimal load allocation 
for linear daisy chains of processors were presented. This is based on the as-
sumption that for an optimal allocation of load, all processors must stop pro-
cessing at the same time. Intuitively, this is because otherwise some processors 
would be idle while others were still busy. Analogous solutions were developed 
for tree networks [CR90] and bus networks [BR91]. In [Rob93], the concept of 
an equivalent processor that behaves identically to a collection of processors in 
the context of a linear daisy chain of processors and a proof that, for such a net-
work structure, the optimal solution involves all processors stopping at the same 
time were introduced. An analytic proof for bus networks that for a minimal so-
lution time all processors must finish computing at the same time was shown in 
[SR96, BGM92]. 

In [SR94], a more sophisticated load sharing strategy was proposed for bus 
networks that exploit the special structure of divisible load theory to yield a 
smaller solution time when a series of tasks are submitted to the network. In 
[SR95], a deterministic analysis is provided for the case when the processor 
speed and the channel speed are time-varying due to the background tasks sub-
mitted to a distributed system. A stochastic analysis which makes use of Markov-
ian queuing theory was also introduced for the case when the arrival and depar-
ture times of the background tasks are not known. The equivalence of first dis-
tributing load either to left or to the right form a point in the interior of a linear 
daisy chain is demonstrated in [GM94]. Optimal sequences of load distribution 
in tree networks are described in [BGM94, KJL95]. In [BD95], a deterministic 
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approach to find an optimal distribution of the load on a hypercube of processors 
was proposed. Simple formulae were found to determine the distribution of the 
task's load and the equivalent speed of the whole network of processors for two-
dimensional mesh architecture in [BD96]. A uniform methodology was presented 
in [BD97] to achieve minimum completion time for a wide range of interconnec-
tion architectures, assuming that the communication time is equal to some start-
up value plus some amount proportional to the value of transferred data. An ex-
ample of optimal load allocation in a real time system appeared in [Had94]. Fi-
nally, in [BDGT99] a new broadcasting scheme to distribute parts of the task to 
processors in a minimum time [PS96] was analyzed in the context of divisible 
task processing.  

We will illustrate the technique used in the analysis of divisible task pro-
cessing by an example of a hypercube communication network [BD95]. The goal 
of the analysis is to find bounds for the performance of the above network ex-
pressed as: 
� processing time of a task (processed by the whole network), 
� processing speed of the whole network, 
� speedup, 
� processor utilization.  

Problem P, cube | div, cubej | Cmax 

A computer system to be considered consists of a set of identical processing ele-
ments (PE's): processors with local memories connected by a network of com-
munication links. The architecture of the interconnection network is assumed to 
be a hypercube (see Figure 6.4.1), i.e. each processor is a node of a multidimen-
sional cube. For the hypercube of dimension d there are 2d processors in the sys-
tem. Each of the processors has direct links to d neighbors. The label of a proces-
sor is a binary number from the interval [0, 2d � 1]. Note, that each of the proces-
sor's neighbors has a label differing on exactly one position.  

At time 0 a task arrives at processor P0. Some part (0 of the total load is pro-
cessed by processor P0, the rest of the load (1 � (0) is transmitted in equal parts to 
its d neighbors for processing. Immediate neighbors of processor P0 take some 
part (1 of the total load and retransmit the rest to the still idle neighbors. This 
process is continued until the last idle processor in the hypercube is reached. We 
assume that the processing time of the task on a standard processor is p, while on 
processor with a different speed it is wp where w is proportional to the reciprocal 
of the processor's speed. On the other hand, the transmission time of the whole 
task's data is t for a standard data link, while for a link with different capabilities 
it is zt where z is the reciprocal of the link bandwidth. We assume two things 
about the processing element: it must receive its entire load before transmitting 
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the proper part to the neighbors and it is capable of simultaneous transmitting 
and computing.  

P000 P001

P101P100

P011

P111P110

P010

d = 3

     
Figure 6.4.1 A hypercube architecture.  

When processor P0 receives a burst of data to process (cf. Figure 6.4.2), it takes 
(0 of it for local processing; (1 � (0) of the load is transmitted to d neighbors. 
Since processor P0 has no 1 in its address, its neighbors have exactly one 1 in 
their addresses. The part (1 � (0) transmitted from processor P0 is fairly divided 
among all d neighbors. Then, each of the processors with only one 1 in the ad-
dress takes (1 of the whole load for local processing from the part it receives 
from processor P0. The rest is transmitted, in equal shares, to its d � 1 idle neigh-
bors. Processors with one 1 in the address have d � 1 idle neighbors with exactly 
two 1’s in the address. Note, that processors with one 1 in the address can be 
reached from the originator of the load via only one link, while processors with 
two 1’s can be accessed via two links. The process of data dissemination is re-
peated until the last processing element with address 11...1 is reached via d 
links. Let us call by layer i a set of all processors reached in the same number i of 
hops, starting from layer 0 consisting of the originator only (processor P0). The 
last layer d consists of a single processor. Note, that data transmission does not 
cause contention in use of any communication link because each link is used only 
once and each communication path is one link long. As we already mentioned 
the computations must finish on all exploited processors at the same time. The 
following lemma describes useful topological properties of a hypercube. 

Lemma 6.4.1  [BD95]. In each layer i of a d-dimensional hypercube there are 
(d

i  ) processing elements each of which can be accessed through i communication 
links and is capable of transmitting to d � i still idle processors.  
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Figure 6.4.2 Process of computation and data transfer 

Let us consider now layer i and denote by Voli the amount of data received by a 
processor in this layer, and by (̂i the part of the received load that is intercepted 
for local processing by this processor. We see that 

(i = (̂i Voli . 

The processor in layer i works the same amount of time as it takes to transmit 
data to d � i processors in layer i + 1 and to computer in layer i + 1 (cf. Figure 
6.4.2). What is more, processors in layer i + 1 receive data to process from i + 1 
links. Thus, 

(̂iVoliwp = 
(1 � (̂i)Voli((i + 1)wi+1p  + zt)

d � i  for i = 0,...,  d � 1, (6.4.1) 

where wi+1 is equivalent to a reciprocal of the speed for all processors in layers 
i + 1,..., d which receive some part of the load from the considered processor in 
layer i. Hence , (̂i is equal to 

(̂i = 
1

1 + 
(d � 1)wp

(i + 1)wi+1p + zt

 for i = 0,...,  d � 1 , (6.4.2) 

The value of wi can be calculated according to the expression: 

wi = 
(̂iVoli wp

Voli p  = (̂iw 
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For i = 0 equation (6.4.1) has the following form 

(̂0wp = 
(1 � (̂0)(w1p  + zt)

d  , 

hence,  

Vol0 = (0 = (̂0 = 
1

1 + 
dwp

 w1p + zt
  . (6.4.3) 

Equations (6.4.2) and (6.4.3) form a set of expressions which can be solved for 
(̂i , recursively starting from i = d � 1 (for which we know that (̂d = 1, wd = w) 
until i = 1. Then, the portions (i of the whole load can be calculated. Thus, the 
originator processes locally (0 of the whole load and sends to each of its d neigh-
bors a share of load equal to (1 � (0)/d. Each of processors in layer i (i = 1,..., d) 

receives through i links a share of load equal to 
(1 � (̂i�1)Voli�1

d � i + 1  , thus totally 

i(1 � (̂i�1)Voli�1
d � i + 1  , from which (i = 

i(1 �  (̂i�1)Voli�1 (̂i
d � i + 1  is intercepted for local pro-

cessing. 
Now, one can calculate an equivalent reciprocal of the speed for the whole 

hypercube of processors:  

weq = 
(0wp

p  = (0w . 

Then, the speedup S, measured as a ratio of the sequential computation time, i.e. 
on the sole originator, to the working time of the originator embedded in the hy-
percube, and the average processor utilization of (U) can be found: 

S = 
wp

(0wp = 
1
(0

 = 1 + 
dwp

w1p + zt  , 

U = 
S
2d = 

1
2d(0

 , 

where w1 is calculated according to the above recursive procedure. 
From the above formulae one can derive several qualitative conclusions. The 

speedup depends on the dimension d of the hypercube but depends also on the 
w1, which would have to decrease at least linearly in order to preserve linear 
speedup. The average utilization of the processors has 2d in the denominator; 
then again, to preserve linear speedup and utilization close to 1, (0 must decrease 
very fast. 

Using the above formulae one can analyze a performance of the hypercube 
depending on such parameters as dimension of the hypercube (d), reciprocal of 



 6.4  Scheduling Divisible Tasks 233 

 

the communication speed (z), reciprocal of the processing speed (w) and size of 
the computing task (p) [BD95]. 
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Figure 6.4.3 Execution time vs. processor speed and dimension 

As the first performance parameter we will analyze an execution time of the task 
and its dependence on w, z, p, and d. The execution time of the task decreases 
with the dimension of the hypercube. However, for faster processors (w = 0.1) 
this reduction is relatively smaller than for slow processors (w = 10) where exe-
cution time can be reduced by two orders of magnitude (cf. Figure 6.4.3). Con-
clusion is that gain from parallel processing on slow processors is higher than on 
fast processors. In Figure 6.4.4 we see that fast communication network (z = 0.1) 
is more reasonable than the slow one (z = 10). In this picture a curve for z = 0 is 
also included which is a case of the ideal network (without transportation de-
lays). Finally, Figure 6.4.5 demonstrates relative processing time as a function of 
p and d .The relative execution time is equal to the quotient of the actual pro-
cessing time and processing time on the processor of the same speed. We see that 
the gain from parallel processing is bigger for long tasks (p = 10). 
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Figure 6.4.4 Execution time vs. communication speed and dimension. 
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Figure 6.4.5 Execution time vs. size of the computing task p and dimension. 
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Figure 6.4.6 Speedup for different z vs. number of processors. 
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Figure 6.4.7 Utilization of processors for different z vs. dimension. 

Next we analyze the impact of network parameters on the speedup (cf. Figure 
6.4.6) and the utilization of processors (cf. Figure 6.4.7). In both figures curves 
are presented for different values of z, including z = 0. The network with z = 0 
represents an ideal network. As can be seen, the linear speedup can be achieved 
when the communication medium is perfect. In more realistic cases (z > 0) the 
speedup curve levels off very fast, especially for slow networks (z = 10). The 
utilization of processors decreases with the size of the network. Only for the per-
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fect communication network, utilization equal to 1 can be achieved. On the other 
hand, when we compare this result with Figure 6.4.4, the tendency to preserve 
linear speedup by significantly improving of the network speed, may not be justi-
fied in practice. 

To sum up one may say that the faster are the processors and the communi-
cation links, the more efficient is the hypercube. On the other hand, the gain from 
parallel processing is more significant on slower (cheaper) processors than on 
fast processors. Finally, as we demonstrated the linear speedup in the hypercube 
can be obtained only in a perfect network with no communication delays at all. 
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7 Scheduling in Hard Real-Time 
Systems 

In Chapters 4 and 5 we analyzed scheduling problems in which the task perfor-
mance is subject to temporal restrictions such as release times or deadlines. The 
present chapter deals with a similar problem, but where the tasks are to be pro-
cessed repeatedly, and each execution is restricted by release times and dead-
lines. The release times are regularly distributed over time with equal distances 
called the task period. Such tasks are called periodic. The deadline is usually as-
sumed to coincide with the release time of the next period. In many applications 
such as real-time systems we find problems where sets of periodic tasks are to be 
processed on a single processor or on a distributed or parallel processor system. 

The area of real-time systems is a field of applications that differs consider-
ably from the type of applications we have seen so far. A real-time system can 
roughly be described as a computing system designed for controlling some tech-
nical facility. Before we deal with the scheduling problem in such systems, we 
start with a short introduction to real-time systems, what we understand by them, 
present some applications and discuss characteristic properties and general func-
tional requirements of such systems. 

Section 7.1 introduces the main characteristics of real-time systems, presents 
some application examples, and discusses the functional requirements for real-
time systems. A coarse idea of structuring a real-time system and about the na-
ture of the tasks is given in Section 7.2. Section 7.3 deals with the scheduling of 
periodic tasks on a single processor. The rate monotonic and earliest deadline 
first strategies are analyzed from both, properties and performance points of 
view. The generalization to multiprocessor systems is discussed in Section 7.4. 
In Section 7.5 we review shortly runtime problems caused by blockings due to 
the use of non-preemptable (non-withdrawable) resources. We are not able to 
present the details of synchronization protocols, but just touch the subject, and 
discuss how blocking delays can be handled. Finally, in Section 7.6 we introduce 
several variants of the periodic task model that are considered in literature in or-
der to gain higher flexibility as compared to the simple periodic task model.  

7.1 Introduction 

This chapter gives an overview on the peculiarities of real-time systems. An area 
like real-time systems is in fact the merging point of many disciplines, ranging 
form hardware and operating systems, to requirement analysis and design meth-
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odologies. Its many facets cannot be presented in the required detail, but our aim 
is to give an overview including the definition and general characterization. 

7.1.1 What is a Real-Time System? 

The role played by real-time systems today is increasing with a surprising speed, 
since our everyday life becomes more and more dependent on them. Real-time 
systems are used to control industrial, medical, scientific, consumer, environ-
mental and other processes. They operate in close connection with technical sys-
tems called "environment" or "external system" (viz. Figure 7.1.1), such as pro-
duction facilities, power plants, and as well in embedded system applications. 
The purpose of the real-time system (also called "internal system", in contrast to 
the external system) is to enforce some specific behavior of the environment. 
This is maintained by proper reactions within strict time limits in case the status 
of the environment deviates from the required specification. Depending on the 
nature of the applications, the internal system has many processes that are exe-
cuted repeatedly. Examples are the periodic measurement by instruments that 
inform about the status of the controlled system, the evaluation of the measured 
data, the computation of new data derived from the latter for e.g. monitoring 
purposes and long term storage, and the generation of signals for controlling the 
environment by adjusting the actuators appropriately, to ensure the required or 
expected functioning of the environment. 

Real-Time 

System
Environment

control

data

sensed

data

"internal"

"external"  
Figure 7.1.1 Communication between a controlled environment and a real-

time system. 

There are several attempts to define real-time systems. In our opinion, the fol-
lowing definition given by [KKZ88] comprises the characteristics of a real-time 
system most closely: 

"A real-time system is defined as an interaction system that main-
tains an ongoing relationship with an asynchronous environment, i.e. 
an environment that progresses irrespectively of the real-time system 
in an uncooperative manner. The real-time system is fully responsi-
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ble for the proper synchronization of its operation with respect to its 
environment." 

Closely related, or often even synonymously used, is the notion of an embedded 
system. The computer is interfaced directly to the physical equipment of the en-
vironment. There is no exact definition available, but real-time systems are most-
ly to be considered as being embedded in larger environments. From the way this 
term is used we may deduct that embedded systems can be understood as work-
ing autonomously and pertaining the complete internal system, including the 
sensors, actuators and alarms. Similar to embedded systems are mechatronic sys-
tems, which can be understood as mechanical systems like machines, enhanced 
by closely attached control devices. In such systems, the functionality of a ma-
chine is directly dependent on the real-time control system. The machine is use-
less if the computer system does not work properly. Typical examples of embed-
ded and mechatronic system applications are industrial robots, NC-machines and 
car engine control, besides many others (viz. [WS98]).  

One of the main characteristic of a real-time system is a strong interaction 
with its environment. Technical systems demand from their control systems sig-
nificant computation and control processing, and a guarantee of predictable, reli-
able and timely operations. The problems the designer of a real-time system has 
to face are manifold: 
- Technical processes as presented by an external system are usually very com-
plex. 
- The corresponding real-time systems consist of a large number of mutually 
dependent components. 
- The notion of "system" is difficult to handle. Essential dependencies between 
parts of the system have to be realized. 
- Both, the external system and the real-time system have to be partitioned into 
smaller components ("partial systems", "partial processes"). 
- Knowledge about partial systems is usually incomplete. 

7.1.2 Examples of Real-Time Systems 

To guide the reader towards a better understanding of the subject we give some 
insight to specific real-time applications. There are fundamental differences be-
tween non-real-time applications and real-time applications. Looking, for exam-
ple, at the differences between a compiler and a chemical process control pro-
gram we see that a program compilation can be fast or slow, depending on the 
speed of the machine, the used language, and the size of the program. The user 
more or less tolerates compilation time. A chemical process control program, in 
contrast, controls an external process. Therefore the program steps must be syn-
chronized with the external events of the process. A careless design can result in 
the danger of damages in the environment, as can easily be imaged when think-
ing on heat control in a chemical reactor. 
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- An environment such as a chemical factory consists in general of many com-
ponents that need to be controlled. A simple example regarding just one compo-
nent of a larger system is the control of an even flow of liquid in a pipe by a 
valve. The computation to calculate the new valve angle may be quite complex. 
The computer interacts with the facility using sensors and actuators. Depending 
on the criticality of the application, there are hard or soft real-time requirements. 
- Mechatronics is an interdisciplinary cooperation of mechanical engineering, 
electronic engineering, and software engineering. Classical mechanical systems, 
enhanced by electronic components allow the creation of new products of greater 
functionality and adaptability. Typically, electronic system monitors the status of 
the mechanical system via sensors and computes actuator signals for enforcing 
certain optimal performance. Examples of mechatronic systems are automated 
household appliances such as CD players, microwaves, and dishwashers. Traffic 
control, complex car control systems, transportation systems and computer aided 
manufacturing systems belong as well to the wide spectrum of real-time applica-
tions. 
- Manufacturing: The entire manufacturing process from product design to fab-
rication is controlled by a large real-time system, usually distributed over many 
computing resources. Here the soft real-time character is emphasized.  
- Communication, command and control: Wide range of disparate applications 
exhibit similar characteristics. They include airline seat reservation, air traffic 
control, remote bank accounting and many others. Devices and instruments for 
gathering information that is required for decision making are often distributed 
over a wide geographical area. Mostly, the real-time requirements are of soft 
character, with due dates and cost functions depending on the particular applica-
tion 

To summarize, we see that the real-time requirements in these applications 
differ considerably. The correctness of a real-time system depends not only on 
the logical result of the computation but also on the time at which the results are 
produced. The timing requirements can range from msec to hours, days, ...,  
even within the same application. Another important point regards the urgency of 
control actions. In hard real-time control, the deadlines have to be observed, and 
the responses must occur within specified deadlines. In soft real-time control, in 
contrast, actions may by delayed up to a certain extent (due dates), or the re-
sponse times, though hard, may be occasionally missed. 

7.1.3 Characteristics of Real-Time Systems 

In real-time systems time is a central issue. The operating system is responsible 
for the timeliness of operations. Therefore, not only the time behavior of pro-
grams has to be well understood, but also scheduling theory turns out to be a key 
discipline. In this connection, issues such as real-time mode of computer opera-
tions, management of different types of processes, time-, event-, and priority-
based interrupts, synchronization primitives, concept of tasks as a parallel pro-
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gram thread in a multiprogramming environment, task scheduling operations, 
and timing of task executions are fundamental. On the other hand, processor uti-
lization is less relevant, because the cost of any processor involved in a failure of 
an external process is negligible as compared to the cost of damages caused by 
the failed process. This is true even in comparatively inexpensive environments 

What is instead required is dependable and predictable fulfillment of the re-
quirements. If a computer cannot guarantee reaction times, it may be unable to 
cope appropriately with exceptional and emergency situations arising in the envi-
ronment and may thus violate the latter's safety requirements. The dynamics of 
the physical system under control impose timing constraints that must be met 
and therefore dictate the temporal behavior to be achieved. Therefore, the assur-
ance of the (functional and temporal) correctness of a real-time system, mainly 
for those embedded in safety-critical systems, must be possible. 

There are environments with hard and with soft timing constraints. They are 
distinguished by the consequences of violating the timeliness requirement: soft 
real-time environments are characterized by costs rising with increasing lateness 
of results. In hard real-time environments such lateness is not permitted under 
any circumstances, because late computer reactions are either useless or danger-
ous. In other words, the cost for missing deadlines in hard real-time environ-
ments are - from the application's point of view - considered as infinitely high. 
Hard time constraints have to be determined precisely, and typically result from 
the physical laws governing the technical processes being controlled.  

One can already see that general questions from different knowledge areas 
arise in connection with the realization of a real-time system. The construction of 
real-time systems includes the requirement analysis and specification, formal 
methods and models, refinement, language design, compilers, operating systems 
and scheduling, hardware aspects, etc.. Solving the real-time system implementa-
tion problem thus needs a synergetic exertion of experts in various knowledge 
areas. Our objective here is to concentrate on the scheduling aspect in real-time 
systems. 

7.1.4 Functional Requirements for Real-Time Systems 

Technical systems demand from their control systems significant computation 
and control processing, and the guarantee of predictable, reliable and timely op-
eration. Design problems to meet these requirements are manifold: 

Timeliness: There are two general kinds of requirements: In relative timing 
constraints, actions may have to be performed within a given interval of time rel-
ative to the occurrence of an external or internal event. Absolute timing con-
straints specify the system behavior for globally given points in time.  

Predictability: The controlling real-time system must nevertheless handle 
each external event predictably within the associated time constraints. The reac-
tions to be carried out by the computer must therefore be precisely planned in 
order to get a fully predictable behavior.  
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Dependability refers to the general requirement of trustworthiness. The sys-
tem has to produce the right control signals at the right time (correctness). Ro-
bustness refers to the requirement that the system remains in a predictable state, 
even if the environment does not correspond to the specification, e.g., if inputs 
are not within a given range. Another condition is permanent readiness, meaning 
that the real-time system does not terminate (e.g. as a result of a failure), and tol-
erance against software or hardware faults.  

7.2 Basic Notions 

The design of real-time systems is an iterative process in which solution concepts 
and their verification is modified until a hopefully satisfying final solution is ob-
tained. Unfortunately, there is no closed design theory available. First we give a 
coarse idea about the structure of a real-time system and about the nature of the 
tasks. Then we introduce a formal task model and discuss general scheduling is-
sues. 

7.2.1 Structure of a Real-Time System 

A coarse view of the activities that should be performed by the real-time system 
is presented in Figure 7.2.1. A 5-stage structure distinguishes 

sensor evaluate
& decide actuator

environment

human

actuator
element

sensor
element

 
Figure 7.2.1   Five stage structure of a real-time system. 

� sensors, which are devices informing about the status of the environment, 
� sensor elements, which consist of the software modules that perform some 
pre-processing on the measured data, 
� an evaluation and decision stage, where the validity of pre-processed data is 
checked and put into relation with other data such as historical data, and re-
quirements for changes in the environment are computed. In larger systems a da-
tabase or knowledge base will be needed for performing the required functions, 
� actuator elements, which convert the required changes into control data for 
the actuators, and 
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� actuators, which are the final devices to change the behavior of the environ-
ment. 
A real-time system has in general several threads of control. Several types of 
threads (also called end-to-end paths [Ger95]) are distinguished. A periodic path 
is executed repeatedly, once in a period of fixed length, and the completion of 
one execution must not exceed a given deadline. A typical example is to read 
sensor data and update the current state of internal variables and outputs. An 
asynchronous or aperiodic path responds to internal or external events, but pre-
cise request times for the execution are not known in advance. Usually, the min-
imum amount of time between two consecutive requests and a deadline, by 
which an execution must be completed, are available.  

We adopt here a simplified model in which each path is represented by a 
task whose runtime conditions are specified by a number of attributes such as a 
period or the requirement of a repeated execution guided by a given maximal 
time lag, with or without deadlines (hard) or due dates (soft).  

In the next section we present a more formal view of the task system and its par-
ticular properties. 

7.2.2 The Task Model 

Suppose we are given a set of tasks, T  = { T1 ,..., Tn }. There are no precedences 
between the tasks, and each task is characterized by a set of parameters that are 
assumed to be integers. The notion of real-time scheduling refers to the condition 
that given deadlines is observed. As discussed in Chapter 3, every task Tj charac-
terized by the following data:  
- Processing time (pj) is usually be assumed to be the worst case execution 
time.  
- Ready times or release times (rj) and deadlines ( d ~j) may be specified for each 
task.  
- A periodic task Tj is characterized by a sequence of equally distant release 
times defining its period + j . In each interval one instance of the task is started. A 
periodic task can thus be characterized as a potentially infinite sequence of in-
stances, each with a release time and a deadline. The ready times are usually the 
left interval boundaries. The simplest condition for the deadlines is to assume the 
right interval boundaries.  
- Aperiodic tasks: The execution of a task may be triggered by an aperiodic 
event such as a hardware interrupt, or by another task in case of a particular 
computation result. Interrupts can take place at random intervals and be devastat-
ing if the system does not anticipate and correctly handle them.  
- A sporadic task is an aperiodic task that is repeatedly executed. Instead of a 
period, it is characterized by a minimum time tj between releases.. The inverse of 
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tj is referred as the maximum arrival rate. This allows us to handle sporadic tasks 
as periodic with a period being the inverse of the maximum arrival rate. 
- Task offset or phase: The first period of task Tj starts with an offset offsetj 
(usually offsetj = 0). The i 

th instance of Tj has then the release time offsetj
 + (i�1)+j  . If the deadline is at the end of the period it is given by offsetj + i+j . 
- The importance of task Tj is expressed by a numerical weight (priority) wj . In 
case of task contention, higher critical tasks must be processed prior to less criti-
cal tasks. We assume here that tasks are immediately preempted at the release of 
a higher priority task. 
- Tasks may require additional renewable resources R(Tj) besides processors 
(cf. Chapter 13). Because of their possible impact on the runtime behavior, we 
are here only interested in resources that are exclusively used and non-
preemptable, where a task will keep hold on an assigned resource until its com-
pletion, even if the task is preempted. Examples of such resources are communi-
cation channels, buffers, storage devices, etc. .  

7.2.3 Schedules 
1 

Feasibility 

As before a schedule must obey all the conditions specified in Section 3.1. There 
are two ways to specify schedules. An explicit specification contains the com-
plete and detailed description of the schedule with all the timing parameters and 
processors which the tasks are assigned to for execution. For the non-preemptive 
tasks, it suffices to specify the start time and the processor, for example by a se-
quence of pairs (start times, a processor). Alternatively, one may specify a list of 
pairs (task, start time) for each processor. In the preemptive case we need to de-
fine the start times and duration of all processing intervals. Explicit schedules are 
used in pre-runtime or off-line scheduling. An implicit description is based on a 
scheduling rule, according to which the tasks are sequenced. This can be done by 
means of priorities where tasks of higher priority are given preference. When a 
schedule is constructed implicitly we talk about on-line scheduling.  

For solving the scheduling problem we may have to make assumptions 
about the number and type of processors. If processors have local memory there 
would be no need to provide all processors with all the code segments. As a con-
sequence, a processor will only be able to process those tasks whose code is 
stored locally. The problems we are confronted with, are manifold: 
� How many processors are required, and how should the code be distributed. 
� Find a feasible and safe schedule, in which also communication delays be-
tween pairs of dependent tasks are taken into account. 

                                                 
1 An interesting historical overview on real-time scheduling can be found in [SAA04]. 
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� Which strategy should the runtime system follow in order to ensure correct 
behavior. 

General strategies for scheduling periodic tasks 

Based on the priorities a simple priority-driven scheduling rule can be defined by 
preempting an executed task immediately if an instance of a higher priority task 
is requested. Conversely, a lower priority task is never able to preempt a higher 
priority task. Of course, preempting a task and continuing it later causes delays 
due to the context switches, but for simplicity reasons we neglect the task switch-
ing times. 

For a given task set with priorities, a schedule can easily be determined. A 
priority assignment is called feasible if the schedule resulting from that assign-
ment is feasible. Priorities can be 
- fixed (or static): each task has a user- or system-defined priority that remains 
constant for the lifetime of the task. Let T  = {T1 ,..., Tn} be a task set with re-
spective priorities w1 ,..., wn . W.l.o.g. we assume that the priority assignment is 
injective, i.e., any two tasks have different priorities. The (uniquely defined) pri-
ority list is the sequence of tasks ordered decreasingly with the priorities.  
- dynamic: depending on execution parameters such as upcoming deadlines or 
other runtime conditions, the priorities vary at runtime.  

We distinguish two versions of priority driven task executions, pre-runtime (off-
line) and runtime (on-line) scheduling. 

Off-line versus on-line scheduling 

We give a short discussion of the pros and cons of the off-line and on-line 
scheduling paradigm.  

In off-line scheduling the schedule for the periodic processes is computed 
during and explicitly specified the system design. The time efficiency of the 
scheduling algorithm is not a critical concern. In most cases off-line scheduling 
would provide a better chance to satisfy all the timing and resource constraints. 
Then, at runtime, the periodic processes are executed according to the previously 
computed schedule. As a further advantage of the pre-runtime approach, it is rel-
atively easy to take into account additional constraints, such as arbitrary release 
times, deadlines, and precedences.  

In on-line scheduling decisions about which task is to be executed next are 
made at runtime. Compared to the off-line scheduling paradigm, the scheduler 
has more work to perform at runtime, in particular if processes contain critical 
sections. Another drawback is that an on-line algorithm may fail to provide a 
feasible solution though it could be solved with the pre-runtime approach. Addi-
tional application constraints are likely to conflict with the priorities that are as-
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signed at runtime to the processes. As an advantage, on-line scheduling generally 
allows more flexible reaction on unforeseen or exceptional situations than off-
line schedules.  

7.3 Single Processor Scheduling 

In this section we concentrate on problems of scheduling periodic tasks on a sin-
gle processor. The tasks are assumed to be preemptable, and additional resources 
besides processors are not considered. Hence the question we are dealing with is: 
Given a set of n periodic tasks T  = {T1 ,..., Tn} with respective processing times 
(worst case execution times) p1 ,..., pn and request periods +1 ,..., +n , is it possi-
ble to process the tasks preemptively on a single processor? To answer this ques-
tion it is important to realize that each task Ti utilizes the fraction ui := pi /+i of 
time the processor uses for execution. The total processor utilization  

W := 5
i=1

n
 pi /+i  

represents hence the fraction of time needed for executing the whole set of tasks. 
Obviously, if W > 1 the processor is over-utilized and no feasible schedule will 
exist. Hence W ≤ 1 is a necessary condition for schedulability.  

The schedule construction is guided by the special way how the priorities are 
defined. Well-known examples of priority rules are the rate monotonic (RM)  
priority assignment defined by wj := 1/+j . This is a fixed priority rule, easy to 
implement, and easy to manage. The earliest deadline first (EDF) priority as-
signment is dynamic. In this section we discuss the properties of both rules. 

As an introduction we first consider the special and particularly simple case 
of harmonic task sets.  

Harmonic task sets 

Let T  = {T1 ,...,  Tn} be a set of periodic tasks, indexed in order of increasing pe-
riods: +1 � +2 � ... � +n . Then T  is called harmonic if, for each i � {2 ,...,  n}, +i 
is an integer multiple of +j for all j < i. The following Theorem shows that a set 
of harmonic task can easily be scheduled, as long as the total utilization does not 
exceed 1. 

Theorem 7.3.1  Any harmonic task set with total utility W = 5 pi /+i � 1 can be 
feasibly scheduled by the rate monotonic priority rule.  
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Proof. By an inductive argument we show that a feasible schedule can directly be 
constructed, and the arrangement of the task instances follows exactly the given 
priority rule. All task offsets are set to 0.  

Starting with T1 , its instances are initiated at the instants 0 , +1 , 2+1 ,... . 
Since T1 has highest priority, the instances are not preempted.  

The tasks Ti , i = 2 , 3 ,...,  n , are scheduled in that order of increasing periods. 
Suppose the tasks T2 ,..., Ti�1 have already been successfully scheduled.  

For Ti , the instances are scheduled at earliest possible instants after the times 
0 , +i , 2+i ,... . They are filled preemptively in the gaps between the instances of 
the tasks T1 ,..., Ti�1 . For schedulability, consider the first period of Ti : The in-
terval [0 , + i] contains + 1/+i instances of T1 , +2/+i instances of T2 ,...,  and +i�1/+i 
instances of Ti�1 . Notice that these are all integers due to the harmonic assump-
tion. So the processor time consumed by the higher priority tasks during this in-
terval is (+i/+1)p1 + (+i/+2) + ... + (+i/+i�1)pi�1 , and the processor utilization dur-
ing [0, + i] is p1/+1 + p1/+2 + ... + pi�1/+i�1 < W. Obviously, because of W � 1, 
there is enough room left for the first instance of Ti . It is easy to see that the 
same situation appears in the following periods of Ti . It follows by induction 
that, since 5 pi /+i � 1, all tasks can be feasibly scheduled.    

7.3.1 Static Priority Scheduling 

We now turn to sets of general periodic tasks. Our aim is to find an optimal pri-
ority rule in the sense that if some priority assignment is feasible then the priority 
rule is feasible as well. The following example shows that the way how priorities 
are chosen may have consequences regarding the schedulability of a given task 
set. 

Example 7.3.2  Given tasks T1 and T2 with respective periods and processing 
times +1 = 10, worst case execution time p1 = 5, and +2 = 20, p2 = 6. The tasks 
are schedulable if we choose pr1 < pr2 . If pr1 > pr2 then no schedule exists (see 
Figure 7.3.1).    

We first introduce some basic definitions. The start time of the first period, t, is 
called the task offset. The offset of task Tj � T  is denoted by offsetj . It is as-
sumed that 0 ≤ offsetj ≤ +j for j = 1 ,..., n. The response time of a request for a 
task Tj is the time span between the request and the completion time of the re-
sponse to that request. A critical instant for Tj is an instant at which a request for 
Tj has maximum response time. The critical zone is the time interval between a 
critical instant and the completion of the response.  
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Figure 7.3.1  Influence of priorities: (a) pr1 < pr2;   (b) pr2 < pr1 . 
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Figure 7.3.2  Dependency of the critical instant on the offset of T2 . 

The positions of the critical zones may depend on the task offsets. Consider as an 
example two tasks, T1 and T2 with +1 = 3, p1 = 1, +2 = 5, p1 = 3, and assume pr1
 > pr2 , and offset1 = 0. The higher priority task T1 is scheduled at time instants 
0 , 3 , 6, etc. There are three different offsets for T2 : 0 , 1 , 2 (offset2 = 3 is obvious-
ly equivalent to offset2 = 0). Figure 7.3.2 shows three schedules for the different 
offsets of T2 . We see that the maximum response time (i.e., the length of a criti-
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cal zone) of T2 is 5. In the case of offset2 = offset1 = 0 the time 0 is a critical in-
stant. 

Lemma 7.3.3  Given tasks T1 and T2 with respective periods + 1 and + 2 . Let pr1
 > pr2 . Then the maximum response time of T2 is gained if offset1 = offset2 .  

Proof. Assume first +1 < +2 . Consider a request of T2 between t1 and t1 + +2 (see 
Figure 7.3.3). In this interval task T1 will occur at times t2 (� t1), t2 + +1 ,..., t2
 + k+1 � t1 + +2 . Unless T2 is completed before time t2 + +1 , T2 will experience 
certain delays caused by preemptions of the higher priority task T1 . We see that 
making t2 smaller will not decrease the completion time of T2 . Hence the delay 
of T2 will be largest if t2 = t1 . 

t2

t1

t2+2+�t2++� t2+k+� t2+(k+1)+�

t1++@  
Figure 7.3.3  Requests of T2 during one period of T1 . 

If  +1 > +2 (and still pr1 > pr2) and a feasible schedule exists then the maximum 
response time of T2 is p1 + p2 which is gained if offset1 = offset2 .     

Theorem 7.3.4 (Critical Instant Theorem, Liu and Layland [LL73])  A critical 
instant of any task occurs whenever the task is requested simultaneously with 
requests of all higher priority tasks. 

Proof. Let the set T  = {T1 ,..., Tm} of tasks be indexed in order of decreasing 
priority: pr1 � pr2 � ... � prm. The theorem follows if, for all j = 2 ,..., m, the 
previous lemma is repeatedly applied for i = 1 ,..., j�1.    

Corollary 7.3.5  Consider a schedule for T1 ,..., Tm .  
(i) If the requests for all tasks at their critical instants are fulfilled before their 
respective deadlines, then the schedule is feasible. 
(ii) Assume offsetj = 0 for j = 1 ,..., n, and let + be the maximum period. Then the 
schedule is feasible, iff all task instances between 0 and + can be completed be-
fore their respective deadlines.    

The next lemma establishes the preparation for the proof that the rate monotonic 
rule is optimal, in the sense that if a task set that can be scheduled by any priority 
assignment can also be scheduled by the rate monotonic assignment. 

Lemma 7.3.6  Let T  = {T1 , T2} and +1 < +2 . If there exists a feasible schedule 
with pr2 > pr1 , then there exists also a feasible schedule with pr1 > pr2 . 
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Proof. From Theorem 7.3.4 we know the existence of a schedule with pr1 > pr2 
implies that a critical instant for T2 occurs if it is requested simultaneously with 
T1 . In other words, both tasks have the same offset. In this case we see that, 
while T2 is executed once, at least �+2/+1� instances of T1 will be executed. Hence 
a necessary condition for schedulability with pr1 > pr2 is 

�+2/+1�&p1 + p2 � +2 . (7.3.1) 

We have to show that (7.3.1) is true if T1 and T2 can be feasibly scheduled with 
pr2 > pr1 . Obviously we have p1 + p2 � +1 . Condition (7.3.1) follows from this 
condition because  

�+2/+1� p1 + �+2/+1� p2 � �+2/+1� +1 � +2  and  p2 � �+2/+1� p2 . 

Hence we can conclude: If the schedule with pr2 > pr1 is feasible, then the 
schedule with pr1 > pr2 is as well.       

Interpretation of this result: If +1 < +2, and if p1 and p2 are such that the schedule 
is feasible with pr2 > pr1 , it is also feasible with pr1 > pr2 . The opposite is not 
true in general, as we have already seen from the Example 7.3.2. This is general-
ized by the following theorem:  

Theorem 7.3.7  If a feasible priority assignment exists for some task set, the rate 
monotonic priority assignment is feasible for that task set. 
Proof. We use an adjacent pair-wise interchange property: Suppose the tasks are 
indexed in order of increasing periods. Choose any priority assignment that de-
fines a feasible schedule. If the priorities are not rate monotonic there will be a 
pair of "adjacent" tasks (Ti , Tj) in the priority list such that +i > +j . It is easy to see 
from Lemma 7.3.6 that interchanging the priorities of Ti and Tj does not violate 
feasibility of the schedule. The theorem follows because the rate monotonic order 
can be obtained from any other order by a sequence of pair-wise interchanges.  

From this theorem we conclude that the rate monotonic priority assignment can 
be considered as the best among all priority lists. Despite this fact, it can easily 
be seen that RM scheduling is not necessarily feasible, though the total utilization 
is smaller than 1. For example, the two tasks T1: +1 = 12, p1 = 6, and T2: +2 = 18, 
p2 = 7 have total utilization W = 8/9, but it cannot be feasibly scheduled by RM.  

The question one my want to have answered is: What is the least upper 
bound for W such that the rate monotonic rule can safely be blindly applied. 
Based on the concept of critical instant both, Serlin [Ser67] and Liu and Layland 
[LL73] proved a sufficient utilization-based condition for feasibility of the RM 
policy. 

Consider a schedule for a given feasible priority list. If the processor utiliza-
tion is sufficiently small it will be possible that feasibility is still kept even if 
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processing times are increased or periods are decreased. For particular problem 
settings we may be able to reach 100 % processor utilization by such changes, 
but in general it has to be expected that - sooner or later, depending on the priori-
ty list - we end up with some smaller utilization value.  

In this sense we call the task set extreme (with respect to the priority list) (in 
[LL73] extreme task set is called fully utilizing the processor) if increasing any 
processing time or decreasing any period makes the priority list infeasible.  

The question is to which extent the processor utilization can be increased by 
such parameter changes, before the schedule becomes infeasible. Hence for a 
given static priority-based scheduling rule, one would like to know the least up-
per bound of the utilization factor which is defined as the minimum of the utili-
zation factors over all extreme task sets. Such bound allows formulating a simple 
sufficient schedulability criterion: As long as a task set has smaller utilization 
than the least upper bound, feasibility is guaranteed. In fact, in view of the opti-
mality of the RM rule we are interested in such a bound for RM.  

Theorem 7.3.8 [LL73]  For a set of m tasks with RM priority order, the least 
upper bound for the processor utilization is W (n) = n(21/n – 1).  

Proof. We present the proof for n = 2 tasks T1 , T2 . Assuming +1 < +2 , RM 
schedules T1 with higher priority than T2 . Hence, when starting the schedule at 
time 0 , T1 will be processed non-preemptively at instants 0 , +1 , 2+1 , 3+ 1, …  

It follows from Theorem 7.3.4 that the time 0 is a critical instant of T2 . The 
idea is to increase p2 until {T1 , T2} is extreme, and then estimate the infimum 
value for the utilization factor. Two cases are discussed separately:  

(i) During the first period of T2 there are 9+2/+1; requests for T1 . All requests of 
T1 in the critical time zone of T2 are completed before the next request of T2 : 
Then we must have p1 ≤ +2 � +1&�+2/+1�, and consequently the largest possible 
value of p2 is p2 = +2 – p1&9+2/+1; . The corresponding utilization factor calculates 
to  

W (2) = 1 + p1&[(1/+1) � (1/+2)&9+2/+1; ]  .  

We see that W (2) is monotonically decreasing in p1 

(ii) The execution of the 9+2/+1; 
th request of T1 overlaps with the next request of 

T2 : Then we must have p1 � +2 � +1&�+2/+1� , and consequently the largest possi-
ble value of p2 is p2 = – p1&9+2/+1; + +1&�+2/+1� . The corresponding utilization fac-
tor calculates to  

W (2) = (+1/+2)&�+2/+1� + p1&[(1/+1) � (1/+2)&�+2/+1� ]  .  

Now W (2) is monotonically increasing in p1 .  
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The minimum of W (2) in these two cases obviously is reached for p1 = +2 �  
+1&�+2/+1� which gives us the expression  

W (2) = 1 – (+1/+2)&[ 9+2/+1; � (+1/+2) ]&[ (+1/+2) � �+2/+1� ]  . 

Using abbreviations I := �+2/+1� and f := (+2/+1) � �+2/+1� for the integer and frac-
tional part of +1/+2 we get 

W (2) = 1 – f (1 – f )/(I + f )  . 

Since W (2) is monotonic increasing with I , the minimum of W (2) is obtained for 
I = 1. W (2) is minimized for f = 21/2 – 1, which gives us the result W (2) = 2&(21/2 –
 1) I 0.83 . This completes the proof for n = 2 tasks.   

The proof of the general case is omitted because it is based on the essentially 
same idea, but requires more technical effort: showing that for determining the 
least upper bound it suffices to restrict to +i/+j < 2 for all i and j (this corresponds 
to the above condition I = 1), and stepwise maximizing the completion times p2 ,
 ..., pn until pi = +i+1 � +i for i = 2 ,..., n, which is again the minimization condi-
tion for W (n), and finally minimizing a multi-dimensional equation for W (n). 

It should be mentioned that R. Devillers and J. Goossens [DG00] found out that 
the proof of the n > 2 case is incomplete, but the bound is correct. 

The above results lead us to the following remarks. 

(i) For harmonic tasks {T1 , T2}, since the period of T2 is an integer multiple of 
the period of T2 , we get W (2) = 1 (see also Theorem 7.3.1). 

(ii) Notice that W (n) < W (n�1), and in the limit n � #, W (n) tends to ln (2) I 
0.693. Moreover, except for the trivial case n = 1, the bound W (n) is never 
reached, since it is irrational, while from our assumptions W is always rational.   

(iii) Task sets with utilization smaller than W (n) can always be scheduled via the 
RM rule. In this sense, the RM strategy can be considered as robust. This encour-
ages one to use a thumb rule in practice: If a task set utilizes the processor not 
more than 70 %, the RM strategy can be even used as an on-line scheduling strat-
egy.  

It should be emphasized that the upper bound W (n) = n(21/n – 1) is a suffi-
cient but not necessary condition for schedulability by the RM rule. On the other 
hand, in special cases with larger utilization, the RM rule may still allow to con-
struct feasible schedules.  

In practice, it is often possible to replace a given task set by a harmonic one, 
where periods are slightly reduced, or task splitting is applied [SG90]. In task 
splitting a task with period + and processing time p is replaced by k � 2 new 
tasks, each with period +/k and processing time p/k. For example, if there are two 
tasks with periods 11 and 15, the first period can be reduced to 10 (step (i)), and 
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replacing this task by two tasks, each with period 5, we end up with harmonic 
tasks. As a drawback, the number of preemptions can be expected to be larger 
than in a schedule for the original task set. 

We realize that the RM algorithm is often able to produce a feasible schedule 
though the total utilization is higher than W (n). For example, the tasks T1 , T2 with 
the respective periods and processing times +1 = 5, +2 = 8; p 1 = 2, p2 = 4 have the 
utilization factor W I 0.9 > W (3) I 0.779. The RM schedule is shown in Figure 
7.3.4. 

0 +�2

+�1 2+�1

2+�2

3+�1

3+�2

4+�1

T1

T2

critical instant of T2  
Figure 7.3.4   Initial part of a feasible preemptive schedule. 

For practical reasons one is interested in a simple criterion that decides upon ap-
plicability of RM. A necessary and sufficient characterization of the RM was giv-
en by Lehoczky et al. [LSD89]. The basis of the idea of their analysis is the fol-
lowing:  

In a given task set {T1 ,..., Tn} with +1 � +2 � ... � +n , Tj (1 < j � n) can only 
be preempted by tasks of higher priority, that is by the tasks T1 ,..., Tj�1. There-
fore, for determining schedulability of Tj , only the task set {T1 ,..., Tj} needs to 
be considered.  

Another point regards the task offsets: Though it is shown in [LL73] that the 
critical instant 0 is sufficient for calculating bound W (n), critical instants > 0 may 
also have to be considered for deriving a necessity condition. 

We start with introducing some useful notion. To determine if a task Tj can 
meet its deadline under worst case offsets, the processor demand made by the 
task set is considered as a function of time (t). The cumulative workload on the 
processor caused by the tasks T1 ,..., Tj over the interval [0 , t] if 0 is a critical in-
stant is denoted by  

Wj(t) := 5
j

i=1
 pi 9 t

+ j;  . 

Furthermore, denote by Wj
~ (t) := Wj(t)/t the average workload of the first j tasks 

per time unit in [0 , t], and let Wj
~  := min{ Wj

~ (t) | 0 < t � +j }, and W~  := max{ Wj
~ (t)

| 1 � j � n }. An exact characterization for schedulability of task Tj by the RM al-
gorithm is: 
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Theorem 7.3.9 [LSD89]  Let T1 ,..., Tn be periodic tasks and +1 � +2 � ... � +n .  
(i) Tj can be scheduled for all offsets offsetj � [0 , + j) by the RM algorithm if and 

only if Wj
~  � 1. 

(ii) The entire task set can be scheduled by the RM algorithm if and only if W~ 
� 1.  

Proof. (i) Assume offseti = 0 for i = 1,..., n. Tj completes its first computation at 
time t � [0 , +j] if and only if all the requests from all higher priority tasks are 
completed at time t. The total processing request in [0 , t] is given by Wj(t), and 

hence Tj is completed at time t if and only if Wj(t) = t, or equivalently, Wj
~ (t) = 1. 

Since furthermore Wj(s) > s for s � [0 , t), it follows that a necessary and suffi-
cient condition for Tj to meet its deadline is the existence of a time t � [0 , +j] 

such that Wj
~  = 1.  

Using Theorem 7.3.4, we conclude that, under general offsets, a necessary 
and sufficient condition for Tj to meet its deadline is Wj

~  � 1. 
(ii) follows directly from (i).      

For practical application of this theorem, let us analyze the properties of Wj
~ (t) in 

greater detail:  

Wj
~ (t) = 5

j

i=1
 
pi
t  9 t

+ j;  
is a piecewise monotonically decreasing function that is strictly decreasing ex-
cept at a finite set of values, called RM scheduling points, and denoted by Sj . 

When t is a multiple of one of the periods +i , Wj
~ (t) has a local minimum and 

jumps to a higher value to the right (see Figure 7.3.5). Hence Sj = { k&+i | i =  1, 
...,  j, and k = 1,..., �+j /+i� }. Consequently, for determining the minimum of Wj

~  
one needs to check the points of the finite set Sj . 
This observation leads to the following 

Corollary 7.3.10  (Theorem 2 in [LSD89]).  Given a set of periodic tasks as in 
the above Theorem.  
(i) Tj can be scheduled for arbitrary offsets by the RM algorithm if and only if   

Wj
~  :=  min{ 5

j

i=1
 
pi
t  9 t

+ j;  | t � Sj } 

(ii) T1 ,..., Tn can be scheduled by the RM algorithm for arbitrary offsets if and 
only if  
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W~  := max{ Wj
~  | 1 � j � n } � 1.      

Example 7.3.11  T1: p1 = 2, +1 = 5; T2: p2 = 4, +2 = 14; T3: p3 = 9, +3 = 33. The 
total utilization is 0.96 > W(3) = 0.779 . The scheduling points are S1 = {5}, S2
 = {5 , 10 , 14}, S3 = {5 , 10 , 14 , 15 , 20 , 25 , 28 , 30 , 33}. For example, the minimum 

of W2
~

  in the interval [0 , 14] is at t = 14 (see Figure 7.3.5).    

5 10 14

W2(t)

t
0

 min(W2(t)) 

1.0

6/14

~

~

 

Figure 7.3.5   Graph of function W2
~  in the interval [0,14]. 

The following algorithm is based on Corollary 7.3.10: 

Algorithm 7.3.12  Check_Schedulability. 
Input: m periodic tasks T1 ,..., Tn with respective integer periods +1 ,..., +n and 
integer processing times p1 ,..., pn .  
Output: "schedulable" or "not schedulable" 
begin  
sort the tasks increasingly with the periods;     -- let +1 � + 2 � … � +n 
failed := false;  
for j := 1 to n do 
  for i := 1 to j do 
    begin 
    W~ := infinity ;   -- set W~ to a value � 5

n

i=1
 
2pi
+ j

  

    for k := 1 to �+ j /+i� do 
      begin 
      t := k&+i ; 

      if 5
j

i=1
 
pi
t  9 t

+ j;  < W~ then W~ := 5
j

i=1
 
pi
t  9 t

+ j;  ; 

      end 
     end;   
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if W~ < 1 then print "schedulable"  else print "not schedulable" ; 
end. 
The correctness of Algorithm Check_Schelulability follows directly from the 
corollary. The time complexity is O(n2&+n /+1). 

7.3.2 Dynamic Priority Scheduling 

The second priority rule to be presented is earliest deadline First (EDF) : at each 
point of time, the next process to run is the one with the closest deadline. In con-
trast to RM, the EDF rule is dynamic because each time a new instance is re-
leased it has to be decided which of the current unfulfilled instances has closest 
completion request. In the following Lemma, an overflow denotes an instant at 
which an instance misses its deadline.  

Lemma 7.3.13  (Theorem 6 in [LL73]). When the deadline driven scheduling 
algorithm is used to schedule a set of tasks on a processor, and  the tasks have 
all offset = 0, there is no processor idle time prior to an overflow. 

Proof. Given an EDF schedule and assume that an overflow occurs at time t3 . 
Suppose there is an idle interval before t3 ; let [t1 , t2] be the last such interval.  

Modify the schedule: For each task Tj whose first instance after the idle inter-
val is requested at a time t > t2 , move its and the following requests forward such 
that the first of these is a time t2 . By this move, processor load is not decreased, 
and hence  

- the overflow will stay at t3 or be earlier, 
- the time span between t2 and t3 will stay idle-free,   
Hence in the modified schedule, each task instance is requested at the same 

time t2 , there is an overflow at some time t3', and there is no idle interval be-
tween t2 and t3'. This however is a contradiction to the assumption that all tasks 
have equal offsets and there is an idle interval before the overflow.  

Case of general offsets: With the same argument as in the previous proof we 
conclude that if an idle interval exists before an overflow, then the same task set 
will have an overflow if all offsets are set to 0. Therefore we restrict w.l.o.g. our 
considerations to task sets with offsets = 0.  

Theorem 7.3.14 [LL73].  The tasks {T1 ,..., Tn} can be scheduled preemptively 
by EDF  if and only if  W = 5 pi /+ i � 1. 

Proof. W � 1 is necessary because otherwise a feasible schedule cannot exist be-
cause of processor overload. 
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For sufficiency, assume there is a task set with W � 1, where EDF is not fea-
sible. Let +C := lcm{+1 , +2 ,..., +n} be the cycle length of the schedule 2

 . Then 
there is an overflow between the time 0 and +C . Assuming offsets 0, then +C is 
the first time where the request times coincide again. Then an overflow must oc-
cur at some time t0 between 0 and +C .  

For a detailed analysis, let a-instances denote the subset of instances with 
request time t0 , and b-instances all instances with a deadline beyond t0 . 

Case 1: None of b-instances are started before t0 . Then, since there is no idle pe-
riod in [0 , t0], the processing load is 5 t0/+i > t0 . Since furthermore x � �x� , we 
get W = 5 pi/+i > 1, which contradicts W � 1. For an illustration see the example 
below. 

Case 2: Some of the b-instances are already processed before t0 , though their 
deadline is beyond t0 . At the overflow time t0 , exactly one instance misses its 
deadline, which must be one of the a-instances because the deadline coincides 
with the next request time. This means that the overflowing a-instance must have 
been processed for some time before t0 . This is only possible if it has highest 
priority. In fact, all the a-instances have the same priority between some time t' < 
t0 and t0 . Consequently, the b-instances processed before t0 must have been pro-
cessed before t' (see Figure 7.3.6). Even more, it is not possible that other a-
instances released before t' are processed after t' because their deadline (t0) is be-
fore those of the b-instances. Hence we can summarize: The interval [t' , t0] con-
tains only task instances that are initiated and have deadlines in this interval. 
Therefore, the total processing demand in [t' , t0] is 5 �(t0 – t')/+i� , and, since there 
is an overflow, 5 �(t0 – t')/+i� > t0 – t'. This implies again that W = 5 pi /+i > 1, 
which contradicts W � 1.     

t0t'

instances with release time 
and deadline in [t', t0] b-instances deadlines of b-instances

 
Figure 7.3.6  Proof of Theorem 7.3.14: location of b-instances. 

                                                 
2 lcm is the least common multiple. 
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An example for case 1 in the proof consider the tasks T1 with +1 = 8, p1 = 4 and 
T2 with +2 = 5, p2 = 3. The second instance of T1 is an a-instance which over-
flows at time 16; the third instance of T2 is a b-instance. Figure 7.3.7 shows the 
schedule. 

T1

T2

0 5 10

8

15

16

overflow

 
Figure 7.3.7  Proof of Theorem 7.3.14: An example to case 1. 

Dertouzos [Der74] showed that EDF is optimal among all preemptive scheduling 
algorithms: If, for a given set of periodic tasks, a feasible schedule exists then 
EDF is also feasible. 

7.4 Scheduling Periodic Tasks on Parallel  
Processors 

The real-time system is structured as collection of interconnected processors, for 
executing a given set of periodic tasks. Besides processing times, delays caused 
by communication should be taken into account, but for simplicity reasons we 
assume here that communication delays are small compared to process run times 
and can be neglected. After the set of tasks is properly distributed among the 
processors, scheduling strategies as discussed in Section 7.3 can be applied sepa-
rately to each processor. There are two principal kinds of strategies: 
- static binding, where each task is assigned to one specific processor, and 
- dynamic binding, where tasks compete greedily for the use of the processors.  

Dhall and Liu [DL78] showed that the global application of RM scheduling 
on m processors cannot guarantee schedulability. In the following example, on-
line allocation (dynamic binding) of RM performs poorly. 

Example 7.4.1  Given tasks T1 ,..., Tn to be processed on m = n�1 processors, 
with processing times and periods pj = 2% < 1, +j = 1 (j = 1 ,..., n�1), and pn = 1, 
+n = 1+% . The rate-monotonic strategy with dynamic binding assigns first tasks 
T1 ,..., Tn�1 to processors P1 ,..., Pn�1 . Tn cannot be scheduled and misses its 
deadline. The rate-monotonic strategy with static binding (off-line) could bound 
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Tn to one of the processors. Since % is sufficiently small, the rest can distributed 
among the other processors.    

Distributing the tasks off-line (static binding) can be based on variations of the 
well known bin packing strategy. Given periodic tasks T1 ,..., Tn with utilizations 
ui = pi /+i � (0 , 1]. The problem is to partition the tasks into subsets such that the 
sum of utilizations is not beyond 1, while the number of subsets is minimized. 
The bin packing problem is known to be NP-hard [GJ79] (cf. Section 13.1). One 
of the simplest strategies is First Fit (FF), in which the tasks T1 , T2 ,...  are as-
signed to the fist processor as long as the sum of utilizations is � 1. Then the fill-
ing continues on the second processor, etc. .  

The Rate Monotonic First Fit algorithm (RMFF) [DL78] is based on the first 
fit allocation strategy and applies then RM on each processor separately. It is 
known from Dhall Liu [DL78] that a safe use of RMFF may require between 2.4 
and 2.67 times as many processors as an optimal partition.  

Oh and Baker [OB98] proved that RMFF can schedule any task set on m 
processors as long as the total utilization is not beyond m(21/2 – 1). This result 
was improved by Lopez et al. [LDG01]: If the total utilization is bounded by 
(m+1)(21/(m+1) – 1) then the task set is schedulable. 

A more general result was obtained by Andersson et al. [ABJ01] who 
showed that for any fixed priority multiprocessor scheduling algorithm, sched-
ulability is guaranteed if the total utilization is not higher than (m+1)/2. This 
holds for both, static and dynamic binding.  

Global RM scheduling seems to work well with small task utilizations. Let 
0 � [0, 1] be an upper bound on the individual utilizations, then smaller values of 
0 would allow for a larger total system utilization. For example, if 0 = m/(3m�2), 
a total system utilization of at least m2/(3m�1) can be guaranteed [ABJ01]. Ba-
ruah and Goossens [BG03] proved that if 0 = 1/3, a system utilization � m/3 can 
be gained, and Baker [Bak03] showed that for any 0 � 1, a system utilization of 
(m/2)(1�0) + 1 can be guaranteed. On the other hand, if there are also tasks with 
arbitrary task utilizations, an algorithm called RM-US(J) gives highest priority 
to tasks with utilization � J, and schedules the remaining tasks with RM. Then a 
system utilization of at least (m+1)/3 for J = 1/3 can be guaranteed [Bak03]. 

7.5 Resources 

As pointed out in Section 7.2, tasks may need resources of limited availability 
that can only be exclusively and non-preemptably accessed, thus leading to mu-
tual exclusions of tasks. A task holding a resource may block another task that 
tries to access the same resource.  
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We first consider the situation for a fixed priority scheme such as rate 
monotonic: Suppose a high priority task Th needs access to a resource that is 
locked by another task Tl with lower priority. Since the resource is non-
preemptable and can hence not be withdrawn from Tl , Th has to wait regardless 
of its high priority. This situation is called priority inversion. The problem is that 
Th may be delayed for an undefined amount of time if Tl is preempted by other 
tasks not requiring the resource.  

There are special run-time protocols that organize the task execution in case 
of priority inversion. The inheritance protocol and other synchronization proto-
cols for both, the single and the multiprocessor case, were introduced by, among 
others, Sha et al. [SLR87] and Rajkumar et al. [RSLR94]. The basic inheritance 
protocol, for example, gives the lower priority task temporarily (i.e., until it re-
leases the resource) the (higher) priority of the blocked task.  

In a feasibility analysis one needs to know how long a task can be delayed 
by tasks of lower priority. Depending on the synchronization protocol, upper 
bounds for blocking times can be derived and taken into account. The worst case 
execution times are simply enlarged by these blocking times. 

For case of dynamic priorities such as earliest deadlines there are variations 
of the previously mentioned run-time protocols, as for example the dynamic pri-
ority inheritance protocol. For details we refer to the book of Stankovic et al. 
[SRSB98].  

7.6 Variations of the Periodic Task Model  

The introduced task model was generalized in many ways. A generalization is 
discussed by Sorensen and Hamacher [Sor74, SH75] and similarly by Teixeira 
[Tei78], in which the maximum response times need not be confined by the right 
end of the period. Ramamrithram and Stankovic [RS84, RSC85] consider a dis-
tributed hard real-time model with one CPU per node and periodic and sporadic 
processes. The periodic processes are assigned to CPUs initially and guaranteed 
to meet their maximum response times. The sporadic tasks arrive randomly with 
deadlines and unrestricted arrival rate. Accepted sporadic processes are locally 
scheduled according to the preemptive earliest-deadline-first rule. 

Another alternative is the model discussed by Chen et al. [CA94, CA95] 
which assumes periodic tasks together with the additional, as they call it, "rela-
tive timing constraints" of a low and high jitter (viz. Figure 7.6.1) for the dis-
tance between two consecutive task instances.  
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Figure 7.6.1   Task execution with low jitter 0j and high jitter >j . 

Halang & Stoyenko [HS91] present a "frame superimposition" model for period-
ic processes with known processing time characteristics, release times and dead-
lines. In this model, one of the processes is chosen to start with its frame at some 
time t0 . The frames of the other processes are then positioned in various ways 
along the time line, relative to time t0 . Their algorithm shifts the frames exhaust-
ively and checks feasibility for every possible combination of frames. 

Other generalizations regard processing times. Choi and Agrawala [CA97a] 
assume that each task has a given lower and upper bound for the processing time. 
Mok et al. [MC96a, MC96b] consider a model for real-time tasks, called multi-
frame model where the tasks are instantiated periodically, but with different exe-
cution times in each interval.  

The model discussed in the Ph.D. thesis of Choi [Cho97] and in [CA97a] as-
sumes a cyclic execution of a set of tasks with precedences, relative inter-task 
constraints in form of min/max conditions between start and finish times of any 
two tasks. Furthermore, upper and lower bounds for task execution times are as-
sumed.  

A similar model is end-to-end scheduling, as considered e.g. by Gerber 
[Ger95] and Gerber et al. [GHS95 and GPS95], which deals with the scheduling 
of sets of tasks with precedences, deadlines; various inter-task constraints, and 
communication delays. Another model modification is discussed in [CAS97] 
where repeating processes are considered, and the time between the processes is 
newly determined at each iteration step by a so-called dynamic temporal control-
ler. 
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8  Flow Shop Scheduling 

Consider scheduling tasks on dedicated processors or machines. We assume that 

tasks belong to a set of n jobs, each of which is characterized by the same ma-

chine sequence. For convenience, let us assume that any two consecutive tasks of 

the same job are to be processed on different machines. The type of factory lay-

out in the general case - handled in Chapter 10 - is the job shop; the particular 

case where each job is processed on a set of machines in the same order is the 

flow shop. The most commonly used performance measure will be makespan 

minimization.

8.1 Introduction 

8.1.1 The Flow Shop Scheduling Problem 

A flow shop consists of a set of different machines (processors) that perform 

tasks of jobs. All jobs have the same processing order through the machines, i.e. 

a job is composed of an ordered list of tasks where the i 
th

 task of each job is de-

termined by the same machine required and the processing time on it. Assume 

that the order of processing a set of jobs J on m different machines is described 

by the machine sequence P1 ,..., Pm . Thus job Jj � J is composed of the tasks T1j,

..., Tm j with processing times pij for all machines Pi , i = 1,..., m. There are sev-

eral constraints on jobs and machines: (i) There are no precedence constraints 

among tasks of different jobs; (ii) each machine can handle only one job at a 

time; (iii) each job can be performed only on one machine at a time. While the 

machine sequence of all jobs is the same, the problem is to find the job sequenc-

es on the machines which minimize the makespan, i.e. the maximum of the com-

pletion times of all tasks. It is well known that - in case of practical like situa-

tions - the problem is NP-hard [GJS76].  

Most of the literature on flow shop scheduling is limited to a particular case 

of flow shop - the permutation flow shops, in which each machine processes the 

jobs in the same order. Thus, in a permutation flow shop once the job sequence 

on the first machine is fixed it will be kept on all remaining machines. The re-

sulting schedule will be called permutation schedule.  

By a simple interchange argument we can easily see that there exists an op-

timal flow shop schedule with the same job order on the first two machines P1 

and P2 as well as the same job order on the last two machines Pm–1 and Pm. Con-
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sider an optimal flow shop schedule. Among all job pairs with different pro-

cessing orders on the first two machines, let Ji and Jk be two jobs such that the 

number of tasks scheduled between T1i and T1k is minimum. Suppose T1i is pro-

cessed before T1k (while T2i is processed after T2k). Obviously, T1k immediately 

follows T1i and no other job is scheduled on machine P1 in between. Hence, in-

terchanging T1i and T1k has no effect on any of the remaining tasks' start times. 

Repetitious application of this interchange argument yields the same job order on 

the first two machine (and analogously for the last two machines). Consequently, 

any flow shop scheduling problem consisting of at most three machines has an 

optimal schedule which is a permutation schedule. This result cannot be extend-

ed any further as can be shown by a 2-job 4-machine example with p11 = p41 = 

p22 = p32 = 4 and p21 = p31 = p12 = p42 = 1. Both permutation schedules have a 

makespan of 14 while job orders (J2, J1) on P1 and P2 and (J1 , J2) on P3 and P4 

lead to a schedule with a makespan of 12. Although it is common practice to 

focus attention on permutation schedules, Potts et al. [PSW91] showed that this 

assumption can be costly in terms of the deviation of the maximum completion 

times, i.e. the makespans, of the optimal permutation schedule and the optimal 

flow shop schedule. They showed that there are instances for which the objective 

value of the optimal permutation schedule is much worse (in a factor more than 

1/2 m) than that of the optimal flow shop schedule. 

Any job shop model (see Chapter 10) can be used to model the flow shop 

scheduling problem. We present a model basically proposed by Wagner [Wag59, 

Sta88] in order to describe the permutation flow shop. The following decision 

variables are used (for i, j = 1,..., n; k = 1,..., m): 

zij =  
�.
�
.  

 

 

 
1 if job Ji is assigned to the j th position in the permutation, 

0 otherwise; 

 xjk =  idle time (waiting time) on machine Pk before the start of the job in 

position j in the permutation of jobs; 

 yjk =  idle time (waiting time) of the job in the j 
th

 position in the permuta-

tion, after finishing processing on machine Pk, while waiting for ma-

chine Pk+1 to become free ; 

 Cmax =  makespan or maximum flow time of any job in the job set. 

Hence we get the model: 

Minimize  Cmax 

subject to �
j=1

n
 zij = 1, i = 1,..., n (8.1.1) 

 �
i=1

n
 zij = 1, j = 1,..., n (8.1.2) 
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 �
i=1

n
 pri zi j+1 + yj+1 r + xj+1 r = yjr + �

i=1

n
 pr+1 i zij + xj+1 r +1 , (8.1.3) 

  j = 1,..., n – 1; r = 1,..., m – 1 

 �
j=1

n
 �
i=1

n
 pmi zij + �

j=1

n
 xjm  = Cmax , (8.1.4) 

 �
r=1

k–1

 �
i=1

n
 pri zi1 = x1k , k = 2,..., m (8.1.5) 

 y1k = 0, k = 1,..., m –1 (8.1.6) 

Equations (8.1.1) and (8.1.2) assign jobs and permutation positions to each 

other. Equations (8.1.3) provide Gantt chart accounting between all adjacent 

pairs of machines in the m-machine flow shop. Equation (8.1.4) determines the 

makespan. Equations (8.1.5) account for the machine idle time of the second and 

the following machines while they are waiting for the arrival of the first job. 

Equations (8.1.6) ensure that the first job in the permutation would always pass 

immediately to each successive machine. 

8.1.2 Complexity 

The minimum makespan problem of flow shop scheduling is a classical combi-

natorial optimization problem that has received considerable attention in the lit-

erature. Only a few particular cases are efficiently solvable, cf. [MRK83]:  

(i) The two machine flow shop case is easy [Joh54]. In the same way the case of 

three machines is polynomially solvable under very restrictive requirements on 

the processing times of the intermediate machine [Bak74].  

(ii) The two machine flow shop scheduling algorithm of Johnson can be applied 

to a case with three machines if the intermediate machine is no bottleneck, i.e. it 

can process any number of jobs at the same time, cf. [CMM67]. An easy conse-

quence is that the two machine variant with time lags is solvable in polynomial 

time. That means for each job Ji there is a minimum time interval li between the 

completion of job Ji on the first machine P1 and its starting time on the second 

machine P2. The time lags can be viewed as processing times on an intermediate 

machine without limited capacity. Application of Johnson’s algorithm to the 

problem with two machines P1 and P2 , and processing times p1i + li and p2i + li on 

P1 and P2 , respectively, yields an optimal schedule, cf. [Joh58, Mit58, MRK83].  

(iii) Scheduling two jobs by the graphical method as described in [Bru88] and 

first introduced by Akers [Ake56]. (Actually this method also applies in the more 

general case of a job shop, cf. Chapter 10.) 
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(iv) Johnson’s algorithm solves the preemptive two machine flow shop 

F2 | pmtn | Cmax . 

(v) If the definition of precedence constraints Ji ≺ Jj specifies that job Ji must 

complete its processing on each machine before job Jj may start processing on 

that machine then the two machine flow shop problem with tree or series-parallel 

precedence constraints and makespan minimization is solvable in polynomial 

time, cf. [Mon79, Sid79, MS79].  

Slight modifications, even in the case of two machines, turn out to be diffi-

cult, see [TSS94]. For instance, F3 | | Cmax [GJS76], F2|rj|Cmax [LRKB77], 

F2 | | Lmax [LRKB77], F2 | | � Cj [GJS76], F2 | pmtn, rj | Cmax [CS81], 

F2 | pmtn | Lmax [TSS94], F3 | pmtn | Cmax [GS78], F3 | pmtn | � Cj [LLR+93], 

F2 | prec | Cmax [Mon80], and F2 | pmtn | � Cj [DL93] are strongly NP-hard. 

8.2 Exact Methods 

In this section we will be concerned with a couple of polynomially solvable cases 

of flow shop scheduling and continue to the most successful branch and bound 

algorithms. A survey on earlier approaches in order to schedule flow shops exact-

ly can be found in [Bak75, KK88]. Dudek et al. [DPS92] review flow shop se-

quencing research since 1954. 

8.2.1 The Algorithms of Johnson and Akers 

An early idea of Johnson [Joh54] turned out to influence the development of so-

lution procedures substantially. Johnson’s algorithm solves the F2 | | Cmax to op-

timality constructing an optimal permutation schedule through the following ap-

proach: 

Algorithm 8.2.1 Johnson’s algorithm for F2 | | Cmax [Joh54]. 

begin 
Let S1 contain all jobs Ji � J  with p1i � p2i in a sequence of non-decreasing order 

of their processing times p1i;  

Let S2 contain the remaining jobs of J  (not in S1) in a sequence of non-increasing 

order of their processing times p2i; 

Schedule all jobs on both machines in order of the concatenation sequence  

(S1, S2); 

end; 
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As Johnson’s algorithm is a sorting procedure its time complexity is O(nlogn). 

The algorithm is based on the following sufficient optimality condition. 

Theorem 8.2.2 [Joh54] Consider a permutation of n jobs where job Ji precedes 
job Jj if min{ p1i, p2j } � min{ p2i, p1j } for 1 � i, j � n. Then the induced permu-
tation schedule is optimal for F2 | | Cmax . 

Proof. Let + be a permutation defining a schedule of the flow shop problem with 

n jobs. We may assume + = (1, 2,..., n). Then, there is an s � {1, 2,..., n} such 

that the makespan Cmax(+) of the schedule equals  

�
i=1

s
 p1i + �

i=s

n
 p2i = �

i=1

s
 p1i – �

i=1

s–1

 p2i + �
i=1

n
 p2i . 

Hence minimization of the makespan min
+

{Cmax(+)} is equivalent to 

min
+

{ max
1 � s � n

 !s(+)} where !s(+) = �
i=1

s
 p1i – �

i=1

s–1

 p2i . 

Let +' be another permutation different from + in exactly two positions j and 

j+1, i.e. the jobs’ order defined by +' is J1 , J2 ,..., Jj–1 , Jj+1 , Jj , Jj+2 , Jj+3 ,..., Jn  . 

As !s(+) = !s(+') for s = 1,..., j – 1, j + 2,..., n, we get, that max
1 � s � n

 !s(+) � 

max
1 � s � n

 !s(+') holds if max{!j(+), !j+1(+)} � max{!j (+'), !j+1 (+')}. The latter is 

equivalent to  

max{ p1j , p1j � p2j + p1 j+1 } � max{ p1 j+1 , p1 j+1 – p2 j+1 + p1j } 

which is equivalent to 

p1j � p1 j+1  and  p1j – p2j + p1 j+1 � p1 j+1 

or  

p1j � p1 j +1 – p2j+1 + p1j  and  p1j – p2j + p1 j+1 � p1 j+1 – p2j+1 + p1j . 

Thus, if p1j � min{p1 j+1 , p2j} or p2 j+1 � min{p1 j+1 , p2j}, or equivalently, if 

min{p1j , p2 j+1} � min{p1j+1 , p2j} then permutation + defines a schedule at least 

as good as +'. 
Among all permutations defining an optimal schedule, assume + is a permu-

tation satisfying Ji precedes Jj if min{p1i , p2j} � min{p2i , p1j}, for any two jobs Ji
and Jj where one is an immediate successor of the other in the schedule. It re-

mains to verify transitivity, i.e. if min{p1i , p2j} � min{p2i , p1j} implies Ji pre-

cedes Jj and min{p1j , p2k} � min{p2j , p1k} implies Jj precedes Jk then min{p1i ,  

p2k} � min{p2i , p1k} implies Ji precedes Jk in +. There are 16 different cases to 

distinguish according to the relative values of the four processing time pairs p1i , 
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p2j ; p2i, p1j ; p1j , p2k and p2j , p1k . Twelve of the cases are easy to verify. The re-

maining four cases, 

(1) p1i � p2j � p1k and p2i � p1j � p2k ;  

(2) p1i � p2j � p1k and p2i � p1j � p2k ;  

(3) p1i � p2j � p1k and p2i � p1j � p2k ; and  

(4) p1i � p2j � p1k and p2i � p1j � p2k  

imply that Ji may precede Jj or Jj may precede Ji . Hence, there is an optimal 

schedule satisfying the condition of the theorem for any pair of jobs. Finally, ob-

serve that this schedule is uniquely defined in case of strict inequalities min{p1i, 

p2 i+1} < min{p2i , p1 i+1} for all pairs i, i+1 in +. If min{p1i , p2 i+1} = min{p2i , 

p1 i+1} for a pair i, i+1 in + then an interchange of Ji and Ji+1 will not increase the 

makespan. This proves that the theorem describes a sufficient optimality condi-

tion.  

Johnson’s algorithm can be used as a heuristic when m > 2. Then the set of ma-

chines is divided into two subsets each of which defines a pseudo-machine hav-

ing a processing time equal to the processing time on the real machines assigned 

to that subset. Johnson’s algorithm can be applied to this n-job 2-pseudo-

machine problem to obtain a permutation schedule. The quality of the outcome 

heavily depends on the splitting of the set of jobs into two subsets. If m = 3 an 

optimal schedule can be found from the two groups {P1 , P2} and {P2 , P3} if 

max
i

 p2i � min
i

 p1i or max
i

 p2i � min
i

 p3i. Thus, for the pseudo machines {P1 , P2} 

and {P2,  P3} the processing times are defined as p{P1,P2},i = p1i + p2i and p{P2,P3},i 

= p2i + p3i . 

The problem of scheduling only two jobs on an arbitrary number of ma-

chines can be solved in polynomial time using the graphical method proposed by 

[Bru88] and first introduced by Akers [Ake56].  

Assume to process two jobs J1 and J2 (not necessarily in the same order) in 

an m-machine flow shop. The problem can be formulated as a shortest path prob-

lem in the plane with rectangular objects as obstacles. The processing times of 

the tasks of J1 (J2) on the machines are represented as intervals on the x-axis (y-

axis) which are arranged in order (next to each other) in which the corresponding 

tasks are to be processed. An interval Ii1 (Ii2) on the x-axis (y-axis) is associated 

to a machine Pi on which the job J1 (J2) is supposed to be processed. Let xF (yF) 

denote the sum of the processing times of job J1 (J2) on all machines. Let F = (xF , 

yF) be that point in the plane with coordinates xF and yF. Any rectangular Ii1 � Ii2 

defines an obstacle in the plane. A feasible schedule corresponds to a path from 

the origin O = (0 , 0) to F avoiding passing through any obstacle. Such a path 

consists of a couple of segments parallel to one of the axis or diagonal in the 

plane. A segment parallel to the x-axis (y-axis) can be interpreted in such a way 
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that only job J1 (J2) is processed on a particular machine while J2 (J1) is waiting 

for that machine, because parallel segments are only required if the path from O 

to F touches the border of an obstacle. An obstacle defined by some machine Pi 

and forcing the path from O to F to continue in parallel to one of the axis implies 

an avoidance of a conflict among both jobs. Hence, an obstacle means to se-

quence both jobs with respect to Pi . Minimization of the makespan corresponds 

to finding a shortest path from O to F avoiding all obstacles. The problem can be 

reduced to the problem of finding an unrestricted shortest path in an appropriate 

network G = (V, E ). The set of vertices consists of O, F and all north-west and 

south-east corners of all rectangles. Each vertex v (except F) has at most two 

outgoing edges. These edges are obtained as follows: We are going from the 

point in the plane corresponding to vertex v diagonally until we hit the border of 

an obstacle or the boundary of the rectangle defined by O and F. In the latter case 

F is a neighbor of v. The length dvF of the edge connecting v and F equals the 

length of the projection of the diagonal part of the v and F connecting path plus 

the length of the parallel to one of the axis part of this path. In other words, if v is 

defined in the plane by the coordinates (xv , yv) then dvF = max{ xF – xv , yF – yv }. 

If we hit the border of an obstacle, we introduce two arcs connecting the north-

west corner (say vertex u defined by coordinates (xu , yu)) and the south-east cor-

ner (say vertex w defined by coordinates (xw , yw)) to v. The length of the edge 

connecting v to u is dvu = max{ xu – xv , yu – yv }. Correspondingly the length of 

the edge connecting v and w is dvw = max{ xw – xv , yw – yv }. Thus an application 

of a shortest path algorithm yields the minimum makespan. In our special case 

the complexity of the algorithm reduces to O(mlog m), cf. [Bru88]. 

8.2.2 Dominance and Branching Rules 

One of the early branch and bound procedures used to find an optimal permuta-

tion schedule is described by Ignall and Schrage [IS65] and, independently by 

Lomnicki [Lom65]. Associated with each node of the search tree is a partial 

permutation + defining a partial permutation schedule S+ on a set of jobs. Let J+ 
be the set of jobs from the schedule S+. A lower bound is calculated for any com-

pletion 7 of the partial permutation + to a complete permutation (+7). The lower 

bound is obtained by considering the work remaining on each machine. The 

number of branches departing from a search tree node (with a minimum lower 

bound) equals the number of jobs not in S+ , i.e. for each job Ji with i �/  + a 

branch is considered extending the partial permutation + by one additional posi-

tion to a new partial permutation (+i). Moreover extensions of the algorithm use 

some dominance rules under which certain completions of partial permutations + 

can be eliminated because there exists a schedule at least as good as + among the 

completions of another partial permutation +'. Let Ck(+) denote the completion 
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time of the last job in S+ on machine Pk , i.e. Ck(+) is the earliest time at which 

some job not in J+ could begin processing on machine Pk . Then +' dominates + if 

for any completion 7 of + there exists a completion 7' of +' such that Cm(+'7') � 

Cm(+7). An immediate consequence is the following transitive dominance crite-
rion. 

Theorem 8.2.3 [IS65] If J+ = J+' and Ck(+') � Ck(+) for k = 1, 2,..., m, then +' 
dominates + .  

There are other dominance criteria reported in [McM69] and [Szw71, Szw73, 

Szw78] violating transitivity. In general these dominance criteria consider sets J+ 
� J. We can formulate  

Theorem 8.2.4 If Ck–1(+ji) – Ck–1(+i) � Ck(+ji) – Ck(+i) � pkj for k = 2,..., m, then 
(+ji) dominates (+i).   

8.2.3 Lower Bounds 

Next we consider different types of lower bounds that apply in order to estimate 

the quality of all possible completions 7 of partial permutations + to a complete 

permutation (+7).  

The amount of processing time yet required on the first machine is �
j�7

 p1j . 

Suppose that a particular job Jj will be the last one in the permutation schedule. 

Then after completion of job Jj on P1 an interval of at least �
k=2

m
 pkj must elapse 

before the whole schedule can be completed. In the most favorable situation the 

last job will be the one which minimizes the latter sum. Hence a lower bound on 

the makespan is  

LB1 = C1(+) + �
i�7

 p1i + min
j�7

{ �
k =2

m
 pkj} . 

Similarly we obtain lower bounds (with respect to the remaining machines) 

LBp = Cp(+) + �
i�7

 ppi + min
j�7

{ �
k=p+1

m
 pkj} , for p = 2,..., m – 1. 

And on the last machine we get 

LBm = Cm(+) + �
i�7

 pmi . 

The lower bound proposed by Ignall and Schrage is the maximum of these m 

bounds. 
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To illustrate the procedure let us consider a 4–job, 3-machine instance from 

[Bak74]. The processing times pij can be found in Table 8.2.1. 

pij J1 J2 J3 J4 

P1 3 11 7 10 

P2 4 1 9 12 

P3 10 5 13 2 

Table 8.2.1 Processing times of a 4-job, 3-machine instance. 

Initially the permutation + is empty and four branches are generated from the 

initial search tree node. Each branch defines the next (first) position 1, 2, 3, or 4 

in +. The partial permutations +, the values Cp(+), and the lower bounds LBp, for 

p = 1, 2, 3, and the maximum LB of the lower bounds obtained throughout the 

search are given in Table 8.2.2. 

+ C1(+) C2(+) C3(+) LB1 LB2 LB3 LB 

1 3 7 17 37 31 37 37 

2 11 12 17 45 39 42 45 

3 7 16 29 37 35 46 46 

4 10 22 24 37 41 52 52 

1, 2 14 15 22 45 38 37 45 

1, 3 10 19 32 37 34 39 39 

1, 4 13 25 27 37 40 45 45 

Table 8.2.2 Search tree nodes of the Ignall / Schrage [IS65] branch and 
bound. 

Two additional branches are generated from that node associated with permuta-

tion (1, 4). These branches immediately lead to feasible solutions (1, 3, 2, 4) and 

(1, 3, 4, 2) with makespans equal to 45 and 39, respectively. Hence, (1, 3, 4, 2) is 

a permutation defining an optimal schedule. 

The calculation of lower bound can be strengthened in a number of ways. On 

each machine Pk, except the first one, there may occur some idle time of Pk be-

tween the completion of job Ji and the start of its immediate successor Jj . The 

idle time arises if Jj is not ready "in time" on the previous machine Pk–1 , in other 

words Ck–1(+j) > Ck(+). Thus we can improve the aforementioned bounds if we 

replace the earliest start time on Pr of the next job not in J+ by  
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C–1(+) = C1(+) and C–r(+) = max
k=1,2,...,r

{Ck(+) + min
j�+

{�
q=k

r–1

 pqj}}, for r = 2,..., m. 

Besides the above machine based bound another job based bound can be calcu-

lated as follows: Consider a partial permutation + and let 7 be an extension to a 

complete schedule S+7 . For any job Jj with j�7 we can calculate a lower bound 

on the makespan of S+7 as C1(+) + �
k=1

m
 pkj + �

Ji�J�
 p1i + �

Ji�J@
 pmi where J1 (J2) are the 

sets of jobs processed before (after) Jj in schedule S+7 , respectively. Since �
Ji�J�

 p1i 

+ �
Ji�J@

 pmi � �
i�7
i�j

 min{ p1i, pmi} we get the following lower bounds: 

LBJj
 = max

j�7
{ max

1�r�s�m
{ Cr(+) + �

q=r

s
 pqj + �

i�7
i�j

 min{pri, psi}}} 

Let us consider the computation of lower bounds within a more general frame-

work which can be found in [LLRK78]. The makespan of an optimal solution of 

any sub-problem consisting of all jobs and a subset of the set of machines defines 

a lower bound on the makespan of the complete problem. In general these 

bounds are costly to compute (the problem is NP-hard if the number of machines 

is at least 3) except in the case of two machines where we can use Johnson’s al-

gorithm. Therefore let us restrict ourselves to the case of any two machines Pu 

and Pv . That means only Pu and Pv are of limited capacity and can process only 

one job at a time. Pu and Pv are said to be bottleneck machines, while the remain-

ing machines P1 ,..., Pu–1 , Pu+1 ,..., Pv–1 , Pv+1 ,..., Pm , the non-bottleneck ma-

chines, are available with unlimited capacity. In particular, a non-bottleneck ma-

chine may process jobs simultaneously. Since the three (at most) sequences of 

non-bottleneck machines P1u = P1,..., Pu–1 ; Puv = Pu+1,..., Pv–1 , and Pvm = Pv+1,

..., Pm can be treated as one machine each (because we can process the jobs on 

the non-bottleneck machines without interruption), it follows that (in our lower 

bound computation) each partial permutation + defines a partial schedule for a 

problem with at most five machines P1u , Pu , Puv , Pv , Pvm , in that order. Of 

course, the jobs’ processing times on P1u , Puv , and Pvm have still to be defined. 

We define for any job Ji the processing times  

p1u i = max
r =1,2,...,u�1

{ Cr(+) + �
k=r+1

u–1

 pki } ; puv i = �
k=u+1

v–1

 pki ;  pvm i = �
k=v+1

m
 pki ;  

processing times on bottleneck machines are unchanged. Thus, the processing 

times p1u i , puv i , and pvm i are the earliest possible start time of processing of job  

Ji on machine Pu , the minimum time lag between completion time of Ji on Pu 

and start time of Ji on Pv , and a minimum remaining flow time of Ji after com-
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pletion on machine Pv , respectively. If u = v we have a problem of at most three 

machines with only one bottleneck machine. Note, we can drop any of the ma-

chines P1u , Puv , or Pvm from the (at most) five machine modified flow shop 

problem through the introduction of a lower bound r1u , ruv on the start time of 

the successor machine, or a lower bound rvm on the finish time of the whole 

schedule, respectively. In that case r1u = min
i�+

{p1u i}, ruv = min
i�+

{puv i}; rvm

 = min
i�+

{pvm i}. If u = 1, v = u + 1, or v = m we have r1u = C1(+), ruv = 0, or rvm = 0, 

respectively. The makespan LB+((, *, ", ,, %) of an optimal solution for each of 

the resulting problems defines a lower bound on the makespan of any completion 

7 to a permutation schedule (+7). Hereby ( equals P1u or r1u reflecting the cases 

whether the start times on Pu are depending on the completion on a preceding 

machine P1u or an approximation of them, respectively. In analogy we get " � 

{Puv , ruv} and % � {Pvm , rvm}. Parameters * and , correspond to Pu and Pv , re-

spectively. 

Let us consider the bounds in detail (neglecting symmetric cases): 

(1) LB+(r1u , Pu , rum) = r1u + �
i=1
i�+

n
 pui + rum . 

(2) The computation of LB+(r1u , Pu , Pum) amounts to minimization of the max-

imum completion time on machine Pum . The completion time of Ji on machine 

Pum equals the sum of the completion time of Ji on machine Pu and the pro-

cessing time pum i . Hence, minimizing maximum completion time on machine 

Pum corresponds to minimizing maximum lateness on machine Pu if the due date 

of job Ji is defined to be �pum i . This problem can be solved optimally using the 

earliest due date rule, i.e. ordering the jobs according to non-decreasing due 

dates. In our case this amounts to ordering the jobs according to non-increasing 

processing times pum i . Adding the value r1u to the value of an optimal solution 

of this one-machine problem with due dates yields the lower bound LB+(r1u , Pu , 

Pum). 

(3) The bound LB+(P1u , Pu , rum) leads to the solution of a one-machine problem 

with release date p1u i for each job Ji . Ordering the jobs according to non-

decreasing processing time p1u i yields an optimal solution. Once again, adding 

rum to the value of this optimal solution gives the lower bound LB+(P1u , Pu , rum). 

(4) The computation of LB+(P1u , Pu , Pum) corresponds to minimizing maximum 

lateness on Pu with respect to due dates �pum i  and release dates p1u i . The prob-

lem is NP-hard, cf. [LRKB77]. Anyway, the problem can be solved quickly if the 

number of jobs is reasonable, see the one-machine lower bound on the job shop 

scheduling problem described in Chapter 10. 
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(5) Computation of LB+(r1u , Pu , ruv , Pv , rum) leads to the solution of a flow 

shop scheduling problem on two machines Pu and Pv . The order of the jobs ob-

tained from Johnson’s algorithms will not be affected if Pv is unavailable until 

Cv(+). Adding r1u and rum to the makespan of an optimal solution of this two ma-

chine flow shop scheduling problem yields the desired bound. 

(6) Computation of LB+(r1u , Pu , Puv , Pv , rum) leads to the solution of a 3-

machine flow shop problem with a non-bottleneck machine between Pu and Pv . 

The same procedure as described under (5) yields the desired bound. The only 

difference being that Johnson’s algorithm is used in order to solve a 2-machine 

flow shop with processing times pui + puv i and pvi + puv i for all i 	 +. 

Computation of the remaining lower bounds require to solve NP-hard prob-

lems, cf. [LRKB77] and [LLRK78]. 

LB+(r1u , Pu , Puv , Pv , rum) and LB+(P1u , Pu , Pum) turned out to be the 

strongest lower bounds. Let us consider an example taken from [LLRK78]: Let n 

= m = 3; let p11 = p12 = 1, p13 = 3, p21 = p22 = p23 = 3, p31 = 3, p32 = 1, p33 = 2. 

We have LB+(P1u , Pu , Pum) = 12 and LB+(r1u , Pu , Puv , Pv , rum) = 11. If p21 = p22 

= p23 = 1 and all other processing times are kept then LB+(P1u , Pu , Pum) = 8 and 

LB+(r1u , Pu , Puv , Pv , rum) = 9. 

In order to determine the minimum effort to calculate each bound we refer 

the reader to [LLRK78]. 

8.3 Approximation Algorithms 

8.3.1 Priority Rule and Local Search Based Heuristics 

Noteworthy flow shop heuristics for the makespan criterion are those of Camp-

bell et al. [CDS70] and Dannenbring [Dan77]. Both used Johnson’s algorithm, 

the former to solve a series of two machine approximations to obtain a complete 

schedule. The second method locally improved this solution by switching adja-

cent jobs in the sequence. Dannenbring constructed an artificial two machine 

flow shop problem with processing times �
j=1

m
(m � j + 1)pji on the first artificial 

machine and processing times �
j = 1

m
 j pji on the second artificial machine for each 

job Ji , i = 1,..., n. The weights of the processing times are based on Palmer’s 

[Pal65] ‘slope index’ in order to specify a job priority. Job priorities are chosen 

so that jobs with processing times that tend to increase from machine to machine 

will receive higher priority while jobs with processing times that tend to decrease 

from machine to machine will receive lower priority. Hence the slope index, i.e. 
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the priority to choose for the next job Ji is si = �
j=1

m
(m � 2j + 1)pji for i = 1,..., n. 

Then a permutation schedule is constructed using the job ordering with respect to 

decreasing si. Hundal and Rajgopal [HR88] extended Palmer’s heuristic by com-

puting two other sets of slope indices which account for machine (m + 1)/2 when 

m is odd. Two more schedules are produced and the best one is selected. The two 

sets of slope indices are si = �
j=1

m
(m � 2j + 2)pji and si = �

j=1

m
(m – 2j)pji for i = 1,..., n. 

Campbell et al. [CDS70] essentially generate a set of m � 1 two machine 

problems by splitting the m machines into two groups. Then Johnson’s two ma-

chine algorithm is applied to find the m – 1 schedules, followed by selecting the 

best one. The processing times for the reduced problems are defined as p1ki

 = �
j=1

k
 pji and p2ki = �

j=m–k+1

m
 pji for i = 1,..., n, where p1ki (p2ki) represents the pro-

cessing time for job Ji on the artificial first (second) machine in the k th
 problem, 

k = 1,..., m – 1.  

Gupta [Gup71] recognizes that Johnson’s algorithm is in fact a sorting algo-

rithm which assigns an index to each job and sorts the jobs in ascending order by 

these indices. He generalized the index function to handle also cases of more 

than three machines. The index of job Ji is defined as  

si = 0 / min
1�j�m–1

{pji  + pj+1 i}  for  i = 1,..., n  

where  

0 = 
�
�
  

 

 
 
1 if pji � p1i , 

�1 otherwise. 

 

The idea of [HC91] is the heuristical minimization of gaps between succes-

sive jobs. They compute the differences dkij = pk+1 i – pkj for i, j = 1,..., n; k = 

1,..., m � 1 and i � j. If job Ji precedes job Jj in the schedule, then the positive 

value dkij implies that job Jj needs to wait on machine Pk+1 at least dkij units of 

time until job Ji finishes. A negative value of dkij implies that there exist dkij units 

of idle time between job Ji and job Jj on machine Pk+1 . Ho and Chang define a 

certain factor to discount the negative values. This factor assigns higher values to 

the first machines and lower values to last ones in order to reduce accumulated 

positive gaps effectively. The discount factor is defined as follows: 

,kij = 
�.
�
.  

 

 
 

0.9 (m – k – 1)
m – 2

 + 0.1 if dkij < 0, 

1 otherwise 

(for i, j = 1,..., n;  

and k = 1,..., m – 1). 

Combining the dkij and the discount factor, Ho and Chang define the overall re-

vised gap: 
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dRij = �
k=1

m�1

 dkij ,kij ,  for  i, j = 1,..., n. 

Let J[i] be the job in the i 
th

 position of a permutation schedule defined by permu-

tation +. Then the heuristic works as follows: 

Algorithm 8.3.1 Gap minimization heuristic [HC91]. 
begin 
Let S be a feasible solution (schedule); 

Construct values dRij  for i, j = 1,..., n; 

a := 1; b := n; 
repeat 
 S' := S; 
 Let dR[a][u] = max

a<j<b
{dR[a][j]}; 

 Let dR[v][b] = min
a<j<b

{dR[j][b]}; 

 if dR[a][u] < 0 and dR[v][b] > 0 and | dR[a][u] | � | dR[v][b] |  

 then  

  begin 
  a = a + 1; 

  Swap the jobs in the positions a and u of S; 
  end; 

 if dR[a][u] < 0 and dR[v][b] > 0 and | dR[a][u]  | > | dR[v][b] |   

 then  

  begin 
  b = b – 1; 

  Swap the jobs in the positions b and v of S; 
  end; 

 if | dR[a][u]  | > | dR[v][b] |   

 then  

  begin 
  a = a + 1; 

  Swap the jobs in the positions a and u of S; 

  end; 

 if the makespan of S increased then S = S'; 

 until b = a + 2 

end; 

Simulation results show that the heuristic [HC91] improves the best heuristic 

(among the previous ones) in three performance measures, namely makespan, 

mean flow time and mean utilization of machines. 

An initial solution can be obtained using the following fast insertion method 

proposed in [NEH83].  
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Algorithm 8.3.2 Fast insertion [NEH83]. 

begin 
Order the n jobs by decreasing sums of processing times on the machines; 

Use Aker’s graphical method to minimize the makespan of the first two jobs 

on all machines;  
 -- The schedule defines a partial permutation schedule for the whole problem. 

for i = 3 to n do 
Insert the i 

th
 job of the sequence into each of the i possible positions in the 

partial permutation and keep the best one defining an increased partial 

permutation schedule; 
end; 

Widmer and Hertz [WH89] and Taillard [Tai90] solved the permutation flow 

shop scheduling problem using tabu search. Neighbors are defined mainly as in 

the traveling salesman problem by one of the following three neighborhoods:  

(1) Exchange two adjacent jobs. 

(2) Exchange the jobs placed at the i 
th

 position and at the k 
th

 position. 

(3) Remove the job placed at the i 
th

 position and put it at the k 
th

 position. 

Werner [Wer90] provides an improvement algorithm, called path search, and 

shows some similarities to tabu search and simulated annealing. The tabu search 

described in [NS96] resembles very much the authors’ tabu search for job shop 

scheduling. Therefore we refer the reader to the presentation in the job shop 

chapter. There are other implementations based on the neighborhood search, for 

instance, the simulated annealing algorithm [OP89] or the genetic algorithm 

[Ree95] or the parallel genetic algorithm [SB92].  

8.3.2 Worst-Case Analysis 

As mentioned earlier the polynomially solvable flow shop cases with only two 

machines are frequently used to generate approximate schedules for those prob-

lems having a larger number of machines.  

It is easy to see that for any active schedule (a schedule is active if no job can 

start its processing earlier without delaying any other job) the following relation 

holds between the makespan Cmax(S) of an active schedule and the makespan 

Cmax
*   of an optimal schedule:  

Cmax(S) / Cmax
*   � max

1�i�m
1�j�n

{pij}4min
1�i�m
1�j�n

{pij} 
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Gonzales and Sahni [GS78] showed that Cmax(S) / Cmax
*   � m which is tight. They 

also gave a heuristic H1 based on �m/2� applications of Johnson’s algorithm with 

Cmax(S) / Cmax
*   � 9m/2; where S is the schedule produced by H1.  

Other worst-case performance results can be found in [NS93]. 

In [Bar81] an approximation algorithm has been proposed whose absolute 

error does not depend on n and is proved to be  

Cmax(S) – Cmax
*   = 0.5 (m � 1) (3m � 1) max

1�i�m
1�j�n

{pij} . 

where S is the produced schedule. 

Potts [Pot85] analyzed a couple of approximation algorithms for F2│rj | 

Cmax . The best one, called RJ', based on a repeated application of a modification 

of Johnson’s algorithm has an absolute performance ratio of Cmax(S) / Cmax
*   � 5/3 

where S is the schedule obtained through RJ'. 
In the following we concentrate on the basic ideas of machine aggregation 

heuristics using pairs of machines as introduced by Gonzalez and Sahni [GS78] 

and Röck and Schmidt [RS83]. These concepts can be applied to a variety of 

other NP-hard problems with polynomially solvable two-machine cases (cf. Sec-

tions 5.1 and 13.1). They lead to worst case performance ratios of 9m/2;, and the 

derivation of most of the results may be based on the following more general 

lemma which can also be applied in cases of open shop problems modeled by 

unrelated parallel machines. 

Lemma 8.3.3 [RS83]  Let S be a non-preemptive schedule of a set T  of n tasks 
on m � 3 unrelated machines Pi , i = 1,..., m. Consider the complete graph (P , 

E ) of all pairs of machines, where E  = {{Pi , Pj} | i, j = 1,..., m, and i � j}. Let 
M  be a maximum matching for (P , E ). Then there exists a schedule S' where  
(1) each task is processed on the same machine as in S, and S' has at most n 
preemptions,  
(2) all ready times, precedence and resource constraints under which S was fea-
sible remain satisfied,  
(3) no pair {Pi , Pj} of machines is active in parallel at any time unless {Pi , 

Pj} � M , and  

(4) the finish time of each task increases by a factor of at most 9m/2; . 

Proof. In case of odd m add an idle dummy machine Pm+1 and match it with the 

remaining unmatched machine, so that an even number of machines can be as-

sumed. Decompose S into sub-schedules S(q, f ), q � M , f � {fq 
1

 , fq 
2

 ,...,  f q  
Kq} 

where fq 
1
 < fq 

2
 <...< f q  

Kq is the sequence of distinct finishing times of the tasks 

which are processed on the machine pair q. Without loss of generality we assume 
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that Kq � 1. Let fq 
0
 = 0 be the start time of the schedule and let S(q, fq 

k
) denote the 

sub-schedule of the machine pair q during interval [fq     
k�1

 , fq 
k
]. The schedule S' 

which is obtained by arranging all these sub-schedules of S one after the other in 

the order of non-decreasing endpoints f, has the desired properties because (1): 

each task can preempt at most one other task, and this is the only source of 

preemption. (2) and (3): each sub-schedule S(q, f) is feasible in itself, and its po-

sition in S' is according to non-decreasing endpoints of f. (4): the finish time Cj' 
of task Tj � T  in S' is located at the endpoint of the corresponding sub-schedule 

S(q(j), Cj) where q(j) is the machine pair on which Tj was processed in S, and Cj 

is the completion time of Tj in S. Due to the non-decreasing endpoint order of the 

sub-schedules it follows that Cj' � 9m/2;Cj .  

For certain special problem structures Lemma 8.3.3 can be specialized so that 

preemption is kept out. Then, the aggregation approach can be applied to prob-

lems F | | Cmax and O | | Cmax , and to some of their variants which remain solvable 

in case of m = 2 machines. We assume that for flow shops the machines are 

numbered that reflects the order each job is assigned to the machines. 

We present two aggregation heuristics that are based on special conditions 

restricting the use of machines.  

Condition C1: No pair {Pi , Pj} of machines is allowed to be active in parallel at 

any time unless {Pi , Pj} � M 1 = {{P2l�1 , P2l} | l = 1, 2,..., �m/2�} .  

Condition C2: Let (P , E ) be a bipartite graph where E  = {{Pa , Pb} | a � {1, 

2,...,  9m/2;}, b � {9m/2; + 1,..., m}, and let M 2 be a maximal matching for (P, 

E ). Then no pair {Pi, Pj} of machines is allowed to be active in parallel at any 

time unless {Pi , Pj} � M 2 . 

The following Algorithms 8.3.4 and 8.3.5 are based on conditions C1 and 

C2, respectively.  

Algorithm 8.3.4  Aggregation heuristic H1 for F | | Cmax [GS78]. 

begin 

for each pair qi = {P2i�1 , P2i} � M 1 
begin 
Find an optimal sub-schedule S*

i  for the two machines P2i�1 and P2i; 

if m is odd  
then  

S *    
9m/2; := an arbitrary schedule of the tasks on the remaining unmatched ma-

chine Pm; 
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S := S*
1 1 S*

2 1...1 S *    
9m/2;; 

end; 

end; 

As already mentioned, for F | | Cmax this heuristic was shown in [GS78] to have 

the worst case performance ratio of Cmax(H1) / C *  
max � 9m/2;. The given argument 

can be extended to F | pmtn | Cmax and O | | Cmax , and also to some resource con-

strained models. Tightness examples which reach 9m/2; can also be constructed, 

but heuristic H1 is not applicable if permutation flow shop schedules are re-

quired.  

In order to be able to handle this restriction consider the following Algo-

rithm 8.3.5 which is based on condition C2. Assume for the moment that all ma-

chines with index less than or equal 9m/2; are represented as a virtual machine 

P'1 , and those with an index larger than 9m/2; as a virtual machine P'1 . We again 

consider the given scheduling problem as a two machine problem.  

Algorithm 8.3.5  Aggregation heuristic H2 for F | | Cmax and its permutation  
variant [RS83]. 

begin 

Solve the flow shop problem for two machines P'1 , P'2 where each job Jj has  

processing time aj = �
i=1

9m/2;
 pij on P'1 and processing time bj = �

i= 9m/2; +1

m
 pij on P'2 , 

respectively; 

Let S be the two-machine schedule thus obtained; 

Schedule the jobs on the given m machines according to the two machine  

schedule S; 
end; 

The worst case performance ratio of Algorithm 8.3.5 can be derived with the 

following Lemma 8.3.6. 

Lemma 8.3.6  For each problem F | | Cmax (permutation flow shops included) and 

O | | Cmax , the application of H2 guarantees Cmax(H2) / C *  
max � 9m/2; . 

Proof. Let S be an optimal schedule of length C *  
max for an instance of the problem 

under consideration. As M 2 from condition C2 is less restrictive than M 1 , it 

follows from Lemma 8.3.3 that there exists a preemptive schedule S' which re-

mains feasible under C2, and whose length is C '   max/C *   max � 9m/2;. By construc-

tion of M 2 , S' can be interpreted as a preemptive schedule of the job set on the 

two virtual machines P'1 , P'2 , where P'1 does all processing which is required on 

the machines P1 ,..., P9m/2; , and P'2 does all processing which is required on the 
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machines P9m/2; +1 ,..., Pm . Since on two machines preemptions are not advanta-

geous the schedule S generated by algorithm H2 has length Cmax(H2) � C '   max � 

9m/2; C *  
max .  

H2 can be implemented to run in O(n(m + log n)) for F | | Cmax and also for its 

permutation variant using Algorithm 8.2.1. It is easy to adapt Lemma 8.3.3 to a 

given preemptive schedule S so that the 9m/2; bound for H2 extends to F | pmtn | 

Cmax as well. 

The following example shows that the 9m/2; bound of H2 is tight for F | | 

Cmax . Take m jobs Jj , j = 1,..., m, with processing times pij = p > 0 for i = j , 

whereas pij = % � 0 for i � j . H2 uses the processing times aj = p + ( 9m/2; � 1) % , 

bj = �m/2� % for j � 9m/2; , and aj = 9m/2; % , bj = p + ( 9m/2; � 1) % for j > 9m/2; . 

Consider job sets J 
k
 which consist of k copies of each of these m jobs. For an 

optimal flow shop schedule for J 
k
 we get C *  

max = kp + (m � 1)(k + 1) % . The opti-

mal two machine flow shop schedule for J 
k
 produced by H2 may start with all k 

copies of J9m/2; +1 , J9m/2; +2 ,...,  Jm and then continue with all k copies J1 , J2 ,...,  

J9m/2; . On m machines this results in a length of Cmax(H2) = 

(m � 1 + k �m/2� ) % + 9m/2; pk . It follows that Cmax(H2) / C *  
max approaches 9m/2; as 

% � 0. 

8.3.3 No Wait in Process 

An interesting sub-case of flow shop scheduling is that with no-wait constraints 

where no intermediate storage is considered and a job once finished on one ma-

chine must immediately be started on the next one.  

The two-machine case, i.e. problem F2 | no-wait | Cmax , may be formulated as 

a special case of scheduling jobs on one machine whose state is described by a 

single real valued variable x (the so-called one state-variable machine problem) 

[GG64, RR72]. Job Ji requires a starting state x = Ai and leaves with x = Bi . 

There is a cost for changing the machine state x in order to enable the next job to 

start. The cost cij of Jj following Ji is given by 

cij  =  

�.
�
. 

 

 

 

 

 

 

 

  KK
Bi

Aj

 f(x)dx  if Aj � Bi , 

  KK
Aj

Bi

 f(x)dx  if Bi > Aj , 
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where f(x) and g(x) are integrable functions satisfying f(x) + g(x) � 0. The objec-

tive is to find a minimal cost sequence for the n jobs. Let us observe that problem 

F2 | no-wait | Cmax may be modeled in the above way if Aj = p1j , Bj = p2j , f(x) = 1 

and g(x) = 0. Cost cij then corresponds to the idle time on the second machine 

when Jj follows Ji , and hence a minimal cost sequence for the one state-variable 

machine problem also minimizes the completion time of the schedule for prob-

lem F2 | no-wait | Cmax . On the other hand, the first problem corresponds also to a 

special case of the traveling salesman problem which can be solved in O(n2
) time 

[GG64]. Unfortunately, more complicated assumptions concerning the structure 

of the flow shop problem result in its NP-hardness. So, for example, Fm | no-
wait | Cmax is unary NP-hard for fixed m � 3 [Röc84]. 

As far as approximation algorithms are concerned H1 is not applicable here, 

but H2 turns out to work [RS83]. 

Lemma 8.3.7  For F | no-wait | Cmax , the application of H2 guarantees 
Cmax(H2) / C *  

max � 9m/2; . 

Proof. It is easy to see that solving the two machine instance by H2 is equivalent 

to solving the given instance of the m machine problem under the additional con-

dition C2. It remains to show that for each no-wait schedule S of length Cmax 

there is a corresponding schedule S' which is feasible under C2 and has length 

C '   max � 9m/2; Cmax . Let J1 , J2 ,..., Jn be the sequence in which the jobs are pro-

cessed in S and let sij be the start time of job Jj , j = 1,..., n, on machine Ji , i = 

1,..., m. As a consequence of the no-wait requirement, the successor Jj+1 of Jj 

cannot start to be processed on machine Pi�1 before Jj starts to be processed on 

machine Pi . Thus for q = 9m/2; we have sq+1

j  � sq
j+1 �...� s1

j+qand for the finish 

time Cj of job Jj we get Cj � sm
j+1 � sm�1

j+2  �...� sq+1

j+m�q � sq+1

j+q  . This shows that if we 

would remove the jobs between Jj and Jj+q from S, then S would satisfy C2 in the 

interval [sq+1

j  , sq+1

j+q ]. Hence, for each k = 1,..., q the sub-schedule Sk of S which 

covers only the jobs of the subsequence Jk , Jk+q , Jk+2q ,..., Jk+�(n�k)/q�  q of J1 ,...,  

Jn satisfies C2. Arrange these sub-schedules in sequence. None is longer than 

Cmax , and each job appears in one of them. The resulting schedule S' is feasible 

and has length C '   max � qCmax .  

Using the algorithm of Gilmore and Gomory [GG64], H2 runs in O(n(m + logn)) 

time. The tightness example given above applies to the no-wait flow shop as 

well, since the optimal schedule is in fact a no-wait schedule. Moreover, on two 

machines it is optimal to have any alternating sequence of jobs Jb , Ja , Jb , Ja with 

a � {1,..., 9m/2;} and b � {9m/2; + 1,..., m}, and in case of odd m this may be 
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followed by all copies of J1 . When % tends to zero, the length of such a schedule 

on m machines approaches 9m/2; kp, thus Cmax(H2) / C *  
max approaches 9m/2; . 

An interesting fact about the lengths of no-wait and normal flow shop 

schedules, respectively, has been proved by Lenstra. It appears that the no-wait 

constraint may lengthen the optimal flow shop schedule considerably, since 

C *  
max(no-wait) / C *  

max < m for m � 2 . 

8.4 Scheduling Flexible Flow Shops  

8.4.1 Problem Formulation 

The hybrid or flexible flowshop problem is a generalization of the flowshop in 
such a way that every job can be processed by one among several machines on 
each machine stage. In recent years a number of effective exact methods have 
been developed. A major reason for this progress is the development of new job 
and machine based lower bounds as well as the rapidly increasing importance of 
constraint programming. 

We consider the problem of scheduling n parts or jobs Jj , j = 1, 2,..., n, 
through a manufacturing system that will be called a flexible flow shop (FFS), to 
minimize the schedule length. An FFS consists of m � 2 machine stages or cen-
ters with stage l having kl � 1 identical parallel machines Pl 1 , Pl 2 ,..., Pl kl

 (see 

Figure 8.4.1). For job Jj vector [p1j , p2j ,..., pmj]
T
 of processing times is known, 

where pl j � 0 for all l, j. Task Tl j of job Jj may be processed on any of the kl ma-

chines. This is the generalization of the standard flow shop scheduling problem, 

whereas all the remaining assumptions remain unchanged.   

The jobs have to visit the stages in the same order starting from stage 1 
through stage m. A machine can process at most one job at a time and a job can 
be processed by at most one machine at a time. Preemption of processing is not 
allowed. The scheduling problem consists of assigning jobs to machines at each 
stage and sequencing the jobs assigned to the same machine so that some opti-
mality criterion C is minimized. 

Note that the processing time pl j does not depend on the machine assigned to 
job Jj at stage l. This notation is applied when stage l consists of identical parallel 
machines. The completion time (which is a decision variable) of job Jj at stage l 
will be denoted by C (l)

j . 
A  partial schedule S assigns some jobs to machines and fixes the pro-

cessing order of another subset of jobs. S can be modeled by a directed graph G = 
(V, A), where V consists of nm+2 nodes, i.e., one node (j, l) for each job Jj at each 
stage l and two additional nodes, 0 and *. A contains the arcs (directed edges) 
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(0,(j, l)) and ((j,  l),*) for all nodes (j, l). Moreover, the arcs ((j, l), (j, l�1)) belong 
to A for all j and 1 � l � m�1. Finally, whenever S fixes that job Ji precedes job Jj 
at some stage l then arc ((i, l), (j, l)) belongs to A. The  length of an arc ((i, l), x) � 
A is pl i, where x is a node of G. The length of any arc (0, (i, l)) � A is null. A  
path � in G is a sequence of nodes (�1, …, �e) such that � contains no node twice 
and (�u, �u+1) � A for all 1 � u � e�1. The length of a path � is the sum of the 
lengths of the arcs (�u, �u+1), 1 � u � e�1, along the path. Let h(x, y) represent the 
length of the longest path between nodes x and y. If no path exists between x and 
y in G, then h(x, y) = #. Finally, the release date or head r(l)

j  of job Jj at stage l is 
h(0, (j, l)), while its delivery time or tail q(l)

j  is h((j, l), *) � pl j, see Blazewicz et al. 
[BDP96]. Figure 8.4.1 is an example with m stages and kl machines at each stage 
l.  

Machines may remain idle and in-process inventory is allowed. This is im-

portant, since a restricted version of the problem was studied already by Salvador 

[Sal73] who presented a branch and bound algorithm for FFS with no-wait 

schedules and pl j > 0 for all l, j. He identified the problem in the polymerization 

process where there are several effectively identical and thus interchangeable 

plants each of which can be considered as a flow shop. Of course, all situations 

where a parallel machine(s) is (are) added at least one stage of a flow shop to 

solve a bottleneck problem or to increase the production capacity lead to the FFS 

scheduling. Another interesting application of the problem was described by 

Brah and Hunsucker [BH91] and concerns the running of a program on a com-

puter where the three steps of compiling, linking and running are performed in a 

fixed sequence and we have several processors (software) at each step. Other real 

life examples exist in the electronics manufacturing. 

1

2

0 *

1 1

22

k1 2k mk
 

Figure 8.4.1 Schematic representation of a flexible flow shop. 

Heuristics for the general FFS scheduling problem (in the sense stated above) 

were developed by Wittrock [Wit85, Wit88], and by Kochbar and Morris 

[KM87]. The first paper deals with a periodic algorithm where a small set of jobs 

is scheduled and the schedule is repeated many times, whereas the second one 
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presents a non-periodic algorithm. The basic approach in both cases is to decom-

pose the problem into three sub-problems: machine allocation, sequencing and 

timing. The first sub-problem is to determine which jobs will visit which ma-

chine at each stage. The second sub-problem sequences jobs on each machine, 

and the third one consists of finding the times at which the jobs should enter the 

system. The heuristic algorithm developed by Kochbar and Morris considers set-

up times, finite buffers, blocking and starvation, machine down time, and current 

and subsequent state of the system. The heuristics tend to minimize the effect of 

setup times and blocking. 

The standard ( | * | " notation for classifying scheduling problems by Gra-
ham et al. [GLL+79] has been extended by Vignier et al. [VBP99] to take the 
new machine environment into consideration. Here we will consider only models 
with identical parallel machines at the stages and the objective is to minimize the 
makespan, denoted by Fm | k1, k2 ,..., km | Cmax , and the mean flow time, Fm | k1,
 k2 ,..., km | 5Ci , respectively. In fact, we are not aware of efficient exact solution 
procedures for the general m-stage problem with other processing environments. 
By “general m-stage problem'' we mean that m is not restricted to a small con-
stant. 

The general m-stage multiprocessor flowshop scheduling problem is strong-
ly NP-hard for all traditional optimality criteria, since the special cases F3 | | Cmax  
and F2 | | 5Ci having only one machine at each stage are NP-hard in the strong 
sense, as shown in Garey et al. [GJS76]. Moreover, the makespan minimization 
problem is already NP-hard in the strong sense when m = 2 and max{k1, k2 } > 1 
as shown by Gupta [Gup88]. Note that Hoogeveen et al. [HLV96] have proven 
that F2 | 2 , 1 | Cmax is at least NP-hard in the ordinary sense, while its preemptive 
version, F2 | 2,1, pmtn | Cmax, has been shown NP-hard in the strong sense. 

In the following sections we will present some heuristics for simple sub-

problems of our problem for which the worst and average case performance is 

known. 

Then we provide a comprehensive and uniform overview on exact solution 
methods for flexible flowshops with branching, bounding and propagation of 
constraints under two different objective functions: minimizing the makespan of 
a schedule and the mean flow time. This part is based on Kis and Pesch [KP05]. 

We do not discuss the large body of work on the two-stage special case. The 
review by Vignier et al. [VBP99] offers an exhaustive overview on two-stage 
problems.  

We present a mixed integer-linear program modeling the constraints of both 
the minimum makespan and the minimum mean flow time problems, respective-
ly. Then we consider the minimum makespan problem, followed by a discussion 
on approaches for minimizing the mean flow time. The latter two sections have a 
common structure: first various lower bounds are presented and compared if pos-
sible, then branching schemes and their merits are discussed. 
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8.4.2 Heuristics and Their Performance 

The results presented in this section were obtained by Sriskandarajah and Sethi 

[SS89]. In the sequel the FFS scheduling problem with m machine stages and ki 

machines at stage i will be denoted by Fm | k1 , k2 ,..., km | Cmax .  

Let us start with the problem F2 | k1 = 1, k2 = k � 2 | Cmax, and let us assume 

that the buffer between the machine stages has unlimited capacity. First, consider 

the list scheduling algorithm in which a list of the job indices 1, 2,..., n is given. 

Jobs enter the first machine stage (i.e. machine P1) in the order defined by the 

list, form the queue between the stages and are processed in center 2, whenever a 

machine at this stage becomes available. Cmax denotes the schedule length of the 

set of jobs when the list scheduling algorithm is applied, and C *  
max is the mini-

mum possible schedule  length of this set of jobs. Then the following theorem 

holds. 

Theorem 8.4.1 [SS89]  For the list scheduling algorithm applied to the problem 

Fm | km�1 = 1, km = k � 2 | Cmax we have  

Cmax /C *  
max � m + 1 �  

1
k  ,  

and this is the best possible bound.  

The proof of this theorem is based on Grahams result [Gra66] for algorithms 

applied to the problem Pm | | Cmax (or F1 | k1 = k � 2 | Cmax) . The bound is, as we 

remember from Section 5.1, Cmax /C *  
max � 2 � 1/k .  

Consider now Johnson's algorithm which, as we remember, is optimal for 

problem F2 | | Cmax . The following can be proved. 

Theorem 8.4.2 [SS89]  For Johnson's algorithm applied to problems F2 | k1 = 1, 

k2 = k = 2 | Cmax and F2 | k1 = 1, k2 = k � 3 | Cmax with Cmax � �
j=1

n
 p1j + max

j
{p2j} the 

following holds: 

Cmax /C *  
max � 2 , 

and this is the best possible bound.  

Theorem 8.4.3 [SS89]  For Johnson's algorithm applied to the problem F2 | k1 = 

1, k2 = k � 3 | Cmax with Cmax > �
j=1

n
 p1j + max

j
{p2j} we have  

Cmax /C *  
max � 1 + (2 � 

1

k)(1 � 
1

k) .  



 8.4  Scheduling Flexible Flow Shops 295 

 

 

Notice that the bounds obtained in Theorems 8.4.2 and 8.4.3 are better than those 

of Theorem 8.4.1. 

Let us now pass to the problem F2 | k1 = k2 = k � 2 | Cmax . The basic algorithm 

is the following. 

Algorithm 8.4.4  Heuristic Ha for F2 | k1 = k2 = k � 2 | Cmax [SS89]. 

begin 
Partition the set of machines into k pairs {P11 , P21}, {P12 , P22},..., {P1k , P2k}, 

treating each pair as an artificial machine P'i , i = 1, 2,..., k, respectively; 

for each job Jj � J  do p'j := p1j + p2j; 
call List scheduling algorithm; 

-- this problem is equivalent to the NP-hard problem Pk | | Cmax (see Section 5.1), 

-- where a set of jobs with processing times p'j is scheduled non-preemptively on a set 

-- of k artificial machines; list scheduling algorithm solves this problem heuristically 

for i = 1 to k do call Algorithm 8.2.1; 
-- this loop solves optimally each of the k flow shop problems 

-- with unlimited buffers, i.e. for each artificial machine P'i the processing times p'i 
-- assigned to it are distributed among the two respective machines P1i and P2i 

end; 

Let us note, that in the last for loop one could also use the Gilmore-Gomory 

algorithm, thus solving the k flow shop problems with the no-wait condition. The 

results obtained from hereon hold also for the FFS with no-wait restriction, i.e. 

for the case of no buffer between the machine stages. On the basis of the Gra-

ham's reasoning, in [SS89] the same bound as in Theorem 8.4.1 has been proved 

for Ha , and this bound remains unchanged even if a heuristic list scheduling al-

gorithm is used in the last for loop. Since an arbitrary list scheduling algo-

rithm has the major influence on the worst case behavior of Algorithm Ha , in 

[SS89] another Algorithm, Hb , was proposed in which the LPT algorithm is 

used. We know from Section 5.1 that in the worst case LPT is better than an arbi-

trary list scheduling algorithm for Pm | | Cmax . Thus, one can expect that for Hb a 

better bound exists than for Ha . 

The exact bound RHb
 for Hb is not yet known, but Srishkandarajah and Sethi 

proved the following inequality, 

7

3
 � 

2

3k � RHb
 � 3 � 

1

k .  

The same authors proved that if LPT in Hb is replaced by a better heuristic or 

even by an exact algorithm, the bound would still be RHb
 � 2. The bound 2 has 

also been obtained in [Lan87] for a heuristic which schedules jobs in non-
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increasing order of p2j in FFS with m = 2 and an unlimited buffer between the 

stages. 

Computational experiments performed in [SS89] show that the average per-

formance of the algorithms presented above is much better than their worst case 

behavior. However, further efforts are needed to construct heuristics with better 

bounds (i.e. less than 2). 

8.4.3 A Model 

A mixed integer programming formulation for Fm | k1, k2 ,..., km | Cmax is given by 
Guinet et al. [GSKD96]. The decision variables specify the order of jobs on the 
machines and the completion times of the jobs at each stage:   

xijkl = 1, if job Jj is processed directly after job Ji on machine Pk in stage l,  
 0 otherwise, 

x0ikl = 1, if job Ji is the first job on machine Pk at stage l, 
 0 otherwise, 

xi0kl = 1, if job Ji is the last job on machine Pk at stage l, 
 0 otherwise, 

C (l)
j  = completion time of job Jj at stage l, 

Cmax = completion time of all jobs.  

The mixed integer programming formulation in [GSKD96] is as follows:  

minimize  Cmax (8.4.1) 

subject to 

 5
i=0,i�j

n
 5
k=1

kl

 xijkl  =  1 L j = 1 ,..., n, l = 1 ,..., m (8.4.2) 

 5
j=0

n
 xijkl  �  1 L h = 0 ,..., n, k = 1 ,..., kl, 

 l = 1 ,..., L 
(8.4.3) 

 5
i=0,i�h

n
xihkl � 5

j=0,j�h

n
xhjkl  =  0 L h = 1 ,..., n, k = 1 ,...,  kl,  

 l = 1 ,..., L 
(8.4.4) 

 C (l)
i  + 5

k=1

kl

 xijkl & pl j + ( 5
k=1

kl

xijkl � 1 )B  �  C (l)
j  

L i = 1 ,..., n,  
 j = 1 ,..., n,  
 l = 1 ,..., m 

(8.4.5) 

 C (l�1)
j      + pl j  �  C (l)

j  L j = 1 ,..., n, l = 2 ,..., m (8.4.6) 
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 C (l)
j   �  Cmax L j = 1 ,..., n, l = 1 ,..., m (8.4.7) 

 xijkl  � {0, 1} L i = 0 ,..., n, j = 0 ,..., n,  
 k = 1 ,...,  kl, l = 1 ,..., m (8.4.8) 

 C (l)
j   �  0 L j = 1 ,..., n, l = 1 ,..., m (8.4.9) 

In this program B is a very big constant, i.e., greater than the sum of all job pro-
cessing times. 

The makespan minimization aspect of the problem is expressed by (8.4.1). 
Constraints (8.4.2), (8.4.3) and (8.4.4) ensure that each job is processed precisely 
once at each stage. In particular, (8.4.2) guarantees that at each stage l for each 
job Jj there is a unique machine such that either Jj is processed first or after an-
other job on that machine. The inequalities (8.4.3) imply that at each stage there 
is a machine on which a job has a successor or is processed last. Finally, at each 
stage for each job there is one and only one machine satisfying both of the previ-
ous two conditions by (8.4.4). Constraints (8.4.5) and (8.4.6) take care of the 
completion times of the jobs. Inequalities (8.4.5) ensure that the completion 
times C (l)

i  and C (l)
j  of jobs Ji and Jj scheduled consecutively on the same machine 

respect this order. On the other hand, inequalities (8.4.6) imply that jobs go 
through the stages in the right order, i.e. from stage 1 through stage m. The con-
straint that the makespan is not smaller than the completion time of any job is 
expressed by (8.4.7). The last two constraints specify the domains of the decision 
variables. 

To minimize the mean flow time instead of the makespan it is enough to re-
place the objective function (8.4.1) with the following one:  

min 5
i=1

n
 C (m)

i     (8.4.10) 

Moreover, the variable Cmax and all constraints involving it can be dropped. 

8.4.4 The Makespan Minimization Problem 

First we discuss various techniques for obtaining lower bounds, then we present 
branching schemes and also implementations and computational results. 

Lower Bounds  

Although we are concerned with the general m-stage problem, it is worth to reca-
pitulate lower bounds for the two-stage special case, since several ideas stem 
from studying the latter problems. We will highlight the key ideas and cite papers 
that appear to propose them. If not mentioned otherwise, we assume that at each 
stage there are identical parallel machines. 
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I) Reduction to classical flowshop. Consider the classical flowshop scheduling 
problem obtained by dividing the job processing times at each stage by the num-
ber of machines. That is, define the new processing time of job Jj at stage l as p~l j 
= pl j/kl , l = 1 ,..., m, j = 1 ,..., n. The n new jobs with processing times p~l j at the 
different stages constitute a classical flowshop scheduling problem. When L = 2, 
this flowshop scheduling problem can be solved to optimality by Johnson's rule 
[Joh54]. The optimum makespan CLB of the latter problem is a lower bound on 
the optimum makespan of the original problem, as it is observed in Lee and 
Vairaktarakis [LV94]. To see this, let S * be an optimal schedule for the two-stage 
multiprocessor problem and suppose the jobs are indexed in non-decreasing or-
der of their completion time at stage 1, i.e., i < j iff C(1)

i    � C(1)
j   . Consider the first i 

jobs at stage 1 and the last n�i+1 jobs at stage 2. Since the last n�i+1 jobs cannot 
start earlier at the second stage than the completion of the first i jobs at the first 
stage, the completion time Cmax(S *) satisfies   

Cmax(S *)  �  
1
k1

 5
j=1

i
 p1 j + 

1
k2

 5
j=1

n
 p2 j ,     1 � i � n . 

Now consider the two-stage flowshop scheduling problem with n jobs having the 
above processing times. When sequencing the jobs at both stages in increasing 
order of their indices we obtain a feasible schedule and a longest path in that  
schedule with length C̄max . On this longest past there is a job h such that  

C̄max  =  5
j=1

h
 
p1 j
k1

  +  5
j=h

n
 
p2 j
k2

 . 

We immediately see that C̄max � Cmax(S *). Moreover, as CLB � C̄max , the state-
ment follows. 
 
II)  Aggregation. This is a very rich class of lower bounds based on computing 
the total amount of work on some stages or machines. Again, we begin with the 
case m = 2 and the following two lower bounds, LB(1) and LB(2), are enhance-
ments of those suggested by Sriskandarajah and Sethi [SS89], generalizations of 
the bounds proposed by Gupta and Tunc [GT91] and Gupta [Gup88] and are 
reported in their present form by Guinet et al. [GSKD96].  

LB(l)  =  min
i=1,…,n

 p3�l i) + max{ ( 5
i=1

n
 C (m)

i   )/kl , max
i=1,…,n

 pm i },  l = 1, 2 . (8.4.11) 

This bound is based on aggregating the work at stage l. Consider e.g., LB(1). 
The processing of all jobs at the first stage cannot complete sooner than the max 
in (8.4.11). In addition to that, the last job, say job Jj , finished at this stage must 
be completed at the second stage too. The minimum amount of time spent by job 
j at the second stage is expressed by the min in (8.4.11). Hence, LB(1) is a lower 
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bound on the makespan. By reversing the time the same argument shows that 
LB(2) is a lower bound on the makespan as well. 

Lee and Vairaktarakis introduced a different set of lower bounds for the m = 
2 case in [LV94]. Suppose the jobs are indexed in non-decreasing order of stage 
1 processing times, i.e., p11 � … � p1 n . Let  Pl q = 5j=1

q   
 pl j denote the summation 

of the q shortest job processing times at stage l. If k1 � k2 then  

LB1  =  
P1 k2

 + P2 n

k2
 (8.4.12) 

is a lower bound on Cmax . Namely, because of the flowshop constraints, on each 
machine at stage 2 there will be some idle time before processing may start, i.e., 
there will be a machine with idle time at least p11, a machine with idle time p12 , 
...,  and a machine with idle time p1 k2

 . Consequently, the makespan is no less 
than the average idle time plus the average workload at stage 2. 

However, if k1 < k2 the above lower bound can be improved. Certainly, on 
each machine at stage 2 there will be idle time before processing starts and these 
idle times are at least p11 ,...,  p1 k2

 ,  respectively. Moreover, on k2 � k1 of these 
machines processing cannot start until at least two jobs are completed at stage 1. 
Hence, an additional idle time of at least p11 units is unavoidable on k2 � k1 ma-
chines at stage 2. Consequently, the following  

LB2  =  
P1 k2

 + (k2 � k1)P11 + P2 n

k2
 (8.4.13) 

is a lower bound on the makespan. By exploiting the symmetry of the two-stage 
multiprocessor flowshop problem we obtain another two bounds by interchang-
ing the roles of stage 1 and stage 2. The new bounds will be  

LB3  =  
P2 k1

 + (k1 � k2)P21 + P1 n

k1
 if  k1 �  k2 , (8.4.14) 

LB4  =  
P2 k1

 + P1 n

k1
     if  k1 <  k2  . (8.4.15) 

These lower bounds can be combined to obtain the following lower bound:  
 

LB = {  max{LB1 , LB3 , CLB}   if  k1 � k2 

 max{LB2 , LB4 , CLB}   if  k1 < k2 

 

  
where CLB is the lower bound of Lee and Vairaktarakis obtained by reduction to 
classical flowshop. 
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Brah and Hunsucker proposed two bounds for the general m-stage problem, 
one based on machines and another based on jobs [BH91]. Suppose all jobs are 
sequenced on stages 1 through l�1 and a subset A  of jobs is already scheduled at 
stage l. Before describing the two bounds, we introduce additional notation.   

J  =   set of all jobs,    
A    =   set of jobs already scheduled at stage l,   
S (l)(A)    =   partial schedule of jobs in A at stage l, 
C[S (l)(A)]k =   completion time of the partial sequence on machine k.  

Notice that in order to compute C[S (l)(A)]k we have to fix the schedule of the 
upstream stages. 

Having fixed the schedule of all jobs on the first l�1 stages and that of the 
jobs in A at stage l, the average completion time of all jobs at stage l,  
ACT[S (l)(A)], can be computed as follows:  

ACT[S (l)(A)]  =  
5k=1

kl   C[S (l)(A)]k

 kl
  +  

5j�J �A plj

kl
 (8.4.16) 

It is worth mentioning that in any complete schedule of all jobs at stage l that 
contains the partial schedule S (l)(A), there will be a job completing not sooner 
than ACT[S (l)(A)]. 

The maximum completion time of jobs in A at stage l, MCT[S (l)(A)], is giv-
en by  

MCT[S (l)(A)]  =  max
1� k � kl

 C[S (l)(A)]k . (8.4.17) 

The machine based lower bound, LBM, is given by  

LBM[S (l)(A)]   = 

�.
�
. 

 
 
 
 
 
 
 

 

ACT[S (l)(A)] + min
i�J �A

{ 5
l' = l+1

m
pl' i }  

if  ACT[S (l)(A)] � MCT[S (l)(A)] , 

MCT[S (l)(A)] + min
i�A

 { 5
l' =  l+1

m
pl' i } 

otherwise 

(8.4.18) 

The rationale behind separating the two cases stems from the following observa-
tion. If  ACT[S (l)(A)] � MCT[S (l)(A)]  then the last job finished at stage l will be a 
job in J �A. If  ACT[S (l)(A)] < MCT[S (l)(A)]   then the last job scheduled at stage 
l may come from A or from J �A. 

The job based lower bound, LBJ, is defined by  



 8.4  Scheduling Flexible Flow Shops 301 

 

 

LBJ[S (l)(A)]  =  min
1� k � kl

 { C[S (l)(A)]k } + max
i�J �A

 { 5
l' = l

m
 pl' i } . (8.4.19) 

Finally, the composite lower bound, LBC, is given by  

LBC[S (l)(A)]  =  max{ LBM[S (l)(A)] , LBJ[S (l)(A)] } .  (8.4.20) 

The LBM bound (8.4.18) is improved in Portmann et al. [PVDD98]. Namely, if 
ACT[S (l)(A)] = MCT[S (l)(A)]  and J �A � �  then it may happen that  

min
i�A

 { 5
l' = l+1

m
pl' i } > min

i�J �A
{ 5

l' = l+1

m
pl' i } (8.4.21) 

holds, for the processing times of the jobs in A and in J �A are unrelated. In this 
case LBM can be improved by the difference of the left and right hand sides of 
(8.4.21). That is, if J �A � �, the improved lower bound becomes  

LBM[S (l)(A)]  = 

�.
.
.
�
.
.
. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

ACT[S (l)(A)] + min
i�J �A

{ 5
l' = l+1

m
pl' i }  

if  ACT[S (l)(A)] > MCT[S (l)(A)] , 

MCT[S (l)(A)] + min
i�A

 { 5
l' =  l+1

m
pl' i } 

if  ACT[S (l)(A)] < MCT[S (l)(A)] , 
ACT[S (l)(A)] +  

max{ min
i�J �A

{ 5
l' = l+1

m
pl' i }, min

i�A
{ 5

l' =  l+1

m
pl' i }} 

if  ACT[S (l)(A)] = MCT[S (l)(A)] . 

(8.4.22) 

III)  Bounds with heads and tails. The set of bounds in this category share the 
property that they can be computed for any stage l and it is not assumed that all 
jobs are completely scheduled on all upstream stages. This is in contrast with 
bounds (8.4.18), (8.4.19) and (8.4.22) that heavily rely on this assumption. Lower 
bounds based on heads and tails can easily be updated whenever a scheduling 
decision has been made either through branching in a branch and bound proce-
dure or through propagation of constraints. While the basic idea of the bounds 
(8.4.18), (8.4.19) and (8.4.22) is calculation of average processing times or aver-
age machine in process times, the main idea of the subsequent bounds is the cal-
culation and subsequent reduction of the domains of start times of the jobs at 
each stage, i.e. the interval limited by the earliest and latest possible start and 
completion times of the jobs, see [VHHL05]. 

To simplify notation, we fix stage l. Assume that a partial schedule S already 
exists (maybe S is empty). We define a set B of n 

_
 tasks with processing times p~j

 = pl j for each Tj � B , noting that j refers also to job Jj of the multiprocessor 
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flowshop scheduling problem. In addition to that, a ready time rj = r(l)
j    and a de-

livery time qj = q(l)
j    are defined for each task Tj , where r(l)

j    and q(l)
j    are deter-

mined with respect to the graph representation of the partial solution S. 
The problem of scheduling n tasks on m

_
 = kl identical parallel machines sub-

ject to release dates and delivery times to minimize the makespan, Pm
_

 | rj , qj
 | Cmax , is a relaxation of the multiprocessor flowshop scheduling problem, as it is 
pointed out by Carlier and Pinson [CP98]. Since this problem is NP-hard in the 
strong sense, as the one machine special case 1 | rj , qj | Cmax  already is [GJ77], 
various lower bounds are proposed in Carlier [Car87]. All of these lower bounds 
are lower bounds for the multiprocessor flowshop problem as well [CN00].  

The most basic lower bound for the Pm
_

 | rj , qj | Cmax  problem is  

LB1 = max
Ti �B

 {ri + pi + qi} (8.4.23) 

Now consider a subset B' of B and define the quantity   

G(J) = min
Tj �B'

{rj} + 1
m
_  ( 5

Tj �B'
 pj ) + min

Tj �B'
{qj} 

Clearly, G(B') is a lower bound for the Pm
_

 | rj , qj | Cmax  problem with respect 
to any B' � B . Consequently, taking the maximum over all subsets B' of B we 
obtain another lower bound:  

LB2 = max
Tj �B'

{G(B')} , (8.4.24) 

which can be computed in O(n 
_
&log n 

_
) time generating Jackson's preemptive 

schedule for the one-machine scheduling problem with heads m
_

rj , processing 
times pj and tails m

_
qj , see Carlier [Car87]. The optimal value of a preemptive 

solution of the one machine problem is m
_

LB2 . 
The next lower bound tries to take into account the heads and tails of differ-

ent operations in a more efficient way. Namely, let B' be a subset of B with |B' | � 
m
_

. Denote ri1 ,..., rim
_ and qj1 ,..., qjm

_ the m
_

 smallest release times and delivery 

times, respectively, of jobs in B' . Define the quantity G'(B') by  

G'(B') = 1
m ( 5

u =1

m
_

 riu + 5
Tj �B'

 pj + 5
u =1

m
_

 qiu ) (8.4.25) 

It is shown in [Car87] that LB3, as defined by (8.4.26) below, is a lower bound 
for the Pm | rj , qj | Cmax  problem.  

LB3 = max
B' � B, |B' | � m

_{G'(B')} (8.4.26) 

In order to show this, we may assume that each machine is used from jobs of B' . 



 8.4  Scheduling Flexible Flow Shops 303 

 

 

A (every) machine is idle from time 0 to time ri1 , a second machine is idle from 
time 0 to time 

2i
r  and the machine m

_
 is idle from 0 to rim

_ . Similarly, one machine 

is idle after processing for qj1 time units, a second machine is idle for qj2 time 
units, etc. Adding processing and idle times for all machines it is obvious that 
(8.4.25) is a lower bound for any subset B' of B . 

Bound (8.4.26) can straightforwardly be computed in O(n
_3) time [Van94], 

[Per95]. However, it is shown in [CP98] that the stronger lower bound  

LB4 = max{LB1 , LB3} (8.4.27) 

can be computed in O(n 
_
&log n 

_
 + n 

_
m
_
&log m

_
) time using Jackson's Pseudo Preemp-

tive schedule. In such a schedule, an operation may be processed on more than 
one machine at a time. Moreover, it can be shown that the distance between the 
non-preemptive optimal makespan and LB4 is at most 2pmax [Car87]. 

For the sake of completeness we mention that when schedule S is empty 
then r (l)

i   = 5l' =1
l�1

 pl' i and symmetrically q (l)
i   = 5l' = l+1

L        
 pl' i hold for each job Ji . For 

this special case Santos et al. [SHD95] has proven that G'(B') (cf. equation 
(8.4.25)) is a lower bound when B' consists of all jobs. Computational results 
show that, on average, the lower bound is within 8% of the optimum. 

An even stronger lower bound can be obtained by solving the preemptive 
version of the Pm

_
 | rj , qj | Cmax problem using a network flow model. Fix a 

makespan C and define deadlines dj = C � qj for each job Jj . Job Jj must be pro-
cessed in the interval [rj , dj] in order to complete all jobs by time C. There are at 
most h � 2n different rj and dj values and let v1 , … , vh represent these values ar-
ranged increasingly, i.e., v1 < v2 < ... < vh . Let It = [vt ,vt+1), t = 1 ,..., h�1, repre-
sent h�1 intervals with lengths l1 ,..., lh�1. If It � [rj , dj] then a part min{lt , pj} of 
job Jj can be processed in interval tI . Hence we form a capacitated network with 
n 
_

 + (h – 1) + 2 nodes, having one source node s, one sink node r, n
_

 nodes for rep-
resenting the jobs and h – 1 nodes for representing the intervals. Source s is con-
nected to each job node j with an arc of capacity pj . Each job node j is connected 
to each interval It with It � [rj , dj] using an arc of capacity min{lt , pj}, and finally 
each interval It is connected to the sink by an arc of capacity m

_
lt . In this network 

there is a flow of value 5j pj if and only if the preemptive Pm
_

 | rj , qj , pmtn | Cmax 
problem has a solution with makespan C. Using dichotomic search, the smallest 
C admitting a compatible flow of value 5j pj can be found in polynomial time. It 
is shown in Hoogeveen et al. [HHLV95] that the difference between the preemp-
tive makespan and LB4 is not more than m

_
/(m

_
�1)pmax . Nonetheless, this gap is 

claimed to vanish in practice [CP98]. The drawback of this method is the rela-
tively high computation time for finding the maximum flow. 

We close this section by a rather tricky lower bound of Carlier and Néron. 



304 8  Flow Shop Scheduling 

 

Let R1 ,..., Rm
_  denote the m

_
 smallest increasingly ordered machine availability 

times at stage l, noting that they depend on the partial schedule S. Let  

G'         machine(B' ) = 1m
_ (max(R1 , ri1) + … + max(Rm

_
 , rim

_) + 5
Jj �B'

 pj + qi1 + … + qim ). 
 (8.4.28) 

Now, if Rm + qjm < UB, then G'         machine(B' ) is a lower bound on UB . 
Let us briefly sketch the main ideas of the proof which can be found in  

[CN00]. Let S be a schedule with a makespan of at most UB. If there exists a 
machine Ph different from Pm

_  without any job from B'  to process then the jobs 
from B' scheduled on machine Pm

_  can be scheduled on machine Ph . From Rl

 � Rm
_  we know this will not increase the makespan of S. If no job from B' is pro-

cessed on machine Pm
_  consider the difference , = UB � Rm

_  � qim
_ > 0. A part , of 

job Jim
_ (with release date rim

_ and tail qim
_) which is scheduled on some machine 

can be scheduled in the interval [UB � qim
_ � , , UB � qim

_] on machine Pm
_  without 

increasing the makespan. Thus, we can conclude, if there is a schedule with a 
makespan of at most UB then there is also a (preemptive) schedule with a 
makespan of at most UB in which all machines have to process at least a part of a 
job from B' . 

What remains is to sum up idle times and processing times of all machines 
with respect to the (preemptive) schedule. The first machine is idle from 0 to R1 
but also from 0 to ri1 . Therefore it is idle from 0 to max{R1 , ri1}. There is also a 
machine idle from time UB � qi1 until time UB. Similar conclusions for the re-
maining machines yield the desired result. 

Branch-and-Bound Methods  

We have introduced several lower bounds in the previous section. Below we dis-
cuss branching schemes and search strategies. 

The first branch-and-bound procedure for the Fm | k1,..., km | Cmax problem is 
proposed in Brah and Hunsucker [BH91]. 

This procedure is a modification of the method developed by Bratley et al. 

[BFR75] for scheduling on parallel machines. At each stage l two decisions must 

be made: the assignment of the jobs to a machine Pl i , and the scheduling of jobs 

on every machine at stage l. The enumeration is accomplished by generating a 

tree with two types of nodes: node j  denotes that job Jj is scheduled on the 

current machine, whereas node j  denotes that Jj is scheduled on a new ma-

chine, which now becomes the current machine. The number of  nodes on 

each branch is equal to the number of parallel machines used by that branch, and 
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thus must be less than or equal to kl at stage l. The number of possible branches 

at each stage l was established by Brah in [Bra88] as 

N(n, kl) = 
M
N
O

P
Q
Rn � 1

kl � 1
 nS
klS

 . 

Consequently, the total number of possible end nodes is equal to  

S(n, m, {kl}l=1

m 
) = �

l=1

m
 
M
N
O

P
Q
Rn � 1

kl � 1
 nS
klS

 . 

For the construction of a tree for the problem, some definitions and rules at 

each stage l are useful. Let the level 0l represent the root node at stage l, and 1l , 

2l ,..., zl represent different levels of the stage, with zl being the terminal level of 

this stage. Of course, the total number of levels is nm. The necessary rules for the 

procedure generating the branching tree are the following. 

Rule 1 Level 0i contains only the dummy root node of stage l, l = 1, 2,..., m 

(each l is starting of a new stage). 

Rule 2 Level 1l contains the nodes 1 , 2 ,..., x , where x = n � kl + 1 (any 

number larger than x would violate Rules 5 and 7). 

Rule 3 A path from level 0l to level jl , i = 1, 2,..., m, j = 1, 2,..., n, may be ex-

tended to the level (j+1)l by any of the nodes 1 , 2 ,..., n , 1 , 2 ,..., n  

provided the rules 4 to 7 are observed (all unscheduled jobs at stage l are candi-

dates for  and  nodes as long as they do not violate Rules 4 to 7). 

Rule 4 If a  or a  has previously appeared as a node at level jl , then a may not 

be used to extend the path at that level (this assures that no job is scheduled twice 

at one stage). 

Rule 5 a  may not be used to extend a path at level jl, which already contains 

some node r  with r > a (this is to avoid duplicate generation of sequences in 

the tree). 

Rule 6 No path may be extended in such a way that it contains more than kl  

nodes at each stage l (this guarantees that no more than kl machines are used at 

stage l). 
Rule 7 No path may terminate in such a way that it contains less than kl  

nodes at each stage l unless the number of jobs is less than kl (there is no ad-

vantage in keeping a machine idle if the processing cost is the same for all of the 

machines). 

A sample tree representation of a problem with 4 jobs and 2 parallel ma-

chines is given in Figure 8.4.2. All of the end nodes can serve as a starting point 

for the next stage 0l+1 (l < m). All of the nodes at a subsequent stage may not be 

candidates due to their higher value of lower bounds, and thus not all of the 
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nodes need to be explored. It may also be observed that all of the jobs at stage l 
will not be readily available at the next stage, and thus inserted idle time will 

increase their lower bounds and possibly remove them from further considera-

tions. This will help to reduce the span of the tree. The number of search nodes 

could be further reduced, if the interest is in the subclass of active schedules 

called non-delay schedules. These are schedules in which no machine is kept idle 

when it could start processing some task.  

The use of these schedules does not necessarily provide an optimal schedule, 

but the decrease in the number of the nodes searched gives a strong empirical 

motivation to do that, especially for large problems [Fre82].  

Finally we describe the idea of the branch and bound algorithm for the prob-

lem. It uses a variation of the depth-first least lower bound search strategy, and is 

as follows. 
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Figure 8.4.2 Tree representation of four jobs on two parallel machines.   

Step 1 Generate n � k1 + 1  nodes at stage 1 and compute their lower bounds. 

Encode the information about the nodes and add them to the list of un-

processed nodes. Initialize counters (number of iterations, time) defining 

end of computation. 

Step 2 Remove a node from the list of unprocessed nodes with the priority giv-

en to the deepest node in the tree with the least lower bound. Break ties 

arbitrarily. 



 8.4  Scheduling Flexible Flow Shops 307 

 

 

Step 3 Procure all information about the retrieved node. If this is one of the end 

nodes of the tree go to Step 5, while if this is the last node in the list of 

unprocessed nodes then go to Step 6. 

Step 4 Generate branches from the retrieved node and compute their lower 

bounds. Discard the nodes with lower bounds larger than the current up-

per bound. Add the remaining nodes to the list of unprocessed nodes 

and go to Step 2. 

Step 5 Save the current complete schedule, as the best solution. If this is the 

last branch of the tree, or if the limit on the number of iterations or 

computation time has reached, then pass to the next step, otherwise go 

to Step 2. 

Step 6 Print the results and stop. 

As we see, the algorithm consists of three major parts: the branching tree 

generation, the lower bound computing, and the list processing part. The first two 

parts are based on the concepts described earlier with some modifications utiliz-

ing specific features of the problem. For the list processing part, the information 

is first coded for each branching node. If the lower bound is better than the best 

available Cmax value of a complete solution (i.e. the current upper bound), pro-

vided it is available at the moment, the node is stored in the list of unprocessed 

nodes. The information stored for each branching node is the following: 

KODE = NPR � 1 000 000 + NPS � 10 000 + LSN � 100 + JOB 

LBND = NS � 10 000 000 + NSCH � 100 000 + LB 

where NPR is the machine number in use, NPS is the sequence number of this 

machine, LSN is number of the last  nodes, JOB is the index of the job, NS is 

the index of the stage, NSCH is the number in the processing sequence, and LB is 

the lower bound of the node. 

The stage and the level numbers are coded in the opposite manner to their 

position in the tree (the deepest node has the least value). Thus, the deepest node 

is stored on top of the list and can be retrieved first. If two or more nodes are at 

the same stage and level, the one with the least lower bound is retrieved first and 

processed. Once a node is retrieved, the corresponding information is decoded 

and compared with the last processed node data. If the node has gone down a 

step in the tree, the necessary information, like sequence position and completion 

time of the job on the retrieved node, is established and recorded. However, if the 

retrieved node is at a higher or the same level as the previous node, the working 

sequence and completion time matrix of the nodes lower than the present level 

and up to the level of the last node are re-initialized. The lower bound is then 

compared with the best known one, assuming it is available, and is either elimi-

nated or branched on except when this is the last node in the tree. The qualifying 

nodes are stored in the list of unprocessed nodes according to the priority rule 

described in Step 2 of the algorithm. However, in case this is the last node in the 
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tree, and it satisfies the lower bound comparison test, the working sequence posi-

tion and job completion time matrix along with the completion time of the 

schedule is saved as the best known solution. 

Of course, the algorithm described above is only a basic framework for fur-

ther improvements and generalizations. For example, in order to improve the 

computation speed for large problems some elimination criteria, like the ones 

developed in [Bra88] can be used together with the lower bounds. The lower 

bound in Step 1 and Step 4 of the algorithm are computed according to (8.4.20), 

using (8.4.18) and (8.4.19). The algorithm could also be applied for schedule 

performance measures other than the schedule length, if corresponding lower 

bounds would be elaborated. Moreover, the idea of the algorithm can be used in a 

heuristic way, e.g. by setting up a counter of the number of nodes to be fully ex-

plored or by defining a percentage improvement index on each new feasible solu-

tion. 

The algorithm of Portmann et al. [PVDD98] extends that of Brah and Hun-
sucker in several ways. First, it uses the improved machine based lower bound 
(8.4.22) instead of (8.4.18) when computing (8.4.20). Moreover, it computes an 
upper bound before starting to schedule the jobs at a new stage l. The upper 
bound is computed by a genetic algorithm (GA) that determines a schedule of all 
jobs at stages l through m. The schedule of the jobs at the first l�1 stages is fixed 
and is given by the path from the root of the branching tree to the root node of 
stage l. For details of GA we refer the reader to [RC92]. 

The results of a detailed computational study show that the method of Port-
mann et al. is able to solve problems to optimality with up to five stages and ten 
or fifteen jobs. However, it seems that the method is very sensitive to the pattern 
of the number of parallel machines at the stages. Another conclusion is that the 
algorithm proves the optimality of solutions, within a given time limit, more fre-
quently when GA is used. 

A Method Based on Constraint Propagation  

The method of Carlier and Néron [CN00] is significantly different from that of 
Brah and Hunsucker and of Portmann et al. The novelty of the approach consists 
in working on all m parallel machine problems at the same time. Namely, instead 
of solving the parallel machine problem completely at a stage, like in the branch-
and-bound algorithm of Brah and Hunsucker, the method selects a stage and the 
next job to be processed at that stage. Having scheduled the selected job, heads 
and tails are adjusted and the method proceeds with selecting a new stage. 

First we discuss how to select the job to be scheduled next at some stage 
with respect to a fixed upper bound UB. To simplify notation fix a stage l and 
consider the m

_
 machine problem with m

_
 = kl . We identify the processing of job Ji 

at stage l with task Ti . The processing time of task Ti is p~i = pl i and its starting 
time (to be determined) will be ti . Let B denote the set of all m

_
 tasks. A central 
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notion is that of selection. A  selection A for an m
_

-machine problem is an ordered 
list of tasks {Ti1 , Ti2 ,..., Tih�1

 , Tih} such that: if Ti precedes Tj in A then ti < tj , or ti
 = tj and i < j. A selection is complete if B is totally ordered. To complete the 
definition note that in a selection more than one task can be processed at the 
same time, but the total number of tasks processed simultaneously cannot exceed 
m. 

Carlier [Car84] has proposed a simple list scheduling algorithm, the Strict 
algorithm, to schedule tasks with respect to a selection at their earliest possible 
date, the result is called strict schedule. It is shown that strict schedules dominate 
all other schedules. Consequently, it is enough to work with strict schedules. 

Let us fix an upper bound UB for the m-machine problem. A task Ti � B is 
an input (output) of the m

_
-machine problem if and only if there exists a schedule 

S = { tj | Tj � B } with makespan at most UB and verifying tj � ti (respectively tj
 + p~j � ti + p~i) for all Tj � B � {Ti}. Inputs and outputs will be selected by com-
puting lower bounds after fixing a task Ti to be scheduled before or after all other 
unscheduled tasks. However, lower bounds may not detect that no schedule of 
the remaining tasks with makespan at most UB exists. 

For solving the makespan minimization problem, Carlier and Néron solve 
the decision version of the problem and apply a dichotomic search to find the 
smallest UB for which a solution exists. 

The decision problem is solved by branch-and-bound in which branching 
consists of fixing a task as input (or output) of a stage. More concretely, the 
branch-and-bound method proceeds as follows:  
Step 1. Determine the most critical (machine) center, which is the set of parallel 
machines on some stage that will most likely create a bottleneck when schedul-
ing all jobs (see below). Decide if the selection is built according to inputs or 
outputs. If selection based on outputs is chosen then reverse the problem.  
Step 2. If bestsolution � UB then answer YES and stop. Otherwise, if all nodes 
are explored then answer NO and stop. Otherwise proceed with Step 3.  
Step 3. Choose the node N in the branch-and-bound tree to be explored. If the 
current center, i.e. the parallel machine problem under consideration in node N, is 
completely selected then proceed with Step 4, otherwise proceed with Step 6.  
Step 4. If all centers are completely selected in N and solution � UB then answer 
YES and stop. Otherwise, if there exists a center in N not completely selected 
then choose the most critical center among the not completely selected ones as 
the current center of N and proceed with Step 5. In all other cases proceed with 
Step 6.  
Step 5. Determine a solution for N. If the makespan of the solution found is not 
greater than UB then answer YES and stop.  
Step 6. Compute lower bounds with respect to the current center of N. If 
lowerbounds > UB then discard node N and go to Step 2. Otherwise proceed with 
Step 7.  
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Step 7. Apply local enumerations to N and proceed with Step 8.  
Step 8. Determine the list of feasible inputs for the current center of N. For each 
feasible input i create a new node by adding i to the partial selection of the cur-
rent center of N and adjust heads and tails. Go to Step 2.  

Below we provide some details of this algorithm:  
T The most critical center: a lower bound is computed for each m 

_
 = kl-machine 

problem. The m 
_

-machine problem with the largest lower bound defines the 
most critical center which will be selected first.  

T The current center: the center where the selection is built and it is always the 
most critical center.  

T The search tree is visited in a depth-first manner such that, among the children 
of a node, the child with the smallest release date of its input is chosen for ex-
ploration.  

T Solutions are generated during the exploration of the tree using the Strict list 
scheduling algorithm. The (ordered) list of operations for each center is de-
termined by either a complete selection, if available, or by sorting the opera-
tions in decreasing tail order (steps 4 and 5).  

T Lower bounds are computed using eq. (8.4.25) and also eq. (8.4.28).  
T Local enumerations at Step 7 refer to two things. On the one hand, unsched-

uled operations are selected in all possible ways while respecting UB in order 
to improve their heads and tails. On the other hand, a restricted multiprocessor 
flowshop problem is solved during the construction of the selection of the 
most critical center.  

T The selection of inputs at Step 8 consists in finding jobs that can be scheduled 
next (before all other unscheduled jobs) without augmenting a lower bound 
beyond UB. 

The adjustments of heads and tails start from the current center and are propagat-
ed through the other centers. The efficiency of the head and tail based lower 
bounds heavily depends on this propagation phase. Moreover it influences the 
number of feasible inputs and therefore the size of the branching tree. 

Assume task Te has been detected as a possible input in the current machine 
center. There might be a partial selection within this center which is not yet com-

plete. Let B ~ be the set of unselected tasks. If Te is an input all other tasks cannot 

start before the release time re of e, i.e. ri := max{ri , re} for all tasks Ti of B ~ . For 
all machines Pk of the current center the machine availability time can be updated 
to Rk := max{Rk , re} . The adjustment of the machine availability times again 

might cause an increase of the release dates of all tasks from B ~ , i.e. ri := max{ri ,
 R1}, because a task cannot start before a machine becomes available. 

In the domain of possible start times for task e on any machine the latest 
possible start time is limited by 
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max{ UB � pe � qe , UB � 1
m
_  & ( 5Ti�B ~ pi + pe + qj1 + … + qjm

_) } 

which implies the updating of the tail 

qe := max{ qe , 
1
m
_  & ( 5Ti�B ~ pi + pe + qj1 + … + qjm

_) � pe } . 

The complexity of this adjustment is at most O(m 
_

n
_
). 

Consider a partial selection and set B ~ of unselected tasks at a node in the 

branch-and-bound tree. Let G'(B ~) be the lower bound (8.4.25) and UB the cur-
rent upper bound. Let , be the smallest non-negative integer such that 

1
m
_  & ( 5u=1

m
_

   
 riu + , + 5Tj�B ~ pj + 5u=1

m
_

   
 qiu )  > UB   and   rim

_+1 � ri1 � , . 

Thus, we can conclude that ti1 < ri1 + , otherwise the aforementioned new 

value G'(B ~), where the release date of Ti1 has been increased by ,, will be strictly 
greater than UB. As ti1 + pi1 + qi1 � Ci1 + qi1 � UB we can set qi1 := max{qi1,
UB � (ri1 + , + pi1) + 1}. If the new qi1 is greater than the previous one, the same 
deduction can be applied to qi2 . Similarly, adjustments can be derived for the 
release dates leading to the following updates ri1 := max{ri1 , UB � (qi1 + ,' + pi1)
 + 1) . 

The modification of the release dates of the tasks of the current center are 
propagated to the subsequent machine centers and the new tails are propagated to 
the previous machine centers. 
For more details see  [CN00]. 

As far as the benefits of this method are concerned, most of the problems 
reported hard by Vignier [Vig97] are very easy to solve by constraint propaga-
tion. Those that are not solved immediately, are hard for the new method as well. 
The method seems to perform well on problem instances in which there is a “bot-
tleneck'' center having one machine only. 

8.4.5 The Mean Flow Time Problem 

We are aware of only very few results on solving multiprocessor flowshop with 
respect to the mean flow time objective. The general problem has been studied 
by Azizoglu et al. [ACK01] and a special case where an optimal permutation 
schedule is sought has been studied by Rajendran and Chaudhuri [RC92]. We 
commence with a lower bound for the optimal permutation schedule problem and 
continue with that for the general case. Then a branch-and-bound method for 
each of the two problems will be presented. 
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Lower Bounds  

Permutation flowshops 

Before presenting the lower bound proposed by Rajendran and Chaudhuri for the 
permutation flowshop problem we introduce additional notation.   

2 = a permutation of jobs (indices of the jobs) that defines an available partial 
schedule,  

n' = the number of scheduled jobs in 2, 
U = the set of unscheduled jobs, 
R k

(l)(2) =  the release time of machine Pk at stage l w.r.t. 2, 
C(2j , l) = the completion time of an unscheduled job Jj � U at stage l when 

appended to 2, 
F(2) = the total flow-time of jobs in 2, 
LBCj  

 (l)(2) = the lower bound on the completion time of job Jj at stage l, 
LB(2) = the lower bound on the total flow-time of all schedules beginning 

with partial schedule 2.  
In a  permutation schedule the completion times of the jobs at the stages are 

determined w.r.t. a permutation 2 of jobs. The completion times of the jobs in 2  
are determined iteratively by using the processing times and machine assign-
ments. Namely, assuming that 2 = 2'j and that job Jj is assigned to machine Pk(j,l) 
at stage l, the completion time of job Jj at the first stage is  

C (1)(2'j) = Rk(j,1)
(1)     + pl j . 

The completion time at each stage l = 2 ,..., m (in this order) is determined 
by 

C (l)(2'j) = max{ C (l�1)(2'j) , Rk(j,l)
(l)    } + pl j . 

Finally, the release times of the machines at the stages l = 2 ,..., m are given by 

Rk  
(l)(2'j) =  { C (l)(2'j) if   k = k(j , l) 

Rk  
(l)(2) otherwise    

. 

Now we turn to the lower bound. To this end we need other expressions that 
are defined next. The earliest time when an unscheduled job in U becomes avail-
able at stage l can be computed as follows:  
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s (l) = max 

�.
�
. 

 
 
 
 
 
 
 

 

min{ Rk  
(1)(2) | 1 � k � k1 } + min

Jj�U
 { 5

q=1

l�1
 pq j} , 

min{ Rk  
(2)(2) | 1 � k � k2 } + min

Jj�U
 { 5

q=1

l�1
 pq j} , 

... 

min{ Rk     
(l�1)(2) | 1 � k � kl�1 } + min

Jj�U
 { pl�1 j }  

 

K.
U
.V

 
 
 
 
 
 
 

 (8.4.30) 

Therefore, the earliest starting time of an unscheduled job is given by  

max{ min{ Rk  
(l)(2) | 1 � k � kl }, s (l) }  

Let Rr  
(l) denote min{ Rk  

(l)(2) | 1 � k � kl }. With this notation the lower bound on 
the completion time of job Jj1, where Jj1 � U , at stage l is given by  

LBCj1  
(l)(2) = max{Rr  

(l), s (l)} + pl j1 + 5
q=l+1

m
pq j1  .  (8.4.31) 

We place tentatively Jj1 on machine Pr and update the machine's release time as  

 Rr  
(l) = max{Rr  

(l),s (l)} + pl j1 . (8.4.32) 

Now, updating Rr  
(l) is correct only if Jj1 is an unscheduled job with smallest pro-

cessing time. Let j1 , j2,...,  jn�n' be a permutation of the indices of all unscheduled 
jobs in U satisfying pj1  

(l)
 � pj2  

(l)
 � … � pjn�n'

(l) , we compute LBCjt  
(l)(2) for t = 1 , … , 

 n � n', in this order. Then we obtain the lower bound   

LB (l)(2) = F(2) + 5
Jj�U

LBCj    
(l) (2) ,  

at stage l on the total flow time of all permutation schedules beginning with par-
tial schedule 2. 

Finally, a lower bound on the total flow time of any schedule beginning with 
2 is obtained by computing LB (l)(2) for all stages 1 � l � m and taking the maxi-
mum:  

LB(2) = max
1� l � m

 LB (l)(2) . (8.4.33) 

The general case 

When schedules are not restricted to permutation schedules Azizoglu et al. 
[ACK01] propose two other lower bounds obtained by solving two different re-
laxations of the following parallel machine problem. Let � (l) be the total flow 
time problem on kl identical parallel machines and n tasks with processing times 
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pl 1 , … ,  pl n and ready times r1      
 (l�1), … , rn      

(l�1). If F (l) is the optimal flow time of 
problem � (l) then F (l) is a lower bound on the optimal solution to the L-stage 
flowshop problem. However, � (l) is NP-hard as is its single machine special 
case. Hence, we compute lower bounds on F (l). 

The first lower bound, LB1, is the optimum of a relaxation of � (l) when all 
job ready times are set to minj{rj       

(l�1)}. This problem can be solved to optimality 
in polynomial time by the SPT rule, cf. Blazewicz et al. [BEPSW01]. 

In the second lower bound, LB2 , job ready times are kept, but instead of 
solving a parallel machine problem, a single machine problem is considered. 
More precisely, define n new tasks with processing times pl j /kl and ready times 
rj      

(l�1), j = 1,…,n. Total flow time minimization on a single machine with ready 
times is NP-hard, Lenstra et al. [LRKB77], however its preemptive version can 
be solved with the shortest remaining processing time (SRPT) rule, Schrage 
[Sch68]. The preemptive optimum is a lower bound on the non-preemptive sin-
gle machine problem, therefore on F (l). 

In the next section we describe algorithms using the bounds presented in this 
section. 

Branch-and-Bound Procedures 

Permutation flowshops 

Rajendran and Chaudhuri propose a very simple algorithm for solving the permu-
tation flowshop problem. Let k denote the minimum number of parallel machines 
over all stages, that is, k = minl{kl}. The algorithm starts by generating M

O
P
Rn

k   
nodes, one for each subset of k jobs out of the set of n jobs. In each of these 
nodes the k jobs are placed on k distinct machines in every stage, and the partial 
schedule 2 is defined accordingly. Then, the lower bound LB(2) (eq. 8.4.33) is 
computed for each node and the node with the smallest lower bound is selected 
for exploration. Exploring a node consists in generating n�n' new nodes, one for 
each of the n�n' unscheduled jobs. When generating a new node using an un-
scheduled job Jj , then the operations of job Jj are joined to 2 starting with the 
operation at stage 1 and finishing with the operation at stage m. An operation is 
always placed on a machine having the smallest release time. After computing a 
lower bound for each child generated, the procedure proceeds by choosing the 
next node to branch from. The algorithm stops when a node with n�1 scheduled 
jobs is chosen for exploration. Notice that in this case the lower bound matches 
the flow time of the schedule obtained by scheduling the only unscheduled job. 
Consequently, when the algorithm stops the node chosen augmented with the 
unscheduled job constitutes an optimal solution to the permutation flowshop 
problem. 
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As far as the power of the above method is concerned, instances up to 10 
jobs, 15 stages and up to 4 machines at each stage are solved while exploring 
only small search trees of less than 10.000 nodes in a short computation time 
(less than a minute) on a mainframe computer. 

The general case 

For the general case, Azizoglu et al. propose a new branching scheme which is 
different from that of Brah and Hunsucker (described in Section 8.4.4) developed 
for the makespan minimization problem. In each stage, there are n nodes at the 
first level of the tree, each node representing the assignment of a particular job to 
the earliest available machine. A node at the n'  

th level of the tree corresponds to 
a partial sequence with n' jobs scheduled. Each node at level n' branches to 
(n�n') nodes each is representing the assignment of an unscheduled job to the 
earliest available machine. 

The number of possible branches is thus n! at each stage. Therefore the total 
number of leaves at the mth  stage is (n!)m. 

In fact, the branching scheme of Azizoglu et al. generates only a subset of 
nodes generated by that of Brah and Hunsucker. The following example of Az-
izoglu et al. illustrates the difference between the two branching schemes. Sup-
pose there are four jobs satisfying p1 1 � p1 2 + p1 3 . At the first stage the branch-
ing scheme of Brah and Hunsucker would consider to assign job J1 to the first 
machine and jobs J2 , J3 and J4 to the second machine in this order. In contrast, 
the new branching scheme under the assumption on job processing times at the 
first stage would not process job J4 on the second machine after jobs J2 and J3 , 
for processing job J4 on the first machine would dominate the former partial 
schedule. 

Another dominance relation between schedules comes from the following 
observation. If max{Rr  

(l), ri      
(l�1)} + pl i � r j      

 (l�1) , where Ji and Jj are distinct jobs not 

yet scheduled at stage l and Rr  
(l) is the earliest time point when a machine be-

comes available at stage l, then processing job Ji next dominates any schedule in 
which job Jj is processed next. The branch-and-bound tree generated contains 
only non-dominated nodes. A lower bound is computed for each node not elimi-
nated using either LB1 or LB2 (defined in the previous section). 

Computational results show that the new branching scheme with LB1 outper-
forms the algorithm using the new branching scheme and LB2 and also the algo-
rithms using the branching scheme of Brah and Hunsucker with either lower 
bound. The largest problem instances on which the methods were tested consist-
ed of 15 jobs, 2 stages and at most 5 parallel machines at a stage, and 12 jobs, 5 
stages and 4 machines at a stage. Moreover, a general observation is that the 
larger the number of machines at the first stage, the more difficult the problem 
becomes. The results are in contrast with the permutation schedule case where 
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instances with considerably more stages can easily be solved. 
For several other interesting conclusions about the properties of the pro-

posed algorithm and also that of the lower bounds we refer the interested reader 
to [ACK01]. 
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9 Open Shop Scheduling 

The formulation of an open shop scheduling problem is the same as for the flow 

shop problem except that the order of processing tasks comprising one job may 

be arbitrary. 

Thus, the open shop scheduling problem (OSP) can be described as follows: 
a finite set of tasks has to be processed on a given set of machines. Each task has 
a specific processing time during which it may not be interrupted, i.e. preemption 
is not allowed. Tasks are grouped to jobs (sets of tasks), so that each task belongs 
to exactly one job. Furthermore, each task requires exactly one machine for pro-
cessing. The objective of the OSP is to schedule all tasks,  i.e. determine their 
start times, so as to minimize the maximum completion time (makespan) given 
the additional constraints that (a) tasks which belong to the same job and (b) 
tasks which use the same machine cannot be processed simultaneously. 
 

9.1 Complexity Results 

Problem O2 | | Cmax 

Let us consider non-preemptive scheduling first. Problem O2 | | Cmax can be 

solved in O(n) time [GS76]. We give here a simplified description of the algo-

rithm presented in [LLRK81]. For convenience let us denote aj = p1j , bj = p2j , A  

= {Jj | aj � bj}, B  = {Jj | aj < bj}, K1 = � aj and K2 = � bj .  

Algorithm 9.1.1  Gonzalez-Sahni algorithm for O2 | | Cmax [GS76]. 

begin 

Choose any two jobs Jk and Jl for which ak � max
Jj �A

 {bj} and bl � max
Jj �B

 {aj}; 

Set A ' := A  � {Jk }; 

Set B ' := B  � {Jl }; 

Construct separate schedules for B ' � {Jl} and A ' � {Jk} using patterns  

shown in Figure 9.1.1; -- other tasks from A ' and B ' are scheduled arbitrarily 

Join both schedules in the way shown in Figure 9.1.2; 

Move tasks from B ' � {Jl} processed on P2 to the right; 

 -- it has been assumed that K1 � al � K2 � bk ; the opposite case is symmetric 
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Change the order of processing on P2 in such a way that T2k is processed first on 

this machine; 
end; 

The above problem becomes NP-hard as the number of machines increases to 3. 

As far as heuristics are concerned we refer to the machine aggregation algorithms 

introduced in Section 8.3.2 which use Algorithm 9.1.1 in the case of open shop. 

t0

Jl

Jl

B'P1

P2 B'

      t0

A'P1

P2

Jk

JkA'

 

Figure 9.1.1 A schedule for Algorithm 9.1.1 
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Figure 9.1.2 A schedule for Algorithm 9.1.1. 

Problem O | pmtn | Cmax 

Again preemptions result in a polynomial time algorithm. That is, problem O | 

pmtn | Cmax can be optimally solved by taking 

C *  
max = max {max

j
 {�

i=1

m
 pij}, max

i
 {�

j=1

n
 pij}} 

and then by applying Algorithm 5.1.20 [GS76]. 

Problems O2 | | �� Cj and O2 | | Lmax 

Let us mention here that problems O2 | | � Cj and O2 | | Lmax are NP-hard, as 

proved in [AC82] and [LLRK81], respectively, and problem O | pmtn, rj | Lmax is 

solvable via the linear programming approach [CS81]. 

As far as heuristics are concerned, arbitrary list scheduling and the SPT algo-

rithm have been evaluated for O | | � Cj [AC82]. Their asymptotic performance 

ratios are R#
L = n and R#   

SPT = m, respectively. Since the number of tasks is usually 

much larger than the number of machines, the bounds indicate the advantage of 

SPT schedules over arbitrary ones. 
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A survey of results in open shop scheduling may be found in [DPP01, 

KSZ91]. 

9.2 A Branch and Bound Algorithm for Open 
Shop Scheduling 

Only few exact solution methods are available for the open shop scheduling 
problem. We describe a branch-and-bound algorithm of Dorndorf et al. [DPP01] 
for solving this problem which performs better than other existing algorithms. 
The key to the efficiency of the algorithm lies in the following approach: instead 
of analyzing and improving the search strategies for finding solutions, the au-
thors focus on constraint propagation based methods for reducing the search 
space. Extensive computational experiments on several sets of well-known 
benchmark problem instances are reported. For the first time, many problem in-
stances are solved to optimality in a short amount of computation time.  

9.2.1 The Disjunctive Model of the OSP 

Studies have shown that within the class of intractable problems the OSP belongs 
to the especially hard ones [BHJW97, GJP00]. As an example, the famous job 
shop scheduling problem (JSP) which is a close relative of the OSP is easily 
solvable by now for problem instances with up to 100 tasks, see e.g. [AC91, 
CP94, CL95, MS96], while there still remain unsolved instances of the OSP with 
less than 50 tasks. 

In this chapter, we describe a branch-and-bound algorithm for solving the 
OSP. Instead of analyzing and improving the search strategies, we especially 
focus on constraint propagation based methods for reducing the search space. As 
a positive side-effect, the constraint propagation algorithm implicitly calculates 
strong lower bounds so that an explicit computation is not necessary. Extensive 
computational experiments on several sets of well-known benchmark problem 
instances show that this algorithm outperforms other exact solution methods for 
the OSP. With this algorithm, for the first time, many problem instances were 
solved to optimality within a very short amount of computation time. 

The remainder of this chapter is organized as follows. Next we describe the 
well-known disjunctive model of the OSP that is due to Roy and Sussmann 
[RS64] and its extension by Błażewicz et al. [BPS00] and give a short review on 
solution methods for the OSP. Section 9.2.2 introduces the basic concepts of 
constraint propagation and presents several consistency tests which are used for 
the reduction of the search space. These consistency tests are embedded in a 
branch-and-bound algorithm that uses a branching scheme that is due to Brucker 
et al.  [BHJW97]. A short description of this algorithm is given in section 9.2.3. 
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Extensive computational results of the branch-and-bound algorithms that use 
different consistency tests are then presented in the last section. 

The disjunctive model that has been introduced by Roy and Sussmann 
[RS64] for the job shop scheduling problem can be easily adapted to the OSP. 
Let T = {T1 ,..., Tn} be the set of tasks to be scheduled. The processing time of 
task Ti � T is denoted with pi . Choosing sufficiently small time units, we can 
always assume that the processing times are positive integer values. Each task is 
associated a start time variable sti with domain set IN0. Since we want to mini-
mize the makespan, i.e. the maximum completion time of all tasks, the objective 
function is Cmax(st1 ,..., stn) = maxTi�T{sti + pi}.  

Let job(i) denote the job associated to a task Ti . Further, let )(imach  be the 
machine required by task Ti . Obviously, two tasks Ti and Tj cannot be processed 
simultaneously at any time, if job(i) = job(j) or mach(i) = mach(j). These two 
tasks (as a pair) will belong to set D of forbidden pairs. However, if Ti and Tj 
cannot be processed in parallel then either Ti must finish before Tj can start  or Tj 
must be completed before Ti is started. Thus, given 

D = {{i , j} | Ti , Tj � T , i � j, job(i) = job(j) W mach(i) = mach(j)}, 

the OSP can be written as the following model with disjunctive constraints  

min{Cmax(st1 ,..., stn)}, sti � IN0  Ti � T , 
(sti + pi � stj)  W  (stj + pj � sti) {i , j} � D. 

(9.2.1) 

A schedule is an assignment S = (st1 ,..., stn) � IN0 � ... � IN0 of all start 
time variables. For the sake of simplicity, we will use the same notation for vari-
ables and their assignments. Schedule S is feasible if it satisfies all constraints 
given by (9.2.1). Reformulating the OSP, the goal is to find a feasible schedule 
with minimal objective function value Cmax(S). 

The significance of the disjunctive scheduling model for the development of 
efficient solution methods is revealed if we consider its graph theoretical inter-
pretation. The disjunctive graph associated to an OSP instance is a weighted 
graph G = (T  , D , W) with the node set T , arc set D and the weight set W = { wij = 
pi | {i , j} � D }. D is also called the set of disjunctive arcs. Since D is symmetric, 
we will represent disjunctive arcs as doubly directed arcs. From now on, we will 
further use the suggestive notation i X j for pairs (i , j), (j , i) of disjunctive arcs, 
and i � j  to specify one of the arc orientations. 

A disjunctive graph is transformed into a directed graph by choosing one arc 
orientation of each disjunctive arc pair i X j � D. We obtain a complete (partial) 
selection if (at most) one arc orientation is chosen from each disjunctive arc pair. 
The selection is acyclic if after the removal of all remaining undirected disjunc-
tions the resulting directed graph is acyclic. 

There exists a simple and well-known many-to-one relationship between 
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feasible schedules and complete, acyclic selections which allows us to restate the 
OSP as a graph theoretical problem: find a complete and acyclic selection, so that 
the longest path in the associated directed graph has a minimum length. Thus, it 
is sufficient to search through the space of all selections which is of cardinality 
2|D| instead of the space of all schedules which is of cardinality | IN0 |n. 

Most solution methods for the OSP are based on this fundamental observa-

tion. However, due to the exceptionally intractable nature of the OSP, mainly 

heuristic solution methods have been proposed. Simple list scheduling heuristics 

based on priority dispatching rules have been examined by Guéret and Prins 

[GP98a]. Matching algorithms are discussed by Bräsel et al. [BTW93] and 

Guéret and Prins [GP98a, GP98b]. The shifting bottleneck procedure, originally 

designed for the JSP, has been adapted by Ramudhin and Marier [RM96] to the 

OSP. Another important class of heuristics are the insertion algorithms which 

have been introduced by Werner and Winkler [WW95] for the JSP and general-

ized by Bräsel et al. [BTW93] for the OSP. Local search approaches (tabu 

search) and genetic algorithms have been examined by Taillard [Tai93], Liaw 

[Lia98] and Prins [Pri00]. Colak and Agarwal [CA05] developed a neural net-

work based meta-heuristic approach that allows integration of domain specific 

knowledge. Learning strategies imply improved neighbour solutions. Blum and 

Sampels [BS04, Blu05] applied ant colony optimization to shop scheduling. 

Some of these heuristics, especially the genetic algorithm of Prins and the ant 

colony optimization of Blum and Sampels, show a very good performance, and 

for specific classes of OSP instances they often are able to find optimal solutions. 

However, in general, the solutions found for arbitrary OSP instances are of 

course of a suboptimal nature. 

Only few exact solution methods are available for the OSP. A branch-and-
bound algorithm which applies a block-oriented branching scheme and some 
basic constraint propagation methods for reducing the search tree has been pro-
posed by Brucker et al.  [BHJW97]. Guéret et al. [GJP00] improved this algo-
rithm by using an intelligent backtracking technique which replaces the simple 
depth-first search used by the former. They further applied some additional 
search tree reduction methods in their branch-and-bound algorithm based on for-
bidden intervals (see Chapter 4.1), i.e. time intervals in which no task can start or 
end in an optimal solution [GP98b]. All these exact solution methods are capable 
of solving smaller OSP instances for which they naturally show a better perfor-
mance than the heuristic methods. However, even for simple, but larger OSP 
instances for which the heuristic methods easily find an optimal solution, the 
performance of the exact solution methods is rather poor, since the search space 
reduction methods applied are not sufficient to handle the combinatorial explo-
sion. In the next section, we will therefore examine additional concepts for re-
ducing the search space which have been described in Dorndorf et al. [DPP01]. It 
will turn out that these constraint propagation based methods are very efficient 
and allow solving a large number of simple, hard and very hard OSP benchmark 
instances which up to now have not been solved. 
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9.2.2 Constraint Propagation and the OSP 

Constraint propagation is an elementary method of search space reduction which 
has become more and more important in the last decades. The basic idea of con-
straint propagation is to evaluate implicit constraints through the repeated analy-
sis of the variables, domains and constraints that describe a specific problem in-
stance. This analysis makes it possible to detect and remove inconsistent variable 
assignments that cannot participate in any solution by a merely partial problem 
analysis. A whole theory is devoted to the definition of different concepts of con-
sistency which, roughly speaking, define the maximal search space reduction that 
is possible regarding some specific criteria and may serve as a theoretical back-
ground for propagation techniques. An exhaustive study of the theory of con-
straint propagation can be found in [Tsa93]. Dorndorf et al. [DPP99, DPP00] 
examine constraint propagation techniques for disjunctive and cumulative sched-
uling problems; for the details we refer to Chapter 16.  

Removing all inconsistent assignments is in general not possible due to an 
exponentially increasing computational complexity, so we usually have to con-
tent ourselves with approximations. The main issue is to describe simple rules 
which allow efficient search space reductions, but at the same time can be im-
plemented efficiently. These rules are called  consistency tests. In the disjunctive 
scheduling community, some of them are also known as  immediate selection or  
edge-finding rules. 

Consistency tests are generally described through a condition and a search 
space reduction rule. Whenever the condition is satisfied, the reduction rule is 
executed. In order to describe the basic concepts of constraint propagation more 
precisely, we will focus on  domain consistency tests for the time being. Similar 
results, however, apply for other types of consistency tests. 

A domain consistency test is a consistency test which deduces domain reduc-
tions. Let !i be the current domain of the start time variable sti . If UB is an upper 
bound of the optimal makespan, then we can initially set !i := [0 , UB – pi]. This 
is necessary, since most consistency tests can only deduce domain reductions if 
the current domains are finite. The upper bound UB can be found by applying a 
simple heuristic method or by choosing the trivial value 5Ti �T  pi . Given a cur-
rent domain for each start time variable, a domain consistency test maps a set 
! = { !i | Ti � T  } of current domains into a set !' = { !i' | Ti � T  } of hopefully, 
but not necessarily reduced current domains. Of course, a domain consistency 
test only removes values, for which provably no feasible schedule S exists that 
could be developed from ! . 

In order to obtain the maximal domain reduction possible, it is not sufficient 
to apply each of these tests only once. The reason for this is that after the reduc-
tion of several domains, additional domain adjustments could possibly be derived 
using some of the tests which previously have failed in deducing any reductions. 
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Thus, all consistency tests have to be applied in an iterative fashion rather than 
only once until no more updates are possible. This is equivalent to the computa-
tion of a fixed point. Notice that this fixed point does not have to be unique and 
in general depends upon the order of the application of the consistency tests. 
Thus, for some application orders the domain reductions obtained may be strong-
er than for others. Fortunately, it is possible to show that for consistency tests 
which satisfy a quite natural monotony property, the fixed point computed is al-
ways unique [DPP00, Chapter 16]. Since the consistency tests studied are all 
monotonous in this sense, the application order is irrelevant regarding the extent 
of the domain reduction. Regarding the complexity of the fixed point computa-
tion, however, the application order does play a very crucial role. Notice that the 
revision of a single domain already forces all consistency tests to be reapplied in 
the next iteration even though only a small number of constraints and variables 
are possibly affected by this reduction. Thus, choosing an intelligent order can 
decrease the computation time to a large extent. However, we will not deal with 
this issue more closely, but choose a quite naive propagation order. 

In the next subsections, we will describe the set of consistency tests used in 
the algorithm. In addition to domain consistency tests, the disjunctive scheduling 
model and its graph theoretical interpretation allow the definition of consistency 
tests which operate on the set of complete selections. These consistency tests 
reduce the set of complete selections by detecting sequences of tasks which must 
occur in every optimal solution. Since this is done by selecting disjunctive arc 
orientations, the latter approach has been often labeled  immediate selection (see  
e.g.  [CP89, BJK94]) or  edge-finding (see  e.g.  [AC91]). We will use the term  
sequence consistency test as opposed to domain consistency tests and as used in 
[DPP99,DPP00]. Domain and sequence consistency tests are two different con-
cepts which complement each other. Often, a situation occurs in which either 
only reductions of the current domains or only arc orientations are deducible. The 
best results, in fact, are obtained by applying both types of consistency tests, as 
fixing disjunctive arcs may initiate additional domain reductions and vice versa, 
cf. Chapter 16. 

Input/Output Consistency Tests 

Quite important for the development of efficient consistency tests for the OSP is 
the concept of disjunctive cliques or cliques for short. We will say that Oc � T  is 
a clique if any pair of tasks in Oc cannot be processed in parallel, i.e. if all tasks 
in Oc either belong to the same job or require the same machine. A clique Oc is 
said to be maximal, if no true superset of Oc is a clique. Therefore, there exist |J | 
maximal job cliques, where J denotes the set of jobs, and |P | maximal machine 
cliques, where P  denotes the set of machines (processors). 

For the rest of this section, we will assume that Oc � T  is a maximal clique 
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and that all subsets A (tasks Ti) are subsets (elements) of this clique. Without loss 
of generality we will number the indices of the elements of Oc by 1 , 2 ,..., | Oc |. 
Let further esti := min !i and lsti := max !i denote the earliest and latest start time 
of task Ti , and let ecti := esti + pi and lcti := lsti + pi denote the earliest and latest 
completion time of task Ti . Finally, for a subset A - Oc of tasks, let ESTmin(A)
 := minTi�A esti , LCTmax(A) := maxTi�A lcti , and p(A) := 5Ti �A pi . 

Given a clique of tasks A - Oc and an additional task Ti � Oc \ A, Carlier and 
Pinson [CP89] were the first to derive conditions which imply that Ti has to be 
processed  before or  after all tasks Tj � A. In the first case, they called Ti the  
input of A, in the second case, the  output of A, and so Dorndorf et al. [DPP00] 
have chosen the name  input/output conditions. 

Theorem 9.2.1  (Input/Output Sequence Consistency Tests). Let A - Oc and Ti

 � Oc \ A. If the input condition 

LCTmax(A � {Ti}) � ESTmin(A)  < p(A � {Ti}) (9.2.2) 

is satisfied then task Ti has to be processed before all tasks in A, for short, Ti � 
A. Likewise, if the output condition  

LCTmax(A) � ESTmin(A � {Ti}) < p(A � {Ti}) (9.2.3) 

is satisfied then task Ti has to be processed after all tasks in A,  A � Ti .   

Domain consistency tests that are based on the input/output conditions can now 
be simply derived. We will only examine the adjustment of the earliest start 
times, as the adjustment of the latest start times can be handled analogously. Ob-
viously, if task Ti is the output of a clique A then Ti can only start if all tasks in A 
have finished. Thus, the earliest start time of Ti is at least the maximum comple-
tion time of all tasks in A being scheduled without preemption. Unfortunately, 
however, the computation of this makespan requires the solution of an NP-hard 
single-machine scheduling problem. Therefore, if the current domains are to be 
updated efficiently, we have to content ourselves with approximations of this 
bound. The following theorem is due to Carlier and Pinson [CP89, CP90]. 

Theorem 9.2.2  (Output Domain Consistency Tests, part 1). If the output condi-
tion is satisfied for A - Oc and Ti � Oc \ A then the earliest start time of Ti can be 
adjusted to esti := max{esti , Cmax

pr (A)}, where Cmax
pr (A) is the maximum comple-

tion time of all tasks in A being scheduled with preemption allowed.  

Notice that the computation of Cmax
pr (A) has time complexity O(| A | log | A |) 

[Jac56]. 
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It has already been mentioned that applying both sequence and domain con-
sistency tests together can lead to better search space reductions. Quite evidently, 
any domain reductions deduced by Theorem 9.2.2 can lead to additional arc ori-
entations deduced by Theorem 9.2.1. We will now discuss the case in which the 
inverse is also true. Imagine a situation in which A � Ti can be deduced for a 
subset of tasks, but in which the output condition does not hold for the couple (A , 

Ti). Such a situation can actually occur as can be seen in the following example. 
In Figure 9.2.1, an example with three tasks is shown. The earliest start time 

of Ti is esti = 4, while its latest completion time is lcti = 9. The earliest start and 
latest completion times of Tj and Tk are estj = estk = 0 and lctj = lctk = 9, respec-
tively. The processing times of Ti , Tj and Tk are pi = pj = pk =  3. Notice that we 
can both deduce Tj � Ti and Tk � Ti using the input conditions for the couple 
({Ti},Tj) and ({Ti},Tk), since e.g. LCTmax({Ti , Tj}) – esti = 5 < 6 = pi + pj . Thus, 
we know that {Tj , Tk} � Ti . However, the output condition is not satisfied for 
the couple ({Tj , Tk}, Ti) because LCTmax({Tj , Tk}) – ESTmin(Ti , Tj , Tk) = 9 = pi + pj
 + pk . 

Ti

10 2 3 4 5 6 7 8 9

10 2 3 4 5 6 7 8 9

4 5 6 7 8 9

Tj

Tk
 

Figure 9.2.1 An example with three tasks.   

This example motivates the following theorem as an extension of Theorem 
9.2.2. 

Theorem 9.2.3 (Input/Output Domain Consistency Tests, part 2). Let A - Oc and 
Ti � Oc \ A. If A � Ti then the earliest start time of Ti can be adjusted to  

esti := max{esti , Cmax
pr (A)} .    

Here, the reader should recall once more that the subset A mentioned in the last 
theorem does not have to coincide with the subset for which the input or the out-
put condition is satisfied. 

An important question to answer now is whether there exist efficient algo-
rithms that implement the input/output consistency tests. An efficient implemen-
tation is obviously not possible if all pairs (A , Ti) of subsets A - Oc and tasks Ti

� Oc \ A are to be tested separately. Fortunately, it is not necessary to do so as has 
been first shown by Carlier and Pinson [CP90] who have developed an O(|Oc|

2) 
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algorithm for applying the input/output consistency tests described in Theorem 
9.2.1 and Theorem 9.2.2  (It is common practice to only report the time complex-
ity for applying the consistency tests once for all couples (A , Ti). In general, how-
ever, the number of iterations necessary for computing the fixed point of current 
domains has to be considered as well. This accounts for an additional factor c 
which depends upon the size of the current domains, but is omitted here.) Several 
years later, O(|Oc| log |Oc|) algorithms have been proposed by Carlier and Pinson 
[CP94] and Brucker et al. [BJK94] which until now have the best asymptotic 
performance, but are less efficient for smaller problem instances and require 
quite complex data structures. 

Nuijten [Nui94], Caseau and Laburthe [CL95] and Martin and Shmoys 
[MS96] have chosen a solely domain oriented approach and have derived differ-
ent algorithms for implementing the input/output consistency tests that are based 
on Theorem 9.2.2. Nuijten developed an algorithm with time complexity O(|Oc|

2) 
which can be generalized to scheduling problems with discrete resource capacity. 
Caseau and Laburthe presented an O(|Oc|

3)  algorithm which works in an incre-
mental fashion, so that O(|Oc|

3) is a worst case, since not all consistency tests are 
applied within an iteration of the fixed point computation. The algorithm pro-
posed by Martin and Shmoys [MS96] also has a time complexity of O(|Oc|

2). 
Dorndorf et al. [DPP01] have implemented the input/output tests described 

in Theorems 9.2.1 and 9.2.2. They could have used the O(|Oc|
2) algorithm of Car-

lier and Pinson for implementing Theorem 9.2.1 and then adjusted the current 
domains according to Theorem 9.2.3. However, the algorithm of Carlier and Pin-
son already requires the adjustment of some of the domains and, in fact, is a 
combination of the consistency tests described in Theorems 9.2.1 and  9.2.2. 
Thus, many of these domain adjustments would be recomputed if Dorndorf et al. 
afterwards applied the consistency tests described in Theorem 9.2.3. They have 
therefore developed two algorithms which work in a purely sequential fashion, 
one of which has a time complexity of O(|Oc|

3), while the other has a time-
complexity of O(|Oc|

2). These algorithms are based on the definition of task sets 
as introduced by Caseau and Laburthe [CL95]. A detailed description of the algo-
rithms is given in [Pha00]. 

Given the arc orientations derived, the domain adjustments of Theorem 9.2.3 
can then be applied with effort O(|Oc|

2
 log |Oc|) using Jackson's famous algorithm 

[Jac56]. 
Note that the approach by Dorndorf et al. of first deducing the arc orienta-

tions and then applying the domain adjustments implies a higher time complexity 
than for algorithms based on the purely domain oriented approach. However, 
stronger domain reductions may be achieved, as demonstrated by the previous 
example. 
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Input/Output Negation Consistency Tests 

In the last subsection, a condition has been described which implies that a task 
has to be processed before (after) another set of tasks. In this subsection, the in-
verse situation, that a task cannot be processed first (last), is studied. The follow-
ing theorem is due to Carlier and Pinson [CP89, CP90]. For reasons near at hand, 
Dorndorf et al. have chosen the name input/output negation for the conditions 
described in this theorem. 

Theorem 9.2.4 (Input/Output Negation Sequence Consistency Tests). Let A - Oc 
and Ti � Oc \ A. If the input negation condition  

LCTmax(A) – esti < p(A � {Ti})  (9.2.4) 

is satisfied then task Ti cannot be processed before all tasks in A. Likewise, if the 
output negation condition  

LCTmax – ESTmin (A)  < p(A � {Ti})  (9.2.5) 

is satisfied then task Ti cannot be processed after all other tasks in A.     

This theorem allows a reduction of the current domains which, in general, is 
weaker than the one that has been described in Theorem 9.2.3. However, since 
the input/output negation conditions are more often satisfied than the in-
put/output conditions, they will turn out to be quite important for solving the 
OSP efficiently. 

Let us study the input negation condition and the adjustments of earliest start 
times. If (9.2.4) is satisfied for A - Oc and Ti � Oc \ A, there must be a task in A 
which starts and finishes before Ti , although we generally do not know which 
one. This proves the following theorem [CP89, CP90]. 

Theorem 9.2.5  (Input/Output Negation Domain Consistency Tests). If the input 
negation condition is satisfied for A - Oc and Ti � Oc \ A then the earliest start 
time of task Ti can be adjusted to esti := max{esti , minTu�A ectu} .  

Input/output negation consistency tests have been applied by Nuijten [Nui94], 
Baptiste and Le Pape [BL95] and Caseau and Laburthe [CL95] for the JSP. All 
these algorithms only test some, but not all interesting couples (A , Ti). An algo-
rithm which deduces all domain reductions with a time complexity of O(|Oc|

2) 
has only recently been developed by Baptiste and Le Pape [BL96]. Dorndorf et 
al. [DPP01] have developed another algorithm which also performs all possible 
domain adjustments in O(|Oc|

2). This algorithm uses some main ideas of Baptiste 
and Le Pape, but can be better combined with the algorithms that Dorndorf et al. 
have developed for the other consistency tests, since some computations can be 
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reused, see again [Pha00] for the details. 

Shaving 

A closer look at the consistency tests presented so far reveals that they all share 
the following common and simple idea: a hypothesis (e.g. task Ti starts at time 
sti) can be refuted, if there exists no schedule so that this hypothesis is satisfied. 
Consistency tests only differ in the kind of hypotheses that are made and the 
proof for showing that no schedule can exist under these hypotheses. The input 
negation consistency test, for instance, verifies for a given clique A of tasks 
whether there exists a schedule in which some task Ti is started within the time 
interval [esti , minTu�A ectu – 1]. This verification is carried out through a simple 
test which compares the length of the time interval [esti , LCTmax(A)] with the 
sum of processing times p(A � {Ti}). Replacing this simple test with other and 
possibly more sophisticated tests leads to different and probably more powerful 
consistency tests. 

A general approach in which all hypotheses are of the kind: ''task Ti starts at 
its earliest start time'' or ''task Ti starts at its latest start time'' has been proposed 
by Martin and Shmoys under the name shaving [MS96]. In  exact one-machine 
shave the verification is carried out by solving an instance of a one-machine 
scheduling problem in which sti := esti or, alternatively, sti := lsti. One-machine 
shave relaxes the non-preemption requirement and tests whether a possibly 
preemptive schedule exists under the aforementioned hypothesis. Carlier and 
Pinson [CP94] and Martin and Shmoys [MS96] both proposed the computation 
of fixed points as a method for proving that a feasible schedule cannot exist un-
der a certain hypothesis. More precisely, the hypothesis is falsified if a current 
domain becomes empty during the fixed point computation. 

Dorndorf et al, [DPP01] apply shaving by testing the hypotheses sti > t � !i 
and sti < t � !i . Test values for t are chosen during a combination of bisection 
and incremental search. Apparently, the application of shaving techniques can be 
very costly. However, the search space reduction obtained by shaving by far off-
sets these costs. 

9.2.3 The Algorithm and Its Performance 

In general, the single application of constraint propagation is not sufficient for 
solving the OSP. Although for certain problem instances the search space reduc-
tion may be of a considerable size, a branch-and-bound search is usually still 
necessary for finding an optimal solution. In this section, we give a short descrip-
tion of the block branching scheme which has been described by Brucker et al. 
[BJS94] for the JSP and, for instance, by [BHJW97] for the OSP and which we 
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have used as well in our branch-and-bound algorithm. A deeper insight into the 
nature of the block branching scheme is given by Phan Huy [Pha00], who dis-
cusses a generalization for shop scheduling problems with arbitrary disjunctive 
constraints. 

The block branching scheme requires the computation of a heuristic solution 
(complete and acyclic selection) in each node of the branching tree that is com-
patible with the arc orientations already chosen. Dorndorf et al. [DPP01] chose as 
a heuristic solution method the priority rule based dispatching heuristic that has 
been described by Brucker et al. [BHJW97] in their algorithm B&B1. Given a 
complete and acyclic selection, a critical path B, i.e. a path of maximal length is 
chosen within the associated directed graph. This critical path is then decom-
posed into so-called maximal blocks, the definition of which is given in the fol-
lowing. A subpath B' = u1 � ... � ul of B of length l � 2 is a block iff, for all 
i � j, we have ui X uj � D,  i.e.  iff two pairwise different tasks in B' are always 
in disjunction, since they belong to the same job or require the same machine. A 
block B' is said to be maximal, iff extending B' by even only one node (task) al-
ready violates the block condition. Obviously, given a critical path, there always 
exists a unique decomposition into maximal blocks. Given this block decomposi-
tion, the block branching scheme as described by Brucker et al.  [BJS94] is based 
on the following observation: 

Let S be a complete and acyclic selection and B a critical path in the corre-
sponding directed graph. If S is not optimal, i.e. there exists a selection S   ' with a 
smaller makespan, then there is a maximal block in B so that in S   ' a task within 
this block is processed before the first or after the last task of this block.  

Thus, child nodes are created by moving tasks of a block to the beginning or 
end of the block. Consequently, 2&(l – 1) child nodes are generated for each block 
of length l > 2, while for blocks of length 2 obviously only one child node is gen-
erated. Improving this branching scheme, Brucker et  al.  [BJS94] described how 
to fix additional arcs depending on the search nodes that have been already visit-
ed prior to the generation of the actual search node. Further they described the 
particular role played by the first and the last block of the maximal block decom-
position, since the number of tasks to be moved to the beginning or end of these 
blocks can be reduced. The search strategy of their branching algorithm has been 
organized in a depth-first manner. For further details on the block branching 
scheme we refer the reader to the work of Brucker et al. [BJS94, BHJW97]. 
Dorndorf et al. [DPP01] have used this branching scheme except for some minor 
modifications regarding the branching order, i.e. the sequence in which the child 
nodes are generated, see [Pha00] for the technical details. 

Upon finding an improved solution in a node (initial solution in the root 
node) of the branching tree, the makespan of this solution is, of course, used as 
upper bound UB. The lower bounds used within the branch-and-bound algorithm 
are the preemptive one-machine (one-job) lower bounds which are computed 
using Jackson's algorithm [Jac56]. Notice, however, that stronger bounds are 
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calculated in an implicit manner by the application of constraint propagation: 
whenever an inconsistency is detected, for instance, if a current domain becomes 
empty, we know that no solution can be generated from the actual search tree 
node with a makespan of UB and, therefore, UB is indeed a lower bound for this 
search tree node. 

Dorndorf et al. [DPP01] have implemented the branch-and-bound algorithm 
together with the constraint propagation techniques in C on Pentium II (333 
MHz) in MSDOS environment. They have tested the algorithm on a large set of 
benchmark problems that have been generated by Taillard [Tai93] (Tai-n-*) and 
Brucker et al.  [BHJW97] (Hur-n-*). All test instances are quadratic of size n 
jobs and n machines, with n ranging from 6 to 20. We will see below that, on the 
one hand, most of the quite large instances of Taillard are easily solved by Dorn-
dorf et al.’s algorithm. They have solved all the 10 � 10 instances, something 
which none of the current exact algorithms is capable of, and even do so with an 
average run time of less than a minute. Further, they have solved most of the 
15 � 15  instances in several minutes and most of the 20 � 20 instances in less 
than an hour. Among these instances, three instances (Tai-15-5, Tai-15-9, Tai-
20-6) have not been solved prior the start of their experiments. On the other 
hand, the rather small instance Hur-7-1 of size 7 � 7 still remains open, although 
they have been able to improve the current best lower bound from 1000 to 1021. 

Brucker et al. [BHJW97] have proposed an explanation for this phenomenon 
which is based on the work load of a problem instance. The work load of an OSP 
instance is defined as follows: given a set of jobs J  and a set of machines P . Let 
OY be the maximal clique of tasks belonging to job JY and O� be the maximal 
clique of tasks requiring machine P� . Let, further, LB := max{ max{ p(OY) | JY
� J }, max{ { p(O�) | P�  � P } } define the trivial lower bound which is the 
maximum of the job and machine bounds (the sum of processing times of tasks 
belonging to a job or machine clique). The average work load WL is then defined 
as  

WL  =  
5

JY�J
 p(OY) + 5

P��P
 p(O�)

(| J | + |P |)&LB  

If the work load of an OSP instance is close to 1 then all job and machine bounds 
are not much smaller than LB, so that finding a solution with a makespan close to 
LB is not very probable. On the contrary, an OSP instance with a low work load 
tends to have an optimal solution with a makespan equal to the lower bound LB. 
These problem instances are less hard to solve, since an optimal solution can be 
more easily verified. 

Considering this intuitive interpretation, it is possible to use the work load to 
guide the choice of an appropriate solution strategy. The alternatives that are giv-
en are a top-down and a  bottom-up strategy. Both strategies use the branch-and-
bound algorithm and only differ in the way of choosing the initial upper 
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bound(s). The top-down strategy starts with a real upper bound which, in 
[DPP01], is determined by the heuristic solution method and tries to improve 
(decrease) this upper bound by applying the branch-and-bound algorithm. The 
bottom-up approach uses a lower bound as a hypothetical upper bound and, 
whenever the branch-and-bound algorithm does not find a solution which is con-
sistent with this upper bound, increases it by one time unit. This process is re-
peated until a solution is found. 

Notice, that the top-down approach only applies the branch-and-bound algo-
rithm once, but that constraint propagation is less effective since the current do-
mains are less tight due to the high initial upper bound. Hence, searching the 
whole search tree may require a higher computation time. The bottom-up ap-
proach, on the contrary, reinitializes the branch-and-bound algorithm several 
times, but allows more constraint propagation since the current domains are 
smaller. Therefore, the search trees that are created are smaller. Altogether, the 
top-down approach seems to be more suited, if the optimal makespan is far from 
the lower bound LB, since the multiple application of the branch-and-bound al-
gorithm within a bottom-up approach would offset its propagation advantages. 
Also, according to this logic, the bottom-up approach is to be preferred if the 
optimal makespan is near to the lower bound LB. Thus, it is straightforward to 
choose the top-down approach whenever the work load of an OSP instance is 
high and the bottom-up approach whenever the work load is low.  

At first, however, we will only evaluate the top-down approach since this al-
lows to analyze better the impact of the different consistency tests. It seems justi-
fied to say that instances of the OSP, especially those with a high work load, are 
generally more difficult to solve than instances of the JSP with the same number 
of tasks, jobs and machines. To one part, this is due to the larger solution space: 
not only machine sequences, but also job sequences have to be determined. Thus, 
Dorndorf et al. [DPP01] have often encountered a situation in which the search 
process was trapped in an unfavorable region of the search space from which it 
could not escape within a reasonable amount of time. Another reason for the in-
tractability of the OSP, however, is the lack of strong lower bounds. In fact, if no 
search is carried out, the lower bound LB is already the best bound one is able to 
find. Thus, constraint propagation plays a more important role in reducing the 
search space. 

In the beginning, the experiments for the two different classes of consistency 
tests (input/output and input/output negation consistency tests), have been carried 
out for a set of smaller instances, namely, the instances Tai-7-* and Hur-6-*. The 
results are shown in Table 9.2.1.  CP1 applies the input/output tests as described 
in Theorem 9.2.1 and Theorem 9.2.3, while  CP2  applies both the input/output 
tests and the input/output negation tests. Since [DPP01] have applied a top-down 
strategy for  CP1  and  CP2 , they report for each problem instance the initial 
upper bound found by the heuristic solution method (UBinit) in addition to the 
optimal makespan (UBbest). They further report the number of search tree nodes 
generated by each of the algorithms and the total run time. All of the instances 
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have naturally been solved to optimality. 
 

problem UBbest UBinit 
CP1 CP2 

nodes time  nodes time 
Hur-6-1 1056 1528 55634 149.7 s  36876 133.0 s 
Hur-6-2 1045 1377 3291 7.3 s  1711 5.2 s 
Hur-6-3 1063 1536 9737 23.9 s  5401 18.0 s 
Hur-6-4 1005 1481 8553 20.3 s 4356 14.4 s 
Hur-6-5 1021 1647 2983 6.4 s 1562 4.6 s 
Hur-6-6 1012 1276 8406 19.7 s  4263 13.8 s  
Hur-6-7 1000 1454 4557 11.5 s 3205 10.7 s 
Hur-6-8 1000 1636 169 0.4 s 132 0.4 s  
Hur-6-9 1000 1524 525 1.2 s 326 1.0 s  
Tai-7-1 435 609 147 0.4 s 130 0.4 s  
Tai-7-2 443 614 309 1.1 s 225 0.9 s  
Tai-7-3 468 632 8789 36.6 s  5661 30.9 s  
Tai-7-4 463 664 1892 7.5 s 1040 5.3 s  
Tai-7-5 416 551 521 2.0 s 409 2.0 s  
Tai-7-6 451 581 28347 124.5 s  16464 95.8 s  
Tai-7-7 422 693 61609 254.5 s 30101 167.7 s  
Tai-7-8 424 637 1467 5.9 s 961 5.0 s  
Tai-7-9 458 551 237 0.8 s 194 0.8 s  

Tai-7-10 398 576 25837 107.2 s  9427 53.2 s  

Table 9.2.1 Results for some smaller instances (top-down).   

Obviously, CP2 generates less search tree nodes and has a lower total run time 
than CP1, although more constraint propagation is applied in each of the single 
nodes. On average, CP2  generates approximately 40 % less search tree nodes 
than CP1 and has a run time which is lower by about 25 %. Note, that a different 
observation has been made for the JSP, see [Pha00]: although the number of 
search tree nodes decreases as well, the total run time increases (for smaller in-
stances) due to the additional propagation effort. Thus, the additional application 
of the input/output negation tests is more efficient for the OSP than for the JSP. 
This can be explained as follows: the input/output tests, if applied on their own, 
deduce only few arc orientations for the OSP in the beginning of the branch-and-
bound process, because at that time most of the current domains are just too large 
and coincide with the trivial interval [0 , UB – pi]. Only at a certain depth of the 
search tree, more arc orientations are deduced, however, the portion of the search 
tree that can be pruned by that time is rather small. Consequently, the additional 
application of the input/output negation tests improves the efficiency of the in-
put/output tests since the former are a relaxation of the latter and so are capable 
of deducing domain reductions at an earlier stage of the branching process. 

Next Dorndorf et al. [DPP01] tested the better algorithm CP2 on the larger 
OSP instances Tai-10-* and the harder instances Hur-7-*. They further tested a 
shaving variant of CP2, i.e. in each of the search tree nodes they applied the 
shaving procedure described in Section 9.2.2 and used the input/output and in-
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put/output negation tests for detecting inconsistencies. The results for CP2 are 
shown in Table 9.2.2 and those for the branch-and-bound algorithm with shaving 
CPS2 in Table 9.2.3. In addition to the usual information listed further above, 
they report for each problem instance the best upper bound found (UBfound) with-
in a time limit of 5 hours. Upper bounds shown in parentheses are either non 
optimal or optimal, but could not be verified. As an example, 1048 is the best 
upper bound known for the instance Hur-7-1 and 1052 is the best bound found by  
CP2  within 5 hours of computation time. 

 

Problem UBbest UBinit 
CP2 

UBfound nodes time 
Hur-7-1 (1048) 1487 (1052) 2677448 18000.0 s 
Hur-7-2 1055 1839 (1055) 2916573 18000.0 s 
Hur-7-3 1056 1839 (1056) 2993406 18000.0 s  
Hur-7-4 1013 1418 1013 960092 5796.4 s  
Hur-7-5 1000 1188 1000 775960 4420.6 s  
Hur-7-6 1011 1545 (1011) 2897640 18000.0 s 
Hur-7-7 1000 1419 1000 1628 8.8 s  
Hur-7-8 1005 1510 1005 208340 1197.6 s  
Hur-7-9 1003 1435 1003 1807635 10797.5 s  
Tai-10-1 637 949 637 418594 5455.7 s  
Tai-10-2 588 751 588 123104 2219.9 s  
Tai-10-3 598 854 (607) 1025042 18000.0 s  
Tai-10-4 577 856 577 64244 1175.8 s  
Tai-10-5 640 1057 640 8173 126.0 s  
Tai-10-6 538 770 (555) 1012887 18000.0 s  
Tai-10-7 616 904 (827) 2136045 18000.0 s  
Tai-10-8 595 853 595 164977 2255.7 s  
Tai-10-9 595 880 595 6036 98.1 s  

Tai-10-10 596 894 (639) 1162480 18000.0 s 

Table 9.2.2 Results for some larger instances (top-down).   

Regarding the instances of Taillard, CP2 solves 6 of them. The run times for all 
the instances that have been solved have a high standard deviation and vary from 
2 minutes to 2 hours. This is because the optimal makespan may be hard to find, 
but once found it is easily verified and in all cases coincides with the trivial low-
er bound LB. Regarding the instances of Brucker et al., CP2 solves 5 instances, 
but none of the very hard instances Hur-7-1, Hur-7-2 and Hur-7-3. It finds, how-
ever, the optimal makespans of Hur-7-2 and Hur-7-3 without proof of optimality. 

The results for CPS2 are much better. To the best of our knowledge, it is the 
first exact algorithm which solves all 10 � 10 OSP instances of Taillard. It even 
does so with an average run time of slightly above 10 minutes starting with a 
rather high upper bound. Further, CPS2 solves nearly all instances of Brucker et 
al. except the instance Hur7-1 which is still unsolved. The quality of CPS2 relies 
on the fact that the extensive application of constraint propagation results in a 
drastic reduction of the search tree. Quite impressively, the number of search tree 
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nodes generated by CPS2  on average only amounts to 0.1% of the number of 
nodes generated by  CP2 . Therefore, the probability of getting lost in unfavoura-
ble regions of the search tree is significantly cut down. This underlines the im-
portance and effectiveness of enhanced constraint propagation techniques for 
solving the OSP. 

 

Problem UBbest UBinit 
CPS2 

UBfound nodes time 
Hur-7-1 (1048) 1487 (1058) 4575 18000.0 
Hur-7-2 1055 1839 1055 3364 9421.8 
Hur-7-3 1056 1839 1056 3860 9273.5 
Hur-7-4 1013 1418 1013 1123 2781.9 
Hur-7-5 1000 1188 1000 742 1563.0 
Hur-7-6 1011 1545 1011 5195 15625.1 
Hur-7-7 1000 1419 1000 88 48.8 
Hur-7-8 1005 1510 1005 209 318.8 
Hur-7-9 1003 1435 1003 788 2184.9 
Tai-10-1 637 949 637 612 1398.6 
Tai-10-2 588 751 588 396 981.7 
Tai-10-3 598 854 598 520 2664.3 
Tai-10-4 577 856 577 496 847.1 
Tai-10-5 640 1057 640 392 724.5 
Tai-10-6 538 770 538 415 1101.5 
Tai-10-7 616 904 616 565 982.8 
Tai-10-8 595 853 595 461 837.3 
Tai-10-9 595 880 595 222 655.1 

Tai-10-10 596 894 596 562 993.8 

Table 9.2.3 Results for some larger instances using shaving (top-down).   

Up to now, we have applied a top-down solution approach which starts with an 
initial upper bound and tries to improve, i.e decrease this upper bound. As an 
alternative, we will now consider a bottom-up approach which starts with a lower 
bound as hypothetical upper bound and increases this bound by one time unit 
until a solution is found. The trivial job and machine based lower bound LB is 
chosen as an initial lower bound.  For the computation of more sophisticated 
lower bounds which involves some search, we refer the reader to the work of 
Guéret and Prins [GP99]. 

 The results for this approach are shown in Table 9.2.4. There are only the 
results for the best algorithm, namely CPS2. UBbest denotes the best lower bound 
found within a maximum run time of 5 hours. If  LBbest  is not written in paren-
theses then it also has been verified to be an upper bound. Again, all 10 � 10 in-
stances of Taillard are solved, however, this time with an average run time of less 
than a minute. The results for the instances of Brucker are less impressive if 
compared with the top-down approach. Studying the work load WL of each in-
stance, we can observe that the bottom-up approach is more efficient for instanc-
es with a lower work load, while the top-down approach shows better results for 
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those with a higher work load. This perfectly fits with the intuitive remarks made 
at the beginning of this section: instances with a lower work load tend to have an 
optimal makespan close or equal to LB, so that only a few lower bounds have to 
be tested in a bottom-up approach. On the contrary, instances with a higher work 
load tend to have an optimal makespan which is far from the initial lower bound. 
For these instances, the top-down approach is more efficient. Dorndorf et al. pro-
pose that the bottom-up approach is the favourite choice for problem instances 
with a work load of less than 0.9, while the top-down approach is to be preferred 
for instances with a work load greater than 0.95. For problem instances with a 
work load between 0.9 and 0.95, the situation is less clear, see e.g. the problem 
instance Hur-7-5 with a work load of 0.944 (bottom-up performs better) and Hur-
7-9 with a work load of 0.925 (top-down performs better). 

 

Problem UBbest LB WL 
CPS2 

LBbest nodes time 
Hur-7-1 (1048) 1000 1.000 (1021) 3974 18000.0 
Hur-7-2 1055 1000 1.000 (1045) 5988 18000.0 
Hur-7-3 1056 1000 1.000 (1042) 7057 18000.0 
Hur-7-4 1013 1000 0.958 1013 5692 15178.1 
Hur-7-5 1000 1000 0.944 1000 146 314.7 
Hur-7-6 1011 1000 0.951 (1006) 5797 18000.0 
Hur-7-7 1000 1000 0.879 1000 10 5.0 
Hur-7-8 1005 1000 0.931 1005 194 625.5 
Hur-7-9 1003 1000 0.925 1003 1376 4073.0 
Tai-10-1 637 637 0.861 637 12 30.2 
Tai-10-2 588 588 0.834 588 22 70.6 
Tai-10-3 598 598 0.850 598 23 185.5 
Tai-10-4 577 577 0.828 577 21 29.7 
Tai-10-5 640 640 0.834 640 17 32.0 
Tai-10-6 538 538 0.857 538 17 32.7 
Tai-10-7 616 616 0.838 616 18 30.9 
Tai-10-8 595 595 0.823 595 17 44.1 
Tai-10-9 595 595 0.846 595 14 39.8 

Tai-10-10 596 596 0.834 596 14 29.1 

Table 9.2.4 Results for some larger instances using shaving (bottom-up).   

Dorndorf et al. have also tested the bottom-up variant of CPS2  on the remaining 
15 � 15 and 20 � 20 instances of Taillard for which no other results of exact so-
lution approaches have been reported in literature. These results are shown in 
Table 9.2.5. Again, the bottom-up approach shows very good results. All 15 � 15 
instances except one and 7 of the 20 � 20 instances have been solved, among 
others the instances Tai-15-5, Tai-15-9 and Tai-20-6 that have not been solved 
before. Except for the unsolved instances, the run time is always less than 12 
minutes for the 15 � 15 instances and about an hour for the 20 � 20  instances.  

Let us finally compare the results of the algorithms from [DPP01] with those 
of some other branch-and-bound algorithms for the OSP. B&B1 of Brucker et al.  
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[BHJW97] is a typical representative of their 6 slightly different algorithms and 
the algorithm B&Bi of Guéret et al. [GJP00], where ‘i’ stands for intelligent 
backtracking. These algorithms are compared with Dorndorf et al.’s combined 
top-down/bottom-up approach which works as follows: whenever the work load 
of an instance is at most 0.9, the bottom-up version of CPS2 is applied; for in-
stances with a work load greater than 0.9, on the contrary, the top-down version 
of CPS2 is used. 

  

Problem UBbest LB WL 
CPS2 

LBbest nodes time 
Tai-15-1 937 937 0.800 937 42 481.4 s 
Tai-15-2 918 918 0.834 (918) 193 18000.0 s 
Tai-15-3 871 871 0.824 871 44 611.6 s 
Tai-15-4 934 934 0.794 934 45 570.1 s 
Tai-15-5 946 946 0.842 946 34 556.3 s 
Tai-15-6 933 933 0.795 933 51 574.5 s 
Tai-15-7 891 891 0.828 891 52 724.6 s 
Tai-15-8 893 893 0.813 893 46 614.0 s 
Tai-15-9 899 899 0.830 899 36 646.9 s 

Tai-15-10 902 902 0.824 902 34 720.1 s 
Tai-20-1 1155 1155 0.820 1155 59 3519.8 s 
Tai-20-2 1241 1241 0.838 (1241) 69 18000.0 s 
Tai-20-3 1257 1257 0.803 1257 77 4126.3 s 
Tai-20-4 1248 1248 0.825 (1248) 92 18000.0 s 
Tai-20-5 1256 1256 0.809 1256 56 3247.3 s 
Tai-20-6 1204 1204 0.810 1204 65 3393.0 s 
Tai-20-7 1294 1294 0.807 1294 48 2954.8 s 
Tai-20-8 (1171) 1169 0.854 (1169) 69 18000.0 s 
Tai-20-9 1289 1289 0.800 1289 69 3593.8 s 

Tai-20-10 1241 1241 0.817 1241 65 4936.2 s 

Table 9.2.5 Results for even larger instances using shaving (bottom-up).   

The results have been summarized in Table 9.2.6. A dash indicates that the cor-
responding data have not been available. Brucker et al. chose a time limit of 50 
hours on a Sun 4/20 workstation, whereas Guéret et al. stopped the search after 
250000 backtracks which according to their time measurements corresponds to 
approximately 3 hours on a Pentium PC with a clock pulse of 133 MHz. As the 
results have been established on different platforms, they have to be interpreted 
with care. However, especially regarding the Taillard instances, it seems fair to 
say that the algorithm of Dorndorf et al. has a much better performance. While 
neither B&B1 and B&Bi solve more than 3 of the 10 � 10 instances of Taillard to 
optimality, they solve all 10 instances in an average run time of less than a mi-
nute. Notice further that even the version of CPS2 which works in a purely top-
down fashion as well solves all ten instances and that CP2 which does not use 
shaving all the same solves 6 instances to optimality. Since the branching 
schemes employed by all these exact algorithms are basically the same (except 
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for the branching order in the algorithm of Dorndorf et al. and the intelligent 
backtracking component in the algorithm of Guéret et al.), we can conclude that 
the application of strong constraint propagation techniques sheds a new light on 
the solvability of the OSP and allows to cope with instances of the OSP that for-
merly seemed intractable. Computational experiments on some famous test sets 
of benchmark problem instances taken from literature demonstrate the efficiency 
of this approach. For the first time, many problem instances are solved in a short 
amount of computation time. 

 
Problem UBbest   B&B1a B&B1b CPS2c 

nodes time nodes time nodes time 
Hur-7-1 (1048) - >50 h - - 4575 >5 h 
Hur-7-2 1055 - 35451.5 s  - - 3364 9421.8 s  
Hur-7-3 1056 - 176711.1 s  - - 3860 9273.5 s 
Hur-7-4 1013 - 77729.2 s  - - 1123 2781.9 s 
Hur-7-5 1000 - 6401.6 s  - - 742 1563.0 s 
Hur-7-6 1011 - 277271.1 s  - - 5195 15625.1 s  
Tai-10-1 637 - >50 h >250000 >3 h 12 30.2 s  
Tai-10-2 588 44332 10671.5 s  >250000 >3 h 22 70.6 s  
Tai-10-3 598 - >50 h >250000 >3 h 23 185.5 s  
Tai-10-4 577 163671 40149.4 s  26777 - 21 29.7 s  
Tai-10-5 640 - >50 h >250000 >3 h 17 32.0 s  
Tai-10-6 538 - >50 h >250000 >3 h 17 32.7 s  
Tai-10-7 616 - >50 h 4843 - 18 30.9 s  
Tai-10-8 595 - >50 h >250000 >3 h 17 44.1 s  
Tai-10-9 595 97981 24957.0 s  245100 - 14 39.8 s 

Tai-10-10 596 - >50 h >250000 >3 h 14 29.1 s  
a    Run time on a Sun 4/20 Workstation 
b,c Run time on a Pentium II/133 

Table 9.2.6 A comparison of computational results.   
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10  Scheduling in Job Shops 

In this chapter we continue scheduling of tasks on dedicated processors or ma-

chines. We assume that tasks belong to a set of jobs, each of which is character-

ized by its own machine sequence. We will assume that any two consecutive 

tasks of the same job are to be processed on different machines. The type of fac-

tory layout is the job shop. It provides the most flexible form of manufacturing, 

however, frequently accepting unsatisfactory machine utilization and a large 

amount of work-in-process. Hence, makespan minimization is one of the objec-

tives in order to schedule job shops effectively, see e.g. [Pin95]. 

10.1 Introduction 

10.1.1 The Problem 

A job shop (cf. Section 3.1) consists of a set of different machines (like lathes, 

milling machines, drills etc.) that perform tasks of jobs. Each job has a specified 

processing order through the machines, i.e. a job is composed of an ordered list 

of tasks each of which is determined by the machine required and the processing 

time on it. There are several constraints on jobs and machines: (i) There are no 

precedence constraints among tasks of different jobs; (ii) tasks cannot be inter-

rupted (non-preemption) and each machine can handle only one job at a time; 

(iii) each job can be performed only on one machine at a time. While the ma-

chine sequence of the jobs is fixed, the problem is to find the job sequences on 

the machines which minimize the makespan, i.e. the maximum of the completion 

times of all tasks. It is well known that the problem is NP-hard [LRK79], and 

belongs to the most intractable problems considered, cf. [LLR+93]. 

10.1.2 Modeling 

There are different problem formulations, those in [Bow59, Wag59], and the 

mixed integer formulation [Man60] are the first ones published; see also 

[BDW91, BHS91, [MS96]. We have adopted the one presented in [ABZ88].  

Let T = { T0 , T1 ,...,  Tn } denote the set of tasks where T0  and Tn  are con-

sidered as dummy tasks "start" (the first task of all jobs) and "end" (the last task 

of all jobs), respectively, both of zero processing time. Let P denote the set of m 

machines and A be the set of ordered pairs (Ti, Tj) of tasks constrained by the 
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precedence relations Ti  Tj for each job. For each machine Pk , set Ek describes 

the set of all pairs of tasks to be performed on this machine, i.e. tasks which can-

not overlap (cf. (ii)). For each task Ti , its processing time pi is fixed, and the ear-

liest possible starting time of Ti is ti , a variable that has to be determined during 

the optimization. Hence, the job shop scheduling problem can be modeled as: 

Minimize tn 

subject to  tj � ti � pi L (Ti , Tj) � A , (10.1.1) 

 tj � ti � pi  or  ti � tj � pj L {Ti, Tj} � Ek , L Pk �P , (10.1.2) 

 ti � 0 L Ti � T . (10.1.3) 

Restrictions (10.1.1) ensure that the processing sequence of tasks in each job 

corresponds to the predetermined order. Constraints (10.1.2) demand that there is 

only one job on each machine at a time, and (10.1.3) assures completion of all 

jobs. Any feasible solution to the constraints (10.1.1), (10.1.2), and (10.1.3) is 

called a schedule. 

An illuminating problem representation is the disjunctive graph model due 

to [RS64]. It has mostly replaced the solution representation (within algorithms) 

by Gantt charts as described in [Gan19, Cla22, Por68]. The latter, however, is 

useful in user interfaces to graphically represent a solution to a problem. 

In the edge-weighted graph there is a vertex for each task, additionally there 

exist two dummy vertices 0 and n, representing the start and end of a schedule, 

respectively. For every two consecutive tasks of the same job there is a directed 

arc; the start vertex 0 corresponds to the first task T0 of every job and the vertex n 

corresponds to the last task Tn of every job. For each pair of tasks {Ti, Tj} � Ek 

that require the same machine there are two arcs (i, j) and (j, i) with opposite di-

rections. The tasks Ti and Tj are said to define a disjunctive arc pair or a disjunc-
tive edge. Thus, single arcs between tasks represent the precedence constraints on 

the tasks of the same job and a pair of opposite directed arcs between two tasks 

represents the fact that each machine can handle at most one task at the same 

time. Each arc (i, j) is labeled by a weight pi corresponding to the processing time 

of task Ti. All arcs from vertex 0 have label 0. 

Figure 10.1.1 illustrates the disjunctive graph for a problem instance with 3 

machines P1, P2, P3 and 3 jobs J1 , J2 , J3 with together 8 tasks/operations. The 

machine sequences of jobs J1 , J2 , and J3 (see the rows of Figure 10.1.1(a)) are P1 

� P2 � P3, P3 � P2 and P2 � P1 � P3, respectively. The processing times are 

presented in Table 10.1.1. 
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P1 3 � 3 

P2 2 4 6 

P3 3 3 2 

J1 J2 J3 

Table 10.1.1 Processing times of a 3 job 3 machine instance. 
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Figure 10.1.1 (a) The disjunctive graph, and 
(b) a feasible schedule for the problem instance of Table 10.1.1. 

The job shop scheduling problem requires to find an order of the tasks on each 

machine, i.e. to select one arc among all opposite directed arc pairs such that the 

resulting graph G is acyclic (i.e. there are no precedence conflicts between tasks) 

and the length of the maximum weight path between the start and end vertex is 

minimal. Obviously, the length of a maximum weight or longest path in G con-
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necting vertices 0 and i equals the earliest possible starting time ti of task Ti; the 

makespan of the schedule is equal to the length of the critical path, i.e. the 

weight of a longest path from start vertex 0 to end vertex n. Any arc (i, j) on a 

critical path is said to be critical; if Ti and Tj are tasks from different jobs then 

(i, j) is called a disjunctive critical arc, otherwise it is a conjunctive critical arc. 
We agree on the convention, that, if vertex i is on a critical path, then task Ti is 

said to be a critical task or on a critical path. For convenience we sometimes 

identify a feasible job shop schedule and its disjunctive graph representation. 
In order to improve a current schedule, we have to modify the machine order 

of jobs (i.e. the sequence of tasks) on longest paths. Therefore a neighborhood 

structure can be defined by (i) reversing a disjunctive critical arc, i.e. selecting 

the opposite arc, or (ii) reversing a disjunctive critical arc such that this arc is 

incident to an arc of the arc set A, cf. [ALLU94, LAL92, MSS88, VAL96]. 

For the problem instance of Table 10.1.1 and Figure 10.1.1(a) let us consider 

the schedule defined by the job processing sequence J1 � J3 on machine P1, and 

J1 � J2 � J3 on machine P2 and P3. Hence all tasks are lying on a longest path 

of length 26, see Figure 10.1.1(b). Reversing the processing order of jobs J2 and 

J3 on machine P2 yields a reduced makespan of 16 for the new schedule. Exten-

sions of the disjunctive graph representation including additional job shop con-

straints are discussed in [BPS99, BPS00, WR90].  

Since most job shop scheduling problems are NP-hard, determining an op-

timal solution, or a solution of the satisfying quality, is usually a time consuming 

process. The efficiency of an algorithm solving any problem depends mainly on 

its idea, but one should not forget about the efficient management of problem 

data. As we mentioned, the disjunctive graph allows conveniently representing 

instances of the job shop scheduling problems, but the disjunctive graph, as any 

graph, has to be represented in any algorithm as well. The choice of a graph rep-

resentation influences the run time or even the complexity of an algorithm. 

Methods solving the job shop scheduling problems using the disjunctive graph 

model repeat, many times, the same low-level operations, such as browsing pre-

decessors or successors of tasks, or determining tasks not bounded to a consid-

ered task with any precedence relation. Graph representations differ in the time 

complexity of procedures performing these basic operations. In Section 2.3.1 we 

introduced the classical graph representations such as the adjacency matrix and 

linked lists [AHU74], which can be used for storing the disjunctive graph. How-

ever, for the disjunctive graph a specialized graph representation was proposed - 

the graph matrix [BPS99, BPS00, BPS01, Ste00]. It combines the advantages of 

these classical representations and ensures the best possible time complexity of 

elementary operations. The graph matrix is a modified adjacency matrix with 

embedded linked lists, such as predecessor lists, successor lists and lists of tasks 

of an unknown mutual order. It allows retrieving various types of information on 

relations between tasks in the optimal way: the mutual relation between two tasks 

can be checked within constant time as in the adjacency matrix, while the sets of 
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tasks bounded by a given relation can be determined in the number of steps equal 

to the number of these tasks as in the linked lists. 

Figure 10.1.2 shows the disjunctive graph representing a partial solution to 

the instance of the job shop scheduling problem defined before in Figure 10.1.1 

and Table 10.1.1. Some disjunctive edges have been replaced with arcs determin-

ing the order of task execution. Moreover, for the sake of simplicity, the task 

labels are changed to the consecutive numbers, and the processing times are 

omitted. Let us remind that formally the start task 0 is a predecessor of all tasks, 

and the end task 9 is a successor of all tasks (in Figure 10.1.2 only some of these 

arcs are shown for the sake of simplicity).   

Figure 10.1.2 The disjunctive graph for the problem instance in Figure 10.1.1. 
representing an exemplary partial solution. 

A(i, j) 0 1 2 3 4 5 6 7 8 9 
0 0 1 1 1 1 1 1 1 1 1 
1 0 0 1 0 0 0 0 1 0 1 
2 0 0 0 1 0 1 0 0 0 1 
3 0 0 0 0 0 0 0 0 0 1 
4 0 0 0 1 0 1 0 0 0 1 
5 0 0 0 0 0 0 0 0 0 1 
6 0 0 0 0 0 0 0 1 0 1 
7 0 0 0 0 0 0 0 0 1 1 
8 0 0 0 0 0 0 0 0 0 1 
9 0 0 0 0 0 0 0 0 0 0 

Figure 10.1.3 The adjacency matrix for the graph in Figure 10.1.2. 

The adjacency matrix for this disjunctive graph is given in Figure 10.1.3. As 

we mentioned in Section 2.3.1, if there is an arc between vertex i and j then 

A(i, j) = 1, otherwise A(i, j) = 0. 

1 

4 

2 3 

5 

7 8 

0 9 

6 
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The adjacency matrix of size O(n2), where n denotes the number of vertices, 

allows checking the mutual relation between vertices/tasks in the optimal O(1) 

time, but determining e.g. the set of task successors/predecessors requires brows-

ing the whole matrix row/column in O(n) time.  

The optimal browsing of task successors is ensured by the successor lists, 

depicted in Figure 10.1.4(a). In this structure for a particular vertex i (marked in 

bold), the list of its successors is given. However, checking the mutual relation 

between two tasks requires O(n) time in this representation, and determining 

the set of task predecessors requires O(n+m) time, where m denotes the number 

of arcs. The predecessor lists, shown in Figure 10.1.4(b), offers the complemen-

tary efficiency: it allows fast determining the set of task predecessors in O(n) 

time, but task successors are determined in O(n+m) time. Both structures require 

O(n+m) space.  

 

(a)  0 1 2 3 4 5 6 7 8 9        (b) 0          
  1 2 7 9         1 0         
 2 3 5 9        2 0 1        
 3 9          3 0 2 4       
 4 3 5 9        4 0         
 5 9          5 0 2 4       
 6 7 9         6 0         
 7 8 9         7 0 1 6       
 8 9          8 0 7        
 9           9 0 1 2 3 4 5 6 7 8 

Figure 10.1.4 The linked lists for the graph in Figure 10.1.2: 
(a) the successor lists, 
(b) the predecessor lists. 

The graph matrix is an extension of the adjacency matrix of the same size 

O(n2). Since in any disjunctive graph, the start vertex/task is a predecessor of all 

tasks and the end vertex/task is a successor of all tasks, the first and the last rows 

and columns of the adjacency matrix provide no specific information. They can 

be used for storing the information on the first and the last elements of predeces-

sor/successor lists. Similarly, no disjunctive graph contains loops for particular 

vertices, which allows to use the diagonal element for storing the first element of 

the list of the tasks whose mutual relations to a considered task are not deter-

mined in a (partial) schedule.  

The graph matrix G for the disjunctive graph in Figure 10.1.2 is given in 

Figure 10.1.5. This matrix stores all successors and predecessors of tasks. Obvi-

ously, the algorithm designer can decide, whether the graph matrix should store 

immediate successors/predecessors only (as the classical graph representations 

given in Figures 10.1.3 and 10.1.4), or all successors/predecessors resulting from 

a (partial) schedule (as in the graph matrix given in Figure 10.1.5).  
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G(i, j) 0 1 2 3 4 5 6 7 8 9 
0 0 0 1 4 0 4 0 6 7 0 
1 0 -4 11 13 -6 15 -6 16 16 2 
2 1 1 -4 13 -6 13 -7 -8 -8 3 
3 1 2 4 -5 4 -6 -7 -8 -8 0 
4 0 -2 -6 13 -1 13 -7 -8 -8 3 
5 1 2 4 -6 4 -3 -7 -8 -8 0 
6 0 -2 -3 -4 -5 -5 -1 16 16 7 
7 1 6 -3 -4 -5 -5 6 -2 16 8 
8 1 6 -3 -4 -5 -5 7 7 -2 0 
9 0 8 5 0 5 0 8 8 0 0 

Figure 10.1.5 The graph matrix for the disjunctive graph in Figure 10.1.2. 

More formally speaking, the graph matrix for the disjunctive graph reflects 

the relations between tasks/vertices as follows (n is the label, i.e. the number, 

assigned to the end vertex): 

� if �n < G(i, j) < 0 then the relation between i and j is unknown,  

� if 0 < G(i, j) < n then j is a predecessor of  i,  
� if n � G(i, j) < 2n then j is a successor of i, 
� G(i, 0) � 0 and G(0, i) � 0 denote the first and the last vertex on the predeces-

sor list of vertex i, respectively, 

� G(i, n) � 0 and G(n, i) � 0 denote the first and the last vertex on the successor 

list of vertex i, respectively, 

� |G(i, i)| � i denotes the first vertex of the list of vertices whose relation to i is 

unknown, 

� if j is an element of a certain list for vertex i then the next element of this list 

is vertex |G(i, j)|, G(i, j) and G(i, j) � (n � 1) for the three lists mentioned 

above, if this vertex is vertex  j then the list ends on j (if the ends of lists do 

not need to be directly accessible, then the elements G(0, i) and G(n, i) storing 

the last elements of predecessor and successor lists can be used for storing 

other pieces of information as e.g. the number of predecessors or successors). 

The graph matrix allows checking the mutual relation between vertices as fast as 

the adjacency matrix, and browsing lists as fast as the linked lists, with 

the lowest possible time complexity. The detailed description of the graph matrix 

and procedures managing it can be found in [BPS00].  

 

Example 10.1.1 Consider vertex/task 2 in the disjunctive graph depicted in Fig-

ure 10.1.2. represented as the graph matrix shown in Figure 10.1.5 (n = 9). The 

first vertex on its predecessor list is task G(2, 0) = 1. Task 1 is the only predeces-

sor of task 2, since it points to itself G(2, 1) = 1 (the end of the list is directly 
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stored in G(0, 2) = 1). The first vertex on the successor list of task 2 is task 

G(2, 9) = 3. The next element of the list, determined by G(2, 3) � 8 = 5, is vertex 

5. Vertex 5 is the last element of this list, since G(2, 5) � 8 = 5 (the end of the list 

is directly stored in G(9, 2) = 5). Vertex 4 is the first vertex whose mutual rela-

tion to task 2 is unknown. It is determined by the element on the matrix diagonal 

|G(2, 2)| = |�4| = 4. This set contains three more vertices: task 6 (|G(2, 4)| = 6), 

task 7 (|G(2, 6)| = 7), and finally task 8 (|G(2, 7)| = 8). Task 8 is the last one in 

this set (|G(2, 8)| = 8). 

In order to check the mutual relation between two tasks it is enough to determine 

the range to which the graph matrix entry belongs. For example, since there is  

�9 < (G(4, 8) = �8) < 0, we know that the mutual order, i.e. the execution order, 

of tasks 4 and 8 is unknown. Because 0 < (G(3, 4) = 4) < 9, we know that task 4 

is a predecessor of task 3. Since 9 � (G(2, 5) = 13) < 18, we know that task 5 is 

a successor of task 2.                                                                                     

The graph matrix was originally proposed as the disjunctive graph represen-

tation [BPS99, BPS00, Ste00], but its idea can be generalized for any graph 

[BPS05, Ste00]. For an arbitrary graph we cannot use any matrix entry for storing 

other pieces of information than the information on the relation between vertices. 

For this reason heads of the linked lists must be stored outside the main body of 

the matrix. The graph matrix has to be extended with additional columns storing 

the label of the first vertex on particular lists, such as the list of predecessors, 

successors, etc. Actually, the number of lists and their meaning depends on 

the decisions taken by the algorithm designer. The mutual relation between verti-

ces is still represented by the range of matrix values, while the linked lists are 

browsed based on the result of the modulo operation. 

In Figure 10.1.6 we show an exemplary directed multigraph, while the gen-

eralized graph matrix representing it is given in Figure 10.1.7. The main body of 

the matrix is extended for each vertex i with the heads of four lists of its succes-

sors (S), predecessors (P), vertices connected via a pair of opposite directed arcs 

(C) and not connected to it (U, excluding vertex i).  

Figure 10.1.6 The exemplary directed multigraph. 

The generalized graph matrix reflects the relations between n vertices in 

an arbitrary graph as follows: 

1 

2 

3 

4 

6 

5 
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T the first vertex of a particular list defined in the matrix for vertex i is stored in 

an additional column, i.e. G(i, n+1), G(i, n+2), G(i, n+3), G(i, n+4), (for lists 

S, P, C, U respectively, in the graph matrix in Figure 10.1.7), where zero de-

notes an empty list,   

T the vertex following vertex j on the list for vertex i is determined by the value 

|G(i, j)| mod (n+1), if |G(i, j)| mod (n+1) = j then j is the last element of the 

list, 

T the mutual relation between vertices i and j is determined by the interval to 

which G(i, j) belongs, e.g. (�(n+1), 0), (0, n+1), ((n+1), 2(n+1)) and (2(n+1), 

3(n+1)) (for lists U, S, P, C in Figure 10.1.7, respectively). 

The detailed description of the generalized graph matrix can be found in 

[BPS05].  

G(i, j) 1 2 3 4 5 6 S P C U 
1 0 12 4 4 13 13 3 2 0 0 
2 1 20 -4 -5 -5 20 1 0 2 3 
3 13 -4 0 -5 -5 13 0 1 0 2 
4 13 -3 -3 0 5 13 5 1 0 2 
5 1 -3 -3 11 20 20 1 4 5 2 
6 3 19 4 4 20 20 1 0 2 0 

Figure 10.1.7 The generalized graph matrix for the graph in Figure 10.1.6. 

10.1.3 Complexity 

The minimum makespan problem of job shop scheduling is a classical combina-

torial optimization problem that has received considerable attention in the litera-

ture. It belongs to the most intractable problems considered. Only a few particu-

lar cases are efficiently solvable: 

T Scheduling two jobs by the graphical method as described in [Bru88] and first 

introduced by Akers [Ake56] (see Section 7.2). In general this idea can be 

used to compute good lower bounds sometimes superior to the one-machine 

bounds [Car82, BJ93]. 

T The two machine flow shop case, i.e. the machine sequences of all jobs are the 

same [Joh54, GS78], see Section 7.2. 

T The two machine job shop problem where each job consists of at most two 

tasks [Jac56]. 

T The two machine job shop case with unit processing times [HA82, KSS94]. 

T The two machine job shop case with a fixed number of jobs (and, of course, 

repetitious processing of jobs on the machines, [Bru94]). 

Slight modifications turn out to be difficult. The two machine job shop prob-

lem where each job consists of at most three tasks, the three machine job shop 

problem where each job consists of at most two tasks, the three machine job shop 
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problem with three jobs are NP-hard, see [LRKB77, GS78, SS95]. The job shop 

problems with two and three machines and task processing times equal to 1 or 2, 

and equal to 1, respectively, are NP-hard even in the case of preemption, see 

[LRK79]. 

10.1.4 The History 

The history of the job shop scheduling problem, starting more than 40 years ago, 

is also the history of two well known benchmark problems consisting of 10 jobs 

and 10 machines as well as of 20 jobs and 5 machines and introduced by Fisher 

and Thompson [FT63]. The data of these instances is presented in Table 10.1.2. 

While the 20 job 5 machine instance turned out to be a challenge for ten years the 

particular instance of a 10 job 10 machine problem opposed its solution for 25 

years leading to a competition among researchers for the most powerful solution 

procedure. Since then branch and bound procedures have received substantial 

attention from numerous researchers. Early work was presented [BW65], fol-

lowed by [Gre68], whose method was based on Manne's integer programming 

formulation. Further papers included [Bal69, CD70, FTM71, AH73], and [Fis73] 

who obtained lower bounds by the use of Lagrange multipliers. 

For long time the algorithm in [MF75] was the best exact solution method. 

Instead of using worse bounds of [CD70] they combined the bounds for the one 

machine scheduling problem with task arrival time and the objective function to 

minimize maximum lateness with the enumeration of active schedules (see 

[GT60]) among which are also optimal ones. An alternative approach whereby at 

each stage one disjunctive arc of some crucial pair is selected leads to a computa-

tionally inferior method, [LLRK77]. 

Considerable effort has been invested in the empirical testing of various pri-

ority rules, see [Ger66], and the survey papers [DH70, PI77, Hau89]. 

During the 80's substantial algorithmic improvements were achieved and ac-

curately reflected by the stepwise optimum approach for the notorious 10-job 10-

machine problem. [FLL+83] applied computationally costly surrogate duality 

relaxations, weighting and aggregating into a single constraint, either machine 

capacity constraints or job-task precedence constraints. A first attempt to obtain 

bounds by polyhedral techniques was made in [Bal85]. The neighborhood struc-

ture used in some recent local search algorithms is also mainly employed as 

branching structure in the exact method of [BM85]. They rearrange tasks on a 

longest path if the tasks use the same machine. [LLR+93] report that, with re-

spect to the famous 10 � 10 problem "Lageweg (1984) found a schedule of 930, 

without proving optimality; he also computed a number of multi-machine lower 

bounds, ranging from a three-machine bound of 874 to a six-machine bound of 

907". So he was the first who found an optimal solution. Optimality of a sched-

ule of length 930 was first proved by Carlier and Pinson [CP89]. Their algorithm 

is based on bounds obtained for the one machine problems with precedence con-
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straints, task arrival times and allowed preemptions. This problem is polynomial-

ly solvable. Additionally, they used several simple but effective inference rules 

on task subsets.  

(a) 
J1 1, 29 2, 78 3, 9 4, 36 5, 49 6, 11 7, 62 8, 56 9, 44 10, 21 

J2 1, 43 3, 90 5, 75 10, 11 4, 69 2, 28 7, 46 6, 46 8, 72 9, 30 

J3 2, 91 1, 85 4, 39 3, 74 9, 90 6, 10 8, 12 7, 89 10, 45 5, 33 

J4 2, 81 3, 95 1, 71 5, 99 7, 9 9, 52 8, 85 4, 98 10, 22 6, 43 

J5 3, 14 1, 6 2, 22 6, 61 4, 26 5, 69 9, 21 8, 49 10, 72 7, 53 

J6 3, 84 2, 2 6, 52 4, 95 9, 48 10, 72 1, 47 7, 65 5, 6 8, 25 

J7 2, 46 1, 37 4, 61 3, 13 7, 32 6, 21 10, 32 9, 89 8, 30 5,55 

J8 3, 31 1, 86 2, 46 6, 74 5, 32 7, 88, 9, 19 10, 48 8, 36 4, 79 

J9 1, 76 2, 69 4, 76 6, 51 3, 85 10, 11 7, 40 8, 89 5, 26 9, 74 

J10 2, 85 1, 13 3, 61 7, 7 9, 64 10, 76 6, 47 4, 52 5, 90 8, 45 

(b) 
J1 1, 29 2, 9 3, 49 4, 62 5, 44 

J2 1, 43 2, 75 4, 69 3, 46 5, 72 

J3 2, 91 1, 39 3, 90 5, 12 4, 45 

J4 2, 81 1, 71 5, 9 3, 85 4, 22 

J5 3, 14 2, 22 1, 26 4, 21 5, 72 

J6 3, 84 2, 52 5, 48 1, 47 4, 6 

J7 2, 46 1, 61 3, 32 4, 32 5, 30 

J8 3, 31 2, 46 1, 32 4, 19 5, 36 

J9 1, 76 4, 76 3, 85 2, 40 5, 26 

J10 2, 85 3, 61 1, 64 4, 47 5, 90 

J11 2, 78 4, 36 1, 11 5, 56 3, 21 

J12 3, 90 1, 11 2, 28 4, 46 5, 30 

J13 1, 85 3, 74 2, 10 4, 89 5, 33 

J14 3, 95 1, 99 2, 52 4, 98 5, 43 

J15 1, 6 2, 61 5, 69 3, 49 4, 53 

J16 2, 2 1, 95 4, 72 5, 65 3, 25 

J17 1, 37 3, 13 2, 21 4, 89 5, 55 

J18 1, 86 2, 74 5, 88 3, 48 4, 79 

J19 2, 69 3, 51 1, 11 4, 89 5, 74 

J20 1, 13 2, 7 3, 76 4, 52 5, 45 

Table 10.1.2 (a) The 10 job 10 machine instance [FT63]. 

 (b) The 20 job 5 machine instance [FT63]. 
  Row j contains the order of the tasks of job Jj ;  
  each entry (i, p) contains the index of machine Pi  
  and the processing time pij on it. 
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Some algorithms developed in the 90's are still the job shop champions among 

the exact methods.  Besides the branch and bound implementations of Applegate 

and Cook [AC91], Martin and Shmoys [MS96], and Perregaard and Clausen 

[PC95], there are the branch and bound algorithms [CL95, BLN95, CP90, CP94, 
BJS92, BJS94, BJK94]. The power of their methods basically results from some 

inference rules which describe simple cuts, and a branching scheme such that 

tasks which belong to a block (a sequence of tasks on a machine) on the longest 

path are moved to the block ends, hence improving an idea described in 

[GNZ86].  

Throughout the chapter, experimental results are reported mainly for the 

10 � 10 problem. Techniques that are giving good results on the 10 � 10 problem 

need not necessarily perform well on other instances of the job shop scheduling 

problem, even for instances of the same size (10 � 10) like [LA19, LA20, ORB2, 

ORB3, ORB4] (a description of these instances may be found e.g. in [AC91]). 

Applegate and Cook's algorithm is very efficient on the 10 � 10 problem, but 

much less on other instances, in particular [LA19, ORB2 and ORB3]. On the 

contrary, a lot of the successful approaches mentioned use important ideas from 

Applegate and Cook's paper. An interesting benchmark is [LA21]. Vaessens 

[Vae95] solved it with a modified version of Applegate and Cook's algorithm 

(~40,000,000 nodes). Then it was solved by Baptiste et al. [BPN95] using 

~4,000,000 nodes in ~48 hours, by Caseau and Laburthe [CL95] using 

~2,000,000 nodes in ~24 hours, and by Martin and Shmoys [MS96] in about one 

hour.  
Tailored approximation methods viewed as an opportunistic (greedy-type) 

problem solving process can yield optimal or near-optimal solutions even for 

problem instances up to now considered as difficult, cf. [ABZ88, OS88, Sad91, 

BLV95, DL93, BV98]. Hereby opportunistic problem solving or opportunistic 

reasoning characterizes a problem solving process where local decisions on 

which tasks, jobs, or machines should be considered next, are concentrated on 

the most promising aspects of the problem, e.g. job contention on a particular 

machine. Hence sub-problems often defining bottlenecks are extracted and sepa-

rately solved and serve as a basis from which the search process can expand. 

Breaking down the whole problem into smaller pieces takes place until, eventual-

ly, sufficiently small sub-problems are created for which effective exact or heu-

ristic procedures are available. However the way in which a problem is decom-

posed affects the quality of the solution reached. Not only the type of decomposi-

tion such as machine/resource [ABZ88], job/order [DPP02], or event based 

[Sad91] has a dramatic influence onto the outcome but also the number of sub-

problems and the order of their consideration. In fact, an opportunistic view sug-

gests that the initial decomposition be reviewed in the course of problem solving 

to see if changes are necessary. The shifting bottleneck heuristic from [ABZ88] 

and its improving modifications from [BLV95] and [DL93] are typical represent-

atives of opportunistic reasoning. It is resource based as there are sequences of 

one machine schedules successively solved and their solutions introduced into 
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the overall schedule. In the 90's local search based scheduling became very popu-

lar; see the surveys [GPS92, AGP97, VAL96]. These algorithms are all based on 

a certain neighborhood structure and some rules defining how to obtain a new 

solution from existing ones. The first efforts to implement powerful general 

problem solvers such as simulated annealing [LAL92, MSS88, Kol99, EAZ07], 

tabu search [DT93], parallel tabu search [Tai94], and genetic algorithms 

[ALLU94, NY91, YN92, SWV92a], finally culminated in the excellent tabu 

search implementation of Nowicki and Smutnicki [NS96, NS05] and Balas and 

Vazacopoulos [BV98]. Among the genetic based methods only a few, 

e.g. [YN92, DP93a, DP93b, Mat96], could solve the notorious 10 job 10 ma-

chine problem optimally. Most of the current local search approaches rely on 

naive search neighborhoods which fail to exploit problem specific knowledge. 

Applications of local and probabilistic search methods to sequencing problems 

are based on neighborhoods defined in the solution space of the problem. The 

method in [SWV92a] is based on problem perturbation neighborhoods, i.e. the 

original data is genetically perturbed and a neighbor is defined as a solution 

which is obtained when a base heuristic is applied to the perturbed problem. The 

obtained solution sequence for the perturbed problem is mapped to the original 

data, i.e. the non-perturbed tasks are scheduled in the same way and the 

makespan of the solution to the original problem data defines the quality of the 

perturbed problem. 

The local search heuristics like simulated annealing, tabu search, and genetic 

algorithms are modestly robust under different problem structures and require 

only a reasonable amount of implementation work with relatively little insight 

into the combinatorial structure of the problem. Problem specific characteristics 

are mainly introduced via some improvement procedures, the kind of representa-

tion of solutions as well as their modifications based on some neighborhood 

structure. 

In recent years job shop problems with additional specifics motivated from 

practice have been investigated by few authors, e.g. job shop problems with 

transport robots [BK06]. 

In the next section we will go into detail and present ideas of some exact al-

gorithms and heuristic approaches, see [BDP96], [JM99], and [Bru04]. 

10.2 Exact Methods 

In this section we will be concerned with branch and bound algorithms, explor-

ing specific knowledge about the critical path of the job shop scheduling prob-

lem. 
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10.2.1 Branch and Bound  

The principle of branch and bound is the enumeration of all feasible solutions of 

a combinatorial optimization problem, say a minimization problem, such that 

properties or attributes not shared by any optimal solution are detected as early as 

possible. An attribute (or branch of the enumeration tree) defines a subset of the 

set of all feasible solutions of the original problem where each element of the 

subset satisfies this attribute. In general, attributes are chosen such that the union 

of all attribute-defined subsets equals the set of all feasible solutions of the prob-

lem and any two of these subsets do not intersect. For each subset the objective 

value of its best solution is estimated by a lower bound (bounding). An optimal 

solution of a relaxation of the original problem such that this optimal solution 

also satisfies the subset defining attribute, serves as a lower bound. In case the 

lower bound exceeds the value of the best (smallest) known upper bound (a heu-

ristic solution of the original problem) the attribute-defined subset can be 

dropped from further consideration. Otherwise, search is continued departing 

from the most promising subset which is divided into smaller subsets through the 

definition of additional attributes. Hence, at any search stage a subset of solutions 

is defined by a set of attributes all of which are satisfied by these solutions. 

We shall see that the attributes of a branch and bound process exactly corre-

spond to attributes forbidding moves in tabu search. Branching from one solution 

subset to a new smaller one can be associated with a tabu search move.  

10.2.2 Lower Bounds 

One of the main drawbacks of all branch and bound methods is the lack of strong 

lower bounds in order to cut branches of the enumeration tree as early as possi-

ble. Several types of lower bounds are applied in the literature, for instance, 

bounds based on Lagrangian relaxation, see [Vel91], bounds based on the opti-

mal solution of a sub-problem consisting of only two or three jobs and all ma-

chines, see [Ake56, Bru88, BJ93]. However the most prominent bounding pro-

cedure has been described in [Car82, Pot80b]. Consider any task Ti in the job 

shop respectively its associated vertex i in the disjunctive graph that may include 

already a partial selection of arcs from disjunctive arc pairs. Then there is a long-

est path from the artificial vertex 0 to i of length ri as well as a longest path of 

length qi connecting the end of vertex i to the last one, the dummy vertex n. Task 

Ti cannot start to be processed earlier than its arrival time ri (also called release 

time or head) and its processing has to be finished at the latest until its due date 

tn � qi in order to cause no schedule delay. The time qi is said to be the tail of task 

Ti. There exist m one-machine lower bounds for the optimal makespan of the job 

shop scheduling problem where each bound is obtained from the exact solution 

of a one-machine scheduling problem with release times, due dates, and minimi-
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zation of the makespan. Although this problem is NP-complete Carlier's algo-

rithm quickly solves the one machine problems optimally for all problem sizes in 

the job shop under consideration. In [BLV95] there is an even better branch and 

bound procedure that can yield improved lower bounds. The method additionally 

takes minimum delays between pairs of tasks into account. That means, if there 

is a directed path connecting vertices i and j in the disjunctive graph, then 

tj � ti � L(i, j) (10.2.1) 

where L(i, j) is the i and j connecting path's length. 

While the one machine scheduling problem with heads ri and tails qi , for all 

tasks Ti, can be solved in O(nlogn) time if ri = rj , for all Ti , Tj , (use the longest 

tail rule, i.e. schedule the jobs in order of decreasing tails) or if qi = qj , for all Ti, 

Tj, (use the shortest head rule, i.e. schedule the jobs in order of increasing heads) 

this is not true any longer if time lags L(i, j) are imposed, see [BLV95]. 

The branch and bound algorithms [Car82] and [BLV95] extensively make 

use of the fact that the shortest makespan of a one machine schedule cannot fall 

below 

LB1(C) := min{ri | Ti � C} + �
Ti�C

 pi + min{qi � Ti � C } (10.2.2) 

for any subset C of all tasks which have to be scheduled on a particular machine, 

where pi  is the processing time of task Ti. This lower bound can be calculated in 

O(n&log n) time by solving the preemptive one machine problem without time 

lags. It is well known, that the strongest bound LB1(C) equals the minimum 

makespan of the preemptive version of Algorithm 4.1.2. Let us consider the idea 

of branching. Consider a schedule produced by the longest tail rule, i.e. among 

the released jobs schedule that one with longest tail. Let C := {T0, Ti1 
, Ti2 

,..., Tiz 
, 

Tn} be a sequence of tasks constituting a critical path. Further, let Tc  be the last 

task encountered in C such that qc < qiz , i.e. all tasks in C between Tc and Tn have 

tails at least qiz . Let C’ denote the set of these tasks excluding Tc and Tn . Then 

branching basically is based on the following observation: If ri � max{ti1 , tc} for 

all Ti � C’, and if the part C(c, iz) of the critical path C connecting c to iz contains 

no precedence relation then the longest tail schedule is optimal in case c = 0. 

Otherwise, if c > 0, in any schedule better than the current one, task Tc either 

precedes or succeeds all tasks in C’, cf. [BLV95]. 

There are a lot of additional inference rules - several are summarized in the 

sequel - in order to cut the enumeration tree during a preprocessing or the search 

phase, see [Car82, BLV95, CP89, CP90, CP94, BJS92, BJ94, CL95, AC91, 

DPP00, DPP02, BB01]. 
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10.2.3 Branching 

Consider once more the one machine scheduling problem consisting of the set N 

of tasks, release times ri and tails qi for all Ti � N . Let Cmax be the maximum 

completion time of a feasible job shop schedule, i.e. Cmax is an upper bound for 

the makespan of an optimal one machine schedule. Let EC , SC and C be subsets 

of N such that EC , SC � C, and any task Tj � C also belongs to EC (SC) if there is 

an optimal single machine schedule such that Tj is first (respectively last) among 

all tasks in C. Then the following conditions hold for any task Tk of N : 

If  rk + �
Ti�C

 pi + min{qi | Ti � SC , Ti � Tk} > Cmax  then  Tk 	 EC , (10.2.3) 

If  min{ri � Ti � EC , Ti � Tk} + �
Ti�C

 pi + qk > Cmax  then  Tk 	 SC , (10.2.4) 

If  Tk 	 EC and LB1(C � {Tk}) + pk > Cmax  then  Tk � SC , (10.2.5) 

If  Tk 	 SC and LB1(C � {Tk}) + pk > Cmax  then  Tk � EC . (10.2.6) 

The preceding results tell us that, if C contains only two tasks Ti and Tk such 

that rk + pk + pi + qi > Cmax then task Ti  is processed before Tk, i.e. from the dis-

junctive arc pair connecting i and k arc (i, k) is selected. Moreover (10.2.5) and 

(10.2.6) can be used in order to adapt heads and tails within the branch and 

bound process, see [Car82, CP89]. If (10.2.5) or (10.2.6) holds then one can fix 

all arcs (i, k) or (k, i), respectively, for all tasks Ti � C, Ti � Tk. Application of 

(10.2.3) to (10.2.6) guarantees an immediate selection of certain arcs from dis-

junctive arc pairs before branching into a sub-tree. There are problem instances 

such that conditions (10.2.3) to (10.2.6) cut the enumeration tree substantially.  

The branching structure of [CP89, CP90, CP94] is based on the disjunctive 

arc pairs which define exactly two sub-trees. Let Ti and Tj be such a pair of tasks 

which have to be scheduled on a critical machine, i.e. a machine with longest 

initial lower bound (= the preemptive one machine solution). Then, roughly 

speaking, according to [BR65], both sequences of the two tasks are checked with 

respect to their regrets if they increase the best lower bound LB. Let 

dij := max {0, ri + pi + pj + qj � LB} ,  

dji := max {0, rj + pj + pi + qi � LB} ,  (10.2.7) 

aij := min {dij, dji}, and bij := |dij � dji| . 

Among all possible candidates of disjunctive arc pairs with respect to the 

critical machine that one is chosen that maximizes bij and, in case of a tie, the 

pair is chosen with the maximum aij . Carlier and Pinson were the first to prove 

that an optimal solution of the 10 � 10 benchmark has a makespan of 930. In 
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order to reach this goal a lot of work had to be done. In 1971 Florian et al. 

[FTM71] proposed a branch and bound algorithm where at a certain time the set 

of available tasks is considered, i.e. all tasks without any unscheduled predeces-

sor are possible candidates for branching. At each node of the enumeration tree 

the number of branches generated corresponds to the number of available tasks 

competing for a particular machine. Branching continues from that node with 

smallest lower bound regarding the node associated to the partial schedule. As 

lower bounds Florian et al. used a one machine lower bound without considering 

tails, i.e. the optimal sequencing of the tasks on this particular machine is in in-

creasing order of the earliest possible start times. They could find a solution of 

1041 for the 10 � 10 benchmark, thus, a slight improvement compared to Balas’ 

best solution of 1177 obtained two years earlier. His work was based on the dis-

junctive graph concept where he considered two successor nodes in the enumera-

tion tree instead of as many nodes as there are conflicting tasks. McMahon and 

Florian [MF75] laid the foundation for Carlier's one machine paper. Contrary to 

earlier approaches where the nodes of the enumeration tree corresponded to in-

complete (partial) schedules, they associated a complete solution with each 

search tree node. An initial solution and upper bound is obtained by Schrage's 

algorithms, i.e. among all available (released) tasks  choose always that one with 

longest tail (earliest due date). Their objective is to minimize maximum lateness 

on one machine where each task is described by its release time, the processing 

time, and its due date. At any search node an MF-critical task Tj (with respect to 

the node associated schedule) is defined to be a task that realizes the value of the 

maximum lateness in the given schedule. Hence, an improvement is only possi-

ble if Tj is scheduled earlier. The idea of branching is to consider those tasks hav-

ing greater due dates than the MF-critical task (i.e. having smaller tails than the 

MF-critical task) and to schedule these tasks after the MF-critical one. They con-

tinuously apply Schrage's algorithm in order to obtain a feasible schedule while 

the heads are adapted appropriately. McMahon and Florian also used their 

branching structure in order to solve the minimum makespan job shop scheduling 

problem and reached a value of 972 for the 10 � 10 problem. Moreover, they 

were the first to solve the Fisher and Thompson 5 � 20 benchmark to optimality, 

i.e. a makespan of 1165. 

In [LLRK77] the one machine lower bound is introduced, hence extending 

the previously used lower bounds. They generated all active schedules branching 

over the conflict set in Giffler and Thompson's algorithm (see Section 3) or 

branching over the disjunctive arcs. A priority rule at each node of the search tree 

delivers an upper bound. There is no report on the notorious 10 jobs 10 machines 

problem. 

Barker and McMahon [BM85] associated with each node in their enumera-

tion tree a sub-problem whose solutions are a subset of the solution set of the 

original problem, a complete schedule, a BM-critical block in the schedule which 

is used to determine the descendant sub-problems, and a lower bound on the val-



362 10  Scheduling in Job Shops 

 

ue of the solutions of the sub-problem. The lower bound is a single machine low-

er bound as computed in [MF75]. Each node of the search tree is associated with 

a different sub-problem. Hence at each node in the search tree there is a complete 

schedule containing a BM-critical task (a BM-critical task is the earliest sched-

uled task Ti where ti + qi is at least the value of the best known solution) and an 

associated BM-critical block (a continuous sequence of tasks on a single machine 

ending with a BM-critical task). The BM-critical task must be scheduled earlier 

if this sub--problem is to yield an improved solution. Thus, a set of sub-problems 

is explored, in each of which a different member of the BM-critical block is 

made to precede all other members or to be the last of the tasks in the block to be 

scheduled. Earliest start times and tails are adapted accordingly. While Barker 

and McMahon reached a value of 960 for the 10 � 10 problem they were not able 

to solve the 5 � 20 problem to optimality. Only a value of 1303 is obtained.  

Branching in the algorithm [BJS92, BJS94] is also restricted to moves of 

tasks which belong to a critical path of a solution obtained by a heuristic based 

on dispatching rules. For a block B, i.e. successively processed tasks on the same 

machine, that belongs to a critical path, new sub-trees are generated if a task is 

moved to the very beginning or the very end of this block. In any case the critical 

path is modified and additional disjunctive arcs are selected according to formu-

lae (10.2.2)-(10.2.6) proposed in [CP89]. Brucker et al. [BJS92, BJS94] calculat-

ed different lower bounds: one machine relaxations and two jobs relaxation, cf. 

[BJ93]. Moreover, if task Ti is moved before the block B, all disjunctive arcs {(i, 
j) | Tj � B and Tj � Ti} are fixed. Hence, 

ri + pi + max { max
Tj�B, Tj�Ti

 (pj + qj), �
Tj�B, Tj�Ti

 pj + min
Tj�B, Tj�Ti

 qj} 

is a simple lower bound for the search tree node. Similarly, the value 

max { max
Tj�B, Tj�Ti

 (rj + pj), �
 Tj�B, Tj�Ti

 pj + min
Tj�B, Tj�Ti

 rj} + pi + qi 

is a lower bound for the search tree node if task Ti is moved to the very end posi-

tion of block B. In order to keep the generated sub-problems non-intersecting it 

is necessary to fix some additional arcs. Promising sub-problems are heuristically 

detected. The branch and bound [BJS92, BJS94] improves and accelerates the 

branch and bound algorithm [CP89] substantially and easily reaches an optimal 

schedule for the 10 � 10 problem. However, to find an optimal solution for the 

5 � 20 problem within a reasonable amount of time was impossible. 

If we add a value , at the left hand side of the head and tail update rules 

(10.2.3) and (10.2.4) then they can be considered as equations. Depending on the 

choice of Cmax integer , can also be positive. This results in the assignment of 

time windows [rk, rk + ,] of possible start times of tasks Tk to task sets supposed 

to be scheduled on the same machine. The branching idea of Martin and Shmoys 

[MS96] uses the tightness of these windows as a branching criterion. For tight or 
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almost tight windows, where the window size equals (almost) the sum of the 

processing times of the task set C, branching depends on which task in C is pro-

cessed first. When a task is chosen to be first the size of its window is reduced. 

The size of the windows of the other tasks in C are updated in order to reflect the 

fact that they cannot start until the chosen task is completed. Martin and Shmoys 

needed about 9 minutes for finding an optimal schedule for the 10 � 10 problem. 

Comparable propagation ideas (after branching on disjunctive arcs) based on 

time window assignments to tasks are considered in [CL95]. They found an op-

timal schedule to the 10 � 10 problem within less than 3 minutes. In both papers, 

the updating of windows on tasks of one machine causes further updates on all 

other machines. This iterated one machine window reduction algorithm generat-

ed lower bounds superior to the one machine lower bound. 

Perregaard and Clausen [PC95] obtained excellent results through a parallel 

branch and bound algorithm on a 16-processor system based on Intel i860 pro-

cessors each with 16 MB internal memory. There is a peak performance of about 

500 MIPS. As a lower bound Jackson's preemptive schedule is used. A branching 

strategy is the one from [CP89] where a new disjunctive arc pair describes the 

branches originating from a node, this is done in analogy to the rules (10.2.3)-

(10.2.7). Another branching strategy considered is the one described in [BJS94], 

i.e. moving tasks to block ends. Perregaard and Clausen easily found optimal 

solutions to the 10 � 10 and 5 � 20 problems, both in time much less than a mi-

nute (of course including the optimality proof). For some other even more diffi-

cult problems they could prove optimality or obtained results unknown up to 

now.  

10.2.4 Valid Inequalities  

Among the most efficient algorithms for solving the job shop scheduling prob-

lem exactly is the branch and bound approach by Applegate and Cook [AC91]. In 

order to obtain good lower bounds they developed cutting plane procedures for 

both the disjunctive and the mixed integer problem formulation, see [Man60]. In 

the latter case the disjunctive constraints can be modeled by introducing a binary 

variable yij
k
 for any task pair Ti, Tj supposed to be processed on the same machine 

Pk. The interpretation is, yij
k
 equals 1 if Ti is scheduled before Tj on machine Pk, 

and 0 if Tj is scheduled before Ti. Let Z be some large constant. Then the follow-

ing inequalities hold for all tasks Ti and Tj on machine Pk : 

ti � tj + pj � Zyij
k
 (10.2.8) 

tj � ti + pi � Z(1 � yij
k
) (10.2.9) 
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Starting from the LP-relaxation, valid inequalities involving variables yij
k
 as well 

as inequalities developed for the disjunctive programming formulation are gener-

ated. Consider a feasible solution and set C of tasks processed on the same ma-

chine Pk. Let Ti � C  be a task processed on Pk and assume all members of the 

subset Ci of C are scheduled before Ti on Pk. Then the start time ti of task Ti 	 Ci 

satisfies  

ti � min {rj | Tj � Ci} + �
Tj�Ci

 pj � min {rj | Tj � C} + �
Tj�Ci

 pj . (10.2.10) 

In order to become independent of the considered schedule we multiply this ine-

quality by pi and take the sum over all members of C. Hence, we get the basic 
cuts from [AC91]: 

�
Ti�C

 ti pi � ( �
Ti�C

 pi) min{rj | Tj � C} + 
1

2
 �
Ti�C
Ti�Tj

 �
Tj�C
Tj�Ti

 pj pi . (10.2.11) 

With the addition of the variables yij
k
 we can easily reformulate (10.2.10) and 

obtain the half cuts 

ti � min {rj � Tj � C} + �
Tj�C
Tj�Ti

 yji
k
 pj (10.2.12) 

because yji
k
 = 1 if and only if Tj � Ci. 

Let Ti and Tj be two tasks supposed to be scheduled on the same machine. 

Let ( and * be any two nonnegative parameters. Assume Ti is supposed to be 

processed before Tj , then (ti + *tj � (ri + *(ri + pi) because ti � ri and task Tj can-

not start before Ti is finished. Similarly, under the assumption that Tj is sched-

uled before Ti, we get (ti + *tj � (rj + pj) + *rj . Thus, both inequalities hold, for 

instance, if the right hand sides of these inequalities are equal. Both inequalities 

are satisfied if ( = pi + ri � rj and * = pj + rj � ri  . Hence, the two-job cuts [Bal85] 

(pi + ri � rj) ti + (pj + rj � ri) tj � pi pj + ri pj + rj pi (10.2.13) 

sharpen (10.2.11) if ri + pi > rj and rj + pj > ri . 

The lower bounds in the branch and bound algorithm [AC91] are based on 

these inequalities, the corresponding reverse ones, i.e. considering the jobs in 

reverse order, and a couple of additional cuts. The cutting plane based lower 

bounds are superior to the one machine lower bounds, however, at the cost of 

additional computation time. For instance, for the 10 � 10 problem Applegate and 

Cook were able to improve the one machine bound of 808 obtained in less than 

one second up to 824 (in 300 seconds) or 827 in 7500 seconds. The branch and 

bound tree is established continuing the search from a tree node where the 
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preemptive one machine lower bound is minimum. The branching scheme results 

from the disjunctive model, i.e. each disjunctive edge defines two sub-problems 

according to the corresponding disjunctive arcs. However, among all possible 

disjunctive edges the one is chosen, connecting tasks Ti and Tj, which maximizes 

the minimum {LB(i � j), LB(j � i)} where LB(i � j) and LB(j � i) are the two 

preemptive one machine lower bounds for the generated sub-problems where the 

disjunctive arcs (i, j) or (j, i), respectively, are selected. Furthermore, in a more 

sophisticated branch and bound method branching is realized on the basis of the 

values aij and bij of (10.2.7). Then, based on the work [CP89], inequalities 

(10.2.3) and (10.2.4) are applied to all task subsets on each particular machine in 

order to eliminate disjunctive edges, simplifying the problem. In order to get a 

high quality feasible solution Applegate and Cook modified the shifting bottle-

neck procedure [ABZ88]. After scheduling all but s machines, for the remaining 

s machines the bottleneck criterion (see below) is replaced by complete enumera-

tion. Not necessarily the machine with largest makespan is included into the par-

tial schedule but each of the remaining s machines is considered to be the one 

introduced next into the partial schedule. The value s has to be small in order to 

keep the computation time low. 

In order to obtain better feasible solutions they proceed as follows. Given a 

complete schedule the processing order of the jobs on a small number s of ma-

chines is kept fixed. The processing order on the remaining machines is skipped. 

The resulting partial schedule can be quickly completed to a new schedule using 

the aforementioned branch and bound procedure. If the new schedule is shorter 

than the original, then this process is repeated with the restriction that the set of 

machines whose schedules are kept fixed is modified. The number s of machines 

to fix follows the need to have enough structure to rapidly fill in the rest of the 

schedule and leave a sufficient amount of freedom for improving the processing 

orders (see [AC91], for additional information on how to choose s). Applegate 

and Cook easily found an optimal solution to the 10 � 10 job shop in less than 2 

minutes (including the proof of optimality).  

10.3 Approximation Algorithms 

10.3.1 Priority Rules 

Priority rules are probably the most frequently applied heuristics for solving (job 

shop) scheduling problems in practice because of their ease of implementation 

and their low time complexity. The algorithm of Giffler and Thompson [GT60] 

can be considered as a common basis of all priority rule based heuristics. Let 

Q (t) be the set of all unscheduled tasks at time t. Let ri and Ci denote the earliest 

possible start and the earliest possible completion time, respectively, of task Ti. 
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The algorithm of Giffler and Thompson assigns available tasks to machines, i.e. 

tasks which can start being processed. Conflicts, i.e. tasks competing for the 

same machine, are solved randomly. A brief outline of the algorithm is given in 

Algorithm 10.3.1. 

Algorithm 10.3.1 The algorithm of Giffler and Thompson [GT60]. 
begin 
t := 0; Q (t) := {T1,..., Tn��};  

repeat 
Among all unscheduled tasks in Q (t) let Tj* be the one with smallest comple-

tion time, i.e. Cj* = min {Cj | Tj � Q (t), Cj = max{t, rj} + pj}. Let Pk* denote 

the machine Tj* has to be processed on; 

Randomly choose a task Ti from the conflict set { Tj � Q (t) | Tj has to be pro-

cessed on machine Pk* and rj < Cj*}; 

Q (t) := Q (t) � {Ti}; 

Modify Cj for all tasks Tj � Q (t) supposed to be processed one machine Pk*; 

Set t to the next possible task to machine assignment, i.e. Ci* = min{Ci | Ti is 

in process on some machine Pk and there is at least one task in Q (t) that re-

quires Pk}; 

rj* := min{rj | Tj � Q (t)}; 

t := max{ Ci*, rj*}; 

until Q (t) is empty 

end; 

The Giffler-Thompson algorithm can generate all active schedules (a schedule is 

said to be active, if no task can start its processing without delaying any other 

task) among which are also optimal schedules. As the conflict set consists only of 

tasks, i.e. jobs, competing for the same machine, the random choice of a task or 

job from the conflict set may be considered as the simplest version of a priority 

rule where the priority assigned to each task or job in the conflict set corresponds 

to a certain probability. Many other priority rules can be considered, e.g. the total 

processing time of all tasks succeeding Ti in a given job. A couple of rules are 

collected in Table 10.3.1; for an extended summary and discussion see [PI77, 
BPH82, Hau89]. The first column of Table 10.3.1 contains an abbreviation and 

name of the rule while the last column describes which task or job in the conflict 

set gets highest priority. 
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 rule description 

1. STT-rule 
(shortest task time) 

A task with a shortest processing time 

on the considered machine. 

2. LTT-rule 
(longest task time) 

A task with a longest processing time 

on the machine considered. 

3. LRPT-rule 
(longest remaining processing time) 

A task with a longest remaining job 

processing time. 

4. SRPT-rule 
(shortest remaining processing time) 

A task with a shortest remaining job 

processing time. 

5. LTRPT-rule  
(longest task remaining processing 

time) 

A task with a highest sum of tail and 

task processing time. 

6. Random A task for the considered machine is 

randomly chosen. 

7. FCFS-rule 
(first come first served) 

The first task in the queue of jobs 

waiting for the same machine. 

8. SPT-rule 
(shortest processing time) 

A job with a smallest total processing 

time. 

9. LPT-rule  
(longest processing time) 

A job with a longest total processing 

time. 

10. LTS-rule  
(longest task successor) 

A task with a longest subsequent task 

processing time. 

11. SNRT-rule 
(smallest number of remaining tasks) 

A task with a smallest number of 

subsequent tasks in the job. 

12. LNRT-rule  
(largest number of remaining tasks) 

A task with a largest number of sub-

sequent tasks in the job. 

Table 10.3.1 Priority rules. 

10.3.2 The Shifting Bottleneck Heuristic 

The shifting bottleneck heuristic ([ABZ88], [BLV95 and DMU97, PM00]) is one 

of the most powerful procedures among heuristics for the job shop scheduling 

problem. The idea is to solve for each machine a one machine scheduling prob-

lem to optimality under the assumption that a lot of arc directions in the optimal 

one machine schedules coincide with an optimal job shop schedule. Consider all 

tasks of a job shop scheduling instance that have to be scheduled on machine Pk. 

In the (disjunctive) graph including a partial selection among opposite directed 

arcs (corresponding to a partial schedule) there exists a longest path of length ri 
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from dummy vertex 0 to each vertex i corresponding to Ti scheduled on machine 

Pk. Processing of task Ti cannot start before ri. There is also a longest path of 

length qi from i to the dummy node n. Obviously, when Ti is finished it will take 

at least qi time units to finish the whole schedule. Although the one machine 

scheduling problem with heads and tails is NP-hard, there is the powerful branch 

and bound method (see Section 10.2.2) proposed by Potts [Pot80b] and Carlier 

[Car82, Car87] which dynamically changes heads and tails in order to improve 

the tasks sequence. 

The shifting bottleneck heuristic consists of two subroutines. The first one 

(SB1) repeatedly solves one machine scheduling problems while the second one 

(SB2) builds a partial enumeration tree where each path from the root to a leaf is 

similar to an application of SB1. As its name suggests, the shifting bottleneck 

heuristic always schedules bottleneck machines first. As a measure of the bottle-

neck quality of machine Pk, the value of an optimal solution of a one machine 

scheduling problem on machine Pk is used. The one machine scheduling prob-

lems considered are those which arise from the disjunctive graph model when 

certain machines are already sequenced. The task orders on sequenced machines 

are fully determined. Hence sequencing an additional machine probably results in 

a change of heads and tails of those tasks of which the machine order is still 

open. For all machines not sequenced, the maximum makespan of the corre-

sponding optimal one machine schedules, where the arc directions of the already 

sequenced machines are fixed, determines the bottleneck machine. In order to 

minimize the makespan of the job shop scheduling problem, the bottleneck ma-

chine should be sequenced first. A brief statement of the shifting bottleneck pro-

cedure is given in Algorithm 10.3.2. 

Algorithm 10.3.2  Shifting bottleneck (SB1) heuristic. 
begin 
Let P  be the set of all machines and let P ' := � be the - initially empty - set of 

all sequenced machines; 
repeat 
for Pk � P � P ' do 

begin 
Compute head and tail for each task Ti that has to be scheduled on  

machine Pk; 

Solve the one machine scheduling problem to optimality for machine Pk;  

Let C(k) be the resulting makespan for this machine;  
end; 

Let Pk* be the bottleneck machine, i. e. C(k*) � C(k) for all Pk � P  � P '; 

P ' := P ' � { Pk*};  

for Pk � P ' in the order of its inclusion do  -- local re-optimization 
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begin 
Delete all arcs between tasks on Pk while all arc directions between tasks 

on machines from P ' � {Pk} are fixed; 

Compute heads and tails of all tasks on machine Pk and solve the one  

machine scheduling problem and reintroduce the obtained task orders on 

Pk; 

end; 
until P  = P ' 

end; 
The one machine scheduling problems, although they are NP-hard (contrary to 

the preemptive case, cf. [BLL+83]), can quickly be solved using the algorithm 

[Car82]. Unfortunately, adjusting heads and tails does not take into account a 

possible already fixed processing order of tasks connecting two tasks Ti and Tj on 

the same machine, whereby this particular machine is still unscheduled. So, we 

get one machine scheduling problems with heads, tails, and time lags (minimum 

delay between two tasks), problems which cannot be handled with Carlier's algo-

rithm. In order to overcome these difficulties an improved SB1 version is sug-

gested by Dauzere-Peres and Lasserre [DL93] using approximate one machine 

solutions. Balas et al. [BLV95] solved the one machine problems exactly. So, 

there is a SB1-heuristic superior to the SB1-heuristic proposed in [ABZ88]. On 

average, the SB1-heuristic results from [BLV95] are slightly worse than those 

obtained by the SB2-heuristic from [BLV95]. 

During the local re-optimization part of the SB1-heuristic, the task sequence 

is re-determined for each machine, keeping the sequences of all other already 

scheduled machines untouched. As the one machine problems use only partial 

knowledge of the whole problem, it is not surprising, that optimal solutions will 

not be found easily. This is even more the case because Carlier's algorithm con-

siders the one machine problem as consisting of independent tasks while some 

dependence between tasks of a machine might exist in the underlying job shop 

scheduling problem. Moreover, a monotonic decrease of the makespan is not 

guaranteed in the re-optimization step of Adams et al. [ABZ88]. Dauzere-Peres 

and Lasserre [DL93] were the first to improve the robustness of SB1 and to en-

sure a monotonic decrease of the makespan in the re-optimization phase and 

eliminate sensitivity to the number of local re-optimization cycles. Contrary to 

Carlier's algorithm, they update the task release time s each time they select a 

new task by Schrage's procedure. They obtained a solution of 950 for the 10 � 10 

problem using this modified version of the SB1-heuristic. 

The quality of the schedules obtained by the SB1-heuristic heavily depends 

on the sequence in which the one machine problems are solved and thus on the 

order these machines are included in the set P '. Sequence changes may yield 

substantial improvements. This is the idea behind the second version of the shift-



370 10  Scheduling in Job Shops 

 

ing bottleneck procedure, i.e. the SB2-heuristic, as well as behind the second ge-

netic algorithm approach by Dorndorf and Pesch [DP95]. The SB2-heuristic ap-

plies a slightly modified SB1-heuristic to the nodes of a partial enumeration tree. 

A node corresponds to a set P ' of machines that have been sequenced in a par-

ticular way. The root of the search tree corresponds to P ' = �. A branch corre-

sponds to the inclusion of machine Pk into P ', thus the branch leads to a node 

representing an extended set P ' � {Pk}. At each node of the search tree a single 

step of the SB1-heuristic is applied, i.e. machine Pk is included followed by a 

local re-optimization. Each node in the search tree corresponds to a particular 

sequence of inclusions of the machines into set P '. Thus, the bottleneck criterion 

no longer determines the inclusion into P '. Obviously a complete enumeration of 

the search tree is not acceptable. Therefore a breadth-first search up to depth l is 

followed by a depth-first search. In the former case, for a search node corre-

sponding to set P ' all possible branches are considered which result from inclu-

sion of machine Pk 	 P '. Hence the successor nodes of node P ' correspond to 

machine sets P ' � {Pk} for all Pk � P � P '. Beyond the depth l an extended bot-

tleneck criterion is applied, i.e. instead of | P � P ' | successor nodes there are sev-

eral successor nodes generated corresponding to the inclusion of the bottleneck 

machine as well as several other machines Pk to P '. 

10.3.3 Opportunistic Scheduling 

For long time priority rules were the only possible way to tackle job shops of at 

least 100 tasks [CGTT63]. Recently, generally applicable approximation proce-

dures such as tabu search, simulated annealing or genetic algorithm learning 

strategies became very attractive and successive solution strategies. Their general 

idea is to modify current solutions in a certain sense, where the modifications are 

defined by a neighborhood operator, such that new feasible solutions are generat-

ed, the so called neighbors, which hopefully have an improved or at most limited 

deterioration of their objective function value. In order to reach this goal problem 

specific knowledge, incorporated by problem specific heuristics, has to be intro-

duced into the local search process of the general problem solvers (see Section 

2.5.2).  

Knowledge based scheduling systems have been built by various people us-

ing various techniques. Some of them are rule based systems others are based on 

frame representations. Some of them use heuristic rules only to construct a 

schedule, others conduct a constraint directed state space search. ISIS [Fox87, 
FS84] is a constraint directed reasoning system for the scheduling of factory job 

shops. The main feature is that it formalizes various scheduling influences in the 

form of constraints on the system's knowledge base and uses these constraints to 
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guide the search in order to generate heuristically the schedule. In each schedul-

ing cycle it first selects an order of tasks to be scheduled according to priority 

rules and then proceeds through a level of analysis of existing schedules, a level 

of constraint directed search and a level of detailed assignment of resources and 

time intervals for each task in order. A large amount of work done by ISIS actu-

ally involves the extraction and organization of constraints that are created spe-

cifically for the problem under consideration. Scheduling relies only on order 

based problem decomposition. The system OPIS [OS88, SFO86] which is a di-

rect descendant of ISIS attempts to make some progress by concentrating more 

on bottlenecks and scheduling under the perspective of resource based decompo-

sition, cf. [ABZ88, CPP92, BLV95, DL93]. The term "opportunistic reasoning" 

has been used to characterize a problem-solving process whereby activity is con-

sistently directed toward those actions that appear most promising in terms of the 

current problem-solving state. The strategy is to identify the most "solvable" as-

pects of the problem (e.g. those aspects with the least number of choices or 

where powerful heuristics are known) and develop candidate solutions to these 

sub-problems. However the way in which a problem is decomposed affects the 

quality of the solution reached. No sub-problem contains all the information of 

the original problem. Sub-problems should be as independent as possible in 

terms of effects of decisions on other sub-problems. OPIS is an opportunistic 

scheduling system using a genetic opportunistic scheduling procedure. For in-

stance, it constantly redirects the scheduling effort towards those machines that 

are likely to be the most difficult to schedule (so-called bottleneck machines). 

Decomposing the job shop into single machine scheduling problems bottleneck 

machines might get a higher priority for being scheduled first. Hence, dynamical-

ly revised decision making based on heuristic rules focuses on the most critical 

decision points and the most promising decisions at these points, cf. [Sad91]. 

The average complexity of the procedures is kept on a very low level by inter-

leaving the search with application of consistency enforcing techniques and a set 

of look-ahead techniques that help to decide which task to schedule next (i.e. so-

called variable-ordering and value-ordering techniques). Clearly, start times of 

tasks competing for highly contended machines are more likely to become una-

vailable than those of other tasks. A critical variable is one that is expected to 

cause backtracking, i.e. one which remaining possible values are expected to 

conflict with the remaining possible values of other variables. A good value is 

one that is expected to participate in many solutions. Contention between un-

scheduled tasks for a machine over some time interval is determined by the num-

ber of unscheduled tasks competing for that machine/time interval and the reli-

ance of each one of these tasks on the availability of this machine/time interval. 

Typically, tasks with few possible starting times left will heavily rely on the 

availability of any one of these remaining starting times in competition, whereas 

tasks with many remaining starting times will rely much less on any one of these 

times. Each starting time is assigned a subjective probability to be assigned to a 

particular task. The task with the highest contribution to the demand for the most 
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contended machine/time interval is considered the most likely to violate a con-

straint, cf. [CL95, PT96]. 

Very recent solution approaches use ant colony optimization [MFP06, BS04] 

and artificial immune systems [CAK+06] as successful and competitive algo-

rithms.  

10.3.4 Local Search 

An important issue is the extent to which problem specific knowledge must be 

used in the construction of learning algorithms (in other words the power and 

quality of inferencing rules) capable to provide significant performance im-

provements. Very general methods having a wide range of applicability in gen-

eral are weak with respect to their performance. Problem specific methods 

achieve a highly efficient learning but with little use in other problem domains. 

Local search strategies are falling somewhat in between these two extremes, 

where genetic algorithms or neural networks tend to belong to the former catego-

ry while tabu search or simulated annealing etc. are counted as instances of the 

second category. Anyway, these methods can be viewed as tools for searching a 

space of legal alternatives in order to find a best solution within reasonable time 

limitations. When sufficient knowledge about the search space is available a pri-

ori, one can often exploit that knowledge (inference) in order to introduce prob-

lem specific search strategies capable to find rapidly solutions of higher quality. 

Whiteout such a priori knowledge, or in cases where close to optimum solutions 

are indispensable, information about the problem has to be accumulated dynami-

cally during the search process. Likewise obtained long-term as well as short-

term memorized knowledge constitutes one of the basic parts in order to control 

the search process and in order to avoid getting stuck in a locally optimal solu-

tion. In random search finding an acceptable solution within a reasonable amount 

of time is impossible because any kind of random search is not using any 

knowledge generated during the search process in order to improve its perfor-

mance. Any global information assessed during the search will not be exploited. 

Local search algorithms (see section 2.5) provide general problem solving 

strategies incorporating and exploiting problem-specific knowledge capable even 

to explore search spaces containing an exponentially growing number of local 

optima with respect to the problem defining parameters. 

Tabu Search and Simulated Annealing Based Job Shop  
Scheduling 

In the 90's local search based scheduling of job shops became very popular; for a 

survey see [VAL96, Vae95, AGP97, WW95]. These algorithms are all based on 

a certain neighborhood structure. A simple neighborhood structure (N1) has been 

used in the simulated annealing procedure of [LAL92]: 
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N1: Transition from a current solution to a new one is generated by replacing in 
the disjunctive graph representation of the current solution a disjunctive arc 
(i, j) on a critical path by its opposite arc (j, i). 

In other words, N1 means reversing the order in which two tasks Ti and Tj (or 

jobs) are processed on a machine where these two tasks belong to a longest path. 

This parallels the early branching structures of exact methods. It is possible to 

construct a finite sequence of transitions leading from a locally optimal solution 

to the global optimum, i.e. the neighborhood is connected. This is a necessary 

and sufficient condition for asymptotic convergence of simulated annealing. On 

average (on VAX 785 over 5 runs on each instance) it took about 16 hours to 

solve the 10 � 10 benchmark to optimality. A value of 937 was reached within 

almost 100 minutes. The 5 � 20 benchmark problem was solved to optimality 

within almost 18 hours. 

Lourenço [Lou93, Lou95] introduces a combination of small step moves 

based on the neighborhood N1 and large step moves in order to reach new search 

areas. The small steps are responsible for search intensification in a relatively 

narrow area. Therefore a simple hill-climbing as well as simulated annealing are 

used, both with respect to neighborhood N1. The large step moves modify the 

current schedule and drive the search to a new region. Simultaneously a modest 

optimization is performed to obtain a schedule reasonably close to a local opti-

mum by local search such as hill-climbing or simulated annealing. The large 

steps considered are the following: Randomly select two machines and remove 

all disjunctive arcs connecting tasks on these two machines in the current sched-

ule. Then solve the two one machine problems - using Carlier's algorithm or al-

lowing preemption and considering time lags - and return the obtained arcs ac-

cording to their one machine solutions into the whole schedule. Starting solutions 

are generated through some randomized dispatching rules, one for an instance, in 

the same way as in [Bie95] (see below). 

More powerful neighborhood definitions are necessary. A neighborhood N2 

defined in [MSS88], has been also applied in the local search improvement steps 

of the genetic algorithms in [ALLU94]: 

N2: Consider a feasible solution and a critical arc (i, j) defining the processing 
order of tasks Ti and Tj on the same machine, say machine Pk. Define Tipred(i)  
and Tisucc(i) to be the immediate predecessor and immediate successor of Ti, 
respectively, on machine Pk. Restrict the choice of arc (i, j) to those vertices 
for which at least one of the arcs (ipred(i), i) or (j, isucc(j)) is not on a long-
est path, i.e. i or j are block end vertices (cf. the branching structure in 

BJS94). Reverse (i, j) and, additionally also reverse (ipred(h), h) and (l, 
isucc(l)) - provided they exist - where Th directly precedes Ti in the job, and 
Tl is the immediate successor of Tj in the job. The latter arcs are reversed 
only if a reduction of the makespan can be achieved. 
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Thus, a neighbor of a solution with respect to N2 may be found by reversing more 

than one arc. Within a time bound of 99 seconds the results of two simulated 

annealing algorithms based on the two different neighborhood structures N1 and 

N2 were 969 and 977, respectively, for the 10 � 10 problem as well as 1216 and 

1245, respectively, for the 5 � 20 problem, see [ALLU94]. 

Dell'Amico and Trubian [DT93] considered the problem as being symmetric 

and scheduled tasks bi-directionally, i.e. from the beginning and from the end, in 

order to obtain a priority rule based feasible solution. The resulting two parts 

finally are put together in order to constitute a complete solution. The neighbor-

hood structure (N3) employed in their tabu search extends the connected neigh-

borhood structure N1: 

N3: Let (i, j) be a disjunctive critical arc. Consider all permutations of the three 
vertices {ipred(i), i, j} and {i, j, isucc(j)} in which (i, j) is reversed. 

Again, it is possible to construct a finite sequence of moves with respect to N3 

which leads from any feasible solution to an optimal one. In a restricted version 

N3' of N3 arc (i, j) is chosen such that either Ti or Tj is the end vertex of a block. 

In other words, arc (i, j) is not considered as candidate when both (ipred(i), i) and 

(j, isucc(j)) are on a longest path in the current solution. N3' is not any longer a 

connected neighborhood. Another branching scheme is considered to define a 

neighborhood structure N4: 

N4: For all tasks Ti in a block move Ti  to the very beginning or to the very end 
of this block. 

Once more, N4 is connected, i.e. for each feasible solution it is possible to con-

struct a finite sequence of moves, with respect to N4, leading to a globally opti-

mal solution. For a while the tabu search [DT93] was the most powerful method 

to solve job shops. They were able to find an optimal solution to the 5 � 20 prob-

lem within 2.5 minutes and a solution of 935 to the 10 � 10 problem in about the 

same amount of time.  

N1 and N4 are also the two neighborhood structures used in the tabu search 

of [SBL95]. In 40 benchmark problems they always obtained better solutions or 

reduced running times compared to the shifting bottleneck procedure. For in-

stance, they generated an optimal solution to the 10 � 10 problem within 157 sec-

onds. 

In the parallel tabu search Taillard [Tai94] used the N1 neighborhood. Every 

15 iterations the length of the tabu list is randomly changed between 8 and 14. 

He obtained high quality solutions even for very large problem instances up to 

100 jobs and 20 machines. 

Barnes and Chambers [BC95] also used N1 in their tabu search algorithm. 

They fixed the tabu list length and whenever no feasible move is available the list 

entries are deleted. Start solutions are obtained through dispatching rules. 
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Nowadays, the most efficient tabu search implementations are described in 

[NS96, NS05] and [BV98]. The size of the neighborhood N1 depends on the 

number of critical paths in a schedule and the number of tasks on each critical 

path. It can be pretty large. Nowicki and Smutnicki [NS96] consider a smaller 

neighborhood (N5) restricting N1 (or N4) to reversals on the border of a block. 

Moreover, they restrict to a single critical path arbitrarily selected 

N5: A move is defined by the interchange of two successive tasks Ti and Tj, 
where either Ti or Tj is the first or last task in a block that belongs to a criti-
cal path. In the first block only the last two tasks and symmetrically in the 
last block of the critical path only the first two tasks are swapped. 

The set of moves is not empty only if the number of blocks is more than one and 

if at least one block consists of more than one task. In other words, if the set of 

moves is empty then the schedule is optimal. If we consider neighborhoods N1 

and N5 in more detail, then we can deduce: A schedule obtained from reversing 

any disjunctive arc which is not critical cannot reduce the makespan; a move that 

belongs to N1 but not to N5 cannot reduce the makespan. Let us go into more 

detail of [NS96], see also [JRM00]. 

The neighborhood search strategy includes an aspiration criterion and reads 

as follows: 

Algorithm 10.3.3  Neighborhood search strategy of Nowicki-Smutnicki, [NS96]. 

begin 
Let x be a current schedule (feasible solution) with makespan Cmax

x  ; 

N (x) denotes the set of all neighbors of x;  

Cmax is the makespan of the currently best solution; 

T is a tabu list; 

Let A be the set {x' � N (x) | Move(x � x') � T and Cmax
x' 

 < C max}; 
  -- i.e. all schedules in A satisfy the aspiration criterion  

  -- to improve the currently best makespan.  

if { N (x) | Move(x � x') is not tabu} � A is not empty  

then  
Select y such that  

Cmax
y  

 = min{Cmax
x' 

 | x' � N (x) or if Move(x � x') is tabu then x' � A } 

else 
repeat 

Drop the "oldest" entry in T and append a copy of the last element in T 
until there is a non-tabu move Move(x � x'); 

Let Move(x � x') be defined by arc (i, j) in the disjunctive graph of x,  

then append arc (j, i) to T 
end; 
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The design of a classical tabu search algorithm is straightforward. A stopping 

criterion is when the optimal schedule is detected or the number of iterations 

without any improvement exceeds a certain limit. The initial solution can be gen-

erated using an insertion technique, e.g. as described in [NEH83]. Nowicki and 

Smutnicki note that the essential disadvantage of this approach consists of loos-

ing information about previous runs. Therefore they suggest to build up a list of 

the l best solutions and their associated tabu lists during the search. Whenever 

the classical tabu search has finished go back to the most recent entry, i.e. the 

best schedule x from this list of at most l solutions, and restart the classical tabu 

search. Whenever a new best solution is encountered the list of best solutions is 

updated. This extended tabu search "with backtracking" continues until the list of 

best solutions is empty. Nowicki and Smutnicki obtained very good results; for 

instance, they could solve the notorious 10 � 10 problem within 30 seconds to 

optimality, even on a small personal computer. They solved the 5 � 20 problem 

within 3 seconds to optimality. 

The idea of Balas and Vazacopoulos [BV98] of the guided local search pro-

cedure is based on reversing more than one disjunctive arc at a time. This leads 

to a considerably larger neighborhood than in the previous cases. Moreover, 

neighbors are defined by interchanging a set of arcs of varying size, hence the 

search is of variable depth and supports search diversification in the solution 

space. The employed neighborhood structure (N6) is an extension of all previous-

ly encountered neighborhood structures. Consider any feasible schedule x and 

any two tasks Ti and Tj to be performed on the same machine, such that i and j 
are on the same critical path, say CP(0, n), but not necessarily adjacent. Assume 

Ti is processed before Tj. Besides Tipred(i), Tipred(j) and Tisucc(i), Tisucc(j), the imme-

diate machine predecessors and machine successors of Ti and Tj in x, let Ta(i), 

Ta(j) and Tb(i) and Tb(j) denote the job predecessors and job successors of tasks Ti 

and Tj, respectively. Moreover, let r(i) := ri + pi and q(i) := pi + qi be the length of 

a longest path (including the processing time pi of Ti) connecting 0 and i, or i and 

n. An interchange on Ti and Tj either is a move of Ti right after Tj (forward inter-

change) or a move of Tj right before Ti (backward interchange). We have seen 

that schedule x cannot be improved by an interchange on Ti and Tj if both tasks 

are adjacent and none of the vertices corresponding to them is the first or the last 

one of a block in CP(0, n). In other words, in order to achieve an improvement 

either a(i) or b(j) must be contained in CP(0, n). This statement can easily be 

generalized to the case where Ti is not an immediate predecessor of Tj. Thus for 

an interchange on Ti and Tj to reduce the makespan, it is necessary that the criti-

cal path CP(0, n) containing i and j also contains at least one of the vertices a(i) 
or b(j). Hence, the number of "attractive" interchanges reduces drastically and the 

question remains, under which conditions an interchange on Ti and Tj is guaran-

teed not to create a cycle in the graph. It is easy to derive that a forward inter-

change on Ti and Tj yields a new schedule x' (obtained from x) if there is no di-
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rected path from b(i) to j in x. Similarly, a backward interchange on Ti and Tj will 

not create a cycle if there is no directed path from i to a(j) in x. 

Now, the neighborhood structure N6 can be introduced. 

N6: A neighbor x' of a schedule x is obtained by an interchange of two tasks Ti 
and Tj in one block of a critical path. Either task Tj is the last one in the 
block and there is no directed path in x connecting the job successor of Ti to 
Tj, or, task Ti is the first one in the block and there is no directed path in x 
connecting Ti to the job predecessor of Tj. 

Whereas the neighborhood N1 involves the reversal of a single arc (i, j) on a crit-

ical path the more general move defined by N6 involves the reversal of potential-

ly a large number of arcs.  

Assume that an interchange on a task pair Ti, Tj results in a makespan in-

crease of the new schedule x' compared to the old one x. Then it is obvious that 

every critical path in x' contains arc (j, i). The authors make use of this fact in 

order to further reduce the neighborhood size. Consider a forward interchange 

resulting in a makespan increase: Since (j, i) is a member of any critical path in x' 
the arc (i, b(i)) is as well (because Ti became the last task in its block). We have 

to distinguish two cases. Either the length of a longest path from b(i) to n in x, 

say q(b(i)), exceeds the length of a longest path from b(j) to n in x, say q(b(j)) or 

q(b(i)) � q(b(j)). In the former case q(b(i)) is responsible for the makespan in-

crease. In the latter case isucc(i) is the first task in its block in x'. Hence, the 

length r(j) of a longest path in x connecting 0 to j is smaller than the length r'(i) 
of a longest path in x' connecting 0 to i. Thus, the number of interchange candi-

dates can be reduced defining some guideposts. In a forward interchange a right 

guidepost h is reached if q(b(h)) < q(b(i)); a left guidepost h is reached if r(j) < 

r'(h) holds. Equivalently, in a backward interchange that worsens the makespan 

of schedule x a left guidepost h is reached if r(ipred(h)) < r(ipred(j)); a right 

guidepost h is reached if q(i) < q'(h) holds. 

After an interchange that increased the makespan, if a left guidepost is 

reached the list of candidates for an interchange is restricted to those task pairs 

on a critical path in x' between 0 and j. If a right guidepost is reached candidates 

for an interchange are chosen from the segment on a critical path in x' between j 
and n. If both guideposts are reached the set of candidates is not restricted. Thus, 

in summary, if the makespan increases after an interchange, available guideposts 

restrict the neighborhood.  

The guided local search procedure by Balas and Vazacopoulos [BV98] uses 

the neighborhood structure N6 including the restrictions aforementioned. The 

procedure builds up an incomplete enumeration (called neighborhood) tree. Each 

node of the tree corresponds to a schedule, an edge of the tree joins two sched-

ules x and x' where descendant x' is obtained through an interchange on two tasks 

Ti and Tj lying on a critical path in x. The arc (j , i) is fixed in all schedules corre-
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sponding to the nodes of the sub-tree rooted at x'. The number of direct descend-

ants of x', i.e. the number of possible moves, is the entire neighborhood if x' is a 

shorter schedule than x. It is the restricted (with respect to the guideposts) neigh-

borhood if the makespan of x' is worse than the one of x. The children of a node 

corresponding to schedule x are ranked by their evaluations. The number of chil-

dren is limited by a decreasing function of the depth in the neighborhood tree. 

After an interchange on Ti , Tj leading from x to schedule x' the arc (j , i) remains 

fixed in all schedules of the sub-tree rooted in x'. Additionally, the arc (j , i) is also 

fixed in all schedules corresponding to brothers of x' (i.e. children of x) having a 

makespan worse than x' (in the sequence of the ranked list). Finally, besides arc 

fixing and limits on the number of children a third factor is applied to keep the 

size of the tree small. The depth of the tree is limited by a logarithmic function of 

the number of tasks on the tree's level. Altogether, the size of the neighborhood 

tree is bounded by a linear function of the number of tasks. 

The number of neighborhood trees generated is governed by some rules. The 

root of a new neighborhood tree corresponds to the best schedule available if it is 

generated in the current tree. Otherwise, if the current tree is not a step into a 

better local optimum the root of the new tree is randomly chosen among the 

nodes of the current tree. 

In order to combine local search procedures operating on different neighbor-

hoods (which makes it more likely to escape local optima and explore regions 

not available by any single neighborhood structure) Balas and Vazacopoulos 

combined their guided local search with the shifting bottleneck procedure. Re-

member, every time a new machine has been sequenced the shifting bottleneck 

procedure re-optimizes the sequence of each previously processed machine, by 

again solving a one machine problem with the sequence on the other machines 

held fixed. The idea of Balas and Vazacopoulos is to replace the re-optimization 

cycle of the shifting bottleneck procedure with the neighborhood trees of the 

guided local search procedure. Whenever there are l fixed machine sequences 

defining a partial schedule the shifting bottleneck guided local search (SB-GLS) 

generates 2l|J | neighborhood trees instead of starting a re-optimization cycle. The 

root of the first tree is defined by the partial schedule of the l already sequenced 

machines. The roots of the other trees are obtained as described above. The best 

schedule obtained from this incorporated guided local search is then used as a 

starting point for continuation of the shifting bottleneck procedure. A couple of 

modifications of SB-GLS ideas are applied which basically differ from SB-GLS 

in the number of sequenced machines (hence the root of the first neighborhood 

tree) in the shifting bottleneck part, cf. [BV98].  

SB-GLS and its modifications is currently the most powerful heuristic to 

solve job shop scheduling problems. It outperforms many others in solution qual-

ity and computation time. Needless to say that all versions of GLS and SB-GLS 

easily could solve the 10 � 10 problem to optimality in time between 12 seconds 

up to a couple of minutes (see [BV98] for the results of an extensive computa-

tional work). 
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Excellent results are also presented in [ZLRG06]. The authors describe a 

combination of tabu search and simulated annealing and use above mentioned 

neighborhoods in their local search. 

[HL06] combine an ant colony approach with the tabu search approach of 

Nowicki and Smutnicki. The ant colony idea is based on the shifting bottleneck 

idea, i.e., the ants are generating feasible one-machine schedules. 

Genetic Based Job Shop Scheduling 

As described in Section 2.5, a genetic algorithm aims at producing near-optimal 

solutions by letting a population of random solutions undergo a sequence of 

transformations governed by a selection scheme biased towards high-quality so-

lutions. The effect of the transformations is that implicitly good properties are 

identified and combined into a new population which hopefully has the property 

that the best solution and the average value of the solutions are better than in 

previous populations. The process is then repeated until some stopping criteria 

are met.  

A solution of a combinatorial optimization problem may be considered as a 

sequence of local decisions. A local decision for the job shop scheduling problem 

might be the choice of a task to be scheduled next. In an enumeration tree of all 

possible decision sequences a solution of the problem is represented as a path 

corresponding to the different decisions from the root of the tree to some leaf. 

Genetics can guide a search process in order to learn to find the most promising 

decisions, see Algorithm 2.5.4. 

In case of an interpretation of an individual solution as a sequence of deci-

sion rules as described first in [DP95], an individual of a population is consid-

ered to be a subset of feasible schedules from the set of all feasible schedules. 

Each individual of the priority rule based genetic algorithm (P-GA) is a 

string of n � 1 entries (f
 1 , f

 2 ,...,f
 n�1) where n � 1 is the number of tasks in the 

underlying problem instance. An entry f
 i represents one rule of the set of priority 

rules described in Table 10.3.1. The entry in the i th position says that a conflict 

in the i 
th

 iteration of the Giffler-Thompson algorithm should be resolved using 

priority rule f
 i . More precisely, a task from the conflict set has to be selected by 

rule f
 i ; ties are broken by a random choice. Within a genetic framework a best 

sequence of priority rules has to be determined. An analogous encoding scheme 

has been used in [DTV95]. An individual is divided into sub-strings of prefer-

ence lists. A sub-string defines preferences for task's selection for a particular 

machine. 

The crossover operator is straightforward. Obviously, the simple crossover 

applies, where the sub-strings of two cut strings are exchanged, and which al-

ways yields feasible offspring. Heuristic information already occurs in the encod-

ing scheme and a particular improvement step - contrary to genetic local search 

approaches, cf. [ALLU94] or [UAB+91] - is dropped. The mutation operator 
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applied with a very small probability simply switches a string position to another 

one, i.e. the priority rule of a randomly chosen string entry is replaced by a new 

rule randomly chosen among the remaining ones. The approach in [DP95] to 

search a best sequence of decision rules for selecting tasks is just in line with the 

ideas described in [FT63] on probabilistic learning of sequences consisting of 

two priority rules, and [CGTT63], or [GH85] on learning how to find promising 

linear combinations of basic priorities. Fisher and Thompson [FT63] were 

amongst the first to suggest an adaptive approach by using a combination of rules 

in a sequencing system. They proposed using two separate sequencing criteria 

and, when a decision was taken, a random choice of a rule was made. Initially, 

there was an equal probability of selecting each rule but as the system progressed 

these probabilities were adjusted according to a predefined learning procedure. 

The following rules: STT, LTT, LRPT, FCFS, least remaining job slack per task, 

least remaining machine slack were considered in [CGTT63]. Their idea was to 

create a rule (as a linear combination of the above mentioned priority rules) ca-

pable of decisions which cannot be specified by any of the rules in isolation. Fur-

thermore, the projection of the combined rule should yield each individual rule 

(see also [GH85]). In their experiments they restricted consideration to STT and 

LRT. 

Besides using the genetic algorithm as a meta-strategy to optimally control 

the use of priority rules, another genetic algorithm described in [DP95] controls 

the selection of nodes in the enumeration tree of the shifting bottleneck heuristic 

(shifting bottleneck based genetic algorithm, SB-GA). Remember that the SB2-

heuristic is only a repeated application of a part of the SB1-heuristic where the 

sequence in which the one machine problems are solved is predetermined. Up to 

some depth l, a complete enumeration tree is generated and a partial tree for the 

remaining search levels. The SB2-heuristic tries to determine the best single ma-

chine sequence for the SB1-heuristic within a reasonable amount of time. This 

can also be achieved by a genetic strategy, even in a more effective way. 

The length of a string representation of an individual in the population 

equals the number of machines in the problem which is equal to the depth of the 

enumeration tree in the SB2-heuristic. Hence, an individual is encoded over the 

alphabet from 1 to the number of machines and a partial string from the first to 

the k th entry just describes the sequence in which the single machines are con-

sidered in the SB1-heuristic. As a crossover operator one can use any traveling 

salesman crossover; Dorndorf and Pesch [DP95] chose the cycle crossover as 

described in [Gol89]. The best solutions found for the 10 � 10 and 5 � 20 prob-

lem, were 960 (P � GA)/938 (SB � GA) and 1249 (P � GA)/1178 (SB � GA), respec-

tively. The running times are about 15 (P � GA)/2 (SB � GA) and 25 (P � GA)/1.5 

(SB � GA) minutes.  

Another genetic local search approach based on representation of the select-

ed disjunctive arcs is described in [ALLU94] or in [NY91]. Their ideas are stim-

ulated by the encouraging results obtained for the traveling salesman problem 
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(cf. [UAB+91]). Aarts et al. [ALLU94] devise a multi-start local search embed-

ded into a genetic framework; hence the name genetic local search. Each solution 

in the population is replaced by a locally optimal one with respect to moves 

based on the neighborhoods N1 and N2 . The crossover idea is to implant a subset 

of arcs from one solution to another. The parent solutions are randomly chosen. 

The algorithm terminates when either all solutions in the population have equal 

fitness, or the best makespan in the population has not changed for 10 genera-

tions. Within a time bound of 99 or 88 seconds for the 10 � 10 or 5 � 20 problem 

the results of the genetic local search algorithms are worse than those from simu-

lated annealing. However the results are better than a multi-start local search on 

randomly generated initial solutions.  

The basic contribution of [NY91] is the representation of individuals in the 

population. An individual representing a schedule is described by a 0-1 matrix 

consisting of a column for each machine and a row for each pair of different jobs. 

Hence, the number of rows is limited to 
1

2
 | J |(| J | � 1) ordered job pairs. Entry 1 in 

row (i, j) and column k indicates that job i is supposed to be processed before job 

Jj on machine Pk. Otherwise, the entry is 0. The simple crossover (a random in-

dividual cut and tail exchange) and the simple mutation operators (flip an 0-1 

entry) are applied. A harmonization algorithm turns a possibly inconsistent result 

through cycle elimination into a feasible schedule. Even for a population size of 

1000 and 150 generations the 10 � 10 problem and the 5 � 20 problem could not 

be solved better than 965 and 1215, respectively.  

A different approach has been followed in [SWV92]. The authors map the 

original data of the underlying problem instance to slightly disturbed and genet-

ically controlled data representing new problem instances. The latter are solved 

heuristically and the solutions, i.e. the tasks' processing orders, are considered to 

be solutions of the original problem. Thus, the proposed neighborhood definition 

is based on the fact that a heuristic algorithm is a mapping of a problem to a solu-

tion; hence a heuristic algorithm problem pair is an encoding of a solution. A 

subset of solutions may be generated by the application of a single heuristic algo-

rithm to perturbed versions of the original problem. That is, neighboring solu-

tions are generated by applying the base heuristic to the perturbed problem, 

which is obtained through adding uniformly distributed random numbers to the 

job shop data. Then the solution is evaluated using the original problem data. The 

simple crossover applies. Their results are 976 for the 10 � 10 and 1186 for the 

5 � 20 problem. 

Yamada and Nakano [YN92] were first to use the Giffler-Thompson algo-

rithm as crossover operator. The random selection of a next task is replaced by a 

choice of the task with respect to one of the parent schedules. That is, in order to 

resolve a conflict (i.e. choice of a next task from a set of tasks competing for the 

same machine) randomly choose one parent schedule. Select that task from the 

set of tasks in conflict which is also the first one processed from the conflict set 

of the parent schedule. A huge population size of 2000 individuals led them find 
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an optimal schedule for the 10 � 10 problem. Their result on the 5 � 20 problem 

was not better than 1184. 

The representation in [Bie95] is motivated by the idea to employ the travel-

ing salesman crossover operators also in a job shop framework. He represented 

an individual as a string of length equal to the number of tasks in the job shop. 

An entry in this string is a job identification. The number of tasks of a job is the 

number of not necessarily consecutive string entries with the same job identifica-

tion. For instance, if there are three jobs Ja , Jb , Jc having 3, 4, 3 tasks, respective-

ly, then a randomly generated string (b , a , b , b , c , a , c , c , b , a) says, that string 

entries 1, 3, 4, and 9 correspond to the 1st, 2nd, 3rd, and 4th task of job Jb . Fur-

ther, if the first task of job Jc and the last task of job Jb happen to need the same 

machine then Jc will come first. Now a TSP-crossover (cf. [KP94]) can be used 

to implant a substring of one parent schedule to another one. Within run times of 

about 9 to 10 minutes he reached a makespan of 936 and 1181 for the 10 � 10 

and 5 � 20 problem. The population's size is 100. 

Constraint Propagation, Decomposition and Edge-Guessing  

The job shop scheduling problem is a typical representative of a binary constraint 

satisfaction problem (CSP), i.e., generally speaking, there is a set of variables 

each of which has its own domain of values. Find an assignment of values to 

variables such that a set of constraints on variable pairs is satisfied, see Chapter 

16 [DP88, Mes89, MJPL92]. Assume that there is an upper bound on the 

makespan of an optimal schedule of the underlying job shop scheduling problem. 

Then computing heads and tails assigns to each task an interval of possible start 

times. Considering variable domains as possible task start times where the varia-

bles define the tasks in a schedule then the disjunctive graph illustrates the job 

shop scheduling constraint satisfaction problem, hence it corresponds to the con-

straint graph, [Mon74]. A set of k variables is said to be k-consistent if it is k � 1-

consistent and for each subset of k � 1 variables holds: if a set of k � 1 values each 

of which belongs to another of the k � 1 variable domains violates none of the 

constraints on the considered k � 1 variables, then there is a value in the domain 

of the remaining variable such that the set of all k values satisfies the set of con-

straints on the k variables. Let us assume that 0-consistency is always satisfied by 

definition. A set of variables is k-consistent if each subset of k variables is k-

consistent. A 2-consistent set of variables is also said to be arc-consistent in or-

der to emphasize the relation with the edges in the constraint graph (cf. 

[HDT92]). Consider a pair Ti , Tj of tasks. If for any two start times ti and tj of 

tasks Ti and Tj , respectively, and any third task Tk there exists a start time tk of 

task Tk such that ti , tj , tk satisfy constraints (10.1.1) to (10.1.3) then tasks Ti and 

Tj are said to be path consistent. Hence, consistency checks, or roughly speaking 

propagation of constraints will make implicitly defined constraints more visible 

and will prune the search tree in a branch and bound algorithm. The job shop 
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scheduling problem is said to be path consistent if all task pairs are path con-

sistent (cf. [Mac77, MH86, HL88]). Obviously, n-consistency, where n is the 

number of tasks, immediately implies that a feasible schedule can be generated 

easily, however, achieving n-consistency is in general not practicable. Moreover, 

worse upper bounds on the makespan of an optimal schedule will hardly reduce 

variable domains, i.e. only a few arc directions are fixed during the constraint 

propagation process. The better the bounds the more arc directions can be fixed. 

A detailed description of different levels of consistency for disjunctive schedul-

ing problems can be found in Chapter 16. 

Pesch [Pes94] introduced other genetic approaches. In the first one, the one 
machine constraint propagation based genetic algorithm (1MCP-GA), each entry 

of an individual is an upper bound on the makespan of the corresponding one-

machine problem. In the second approach, the two job constraint propagation 
based genetic algorithm (2JCP-GA), each entry of an individual of the 2J-GA is 

replaced by an upper bound on the makespan of a sub-problem consisting of a 

job pair. Whenever a new population is generated a local decision rule in the 

sense of constraint propagation in order to achieve arc- and path-consistency is 

applied simultaneously to each sub-problem (corresponding to an entry of an 

individual) with respect to its upper bound which is ( % above the optimal 

makespan of the sub-problem. The number of newly fixed arc directions divided 

by the number of arcs which were included into a cycle during the constraint 

propagation process on the sub-problems, defines the fitness of an individual. An 

individual of the population corresponds to a partial schedule. However each 

population is transformed to a population of feasible solutions, where each indi-

vidual of a population is assessed in order to judge its contribution to a schedule. 

Therefore Giffler-Thompson's algorithm is applied with respect to the partial 

schedule representing individual. Ties are broken with respect to the complete 

schedules that are attached to the parents (partial schedules) of the considered 

offspring (partial schedule). Hence, the next task is chosen as in one of the par-

ents corresponding complete schedules with the same probability. In the first 

population of complete schedules ties were broken randomly. For both problems, 

the 10 � 10 and 5 � 20, the optimal solution was reached rather quickly using the 

1MCP-GA. It was impossible to reach an optimum using 2JCP-GA. Only values 

of 937 and 1175 could be found. 

Dorndorf et al. [DPP02] took these ideas of combining constraint propaga-

tion with a problem decomposition approach in order to simplify the solution of 

the job shop scheduling problem a step further. Based on the observation that 

constraint propagation is more effective for ‘small’ problem instances the algo-

rithm consists of deducing task sequences that are likely to occur in an optimal 

solution of the job shop scheduling problem. 

The algorithm for which the name edge-guessing procedure has been chosen 

- since with respect to the job shop scheduling problem the deduction of machine 

sequences is mainly equivalent to orienting edges in a disjunctive graph - can be 

applied in a preprocessing step, reducing the solution space, thus speeding up the 
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overall solution process. In spite of the heuristic nature of edge-guessing, it still 

leads to near-optimal solutions. If combined with a heuristic algorithm, they 

demonstrate that given the same amount of computation time, the additional ap-

plication of edge-guessing leads to better solutions. This has been tested on a set 

of well-known job shop benchmark problem instances. Let us go into detail. 

The solution of the job shop scheduling problem could be considerably sim-

plified if some ‘important’ disjunctive edges were oriented the right way in ad-

vance. Pesch and Tetzlaff [PT96], for instance, showed that regarding the famous 

10 � 10 instance of the job shop scheduling problem, one single `difficult' edge 

orientation exists which for the most part contributes to its intractability. Orient-

ing this edge in the right direction, the optimal solution is found and verified in a 

fraction of the original time. Unfortunately, however, finding important edge 

orientations which occur in an optimal solution must, by definition, be a difficult 

task. Indeed, if an edge orientation can be easily found then orienting this edge 

cannot simplify the solution of the problem a lot, because it can be easily found. 

This dilemma can only be resolved if accuracy is sacrificed for efficiency, i.e. if 

we accept that some edge orientations derived may be wrong. The simplest heu-

ristic method is a random selection of some edge orientations, however, the ‘de-

duced’ edge orientations will seldomly be oriented in the right direction. 

A more sophisticated method for deducing edge orientations has been devel-

oped by Dorndorf et al. [DPP02] and Phan-Huy [PhH00], see also [PT96, 

Pes94]. This method reduces the number of wrong edge orientations through the 

combination of problem decomposition and constraint propagation techniques. In 

the sequel, we will present some new developments of the edge-guessing proce-

dure for the job shop scheduling problem. 

The next subsections motivate and describe the basic idea of edge-guessing 

followed by a short description of the original procedure applied in [PhH00] 

which decomposes problem instances in a parallel fashion. This parallel strategy 

is less suited in case of stronger constraint propagation techniques. As a conse-

quence, this parallel approach very often leads to large cycle structures in the 

corresponding disjunctive graph of a given problem instance. A major improve-

ment is obtained by the application of a sequential strategy which avoids the gen-

eration of cycles and, at the same time, leads to better edge orientations. Several 

versions of this sequential approach are presented in the last subsection. 

Edge-Guessing - The Basic Idea: The combination of problem decomposition 
with constraint propagation is motivated by two observations: constraint propa-
gation deduces more edge orientations if (a) the problem instance is small, i.e. 
contains a small number of tasks to be scheduled and (b) the initial upper bound 
is tight and, thus, leads to smaller current domains. The basic idea of edge-
guessing is therefore to decompose a job shop scheduling problem instance into 
smaller sub-problem instances, then to choose some appropriate upper bounds 
UB for these sub-problem instances for which constraint propagation is then ap-
plied. 
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The definition of a sub-problem instance is quite straightforward. Let I de-

note an instance of the job shop scheduling problem and A be a subset of tasks. 

This allows us to derive a sub-problem I(A) with heads and tails which is ob-

tained by first removing all tasks Ti 	 A and all constraints involving some task 

Ti 	 A from I. Heads and tails are then added to each remaining task which basi-

cally is a consideration of the earliest start time esti and latest completion time 

lcti of each task Ti . This is necessary since otherwise no or only a few deductions 

will be achieved through constraint propagation. The terms heads and tails are 

more commonly used, since they allow a symmetric interpretation. The head ri of 

Ti coincides with its earliest start time and can be interpreted as a lower bound of 

the total processing time of tasks that must finish before Ti can start. Likewise, 

the tail qi := UB – lcti can be interpreted as a lower bound of the total processing 

time of tasks that must start after Ti has finished. Given a task Ti � A, its heads 

and tails are considered by inserting a predecessor with processing time ri and a 

successor with processing time qi . 

Constraint propagation is then applied to this sub-problem instance using 

some upper bound UB that still has to be specified. If the edge orientations de-

duced are inserted in the original problem instance I, i.e. if in the disjunctive 

graph edge orientations of some disjunctive edge pairs are chosen, we obtain a 

partial selection which hopefully simplifies the solution of I. We obtain a com-
plete (partial) selection if (at most) one edge orientation is chosen from each 

disjunctive edge pair. The selection is acyclic, if after the removal of all remain-

ing undirected pairs of disjunctions the resulting directed graph is acyclic. 

The essential feature of this procedure is a suitable choice of the upper 

bounds. We will now describe this in more detail. 

Let I be a job shop scheduling problem instance and I' a sub-problem in-

stance with heads and tails. Let Cmax(I) and Cmax(I') denote the respective optimal 

makespan of I and I'. Quite evidently, for each optimal selection S of I, there ex-

ists a partial selection S' � S which is a complete selection of I' with a makespan 

that will be denoted with Cmax(S'). Applying constraint propagation to the sub-

problem instance I' given the upper bound Cmax(S') now has two consequences. 

The first consequence is due to what has been said further above: since I'  is 

‘smaller’ than I and Cmax(S') � Cmax(I), it is likely that more edges can be fixed 

than if constraint propagation is directly applied to I. The second consequence is 

due to the particular choice of the upper bound Cmax(S'). Trivially, the edge ori-

entations deduced define a partially optimal selection of I, i.e. must be contained 

in an optimal selection of I, namely the original selection S itself which has been 

assumed to be optimal. Thus, by decomposing I into many sub-problem instanc-

es, we could fix a high number of edges and approximate the optimal selection S 

quite well. 
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Unfortunately, this line of reasoning has a major flaw, since in general 

Cmax(S') is not known in advance. Thus, the problem is to find a good approxima-

tion of Cmax(S'). To start with, a possible choice is the optimal makespan Cmax(I') 
of I'. However, since S' does not have to be an optimal solution of I', Cmax(I') 
may be much smaller than Cmax(S'), and constraint propagation may deduce 

wrong edge orientations. We therefore choose a proportional increase of Cmax(I') 
by ( %, that is, we apply constraint propagation to the sub-problem instance I' 
using the hypothetical upper bound  

UB(I',() := Cmax(I') &(1 + (/100) . 

Since, in general, the computation of Cmax(I') is NP-hard, we will only 

choose subproblem instances, for which the computation can be efficiently car-

ried out (e.g. single machine instances 1). 

Choosing the parameter (, the following trade-off between efficiency and 

accuracy of constraint propagation has to be considered: the greater (, the lower 

the error probability, but the less edges are fixed; the smaller (, the more edges 

are fixed, but the higher the probability that among these edges some are wrongly 

oriented. 

In general, there is no means to efficiently test whether a selection (as a 

whole) is partially optimal, let alone to detect the edges that have been oriented 

in the wrong direction. The only exception is when the insertion of the oriented 

edges for a set of sub-problems results in a cycle. In this case, at least one upper 

bound chosen and one edge orientation is wrong. After removing the cycle, how-

ever, wrong edge orientations still may exist. Likewise, if no cycle has been cre-

ated, this does not imply that the selection found is partially optimal. We cannot 

conclude that the bounds chosen and the edges fixed are correct, but can only 

deduce the trivial fact that constraint propagation has created no cycle. This reas-

serts the heuristic nature of edge-guessing. 

In the original version of edge-guessing, a brute force approach has been ap-

plied which removes all edge orientations on all cycles. This simple approach, 

however, also removes a high number of possibly correct edge orientations. An 

improved edge-guessing procedure avoids the generation of cycles. To better 

understand this procedure, we start with a description of the original edge-

guessing procedure. 

A Parallel Strategy: The edge-guessing procedure presented by Pesch and Tetz-
laff [PT96] and Phan Huy [PhH00] decomposes a job shop scheduling problem 
instance I into sub-problem instances I(A1),..., I(Ad), where A1,..., Ad � T are 
some subsets of tasks. Constraint propagation is separately applied to each of 
these instances with the upper bound UB(I(Ad' ), (d' ), d' = 1,..., d. A static choice 
                                                 
1 Notice that here the consideration of heads and tails is crucial, since otherwise no edge 

orientations can be derived at all. 
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of (, i.e. all (d'  are set to a constant value ( [PT96], and a choice which is guid-
ed by a genetic algorithm, a modification of what has been described above, have 
been studied. The edge orientations deduced define partial and acyclic selections 
S1,..., Sd of the corresponding sub-problem instances. Setting S := S1 � ... � Sd , 
however, we might not obtain an acyclic selection of I. In this case, all disjunc-
tive edge orientations in S  that belong to a cycle are removed. 

We finally obtain a partial and acyclic selection which hopefully simplifies 
the solution of I. The complete parallel edge-guessing procedure is shown in Al-
gorithm 10.3.4. 

 
Algorithm 10.3.4  Parallel edge-guessing [DPP02]. 
begin 
A1,..., Ad � T  are subsets of tasks;  
(1,..., (d are non-negative real numbers;  
for d' := 1 to d do   
  begin 
  UBd' := UB(I(Ad' ), (d' ); 
  constraint_propagation(I(Ad' );  
  Sd' := {new edge orientations}; 
  end; 
S := S1 � ... � Sd ; 
E := {edge orientations that are contained in a cycle}; 
return (S \ E);   
end; 
A Sequential Strategy: The main problem in applying a parallel approach is that 
we do not know which of the sub-problem instances has been responsible for the 
creation of cycles. Thus, we run the risk of removing too many edge orientations. 
The solution is to adopt a sequential approach which allows us to much better 
control the generation and removal of cycles: only some edge orientations, but 
not all that are contained in a cycle have to be removed. This will be described in 
more detail in the following. 

Let A1,..., Ad be subsets of tasks. Start with I(A1) and apply constraint prop-

agation to this instance with an upper bound UB(I(A1), (1). Observe that we ob-

tain a partial selection S1 which must be acyclic due to the choice of the upper 

bound. Therefore continue with the next sub-problem instance I(A2) to which 

constraint propagation is applied using the upper bound UB(I(A2), (2), and obtain 

a partial selection S2 . If the selection S := S1 � S2 induces a cycle then some of 

the newly derived edge orientations in S2 have created this cycle. Thus, all edges 

in S2 are removed and constraint propagation is reapplied with a higher upper 
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bound. Dorndorf et al. opted for increasing (2 by one percentage point, since this 

showed the best results. This procedure is repeated until no more cycles are gen-

erated. Then proceed with the remaining sub-problem instances I(A3),..., I(Ad) in 

the same manner. The complete procedure is shown in Algorithm 10.3.5. 

Algorithm 10.3.5  Sequential edge-guessing 1 [DPP02]. 
begin 
A1,..., Ad � T  are subsets of tasks;  
(1,..., (d are non-negative real numbers;  
S := �;  
for d' := 1 to d do   
  begin 
  Snew := S; 
  repeat 
    cycle := false; 
    UBd' := UB(I(Ad' ), (d' ); 
    constraint_propagation(I(Ad' ); 
    Snew := Snew � {new edge orientations}; 
    if Snew induces a cycle then 
      begin 
      Snew := S; 
      (d'  := (d'  + 1; 
      cycle := true; 
      end; 
  until not cycle; 
  S := Snew; 
  end; 
return (S); 
end; 

Some remarks have to be made. First, this algorithm terminates, because in the 

worst case, choosing a sufficiently high upper bound in the d' th iteration will not 

deduce any edge orientations. Therefore, it must end up in a situation without 

cycles, as in the beginning of each iteration none existed. Second, even if the 

same subsets are taken, the sub-problem instances I(Ad' ), d' = 1,..., d, usually 

differ from the ones defined in the last section in spite of the similar notation. 

This is due to the fact that the edge orientations derived by I(A1 ), ..., I(Ad'�1 ) are 

considered in the d' th iteration which leads to stronger heads and tails and, by 

this, to the deduction of a greater number of edge orientations. 

The last observation leads to an improvement of the sequential edge-

guessing procedure. If any edge orientations are deduced in the d' th iteration, this 
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consequently has as well an effect on the heads and tails of the sub-problem in-

stances I(A1 ), ..., I(Ad'�1 ). Therefore, constraint propagation is re-applied to these 

modified instances using the upper bounds UB(I(A1 ),(1),..., UB(I(Ad'�1), (d'�1), 

that have been determined in the previous iterations, and re-continue with apply-

ing constraint propagation to I(Ad' ) whenever its heads and tails have changed. 

This process is repeated until a fixed point is reached or a cycle is created. In the 

latter case, all edges are removed that have been deduced in the current iteration 

and restart the process with a greater upper bound for the d' th sub-problem in-

stance, while the upper bounds for all problem instances with a lower index are 

left unchanged. This procedure is shown in Algorithm 10.3.6. 

Algorithm 10.3.6  Sequential edge-guessing 2 [DPP02]. 
begin 
A1,..., Ad � T  are subsets of tasks;  
(1,..., (d are non-negative real numbers;  
S := �;  
for d' := 1 to d do   
  begin 
  Snew := S; 
  repeat 
    fixed_point := true; 
    cycle := false; 
    for d" := d' downto 1 do 
      begin 
      UBd" := UB(I(Ad" ), (d" ); 
      constraint_propagation(I(Ad" ); 
      if some heads and tails have changed then fixed_point := false; 
      Snew := Snew � {new edge orientations}; 
      if Snew induces a new cycle then 
        begin 
        Snew := S; 
        (d'  := (d'  + 1; 
        cycle := true; 
        break; 
        end; 
      end; 
  until fixed_point and not(cycle); 
  S := Snew; 
  end; 
return (S); 
end; 
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All that is left is to specify the order A1,..., Ad in which the sub-problem instanc-

es are traversed. Instead of choosing a static order as indicated in the Algorithms 

10.3.5 and 10.3.6, Dorndorf et al. actually implemented a dynamic rule which 

chooses the sub-problem instance with the maximal optimal makespan. This is 

justified by better results. 

The introduced general method which combines constraint propagation with 

a problem decomposition approach can be applied in a preprocessing step before 

the actual solution of a problem, reducing the solution space and thus speeding 

up the overall solution process. 

Since the solution of the job shop scheduling problem is mainly equivalent 

to orienting edges in a disjunctive graph, [DPP02] have named the preprocessing 

step the edge-guessing procedure. Several strategies in which sub-problem in-

stances are examined in parallel or in a sequential manner are proposed. While 

the parallel approach analyzes sub-problem instances separately, so that con-

straint propagation only deduces information within each sub-problem, the se-

quential approach propagates information throughout the whole problem graph. 

Thus, more processing sequences (edge orientations) are deduced than with a 

parallel approach. The stronger consistency tests cause a further increase in the 

number of edge orientations that have been derived. Additionally, they have not 

only been able do derive more but also better edge orientations. 

This has been verified by combining edge-guessing with a truncated branch-

and-bound algorithm. Especially for larger and harder problem instances, the 

hybrid algorithm performs better than the pure truncated branch-and-bound algo-

rithm, since it finds better solutions within a smaller or comparable amount of 

computation time. 

However, for even larger and harder instances, truncated branch-and-bound 

may not be the best choice as a solution method. Therefore, in advanced research 

studies Dorndorf et al. have combined edge-guessing with local search algo-

rithms which up to now provide the best solutions for the job shop scheduling 

problem. More precisely, they have combined popular tabu search algorithms 

with edge-guessing by incorporating the derived edges in a tabu list. Again, they 

have been able to produce better results for the combined algorithm than for the 

isolated tabu search algorithm. These encouraging results emphasize the potential 

of edge-guessing. 

The main interest of constraint programming is the enormous flexibility that 

results from the fact that each constraint propagates independently from the ex-

istence or non-existence of other constraints. It appears that, within each con-

straint, considered separately, any type of technique (in particular OR algorithms) 

can be used. It appears that the propagation process can be organized to guaran-

tee that propagation steps will occur in an order consistent with Ford's flow algo-

rithm (hence with the same time complexity) [CL95]. Aggoun and Beldiceanu 

[AB93] present a construct called the "cumulative" constraint, incorporated in 

the CHIP constraint programming language. Using the cumulative constraint, 

Aggoun and Beldiceanu find the optimal solution of the 10 � 10 problem [MT63] 
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in about 30 minutes (but cannot prove its optimality). Nuijten [NA96, Nui94] 

presents a variant of the algorithm by Carlier and Pinson [CP90] to update time-

bounds of activities. It appears that this variant can easily be incorporated in a 

constraint satisfaction framework. Baptiste and Le Pape [BP95] explore various 

techniques based on "edge-finding" and "energetic reasoning" with the aim of 

integrating such techniques in Ilog Schedule, an industrial software tool for con-

straint-based scheduling. In all of these cases, the flexibility inherent to constraint 

programming is maintained, but more efficient techniques can be archived using 

the wealth of the OR algorithmic work [BPS98, BPS00, DPP00]. 

Ejection Chains  

Variable depth procedures (see Section 2.5) have had an important role in heuris-

tic procedures for optimization problems. 

An application with respect to neighborhood structure N1 describes a move 

to a neighboring solution in which the processing order of tasks Ti and Tj is 

changed. The considered neighborhood structure is connected, i.e. for any two 

solutions (including the optimal one) x and y there is a sequence of moves, with 

respect to N1, connecting x to y. The gain g(i, j) affected by such a move from x 

to y can be estimated based on considerations about the minimal length of the 

critical path of the resulting disjunctive graph G(y). Finding the exact gain of a 

move would generally involve a longest path calculation. The gain of a move can 

be negative, thus leading to a deterioration of the objective function. In [DP94] a 

local search procedure is presented based on a compound neighborhood struc-

ture, each component consists of the neighborhood defined above. It is a variable 

depth search or ejection chain consisting of a simple neighborhood structure at 

each depth which is composed to complex and powerful moves. The basic idea is 

similar to the one used in tabu search, the main difference being that the list of 

forbidden (tabu) moves grows dynamically during a variable depth search itera-

tion and is reset at the beginning of the next iteration. The algorithm is outlined 

in the following where "(x) is the objective function value (makespan). 

Algorithm 10.3.7  Ejection chain job shop scheduling [DP94]. 

begin 
Start with an initial solution x* and the corresponding acyclic graph G(x*); 

x := x*; 
repeat 

TL := �; -- TL is the tabu list 
d := 0; -- d is the current search depth 

while there are non-tabu critical arcs in G(x(d)) do 
begin 
d := d + 1; 



392 10  Scheduling in Job Shops 

 

Find the best move, i.e. the disjunctive critical arc (i*, j*) for which  

g(i*, j*) = max{ g(i, j) | (i, j) is a disjunctive critical arc  

 which is not in TL}; 
  -- note that g(i*, j*) can be negative 

Make this move, i.e. replace arc (i*, j*), thus obtaining the solution x(d)  

and its acyclic graph G(x(d)) at the search depth d; 

TL := TL � {(j*, i*)}; 
end; 

Let d 
* denote the search depth at which the best solution x(d 

*) with  

"(x(d 
*)) = min {"(x(d) � 0 < d � n (k � 1)/2} has been found; 

if d 
* > 0 then begin x* := x*(d 

*); x := x* end; 

until d 
* = 0; 

end; 
Starting with an initially best solution x*(0), the procedure looks ahead for a cer-

tain number of moves and then sets the new currently best solution x*(d) for the 

next iteration to the best solution found in the look-ahead phase at depth d 
*. 

These steps are repeated as long as an improvement is possible. The maximal 

look-ahead depth is reached if all critical disjunctive arcs in the current solution 

are set tabu. The step leading from a solution x in iteration k to a new solution in 

the next iteration consists of a varying number d 
* of moves in the neighborhood, 

hence the name variable depth search where a complex compound move results 

from a sequence of compressed simpler moves. The algorithm can escape local 

optima because moves with negative gain are possible. A continuously increasing 

growing tabu list avoids cycling of the search procedure. As an extension of the 

algorithm, the whole repeat ... until part could easily be embedded in yet 

another control loop (not shown here) leading to a multi-level (parallel) search 

algorithm. 

A genetic algorithm with variable depth search has been implemented in [DP93], 

i.e. each individual of a population is made locally optimal with respect to the 

ejection chain based embedded neighborhood described in Algorithm 2.5.3. The 

algorithm has run five times on each problem instance, and all instances have 

been solved to optimality within a CPU time of ten minutes for a single run. The 

algorithm has always solved the notoriously difficult 10 � 10 instance.

10.4 Conclusions  

Although the 10 � 10 problem is not any longer a challenge it provides a way to 

briefly get an impression of how powerful a certain method can be. For detailed 

comparisons of solution procedure - if this is possible at all under different ma-

chine environments - this is obviously not enough and there are many other 



 References 393 

 

benchmark problems some of them with unknown optimal solution, see [Tai93]. 

It is apparent from the discussion that local search methods are the most power-

ful tool to schedule job shops. However, a stand alone local search cannot be 

competitive to those methods incorporating problem specific knowledge either 

by problem decomposition, special purpose heuristics, constraints and propaga-

tion of variables, domain modification, neighborhood structures (e.g. neighbor-

hoods where each neighbor of a feasible schedule is locally optimal, cf. 

[BHW96, BHW97]), etc. or any composition of these tools. 

The analogy of branching structures in exact methods and neighborhood 

structures reveals parallelism that is largely unexplored. 
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11 Scheduling with Limited  
Processor Availability1  

                                                 
1 This paper is based on O. Braun, J, Breit, G. Schmidt, Deterministic Machine Scheduling with 

Limited Machine Availability, Discussion paper B0403, Saarland University, 2004. 

In scheduling theory the basic model assumes that all machines are continuously 
available for processing throughout the planning horizon. This assumption might 
be justified in some cases but it does not apply if certain maintenance require-
ments, breakdowns or other constraints that cause the machines not to be availa-
ble for processing have to be considered. In this chapter we discuss results relat-
ed to deterministic scheduling problems where machines are not continuously 
available for processing. 

Examples of such constraints can be found in many areas. Limited availa-
bilities of machines may result from pre-schedules which exist mainly because 
most of the real world resources planning problems are dynamic. A natural ap-
proach to cope with a dynamic environment is to trigger a new planning horizon 
when the changes in the data justify it. However, due to many necessities, as 
process preparation for instance, it is mandatory to take results of earlier plans as 
fixed which obviously limits availability of resources for any subsequent plan. 
Consider e.g. ERP (Enterprise Resource Planning) production planning systems 
when a rolling horizon approach is used for customer order assignment on a tac-
tical level. Here consecutive time periods overlap where planning decisions tak-
en in earlier periods constrain those for later periods. Because of this arrange-
ment orders related to earlier periods are also assigned to time intervals of later 
periods causing the resources not to be available during these intervals for orders 
arriving after the planning decisions have been taken. The same kind of problem 
may be repeated on the operational level of production scheduling. Here pro-
cessing of some jobs is fixed in terms of starting and finishing times and machine 
assignment. When new jobs are released to the shop floor there are already jobs 
assigned to time intervals and machines while the new ones have to be processed 
within the remaining free processing intervals. 

Another application of limited machine availability comes from operating 
systems for mono- and multi-processors, where subprograms with higher priority 
will interfere with the current program executed. A similar problem arises in 
multi-user computer systems where the load changes during the usage. In big 
massively parallel systems it is convenient to change the partition of the proces-
sors among different types of users according to their requirements for the ma-
chine. Fluctuations related to the processing capacity can be modeled by inter-
vals of different processor availability. Numerous other examples exist where the 
investigation of limited machine availability is of great importance and the prac-
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tical need to deal with this type of problem has been proven by a growing de-
mand for commercial software packages. Thus, recently the analysis of these 
problems has attracted many researchers. 

In the following we will investigate scheduling problems with limited ma-
chine availability in greater detail. The research was started by G. Schmidt 
[Sch84]. The review focuses on deterministic models with information about the 
availability constraints. Earlier surveys of this research area can be found in 
[SS98, Sch00, Lee04]. For stochastic scheduling problems with limited machine 
availability and prior distributions of the problem parameters see [GGN00, 
LS95b, LS97]. We will survey results for one machine, parallel machine and 
shop scheduling problems in terms of intractability and polynomial time algo-
rithms. In some places also results from enumerative optimization algorithms 
and heuristics are analyzed. Doing this we will distinguish between non-
preemptive and preemptive scheduling. We will finish with some conclusions 
and some suggestions for future research. 

11.1 Problem Definition 

A machine system with limited availability is a set of machines (processors) 
which does not operate continuously; each machine is ready for processing only 
in certain time intervals of availability. Let P  = {Pi | i = l ,..., m} be the set of 
machines with machine Pi only available for processing within Si given time in-
tervals [Bi

 s, Fi
 s), s = l ,..., Si and Bi     

 s+1 > Fi
 s for all s = l ,..., Si�1 . Bi

 s denotes the 
start time and Fi

 s  the finish time of s th  interval of availability of machine Pi .  
We want to find a feasible schedule if one exists, such that all tasks can be 

processed within the given intervals of machine availability optimizing some 
performance criterion. Such measures considered here are completion time and 
due date related and most of them refer to the maximum completion time, the 
sum of completion times, and the maximum lateness. 

The term preemption is used as defined before. Often the notion of resuma-
bility is used instead of preemption. Under a resumable scenario a task may be 
interrupted when a machine becomes unavailable and resumed as the machine 
becomes available again without any penalty. Under the non-resumable scenario 
task preemption is generally forbidden. The most general scenario is semi-
resumability. Let xj denote the part of task Tj processed before an interruption 
and let , � [0,1] be a given parameter. Under the semi-resumable scenario ,xj 
time units of task Tj have to be re-processed after the non-availability interval. 
The total processing time for task Tj is given by xj + ,xj + (pj � xj) = ,xj + pj . 

In the following we base the discussion on the three field ( | * | " classifica-
tion introduced in Chapter 3. We add some entry denoting machine availability 
and we omit entries which are not relevant for the problems investigated here. 
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The first field ( = (1(2(3 describes the machine (processor) environment. 
In [Sch84] and [LS95a] different patterns of availability are discussed for the 
case of parallel machine systems (parameter (3). These are constant, zigzag, de-
creasing, increasing, and staircase. Let 0 = t1 < t2 < ... < tj < ... < tq be the 
points in time where the availability of a certain machine changes and let m(tj) be 
the number of machines being available during time interval [tj, tj+1) with m(tj) > 
0. It is assumed that the pattern is not changed infinitely often during any finite 
time interval. According to these cases parameter (3 � {�, NCzz , NCinc , NCdec , 
NCinczz , NCdeczz , NCsc , NCwin} denotes the machine availability. NC relates to the 
non-continuous availability of the machines. 
1. If all machines are continuously available (t = 0) then the pattern is called con-
stant; (3 = �. 

2. If there are only k or k�l machines in each interval available then the pattern is 
called zigzag; (3 = NCzz . 
3. A pattern is called increasing (decreasing) if for all j from IN the number of 
machines m(tj) � max1 � u � j�1{m(tu)} (m(tj) � min1 � u � j�1{m(tu)}), i.e. the number 
of machines available in interval [tj-1 , tj) is not more (less) than this number in 
interval [tj , tj+1); (3 = NCinc (NCdec). 

4. A pattern is called increasing (decreasing) zigzag if, for all j from IN, m(tj) � 
max1 � u � j�1{m(tu) � 1} (m(tj) � min1 � u � j�1{m(tu) + 1}); (3 = NCinczz (NCdeczz). 
5. A pattern is called staircase if for all intervals the availability of machine Pi 
implies the availability of machine Pi+1 ; (3 = NCsc . A staircase pattern is shown 
in the lower part of Figure 11.1.1; grayed areas represent intervals of non-
availability. Note that patterns (l)-(4) are special cases of (5). 

P1

P2

P3

P4

P1

P2

P3

P4

'

'

'

'
 

Figure 11.1.1  Rearrangement of arbitrary patterns. 
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6. A pattern is called arbitrary if none of the conditions (l)-(5) applies; (3 = 
NCwin . Such a pattern is shown in the upper part of Figure 11.1.1 for machines 
P1, P2, P3, P4; patterns defined in (l)-(5) are special cases of the one in (6). 

Machine systems with arbitrary patterns of availability can always be trans-
lated to a composite machine system forming a staircase pattern [Sch84]. A 
composite machine is an artificial machine consisting of at most m original ma-
chines. The transformation process works in the following way. An arbitrary 
pattern is separated in as many time intervals as there are distinct points in time 
where the availability of at least one machine changes. Now in every interval 
periods of non-availability are moved from machines with smaller index to ma-
chines with greater index or vice versa. If there are m(tj) machines available in 
some interval [tj , tj+1) then after the transformation machines P1 ,...,Pm(tj) will 
be available in [tj , tj+1) and Pm(tj+1)  ,..., Pm will not be available, where 0 < m(tj) 
< m. Doing this for every interval we generate composite machines. Each of 
them consists of at most m original machines with respect to the planning hori-
zon. 

An example for such a transformation where periods of non-availability are 
moved from machines with greater index to machines with smaller index, con-
sidering m = 4 machines, is given in Figure 11.1.1 Non-availability is represent-
ed by the grayed areas. From machines P1, P2, P3, P4 composite machines P'1, P'2, 
P'3, P'4 are formed. Composite machines which do not have intervals of availabil-
ity can be omitted from the problem description. Then the number of composite 
machines in each interval is the maximum number of machines simultaneously 
available. The time complexity of the transformation is O(qm) where q is the 
number of points in time, where the availability of an original machine is chang-
ing. If this number is polynomial in n or m machine scheduling problems with 
arbitrary patterns of non-availability can be transformed in polynomial time to a 
staircase pattern. This transformation is useful as, first, availability at time t is 
given by the number of available composite machines and, second, some results 
are obtained assuming this hypothesis. 

The second field * = *1 ,...,*8 describes task (job) and resource characteris-
tics. We will only refer here to parameter *1. 
Parameter *1 � {�, t � pmtn, pmtn} indicates the possibilities of preemption: 
T *1 = �: no preemption is allowed, 
T *1 = t � pmtn: tasks may be preempted, but each task must be processed by 

only one machine, 
T *1 = pmtn: tasks may be arbitrarily preempted. 
Here we assume that not only task (*1 = t � pmtn) but also arbitrary (task and 
machine) preemptions are possible (*1 = pmtn). If there is only one machine ded-
icated to each task then task preemptions and arbitrary preemptions become 
equivalent. For single machine and shop problems this difference has not to be 
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considered. Of course the rearrangement of an arbitrary pattern to a staircase 
pattern is only used when arbitrary preemption is allowed. In what follows the 
number of preemptions may be a criterion to appreciate the value of an algo-
rithm. When the algorithm applies to staircase patterns, the number of preemp-
tions for an arbitrary pattern is increased by at most mq. 

The third field, ", denotes a single optimality criterion (performance meas-
ure). In some recent papers multiple criteria scheduling models with limited ma-
chine availability are investigated, see e.g. [QBY02, LY03]. We will further in-
vestigate models with single optimality criteria.  

Many of the problems considered later are solved applying simple priority 
rules which can be executed in O(n log n) time. The rules order the tasks in some 
way and then iteratively assign them to the most lightly loaded machine. The 
following rules as already introduced in Chapter 3 are the most prominent. 
T Shortest Processing Time (SPT) rule. With this rule the tasks are ordered ac-

cording to non-decreasing processing times. 
T Longest Processing Time (LPT) rule. The tasks are ordered according to non-

increasing processing times. 
T Earliest Due Date (EDD) rule. Applying this rule all tasks are ordered accord-

ing to non-decreasing due dates. 

11.2 One Machine Problems 

One machine problems are of fundamental character. They can be interpreted as 
building blocks for more complex problems. Such formulations may be used to 
represent bottleneck machines or an aggregation of a machine system. For one 
machine scheduling problems the only availability pattern which has to be inves-
tigated is a special case of zigzag with k = 1. 

Let us consider first problems where preemption of tasks (jobs) is not al-
lowed. If there is only a single interval of non-availability and 5Cj is the objec-
tive (l, NCzz | | 5Cj) [ABFR89] show that the problem is NP-hard. The Shortest 
Processing Time (SPT) rule leads to a tight relative error of RSPT < 2/7 for this 
problem [LL92]. [SPR+05] presents a modified SPT-heuristic with an improved 
relative error of 3/17. He also develops a dynamic programming algorithm for 
the same problem capable of solving problem instances with up to 25000 tasks. It 
is easy to see that also problem l, NCwin | | Cmax is NP-hard [Lee96]. 

If preemption is allowed the scheduling problem becomes easier. For 
l, NCwin | pmtn | Cmax , it is obvious that every schedule is optimal which starts at 
time zero and has no unforced idle time, that is, the machine never remains idle 
while some task is ready for processing. Preemption is never useful except when 
some task cannot be finished before an interval of non-availability occurs. This 
property is still true for completion time based criteria if there is no precedence 
constraint and no release date, as it is assumed in the rest of this section. 
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While the sum of completion times (l , NCwin | pmtn | 5Cj) is minimized by 
the SPT rule the problem of minimizing the weighted sum (l , NCwin

 | pmtn | 5wjCj) is NP-hard [Lee96]. Note that without availability constraints 
Smith's rule [Smi56] solves the problem. Maximum lateness is minimized by the 
Earliest Due Date (EDD) rule [Lee96]. If the number of tardy tasks has to be 
minimized (l , NCwin | pmtn | 5Uj) the EDD rule of Moore and Hodgson's algo-
rithm [Moo68] can be modified to solve this problem also in O(n log n) time 
[Lee96]. Note that if we add release times or weights for the jobs the problem is 
NP-hard already for a continuously available machine ([LRB77] or [Kar72]). 
Details can be found in Chapter 4. 

Lorigeon et al. [LBB02a] investigate a one-machine problem where each 
task has a release date rj and a delivery duration qj . The machine is not available 
for processing during a single given interval. A task may only be preempted for 
the duration of the non-availability interval and resumed as the machine becomes 
available again. The objective is to find a schedule minimizing maxj{Cj+qj}. The 
problem is a generalization of a well-known NP-hard problem studied by Carlier 
[Car82]. Lorigeon et al. provide a branch-and-bound algorithm which solves 
2133 out of 2250 problems instances with up to 50 tasks. 

There are also results concerning problems where an interval of non-
availability is regarded as a decision variable. Qi et al. [QCT99] study a model in 
which the machine has to be maintained after a maximum of ,1 time units. Each 
such maintenance activity has a constant duration of ,2 time units. The goal is to 
find a non-preemptive schedule which obeys the maintenance restrictions and 
minimizes 5Cj . The problem is proved to be NP-hard in the strong sense. Qi et 
al. propose heuristics and a branch-and-bound algorithm. 

Graves and Lee [GL99] study several variants of the same problem. Besides 
processing a task requires a setup operation on the machine. If a task is preempt-
ed by an interval of non-availability an additional (second) setup is required be-
fore the processing of the task can be resumed. Maintenance activities have to be 
carried out after a maximum of ,1 time units. If there are at most two mainte-
nance periods then the problem is NP-hard in the ordinary sense for the objec-
tives Cmax , 5Cj , 5wjCj , and Lmax . Dynamic programming algorithms are pro-
vided to solve the problems in pseudo-polynomial time. If there is exactly one 
period of maintenance the problem is polynomially solvable for the objectives 
5Cj  (by a modification of the SPT rule) and Lmax (by a modification of the EDD 
rule). Minimizing 5wjCj turns out to be NP-hard in the ordinary sense. Two 
pseudo-polynomial time dynamic programming algorithms are provided to solve 
this problem. 

Lee and Leon [LL01] study a problem in which a production rate modifying 
activity of a given duration has to be scheduled in addition to n tasks. A task Tj 
processed before the activity requires pj time units on the machine while the pro-
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cessing time of the same task becomes 2j pj if it is scheduled after the production 
rate modifying activity. Preemption is not allowed. The objective is to find a 
starting time for the rate-modifying activity and a task sequence such that several 
regular functions are optimized. The problem can be solved in polynomial time 
for the objectives Cmax and 5Cj . For the objective 5wjCj the authors develop 
pseudo-polynomial dynamic programming algorithms. For the objective Lmax the 
EDD rule is optimal for the practical case where the production rate is increased 
by the activity. The general case with arbitrary 2j is NP-hard. 

11.3 Parallel Machine Problems 

In this section we cover formulations of parallel machine scheduling problems 
with availability constraints.  

11.3.1 Minimizing the Sum of Completion Times 

In case of continuous availability of the machines (P | | 5Cj) the problem can be 
solved applying the SPT rule. If machines have only different beginning times Bi 
(this corresponds to an increasing pattern of availability) the problem can also be 
solved by the SPT rule [KM88, Lim91]. If m = 2 and there is only one finish time 
Fi

 s on one machine which is finite (this corresponds to a zigzag pattern of availa-
bility) the problem becomes NP-hard [LL93]. In the same paper Lee and Liman 
show that for P2, NCZZ | | 5Cj , where machine P2 is continuously available and 
machine P1 has one finish time which is smaller than infinity, the SPT rule with 
the following modification leads to a tight relative error of RSPT < 1/2: 

Step 1: Assign the shortest task to P2 . 
Step 2: Assign the remaining tasks in SPT order alternately to both machines 

until some time when no other task can be assigned to P1 without vi-
olating F1 .  

Step 3: Assign the remaining tasks to P1 . 
Figure 11.3.1 illustrates how that bound can be reached asymptotically 

(when %% tends toward 0). In both examples, the modified SPT rule leads to a 
large idle time for machine P1 . For fixed m the SPT rule is asymptotically opti-
mal if there is no more than one interval of non-availability for each machine 
[Mos94]. 

In case there is only one interval of non-availability for each machine, the 
problem is NP-hard. In [LC00] a branch and bound algorithm based on the col-
umn generation approach is given which also solves the problem where 5wjCj is 
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minimized. 
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Figure 11.3.1  Examples for the modified SPT rule. 

11.3.2 Minimizing the Makespan 

Let us first investigate non-preemptive scheduling. J. D. Ullman [Ull75] analyses 
the complexity of the problem P, NCwin | | Cmax . It is NP-hard in the strong sense 
for arbitrary m (3-partition is a special case) even if the machines are continuous-
ly available. If machines have different beginning times Bi (P, NCinc | | Cmax) the 
Longest Processing Time (LPT) rule leads to a relative error of RLPT < 1/2 � 
l/(2m) or of RMLPT < 1/3 if the rule is appropriately modified [Lee91]. The first 
bound is tight. The modification uses dummy tasks to simulate the different ma-
chine starting times Bi . For each machine Pi a task Tj with processing time pj = Bi 
is inserted. The dummy tasks are merged into the original task set and then all 
tasks are scheduled according to the LPT rule under an additional restriction that 
only one dummy task is assigned to each machine. After finishing the schedule, 
all dummy tasks are moved to the head of the machines followed by the remain-
ing tasks assigned to each Pi . The MLPT rule runs in O((n + m)&log(n + m) + 
(n + m)&m) time. In [LHYL97] Lee's bound of 1/3 reached by MLPT is improved 
to 1/4. 

Using the bin-packing algorithm called the MULTIFIT it is shown in [CH98] 
that the bound of this algorithm is 2/7 + 2�k, where k is the selected number of 
the major iterations in MULTIFIT. 

Note that the LPT algorithm leads to a relative error of RLPT < 1/3 � l/(3m) 
for continuously available machines [Gra69]. H. Kellerer [Kel98] presents a dual 
approximation algorithm using a bin packing approach leading to a tight bound 
of 1/4, too. 

In [LSL05] a problem with two machines and one interval of non-
availability is considered. For non-resumable and resumable cases the problem is 
solved by enumerative techniques. 
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Now let us investigate results for preemptive scheduling. If all machines are 
only available in one and the same time interval [B, F) and tasks are independent 
the problem is of type P | pmtn | Cmax Following [McN59] it can be shown that 
there exists a feasible machine preemptive schedule if and only if maxj{pj} � (F 
� B) and 5j pj � m(F � B). There exists an O(n) algorithm which generates at 
most m � l preemptions to construct this schedule. If all machines are available in 
an arbitrary number S = 5i Si of time intervals [Bi

s
 , Fi

 s), s = l ,..., Si and the ma-
chine system forms a staircase pattern, it is possible to generalize McNaughton's 
condition and show that a feasible preemptive schedule exists if and only if the 
following m conditions are met [Sch84]: 

5j=1
k    pj  �  5i=1

k    PCi Lk = 1,..., m � 1,   (11.3.1-k) 

5j=1
n    pj  �  5i=1

m    PCi  (11.3.1-m) 

with p1 � p2 � ... � pn and PC1 � PC2 � ... � PCm , where PCj is the total pro-
cessing capacity of machine Pi . Such a schedule can be constructed in O(n + 
m&log m) time after the processing capacities PCi are computed, with at most 
S � 1 preemptions in case of a staircase pattern (remember that any arbitrary pat-
tern of availability can be converted into a staircase one at the price of additional 
preemptions). Note that in the case of the same availability interval [B, F) for all 
machines McNaughton's conditions are obtained from (11.3.1-1) and (11.3.1-m) 
alone. This remains true for zigzag patterns as then (11.3.1-2) ,...,  (11.3.1-m�1) 
are always verified if (11.3.1-1) is true (there is one availability interval for all 
machines but Pm). The algorithm to solve the problem applies five rules which 
are explained now. 

Let us consider two arbitrary processors Pk and Pl with PCk > PCl as shown 
in Figure 11.3.2. Let [k

a
 , [k

b
 , and [k

c denote the processing capacities of proces-
sor Pk in the intervals [Bk

1
 , Bl

1], [Bl
1

 , F l    
N(l)], and [Fl    

N(l), F k    
N(k)], respectively. Then 

obviously, PCk = [k
a

 + [k
b

 + [k
c
 . 
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Figure 11.3.2  Staircase pattern for two arbitrary processors. 
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Assume that the tasks are ordered according to non-increasing processing times 
and that the processors form a staircase pattern as defined above. All tasks Tj are 
scheduled in the given order one by one using one of the five rules given below. 
Rules 1 - 4 are applied in the case where 1 � j < m, pj > min

i
 {PCi}, and if there 

are two processors Pk and Pl such that PCl = max
i

 {PCi | PCi < pj} and PCk = 

min
i

 {PCi | PCi � pj}. Rule 5 is used if m � j � n or pj � min
i

 {PCi}. First we de-

scribe the rules, and after that we prove that their application always constructs a 
feasible schedule, if one exists. To avoid cumbersome notation we present the 
rules in a semi-formal way. 

Rule 1. Condition: pj = PCk . 
Schedule task Tj on processor Pk such that all the intervals [Bk

 r, Fk
 r], r = 

1,..., N(k), are completely filled; combine processors Pk and Pl to form a compo-
site processor, denoted again by Pk , which is available in all free processing in-
tervals of the original processor Pl , i.e. define PCk = PCl and PCl = 0 .  

Rule 2. Condition: pj � PCl > max{[k
a

 , [k
c} and pj � [k

b � min{[k
a

 , [k
c} .  

Schedule task Tj on processor Pk in its free processing intervals within [Bl
1, F l    

N(l)]. 
If [k

a (respectively [k
c) is minimum use all the free processing intervals of Pk in 

[Bk
1, Bl

1] ([F l    
N(l), F k    

N(k)]) to schedule Tj , and schedule the remaining processing re-
quirements of that task (if there is any) in the free processing intervals of Pk 
within [F l    

N(l), F k    
N(k)] ([Bk

1, Bl
1]) from left to right (right to left) such that the rth pro-

cessing interval is completely filled with Tj before the r + 1st (r � 1st) interval is 
used, respectively. Combine processors Pk and Pl to a composite processor Pk 
which is available in the remaining free processing intervals of the original pro-
cessors Pk and Pl , i.e. define PCk = PCk + PCl � pj and PCl = 0 . 

Rule 3. Condition: pj � PCl > max{[k
a

 , [k
c} and pj � [k

b < min{[k
a

 , [k
c} . 

If [k
a ([k

c) is minimum, schedule task Tj on processor Pk such that its free pro-
cessing intervals in [Bk

1, Bl
1] ([F l    

N(l), F k    
N(k)]) are completely filled with Tj, further 

fill processor Pk in the intervals [Bl
 r, Fl

 r], r = 1,..., N(l), completely with Tj and 
use the remaining processing capacity of Pk in the interval [Bl

1, F l    
N(l)] to schedule 

task Tj with its remaining processing requirement such that Tj is scheduled from 
left to right (right to left) where the r + 1st (r � 1st) interval is not used before the 
rth interval has been completely filled with Tj , respectively. After doing this there 
will be some time t in the interval [Bl

1, F l    
N(l)] up to (after) this time task Tj is con-

tinuously scheduled on processor Pk . Time t always exists because pj � min{[k
a

 , 
[k

c} < [k
b

 . Now move Tj with its processing requirement which is scheduled after 
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(before) t on processor Pk to processor Pl in the corresponding time intervals. 
Combine processors Pk and Pl to a composite processor Pk which is available in 
the remaining free processing intervals of the original processors Pk and Pl , i.e. 
define PCk = PCk + PCl � pj and PCl = 0 . 

Rule 4. Condition: pj � PCl � max{[k
a

 , [k
c} . 

Schedule task Tj on processor Pl such that all its intervals [Bl
r, Fl

r], r = 1 ,..., N(l) 
are completely filled with Tj . If [k

a ([k
c) is maximum, schedule task Tj with its 

remaining processing requirement on processor Pk in the free processing inter-
vals of [Bk

1, Bl
1] ([F l    

N(l), F k    
N(k)]) from left to right (right to left) such that the rth pro-

cessing interval is completely filled with Tj before the r + 1st (r � 1st) interval is 
used, respectively. Combine processors Pk and Pl to a composite processor Pk 
which is available in the remaining free processing intervals of the original pro-
cessor Pk , i.e. define PCk = PCk + PCl � pj and PCl = 0 . 

Rule 5. Condition: remaining cases. 
Schedule task Tj and the remaining tasks in any order in the remaining free pro-
cessing intervals successively from left to right starting with processor Pk , switch 
to a processor Pi , i < k only if the i + 1st processor is already completely filled. 

To show the optimality of rules 1 - 5 one may use the following lemma and theo-
rem [Sch84]. 

Lemma 11.3.1  After having scheduled a task Tj , j � {1 ,..., m � 1}, on some 
processor Pk according to rules 1 or 2, or on Pk and Pl according to rules 3 or 4, 
the following observations are true:  
(1) The remaining free processing intervals of processors Pk and Pl are disjoint. 
(2) Combining processors Pk and Pl to a composite processor Pk results in a 

new staircase pattern. 
(3) If all inequalities of (11.3.1-k), k = 1,..., m hold before scheduling task Tj , 

the remaining processing requirements and processing capacities after 
scheduling Tj still satisfy inequalities (11.3.1-k), k = 1,..., m . 

(4) The number of completely filled or completely empty intervals is �
i=1

m
 N(i) � K 

where K is the number of only partially filled intervals, K � j < m.  

We are now ready to prove the following theorem. The proof is constructive and 
leads to an algorithm that solves our problem. 
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Theorem 11.3.2  For a system of m semi-identical processors with staircase 
pattern of availability and a given set T  of n tasks there will always be a feasible 
preemptive schedule if and only if all inequalities (11.3.1) hold. 

Proof. We assume that pj > min
i

 {PCi} for j = 1,..., m � 1; otherwise the theorem 

is always true if and only if the inequality (11.3.1-m) holds, as can easily be seen. 
There always exists a feasible preemptive schedule for T1 . Now assume that the 
first z tasks have been scheduled feasibly according to rules 1 - 4. We show that 
Tz+1 also can be scheduled feasibly: 

(i) 1 < z < m: after scheduling task Tz all inequalities (11.3.1) hold according to 
Lemma 11.3.1. Then pz+1 � PC1

z
 , hence task Tz+1 can be scheduled feasibly on 

processor P1 . 

(ii) m � z � n: after scheduling the first m � 1 tasks using rules 1-4, m � 1 proces-
sors are completely filled with tasks. Since PC2     

z�1  = PC3     
z�1  = ... = PCm     

z�1  = 0 

and PC1     
z�1  � �

j=z

n
 pj, task Tz can be scheduled on processor P1 , and the remaining 

tasks can also be scheduled on this processor by means of rule 5.  

The following algorithm makes appropriate use of the five scheduling rules. 

Algorithm 11.3.3  Algorithm by Schmidt [Sch84] for semi-identical processors. 
begin 
Order the m largest tasks Tj according to non-increasing processing times and 

schedule them in the given order; 

for all i � {1,..., m} do PCi := �
r=1

N(i)
 PCi

 r; 

repeat 
 if j < m and pj > min

i
 {PCi} 

 then 
  begin 

Find processor Pl with PCl = max
i

 {PCi | PCi < pj} and processor Pk with  

PCk = min
i

 {PCi | PCi � pj}; 

  if PCk = pj 
  then call rule 1 
  else 
   begin 
   Calculate [k

a, [k
b, and [k

c; 
   if pj � PCl > max{[k

a, [k
c} 

   then 
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    if pj � [k
b � min {[k

a, [k
c} 

    then call rule 2 else call rule 3; 
   else call rule 4; 
   end; 
  end 
 else call rule 5; 
until j = n; 
end; 

The number of preemptions generated by the above algorithm and its complexity 
are estimated by the following theorems [Sch84]. 

Theorem 11.3.4  Given a system of m processors P1 ,...,Pm of non-continuous 
availability, where each processor Pi is available in N(i) time intervals. Then, if 
the processor system forms a staircase pattern and the tasks satisfy the inequali-
ties (11.3.1), Algorithm 11.3.3 generates a feasible preemptive schedule with at 

most (�
i=1

m
 N(i)) � 1 preemptions.  

Theorem 11.3.5  The time complexity of Algorithm 11.3.3 is O(n + m log m) .  

Notice that if all processors are only available in a single processing interval and 
all these intervals have the staircase property the algorithm generates feasible 
schedules with at most m � 1 preemptions. If we further assume that Bi = B and 
Fi = F for all i = 1 ,...,  m Algorithm 11.3.3 reduces to McNaughton's rule 
[McN59] with time complexity O(n) and at most m � 1 preemptions.  
There is a number of more general problems that can be solved by similar ap-
proaches.  
(1) Consider the general problem where the intervals of m semi-identical proces-
sors are arbitrarily distributed as shown in Figure 11.3.3(a) for an example prob-
lem with m = 3 processors. Reordering the original intervals leads to a staircase 
pattern which is illustrated in Figure 11.3.3(b). Now each processor P'i , with 
PC'i > 0 is a composite processor combining processors Pi, Pi+1 ,...,Pm, and each 
interval [B' r

i , F' ri ] is a composite interval combining intervals of availability of 
processors Pi, Pi+1 ,...,  Pm. The numbers in the different intervals of Figure 
11.3.3(b) correspond to the number of original processors where that interval of 
availability is related to. After reordering the original intervals this way the prob-

lem consists of at most Q' � Q = �
i=1

m
 N(i) intervals of availability. Using Algo-

rithm 11.3.3, O(m) preemptions are possible in each interval and thus O(mQ) is 
an upper bound on the number of preemptions which will be generated for the 
original problem. 
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Figure 11.3.3  Example for arbitrary processing intervals 

(a) general intervals of availability, 
(b) corresponding staircase pattern. 

(2) If there is no feasible preemptive schedule for the problem at least one of the 
inequalities of (11.3.1) is violated; this means that the processing capacity of at 
least one processor is insufficient. We now increase the processing capacity in 
such a way that all the tasks can be feasibly processed. An overtime cost function 
might be introduced that measures the required increase of processing capacity. 
Assume that an increase of one time unit of processing capacity results in an in-
crease of one unit of cost. If some inequality (11.3.1-q) is violated we have to 

increase the total capacity of the first q processors by �
j=1

q
 (pj � PCj) in case of 1 � 

q < m; hence the processing capacity of each of the processors P1,..., Pq is in-

creased by 1
q �

j=1

q
(pj � PCj) . If inequality (11.3.1-m) is violated, the cost minimum 

increase of all processing capacities is achieved if the processing capacity of 

each processor is increased by 1
m (�

j=1

n
 pj � �

j=1

m
 PCj). Now Algorithm 11.3.3 can be 

used to construct a feasible preemptive schedule of minimum total overtime cost. 
Checking and adjusting the m inequalities can be done in O(m) time, and then 
Algorithm 11.3.3 can be applied. Hence a feasible schedule of minimal overtime 
cost can be constructed in O(n + mlogm) time. 
(3) If each task Tj also has a deadline d~j the problem is not only to meet start and 
finish times of all intervals but also all deadlines. The problem can be solved by 
using a similar approach where the staircase patterns and the given deadlines are 
considered. Since all the tasks may have different deadlines, the resulting time 
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complexity is O(nmlogn). A detailed description of this procedure can be found 
in [Sch88]. It is also proved there that the algorithm generates at most 
Q + m(s � 1) � 1 preemptions if the semi-identical processor system forms a stair-
case pattern, and m(Q + s � 1) � 1 preemptions in the general case, where s is the 
number of different deadlines. We mention that this approach is not only dedi-
cated to the deadline problem. It can also be applied to a problem where all the 
tasks have different ready times and the same deadline, as these two situations 
are of the same structure. 

The corresponding optimization problem (P, NCsc | pmtn | Cmax) is solved by 
an algorithm that first computes the lower bounds LB1 , LB2 , ..., LBm obtained 
from the conditions above (see Figure 11.3.4). Cmax cannot be smaller than LBk , 
k = l ,..., m � l, obtained from (11.3.1-k). The sum of availabilities of machines 
P1 , ..., Pk during time interval [0, LBk) may not be smaller than the sum of pro-
cessing times of tasks T1 , ..., Tk . The sum of all machine availabilities during 
time interval [0, LBm) must also be larger than or equal to the sum of processing 
times of all tasks. In the example of Figure 11.3.4, Cmax = LB3 . The number of 
preemptions is S � 2. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13

P1

P2

P3

P4

T2 T2

T2

T3

T3T3

T1

T4 T5

LB3  

 T1 T2 T3 T4 T5 

pj 12 7 7 2 1 
LBj 12 11 38/3 149/12 38/3 

Figure 11.3.4   Minimizing the makespan on a staircase pattern. 

When precedence constraints are added, Liu and Sanlaville [LS95a] show that 
problems with chains and arbitrary patterns of non-availability (i.e. P, NCwin |
 pmtn, chains | Cmax) can be solved in polynomial time applying the Longest Re-
maining Path (LRP) first rule and the processor sharing procedure of [MC70]. In 
the same paper it is also shown that the LRP rule could be used to solve problems 
with decreasing (increasing) zigzag patterns and tasks forming an outforest (in-
forest) (P, NCdeczz | pmtn, out-forest | Cmax or P, NCinczz | pmtn, in-forest | Cmax). In 
case of only two machines and arbitrary (which means zigzag for m = 2) patterns 
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of non-availability (P2, NCwin | pmtn, prec | Cmax ) this rule also solves problems 
with arbitrary task precedence constraints with time complexity and number of 
preemptions of O(n 2). These results are deduced from those obtained for unit 
execution time scheduling by list algorithms (see Dolev and Warmuth [DW85b, 
DW85a]). The LRP algorithm is nearly on-line, as are all priority algorithms 
which extend list algorithms to preemption [Law82]. Indeed these algorithms 
first build a schedule admitting processor sharing. These schedules execute tasks 
of the same priority at the same speed. This property is respected when 
McNaughton's rule is applied. If machine availability changes unexpectedly, the 
property does not hold any more. 

Applying the LRP rule results in a time complexity of O(n&log n + nm) and a 
number of preemptions of O((n + m) 2 � nm) which both can be improved. There-
fore in [BDF+00] an algorithm is given which solves problem P, NCwin |
 pmtn, chains | Cmax with N < n chains in O(N + m&log m) time generating a num-
ber of preemptions which is not greater than the number of intervals of availabil-
ity of all machines. If all machines are only available in one processing interval 
and all intervals are ordered in a staircase pattern the algorithm generates feasible 
schedules with at most m � l preemptions. This result is based on the observation 
that preemptive scheduling of chains for minimizing schedule length can be 
solved by applying an algorithm for the independent tasks problem. Having more 
than two machines in the case of arbitrary precedence constraints or an arbitrary 
number of machines in the case of a tree precedence structure makes the problem 
NP-complete [BDF+00]. 

When tasks require more than one processor they are called multiprocessor 
tasks. In [BDDM03] polynomial algorithms are given for the following cases: 

T tasks have various ready times and require either one or all processors; 
T sizes of the tasks are powers of 2. 

11.3.3 Dealing with Due Date Involving Criteria 

In [Hor74] it is shown that P | pmtn, rj, d ~j | �  can be solved in O(n 3&min{n 2, 
log n + log pmax}) time. The same flow-based approach can be coupled with a 
bisection search to minimize maximum lateness Lmax (see [LLLR79], where the 
method is also extended to uniform machines). A slightly modified version of the 
algorithm still applies to the corresponding problem where the machines are not 
continuously available. If the number of changes of machine availabilities during 
any time interval is linear in the length of the interval this approach can be im-
plemented in O(n 3pmax

    3&(log n + log pmax)) [San95]. When no ready times are giv-
en but due dates have to be considered, maximum lateness can be minimized for 
the problem (P, NCwin | pmtn | Lmax) using the approach suggested by [Sch88] in 
O(nm&log n) time. The method needs to know all possible events before the next 
due date. 
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If there are not only due dates but also ready times are to be considered 
(problem P, NCwin | rj, pmtn | Lmax ) Sanlaville [San95] suggests a nearly on-line 
priority algorithm with an absolute error of A � (m � l/m)pmax if the availability of 
the machines follows a constant pattern and of A � pmax if machine availability 
refers to an increasing zigzag pattern. The priority is calculated according to the 
Smallest Laxity First (SLF) rule, where laxity (or slack time) is the difference 
between the task's due date and its remaining processing time. The SLF algo-
rithm runs in O(n 2pmax) time and is optimal in the case of a zigzag pattern and no 
release dates. 

[LS95a] shows that results for Cmax minimization in cae of in-forest prece-
dence graphs and increasing zigzag patterns (P, NCinczz | pmtn, in-forest | Cmax) 
can be extended to Lmax , using the SLF rule on the modified due dates. Figure 
11.3.5 shows an optimal SLF schedule for the given precedence constraints. 
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Figure 11.3.5   Minimizing Lmax on an increasing zigzag pattern. 
 
The modified due date is given by dj ' = min{dj ' , ds(j)'   + ps(j)} where Ts(j) is the 
successor of Tj when it exists. In the same way, minimizing Lmax on two ma-
chines with availability constraints is achieved using SLF with a different modi-
fication scheme. If there are due dates, release dates and chain precedence con-
straints to be considered (P, NCwin | rj ,chains, pmtn | Lmax) the problem can be 
solved using a binary search procedure in combination with a linear program-
ming formulation [BDF+00]. In case of multiprocessor tasks there exists a poly-
nomial algorithm to minimize Lmax if the number of processors is fixed 
[BDDM03]. 

Lawler and Martel [LM89] solved the weighted number of tardy jobs prob-
lem on two uniform machines, i.e. Q2 | pmtn | 5wjUj . The originality of their 
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paper comes from the fact that they show a stronger result, as the speeds of the 
processors may change continuously (and even be 0) during the execution. 
Hence, it includes as a special case availability constraints on two uniform ma-
chines. They use dynamic programming to propose pseudo-polynomial algo-
rithms (O(5wj n2), or O(n2pmax) to minimize the number of tardy jobs). Nothing 
however is said about the effort needed to compute processing capacity in one 
interval. 

If there are more than two uniform machines to be considered and the prob-
lem is to minimize maximum lateness for jobs which have different release dates 
(Q, NCwin | rj , pmtn | Lmax) the problem can be solved in polynomial time by a 
combined strategy of binary search and network flow [BDF+00]. In the same 
paper the problem is generalized taking unrelated machines, i.e. machine speeds 
cannot be represented by constant factors, into account. This problem can also be 
solved in polynomial time applying a combination of binary search and the two-
phase method given in [BEP+96]. 

11.4 Shop Problems 

The literature on shop scheduling problems with limited machine availability is 
concentrated on flow shops and open shops. We are aware of only two papers 
dealing with the job shop. The paper of Aggoune [Agg04b] studies the two-job 
special case of this problem under the makespan criterion. He proposes exten-
sions of the well known geometric algorithm by Akers and Friedman [AF55] for 
problems J, NCwin | pmtn, n = 2 | Cmax and J, NCwin | n = 2 | Cmax . The algorithms 
run in polynomial time. Braun et al. [BLS05] investigate problem J2, NCwin |
 pmtn | Cmax and derive sufficient conditions for the optimality of Jackson's rule. 

11.4.1 Flow Shop Problems 

The flow shop scheduling problem for two machines with a constant pattern of 
availability minimizing Cmax (F2 | | Cmax and F2 | pmtn | Cmax) can be solved in 
polynomial time by Johnson's rule [Joh54]. C.-Y. Lee [Lee97] has shown that 
this problem becomes already NP-hard if there is a single interval of non-
availability on one machine only. For the case where the tasks can be resumed he 
also gives approximation algorithms which have relative errors of 1/2 if this in-
terval is on machine P1 or of 1/3 if the interval of non-availability is on machine 
P2 . The approximation algorithms are based on a combination of Johnson's rule 
and a modification of the ratio rule given in [MP93]. Lee also proposes a dynam-
ic programming algorithm for the case with one interval only. 

Improved approximation algorithms for the resumable problem with one in-
terval are presented in [CW00], [Bre04a] and [NK04]. In the first paper a 1/3-
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approximation for the case with the interval on P1 is presented. The second paper 
provides a 1/4-approximation for the case with the interval occurring on P2 . The 
third paper finally describes a fully polynomial-time approximation scheme for 
the general case with one interval of non-availability, no matter on which ma-
chine. Ng and Kovalyov show that these two problems are in fact symmetrical. A 
polynomial-time approximation scheme for the case where general preemption is 
allowed (not only resumability) is presented in [Bre04b]. 

In [KBF+02] it is shown that the existence of approximation algorithms for 
flow shop scheduling problems with limited machine availability is more of an 
exception. It is proved that no polynomial time heuristic with a finite worst case 
bound can exist for F2, NCwin | pmtn | Cmax when at least two intervals of non-
availability are allowed to occur. Furthermore it is shown that makespan minimi-
zation becomes NP-hard in the strong sense if an arbitrary number of intervals 
occurs on one machine only. On the other hand, there always exists an optimal 
schedule where the permutation of jobs scheduled between any two consecutive 
intervals obeys Johnson's order. However, the question which jobs to assign be-
tween which intervals remains intractable. 

Due to these negative results a branch and bound algorithm is developed in 
[KBF+02] to solve F2, NCwin | pmtn | Cmax . The approach uses Johnson's order 
property of jobs scheduled between two consecutive intervals. This property 
helps to reduce the number of solutions to be enumerated. Computational exper-
iments were carried out to evaluate the performance of the branch-and-bound 
algorithm. In the test problem instances intervals of non-availability were al-
lowed to occur either only on P1 , or only on P2 , or on both machines. The first 
result of the tests was that these instances were equally difficult to solve. The 
second result was that the algorithm performed very well when run on randomly 
generated problem instances; 1957 instances out of 2000 instances could be 
solved to optimality within a time limit of 1000 seconds. However, it could also 
be shown that there exist problem instances which are much harder to solve for 
the algorithm. These were instances in which the processing time of a job on the 
second machine was exactly twice its processing time on the first machine. 

In order to speed up the solution process, a parallel implementation of the 
branch and bound algorithm is presented in [BFKS97]. Computations have been 
performed on l, 2, 3, up to 8 processors. The experiment has been based on in-
stances for which computational times of the sequential version of the algorithm 
were long. The maximum speed up gained was between 1.2 and 4.8 in compari-
son to the sequential version for 8 processors being involved in the computation. 

Based on the above results in [BBF+01] constructive and improvement heu-
ristics are designed for F2, NCwin | pmtn | Cmax . They are empirically evaluated 
using test data from [KBF+02] and new difficult test data. It turned out that a 
combination of two constructive heuristics and a simulated annealing algorithm 
could solve 5870 out of 6000 easy problem instances and 41 out of 100 difficult 
instances. The experiments were run on a PC and the time limit to achieve this 
result was roughly 60 seconds per instance. The worst relative errors were 2.6% 
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and 44.4% above the optimum, respectively. The combination of two construc-
tive heuristics could only solve 5812 out of 6000 easy instances and 13 out 100 
difficult instances with an average computation time of 0.33 seconds and 3.96 
seconds per instance, respectively. These results in [BBF+01] suggest that the 
heuristic algorithms are very good options for solving flow shop scheduling 
problems with limited machine availability. 

In [Bra02] and [BLSS02] sufficient conditions for the optimality of John-
son's rule in the case of one or more intervals of non-availability (i.e. for 
F2, NCwin | pmtn | Cmax) are derived. To find the results the technique of stability 
analysis is used and it is shown that in most cases Johnson's permutation remains 
optimal. These results are comparable to [KBF+02] but improve the running time 
for finding optimal solutions, such that instances with 10,000 jobs and 1,000 
intervals of non-availability can be treated. 

The non-preemptive case of the two-machine flow shop with limited ma-
chine availability is studied by [CW99]. In general, this problem is not approxi-
mable for the makespan criterion if at least two intervals of non-availability may 
occur. Cheng and Wang investigate the case where there are exactly two such 
intervals. One of them starts at the same time when the other one ends (consecu-
tive intervals). They provide a 2/3-approximation algorithm for this problem. 

[Lee99] studies the two-machine flow shop with one interval of non-
availability under the semi-resumable scenario. He provides dynamic program-
ming algorithms for this problem as well as approximation algorithms with worst 
case errors of l and 1/2, depending on whether the interval occurs on the first or 
on the second machine. 

Quite a few papers exist on the two-machine no-wait flow shop. For con-
stant machine availability and the makespan criterion this problem is polynomi-
ally solvable [GG64, HS96]. Espinouse et al. [EFP99, EFP01] study the case 
with one interval of non-availability. They show that the problem is NP-hard no 
matter if preemption is allowed or not, and not approximable if at least two in-
tervals occur. They also provide approximation algorithms with a worst-case 
error of 1. Improved heuristics with worst-case errors of 1/2 are presented by 
[CL03a]. They also treat the case where each of the two machines has an interval 
of non-availability and these two intervals overlap. In the second paper [CL03b] 
provides a polynomial-time approximation scheme for this problem. [KS04] also 
study the case with one interval of non-availability. They provide a 1/2-
approximation algorithm capable of handling the semi-resumable scenario and a 
1/3-approximation algorithm for the resumable scenario. The non-preemptive m-
machine flow shop with two intervals of non-availability on each machine and 
the makespan objective is studied by [Agg04a] and [AP03]. In [Agg04a] two 
cases are considered. In the first case, intervals of non-availability are fixed 
while in the second case intervals are assigned to time windows and their actual 
start times are decision variables. A genetic algorithm and a tabu search proce-
dure are evaluated for test data with up to 20 jobs and 10 machines. The most 
important result is that flexible start times of the intervals of non-availability 
result in considerably shorter schedules. In [AP03] intervals of non-availability 
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have fixed start and finish times. The proposed heuristic is based on the approach 
presented in [Agg04b]. The jobs in a sequence are grouped in pairs. Each pair is 
scheduled optimally using the algorithm in [Agg04b]. This approach is embed-
ded into a tabu search algorithm. Experiments indicate that the heuristic is capa-
ble of finding good solutions for problem instances with up to 20 jobs. 

11.4.2 Open Shop Problems 

The literature on open shop scheduling problems (for a survey see also [BF97]) 
with limited machine availability is focused on the two-machine case and the 
objective of makespan minimization. The case with constant pattern of machine 
availability (O2 | | Cmax) can be solved in linear time by an algorithm due to 
[GS76]. 

It is essential to distinguish between two kinds of preemption. The less re-
strictive case is investigated by [VS95]. They use a model where the processing 
of a job may be interrupted and later resumed on the same machine. In the inter-
val between interruption and resumption the job may be processed on a different 
machine. It is shown that under this assumption the problem is polynomially 
solvable even for arbitrary numbers of machines and intervals of non-
availability. 

In the more restrictive case the processing of a job on a machine may be in-
terrupted by the processing of other jobs or by intervals of non-availability. In 
the interval between the start and the end of a task, no other task of the same job 
may be processed. This model is similar to the open shop with no-pass con-
straints as introduced by Cho and Sahni [CS81]. 

J. Breit [Bre00] proves that this latter problem is NP-hard even for a single 
interval of non-availability and not approximable within a constant factor if at 
least three such intervals occur. For the case with one interval there exists a 
pseudopolynomial dynamic programming algorithm [LBB02b] as well as a line-
ar time approximation algorithm with an error bound of 1/3 [BSS01]. The special 
case in which the interval occurs at the beginning of the planning horizon is 
solved by a linear time algorithm due to [LP93]. M. A. Kubzin et al. [KSBS02] 
present polynomial-time approximation schemes for the case with an arbitrary 
number of intervals on one machine and a continuously available second ma-
chine, as well as for the case with exactly one interval on each machine. The 
non-preemptive model is studied by J. Breit et al. [BSS03]. They provide a linear 
time 1/3-approximation algorithm and show that the problem with at least two 
intervals is not approximable within a constant factor. 

11.5 Conclusions 

We reviewed results on scheduling problems with limited machine availability. 
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The number of results shows that scheduling with availability constraints attracts 
more and more researchers, as the importance of the applications is recognized. 
The results presented here are of various kinds. In particular, when preemption is 
not authorized it will logically entail NP-hardness of the problem. If one is inter-
ested in solutions for non-preemptive problems enumerative algorithms have to 
be applied; otherwise approximation algorithms are a good choice. Performance 
bounds may often be obtained, but their quality will depend on the kind of avail-
ability patterns considered. If worst case bounds cannot be found, heuristics 
which can only be evaluated empirically have to be applied.  

Most of the results reviewed are summarized in Table 11.5.1. The table dif-
fers for a given problem type between performance criteria entailing NP-
hardness and those for which a polynomial algorithm exists.  

Problem Polynomially solvable NP-hard 
1, NCwin  5Cj , Cmax 

1, NCwin | pmtn 5Cj , Cmax , Lmax , 5Uj 
5wj Cj , 5wj Uj (constant 

availability) 
P, NCinc 5Cj  
P, NCzz  5Cj 
P2, NCwin | pmtn, prec Cmax , Lmax  
P, NCzz | pmtn, tree Cmax , Lmax (in-tree) Cmax (for NCwin) 
P, NCwin | pmtn, chains Cmax , Lmax  
P, NCwin | pmtn, rj Cmax , Lmax  
Q, NCwin | pmtn, rj Cmax , Lmax  

F2, NCwin | pmtn  Cmax (single non-
availability interval) 

O, NCwin | pmtn Cmax  

O2, NCwin | pmtn(no-pass)  Cmax (single non-
availability interval) 

J, NCwin | n = 2 Cmax  
J, NCwin | pmtn, n = 2 Cmax  

Table 11.5.1  Summary of results. 

There are many interesting fields for future research. 

1. As our review indicates there are many open questions in shop scheduling, 
e.g., for job shop models comparatively few results are available. 

2. Stability analysis introduces sufficient conditions for schedules to be optimal 
in the case of machine availability restrictions. Extensions to open shops and job 
shops seem to be interesting in this field. 

3. In almost all papers reviewed in this chapter machine availability restrictions 
are regarded as problem input. There are, however, many cases in which decision 
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makers have some influence on these restrictions. For example, one may think of 
a situation where the start time of a maintenance activity for a machine can be 
chosen within certain limits. In such situations machine availability restrictions 
become decision variables. 

4. To the best of our knowledge there exist no papers dealing with limited ma-
chine availability and multiple objective functions. Such models may, however, 
be very interesting, especially in cases where machine availability restrictions are 
decision variables. For example, in a case where several machines have to un-
dergo a maintenance activity it may be desirable to minimize the time span be-
tween start of the first and end of the last activity while a different objective 
function is applied for the task scheduling. 

5. There are many practical cases where periods of non-availability are not 
known in advance. In these cases we might apply online scheduling. Some re-
sults are already available. In [AS01] it is shown that there are instances where 
no on-line algorithm can construct optimal makespan schedules if machines 
change availability at arbitrary points in time. It is also impossible for such an 
algorithm to guarantee that the solution is within a constant ratio c if there may 
be time intervals where no machine is available. Albers and Schmidt also report 
that things look better if the algorithm is allowed to be nearly on-line. In such a 
case we assume that the algorithm always knows the next point in time when the 
set of available machines changes. Now optimal schedules can be constructed. 
The algorithm presented has a running time of O(qn + S), where q is the number 
of time instances where the set of available machines changes and S is the total 
number of intervals where machines are available. If at any time at least one ma-
chine is available, an on-line algorithm can construct schedules which differ by 
an absolute error c from an optimal schedule for any c > 0. This implies, that not 
knowing machine availabilities does not really hurt the performance of an algo-
rithm, if arbitrary preemptions are allowed. 
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 12 Time-Dependent Scheduling 

In previous chapters we have always assumed that the processing times of tasks 
are fixed and described by numbers. Scheduling problems with such a model of 
task processing times are considered in classical scheduling theory. Despite a 
very large scope of applicability of this theory, the above assumptions seem to be 
too restrictive, since in some situations we deal with tasks which have variable 
processing times. For example, while waiting for processing tasks may deterio-
rate or shorten what may cause some changes of their processing times. The task 
processing times may also depend on available amounts of discrete or continuous 
resources, and the increase (decrease) of these amounts may affect the processing 
times as well. The phenomenon of variable processing times is often encountered 
in modern manufacturing systems, where processing times are changing in view 
of varying processing conditions. Therefore, in recent decades in scheduling  
theory have been appeared new research domains, collectively called modern 
scheduling theory, where scheduling problems with different forms of variable 
processing times are studied and solved using more specific methods than those 
applied in classical scheduling theory. 

There are known a few distinct groups of models of variable processing 
times. In this chapter1, we are focused on scheduling problems with time-
dependent processing times. This means that the processing time of each task is a 
function of the task starting time. Scheduling problems with task processing 
times of this form, in short called time-dependent scheduling problems, are con-
sidered in time-dependent scheduling, a dynamically developing research domain 
of modern scheduling theory. These problems compose the first group of schedu-
ling problems with variable processing times considered in the handbook. The 
second group of such problems, where task processing times depend on the 
amounts of delivered resources, is discussed in Chapter 13.  

The aim of this chapter is to present a general overview of time-dependent 
scheduling. Therefore, we present only the most fundamental results. However, 
in order to give the reader a more deep insight into discussed problems, 
we illustrate our presentation by a number of examples.  

In time-dependent scheduling literature we deal with jobs which are com-
posed of operations, regardless of the machine environment in which these jobs 
are processed. However, in order to keep our terminology consistent with the one 
introduced in Chapter 3, in this chapter operations are called tasks and we write 
about jobs only in the context of dedicated machine scheduling problems. 

                                                 
 

1 This chapter is based on S. Gawiejnowicz, Time-Dependent Scheduling: Main Results and 
Research Directions, report 139/2018, Faculty of Mathematics and Computer Science, Adam 
Mickiewicz University in Poznań, January 2018. 
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This chapter is organized into five sections. In Section 12.1, we introduce 
the reader into time-dependent scheduling. Next, in Section 12.2, we define the 
main forms of time-dependent processing times. Finally, in Sections 12.3-12.5, 
we review the main results concerning one, parallel and dedicated machine time-
dependent scheduling problems, respectively. 

12.1 Introduction 

Time-dependent scheduling problems are defined similarly as in classical sched-
uling theory by specifying the set of machines, the set of tasks and optimality 
criteria. The main feature of time-dependent scheduling problems is the specifi-
cation of variable task processing times: in classical scheduling the processing 
times are numbers, while in time-dependent scheduling they are functions of the 
task starting times. Though time-dependent task processing times may be arbi-
trary, space limitations force us to discuss only time-dependent scheduling prob-
lems with task processing times which are continuous single-variable functions 
of the task starting times. Apart machines no other resources are needed to com-
plete the tasks. We also assume that task processing times are affected only by 
the starting times of the tasks, whereas other factors such as continuous re-
sources (cf. Chapter 13, [SS07]) or learning effect ([ABG+14, SR17]) have no 
influence on the processing times. 

Time-dependent scheduling has many applications. We deal with time-
dependent scheduling problems when any delay causes an increase (a decrease) 
of the processing times of executed tasks. Examples are repayment of multiple 
loans [GKD87], recognizing aerial threats [HLW93], scheduling maintenance 
procedures [Mos94], de-rusting operations [GKP06c] and medical proce-
dures [WDZ14, ZWW15], modeling of fire fighting [RP06], optimization in car 
industry [JS16]. We refer the reader to [Gaw08, Section 5.3] for other examples. 

In time-dependent scheduling mainly processing times defined by monotone 
functions are considered. This results in two main research directions in time-
dependent scheduling. The first direction is focused on problems with task (job) 
deterioration, where task (job) processing times are non-decreasing (or increas-
ing) functions of the task (job) starting times. This means that the processing 
times deteriorate in time, i.e. a task (job) started later has not lower (larger) pro-
cessing time than the same task (job) started earlier. Tasks (jobs) with time-
dependent processing times of this type are called deteriorating tasks (jobs). The 
second direction deals with task (job) shortening, where task (job) processing 
times are non-increasing (or decreasing) functions of the task (job) starting times. 
Then, the processing times shorten in time, i.e. the processing time of a task (job) 
becomes not larger (shorter) if it is started later. Tasks (jobs) with time-
dependent processing times of this type are called shortening tasks (jobs).  

Analytical apparatus of time-dependent scheduling is diversified. On one 
hand, the vast of time-dependent scheduling problems can be solved using solu-
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tion methods applied in classical scheduling theory (cf. Chapters 2 and 3). Proofs 
by a pairwise task interchange argument, mathematical induction and by a con-
tradiction are the most common. On the other hand, time-dependent scheduling 
problems may need other approaches such as priority-generating functions 
[SR17, TGS94], signatures [GKP02, GKP06a], matrix approach [Gaw08], solu-
tion methods for multiplicative problems [NBCK10], properties of mutually  
related scheduling problems [GK14, GKP09a, GKP09b], new methods of prov-
ing NP-completeness [CSN16] or composition operator properties [KMS17].  

In this chapter, mainly scheduling problems with deteriorating tasks, as the 
most popular, are reviewed. We are focused on time complexity, solution meth-
ods and mutual relations between the problems. No special attention is paid to 
the construction or analysis of algorithms, since the algorithms are constructed 
and analyzed in the same way as in classical scheduling (cf. Chapter 2). As in the 
whole of the handbook, we consider only deterministic methods and algorithms.

12.2 Forms of Time-Dependent Processing Times 

In this section, we formally define time-dependent task (job) processing times.  

12.2.1  General Forms 

The general form of time-dependent processing times depends on machine envi-
ronment. In time-dependent parallel machine scheduling problems, the pro-
cessing time pj  of the jth task is a function of the starting time Sj of the task,  

pj(Sj) = g j(Sj) , (12.2.1) 

where gj are arbitrary non-negative functions of Sj � 0 for 1 � j � n.  
In time-dependent dedicated machine scheduling problems, the processing 

time pij  of the ith task of the jth job is in the form of  

pij(Sij) = gij(Sij) , (12.2.2) 

where gij are arbitrary non-negative functions of Sij ≥ 0 for 1� i � ni , 1 � j � n.  
The second way of describing the time-dependent processing time of a task,  

pj(Sj) = aj + fj(Sj) , (12.2.3) 

where constants aj � 0  and functions fj  are arbitrary non-negative functions of 
Sj ≥ 0 for 1 � j � n, is more often encountered than the form (12.2.1). 

Similarly, the form of the time-dependent processing time of a task, 

pij(Sij) = aij + fij(Sij) , (12.2.4) 

where Sij � 0 and fij are arbitrary non-negative functions of Sij � 0 for 1� i � ni 
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and 1 � j � n, is more common than the form (12.2.2). Coefficient aj (aij) is 
called the basic processing time of the jth task (the ith task of the jth job).  

Because the forms (12.2.3) and (12.2.4) of task processing times give us 
more information about the processing time of a task than the forms (12.2.1) and 
(12.2.2), in further considerations we mainly use the functions fj(Sj) and fij(Sij). 

12.2.2  Special Forms 

In the time-dependent scheduling literature mainly a few special forms of time-
dependent task processing times are studied. For simplicity, and to indicate that 
the starting time Sj is the variable on which the processing time pj depends, 
in this section we write pj(t) and fj(t) instead of pj(Sj) and fj(Sj) , respectively. 
Similarly, we write pij(t) and fij(t) instead of pij(Sij) and fij(Sij) , respectively.  

First, we describe the main special forms of the processing times of deterio-
rating tasks. The most simple form of task deterioration is proportional deterio-
ration. In this case, we assume that task processing time pj(t) is in  the form of 

pj(t) = bjt , (12.2.5) 

where bj > 0 for 1 ≤ j ≤ n and t denotes the starting time of the jth task. Coeffi-
cient bj is called the deterioration rate of the jth task, 1 ≤  j ≤ n. In order to avoid 
the case when all proportionally deteriorating task processing times are equal to 
zero, we assume that the starting time of any task t �  t0 > 0. 

Example 12.2.1 Let n = 2, b1 = 2, b2 = 1 and t0 = 1. Then p1(t) = 2t and p2(t) = t. 
Since the processing times p1(t) and p2(t) are strictly increasing functions of the 
task starting times, they deteriorate in time. In view of monotonicity of the pro-
cessing times, an optimal schedule for the instance is a non-delay schedule. 
Hence, we can identify a sequence of task indices and the schedule correspond-
ing to this sequence. In our case, there exist two non-delay schedules, 21 = (1, 2) 
and 22 = (2, 1), such that p1(1) = 2 and p2(3) = 3 in schedule 21, while p2(1) = 2 
and p1(3) = 6 in schedule 22. Notice that Cmax(21) = Cmax(22) = 6.                       

A more general form of task deterioration than proportional is proportional-
linear deterioration, in which task processing time pj(t) is in the form of  

pj(t) = bj (a + bt) , (12.2.6) 

where bj > 0 for 1 ≤  j ≤ n, a ≥ 0, b ≥ 0 and t ≥ t0 ≥ 0. 
 

The next form of task deterioration is linear deterioration. In this case, task 
processing time pj(t) is a linear function of the task starting time, 

pj(t) = aj + bjt , (12.2.7) 
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where aj > 0, bj > 0 for 1 ≤ j ≤ n and t ≥ t0 ≥ 0.  Coefficient aj is called the basic 
processing time of the jth task, 1 ≤  j ≤ n. 

Example 12.2.2 Let n = 2, a1 = 2, b1 = 1, a2 = 3, b2 = 2 and t0 = 0. Then 
p1(t) = 2 + t and p2(t) = 3 + 2t. Hence, p1(0) = 2, p2(2) = 7 in schedule 21, while 
p2(0) = 3, p1(3) = 5 in schedule 22, where schedules 21 and 22 are defined as in 
Example 12.2.1. Notice that Cmax(21) = 9 ≠ Cmax(22) = 8.    

Throughout the chapter, we say that deteriorating tasks have proportional, pro-
portional-linear or linear processing times if the processing times are in the form 
of (12.2.5), (12.2.6) or (12.2.7), respectively. We then call them in short propor-
tional (proportional-linear, linear) or proportionally (proportional-linearly, lin-
early) deteriorating tasks. Otherwise, we say that the tasks have non-linear pro-
cessing times and call them in short non-linearly deteriorating tasks. 

Now, we describe the main special forms of the processing times of shorten-
ing tasks. The simplest form of task processing time shortening is proportional-
linear shortening in which task processing time pj(t) is in the form of 

pj(t) = bj (a � bt) , (12.2.8) 

where a > 0, b > 0, shortening rates bj are rational, and conditions 

0 < bjb < 1  (12.2.9) 

and 

 (12.2.10) 

are satisfied for 1 ≤  j ≤ n and t ≥ t0 ≥ 0. Conditions (12.2.9) and (12.2.10) assure 
that task processing times (12.2.8) are positive in any non-delay schedule. 

Example 12.2.3 Let n = 2, b1 = 
2
3, b2 = 

3
4, a = 2, b = 

1
5 and t0 = 0. Then 

p1(t) = 
2
3 (2 � 

1
5 t) and p2(t) = 

3
4 (2 � 

1
5 t). Hence, p1(0) = 

4
3, p2(

4
3) = 

13
10 in schedule 

21, while p2(0) = 
3
2, p1(

3
2) = 

17
15 in schedule 22, where schedules 21 and 22 are de-

fined as in Examples 12.2.1-12.2.2. Notice that Cmax(21) = Cmax(22) = 
79
30 .   

A special case of proportional-linear shortening is the one when a = 1, i.e. 
when task processing time pj(t) is in the form of 

pj(t) = bj (1 � bt) , (12.2.11) 

where bj > 0 for 1 ≤  j ≤ n, b > 0 and t ≥ t0 ≥ 0. In this case, condition (12.2.10) 

takes the form of  b ( �
i=1

n
  bi � bmin) < 1 , where bmin  = min

1 ≤ j ≤ n
 { bj }. 

b ( �
1

n
 bi � bj) < a 

i=
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The next type of task shortening is linear shortening, in which task pro-
cessing times are in the form of 

pj(t) = aj � bjt , (12.2.12) 

where aj > 0, bj > 0 for 1 ≤  j ≤ n, shortening rates bj are rational, conditions 

0 < bj < 1  (12.2.13) 

and  

b j ( �i=1

 n
  ai � aj) < aj  (12.2.14) 

hold for 1 ≤  j ≤ n and t ≥ t0 ≥ 0. 

Example 12.2.4 Let n = 2, a1 = 2, b1 = 
1
7, a2 = 3, b2 = 

1
5 and t0 = 0. Then 

p1(t) = 2 � 
1
7 t and p2(t) = 3 � 

1
5 t. Hence, p1(0) = 2, p2(2) = 

13
5  in schedule 21, 

while p2(0) = 3, p1(3) = 
11
7  in schedule 22, where schedules 21 and 22 are defined 

as in Examples 12.2.1-12.2.3. Notice that Cmax(21) = 
23
5  ≠ Cmax(22) = 

32
7 .   

In this chapter, we say that shortening tasks have proportional-linear or linear 
processing times if the processing times pj(t) are in the form of (12.2.8) or 
(12.2.12), respectively. We then call them in short proportional-linear (linear) or 
proportional-linearly (linearly) shortening tasks. Otherwise, we say that the 
tasks have non-linear processing times and call them in short non-linearly short-
ening tasks. 

In the next three sections, we review the main time-dependent scheduling 
results. Denoting the considered problems we use the notation introduced in 
Chapter 3, with extensions proposed in [ABG+14, Gaw08], concerning mainly 
the second field of the notation, where the form of task (job) processing times is 
specified. For brevity, we write pj and pij instead of pj(t) and pij(t) , respectively. 
By 2 and b[j] we denote a feasible schedule and deterioration rate of the task 
scheduled in the jth position in a schedule, respectively. We also identify a given 
sequence of deterioration rates and a schedule corresponding to the sequence.  

12.3 One Machine Problems 

In this section, we review the main one machine time-dependent scheduling re-
sults which constitute the major part of time-dependent scheduling literature.   
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12.3.1 Proportionally Deteriorating Processing Times 

Proportional processing times (12.2.5) are very popular in time-dependent 
scheduling and, in many cases, lead to problems solvable in polynomial time.  

Theorem 12.3.1  (a) Problem 1 | pj = bjt | Cmax is solvable in O(n) time and   

Cmax(2) = t0 \j=1

n
(1 + b[j])  (12.3.1) 

does not depend on schedule 2.  

(b) Problem 1 | pj = bjt | Lmax is solvable in O(n log n) time by scheduling tasks in 
non-decreasing order of due dates.  

(c) Problem 1 | pj = bjt, prec | Gmax is solvable in O(n2)  time by scheduling tasks 
using modified Lawler's algorithm.  

(d) Problem 1 | pj = bjt | �C j is solvable in O(n log n) time by scheduling tasks in 
non-decreasing order of deterioration rates and 

�Cj(2) = t0 �j=1

n
 \
k=1

j
(1 + b[k]).  (12.3.2) 

(e) Problem 1 | pj = bjt | �wjCj is solvable in O(n log n) time by scheduling tasks 

in non-decreasing order of  
 bj

wj(1+bj)
  ratios.  

(f) Problem 1| pj = bjt  | �Uj is solvable in O(n log n) time by scheduling tasks 
using modified Hodgson's algorithm. 

Formulae (12.3.1) and (12.3.2) can be proved by mathematical induction. Theo-
rem 12.3.1 (a)-(e) can be proved by a pairwise task interchange argument 
[Mos94] or by using properties of isomorphic scheduling problems [GK14]   
discussed in Section 12.3.7. Modifications of Lawler’s [Law73] and Hodgson’s 
algorithm [Moo68] consist in the replacement of task processing times pj by task 
deterioration rates bj .   

The time complexity of problem 1 | pj = bjt | �Tj is unknown.  

Example 12.3.2 Let n = 3, b1 = 5, b2 = 2, b3 = 1 and t0 = 1. Then p1(t) = 5t, 
p2(t) = 2t and p3(t) = t. There exist 6 non-delay schedules for the instance: 
21 = (1, 2, 3), 22 = (1, 3, 2), 23 = (2, 1, 3), 24 = (2, 3, 1), 25 = (3, 1, 2) and 
26 = (3, 2, 1). All the schedules, by Theorem 12.3.1 (a), have the same 
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Cmax = 36. On the other hand, by Theorem 12.3.1 (d) there exists only one opti-
mal schedule for this instance for the �Cj criterion, 26 , with  �Cj (26) = 44.   

The time complexity and the construction of fully polynomial-time approxima-
tion schemes (FPTASes, cf. Chapter 2.5) for a few one-machine time-dependent 
scheduling problems with proportional tasks, task rejection  [SGK13] and the 
Cmax , �Cj , Lmax and Tmax criteria are considered in [CS09]. The ordinary NP-
hardness of these problems is demonstrated by reductions from the SUBSET 
PRODUCT problem [Joh82]: 

Instance: Finite set Y , a size s(yi) ��IN for each yi � Y  and an integer H. 
Answer: "Yes" if there exists a subset Y ' � Y  such that \

yi �Y '
s(yi) = H.  

 Otherwise "No". 

 Some authors have analyzed the performance of online algorithms 
(cf. Chapter 15) for one machine time-dependent scheduling with proportional 
tasks and non-zero ready times. Following [LZWH12], any online algorithm for 
problem 1 | rj, pj = bjt | �Cj is at least (1 + bmax)-competitive. This result is gener-
alized in [YW13] by showing that for problem 1 | rj, pj = bjt | �Cj

(, where ( > 0 
is a constant, no online algorithm is better than (1 + bmax)(-competitive. 

In [Gaw07, MZW12] it is proved, by reductions from the SUBSET 
PRODUCT problem, that problem 1 | rj, pj = bjt | Lmax is NP-hard in the ordinary 
sense even if there are two distinct ready times. 

There are also results available for one machine problems with proportional 
tasks and non-empty precedence constraints. In [WWJ11] the one machine prob-
lem with proportionally deteriorating tasks is solved by using the approach de-
scribed after Example 12.3.5. The task precedence constraints are in the form of 
a set of m � 2 chains and may be one of two types introduced in [DKD97]. In the 
first type, called strong chain precedence constraints, between tasks of a given 
chain no task from another chain can be inserted. In the second type, called weak 
chain precedence constraints, such insertions are possible. The criterion of opti-

mality is in the form of �i�j wijCij
2, where 1 ≤ i ≤ m, 1 ≤  j ≤ ni and �

i=1

m
 ni = n.  

A model of scheduling with a time-dependent piecewise constant task pro-

scribed in [AGGG17]. For a few one-machine problems with proportional tasks 
polynomial algorithms are proposed. 

12.3.2 Proportional-Linearly Deteriorating Processing Times 

Time-dependent scheduling problems with proportional-linear task processing 
times (12.2.5) are similar to those with proportional processing times (12.3.6). 

cessing rate, similar to scheduling with rate-modifying activities [S 17], is de-R
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Theorem 12.3.3 (a) Problem 1 | pj = bj (a + bt) | Cmax is solvable in O(n) time 
and  

Cmax(2) = (t0 + ab ) \
j=1

n
 (1 + b[j]b) � ab  (12.3.3) 

does not depend on schedule 2.  

(b) Problem 1 | pj = bj (a + bt) | Lmax is solvable in O(n log n) time by scheduling 
tasks in non-decreasing order of due dates.  

(c) Problem 1 | pj = bj (a + bt), prec | Gmax is solvable in O(n2)  time by schedul-
ing tasks using modified Lawler's algorithm.  

(d) Problem 1 | pj = bj (a + bt) | �Cj is solvable in O(n log n) time by scheduling 

tasks in non-decreasing order of  
 bj

1+bjb
  ratios and 

 (12.3.4) 

(e) Problem 1 | pj = bj (a + bt) | �wjCj is solvable in O(n log n) time by schedul-

ing tasks in non-decreasing order of  
 bj

wj (1 + bjb)  ratios.  

(f) Problem 1 | pj = bjt | �Uj is solvable in O(n log n) time by scheduling tasks 
using modified Hodgson's algorithm.  
(g) Problem 1 | pj = bj (a + bt) | �Tj is NP-hard in the ordinary sense, even if 
a = 0 and b = 1. 

Formulae (12.3.3) and (12.3.4) can be proved by mathematical induction. Theo-
rem 12.3.3 (b)-(f) can be proved by a pairwise task interchange argument 
[Kon98] or by using properties of isomorphic scheduling problems [GK14] dis-
cussed in Section 12.3.7. Theorem 12.3.3 (d) follows from Theorem 12.3.3 (e) 
with wj = 1 for 1 ≤  j ≤ n.  Theorem 12.3.3 (g) follows from a result in [DL90].  

The time complexity of problem 1| pj = bj(a + bt)|�Tj is open for a ≠ 0 and b ≠ 1.  

In [MTY16] it is shown that any online algorithm for one machine problem 
1 | rj, pj = bj(a + bt) | � wjCj is at least (1 + sgn(a) + bmaxb)-competitive. 

12.3.3 Proportional-Linearly Shortening Processing Times 

Similar results to those of Theorem 12.3.3 one can obtain for linear-proportional 
shortening task processing times (12.2.8). For example, replacing in (12.3.3) 
coefficients b and a by, respectively, �b and 1 leads to the formula 

�Cj(2) = (t0 + ab ) �
j=1

n
 \

1

j
(1 + b[k]b) � na

b  . 

k=
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Cmax(2) = (t0 � 1b) \
j=1

n
 (1 � b[j]b) + ab  

for problem 1 | pj = bj (1 � bt) | Cmax. Modifying similarly (12.3.4), we obtain that 

for problem 1 | pj = bj (1 � bt) | �Cj .  

12.3.4 Linearly Deteriorating Processing Times 

Unlike time-dependent scheduling problems with proportional or proportional-
linear task processing times, time-dependent scheduling problems with linear 
processing times (12.2.7) are intractable, since only the one machine time-
dependent scheduling problem with the Cmax criterion is easy. 

Theorem 12.3.4 (a) Problem 1 | pj = aj + bjt | Cmax is solvable in O(n log n) time 
by scheduling tasks in non-increasing order of ratios  bj/aj  and 

Cmax(2) = �
i=1

n
 a[i] \

k=i+1

n
(1 + b[k]) + t0\i=1

n
 (1 + b[i]).  (12.3.5) 

(b1) Problem 1 | pj = aj + bjt | Lmax is NP-hard in the ordinary sense, even if there 
is only one ak ≠ 0 for some 1 ≤ k ≤ n, and due dates of all tasks with aj = 0 are 
equal.  

(b2) Problem 1 | pj = aj + bjt | Lmax is NP-hard in the ordinary sense, even if there 
are only two distinct due dates.  

(c) Problem 1 | pj = aj + bjt | Gmax is NP-hard in the ordinary sense.  

(d) Problem 1 | pj = aj + bjt | � wjCj is NP-hard in the ordinary sense.  

(e) Problem 1 | pj = aj + bjt | � Uj is NP-hard in the ordinary sense.  

(f) Problem 1 | pj = aj + bjt | � Tj is NP-hard in the ordinary sense.   

Formula (12.3.5) can be proved by mathematical induction. Theorem 12.3.4 (a) 
is proved by a few authors, who applied a pairwise task interchange argument 
[GG88, Waj86], priority-generating functions [TGS94] and properties of a par-
tial order relation [GP95]. Theorem 12.3.4 (b1) can be proved using a reduction 
from the SUBSET PRODUCT problem [Kon97]. Theorem 12.3.4 (b2) can be 
proved using a reduction from the PARTITION problem [BJ00]. Theorem 12.3.4 

�Cj(2) = ( t0 � ab) �
j=1

n
 \

1

j
(1 � b[k]b) + na

b   
k=
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(c), (e), (f) follow from Theorem 12.3.4 (b). Theorem 12.3.4 (d) can be proved 
using a reduction from the 3-PARTITION problem [BJK02].   

The time complexity of problem 1 | pj = aj + bjt | � Cj for aj � 0 is unknown. 

Example 12.3.5 Let n = 3, a1 = 1, b1 = 3, a2 = 2, b2 = 1, a3 = 3, b3 = 2 and t0 = 0. 
Then p1(t) = 1 + 3t, p2(t) = 2 + t and p3(t) = 3 + 2t.  By Theorem 12.3.4 (a) there 
exists only one optimal schedule for this instance for the Cmax criterion, 22 , with  
Cmax (22) = 14, where 22 is defined as in Example 12.3.2.     

A few generalizations of problem 1 | pj = aj + bjt | Cmax are considered in [RS15], 
where all tasks have the same deterioration rate, while the machine is restored to 
a better state after the completion of a maintenance activity. It has turned out that 
any of the problems can be reduced to a linear assignment problem with a prod-
uct matrix and can be solved in polynomial time.  

There are also known extensions of problem 1 | pj = aj + bjt | Cmax to non-
empty task precedence constraints. In [TGS94, Chapter 3] we learn how to solve 
in polynomial time one machine time-dependent scheduling problems with linear 
tasks, non-empty precedence constraints and the Cmax criterion, applying priori-
ty-generating functions. The main idea is as follows. First, we have to show that 
for a given problem there exists a priority function, assigning to each task a pri-
ority and such that there holds an inequality between the priorities of task se-
quences and the values of criterion function for the sequences. Then, we prove 
that an optimal schedule for the problem can be obtained in O(n log n) time by 
scheduling tasks in non-increasing order of these priorities. In [GPSW08] a few 
one-machine scheduling problems with different forms of linear tasks are solved 
by using priority-generating functions. Similar results, obtained in another way, 
are presented in [Gaw08, Chapter 13], where one machine time-dependent 
scheduling problems with linear tasks, the Cmax criterion and task precedence 
constraints in the form of chains, a tree or a series-parallel digraph are consid-
ered. The problems can be solved in O(n log n) time by scheduling tasks in an 
order of some ratios. In [WNC08] the same approach is applied to a one machine 
time-dependent scheduling problem with series-parallel precedence constraints. 

Problem 1 |  pj = 1 + bj t  | ��Cj  

This special case of problem 1 | pj = aj + bjt | � Cj, when aj = 1 for 1 ≤  j ≤ n,  is 
one of open problems in time-dependent scheduling and for the first time formu-
lated in [Mos91]. The most important property proved there is the V-shape prop-
erty, which states that if a schedule is optimal for the 1 | pj = 1 + bjt | � Cj prob-
lem, then the schedule is V-shaped, i.e. tasks scheduled before (after) the task 
with the smallest deterioration rate are sequenced in non-increasing (non-
decreasing) order of their deterioration rates (slightly another definition of 
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a V-shaped schedule is given in Chapter 4). The V-shape property implies the 
bound O(2n)  on the number of possibly optimal schedules for the latter problem.  

Though problem 1 | pj = 1 + bjt | � Cj is studied for more than 25 years, dur-
ing all these years the bound O(2n)  was considered as the best possible. Recent-
ly, this bound has been improved. Let *j = 1 + b j for all j, and let  

!k(r, q) = �
 j=1

q-k-1
 \

j=i

q-k-1
*j � �

i=q-k+1

q-1
 \
j=q-k+1

i
*j � 1

aq
 �
i=q+1

n
 \
j=q-k+1

i
*j 

and  

]k(r, q) = 1
ar

 �
i=1

r-1
 \

j=i

r+k-1
*j + �

i=r+1

r+q-1
 \

j=i

r+k-1
*j � �

i=r+k+1

n
 \
j=r+k+1

i
*j, 

where 1 ≤ r < q ≤ n, k = 1, 2, …, q � r. 

Theorem 12.3.6 [GK17] Let * = (*1, *2,…, *n) be a sequence of task deteriora-
tion rates corresponding to an optimal schedule for problem 1| pj = 1 + bjt | � Cj . 
Then (a) * is V-shaped and the minimal element of * equals *m, where 1 < m < n, 

(b) there hold inequalities !1(m−1, m+1) = �
j=1

m−1
 \

k=j

m−1
*k � �

i=m+2

n
 \
k=m+2

i
*k ≥ 0  and 

]1(m−1, m+1) = �
j=1

m−2
 \

k=j

m−2
*k � �

i=m+1

n
 \
k=m+1

i
*k ≤ 0 .   

Theorem 12.3.6 implies an improved bound on the number of possibly optimal 
schedules for problem 1 |  pj = 1 + bjt  | � Cj. Given an instance * of this prob-
lem, let VI (*) and VII (*) denote the sets of all schedules which satisfy the V-
shape property and conditions (a), (b) of Theorem 12.3.6. Moreover, let VD (*) 
denote the set of all V-shaped schedules for * such that the index m of the mini-
mal element am belongs to a set D. Finally, let 1 < u < v, where u = 
{*i: i = 1,2,…,n} and v = max {*i: i = 1,2,…,n}. Then the following result, de-

creasing the bound O(2n)  by the O(
1
n) factor, can be proved. 

Theorem 12.3.7 [GK17] Let c(n) = 
2
+n 2n(1 + O(

1
n)). Then  

|VII (*)| ≤ |VD (*)| ≤  (1 + 
log v � log u
log v + log u n) � c(n) 

and, if v is sufficiently close to u, |VD (*)|  ≥  c(n).   

In [GKP02, GKP06a] a greedy algorithm is proposed for problem 1 |  pj = 

 1 + bjt  | � Cj , based on properties of some functions S�(*) and S+(*) of the se-
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quence * = (*1, *2,…, *n) of task deterioration rates for the problem. These func-
tions, called signatures, are defined as follows: 

S�(*) = M(*̄) � M(*) = �
i=1

n
 �
j=1

i
 *j � �

i=1

n
 �
j=i

n
 *j  (12.3.6) 

and 

S+(*) = M(*̄) + M(*),  (12.3.7) 

where *̄ = (*n, *n-1,…, *1) is the sequence of task deterioration rates with re-

versed order of elements compared to *,   and M(*) = 

1 +  �
i=1

n
 �
k=i

n
 *k . 

The basic properties of signatures (12.3.6) and (12.3.7) are summarized in 
the following result, where ((|*|") denotes the sequence composed of subse-
quences (, * and " in that order and B is the product of all *j.  

Lemma 12.3.8 [GKP06a] For a given sequence * and numbers ( > 1, " > 1, 
there hold the following equalities: 
(a) F((|*|") = F(*) + ( M (*̄) + " M(*) + (B",  
(b) F("|*|() = F(*) + " M (*̄) + ( M(*) + (B",  
(c) F((|*|") � F("|*|() = (( � ") S�(*), 
(d) F((|*|") + F("|*|() = (( + ") S+(*) + 2 (F(*) + (B").  

Based on Lemma 12.3.8 we can prove the following result.  

Theorem 12.3.9 [GKP06a] (a) Let there be given sequence * and numbers 
( > 1, " > 1. Then F((|*|") ≤ F("|*|() if and only if (( � ") S�(*) ≤ 0. Moreover, 
there holds a similar equivalence, if in this equivalence we replace the symbol 
' ≤ ' with ' ≥ '.  
(b) Let * = (*1, *2,…, *n ) be ordered non-decreasingly, u = (u1, u2,…, uk-1 ) be 
a V-shaped schedule constructed from the first k�1 elements of *,  ( = *k > 1, 

" = *k+1 > 1, where 1 < k < n, and let ( ≤ ". Then inequality S�(u) ≥ 0 implies 
inequality F((|u|") ≤ F("|u|(). Moreover, there holds a similar implication, if in 
this equivalence symbols ' ≥ ' and ' ≤ ' are exchanged.   

By Theorem 12.3.9 (a) the checking of inequality F((|u|") ≤ F("|u|() can be re-
placed by the checking of inequality (( � ") S�(*) ≤ 0. Theorem 12.3.9 (b), 
in turn, gives us a greedy strategy for finding a near-optimal schedule for the 
problem, based on the behavior of signature S�(&) only.  

Theorem 12.3.9 allows us to formulate an O(n log n) Algorithm 12.3.10 for 
problem 1 | pj = 1 + bjt | � Cj. Given a V-shaped partial schedule u composed of 

F(*) = �
j=1

n
 �
i=1

j
 �
k=i

j
 *k
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the first k ≥ 1 elements of non-decreasingly ordered sequence *, this algorithm 
constructs a new schedule by greedy adding to the previous partial schedule two 
new tasks corresponding to the elements ( = *k > 1 and " = *k+1 > 1 in such a 
way that the order of ( and * indicated by Theorem 12.3.9 (b) is preferred. 

Algorithm 12.3.10  for problem  1 | pj = 1 + bjt | � Cj [GKP02, GKP06c]. 
 begin 
 *[0] := max { *j: 0 ≤  j ≤ n }; 
 Arrange sequence *

^
 � {*[0]} in non-decreasing order;  

          -- *[1] ≤ *[2] ≤ … ≤ *[n] 
     if n is odd then  
  u := (*[1]); 

 for i := 2 to n-1 step 2 do 
  if S�(u) ≤ 0 then u := (*[i+1]|u|*[i]) 
  else u := (*[i]|u|*[i+1]); 

  end; 
else  

  u := (*[1], *[2]); 
  for i := 3 to n-1 step 2 do 
   if S�(u) ≤ 0 then u := (*[i+1]|u|*[i]) 
   else u := (*[i]|u|*[i+1]); 
  end; 
 u := (*[0]|u); 
 end; 
Algorithm 12.3.10 can be simplified for regular sequences *

^
 that are composed 

of consecutive elements of arithmetic, geometric or Fibonacci sequence (see 
[Gaw08, Chapter 10] for details). In such a case the sign of S�(*) varies periodi-
cally and hence we can omit the verification of the sign in if-sentences of both 
for-loops in Algorithm 12.3.10. This, in turn, leads us to a simplified version of 
this algorithm, running in O(n) time. Numerical experiments have shown (cf. 
[Gaw08, Chapter 10]) that both, Algorithm 12.3.10 and its simplified version, 
construct better near-optimal schedules than those constructed by other algo-
rithms (e.g. those proposed in [Mos91]). 

Though the status of the time complexity of problem 1 |  pj = 1 + bjt  | � Cj is 
still open, there are known special cases of this problem solvable in polynomial 
time. In [KO09] it is proved that if all tasks have distinct deterioration rates and 

for any 1 ≤ i ≠ j ≤ n inequality bi > bj implies inequality bi ≥ 
bmin+1

bmin
 bj + 

1
bmin

, then 

problem 1 |  pj = 1 + bjt  | � Cj is solvable in O(n log n) time.  
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Some authors have proposed FPTASes for the problem. For example, for the 
special case of problem 1 |  pj = 1 + bjt  | � Cj, when all task deterioration rates 
are not smaller than a certain u > 0, an FPTAS is proposed  in [Oce10]. 

Problem 1 |  pj = 1 + bj t  |  ||C(b)||p 

A generalization of problem 1 |  pj = 1 + bjt | � Cj , 1 | pj = 1 + bjt |  ||C(b)||p  is 
considered in [GK15] where C(b) denotes the vector of task completion times for 
schedule b. The criterion in the new problem is the lp vector norm || &||p , where 

1 ≤ p ≤ +#. Given x = (x1, x2, …, xn) , norm ||x||p =  ( �
j=1

n
 |xj|

p)1/p if 1 ≤ p < +# and 

||x||p =  max j { |xj|: 1 ≤  j ≤ n }  if p = +#. Applying to the latter problem a matrix 
approach (cf. [Gaw08, Chapter 12]), in which a scheduling problem is formu-
lated as a matrix equation and a schedule for the problem is a solution of the 
equation, one can prove the following result.  

Theorem 12.3.11 [GK15] If A(b)C(b) = d is the matrix equation describing 
schedule b for an instance of problem 1 |  pj = 1 + bjt  | ||C(b)||p , then holds ine-
quality log ||C(b)||p  ≤ 1p log ||C(b)||1 + (1 � 1p) log ||C(b)||# .   

Theorem 12.3.11 says that criterion ||&||p is controlled by norms ||&||1 and ||&||# 
which correspond to criteria �Cj and Cmax, respectively [Gaw08, Chapter 10]. 

In [Mos91] it is proved that for problem 1 |  pj = 1 + bjt  | � Cj does hold the 
symmetry property saying that ||C(b)||1 = ||C(b̄)||1 , where b ¯ denotes sequence b 
with the reversed order of elements. This property does not hold for problem 
1 |  pj = 1 + bjt  | ||C(b)||p with p > 1, except a finite number of values of p. 

Theorem 12.3.12 [GK15] If vectors b ≠ b ¯, then schedules for problem 
1 |  pj = 1 + bjt  | ||C(b)||p are symmetric only for finite number of p ≥ 1 and there 
exists p0 > 1 such that for all p > p0 we have ||C(b)||p ≠ ||C(b ¯)||p .    

A similar result holds for the V-shape property, since now optimal schedules 
may be weakly V-shaped or k-weakly V-shaped, where 0 ≤ k ≤ n (see  [GK15] for 
details). Let p1 , pk , p�(n�k) and p# denote some constants (cf. [GK15]) and let 

b
p
 denote an optimal schedule for problem 1 |  pj = 1 + bjt  | ||C(b)||p.  

Theorem 12.3.13 [GK15] Let b = (b1, b2, …, bn) be a sequence of deterioration 
rates for problem 1 | pj = 1 + bjt | ||C(b)||p such that bi > 1, bi ≠ bj for 1 ≤ i ≠ j ≤ n. 
If for a given k � {1,2,…,n�1} we have pk = p�(n�k) > 1, then  

(a) if 1 ≤ p ≤ p# then b
p
 is weakly V-shaped and the time complexity of the prob-
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lem cannot be less than that of the problem with p = 1;  
(b) if pk ≤ p ≤ p1, then b

p
 is k-weakly V-shaped and the time complexity of the 

problem is O(nk + n log n);  
(c) if p1 < p, then b

p
 is 0-weakly V-shaped and the time complexity of the problem 

is O(n log n).   

Theorems 12.3.11-12.3.13 imply that using index p � [1, +#] of the lp norm, we 
can divide the interval [1, +#] by numbers 1 ≤ p# < p1 < +# in such a way that 
for all p � [p1, +#] the problem has the same time complexity, O(n log n), as the 
l# norm case which is equivalent to minimizing the Cmax criterion, while the one 
with p � [1, p#] is similar to the l1 norm case which is equivalent to minimizing 
the �Cj criterion. These results also show that an optimal schedule for the prob-
lem with p � [1, p#] is weakly V-shaped and that finding it is at least as difficult 
as solving the problem with p = 1. Finally, they allow us to state that for 
p � [p#, p1] the time complexity of problem 1 |  pj = 1 + bjt  |  ||C(b)||p is 
O(nk + n log n), where k � {1, 2, …, n�1} is the number of tasks scheduled after 
the task with deterioration rate bmin . 

12.3.5 Linearly Shortening Processing Times 

Time-dependent scheduling of linearly shortening tasks is less popular research 
topic than time-dependent scheduling of linearly deteriorating tasks. The first        
results concerning shortening tasks are presented in  [HLW93], where the prob-
lem of the existence of a feasible schedule for one machine problem with linearly 
shortening tasks (12.2.12) and non-zero deadlines is considered. The ready times 
of all tasks are equal to zero, task processing times satisfy conditions (12.2.13), 
(12.2.14) and for 1  ≤  j ≤ n there are satisfied inequalities 

bjdj
~  < aj ≤ dj

~  .   (12.3.8) 

      Under the above assumptions there holds the following result, which can be 
proved by reductions from the 3-PARTITION and PARTITION problem. 

Theorem 12.3.14 [HLW93] If aj, bj and dj satisfy conditions (12.2.13), (12.2.14) 

and (12.3.8), then problem 1 |  pj = aj � bjt, dj
~   | �  is  

(a) NP-hard in the strong sense, if there is an arbitrary number of deadlines;  

(b) NP-hard in the ordinary sense, if there are only two distinct deadlines;  
(c) solvable in O(n log n) time by scheduling tasks in non-increasing order of  
aj/bj ratios, if all deadlines are identical.   
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Applying reductions from the 3-PARTITION problem one can also prove that 
problem 1 |  pj = aj � bjt, dj

~   | �  is intractable if bj = b or aj = 1 for 1 ≤  j ≤ n. 

Theorem 12.3.15 (a) [CD99] Problem 1 |  pj = aj � bt, dj
~   | �  is NP-hard in the 

strong sense.  
(b) [CD03] Problem 1 |  pj = 1 � bjt, dj

~   | �  is NP-hard in the strong sense.   

One machine problems with linearly shortening tasks, precedence constraints and 
the Cmax criterion are considered in [GLC11, Wan09]. The authors have pro-
posed polynomial algorithms for precedence constraints in the form of a set of 
chains, a series-parallel digraph [GLC11, Wan09] and a tree [GLC11], using the 
same approach as the one for problem 1 |  pj = aj + bjt  | Cmax . 

12.3.6 Non-Linearly Deteriorating Processing Times 

Relatively little is known about one machine time-dependent scheduling with 
non-linear task processing times. In [MS80]  problem 1 |  pj = aj + f (t)  | Cmax is 
considered, where function f (t)  is differentiable,  

f (t) ≥ 0 for  t ≥ 0,  (12.3.9) 

if  t1 ≤  t2, then f (t1) ≤ f (t2)  (12.3.10) 

and 
df(t)
dt  ≥ 0 for t ≥ 0.   (12.3.11) 

Applying a pairwise task interchange argument one can prove the following re-
sult.  

Theorem 12.3.16 [MS80] If f (t)  satisfies conditions (12.3.9)-(12.3.11), then 
problem 1 |  pj = aj + f (t)  | Cmax is solvable in O(n log n) time by scheduling 
tasks in non-decreasing order of their basic processing times aj.   

A similar result holds for problem 1 |  pj = aj + f (t)  | �Cj , which is solvable in 
O(n log n) time by scheduling tasks in non-decreasing order of aj‘s [Gaw97].  

Several authors have considered one machine time-dependent scheduling 
problems with special forms of non-linearly deteriorating tasks. In [GG88] heu-
ristic algorithms for one machine time-dependent scheduling problem with non-
linearly deteriorating tasks and the Cmax criterion are considered. Tasks have 
quadratic processing times,  pj(t) = aj + bjt + cjt 

2, or polynomial processing 
times, pj(t) = aj + bjt + cjt 

2 + ... + mjt 
m, where aj > 0, bj > 0, …, mj > 0 for 
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1 ≤  j ≤ n. In [Kon98] the time complexity and properties of one machine time-
dependent scheduling problem with the Cmax , Lmax , �wjCj , �Cj and �Uj criteria 
are addressed. The processing times of tasks are in the form of pj(t) = bj_(t), 
where _(t) is a convex or concave function. In [KY07] a few one-machine prob-
lems with special cases of polynomial task processing times, the Cmax and �Cj 
criteria are considered. There it is shown that the problems are polynomially 
solvable by scheduling tasks in non-increasing (or non-decreasing) order of their 
basic processing times. In [KY12] one machine problems with task processing 
times in the form of pj = aj (1 + t)c, c > 0, and the Cmax, �wjCj and �Cj

k criteria 
are considered. There it is shown that the problem with the first criterion is solv-
able in polynomial time. In [WW12] polynomial algorithms for one machine 
problems with more general processing times, pj = bj (a + bt)c with c � 0, and the 
Cmax and �Cj criteria are proposed. In [JS16] the ordinary NP-hardness of the 
problem of minimizing the total discrepancy time for a set of non-linearly deteri-
orating tasks, formulated as one machine time-dependent scheduling problem 
with non-linear task processing times and the Cmax criterion, has been shown by 
a reduction from the NP-complete problem EVEN-ODD PARTITION [Kar72]:  

Instance: Finite set A  of pairs of elements, size s(ai) � IN for each ai � A . 
Answer: "Yes" if there exists a subset A' � A  such that | A' | = | A  |,   
 �

ai �A '
s(ai) = �

ai ��A��A '
s(ai) and A'  contains exactly one element  

 from each pair.   
 Otherwise "No". 

12.3.7 Other One Machine Problems 

The above presented groups of results do not exhaust the list of all research   
directions developed in one machine time-dependent scheduling. Below we   
review a few other such groups, related to new research directions in the area.  

Bi-criteria time-dependent scheduling problems 

In time-dependent scheduling problems usually only a single optimality criterion 
is used. In practice, however, we often have to optimize two criteria simultane-
ously [TB06] what leads us to bi-criteria time-dependent scheduling problems. 

The first approach to bi-criteria time-dependent scheduling is to apply clas-
sic multi-criteria methods. The first paper on this topic, [GKP06c], considers two 
one machine time-dependent scheduling problems called, respectively, TDPS 
and TDBS. In both there are given n + 1 linearly deteriorating tasks with pro-
cessing times in the form of pj = 1 + bjt , 0 ≤  j ≤ n. Let Sn and 2+ denote the set 
of all permutations of sequence (1, 2, …, n) and a schedule in which tasks are 
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ordered according to + � Sn , respectively. Moreover, let *̂ = (*0, *1, …, *n) and 
* = (*1, *2,…, *n), where *j = 1 + bj for j = 0,1,…, n.  

The TDPS problem is to find a Pareto optimal schedule *� with respect to 
the total completion time and the maximum completion time criteria, i.e. to find 

such a schedule *� that the pair (�
j=0

n
Cj(*�), max

0 ≤ j ≤ n
 {Cj(*�)}) of the values of the 

�Cj and Cmax criteria for this schedule is Pareto optimal.  
The TDBS problem is to find a scalar optimal schedule *� for which the 

value of the criterion ||&||(0) is minimal, where the minimum is taken with respect 
to the ordinary relation ≤ and ||&||(0) denotes the convex combination of the �Cj 
and Cmax criteria in the form of  

||C(*̂+)||(0) = 0 �
j=0

n
 Cj(*̂+) + (1 � 0) max

0 ≤ j ≤ n
 { Cj(*̂+)}, 

where C(*̂+) = (C0(*̂+), C1(*̂+), ..., Cn(*̂+)) is the vector of task completion times 

for a given sequence C(*̂+) and 0 � [0,1] is an arbitrary but fixed number.  
The first result to be mentioned is a sufficient condition for *� to be a 

(weakly) Pareto optimal schedule to the TDPS problem.  

Theorem 12.3.17 [GKP06c] (a) A sufficient condition for schedule *� to be 
weakly Pareto optimal for the TDPS problem is that *� is optimal with respect 
to the criterion ||&||(0) , where 0 ≤  0 ≤ 1.  
(b) A sufficient condition for schedule *� to be Pareto optimal for the TDPS 
problem is that *� is optimal with respect to the criterion ||&||(0), where 
0 ≤  0 < 1. In particular, the sequence obtained by the non-increasing ordering 
of  *� is Pareto optimal for the TDPS problem.   

Example 12.3.18 [GKP06c] Let * = (6,3,4,5,2). Then �Cj(*) = 281 and 
Cmax(*) = 173.  By Theorem 12.3.19 we know that each non-increasing sequence 
is Pareto optimal for the TDPS problem. Thus *� =  (6,5,4,3,2) is Pareto optimal 
for this problem, with �Cj(*�) = 261 and Cmax(*�) = 153.     

Let *max = max{*1, *2, …, *n}, *min = min{*1, *2, …, *n} and 

00 = 
*max � 1

*max  n−1 � 1
  (12.3.12) 

and  

01 = 
*min � 1

*min  n−1 � 1
 .  (12.3.13) 
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Theorem 12.3.19 [GKP06c] Let schedule *� =(*�1 , *�2 ,…, *�n ) be optimal with 
respect to the criterion ||&||(0) and let 00 and 01 be defined by formulae (12.3.12) 
and (12.3.13), respectively. Then 0 < 00 ≤ 01 < 1 and there hold the following 
implications:  
(a) if 0 � [0, 00], then *� is non-increasing;  
(b) if 0 � [01,1], then schedule *� is V-shaped and, if  *� contains distinct ele-
ments, then 00 < 01.   

Example 12.3.20 [GKP06c] Let *̂ = (5,3,2,4). Then *min = 2, *max = 4, 00 = 
1
5 

and  01 = 
1
3 . By Theorem 12.3.19, for any 0 � [0, 

1
5] the optimal schedule for the 

TDBS problem is non-increasing, *� = (5,4,3,2), while for any 0 � [
1
5 ,1] the 

optimal schedule for the problem is V-shaped.  

Example 12.3.21 [GKP06c] Let *̂ = (2,3,4,5), ||C(*)||(0) = 
1
7�Cj(*)  + 

6
7Cmax(*). 

Then * = (5, 4, 3, 2), by Theorem 12.3.19, is optimal for || & ||(0) , since 

0 = 
1
7 <  00 = 

1
5 . For the same *̂ and ||C(* )||(0) =  

6
7 �Cj(*) + 

1
7 Cmax(*), any opti-

mal schedule is V-shaped since 0 = 
6
7 >  01 = 

1
3 . There are four V-shaped sched-

ules: (5, 4, 2, 3), (5, 4, 3, 2), (5, 2, 3, 4), (5, 3, 2, 4), the optimal one is (5,4,2,3).    

Theorems 12.3.17 and 12.3.19 are necessary conditions of optimality of a sched-
ule for problems TDPS and TDBS. Also a sufficient condition of optimality of a 
schedule for problem TDBS is proved in [GKP06c]. Let 0T be a constant depend-
ing on sequence * (see [GKP06c, Definition 6]). 

Theorem 12.3.22 [GKP06c] If 0�[0,1], then a sufficient condition for a se-
quence * = (*1, *2,…, *n) to be optimal with respect to the criterion ||&||(0) is that 
* is non-increasing and 0 ≤ 0 ≤ 0T .   

Example 12.3.23 [GKP06c] Let * = (1.5, 1.3, 1.1, 1.2, 1.4). Then we have 
*min = 1.1, *max = 1.4 and 00 = 0.23 < 0T = 0.24 .   

Time-dependent scheduling with mixed task processing times  

Time-dependent processing times of tasks from the same set usually are of the 
same form. In [GL10] a new model of time-dependent scheduling, called mixed 
deterioration is proposed, where task processing times from the same set may be 
functions of distinct forms. Let 1 |  pj �  {aj, n1; bjt, n2; aj + bjt, n3} |  f  denote 
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the one machine scheduling problem with n1 fixed tasks, n2 proportional tasks, n3 
linear tasks and criterion f , and let n = n1 + n2 + n3. 

Theorem 12.3.24 [GL10] (a) Problem 1 |  pj � {aj, n1; bjt, n2; aj + bjt, n3} | Cmax  
is  solvable in O(n log n) time by scheduling linear tasks in non-increasing order 
of bj/aj ratios, next proportional tasks in an arbitrary order and finally fixed 
tasks in an arbitrary order.  

(b) Problem 1 |  pj � {aj,1; bjt, n � 1; aj + bjt, 0} | Lmax is NP-hard in the ordinary 
sense.   

More general problems, with arbitrary precedence constraints and the Gmax crite-
rion, are considered in [DG13], where it is shown that some of the problems can 
be solved in polynomial time by using a modified Lawler's algorithm. In [D14] 
is presented a polynomial algorithm for the one machine time-dependent sched-
uling problem with the Gmax criterion, mixed processing times and precedence 
constraints defined by a graph whose vertices can be partitioned into k � 2  dis-
joint sets such that no two vertices within the same set are adjacent.   

Time-dependent scheduling on a machine with limited availability 

Considering one machine time-dependent scheduling problems we assumed so 
far that machine is continuously available for processing. However, this assump-
tion does not allow us to model scheduling problems in which a maintenance of 
the machine is needed. In such a case there are assumed k � 1 non-availability 
periods [Wi$1,Wi$2], where t0 <  W1$1 and Wi$1 < Wi$2 for 1 ≤ i ≤ k, in which the 
machine is not available for processing (cf. Chapter 11). We denote the existence 
of k � 1 non-availability periods by symbol h1$k in the first field of the three- 
field notation [Gaw08, Section 5.3].   

The existence of machine non-availability period(s) has consequences: since 
the start time of a non-availability period may occur before a task has been com-
pleted, tasks may be non-resumable (resumable). A task is said to be non-
resumable (resumable), if it is interrupted by the start time of the non-availability 
period, and the task must be (does not need to be) restarted after the machine 
becomes available again. Non-resumable (resumble) tasks are denoted in the 
second field of the three-field notation by nres (res) [Gaw08]. Now, we briefly 
review the main time-dependent scheduling results from this area.  

Let 1,h1$k |  pj = bjt , nres  |  f  denote one machine time-dependent schedul-
ing problem with non-resumable proportional tasks, k ≥ 1 non-availability peri-
ods and criterion f. In the first paper on this subject, [WL03], a one machine 
scheduling problem with resumable tasks, proportional processing times, a single 
period of the machine non-availability and the Cmax criterion, that is problem 
1,h1$1 |  pj = bjt, nres  | Cmax, is solved using a mathematical programming ap-
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proach. The next result was proved using reductions from the SUBSET 
PRODUCT problem. 

Theorem 12.3.25 (a) [Gaw05, JHC06] Problem 1,h1$1 |  pj = bjt, nres | Cmax is 
NP-hard in the ordinary sense.  

(b) [JHC06] Problem 1,h1$1 | pj = bjt, nres| �Cj is NP-hard in the ordinary sense.
  

An FPTAS for problem 1,h1$1 | pj = bjt, nres| Cmax is proposed in [JHC06]. The 
time complexity of problem 1,h1$k | pj = bjt, nres| Cmax, where k � 1, is considered 
in [Gaw07]. The problem with resumable tasks is intractable.  

Theorem 12.3.26 [GK10] (a) Problem  1,h1$1 | pj = bjt , res | Cmax is NP-hard in 
the ordinary sense.  

(b) There exists an FPTAS for problem 1,h1$1 | pj = bjt , res | Cmax .  

(c) There does not exist a polynomial approximation algorithm with a constant 
worst-case ratio for problem 1,h1$k | pj = bjt , res | Cmax, k ≥ 2, unless P = NP.   

Theorem 12.3.26 (a) is proved by using a reduction from the SUBSET 
PRODUCT problem. The FPTAS in Theorem 12.3.26 (b) is constructed using an 
approach introduced in [Woe00]. The main idea is as follows.  

First, a dynamic programming Algorithm 12.3.27 for our problem is formu-
lated. This algorithm goes through n phases, where the kth phase of the algo-
rithm, 1 ≤ k ≤ n, generates a set S k  of states. Any state in S k  is a vector 
S  = [t1, t2], encoding a partial schedule for the problem. The sets S 1, S 2, …, S n  
are constructed iteratively, using two functions, F1  and F2 . Next, as an optimal 
schedule we choose the one which corresponds to the minimal value of a func-
tion G(S) . Finally, applying [Woe00, Lemma 6.1, Theorem 2.5], one can prove 
that problem 1,h1$1 |  pj = bjt , res | Cmax is a DP-benevolent problem. This means 
that Algorithm 12.3.27 can be used in design of an FPTAS for the former prob-
lem (we refer the reader to [Woe00] for more details). With the notation  
!1 := W1 � W2, Algorithm 12.3.27 can be formulated as follows. 

 
Algorithm 12.3.27  for problem 1,h1$1 |  pj = bjt , res  | Cmax [GK10]. 
 begin 
 S 0 := {[t0, !1]};  

 7 := t0 �j=1

n
 (1+bj);  

 for k := 1 to n do 
   S k := �;  
   for each S  � S k−1 do 

   F1(bk, t1, t2) := [t1, t2(1+bk)]; 
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   end;  
   for each S  � S n do 
   G(S ) := 7 + t2; 
  return min { G(S ):  S  � S n }  

end; 
 

Proof of Theorem 12.3.26 (c) is made by contradiction: it is shown that the exist-
ence for problem 1,h1$k |  pj = bjt, res | Cmax, k  ≥ 2, an approximation algorithm 
with a constant worst-case ratio would allow to solve the SUBSET PRODUCT 
problem in polynomial time, which is impossible unless P = NP. 

Some approximation algorithms for problem 1,h1$1 |  pj = bjt, nres  | Cmax are 
analyzed in [JHC06]. First we mention a result on the competitive ratio (cf. 
Chapter 15) of online algorithm LS (List Scheduling, [Gra66]) for this problem. 

Theorem 12.3.28 If t0 ≤  W1$1, then algorithm LS is 
W1$1

t0
-competitive for problem 

1,h1$1 |  pj = bjt, nres  |  Cmax.   

The next result in [JHC06] concerns the worst-case ratio of offline algorithm 
LDR (Largest Deterioration Rate first) for problem 1,h1$1| pj = bjt, nres | Cmax. 

Theorem 12.3.29 If 1 + bmin ≤ 
W1$1

t0
, then the worst-case ratio of algorithm LDR 

for problem 1,h1$1 |  pj = bjt, nres  | Cmax equals 1 + bmin and 1 otherwise.     

In [FLZZ11] are given counterparts of Theorems 12.3.25 and 12.3.26 for resum-
able linearly deteriorating tasks and the �Cj criterion. 

Time-dependent two-agent scheduling problems 

The second approach to time-dependent bi-criteria scheduling is based on the 
observation that in considered earlier time-dependent scheduling problems there 
is no competition among the processed tasks. This is a lack from the point of 
view of modern manufacturing systems, where competition is an important issue. 
Hence, during the last few years the problems of multi-agent scheduling (some-
times also called agent scheduling) have gained increasing attentions [ABG+14, 
PGF14]. In the simplest case of multi-agent scheduling, two-agent scheduling, 
the set of tasks is divided between two agents, A and B, possessing their own 
optimality criteria and competing for access to the available machine. The aim is 
to find a schedule which, in a predefined sense, satisfies both the agents.  

   if t1(1+bk) < W1 then F2(bk, t1, t2) := [t1(1+bk), t2] ; 
S k :=  S k � { F1(bk, t1, t2) } � { F2(bk, t1, t2) } ;  

     end; 
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Multi-agent scheduling problems originated in [BS03] and [AMPP04], 
where several two-agent scheduling problems with fixed task (job) processing 
times are considered. Growing interest to such problems resulted in the appear-
ance of time-dependent multi-agent scheduling problems which now we review. 

The first paper on time-dependent multi-agent scheduling, [LT08], has con-
sidered one machine two-agent scheduling problem with proportional tasks and 
the Cmax and Lmax criteria, denoted in the extended three-field notation 
[ABG+14] as 1 | CO, pj = bjt, Cmax

B  ≤ Q | Lmax
A  . Similar results, for one machine 

time-dependent scheduling with proportional tasks and setups, are presented in 
[LTZ10]. Since time-dependent scheduling problems with proportional tasks 
have a similar nature to their counterparts with fixed tasks [AMPP04] 
(cf. remarks after Theorem 12.3.32), both are solvable in polynomial time and 
have similar properties. A branch-and-bound algorithm for problem 
1| CO, pj = aj + bt, �U j

 B
 = 0 | �wj

A
Cj

A
 is proposed in [LWSW10]. A few polyno-

mial algorithms for one machine two-agent time-dependent scheduling problems 
with proportional-linear tasks are presented in [LYZ11]. In [GLLW11] a one 
machine two-agent time-dependent scheduling problem with proportional tasks 
and the objective to minimize the total tardiness of the first agent, provided that 
no tardy job is allowed for the second agent, is solved exactly by a branch-and-
bound algorithm and heuristically by an evolutionary algorithm. Problem 
1 | CO, pj = bj(1�bt) |  fmax

A
 , fmax

B
 is discussed in [YCW12], while problem 

1 | CO, pj = aj + bjt | �wj
A
 C j

A
 + ` Lmax

B
 is examined in [GS14].  

Theorem 12.3.30 [GS14] Problem 1 | CO, pj = aj + bjt  | �wj
A
C j

A
 + ` Lmax

B
  is NP-

hard in the ordinary sense, even if ` = 1 and agent B has only two tasks.  

The proof of Theorem 12.3.30 uses a reduction from the following NP-complete 
EQUAL PRODUCTS problem [GJ79]: 

Instance: Finite set Y , a size s(yj) � IN for each yj � Y . 
Answer: "Yes" if there exists a subset Y ' � Y  such that  

 \
j �Y '

 s(yj) = \
j���Y − Y '

 s(y j). 

            Otherwise "No". 

In [YC+15] the results of [LYZ11] are extended to other combinations of 
the two agents’ objective functions. In [HL17] is considered one machine two-
agent time-dependent scheduling problem with proportional-linear tasks. Similar 
problems, but with non-zero ready times of tasks, are addressed in [TZLL17]. 

There exist time-dependent scheduling problems which have properties  
similar to their counterparts with fixed task processing times. This similarity can 
be explained using the notion of mutually related scheduling problems. We com-
plete this section by a brief review of three groups of such scheduling problems. 
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Equivalent time-dependent scheduling problems 

Some of the problems mentioned in Theorems 12.3.2, 12.3.5 and 12.3.6 are 
closely related [CD98, CD00, CDL04, GKP06c]. For example, problems 
1 |  pj = aj + bjt | Cmax and 1 |  pj = bjt  | �Cj are related, since by assuming in for-
mula (12.3.6) that t0 = 0 and a[i] = 1 for 1 ≤ i ≤ n, we obtain formula (12.3.2) with 
t0 = 1. This fact is explained in [GKP09a]. The main idea is as follows. 

First, applying the matrix approach [GKP02, GKP06c], we define a trans-
formation between pairs of time-dependent scheduling problems. Next, based on 
some properties of this transformation, we introduce the class of equivalent time-
dependent scheduling problems. This class is composed of pairs of time-
dependent scheduling problems, called initial problem and transformed problem, 
which have different linear task processing times and use different criteria but 
are strictly related. The transformation changes the form of task processing times 
and task weights in the initial problem, generating the transformed problem with 
new task processing times and weights. Both the problems are strictly related and 
a schedule is optimal for the initial problem if and only if the schedule construct-
ed by this transformation is optimal for the transformed problem.  

Theorem 12.3.31 [GKP09a] Let *j = 1 + bj  for 1 ≤ j ≤ n. Then the following 
time-dependent scheduling problems are equivalent:  
(a) 1 | pj = bjt | �*jCj and 1 |  pj = bjt (1 + t) | Cmax ,  
(b) 1 |  pj = aj + bt | �Cj and 1  |  pj = 1 + bt | �ajCj ,  
(c) 1 | pj = bjt | �ajCj and 1 |  pj = aj + bt | Cmax .   

Conjugate time-dependent scheduling problems  

In [CD98] a symmetry is indicated between one machine time-dependent sched-
uling problems with linearly deteriorating tasks and corresponding problems 
with linearly shortening tasks: a given schedule for the first problem can be used 
for the construction of a schedule for the latter problem. The explanation of this 
phenomenon is given in [GKP09b] and resulted in introducing the second class 
of mutually related scheduling problems. The main idea is as follows. 

First, in [GKP09b] is introduced a conjugacy formula that relates the values 
of objectives for two problems mutually related as above. Next, using the formu-
la, a new class of mutually related time-dependent scheduling problems, called 
conjugate problems, has been defined. This class also is composed of pairs of 
time-dependent scheduling problems but they have other properties than the ear-
lier discussed equivalent time-dependent scheduling problems. 

The first problem in a pair of conjugate problems, called the initial problem, 
is a time-dependent scheduling problem with linear tasks and the �wjCj criterion. 
The second problem in the pair, called the conjugate problem, is obtained from 
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the initial problem by a transformation that differs from the one for equivalent 
problems. Both the problems are related by the conjugacy formula.  

Theorem 12.3.32 [GKP09b] Problems 1 | pj = aj � *jt | �wjCj , where *j = 
bj

1 + bj
 , 

and  1 |  pj = wj + bjt  |  �ajCj , where aj > �1, are conjugated   

Isomorphic scheduling problems 

Equivalent problems and conjugate problems are not the only classes of mutually 
related scheduling problems. The third class of such problems, called  isomor-
phic scheduling problems, was defined in [GK14]. This class is also composed of 
pairs of scheduling problems but only the first problem in a pair is a classic 
scheduling problem with fixed task processing times, while the second one is its 
time-dependent counterpart with proportional-linear processing times.  

Formally, the new class is defined as follows [GK14]. First, a generic 
scheduling problem with fixed processing times, GP | | Cmax , is defined. In view 
of its generality, this problem includes many one, parallel and dedicated machine 
scheduling problems. Next, isomorphic problems are defined by a one-to-one 
transformation of instances of the generic problem into instances of time-
dependent scheduling problems with proportional-linear processing times.  

The above transformation is based on the notion of (",`)-reducibility, a gen-
eralization of a similar notion introduced in [Kon96]. Speaking very broadly, two 
scheduling problems are isomorphic, if one of them is a classic scheduling prob-
lem with fixed processing times, while the second one is a time-dependent coun-
terpart of the problem with linear-proportional processing times, obtained from 
the first one by functions " and ` in such a way that certain conditions hold for 
arbitrary, corresponding each to other, instances of these two problems.  

Theorem 12.3.33 [GK14] Problem GP | | Cmax is (",`)-reducible to problem 

GP  |  pj = bj (a + bt)  | Cmax with " = ` = 2x � 
a
b  

 
Theorem 12.3.33 gives us a strong tool for proving the polynomial-time solvabil-
ity of certain time-dependent scheduling problems. For example, using this result 
one can prove some cases of Theorems 12.3.1 and 12.3.3 or to show that prob-
lem 1 | rj, pj = bj (a + bt) | Cmax is solvable in O(n log n) time by scheduling tasks 
in non-decreasing order of ready times rj [GK14]. We refer the reader to [GK14, 
Section 6] for other examples of such proofs. 

Problems constituting a pair of isomorphic problems have similar properties. 
In [GK14] some properties of isomorphic scheduling problems were proved that 
show how to convert polynomial algorithms for scheduling problems with fixed 
processing times into polynomial algorithms for their proportional-linear coun-
terparts. Before presenting the next result, we introduce two new notions.  
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Parameters of a scheduling problem related to time (e.g. processing times, 
release dates) are time parameters. A scheduling algorithm is a time-independent 
scheduling algorithm, if its running time does not depend on time parameters. 
Let A be an algorithm for a scheduling problem with fixed processing times and 
let A ¯ be a time-dependent counterpart of A in which fixed processing times are 
replaced by time-dependent proportional-linear processing times. 

Theorem 12.3.34 [GK14] Let scheduling algorithm A generate an optimal 
schedule for any instance of problem GP | | Cmax. Then scheduling algorithm A ¯ 
generates an optimal schedule for any instance of problem 
GP | pj = bj (a + bt) | Cmax . Moreover, if algorithm A is time-independent and 
runs in O(f(n)) time, then algorithm A ¯ runs in O(f(n) + n) time, where n is the 
number of tasks (jobs).     

This result completes our review of one machine time-dependent scheduling. For 
more details we refer the reader to the following references. Review of one    
machine time-dependent scheduling [Gaw96] presents the subject jointly with 
discrete-continuous scheduling, in which for the completion of tasks (jobs) are 
necessary both discrete resources  (e.g. processors or machines) and continuous 
resources (e.g. energy or power). Two other reviews on time-dependent schedul-
ing one can find in [AW99] and [CDL04]: the first is focused on one machine 
problems, while the other discusses one, parallel and dedicated machine prob-
lems. The only monograph on time-dependent scheduling is [Gaw08], Chapter 6 
of this book includes a detailed discussion of one machine problems. Monograph 
[ABG+14] is focused on multi-agent scheduling problems with fixed processing 
times, its Chapter 6 includes a brief discussion of one machine time-dependent 
agent scheduling problems. One machine time-dependent scheduling problems 
are also discussed in Chapters 8 and 9 of monograph [SR17], devoted to schedul-
ing problems with rate-modifying activities.  

12.4 Parallel Machine Problems 

Parallel machine time-dependent scheduling problems are scarcely investigated, 
as compared to the problems with proportionally deteriorating tasks. Most of the 
parallel machine problems turn out to be intractable. 

12.4.1 Proportionally Deteriorating Processing Times 

The first considered problem of this group is a two-machine time-dependent 
scheduling problem with proportional tasks and the Cmax criterion. 
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Theorem 12.4.1 [Kon97, Mos98] Problem P2 | pj = bjt  | Cmax is NP-hard in the 
ordinary sense. 

The proof of Theorem 12.4.1 uses a reduction from the SUBSET PRODUCT 
problem [Kon97] or the EQUAL PRODUCTS problem [Mos98].    

If the number of machines is variable, the problem is harder.  

Theorem 12.4.2 [Kon96] Problem P |  pj = bjt  | Cmax is NP-hard in the strong 
sense.    

In proof of Theorem 12.4.2 (the proof is also repeated in [JC09]) there is used a 
reduction from the following 4-PRODUCT problem [Kon96]: 

Instance: Positive rational number D � | Q+, finite set U  = {1,2,…,4p} ,  

Answer: "Yes" if there exist disjoint subsets U 1, U 2, …, U p such that 
U1 � U 2 � … � U p = U   and �

i� U j
 s(ui) = D for 1 ≤ j ≤ p. 

Otherwise "No". 
 

Several authors analyzed the performance of approximation algorithms for 
scheduling proportional tasks on parallel identical machines. All these algorithms 
are modified versions of approximation algorithms for classic scheduling prob-
lems, in which fixed task processing times are replaced by task deterioration 
rates. Let f (A) and f (OPT) denote the value of criterion  f for a schedule genera-
ted by algorithm A and the value of f for an optimal schedule, respectively. 

In [HB97] is estimated the worst-case ratio (cf. Chapter 15) of algorithm 
LDR (cf. Section 12.3.7) for problem Pm |  pj = bjt  | Cmax. The LDR algorithm is 
a modified version of algorithm LPT (Longest Processing Time first, [Gra69]), 
where tasks are rearranged in non-increasing order of deterioration rates, and 
then algorithm LS (cf. Section 12.3.7) is applied.  

Theorem 12.4.3 For algorithm LDR applied to problem Pm |  pj = bjt  | Cmax 

there holds inequality 
Cmax(LDR)
 Cmax(OPT) ≤ (1+b[k])

m �1
m (1+ b[n])

� 
[n] � [k]

m  , where [n] and 

[k] denote the index of the bmin rate and the index of the last completed task, re-
spectively.   

Theorem 12.4.3 shows that the worst-case ratio of algorithm LDR is not bounded 
by a constant, if task deterioration rates are arbitrary. In [CS07] is analyzed the 
performance of algorithm LS with bounded task deterioration rates.   

a size D�<�saui 3�<� D� for each i ��U  . 
5 3
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Theorem 12.4.4 (a) If t0 = 1 and bj � (0,1], then for algorithm LS applied to 

problem P2  |  pj = bjt  | Cmax there holds the inequality 
Cmax(LS)

 Cmax(OPT) ≤ 2. 

(b) If t0 = 1 and bj � (0,(], where 0 < ( ≤ 1, then for algorithm LS applied to 

problem Pm  |  pj = bjt  | Cmax there holds the inequality 
Cmax(LS)

 Cmax(OPT) ≤ 2
m−1

m  .   

Results similar to those of Theorem 12.4.4 are presented in [CWH09]. 

Theorem 12.4.5 If t0 = 1, then for algorithms LS and LDR applied to problem 
Pm  |  pj = bjt  | Cmax there hold the following two inequalities: 

log Cmax(LS)
log Cmax(OPT) ≤ 2 � 1

m 

and 

 
log Cmax(LDR)
log Cmax(OPT) ≤ 43 � 1

3m .   

The performance of a semi-online version of LS was analyzed in [CS09].  

Theorem 12.4.6 If t0 = 1 and only the maximum deterioration rate bmax is 
known, then the semi-online version of algorithm LS applied to problem 

Pm  |  pj = bjt  | Cmax  is  (1+bmax)
m�1

m -competitive.    

The offline version of Theorem 12.4.6, where all task deterioration rates are 
known, is discussed in [LZXW11]. A generalization of Theorem 12.4.4 for the 
case rj � 0 can be found in [YOWX12]. 

Theorem 12.4.7 (a) For problem P2  |  rj, pj = bjt  | Cmax no online algorithm is 
better than (1+bmax)-competitive.  

(b) For problem Pm  |  rj, pj = bjt  | Cmax algorithm LS is (1+bmax)
2(

m�1
 m )

-
competitive.   
In [YOWX12] Theorem 12.3.28 has been generalized to the case of two machi-
nes and a single non-availability period on one of the machines. 

Theorem 12.4.8 For problem P2, h1$1  |  pj = bjt, nres | Cmax no online algorithm 

is better than (max {
W1$1
 t0

, 1 + bmax})-competitive.   
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Theorem 12.4.5 suggests that there exists a relation between the worst-case   
performance of approximation algorithms for scheduling problems with fixed 
task processing times and of their time-dependent counterparts with proportional 
tasks. This relation is established in [GK14], where the relationship of approxi-
mation algorithms for isomorphic scheduling problems was analyzed (see the 
end of Section 12.3.7). Before we present this result, we introduce a new nota-
tion. Let A ¯ denote a time-dependent counterpart of a given algorithm A, where 
fixed processing times are replaced by proportional-linear processing times. 
Then, there holds the following result, including a formula which generalizes the 
formulae given in Theorem 12.4.5.  

Theorem 12.4.9 [GK14] Let A be an approximation algorithm for problem 

GP | | Cmax such that  
Cmax(A)

Cmax(OPT) ≤ rH  <  +#. Then for the approximation algo-

rithm A ¯ for problem GP | pj = bj(a + bt) | Cmax there holds the equality      

log (Cmax(A) + 
a
b)

 log (Cmax(OPT) + 
a
b)

 = 
Cmax(A)

 Cmax(OPT) .   

Theorems 12.4.5 and 12.4.9 show that the ratio 
log Cmax(A)

log Cmax(OPT) for A = LS or 

A = LDR is bounded. However, the ratio 
Cmax(A)

 Cmax(OPT)  may be unbounded. 

Example 12.4.10 [Gaw97] Consider the following instance of problem 
P2 | pj = bjt | Cmax, where p1 = p2 = Kt, p3 = K2t  for some constant K > 0. 
Let both machines start to work at time t0 > 0. Then for K � +# we have 

Cmax(LS)
 Cmax(OPT) = 

K2 + 1
 K + 1 � +# .   

Example 12.4.10 shows that for unbounded task deterioration rates algorithm LS 
may generate arbitrarily bad schedules. A similar example for algorithm LDR 
is presented in [Mos02]. 

Some authors have considered parallel machine time-dependent scheduling 
problems with task rejection. In [LY10] are proposed FPTASes for proportional 
tasks and criterion Cmax or �Cj plus total rejection cost and an O(n2) algorithm 
for criterion �Cmax

(k)   plus total rejection cost. 
Parallel machine time-dependent scheduling problems have also been  

considered using game theory concepts. Problem Pm | pj = bjt | Cmax is formulat-
ed as a non-cooperative game in [LLL14], where the players are task owners, the 
strategies are machines and the utility of a player is inversely proportional to the 
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maximum completion time of the last task assigned to the machine selected by 
the player. A J(n log n)  algorithm is proposed for this game by constructing 
a schedule which converges to a Nash equilibrium2 in a linear number of rounds. 
Also investigated is a game-theoretic counterpart of Theorem 12.4.7, saying that 
the price of anarchy of the algorithm, i.e. the ratio between the worst possible 
Nash equilibrium maximum completion time and the optimal maximum comple-

tion time [KP09], equals (1+bmax)
m�1

m  [LLL14]. In [CLTY17] are considered par-
allel machine time-dependent scheduling problems with proportional tasks, the 
Cmax , �Cj and the total machine load �Cmax

(k)  criteria. These problems are formu-
lated as scheduling games with proportional selfish tasks that wish to minimize 
their completion times when choosing a machine on which they will be pro-
cessed. The machines are equipped with coordination mechanisms, which help to 
avoid the chaos caused by competition among tasks. Each machine examines all 
deterioration rates of tasks assigned to the machine and determines the task pro-
cessing order, according to a scheduling policy which is the same for all ma-
chines. Similar parametric bounds on the price of anarchy as those given in 
[LLL14] are obtained for three scheduling policies, the SDR (Smallest Deteriora-
tion Rate first), LDR (cf. Section 12.3.7) and MS (MakeSpan). 

By applying reductions from the SUBSET PRODUCT or 4-PRODUCT 
problems one can prove the intractability of parallel machine scheduling of pro-
portional tasks with the �Cj criterion.  

Theorem 12.4.11 (a) [Che96, Kon97] Problem P2 | pj = bjt | �Cj is NP-hard in 
the ordinary sense.  
(b) [JC09] Problem P | pj = bjt | �Cj is NP-hard in the strong sense.   

In [Che96] is analyzed the worst-case performance of algorithm SDR for prob-
lem P2 | pj = bjt | �Cj, in which first all tasks are rearranged in non-decreasing 
order of their deterioration rates bj and next, as long as there are tasks to sched-
ule, the first available task is assigned to the first available machine.  

Theorem 12.4.12 For algorithm SDR applied to problem P2 | pj = bjt | �Cj there 

holds the inequality 
�Cj(SDR)
 �Cj(OPT) ≤ max { 

1+bn
1+b1

, 2
n-1 + 

(1+b1) (1+bn )
 1+b2

}.    

Similarly to algorithm LS (cf. Example 12.3.10), in [Che96] there is given an 
example showing that schedules constructed by SDR may be arbitrarily bad. It is 

                                                 
 
2 Nash equilibrium is a strategy vector such that every player cannot further increase its util-

ity by choosing a different strategy, while the strategies of other players are fixed.  In terms of 
scheduling theory it means that a schedule is a Nash equilibrium if no task in the schedule can 
reduce its cost by moving to another machine [KP09]. 
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further proved that for problem P2 | pj = bjt | �Cj there does not exist a polyno-
mial approximation algorithm with a constant worst-case ratio, since its exist-
ence would imply the existence of a pseudo-polynomial algorithm for the strong-
ly NP-hard 3-PARTITION problem what is impossible unless P = NP.   

An FPTAS for problem Pm | pj = bjt | �Cj is proposed in [JC08]. The FPTAS 
is based on the following scheme introduced earlier in [KK98]. First, some auxil-
iary variables, a set of vectors and some problem-specific functions of the vec-
tors are defined. Next, iteratively one constructs a sequence of sets 
Y1, Y2, …, Yn�1 satisfying some conditions. In each iteration, set Yj is partitioned 
into subsets in such a way that for any two vectors from the same subset the val-
ues of some defined earlier functions are close enough. After that from each such 
subset only the solution with the minimal value of an earlier defined function is 
chosen and used in the next iteration, while all remaining solutions are discarded. 
The final solution is a vector from the last constructed set, Yn�1.  

Based on the above scheme, in [JC09] are proposed FPTASes for problems  
Pm | pj = bjt | Cmax and Pm | pj = bjt | �Cj, while in [ZT14] such an FPTAS is pro-
posed for problem Pm | pj = bjt, nres | �wjCj . 

12.4.2 Linearly Deteriorating Processing Times 

The parallel machine time-dependent scheduling problem Pm | pj = d + bjt | �Cj 
is considered in [GKP04, GKP06b], where some of its properties are proved and 
a heuristic algorithm for the problem is proposed. In [TG10] a parallel machine 
early/tardy task scheduling problem with task processing times in the form of 
pj = aj + bt is solved by using a mathematical programming approach. 

12.4.3 Non-Linearly Deteriorating Processing Times 

Relatively little is known about multi-machine time-dependent scheduling with 
non-linear task processing times. There is known, however, the following result. 

Theorem 12.4.13 [Gaw97] If b(t) is an arbitrary increasing function satisfying 
condition (12.3.10), then problem Pm | pj = aj + b(t) | �Cj is solvable in 
O(n log n) time by scheduling tasks using the SDR algorithm.   

A special case of Theorem 12.4.13, b(t) = bt, is considered in [KY08]. In 
[KHY09] the latter form of task processing times is applied to a parallel unrelat-
ed machine problem. In [TG10] can be found a mathematical programming ap-
proach to a parallel machine early/tardy task scheduling problem with task pro-
cessing times in the form of pj = aj + btc, where c > 0.  
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This result completes our review of parallel-machine time-dependent sched-
uling. A brief review of that part of time-dependent scheduling gives [CDL04], 
more details one can find in [Gaw08, Chapter 7]. Some parallel-machine time-
dependent scheduling problems are also considered in [SR17, Chapter 11].  

12.5 Dedicated Machine Problems 

In this section, we review the main results of time-dependent scheduling on   
dedicated machines. 

12.5.1 Proportionally Deteriorating Processing Times 

Unlike parallel machine time-dependent scheduling problems with proportional 
task processing times (12.2.5), some time-dependent shop scheduling problems 
with this type of job processing times are solvable in polynomial time. The first 
such example is the two-machine time-dependent flow shop problem.  

Theorem 12.5.1 [Kon96, Mos02] Problem F2 | pij = bijt | Cmax is solvable in 
O(n log n) time by scheduling jobs using modified Johnson's algorithm.  

The proof of Theorem 12.5.1 in [Kon96] uses the notion of isomorphic problems 
(cf. Section 12.3.7), while in the proof in [Mos02] first a few schedules in which 
jobs are scheduled in another order than the one generated by modified Johnson's 
algorithm [Joh54] are constructed and next one shows that so constructed sched-
ules cannot be optimal.  

Example 12.5.2 Let us consider an instance of problem F2 | pij = bijt | Cmax in 
which n = 3, b11 = 2, b12 = 3, b21 = 3, b22 = 1, b31 = 4, b32 = 4 and t0 = 1. Then 
modified Johnson’s algorithm generates schedule (1, 3, 2).      

A few authors considered different variants of the two-machine time-dependent 
flow shop. In [ZT12] a two-machine flow shop with dependent proportional jobs 
and the Cmax criterion is addressed. Job precedence constraints are in the form of 
a set of chains and may be one of following two types: In the first type, job Jj 
preceding job Jk means that Jk cannot start on a machine before Jj is completed 
on this machine. In job precedence constraints of the second type, job Jk cannot 
start on a machine before job Jj is completed on another machine. It is claimed 
that the problem can be solved in polynomial-time for the first type precedence 
constraints, while it is NP-hard in the strong sense for the second type of prece-
dence constraints. Proof of this latter result uses a reduction from the 4-
PRODUCT problem. In [CTSZ14] the hierarchical scheduling of two-machine 



    12  Time-Dependent Scheduling 

 

464 

flow shop with proportional jobs and the objective to minimize the �Cj criterion 
subject to minimum of the Cmax criterion is addressed. Some properties of the 
problem are established, and a mixed integer programming formulation and a 
branch-and-bound algorithm are proposed. In [CTSZ15] a similar approach was 
applied to the two-machine time-dependent flow shop problem with the weighted 
sum of criteria Cmax and �Cj . 

The flow shop problem with proportional jobs on m ≥ 3 machines is intrac-
table and hard to approximate, even if some deterioration rates are equal. 

Theorem 12.5.3 (a) [Kon96] Problem F3 | pij = bijt | Cmax is NP-hard in the 
strong sense.  

(b) [KG01] For problem F3 | pij = bijt , b1j =  b3j = b | Cmax does not exist a poly-
nomial-time approximation algorithm with the worst-case ratio bounded by a 
constant, unless P = NP. 

The proof of Theorem 12.5.3 (a) uses a reduction from the 4-PRODUCT prob-
lem [Kon96] (independently, in [Mos02] the ordinary NP-hardness of the prob-
lem was verified by a reduction from the EQUAL PRODUCTS problem). Theo-
rem 12.5.3 (b) is proved [KG01] by showing that the existence of a polynomial-
time approximation algorithm for considered problem leads to a contradiction 
(cf. Section 12.3.2).    

A few authors have considered other variants of time-dependent flow shop prob-

machine flow shop on no-idle dominant machines with linear jobs in the form of 
pij = aij + bt  and the Cmax criterion. Similar cases of the three-machine flow shop 
with proportional jobs, dominating machines3 and the Cmax criterion are consid-
ered in [JK+17, Wan10, WSSW10, WW13].  

The results mentioned above show that time-dependent flow shops have 
similar properties to their counterparts with fixed job processing times. The same 
phenomenon can be observed in the case of time-dependent open shops. For  
example, in [Mos02] it is proved that the value of Cmax for any schedule 2 for 
problem O2 | pij = bijt | Cmax satisfies the inequality  

Cmax
� (2) ≥ { �

j=1

n
 (1 + b1j), �j=1

 
n

 (1 + b2j), max
1 ≤ j ≤ n

 { (1 + b1j)(1 + b2j)}}, 

which is a counterpart of the inequality for problem O2 | | Cmax [Pin16], 

Cmax
� (2) ≥ { �

j=1

n
 p1j , �j=1

 
n

 p2j , max
1 ≤ j ≤ n

 {  p1j + p2j}}. 

                                                 
 
3 In classical scheduling theory machine Mr dominates machine Ms in a flow shop with 

dominating machines [HG95] if max { prj: 1 ≤ j ≤ n } ≤ min { psj: 1 ≤ j ≤ n }, in time-dependent 
flow shop scheduling with dominant machines [CSH07] definition is similar but job processing 
times are replaced by job deterioration rates. 

lems. In [CSH07, SSCW10, SSWW12] are considered a few cases of multi-
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The two-machine open shop problem with proportional jobs can be solved in 
polynomial time by using the modified algorithm for problem O2 | | Cmax . 

Theorem 12.5.4 [Kon96, Mos02] Problem O2 | pij = bijt | Cmax is solvable in 
O(n) time by scheduling jobs using a modified Gonzalez-Sahni algorithm. 

The proof of Theorem 12.5.4 in [Kon96] uses the notion of isomorphic prob-
lems (cf. Section 12.3.7). The proof in [Mos02] analyses possible types of 
schedules generated by a modified Gonzalez-Sahni algorithm [GS76] and shows 
that each of them is optimal.    

Example 12.5.5 Let us consider the data from Example 12.5.2 as an instance of 
problem O2 | pij = bijt | Cmax . The modified Gonzalez-Sahni algorithm generates 
the schedule (1, 2, 3; 3, 1, 2) in which on the first machine jobs are scheduled in 
the order (1, 2, 3), while on the second machine the jobs are in the order (3, 1, 2). 
  
The three-machine time-dependent open shop problem is intractable, even if job 
deterioration rates are restricted. 

Theorem 12.5.6 (a) [Kon96, Mos02, TP11] Problem O3 | pij = bijt | Cmax is NP-
hard in the ordinary sense.  
(b) [KG01] Problem O3 | pij = bijt, b3j = b| Cmax is NP-hard in the ordinary sense.   

The proof of part (a) uses a reduction from the SUBSET PRODUCT problem 
[Kon96] or the EQUAL PRODUCTS problem [Mos02, TP11]. The proof of 
part (b) uses a reduction from the SUBSET PRODUCT [KG01], where it is also 
stated the conjecture that the two-machine job shop with proportional jobs is 
intractable. This conjecture is proved in [Mos02] by a reduction from the 
EQUAL PRODUCTS problem.  

Theorem 12.5.7 Problem J2| pij = bijt |Cmax is NP-hard in the ordinary sense.   

12.5.2 Proportional-Linearly Deteriorating Processing Times 

In [Kon99] it is shown that Theorems 12.5.1 and 12.5.4 can be generalized to the 
case of proportional-linear job processing times (12.2.6). Some properties of this 
generalized shop problems are proved in [KG01].  

12.5.3 Linearly Deteriorating Processing Times 

The change of linear-proportional processing times into linear ones makes shop 
problems difficult: already two-machine flow shop and open shop problems with 
linear job processing times and the Cmax criterion are intractable. 
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Theorem 12.5.8 [KG01] (a) Problem F2 | pij = aij + bijt | Cmax is NP-hard in the 
strong sense.  
(b) Problem O2 | pij = aij + bijt | Cmax is NP-hard in the ordinary sense.   

Some authors indicated easy cases of time-dependent flow shop problems. 
In [MSS10] it is proved that problem Fm | pij = aj + bjt | Cmax is solvable 
in O(n log n) time by scheduling jobs in non-decreasing order of ratios aj/bj . 
In [FG18] it is noticed that the same rule solves the same problem with the �Cmax

(k)  
criterion as well.  

12.5.4 Non-Linearly Deteriorating Processing Times 

Some authors considered time-dependent flow shop problems with non-linear 
jobs. In [MS80] it is shown that problem F2 | pij = aij + f (t) | Cmax , where func-
tion f (t)  is differentiable, satisfies condition (12.3.10) and a special case of con-

df(t)
dt  ≥ 0 > 0 for t ≥ 0.   (12.5.1) 

For this problem, the difference between the optimal Cmax
�  and Cmax(2�) for a 

schedule 2� obtained by scheduling jobs in non-decreasing order of a1j values 
(1 ≤  j ≤ n) is estimated in [MS80].  

Lemma 12.5.9 [MS80] Let S(aij, n1, n2) = �
n1

n2
 aij  and  F(C1j , n1, n2) = f (�

n1

n2
 C1j). 

Then for any differentiable function f (t), satisfying conditions (12.3.10) and 
(12.5.1), there exists a finite number N0 such that for all n ≥ N0 

S(aij , 1, n) + F(C1j , 0, n�1) ≥ S(ai+1$ j , k�1, n�1) + F(C1j , 0, k�2)   (12.5.2) 

for any i and k such that 1 ≤ i ≤ m � 1, 2 ≤ k ≤ n, C1$ 0 = 0  and 
C1 j = a1 j + F(C1 j , 0, j�1)  for 1 ≤  j ≤ n.    

If f (t) is a differentiable function satisfying conditions (12.3.10) and (12.5.1), 
then applying Lemma 12.5.9 the following result can be proved. 

Theorem 12.5.10 [MS80] (a) Let 2� denote a schedule for the problem 
Fm | pij = aij + f (t) | Cmax in which jobs are scheduled in non-decreasing order of 
a1j values, where 1 ≤ j ≤ n. If the number of jobs n satisfies the inequality 
(12.5.2), then either 2� is an optimal schedule or the optimal schedule is one of k 
≤ n � 1 schedules +, in which the last job satisfies the inequality S(ai$+n

 , 2, m) <  

dition (12.3.11) in the form of 
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S(ai$2�n
 , 2, m) and the first n � 1 jobs are scheduled in non-decreasing order of 

a1j  values.  
(b) Let 2� denote a schedule for the problem F2 | pij = aij + f (t) | Cmax in which 
jobs are scheduled in non-decreasing order of a1j values, where 1 ≤ j ≤ n. Then 
Cmax

�  � Cmax(2�) ≤  ai$2�n
 � minj { a2j}.     

Theorem 12.5.10 completes our review of main time-dependent scheduling re-
sults. Introductory view of time-dependent dedicated machine scheduling one 
can find in [CDL04], more detailed presentation is given in [Gaw08, Chapter 8]. 
Some time-dependent flow shops and open shops are also mentioned in [TSS94]. 
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13 Scheduling under Resource  
Constraints 

The scheduling model we consider now is more complicated than the previous 

ones, because any task, besides processors, may require for its processing some 

additional scarce resources. Resources, depending on their nature, may be classi-

fied into types and categories. The classification into types takes into account 

only the functions resources fulfill: resources of the same type are assumed to 

fulfill the same functions. The classification into categories will concern two 

points of view. First, we differentiate three categories of resources from the 

viewpoint of resource constraints. We will call a resource renewable, if only its 

total usage, i.e. temporary availability at every moment, is constrained. A re-

source is called non-renewable, if only its total consumption, i.e. integral availa-

bility up to any given moment, is constrained (in other words this resource once 

used by some task cannot be assigned to any other task). A resource is called 

doubly constrained, if both total usage and total consumption are constrained. 

Secondly, we distinguish two resource categories from the viewpoint of resource 

divisibility: discrete (i.e. discretely-divisible) and continuous (i.e. continuously-

divisible) resources. In other words, by a discrete resource we will understand a 

resource which can be allocated to tasks in discrete amounts from a given finite 

set of possible allocations, which in particular may consist of one element only. 

Continuous resources, on the other hand, can be allocated in arbitrary, a priori 

unknown, amounts from given intervals.  

In the next three sections we will consider several basic sub-cases of the re-

source constrained scheduling problem. In Sections 13.1 and 13.2 problems with 

renewable, discrete resources will be considered. In Section 13.1 it will in partic-

ular be assumed that any task requires one arbitrary processor and some units of 

additional resources, while in Section 13.2 tasks may require more than one pro-

cessor at a time (cf. also Chapter 6). Section 13.3 is devoted to an analysis of 

scheduling with continuous resources. 

13.1 Classical Model 

The resources to be considered in this section are assumed to be discrete and re-

newable. Thus, we may assume that s types of additional resources R1 , R2 ,...,  Rs 

are available in m1 , m2 ,...,  ms units, respectively. Each task Tj requires for its 

processing one processor and certain fixed amounts of additional resources speci-
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fied by the resource requirement vector R(Tj) = [R1(Tj) , R2(Tj) ,..., Rs(Tj)], where 

Rl(Tj) (0 � Rl(Tj) � ml) , l = 1, 2,..., s, denotes the number of units of resource Rl 

required for the processing of Tj . We will assume here that all required resources 

are granted to a task before its processing begins or resumes (in the case of 

preemptive scheduling), and they are returned by the task after its completion or 

in the case of its preemption. These assumptions define a very simple rule to pre-

vent system deadlocks (see e.g. [CD73]) which is often used in practice, despite 

the fact that it may lead to a not very efficient use of the resources. 

We see that such a model is of special value in manufacturing systems where 

tasks, besides processors, may require additional limited resources for their pro-

cessing, such as manpower, tools, space etc. One should also not forget about 

computer applications, where additional resources can stand for primary 

memory, mass storage, channels and I/O devices. Before discussing basic results 

in that area we would like to introduce a missing part of the notation scheme in-

troduced in Section 3.4 that describes additional resources. In fact, they are de-

noted by parameter *2 � {�, res 0,�}, where 

*2 = �: no resource constraints, 

*2 = res 0,�: there are specified resource constraints; 

0, ,, � � {&, k} denote respectively the number of resource types, resource limits 

and resource requirements. If 

0, ,, � = & then the number of resource types, resource limits and resource 

requirements are respectively arbitrary, and if 

0, ,, � = k, then, respectively, the number of resource types is equal to k, 

each resource is available in the system in the amount of k units and the re-

source requirements of each task are equal to at most k units. 

At this point we would also like to present possible transformations among 

scheduling problems that differ only by their resource requirements (see Figure 

13.1.1). In this figure six basic resource requirements are presented. All but two 

of these transformations are quite obvious. Transformation �(res&&&) � �(res1&&) 
has been proved for the case of saturation of machines and additional resources 

[GJ75] and will not be presented here. The second, �(res1&&) � �(res&11), has 

been proved in [BBKR86]; to sketch its proof, for a given instance of the first 

problem we construct a corresponding instance of the second problem by assum-

ing the parameters all the same, except resource constraints. Then for each pair 

Ti , Tj such that R1(Ti) + R1(Tj) > m1 (in the first problem), resource Rij available 

in the amount of one unit is defined in the second problem. Tasks Ti , Tj require a 

unit of Rij , while other tasks do not require this resource. It follows that R1(Ti) + 

R1(Tj) � m1 in the first problem if and only if Rk(Ti) + Rk(Tj) � 1 for each resource 

Rk  in the second problem. 



 13.1  Classical Model 477 

res&&&

res&&1

res&11

res111

res1&1

res1&&

sat

 

Figure 13.1.1  Polynomial transformations among resource constrained  
scheduling problems. 

We will now pass to the presentation of some important results obtained for the 

above model of resource constrained scheduling. Space limitations prohibit us 

even from only quoting all these results, however, an extensive survey may be 

found in [BCSW86, BDM+99, Weg99]. As an example we chose the problem of 

scheduling tasks on parallel identical processors to minimize schedule length. 

Basic algorithms in this area will be presented. 

Let us first consider the case of independent tasks and non-preemptive 

scheduling. 

Problem P2 | res&&&&, pj = 1 | Cmax 

The problem of scheduling unit-length tasks on two processors with arbitrary 

resource constraints and requirements can be solved optimally by the following 

algorithm. 

Algorithm 13.1.1  Algorithm by Garey and Johnson for P2 | res&&&, pj = 1 | Cmax 

[GJ75]. 

begin 

Construct an n-node (undirected) graph G with each node labeled as a distinct 

task and with an edge joining Ti to Tj if and only if Rl(Ti) + Rl(Tj) � ml ,  

l = 1, 2,..., s; 

Find a maximum matching F of graph G; 

Put the minimal value of schedule length C *  
max = n � | F |; 
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Process in parallel the pairs of tasks joined by the edges comprising set F ;  

Process other tasks individually; 
end; 

Notice that the key idea here is the correspondence between maximum matching 

in a graph displaying resource constraints and the minimum-length schedule. The 

complexity of the above algorithm clearly depends on the complexity of the algo-

rithm determining the maximum matching. There are several algorithms for find-

ing it, the complexity of the most efficient by Kariv and Even [KE75] being 

O(n2.5
). An example of the application of this algorithm is given in Figure 13.1.2 

where it is assumed that n = 6, m = 2, s = 2, m1 = 3, m2 = 2, R(T1) = [1, 2], 

R(T2) = [0, 2], R(T3) = [2, 0], R(T4) = [1, 1], R(T5) = [2, 1], and R(T6) = [1, 0] . 

An even faster algorithm can be found if we restrict ourselves to the one-

resource case. It is not hard to see that in this case an optimal schedule will be 

produced by ordering tasks in non-increasing order of their resource requirements 

and assigning tasks in that order to the first free processor on which a given task 

can be processed because of resource constraints. Thus, problem P2 | res1&&, pj = 1 | 

Cmax can be solved in O(nlogn) time. 

If in the last problem tasks are allowed only for 0-1 resource requirements, 

the problem can be solved in O(n) time even for arbitrary ready times and an 

arbitrary number of machines, by first assigning tasks with unit resource re-

quirements up to m1 in each slot, and then filling these slots with tasks having 

zero resource requirements [Bla78]. 

(a) (b) F  = {(T1 , T6), (T2 , T3), (T4 , T5)} 

T2

T3

T4

T1

T6

T5

T3

T2T1

T6

T4

T5

P1

P2

t0 1 2 3

Cmax
* = n � |    | = 3F  

Figure 13.1.2 An application of Algorithm 13.1.1: 

 (a) graph G corresponding to the scheduling problem,  
 (b) an optimal schedule. 
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Problem P | res sor, pj = 1 | Cmax 

When the number of resource types, resource limits and resource requirements 

are fixed (i.e. constrained by positive integers s, o, r, respectively), problem P | 

res sor, pj = 1 | Cmax is still solvable in linear time, even for an arbitrary number of 

processors [BE83]. We describe this approach below, since it has a more general 

application. Depending on the resource requirement vector [R1(Tj) , R2(Tj) ,..., 

Rs(Tj)] � {0, 1,..., r}
s
, the tasks can be distributed among a sufficiently large 

(and fixed) number of classes. For each possible resource requirement vector we 

define one such class. The correspondence between the resource requirement 

vectors and the classes will be described by a 1-1 function f : {0, 1,..., r}
s
 � 

{1, 2,..., k}, where k is the number of different possible resource requirement 

vectors, i.e. k = (r + 1)
s
. For a given instance, let ni denote the number of tasks 

belonging to the ith class, i = 1, 2,..., k. Thus all the tasks of class i have the same 

resource requirement f �1
(i). Observe that most of the input information describ-

ing an instance of problem P | res sor, pj = 1 | Cmax is given by the resource re-

quirements of n given tasks (we bypass for the moment the number m of proces-

sors, the number s of additional resources and resource limits o). This input may 

now be replaced by the vector v = (v1 ,v2 ,..., vk) � IN 
k
0 , where vi is the number of 

tasks having resource requirements equal to f �1
(i), i = 1, 2,..., k. Of course, the 

sum of the components of this vector is equal to the number of tasks, i.e. �
i=1

k
 vi = 

n . 

We now introduce some definitions useful in the following discussion. An 

elementary instance of P | res sor, pj = 1 | Cmax is defined as a sequence R(T1), 

R(T2),..., R(Tu), where each R(Ti) � {1, 2,..., r}
s
 � {(0, 0,..., 0)}, with properties 

u � m and �
i=1

u
 R(Ti) � (o,  o,...,  o). Note that the minimal schedule length of an 

elementary instance is always equal to 1. An elementary vector is a vector v � 

IN 
k
0 which corresponds to an elementary instance. If we calculate the number L of 

different elementary instances, we see that L cannot be greater than (o + 1)
(r+1)

s�1
, 

however, in practice L will be much smaller than this upper bound. Denote the 

elementary vectors (in any order) by b1 , b2 ,..., bL .  

We observe two facts. First, any input R(T1), R(T2),..., R(Tn) can be consid-

ered as a union of elementary instances. This is because any input consisting of 

one task is elementary. Second, each schedule is also constructed from elemen-

tary instances, since all the tasks which are executed at the same time form an 

elementary instance. 

Now, taking into account the fact that the minimal length of a schedule for 

any elementary instance is equal to one, we may formulate the original problem 
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as that of finding a decomposition of a given instance into the minimal number 

of elementary instances. One may easily see that this is equivalent to finding a 

decomposition of the vector v = (v1 ,v2 ,..., vk) � IN 
k
0 into a linear combination of 

elementary vectors b1 , b2 ,..., bL , for which the sum of coefficients is minimal: 

Find e1 , e2 ,..., eL � IN 
k
0 such that �

i=1

L
 eibi = v and �

i=1

L
 ei is minimal. 

Thus, we have obtained a linear integer programming problem, which in the 

general case, would be NP-hard. Fortunately, in our case the number of variables 

L is fixed. It follows that we can apply a result due to Lenstra [Len83] which 

states that the linear programming problem with fixed number of variables can be 

solved in polynomial time depending on both, the number of constraints of the 

integer linear programming problem and loga, but not on the number of varia-

bles, where a is the maximum of all the coefficients in the linear integer pro-

gramming problem. Thus, the complexity of the problem is O(2
L2

(k loga)
cL

), for 

some constant c. In our case the complexity of that algorithm is O(2
L2

(k logn)
cL

) < 

O(n). Since the time needed to construct the data for this integer programming 

problem is O(2
s
(L + logn)) = O(logn), we conclude that the problem P | res sor, 

pj = 1 | Cmax can be solved in linear time. 

Problem Pm | res sor | Cmax 

Now we generalize the above considerations for the case of non-unit processing 

times and tasks belonging to a fixed number k of classes only. That is, the set of 

tasks may be divided into k classes and all the tasks belonging to the same class 

have the same processing and resource requirements. If the number of processors 

m is fixed, then the following algorithm, based on dynamic programming, has 

been proposed by B)�la &zewicz et al. [BKS89]. A schedule will be built step by 

step. In every step one task is assigned to a processor at a time. All these assign-

ments obey the following rule: if task Ti is assigned after task Tj , then the starting 

time of Ti is not earlier than the starting time of Tj . At every moment an assign-

ment of processors and resources to tasks is described by a state of the assign-
ment process. For any state a set of decisions is given each of which transforms 

this state into another state. A value of each decision will reflect the length of a 

partial schedule defined by a given state to which this decision led. Below, this 

method will be described in a more detail. 

The state of the assignment process is described by an m × k matrix X, and 

vectors Y and Z. Matrix X reflects numbers of tasks from particular classes al-

ready assigned to particular processors. Thus, the maximum number of each en-

try may be equal to n. Vector Y has k entries, each of which represents the num-

ber of tasks from a given class not yet assigned. Finally, vector Z has m entries 
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and they represent classes which recently assigned tasks (to particular processors) 

belong to. 

The initial state is that for which matrices X and Z have all entries equal to 0 

and Y has entries equal to the numbers of tasks in the particular classes in a given 

instance. 

Let S be a state defined by X, Y and Z. Then, there is a decision leading to 

state S' consisting of X', Y' and Z' if and only if  

 t � {1,..., k} such that Yt > 0 , (13.1.1) 

|M | = 1 , (13.1.2) 

where M  is any subset of 

F  = {i | �
1�j�k

 Xij pj = min
1�g�m

{ �
1�j�k

 Xgj pj}} , 

and finally 

Rl(Tt) � ml � �
1�j�k

 Rl(Tj) �{g | Zg = j}� , l = 1,2,..., s , (13.1.3) 

where this new state is defined by the following matrices 

X'ij = { 
Xij + 1 if i � M  and j = t , 

Xij otherwise, 

Y'j  = { 

Yj � 1 if j = t , 
Yj otherwise, 

(13.1.4)

Z'i  = { 

t if i � M , 

Zi otherwise. 

In other words, a task from class t may be assigned to processor Pi, if this class is 

non-empty (inequality (13.1.1) is fulfilled), there is at least one free processor 

(equation (13.1.2)), and resource requirements of this task are satisfied (equation 

(13.1.3)). 

If one (or more) conditions (13.1.1) through (13.1.3) are not satisfied, then 

no task can be assigned at this moment. Thus, one must simulate an assignment 

of an idle-time task. This is done by assuming the following new state S" : 

X"ij = { Xij if i 	 F , 

Xhj otherwise, 

Y" =  Y , (13.1.5)

Z"i  = { 
Zi if i 	 F , 

0 otherwise, 
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where h is one of these g, 1 � g � m, for which 

�
1�j�k

 Xgj pj = min
1�i�m
i	F

 { �
1�j�k

 Xij pj} . 

This means that the above decision leads to state S'' which repeats a pattern of 

assignment for processor Ph , i.e. one which will be free as the first from among 

those which are busy now. 

A decision leading from state S to S' has its value equal to  

max
1�i�m

{ �
1�j�k

 Xij pj} . (13.1.6) 

This value, of course, is equal to a temporary schedule length. 

The final state is that for which the matrices Y and Z have all entries equal to 

0. An optimal schedule is then constructed by starting from the final state and 

moving back, state by state, to the initial state. If there is a number of decisions 

leading to a given state, then we choose the one having the least value to move 

back along it. More clearly, if state S follows immediately S', and S (S' respec-

tively) consists of matrices X, Y, Z (X', Y', Z' respectively), then this decision 

corresponds to assigning a task from Y � Y' at the time min
1�i�m

{ �
1�j�k

 Xij pj }.  

The time complexity of this algorithm clearly depends on the product of the 

number of states and the maximum number of decisions which can be taken at 

the states of the algorithm. A careful analysis shows that this complexity can be 

bounded by O(nk(m+1)
), thus, for fixed numbers of task classes k and of processors 

m, it is polynomial in the number of tasks. 

Let us note that another dynamic programming approach has been described 

in [BKS89] in which the number of processors is not restricted, but a fixed upper 

bound on task processing times p is specified. In this case the time complexity of 

the algorithm is O(nk(p+1)
) . 

Problem P | res&&&&, pj = 1 | Cmax 

It follows that when we consider the non-preemptive case of scheduling of unit 

length tasks we have five polynomial time algorithms and this is probably as 

much as we can get in this area, since other problems of non-preemptive schedul-

ing under resource constraints have been proved to be NP-hard. Let us mention 

the parameters that have an influence on the hardness of the problem. First, dif-

ferent ready times cause the strong NP-hardness of the problem even for two 

processors and very simple resource requirements, i.e. problem P2 | res1&&, rj , pj = 

1 | Cmax is already strongly NP-hard [BBKR86] (From Figure 13.1.1 we see that 

problem P2 | res&11, rj , pj = 1 | Cmax is strongly NP-hard as well). Second, an in-

crease in the number of processors from 2 to 3 results in the strong NP-hardness 
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of the problem. That is, problem P3 | res1&&, rj , pj = 1 | Cmax is strongly NP-hard as 

proved by Garey and Johnson [GJ75]. (Note that this is the famous 3-

PARTITION problem, the first strongly NP-hard problem.) Again from Figure 

13.1.1 we conclude that problem P3 | res&11, rj , pj = 1 | Cmax is NP-hard in the 

strong sense. Finally, even the simplest precedence constraints result in the NP-

hardness of the scheduling problem, that is, the P2 | res111, chains, pj = 1 | Cmax is 

NP-hard in the strong sense [BLRK83]. Because all these problems are NP-hard, 

there is a need to work out approximation algorithms. We quote some of the re-

sults. Most of the algorithms considered here are list scheduling algorithms 

which differ from each other by the ordering of tasks on the list. We mention 

three approximation algorithms analyzed for the problem 1. 

1. First fit (FF). Each task is assigned to the earliest time slot in such a way that 

no resource and processor limits are violated. 

2. First fit decreasing (FFD). A variant of the first algorithm applied to a list 

ordered in non-increasing order of Rmax(Tj) , where Rmax(Tj) = max{Rl(Tj)/ml | 1 � 

l � s} . 

3. Iterated lowest fit decreasing (ILFD - applies for s = 1 and pj = 1 only). Order 

tasks as in the FFD algorithm. Put C as a lower bound on C *  
max. Place T1 in the 

first time slot and proceed through the list of tasks, placing Tj in a time slot for 

which the total resource requirement of tasks already assigned is minimum. If we 

ever reach a point where Tj cannot be assigned to any of C slots, we halt the itera-

tion, increase C by 1, and start over. 

Below we will present the main known bounds for the case m < n. In 

[KSS75] several bounds have been established. Let us start with the problem P | 

res1&&, pj = 1 | Cmax for which the three above mentioned algorithms have the fol-

lowing bounds: 

27

10
 � 9 37

10m;  <  R# 
FF  <  27

10
 � 24

10m
  , 

R#  
FFD  =  2 � 2

m
  , 

RILFD  �� 2 . 

We see that the use of an ordered list improves the bound by about 30%. Let us 

also mention here that problem P | res&&&, pj = 1 | Cmax can be solved by the approx-

imation algorithm based on the two machine aggregation approach by Röck and 

                                                 
1 Let us note that the resource constrained scheduling for unit task processing times is 

equivalent to a variant of the bin packing problem in which the number of items per bin is 

restricted to m. On the other hand, several other approximation algorithms have been ana-

lyzed for the general bin packing problem and the interested reader is referred to [CGJ84] 

for an excellent survey of the results obtained in this area.  
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Schmidt [RS83], as described in Section 7.3.2 in the context of flow shop sched-

uling. The worst case behavior of this algorithm is R = 9m2 ; .  

Problem P | res&&& | Cmax 

For arbitrary processing times some other bounds have been established. For 

problem P | res&&& | Cmax the first fit algorithm has been analyzed by Garey and 

Graham [GG75]: 

R# 
FF = min{m+1

2
 , s + 2 � 

2s+1

m
} . 

Finally, when dependent tasks are considered, the first fit algorithm has been 

evaluated for problem P | res&&&, prec | Cmax by the same authors: 

R# 
FF = m . 

Unfortunately, no results are reported on the probabilistic analysis of approxima-

tion algorithms for resource constrained scheduling. 

Problem P | pmtn, res1&1 | Cmax 

Now let us pass to preemptive scheduling. Problem P | pmtn, res1&1 | Cmax can be 

solved via a modification of McNaughton's rule (Algorithm 5.1.8) by taking  

C *  
max = max{max

j
{pj}, �

j=1

n
 pj /m, �

Tj �ZR
 pj /m1} 

as the minimum schedule length, where ZR is the set of tasks for which R1(Tj) = 

1. The tasks are scheduled as in Algorithm 5.1.8, the tasks from ZR being sched-

uled first. The complexity of the algorithm is obviously O(n). 

Problem P2 | pmtn, res&&& | Cmax 

Let us consider now the problem P2 | pmtn, res&&& | Cmax . This can be solved via a 

transformation into the transportation problem [BLRK83]. 

Without loss of generality we may assume that task Tj , j = 1, 2,..., n, spends 

exactly pj /2 time units on each of the two processors. Let (Tj , Ti) , j � i, denote a 

resource feasible task pair, i.e. a pair for which Rl(Tj) + Rl(Ti) � ml , l = 1, 2,..., s. 

Let Z  be the set of all resource feasible pairs of tasks. Z  also includes all pairs 

of the type (Tj , Tn+1), j = 1, 2,..., n, where Tn+1 is an idle time (dummy) task. 

Now we may construct a transportation network. Let n + 1 sender nodes corre-

spond to the n + 1 tasks (including the idle time task) which are processed on 
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processor P1 and let n + 1 receiver nodes correspond to the n + 1 tasks processed 

on processor P2 . Stocks and requirements of nodes corresponding to Tj, j = 

1, 2,..., n, are equal to pj /2, since the amount of time each task spends on each 

processor is equal to pj /2. The stock and the requirement of two nodes corre-

sponding to Tn+1 are equal to �
j=1

n
 pj /2, since these are the maximum amounts of 

time each processor may be idle. Then, we draw directed arcs (Tj , Ti) and (Ti , Tj) 

if and only if (Tj , Ti) � Z , to express the possibility of processing tasks Tj and Ti 

in parallel on processors P1 and P2 . In addition we draw an arc (Tn+1 , Tn+1). 

Then, we assign for each pair (Tj , Ti) � Z  a cost associated with arcs (Tj , Ti) and 

(Ti , Tj) equal to 1, and a cost associated with the arc (Tn+1 , Tn+1) equal to 0. (This 

is because an interval with idle times on both processors does not lengthen the 

schedule). Now, it is quite clear that the solution of the corresponding transporta-

tion problem, i.e. the set of arc flows {x* 
ji }, is simply the set of the numbers of 

time units during which corresponding pairs of tasks are processed (Tj being pro-

cessed on P1 and Ti on P2) . 

The complexity of the above algorithm is O(n4
 log 5 pj) since this is the 

complexity of finding a minimum cost flow in a network, with the number of 

vertices equal to O(n) . 

Problem Pm | pmtn, res&&&& | Cmax 

Now let us pass to the problem Pm | pmtn, res&&& | Cmax . This problem can still be 

solved in polynomial time via the linear programming approach (5.1.14) - 

(5.1.15) but now, instead of the processor feasible set, the notion of a resource 
feasible set is used. By the latter we mean the set of tasks which can be simulta-

neously processed because of resource limits (including processor limit). At this 

point let us also mention that problem P | pmtn, res&&1 | Cmax can be solved by the 

generalization of the other linear programming approach presented in (5.1.24) - 

(5.1.27). Let us also add that the latter approach can handle different ready times 

and the Lmax criterion. On the other hand, both approaches can be adapted to cov-

er the case of the uniconnected activity network in the same way as that de-

scribed in Section 5.1.1. 

Finally, we mention that for the problem P | pmtn, res1&& | Cmax , the approxi-

mation algorithms FF and FFD had been analyzed by Krause et al. [KSS75]:  

R#
 FF = 3 � 

3

m  , 

R #
  FFD = 3 � 

3

m  . 
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Surprisingly, the use of an ordered list does not improve the bound. 

13.2 Scheduling Multiprocessor Tasks  

In this section we combine the model presented in Chapter 6 with the resource 

constrained scheduling. That is, each task is assumed to require one or more pro-

cessors at a time, and possibly a number of additional resources during its execu-

tion. The tasks are scheduled preemptively on m identical processors so that 

schedule length is minimized.  

We are given a set T  of tasks of arbitrary processing times which are to be 

processed on a set P  = {P1 ,..., Pm} of m identical processors. There are also s 

additional types of resources, R1 ,..., Rs , in the system, available in the amounts 

of m1 ,..., ms � IN  units. The task set T  is partitioned into subsets, 

T  j
 = {T1

 j
,..., Tnj

 j
} ,  j = 1, 2,..., k,  

k being a fixed integer � m, denoting a set of tasks each requiring j processors 

and no additional resources, and  

T  jr
 = {T 1 

 jr
,..., T nj

r
 jr

} ,  j = 1, 2,..., k, 

k being a fixed integer � m, denoting a set of tasks each requiring j processors 

simultaneously and at most ml units of resource type Rl , l = 1,..., s (for simplicity 

we write superscript r to denote "resource tasks", i.e. tasks or sets of tasks requir-

ing resources). The resource requirements of any task T i  
 jr

 , i = 1, 2,..., nj 
r

 , j = 1, 

2,..., k, are given by the vector R(T i  
 jr

) � (m1 , m2 ,..., ms) .  

We will be concerned with preemptive scheduling, i.e. each task may be pre-

empted at any time in a schedule, and restarted later at no cost (in that case, of 

course, resources are also preempted). All tasks are assumed to be independent, 

i.e. there are no precedence constraints or mutual exclusion constraints among 

them. A schedule will be called feasible if, besides the usual conditions each task 

from T  j
 � T  jr

 for j = 1, 2,..., k is processed by j processors at a time, and at 

each moment the number of processed T  jr
-tasks is such that the numbers of re-

sources used do not exceed the resource limits. Our objective is to find a feasible 

schedule of minimum length. Such a schedule will be called optimal.  
First we present a detailed discussion of the case of one resource type (s = 1) 

available in r units, unit resource requirements, i.e. resource requirement of each 

task is 0 or 1, and j � {1, k} processors per task for some k � m. So the task set is 

assumed to be T  = T 1 � T 1r
 � T k � T kr

 . A scheduling algorithm of complexi-

ty O(nm) where n is the number of tasks in set T , and a proof of its correctness 
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are presented for k = 2. Finally, a linear programming formulation of the schedul-

ing problem is presented for arbitrary values of s, k, and resource requirements. 

The complexity of the approach is bounded from above by a polynomial in the 

input length as long as the number of processors is fixed.  

Process of Normalization 

First we prove that among minimum length schedules there exists always a 

schedule in a special normalized form: A feasible schedule of length C for the set 

T 1 � T 1r
 � T k � T kr

 is called normalized if and only if  w � IN 0,  L � [0, C) 

such that the number of T  k
-, T  kr

-tasks executed at time t � [0, L) is w + 1, and 

the number of T  k
-,T  kr

-tasks executed at time t � [L, C) is w (see Figure 13.2.1). 

We have the following theorem [BE94]. 

Theorem 13.2.1  Every feasible schedule for the set of tasks T 1 � T 1r
 � T k � 

T kr
 can be transformed into a normalized schedule.  

Proof. Divide a given schedule into columns such that within each column there 

is no change in task assignment. Note that since the set of tasks and the number 

of processors are finite, we may assume that the schedule consists only of a finite 

number of different columns. Given two columns A and B of the schedule, sup-

pose for the moment that they are of the same length. Let n j
A , njr

 A , n j
B , njr

 B denote 

the number of T  j
-, T  jr

-tasks in columns A and B, respectively, j � {1, k}. Let n0
A 

and n0
B be the numbers of unused processors in A and B, respectively. The proof 

is based on the following claim.  

-tasks

-tasks

CL0

T k T kr

1 1r

Pm

P1

-, 

-, 
t

T T

 

Figure 13.2.1 A normalized form of a schedule. 

Claim 13.2.2  Let A and B be columns as above of the same length, and nk
B + 

nkr
B  � nk

A + nkr
A  + 2. Then it is always possible to shift tasks between A and B in 

such a way that afterwards B contains one task of type T k or T kr less than be-
fore. (The claim is valid for any k � 2.)  
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Proof. We consider two different types of task shifts, �1 and �2 . They are pre-

sented below in an algorithmic way. Algorithm 13.2.3 tries to perform a shift of 

one T k-task from B to A, and, conversely, of some T 1-and T 1r
-tasks from A to 

B. Algorithm 13.2.4 tries to perform a shift of some, say j + 1 T kr
-tasks from B 

to A, and, conversely, of j T k-tasks and some T 1-, T 1r
-tasks from A to B .  

T k

kr

1

1r

k �n0
A

A B

kr

n0
A

k

T

T
T

T

T

 

Figure 13.2.2 Shift of tasks in Algorithm 13.2.3. 

Algorithm 13.2.3  Shift �1 . 

begin 

if nk
B > 0 -- i.e. B has at least one task of type T k  

then 

 begin 

 Shift one task of type T k from column B to column A; 

  -- i.e. remove one of the T k-tasks from B and assign it to A 

 if n0
A < k  

 then 

  begin 

  if n1
A + n0

A � k  

  then Shift k � n0
A  T 1-tasks from A to B  

  else  

   if There are at least k � n0
A � n1

A unused resources in B  

   then 

    begin 

    Shift n1
A  T 1-tasks from A to B; 

    Shift k � n0
A�n1

A  T 1r
-tasks from A to B; 

    end 

   else write(' �1 cannot be applied: resource conflict'); 

  end; 
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 end 

else write(' �1 cannot be applied: B has no T k-task'); 

end; 

Algorithm 13.2.4  Shift �2 . 

begin 

if nkr
B > 0 -- i.e. B has at least one task of type T kr

 

then 

 begin 

 if n1r
A  = 0  

 then  

  begin 

  Shift one T kr
-task from B to A; 

  if n0
A < k  

   then  

   if nkr
A < r -- i.e. no resource conflicts in A  

    then Shift k � n0
A  T 1-tasks from A to B  

    else Write(' �2 cannot be applied: resource conflict'); 

  end 

 else -- i.e. in the case of n1r
A  > 0  

  begin 

  if there are numbers j, 01, and 02 such that  

� � � � 01 + 02 = k � n0
A if n0

A < k, and 1 otherwise,  

    0 � j < 02,  

    j � nk
A, j < nkr

B,  

� � � � 01 � n1
A, 02 � n1r

A ,  

    nkr
B  + 02 � j � 1 � r,  

    nkr
A  + n1r

A  + j + 1 � 02 � r  

  then -- perform the following shifts simultaneously  

   begin 

   Shift j + 1  T kr
-tasks from B to A; 

   Shift j  T k-tasks from A to B; 

   Shift 01  T 1-tasks from A to B; 

   Shift 02  T 1r
-tasks from A to B; 

   end 

  else write(' �2 cannot be applied'); 

  end;  

 end 
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else write(' �2 cannot be applied: B has no T kr
-task'); 

end;  

Before we prove that it is always possible to change columns A and B in the pro-

posed way by means of shifts �1 and �2 we formulate some assumptions and 

simplifications on the columns A and B (detailed proofs are left to the reader).  

(a1) Without loss of generality we assume that all the tasks in A and B are pair-

wise independent, i.e. they are not parts of the same task.  

(a2) nk
A + nkr

A � nk
B + nkr

B  � 2 (condition of Claim 13.2.2). From that we get  

n1r
A  + n1

A + n0
A � n1r

B  + n1
B + n0

B + 2k. 

(a3) We restrict our considerations to the case n1r
A  � n1r

B  + k because otherwise 

shift �1 or �2 can be applied without causing resource problems. 

(a4) Next we can simplify the considerations to the case n1r
B

 = 0. Following (a3) 

and the fact that, whatever shift we apply, at most k tasks of type T 1r
 are shifted 

from A to B (and none from B to A) we conclude that we can continue our proof 

without considering n1r
B  tasks of type T 1r

 in both columns.  

(a5) Now we assume n0
A = 0 or n0

B = 0 as we can remove all the processors not 

used in both columns.  

(a6) Again we can simplify our considerations by assuming n0
B = 0 and n1

B = 0. 

For suppose n0
B > 0 or n1

B > 0, we can remove all the idle processors and T 1-tasks 

from column B and n0
B + n1

B idle processors or tasks of type T 1 or T 1r
 from col-

umn A. This can be done because there are enough tasks T 1 and T 1r
 (or idle pro-

cessors) left in column A . 

The two columns are now of the form shown in Figure 13.2.3. 

Now we consider four cases (which exhaust all possible situations) and prove 

that in each of them either shift �1 or �2 can be applied. Let " = min{n1r
A  , max{k 

� n0
A , 1}} .  

Case I: nkr
B  + " � r, nk

B > 0. Here �1 can be applied. 

Case II: nkr
B  + " � r, nk

B = 0. In this case �2 can be applied. 

Case III: nkr
B  + " > r, nk

B > 0 . 

If 0 � n1r
A  � k � n0

A, 

or n1r
A  > k � n0

A , k � n0
A � 0 , 

or n1r
A  > k � n0

A > 0, n0
A + n1

A � k , 
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or n1r
A  > k � n0

A > 0, n0
A + n1

A < k, nkr
B  + k � n0

A � n1
A � r , 

we can always apply �1 . In the remaining sub-case, 

n1r
A  > k � n0

A > 0, n0
A + n1

A < k, nkr
B  + k � n0

A � n1
A > r , 

�1 cannot be applied and, because of resource limits in column B, a �2-shift is 

possible only under the additional assumption 

nkr
B  + k � n0

A � n1
A � nk

A � 1 � r . 

What happens in the sub-case nkr
B  + k � n0

A  � n1
A  � nk

A � 1 > r will be discussed in a 

moment.  

1T
1rT

A B

(n  )

(n   )

A
1

1r
(n  )
(n   )

idle (n  )
A

A

A
k

kr
A

(n  )k

(n   )kr

B

B

kT kT

krT
krT

0

 

Figure 13.2.3 Restructuring columns in Claim 13.2.2. 

Case IV: nkr
B  + " > r, nk

B = 0 . 

Now, �2 can be applied, except when the following conditions hold simultane-

ously: 

n1r
A  > k � n0

A > 0, n0
A + n1

A < k � 1, and 

nkr
B  + k � n0

A � n1
A � nk

A � 1 > r . 

We recognize that in cases III and IV under certain conditions neither of the 

shifts �1 , �2 can be applied. These conditions can be put together as follows: 

nk
B � 0, and nkr

B  + k � n0
A � n1

A � nk
A � 1 > r . 

We prove that this situation can never occur: From resource limits in column A 

we get 

nkr
B  + k � n0

A � n1
A � nk

A � 1 > r � n1r
A  + nkr

A  . 

Together with knkr
B � m we obtain  

(k � 1)(n1
A + n1r

A  + n0
A) � k(k � 1) < 0 , 
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but from (a2) we know n1
A + n1r

A  + n0
A � 2k, which contradicts k > 1 .   

Having proved Claim 13.2.2, it is not hard to prove Theorem 13.2.1. First, we 

observe that the number of different columns in each feasible schedule is finite. 

Then, applying shifts �1 or �2 a finite number of times we will get a normalized 

schedule (for pairs of columns of different lengths only a part of the longer col-

umn remains unchanged but for one such column this happens only a finite num-

ber of times).   

Before we describe an algorithm which determines a preemptive schedule of 

minimum length we prove some simple properties of optimal schedules [BE94]. 

Lemma 13.2.5  In a normalized schedule it is always possible to process the 
tasks in such a way that the boundary between T k-tasks and T kr

-tasks contains 
at most k steps. 

Proof. Suppose there are more than k steps, say k + i, i � 1, and the schedule is of 

the form given in Figure 13.2.4. Suppose the step at point L lies between the first 

and the last step of the T k-, T kr
-boundary. 

k

k
k

C0

I

n +n
+n

n

n
k

1 1r

0
I I

I

I

I

kr

k

nII
kr

n +n
+n

1

0
II

II

II

T

T

T T
1r1

kr

k
nk

II

,
1r

II

L  

Figure 13.2.4 k-step boundary between T k- and T kr-tasks. 

We try to reduce the location of the first step (or even remove this step) by ex-

changing parts of T kr
-tasks from interval I with parts of T k-tasks from interval 

II. From resource limits we know:  

n1r
 II + nkr

II � r, n1r
I  + nkr

I  � r . 

As there are k + i steps, we have nkr
I  = nkr

II  + k + i. Consider possible sub-cases: 
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(i) If n1r
II  + nkr

II < r, then exchange the T k- and T kr
-tasks in question. This ex-

change is possible because in I at least one T kr
-task can be found that is inde-

pendent of all the tasks in II, and in II at least one T k-task can be found that is 

independent of all the tasks in I . 

(ii) If n1r
II  + nkr

II = r, then the shift described in (i) cannot be performed directly. 

However, this shift can be performed simultaneously with replacement of a T 1r
-

task from II by a T 1-task (or idle time) from I, as can be easily seen. 

If the step at point L in Figure 13.2.4 is the leftmost or rightmost step among 

all steps considered so far, then the step removal works in a similar way.   

Corollary 13.2.6  In case k = 2 we may assume that the schedule has one of the 
forms shown in Figure 13.2.5.  

L C L C L C
type A type B type C

,1T 1r ,1T 1rTT ,1T 1rT

2T
2rT

2T

2rT
2T

2rT

 

Figure 13.2.5  Possible schedule types in Corollary 13.2.6. 

Lemma 13.2.7  Let k = 2. In cases (B) and (C) of Figure 13.2.5 the schedule can 
be changed in such a way that one of the steps in the boundary between T k and 
T kr is located at point L, or it disappears. 

Proof. The same arguments as in the proof of Lemma 13.2.5 are used.  

Corollary 13.2.8  In case k = 2, every schedule can be transformed into one of 
the types given in Figure 13.2.6.  

Let us note that if in type B1 (Figure 13.2.6) not all resources are used during 

interval [L, C), then the schedule can be transformed into type B2 or C2. If in 

type C1 not all resources are used during interval [L, C), then the schedule can be 

transformed into type B2 or C2. A similar argument holds for schedules of type 

A .  
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The Algorithm 

In this section an algorithm of scheduling preemptable tasks will be presented 

and its optimality will then be proved for the case k = 2. Now, a lower bound for 

the schedule length can be given. Let  

X j
 = �

Ti �T  j pi 
 j

 , Xjr
 = �

T i 
jr �T  jr p i  

jr
  , j = 1, k . 

It is easy to see that the following formula gives a lower bound on the schedule 

length, 

C = max{C r   
max, C'} (13.2.1) 

where 

C r   
max = (X1r

 + Xkr
)/r ,  

and C' is the optimum schedule length for all T 1-, T 1r
-, T k-, T kr

-tasks without 

considering resource limits (cf. Section 6.1). 

L C L C L C

type A

C L C

type B1 type C1

type C2type B2
LL´ L´

T 2r T 2r T 2r

T 2
T 2 T 2

T ,1 1rT T ,1 1rT T ,1 1rT

T ,1 1rTT ,1 1rT

T 2 T 2
T 2r T 2r

 

Figure 13.2.6 Possible schedule types in Corollary 13.2.8. 

In the algorithm presented below we are trying to construct a schedule of type B2 

or C2. However, this may not always be possible because of resource constraints 

causing "resource overlapping" in certain periods. In this situation we first try to 

correct the schedule by exchanging some critical tasks so that resource limits are 

not violated, thus obtaining a schedule of type A, B1 or C1. If this is not possible, 

i.e. if no feasible schedule exists, we will have to re-compute bound C in order to 

remove all resource overlappings.  
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Let L and L' be the locations of steps as shown in the schedules of type B2 or 

C2 in Figure 13.2.6. Then 

L c (X2
+ X2r

) mod C, and L' c X2r
 mod C . (13.2.2) 

In order to compute resource overlapping we proceed as follows. Assign T 2- 

and T 2r
-tasks in such a way that only one step in the boundary between these two 

types of tasks occurs; this is always possible because bound C was chosen 

properly. The schedule thus obtained is of type B2 or C2. Before the T 1- and 

T 1r
-tasks are assigned we partition the free part of the schedule into two areas, 

LA (left area) and RA (right area) (cf. Figure 13.2.7). Note that a task from T 1 � 

T 1r
 fits into LA or RA only if its length does not exceed L or C � L, respectively. 

Therefore, all "long" tasks have to be cut into two pieces, and one piece is as-

signed to LA, and the other one to RA. We do this by assigning a piece of length 

C � L of each long task to RA, and the remaining piece to LA (see Section 5.4 for 

detailed reasoning). The excess e(Ti) of each such task is defined as e(Ti) = pi � 

C + L, if pi > C � L, and 0 otherwise. 

LL´ C

LA RA

2r

1

RA

RA
z

n

m1r

try to exchange

OL

T

2T

1T 1rT,

1rT

 

Figure 13.2.7 Left and right areas in a normalized schedule. 

The task assignment is continued by assigning all excesses to LA, and, in addi-

tion, by putting as many as possible of the remaining T 1r
-tasks (so that no re-

source violations occur) and T 1-tasks to LA. However, one should not forget that 

if there are more long tasks in T 1 � T 1r
 than z1 + 2 (cf. Figure 13.2.7), then each 

such task should be assigned according to the ratio of processing capacities of 

both sides LA and RA, respectively. All tasks not being assigned yet are assigned 

to RA. Hence only in RA resource limits may be violated. Take the sum OL of 

processing times of all T 1r
-tasks violating the resource limit. OL is calculated in 

the algorithm given below. Of course, OL is always less than or equal to C � L, 
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and the T 1r
-tasks in RA can be arranged in such a way that at any time in [L, C) 

no more than r + 1 resources are required.  

Resource overlapping (OL) of T 1r
- and T 2r

-tasks cannot be removed by ex-

changing T 1r
-tasks in RA with T 1-tasks in LA, because the latter are only the 

excesses of long tasks. So the only possibility to remove the resource overlapping 

is to exchange T 2r
-tasks in RA with T 2-tasks in LA (cf. Figure 13.2.7). Suppose 

that 7 (� OL) is the maximal amount of T 2-, T 2r
-tasks that can be exchanged in 

that way. Thus resource overlapping in RA is reduced to the amount OL � 7. If 
OL � 7 = 0, then all tasks are scheduled properly and we are done. If OL � 7 > 0, 

however, a schedule of length C does not exist. In order to remove the remaining 

resource overlapping (which is in fact OL � 7) we have to increase the schedule 

length again.  

Let nRA be the number of T 2- or T 2r
-tasks executed at the same time during [L, 

C). Furthermore, let z1 be the number of processors not used by T 2- or T 2r
-tasks 

at time 0, let m 1r
RA be the number of processors executing T 1r

-tasks in RA (cf. 

Figure 13.2.7), and let l1   
RA be the number of T 1-tasks executed in RA and having 

excess in LA. The schedule length is then increased by some amount !C, i.e.  

C = C + !C, where !C = min {!Ca, !Cb, !Cc} , (13.2.3) 

and !Ca, !Cb, and !Cc are determined as follows.  

(a) !Ca = OL � 7

m 1r
RA + (m � z1 � 2)/2 + l1   

RA
 . 

This formula considers the fact that the parts of T 1r
-tasks violating resource lim-

its have to be distributed among other processors. By lengthening the schedule 

the following processors will contribute processing capacity:  

� m 1r
RA processors executing T 1r

-tasks on the right hand side of the schedule,  

� (m � z1� 2)/2 pairs of processors executing T 2- or T 2r
-tasks and contributing 

to a decrease of L (and thus lengthening part RA), 

� l1   
RA processors executing T 1-tasks whose excesses are processed in LA (and 

thus decreasing their excesses, and hence allowing part of T 1r
 to be processed 

in LA).  

(b) If the schedule length is increased by some ! then L will be decreased by 

nRA!, or, as the schedule type may switch from C2 to B2 (provided L was small 

enough, cf. Figure 13.2.6), L would be replaced by C + ! + L � nRA!. In order to 

avoid the latter case we choose ! in such a way that the new value of L will be 0, 

i.e. !Cb = L /nRA .  
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Notice that with the new schedule length C + !C, !C � {!Ca , !Cb}, the 

length of the right area RA, will be increased by !C(nRA + 1) .  

(c) Consider all tasks in T 1 with non-zero excesses. All tasks in T 1 whose ex-

cesses are less than !C(nRA + 1) will have no excess in the new schedule. Howev-

er, if there are tasks with larger excess, then the structure of a schedule of length 

C + !C will be completely different and we are not able to conclude that the new 

schedule will be optimal. Therefore we take the shortest task Ts of T 1 with non-

zero excess and choose the new schedule length so that Ts will fit exactly into the 

new RA, i.e.  

!Cc = 
ps � C + L
1 + nRA

  . 

The above reasoning leads to the following algorithm [BE94]. 

Algorithm 13.2.9   
Input: Number m of processors, number r of resource units, sets of tasks T 1 , 

T 1r
 , T 2 , T 2r

 . 

Output: Schedule for T 1 � T 1r
 � T 2 � T 2r

 of minimum length. 

begin  

 Compute bound C according to formula (13.2.1); 
 repeat  

 Compute L, L' according to (13.2.2), and the excesses for the tasks of  

T 1 � T 1r, 

 Using bound C, find a normalized schedule for T 2- and T 2r
-tasks by assign-

ing T 2r
-tasks from the top of the schedule (processors Pm, Pm�1,..., ) and 

from left to right, and by assigning T 2-tasks starting at time L, to the pro-

cessors Pz1+1 and Pz1+2 from right to left (cf. Figure 13.2.8); 

 if the number of long T 1- and T 1r
-tasks is � z1+ 2  

 then 

Take the excesses e(T) of long T 1- and T 1r
-tasks, and assign them to the left 

area LA of the schedule in the way depicted in Figure 13.2.8 
else  
Assign these tasks according to the processing capacities of both sides LA and 

RA of the schedule, respectively; 

 if LA is not completely filled  

 then Assign T 1r
-tasks to LA as long as resource constraints are not violat-

ed; 

 if LA is not completely filled  
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 then Assign T 1-tasks to LA; 

 Fill the right area RA with the remaining tasks in the way shown in Figure 

13.2.8; 

 if resource constraints are violated in interval [L, C)  

 then  

  Compute resource overlapping OL � 7 and correct bound C according to 

(13.2.3); 

 until OL � 7 = 0; 

end; 

L0

LA RA

m

z1

1
C

P

P

P

1T

2rT

1rT

1T

1rT

2T

 

Figure 13.2.8 Construction of an optimal schedule. 

The optimality of Algorithm 13.2.9 is proved by the following theorem [BE94].  

Theorem 13.2.10  Algorithm 13.2.9 determines a preemptive schedule of mini-
mum length for T 1 � T 1r

 � T 2 � T 2r in time O(nm) .  

The following example demonstrates the use of Algorithm 13.2.9.  

Example 13.2.11  Consider a processor system with m = 8 processors, and r = 3 

units of resource. Let the task set contain 9 tasks, with processing requirements 

as given in the following table: 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 

processing times 

number of processors 

number of resource units 

10 

2 

1 

5 

2 

0 

5 

2 

0 

5 

2 

0 

10 

1 

1 

8 

1 

1 

2 

1 

1 

3 

1 

0 

7 

1 

0 

Table 13.2.1. 

Then,  

X1
 = 10 , X1r

 = 20 , X2
 = 15 , X2r

 = 10 , 

C r  
max = (X1r

 + X2r
)/r = 10 , C' = (X1

 + X1r
 + 2X2

 + 2X2r
)/m = 10 ,  
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i.e. C = 10 and L = 5. The first loop of Algorithm 13.2.9 yields the schedule 

shown in Figure 13.2.9. In the schedule thus obtained a resource overlapping 

occurs in the interval [8,10). There is no way to exchange tasks, so 7 = 0, and an 

overlapping of amount 2 remains. From equation (13.2.3) we obtain !Ca = 1/3, 

!Cb = 5/2, and !Cc = 2/3. Hence the new schedule length will be C = 10 + !Ca = 

10.33, and L = 4.33, L' = 10.0. In the second loop the algorithm determines the 

schedule shown in Figure 13.2.10, which is now optimal.   

OL

1T

P1
0 2 5 8 10

P8 2r

2T 2
3T 2

4T 2

9T 1

5T 1r
6T 1r

8T 1
7T 1r

9T 1

 

Figure 13.2.9 Example schedule after the first loop of Algorithm 13.2.9. 
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Figure 13.2.10 Example schedule after the second loop of Algorithm 13.2.9. 

Linear Programming Approach to the General Case 

In this section we will show that for a much larger class of scheduling problems 

one can find schedules of minimum length in polynomial time. We will consider 

tasks having arbitrary resource and processor requirements. That is, the task set T  

is now composed of the following subsets: 
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T  j
, j = 1,..., k, tasks requiring j processors each and no resources, and 

T  jr
, j = 1,..., k, tasks requiring j processors each and some resources. 

We present a linear programming formulation of the problem. Our approach 

is similar to the LP formulation of the project scheduling problem, cf. (5.1.15)-

(5.1.16). We will need a few definitions. By a resource feasible set we mean here 

a subset of tasks that can be processed simultaneously because of their total re-

source and processor requirements. Let M be the number of different resource 

feasible sets. By variable xi we denote the processing time of the i th resource fea-

sible set, and by Q j  we denote the set of indices of those resource feasible sets 

that contain task Tj � T . Thus the following linear programming problem can be 

formulated:  

Minimize �
i=1

M
 xi 

subject to �
i�Q j

 xi = pj for each Tj � T ,  

 xi � 0,  i = 1, 2,..., M . 

As a solution of the above problem we get optimal values x*
i  of interval 

lengths in an optimal schedule. The tasks processed in the intervals are members 

of the corresponding resource feasible subsets. As before, the number of con-

straints of the linear programming problem is equal to n, and the number of vari-

ables is O(nm
). Thus, for a fixed number of processors the complexity is bounded 

from above by a polynomial in the number of tasks. On the other hand, a linear 

programming problem may be solved (using e.g. Karmarkar's algorithm [Kar84]) 

in time bounded from above by a polynomial in the number of variables, the 

number of constraints, and the sum of logarithms of all the coefficients in the LP 

problem. Thus for a fixed number of processors, our scheduling problem is solv-

able in polynomial time.  

13.3 Scheduling with Continuous Resources 

In this section we consider scheduling problems in which, apart from processors, 

also continuously-divisible resources are required to process tasks. Basic results 

will be given for problems with parallel, identical processors (Section 13.3.2) or 

a single processor (Sections 13.3.3, 13.3.4) and one additional type of continu-

ous, renewable resource. This order of presentation follows from the specificity 

of task models used in each case. 
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13.3.1 Introductory Remarks 

Let us start with some comments concerning the concept of a continuous re-

source. As we remember, this is a resource which can be allotted to a task in an 

arbitrary, unknown in advance amount from a given interval. We will deal with 

renewable resources, i.e. such for which only usage, i.e. temporary availability is 

constrained at any time. This "temporary" character is important, since in practice 

it is often ignored for some doubly constrained resources which are then treated 

as non-renewable. For example, this is the case of money for which usually only 

the consumption is considered, whereas they have also a "temporary" nature. 

Namely, money treated as a renewable resource mean in fact a "flow" of money, 

called rate of spending or rate of investment, i.e. an amount available in a given 

period of a fixed length (week, month). The most typical example of a (renewa-

ble) continuous resource is power (electric, hydraulic, pneumatic) which, howev-

er, is in general doubly constrained since apart from the usage, also its consump-

tion, i.e. energy, is constrained. Other examples we get when parallel "proces-

sors" are driven by a common power source. "Processors" mean here e.g. ma-

chines with proper drives, electrolytic tanks, or pumps for refueling navy boats. 

We should also stress that sometimes it is purposeful to treat a discrete (i.e. 

discretely-divisible) resource as a continuous one, since this assumption can sim-

plify scheduling algorithms. Such an approach is allowed when there are many 

alternative amounts of (discrete) resource available for processing each task. This 

is, for example, the case in multiprocessor systems where a common primary 

memory consists of hundreds of pages (see [Weg80]). Treating primary memory 

as a continuous resource we obtain a scheduling problem from the class we are 

interested in. 

In the next two sections we will study scheduling problems with continuous 

resources for two models of task processing characteristic (time or speed) vs. 

(continuous) resource amount allotted. The first model is given in the form of a 

continuous function: task processing speed vs. resource amount allotted at a giv-

en time (Section 13.3.2), whereas the second one is given in the form of a con-

tinuous function: task processing time vs. resource amount allotted (Section 

13.3.3). The first model is more natural in majority of practical situations, since it 

reflects directly the "temporary" nature of renewable resources. It is also more 

general and allows a deep a priori analysis of properties of optimal schedules due 

to the form of the function describing task processing speed in relation to the 

allotted amount of resource. This analysis leads even to analytical results in some 

cases, and in general to the simplest formulations of mathematical programming 

problems for finding optimal schedules. However, in situations when all tasks 

use constant resource amounts during their execution, both models are equiva-

lent. Then rather the second model is used as the direct generalization of the tra-

ditional, discrete model. 

In Section 13.3.4 we will consider another type of problems, where task pro-

cessing times are constant, but their ready times are functions of a continuous 
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resource. This is another generalization of the traditional scheduling model 

which is important in some practical situations. 

13.3.2 Processing Speed vs. Resource Amount Model 

Assume that we have m identical, parallel processors P1 , P2 ,..., Pm , and one 

additional, (continuous, renewable) resource available in amount Û. For its pro-

cessing task Tj � T  requires one of the processors and an amount of a continuous 

resource uj(t) which is arbitrary and unknown in advance within interval (0, Û] . 

The task processing model is given in the form: 

x
.
j(t) = dxj(t) /dt = fj[uj(t)],  xj(0) = 0,  xj(Cj) = x~j (13.3.1) 

where xj(t) is the state of Tj at time t, fj is a (positive) continuous, non-decreasing 

function, fj(0) = 0, Cj is the (unknown in advance) completion time of Tj , and 

x~j > 0 is the known final state, or processing demand, of Tj . Since a continuous 

resource is assumed to be renewable, we have 

�
j=1

n
 uj(t) � Û  for each t . (13.3.2) 

As we see, the above model relates task processing speed to the (continuous) 

resource amount allotted to this task at time t. Let us interpret the concept of a 

task state. By the state of task Tj at time t, xj(t), we mean a measure of progress of 

the processing of Tj up to time t or a measure of work related to this processing. 

This can be, for example, the number of standard instructions of a computer pro-

gram already processed, the volume of a fuel bunker already refueled, the amount 

of a product resulting from the performance of Tj up to time t, the number of 

man-hours or kilowatt-hours already spent in processing Tj , etc. 

Let us point out that in practical situations it is often quite easy to construct 

this model, i.e. to define fj , j = 1, 2,..., n. For example, in computer systems ana-

lyzed in [Weg80], the fj's are progress rate functions of programs, closely related 

to their lifetime curves, whereas in problems in which processors use electric 

motors, the fj's are functions: rotational speed vs. current density. 

Let us also notice that in the case of a continuous resource changes of the re-

source amount allotted to a task within interval (0, Û] does not mean a task 

preemption.  

To compare formally the model (13.3.1) with the model 

pj = 6j(uj), uj � (0, Û] (13.3.3) 

where pj is the processing time of Tj and 6j is a (positive) continuous, non-

increasing function, notice that the condition xj(Cj) = x~j is equivalent to  
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de
0

Cj

 fj[uj(t)]dt = x~j . (13.3.4) 

Thus, if uj(t) = uj, i.e. is constant for t � (0,Cj], we have 

Cj = pj = x~j /fj(uj), i.e. 6j = x~j /fj(uj) . (13.3.5) 

In consequence, if Tj is processed using a constant resource amount uj , (13.3.5) 

defines the relation between both models. It is worth to underline that, as we will 

see, on the basis of the model (13.3.1) one can easily and naturally find the con-

ditions under which tasks are processed using constant resource amounts in an 

optimal schedule.  

Assume now that the number n of tasks is less than or equal to the number m 

of machines, and that tasks are independent. The first assumption implies that in 

fact we deal only with the allocation of a continuous resource, since the assign-

ment of tasks to machines is trivial. This is a "pure" (continuous) resource alloca-

tion problem, as opposed to a "mixed" (discrete-continuous) problem, when we 

have to deal simultaneously with scheduling on machines (considered as a dis-

crete resource) and the allocation of a continuous resource. 

If n � m (then it is sufficient to assume n = m, since for n < m, m � n ma-

chines are idle) our goal is to find a piece-wise continuous vector function u*(t) = 

(u*
1(t), u*

2(t),..., u*
n(t)), u*

j (t) � 0, j = 1, 2,..., n, such that (13.3.1) and (13.3.2) are 

satisfied, and Cmax = max{Cj} reaches its minimum C *  
max . This problem was 

studied in a number of papers (see [Weg82] as a survey) under different assump-

tions concerning task and resource characteristics. Below we present few basic 

results useful in our future considerations. To this end we need some additional 

denotations. 

Let us denote by U  the set of resource allocations, i.e. all values of a vector 

function u(t), or all points u = (u1 , u2 ,..., un) � IRn
 , uj � 0 for j = 1, 2,..., n, satis-

fying the relation  

�
j=1

n
 uj � Û . 

Further, we will denote by V  the set defined as follows: 

v = (v1, v2,..., vn) � V  if and only if u � U ,  

and vj = fj(uj), j = 1, 2,..., n . 
(13.3.6) 

As the functions fj are monotonic for j = 1, 2,..., n, it is obvious that (13.3.5) de-

fines a univalent mapping between U  and V , and thus we can call the points v 

transformed resource allocations. It is easy to prove (see, e.g. [Weg82]) that 

C *  
max as a function of final states of tasks x~ = (x~1 , x~2 ,..., x~n) can always be ex-

pressed as  
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C *  
max(x

~) = min{Cmax > 0 | x~/Cmax � coV } (13.3.7) 

where coV  is the convex hull of V , i.e. the set of all convex combinations of the 

elements of V . Notice that (13.3.7) gives a simple geometrical interpretation of 

an optimal solution of our problem. Namely, it says that C *  
max is always reached 

at the intersection point of the straight line given by the parametric equations  

vj = x~j /Cmax,  j = 1, 2,..., n (13.3.8) 

and the boundary of set coV . Since, according to (13.3.6), the shape of V , and 

thus coV , depends on functions fj , j = 1, 2,..., n, we can study the form of opti-

mal solutions in relation to these functions. Let us consider two special, but very 

important cases:  

(i) concave fj,  j = 1, 2,..., n, and  

(ii) fj � cj uj,  cj = fj(Û)/Û,  j = 1, 2,..., n .  

It is easy to check that in case (i) set V  is already convex, i.e. coV  = V . Thus, 

the intersection point defined above is always a transformed resource allocation 

(see Figure 13.3.1 for n = 2). 

Û

u0 1

u2

 U 

Û f (Û)1

f (Û)2
v = x/Cmax

v 1
*

v 2
*

 V  

v0 1

v2

~

f   concave, j = 1, 2j

 
Figure 13.3.1 The case of concave fj , j = 1, 2. 

This means that in the optimal solution tasks are processed fully in parallel using 

constant resource amounts u*
j  , j = 1, 2,..., n. To find these amounts let us notice 

that the equation of the boundary of V  has the form �
j=1

n
 fj

�1
(vj) = Û (we substitute 

uj from (13.3.6) for the equation of the boundary of U , i.e. �
j=1

n
 uj = Û), where fj

�1
 

is the function inverse to fj , j = 1, 2,..., n. Substituting vj from (13.3.8), we get 

for the above equation 
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�
j=1

n
 fj
�1

(x~j /Cmax) = Û . (13.3.9) 

For given x~j , j = 1, 2,..., n, the (unique) positive root of this equation is equal to 

the minimum value C *  
max of Cmax . Of course 

u*
j  = fj

�1
(x~j /C *  

max), j = 1, 2,..., n . (13.3.10) 

It is worth to note that equation (13.3.9) can be solved analytically for some im-

portant cases. In particular, this is the case of fj = cj u
1/(j
j    , cj > 0, (j � {1, 2, 3, 4}, 

j = 1, 2,..., n, when (13.3.9) reduces to an algebraic equation of an order � 4. 

Furthermore, if (j = ( � 1, j = 1, 2,..., n, we have 

C *  
max = [

1

Û �
j=1

n
 (x~j 

/cj)
(]1/( 

. (13.3.11) 

Û

Û

u0 1

u2

f (Û)2

f (Û)1

S

v0 1

v2

f   � c  u , j = 1, 2j j j

 V  
 U 

v = x/Cmax
~

 
Figure 13.3.2 The case of fj � cjuj, cj = fj (Û)/Û, j = 1, 2. 

Let us pass to the case (ii). It is easy to check that now set V  lies entirely inside 

simplex S  spanned on the points (0,..., 0, fj (Û), 0,..., 0), where fj (Û) appears on 

the jth position, j = 1, 2,..., n (see Figure 13.3.2 for n = 2). This clearly means 

that coV  = S , and that the intersection point of the straight line defined by 

(13.3.7) and the boundary of S  most probably is not a transformed resource allo-

cation (except for the case of linear fj , j = 1, 2,..., n). However, one can easily 

verify that the same value C *  
max is obtained using transformed resource alloca-

tions whose convex combination yields the intersection point just discussed. 

These always are, of course, the extreme points on which simplex S  is spanned. 

This fact implies directly that in case (ii) there always exists the solution of the 

length C *  
max = �

j=1

n
 x~j /fj(Û) in which single tasks are processed consecutively (i.e. 
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on a single machine) using the maximum resource amount Û. Of course, this 

solution is not unique if we assume that there is no time loss concerned with a 

task preemption. However, there is no reason to preempt a task if preemption 

does not decrease C *  
max .  

Thus, in both cases, (i) and (ii), there exist optimal solutions in which each 

task is processed using a constant resource amount. Consequently, in these cases 

the model (13.3.1) is mathematically equivalent to the model (13.3.3). 

In the general case of arbitrary functions fj , j = 1, 2,..., n, one must search 

for transformed resource allocations whose convex combination fulfills (13.3.8) 

and gives the minimum value of Cmax .  

Assume now that tasks are dependent, i.e. that a non-empty relation  is de-

fined on T . To represent  we will use task-on-arc digraphs, also called activity 

networks (see Section 3.1). In this representation we can order nodes, i.e. events 

in such a way that the occurrence of node i is not later than the occurrence of 

node j if i < j. As is well known, such an ordering is always possible (although 

not always unique) and can be found in time O(n2
) (see, e.g. [Law76]). Using this 

ordering one can utilize the results obtained for independent tasks to solve corre-

sponding resource allocation problems for dependent tasks. To show how it 

works we will need some further denotations. Denote by T k the subset of tasks 

which can be processed in the interval between the occurrence of nodes k and k + 

1, by x~jk � 0 a part of Tj � T k (i.e. a part of x~j) processed in the above interval, by 

!*
k({x~jk}Tj �T k) the minimum length of this interval as a function of task parts 

{x~jk}Tj �T k , and by K j the set of indices of T k's such that Tj � T k .  

Of course, task parts {x~jk}Tj �T k are independent for each k = 1, 2,..., K � 1; K 

being the total number of nodes in the network, and thus for calculating of !k's as 

functions of these parts, we can utilize the results obtained for independent tasks. 

To illustrate this approach let us start with the case (ii) discussed previously. 

Considering the optimal solution in which task parts are processed consecutively 

in each interval k we see that this is equivalent to the consecutive processing of 

entire tasks in an order defined by relation . Moreover, this result is independ-

ent on the ordering of nodes in the network. Unfortunately, the last statement is 

not true in general for other cases of fj's.  

Consider now the case (i) of concave fj , j = 1, 2,..., n, and assume that nodes 

are ordered in the way defined above. Thus, for calculating !*
k({x~jk}Tj �T k) , k = 1, 

2,..., K � 1, one must solve for each T k an equation of type (13.3.9) 

�
Tj �T k

 fj
�1

(x~jk 
/!k) = Û . (13.3.12) 

of which !*k is the (unique) positive root for given {x~jk}Tj �T k . As already men-

tioned before, this equation can be solved analytically for some important cases. 
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The step which remains is to find a division of x~j's into parts x~* 
jk  , j = 1, 2,..., n; 

k � K j ensuring the minimum value of Cmax . This is equivalent to the solution of 

the following non-linear programming problem: 

Minimize Cmax = �
k=1

K�1

 !*
k({x~jk}Tj �T k) (13.3.13) 

subject to �
k�K j

x~jk = x~j,  j = 1, 2,..., n , (13.3.14) 

 x~jk � 0,  j = 1, 2,..., n,  k � K j . (13.3.15) 

It can be proved (see e.g. [Weg82]) that Cmax given by (13.3.13) is a convex 

function of x~jk's for arbitrary fj's, thus we have a convex programming problem 

with linear constraints. Its solution is the optimal solution of our problem for the 

preemptive case and given ordering of nodes. Using the Lagrange theorem one 

can verify that for fj = cj uj
1/(

, ( > 1, when C *  
max is given by (13.3.11), the solution 

does not depend on the ordering of nodes. Of course, this is always true when the 

ordering of nodes is unique, i.e. for a uan (cf. Section 3.1). In general, however, 

in order to find a solution which is optimal over all possible orderings of nodes 

one must solve the corresponding convex programming problem for each of 

these orderings and choose a solution with the smallest value of Cmax .  

To illustrate the way of formulating the optimization problem (13.3.13)-

(13.3.15) let us consider a simple example. 

1

2

3

4

T4

0

T5

T3

T1

T2

2! 3!1! t
 

Figure 13.3.3 Example of a uniconnected activity network. 

Example 13.3.1  Consider the uan given in Figure 13.3.3. Let Û = 1, fj = uj for 

j = 1, 3, 5, and fj = 2u1/2
j   for j = 2, 4. Subsets of tasks which can be processed be-

tween the occurrence of consecutive nodes are: 

T 1 = {T1 , T2}, T 2 = {T2 , T3 , T4}, T 3 = {T4 , T5} 
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Sets of indices of T k's such that Tj � T k are: 

K 1 = {1}, K 2 = {1, 2}, K 3 = {2}, K 4 = {2, 3}, K 5 = {3} . 

Since all the functions fj are concave, we use equation (13.3.12) to calculate 

!*
k({x~jk}Tj �T k) for k = 1, 2, 3. For !*

1 we have 

x~11/!*
1 + x~ 2

21 
/4!*

1
2
 = 1 , 

and thus !*
1(x~11 , x~21) = (x~11 + x~ 2

11 + x~ 2
21) 

/2. Similarly, 

x~ 2
22 

/4!*
2

2
 + x~32 

/!*
2 + x~ 2

42 
/4!*

2
2
 = 1 , 

!*
2(x~22 , x~32 , x~42) = (x~32 + x~ 2

22 + x~ 2
32 + x~ 2

42) 
/2 

and 

x~ 2
43 

/4!*
3

2
 + x~53 

/!*
3 = 1 , 

!*
3(x~43 , x~53) = (x~53 + x~ 2

43 + x~ 2
53) 

/2 . 

The problem is to minimize the sum of the above functions subject to the con-

straints x~11 = x~1 , x~21 + x~22 = x~2 , x~32 = x~3 , x~42 + x~43 = x~4 , x~53 = x~5 , x~jk � 0 for all j, 
k. Eliminating five of the variables from the above constraints, a problem with 

two variables remains.  

Notice that the reasoning performed above for dependent tasks remains valid if 

we replace the assumption n � m by �T k� � m, k =1, 2,..., K � 1 . 

Let us now consider the case that the number of machines is less than the 

number of tasks which can be processed simultaneously 2. We start with inde-

pendent tasks and n > m. To solve the problem optimally for the preemptive case 

we must, in general, consider all possible assignments of machines to tasks, i.e. 

all m-element combinations of tasks from T . Keeping for them denotation T k , 

k = 1, 2,..., M
O

P
Rn

m  , we obtain a new optimization problem of type (13.3.13)-

(13.3.15).  

For the non-preemptive case we consider all maximal sequences of T k's such 

that each task appears in at least one T k  and all T k's containing the same task are 

consecutively indexed (non-preemptability!). Such sequences will be called fea-
sible. It is easy to notice that a feasible sequence consists of n � m + 1 elements 

(i.e. sets T k ). To find an optimal schedule in the general case we have to solve 

                                                 
2 Recall that this assumption is not needed when in the optimal solution tasks are processed 

on a single machine, i.e. if fj � cjuj, cj = fj(Û)/Û,  j = 1, 2, ..., n. 
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the problem of type (13.3.13)-(13.3.15) for each of the feasible sequences and to 

choose the best solution. 

It is easy to see that finding an optimal schedule is computationally very dif-

ficult in general, and thus it is purposeful to construct heuristics. For the non-

preemptive case the idea of a heuristic approach can be to choose one or several 

feasible sequences of m-tuples of tasks described above and solve a problem of 

type (13.3.13)-(13.3.15) for each of them. These sequences can be chosen in 

many different ways. A general advise is based on the following reasoning. As-

sume n = 5 and m = 3. Then, a feasible sequence consists of 5 � 3 + 1 = 3 sets T k  

of 3 elements each. Exemplary feasible sequences are: S 1 = ({T1, T2, T3}, {T2, 

T3, T4}, {T3, T4, T5}), S 2 = ({T1, T2, T3}, {T1, T2, T4}, {T1, T2, T5}). 

Define now the structure of a sequence as the vector (|K 1|, |K 2|, ..., |K n|) 

where |K j| is the cardinality of the set of indices of those T k's for which Tj � T k . 

It is easy to see that the structure of S 1 is (1, 2, 3, 2, 1), whereas that of S 2 is (3, 

3, 1, 1, 1). The basic idea is to study the correspondence between the structure of 

feasible sequences and the vector of processing demands x~ of tasks in order to 

achieve possibly uniform workload for particular machines. If all fi are concave 

and identical then we can even identify optimal sequences. For example, under 

the above assumptions, and n = 5, m = 3, x~ = (10, 20, 30, 20, 10), sequence S 1 is 

optimal, whereas S 2 is optimal for x~ = (30, 30, 10, 10, 10). This follows from the 

fact that the division of processing demands of tasks defined as x~j /|K j|, j = 1, 2, 

..., 5, corresponds exactly to the uniform workload. Particular algorithms, their 

worst case behavior and computational results are given in [JW98]. 

Another idea, for an arbitrary problem type, consists of two steps: 

(a) Schedule task from T  on machines from P  for task processing times pj = 

x~j /fj(ûj) , j = 1, 2,..., n, where the ûj's are fixed resource amounts. 

(b) Allocate the continuous resource among parts of tasks in the schedule ob-

tained in step (a). 

Usually in both steps we take into account the same optimization criterion 

(Cmax in our case), although heuristics with different criteria can also be consid-

ered. Of course, we can solve each step optimally or heuristically. In the majority 

of cases step (b) can easily be solved (numbers of task parts processed in parallel 

are less than or equal to m; see Figure 13.3.4 for m = 2, n = 4) when, as we re-

member, even analytic results can be obtained for the sets T k . However, the 

complexity of step (a) is radically different for preemptive and non-preemptive 

scheduling. In the first case, the problem under consideration can be solved ex-

actly in O(n) time using McNaughton's algorithm, whereas in the second one it is 

NP-hard for any fixed value of m ([Kar72]; see also Section 5.1). In the latter 

case approximation algorithms as described in Section 5.1, or dynamic pro-
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gramming algorithms similar to that presented in Section 13.1 can be applied 

(here tasks are divided into classes with equal processing times). 

The question remains how to define resource amounts ûj , j = 1, 2,..., n, in 

step (a). There are many ways to do this; some of them were described in 

[BCSW86] and checked experimentally in the preemptive case. Computational 

experiments show that solutions produced by this heuristic differ from the opti-

mum by several percent on average. However, further investigations in this area 

are still needed. Notice also that we can change the amounts û when performing 

steps (a) and (b) iteratively.  

t0

P2

P1 T1

T3 T4

T2

 

Figure 13.3.4   Parts of tasks processed in parallel in an example schedule. 

Let us stress once again that the above two-step approach is pretty general, since 

it combines (discrete) scheduling problems (step (a)) with problems of continu-

ous resource allocation among independent tasks (step (b)). Thus, in step (a) we 

can utilize all the algorithms presented so far in this book, as well as many oth-

ers, e.g. from constrained resource project scheduling (see, e.g. [W99]). On the 

other hand, in step (b) we can utilize several generalizations of the results pre-

sented in this section. We will mention some of them below, but first we say few 

words about dependent tasks and �T k� > m for at least one k. In this case one has 

to combine the reasoning presented for dependent tasks and n � m, and that for 

independent tasks and n > m. This means, in particular, that in order to solve the 

preemptive case, each problem of type (13.3.13)-(13.3.15) must be solved for all 

m-elementary subsets of sets T k , k = 1, 2,..., K � 1.  

We end this section with few remarks concerning generalizations of the re-

sults presented for continuous resource allocation problems. First of all we can 

deal with a doubly constrained resource, when, apart from (13.3.2), also the con-

straint �
j=1

n

de
0

Cj

 fj[uj(t)]dt � V^  is imposed, V^  being the consumption constraint 

[Weg81]. Second, each task may require many continuous resource types. The 

processing speed of task Tj is then given by x
.
j(t) = fj[uj1(t), uj2(t),..., ujs(t)], where 

ujl(t) is the amount of resource Rl allotted to Tj at time t, and s is the number of 

different resource types. Thus in general we obtain multi-objective resource allo-

cation problems of the type formulated in [Weg91]. Third, other optimality crite-

ria can be considered, such as de
0

Cmax

 g[u(t)]dt [NZ81], �wjCj [NZ84a, NZ84b] or 
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Lmax [Weg89]. Finally, sequences of sets of dependent tasks can be studied 

[JS88]. 

Let us also mention about an application to Grid Scheduling [MWW04]. An 

extensive survey pf the results concerning scheduling under resource constraints 

can be found in [WJMW11]. 

13.3.3 Processing Time vs. Resource Amount Model 

In this section we consider problems of scheduling non-preemptable tasks on a 

single machine, where task processing times are linear, decreasing and continu-

ous functions of a continuous resource. The task processing model is given in the 

form 

pj = bj � ajuj , u
~j � uj � u~j, j = 1, 2,..., n (13.3.16) 

where aj > 0, bj > 0, and u
~j and u~j � [0, bj /aj] are known constants. The continu-

ous resource is available in maximal amount Û, i.e. �
j=1

n
 uj � Û. Although now the 

resource is not necessarily renewable (this is not a temporary model), we will 

keep denotations as introduced in Section 13.3.2. Scheduling problems using the 

above model were broadly studied by Janiak in a number of papers we will refer 

to in the sequel. Without loss of generality we can restrict our considerations to 

the case that lower bounds u
~j of resource amounts allotted to the particular tasks 

are zero. This follows from the fact that in case of u
~j > 0 the model can be re-

placed by an equivalent one in the following way: replace bj by bj � aju~j and u~j by 

u~j � u
~j , j = 1, 2,..., n, and Û by Û � �

i=1

n
 u
~ i , finally, set all u

~j = 0. Given a set of 

tasks T  = {T1 ,..., Tn}, let z = [z(1),..., z(n)] denote a permutation of task indices 

that defines a feasible task order for the scheduling problem, and let Z  be the set 

of all such permutations (partial or complete ones). A schedule for T  can then be 

characterized by a pair (z, u) � Z  � U . The value of a schedule (z, u) with re-

spect to the optimality criterion " will be denoted by "(z, u). A schedule with an 

optimal value of " will briefly be denoted by (z*, u*).  

Let us start with the problem of minimizing Cmax for the case of equal ready 

times and arbitrary precedence constraints [Jan88a]. Using a slight modification 

of the notation introduced in Section 3.4, we denote this type of problems by 1 | 
prec, pj = bj � ajuj , �uj � Û | Cmax . It is easy to verify that an optimal solution (z*, 

u*) of the problem is obtained if we chose an arbitrary permutation z � Z  and 

allocate the continuous resource according to the following algorithm. 
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Algorithm 13.3.2  for finding u* for 1 | prec, pj = bj � ajuj , �uj � Û | Cmax 

[Jan88a]. 
begin 
for j := 1 to n do u*

j  := 0; 

while T  � � and Û > 0 do  

 begin 

 Find Tk � T  for which ak = max
j

{aj}; 

 u*
k := min{u~k,Û}; 

 Û := Û � u*
k; 

 T  := T  � {Tk}; 

 end; 
u* := [u*

1,..., u*
n]; -- u* is an optimal resource allocation 

end; 

Obviously, the time complexity of this algorithm is O(n log n). 

Consider now the problem with arbitrary ready times, i.e. 1 | prec, rj , pj = bj � 

ajuj , �uj � Û | Cmax . One can easily prove that an optimal solution (z*,u*) of the 

problem is always found if we first schedule tasks according to an obvious modi-

fication of Algorithm 4.5.2 by Lawler - thus having determined z* - and then al-

locate the resources according to Algorithm 13.3.3. 

Algorithm 13.3.3  for finding u* for 1 | prec, rj, pj = bj � ajuj , �uj � Û | Cmax 

[Jan88a]. 
begin 
for j := 1 to n do u*

j  := 0; 

Sz*(1) := rz*(1); 

l := 1; 

for j := 2 to n do Sz*(j) := max{rz*(j), Sz*(j�1) + bz*(j�1)}; 

 -- starting times of tasks in permutation z* for u* have been calculated 

J  := {z*}; -- construct set J 

while J  ��� and Û � 0 do 

 begin 

 Find the biggest index k, l � k � n, for which rz*(k) = Sz*(k); 

 J  := {z*(j) | k � j � n, and u *   z*(j) < u~z*(j)}; 

 Find index t for which az*(t) = max{az*(j) | z*(j) � J }; 

 d := min{Sz*(i) � rz*(i) | t < i � n}; 

 y := min{u~z*(t), Û, d/az*(t)}; 

 u *   z*(t) := u *   z*(t) + y; 

 Û := Û � y; 

 for i := t to n do Sz*(i) := Sz*(i) � yaz*(t); 
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 l := k; 
  -- new resource allocation and task starting times have been calculated 
 end; 

u* := [u*
1,..., u*

n]; -- u* is an optimal resource allocation 

end; 

The complexity of this algorithm is O(n2
), and this is the complexity of the whole 

approach for finding (z*, u*), since Algorithm 4.5.2 is also of complexity O(n2
) . 

Let us now pass to the problems of minimizing maximum lateness Lmax. 

Since problem 1 | prec, pj = bj � ajuj , �uj � Û | Lmax is equivalent to problem 1 | 

prec, rj , pj = bj � ajuj , �uj � Û | Cmax (as in the case without additional resources), 

its optimal solution can always be obtained by finding z* according to the Algo-

rithm 4.5.2 and u* according to a simple modification of Algorithm 13.3.3. 

It is also easy to see that problem 1 | rj , pj = bj � ajuj , �uj � Û | Lmax is strongly 

NP-hard, since the restricted version 1 | rj | Lmax is already strongly NP-hard (see 

Section 4.3). For the problem 1 | prec, rj , pj = bj � ajuj , �uj � Û | Lmax where in 

addition precedence constraints are given, an exact branch and bound algorithm 

was presented by Janiak [Jan86c]. 

Finally, consider problems with the optimality criteria �Cj and �wjCj. Prob-

lem 1 | prec, pj = bj � ajuj , �uj � Û | �Cj is NP-hard, and problem 1 | rj , pj = bj � 

ajuj , �uj � Û | �Cj is strongly NP-hard, since the corresponding restricted versions 

1 | prec | �Cj and 1 | rj | �Cj are NP-hard and strongly NP-hard, respectively (see 

Section 4.2). The complexity status of problem 1 | pj = bj � ajuj , �uj � Û | �wjCj is 

still an open question. It is easy to verify for any given z � Z  the minimum value 

of �wjCj in this problem is always obtained by allocating the resource according 

to the following algorithm of complexity O(nlogn) . 

Algorithm 13.3.4  for finding u* for 1 | pj = bj � ajuj , �uj � Û | �wjCj [Jan88a]. 

begin 

J := { z }; -- construct set J 
while J  ��	 do 

 begin 

Find z(k) � J  for which az(k) 
j=k

n
wz(j) = max

z(i)�J
{az(i) 
j=i

n
wz(j)}; 

 u*   
z(k) := min{u~z(k), max{0, Û}}; 

 Û := Û � u*   
z(k); 

 J  := J  � { z(k) }; 

 end; 
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u* := [u*
1 ,..., u*

n]; -- u* is an optimal resource allocation 

end; 

An exact algorithm of the same complexity can also be given for this problem if 

for any two tasks Ti , Tj either Ti <& Tj or Tj <& Ti , where Ti <& Tj means that bi � bj , 

ai � aj , u~i � u~j , and wi � wj . In this case the optimal permutation z* is obtained by 

ordering the jobs according to <&, and the algorithm of the optimal resource allo-

cation is as follows: u *   
z*(j) = min{u~z*(j) , max{0, Ûj}} for j = 1, 2,..., n, where Û1 = 

Û, Ûj+1 = Ûj � u *   
z*(j) , j = 1, 2,..., n � 1 . 

Now let us pass to the criterion which is specific to scheduling problems 

with additional continuous resources, namely to the criterion denoting the total 

resource utilization, i.e. U = �
j=1

n
 uj . This criterion should be minimized subject to 

the constraint " < "^ where " is a classical schedule performance measure and "^ is a 

given value of ". Of course, scheduling problems of minimizing �uj are closely 

related to corresponding problems with criterion ". Additionally, we use the fact 

that for the considered problems it is easy to calculate the maximum value "~ of " .  

We illustrate this idea for the criterion " = Cmax , i.e. for problem 1 | prec, pj = 

bj � ajuj , Cmax < C^  | �uj . It is obvious that the upper bound for Cmax , C~ max = 

min
z �Z

 {Cmax(z, 0)} = Cmax(z*, 0). Thus, we have the following modification of Al-

gorithm 13.3.2. 

Algorithm 13.3.5  for finding u* for 1 | prec, pj = bj � ajuj , Cmax � C^  | �uj [Jan91a]. 

begin 

for j := 1 to n do u*
j  := 0; 

U := 0; 

Cmax := C~ max; 

while T  ��� and Cmax > C^  do 

begin 

Find Tk � T  for which ak = max
j

{aj}; 

u*
k := min{u~k, max{0, (Cmax � C^ ) /ak}}; 

U := U + u*
k; 

Cmax := Cmax � aku*
k; 

T  := T  � {Tk}; 

end; 

if T  = � and Cmax > C^   
then no solution exists  
else u* := [u*

1 ,..., u*
n]; -- u* is an optimal resource allocation 

end; 
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Knowing how to solve a problem for criteria " and �uj , one can also find the set 

of all Pareto-optimal (i.e. efficient or non-dominated) solutions (zP
 , uP) for bi-

criterion problems ([Jan91a]). As an example, consider the problem 1 | prec, pj = 

bj � ajuj | Cmax ^ �uj . Of course, C
~ max = min

z �Z
 {Cmax(z, u~)} = �

j=1

n
 (bj � aju

~
j) is a lower 

bound for Cmax . In our problem, for each value Cmax � [C
~ max , C~ max], any feasible 

permutation z � Z  can be taken as Pareto-optimal permutation zP. In order to 

find the set U 
P of all Pareto-optimal resource allocations uP, we determine the 

Pareto curve (which is a convex, decreasing and piece-wise linear function) from 

the following algorithm of time complexity O(nlogn). 

Algorithm 13.3.6  for finding the Pareto curve in 1 | prec, pj = bj � ajuj | 

Cmax ^ �uj [Jan91a]. 

begin 

for j := 1 to n do u*   
z(j) := 0; 

i := 0; 

C 0  
max := C~ max; 

U 0
 := 0; 

while T  ��� do 

begin 

i := i + 1; 

Find Tk � T  for which ak = max
j

{aj}; 

u*
k := u~k; 

C i  
max := C i�1

max � aku
~

k; 

U i
 := U i�1

 + u~k; 

ai
 := 1/ak; 

T  := T  � {Tk}; 

for l := 1 to n do ui
l := u*

l; 

end; 

end; 

Obtained pairs (C0   
max , U 0

) , (C1   
max , U 1

) ,..., (Cn   
max , U n

) are consecutive break-

points of the Pareto curve; ai
 is the slope of the ith segment of this curve, i = 1, 

2,..., n. The set U P is the sum of n segments joining the points ui
 , ui+1

 , i = 0, 1, 

2,..., n � 1 , where u0
 = 0. 

In [JK96] the problem was considered with given deadlines d ~j and minimi-

zation of the total weighted resource consumption, i.e. the problem 1 | pj = bj � aj
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uj , Cj � d ~j | 5 wjuj . This problem is solvable in O(n log n) time for a continuous-

ly-divisible resource and is NP-hard for a discrete resource. A fully polynomial 

approximation scheme is presented for the last case. 

The paper [CJK98] is devoted to the following machine scheduling prob-

lems with linear models of task processing times and with a discrete resource: 1 | 

pj = bj � ajuj , F1 � K | F2 , 1 | pj = bj � ajuj , F2 � K | F1 and 1 | pj = bj � ajuj | F1 ^ 

F2 , where F1 and F2 is a criterion of resource and completion time type, respec-

tively. More precisely, F1 � {gmax , 5 uj , 5 wjuj} and  F2 � {Cmax , cmax , 5 Uj , 

5 wjUj , 5 Cj , 5 wjCj }, where gmax = max{gj(uj)} (gj(uj) is a nondecreasing re-

source cost function), cmax = max{cj(Cj)} (cj(Cj) is a nondecreasing penalty cost 

function), and 5 wjUj is the weighted number of tardy tasks (see Section 3.1). 

Computational complexities of the problems and the general scheme for the con-

struction of Pareto sets and Pareto set ε-approximations were also presented. 

    In [Jan99] the model (13.3.16) was extended to one with pj = bj + a'j Sj � ajuj , 

where Sj is a task starting time and a'j is a task model parameter. The problems of 

minimization of the makespan, the total completion time and the lateness with 

the extended model including the constraint on the maximal resource amount U^ , 

and also their inverse versions, were investigated e.g. in [IJR00]. 

Further generalizations concern  the application of the model (13.3.16) for 

machine setup times [Jan99]. Single machine batch scheduling with resource 

dependent setup and processing time was examined in [CJK01], where polyno-

mial time algorithms were presented to find an optimal batch sequence and re-

source allocations such that either the total weighted consumption 5 wjuj is min-

imized subject to meeting task deadlines dj , or the maximum task lateness is 

minimized subject to an upper bound on the total weighted resource consump-

tion. Next, single machine group scheduling with resource dependent setup and 

processing times with continuous or discrete resource were considered in [NCJK 

05, JKP05] for various criteria. 

To end this section let us mention some results obtained for the processing time 

vs. resource amount model in case of dedicated processors. Two-machine flow 

shop problems with linear task models were studied by Janiak [Jan88b, Jan89a], 

where it was proved that the problem is NP-hard for the single criteria " = Cmax 

and " = ��uj , even for identical values of aj on one of the machines and fixed pro-

cessing times on the second machine. Approximation algorithms and an exact 

branch and bound algorithm were also presented in these papers. Flow shop and 

job shop problems with convex task models were considered in [GJ87, Jan86b, 

Jan88c, Jan88d, JS94, JP98, CJ00]. 
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13.3.4 Ready Time vs. Resource Amount Model  

In this section we assume that task processing times are given constants but ready 

times are continuously dependent on the amount of allocated continuous re-

source, i.e. 

rj = fj(uj), u~j � uj � u~j, j = 1, 2,..., n , (13.3.17) 

where all the lower and upper bounds of resource allocations, u
~j and u~j , are 

known constants. 

As in Section 13.3.3 tasks are assumed to be non-preemptable, and we con-

sider single machine problems only. Problems of this type appear e.g. in the ingot 

preheating process in steel mills [Jan91b]. 

Problem 1 | rj = fj(uj), ��uj � Û | Cmax 

This problem is strongly NP-hard even in the special case of linear functions fj 
(see (13.3.16)) and u

~j = 0, j = 1, 2,..., n, and is NP-hard in the case of aj = a, j = 

1, 2,..., n [Jan91b]. However, for identical models of rj , i.e. for fj = f, u
~j = u

~
 and 

u~j = u~ for all j, the problem can be solved in polynomial time. In this case we 

know from [Jan86c] that an optimal solution (z*,u*) is obtained by scheduling 

tasks according to non-increasing processing times pj (thus defining permutation 

z*) and by allocating the continuous resource for z* according to the following 

formulas: if 

f(u~z*(1)) + �
j=1

n
 pz*(j) � f(u

~
) + �

j=2

n
 pz*(j)  

where  

u~z*(1) = min{(Û � (n � 1)u
~
) , u~} , 

then  

u *   
z*(1) = u~z*(1),  u*  

z(j) = u
~
,  j = 2, 3,..., n . 

Otherwise, 

u *   
z*(j) = f �1(r � (�

i=j

k�1

 pz*(i) + d)),  j = 1, 2,..., k � 1 , 

u *   
z*(k) = f �1

(r � d) ,  u *   
z*(j) = u

~
,  j = k + 1, k + 2,..., n , 

where r = f(u
~
), and k � 1 is the maximal natural number such that  

(�
j=1

k�1

 f �1(r � �
i=j

k�1

 pz*(i)) + (n � (k � 1))u
~
 � Û)  and  (f �1(r � �

j=1

k�1

 pz*(j)) � u~) ,  
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d = min{(r � �
j=1

k�1

 pz*(j) � f(u~)), d'} , 

with d' following from the equation  

�
j=1

k�1

 f �1(r � �
i=j

k�1

 pz*(i) � d') + f �1
(r � d') + (n � k)u

~
 = Û . 

Thus, if we are able to calculate f, f �1
 and d' in time O(g(n)), then (z*, u*) is cal-

culated in O(max{g(n), nlogn}) time, i.e. this time is polynomial if g(n) is poly-

nomial. For example, this is the case if f is linear. In special situations where fj is 

linear and bj = b for j = 1,2,..., n, algorithms of time complexity O(nlogn) exist. 

These situations are as follows: 

(i) u~j = u~,  pj = p,  j = 1, 2,..., n , 

(ii) aj = a,  pj = p,  j = 1, 2,..., n . 

An optimal solution (z*, u*) is obtained by scheduling the tasks according to non-

increasing values of aj in case (i), non-increasing u~j in case (ii), and by allocating 

the continuous resource using corresponding modifications of the above formu-

lae [Jan89b].  

For arbitrary linear functions fj , Janiak [Jan89b] was able to prove that for 

given z � Z , an optimal resource allocation uz
* can be calculated in O(n2

) time 

using the following algorithm. 

Algorithm 13.3.7  for finding u* for 1 | rj = bj � ajuj, �uj � Û | Cmax [Jan89b]. 

begin 
for j := 1 to n do 

 begin 
 u*   z(j) := 0; 

 Cz(j) := bz(j) + �
i=j

n
 pz(i); 

 end; 
J  := {z(j) | j = 1, 2,..., n}; 

l := 0; 

C0 := 0; 

J 0 := 0; 

while J  � � do 

 begin 
 l := l + 1; 

 Find set J l = {z(j) | z(j) � J and Cz(j) = min
z(i)�J

 {Cz(i)}}; 

 J  = J  � J l; 
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 end; 
Q  := J l; 

while (Û ≠ 0 and l ≠ 0 and min
j �Q

 {u~j � u*
j} ≠ 0) do 

 begin 
 x := min {Cq � Cp, Û/ �

j �Q
 (1/aj) , min

j �Q
 {aj(u

~
j � u*

j )}}; 

  -- p and q are indices of tasks belonging to sets Q  and J l�1, respectively 

 for j � Q do u*
j  := u*

j  + x/aj; 

 Û := Û � �
j �Q

 x/aj; 

 l := l � 1; 

 Q  := Q  � J l; 

 end; 
u*

z := [u*
1 ,..., u*

n]; -- uz
* is an optimal resource allocation for permutation z 

end; 
In the same paper it has been shown that in the case of aj = a, u~j = u~ , pj = p for j = 

1, 2,..., n, an optimal solution (z*, u*) is obtained when tasks are scheduled in 

order of non-decreasing bj and the resource is allocated according to Algorithm 

13.3.7. The same is also true for problems in which the above permutation is in 

accordance with the non-increasing orders of aj , u~j and pj . Of course, Algorithm 

13.3.7 can also be used for finding resource allocations for permutations z � Z  

defined heuristically. In [Jan89b] 25 such heuristics with the (best possible) 

worst case bound 2 were compared experimentally. The best results for "low" 

resource level (Û = 0.2&�
j=1

n
 u~j) were produced by ordering tasks according to non-

decreasing bj , whereas for "high" resource level (Û = 0.9&�
j=1

n
 u~j) sorting tasks ac-

cording to non-decreasing values of bj � aju
~

j turned out to be most efficient. 

Problem 1 | rj = fj(uj), Cmax �� C^  | �uj 

Similarly as for 1 | rj = fj(uj) , �uj � Û | Cmax it can be proved that the considered 

problem is already strongly NP-hard for fj = bj � ajuj , j = 1, 2,..., n, and NP-hard 

for aj = a, j = 1, 2,..., n (see [Jan91b]). Also similarly to the solution of the first 

problem, if fj = f, u
~j = u

~
 for all j, the problem is solved optimally by scheduling 

tasks according to non-increasing pj (thus defining permutation z*) and by allo-

cating the resource according to the following condition. If  

r + �
j=1

n
 pj � C^  � pz*(1),  where r = f(u

~
) ,  
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then 

u *   
z*(1) = f �1(C^  � �

j=1

n
 pj),  u *   

z*(j) = u
~
,  j = 2, 3,..., n , 

and otherwise  

u *   
z*(j) = f �1(C^  � �

i=j

n
 pz*(i)) = f �1(r � �

i=j

k�1

 pz*(i) � d)  for j = 1, 2,..., k � 1 ,  

u *   
z*(k) = f �1(C^  � �

i=k

n
 pz*(i)) = f �1

(r � d) ,  

u *   
z*(j) = f �1

(r) = u
~
,  j = k + 1, k + 2,..., n ,  

where k is the maximal natural number such that  

�
i=1

k�1

 pz*(i) � r + �
j=1

n
 pj � C^  ,  

d = r + �
j=1

n
 pj � C^  � �

i=1

k�1

 pz*(i) = r + �
i=k

n
 pz*(i) � C^  . 

Thus, if we are able to calculate f and f �1
 in O(g(n)) time, then finding (z*, u*) 

needs O(max{g(n), nlogn}) time. 

Notice that it is generally sufficient to consider C^  for which C
~ max � C^  � 

C~ max , where C
~ max = min

z�Z
 Cmax(z, u~) and C~ max = min

z�Z
 Cmax(z, u

~
). In particular, for 

identical fj , u
~j , u~j , j = 1, 2,..., n, we have  

Cmax(z, u~) = C
~ max= f(u~) + �

j=1

n
 pj  

and  

Cmax(z, u
~

) = C~ max = f(u
~
) + �

j=1

n
 pj  for each z � Z . 

If functions fj are not identical and linear, then for given z � Z  an optimal uz
* 

is obtained in O(n) time using the formula [Jan91b]  

u*   z(j) = max{0, (bz(j) + �
i=j

n
 pz(i) � C^ )/az(j)},  j = 1, 2,..., n . (13.3.18) 

This follows simply from the linear programming formulation of the problem. 

On the same basis it is easy to see that the cases: 

(i) bj = b,  u~j = u~,  pj = p,  j = 1, 2,..., n , 

(ii) bj = b,  aj = a,  pj = p,  j = 1, 2,..., n , 

(iii) aj = a,  u~j = u~,  pj = p,  j = 1, 2,..., n 
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are solvable in O(nlogn) time by scheduling tasks according to non-increasing aj 

in case (i), non-increasing u~j in case (ii), and non-increasing bj in case (iii), and 

by allocating the resource according to (13.3.18). For each of these cases z* does 

not depend on C^ , and C
~ max = Cmax(z*, u~) , C~ max = Cmax(z*, 0) .  

Heuristics in which z is defined heuristically and uz
* is calculated according 

to (13.3.18) were studied in [Jan91b]. The best results were obtained by schedul-

ing tasks according to non-decreasing bj . Unfortunately, the worst-case perfor-

mance of these heuristics is not known. 

On the basis of the presented results, the set of all Pareto-optimal solutions 

can be constructed for some bi-criterion problems of type 1 | rj = fj(uj)  | Cmax ^ 

� uj using the ideas described in [JC94]. For linear  models this set was con-

structed  in [Jan 91b]. 

The problems considered in this section were generalized in [Jan 97] for the 

case with arbitrary precedence constraints, where it was proved that they are NP-

hard even for identical linear models of rj . When additionally all processing 

times are identical, the optimal solution (z*, u*) can be constructed in O(n2
) time. 

In [JL94, Jan99] the single and parallel machine scheduling problems with 

nonlinear function: release time vs. resource consumption, common for all tasks, 

with different task resource consumption rates were considered. The following 

criteria were minimized: the total weighted task completion time subject to a 

constrained maximal resource amount [JL94], the total resource utilization sub-

ject to a constrained total weighted completion time, and the bi-criteria approach 

[Jan99]. The borders between NP-hard and polynomially solvable cases were 

found. 

Further generalization of the release time model was made in [Jan99], where 

the single machine scheduling problem with the model (13.3.1) applied to release 

times was considered. Due to some problem properties, the difficult dynamic 

resource allocation problem was reduced to a simple convex programming one. 

Some approximation algorithms with the worst case analysis were also present-

ed. 
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14 Scheduling Imprecise  
Computations 

The previous chapters focused on various scheduling models, such as single or 
parallel processors (Chapters 4, 5) and shop systems (Chapters 8, 9, 10), and 
presented results for different performance measures. The following sections 
extend the deadline and due date models discussed in Chapters 4, 5 and 7 by 
models of imprecise computations. These deal with a kind of “soft” time con-
straints that play an important role in practice and inspire the development of 
new models, not only including new concepts of task or processor characteris-
tics, but also new and more sophisticated concepts of performance measures. 

14.1 Introduction 

The imprecise computation model is an excellent example for the evolution of 
scheduling models. According to the basic definition of scheduling problems 
provided in Section 3.1 all given tasks have to be completed to meet feasibility. 
However, in many practical applications, only partial execution of tasks or even 
rejecting one or the other task is acceptable. This relaxed requirement is taken 
care of in the imprecise computation model where the tasks are assumed to be 
composed of two subtasks, a mandatory and an optional part. The first one has to 
be completed before a given deadline, while the second one can be delayed, or 
even canceled.  

For the mandatory parts, approaches from the previous chapters can be used 
to arrive at a first, coarse solution. Processing the optional parts then allows im-
proving the quality of the schedule.  

The imprecise computation model was introduced in the context of real-time 
systems, see e.g. [LLS+91a, LNL87a, LNL87b, LNLK87]. A special case of 
imprecise computations is the concept of late work, where tasks have no manda-
tory part and consist only of the less critical part. This model was originally pro-
posed [Bla84] as an extension of the classical due date problem presented in Sec-
tion 3.1. Both concepts are practically justified. We already pointed out that the 
optimization criteria such as maximum lateness, mean or mean weighted tardi-
ness, are very useful in computer control systems. For tasks not completed before 
their due dates a penalty is normally calculated with respect to the amount of 
delay. However, in these applications one would rather like to penalize the de-
layed portions of the tasks, no matter when they are completed. This is, for ex-
ample, the case for a computer system that collects data from sensing devices. 
Exceeding a deadline causes the complete loss of uncollected data, and conse-
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quently reduces the precision of the measurement procedure. It follows that the 
weighted information loss criterion, introduced in [Bla84] and called afterwards 
weighted late work criterion, is better suited for these situations, as it takes into 
account the weighted loss of those parts of tasks which remain unprocessed at 
their deadlines. Similar problems arise in manufacturing environments, e.g. in 
FMS (flexible manufacturing system) or CIM (computer integrated manufactur-
ing), discussed in Chapters 17 and 18. In particular, late work is applicable in 
computerized control systems where data are collected and processed periodical-
ly [Leu04], or in optimizing batches of burn-in operations for VLSI chip manu-
facturing [RDX13]. Focusing rather on the size of late parts than on the amount 
of the delay might be crucial not only for managing production processes, but 
also for their planning. Shift length or planning horizon might be considered as 
a common due date for tasks, whose late parts model parts of customer orders 
not completed at the agreed due date, i.e. task parts which must be scheduled in 
the next planning period, or which must be paid as overtime work [Ste07a].        

There are many more situations in practice where the late work criterion 
plays an essential role. In agriculture, for example, different stretches of land are 
to be harvested [PW92a, PW92b] by a single harvester or several harvesters. Any 
part of the crop not gathered by a given date (which differs according to the site) 
is spoiled and can no longer be used. Hence in this case minimizing the total late 
work corresponds to minimizing the quantity of wasted crop. Similarly one can 
consider other - more complex - cultivation processes such as spreading fertiliz-
ers or pesticides [BPSW04a, Ste06]. For particular stretches of land, various 
tasks are to be performed, involving one or several specialized agricultural ma-
chines. Natural conditions may determine the sequence and time intervals in 
which this cultivation work has to be done. The amount of fertilizers or pesti-
cides not delivered on time to the site negatively impacts the crop and the gain. 

In software engineering, while validating new applications, tests which 
should be run for certain software modules can be considered as tasks [Ste06]. 
They are either independent of each other or related by a set of predefined prece-
dence constraints and have to be scheduled before given due dates. The tasks 
might be executed by a single software developer or by a team, and are corre-
spondingly modeled by a single processor or by a set of processors. Tests not 
completed on time increase the probability of not detecting faults and bugs, and 
negatively impact the quality of software. 

In other situations variations in processing times of dynamic algorithms or 
congestion on the communication network makes meeting all timing constraints 
at all times difficult. An approach to minimize this difficulty is to trade the quali-
ty of the results produced by the tasks off for the amount of processing time re-
quired to produce the results. Such a trade-off can be realized by using 
the imprecise computation technique [CLL90, LLL87, LNL87a]. This technique 
prevents timing faults and achieves graceful degradation by making sure that 
an approximate result of an acceptable quality is available to the user whenever 
the exact result of the desired quality cannot be obtained on time. An example of 
a real-time application where one may prefer timely, though approximate, results 
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to late, but exact, results is image processing. It is often better to have quickly 
produced frames of fuzzy images than perfect images produced too late. Another 
example is tracking. When a tracking system is overloaded and cannot compute 
all the accurate location data in time, one may, instead, choose to have their 
rough estimates that can be computed in less time. 

The above presented examples show the wide range of applications of the 
imprecise computation model and particularly of the special late work model. As 
mentioned, the imprecise computation model has its origin in the real-time envi-
ronment where often specific approaches are required for taking into account its 
non-deterministic and dynamic nature. The late work model is - on the one hand 
- a special case where task execution is generally optional, but - on the other 
hand - introduces a new objective function where the late parts of tasks are pe-
nalized. Criteria based on the late work can be considered in any scheduling 
model, including those discussed in the other chapters of the handbook. This 
double nature of late work, i.e. scheduling model and performance measure, 
makes it an especially interesting subject of research.  

 Scheduling of imprecise computation tasks with mandatory and optional 
subtasks is generally more difficult, because it involves feasibility issues as well 
as optimization processes. For this reason polynomial time solvability is rather 
unlikely even in the simplest cases. Actually, the research on imprecise computa-
tions seems to be more focused on specific applications (e.g. [BH98, CC00, 
CY14, HFL96, PB10, SK12, WF08]) than on systematic studies. Corresponding 
publications from industry or military (e.g. designing automatically driven cars 
or missile tracking) are generally of restricted accessibility. That is why we shall 
only touch on the area of imprecise computations (Section 14.2), and instead 
concentrate extensively on late work scheduling in Section 14.3. As was pointed 
out above late work scheduling not only is an important issue in practice, it is 
also a very attractive subject for scientific work [Ste11]. In the field of late work 
scheduling a wide range of algorithmic techniques is used, such as dynamic pro-
gramming methods, mathematical programming models, approximation algo-
rithms including polynomial time approximation schemes, and general strategies 
such as branch and bound and metaheuristic algorithms. Moreover, late work, as 
an objective function, is applied in various fields of contemporary scheduling 
theory such as multi-agent scheduling or time-dependent scheduling. 

In this chapter we concentrate on the late work scheduling, i.e. on the opti-
mization aspects of imprecise computations. Nevertheless, in Section 14.2 we 
give a short overview of the imprecise computation model, including the main 
research areas related to it. The more interested readers are directed to the sur-
veys given more recently by Leung [Leu04, Leu08a, Leu08b] and earlier by Liu 
et al. [LLS+91b, LSL+94]. In Section 14.3 we focus on late work scheduling 
problems, intensively studied in last years. Section 14.4 presents some related 
scheduling models, based on the late work as well as on the early work parame-
ters. The relations between them give the opportunity to discuss some interesting 
issues regarding approximability of scheduling problems (cf. Section 2.5.1).   
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14.2 Imprecise Computation Model 

The imprecise computation model has been introduced in the field of hard real-
time scheduling (cf. Chapter 7) to allow for trading off accuracy of computations 
in favor of meeting deadlines or to handle temporary overload, as well as to en-
hance fault tolerance of such systems.  

In the imprecise computation model, every hard real-time task Tj (with pro-
cessing time pj) is logically decomposed into two subtasks, a mandatory part and 
an optional part. The mandatory subtask is a portion of computation (of length 
pj

m), which has to be completed before the task deadline in order to obtain a fea-
sible solution. The optional subtask (of duration pj

o) represents the computation 
that refines the result from the mandatory part but can be left unfinished. In other 
words, executing the mandatory subtask only corresponds to producing an ap-
proximate but acceptable result (possibly with an error), whereas the optional 
subtask allows minimizing the error or optimizing the initial result. A typical 
situation can be found in cases where, due to overload or failure, the system is 
prevented from producing the precise result (with no error) but instead presents 
an inexact approach that can be improved if more processor capacity is available 
[LSL+94]. Late parts can thus be interpreted to model an error that should be 
minimized. The total task processing time pj is defined by the sum  pj

m + pj
o .     

In hard real time systems, where tasks are usually time-critical, the impre-
cise computation technique can be used to gain responsiveness and robustness 
[LSL+94]. It is assumed that under normal operating conditions all optional sub-
tasks, corresponding for example to pieces of work, portions of computations, or 
units of data to be transmitted, can be completed on-time with the desired preci-
sion. If this, however, is not possible due to system faults or overloads, the op-
tional subtasks or parts thereof can be skipped in order to ensure solution feasi-
bility by completing at least the mandatory parts. The results of tasks whose op-
tional subtasks are not fully completed are called imprecise. In addition to 
the hard-real time applications the imprecise computation model can be used in 
the analysis of iterative algorithms [Leu04]. In such case the mandatory subtask 
represents the effort needed to determine an initial solution, while the optional 
subtask corresponds to the subsequent iterations for improving the solution 
quality.   

In the simplified situation, where the tasks in a system have no mandatory 
part (pj

m = 0), the whole processing time is assigned to the optional subtasks  
(pj = pj

o). The imprecise computation scheduling problem is then reduced to 
the late work minimization problem, which is broadly discussed in the next sec-
tion.

Scheduling imprecise computations not only includes optimization, but also 
feasibility related issues. In that sense, late work problems are easier to deal with 
because feasibility questions do not appear. Of course, methods proposed for 
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the imprecise computation model can be applied for late work scheduling, but 
there exist simpler approaches. Leung [Leu04] observed that for single machine 
problems with preemptions, any algorithm proposed for the total weighted late 
work (i.e. the weighted sum of late parts of task processing times) can be used to 
solve the imprecise computation problem. Treating mandatory and optional sub-
tasks of a task as two different tasks and setting the weight of each mandatory 
subtask to a value larger than that of any optional subtask, all mandatory sub-
tasks will be guaranteed to be completed (supposed a feasible schedule exists for 
the mandatory subtasks). Unfortunately a similar approach cannot be applied for 
multi-processor problems, because mandatory and optional subtasks of a task 
cannot be executed in parallel on different processors. Moreover, such strategy 
cannot be used for non-weighted and non-preemptive cases, because mandatory 
subtasks cannot be separated from optional subtasks and awarded with larger 
weights. For these reasons, the two research fields, imprecise computation 
scheduling and late work scheduling, have been developing separately, although 
they obviously influence each other.  

Imprecise computation scheduling problems have been investigated for vari-
ous objective functions, such as minimizing the total error (e.g. [CSLG89]) or 
minimizing the number of imprecisely scheduled tasks (e.g. [HLW97, SLC91]). 
In order to take into account not only the total error, but also the distribution of 
errors among tasks, criteria based on minimizing the maximum normalized error 
(determined as the fraction of a task error divided by the processing time of its 
optional part) under the constraint that the total error is minimized (e.g. [SL95]), 
and doubly weighted tasks (e.g. [HLW94, WLP07]) were proposed. The doubly 
weighted tasks are described by two weights wj

T and wj
M

 , used for determining 

two distinct error criteria: the total wT-weighted error and the maximum wM-

weighted error (e.g. [Ho04]). The imprecise computation model was also extend-
ed with a 0/1-constraint, signaling that particular optional subtasks are either 
fully executed or fully discarded (see e.g. [HLW97, SLC91]). Moreover, period-
ic tasks, where each task is a periodic sequence of identical operations and the 
ready time and deadline are determined by the respective beginning and end of 
the period, were studied (e.g. [CLL90]).  

Recently Shioura et al. [SSS16, SSS18] noticed that the imprecise computa-
tion model can be considered as a scheduling model with controllable processing 
times (cf. [MM14, NZ90, SS07, Vic80a, Vic80b]. In this model, the task pro-
cessing time pj is not given in advance, but is selected from a given interval  
[lj , uj ] . Compressing the processing time from its longest value uj to pj allows 

decreasing the task completion time, but causes additional cost. Shioura et al. 
[SSS15, SSS16] observed that the imprecise computation of a task can be mod-

eled as a task with controllable processing times by setting the respective lengths 

of the mandatory and the optional parts to pj
m = lj and pj

o = uj – pj
m

 . 

In consequence, results obtained for problems with controllable processing times 

can as well be used to tackle imprecise computation problems.  
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14.3 Late Work Model 

The late work parameter Yj extends the set of the classical due date parameters 

lateness Lj , tardiness Dj , earliness Ej , and number of tardy tasks Uj  introduced 

in Section 3.1 for estimating the quality of schedules. In non-preemptive models, 

the late work is equal to the size of the late part of task Tj , Yj = min{max{Cj � dj , 

0}, pj } , i.e.: 

 Yj =  
�.
�
. 

 

 

 

 

 

0 
Cj���dj 
pj 

if Cj � dj , 

if dj < Cj < dj + pj , 
if dj + pj � Cj . 

(14.3.1)

In preemptive models, the duration of late parts of a task must be added up. 
Based on this parameter, the following criteria can be used to evaluate schedules 
with n tasks: 

total late work  Y =  �
j=1

n
Yj    

or, more general, 

total weighted late work  Yw =  �
j=1

n
 wjYj . 

To be consistent with the notation introduced in Section 3.4 for characterizing 
scheduling problems, we use the short cuts �Yj and �wjYj for late work problems.  

 
 

Figure 14.3.1  Due date involving parameters - overview [Ste11]. 

Late work is closely related to tardiness Dj but bounded from above by 

the processing time, i.e. Yj = min{Dj , pj }. On the other hand, it is related to 

dj 

Lj 

dj 

Dj 

dj 

Uj 

1 

Cj Cj Cj 

Cj dj 

Ej 

dj 

Ej+Dj 

Cj Cj dj 

Yj 

dj+pj 
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the number of tardy tasks Uj (see Figure 14.3.1), because its value is also limited, 

unlike to the case of other parameters. Late work based performance measures 

are regular functions, i.e. non-decreasing with task completion times [Pin16], in 

contrast to the earliness involving criteria, which are non-regular. Moreover, for 

all due date based criteria their value is non-decreasing with the deviation of the 

task completion time from the due date. Since minimizing the total (weighted) 

late work is not easier than minimizing the maximum lateness [BPSW00], the 

graph of interrelations among scheduling criteria presented in Figure 3.4.1(f) can 

be extended with the late work based criteria as shown in Figure 14.3.2.  

 
Figure 14.3.2 Extended graph showing interrelations among different optimality 

criteria. 

Moreover, we see from the definition of late work, cf. equation (14.3.1) and the 
definition of Uj (Section 3.1), that the total (weighted) late work and the total 
(weighted) number of tardy tasks are the same for non-preemptive scheduling 
problems with unit processing times for a single processor and for parallel iden-
tical and uniform processors [Ste00].  

14.3.1 Single Processor Problems 

The results obtained for the single machine scheduling problems with the total 
late work criterion contain interesting examples of utilizing approaches devel-
oped for other scheduling models and for other combinatorial optimization prob-
lems.  

Problem 1 | pmtn | ��Yj 

The single machine preemptive problem is one of relatively few cases with late 
work which is solvable in polynomial time. Potts and Van Wassenhove [PW92a] 
proposed an algorithm, based on the similarity of the late work and the tardiness 
parameters. 

Dw, Ew 

D, E 

Lmax 

Cmax 

Uw 

U 

Yw 

Y 
Fw 

F 
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First the tasks, numbered in the earliest due date order, are scheduled by 

Jackson’s algorithm [Jac55] presented in Section 4.3.1. It minimizes the maxi-

mum tardiness to the value of Dmax = max{ max
1 � j � n

 {�
k=1

j
 pk � dj }, 0}.  

If Dmax = 0, then �Yj = 0, and Jackson’s schedule is optimal for problem 

1 | pmtn | �Yj . If Dmax > 0 the schedule is modified by shifting Dmax units of work 

after the last task in the sequence. First the critical task Tj is determined for 

which �
k=1

j�1

 pk < Dmax �� �k=1

j
 pk . The optimal schedule for 1 | pmtn | �Yj  is built by 

executing  �
k=1

j
 pk � Dmax units of the critical task Tj , followed by tasks Tj+1 ,..., 

Tn , T1 ,..., Tj�1 , and the remaining Dmax � �
k=1

j�1

 pk units of task Tj . Such a schedule 

requires at most one preemption and minimizes the total late work to �Yj = Dmax .  

The above presented algorithm solves problem 1 | pmtn | �Yj in O(nlogn) 

time, due to the necessity of sorting tasks.  

Problem 1 | pmtn | ��wjYj 

The total weighted late work scheduling problem for a single processor can be 
solved in polynomial time by backward scheduling (cf. Algorithm 4.2.4). Hariri 
et al. [HPW95] extended the approach proposed for the unweighted case.  

Algorithm 14.3.1 Algorithm for 1 | pmtn  | �wjYj  [HPW95]. 

begin 

Renumber tasks in EDD order forming set T = {T1 ,..., Tn}; 
t := dn; 
while T � � and t � 0 do 

 begin 
  Determine the set of available tasks A = {Tj ��Tj � T, dj � t}; 
  Choose Tj � A with the maximum weight wj; 
  if there exists task Tk , with largest k, such that t � pj < dk < t 
  then s := dk 
  else s := max{t � pj , 0}; 
  Schedule  t ��s units of task Tj within interval [s, t];  
  pj := pj ��at ��s3; 
  t := s; 
  if pj = 0 

  then T := T ��fTj/; 
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  if dj  < t  for all Tj � T  

  then t := max
Tj�T

{ dj }; 

 end; 
end; 
Algorithm 14.3.1 determines an optimal schedule with at most n preemptions in 
O(nlogn) time. The proof of correctness can be found in [HPW95]. 

Problem 1 | pmtn, rj | ��Yj 

Introducing ready times does not make the problem intractable. Under the as-

sumption that all parameters are integers problem 1 | pmtn, rj | �Yj can be solved 
by an algorithm proposed by Hochbaum and Shamir [HS90]. Minimizing the 
total late work is equivalent to minimizing the number of tardy task units. They 
modeled the scheduling problem with minimizing the number of tardy task units 
as a transportation problem (cf. Section 2.3).  

First all distinct ready times and due dates are sorted in non-decreasing or-
der, determining all possible distinct time moments ui , such that 0 = u0 < u1 < ... 

< um < UB. UB is the length of a fictitious schedule where all tasks are executed 

in the order of their ready times. Assuming that decision variables xji correspond 

to the number of units of task Tj processed within the time interval [ui�1 , ui ), and 

the penalty caused by tardy units is defined as  

cji = 
�
�
  

 

 
 
0 if rj < ui � dj ,  

1     if ui > dj , 

the problem can be formulated as follows: 

Minimize �
j=1

n
 �
i=1

m
 xji cji (14.3.2) 

subject to� �
i=1

m
 xji = pj  for all j, (14.3.3) 

� �
j=1

n
 xji = ui � ui�1  for all i, (14.3.4) 

 xji � 0 and integer  for all j, i. (14.3.5)  

This problem can be solved in O(n 3logn + n 2log 2n) time by the flow algorithm 

of Orlin [Orl88], but the faster specialized approach in [HS90] requires only 

O(nlogn) time. The above approach can also be applied to the problem without 
ready times, 1 | pmtn | �Yj  [HS91].  
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Problem 1 | pmtn, rj | ��wjYj 

The algorithm proposed by Hochbaum and Shamir [HS90] for 1 | pmtn, rj | �Yj  

can be adjusted to the weighted case by modifying the penalty given to the tardy 

units of particular tasks: 

cji = 
�
�
  

 

 
 
0 if rj < ui � dj ,  

wj    if ui > dj . 

An apparent approach is to solve the corresponding transportation problem by 

Orlin’s method [Orl88] which needs O(n 
3
logn +n 

2log2n) time. An alternative 

specialized two-phase algorithm designed by Hochbaum and Shamir [HS90] 

takes O(n 
2
) time. It first determines the optimal number of early units for each 

task, and then applies O(n) times the procedure proposed for the unweighted 

case. Another two-phase algorithm, proposed by Yu [Yu91] and Leung et al. 
[LYW94], decreased the time complexity to O(nlogn + nk), where k denotes the 

number of distinct task weights. The algorithm divides the set of tasks into sub-

sets corresponding to various weights, and applies to them algorithms proposed 

in [HS90] and [SLC91]. The latter approach was designed for the single machine 

problem in the imprecise computation model. 

Problem 1 | | �Yj 

The non-preemptive late work scheduling problem on a single processor is 
NP-hard. Potts and Van Wassenhove [PW92a] presented a transformation from 
the subset sum problem, a special case of the knapsack problem. Moreover, 
based on the similarity of problem 1 | | �Yj with the knapsack problem, they pro-
posed a pseudopolynomial time dynamic programming algorithm (see Section 
2.4.1) for proving the binary NP-hardness.    

Theorem 14.3.2  [PW92a] Problem 1 | | �Yj is NP-hard. 

Proof. As a known NP-complete problem we take SUBSET SUM [Kar72] which 
is formulated as follows. 

Instance: Finite set A , a size s(aj) � IN for each aj � A , and a constant b. 

Answer: "Yes" if there exists a subset A' � A  such that  
 �

aj �A'
s(aj) = b .  

 Otherwise "No". 

Given any instance of SUBSET SUM defined by the positive integers s(aj) for  
aj �A , we define a corresponding instance of the decision counterpart of 1 | | �Yj 
by assuming n = |A | + 1 tasks. For tasks Tj ,  j = 1, 2,..., n, we set pj = s(aj), and 

dj = b. For  Tn+1 we set pn+1 = 1, and dn+1 = b + 1. A threshold value for the total 
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late work is equal to y = �
aj �A

s(aj)  ��b. It is obvious that there exists a subset A' 

with the desired property for the instance of SUBSET SUM if and only if, for 
the corresponding instance of 1 | | �Yj , there exists a schedule with �Yj � y. 

The schedule is shown in Figure 14.3.3.  

 
Figure 14.3.3 A schedule for Theorem 14.3.2. 

The alternative NP-hardness proof, based on a transformation from the partition 
problem (defined in Section 5.1.1 and used in the complexity analysis of many 
scheduling problems) was proposed be Leung [Leu04].  

The results obtained for a single processor inspired the treatment of more 
general, also intractable, scheduling models without preemptions. The structure 
of an optimal schedule - similar to the one shown in the following Theorem 
14.3.3 where the set of tasks is divided into the subsets of early, partially early, 
and of late tasks - can be observed for parallel and dedicated processor problems 
as well. This result is extremely powerful from the algorithmic point of view, 
since it eliminates the sequencing element of problems involving the analysis of 
up to n! permutations by replacing it with analyzing at most 2n possible subsets 
(in the branch and bound method [PW92b] for example).  

Theorem 14.3.3 [PW92a] There exists an optimal solution to 1 | | �Yj in which 
the early and partially early tasks are sequenced first in EDD order followed by 
the late tasks sequenced in arbitrary order.                                                           

Solving the non-preemptive problem for a single processor with dynamic pro-
gramming is based on the above mentioned structure of an optimal schedule. 
Assuming that the tasks are numbered in the earliest due date order, a recursion 
is defined on variables fj(t) that represent the minimum total late work for tasks  
T1 ,..., Tj scheduled so that the last early or partially early task finishes at time t.  

Algorithm 14.3.4  Dynamic programming for 1 | | �Yj [PW92a]. 

begin 
for j = 1 to n do bj = min{�

i=1

j
 pi  , max

1 � i � j
{di + pi ��1}}; 

 -- bj represents the bound of the completion time of early and partially early tasks 

 -- among tasks T1 ,..., Tj  

dj 

b b+1 

dn+1 

b y 

   Tn+1 P1 

t 

A' A�A' 
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for j = 1 to n do 
 for t = 0 to bj do  

fj(t) := #; 
f0(0) := 0;   
for j = 1 to n do 
 for t = 0 to bj do 
  if t < dj + pj  
  then 
    fj(t):= min{ fj�1(t ��pj) + max{t ��dj , 0},  fj�1(t) ��pj};  
  -- the first term corresponds to the decision to schedule Tj early 

   -- or partially early, the second one to the decision to schedule Tj late 
  else 
    fj(t):=  fj�1(t) ��pj; 
The minimum total late work is given by min

0 � t � bn

{fn(t)}; 

end; 

The above algorithm solves problem 1| | �Yj in O(n min{�
j=1

n
 pj , max

1 � j � n
{dj + pj}}) 

time. The computational time can be reduced to O(n(Dmax + pmax)) by a redun-
dant state elimination, where Dmax denotes the maximum tardiness and pmax the 
maximum task processing time [PW92a]. The storage space required by dynamic 
programming can be reduced by termination tests, but without computational 
time reduction [PW92a].   

Relinquishing the requirement of optimally solving problem 1 | | �Yj , an 
(1+1/k)-approximation algorithm based on the branch and bound method 
[PW92b], working in O(n 

k+1) time and O(n) space, can be applied. Moreover, 
the above presented dynamic programming method gives the basis for a fully  
polynomial time approximation scheme, which is a family of (1+%)-approxi-
mation algorithms with time and space requirements of O(n 2/%) and O(n/%), re-
spectively [PW92b].  

For the interested reader we mention that problem 1| | �Yj is an example of 

the DP-benevolent problem [Woe00] which is understood as a combinatorial 

problem accessible by a dynamic programming approach, where certain structur-

al conditions guarantee the existence of a fully polynomial time approximation 

scheme (FPTAS). 

Problem 1, h1 | r-a | ��Yj 

The approaches proposed by Potts and Van Wassenhove [PW92a, PW92b] can 

be adjusted to the single processor case with one non-availability period (cf. Sec-

tion 11.2 and [MCZ10] for example). Yin et al. [YXC+16] investigated the sin-
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gle processor case with one fixed maintenance activity (denoted h1 ), and resum-

able availability constraints (denoted r-a). They proposed two dynamic pro-

gramming methods of pseudopolynomial time complexity. In contrast to the 

problem with a continuously available processor, there is no polynomial (1 + %)-

approximation algorithm for 1, h1 | r-a | �Yj for limited % < +# unless P = NP. 

A fully polynomial time approximation scheme exists for the modified problem, 

where the criterion value is increased with the maximum task processing time 

pmax , i.e. for 1, h1 | r-a | (�Yj + pmax). 

Problem 1 | dj = d | ��Yj 

In case of a common due date, the non-preemptive scheduling problem on a sin-
gle processor is trivial. Any task ordering leads to a schedule which is optimal 

with regard to max{(�
j=1

n
 pj) � d$��/�[PW92a]. 

Problem 1 | pj = p | �Yj 

In case of identical task processing times, the problem of minimizing the total 
late work is polynomially solvable in O(nlogn) time [PW92a]. Assuming that all 
tasks are indexed in the earliest due date order, either the sequence 
(Tu+1 ,..., Tn , T1 ,…, Tu) or (Tu'+1 ,..., Tn , T1 ,..., Tu') is optimal, where u =  
�Dmax / p� , u′ = 9Dmax / p; , and Dmax denotes the maximum tardiness for tasks if 

scheduled according to the EDD rule. 

Problem 1 | chains, pj = 1 | �Yj 

Imposing precedence constraints on tasks, even in the simplest case of chains 
with unit processing time tasks, makes the problem NP-hard. Taking into ac-
count the equivalence of total late work and total number of tardy tasks for non-
preemptive scheduling problems with unit processing times, problem 1 | chains, 
pj = 1 | �Yj is equivalent to the NP-hard problem 1 | chains, pj = 1 | �Uj [LRK80]. 

Problem 1 | p-batch | �Yj 

In industrial production processes, parts requiring similar operations are often 
grouped in batches, to be executed by a “batching machine” [PK00]. The batch-
ing machine can be bounded or unbounded, depending whether the batch size is 
limited or not. Due to technical conditions, tasks belonging to the same batch are 
executed jointly and have the same start and completion time. The problem of 
organizing tasks in batches with the objective of minimizing total late work was 
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considered by Ren et al. [RZS09]. Two types of batch-based operation models 
are distinguished by Brucker in [Bru07], the p-batch and the s-batch model. In 
the p-batch model the production machine, considered as a single processor, is 
able to process many tasks simultaneously. An example is the manufacturing of 
circuit boards, where the parts are placed together in one box or pallet to be heat-
ed in an oven. The simultaneously processed tasks have the same completion 
time which is then determined by the longest processing time among the tasks. In 
the s-batch model a pallet with a batch of product parts is moved from one ma-
chine to another for processing. The tasks are executed sequentially and the 
batch completion time is determined by the sum of task processing times. The 
parts placed on the pallet may have different due dates. In both models, tasks 
with small due dates may cause high due date penalties.  

Ren et al. [RZS09] proved that the scheduling problem with a single un-
bounded parallel batching machine and the total late work, 1 | p-batch | �Yj , is 
binary NP-hard. This was shown by a transformation from the partition problem 
(cf. Section 5.1.1). They noticed that problem 1 | p-batch | �Yj can be solved by a 

generic dynamic programming approach (designed by Brucker et al. [BGH+98]) 

for batching problems with regular functions requiring O(n 
2�pj) time and  

O(n�pj) space. Since this dynamic programming algorithm can be modified such 
that it automatically leads to a fully polynomial approximation scheme 
[BGH+98], problem 1 | p-batch | �Yj is another example of the DP-benevolent 

problem [Woe00].  

The intractability of this problem results in the NP-hardness of other and 

more complex models. Nevertheless Zhang and Wang [ZW05] independently 

showed the NP-hardness for the weighted variant 1 | p-batch | �wjYj by another 

transformation from the partition problem.  

Problem 1 | | ��Yj
A: Lmax

B   

Wang et al. [WKS+17] introduced the late work criterion into the multi-agent 
scheduling problems (also see [ABG+14]). In particular, in two-agent scheduling 
problems two agents, A and B, compete for resources to perform their respective 
sets of non-preemptive tasks [AMPP04]. The majority of problems discussed in 

this handbook can be considered as scheduling problems with a single agent pos-

sessing all tasks to be executed.  

In problem 1 | | �Yj
A: Lmax

B  the goal is to minimize the total late work �Yj
A of 

agent A, possessing nA so-called A-tasks, under the constraint that the maximum 

lateness Lmax
B  of agent B, possessing nB B-tasks, does not exceed a given thresh-

old U. Problem 1 | | �Yj
A: Lmax

B  is NP-hard, because it is an extension of 1| | �Yj 
with a sufficiently large value for the threshold. Such a two-agent problem can 
be solved by a pseudopolynomial time dynamic programming approach, based 
on the following property of an optimal schedule:  



 14.3 Late Work Model 541 

 

 

Theorem 14.3.5 [WKS+17] There exists an optimal schedule for 1 | | �Yj
A: Lmax

B  

which satisfies the following properties:  
(i)  all tasks are processed without idle time, and the first task starts at time 

zero; 
(ii) all late A-tasks are processed after all early and partially early A-tasks and 

all B-tasks; 
(iii) the early and partially early A-tasks are processed in EDD order of their 

due dates dj
A; 

(iv) the B-tasks are processed in non-decreasing order of their modified due 
dates Ďj

B.       

The modified due date Ďj
B for a B-task Tj

B is computed from the given threshold 

U for the maximum lateness of agent B and its original due date dj
B

 :   
Ďj

B ��dj
B = U. Task Tj

B is then feasibly scheduled if and only if Cj
B � Ďj

B
 . 

Wang et al. [WKS+17] proposed two dynamic programming algorithms 
solving problem 1 | | �Yj

A: Lmax
B  with time complexities O(nAnB �pj

A) and  
O(nAnB min{�pj

A + �pj
B, max{ max

1 � k � nA

{pk
A + dk

A ���}, ĎnB
B }).  

A similar research has been done by Zhang and Wang [ZW17] for two-agent 
scheduling with the weighted late work criterion for the first agent and any max-
imum cost function non-decreasing with task completion times for the second 
agent, i.e. for 1 | | �wj

AYj
A: fmax

B
 . Among others, they considered special cases of 

this problem with a common due date (dj
A = d A) and with identical task pro-

cessing times (pj
A = p A) for the first agent.   

Problem 1 | pjr = pj r a | ��Yj 

In the classical scheduling theory, the processing times of tasks are assumed to 
be fixed and known in advance. To consider the specificity of real world prob-
lems, this classical assumption has been relaxed by assuming that the task pro-
cessing times depend on time or position in the schedule (called also learning 
effect). This so-called time-dependent scheduling (e.g. [Bis08, CDL04, Gaw08, 
Mos01, SR17] and Chapter 12) is motivated from the fact that in many realistic 
settings the efficiency of the production facility (a machine, a worker) changes 
with time with the consequence of improving or degrading the performance.  

Wu et al. [WYW+16] considered the non-preemptive single processor prob-
lem with the total late work criterion and a position-based learning effect. In such 
case, the processing time of task Tj (j = 1, 2,..., n) depends on its normal pro-
cessing time pj  (without any learning effect), its position r in the schedule  
(r = 1, 2,..., n), and a given control parameter a (a < 0), as for example 
pjr = pj r 

a.  
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Since the problem without learning effect (i.e. a = 0) is NP-hard, Wu et al. 
[WYW+16] proved a few features of an optimal solution which allowed for de-
signing a branch and bound algorithm as well as a genetic algorithm. In particu-
lar, they showed (see Theorem 14.3.6) that the optimal solution is based on the 
earliest due date sequence, similar to the previously discussed problems. As for 
problem 1 | | �Yj (see Theorem 14.3.3), if a set of early and partially early tasks is 
selected, they should be scheduled in EDD order, provided their due dates and 
normal processing times are agreeable. The remaining tasks can be scheduled in 
arbitrary order.  

Theorem 14.3.6 [WYW+16] There exists an optimal schedule for problem  
1 | pjr = pj r 

a | �Yj in which the set of early and partially early tasks is sequenced 
in EDD order, followed by the late tasks sequenced in SPT order if the given task 
processing times and due dates are agreeable, i.e. di � dj implies pi � pj  for all 
tasks Ti and Tj .                                                                                                        

Problem 1 | | ��wjYj 

The non-preemptive weighted late work scheduling problem on a single proces-
sor is obviously NP-hard, since its unweighted variant is already intractable. As 

problem 1 | | �Yj , problem 1 | | �wjYj is binary NP-hard, due to the existence of 
a pseudopolynomial time algorithm. In contrast to the non-weighted case (cf. 
Theorem 14.3.3), the early and partially early tasks do not need to be executed in 
EDD order in an optimal schedule. The structure of this schedule is determined 
by Theorem 14.3.7.       

Theorem 14.3.7 [HPW95] There exists an optimal sequence of early and par-
tially early tasks 2, such that tasks with the same dj are sequenced in non-
increasing order of wj and, for each Tj of 2, at most one task Tk with dk  < dj  is 
scheduled after Tj in 2 .      

From the above theorem, we know that the optimal schedule consists of a se-
quence of early and partially early tasks, called a non-late sequence, followed by 
the late tasks in arbitrary order. In an optimal non-late sequence, tasks are almost 
scheduled in EDD order (some tasks can be deferred from their EDD positions), 
and tasks with the same due date are scheduled in non-increasing order of their 
weights.  

Hariri et al. [HPW95] proposed a dynamic programming recursion fj(t, i) 
that determines the minimum total weighted late work for tasks T1 ,..., Tj , as-

suming that non-late tasks among {T1 ,..., Tj}�fTi/ are completed at time t, and 
any task Ti deferred from its EDD position contributes wi pi to the value fj(t, i). 
Their approach is sketched in Algorithm 14.3.8. 
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Algorithm 14.3.8  Dynamic programming for 1 | | �wjYj  [HPW95]. 

begin 
for j = 1 to n do 
 for t = 0 to �

k=1

j
 pk do  

 for i = 0 to j do 
fj(t, i) := #; 

 f0(0, 0) := 0;   
for j = 1 to n do 
 for t = 0 to �

k=1

j
 pk do 

 begin 
Ajt = {Ti | di < dj , di < t < di + pi , i = 1,..., j ���/; 

-- set Ajt  contains tasks of reversed pair Tj , Ti with regard to EDD order,  
-- completed at time t  

if  t < dj + pj  
then  fj(t, 0) :=  min{ fj��(t, 0) + wj  pj ,  

   fj��(t ��pj , 0) + wj max{t ��dj , 0}, 

  min
i�Ajt

{fj��(t ��pj ��pi , i) + wi (t ��di ��pi)}} 

 else fj(t, 0) :=  min{  fj��(t, 0) + wj  pj , 

  min
i�Ajt

{fj��(t ��pj ��pi , i) + wi (t ��di ��pi)}}; 

for i = 1 to j ��� do 
begin 

if  t < di 

then  fj(t, i) := min{ fj��(t, i) + wj  pj ,  fj��(t ��pj , i)} 

else fj(t, i) := #; 
end; 

if  t < dj 

then   fj(t, j) := fj��(t, 0) + wj  pj 

else fj(t, j) := #; 
end; 

The minimum total weighted late work is given by min
0 � t � �pj

ffn(t, 03/; 

end; 
 
Algorithm 14.3.8 solves the problem 1 | | �wjYj in O(n 

2�pj) time within O(n 
2�pj) 

space.  
Kovalyov et al. [KPW94] proposed an alternative dynamic programming al-

gorithm, where the total weighted late work is a state variable. Based on round-
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ing down the criterion value, it gave the basis for the proposal of a family of 

(1+%)-approximation algorithms with O(n 
3
logn + n 

3
/%) time complexity. As in 

the unweighted case, problem 1 | | �wjYj  is an example of the DP-benevolent 

problem [Woe00]. 

The previously mentioned algorithms for minimizing the total (weighted) 

late work are closely related to the methods proposed for the optimization criteria 

based on (weighted) tardiness. Kolliopoulos and Steiner [KS06] formalized the 

relation between late work and tardiness based measures for the weighted case. 

In Theorem 14.3.9 they showed that problem 1 | | �wjYj achieves an O(�pj)-
approximation with respect to the total weighted tardiness �wjDj , which means 

that for any schedule the following inequality holds �wjDj � �pj·�wjYj . It fol-

lows that as long as the processing times do not grow faster than some polyno-

mial with regard to the number of tasks, i.e. �pj = O(p(n)), we have a non-trivial 

relational bound between these criteria which is independent of the task weights. 

Due to the existence of the pseudopolynomial time algorithm proposed by Hariri 

et al. [HPW95], and FPTAS designed by Kovalyov et al. [KPW94], if  

�pj = O(p(n)) for some polynomial p(n), problem 1 | | �wjYj can be solved in  

polynomial time.  

Theorem 14.3.9 [KS06] If �pj = O(p(n)), where p(n) is a polynomial, then 
an optimal schedule 2  for problem 1 | | �wjYj can be obtained in polynomial 
time, and the total weighted tardiness for this schedule, Dw(2) , is within a poly-
nomial factor off the optimum for problem 1 | |�wjDj , Dw(2*) , i.e.  

                Dw(2) � p(n) Dw(2*).                                            

Problem 1 | dj = d | ��wjYj 

Similar to the unweighted case 1 | dj = d | �Yj , the non-preemptive weighted 
scheduling problem on a single processor with a common due date is solvable in 
polynomial time [HPW95]. In the following theorem it is assumed that tasks are 
numbered in non-increasing order of their weights.  

Theorem 14.3.10 [HPW95] For problem 1 | dj = d | �wjYj , any sequence of tasks, 
in which tasks T1 ,..., Tj�1 are scheduled before task Tj , and tasks Tj+1 ,..., Tn 

after task Tj , where  �
i=1

j�1

 pi < d �  �
i=1

j
 pi , is optimal.                                                

 
The schedule described in the above theorem can be constructed in O(n) time, 
since the critical task Tj can be found without renumbering tasks from the medi-
an weight [HPW95]. 
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Problem 1 | pj = p | ��wjYj  

In case of identical task processing times, the problem of minimizing the 
weighted total late work is solvable in O(n 

3) time by a transformation to the lin-
ear assignment problem [HPW95]. Since the completion time of a task depends 
on its position i (i = 1,..., n)  in the sequence and is equal to ip , the weighted 

late work for task Tj scheduled at position i is determined by cji = wj min{max{ip 

� dj  , 0}, p}. The optimal schedule for problem 1 | pj = p | �wjYj corresponds to 

a solution of the linear assignment problem with costs cji , which can be con-

structed by the method given by Lawler [Law76]. 

Problem 1 | rj , pj = 1 | �wjYj  

As for unit processing times the weighted total late work is equivalent to the 

weighted number of tardy tasks, the non-preemptive problem 1 | rj , pj = 1 | �wjYj 

can be solved in at most O(n 
7
) steps by the algorithm designed for 1 | rj , pj = p | 

�wjUj by Baptiste [Bap99]. 

Taking into account the NP-hardness of the basic non-preemptive schedul-

ing problems 1 | | �Yj and 1 | | �wjYj , scheduling models enhanced with additional 

parameters or constraints are, in general, also NP-hard. As for other intractable 

problems, the general strategies described in Sections 2.4 and 2.5 can be applied 

for them, among them in particular branch and bound algorithms (e.g. [HPW95, 
PW92b, WKS+17, WYW+16]) and metaheuristic methods such as genetic algo-
rithms [WYW+16], tabu search [WKS+17], and simulated annealing [WCC+11].  

14.3.2 Parallel Processor Problems  

After discussing preemptive and non-preemptive single processor scheduling 
problems with the late work criterion we next concentrate on corresponding  
multiprocessor problems. As most non-preemptive single processor problems 
have been shown to be NP-hard and hence solvability by a polynomial time algo-
rithm cannot be expected for the multiprocessor case, we mainly will discuss 
solution strategies for preemptive scheduling and only mention few very special 
results for the non-preemptive case. 

Problem P | pmtn, rj | �wjYj 

In contrast to other due-date involving criteria such as mean or mean weighted 
tardiness, the problem of scheduling preemptable tasks subject to minimize total 
weighted late work can be solved in polynomial time. Below we present 
the approach of Błażewicz and Finke [BF87] for transforming this problem to 
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a minimum flow cost problem in a special network (cf. Section 5.3.1 where the 
algorithm by Horn [Hor74], for problem P | pmtn, rj , d

~
j  | � , has been described). 

Let us order the ready times rj and due dates dj in non-decreasing order and 
let among these there be k � 2n different values ak (i.e. rj or dj), indexed in in-
creasing order. These values define k � 1 time intervals [a1 , a2] ,..., [ak�1 , ak] , 
where the length of the i th interval is ti = ai+1 � ai . The network G = (V , E) is 
constructed as follows. Its set of vertices consists of source S1 , sink S2 , and two 
groups of vertices: the first corresponding to tasks Tj , j = 1, 2,..., n, the second 
corresponding to time intervals [ai , ai+1] , i = 1, 2,..., k � 1 (cf. Figure 14.3.4).  

Figure 14.3.4  A network corresponding to problem P | pmtn, rj | �wjYj . 
 
The source S1 is joined to each task vertex Tj by an arc of capacity equal to the 
processing time pj . Each task vertex Tj is joined by an arc to any interval node  
[ai , ai+1] in which Tj can be feasibly processed, i.e. rj � ai and dj � ai+1 , and 
the capacity of the arc is set to ti . Moreover, vertex Tj ,  j = 1, 2,..., n, is joined 
to the sink S2 by an arc of capacity equal to pj . Each interval node [ai , ai+1] ,  
i = 1, 2,..., k � 1, is joined to the sink by an arc of capacity equal to mti , which is 

equal to the processing capacity of the m processors in that interval. The cost for 
the arc directly joining Tj with sink S2 is equal to the corresponding weight wj . 
All other arc cost values are zero. The objective now is to find a flow pattern for 
which the value of flow from S1 to S2 is equal to �j=1

n
  pj and whose total cost is 

minimal.  

 T1 
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It is clear that by solving the above network flow problem we also find 
an optimal solution to the original scheduling problem. The total cost of the flow 
is equal to the weighted sum of the processing times of those parts of tasks which 
are unprocessed at their due dates. An optimal schedule is then constructed step-
by-step, separately for each interval, by taking the flow values on arcs joining 
task nodes with interval nodes and using McNaughton’s Algorithm 5.1.8 
[McN59]. Parts of tasks exceeding their respective due dates, if any, are pro-
cessed at the end of the schedule. In [BF87] an upper bound on the number of 
preemptions has been proved to be (2n � 1)(m � 1). 

Let us now calculate the complexity of the above approach. Clearly, it is 
predominated by the complexity of finding the minimum cost flow in a network 
with O(n) nodes and O(n2

) arcs. Using a result by Orlin [Orl88] who presented 
an O(|E |&log|V |&(|E | + |V |&log |V |))-time algorithm for the minimum cost maxi-
mum flow problem (V and E respectively denote the set of nodes and the set of 
arcs), the overall complexity of the presented approach is O(n4

log n). Leung 
[Leu04] noticed that the number of arcs in the network can be reduced from 
O(n2

) to O(nlogn) based on an idea given by Chung et al. [CSLG89] for the im-
precise computation model, where a balanced binary tree is used to represent 
time intervals. As a result, the overall complexity decreases to O(n2

log
3n).  

Problem P | pmtn, rj | ��Yj 

The approach proposed for the weighted total late work problem on parallel iden-
tical processors, P | pmtn, rj | �wjYj , can be obviously applied for the unweighted 

case, by assuming zero cost for the arcs. The maximum flow in the network with 

O(n) nodes and O(n2
) arcs, or even with only O(nlogn) arcs (based on the same 

result as for the weighted case [CSLG89, Leu04]), can be found, for example, by 
an O(|V |&|E |&log|V |)-time algorithm of Tarjan [Tar83] (where again V and E 
respectively denote the set of nodes and arcs). As a result the overall complexity 
of this approach is O(n2

log
2n) [Leu04].  

Problem Q | pmtn, rj | �wjYj 

The above approach given for parallel identical processors can be generalized to 
cover the case of uniform processors [BF87], by modifying the constraints im-
posed on flow values. Since processors differ in their speeds, bk , the total capaci-

ty in time interval [ai , ai+1] is given by �
k=1

m
bk ti instead of mti as in the identical 

processor case. Any subset of r tasks processed in parallel cannot consume more 

than �
min{m,r}

k=1
bk ti units of the processor capacity. The approach is based on the 

maximum flow in the network, similar to the one proposed by Federgruen and 
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Groenevelt [FG86] for the maximum lateness criterion (cf. Section 5.3.2), and 

determines the assignment of tasks to intervals. An optimal schedule is con-

structed by scheduling tasks within particular intervals by the Gonzalez and 

Sahni’s algorithm [GS78] (cf. Section 5.1.2). The overall complexity of 
the whole approach in this case is O(m2n4

log mn) [Leu04]. 

Problem Q | pmtn, rj | ��Yj 

As for parallel identical processors, the unweighted scheduling problem for 
the uniform processors can be solved by the same approach as the one proposed 
for the weighted case, Q | pmtn, rj | �wjYj , by assuming zero cost for all arcs. 

The maximum flow determines an optimal schedule which can be constructed in 

O(m2n3
log mn) time [Leu04]. 

As for a single processor (cf. Section 14.3.1), some results for parallel pro-
cessors have been obtained based on the equivalence between the total late work 
criterion and the total number of tardy tasks criterion. This was proven for non-
preemptive scheduling problems with unit processing times [BPSW00]. Problem 
Pm | rj , pj = 1 | �wjYj  can be solved by the algorithm proposed for  

Pm | rj , pj = p | �wjUj by Baptiste et al. [BBKT04]. The more general case with 

an arbitrary number of identical processors, P | rj , pj = 1 | �wjYj  can correspond-

ingly be modeled as a network flow problem and solved in polynomial time. 

Problem Q | pj = 1 | �wjYj with parallel uniform processors can be modeled as 

an assignment problem and also solved in polynomial time. On the other hand, 

problem P2 | chains , pj = 1 | �Yj with two identical processors and tasks bounded 

by chain precedence constraints, is NP-hard, as follows from the NP-hardness of 

the one-processor problem 1 | chains, pj = 1 | �Uj [LRK80].  
If tasks are to be processed non-preemptively, the corresponding scheduling 

problems become intractable. The intractability of problem 1 | | �Yj implies 

the intractability of parallel processor problems with arbitrary due dates. Some 

results for non-preemptive cases have been also reported in the literature. 

Błażewicz [Bla84] mentioned that problem P | | �Yj is NP-hard in the strong 

sense. But even simpler models with parallel processors, where all tasks have 

the same due date, are known to be NP-hard.  

Problem P2 | dj = d | �Yj 

Chen et al. [CSHB16] proved the NP-hardness of the common due date problem 

P2 | dj = d | �Yj by presenting a transformation from the partition problem 

[Kar72]. Assuming that the tasks in the scheduling problem correspond to the 

elements of the partition problem, the processing times correspond to the element 
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sizes and the common due date is equal to half of the total processing time of 

tasks, the schedule with zero late work corresponds to the partition of the set of 

elements into two subsets of equal sizes.  

Problem P2 | dj = d | �Yj  is binary NP-hard, since it can be solved by 

a   simple pseudopolynomial dynamic programming algorithm [CSHB16]. 

The method determines the optimal total late work with a recursive function 

f(j, A, B), which denotes the total late work for j tasks scheduled on two proces-

sors, assuming that there are at most A and B units of fully early tasks on them: 

 f(j, A, B) := min{ f(j�1, max{0, A� pj}, B) + max{0, pj� A }, 

   f(j�1, A, max{0, B� pj}) + max{0, pj� B }}. 

The dynamic programming calculates the minimum total late work equal to 

f(n, d, d), in O(nd 2) time, under zero initial conditions.  

It is worth to be mentioned that for the two-processor common due date 

problem with weighted total late work, P2 | dj = d | � wjYj , which is obviously 

also NP-hard, list algorithms, ant colony, simulated annealing and genetic algo-

rithms are available [XZK15]. 

Problem P | dj = d | ��Yj 

If the number of processors is arbitrary, the problem P | dj = d | �Yj is unary NP-

hard, as was shown by Chen et al. [CSHB16] by a transformation from 

the 3-partition problem [GJ79] defined in Section 4.1.1. The 3n tasks in 

the scheduling problem correspond to 3n elements of the 3-partition problem, 

and the processing times correspond to the sizes of these elements. In this case, 

the common due date is equal to the parameter B of the 3-partition problem. 

The total size of all elements, i.e. the total processing time, is equal to nB, and 

the particular processing times are bounded by fractions of B, i.e. ¼ B < pj < ½ B. 

The schedule for n processors with zero late work corresponds to the partition of 

the set of elements into n disjoint sets of size B.  

Late work criteria have also been investigated for more complex theoretical  and 

realistic models, such as unrelated parallel processors with sequence-dependent 

set-up times, task release times, processors eligibility and precedence constraints 

(Rk | rj , sij , Mj , prec | �Yj in [AR16]); identical parallel processors with task-

dependent communication delays and precedence constraints  

(Pk | prec, comu | �wjYj in [ARS+14]); the resource-constrained project schedul-

ing problem with the weighted late work criterion, finish-to-start type precedence 

relations with zero time lag, and one or more constrained renewable resources 

[RHA13]; and the assembling manufacture system, where several suppliers pro-

vide component parts to a manufacturer for assembling products from all parts 

delivered [RDX13]. For these problems, which are NP-hard, mathematical pro-

gramming formulations are provided, and general solution strategies such as 
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branch and bound [ARS+14, RHA13] or metaheuristics were applied [AR16, 

XZK15].  

14.3.3 Dedicated Processor Problems  

The NP-hardness of non-preemptive one-processor problems with late work cri-
terion results in the NP-hardness of most models with dedicated processors, par-
ticularly flow, open and job shop problems (see the respective Chapters 8, 9, and 
10). As in the case of the parallel processors, allowing task preemptions offers 
the chance for polynomial solvability. Non-preemptive problems, on the other 

hand, are in general intractable.   

In case of dedicated processors, one apparent way to define the late work of 

a job is adding up the sizes of all late parts building the job. Assuming that job Jj 

is composed of n
 j tasks T1j ,..., Tnj  j , the late work Yi j of a task Ti j with pro-

cessing time pi j is determined based on its completion time Ci j and the job due 

date d
 j as: 

 Yi j = min{max{Ci j � dj , 0}, pi j},    (14.3.6) 

while the job late work Yj is determined as the sum of late work of its tasks, i.e.:  

Yj = �
i=1

nj

 Yi j .                                                                                          (14.3.7) 

Problem O | pmtn, rj | ��wjYj 

The open shop problem with preemptive jobs and ready times can be solved by 
a generalization of the approach proposed for the parallel identical processor 
case, P | pmtn, rj | �wjYj , described in Section 14.3.2.  

Błażewicz et al. [BPSW04a] provided the linear programming formulation 
for problem O | pmtn, rj | �wjYj . It is based on the time intervals within which 
jobs can be scheduled. These time intervals are determined by unique ready 
times and due dates which are sequenced in non-decreasing order. The method 
determines optimal portions of particular jobs executed in these intervals. Let 
time points al (l = 1,..., k, where k � 2n) be defined as in problem P | pmtn, rj | 
�wjYj , and denote by pijr the portion of job Jj ( j = 1,..., n) executed on proces-

sor Pi (i = 1,..., m) within the time interval [ar , ar+1] (r = 1,..., k�1). The linear 

programming is defined as follows: 

Minimize �
j=1

n
 �
i=1

m
 �

r=1
dj � ar

k�1

wj pijr                                                          (14.3.8) 
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subject to� �
r=1

ar < rj

k�1

 pijr = 0 for all i, j, (14.3.9) 

� �
r=1

rj � ar

k�1

 pijr = pij  for all i, j, (14.3.10) 

 �
i=1

m
 pijr � ar+1 � ar   for all j, r, (14.3.11) 

 �
j=1

n
 pijr � ar+1 � ar for all i, r, (14.3.12) 

 0 � pijr � pij for all i, j, r.  (14.3.13) 

This linear programming formulation with O(nmk) = O(n2m) variables and 

O(n2
+nm) constraints determines the optimal portions pijr of job Jj executed on 

processor Pi in time interval [ar , ar+1]. For each interval [ar , ar+1], except 

the last one, portions of jobs of size pijr > 0 are scheduled by the algorithm by 

Gonzalez and Sahni [GS76] designed for O | pmtn | Cmax (cf. Section 9.1). A sin-

gle run of this method requires O(s2
(n+m)

0.5
) time, which can be reduced to  

O(s2
), where s denotes the number of tasks assigned to an interval [Bru07]. 

The portions of tasks assigned to the last time interval [ak , ak+1] are late, and can 

be executed in arbitrary order at the end of the schedule.  

As mentioned at the beginning of this section, due to the NP-hardness of 

the single processor non-preemptive case, the late work minimization problems 

for dedicated processors are in general also NP-hard. Some of them can be 

solved in pseudopolynomial time by dynamic programming. Examples are pre-

sented in the following part of this section for the two-processor open, flow and 

job shop with common due date. These approaches show that the complexity of 

the methods increases with complexity of the models, from open shop and flow 

shop to job shop. Moreover, these dynamic programming methods can be con-

sidered as a generalization of the approach proposed for the single processor 

problem 1 | | � Yj (cf. Section 14.3.1). As in the single processor case, it suffices 

to divide the set of jobs into subsets of early, partially early and totally late jobs 

to solve a shop problem. The schedule corresponding to such a partition of jobs 

can be easily constructed in polynomial time. The set of early jobs should be 

scheduled in the way which minimizes the maximum makespan. The solutions of 

the two-processor open, flow and job shop subproblems with minimizing Cmax 

can be determined in polynomial time by the respective algorithms of Gonzalez 

and Sahni [GS76], Johnson [Joh54], and Jackson [Jac56]. The subschedule con-

structed for the early jobs by the mentioned methods has to be followed by the 

partially late jobs, and then by the totally late jobs in arbitrary order. A similar 
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strategy was applied for solving closely related problems with a minimum 

weighted number of tardy jobs [JJK94]. 

Problem O2 | dj = d | ��wjYj 

The two-processor open shop problem with weighted total late work is binary 
NP-hard even for the common due date case.  

Theorem 14.3.11  [BPSW04a] Problem O2 | dj = d | �wjYj is binary NP-hard. 

Proof. As a known NP-complete problem we take PARTITION [Kar72] as 
defined in Section 5.1.1. Given an instance of PARTITION, with elements aj 

belonging to set A of the total size �
aj �A

s(aj) = 2B, we construct an instance of 

the scheduling problem with n = |A |+1 jobs, where n jobs have processing times 

equal to sizes of the corresponding elements, p1j = p2j = s(aj), and unit weights  

wj = 1. The last job has the same processing time on both processors p1n = p2n = 

B and a very large weight wn = 2B+1. The common due date is set to d = 2B. 

There exists a subset A' � A  such that �
aj �A'

s(aj) = �
aj �A � A'

s(aj), if and only if 

there exists a schedule with total weighted late work not exceeding 2B. If there 

exists a subset A' with the desired property, the schedule, constructed as in 

Figure 14.3.5, has the criterion value equal to �wjYj = 2B.  

In any solution of problem O2 | dj = d | �wjYj with �wjYj � 2B, job Jn must be pro-

cessed early due to its very large weight. Without loss of generality we assume 

that Jn is first processed on processor P1 . The remaining jobs with unit weights 

must be executed without idle times, particularly before job Jn on P2 (cf. Figure 

14.3.5). The subsets of jobs processed before and after job Jn on P2 determine 

the solution of the partition problem.     

Figure 14.3.5  A schedule for illustrating Theorem 14.3.11. 
 

The transformation from the partition problem to the decision counterpart of 

O2 | dj = d | �wjYj  proves the NP-hardness of this scheduling problem, while 

the existence of a pseudo-polynomial time algorithm (Algorithm 14.3.12 formu-

lated below) proves its binary NP-hardness.                                                           

P1 

P2 

Jn 

Jn A' A � A' 

A' A � A' 

B 3B   d = 2B       t 



 14.3 Late Work Model 553 

 

 

Problem O2 | dj = d | �wjYj can be solved by a dynamic programming 

[BPSW04a, Ste06]. The method is formulated as a procedure maximizing 

the total weighted early work instead of minimizing the total late work. For each 

job its early work Xj is equal to its processing time, being the sum of its task pro-

cessing times, decreased by the late work, Xj = �pij � Yj . The relation between 

the criteria, late work and early work, is discussed in detail in the next Sec-

tion 14.4. As far as optimal solutions are considered, the optimal early work de-

termines the optimal late work in the system.  

Based on this equivalence the dynamic programming algorithm calculates 

fk(A, B, a1, a2) as the maximum weighted early work for jobs Jk ,...$  Jn provided 

that there are at most (d � A) units of early work of these jobs on processor P1 

and at most (d � B) units on processor P2. This means that A, B are reserved time 

intervals for early tasks of the remaining jobs J1 ,...$ Jk�1 , where 0 � A � d and  

0 � B � d. Parameters a1�{0 , 1} and a2�{0 , 1} indicate whether there are par-

tially early tasks of the remaining jobs J1 ,...$ Jk�1 on P1 and P2 , respectively. To 

determine  fk(A, B, a1, a2) for particular parameter values, we have to consider all 

possible ways of scheduling job Jk , and calculate the value (ci) contributed by Jk 

to the optimal weighted early work. Job Jk can be scheduled 

− early on both processors:   

 c1 = wk (p1k + p2k) + fk+1(A + p1k , B + p2k , a1, a2),  

− early on P1 and late on P2: 

 c2 =  wk p1k + fk+1(A + p1k , B, a1, a2), 

− late on P1 and early on P2: 

 c3 = wk p2k + fk+1(A, B + p2k , a1, a2), 

− early on P1 and partially early on P2: 

 c4 =  max
{t | 1� t < p2k

 
, B+t � d}

{wk (p1k + t)+ fk+1(A + p1k , B + t, a1, 1)}, 

− partially early on P1 and early on P2: 

 c5 =  max
{t | 1� t < p1k

 
, A+t � d}

{wk (t + p2k)+ fk+1(A + t, B + p2k , 1, a2)}, 

− late on P1 and partially early on P2: 

 c6 =  max
{t | 1� t < p2k

 
, B+t � d}

{wk t + fk+1(A, B + t, a1, 1)}, 

− partially early on P1 and late on P2: 

 c7 =  max
{t | 1� t < p1k

 
, A+t � d}

{wk t + fk+1(A + t, B, 1, a2)}, 

− late on both processors: 

 c8 = fk+1(A, B, a1, a2). 

Depending on the values A, B, a1 and a2 not all schedules mentioned above are 

possible for job Jk . Calculating the value of the recurrence function 

fk(A, B, a1, a2) we chose the feasible ways of scheduling job Jk , which ensure 

the maximum total weighted early work, as shown in Algorithm 14.3.12. 
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Algorithm 14.3.12  Recurrence function fk(A, B, a1, a2) of dynamic program-
ming for O2 | dj = d | �wjYj  [Ste06]. 

begin 
if (A + p1k � d) and (B + p2k � d) and (p1k + p2k � d) then 

   -- job Jk can be early on both processors  

 fk(A, B, a1, a2) := 

�.
�
. 

 

 

 

 

 

 

max{c1, c2, c3, c4, c5, c6, c7, c8}, if a1=0 and a2=0 

max{c1, c2, c3, c4, c6, c8}, if a1=1 and a2=0 

max{c1, c2, c3, c5, c7, c8}, if a1=0 and a2=1 

max{c1, c2, c3, c8}, if a1=1 and a2=1 

if (A + p1k � d) and (B + p2k � d) and (p1k + p2k > d) then 
   -- job Jk cannot be totally early on both processors because it is too long 

 fk(A, B, a1, a2) := 

�.
�
. 

 

 

 

 

 

 

max{c2, c3, c4, c5, c6, c7, c8}, if a1=0 and a2=0 

max{c2, c3, c4, c6, c8}, if a1=1 and a2=0 

max{c2, c3, c5, c7, c8}, if a1=0 and a2=1 

max{c2, c3, c8}, if a1=1 and a2=1 

if (A + p1k � d) and (d � p2k < B � d) then 
   -- job Jk cannot be early on processor P

2
 

 fk(A, B, a1, a2) := 

�.
�
. 

 

 

 

 

 

 

max{c2, c4, c6, c7, c8}, if a1=0 and a2=0 

max{c2, c4, c6, c8}, if a1=1 and a2=0 

max{c2, c7, c8}, if a1=0 and a2=1 

max{c2, c8}, if a1=1 and a2=1 

if (d � p1k < A � d) and (B + p2k � d) then 
     -- job Jk cannot be early on processor P

1
  

 fk(A, B, a1, a2) := 

�.
�
. 

 

 

 

 

 

 

max{c3, c5, c6, c7, c8}, if a1=0 and a2=0 

max{c3, c6, c8}, if a1=1 and a2=0 

max{c3, c5, c7, c8}, if a1=0 and a2=1 

max{c3, c8}, if a1=1 and a2=1 

if (d � p1k < A � d) and (d � p2k < B � d) then 
     -- job Jk cannot be totally early on P

1
 and P

2
 because of processor workloads  

 fk(A, B, a1, a2) := 

�.
�
. 

 

 

 

 

 

 

max{c6, c7, c8}, if a1=0 and a2=0 

max{c6, c8}, if a1=1 and a2=0 

max{c7, c8}, if a1=0 and a2=1 

c8, if a1=1 and a2=1 

if (A = d) and (B = d) then   
     -- job Jk has to be late  

 fk(A, B, a1, a2) := c8; 

end; 
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Combining the recurrence function with zero initial conditions leads to the com-

plete dynamic programming method, which determines early, late and partially 

early tasks of jobs. The optimal weighted total early work is equal to  

f1(0, 0, 0, 0). Early tasks of jobs are scheduled by the Gonzalez and Sahni ap-

proach [GS76] proposed for O2 | | Cmax (cf. Algorithm 9.1.1). Late tasks of jobs 

are executed in arbitrary order at the end of the schedule after partially late tasks 

on both processors, if any.  

The whole method runs in O(nd  
3
) time [Ste06] (an alternative approach re-

quiring O(n3d 
2
) time is also available [BPSW04a]). 

Problem F2 | dj = d | ��wjYj 

A result similar to Theorem 14.3.11 can be proved for the two-processor flow 
shop problem with weighted total late work and common due date.  

Theorem 14.3.13  [BPSW05a] Problem F2 | dj = d | �wjYj is binary NP-hard. 

Proof. As in the proof of Theorem 14.3.11 we start from problem PARTITION 
[Kar72]. For a given instance of partition with elements aj of size s(aj) belonging 
to set A with total size �

aj �A
s(aj) = 2B, we construct an instance of the flow shop 

scheduling problem with n = | A |+1 jobs. The first n jobs have unit weights 

wj = 1 and zero processing times on P1, p1j = 0, and processing times on P2 equal 

to the sizes of the corresponding elements, p2j = s(aj). The last job has the same 

processing time on both processors p1n = p2n = B and a very large weight,  

wn = B+1. The common due date is set to d = 2B. There exists a subset  

A' � A  such that �
aj �A'

s(aj) = �
aj �A � A'

s(aj), if and only if there exists a schedule 

with the total weighted late work not exceeding B (cf. Figure 14.3.6).  

The transformation from the partition problem to the decision counterpart of 

F2 | dj = d | �wjYj  proves the NP-hardness of this scheduling problem, while 

the existence of a pseudo-polynomial time algorithm (Algorithms 14.3.14 and 

14.3.15 formulated below) proves its binary NP-hardness.                                    

 Figure 14.3.6   A schedule for illustrating Theorem 14.3.13. 

Problem F2 | dj = d | �wjYj can be solved in pseudopolynomial time by dynamic 

programming, which - as for the open shop problem - maximizes the total 

P1 

P2 

Jn 

Jn A' A � A' 
B 3B   d = 2B t 
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weighted early work. We assume that all jobs are sequenced in Johnson’s order 

[Joh54] (cf. Algorithm 8.2.1).   

Considering each job as the first late job in the system, denoted with Ĵn , 

leads to different values of initial conditions of the recurrence function  

fn(A, B, t, a). Then fk(A, B, t, a) allows taking decisions on the remaining jobs 
J ���{Ĵn}, whether to execute them late or early. For the sake of clarity, these jobs 

are numbered in Johnson's order from Ĵ1 to Ĵn�1 .   

The initial conditions in Algorithm 14.3.14 determine the value fn(A, B, t, a) 

equal to the maximum weighted early work under the following conditions:  

T Ĵn starts on processor P1 exactly at time A, and not before time B on P2 , 

T exactly t time units are reserved for executing some tasks of jobs J ���{Ĵn} on 

processor P1  after Ĵn and before d, 

T and either there is a job (a = 1) or there is no job (a = 0) from J ���{Ĵn} execu-

ted partially early on processor P1 after Ĵn and before d. 

Algorithm 14.3.14  Initial conditions  fn(A, B, t, a)  of dynamic programming for 
F2 | dj = d | �wjYj [BSPW05a]. 

begin 
if  (((A � d��p1n) and (d��p2n<B� d)) or ((d��p1n��p2n<A<d��p1n) and (B�d))) 

  and (0 � t � d��p1n��A) and (a�{0, 1})  
then fn(A, B, t, a) := wn p1n + wn(d ��max{A + p1n ,  B}); 

  -- job Ĵn is early on processor P
1
 and partially early on processor P

2
 

if  (d��p1n<A�d) and (B�d) and (t=0) and (a=0)  
then fn(A, B, t, a) := wn (d ��A); 

  -- job Ĵn is partially early on processor P
1
 and late on processor P

2
 

if otherwise,    
then fn(A, B, t, a) :=���#; 

  -- infeasible scheduling of job Ĵn which would not be the first late job  

end; 
Under the assumption that Ĵn is the first late job, recurrence function  fk(A, B, t, a) 

is calculated for the remaining jobs Ĵk � J ���{Ĵn} in reverse Johnson’s order, i.e. 

for k =  n�1,..., 1. Similar to the initial conditions, fk(A, B, t, a) denotes the max-

imum weighted early work, assuming that: 

T the first job from Ĵk , Ĵk+1 ,..., Ĵn starts on processor P1 exactly at time A, and 

not earlier than at time B on P2 , 

T exactly t time units are reserved for executing jobs from Ĵ1 ,..., Ĵk�1 on pro-

cessor P1 after Ĵn before d, 
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T there is a job (a = 1) or there is no job (a = 0) from Ĵ1 ,..., Ĵk�1 executed par-

tially early on processor P1 after Ĵn and before the common due date d.  

Algorithm 14.3.15  Recurrence function  fk(A, B, t, a)  of dynamic programming 
for F2 | dj = d | �wjYj [BSPW05a]. 

begin 
if (A + p1k � d) and (max{A + p1k , B}+ p2k � d) then 
 -- job Ĵk can be scheduled early on both processors 

 fk(A, B, t, a) := 

max 

�
�
 

 

 

 

 

 

 

 

 fk+1(A+p1k , max{A+p1k , B}+p2k , t, a) + wk(p1k+p2k), 

 fk+1(A, B, t, a), 
 fk+1(A, B, t+p1k , a) + wk p1k , 

max
1�T<p

1k

 
and  t+T�d

 {fk+1(A, B, t+T, 1) + wkT}, if (a = 0) 

 -- particular terms correspond to scheduling job Ĵk early on both processors, late on   

 -- both processors, early on P
1
 and late on P

2
, partially early on P

1
 and late on P

2
 

if (A + p1k > d) or (max{A + p1k, B}+ p2k > d) then 
 -- job Ĵk cannot be early on both processors 

  fk(A, B, t, a) := 

max

�.
�
. 

 

 

 

 

 

 

 fk+1(A, B, t, a), 

 fk+1(A, B, t+p1k , a) + wk p1k , 
max

1�T<p
1k

 
and  t+T�d

 {fk+1(A, B, t+T, 1) + wk T},  if (a = 0) 

if otherwise, then 
 -- job Ĵk cannot be feasibly scheduled 

  fk(A, B, t, a) := ��# 
end; 
The dynamic programming algorithm for F2 | dj = d | �wjYj  given above runs in 

O(n 
2d 

4
) time. For each possible selection of the first late job Ĵn among n jobs, 

initial conditions are settled in O(d 
3
) time. Then calculating the recurrence func-

tion takes O(d 
4
) time for each job among the remaining n – 1 jobs from J � {Ĵn}. 

Based on these calculations, the optimal first late job is determined, for which 

f1(0, 0, 0, 0) is maximal. Finally, the optimal schedule is constructed by schedul-

ing the early jobs in Johnson’s order in O(nlogn) time and the late and partially 

late jobs in arbitrary order in O(n) time.  

The efficiency of the above presented dynamic programming was evaluated 

in the computational experiments, and compared to list algorithms [BPSW04b, 
BPSW05b] and metaheuristic methods such as simulated annealing, tabu search 
and variable neighborhood search [BPSW05c, BPSW08].   
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It is worth to be mentioned that the two-processor unweighted flow shop prob-
lem with a common due date, F2 | dj = d | �Yj , is also binary NP-hard. Similar to 

the weighted case, Lin et al. [LLL06] showed this by a transformation from 
the partition problem. Moreover, the dynamic programming algorithm presented 
above for the weighted case can also be used to solve the problem with total late 
work, assuming that wj = 1 for all jobs. Some dominance properties were proved 

for F2 | dj = d | �Yj [Ste07b], showing that in optimal solutions early jobs should 

in general be selected in non-decreasing order of their processing times. In addi-
tion to these theoretical results, Lin et al. [LLL06] designed a branch and bound 
and a tabu search algorithm for F2 | dj = d | �Yj . The flow shop problem with 

three processors, F3 | dj = d | �Yj , is already strongly NP-hard, as was shown by 

Chen et al. [CCX+17] by a transformation from the 3-partition problem.  

The flow shop problem with two distinct due dates, F2 | dj � {d1, d2} | �Yj is 

NP-hard due to a transformation from the partition problem [Leu04, LLL06], 

while F2 | | �Yj is already strongly NP-hard due to a transformation from the 3-

partition problem [Leu04]. For the more complex version with release times, 

F2 | rj | �Yj , a genetic algorithm was proposed by Pesch and Sterna [PS09], 

while for the problem with an arbitrary number of processors and with learning 

effect, F | pijr = pij r 
a | �Yj (cf. Section 14.3.1), Chen et al. [CCX+17] proposed a 

particle swarm optimization algorithm.  

Problem J2 | dj = d, nj ≤ 2 | ��wjYj 

Due to the fact that the two-processor flow shop problem with weighted total late 
work and common due date is NP-hard, the job shop problem, being its generali-

zation, is also NP-hard [BPSW07, GJ79]. Moreover, as in the flow shop case, 
a pseudopolynomial time dynamic programming approach exists for the problem 
with at most two tasks in a job, J2 | dj = d, nj ≤ 2 | �wjYj [BPSW07]. Although 

the idea is similar to that of the algorithm proposed for flow shop, the arbitrary 

precedence constraint imposed on tasks building jobs makes the approach much 

more complicated. First of all, there might be two partially early tasks of jobs on 

both processors, or only one partially early task either on P1 or on P2 , or there is 

no partially early task of jobs on any processor. These three cases must be distin-

guished while determining the initial conditions. Secondly, the recurrence func-

tion formulation must be adjusted to the different possible precedence constraint 

patterns, in which jobs might be processed on only one processor, first on P1 

then on P2 , or the other way around. More precisely speaking, in dynamic pro-

gramming for problem J2 | dj = d, nj ≤ 2 | �wjYj , we consider all possible subsets 

of jobs with partially early tasks, JP, where 0 ≤ |JP| ≤ 2, and determine initial 

conditions for them. Then, by calculating the recurrence function subject to set 

JP, for all remaining jobs from J ��JP we determine their optimal way of schedul-

ing: totally early, totally late or early on its first processor and late on the second 
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one. For the sake of simplicity, we distinguish the subset of jobs J1 that has to be 

processed first (only) on processor P1 , and the subset of jobs J2 = J � J1 that has 

to be processed first (only) on processor P2 . As previously discussed for 

the open and flow shop problems, we maximize the total weighted early work, 

determining in this way the minimum total weighted late work.  

Initial conditions, presented in Algorithm 14.3.16, determine the value 

fñ+1(A, t1, L1, B, t2, L2) equal to the maximum weighted early work for the set of 

jobs with partially early tasks JP, where ñ = |J ��JP|, assuming that: 

T the totally early tasks of these jobs (if any) start on processor P1 exactly at 

time A and exactly at time B on processor P2, 

T exactly t1 , t2 time units of early tasks and exactly L1 , L2 units of partially late 

tasks are executed on the respective processors P1 and P2 .  

As mentioned, we distinguish three possible cases, when |JP| � {0, 1, 2}.  

Algorithm 14.3.16  Initial conditions  fñ+1(A, t1, L1, B, t2, L2)  of dynamic pro-
gramming for J2 | dj = d, nj ≤ 2 | �wjYj  [BPSW07]. 

begin 
if |JP| =2, where JP = {Ja , Jb} then  

  -- Ja is a job with partially early task on P
1

  

 -- Jb is a job with partially early task on P
2
  

begin  
  if (Ja � J1) and (Jb � J1) then  
 begin 
  if (0 � A � min{d � L1, d � L2} � p1b) and (t1 = p1b) and 
 (0 < L1 < p1a) and (0 � B � d � L2) and (t2 = 0) and  
 (0 < L2 < p2b) 

  then fñ+1(A, t1, L1, B, t2, L2) := wa L1 + wb(p1b + L2)  

            -- Ja is partially early on P
1
 and late on P

2
    

            -- Jb is early on P
1
 and partially early on P

2
  

   else fñ+1(A, t1, L1, B, t2, L2) := ��#; 
 end; 
 if (Ja � J1) and (Jb � J2) then  
 begin 
  if (0 � A � d � L1) and (t1 = 0) and (0 < L1 < p1a) and 

 (0 � B � d � L2) and (t2 = 0) and (0 < L2 < p2b) 

  then fñ+1(A, t1, L1, B, t2, L2) := wa L1 + wb L2 

        -- Ja is partially early on P
1
 and late on P

2
  

           -- Jb is partially early on P
2
 and late on P

1
  

   else fñ+1(A, t1, L1, B, t2, L2) := ��#; 
 end; 
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if (Ja � J2) and (Jb � J2) then  

 begin 
  if (0 � A � d � L1) and (t1 = 0) and (0 < L1 < p1a) and 

 (0 � B � min{d � L1, d � L2} � p2a) and (t2 = p2a) and 
 (0 < L2 < p2b) 

  then fñ+1(A, t1, L1, B, t2, L2) := wa(p2a + L1) + wb L2  

           -- Ja is early on P
2
 and partially early on P

1
  

           -- Jb is partially early on P
2
 and late on P

1
  

   else fñ+1(A, t1, L1, B, t2, L2) := ��#; 
 end; 

if (Ja � J2) and (Jb � J1) then  
 begin 
  if (0 � A � min{d � L1, d � L2} � p1b) and (t1 = p1b) and  

 (0 < L1 < p1a) and (0 � B � min{d � L1, d � L2} � p2a) and  
 (t2 = p2a) and (0 < L2 < p2b) 

  then fñ+1(A, t1, L1, B, t2, L2) := wa(p2a + L1) + wb(p1b + L2)  

           -- Ja is early on P
2
 and partially early on P

1
  

           -- Jb is early on P
1
 and partially early on P

2
  

   else fñ+1(A, t1, L1, B, t2, L2) := ��#; 
 end; 
end; 
  

if |JP| = 1, where JP = {Ja} then  

 -- Ja is the only job with a partially early task either on P
2
 or on P

1
  

begin 
 if (Ja � J1) then  

 begin 
 if (0 � A � d � L2 � p1a) and (t1 = p1a) and (L1 = 0) and 
  (0 � B � d � L2) and (t2 = 0) and (0 < L2 < p2a) 

  then fñ+1(A, t1, L1, B, t2, L2) := wa(p1a + L2); 
           -- Ja is early on P

1
 and partially early on P

2
  

 if  (0 � A � d � L1) and (t1 = 0) and (0 < L1 < p1a) and 
  (0 � B � d) and (t2 = 0) and (L2 = 0) 

  then fñ+1(A, t1, L1, B, t2, L2) := waL1; 
           -- Ja is partially early on P

1
 and late on P

2
  

   if otherwise, 
   then fñ+1(A, t1, L1, B, t2, L2) := ��#; 

 end; 
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 if (Ja � J2) then 
 begin 
 if (0 � A � d � L1) and (t1 = 0) and (0 < L1 < p1a) and 
  (0 � B � d � L1 ��p2a) and (t2 = p2a) and (L2 = 0) 

  then fñ+1(A, t1, L1, B, t2, L2) := wa(p2a + L1); 

           -- Ja is early on P
2
 and partially early on P

1
  

 if  (0 � A � d) and (t1 = 0) and (L1 = 0) and 
  (0 � B � d ��L2) and (t2 = 0) and (0 < L2 <  p2a) 

  then fñ+1(A, t1, L1, B, t2, L2) := waL2; 

  -- Ja is partially early on P
2
 and late on P

1
  

   if otherwise, 
   then fñ+1(A, t1, L1, B, t2, L2) := ��#; 

 end; 
end;  
 

if |JP| = 0 then  
 -- there is no job with a partially early task on either processor in a schedule  

begin 
 if (0 � A � d) and (t1 = 0) and (L1 = 0) and  

 (0 � B � d) and (t2 = 0) and (L2 = 0) 

 then fñ+1(A, t1, L1, B, t2, L2) := 0  
  else fñ+1(A, t1, L1, B, t2, L2) := ��#; 

end; 
end; 
As for the initial conditions, the definition of the recurrence function becomes 

much more complex for the job shop model in comparison to the flow shop 

model discussed previously, although the idea of this procedure is analogous to 

that of the flow shop. After selecting the set of jobs with partially early tasks, JP, 

the recurrence function calculations allow scheduling the remaining jobs from 

J ��JP, i.e. jobs whose tasks are executed totally early or totally late in a sched-

ule. Each such job can be processed totally early, early on one processor and late 

on the other, or totally late. We assume that all jobs from J ��JP are numbered in 

Jackson’s order [Jac56], which is optimal from the schedule length point of view 

(cf. Section 10.1.3). In this sequence, (Ĵ1 ,..., Ĵu , Ĵu+1 ,..., Ĵñ) where ñ = |J ��JP|, 

the first u jobs belong to the subset of jobs processed first (only) on P1 ,  

{Ĵ1 ,..., Ĵu} = J1 ��JP, while the remaining belong to the subset of jobs processed 

first (only) on P2 , {Ĵu+1 ,..., Ĵñ} = J2 ��JP. The recurrence function formulation 

must be properly adjusted to both subsets of jobs. The jobs are processed in 

the reversed Jackson’s order, for k = ñ,..., 1, so the recurrence function is calcu-

lated first for J2 ��JP, then for J1 ��JP. 
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The value of the recurrence function fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2), 

calculated for J2 ��JP according to Algorithm 14.3.17, denotes the maximum 

total early work of jobs {Ĵk ,..., Ĵñ}�JP provided that:  

T the first job from this set starts exactly at time B on P2 , and not earlier than at 

time A on P1 (jobs from J1 ��JP will be scheduled within this interval), 

T there are at least r2 time units in interval [B, d] reserved for executing the sec-

ond tasks of jobs from J1 ��JP on P2 , and exactly r1 time units in interval 

[A, d] reserved for processing jobs from J2 ��JP on P1 ,  

T the first tasks of late jobs from {Ĵk ,..., Ĵñ}�JP are processed exactly t2 time 

units on P2 before d, and exactly T2 units are reserved on P2 before d for 

the first tasks of late jobs Ĵi � J2 ��JP, for i < k, 

T there are exactly L1 and L2 units of partially late tasks before d on P1 and P2 

respectively (they belong to jobs from JP). 

Parameter F denotes the assumed completion time of the last early job from 

the remaining jobs J1 ��JP on P1. Parameters t1 and T1 are not relevant in 

this phase of dynamic programming.  

Algorithm 14.3.17  Recurrence function  fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) of 
dynamic programming for J2 | dj = d, nj ≤ 2 | �wjYj , given for jobs processed 
first (only) on P2 [BPSW07].  
begin 
if  u + 1 � k � ñ ��� then 
if (B + t2 + T2 + r2 + L2 � d) and (A + r1 + L1 � d) and  
  (t1 + T1 � A)  and (F � A ��t1 � T1)  

   -- job Ĵk can be feasibly scheduled  

then  
 if (B + p2k + t2+ T2 + r2 + L2 � d) and (max{A, B + p2k} + p1k + L1 � d)  

and (p1k � r1) 

 then        
 -- job Ĵk can be scheduled early on both processors 

 fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=  

max 

�
.
�
.
 

 

 

 
 

 

 

 

 

 

 

 

wk(p1k + p2k) + 

 fk+1(max{A, B + p2k }+ p1k , t1, T1, r1��p1k , L1, F, 

       B+p2k , t2, T2, r2, L2), 

wk p2k +  

 fk+1(A, t1, T1, r1, L1, F, 

       B, t2 ���p2k , T2 + p2k , r2, L2) if p2k ≤ t2 , 
 fk+1(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) 
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 -- the first term corresponds to scheduling Ĵk early on both processors (if job Ĵk 

 -- is processed on P
2
 only, it is a one-task job, this term has to be removed); 

        -- the second term corresponds to scheduling Ĵk early on P
2
 and late on P

1
; 

         -- the third term corresponds to scheduling Ĵk totally late 

   else 
    -- job Ĵk  has to be late at least on processor P

1
  

  fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=  

max 

�.
�
. 

 

 

 
 

 

 

wk p2k + 

 fk+1(A, t1, T1, r1, L1, F, 

       B, t2���p2k , T2 + p2k , r2, L2) if p2k ≤ t2 , 

 fk+1(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) 
else fk(A, t1, T1, L1, r1, F, B, t2, T2, r2, L2) := ��#; 

if  k = ñ  then 
-- the recurrence function for the last job in J2 ˗ JP, i.e. for Ĵñ , is slightly different than  

-- for other jobs from this set, because it is calculated based on initial conditions fñ+1
 

if (B + t2 + T2 + r2 + L2 � d) and (A + r1 + L1 � d) and  
  (t1 + T1 � A) and (F � A ��t1 � T1)  
then  
  if (B + p2k + t2+ T2 + r2 + L2 � d) and  
   (max{A, B + p2k} + p1k + L1 � d) and (p1k � r1) 

 then   
 fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=  

max 

�.
�
. 

 

 

 

 

 

wk(p1k + p2k) +  fñ+1(F, t1, L1, B + p2k , t2, L2), 

wk p2k +  fñ+1(F, t1, L1, B, t2���p2k , L2) if p2k ≤ t2 , 
 fñ+1(F, t1, T1, B, t2, L2) 

      -- if job Ĵk is processed on P
2
 only, the first term has to be removed 

   else 
   fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=  

max 

�.
�
. 

 

 

 

 

 

wk p2k + 

     fñ+1(F, t1, L1, B, t2���p2k , L2) if p2k ≤ t2 , 
 fñ+1(F, t1, T1, B, t2, L2) 

else fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) := ��#; 
end; 

 
The recurrence function  fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) for jobs from  

J1 ��JP is determined by the analogous Algorithm 14.3.18. In this case the func-

tion value corresponds to the maximum weighted early work of jobs  

{Ĵk ,..., Ĵñ}�JP provided that:  

T the first job from this set starts exactly at time A on P1, and not earlier than at 

time B on P2 (jobs from J2 ��JP are scheduled within this interval by Algo-

rithm 14.3.17), 
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� there are at least r1 time units in interval [A, d] reserved for the second tasks 

of jobs J2 ��JP on P1 (this interval is used by Algorithm 14.3.17), and exactly 

r2 time units in interval [B, d] reserved on P2 before d for the second tasks of 

early jobs Ĵi � J1 ��JP, for i < k,  

� the first tasks of late jobs from {Ĵk ,..., Ĵñ}�JP are processed exactly t1 time 

units on P1 before d, and exactly T1 units are reserved on P1 before d for 

the first tasks of late jobs Ĵi � J1 ��JP, for i < k, 

� there are exactly L1 and L2 units of partially late tasks on P1 and P2 , respec-

tively (they belong to jobs from JP). 

Parameter F denotes the completion time of the last early job in {Ĵk ,..., Ĵñ}�JP 

on processor P1. Parameters t2 and T2 are not relevant in this phase of dynamic 

programming.  

Algorithm 14.3.18 Recurrence function  fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) of 
dynamic programming for J2 | dj = d, nj ≤ 2 | �wjYj , given for jobs processed 
first (only) on P1 [BPSW07].  

begin 
if  � � k � u � 1 then 

if (A + t1+ T1 + r1 + L1 � d) and (B + r2 + L2 � d) and  
  (t2 �  B) and (T2 = 0)  

   -- job Ĵk can be feasibly scheduled  

then  
  if (A + p1k + t1+ T1 + r1 + L1 � d) and  
   (max{A + p1k , B} + p2k + r2 + L2 � d)  
 then   
      -- job Ĵk can be scheduled early on both processors 

 fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=  

max 


�
�
�
�

 

 
 

 

 

 

 

 

 

 

 

wk(p1k + p2k) + 

 fk+1(A+p1k , t1, T1, r1, L1, A+p1k , 

       max{A+p1k , B}+ p2k , t2, T2, r2+p2k , L2), 
wk p1k + 

 fk+1(A, t1��p1k , T1 + p1k , r1, L1, A, 

        B, t2, T2, r2, L2) if p1k ≤ t1 , 
 fk+1(A, t1, T1, r1, L1, A, B, t2, T2, r2, L2) 

              -- the first term corresponds to scheduling Ĵk early on both processors;  

              -- the second term corresponds to scheduling Ĵk early on P
1
 and late on P

2
; 

             -- the third term corresponds to scheduling Ĵk totally late; 

       -- if job Ĵk is processed on processor P
1
 only (it is a one-task job),  

       -- the first term has to be removed 
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  else 
      -- job Ĵk has to be late at least on processor P

2
  

  fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=  

max 

�.
�
. 

 

 

 

 
 

 

wk p1k + 

 fk+1(A, t1��p1k , T1 + p1k , r1, L1, A, 

        B, t2, T2, r2, L2) if p1k ≤ t1 , 
 fk+1(A, t1, T1, r1, L1, A, B, t2, T2, r2, L2) 

else fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) := ��#; 
if  k = u  then 

-- the recurrence function for the last job in J1 � JP, i.e. for Ĵu, is slightly different than  

-- for other jobs from this set, because it is calculated based on recurrence function value 

-- determined for the first job from other set of jobs  J2� JP, i.e. for job Ĵu+1
 

if (A + t1+ T1 + r1 + L1 � d) and (B + r2 + L2 � d) and  
  (t2 � B) and (T2 = 0)  
then  
  if (A + p1k + t1+ T1 + r1 + L1 � d)  and  
   (max{A + p1k, B} + p2k + r2 + L2 � d)   

then   

 fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=  

max 

�.
.
�
.
. 

 

 

 

 

 

 

 

 

 

 

 

 

wk(p1k + p2k) + 

 fu+1(A + p1k + t1 + T1, t1, T1, d ��(A  +��p1k + t1 + T1 + L1),  

       L1, A+ p1k , 0, t2, T2, r2 + p2k , L2), 
wk p1k + 

 fu+1(A + t1 + T1, t1 ��p1k , T1 + p1k , d ��(A�����p1k + t1 + T1 + L1),  

       L1, A+ p1k , 0, t2, T2, r2, L2) if p1k ≤ t1 , 

 fu+1(A + t1 + T1, t1, T1, d ��(A  +  t1 + T1 + L1), L1,  

       A, 0, t2, T2, r2, L2) 

       -- if job Ĵk is processed on processor P
1
 only the first term has to be removed 

  else 
   fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=  

max 

�
�
 

 

 

 

 

 

 

 

wk p1k + 

 fu+1(A + t1 + T1, t1 ��p1k , T1 + p1k , d ��(A�����p1k + t1 + T1 + L1),  

       L1, A+ p1k , 0, t2, T2, r2, L2) if p1k ≤ t1 , 

 fu+1(A + t1 + T1, t1, T1, d ��(A  +  t1 + T1 + L1),   

       L1, A, 0, t2, T2, r2, L2) 

else fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) := ��#; 
end;

Initial conditions must be determined for all O(n 
2
) two-job subsets of jobs with 

partially early tasks, for all O(n) one-job subsets, and for the empty set, requiring  
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O(d 
6
) time. The recurrence function is calculated for the remaining O(n) jobs in 

O(d 
11

) time. For each set of jobs with partially early tasks the maximum total 

weighted early work is equal to the maximum value of  f1(0, t1, 0, r1, L1, 0, B, t2, 
0, 0, L2) for  0 ≤ t1, r1, L1, B, t2, L2 ≤ d. The optimal solution is constructed based 

on the decisions from dynamic programming by scheduling early jobs by Jack-

son’s algorithm. The generalization from the flow shop approach to the job shop 
case increased the computational complexity of dynamic programming signifi-
cantly from O(n 

2d 
4
) to the overall complexity O(n 

3d 
11

). 
Similar to the flow shop problem, the theoretical studies on the job shop 

model are completed in the literature with some proposals of metaheuristic ap-
proaches: genetic and simulated annealing algorithms [PW15, PWW18].   

14.4 Related Problems 

In Section 14.3 we defined the late work criterion and discussed problems con-

cerned with minimizing the total (weighted) late work. When presenting 

the results for shop models, we announced the idea of early work, which can be 

used for evaluating the quality of schedules. In the literature, different modifica-

tions of the original late work criterion can be found, leading to different sched-

uling models.   

Kethley and Alidaee [KA02], for example, extended the original definition 

of late work (cf. equation (14.3.1)) by introducing multiple due dates for a single 

task Tj . In particular, for two due dates d j
1

  and d j
2

 , the modified late work can be 

defined as: 

Y'j   =  

�.
�
. 

 

 

 

 

 

0 
Cj���d j

1
  

d j
2

 ��d j
1

  

if Cj � d j
1

  

if d j
1

  < Cj < d j
2

  
if d j

2
  � Cj . 

(14.4.1)

In the case of late work (cf. Figure 14.3.1)  the maximum value of this parameter  

is achieved, when a task becomes totally late with regard to its due date, whereas 

in the case of the modified late work this moment is determined by the second 

due date d j
2

  (cf. Figure 14.4.1). The presented modification of the cost parameter 

can be further extended to other piece-wise linear [KAW14] or even arbitrary 

non-decreasing functions.  

The notion of early work already appeared in the studies on shop models and 

was used for simplifying the presentation of solution methods. In the previous 

section we pointed out the close relationship between late and early work and 

the role in optimization processes. 
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Figure 14.4.1 Late work parameter with two due dates [Ste11]. 

Following [CKL+18] the early work can be defined as: 

 Xj = 

�.
�
. 

 

 

 

 

 

pj 
dj���aCj���pj) 
0 

if Cj � dj 

if dj < Cj < dj + pj 
if dj + pj � Cj . 

(14.4.2) 

The equivalence between the minimum total (weighted) late work �Yj (�wjYj) 

and the maximum total (weighted) early work �Xj (�wj Xj) was used in the litera-
ture in the analysis of optimal solutions (cf. [BPSW04a, BPSW05a, BPSW07, 
CSHB16]). It is worth to be underlined that both criteria are equivalent when 
optimal schedules are constructed, but they are not equivalent in case of approx-
imate solutions (cf. Section 2.5.1). For example, for the common due date prob-
lem P2 | dj = d | �Yj with two identical processors and the minimum total late 
work criterion no polynomial time approximation scheme exist unless  

P = NP [AAWY98, SC17], while for the analogous problem with maximum 

total early work, P2 | dj = d | �Xj , such a scheme is available [SC17]. As we 

showed in Section 14.3.2 the problem P2 | dj = d | �Yj is NP-hard due to a trans-

formation from the partition problem [CSHB16], since the existence of a sched-

ule with zero late work corresponds to the existence of a set partition. The nature 

of the total late work criterion, which may take zero value, results in the non-

approximability of the considered problem. There exists no polynomial time ap-

proximation algorithm with finite performance guarantee, unless P = NP 
[AAWY98] for P2 | dj = d | �Yj . In particular, there exists no polynomial time 

approximation scheme (PTAS), because a hypothetical PTAS would have solved 

the partition problem in polynomial time [AAWY98]. On the contrary, for 
the corresponding problem with total early work, P2 | dj = d | �Xj , there exists 

an approximation algorithm with a finite approximation ratio. Algorithm 15.3.2 

presented in the next chapter solves the online version of this problem, where 

the set of tasks is unknown in advance as in the offline version, but the tasks are 

released one by one. This list approach can be as well applied in the offline 

mode, i.e. for P2 | dj = d | �Xj , and it is a ( 5�1)-approximation algorithm for 

this problem. Moreover a polynomial time approximation scheme exists, which 

pj 

d j
2

 � d j
1

  

d j
2

  d j
1

   d j
1

 + pj  Cj 

Yj' 
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constructs solutions with guaranteed (1�3%) quality with regard to an optimal 

solution, within O(max{n, 1/% 2 
1/%

 }) time for a given constant 0 < % < 1. As 

mentioned above, no PTAS can be constructed for the problem P2 | dj = d | �Yj
with minimazing the total late work unless P = NP. For problem P2 | dj = d | �Xj 

with maximizing the total early work, however, such an approach exists due to 

different nature of these performance measures.  
Next we present a polynomial time approximation scheme for  

P2 | dj = d | �Xj [SC17] that uses a classical technique for constructing PTAS.  

When designing an approximation scheme, the instance is transformed into 

a special form that is easier to deal with [ST07, SW07]. One can also, for exam-

ple, structure the output by cutting the output space of the problem, or manipu-

late the execution of the algorithm by providing it with some auxiliary infor-

mation. 

The approximation algorithm A% for P2 | dj = d | �Xj works in three phases. 

In the first phase, the original instance I of the problem with task set T is simpli-

fied to an instance Ĭ with a modified task set Ť, with regard to a given constant 
% � (0,1). The set Ť contains all “big” tasks from T with processing time pj > %d. 

Small tasks from T, i.e. those with pj � %d, are replaced with �PS/%d� identical 

tasks with processing time %d, where PS denotes the accumulated processing time 

of the small tasks in T. Then, in the second phase, the approximation algorithm 

A% constructs an optimal schedule for instance Ĭ. It can be proved, that this in-
stance contains at most �3/% � tasks, whose number is independent of the size of 

the original instance I. Hence, even the trivial enumerative algorithm of checking 
all subsets of tasks and executing them on the first processor and the remaining 
tasks on the second processor, finds the optimal schedule for the simplified in-
stance Ĭ in O(max{n, 1/% 2 

1/%
 })-time, which is polynomial in the size of the orig-

inal instance I. Finally, in the third phase, the approximation algorithm A% trans-

forms the optimal schedule constructed for Ĭ into a feasible schedule for the orig-

inal instance I. It assigns all big tasks with processing time exceeding %d to the 

same processor on which they are executed in instance Ĭ. Then some small tasks 
with processing time not exceeding %d are scheduled on the first processor (as-
suming without loss of generality that the workload of the first processor is not 
smaller than that of the second one). Together they consume at most Š1 + 2%d 
time units, where Š1 denotes the accumulated duration of the short tasks from Ĭ 
assigned to this processor in the optimal solution for Ĭ. The remaining small tasks 

are assigned to the second processor. It can be proved, that the total early work 

of the schedule constructed by algorithm A% in this way is at least (1 � 3%) times 

the optimal total early work for P2 | dj = d | �Xj . Hence, for 0 < % < 1, A% presents 

a PTAS, i.e. a family of approximation algorithms, for this scheduling problem 

(proofs and details can be found in [SC17]). 
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Based on the late and early work parameters, another pair of criteria is of inter-

est: the maximum total (weighted) late work and the minimum total (weighted) 

early work, with application fields different from the ones mentioned in Section 

14.1. For example, the minimum total early work criterion may be important in 

distributed computing settings for modeling the minimum amount of data which 

may have to be temporarily stored by a server before transferring them to another 

computer [BYM16]. The maximum total late work may be used in optimization 

processes for which the lowest cost of processing starts at the time modeled by 

due dates [CKL+18]. However, there are only few results for those performance 

measures. Ben-Yehoshua and Mosheiov [BYM16] studied the single machine 

scheduling problem with the minimum total early work criterion and no machine 

idle time assumption. They proved its binary NP-hardness by constructing 

a transformation from the partition problem and proposing a pseudo-polynomial 

dynamic programming algorithm.  

The late and early work based criteria were investigated also in the context 

of mirror scheduling. Mirror scheduling problems [CKL+18] are problems with 
dependent input parameters, such that for any feasible solution of one problem 
there exists a mirror solution feasible for the other problem with the same objec-
tive function value, and vice versa. Consequently, both problems can be solved 
by the same methods, and both are (strongly) NP-hard or both (pseudo) polyno-
mially solvable. The examples of mirror problems can be found among maxi-
mum lateness and minimum makespan problems (e.g. 1| prec | Lmax and 1| rj , 

prec | Cmax), or with minimum total tardiness and minimum total earliness, as 
well as with early and late work as discussed in this chapter. Denoting with 
fmin(Yj) an arbitrary non-decreasing function of late work to be minimized, and 

with fmin(Xj) the corresponding function of early work, the parallel processor 

problems P | prec, Cmax ≤ T | fmin(Yj) and P | prec, Cmax ≤ T |  fmin(Xj) with bound-

ed makespan are mirror problems. Similar mirror problems with late and early 

work to be maximized are P | prec, Cmax ≤ T | fmax(Yj) and P | prec, Cmax ≤ T | 
fmax(Xj) [CKL+18]. 

14.5 Conclusions 

The results obtained for the imprecise computation model and its special case of 

the late work model show that the scheduling theory is still a vivid research  

domain. Influenced by problems originating from practice these models have 

justified themselves in the course of time. The studies performed in this field 

have been often inspired by results obtained for other scheduling models, show-

ing that despite the increasing specialization - which can as well be observed in 

scheduling theory - the interrelations between various research areas should not 

and cannot be lost.   
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15  Online Scheduling  

Online scheduling can be considered as scheduling with incomplete information, 
where the decisions on executing tasks have to be made without knowing the 
complete problem instance, and the input data is provided piece-by-piece. Re-
garded as an enhanced scheduling model [PS09], online scheduling serves as a 
bridge between deterministic scheduling and stochastic scheduling [Pin16]. In 
deterministic (offline) models the input data are fully available in advance. In 
stochastic models the input data, unknown in advance, are represented by random 
variables with certain probability distributions (the studies usually involve queu-
ing theory). In online models the input data is gradually revealed to an algorithm.  

Online algorithms compute partial solutions whenever a new piece of infor-
mation requests taking an action, without providing information about future 
requests. The studies of online approaches focus mainly on the analysis of the 
quality of obtained solutions. Obviously online algorithms can never perform 
better than an optimal offline algorithm would have done if the problem instance 
was known in advance. 

Dealing with this type of problems is practically important because many re-
al world problems are of online character, where immediate decisions based on 
partial information are required. Among others such problems arise in resource 
allocation, distributed computing, data structuring, robotic and scheduling. 
Online scheduling is a wide area of many shapes reflecting the various kinds of 
applications where decisions in face of incomplete information are requested. 
This variety is mirrored in the vast publication list at the end of the chapter. 
Among others, good surveys on online algorithms and online scheduling algo-
rithms can be found in [Alb03, Alb09, BEY98, FW98, PST04, and Sga98]. 

In this chapter, we present the fundamentals of online scheduling and sum-
marize comments on online algorithms provided in other parts of this handbook. 
We show the essential ideas and definitions related to online deterministic and 
randomized scheduling and mention other related fields. The basic scheduling 
models are introduced in Section 15.1, while the idea of online algorithms is 
sketched in Section 15.2. Section 15.3 presents commonly used techniques of 
evaluating online algorithms: the competitive analysis, the lower bound analysis, 
and the adversary method. Extensions of classical online models, such as semi-
online scheduling, online scheduling with advice and online scheduling with re-
source augmentation are touched in Section 15.4. Since online scheduling is a 
wide field of research we focus on showing only the specificity of this domain 
and provide extended examples illustrating the basic ideas introduced in this 
chapter. We refer the more interested readers to the numerous references provid-
ed in particular sections.   
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15.1 Online Scheduling Models 

In online scheduling problems, the information on an input instance is not avail-
able in advance. It can be revealed to a scheduler in different ways leading to 
various online scheduling models (cf. [PST04, Sga98]. Online scheduling models 
are sometimes called dynamic scheduling models in contrast to static (offline) 
ones (cf. [DTE03, TE08]). 

In general, in online computations two basic models are studied: online-
over-list and online-over-time paradigm. In the online-over-list model the tasks 
(or more generally speaking - requests) are served in the order of their occur-
rence. This concept fits the event-triggered scenarios. In the online-over-time 
model, tasks (requests) become available for service at their arrival times. This 
concept corresponds to the time-triggered scenarios, which can be met in many 
real time problems (cf. Chapter 7).  

In online-over-list scheduling (also called online-list model, e.g. [PST04], or 
sequence model, e.g. [Kru00]) it is assumed that the tasks are presented to the 
scheduler in strict sequential order. Based on the parameters of the current task, 
the scheduler determines a processor and a feasible time interval for execution. 
This decision is in general irreversible (cf. Section 15.4). Only after the current 
task is scheduled, the next one becomes known. This implies in particular that 
the scheduling decision is independent of properties of the following tasks. 

Online-over-time scheduling (also called online-time, e.g. [PST04], or time-
stamp model, e.g. [Kru00]) assumes that tasks become known at their ready 
times. In this model, scheduling decisions can be delayed and tasks are not nec-
essarily scheduled in the order of their occurrence. The decision upon scheduling 
a particular task may depend on all released but not yet scheduled tasks. As in the 
previous case, the taken decisions are usually irreversible. 

The above presented concepts of online-over-list and online-over-time algo-

rithms are common in various fields within the area of online optimization. Often 

the scheduling model is enhanced by additional specific assumptions (e.g. 

[PST04, Sga98]). For example, in so-called clairvoyant scheduling models (e.g. 

[Kob18]) the task parameters, particularly processing times, are revealed to the 

decision maker (i.e. to an online algorithm) at the task release times. This is in 

contrast to non-clairvoyant scheduling models (e.g. [BDKS04, Edm00, HS06, 

MPT94, RS08]) where task parameters remain unknown after task arrival. In an 

extreme situation no processing times at all are conveyed to the scheduler. Bend-

er et al. [BMR02] proposed the intermediate model of semi-clairvoyant schedul-
ing (cf. e.g. [BLMS+04]), which assumes only an approximate knowledge of the 

task processing times. In the strong semi-clairvoyant model, a constant approxi-

mation of the remaining processing time of a task is known, while in the weak 

semi-clairvoyant model a constant approximation of the original processing time 

is provided.  
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As mentioned, an online-over time algorithm decides on currently available 

tasks, which can be scheduled or delayed. In general, the tasks appear for sched-

uling at their release times, but the availability of tasks may also be restricted by 

precedence constraints. According to a (directed) precedence graph, a task be-

comes known to the online algorithm only after all its predecessors have been 

processed (cf. e.g. [AE02]) or some of them have been started (cf. e.g. [TE08]).  

Dependencies given by an undirected graph describe conflicts between tasks. 

The conflict graph presents pairs of conflicting tasks that cannot be executed 

simultaneously. However, it does not determine the order of processing of con-

flicting tasks (cf. e.g. [BC96, GG75]).  This type of problems is often met in the 

resource-constrained scheduling (cf. Chapter 13). In the online mode (cf. e.g. 

[EHKR09]), the conflict graph is revealed to an online algorithm progressively: 

when a new task arrives to the system then the conflict edges to all already re-

leased tasks become known.  

The interval scheduling model is yet another concept considered in the field 

of online scheduling (cf. [FN95, HTW17, KLPS07, Lip94, Woe94]). It assumes 

that each task has a given time interval for execution. Tasks that cannot be com-

pleted within their intervals have to be rejected. In this case, the input is a finite 

set of intervals to be scheduled, where two overlapping intervals cannot be 

scheduled together. Typically, the quality of such solutions is evaluated with re-

gard to the (weighted) number of accepted tasks.  

The idea of rejection can also be incorporated into other online scheduling 

models, since it fits the specificity of online mode. In online scheduling with 

rejections an incoming task upon arrival may be assigned to a processor or re-

jected, usually with some rejection cost, (cf. e.g. [BLMS+00, DH06, EZH11, 

HM00, Sei01]).  

Task preemption (cf. Section 3.1) can be conveyed to online scheduling with 

certain variation. In the non-preemptive model, tasks once started have to be 

completed without any interruption, and the obtained schedule is non-

preemptive. In the preemptive-resume model, preempted tasks are resumed later 

on the same or on a different processor. The total processor time of a task is 

equal to its original processing time. This is in contrast to the preemptive-restart 
model [HPW00, SWW95], where tasks after preemption are restarted and the 

already achieved partial progress is lost. Such preemptions are also called abor-
tions, and the unfinished parts of tasks are removed from the schedule. Conse-

quently, the final schedule is non-preemptive.   

The above mentioned models do not exhaust the whole range of online 

scheduling. In the literature, other concepts are also investigated. For example, in 

studies on real-time systems, the task description is completed with the deadline 

and the task weight (called also the task relative value), and the goal is to maxim-

ize the weight (the value) of tasks completed feasibly before their deadlines (cf. 

e.g. [BKM+91, DM89, KP00b, PSTW02]). In order to take into account other 

real world conditions, communications between processors (cf. e.g. [DK93, 
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DKMK99]) or their breakdowns (cf. e.g. [AS01, KP00c, KP05]) are examples 

that can be incorporated into the online models. 

15.2 Online Scheduling Algorithms 

Independently of the investigated online paradigm, online algorithms can be de-

terministic or randomized. In the case of the deterministic online algorithms, 

the decisions taken on the input instance data, which are revealed progressively, 

are deterministic. In contrast, the randomized online algorithms (e.g. [BDB+94, 

BL04, MR95]) take random decisions while scheduling new tasks. In this case, 

we want to determine the expected objective function value, where the expecta-

tion is taken over the random choices. Within this chapter, as in the whole hand-

book, we focus on the deterministic online algorithms. Nevertheless, for the sake 

of completeness, in Section 15.3.3 we present some basic definitions for random-

ized online algorithms.  

As mentioned in the previous section, the deterministic online algorithms are 

closely related to list scheduling algorithms (cf. Section 3.2 or Section 5.1), pri-
ority-driven-scheduling rules (cf. Section 7.2.3) or priority rules (cf. Section 

8.3.1 and Section 10.3.1). Some of the offline list or priority based algorithms 

can be used in the online mode, as long as they do not require knowledge of the 

entire input, as would be necessary, for example, for sorting all tasks, or selecting 

tasks with a minimum or maximum parameter value. The origins of online 

scheduling and the competitive analysis used to evaluate the performance of 

online algorithms (see Section 15.3), can already be discerned in the Graham’s 

work [Gra66] on the scheduling problem for parallel identical processors pre-

sented in Section 5.1. The algorithm proposed by Graham scheduled each task to 

a processor with the minimum workload. Formally the transfer of the idea to 

online scheduling was formulated by Sahni and Cho [SC79] and undertaken by 

Davis and Jaffe [DJ81]. Since then, a variety of online scheduling models and 

related online algorithms have been proposed. Although the algorithms are usual-

ly adjusted to the specificity of the considered problem, in the field of online 

scheduling some standard approaches exist. Similarly, in the field of offline 

scheduling, some standard list or priority rule based algorithms are often used, 

usually as fast heuristic approaches.     

Pruhs et al. [PST04] distinguished in their survey a few standard approaches 
for solving the deterministic online-over-time scheduling problems. For clairvoy-
ant models, in which the task characteristics are known after their appearance, 
basic strategies can be applied, such as:  
- First-In-First-Out (FIFO): the task with the earliest release time is selected, 

- Shortest Remaining Processing Time (SRPT): the task with the smallest re-
maining processing time is chosen,  
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- Shortest Task First (STF): the task with the shortest processing time is sched-
uled first, 

- Highest Density First (HDF): the task with the highest density, defined as 
the task weight divided by its processing time, is executed first.  

For non-clairvoyant preemptive models, in which the task characteristics, par-

ticularly their processing times, remain unknown for the online algorithms, the 

following approaches are commonly used: 

- Round Robin (RR): an equal amount of processing resources is assigned to all 

tasks,  

- Shortest Elapsed Time First (SETF): all processing resources are assigned to 

the task that has been processed the least so far, 

- Multilevel Feedback (MF): tasks are served by a collection of queues. After 

processing a task for some target time (defined for particular queues), it is 

shifted to the next queue. This rule allows keeping the number of task preemp-

tions logarithmic in the number of tasks.   

In the case of online-over-list problems, in general an algorithm has to immedi-
ately schedule a current task. As there is only one current task to be scheduled the 
decision concerns merely the assignment of a processor.   

15.3 Competitive Analysis 

The quality of online algorithms is usually estimated by evaluating their worst 
case performance. The average case performance of online algorithms is also of 
interest, but it requires a reasonable approximation of input data distribution 
(Poisson or exponential distributions are often considered). In the worst case 
analysis of online algorithms the quality of solutions is compared to the quality 
of solutions determined by offline algorithms. While the latter has the complete 
knowledge of the input instance at hand, only partial information is available for 
online algorithms. In the competitive analysis, the online algorithm is evaluated 
by using the best offline criterion value as a reference. Such an analysis shows 
how far the results of an online algorithm can drop behind an optimal offline 
solution. The competitive analysis was proposed by Sleator and Tarjan [ST85], 
and developed by Karlin et al. [KMRS88] in the context of enhancing the per-
formance of bus-based multiprocessor systems. Hence, the roots of the competi-
tive analysis of online algorithms come partially from the scheduling theory, 
from the mentioned papers and also from Graham’s analysis [Gra66] of the prop-
erties of list algorithms for scheduling tasks on identical processors (cf. Section 
5.1.1). 
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15.3.1 Competitive Ratio 

In general, the deterministic online algorithm is �-competitive if the value of the 
objective function of its solution is no more than � times the optimal offline val-
ue for all problem instances. More precisely, assuming that I denotes an input 
instance, A(I) denotes the criterion value for an online solution constructed by 
algorithm A, and OPT(I) denotes the optimal criterion value for an offline solu-
tion, then A is called �-competitive, if for any instance I and fixed constant b 

A(I) � � OPT(I) + b 

(this definition is given for a minimization problem, for a maximization problem 
we obviously have OPT(I) � � A(I) + b). If the inequality holds with constant 
b = 0, then the online algorithm is called strictly �-competitive. 

Because scheduling problems are usually scalable (particularly the task pro-
cessing times are scalable) and the objective can attain arbitrarily large values 
and dominate constant b [PST04], we call an online scheduling algorithm A 
�-competitive, instead of strictly �-competitive [PST04], for a minimization 
problem, if there is 

A(I) � � OPT(I)            (15.3.1) 

or for a maximization problem, if there is 

OPT(I) � � A(I).             (15.3.2) 

The competitive ratio �A of algorithm A is the infimum of � such that online 
algorithm A is �-competitive.  

The competitive analysis corresponds to the method of evaluating offline 
approximation algorithms as discussed in Section 2.5.1. The competitive ratio 
determined for a deterministic online algorithm corresponds to the absolute per-
formance ratio (or approximation ratio) defined for an approximation algorithm. 
The competitive ratio for the online randomized algorithms is defined in Section 
15.3.3, since we had to first introduce the idea of the adversary method. In both 
cases of offline and online algorithms, the competitive/approximation ratios al-
low evaluating their performance. In the case of offline approximation algo-
rithms, the performance is restricted by the computational power limitations, 
resulting from time or memory limitations. In the case of online algorithms, the 
performance is limited by the lack of information on the input data, which are not 
available in advance. 

Efficient online algorithms are algorithms with a competitive ratio as small 
as possible, preferably being a constant independent of input parameters. For 
some online scheduling algorithms, the competitive ratio may depend, for exam-
ple, on the number of processors. It should not be related to the number of tasks, 
which is unknown in the online environment. 
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Example 15.3.1  To illustrate the competitive analysis for deterministic online 
scheduling algorithms, we focus on the example of an online version of 
the scheduling problem with identical processors and the total early work 
criterion introduced in the previous chapter (cf. Section 14.3.2). We present 
the results obtained by Chen et al. [CSHB16] for the online-over-list problem 
with a common due date P | dj = d, online-over-list | �Xj . The offline version of 

this problem, i.e. P | dj = d | �Xj , is NP-hard [CSHB16] (it is equivalent to NP-

hard problem with the total late work criterion as far as the computational 

complexity is concerned, see Section 14.4).  

Problem P | dj = d, online-over-list | �Xj should be solved by an online algo-
rithm which schedules tasks Tj one by one. When a current task is scheduled, the 

next one may appear, and its processing time pj becomes known to the algorithm. 

The goal is to maximize the total amount of work �Xj executed before a common 

due date d. The early work for task Tj is defined as Xj = min{pj , max{0, d � Cj + 

pj}}, where Cj denotes the completion time of Tj (cf. equation (14.4.2)).  

The above defined scheduling problem reminds of the well-known optimiza-
tion problem - the bin packing problem. The bin packing problem requires as-
signing items of given weights to bins, so that the total weight of items in each 
bin does not exceed its capacity and the number of used bins is minimized (cf. 
e.g. [MT90]). The bin packing problem is a generalization of the knapsack prob-
lem, defined in Example 2.2.1, to multiple knapsacks. It is widely studied in of-
fline as well as in online modes (cf. e.g. [Sga14]). In the above scheduling prob-
lem P | dj = d, online-over-list | �Xj the processors can be considered as bins, 
each of the capacity d, that have to be packed with tasks, but the number of pro-
cessors - in contrast to the number of bins - is fixed and given as a part of 
the input (m).  

The simple online algorithm proposed in [CSHB16], called Extended First 
Fit (EFF), is similar to the First Fit algorithm designed for bin packing, which 
assigns items to the first bin to which an incoming item fits. EFF (Algorithm 
15.3.2) schedules an incoming task on the first fitting processor, i.e. on the first 
in the row of processors whose workload does not exceed the assumed ratio �m d. 
If no such processor exists, the task is assigned to the processor with the mini-
mum workload.  

Algorithm 15.3.2  Algorithm for P | dj = d, online-over-list | �Xj  [CSHB16]. 

begin 

�m = ( 2m2 � 2m + 1 � 1) / (m � 1); 
j := 0; 

for i := 1 to m do Cj
 i := 0; 

 -- Cj
 i denotes the workload of processor i after scheduling task Tj 

while there is a new task in the input do 
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 begin 
  j := j +1; 
  i := 1; 

  while i  � m do  
  if Cj�1

 i  + pj � �m d then break;  
  else i := i +1; 
 if i � m   
 then schedule Tj on Pi  (i.e. Cj

 i := Cj�1
 i  + pj); 

 -- scheduling a new task on the first fitting processor   
 else schedule Tj on Pi with Cj�1

 i  = min
1 � k � m

{Cj�1
k }; 

 -- scheduling a new task on the processor with the minimum workload 

 end;  
end; 
Theorem 15.3.3 [CSHB16] The competitive ratio of Algorithm 15.3.2 is  

�m = 
2m2 � 2m + 1 � 1

m � 1  . 

Proof.  Let us consider a solution constructed by EFF after scheduling the last 
task Tn in the input sequence. Let us assume that processors are numbered in 

non-increasing order of their workloads Cn
i
 . We denote the optimal offline crite-

rion value, i.e. the optimal total early work, with X * and the criterion value of the 

schedule constructed by Algorithm 15.3.2 with X EFF. We show that  

X * � �m X EFF (see equation (15.3.2)) for any input instance. 

If max
1 � i � m

{Cn
i} � d then all tasks are early, the online schedule is optimal, i.e. 

X EFF = X * = �pj , and the theorem holds. 
If min

1 � i � m
{Cn

i} � d then there is a late task on each processor, and the interval 

[0, d] is completely occupied by tasks. Then the schedule is optimal, i.e. X EFF = 

X * = md, and the theorem holds too. 
If min

1 � i � m
{Cn

i} < d < max
1 � i � m

{Cn
i} then two additional subcases have to be ana-

lyzed. 

Case 1:  min
1 � i � m

{Cn
i} < d < max

1 � i � m
{Cn

i} � �m d 

In this case the workload on at least one processor exceeds d. Let us assume that 

there are k � 1 such processors, then  

X *

X EFF  �  

�
i=1

k
Cn

i  + �
i=k+1

m
Cn

i

kd + �
i=k+1

m
Cn

i
  �  

�
i=1

k
Cn

i

kd   � 
k&�m d

kd   =  �m . 
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Case 2:  min
1 � i � m

{Cn
i} < d < �m d < max

1 � i � m
{Cn

i}  

Let us denote with Tq the last task on the processor with the maximum workload, 

which was the processor with the minimum workload CA before assigning Tq due 

to the idea of EFF algorithm. Let us denote with CB � CA the second smallest 

workload before scheduling Tq . 

If  CA > 0 then CB > 0 and there are some tasks executed on both processors. 

Moreover,  CA + CB > �m d, because otherwise these tasks would be assigned to 

one processor according to the first fit rule. CB � CA implies that CB > 1/2 �m d, 

and because on at least one processor some tasks are late and on other processors 

the workload is greater than CB, we have X EFF � d + (m � 1)&CB > d + (m � 1)&1/2 

�m d. Thus the EFF performance can be bounded as  

X *

X EFF  <  
m d

d + (m�1) 1
2
 �m d  =  

2m 

2 + (m�1) �m
 . 

Taking into account the value of �m , we have   

X *

X EFF  <  
2m 

2 + (m�1) 
2m2 � 2m + 1 � 1

m � 1

  =  �m . 

If CA = 0, then the input sequence contains a “big” task with the processing time 

exceeding �m d. Let us consider the input sequence without this task for which 

the optimal offline early work is X
 _

 * and the quality of the schedule constructed 

by the analyzed algorithm is X
 _

 EFF. Using the same reasoning as before we get 

X
 _

 */X
 _

 EFF   � �m that leads to 

X *

X EFF  =  
X
 _

 * + d
X
 _

 EFF + d   � �m .                                                                            

For details of the proof we refer the reader to [CSHB16]. We see that Algorithm 
15.3.2 for problem P | dj = d, online-over-list | �Xj has a competitive ratio �m 
dependent on the number of processors m. More precisely, �m is increasing with 
the number of processors [CSHB16].  The worst case performance of this algo-
rithm is not determined by a constant, it is only upper bounded by 2 (since �# = 

2 for m � #). But for a fixed number of processors k, i.e. for problems Pk | dj
 = d, online-over-list | �Xj , the competitive ratio of Algorithm 15.3.2 becomes 

constant, equal to �k = ( 2k2 � 2k + 1 � 1) / (k � 1). As a consequence, for ex-
ample, the basic two-processor problem, P2 | dj = d, online-over-list | �Xj , can be 
solved by the Extended First Algorithm with the competitive ratio �2 = 5 � 1, 

so Algorithm 15.3.2 is ( 5 � 1)-competitive algorithm for this scheduling case.  



586 15  Online Scheduling 

 

15.3.2 Lower Bound  

The competitive ratio shows the worst case behavior of a given online algorithm. 
In order to estimate the loss in the solution quality for online scheduling prob-
lems, with regard to the offline situation, the lower bound is also determined. An 
online scheduling problem has the lower bound �̄ if no online scheduling algo-
rithm has a competitive ratio smaller than �̄. 

The lower bound estimates the quality of any online algorithm, by providing 
an instance or a set of instances that attain(s) a significant error for any online 
method.  

In the case of deterministic online algorithms, the lower bound proposal re-
quires providing a suitable set of input instances (sequences). In the case of the 
randomized online algorithms, the lower bound analysis is more difficult, since it 
requires bounding the expected criterion value determined by an arbitrary ran-
domized algorithm for a specific input instance from below. For this type of 
online algorithms, the approach based on Yao’s principle is commonly used 
[Yao77]. Yao’s principle says that the worst case performance of the best ran-
domized online algorithm is equal to the average performance of the best deter-
ministic online algorithm on the worst input distribution.  

We call an online algorithm optimal, if its competitive ratio is equal to 
the lower bound of the problem.    

15.3.3 Adversary Method  

In the case of the lower bound, the competitive analysis is often performed by the 
adversary method, which relates to ideas known from game theory (cf. e.g. 
[MS08, OR94, Pet15]). The game theory is the formal study of conflict and co-
operation that allows modeling and designing decision-making processes in in-
teractive environments. Games describe strategic interactions within which 
a player makes interdependent decisions while developing his strategy, taking 
into account the other player’s possible decisions or strategies.   

Online scheduling algorithms can be seen as request-answer games. Accord-
ing to this concept, the online algorithm, as a player, constructs a schedule for 
the sequence of tasks provided by the adversary (adversary sequence). In other 
words, the algorithm is competing against an adversary, who generates the input 
sequence of tasks. The adversary is interested in maximizing the difference be-
tween the quality of the online solution and his own solution determined based 
on the knowledge of the complete set of tasks. To obtain this goal, the adversary 
generates a malicious input sequence, difficult for an online algorithm to handle.   

Such game-theoretic view is especially useful for investigating randomized 
algorithms, because in the case of deterministic online algorithms the adversary 
knows the scheduling policy, and the decisions taken by the algorithm are well 
defined. In the case of randomized online algorithms, the adversary has less pow-
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er since the scheduling decisions of algorithms are open/unknown. On the other 
hand, in some cases, the randomization of an online algorithm may lead to de-
creasing its competitive ratio.   

First we show an example of the lower bound analysis for a particular de-
terministic online algorithm. Then we provide some basic definitions and ideas 
related to randomized online algorithms.  

Example 15.3.4  To illustrate the idea of the lower bound of a deterministic 
online scheduling problem proved using the adversary method, we return to the 
two-processor variant of the scheduling problem P2 | dj = d, online-over-list | �Xj 

of Example 15.3.1. As an adversary sequence we use the classical adversary se-
quence for the competitive analysis of two-processor cases [FKT89].  

Theorem 15.3.5 [CSHB16] No deterministic online algorithm for problem 

P2 | dj = d, online-over-list | �Xj has a competitive ratio smaller than 5 � 1. 

Proof. Let us consider the input instance with the common due date  

d = ( 5 + 1)/2. The first two tasks released by the adversary have unit processing 

times (p1 = p2 = 1). There are only two ways to schedule the tasks, either on the 

same processor or on different processors.  

If the online algorithm schedules the tasks on the same processor, the adversary 

finishes the input sequence. The online algorithm constructs the schedule with 

the criterion value XA, which is worse than the quality of the optimal offline 

schedule X * (cf. Figure 15.3.1):  

X *

X A = 
2

d = 5 � 1.  

If the online algorithm assigns tasks to different processors, then the adversary 

releases one more task with the processing time equal to 2 (p3 = 2). The online 

algorithm again constructs a schedule worse than the optimal offline schedule 

(cf. Figure 15.3.2):   

X *

X A = 
2d

1 + d = 5 � 1.  

Hence, the competitive ratio of any deterministic online algorithm is not smaller 

than the lower bound 5 � 1.                                                                                  

In Example 15.3.1 we noticed that the exemplary online algorithm Extended 
First Fit (Algorithm 15.3.2) solves the considered two-processor problem  
P2 | dj = d, online-over-list | �Xj with the competitive ratio �2 = 5 � 1. Since 

this ratio is equal to the lower bound for the considered problem, proved in Theo-

rem 15.3.5, EFF is an optimal deterministic online algorithm for problem  
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P2 | dj = d, online-over-list | �Xj [CSHB16]. This online scheduling problem has 

a tight bound. 

 

 

 

Figure 15.3.1 Schedules for the first adversary sequence in the proof of  
Theorem  15.3.5,  constructed by: 
(a) an online algorithm, 

(b) an optimal offline algorithm.  

 

 

 
 

Figure 15.3.2 Schedules for the second adversary sequence in the proof of  
Theorem  15.3.5, constructed by: 
(a) an online algorithm, 
(b) an optimal offline algorithm.  

As we have mentioned above, the lower bound analysis of randomized online 
algorithms is more difficult than that of deterministic methods. Depending on the 
kind of information which is available for the adversary, three basic adversary 
models are studied for the randomized online algorithms [BDB+94]: oblivious 
adversary, adaptive online adversary and adaptive offline adversary.  

In the oblivious adversary model, the adversary generates the whole input 
sequence before the online algorithm serves it. In other words, first the input se-
quence is constructed, then the randomized online algorithm is run, and 
the quality of the solution is compared to the optimal offline solution.  

In the adaptive online adversary model, the adversary releases requests 
(tasks in the case of online scheduling) based on the online algorithm’s behavior 
observed from the already released requests. The adversary, constructing the ref-
erence solution, also works online. Based on full knowledge of the state of the 
randomized algorithm, it generates the next element of the input sequence. The 
quality of the online solution is compared to the online performance of the adver-
sary.  

The adaptive offline adversary model is similar to the previous, because the 
adversary also knows the internal state of the randomized algorithm, but the 

P1 

P2 
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P2 
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quality of its solution is compared to the offline solution constructed by the ad-
versary.  

The particular adversary models differ in the power given to the adversary. 
The oblivious adversary is the weakest type, since it has to generate the whole 
input sequence without any knowledge of the behavior of the online randomized 
algorithm. This model is relevant to online scheduling problems, in which the 
decisions taken on a partial schedule do not influence future input [PST04]. The 
adaptive adversaries are much stronger because they have insight in the online 
algorithm behavior for incoming requests (tasks), whereas the adaptive online 
adversary is not stronger than the adaptive offline one.     

In the literature devoted to online optimization, other types of adversaries 

can be also met, such as the statistical adversary, which generates an input satis-

fying given statistical assumptions [Rag92], or the diffuse adversary, which gen-

erates an input according to a probability distribution taken from a certain class 

of possible distributions known to an online algorithm [KP00a].  

 

The competitive ratio of a randomized online algorithm A is defined with regard 
to a specific adversary.  

A randomized online algorithm is �-competitive algorithm against an obliv-
ious adversary (or just �-competitive algorithm), if E[A(I)] � � OPT(I) (or 
E[A(I)] � � OPT(I)), where E[A(I)] denotes the expected criterion value for 
a solution constructed by A for instance I. We have to take into account the ex-
pected value, since the behavior of the randomized algorithm might change for 
each run of this method for input I. This expected value is compared to the opti-
mal offline solution OPT(I).  

A randomized online algorithm is �-competitive algorithm against an adap-
tive online (offline) adversary if for all adaptive adversaries ADV there is  
E[A] � � E[AADV], where E[A] and E[AADV] denote the expectations of the criteri-
on values obtained respectively by algorithm A and adversary ADV, taken over 
the random choices made by A.  

Ben-David et al. [BDB+94] discussed more formally the relative strength of 
particular adversaries, proving - among others - the following three theorems. 

Theorem 15.3.6  [BDB+94] If there exists an (-competitive randomized online 
algorithm against any adaptive offline adversary then there exists 
an (-competitive deterministic online algorithm.                                                   

Theorem 15.3.7  [BDB+94] If A is an (-competitive randomized online algo-
rithm against any adaptive online adversary and there exists a *-competitive 
randomized online algorithm against any oblivious adversary, then A is  
an ((&*)-competitive randomized online algorithm against any adaptive offline  
adversary.                                                                                                                
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Theorem 15.3.8  [BDB+94] If there exists an (-competitive randomized online 
algorithm against any adaptive online adversary, then there exists also  
an ( 2-competitive deterministic online algorithm.                                                

Theorem 15.3.6 implies that randomization of online algorithms does not help 

against the adaptive offline adversary, which is the strongest type of adversaries. 

Theorems 15.3.6 and 15.3.7 imply Theorem 15.3.8, which shows that the exist-

ence of randomized online algorithms leads to the existence of a deterministic 

online algorithm with at most quadratically worse performance. 

15.4 Other Online Scheduling Models 

The classical online scheduling models assume that the problem input is un-

known in advance and the decisions taken by an online algorithm are irrevocable. 

Relaxing the assumptions leads to other online models, such as semi-online 

scheduling or online scheduling with advice. Resource augmentation is another 

online model where, instead of providing additional information about the input 

or giving more flexibility, the online algorithm can budget additional power 

(such as increased processor speed) in comparison to the offline algorithm.  

15.4.1 Semi-Online Scheduling  

The classical online scheduling models are based on two assumptions, (1) that no 

information on an input instance is known in advance, and (2) already taken de-

cisions on tasks cannot be changed. Relaxing these assumptions leads to semi-
online scheduling models. Obviously the additional knowledge of the problem 

parameters or the additional flexibility given to scheduling algorithms allows 

improving their efficiency in comparison to classical online models. It is interest-

ing which type of additional information or which kind of additional flexibility 

may increase the quality of constructed solutions and to what extent, expressed, 

for example, with competitive ratios or lower bounds.  

Relaxing the former assumption (1) means that some additional pieces of in-

formation on input data are available in advance (e.g. [AH12, TZ13]). This type 

of semi-online problems, where partial information on input data is provided, is 

located between an online problem, where no knowledge of the future is given, 

and an offline problem, where the full knowledge is available. The additional 

partial information on the problem data may concern, in the case of scheduling 

algorithms, various instance parameters. For example, the provided information 

may concern:  

- the optimal offline value of the objective function (e.g. [AR01, LHL14, 

NTHC09]),  
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- the maximum processing time of tasks or the range of processing times of 

tasks (e.g. [Du04, HD05, HZ99]),  

- the total processing time of all tasks (e.g. [AH12, CKK05, KKST97, 

PCL06]) or a subset of tasks (e.g. [CDD+15]), 

- the ordering of incoming tasks (e.g. [EF02, SSW00]), 

- the end of an input sequence, i.e. on the fact that a currently released task is 

the last task (e.g. [ZY02]), 

- the fact that the last task of an input instance has the maximum processing 

time (e.g. [ZY02]), 

- the total number of tasks and on some features of a precedence graph, such 

as the length of the longest chain of tasks, the ratio between tasks with and 

without successor, or the number of tasks without successor (e.g. [DTE03]). 

Semi-online models are also considered in online scheduling problems with pro-

cessor non-availability. Non-availability periods model processor breakdowns, 

which are usually unexpected. But in other situations, the scheduler might be 

provided with additional information on the next time point when the availability 

of a subset of processors changes (cf. e.g. [AS01, San95, SS98]). Such models 

are also called nearly online (e.g. [SS98]) or online with lookahead (e.g. [AS01]).    

Relaxing the latter assumption (2) means that some algorithmic extensions 

are possible, particularly decisions on scheduling tasks do not have to be taken 

immediately or are partially reversible. This type of semi-online scheduling mod-

els allows online algorithms for:  

- delaying decisions on executing tasks using a buffer with limited capacity 

for temporal storing incoming tasks (e.g. [DLC+14, KKST97, Zha97]),  

- modifying previously taken decisions by rescheduling a limited number or 

a limited amount of task processing times (e.g. [CL10, CLB+11, CXD+13, 

DWHG11, LXCZ09, MLW11, TY08, WBC+12]). 

Semi-online scheduling problems, for which the algorithm can reassign some 

already scheduled tasks, while serving a new one, are also called online schedul-
ing problems with bounded migration [SSS09]. The migration factor specifies 

the limitation imposed on the number or on the size of migrated tasks. The mi-

gration factor equal to zero leads to the classical online scheduling model, while 

the infinite migration factor lead to the classical offline scheduling model. There 

are also studied online scheduling problems with withdrawal, where a fixed 

number of tasks previously scheduled may be withdrawn from the schedule after 

the input task sequence is finished (cf. e.g. [EZH11]).    

The further natural extension of the above mentioned concepts of semi-

online scheduling is combining them, for example, by providing to an algorithm 

a few pieces of information simultaneously, or providing additional knowledge 

of the input instance and allowing rescheduling some tasks at the same time. This 

concept leads to the semi-online problems with combined information (cf. e.g. 

[CCWL12, CW16, DH04, TH02]). The natural question arises whether the addi-

tional combined pieces of information allow increasing the quality of solutions, 

and hence whether or not they are useful from the scheduling point of view.  
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In addition to the extensions mentioned above, other non-classical concepts 

of online scheduling can be found in the literature. For example, there are also 

online methods which run in parallel a few online algorithms, constructing vari-

ous schedules for duplicated tasks, from which the best solution is selected when 

the input task sequence is finished (e.g. [KKST97]). Other models assume that 

the additional information provided to a semi-online algorithm is not accurate or 

it is uncertain [TH07]. For example, instead of the maximum processing time or 

the optimal criterion value, only lower and upper bounds are known.  

Example 15.4.1  In order to illustrate the impact of relaxations in semi-online 

scheduling models on the quality of constructed schedules, we return to the two 

identical processors problem with a common due date and the total early work 

criterion, P2 | dj = d, online-over-list | �Xj , discussed in Examples 15.3.1 and 

15.3.4. We showed that the lower bound for this problem is equal to 

5 � 1 I 1.2361 (see Theorem 15.3.5) and Algorithm 15.3.2 is an optimal algo-

rithm, i.e. the algorithm with the competitive ratio equal to this lower bound (see 

Theorem 15.3.3).  
As we mentioned, the additional pieces of information revealed to semi-

online algorithms may allow improving the competitive ratio. As an example we 
show the results obtained by Chen et al. [CKL+18]. 

Completing the set of input parameters known in advance with the total pro-
cessing time of tasks, allows decreasing slightly the lower bound to 6/5 = 1.2. 

The lower bound of this semi-online problem,  P2 | dj = d, semi-online, �pj | �Xj , 

is proved in Theorem 15.4.2. 

Theorem 15.4.2 [CKL+18] No deterministic semi-online algorithm for problem 

P2 | dj = d, semi-online, �pj | �Xj has a competitive ratio smaller than 6/5. 

Proof. Let us consider the input instance with the common due date d = 3 and 

the total processing time �pj = 6.  

The first two tasks released by the adversary have unit processing times  

(p1 = p2 = 1). They can be scheduled by any semi-online algorithm only in two 

ways: either on the same processor or on different processors. 

If the semi-online algorithm schedules the tasks on the same processor, 

the adversary releases two more tasks with the same processing time equal to 2 

(p3 = p4 = 2). In this case, the semi-online algorithm can construct the schedule 

with the criterion value XA equal to at most 5, so XA � 5, while the adversary 

builds the optimal solution with X * = 6 (cf. Figure 15.4.1). 

If the semi-online algorithm assigns the tasks to different processors, then the 

adversary releases two more tasks but with the processing times equal to 1 and 3  

(p3 = 1, p4 = 3). In this case, the efficiency of the semi-online algorithm and 

the adversary is the same as previously, i.e. XA � 5 and X * = 6 (cf. Figure 15.4.2). 

In both cases, the lower bound is X */XA � 6/5.       
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Figure 15.4.1 Schedules for the first adversary sequence in the proof of 
 Theorem  15.4.2,  constructed by: 
(a) a semi-online algorithm, 

(b) an optimal offline algorithm. 

Figure 15.4.2 Schedules for the second adversary sequence in the proof of  
Theorem 15.4.2, constructed by: 
(a) a semi-online algorithm, 

(b) an optimal offline algorithm. 

From Theorem 15.4.2 we learn that the information on the total processing time 

allows semi-online algorithms to improve their efficiency. We demonstrate 

the idea by presenting an exemplary algorithm, Algorithm 15.4.3 [CKL+18], 

which takes advantage from the additional knowledge of �pj . We prove its com-

petitive ratio in Theorem 15.4.4. 

Algorithm 15.4.3  Algorithm for P2 | dj = d, semi-online,  �pj | �Xj  [CKL+18]. 

begin 

j := 0; 

Cj
1 := 0; 

Cj
2 := 0; 

 -- Cj
i denotes the workload of processor i after scheduling task Tj 

if there is a new task in the input then 

 begin 
  j := j +1; 
  if Cj�1

1  + pj � 1/3�pj  

 then  schedule Tj on P1;  
 -- Step 1 

 if 1/3�pj < Cj�1
1  + pj � 2/3�pj   

 then schedule Tj on P1  

 and then schedule all the remaining tasks on P2 and stop; 
 -- Step 2 
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 if 2/3�pj < Cj�1
1  + pj  

 then schedule Tj on P2  

  and then schedule all the remaining tasks on P1 and stop; 
 -- Step 3 

 end;  
end; 
Theorem 15.4.4 [CKL+18] The competitive ratio of Algorithm 15.4.3 is � = 6/5. 

Proof.  Let us consider a solution constructed by Algorithm 15.4.3 after schedul-
ing the last task Tn in the input sequence. Let X * � min{2d, �pj} denote the op-

timal offline criterion value, i.e. the optimal total early work, and let X A be the 

criterion value of a schedule constructed by Algorithm 15.4.3. We show that 

X */X A � 6/5  for any input instance.  

If max{Cn
1

 , Cn
2} � d then all tasks are early and the online schedule is optimal, i.e.  

X A = X * = �pj , and the theorem holds. 
If min{Cn

1
 , Cn

2} � d then there is a late task on both processors and X A = X * = 2d, 

i.e. the online schedule is optimal and the theorem holds too. 
If min{Cn

1
 , Cn

2}  < d < max{Cn
1

 , Cn
2} then X A = d + min{Cn

1
 , Cn

2} and two addi-

tional cases have to be analyzed. 

Case 1:  If Algorithm 15.4.3 stops at Step 2, then 1/3�pj < Cn
1 � 2/3�pj. Since 

Cn
1 + Cn

2 = �pj , workload Cn
2 is also bounded by 1/3�pj and 2/3�pj , i.e. 

1

3 �pj � min{Cn
1

 , Cn
2} < d <  max{Cn

1
 , Cn

2} � 
2

3 �pj . 

If d � 
1

2 �pj , then  
X *

X A  �  
2d

d + min{Cn
1

 $ Cn 
2}

  � 
2d

d + 
1

3 �pj

  � 
2d

d + 
2
3 d

  = 
6

5
 . 

If d > 
1

2 �pj , then  
X *

X A  �  
�pj

d + min{Cn
1

 $ Cn 
2}

  � 
�pj

1

2 �pj + 
1

3 �pj

 = 
6

5
 . 

Case 2:  If Algorithm 15.4.3 stops at Step 3, then the input sequence contains 

a very big task which is scheduled on processor P2 and the remaining tasks are 

executed on processor P1. We denote the processing time of this task with pq , 

where pq > 1/3�pj due to the conditions of Steps 1 and 3.  

If  pq � 1/2�pj, the schedule constructed by Algorithm 15.4.3 is optimal. Other-

wise, if  1/3�pj < pq < 1/2�pj, then Cn
1 = �pj �  pq  is bounded with 1/3�pj and 

2/3�pj . As in the previous case  

1

3 �pj � min{Cn
1

 , Cn
2} < d <  max{Cn

1
 , Cn

2} � 
2

3 �pj 

leads to X */X A  � 6/5.                                                                                              
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From Theorem 15.4.4 we know that Algorithm 15.4.3 is 6/5-competitive. Taking 

into account the lower bound for the considered problem P2 | dj = d, semi-
online, �pj | �Xj  equal to 6/5 (see Theorem 15.4.2), we conclude that Algorithm 

15.4.3 is optimal.  

Analogous results hold for the semi-online scheduling problem where in-

stead of the total processing time, the optimal total early work is revealed to the 

algorithm. The problem P2 | dj = d, semi-online, X * | �Xj has the lower bound 6/5, 

and there exists an optimal 6/5-competitive semi-online algorithm being a simple 

modification of Algorithm 15.4.3 [CKL+18].  

The information on the optimal criterion value does not provide additional 

computational power to the online algorithms in comparison to the information 

on the total duration of all tasks. In both cases the lower bound was the same 6/5. 

But if semi-online algorithms are provided with additional pieces of information, 

particularly information on the total processing time and on the maximum pro-

cessing time, then the lower bound can be decreased from 6/5 = 1.2 to 10/9 I 1.1, 

as we show in the next Example 15.4.5. 

Example 15.4.5  The semi-online scheduling problem with a common due date  

and two identical processors, where the input includes the values of the total and 

of the maximum processing times, P2 | dj = d, semi-online, �pj & pmax | �Xj , has 

the lower bound equal to 10/9 as proved in Theorem 15.4.6. The mentioned 

problem is actually an example of a semi-online scheduling problem with com-

bined information, because the information on two input parameters is revealed 

to an online algorithm in advance.  

Theorem 15.4.6 [CKL+18] No deterministic semi-online algorithm for problem 

P2 | dj = d, semi-online, �pj & pmax | �Xj has the competitive ratio smaller than 
10/9. 

Proof. Let us consider the input instance with the common due date d = 5, 

the total processing time of all tasks �pj = 10 and the maximum processing time 

pmax = 3. The first two tasks released by the adversary have the processing times 

p1 = 1 and p2 = 3. If the semi-online algorithm schedules the tasks on the same 

processor, the adversary releases three more tasks with the identical processing 

times p3 = p4 = p5 = 2 (cf. Figure 15.4.3). 

If the semi-online algorithm assigns tasks to different processors, then the adver-

sary releases one more task with unit processing time (p3 = 1).  

If the semi-online algorithm schedules this task together with task T2 , then 

the adversary releases two more tasks with the processing times p4 = 3 and 

p5 = 2, respectively (cf. Figure 15.4.4). 
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Figure 15.4.3 Schedules for the first adversary sequence in the proof of  
Theorem 15.4.6, constructed by: 
(a) a semi-online algorithm, 

(b) an optimal offline algorithm. 

Figure 15.4.4 Schedules for the second adversary sequence in the proof of  
Theorem 15.4.6, constructed by: 
(a) a semi-online algorithm, 

(b) an optimal offline algorithm. 

Figure 15.4.5 Schedules for the third adversary sequence in the proof of  
Theorem 15.4.6, constructed by: 
(a) a semi-online algorithm, 

(b) an optimal offline algorithm. 

Figure 15.4.6 Schedules for the fourth adversary sequence in the proof of  
Theorem 15.4.6, constructed by: 
(a) a semi-online algorithm, 

(b) an optimal offline algorithm. 
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If the semi-online algorithm schedules task T3 together with task T1 , then 

the adversary releases a task with the unit processing time p4 = 1. Depending on 

the decision taken by the semi-online algorithm, the adversary releases two more 

tasks with processing times p5 = 3 and p6 = 1 if task T4 was scheduled on the 

same processor as task T3 (cf. Figure 15.4.5), or otherwise with p5 = p6 = 2 (cf. 

Figure 15.4.6).  

In all cases, the semi-online algorithm can construct the schedule with 

the criterion value XA equal to at most 9 (XA � 9), while the adversary builds 

the solution with the optimal total early work X * = 10. Hence, the lower bound of 

the considered problem is X */X A  � 10/9.                                                          

From Theorem 15.4.6 we know that providing more pieces of additional infor-

mation within the problem input gives an opportunity to increase the efficiency 

of the semi-online algorithm. In particular, providing the information on the total 

and on the maximum task processing times simultaneously improves the quality 

of a semi-online schedule in comparison to the situation when only the infor-

mation on the total processing time is revealed (cf. Theorem 15.4.2 in Example 

15.4.1).  

The algorithm presented below [CKL+18] utilizes the knowledge of two in-

put parameters, �pj and pmax , solving the considered problem with the competi-

tive ratio 10/9 (proved in Theorem 15.4.9). Since this competitive ratio is equal 

to the lower bound of the problem (proved in Theorem 15.4.6), Algorithm 15.4.7 

is an optimal semi-online method for the semi-online scheduling problem with 

combined information P2 | dj = d, semi-online,  �pj & pmax | �Xj . 

Algorithm 15.4.7  Algorithm for P2 | dj = d, semi-online,  �pj & pmax | �Xj  
[CKL+18]. 
begin 

j := 0; 

Cj
1 := 0; 

Cj
2 := 0; 

 -- Cj
i denotes the workload of processor i after scheduling task Tj 

if there is a new task in the input then 

 begin 
   j := j +1; 
  if 0 < pmax � 1/5�pj  

  then  schedule all incoming tasks Tj on P1  
    until 2/5�pj � Cj�1

1 + pj � 3/5�pj,  

    then schedule all the remaining tasks on P2  

    and stop; 
 -- Step 1 
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  if 2/5�pj � pmax � �pj  

  then  schedule incoming tasks Tj  on P1  
    except from the first task Tj with pj = pmax which is scheduled on P2 

and stop; 
 -- Step 2 

  if 1/5�pj < pmax < 2/5�pj  

  then 
 -- Step 3 

   begin 
   if  2/5�pj � Cj�1

i + pj � 3/5�pj  for i = 1, 2 

    then schedule task Tj  on Pi  
     and all the remaining tasks on the other processor,  
      and stop; 
  -- Step 3.1 

   if  2/5�pj � Cj�1
i  + pj + pmax  � 3/5�pj  for i = 1, 2 and  

    the first task with the processing time pmax has yet not come  
    then schedule task Tj  and the first task with pmax once came on Pi  
     and all the remaining tasks on the other processor,  
      and stop; 
  -- Step 3.2 

   if  pj � 1/5�pj  or Tj is the first task with the processing time pmax  
    then schedule task Tj  on processor P1;  
    otherwise  
    begin   
     schedule task Tj  on processor P2; 

   if two tasks with pi > 1/5�pj have been already scheduled on P2

   then  schedule all the remaining tasks on P1 

     and stop; 
    end;   
 -- Step 3.3 

  end;   
 end;  
end; 
As in the previous examples we denote the optimal total early work with X * and 

the criterion value of a schedule built by Algorithm 15.4.7 with X A.  

Lemma 15.4.8 [CKL+18] If in the solution constructed by Algorithm 15.4.7, the 
condition 2/5�pj � Cn

 i � 3/5�pj is true for any processor i �{1, 2}, then X */X A � 

10/9.                                                    
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Proof.  If for any processor its workload is in interval [2/5�pj, 3/5�pj] then 

the workload of the other processor is also in this interval.  

If d � 
1

2 �pj then 
X *

X A  �  
2d

d + min{Cn
1 $ Cn

2}
  �  

2d

d + 
2

5 �pj

  �  
2d

d + 
4

5 d
  =  

10

9
 .                     

If d >  12 �pj then 
X *

X A  �  
�pj

d + min{Cn
1

 $ Cn
2}

  �  
�pj

1

2 �pj + 
2

5 �pj

  =  
10

9
 .                          

Theorem 15.4.9 [CKL+18] The competitive ratio of Algorithm 15.4.7 is  
� = 10/9 . 

Proof.  If Algorithm 15.4.7 stops at Step 1, Step 3.1 or Step 3.2 then the theorem 
holds by Lemma 15.4.8. If the algorithm stops at Step 2 and 1/2�pj � pmax � �pj 

then it constructs the optimal offline schedule, otherwise (if 2/5�pj � pmax < 

1/2�pj ) the theorem holds by Lemma 15.4.8 again. So the crucial situation is 

when the algorithm executes Step 3.3, i.e. when max{Cn
1

 $ Cn
2} > 3/5�pj . 

Case 1: Let us assume Cn
1 > 3/5�pj . According to Step 3.3, only small tasks with 

pj � 1/5�pj and the first task in the input with the maximum processing time  pmax 

are scheduled on P1 . The first task with pmax has to start before 2/5�pj and to 

finish after 3/5�pj , otherwise the algorithm would stop at Step 3.1 or Step 3.2. 

Let us denote the task scheduled before this task as Tq . This task has pq � 1/5�pj . 

There is Cq�1
1  + pmax < 2/5�pj , otherwise the algorithm would stop at Step 3.1 or 

Step 3.2 before assigning Tq to P1 . There is also Cq�1
1  + pq+ pmax > 3/5�pj , since 

the first task with pmax finishes after 3/5�pj. From both conditions we have  

pq > 1/5�pj , although we assumed pq � 1/5�pj . From this contradiction, we 

know that Cn
1 cannot be greater than 3/5�pj . 

Case 2: Let us assume Cn
2 > 3/5�pj . We claim that there are two tasks on P2 and 

the schedule is optimal. We know that the input has at most 4 “big” tasks with 

processing time larger than 1/5�pj . One of them is scheduled on P1 due to Step 

3.3, and all tasks on P2 are big (at most three tasks). If there is only one big task 

on P2 , then it should have the processing time larger than 3/5�pj , exceeding 

pmax . If there are two big tasks on P2 , their total processing time exceeds 3/5�pj 

and the algorithm constructs the optimal offline schedule. According to Step 3.3, 

there cannot be three big tasks on P2 .                                

For details of the proofs we refer the reader to [CKL+18]. 
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15.4.2  Online Scheduling with Advice  

Online algorithms with advice are yet another type of online algorithms. These 

methods are provided by a trusted oracle with some bits of advice about the prob-

lem input (cf. [BFK+17, BKK+17, Doh15, KK11, Kom16, RRS15]). The oracle 

knows the entire input instance and has no computational limitations. It provides 

additional knowledge of the problem input via the advice tape built of advice 
bits. The efficiency of an online algorithm with advice depends apparently on the 

amount of information provided by the oracle, i.e. on the advice complexity, ex-

pressed as the maximum number of bits of an advice tape describing a request 

appearing on input.  

With regard to the advice complexity, in general, two modes of providing 

advices are considered [DKP09]: helper mode and answerer mode. In the helper 
mode an online algorithm receives a non-negative number of advice bits before 

processing an incoming request. In the answerer mode, a strictly positive number 

of advice bits are provided to an online algorithm, but on its request. In some 

applications online algorithms are also studied, which gain additional knowledge 

from not receiving any advice bit.  

Following this classification, another concept has been developed, which 

distinguishes: online advice model and semi-online advice model. In the online 
advice model [EFKR11], called also advice per request model, the algorithms are 

provided with a quantified amount of information about the future in online 

manner. The definition of the advice given to the algorithm with each incoming 

request (i.e. task in the context of scheduling) is a part of the specification of the 

algorithm. In the semi-online advice model [BKK+09, BKK+17], called advice 
tape model, the algorithms are provided with the advices on the entire sequence 

of requests in offline manner, i.e. the algorithm can read an infinite advice tape at 

any position. The algorithm is provided with an unbounded number of supply 

bits and decides when to stop requesting for more bits. This model relates to the 

answerer mode, but the number of requested bits must be determined by the algo-

rithm.    

Online algorithms with advice have, in general, lower efficiency than an op-

timal offline algorithm, but they may construct better schedules than classical 

online algorithms. In particular, an online algorithm with O(p(n)) time complexi-

ty provided with b bits of advice, can be transformed into an offline approxima-

tion algorithm with time complexity O(p(n)2b) by running it for all possible 2b 

advice strings [BFK+17]. It is also possible to use an online algorithm with ad-

vice to run various algorithms depending on the advice bits in order to obtain a 

better competitive ratio than any deterministic online algorithm in this way 

[BKL+17].   

The studies on online algorithms with advice concern mainly two aspects 

[BFK+17]: determining the number of bits of advice necessary and sufficient for 

obtaining a given competitive ratio, or determining the algorithm efficiency with 

regard to a given number of bits.  
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Boyar et al. [BFK+17] underlined in their survey on online algorithms with 

advice the relations between these methods and other online approaches. In par-

ticular, lower bounds determined for online algorithms with advice are very 

strong theoretical results. Because there is no restriction imposed on the type of 

advice, the lower bound analysis concerns situations where any possible infor-

mation on the input is available, which can be encoded within a sufficiently small 

number of bits of an advice tape. These results can be used in the studies on 

semi-online algorithms, which make use of a specific type of information provid-

ed to them (cf. Section 15.4.1). Actually, depending on the type of advice provid-

ed by an oracle, an online algorithm with advice can be considered as a semi-

online algorithm. Furthermore some research problems related to randomized 

online algorithms (cf. Section 15.2) can be formulated as equivalent problems 

related to online algorithms with advice, for example, allowing determining low-

er and/or upper bounds for the randomized approaches.   

15.4.3  Resource Augmentation  

The idea of resource augmentation, introduced by Sleator and Tarjan [ST85] in 
the context of the paging/caching problem (cf. also [You94]), was used in 
the field of scheduling by Philips et al. [PSTW02]. Kalyanasundaram and Pruhs 

[KP00b] noticed that the classical competitive analysis does not differentiate 

between online algorithms that have significantly different performance in com-

putational experiments. Moreover, the optimal online algorithms are sometimes 

unnecessarily complicated and the competitive ratio might be unrealistically high 

when typical input instances are taken into account. In the resource augmentation 

model the online algorithm receives more resources in comparison to an optimal 

offline scheduler, such as faster processors or more processors, to execute incom-

ing tasks. Additional resources given to online algorithms partly compensate 

the lack of information on the problem input. They allow improving the competi-

tive ratio in some cases. In general, two main types of resources can be augment-

ed, leading to the models of speed augmentation and processor augmentation. 

If the speed augmentation is considered, the online algorithm runs with 

speed s > 1 on each processor, while the optimal offline algorithm runs with 

speed 1 (cf. e.g. [CLLW06, LNST16, TMC08]). As a result, the online algorithm 

completes a task faster than the offline algorithm. If the online algorithm with 

speed s is (-competitive compared to the optimal offline schedule with speed 1 

[PSTW02], such an algorithm is called s-speed (-competitive. In the case of 

speed augmentation, scalable online algorithms are of the special interest. 

An online algorithm is scalable if it has a constant competitive ratio when given 

(1+%)-speed, where % is a constant. Such algorithms can be compared in theoreti-

cal studies to the optimal offline algorithms with any small amount of speed 

augmentation, and they often behave efficiently in practice. More formally, 
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a scalable online algorithm is O(1)-competitive with (1+�)-speed for any fixed 

� > 0 with regard to the optimal offline schedule with speed 1.   

If the processor augmentation (or machine augmentation) is considered, 

the online algorithms receive additional processors for executing tasks (cf. e.g. 

[ES06]). This model gives in general less additional power to the online algo-

rithm than the speed augmentation. The online algorithm is v-processor 
�-competitive, if the algorithm using vm processors is �-competitive compared to 

the optimal offline schedule using m processors [PSTW02].   

15.5 Conclusions 

In this chapter we shortly introduced the wide and important branch of schedul-

ing theory related to online optimization. The online scheduling models meet 

expectations of many real world applications, since the practical problems have 

often to cope with the lack or with the dynamic nature of information. The online 

scheduling is obviously strictly related to offline scheduling, but it has its unique 

character as well. On one hand, the optimal offline solutions serve as reference 

solutions for the online methods, and the online methods are evaluated using 

the techniques similar to the techniques used in the offline mode, such as the 

competitive analysis corresponding to the worst case analysis. On the other hand, 

online scheduling draws upon game theory or stochastic analysis, incorporating 

their concepts into the scheduling theory.      
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16 Constraint Programming and 
Disjunctive Scheduling 

Constraint propagation is an elementary method for reducing the search space of 
combinatorial search and optimization problems which has become more and 
more important in the last decades. The basic idea of constraint propagation is to 
detect and remove inconsistent variable assignments that cannot participate in 
any feasible solution through the repeated analysis and evaluation of the varia-
bles, domains and constraints describing a specific problem instance. 

 This chapter is based on Dorndorf et al. [DPP00] and its contribution is 
twofold. The first contribution is a description of efficient constraint propagation 
methods also known as consistency tests for the disjunctive scheduling problem 
(DSP) which is a generalization of the classical job shop scheduling problem 
(JSP). By applying an elementary constraint based approach involving a limited 
number of search variables, we will derive consistency tests that ensure 3-b-
consistency. We will further present and analyze both new and classical con-
sistency tests which to some extent are generalizations of the aforementioned 
consistency tests involving a higher number of variables, but still can be imple-
mented efficiently with a polynomial time complexity. Further, the concepts of 
energetic reasoning and shaving are analyzed and discussed. 

The other contribution is a classification of the consistency tests derived ac-
cording to the domain reduction achieved. The particular strength of using con-
sistency tests is based on their repeated application, so that the knowledge de-
rived is propagated, i.e. reused for acquiring additional knowledge. The deduc-
tion of this knowledge can be described as the computation of a fixed point. 
Since this fixed point depends upon the order of the application of the tests, we 
first derive a necessary condition for its uniqueness. We then develop a concept 
of dominance which enables the comparison of different consistency tests as well 
as a simple method for proving dominance. An extensive comparison of all con-
sistency tests is given. Quite surprisingly, we will find out that some apparently 
stronger consistency tests are subsumed by apparently weaker ones. At the same 
time an open question regarding the effectiveness of energetic reasoning is an-
swered.  

16.1 Introduction 

Exact solution methods for solving combinatorial search and optimizations prob-
lems generally consist of two components: (a) a search strategy which organizes 
the enumeration of all potential solutions and (b) a search space reduction strate-

© Springer Nature Switzerland AG 2019 
J. Blazewicz et al., Handbook on Scheduling, International Handbooks  
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_16

609

https://doi.org/10.1007/978-3-319-99849-7_16
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_16&domain=pdf


610 16  Constraint Programming and Disjunctive Scheduling 

gy which diminishes the number of potential solutions. However, due to the ex-
ponentially growing size of the search space, even an intelligent organization of 
the search will eventually fail, so that only the application of efficient search 
space reduction mechanisms will allow the solution of more difficult problems. 
Consequently, as an elementary method of search space reduction, constraint 
propagation has become more and more important in the last decades. Constraint 
propagation has its origins in the popular field of constraint programming which 
models combinatorial search problems as special instances of the constraint sat-
isfaction problem (CSP) . The basic idea of constraint propagation is to evaluate 
implicit constraints through the repeated analysis of the variables, domains and 
constraints that describe a specific problem instance. This analysis makes it pos-
sible to detect and remove inconsistent variable assignments that cannot partici-
pate in any solution by a merely partial problem analysis. 

One of our main objectives is to present and derive efficient constraint prop-
agation techniques also known as consistency tests for the disjunctive scheduling 
problem (DSP)  which is a generalization of the classical job shop scheduling 
problem (JSP). The DSP constitutes a perfect object of study due to the trade-off 
between its computational complexity and its simple description. On the one 
hand, within the class of NP-hard problems the DSP has been termed to be one 
of the most intractable problems. This view is best supported by the notorious 
10 × 10 problem instance of the JSP introduced by Muth and Thompson [MT63] 
which resisted any solution attempts for several decades and was only solved 
more than 25 years later by Carlier and Pinson [CP89]. On the other hand, the 
disjunctive model introduced by Roy and Sussman [RS64] provides an illustra-
tive and simple representation of the DSP which is only based on two types of 
constraints which in scheduling are known as precedence and disjunctive con-
straints. 

An elementary analysis of the DSP involving a limited number of search 
variables derives the consistency tests that ensure 3-b-consistency. These con-
sistency tests can be generalized and, although their application does not estab-
lish a higher level of consistency, they enable powerful domain reductions in 
polynomial time. Notice, that establishing n-consistency for any n is NP-hard, 
thus the existence of a polynomial algorithm is not very probable. Furthermore 
the concepts of energetic reasoning and shaving are presented. 

The other objective of this chapter is a classification of the consistency tests 
derived according to the domain reduction achieved. A new dominance criterion 
that allows a comparison of consistency tests in the aforementioned sense and 
simple methods for proving dominance are presented. An extensive study of all 
consistency tests is given. Quite surprisingly, comparing the extent of the search 
space reduction induced, we will find out that some apparently stronger con-
sistency tests are subsumed by apparently weaker ones. 

The remainder of this chapter is organized as follows. Section 16.2 introduc-
es the CSP. Several concepts of consistency are proposed which may serve as a 
theoretical basis for constraint propagation techniques. We define consistency 
tests and present the aforementioned dominance criterion for comparing them. 
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Section 16.3 describes the DSP and examines its relation to the CSP. Section 
16.4 extensively describes constraint propagation techniques for the DSP. Notice 
that although we focus on the basic DSP, the results of this work also apply in an 
unchanged manner to some important extensions of the DSP, for instance, the 
DSP with release times and due dates. Section 16.5 finally summarizes the re-
sults. 

16.2 Constraint Satisfaction 

Search and optimization problems such as the disjunctive scheduling problem 
are generally modelled as special subclasses of the constraint satisfaction prob-
lem (CSP) or the constraint optimization problem (COP) . We will give a short 
introduction to these problem classes in subsection 16.2.1. In subsection 16.2.2 
we will then describe constraint propagation methods and different concepts of 
consistency. 

16.2.1 The Constraint Satisfaction and Optimization Problem 

The CSP can be roughly described as follows: ''Given a domain specification, 
find a solution x, such that x is a member of a set of possible solutions and it sat-
isfies the problem conditions'' [Ama70]. The COP additionally requires that the 
solution found optimizes some objective function. 

The CSP was first formalized and studied by Huffman [Huf71], Clowes 
[Clo71] and Waltz [Wal75] in vision research for solving line-labelling prob-
lems. Haralick and Shapiro [HS79, HS80] and Mackworth [Mac92] discuss gen-
eral algorithms and applications of CSP solving. Van Hentenryck [Hen92] and 
Cohen [Coh90] tackle the CSP from a constraint logic programming viewpoint. 
Comprehensive overviews on the CSP are provided by Meseguer [Mes89] and 
Kumar [Kum92]. An exhaustive study of the theory of constraint satisfaction and 
optimization can be found in [Tsa93]. We will only present the necessary aspects 
and start with some basic definitions. 

The domain of a variable is the set of all values that can be assigned to the 
variable. We will assume in this section that domains are finite and later allow 
for infinite but discrete domains. The domain associated with the variable x is 
denoted by D (x). If V  = {x1 ,...,  xn} is a set of variables and DOM = { D (x1),
..., D (xn) }  the set of domains, then an assignment a = {a1 ,...,  an} is an element 
of the Cartesian product D (x1) ×...× D (xn) ; in other words, an assignment in-
stantiates each variable xi with a value ai � D (xi) from its domain. 

A constraint c on DOM is a function c : D (xi1) ×...× D (xik) � {true, false} , 
where V ' := {xi1 ,..., xik} is a non empty set of variables. The cardinality | V ' | is 
also called the arity of c. If | V ' | = 1 or | V ' | = 2 then we speak of unary and bina-
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ry constraints respectively. An assignment a = D (x1) ×...× D (xn)  satisfies c iff 
c(ai1 ,...,aik) = true.  

Definition 16.2.1   
An instance I of the constraint satisfaction problem (CSP) is defined by a tuple 
I = (V , DOM , CONS), where V is a finite set of variables, DOM the set of associ-
ated domains and CONS a finite set of constraints on DOM. An assignment a is 
feasible iff it satisfies all constraints in CONS. A feasible assignment is also 
called a solution of I. We denote with F (I ) the set of all feasible assignments 
(solutions) of I. 

Given an instance I of the CSP, the associated problem is to find a solution a � 
F (I ) or to prove that I has no solution.     

As distinguished from the constraint satisfaction problem, the constraint op-
timization problem searches for a solution which optimizes a given objective 
function. We will only consider the case of minimization, as maximization can 
be handled symmetrically. 

Definition 16.2.2   
An instance of the constraint optimization problem (COP) is defined by a tuple 
I  = (V , DOM , CONS, z), where (V , DOM , CONS) is an instance of the CSP and z 
an objective function z : D (x1) ×...× D (xn)  � IR .  Defining  

zmin(I ) :=  { min
b�F (I )

 z(b)  if F (I ) ≠ �, 

#  otherwise, 

an assignment a is called an optimal solution of I  iff a is feasible and z(a) =  
zmin(I ). 

Given an instance I  of the COP, the associated problem is to find an optimal 
solution of I  and to determine zmin(I ).  

It is not hard to see that the CSP and the COP are intractable and belong to 
the class of NP-hard problems (c.f. Section 2.2).  

An instance of the CSP can be represented by means of a graph (constraint 
graph) which visualizes the interdependencies between variables that are in-
duced by the constraints. If we restrict our attention to unary and binary con-
straints then the definition of a constraint graph G is quite straightforward. The 
vertex set of G corresponds to the set of all variables V, while the edge set is 
defined as follows: two vertices xi , xj � V,  i ≠ j, are connected by an undirected 
edge iff there exists a constraint c(xi , xj) � CONS. This can be generalized to 
constraints of arbitrary arity using the notion of hypergraphs [Tsa93].  Figure 
16.2.1 shows a typical CSP instance and the corresponding constraint graph. 
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16.2.2 Constraint Propagation 

From a certain point of view, the CSP and the COP are quite simple problems. 
Since we assumed that the domains of a CSP instance I  are finite which for most 
interesting problems is not a serious restriction, I can be solved by a simple gen-
erate-and-test algorithm that works as follows: enumerate all assignments 
a � D (x1) ×...× D (xn)  and verify whether a satisfies all constraints c � CONS; 
stop if the answer is "yes''. The COP can be solved by enumerating all feasible 
assignments and storing the one with minimal objective function value. 

Unfortunately, this method is not practicable due to the size of the search 
space which grows exponentially with the number of variables. In the worst case, 
all assignments of a CSP instance have to be tested which cannot be carried out 
efficiently except for problem instances too small to be of any practical value. 
Thus, it suggests itself to examine methods which reduce the search space prior 
to starting (or during) the search process. 

One such method of search space reduction which only makes use of simple 
inference mechanisms and does not rely on problem specific knowledge is 
known as constraint propagation. The origins of constraint propagation go back 
to Waltz [Wal72] who more than three decades ago developed a now well-
known filtering algorithm for labelling three-dimensional line diagrams. 

The basic idea of constraint propagation is to make implicit constraints more 
visible through the repeated analysis and evaluation of the variables, domains 
and constraints describing a specific problem instance. This makes it possible to 
detect and remove inconsistent variable assignments that cannot participate in 
any solution by a merely partial problem analysis. 

Two complexity related problems arise when performing constraint propaga-
tion. One problem depends upon the number of variables and constraints that are 
examined simultaneously, while the other problem is caused by the size of the 
domains. These problems are usually tackled by limiting the number of variables 
and constraints (local consistency with respect to all subsets of k variables) and 
the number of domain assignments (domain- or d-consistency, bound- or b-
consistency) that are considered in the examination. These different concepts 
will be discussed further below. We start with some simple examples, as this is 
the easiest way to introduce constraint propagation. 

Example 16.2.3  

Let I = (V , DOM , CONS) be the CSP instance shown in Figure 16.2.1. A simple 
analysis of the constraints (i) to (vi) allows us to reduce the domains of the varia-
bles x1 , x2 and x3 . We distinguish between the domains D (xi) and the reduced 
domains ,(xi). At the beginning, of course, ,(xi) = D (xi) for i � {1 , 2 , 3}. 
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V = {x1 , x2 , x3}, 
D(x1) = {1,...,10}, 
D(x2) = {1,...,10}, 
D(x3) = {1,...,10}, 
(i) 1 � x1 � 4, 
(ii) 1 � x2 � 4, 
(iii) 1 � x3 � 4, 
(iv) x1 + x2 = 4, 
(v) x1 + x3 = 5, 
(vi) x2 + x3 � 6. 

1

2 3

{1,...,10}

{1,...,10} {1,...,10} 

Figure 16.2.1   Example 16.2.3. 

1

2 3

{1 , 2 , 3 , 4}

{1 , 2 , 3 , 4} {1 , 2 , 3 , 4} 
Figure 16.2.2   Step 1. 

1

2 3

{1 , 2 , 3}

{1 , 2 , 3} {3 , 4} 
Figure 16.2.3   Steps 2, 3 and 4. 

1. The unary constraints (i) - (iii) yield the trivial but considerable reduction 
,(x1) := ,(x2) := ,(x3) := {1 , 2 , 3 , 4} (see Figure 16.2.2). 

2. We next examine pairs of variables. Let us start with the pair (x1 , x2) and 
the constraint (iv). If we choose, for instance, the assignment a1 = 4 then 
there obviously exists no assignment a2 � ,(x2) = {1,..., 4} which satis-
fies (iv) x1 + x2 = 4. Hence, the value 4 can be removed from ,(x1). The 
same argument is not applicable to a1 = 1 , 2 , 3, so we currently can only 
deduce ,(x1) := {1 , 2 , 3}.  

3. Since (iv) is symmetric in x1 and x2 , we can as well set ,(x2) := {1 , 2 , 3}.  
4. Consider now the pair (x2 , x3) and constraint (vi). As a2 � {1 , 2 , 3},  i.e.  

a2 � 3, the constraint (vi), x2 + x3 � 6, is only satisfied for a3 � 3. We 
therefore obtain ,(x3) := {3 , 4} (see Figure 16.2.3).  

5. Now let us turn to the pair (x1 , x3) and constraint (v). Since a3 = 3 or a3
 = 4, constraint (v), x1 + x3 = 5, yields a1 ≠ 3, and we can set ,(x1) 
:= {1 , 2}.  

6. Finally, studying constraint (iv) once more, we can remove a2 = 1 and set 
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,(x2) := {2 , 3} (see Figure 16.2.4).  

1

2 3

{1 , 2 }

{2 , 3} {3 , 4} 
Figure 16.2.4   Steps 5 and 6. 

1

2 3

{1}

{3} {4}  
Figure 16.2.5    The final step. 

At this point, no more values can be excluded from the current domains through 
the examination of pairs of variables. If we stop propagation now then the search 
space reduction is already of a considerable size. Prior to our simple analysis, the 
search space was of cardinality | D (x1) × D (x2) × D (x3) | = 10&10&10 = 1000,     
afterwards the cardinality dropped down to | ,(x1) × ,(x2) × ,(x3) | = 2&2&2 = 8. 

Extending our analysis to triples of variables reduces the search space even 
more. Given, for instance, a1 = 2, constraint (iv) implies a2 = 2, while (v) implies 
a3 = 3. Since a2 + a3 = 5 < 6, this is a contradiction to the constraint (vi). Reduc-
ing ,(x1) to {1}, we can immediately deduce ,(x2) = {3} and ,(x3) = {4} which 
is shown in Figure 16.2.5. Hence, only the assignment a = (1 , 3 , 4) is feasible and 
F (I ) = {(1 , 3 , 4)} is the solution space of  I .   

Example 16.2.4   
Consider now the CSP instance I  = (V , DOM , CONS) shown in Figure 16.2.6. 
Here, the constraint a mod b = c yields true, if a divided by b has a remainder of 
c. It is possible to show that this CSP instance has eight feasible solutions: 

F (I ) = {(4 , 7 , 5), (4 , 7 , 10), (5 , 6 , 1), (5 , 6 , 6), (9 , 2 , 5), (9 , 2 , 10), (10 , 1 , 1), 
(10 , 1 , 6)}  

V = {x1 , x2 , x3}, 
D (x1) = {1,...,10}, 
D (x2) = {1,...,10}, 
D (x3) = {1,...,10}, 
(i) (x1 + x2)  mod 10 = 1, 
(ii) (x1 & x3)  mod 5   = 0, 
(iii) (x2 + x3)  mod 5   = 2. 

1

2 3

{1,...,10}

{1,...,10} {1,...,10} 
Figure 16.2.6   Example 16.2.4. 

However, finding these solutions using only constraint propagation is not as easy 
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as in Example 16.2.3. It is not hard to see that the corresponding current domains 
,(x1), ,(x2) and ,(x3) cannot be reduced by examining pairs of variables. Consid-
er, for instance, the pair (x1 , x2) and constraint (i): for each assignment a1 � ,(x1), 
there exists an assignment a2 � ,(x2) such that (i) is satisfied. Similar conclu-
sions can be drawn if the roles of x1 and x2 are interchanged or if we study the 
pairs (x2 ,  x3) and (x1 ,  x3). 

To derive further information, we have to examine pairs of assignments. We 
may, for instance, find out that the assignments {1} × {1,..., 9} of the variables 
x1 and x2 cannot participate in any feasible solution, since they do not satisfy 
constraint (i). Thus given a1 = 1, the only interesting assignment is a2 = 10. Simi-
lar results can be obtained for a1 = 2, etc.  This analysis, however, increases the 
overhead in terms of computational complexity and storage capacity considera-
bly, since pairs of assignments have to be dealt with, and it is not clear at all 
whether this additional overhead can be offset by the search space reduction 
achieved.   

These examples demonstrate that constraint propagation can be quite powerful, 
reducing the search space of a "favourable'' CSP instance to a great extent after a 
few steps of propagation. In the worst case, however, constraint propagation 
does not yield a substantial reduction of the search space and even slows down 
the complete solution process due to the additional computations. In general, the 
outcome of constraint propagation lies between these two extremes: some but not 
all infeasible solutions can be discarded if constraint propagation is restricted to 
techniques which can be implemented efficiently. Thus, constraint propagation 
complements, but does not replace a systematic search. 

After this intuitive introduction to constraint propagation, it is now neces-
sary to provide a theoretical environment which allows us to design and assess 
constraint propagation techniques. We have informally described constraint 
propagation as "the reduction of the search space of a CSP instance through the 
analysis of variables, domains and constraints''. The question how far this reduc-
tion should be carried out, we would readily answer "as far as possible''. Re-
member, however, that any CSP instance is uniquely determined through its var-
iables, domains and constraints. Thus, if we took this description literally then 
constraint propagation would just be a synonym to solving the CSP which of 
course is not sensible, because we initially have introduced constraint propaga-
tion in order to simplify the solution of the CSP. Further, we already have seen 
that constraint propagation is only useful up to a certain extent due to an increas-
ing computational complexity. We therefore present different concepts of con-
sistency which may serve as a theoretical basis for propagation techniques. 
Roughly speaking, a concept of consistency defines the maximal search space 
reduction that is possible regarding some specific criteria. 
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k-Consistency  

The first concepts of consistency have been presented in the early seventies by 
Montanari [Mon74], who introduced the notions of node-, arc- and path-
consistency. Roughly speaking, these concepts are based on the examination of 
constraints containing k variables, where k = 1, 2, 3, with their names being de-
rived from the representation of a CSP instance as a constraint graph. Notice, 
that in the last section examples have been given of how to achieve node- and 
arc-consistency which will be seen more clearly further below. These concepts of 
consistency have been generalized by Freuder [Fre78] in a natural manner to the 
notion of k-consistency. For a detailed analysis of k-consistency see for instance 
[Tsa93]. We will only describe the basic ideas in an informal way. 

In order to define k-consistency we have to introduce the notion of k-
feasibility. Let a = (a1,...,an) be an assignment of a given CSP instance. A par-
tial assignment of k variables (ai1,...,  aik) is k-feasible, if it satisfies all con-
straints which contain these variables only (or any subset of them). The motiva-
tion of the definition of k-consistency is based on the following observation: a 
can only be feasible, if for a given k any partial assignment (ai1,...,  aik) is k-
feasible. Inversely, any partial assignment of k variables, that is not feasible, is 
not interesting and hints at an inconsistent state. 

In Freuder's words [Fre78] k-consistency is achieved if for any (k – 1)-
feasible assignment of k – 1 variables (taken from a set ,(xi1,...,  xik�1

) � D (xi1) 
× ... × D (xik�1

)) and any choice of a k 
th variable, there exists an assignment of 

the k 
th variable (taken from a set ,(xik) � D (xik)), such that the assignment of the 

k variables taken together is k-feasible. 
Note that the property of k-consistency is always relative to the sets ,(xi1,

...,  xik�1
)  and ,(xik). Thus, in order to establish k-consistency, starting from an 

inconsistent state, this implicitly requires a (k – 1)-dimensional administration of 
these sets. At the beginning, these sets contain all assignments, that is, ,(xi1,
...,  xik�1

) := D (xi1) × ... × D (xik�1
) and ,(xik) := D (xik). Inconsistent assignments 

are then eventually discarded, until k-consistency is reached. 
1-consistency is quite easy to achieve: if xi � V  is a variable and c(xi) is a 

unary constraint then all assignments ai � ,(xi) for which c(ai) = false are re-
moved. In order to establish 2-consistency, pairs of variables xi , xj � V  and bina-
ry constraints c(xi , xj) have to be examined: an assignment ai � ,(xi) can be re-
moved if c(ai , aj) = false for all aj � ,(xj). Analogously, 3-consistency requires 
the examination of triples of variables xi , xj , xk � V  and removes pairs of as-
signments (ai , aj) � ,(xi , xj),  etc.  As already mentioned, 1- and 2-consistency 
coincide with the notions of node- and arc-consistency, whereas 2- and 3-
consistency taken together are equivalent to path-consistency, see e.g.  [Mon74, 
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Mac77, MH86, Tsa93]. 1-, 2- and 3-consistency have also been summarized un-
der the name of  lower-level consistency as opposed to  higher-level consistency, 
since only small subsets of variables, domains and constraints are evaluated sim-
ultaneously. 

Efficient algorithms for establishing 1-, 2- and 3-consistency and an analysis 
of their complexity have been presented, among others, by Montanari [Mon74], 
Mackworth [Mac77], Mackworth and Freuder [MF85], Mohr and Henderson 
[MH86], Dechter and Pearl [DP88], Han and Lee [HL88], Cooper [Coo89] and 
Van Hentenryck et al.  [HDT92]. Improved arc consistency algorithms AC-6 and 
AC-7 have been presented by Bessière [Bes94] and by Bessière et al. [BFR99]. 
Chen [Che99] has proposed a new arc consistency algorithm, AC-8, which re-
quires less computation time and space than AC-6 and AC-7. Cooper developed 
an optimal algorithm which achieves k-consistency for arbitrary k [Coo89]. 
Jeavons et al.[JCC98] have identified a number of constraint classes for which 
some fixed level of local consistency is sufficient to ensure global consistency. 
They characterize all possible constraint types for which strong k-consistency 
guarantees global consistency, for each k � 2. Other methods for solving the CSP 
through the sole application of constraint propagation (solution synthesis) have 
been proposed by Freuder [Fre78], Seidel [Sei81] and Tsang and Foster [TF90]. 
The deductive approach proposed by Bibel [Bib88] is closely related to solution 
synthesis. 

Domain-Consistency 

Cooper's optimal algorithm [Coo89] for achieving k-consistency requires testing 
all subsets ,(xi1,...,  xik�1

) � D (xi1) �...� D (xik�1
) of (k – 1)-feasible assignments 

which is only practicable for small values of k. We therefore describe two weak-
er concepts of consistency. 

The first concept is based on only storing the 1-dimensional sets ,(xi) 
� D (xi) for all variables xi � V . For reasons near at hand, ,(xi) is also called the 
current domain of xi. Intuitively, we can at most discard all values ai � ,(xi) for 
which there exist no assignments aj � ,(xj), j � i, such that (a1 , ...,  ai , ...,  an) is 
feasible. Alternatively, the feasibility condition can be replaced with the suffi-
cient condition of k-feasibility which leads to a lower level of consistency. We 
refer to this concept of consistency as domain-consistency or k-d-consistency. 
Domain-consistency has been used, among others, by Nuijten [Nui94]. Formal 
definitions are provided below. 

Definition 16.2.5  

Let I = (V ,DOM ,CONS ) be an instance of the CSP. If ,(xi) � D (xi) is the cur-
rent domain of the variable xi � V  then ,(xi) is complete iff, for all feasible as-
signments a = (a1 , ...,  an), the value ai is contained in ,(xi).    
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Definition 16.2.6   

Let I = (V ,DOM ,CONS ) be an instance of the CSP and ! := { ,(xi) | xi � V } be 
the set of current domains, so that ,(xi) � D (xi) is complete1. 

1. ! is  k-d-consistent for 1 � k � n iff, for all subsets V' := {xi1,...,  xik�1
} of 

k – 1 variables and any k 
th variable xik 	 V' , the following condition 

holds:  
L aik � ,(xik),  ai1 � ,(xi1),...,  aik�1

 � ,(xik�1
) :  

(ai1,..., aik) is   k-feasible. 

2. ! is strong k-d-consistent for 1 � k � n iff ! is k'-d-consistent for all 
1 � k' � k.  

The following naive algorithm establishes k-d-consistency: start with ,(xi)
:= D (xi) for all xi � V ; choose variable xik and assignment aik � ,(xik); test 
whether there exists a subset of k – 1 variables V' := {xi1,...,  xik�1

} which does 
not contain xik, so that (ai1,..., aik�1

, aik) is not k-feasible for all ai1 � ,(xi1), ..., 
aik�1

 � ,(xik�1
); if the answer is ''yes'' then remove the assignment aik from ,(xik); 

repeat this process with other assignments and/or variables until no more domain 
reductions are possible. 

Example 16.2.7   
Let us reconsider Example 16.2.4. After establishing n-d-consistency, the re-
duced domains ,(xi) contain only assignments ai � D (xi) for which there exists a 
feasible solution (a1 , a2 , a3) � F (I). Since the solution space is  

F (I) = {(4,7,5), (4,7,10), (5,6,1), (5,6,6), (9,2,5), (9,2,10), (10,1,1), (10,1,6)} 

we obtain ,(x1) = {4,5,9,10}, ,(x2) = {1,2,6,7}, and ,(x3) = {1,5,6,10}. After the 
reduction, the search space is of size | ,(x1) � ,(x2) � ,(x3) | = 4&4&4 = 64 as com-
pared to the original search space of size | D (x1) � D (x2) � D (x3) | = 
10&10&10 = 1000 which is considerably larger.   

This gives us an indication of the maximal search space reduction that is possible 
if a solely domain oriented approach is chosen. Notice, however, that we did not 
yet discuss how to establish n-d-consistency other than to apply the naive algo-
rithm, so an important question is whether there exists an efficient implementa-
tion after all. Before we deal with this issue, however, we will first present an-
other concept of consistency. 
                                                 
1 The completeness property which is usually omitted in other definitions of consistency 

ensures that no feasible solutions are removed. Without this property, ∆ := {�, …, �} 
would be n-d-consistent which obviously is not intended. 
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Bound-Consistency 

Storing all values of the current domains ,(x1),...,  ,(xn) still might be too costly. 
An interval oriented encoding of ,(xi) provides an alternative if D (xi) is totally 
ordered, for instance, if D (xi) � IN0. In this case, we can identify ,(xi) with the 
interval ,(xi) := [li , ri] := {li , li + 1,..., ri – 1, ri}, so that only the “left'' and 
“right'' bounds of ,(xi) have to be stored. Therefore, this concept of consistency 
is usually referred to as bound-consistency or k-b-consistency. Bound-
consistency has been discussed, among others, by Moore [Moo66], Davis 
[Dav87], van Beek [Bee92] and Lhomme [Lho93]. 

Definition 16.2.8  (k-b-consistency).  

Let I = (V ,DOM ,CONS ) be an instance of the CSP and ! := { ,(xi) | xi � V }  be 
the set of current domains, so that ,(xi) � D (xi) is complete. 

1. ! is  k-b-consistent for 1 � k � n  iff, for all subsets V ' := {xi1 ,...,xik�1
}    of 

k – 1 variables and any k 
th  variable xik 	 V ', the following condition holds: 

L aik � {lik , rik},  ai1 � ,(xi1),...,aik�1
 � ,(xik�1

) :  

 (ai1 ,...,aik) is k-feasible. 

2. ! is strongly k-b-consistent for 1 � k � n iff ! is k'-b-consistent for all 
1 � k' � k.  

A naive algorithm for establishing k-b-consistency is obtained by slightly modi-
fying the naive k-d-consistency algorithm: instead of choosing aik � ,(xik), we 
may only choose (and remove) aik � {lik , rik}. 

As a negative side effect, only the bounds li and ri , but no intermediate value 
li < ai < ri can be discarded, except, if due to the repeated removal of other as-
signments, ai eventually becomes the left or right bound of the current domain. 
Thus, bound-consistency is a weaker concept than domain-consistency. 

Example 16.2.9   

We again examine the Examples 16.2.4 and 16.2.7. Establishing n-b-consistency 
must lead to the domain intervals ,(x1) = [4,10], ,(x2) = [1,7] and ,(x3) = [1,10]. 
Here, the size of the reduced search space is | ,(x1) � ,(x2) � ,(x3)| = 7&7&10 = 490 
compared with the size of the original search space (1000) and the size of the n-
d-consistent search space (64).    

Unfortunately, the following complexity result applies. 
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Theorem 16.2.10  
Establishing n-b-consistency for the CSP is an NP-hard problem. 

Proof. Consider an instance I of the CSP. Let ! = { ,(xi) | xi � V  } be the corre-
sponding set of current domains, such that ! is N-b-consistent. Obviously, F (I) is 
not empty iff there exists xi � V  satisfying ,(xi) � �.   

A similar proof shows that establishing n-d-consistency is NP-hard as well. 

Consistency Tests  

In general, establishing k-consistency is ruled out due to the complex data struc-
tures that are necessary for the administration of the k-feasible subsets. In the last 
subsection we have further seen that establishing n-d- or n-b-consistency is an 
NP-hard problem. Consequently, using constraint propagation in order to solve 
the CSP is only sensible if we content ourselves with approximations of the con-
cepts of consistency that have been introduced. 

An important problem is to derive simple rules which will lead to efficient 
search space reductions, but at the same time can be implemented efficiently 
with a low polynomial time complexity. These rules are known as consistency 
tests and are generally described through a condition-instruction pair Z  and B . 
Intuitively, the semantics of a consistency test is as follows: whenever condition 
Z  is satisfied, B  has to be executed. Z  may be, for instance, an equation or ine-
quality, while B  may be a domain reduction rule. We will often use the short-
hand notation Z  � B  for consistency tests. 

Example 16.2.11   
Let us derive a consistency test for the CSP instance I described in Example 
16.2.3. Consider the constraint (vi) x2 + x3 � 6. Given an assignment a2 of x2 , we 
can remove a2 from ,(x2) if there exists no assignment a3 = ,(x3) satisfying (vi). 
However, we do not really have to test all assignments in ,(x3), because if (vi) is 
not satisfied for a3 = max ,(x3) then it is not satisfied for any other assignment in 
,(x3) and vice versa. Hence, for any a2 � D (x2),  

 "(a2) : a2 + max ,(x3) < 6  �  ,(x2) := ,(x2) \ {a2}     

defines a consistency test for I.   

Of course, this example is quite simple and it may not seem clear whether any 
advantages can be drawn from such elementary deductions. Surprisingly, how-
ever, an analogously simple analysis will allow us to derive powerful consisten-
cy tests for particular classes of constraints as will be seen in one of the subse-
quent sections. 
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One of our objectives is to compare consistency tests. This requires a condi-
tion which enables us to determine whether certain consistency tests are "at least 
as good'' as certain others. Intuitively, this applies if the deductions implied by a 
set of consistency tests are "at least as good'' as those implied by another set. In 
order to elaborate this rather vague description, we will focus on domain con-
sistency tests, i.e. consistency tests which deduce domain reductions. Similar 
results, however, apply for other types of consistency tests. 

Let us derive a formal definition of domain consistency tests. Let J := 2D(x1)

 �...� 2D(xn), where 2D(xi) denotes the set of all subsets of D (xi). Given !, !' � J, 
that is, ! = { ,(xi) | xi � V } and !' = { ,'(xi) | xi � V }, we say that 

1.  ! � !'  iff ,(xi) � ,'(xi) for all xi � V ,  
2.  ! �

/
 !' iff ! � !', and there exists xi � V , such that ,(xi) �/

 ,'(xi).  
Domain consistency tests have to satisfy two conditions. First, current do-

mains are either reduced or left unchanged. Second, only assignments ai� ,(xi) 
are removed for which no feasible assignment a = (a1 , ..., ai  , ...,  an) exists, be-
cause otherwise solutions would be lost. Since, however, we do not need the 
second condition in order to derive the results of this section, only the first one is 
formalized. 

Definition 16.2.12  

A domain consistency test " is a function " : J � J satisfying "(!) � ! for all 
! � J. 

Suppose now that a set of domain consistency tests is given. In order to obtain 
the maximal domain reduction possible, these tests have to be applied repeatedly 
in an iterative fashion rather than only once. The reason for this is that, after the 
reduction of some domains, additional domain adjustments can possibly be de-
rived using some of the tests which have previously failed in deducing any re-
ductions. This has been demonstrated, for instance, in Example 16.2.3. Thus, the 
deduction process should be carried out until no more adjustments are possible 
or, in other words, until the set ! of current domains becomes a fixed point. The 
standard fixed point procedure is shown in Algorithm 16.2.13. 

Algorithm 16.2.13  Fixed point 

Input: !: set of current domains;  
begin 
  repeat  
    !old := !;  
    for all (" � g)  do ! := "(!);  -- g is a set of consistency tests 
  until (! := !old);   
end; 
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It is important to mention that the fixed point computed does not have to be 
unique and usually depends upon the order of the application of the consistency 
tests. For this reason we will only study monotonous consistency tests for which 
the order of application does not affect the outcome of the domain reduction pro-
cess. This result will be derived in the following. 

Definition 16.2.14    

A consistency test " is  monotonous iff the following condition is satisfied:  

 L!, !' � J : ! � !'  �  "(!) � "(!') .  (16.2.1) 

Let us first define the !-fixed-point mentioned above. Let g be a set of monoto-
nous domain consistency tests. For practical reasons we will always assume that 
g is finite. Let "# := ("g)g�IN � gIN be a series of domain consistency tests in g, 
such that  

L " � g, L h � IN,  g > h : "g = " .   (16.2.2) 

The series "# determines the order of application of the consistency tests. The 
last condition ensures that every consistency test in g is (a priori) infinitely often 
applied. Starting with an arbitrary set ! of current domains, we define the series 
of current domain sets (!g)g�IN induced by "# through the following recursive 
equation  

!0 := ! , 
!g := "g(!g�1) . 

Since all domains D (xi) are finite and !g � !g�1 due to Definition 16.2.12, there 
obviously exists g* � IN, such that !g = !g* for all g � g*. We can therefore de-
fine "#(!) := !g* . The next question to answer is whether "#(!) really depends 
on the chosen series "# . 

Theorem 16.2.15  Unique fixed points. [DPP00].  

If g is a set of monotonous domain consistency tests and "# , " '# � gIN are series 
satisfying  (16.2.2) then "#(!) = " '#(!). 

Proof. For reasons of symmetry we only have to show "#(!) � " '#(!). 
Let (!g)g�IN and (!' g')g'�IN be the series induced by "# and " '# respectively. It is 
sufficient to prove that for all g' � IN, there exists g � IN, such that !g � ! 'g' . 
This simple proof will be carried out by induction. 

 The assertion is obviously true for g' = 0. For g' > 0, we have ! 'g' = " 'g' (!'    g'�1). 
By the induction hypothesis, there exists h � IN, such that !h � !'    g'�1. Further, 
(16.2.2) implies that there exists g > h satisfying "g = " 'g' . Since g > h, we know 



624 16  Constraint Programming and Disjunctive Scheduling 

that !g�1 � !h . Using the monotony property of "g , we can conclude  

!g = "g(!g�1) � "g(!h) � "g(!'    g'�1) = " 'g' (!'    g'�1) = ! 'g' . 

This completes the induction proof.  

Definition 16.2.16  

Let g be a set of monotonous domain consistency tests, ! a set of current do-
mains and "# � gIN an arbitrary series satisfying (16.2.2). We define g(!) := "#
(!) to be the unique !-fixed-point induced by g and !.    

Based on these observations, we can now propose a dominance criterion for do-
main consistency tests. 

Definition 16.2.17   

Let g, g' be sets of monotonous consistency tests. 

 1. g  dominates g'  (g ≻= g') iff g(!) � g'(!) for all ! � J .  

2. g  strictly dominates g'  (g ≻ g') iff g ≻= g', and there exists ! � J, such 
that g(!) �/  g'(!).    

 3. g is  equivalent to g'  (g ~ g') iff  (g ≻= g') and (g' ≻= g).  

The next theorem provides a simple condition for testing dominance of domain 
consistency tests. Basically, the theorem states that a set of domain consistency 
tests g dominates another set g' if all domain reductions implied by the tests in g' 
can be simulated by a finite number of tests in g. 

Theorem 16.2.18    

Let g, g' be sets of monotonous consistency tests. If for all "' � g' and all ! � J, 
there exist "1, ..., " d � g, so that  

 (" d h...h "1)(!) � "'(!)     (16.2.3) 

then g ≻= g'. 

Proof. Let "# and " '# � gIN be series satisfying  (16.2.2) . Let, further, (!g)g�IN 
and (!' g')g'�IN be the series induced by "# and " '# respectively. Again, we will 
prove by induction that for all g' � IN, there exists g � IN, such that !g � ! 'g' , 
since this immediately implies g(!) � g'(!). 

The assertion is obviously true for g' = 0. Therefore, let g' > 0 and ! 'g' = " 'g'
(!'    g'�1). By the induction hypothesis, there exists h � IN, such that !h � !'    g'�1 . 

Let "1, ...,  " d � g be the sequence of consistency tests satisfying (16.2.3) for 
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" 'g' and !h . There exist gd >...> g1 > h satisfying "g1
 = "1, ...,  "gd

 = " d due to 
(16.2.2). Without loss of generality, we assume that gd = h + d, ...,  g1 = h + 1, so 
that  

!h+d = ("h+d h...h "h+1)(!h) � " 'g' (!h) � " 'g' (!'    g'�1) = !'  g'   

which proves the induction step. This verifies the dominance relation g ≻= g'.      

Example 16.2.19    
Let us reconsider the consistency tests derived in Example 16.2.11:  

"(a2) : a2 + max ,(x3) < 6  �  ,(x2) :=  ,(x2) \ {a2} . 

Instead of defining a consistency test for each a2 � D (x2), it is sufficient to apply 
a single consistency test to obtain the same effects. Observe that if a2 can be re-
moved then all assignments a'2 < a2 can be removed as well, so that we can re-
place a2 � ,(x2) with min ,(x2). This leads to the consistency test:  

" : min ,(x2) + max ,(x3) < 6  �  ,(x2) := ,(x2) \ { min ,(x2) } . 

Obviously, if a2 can be removed from ,(x2) using "(a2) then " removes a2 after at 
most a2 – min ,(x2) + 1 steps. Thus, g := {"} dominates g' := { "(a2) | a2
 � D (x2) }. Accordingly, g' dominates g, because g' i g. This proves that g and 
g' are equivalent.  

16.3 The Disjunctive Scheduling Problem 

The disjunctive scheduling problem (DSP) is a natural generalization of im-
portant scheduling problems like the job shop scheduling problem (JSP) which 
has been extensively studied in the last decades, or the open shop scheduling 
problem (OSP) which only in recent years has attracted more attention in sched-
uling research. 

The DSP can be described as follows [Pha00]: a finite set of tasks each of 
which has a specific processing time, has to be scheduled with the objective of 
minimizing the makespan, i.e. the maximum of the completion times of all tasks. 
Preemption is not allowed which means that tasks must not be interrupted during 
their processing. In general, tasks cannot be processed independently from each 
other due to additional technological requirements or scarcity of resources. The 
DSP considers two kinds of constraints between pairs of tasks which model spe-
cial classes of restrictions:  precedence and disjunctive constraints. 
T Precedence constraints which are also known as temporal constraints specify 

a fixed processing order between pairs of tasks. Precedence constraints cover 
technological requirements of the kind that some task Ti must finish before 
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another task Tj can start, for instance, if the output of Ti is the input of Tj .  

T Disjunctive constraints prevent the simultaneous or overlapping processing of 
tasks without, however, specifying the processing order. If a disjunctive con-
straint is defined between two tasks Ti and Tj then one of the alternatives "Ti 
before Tj'' or "Tj before Ti'' must be enforced, but which one is not predeter-
mined. Disjunctive constraints model the resource demand of tasks in a 
scheduling environment with scarce resource supply. More precisely, the ca-
pacity of each resource like special machines, tools or working space is one 
unit per period of processing time. Tasks use at most a (constant) unit amount 
of each resource per processing period. Due to the limited amount of re-
sources, two tasks requiring the same resource cannot be processed in parallel. 

Note that the term disjunctive constraint, as introduced here and as common-
ly used in scheduling, is a special case of the general concept of disjunctive con-
straints.  

The DSP and its subclasses have been extensively studied in academic re-
search, since its simple formulation, on the one hand, and its intractability, on the 
other hand, make it a perfect candidate for the development and analysis of effi-
cient solution techniques. Indeed, the solution techniques that have been derived 
for the DSP have contributed a lot to the improvement of methods for less ideal-
ized and more practice oriented problems. Extensions of the DSP generally con-
sider sequence-dependent setup times, minimal and maximal time lags, multi-
purpose and parallel machines, non-unit resource supply and demand, machine 
breakdowns, stochastic processing times, etc.  

Section 16.3.1 formulates the DSP as a constraint optimization problem with 
disjunctive constraints as proposed by Roy and Sussman [RS64] for the JSP. The 
strength of this model becomes apparent later once the common graph theoretical 
interpretation of the disjunctive scheduling model is presented. In Section 16.3.2, 
solution methods for the DSP that are based on constraint propagation are briefly 
discussed. 

16.3.1 The Disjunctive Model 

Let B = {1, ...,  n} be the index set of tasks to be scheduled. The processing time 
of task Ti , i � B is denoted with pi . By choosing sufficiently small time units, we 
can always assume that the processing times are positive integer values. With 
each task there is associated a start time domain variable sti with domain set 
D(sti) = IN0 . 

If a precedence or disjunctive constraint is defined between two tasks then 
we say that these tasks are in conjunction or disjunction respectively. The tasks 
in conjunction are specified by a relation C � B � B . If (i , j) � C then task Ti has 
to finish before task Tj can start. Instead of writing (i , j) � C we will therefore 
use the more suggestive i � j � C. The tasks in disjunction are specified by a 



 16.3  The Disjunctive Scheduling Problem 627 

symmetric relation D � B � B . Whenever (i , j) � D, tasks Ti and Tj cannot be 
processed in parallel. Since (i , j) � D implies (j , i) � D, we will write i X j � D. 
Finally, let Z = { pi | i � B }  be the set of processing times. 

An instance of the DSP is uniquely determined by the tuple I = (B , C , D , Z). 
Since we want to minimize the makespan, i.e. the maximal completion time of 
all tasks, the objective function is Cmax(I) = max

 i�B{sti + pi}. The DSP can be 
written as follows: 

minimize {Cmax(I)} 
sti � D(sti) = IN0 i � B, 
(i) sti + pi � stj i � j � C, 
(ii) sti + pi � stj   W   stj + pi � sti i X j � D. 

Let us first define an assignment ST = (st1, ...,  stn) � D(st1) �...�D(stn) of 
all start time variables. For the sake of simplicity, we will use the same notation 
for variables and their assignments. An assignment ST is feasible, i.e. it defines a 
schedule (cf. Section 3.1), if it satisfies all precedence constraints (i) and all dis-
junctive constraints (ii). Reformulating the DSP, the problem is to find a feasible 
schedule with minimal objective function value Cmax(I). Obviously, for each in-
stance of the DSP, there exists a feasible and optimal schedule. 

A Graph Theoretical Approach  

The significance of the disjunctive scheduling model for the development of ef-
ficient solution methods is revealed if we consider its graph theoretical interpre-
tation. In analogy to Section 10.1, a disjunctive graph is a weighted graph 
G  = (B , C , D , W) with node set B, arc sets C, D � B � B where D is symmetric, 
and weight set W. C is called the set of precedence arcs, D the set of disjunctive 
arcs. Each arc i � j � C � D  is labelled with a weight wi� j � W. Since D is 
symmetric, we will represent disjunctive arcs as doubly directed arcs and some-
times refer to i X j  as a disjunctive edge. Notice that i X j � D is labelled with 
two possibly different weights, wi� j and wj� i . 

Let I = (B , C , D , Z) be an instance of the DSP. In order to define the associ-
ated disjunctive graph G(I), we first introduce two dummy tasks start (0) and 
end (*) so as to obtain a connected graph. Obviously, start precedes all tasks, 
while end succeeds all tasks. Further, the processing times of start and end are 
zero.  

Definition 16.3.1   

If I = (B , C , D , Z) is an instance of the DSP then G(I) := (B*
 , C *

 , D , W) is the 
associated disjunctive graph, where  
 B* := B � {0 , *}, 
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 C * := C � { 0 � i | i � B � {*} } � { i � * | i � B � {0} }, 
 W = { wi� j = pi | i � j � C * � D } . 

Example 16.3.2    

Let I = (B , C , D ,  Z) be an instance of the DSP with B = {1, ...,  8}, C = { 1 � 2 

� 3, 4 � 5, 6 � 7 � 8 } and D = { 1 X 4, 1 X 6, 4 X 6, 2 X 7, 3 X 5, 3 X 8, 
5 X 8 }. The corresponding disjunctive graph G  = (B*

 , C *
 , D , W) is shown in 

Figure 16.3.1.2    

0

1 2 3

4 5

6

*

7 8  
Figure 16.3.1   A disjunctive graph. 

A disjunctive graph is transformed into a directed graph by orienting disjunctive 
edges.  

Definition 16.3.3   

Let G  = (B , C , D , W) be a disjunctive graph, and S � D. 
1. S is a  partial selection iff  i � j � S implies j � i 	 S for all 

i X j � D.  
2. S is a complete selection iff either i � j � S or j � i � S for all 

i X j � D.  
3. A complete selection S is acyclic iff the directed graph GS = (B, C � S) 

is acyclic.  

Thus, we obtain a complete (partial) selection if (at most) one edge orientation is 
chosen from each disjunctive edge i X j � D. The selection is acyclic if the re-
sulting directed graph is acyclic, ignoring any remaining undirected disjunctive 
edges. There is a close relationship between complete selections and schedules 
(let us remind that schedules are always feasible, as defined in Section 3.1). In-
deed, if we are only interested in optimal schedules, then it is sufficient to search 
through the space of all selections which is of cardinality 2|D| instead of the space 
of all schedules which is of cardinality |IN0|

n. The DSP can thus be restated as a 
graph theoretical problem: find a complete and acyclic selection, such that the 
length of the longest path in the associated directed graph is minimal. 
                                                 
2 We have not depicted all of the trivial edges involving the dummy operations start and 

end. Further, the specification of the weights has been omitted. 
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16.3.2 Solution Methods for the DSP 

Countless is the number of solution methods proposed for the JSP which consti-
tutes the most famous subclass of the DSP. A detailed survey is provided by 
Błażewicz et al. in [BDP96]. We only focus on solution methods which have 
incorporated constraint propagation techniques in some way or another. Particu-
larly, constraint propagation has been used in exact solution methods most of 
which are based on a search space decomposition approach of the branch-and-
bound kind. It seems fair to say that the advances in solving the JSP that have 
been made in the last decade can be attributed to a large extent to the develop-
ment of efficient constraint propagation techniques. Undoubtedly, the algorithm 
of Carlier and Pinson presented in [CP89] marked a milestone in the JSP history, 
since for the first time an optimal solution for the notorious 10 � 10 problem 
instance proposed by Muth and Thompson [MT63] has been found and its opti-
mality proven. Amazingly, due to the evolution of solution techniques and grow-
ing computational power, this formerly unsolvable instance can now be solved 
within several seconds. Important contributions towards this state of the art have 
been made among others by Applegate and Cook [AC91], Carlier and Pinson 
[CP90], Brucker et al. [BJS94, BJK94], Caseau and Laburthe [CL95], Baptiste 
and Le Pape [BL95] and Martin and Shmoys [MS96], to name only a few. In 
addition to using constraint propagation techniques in exact solution methods, 
the opinion eventually gains ground that combining constraint propagation with 
heuristic solution methods is most promising. Advances in this direction have 
been reported by Nuijten [Nui94], Pesch and Tetzlaff [PT96], Phan Huy [Pha96] 
and Nuijten and Le Pape [NL98]. 

16.4 Constraint Propagation and the DSP 

In Section 16.2.2, constraint propagation has been introduced as an elementary 
method of search space reduction for the CSP or the COP. In this section, we 
examine how constraint propagation techniques can be adapted to the DSP. An 
important issue is the computational complexity of the techniques applied which 
has to be weighed against the search space reduction obtained. Recall that estab-
lishing n-, n-d- and n-b-consistency for instances of the CSP or the COP are NP-
hard problems. It is not difficult to show that the same complexity result applies 
if we confine ourselves to the more special DSP. Thus, if constraint propagation 
is to be of any use in solving the DSP, we will have to content ourselves with 
approximations of the consistency levels mentioned above. 

In the past years, two constraint propagation approaches have been studied 
with respect to the DSP: a time oriented and a sequence oriented approach. The 
time oriented approach is based on the concept of domain or bound-consistency. 
Each task has a current domain of possible start times. Domain consistency tests 
remove inconsistent start time assignments from current domains and, by this, 
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reduce the set of schedules that have to be examined. In contrast to the time ori-
ented approach, the sequence oriented approach reduces the set of complete se-
lections by detecting sequences of tasks, i.e. selecting disjunctive edge orienta-
tions which must occur in every optimal solution. Hence, the latter approach has 
been often labelled immediate selection (see e.g. [CP89, BJK94]) or edge-finding 
(see e.g. [AC91]). We will use the term sequence consistency test as used in 
[DPP99]. 

Domain and sequence consistency tests are two different concepts which 
complement each other. Often, a situation occurs in which either only reductions 
of the current domains or only edge orientations are deducible. The best results, 
in fact, are obtained by applying both types of consistency tests, as fixing dis-
junctive edges may initiate additional domain reductions and vice versa. 

Section 16.4.1 introduces some notation which will be used later. The sub-
sequent sections are concerned with the definition of domain and sequence con-
sistency tests for the DSP. For the sake of simplicity, precedence and disjunctive 
constraints will be treated separately. At first, the simple question of how to im-
plement constraint propagation techniques for precedence constraints is dis-
cussed in Sections 16.4.2. 

In Sections 16.4.3 through 16.4.8, disjunctive constraints are examined, and 
both already known and new consistency tests will be presented. We assume that 
precedence constraints are not defined and that all tasks are in disjunction which 
leads to the special case of a single-machine scheduling problem [Car82]. 

Section 16.4.3 examines which consistency tests have to be applied in order 
to establish lower-level bound-consistency, that is, strong 3-b-consistency. Sec-
tions 16.4.4 and 16.4.5 present the well-known input/output and input/output 
negation consistency tests first proposed by Carlier and Pinson [CP89] and com-
pare different time bound adjustments. Section 16.4.6 describes a class of new 
consistency tests which is based on the input-or-output conditions and is due to 
Dorndorf et al. [DPP99]. Section 16.4.7 takes a closer look at the concept of en-
ergetic reasoning proposed by Erschler et al. [ELT91] and classifies this concept 
with respect to the other consistency tests defined. Section 16.4.8, finally, deals 
with a class of consistency tests known as shaving which has been introduced by 
Carlier and Pinson [CP94] and Martin and Shmoys [MS96]. 

In Section 16.4.9, the results for the disjunctive constraints are summarized. 
Finally, Section 16.4.10 discusses how to interleave the application of the prece-
dence and disjunctive consistency tests derived. It is worthwhile to mention that 
a separate analysis of precedence and disjunctive constraints leads to weaker 
consistency tests as compared to cases where both classes of constraints are sim-
ultaneously evaluated. However, it remains an open question whether simple and 
efficient consistency tests can be developed in this case. 

16.4.1 Some Basic Definitions 

For the rest of this subsection, let I = (B , C , D , Z) be an instance of the DSP. Each 
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task Ti , i � B has a current domain ,(sti) � D(sti). In order to avoid misinterpre-
tations between the start time variable sti and its assignment (for which the nota-
tion sti is used as well), we will write ,i instead of ,(sti). We assume that some 
real or hypothetical upper bound UB on the optimal makespan is known or giv-
en, so that actually ,i � [0 , UB – pi]. This is necessary, since most of the con-
sistency tests derived only deduce domain reductions or edge orientations if the 
current domains are finite. In general, the tighter the upper bound, the more in-
formation can be derived. 

The earliest and latest start time of task Ti are given by esti := min ,i and lsti
 := max ,i . We will interpret ,i as an interval of start times, i.e. ,i = [esti , lsti]
 = { esti , esti + 1, ...,  lsti � 1, lsti}, although a set oriented interpretation is possi-
ble as well. We also need the earliest and latest completion time ecti := esti + pi 
and lcti := lsti + pi  of task Ti . 

Sometimes, it is important to distinguish between the earliest and latest start 
time  before and after a domain reduction. We will then use the notation est i

 * and 
lst i

 * for the adjusted earliest and latest start times. We will often examine subsets 
A � B of tasks and define p(A) := 5 i�A  pi , ESTmin(A) := min i�A  esti , and 
LCTmax(A) := max i�A  lcti . Finally, Cmax(p,(A)) and Cmax(p , 

 pr(A)) denote the op-
timal makespan if all tasks in A are scheduled within their current domains with-
out preemption or with preemption allowed. 

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

10 11 1232
x

lstest lctect  
Figure 16.4.1    Two tasks Ti , Tj with pi = 4 and pj = 3.   

Examples of consistency tests will be illustrated as in Figure 16.4.1 [Nui94] 
which shows two tasks Ti and Tj . For task Tj , the interval [estj , lctj] = [0,8] of 
times at which Tj may be in process is shown as a horizontal line segment. Possi-
ble start times [estj , lstj] = [0,5] are depicted as black circles, while the remaining 
times [lstj+1 , lctj] = [6,8] are marked with tick marks. A piston shaped bar of size 
pj = 3, starting at estj = 0, indicates the processing time of task Tj . The chosen 
representation is especially well-suited for describing the effect of domain con-
sistency tests. If a starting time is proven to be inconsistent then the correspond-
ing time will be marked with an x, as for instance the start time 2 on the time 
scale of task Ti . 
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16.4.2 Precedence Consistency Tests 

Precedence constraints determine the order in which two specific tasks Ti and Tj 
have to be processed. If, for instance, task Ti has to finish before task Tj can start, 
then the earliest start time of Tj has to be greater than or equal to the earliest 
completion time of Ti. Likewise, an upper bound of the latest completion time of 
Ti is the latest start time of Tj . This proves the following well-known theorem. 

Theorem 16.4.1  Precedence consistency test.  

If i, j � B and i � j � C then the following domain reduction rules apply:  

estj := max{ estj , esti + pi },  (16.4.1) 

lsti := min{ lsti , lstj � pi }.  (16.4.2) 

Of course, applying the consistency tests (16.4.1) and (16.4.2) until no more up-
dates are possible is equivalent to the computation of a longest (precedence) path 
in the disjunctive graph, see [Chr75] for a standard algorithm. This algorithm 
traverses all tasks in a topological order which ensures that (16.4.1) and (16.4.2) 
only have to be applied once for each precedence arc. 

16.4.3 Lower-Level Bound-Consistency 

From this Section through Section 16.4.8, we will study the more interesting 
class of disjunctive constraints. For the sake of simplicity, we assume that B is a 
clique, i.e. all tasks in B are in disjunctions. We, further, assume that the set of 
precedence constraints is empty. We will, at first, discuss how disjunctive con-
straints interact with respect to some concept of consistency. For two reasons we 
opted for bound-consistency as the concept of consistency to work with. First of 
all, bound-consistency requires the least amount of storage capacity, since the 
current domains can be interpreted as intervals, so only the earliest and latest 
start times have to be memorized. Second, the most powerful consistency tests 
described in the following only affect/use the earliest and latest start times. In-
deed, no efficient consistency tests which make use of "inner'' start times are 
currently known. 
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Symbol Description 

 "(h)
A,i    h � 4: output consistency test for the couple (A , i),   

h � 5: input negation consistency test for the couple (A , i)  
,i    current domain of Ti : ,i � IN0    
esti  earliest start time of Ti : esti = min ,i  
est i

 *  adjusted earliest start time of Ti 
ecti earliest completion time of Ti : ecti = esti + pi  
lcti  latest completion time of Ti : lcti = lsti + pi  
lsti latest start time of Ti : lsti = max ,i 
lst i

 *    adjusted latest start time of Ti 
pi(t1, t2)    interval processing time of Ti in the time interval [t1, t2) 
[t1, t2) time interval: [t1, t2) = { t1, t1 + 1, ...,  t2 � 1 }  
[t1, t2] time interval: [t1, t2] =  { t1, t1 + 1, ...,  t2 }  
A subset of tasks: A � B 
A � i  (i � A)  Ti has to be processed after (before) all tasks in A  
Cmax(p,(A))  optimal makespan if all tasks in A are scheduled without 

preemption  
Cmax(p , 

 pr(A))  optimal makespan if all tasks in A are scheduled with 
preemption allowed 

g¬ in (h)  set of input negation consistency tests 
gout (h)  set of output consistency tests 
ESTmin(A) minimal earliest start time in A : ESTmin(A) = min i�A{esti}  
LBh(A)  time bound adjustment for output consistency tests  
LBh(A, i)  time bound adjustment for input negation consistency tests 
LCTmax(A) maximal latest completion time in A :  

LCTmax(A) = max i�A{lcti}  
B(t1,t2)   subset of tasks which must be processed completely or par-

tially in the time interval [t1, t2) :  
B(t1,t2) = { i � B | pi (t1, t2) > 0 }  

p(A) sum of processing times in A : p(A) = 5 i�A pi 
p(A, t1, t2) sum of interval processing times in A in the time interval  

[t1, t2) : p(A, t1, t2) = 5 i�A pi(t1, t2) 
T (A)    task set of A : T (A) = T (ESTmin(A), LCTmax(A) )     
T (t1, t2) task set: T (t1, t2) = { i � B | t1 � esti , lcti � t2 }   

Table 16.4.1:  List of symbols.   

Our goal is to examine which domain consistency tests have to be applied in or-
der to establish strong 3-b-consistency which is also known as lower-level 
bound-consistency. 1-b-consistency is trivially established, since unary con-
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straints are not involved, so only 2-b- and 3-b-consistency remain to be studied. 
The corresponding consistency tests will be derived through an elementary 

and systematic evaluation of all constraints. This “bottom up'' approach is quite 
technical, but it closes the gap that is usually left by the consistency tests which 
are due to the researcher's inspiration and insight into the problem's nature. As a 
consequence, we will rediscover most of these consistency tests which have been 
“derived'' in a “top down'' fashion in a slightly stronger version. 

2-b-Consistency  

In order to test for 2-b-consistency, pairs of different tasks have to be examined. 
If Ti , i � B is a task and sti � {esti , lsti} an assignment of its start time, then sti is 
(currently) consistent and cannot be removed if there exists another task Tj , 
j � B, and an assignment stj � ,j , such that sti and stj satisfy the disjunctive con-
straint i X j :  

 stj � ,j : sti + pi � stj   W   stj + pj � sti .  (16.4.3) 

Of course, if (16.4.3) is satisfied for all pairs (i , j) then 2-b-consistency is es-
tablished. Since ,j = [estj , lstj], this condition can be simplified as follows:  

sti + pi � lstj   W   estj + pj � sti .  (16.4.4) 

Suppose now that 2-b-consistency is not yet established. We will first show 
how to derive a well-known consistency test which removes an inconsistent as-
signment sti = esti through a simple evaluation of (16.4.4). Similar arguments 
lead to a consistency test for removing the assignment sti = lsti . These consisten-
cy tests have been first proposed by Carlier and Pinson [CP89]. Obviously, if 
(16.4.4) is not satisfied for sti = esti then we can remove esti ,  i.e.  

esti + pi > lstj  ^  estj + pj > esti   �   esti = esti + 1. (16.4.5) 

Observe that after adjusting esti , the condition esti + pi > lstj on the left side 
of (16.4.5) is still satisfied. Therefore, we can increase esti as long as estj + pj
 > esti , i.e. until estj + pj � esti . This leads to the improved consistency test  

esti + pi > lstj    �    esti = max{ esti , estj + pj }. (16.4.6) 

Analogously, testing sti = lsti leads to the consistency test  

estj + pj > lsti    �    lsti = min{ lsti , lstj � pi }. (16.4.7) 

Let g2 be the set of consistency tests defined by (16.4.6) and (16.4.7) for all tasks 
Ti � Tj . The next lemma in combination with Theorem 16.2.15 ensures that there 
exists a unique fixed point g2(!), i.e. applying the consistency tests in g2 in an 
arbitrary order until no more updates are possible will always result in the same 
set of current domains. 
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Lemma 16.4.2   

g2 is a set of monotonous consistency tests. 

Proof. For reasons of symmetry, it is sufficient to examine the consistency tests 
given by (16.4.6). Let ! = { [estl , lstl] | l � B }  and !' = { [estl ' , lstl '] | l � B }. If 
! � !', that is, estl ' � estl and lstl � lstl ' for all l � B  then  

esti ' + pi > lstj ' � esti + pi > lstj 

 �
(13.4.6)

 est i
 * = max{ esti , estj + pj } 

 � est i
 * � max{ esti ' , estj ' + pj } 

 � est i
 * � esti   ' 

 * 
As all other earliest and latest start times remain unchanged, estl   ' 

 * � est l
 * and 

lst l
 * � lstl   ' 

 * for all l � B which proves the monotony property.  

Altogether, the following theorem has been proven, see also [Nui94]. 

Theorem 16.4.3   

For all ! � J, g2(!) is 2-b-consistent.   

Example 16.4.4    
Consider the situation that has been depicted in Figure 16.4.1. Since esti + pi
 = 6 > 5 = lstj , we can adjust esti = max{esti , estj + pj} = max{2,3} = 3 accord-
ing to (16.4.6). Note that the current domain of task Tj remains unchanged if 
(16.4.7) is applied.   

g2(!) can be computed by repeatedly testing all pairs i , j � B, i � j, until no more 
updates are possible. We will discuss other algorithms which subsume the tests 
for 2-b-consistency at a later time. As a generalization of the pair test Focacci 
and Nuijten [FN00] have proposed two consistency tests for shop scheduling, 
with sequence dependent setup times between pairs of tasks processed by the 
same disjunctive resource. 

3-b-Consistency 

In order to test for 3-b-consistency, triples of pairwise different tasks have to be 
examined. Again, let Ti , i � B, be a task, and sti � {esti , lsti}. The start time sti is 
(currently) consistent and cannot be removed if there exist j, k � B, such that i, j, 
k are indices of pairwise different tasks, and there exist assignments stj � ,j ,  stk 
� ,k , such that sti , stj , and stk satisfy the disjunctive constraints i X j, i X k, 
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and j X k. Let us first consider this condition for sti = esti :  

 stj� ,j ,  stk � ,k : { ( esti + pi � stj W   stj + pj � esti ) ^ 
( esti + pi � stk W   stk + pk � esti ) ^ 
( stj + pj � stk W   stk + pk � stj ) . 

(16.4.8) 

Again, if (16.4.8) is satisfied for all triples (i , j , k) then 3-b-consistency is estab-
lished. This condition is equivalent to  

 stj� ,j ,  stk � ,k : 

( esti + pi � stj ^   stj + pj � stk ) W 
( esti + pi � stk ^   stk + pk � stj ) W 
( stj + pj � esti ^   esti + pi � stk ) W 
( stk + pk � esti ^   esti + pi � stj )  W 
( stj + pj � stk ^   stk + pk � esti )  W 
( stk + pk � stj ^   stj + pj � esti ) . 

(16.4.9) 

Each line of (16.4.9) represents a permutation of the tasks Ti , Tj , Tk , e.g. the first 
line corresponds to the sequence i �  j � k. Since ,j = [estj , lstj] and ,k = [estk ,
 lstk],  (16.4.9) is equivalent to:  

 stj� ,j ,  stk � ,k : 

( esti + pi � stj ^   stj + pj � lstk ) W (i) 
( esti + pi � stk ^   stk + pk � lstj ) W (ii) 
( estj + pj � esti ^   esti + pi � lstk ) W (iii) 
( estk + pk � esti ^   esti + pi � lstj )  W (iv) 
( estj + pj � stk ^   stk + pk � esti )  W (v) 
( estk + pk � stj ^   stj + pj � esti ) .   (vi) 

  (16.4.10) 

In analogy to the case of establishing 2-b-consistency, we can increase esti := esti
 + 1 if (16.4.10) is not satisfied. However, in spite of the previous simplifica-
tions, testing (16.4.10) still is too costly, since the expression on the right side 
has to be evaluated for all stj � ,j and stk � ,k . In the following lemmas, we 
therefore replace the conditions (i), (ii), (v) and (vi) which either contain stj or stk 
with simpler conditions. 

Lemma 16.4.5  

If ! is 2-b-consistent and the conditions (iii) and (vi) are not satisfied then the 
following equivalence relations hold:  

 stj� ,j ,  stk � ,k : { ( esti + pi � stj ^   stj + pj � lstk ) W (i) 
( esti + pi � stk ^   stk + pk � lstj )  (ii) 

(16.4.11) 
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  esti + pi + pj � lstk   W   esti + pi + pk � lstj (16.4.12) 

  max{ lctj � esti , lctk � esti } �  pi + pj + pk (16.4.13) 

Proof. Let us prove the first equivalence. The direction � is obvious, so only j 
has to be shown. Let (16.4.12) be satisfied. Without loss of generality, we can 
assume that either (a) esti + pi + pj � lstk and esti + pi + pk > lstj , or that (b) lstk � 
lstj if both, esti + pi + pj � lstk and esti + pi + pk � lstj . Studying the two cases esti
 + pi � estj and esti + pi < estj separately, we can show that in both cases there 
exists stj � ,j , such that condition (i) is satisfied. 

Case 1: Let esti + pi � estj . If we can prove that esti + pi � lstj then choosing stj
 := esti + pi is possible, as then stj � [estj , lstj] = ,j , esti + pi � stj and stj + pj
 = esti + pi + pj � lstk . Thus, condition (i) is satisfied. In order to prove esti + pi � 
lstj , we use the assumption that condition (iii) is not satisfied, i.e. that estj + pj >  
esti or esti + pi > lstk . It follows from esti + pi < esti + pi + pj � lstk that the second 
inequality cannot be satisfied, so that actually estj + pj > esti . Thus, indeed, esti
 + pi � lstj , as we have assumed 2-b-consistency (see (16.4.6)). 

Case 2: Let esti + pi � estj . If estj + pj � lstk , setting stj := estj � ,j again satisfies 
condition (i). We now have to show that, in fact, estj + pj � lstk . Again, we will 
use the assumption that 2-b-consistency is established. If estj + pj > lstk then 
(16.4.7) implies lstk � lstj � pk and lstk < lstj . Further, as esti + pi + pj � lstk � lstj
 � pk we can conclude esti + pi + pk � lstj . So both inequalities of (16.4.12) are 
satisfied, but lstk < lstj . This is a contradiction to the assumption (b). 

The second equivalence is easily proven by adding pk and pj , respectively, 
on both sides of inequalities (16.4.12) .  

Lemma 16.4.6   

If ! is 2-b-consistent then the following equivalence relations hold:  

 stj� ,j ,  stk � ,k : { ( estj + pj � stk   ^   stk + pk � esti ) W (v) 
( estk + pk � stj   ^   stj + pj � esti )  (vi) 

 (16.4.14) 


 
esti � max{estj + pj + pk , estk + pk}   W 
esti � max{estk + pk + pj , estj + pj} 

    
(16.4.15) 

  
    esti � max{min {estj , estk} + pj + pk , estj + pj , estk + pk} (16.4.16) 

Proof. We prove the first equivalence. Again, the direction � is obvious, so we 
only have to show j. Let (16.4.15) be satisfied. We assume without loss of gen-
erality that estj � estk . This implies max{ estk + pk + pj , estj + pj } � estk + pk + pj
 � max{ estj + pj + pk , estk + pk }, so that esti � max{ estj + pj + pk , estk + pk } (*).  
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Case 1: Let estj + pj � estk . If estj + pj > lstk then the 2-b-consistency (16.4.6) 
implies estj � estk + pk and estj � estk which is a contradiction, so that actually estj
 + pj < lstk . We can set stk := estj + pj � [estk , lstk] = ,k , and condition (v) is satis-
fied due to (*). 
Case 2: Let estj + pj < estk . Choosing stk := estk � ,k again satisfies condition (v) 
due to (*). A standard proof verifies the second equivalence.  

Given that 2-b-consistency is established, we can therefore replace (16.4.10) 
with the following equivalent and much simpler condition which can be tested in 
constant time:  

(max{lctj � esti , lctk � esti} � pi + pj + pk)   W   (i + ii) 
(estj + pj � esti   ^  esti + pi � lstk)   W     (iii) 
(estk + pk � esti   ^  esti + pi � lstj)   W     (iv) 
(esti � max{min{estj , estk} + pj + pk , estj + pj , estk + pk}) . (v + vi) 

(16.4.17) 

Resuming our previous thoughts, we can increase esti := esti + 1 if  (16.4.17) is 
not satisfied. Observe that if (i + ii) is not satisfied before increasing esti then it is 
not satisfied after increasing  esti . Therefore, we can proceed as follows: first, 
test whether (i + ii) holds. If this is not the case then increase esti until one of the 
conditions (iii), (iv) or (v + vi) is satisfied. Fortunately, this incremental process 
can be accelerated by defining appropriate time bound adjustments. 

Deriving the correct time bound adjustments requires a rather lengthy and 
painstaking analysis which is provided in Section 16.6 (Appendix). At the mo-
ment, we will only present an intuitive development of the results which avoids 
the distraction of the technical details.  

Two cases have to be distinguished. In the first case, increasing esti will 
never satisfy conditions (i + ii), (iii) and (iv). This can be interpreted as the situa-
tion in which Ti can neither be processed at the first, nor at the second position, 
but must be processed after Tj and Tk. We then have to increase esti until condi-
tion (v + vi) is satisfied. Notice that this is always possible by choosing esti suffi-
ciently large, i.e. by setting  

esti := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . 

However, it is possible to show that the seemingly weaker adjustment  

esti := max{esti , min{estj , estk} + pj + pk}  

is sufficient if it is combined with the tests for establishing 2-b-consistency or, 
more precisely, if after the application of this adjustment the 2-b-consistency 
tests are again applied. This leads to the following two consistency tests:  
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max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} < pi + pj + pk 

�   esti := max{esti , min{estj , estk} + pj + pk}, 
(16.4.18) 

esti + pi > max{lstj , lstk}    
�   esti := max{esti , min{estj , estk} + pj + pk} . 

(16.4.19) 

It is both important to establish 2-b-consistency prior and after the application of 
these consistency tests, since the application of the latter test can lead to a 2-b-
inconsistent state. 

A generalization of these tests will be later described under the name in-
put/output consistency tests. Trivial though it may seem, it should nevertheless 
be mentioned that the consistency tests (16.4.18) and (16.4.19) are not equiva-
lent. Furthermore, observe that if the left side of (16.4.19) is satisfied then the 
consistency tests for pairs of tasks (16.4.6) can be applied to both (i , j) and (i , k), 
but may lead to weaker domain adjustments. We will give some examples which 
confirm these assertions. 

Example 16.4.7   
Consider the example depicted in Figure 16.4.2. Since  

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} = 9 < 10 =  pi + pj + pk , 

we can adjust esti := max{esti , min{estj , estk} + pj + pk} = max{3,7} = 7 accord-
ing to (16.4.18). By comparison, no deductions are possible using (16.4.19), as 
esti + pi = 6 < 7 = max{lstj , lstk}.   

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

10 11 12
xx

9 10 11

Tk 2 3 4 5 6 7 8 9

xx
3

 
Figure 16.4.2   Consistency test (16.4.18). 

Example 16.4.8  
In Figure 16.4.3 another example is shown. Here, the consistency test (16.4.18) 
fails, as  

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} = 9 = pi + pj + pk . 

The consistency test for pairs of tasks described in (16.4.6) can be applied to (i , j)  
and (i , k), but leaves estj unchanged, since estj + pj = estk + pk = 3 < 4 = esti . On-
ly the consistency test (16.4.19) correctly adjusts esti := max{esti , min{estj , estk} 
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+ pj + pk} = max{4,6} = 6.   

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

10 11 12
xx

9

Tk 10 2 3 4 5 6 7 8 9  
Figure 16.4.3   Consistency test (16.4.19). 

Let us now turn to the second case in which the condition (i + ii) is not satisfia-
ble, but increasing esti will eventually satisfy (iii) or (iv). This can be interpreted 
as the situation in which Ti cannot be processed first, but either j � i � k or 
k � i � j are feasible. The corresponding consistency test is as follows:  

max
v�{j,k}

{lctv � esti} < pi + pj + pk 

�   esti := max{esti , min{ectj , ectk}}. 
(16.4.20) 

A generalization of this test will be later described under the name input/output 
negation consistency test. 

Example 16.4.9   
Consider the example of Figure 16.4.4. No domain reductions are possible using 
the consistency tests (16.4.18) and (16.4.19). Since, however, maxv�{j,k}{lctv
 � esti} = 7 < 9 = pi + pj + pk , we can adjust esti := max{esti , min{ectj , ectk}} = 
max{2, 3} = 3 using the consistency test (16.4.20).  

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

3
x

9

Tk 1 2 3 4 5 6 7 8 9

2

 
Figure 16.4.4   Consistency test (16.4.20).   

The adjustments of the latest start times can be handled symmetrically. The same 
line of argumentation allows us to derive the following three consistency tests: 

max
u�{j,k}, v�{i,j,k}, u�v

{lctv � estu} < pi + pj + pk 

�   lsti := min{lsti , max{lctj , lctk} � pj � pk � pi}, 
(16.4.21) 

min{estj + pj , estk + pk} > lsti (16.4.22) 
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�   lsti := min{lsti , max{lctj , lctk} � pj � pk � pi}, 

max
u�{j,k}

{lcti � estu} < pi + pj + pk 

�   lsti := min{lsti , max{lstj , lstk} � pi}. 
(16.4.23) 

Let g3 be the set of consistency tests defined in (16.4.18)-(16.4.23) for all pair-
wise different triples of tasks with indices i, j, k � B, and let g2,3 := g2 � g3 . It 
can be shown that all consistency tests in g2,3 are monotonous, so g2,3(!) is well 
defined. We have proven the following theorem. 

Theorem 16.4.10   

For all ! � J, g2,3(!) is strongly 3-b-consistent.     

Notice that g3(g2(!)) does not have to be strongly 3-b-consistent, since the ap-
plication of some of the consistency tests in g3 can result in current domains 
which are not 2-b-consistent. So, indeed, the consistency tests in g2 and g3 have 
to be applied in alternation. 

Obviously, g2,3(!) can be computed by repeatedly testing all pairwise dif-
ferent pairs and triples of tasks. However, as will be seen in the following sec-
tions, there exist more efficient algorithms. 

16.4.4 Input/Output Consistency Tests 

In the last section, domain consistency tests for pairs and triples of tasks have 
been described. It suggests itself to derive domain consistency tests for a greater 
number of tasks through a systematic evaluation of a greater number of disjunc-
tive constraints. For the sake of simplicity, we will refrain from this rather tech-
nical approach and follow the historical courses which finally leads to the defini-
tion of these powerful consistency tests. Note, however, that we must not expect 
that the consistency tests derived will establish some higher level of bound-
consistency, since great store has been set on an efficient implementation. 

At first, we will present generalizations of the consistency tests (16.4.18) 
and (16.4.19). A closer look at these tests reveals that not only domain reduc-
tions but also processing orders of tasks can be deduced. It is convenient to first 
introduce these sequence consistency tests so as to simplify the subsequent 
proofs. 

Sequence Consistency Tests  

Given a subset of task indices A �/  B and an additional task Ti , i 	 A, Carlier and 
Pinson [CP89] were the first to derive conditions which imply that Ti has to be 
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processed  before or  after all tasks Tj , j � A. In the first case, they called i the  
input of A, in the second case, the  output of A, and so the name  input/output 
conditions seems justified. 

Theorem 16.4.11  (Input/Output Sequence Consistency Tests).  

Let A �/  B and i 	 A. If the input condition  

max
u�A, v�A�{i}, u�v

{lctv � estu < p(A � {i})  (16.4.24) 

is satisfied then task Ti has to be processed before all tasks in A, for short, i � A. 
Likewise, if the output condition  

max
u�A�{i}, v�A, u�v

{lctv � estu} < p(A � {i})  (16.4.25) 

is satisfied then task Ti has to be processed after all tasks in A, for short, A � i. 

Proof. If Ti is not processed before all tasks in A then the maximal amount of 
time for processing all tasks in A � {i} is bounded by maxu�A, v�A�{i}, u�v {lctv � 
estu}. This leads to a contradiction if (16.4.24) is satisfied. Analogously, the sec-
ond assertion can be shown.           

The original definition of Carlier and Pinson is slightly weaker. It replaces the 
input condition with  

LCTmax( A � {i}) � ESTmin(A) < p(A � {i}).  (16.4.26) 

Likewise, the output condition is replaced with  

LCTmax(A) � ESTmin( A � {i}) < p(A � {i}).  (16.4.27) 

We will term these conditions the modified input/output conditions.. There are 
situations in which only the input/output conditions in their stricter form lead to a 
domain reduction. For a discussion of the computational complexity of algo-
rithms that implement these tests see the end of Section 16.4. 

Example 16.4.12     
In Example 16.4.7 (see Figure 16.4.2), we have seen that  

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} = 9 < 10 =  pi + pj + pk , 

so that the output  (16.4.25) implies {j , k} � i. By comparison, the modified 
output condition is not satisfied since  

LCTmax({ j , k }) � ESTmin({ i , j , k}) = lctj � estj = 11 > 10 = pi + pj + pk .  
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Domain Consistency Tests  

Domain consistency tests that are based on the input/output conditions can now 
be simply derived. Here and later, we will only examine the adjustment of the 
earliest start times, since the adjustment of the latest start times can be handled 
analogously. Clearly, if i is the output of a subset A then Ti cannot start before all 
tasks of A have finished. Therefore, the earliest start time of Ti is at least 
Cmax(p,(A)), i.e. the makespan if all tasks in A are scheduled without preemption. 
Unfortunately, however, determining Cmax(p,(A)) requires the solution of the 
NP-hard single-machine scheduling problem [GJ79]. Thus, if the current do-
mains are to be updated efficiently, we have to content ourselves with approxi-
mations of this bound. Some of these approximations are proposed in the next 
theorem which is a generalization of the consistency test (16.4.19) derived in the 
last subsection. This theorem is mainly due to Carlier and Pinson [CP90], 
Nuijten [Nui94], Caseau and Laburthe [CL95] and Martin and Shmoys [MS96]. 
The proof is obvious and is omitted. 

Theorem 16.4.13  (output domain consistency tests, part 1).  

If the output condition is satisfied for A �/  B and i 	 A then the earliest start time 
of Ti can be adjusted to esti := max{esti , LBh(A)}, h � {1 , 2 , 3 , 4}, where 

     (i)  LB1(A) := maxu�A{ ectu},  

     (ii)  LB2(A) := ESTmin(A) + p(A),  

     (iii)  LB3(A) := Cmax(p,  
 pr(A)),  

     (iv)  LB4(A) := Cmax(p,(A)) .   

Dominance Relations  

Let us compare the domain reductions that are induced by the output domain 
consistency tests and the different bounds. For each h � {1 , 2 , 3 , 4}, we denote 
with gout (h) := { "A,i

 (h) | A �/  B, i 	 A } the set of output domain consistency tests 
defined in  Theorem 16.4.13:  

"A,i
 (h) := max

u�A�{i}, v�A, u�v
{lctv � estu} < p(A � {i}) � esti := max{esti , LBh(A)}. 

Lemma 16.4.14    
The following dominance relations hold: 

1.  gout(1) ≺= gout(3) ≺= gout(4) ,   
2.  gout(2) ≺= gout(3) ≺= gout(4) .  
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Proof. As LB3(A) � LB4(A), the relation "A,i
 (4)(!) � "A,i

 (3)(!) holds for all A �/  B, 
i 	 A and ! � J.  Theorem 16.2.18 then implies that gout(3) ≺= gout(4). Further, 
Carlier [Car82] has shown the following identity for the preemptive bound:  

LB3(A) = max
��V�A

{ESTmin(V) + p(V) }.  (16.4.28) 

Since the maximum expression in (16.4.28) considers all single-elemented sets 
and A itself, LB1(A) � LB3(A) and LB2(A) � LB3(A). Again, using Theorem 
16.2.18, we can conclude that gout(1) ≺= gout(3) and gout(2) ≺= gout(3).  

Intuitively, it seems natural to assume that gout(1) is strictly dominated by 
gout(3), while gout(3) is strictly dominated by gout(4). Indeed, this is true. Re-
member that, since gout(1) ≺= gout(3) has already been shown, we only have to 
find an example in which gout(3) leads to a stronger domain reduction than 
gout(1) in order to verify gout(1) ≺ gout(3). The same naturally holds for gout(3) 
and gout(4). 

Example 16.4.15    
Consider the situation illustrated in Figure 16.4.5 with five tasks with indices i, j, 
k, l, m. The table in Figure 16.4.5 lists all feasible sequences and the associated 
schedules. Examining the start times of the feasible schedules shows that the 
domains ,j , ,k , ,l , ,m cannot be reduced. Likewise, it can be seen that i is the 
output of A = {j , k , l , m} with the earliest start time being LB4(A) = 10. In fact, 
the output condition holds, as 

max
u�A�{i}, v�A, u�v

{lctv � estu} = 10 < 11 = p(A � {i}) , 

so that we can adjust esti using one of the bounds of Theorem 16.4.13. Apart 
from LB4(A) = 10, it is possible to show that LB1(A) = 7, LB2(A) = 9 and LB3(A)
 = 9. Obviously, LB1(A) < LB3(A) < LB4(A) = 10. Notice that, after the adjust-
ment of esti , no other adjustments are possible if the same lower bound is used 
again, so that a fixed point is reached. This confirms the conjecture gout(1) ≺ gout
(3) ≺ gout(4).  

It remains to classify gout(2). Comparing LB1(A) and LB2(A) shows that all three 
cases LB1(A) < LB2(A), LB1(A) = LB2(A) and LB1(A) > LB2(A) can occur. Further, 
comparing LB2(A) and LB3(A) reveals that LB2(A) � LB3(A) and sometimes LB2
(A) < LB3(A). So we would presume that gout(1) and gout(2) are not comparable, 
while gout(2) is strictly dominated by gout(3). This time, however, our intuition 
fails, since in fact gout(2) and gout(3) are equivalent.  
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Ti

10 2 3 4

4 5 6 7 8 9

Tj

3
x

Tk 1 2 3 4 5 6 7 8 9

210

3 4 5 6 7 8
Tl

9

Tm 5 6 7 8

10 11 12

10

10

0

x x x x xx x x x

 

sequence    sti stj stk stl stm 
j � k � m � l � i  10 0 2 7 5 
j � l � m � k � i  10 0 8 3 6 
k � j � m � l � i  10 2 0 7 5 

Figure 16.4.5   Comparing gout(1), gout(3) and gout(4).   

Theorem 16.4.16  (dominance relations for output consistency tests). [DPP00] 

gout(1) ≺ gout(2) ~ gout(3) ≺ gout(4).     

Proof. We only have to prove gout(3) ≺= gout(2). It is sufficient to show that for all 
A �/  B, i 	 A and all ! � J, one of the following cases applies: 

(1)   "A,i
 (3)(!) = "A,i

 (2)(!) ,  

(2)    V �/  A :  "A,i
 (3)(!) = "V,i

 (2)("A,i
 (2)(!)) .  

Once more, Theorem 16.2.18 will then lead to the desired result. Let us assume 
that the output condition (16.4.25) is satisfied for some A �/  B and i 	 A. We 
have to compare the bounds: 

(i)  LB2(A) = ESTmin(A) + p(A) , 

(ii)  LB3(A) = max��V�A{ESTmin(V) + p(V)} , 

If LB2(A) = LB3(A) then "A,i
 (2) and "A,i

 (3) deduce the same domain reductions and 
case (1) applies. Let us therefore assume that LB2(A) < LB3(A). Since the 
preemptive bound is determined by (16.4.28) , there exists V - A, V � �, such 
that LB3(A) = ESTmin(V) + p(V). Since LB2(A) < LB3(A), this is equivalent to  

ESTmin(A) + p(A) < ESTmin(V) + p(V) .  (16.4.29) 

Subtracting p(V) from both sides yields  

ESTmin(A) + p(A � V) < ESTmin(V)    (16.4.30) 
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The last inequality will be used at a later time. Assume now that esti has been 
adjusted by applying "A,i

 (2)
 . Note that this means that esti is increased or remains 

unchanged. Thus, if the output condition is satisfied for the couple (A , i)  prior 
the adjustment of esti then it is satisfied  after the adjustment, so that  

max 
u�A�{i},v�A,u�v

{lctv � estu
 *} < p(A � {i})  (16.4.31) 

still holds for est i
 * := max{esti , LB2(A)} and estu

 * = estu for all u � i. If we do not 
maximize over all but only a subset of values then we obtain a lower bound of 
the left side of this inequality and  

max 
u�A,v�V,u�v

{lctv � estu
 *} < p(A � {i}) .  (16.4.32) 

Rewriting p(A � {i}) = p(V � {i}) + p(A � V) then leads to  

max 
u�A,v�V,u�v

{lctv � (estu
 * + p(A � V)} < p(A � {i}) . (16.4.33) 

The left side of (16.4.33) can be simplified using the identity   

max 
u�A,v�V,u�v

{lctv � (estu
 * + p(A � V))}  

= max 
v�V

{lctv � (ESTmin
 *  (A) + p(A � V))}. (16.4.34) 

This is not apparent at once and requires some explanations. At first, the 
term on the left side of (16.4.34) seems to be less than or equal to the term on the 
right side, since ESTmin

 *  (A) � estu
 * for all u � A. We now choose u' � A such that 

estu'
 *  = ESTmin

 *  (A). If u' � V - A then ESTmin
 *  (V) = ESTmin

 *  (A). Since the earliest 
start times of all tasks with indices in A did not change, this is a contradiction to 
(16.4.30). Thus, the left side of (16.4.34) assumes the maximal value for u = 
u' 	 V , and both terms are indeed identical. Therefore, (16.4.33) is equivalent to  

max 
v�V

{lctv � (ESTmin
 *  (A) + p(A � V))} < p(V � {i}). (16.4.35) 

The left side of (16.4.35) can be approximated using (16.4.30) which tells us that 
for all u � V :  

estu
 * > ESTmin

 *  (A) + p(A � V)  (16.4.36) 

Likewise, we can deduce  

est i
 * � LB2(A) = ESTmin

 *  (A) + p(A) > ESTmin
 *  (A) + p(A � V) . (16.4.37) 

So, ESTmin
 *  (A) + p(A � V) in (16.4.35) can be replaced by estu

 * for all u � V � {i} 
which yields  

max 
u�V�{i},v�V,u�v

{lctv � estu
 *} < p(V � {i})  (16.4.38) 

Observe that this is nothing but the output condition for the couple (V , i). 
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Since LB2(V) = ESTmin
 *  (V) + p(V) = LB3(A), a subsequent application of "V,i

 (2) leads 
to the same domain reduction and the second case (2) applies. This completes 
our proof.   

Sequence Consistency Tests Revisited  

It has already been mentioned that applying both sequence and domain con-
sistency tests together can lead to better search space reductions. Quite evidently, 
any domain reductions deduced by Theorem 16.4.13 can lead to additional edge 
orientations deduced by Theorem 16.4.11. We will now discuss the case in 
which the inverse is also true. 

Imagine a situation in which A � i can be deduced for a subset of tasks, but 
in which the output condition does not hold for the couple (A , i). Such a situation 
can actually occur as has, for instance, been shown in Example 16.4.8 for the 
three tasks Ti , Tj , Tk : while j � i and k � i can be separately deduced without, 
however, implying a domain reduction, the output condition fails for the couple 
({j , k} , i). This motivates the following obvious theorem as an extension of Theo-
rem 16.4.13. 

Theorem 16.4.17  (Input/Output Domain Consistency Tests, part 2).  

Let A �/  B and i 	 A. If A � i then the earliest start time of task Ti can be adjust-
ed to esti := max{esti, LBh(A)}, h � {1 , 2 , 3 , 4}.  

Algorithms and Implementation Issues  

An important question to answer now is whether there exist efficient algorithms 
that implement the input/output consistency tests. There are two obstacles which 
have to be overcome: the computation of the domain adjustments and the detec-
tion of the couples (A , i) which satisfy the input/output conditions. 

Regarding the former, computing the non-preemptive bound is ruled out due 
to the NP-hardness result. At the other extreme, the “earliest completion time 
bound'' (LB1) is a too weak approximation. Therefore, only the “sum bound'' 
(LB2) or the preemptive bound (LB3) remain candidates for the domain adjust-
ments. Recall that both bounds are equivalent with respect to the induced !-
fixed-point. Regarding the computational complexity, however, the two bounds 
are quite different: on the one hand, computing LB2 requires linear time com-
plexity O(|A |) in contrast to the O(|A | log |A |) time complexity for computing 
LB3 . On the other hand, establishing the !-fixed-point, LB2 usually has to be 
computed more often than LB3 , and it is not clear which factor - complexity of 
bound computation or number of iterations - dominates the other. 

Let us turn to the second problem. An efficient implementation of the in-
put/output consistency tests is obviously not possible if all pairs (A , i) of subsets 
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A �
/
 B and tasks Ti , i 	 A are to be tested separately. Fortunately, it is not neces-

sary to do so as has been first shown by Carlier and Pinson [CP90]. They devel-
oped an O(n2) algorithm (with n = | B |) which deduces all edge orientations and 
all domain reductions that are implied by the modified input/output conditions 
and the preemptive bound adjustment3. The fundamental idea was to test the 
modified input/output conditions and to compute the preemptive bound adjust-
ments simultaneously. Several years later, Carlier and Pinson [CP94] and Bruck-
er et al.  [BJK94] presented O(n log n) algorithms which until now have the best 
asymptotic performance, but require quite complex data structures. 

Nuijten [Nui94], Caseau and Laburthe [CL95] and Martin and Shmoys 
[MS96] have chosen a solely domain oriented approach and proposed different 
algorithms for implementing Theorem 16.4.13 based again on the modified in-
put/output conditions. Nuijten developed an O(n2) algorithm which as well can 
be applied to scheduling problems with discrete resource capacity. Caseau and 
Laburthe presented an O(n3) algorithm based on the concept of task sets which 
works in an incremental fashion, so that O(n3) is a seldom worst case. The algo-
rithm introduced by Martin and Shmoys [MS96] has a time complexity of O(n2). 

An O(n3) algorithm which deduces all edge orientations implied by Theorem 
16.4.11 has been derived by Phan Huy [Pha00]. He also presents an O(n2

 log n) 
for deriving all domain adjustments implied by Theorem 16.4.17. 

16.4.5 Input/Output Negation Consistency Tests 

In the last subsection, conditions have been described which imply that a task 
has to be processed before (after) another set of tasks. In this subsection, the in-
verse situation that a task cannot be processed first (last) is studied. 

Sequence Consistency Tests  

The following theorem is due to Carlier and Pinson [CP89]. For reasons near at 
hand, we have chosen the name input/output negation for the conditions de-
scribed in this theorem. 

Theorem 16.4.18  (Input/Output Negation Sequence Consistency Tests).  

Let A �/  B and i 	 A. If the input negation condition  

                                                 
3 It is common practice to only report the time complexity for applying all consistency tests 

once. In general, the number of iterations necessary for computing the ∆-fixed-point has to 
be considered as well. In the worst case, this accounts for an additional factor c which de-
pends upon the size of the current domains. In practice, however, c is a rather small con-
stant. 
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LCTmax(A) � esti < p(A � {i})  (16.4.39) 

is satisfied then task Ti cannot be processed before all tasks Tj , j � A. Likewise, 
if the output negation condition   

lcti � ESTmin(A) < p(A � {i})  (16.4.40) 

is satisfied then task Ti cannot be processed after all other tasks Tj , j � A. 

Proof. If Ti is processed before Tj , j � A then all tasks with indices in A have to 
be processed within the time interval [esti , LCTmax(A)). This leads to a contradic-
tion if (16.4.39) is satisfied. The second assertion can be shown analogously.  

The input/output negation conditions are a relaxation of the input/output condi-
tions and so are more often satisfied. However, the conclusions drawn in Theo-
rem 16.4.18 are usually weaker than those drawn in Theorem 16.4.11, except for 
A contains a single task4. An important issue is therefore the development of 
strong domain reduction rules based on the limited information deduced. 

Domain Consistency Tests  

We will only study the input negation condition and the adjustments of earliest 
start times. Let us suppose that (16.4.39) is satisfied for A �/  B and i 	 A. Since, 
then, Ti cannot be processed before all tasks Tj , j � A, there must be a task in A 
which starts and finishes before Ti , although we generally do not know which 
one. Thus, a lower bound of the earliest start time of Ti is  

LB5(A , i) = min
u�A

{ectu}  (16.4.41) 

Caseau and Laburthe [CL95] made the following observation: if Ti cannot be 
processed first then, in any feasible schedule, there must exist a subset 
� � V � A, so that V � i � A � V. As a necessary condition, this subset V has to 
satisfy  

LCTmax((A � V) � {i}) � ESTmin(V) � p(A � {i}) . (16.4.42) 

Consequently, they proposed  

LB6(A , i) = min 
��V�A

{ LB2(V) | V satisifies (16.4.42) } (16.4.43) 

as a lower bound for the earliest start time of Ti . Notice, however, that if V satis-
fies (16.4.42) then the one-elemented set V' := {u} � V with estu = ESTmin(V) 
satisfies (16.4.42) as well. Further, LB2(V) = ESTmin(V) + p(V) = estu + p(V) 
                                                 
4 In this case, the input/output negation sequence consistency test coincides with the in-

put/output sequence consistency test for pairs of operations. 
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� estu + pu = LB2(V'), so that the expression in (16.4.43) is minimal for a one-
element set. Therefore, setting Au := (A � {u}) � {i} we can rewrite 

 LB6(A , i) = min
u�A

{ ectu | LCTmax(Au) � estu � p(Au � {u}} (16.4.44) 

This bound has a quite simple interpretation: the minimal earliest completion 
time is only chosen among all tasks which do not satisfy the input negation con-
dition, because those who do, cannot start at the first position. 

Up to now, esti has been adjusted to the earliest completion time of some 
single task. The time bound adjustment can be improved if a condition is derived 
that detects a situation in which more than one task have to be processed before 
Ti . Observe that if for a subset � � V � A the sequence V � i � A � V  is feasi-
ble then the following condition must hold:  

LCTmax((A � V) � {i}) � esti � p((A � V) � {i}) . (16.4.45) 

This implies the lower bounds on the earliest start time:   

LB7(A , i) := min
��V�A

{ LB2(V) | V satisfies (16.4.45)} (16.4.46) 

LB8(A , i) := min
��V�A

{ LB3(V) | V satisfies (16.4.45)} (16.4.47) 

Finally, we can try to find the exact earliest start time of task Ti by computing  

LB9(A , i) := min
��V�A

{ LB4(V) | V � i � A � V is feasible} . (16.4.48) 

The following theorem which is a generalization of the consistency test 
(16.4.20) summarizes the results derived above. 

Theorem 16.4.19   (Input/Output Negation Domain Consistency Tests).  

If the input negation condition is satisfied for A �/  B and i 	 A then the earliest 
start time of task Ti can be adjusted to esti := max{esti , LBh(A , i)}, h � {5 , 6 , 7 ,  

8 , 9}.  

Dominance Relations  

For h � {5 , 6 , 7 , 8 , 9}, let g¬in(h) := { "A,i
 (h) | A �/  B, i 	 A} denote the set of input 

negation domain consistency tests defined in Theorem 16.4.19:  

"A,i
 (h) : LCTmax(A) � esti < p(A � {i})  �  esti := max{esti , LBh(A , i)} .  

Lemma 16.4.20    
The following dominance relations hold: 
    1. g¬in(5) ≺= g¬in(6) ≺= g¬in(9), 
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    2. g¬in(5) ≺= g¬in(7) ≺= g¬in(8) ≺= g¬in(9). 

Lemma 16.4.21    

g¬in(5) ~ g¬in(6). 

Proof. We only have to prove that g¬in(6) ≺= g¬in(5). It is sufficient to show that 
for all A �/  B, i 	 A and ! � J, there exist A1

 ,...,  Ar �/  B such that   

("Ar,i
 (5) h...h "A1,i

 (5))(!) � "A,i
 (6)(!)   (16.4.49) 

For the sake of simplicity, we omit an exact proof but only describe the basic 
ideas. Let U � A denote the index set of tasks satisfying the input negation condi-
tion, i.e. U := { u � A | LCTmax(Au) � estu < p(Au � {u})} with Au := (A � {u}) � 
{i}. 

Recall that   

(i) LB5(A , i) = min
u�A

{ectu} , 

(ii) LB6(A , i) = min
u�A�U

{ ectu} . 

If both bounds are identical then, obviously, "A,i
 (6)(!) = "A,i

 (5)(!). This identity, for 
instance, holds if U is empty. Thus, in the following, we restrict our attention to 
the case | U | > 0. If u � A is a task satisfying ectu = LB5(A , i) < LB6(A , i) then 
u � U  and   

estu + p(Au � {u}) = ectu + p(Au) > LCTmax(Au) .  

If the earliest start time of Ti has been adjusted to est i
 * := max{esti, LB5(A , i)} by 

applying "A,i
 (5) then we have est i

 * � ectu , so  

est i
 * + p(Au) > LCTmax(Au) � LCTmax(Au � {i}) 

or  
est i

 * + p((A � {u}) � {i}) > LCTmax(A � {u}) 

which is the input negation condition for the couple (A � {u} , i). Therefore, est i
 * 

can be adjusted once more to LB5(A � {u}, i). If LB5(A � {u}, i) = LB6(A � {u}, i) 
then we are done, since LB6(A � {u}, i) � LB6(A, i). Otherwise, we are in the 
same situation as above which allows us to continue in the same manner. Finally, 
observe that the number of adjustments is finite and bounded by | A |.  

Example 16.4.22    
Consider the example shown in Figure 16.4.6 with four tasks indexed as i, j, k, l. 
A closer look at the set of feasible schedules reveals that ,j , ,k and ,l cannot be 
reduced. Likewise, it can be seen that i cannot be the input of A = {j , k , l} which 



652 16  Constraint Programming and Disjunctive Scheduling 

is detected by the input negation condition, since LCTmax(A) � esti = 11 –
5 < 11 = p(A � {i}). Using LB5 , no time bound adjustment is possible, since LB5
(A , i) = 3. However, there exists no feasible schedule in which only one task is 
processed before Ti . Indeed, LB7(A , i) = 6 leads to a stronger time bound adjust-
ment. After the domain reduction, a fixed point is reached, so this example and 
Lemma 16.4.20 prove that g¬in(5) ≺ g¬in(7).    

Ti

10 2 3 4

5 6 7 8 9

Tj

Tk 2 3 4 5 6 7 8 9

5 6 7 8
Tl

9

10 11 12

10

10

x
13

5 6 7 8 9 10 11

11

11  

sequence sti stj stk stl 
j � k � i � l 6 0 3 8 
j � k � l � i 9 0 3 6 
j � l � k � i 11 0 8 5 
k � j � l � i 11 5 2 8 
k � l � j � i  11 8 2 5 

Figure 16.4.6   Comparing g¬in(5) and g¬in(7). 

Lemma 16.4.23    

g¬in(7) ~ g¬in(8) . 

Proof. Similar to Theorem 16.4.16.   

Example 16.4.24    
Consider the situation in Figure 16.4.7 with five tasks indexed as i, j, k, l, m. 
Again, ,j, ,k, ,l and ,m cannot be reduced. Further, it can be seen that i is the 
output of A = {j , k , l , m} with the earliest start time being LB9(A , i) = 9. However, 
the output condition is not satisfied for the couple (A , i). The input negation con-
dition holds, since LCTmax(A) – esti = 11 – 1 < 11 = p(A � {i}), but LBh(A , i) = 1 
for all h � {5 , 6 , 7 , 8). Thus, the current domain of Ti remains unchanged if these 
bound adjustments are applied, i.e. a fixed point is reached. This and Lemma 
16.4.20 prove the relation g¬in(8) ≺ g¬in(9).   
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Ti

10 2

4 5 6 7 8 9

Tj

3
x

Tk 1 2 3 4 5 6 7 8 9

21

3 4 5 6 7 8
Tl

9

Tm 5 6 7

10 11 12

10

x x x xx x x
13

4 5 6 7 8 93 10 11

11

2

4  

sequence sti stj stk stl stm 
j � k � m � l � i 9 0 1 6 4 
j � l � m � k � i 10 0 7 2 5 
k � m � l � j � i 10 9 1 6 4 
l � m � j � k � i 11 7 8 2 5 
l � m � k � j � i 11 10 7 2 5 

Figure 16.4.7   Comparing g¬in(8) and g¬in(9).   

Altogether, we have proven the following theorem. 

Theorem 16.4.25   (dominance relations for input negation consistency tests).  

g¬in(5) ~ g¬in(6) ≺ g¬in(7) ~ g¬in(8) ≺ g¬in(9) .  

Algorithms and Implementation Issues  

Input negation consistency tests which use the “simple earliest completion time 
bound'' (LB5) as time bound adjustment and their output negation counterparts 
have been applied by Nuijten [Nui94], Baptiste and Le Pape [BL95] and Caseau 
and Laburthe [CL95]. Caseau and Laburthe have integrated the tests in their 
scheduling environment based on task sets in a straightforward manner which 
yields an algorithm with time complexity O(n3). All these algorithms only test 
some, but not all interesting couples (A , i). An algorithm which deduces all do-
main reductions with time complexity O(n2) has only been developed by Baptiste 
and Le Pape [BL96]. A similar implementation is proposed by Phan Huy in 
[Pha00]. Nuijten and Le Pape [NL98] derived several consistency tests which are 
similar to the input/output negation consistency tests with the time bound ad-
justment LB8 and can be implemented with time complexity O(n2 log n) and 
O(n3) respectively. 
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16.4.6 Input-or-Output Consistency Tests 

In this subsection, some new consistency tests are presented which are not sub-
sumed by the consistency tests presented in the previous subsections. They are 
based on the input-or-output conditions which have been introduced by Dorndorf 
et al.  [DPP99]. 

Domain and Sequence Consistency Tests  

The input-or-output conditions detect situations in which either (a) a task Ti has 
to be processed first or (b) a task Tj has to be processed last within a set of tasks. 
There exists a sequence and a domain oriented consistency test based on the in-
put-or-output condition. Both tests are summarized in the next theorem. 

Theorem 16.4.26   (input-or-output consistency tests).  

Let A �/  B and i, j 	 A. If the input-or-output condition  

max 
u�A�{j},v�A�{i},u�v

{lctv � estu} < p(A � {i , j}) (16.4.50) 

is satisfied then either task Ti has to be processed first or task Tj has to be pro-
cessed last within A � {i , j}. If i � j then task Ti has to be processed before Tj 
and the domains of Ti and Tj can be adjusted as follows:  

estj := max{estj , esti + pi} , 

lstj := min{lsti , lstj � pi} . 

Proof. If Ti is neither processed before, nor Tj processed after all other tasks in 
A � {i , j} then all tasks in A � {i , j} have to be processed within a time interval 
of maximal size  

max 
u�A�{j},v�A�{i},u�v

{lctv � estu}. 

This is a contradiction to (16.4.50). 
 Now, since Ti has to be processed first or Tj processed last within A � {i , j}, 

we can deduce that Ti has to be processed before Tj if i � j. This immediately 
implies the domain deductions described above.   

By substituting  (16.4.50) with  

LCTmax((A � {i}) � ESTmin(A � {j}) < p(A � {i , j}) , (16.4.51) 

we obtain the modified input-or-output conditions which can be tested more easi-
ly, but are less often satisfied than the input-or-output conditions. 
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Example 16.4.27    
In Figure 16.4.8 an example for the application of the input-or-output consisten-
cy tests with four tasks indexed as i, j, k, l is shown. 
Since  

max 
u�{j,k,l},v�{i,k,l},u�v

{lctv � estu} = 6 < 7 = p({i , j , k , l}) 

we can conclude that Ti has to be processed before Tj . Thus, we can adjust estj := 
4 and lsti := 4.   

Ti

3 4

5 6 7 8

Tj

Tk
2 3 4 5 6 7 8

Tl

x

5 6 7 8 9

1 2 3 4

2 3 4 5 6 7 8

x

 
Figure 16.4.8   The input-or-output consistency test.  

Algorithms and Implementation Issues  

Deweß [Dew92] and Brucker et al. [BJK94] discuss conditions which examine 
all permutations of a fixed length r and which are thus called r-set conditions. 
Brucker et  al.  [BJK94] developed an O(n2) algorithm for testing all 3-set condi-
tions which is equivalent to testing all input-or-output conditions for triples of 
tasks. Phan Huy [Pha00] developed an O(n3) algorithm for deriving all edge ori-
entations implied by the modified input-or-output conditions. This algorithm can 
be generalized to an O(n4) algorithm which deduces all edge orientations implied 
by the input-or-output conditions. 

16.4.7 Energetic Reasoning 

The conditions described in the previous subsections for testing consistency were 
all founded on the principle of comparing a time interval in which a set of tasks 
A has to be processed with the total processing time p(A) of these tasks. The time 
intervals chosen were defined through the earliest start and latest completion 
times of some of the tasks. This fundamental principle can be generalized by 
considering arbitrary time intervals [t1 , t2), on the one hand, and replacing simple 
processing time p(A) with interval processing time p(A , t1 , t2), on the other hand. 
Erschler et al. [ELT91], see also [LEE92], were the first to introduce this idea 
under the name of energetic reasoning. Indeed, the interval processing time can 
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be interpreted as resource energy demand which encounters a limited resource 
energy supply that is defined through the time interval. The original concept of 
Erschler et al. considered cumulative scheduling problems with discrete resource 
capacity. Their results have been improved by Baptiste and Le Pape [BL95] for 
disjunctive constraints. We will take a closer look at these results and compare 
them to the consistency tests described so far. 

Interval Processing Time  

Let us first define the interval processing time of a task Ti for a given time inter-
val [t1 , t2), t1 < t2 . The interval processing time pi(t1 , t2) is the smallest amount of 
time during which Ti has to be processed within [t1 , t2). Figure 16.4.9 shows four 
possible situations: (1) Ti can be completely contained within the interval, (2) 
overlap the entire interval, (3) have a minimum processing time in the interval 
when started as early as possible or (4) have a minimum processing time when 
started as late as possible. The fifth situation not depicted applies whenever, giv-
en the current domains, Ti does not necessarily have to be processed within the 
given time interval. Consequently,  

pi(t1 , t2) := max{ 0, min{pi , t2 � t1 , ecti � t1 , t2 � lsti }}. (16.4.52) 

3 4

5 6

3 4 5

5 6 8 9

3 4

1

4 5 6 8

(1)

(2)

(3)

(4)

1

9 107

2

2 7

 
Figure 16.4.9   Types of relations between a task and a time interval. 

The interval processing time of a subset of tasks A is given by p(A , t1 , t2) :=  
5i�A pi(t1 , t2). Finally, let B(t1,t2) := { i � B | pi(t1 , t2) > 0 } denote the set of tasks 
which have to be processed completely or partially within [t1 , t2). 

Energetic Input/Output Consistency Tests  

Baptiste and Le Pape [BL95] examined situations in which the earliest start time 
of a task Ti can be updated using the concept of interval processing times. As-
sume, for instance, that Ti finishes before t2 . The interval processing time of Ti in 
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[t1 , t2) would then be pi'(t1 , t2) = min{pi , t2 � t1 , ecti � t1}.5 However, if t2 � t1
 < p(B � {i} , t1 , t2) + pi'(t1 , t2) then the assumption cannot be true, so that Ti has to 
finish after t2. Baptiste and Le Pape showed that esti can be then updated to  

esti := max{esti , t1 +  p(B � {i} , t1 , t2) }.  (16.4.53) 

A stronger domain reduction rule is presented in the following theorem. 

Theorem 16.4.28   Energetic output conditions.  

Let i � B and t1 < t2. If the energetic output condition  

t2 � t1 < p(B � {i} , t1 , t2) + min{pi , t2 � t1 , ecti � t1}  (16.4.54) 

is satisfied then B(t1,t2) � {i} is not empty, and Ti has to be processed after all 
tasks of B(t1,t2) � {i} . Consequently, esti can be adjusted to esti := max{esti ,  
LBh(B(t1,t2) � {i})}, h � {1 , 2 , 3 , 4} . 

Proof. If (16.4.54) is satisfied then p(B � {i} , t1 , t2) > 0 and B(t1,t2) � {i} is not 
empty. Furthermore, Ti must finish after t2 . By definition, all tasks in B(t1,t2) � {i} 
have positive processing times in the interval [t1 , t2) and so must start and finish 
before Ti . This proves B(t1,t2) � {i} � i from which follows the domain reduction 
rule.   

Energetic input conditions can be defined in a similar way. Observe that the do-
main adjustment in Theorem 16.4.28 is stronger than the one defined in (16.4.53) 
if the "sum bound'' (LB2) or a stronger bound is used. We omit the simple proof 
due to the observations made in the following. 

Up to now, it remained an open question which time intervals were especial-
ly suited for testing the energetic input/output conditions in order to derive 
strong domain reductions. We will sharpen this question and ask whether Theo-
rem 16.4.28 really leads to stronger domain reductions at all if compared with 
other known consistency tests. Quite surprisingly, the answer is “no''. 

Theorem 16.4.29   (comparing output and energetic output conditions).  
If the energetic output condition  

 t2 � t1 < p(B � {i} , t1 , t2) + min{pi , t2 � t1 , ecti � t1} 

is satisfied for a task Ti , i � B and the time interval [t1 , t2) then the output condi-
tion  

max 
u�A�{i},v�A,u�v

{lctv � estu} < p(A � {i}) 

                                                 
5 Here and later, we will assume that pi'(t1 , t2) � 0 which is not a serious restriction. 
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is satisfied for the couple (B(t1,t2) � {i} , i). 

Proof. If the energetic output condition is satisfied then B(t1,t2) � {i} is not empty, 
and there exists a task Tv with v � B(t1,t2) � {i}. Let us first consider the case 
u � B(t1,t2) � {i}, u � v. We can approximate the right side of (16.4.54) and obtain  

t2 � t1 < p(B � {i} , t1 , t2) + pi  

  = p(B � {i , u , v} , t1 , t2) + pu(t1 , t2) + pv(t1 , t2) + pi . (16.4.55) 

Since u, v � B(t1,t2) , we know from (16.4.52) that t2 � lstv � pv(t1 , t2) and ectu � t1
 � pu(t1 , t2), and we can approximate  

t2 � t1 < p(B � {i , u , v} , t1 , t2) + ectu � t1 + t2 � lstv + pi (16.4.56) 

which is equivalent to  

lstv � ectu < p(B � {i , u , v} , t1 , t2) + pi .  (16.4.57) 

Note that p(B � {i , u , v} , t1 , t2) � p(B(t1,t2) � {i , u , v}), so we arrive at  

lstv � ectu < p(B(t1,t2) � {u , v}) .  (16.4.58) 

or, equivalently,  

lctv � estu < p(B(t1,t2)) .  (16.4.59) 

Now, consider the case u = i � v. Using  (16.4.54) , we have 

 t2 � t1 < p(B � {i} , t1 , t2) + ecti � t1 

   = p(B � {i , v} , t1 , t2) + pv(t1 , t2) + ecti � t1 . (16.4.60) 

We can, again, substitute pv(t1 , t2) with t2 � lstv and obtain  

lstv � ecti < p(B � {i , v} , t1 , t2) .  (16.4.61) 

A similar line of argumentation as above leads to  

lctv � esti < p(B(t1,t2)) .  (16.4.62) 

Finally, combining  (16.4.59) and  (16.4.62) leads to the output condition for the 
couple (B(t1,t2) � {i} , i) which proves our assertion.  

A similar result applies for the energetic input condition. Inversely, a quite sim-
ple proof which is omitted shows that the input/output conditions are subsumed 
by the energetic generalizations, so that both concepts are in fact equivalent. 
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Other Energetic Consistency Tests  

It is possible to derive input/output negation conditions and input-or-output con-
ditions that are based on energetic reasoning. However, as in the case of the in-
put/output conditions, they do not imply additional domain reductions which are 
not also deduced by the corresponding non-energetic conditions. We therefore 
omit a detailed presentation of these conditions. 

The results of this subsection have an important implication. They tell us 
that for the disjunctive scheduling problem, all known consistency tests that are 
based on energetic reasoning are not more powerful than their non-energetic 
counterparts. It is not clear whether this holds for arbitrary consistency tests, alt-
hough we strongly assume this. A step towards proving this conjecture has been 
made in [DPP99] where it has been shown that, regardless of the chosen con-
sistency tests, the interval processing times p(A , t1 , t2) can always be replaced by 
the simple processing times p(A). 

16.4.8 Shaving 

All consistency tests presented so far share the common idea that a possible start 
time sti of a task Ti can be removed from its current domain ,i if there exists no 
feasible schedule in which Ti actually starts at that time. In this context, the con-
sistency tests that have been introduced in the Sections 16.4.3 through 16.4.7 can 
be interpreted as sufficient conditions for proving that no feasible schedule can 
exist which involve a specific start time assignment sti . In Section 16.4.3, for 
instance, we have tested the sufficient condition whether there exists a 2- or 3-
feasible start time assignment. 

This general approach has been summarized by Martin and Shmoys under 
the name shaving [MS96]. They proposed additional shaving variants. Exact 
one-machine shave verifies whether a non-preemptive schedule exists by solving 
an instance of the one-machine scheduling problem in which the start time sti 
� {esti , lsti} is fixed. Quite obviously, exact one-machine shave is NP-hard and 
equivalent to establishing n-b-consistency. One-machine shave relaxes the non-
preemption requirement and searches for a (possibly) preemptive schedule. 

Carlier and Pinson [CP94] and Martin and Shmoys [MS96] independently 
proposed the computation of !-fixed-points as a method for proving the non-
existence of a feasible schedule. Given a set of consistency tests g and a set of 
current domains, say !', a feasible schedule cannot exist if a current domain in 
g(!') is empty. Carlier and Pinson, and Martin and Shmoys who coined the name 
C-P shave have chosen the modified input/output domain consistency tests and 
the precedence consistency tests as underlying set of consistency tests. Martin 
and Shmoys have further proposed double shave which applies C-P shave for 
detecting inconsistencies. Torres and Lopez [TL00] review possible extensions 
of shaving techniques that have been proposed for job shop scheduling. Dorndorf 
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et al. [DPP01] very successfully apply shaving techniques to the open shop 
scheduling problem (OSP), which is a special case of the DSP (cf. Chapter 9). 

16.4.9 A Comparison of Disjunctive Consistency Tests 

Let us summarize the results derived so far. In Figure 16.4.10, the dominance 
relations between different levels of bound-consistency and classes of consisten-
cy tests are shown6. A strict dominance is represented by an arc �, while X 
stands for an equivalence relation. An encircled "+'' means that the correspond-
ing classes of consistency tests taken together imply a dominance relation. Since 
the dominance relation is transitive, we do not display all relations explicitly. 

Let us start with the upper half of the figure. Obviously, n-b-consistency and 
exact one-machine shave are equivalent and strictly dominate all other consisten-
cy tests. On the left side, n-b-consistency, of course, subsumes all levels of k-b-
consistency for k � n. 

In the center of the figure, the consistency tests with an input/output compo-
nent in their names are shown. As has been proven in Section 16.4.7, the ener-
getic consistency tests are equivalent to the non-energetic ones. In Example 
16.4.12, we have verified that the input/output consistency tests dominate the 
modified input/output consistency tests. The same dominance relation holds for 
the input-or-output tests when compared to the modified tests. In Section 16.4.3 
we have shown that the input/output and input/output negation consistency tests 
taken together establish strong 3-b-consistency if for the former the "sum bound'' 
(LB2) and for the latter the "simple earliest completion time bound'' (LB5) are 
applied for adjusting the current domains. The input/output and input/output ne-
gation tests usually imply more than 3-b-consistency as can be seen in Example 
16.4.15. However, if only pairs and triples of tasks are considered then the 
equivalence relation holds. Further, it has been shown in Section 16.4.3 that ap-
plying the input/output consistency tests for pairs of tasks is equivalent to estab-
lishing 2-b-consistency if the "earliest completion time bound'' (LB1) is used as 
time bound adjustment. 

Let us now turn to the right side of the figure. It is not hard to show that 
double shave strictly dominates C-P shave which in turn strictly dominates one-
machine shave. Apart from this, there exists no particular relationship between 
double shave and C-P shave and the other consistency tests. However, double 
shave and C-P shave usually lead to significantly stronger domain reductions as 
has been verified empirically. Finally, Martin and Shmoys [MS96] have shown 
that one-machine shave is equivalent to the modified input/output domain con-
sistency tests. 

                                                 
6 Although the dominance relation has only been defined for sets of consistency tests, it can be 

extended in a straightforward manner to the levels of bound-consistency. 
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Figure 16.4.10   Dominance relations. 
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16.4.10 Precedence vs. Disjunctive Consistency Tests 

The consistency tests which have been developed for the disjunctive constraints 
can be applied to an instance of the DSP by decomposing this instance into 
(preferably maximal) cliques. Since all consistency tests presented are monoto-
nous, they can be applied in an arbitrary order and always result in the same !-
fixed-point. However, the runtime behaviour differs extremely depending on the 
order of application that has been chosen. 

An ordering rule which has been proven to be quite effective is to perform 
the sequence consistency tests that are likely to deduce more edge orientations 
and have a lower time complexity in the beginning. A particular set of consisten-
cy tests is only triggered if all "preceding'' consistency tests do not imply any 
deductions any more. This ensures that the more costly consistency tests are only 
seldomly applied and contribute less in the overall computational costs. 

Finally, Nuijten and Sourd [NS00] have recently described consistency 
checking techniques for the DSP that are based on the simultaneous considera-
tion of precedence constraints and disjunctive constraints. 

16.5 Conclusions 

Constraint propagation is an elementary method which reduces the search space 
of a search or optimization problem by analyzing the interdependencies between 
the variables, domains and constraints that define the set of feasible solutions. 
Instead of achieving full consistency with respect to some concept of consisten-
cy, we generally have to content ourselves with approximations due to reasons of 
complexity. In this context, we have evaluated classical and new consistency 
tests for the DSP which are simple rules that reduce the domains of variables 
(domain consistency tests) or derive knowledge in a different form, e.g. by de-
termining the processing sequences of a set of tasks (sequence consistency tests). 

The particular strength of this approach is based on the repeated application 
of the consistency tests, so that the knowledge derived is propagated, i.e. reused 
for acquiring additional knowledge. The deduction of this knowledge can be de-
scribed as the computation of a fixed point. Since this fixed point depends upon 
the order of the application of the consistency tests, Dorndorf et al. [DPP00] at 
first have derived a necessary condition for its uniqueness and have developed a 
concept of dominance which enables to compare different consistency tests. 
With respect to this dominance relation, they have examined the relationship 
between several concepts of consistency (bound-consistency, energetic reasoning 
and shaving) and the most powerful consistency tests known as the input/output, 
input/output negation and input-or-output consistency tests. They have been able 
to improve the well-known result that the input/output consistency tests for pairs 
of tasks imply 2-b-consistency by deriving the tests which establish strong 3-b-
consistency. These consistency tests are slightly stronger than the famous ones 
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derived by Carlier and Pinson [CP89, CP90]. Dorndorf et al. [DPP00] have ana-
lyzed the input/output, input/output negation and input-or-output consistency 
tests and have classified different lower bounds which are used for the reduction 
of domains. They have shown that apparently weaker bounds still induce the 
same fixed point. Finally, an open question regarding the concept of energetic 
reasoning has been answered. In contrast to scheduling problems with discrete 
resource supply, they have shown that the known consistency tests based on en-
ergetic reasoning are equivalent to the tests based on simple processing times. 

16.6 Appendix: Bound Consistency Revisited 

In this section, we derive the time bound adjustments for establishing 3-b-
consistency as has been announced in Section 16.4.3. Let us assume that the fol-
lowing condition  

(max{lctj � esti , lctk � esti} � pi + pj + pk)   W (i + ii) 

(estj + pj � esti   ^   esti + pi � lstk)   W  (iii) 

(estk + pk � esti   ^   esti + pi � lstj)   W  (iv) 

(esti � max{min{estj , estk + pj + pk , estj + pj , estk + pk}) (v+ vi) 
     (16.6.1) 

is not satisfied given the current earliest and latest start times. As already men-
tioned, there exist two cases. In the first case, increasing esti will never satisfy 
conditions (i + ii), (iii) and (iv). Therefore, we have to adjust esti so as to satisfy 
condition (v+ vi). In the second case, condition (i + ii) is not satisfiable, but in-
creasing iest  eventually satisfies (iii), (iv) or (v+ vi). Here, the minimal earliest 
start time for which (iii) or (iv) holds is not greater than the minimal earliest start 
time for which (v+ vi) holds. This will be proven in the remainder of this subsec-
tion. 

We will first deal with the problem of how to distinguish between the two 
cases. The corresponding time bound adjustments will then be derived at a later 
time. In Lemma 16.6.1, a necessary and sufficient condition for the existence of  
est i

 * � esti satisfying condition (iii) is described. 

Lemma 16.6.1   (condition (iii)).  

There exists est i
 * � esti such that condition (iii) is satisfied iff  

max{estj + pj + pi , esti + pi}� lstk .  (16.6.2) 

The smallest start time which then satisfies (iii) is est i
 * = max{esti , estj + pj}. 
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Proof. If condition (iii) is satisfied for est i
 * � esti then estj + pj � est i

 * and est i
 * + pi

 � lstk , so that max{estj + pj + pi , esti + pi} � lstk . This proves the direction �. In 
order to show j, let max{estj + pj + pi , esti + pi} � lstk . If esti < estj + pj then 
est i

 * = estj + pj is the smallest value which satisfies (iii). Otherwise, if esti � estj
 + pj then est i

 * = esti is the smallest value which satisfies (iii).  

Changing the roles of j and k in Lemma 16.6.1 leads to a similar result for condi-
tion (iv). 

Corollary 16.6.2   (conditions (iii) and (iv)). 

There exists est i
 * � esti which satisfies (iii) or (iv) iff  

(max{estj + pj + pi , esti + pi} � lstk)   W 
(max{estk + pk + pi , esti + pi} � lstj) 

(16.6.3) 

If ! is 2-b-consistent then (16.6.3) is equivalent to  

(estj + pj + pi � lstk  W  estk + pk + pi � lstj)   ^ 
(esti + pi � lstk  W  esti + pi � lstj) 

(16.6.4) 

Proof. The first assertion follows directly from Lemma 16.6.1. Let us show the 
second equivalence and assume that 2-b-consistency is established. Obviously, 
(16.6.3) immediately implies (16.6.4). The other direction, however, is not ap-
parent at once. 

Hence, let (16.6.4) be satisfied. It is sufficient to study the case estj + pj + pi
 � lstk , since estk + pk + pi � lstj leads to a similar conclusion. Given (16.6.4), we 
can deduce that esti + pi � lstk or esti + pi � lstj (k ).  

Now, if esti + pi � lstk then the first condition max{estj + pj + pi , esti + pi}� 
lstk of (16.6.3) is satisfied. If, however, esti + pi > lstk then 2-b-consistency im-
plies estk + pk � esti . Further, esti + pi � lstj due to (k ). Therefore, estk + pk + pi
 � lstj , and the second condition max{estk + pk + pi , esti + pi} � lstj of  (16.6.3) is 
satisfied.   

Given these results, it is now quite easy to describe the adjustments of the earli-
est start times. 

Lemma 16.6.3   (adjusting earliest start times, part 1).  

Let ! be 2-b-consistent. If  

max 
u�{j,k},v�{i,j,k},u�v

{lctv � estu} < pi + pj + pk  (16.6.5) 

or  
 esti + pi > max{lstj , lstk}    (16.6.6) 
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then (i+ii), (iii), (iv) are not satisfiable for any est i
 * � esti . The minimal earliest 

start time est i
 * � esti satisfying (v+vi) is then defined by  

est i
 * := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . (16.6.7) 

Proof. We have shown in Lemma 16.4.5 that there exists no est i
 * � esti satisfying 

condition (i + ii) iff  

max
v�{j,k}

{lctv � esti} < pi + pj + pk .  (16.6.8) 

Likewise, we have shown in Lemma 16.6.1 that there exists no est i
 * � esti satisfy-

ing condition (iii) or (iv) iff (16.6.4) is not satisfied, i.e. iff  

(estj + pj + pi > lstk  ^  estk + pk + pi > lstj)   W 
(esti + pi > lstk  ^  esti + pi > lstj) 

(16.6.9)

which is equivalent to  

(lctk � estj < pi + pj + pk  ^  lctj � estk < pi + pj + pk)   W 
esti + pi > max{lstj , lstk}) . (16.6.10) 

(16.6.8) and  (16.6.10) together imply that (i + ii), (iii) and (iv) are not satisfiable, 
so we have to choose the minimal earliest start time est i

 * satisfying condition 
(v + vi) which leads to  

est i
 * := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . (16.6.11) 

It remains to combine (16.6.8) and (16.6.10) to one single condition. Making use 
of the fact that esti + pi > max{lstj , lstk} already implies (16.6.8), we can deduce 
that these two conditions are equivalent to:  

( max 
u�{j,k},v�{i,j,k},u�v

{lctv � estu} < pi + pj + pk)  W  (esti + pi > max{lstj , lstk}) . 

This completes the proof.    

Lemma 16.6.4   (adjusting earliest start times, part 2).  

Let ! be 2-b-consistent. If (16.6.5) and (16.6.6) are not satisfied but  

max
u�{j,k}

{lcti � estu} < pi + pj + pk  (16.6.12) 

then (i + ii) is not satisfiable for any est i
 * � esti . The minimal earliest start time 

est i
 * � esti satisfying (iii), (iv) or (v + vi) is then defined through  

est i
 * := max{esti , min{vj , vk}} ,   (16.6.13) 

where  

vj := { estj + pj if  max{estj + pj + pi , esti + pi} � lstk , 
estk + pk otherwise, 
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vk := { estk + pk if  max{estk + pk + pi , esti + pi} � lstj , 
estj + pj otherwise. 

 
Proof. The assumptions imply that (i + ii) is not satisfiable. From Lemma 16.6.1, 
we know that est i

 * := max{esti , min{v1 , v2}} is the minimal earliest start time 
which satisfies (iii) or (iv). Further, Lemma 16.6.3 implies that there exists no 
smaller est i

 * satisfying (v + vi), so indeed est i
 * is the correct adjustment.    

Lemma 16.6.3 leads to the consistency tests  

max
u�{i,j,k},v�{j,k},u�v

{lctv � estu} < pi + pj + pk  � 

esti := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} , (16.6.14) 

esti + pi > max{lstj , lstk}  � 

esti := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . (16.6.15) 

which correspond with the two different versions of the output domain con-
sistency tests for triples of tasks (see Theorems 16.4.13 and 16.4.17). Observe 
that 

LB3({j , k}) = max{min{estj , estk} + pj + pk , estj + pj , estk + pk} 

is the optimal makespan if the tasks Tj and Tk are scheduled with preemption 
allowed. From Theorem 16.4.16, we know that the time bound adjustment  
LB3({j , k}) can be replaced with LB2({j , k}) = min{estj , estk} + pj + pk , so that 
instead of (16.6.14) the following consistency test can be applied:  

max
u�{i,j,k},v�{j,k},u�v

{lctv � estu} < pi + pj + pk  � 

esti := max{esti , min{estj , estk} + pj + pk} . (16.6.16) 

Likewise, we can replace (16.6.15) with the equivalent consistency test  

esti + pi > max{lstj , lstk}  � 

esti := max{esti , min{estj , estk} + pj + pk} . (16.6.17) 

This follows from the fact that the 2-b-consistency tests already ensure  

esti � max{estj + pj , estk + pk}  if  esti + pi > max{lstj , lstk} . 

Lemma 16.6.4 derives the consistency test  

max
u�{j,k}

{lctv � esti} < pi + pj + pk   �   esti := max{esti , min{vj , vk}} (16.6.18) 

which corresponds to the input negation domain consistency test for triples of 
tasks (see Theorem 16.4.19). Again, we can replace the time bound adjustment 
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LB6({j , k}) = min{vj , vk} with LB5({j , k}) = min{ectj , ectk} due to Lemma 
16.4.21 which leads to the equivalent consistency test  

max
u�{j,k}

{lctv � esti} < pi + pj + pk � esti := max{esti , min{ectj , ectk}} (16.6.19) 

This proves the assertions made in Section 16.4.3.  
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17 Scheduling in Flexible  
Manufacturing Systems 

17.1 Introductory Remarks 

An important application area for machine scheduling theory comes from Flexi-
ble Manufacturing Systems (FMSs). This relatively new technology was intro-
duced to improve the efficiency of a job shop while retaining its flexibility. An 
FMS can be defined as an integrated manufacturing system consisting of flexible 
machines equipped with tool magazines and linked by a material handling sys-
tem, where all system components are under computer control [BY86a]. Existing 
FMSs mainly differ by the installed hardware concerning machine types, tool 
changing devices and material handling systems. Instances of machine types are 
dedicated machines or parallel multi-purpose ones. Tool changing devices can be 
designed to render automatic online tool transportation and assignment to the 
machines' magazines while the system is running. In other cases tool changes are 
only possible if the operations of the system are stopped. Most of the existing 
FMSs have automatic part transportation capabilities. 

Different problems have to be solved in such an environment which com-
prise design, planning and scheduling. The vital factors influencing the solutions 
for the latter two are the FMS-hardware and especially the existing machine 
types and tool changing devices. In earlier (but still existing) FMSs NC-machines 
are used with limited versatility; several different machines are needed to process 
a part. Moreover the machines are not very reliable. For such systems shop 
scheduling models are applicable; in classical, static formulations they have been 
considered in Chapters 8 through 10. Recent developments in FMS-technology 
show that the machines become more versatile and reliable. Some FMSs already 
are implemented using mainly only one machine type. These general purpose 
machine tools make it possible to process a part from the beginning to the end 
using only one machine [Jai86]. A prerequisite to achieve this advantage without 
or with negligible setup times is a tool changing system that can transfer tools 
between the machines' tool magazines and the central tool storage area while all 
machines of the system are in operation. Some FMSs already fulfill this assump-
tion and thus incorporate a high degree of flexibility. Results from queuing theo-
ry using closed queuing networks show that the expected production rate is max-
imized under a configuration which incorporates only general purpose machines 
[BY86b, SS85, SM85]. 

With the notation of machine scheduling theory this kind of FMS design can 
be represented by parallel machine models, and thus they were treated relatively 
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broadly in Chapter 5. The most appropriate type of these models depends on the 
particular scheduling situation. All the machines might be identical or they have 
to be regarded as uniform or unrelated. Parts (i.e. jobs) might have due dates or 
deadlines, release times, or weights indicating their relative importance. The pos-
sibilities of part processing might be restricted by certain precedence constraints, 
or each operation (i.e. task) can be carried out independently of the others which 
are necessary for part completion. Objectives might consist of minimizing 
schedule length, mean flow time or due date involving criteria. All these problem 
characteristics are well known from traditional machine scheduling theory, and 
had been discussed earlier. 

Most of the FMS-scheduling problems have to take into account these prob-
lem formulations in a quite general framework and hence are NP-hard. Thus, 
with the view from today, they are computationally intractable for greater prob-
lem instances. 

The difficulties in solving these problem types are sometimes overcome by 
considering the possibility of preempting part processing. As shown in former 
chapters, quite a lot of intractable problems are solvable in their preemptive ver-
sions in polynomial time. In the context of FMSs one has to differ between two 
kinds of preemptions. One occurs if the operation of a part is preempted and later 
resumed on the same machine (part-preemption). The other one appears if the 
operation of a part is preempted and then resumed at the same point of time or at 
a later time on another machine (part-machine-preemption). The consequences of 
these two kinds of preemption are different. Part-preemption can be carried out 
without inducing a change of machines and thus it does not need the use of the 
FMS material handling system. Part-machine-preemption requires its usage for 
part transportation from one machine to another. A second consequence comes 
from the buffer requirements. In either case of preemption storage capacity is 
needed for preempted and not yet finished parts. If it is possible to restrict the 
number and kind of preemptions to a desirable level, this approach is appealing. 
Some computationally intractable problem types are now efficiently solvable and 
for most measures of performance the quality of an optimal preemptive schedule 
is never worse than non-preemptive one. To consider certain inspection, repair or 
maintenance requirements of the machine tools, processing availability re-
strictions have to be taken into account. The algorithmic background of these 
formulations can be found in [Sch84, Sch88] and were already discussed in 
Chapter 5. Some non-deterministic aspects of these issues will be studied in 
Chapter 18. 

In the context of FMSs another model of scheduling problems is also of con-
siderable importance. In many cases tools are a very expensive equipment and 
under such an assumption it is unlikely that each tool type is available in an unre-
stricted amount. If the supply of tools of some type is restricted, this situation 
leads to parallel machine models with resource constraints. In an FMS-
environment the number of resource types will correspond to the number of tool 
types, the resource limits correspond to the number of available tools of each 
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type and the resource requirements correspond to the number of tools of each 
type which are necessary to perform the operation under consideration. Models 
of this kind are extensively treated in [BCSW86], and some recent results had 
been given in Section 13.1. 

There is another aspect which has to be considered in such an environment. 
In many cases of FMS production scheduling it is desired to minimize part 
movements inside the system to avoid congestion and unnecessary repositioning 
of parts which would occur if a part is processed by more than one machine or if 
it is preempted on the same machine. FMSs which consist mainly of general pur-
pose machine tools have the prerequisite to achieve good results according to the 
above objectives. In the best case repositioning and machine changeovers can be 
avoided by assigning each part to only one machine where it is processed from 
the beginning to the end without preemption. A modeling approach to represent 
this requirement would result in a formulation where all operations which have 
to be performed at one part would be summed up resulting in one super-
operation having different resource requirements at discrete points of time. From 
this treatment models for project scheduling would gain some importance 
[SW89]. A relaxed version of this approach to avoid unnecessary part transporta-
tion and repositioning has to consider the minimization of the number of preemp-
tions in a given schedule. 

Let us also mention that any FMS scheduling problem can be decomposed 
into single machine problems, as it was suggested in [RRT89]. Then the ideas 
and algorithms presented in Chapter 4 can be utilized. 

From the above issues, we can conclude that traditional machine and project 
scheduling theory has a great impact on advanced FMS-environments. Besides 
this, different problems are raised by the new technology which require different 
or modified models and corresponding solution approaches. There are already 
many results from machine and project scheduling theory available which can 
also be used to support the scheduling of operations of an FMS efficiently, while 
some others still have to be developed (see [RS89] as a survey). Various model-
ing approaches are investigated in [Sch89], some more recent, selected models 
are investigated in the following three sections. We stress the scheduling point of 
view in making this selection, due to the character of this book, and, on the other 
hand, the prospectivity of the subject. Each of the three models selected opens 
some new directions for further investigations. The first one deals with dynamic 
job shops (i.e. such in which some events, particularly job arrivals, occur at un-
known times) and with the approach solving a static scheduling problem at each 
time of the occurrence of such an event, and then implementing the solution on a 
rolling horizon basis. The second considers simultaneous task scheduling and 
vehicle routing in a class of FMS, which was motivated by an application in a 
factory producing helicopter parts. Last but not least, a practical implementation 
of the  FMS model in acrylic glass production will be presented. 
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17.2 Scheduling Dynamic Job Shops 

17.2.1 Introductory Remarks 

In this section we consider dynamic job shops, i.e. such in which job arrival 

times are unknown in advance, and we allow for the occurrence of other non-

deterministic events such as machine breakdowns. The scheduling objective will 

be mean job tardiness which is important in many manufacturing systems, espe-

cially those that produce to specific customer orders. In low to medium volume 

of discrete manufacturing, typified by traditional job shops and more recently by 

flexible manufacturing systems, this objective was usually operationalized 

through the use of priority rules. A number of such rules were proposed in the 

literature, and a number of investigations were performed dealing with the rela-

tive effectiveness of various rules, e.g. in [Con65, BB82, KH82, BK83, VM87]. 

Some deeper tactical aspects of the interaction between priority rules and the 

methods of assigning due-dates were studied in [Bak84].  

Below we will present a different approach to the problem, proposed recent-

ly by Raman, Talbot and Rachamadugu [RTR89a], and Raman and Talbot 

[RT92]. This approach decomposes the dynamic problem into a series of static 

problems. A static problem is generated at each occurrence of a non-

deterministic event in the system, then solved entirely, and the solution is imple-

mented on a rolling horizon basis. In this procedure the entire system is consid-

ered at each instance of the static problem, in contrast to priority rules which 

consider only one machine at a time. Of course, when compared with priority 

rules, this approach requires greater computational effort, but also leads to signif-

icantly better system performance. Taking into account the computing power 

available today, this cost seems to be worth to pay. Moreover, the idea of the 

approach is pretty general and can be implemented for other dynamic scheduling 

problems. Let us remind that the approach was originally used by Raman, Ra-

chamadugu and Talbot [RRT89] for a single machine. 

The static problem mentioned above can be solved in an exact or a heuristic 

way. An example of an exact method is a modification of the depth-first search 

branch and bound algorithm developed by Talbot [Tal82] for minimizing sched-

ule length in a project scheduling problem. We will not describe this modifica-

tion which is presented in [RT92] and used for benchmarking a heuristic method 

proposed in the same paper. This heuristic is especially interesting for practical 

applications, and thus will be described in more detail. It is based on decompos-

ing the multiple machine problem, and constructing the schedule for the entire 

system around the bottleneck machine. For this purpose relative job priorities are 

established using task due dates (TDDs). However, in comparison with the tradi-

tional usage of task milestones, in this approach TDDs are derived by taking into 

account other jobs in the system, and TDDs assignment is combined with task 
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scheduling. In the next two sections the heuristic algorithm will be described and 

results of computational experiments will be presented. 

17.2.2 Heuristic Algorithm for the Static Problem 

In papers dealing with priority rules applied to our scheduling problem it has 

been shown the superiority of decomposing job due dates into task due dates, and 

using TDDs for setting priorities. In particular, Baker [Bak84] found that the 

Modified Task Due Date (MTD) rule performs well across a range of due date 

tightness. It selects the task with the minimum MTD, where the MTD of task Tij 

is calculated as 

MTDij = max (7 + pij, dij) ,  (17.2.1) 

and where 7 is the time when the scheduling decision needs to be made and dij is 

the TDD of Tij . Raman, Talbot and Rachamadugu [RTR89b] proved that for a 

given set of TDDs the total tardiness incurred by two adjacent tasks in a non-

delay schedule on any given machine does not increase if they are re-sequenced 

according to the MTD rule. It means that if TDDs are set optimally, the MTD rule 

guarantees local optimality between adjacent tasks at any machine for a non-

delay schedule. Most existing implementations of the MTD rule set TDDs by 

decomposing the total flow dj � pj of job Jj where pj = �
i=1

nj

 pij , into individual task 

flows in a heuristic way. Vepsalainen and Morton [VM87] proposed to estimate 

each TDD by netting the lead time for the remaining tasks from the job due date. 

In this way the interactions of all jobs in the system are taken into account. The 

heuristic by Raman and Talbot also takes explicitly into account this interactions, 

and, moreover, considers TDD assignment and task scheduling simultaneously. 

Of course, the best set of TDDs is one which yields the best set of priorities, and 

thus the goodness of a given set of TDDs can be determined only when the sys-

tem is scheduled simultaneously. In consequence, the heuristic is not a single 

pass method, but it considers global impact of each TDD assignment within a 

schedule improvement procedure. The initial solution is generated by the MTD 

rule with TDDs at the maximum values that they can assume without delaying 

the corresponding jobs. Machines are then considered one by one and an attempt 

is made to revise the schedule of tasks on a particular machine by modifying their 

TDDs. Jobs processed on all machines are ranked in the non-increasing order of 

their tardiness. For any task in a given job with positive tardiness, first the inter-

val for searching for the TDD is determined and for each possible value in this 

interval the entire system is rescheduled. The value which yields the minimum 

total tardiness is taken as the TDD for that task. This step is repeated for all other 

tasks of that job processed on the machine under consideration, for all other tardy 

jobs on that machine following their rank order, and for all machines in the sys-

tem. The relative workload of a given machine is used to determine its criticality; 
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the algorithm ranks all the machines from the most heavily loaded (number 1) 

and considers them in this order. Since the relative ranking of machines does not 

change, in the sequel they are numbered according to their rank. 

In order to present the algorithm we need two additional denotations. The 

ordered sequence of jobs processed on Pk , k = 1, 2,..., m will be denoted by Jk , 

the set of tasks of Jj �  Jk on Pk by Tkj , and the number of tasks in Tkj by nkj . 

Algorithm 17.2.1  Heuristic for the static job shop to minimize mean tardiness 
[RT92]. 
begin -- initialization 

for each task Tij do dij := dj � tij + pij; 
 -- a set of new task due dates has been assigned, taking into account 

 -- the cumulative processing time tij of Jj up to and including task Tij 

call MTD rule; 
 -- the initial sequence has been constructed 

Order and number all the machines in non-increasing order of their total work-

loads �
Jj �J k

 �
Tij �T kj

 pij ; 

r := 1; z(0) := #; z(1) := �
j=1

n
 Dj; 

 -- initial values of counters are set up 

while z(r) < z(r�1) do  

begin 
P1 := P; 

 -- the set of unscanned machines P1 is initially equal to the set of all machines P 

while P1 � � do  

begin 
Find k* := min{k | Pk � P1}; -- machine Pk* is selected (scanned) 

while Jk* � � do  

begin 
Select Jj* as the job with the largest tardiness among jobs  

belonging to Jk*; 

for l = 1 to nk* j* do  
begin -- schedule revision 

Determine interval [al , bl] of possible values for the TDD value dlj* 

of task Tlj*; -- this will be described separately 

for x = al to bl do  

begin 
Generate the due dates of other tasks of Jj*; 
  -- this will be described separately 

call MTD rule; 
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  -- all machines are rescheduled 

Record total tardiness D(x) = �
j
 Dj; 

end; 
Find x such that D(x) is minimum; 

dlj* := x; 
Reassign due dates of other tasks of Jj* accordingly;  

  -- task due dates are chosen so that the value of the 

  -- total tardiness is minimized; this will be described separately 
end; 

for j = 1 to n do  

Calculate Dj; -- new tardiness values are calculated 

J k* := J k* � {Jj*}; 
  -- the list of unscanned jobs on Pk* is updated 

end; 
P 1 = P 1 � {Pk*}; -- the list of unscanned machines is updated 

end; 
r := r + 1; 

z(r):= �
j
 Dj; 

end; 
end; 
We now discuss in more details the schedule revision loop, the major part of the 

algorithm, which is illustrated in Figure 17.2.1. As we see, the solution tree is 

similar to a branch and bound search tree with the difference that each node rep-

resents a complete solution.  

Given the initial solution, we start with machine P1 (which has the maxi-

mum workload), and job Jj (say) with the maximum tardiness among all jobs in 

J 1 . Consider task T11 j whose initial TDD is d11 j . The algorithm changes now this 

TDD to integer values in the interval [L1 , U1 ], where L1 = �
l=1

11

 plj , U1 = dj . It fol-

lows from (17.2.1) that for any d1j < L1 , the relative priority of T11 j remains un-

changed, since L1 is the earliest time by which T11 j can be completed. 
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Figure 17.2.1 Solution tree for the scheduling algorithm. 

Now, a descendant node is generated for each integer x in this interval. For a giv-

en x, the TDDs of other tasks of Jj are generated as follows 

dij = di�1 j + (x � p11 j)pij /t11�1 j , i = 1, 2,..., 11�1 

and 

dij = di�1 j + (dj � x)pij /(pj � t11 j) , i = 11 
 + 1, 11 

 + 2,..., nj , 

where tij = �
l=1

i
 plj . Thus, we split Jj into three "sub-jobs" Jj1 , Jj2 , Jj3 , where Jj1 

consists of all tasks prior to T11 j , Jj2 contains only T11 j, and Jj3 comprises all tasks 

following T11 j. Due dates of all tasks within a sub-job are set independently of 

other sub-jobs. They are derived from the due date of the corresponding sub-job 

by assigning them flows proportional to their processing times, due dates of Jj1 , 

Jj2 and Jj3 being x � p11 j , x, and dj , respectively. TDDs of tasks of other jobs re-

main unchanged. The solution value for the descendant is determined by re-
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scheduling all jobs at all machines for the revised set of TDDs using the MTD 

rule. The branch corresponding to the node with the minimum total tardiness is 

selected, and the TDD of T11 j is fixed at the corresponding value of x, say x*
1 . 

TDDs of all tasks of Jj preceding T11 j are updated as follows 

dij = di�1 j + (x*
1 � p11 j)tij /t11�1 j, i = 1, 2,..., 11 

 � 1 . 

Next, the due date of task T12
 is assigned. The interval scanned for d12 j is [L2 , U2] 

where L2 = �
i=11+1

12

tij + x*
1 , U2 = dj . In the algorithm it is assumed al = 9L2; and bl = 

�U2�. For a given value of x for the TDD of T12 j, the due dates of tasks of Jj1 , 

excluding T11 j , T12 j and those which precede T11 j , are generated as follows  

dij = di�1 j + (x � x*
1 � p12 j)pij /(t12�1 j � t11 j), i = 11 

 + 1, 11 
 + 2,..., 12 � 1  

and 

dij = di�1 j + (dj � x)pij /(pj � t12 j), i = 12 
+ 1, 12 + 2,..., nj . 

TDDs of tasks preceding and including T11 j remain unchanged.  

In the general step, assume we are considering TDD reassignment of task Tij 

at Pk (we omit index k for simplicity). Assume further that after investigating P1 

through Pk�1 and all tasks of Jj prior to Tij on Pk , we have fixed the due dates of 

tasks T
1
~

 j , T2
~

 j ,..., Tz~ j Let Tij be processed between  Tl~ j and Tl�1
~

 j with fixed due 

dates of x*
l  and x*   

l+1  , respectively, i.e. the ordered sequence of tasks of Jj is (T1j , 

T2j ,..., T
1
~

 j ,..., T
2
~

 j ,..., Tl~ j ,..., Tij ,..., Tl�1
~

 j 
,..., Tz~ j ,..., Tnj j). Then, for assign-

ing the TDD of Tij , we need to consider only the interval [ 5
r = l+1

~

i
 prj + x*

l  , x*  
l+1 �

 pl�1
~

 j ] . Moreover, while reassigning the TDD of Tij , TDDs need to be generated 

for only those tasks which are processed between Tl~ j and Tl�1
~

 j 
. 

Of course, as the algorithm runs, the search interval becomes smaller. How-

ever, near the top of the tree, it can be quite wide. Thus, Raman and Talbot pro-

pose the following improvement of the search procedure. In general, while 

searching for the value x for a given task at any machine, we need theoretically 

consider the appropriate interval [L, U] in unit steps. However, a task can only 

occupy a given number of positions ( in any sequence. For a permutation sched-

ule on a single machine we have ( = n, whereas in a job shop ( > n because of 

the forced idle times on different machines. Nonetheless, it is usually much 

smaller than the number of different values of x. In consequence, TDDs, and thus 

total tardiness remains unchanged for many subintervals within [L, U] . 

The procedure is a modification of the binary search method. Assume that 

we search in the interval [L0 , U0] (see Figure 17.2.2). First, we compute total 

tardiness D(L0) and D(U0) of all jobs for x = L0 and x = U0 , respectively. Next, 
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we divide the interval into two equal parts, compute the total tardiness in the 

midpoint of each half-interval, and so on. Within any generated interval, scan-

ning for the next half-interval is initially done to the left, i.e. Ui = 
L0 + Ui�1

2
 , i = 1, 

2, 3, and terminates when a half-interval is fathomed, i.e. when the total tardiness 

at end-points and the midpoint of this interval are the same (e.g. [L0 , U3] in Fig-

ure 17.2.2). 

Notice that this search procedure may not always find the best value of x. 

This is because it ignores (rather unlikely in real problems) changes in total tar-

diness within an interval, if the same tardiness is realized at both its end points 

and its midpoint. 

total
tardiness

x
U2U3L0 U1 U0  

Figure 17.2.2 A modification binary search procedure. 

After finishing of left-scanning, the procedure evaluates the most recently gener-

ated and unfathomed interval to its right. If the total tardiness at both end-points 

and the midpoint of that interval are not the same, another half-interval is gener-

ated and left scanning is resumed. The procedure stops when all half-intervals are 

fathomed. 

Note that it is desirable to increase the upper limit of the search interval for 

the initial tasks of J j from dj to some arbitrarily large value (for example, the 

length of the initial solution). This follows from the fact that it can happen that 

the position of any task of a given job which corresponds to the minimum total 

tardiness results in that job itself being late. The presented search procedure re-

duces the computational complexity of each iteration from O(m2N 3�
j=1

n
 pj) to 

O(m2N 4
) , where N = �

j=1

n
 nj . 
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17.2.3 Computational Experiments 

Raman and Talbot [RT92] conducted extensive computational experiments to 

evaluate their algorithm (denoted GSP - Global Scheduling Procedure) for both 

static and dynamic problems. 

For the static problem two sets of experiments were performed. The first 

compared GSP with the following priority rules known from literature: SPT 
(Shortest Processing Time), EDD (Earliest Due Date), CRIT (Critical Ratio), 

MDD (Modified Job Due Date), MTD, and HYB (Hybrid - see [RTR89a], uses 

MTD for scheduling jobs on non-bottleneck machines, and MDD on bottleneck 

machines), and with the exact algorithm running with a time trap of 14 sec. GSP 

provided the best results yielding an average improvement of 12.7% over the 

next best rule. 

In the second set of experiments 100 problems (in four scenarios of 25 prob-

lems) were solved optimally as well as by the GSP algorithm. In majority of cas-

es in each scenario GSP found the optimal solution. The performance of GSP 

relative to the optimum depends upon parameter � which determines the range of 

job due dates. GSP solutions are quite close to the optimum for large �, and the 

difference increases for smaller �. 

Experiments for the dynamic problem were performed to study the effec-

tiveness of implementing GSP solutions of the static problem on a rolling hori-

zon basis. As we mentioned, in a dynamic environment a static problem is gener-

ated at each occurrence of a non-deterministic event in the system, such as an 

arrival of a new job. At such point in time a tree shown in Figure 17.2.1 is gener-

ated taking into account the tasks already in process. Of course, at that time some 

machines can be busy - they are blocked out for the period of commitment since 

we deal with the non-preemptive scheduling. The solution found by GSP is im-

plemented until the next event occurs, as in the so-called reactive scheduling 

which will be discussed in more details in Chapter 18.  

In the experiment job arrivals followed a Poisson process. Each job has as-

signed a due date that provided it a flow proportional to its processing time. Each 

job had a random routing through the system of 5 machines. Task processing 

times on each machine were sampled from a uniform distribution which varied to 

obtain two levels of relative machine workloads. The obtained machine utiliza-

tions ranged from 78% to 82% for the case of balanced workloads, and from 

66% to 93% for unbalanced workloads. In both cases, the average shop utiliza-

tion was about 80%. GSP was implemented with a time trap of 1.0 sec. per static 

problem, and compared with the same priority rules as in the case of the static 

problem experiment. The computational results are shown in Table 17.2.1. Since 

among the priority rules MTD performed the best for all scenarios, it has been 

used as a benchmark. Also given in the table is the corresponding level of signif-

icance ( for one-tailed tests concerning paired differences between MTD and 

GSP. As we see, GSP retains its effectiveness for all flows, and for both levels of 

workload balance, and this holds for ( = 0.15 or less. 
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Flow Balanced workloads Unbalanced workloads 

 MTD GSP ( MTD GSP ( 

2 

3 

4 

5 

268 

151 

84 

39 

252 

139 

68 

28 

0.15 

0.04 

0.09 

0.11 

396 

252 

154 

111 

357 

231 

143 

81 

0.01 

0.07 

0.06 

0.09 

Table 17.2.1 Experimental results for the dynamic problem. 

17.3 Simultaneous Scheduling and Routing in some 
FMS  

17.3.1 Problem Formulation 

In FMS scheduling literature majority of papers deal with either part and machine 

scheduling or with Automated Guided Vehicle (AGV) routing separately. In this 

section both issues are considered together, and the objective is to construct a 

schedule of minimum length [BEF+91]. 

The FMS under consideration has been implemented by one of the manufac-

turers producing parts for helicopters. A schematic view of the system is present-

ed in Figure 17.3.1 and its description is as follows. 

Pieces of raw material from which the parts are machined are stored in the 

automated storage area AS (1). Whenever necessary, an appropriate piece of ma-

terial is taken from the storage and loaded onto the pallet and vehicle at the stand 

(2). This task is performed automatically by computer controlled robots. Then, 

the piece is transported by an AGV (7) to the desired machine (6) where it is au-

tomatically unloaded at (8). Every machine in the system is capable of processing 

any machining task. This versatility is achieved by a large number of tools and 

fixtures that may be used by the machines. The tool magazines (4) of every ma-

chine have a capacity of up to 130 tools which are used for the various machining 

operations. The tools of the magazines are arranged in two layers so that the 

longer tools can occupy two vertical positions. The tools are changed automati-

cally. Fixtures are changed manually. It should be noted that a large variety of 

almost 100 quite different parts can be produced by each of these machines in 

this particular FMS. Simpler part types require about 30 operations (and tools) 

and the most complicated parts need about 80 operations. Therefore, the tool 

magazines have sufficient capacity to stock the tools for one to several consecu-

tive parts in a production schedule. In addition, the tools are loaded from a large 
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automated central tool storage area (3) which is located closely to the machines. 

No tool competition is observed, since the storage area contains more than 2000 

tools (including many multiple tools) and there are 4 NC-machines. The deliv-

ered raw material is mounted onto the appropriate fixture and processed by the 

tools which are changed according to a desired plan. The tool technology of this 

particular system allows the changing of the tools during execution of the jobs. 

This is used to eliminate the setup times of the tools required for the next job and 

occasionally a transfer of a tool to another machine (to validate completely the 

no-resource competition). The only (negligible) transition time in the FMS that 

could be observed was in fact the adjustment in size of the spindle that holds the 

tool whenever the next tool is exchanged with the previous one. After the com-

pletion the finished part exchanges its position with the raw material of the next 

job that is waiting for its processing. It is then automatically transported by an 

AGV to the inspection section (9). Parts which passed the inspection are trans-

ported and unloaded at the storage area (10). 

1

2
3

4 4 4

5 5 5 5

6

4

7
8

9
10

8 8 8

6 6 6

P3P2P1 P4

 

Figure 17.3.1 An example FMS. 

We see that the above system is very versatile and this feature is gained by the 

usage of many tools and large tool magazines. As it was pointed out in Section 

17.1, it is a common tendency of modern flexible manufacturing systems to be-

come so versatile that most of the processes on a part can be accomplished by 

just one or at most two machine types. As a result many systems consist of iden-

tical parallel machines. On the other hand, the existence of a large number of 

tools in the system allows one not to consider resource (tool) competition. Hence, 

our problem here reduces in fact to that of simultaneous scheduling and routing 

of parts among parallel machines. The inspection stage can be postponed in that 

analysis, since it is performed separately on the first-come-first-served basis. 
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Following the above observations, we can model the considered FMS using 

elements described below. Given a set of n independent single-task jobs (parts) 

J1 , J2 ,..., Jn with processing times pj , j = 1, 2,..., n, that are to be processed 

without preemptions on a set of m parallel identical machines P1 , P2 ,..., Pm , m 

not being a very large number. Here parallelism means that every machine is 

capable of processing any task. Setup times connected with changing tools are 

assumed to be zero since the latter can be changed on-line during the execution 

of tasks. Setup times resulting from changing part fixtures are included in the 

processing times. 

As mentioned above, machines are identical except for their locations and 

thus they require different delivery times. Hence, we may assume that k (k < m) 

AGVs V1 , V2 ,..., Vk , are to deliver pieces of raw material from the storage area 

to specified machines and the time associated with the delivery is equal to 7i , i = 

1, 2,..., m. The delivery time includes loading time at the storage area and un-

loading time at the required machine, their sum being equal to a. During each trip 

exactly one piece of raw material is delivered; this is due to the dimension of 

parts to be machined. After delivery of a piece of raw material the vehicle takes a 

pallet with a processed part (maybe from another machine), delivers it to the in-

spection stage and returns to the storage area (1). The round trip takes A units of 

time, including two loading and two unloading times. It is apparent that the most 

efficient usage of vehicles in the sense of a throughput rate for pieces delivered is 

achieved when the vehicles are operating at a cyclic mode with cycle time equal 

to A. In order to avoid traffic congestion we assume that starting moments of 

consecutive vehicles at the storage area are delayed by a time units. 

The problem is now to construct a schedule for machines and vehicles such 

that the whole job set is processed in a minimum time. 

It is obvious that the general problem stated above is NP-hard, as it is al-

ready NP-hard for the non-preemptive scheduling of two machines (see Section 

5.1). In the following we will consider two variants of the problem. In the first, 

the production schedule (i.e. the assignment of jobs to machines) is assumed to 

be known, and the objective is to find a feasible schedule for vehicles. This prob-

lem can be solved in polynomial time. The second consists of finding a compo-

site schedule, i.e. one taking into account simultaneous assignment of vehicles 

and machines to jobs. 

17.3.2 Vehicle Scheduling for a Fixed Production Schedule 

In this section we consider the problem of vehicle scheduling given a production 

schedule. Suppose an (optimal) non-preemptive assignment of jobs to machines 

is given (cf. Figure 17.3.2). This assignment imposes certain deadlines d i
j  on de-

livery of pieces of raw material to particular machines, where d i
j  denotes the lat-

est moment by which raw material for part Jj should be delivered to machine Pi . 
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The lateness in delivery could result in exceeding the planned schedule length C. 

Below we describe an approach that allows us to check whether it is possible to 

deliver all the required pieces of raw material to their destinations (given some 

production schedule), and if so, a vehicle schedule will be constructed. Without 

loss of generality we may assume that at time 0 at every machine there is already 

a piece of material to produce the first part; otherwise one should appropriately 

delay starting times on consecutive machines (cf. Figure 17.3.3). 

3d2
4d 1

l+1d m d
m
n

C t0
n-1d 2

1P

2P

mP

J1 J4

J2 J3 n-1J

Jl l+1J Jn

 

Figure 17.3.2 An example production schedule. 

Our vehicle scheduling problem may now be formulated as follows. Given a set 

of deadlines d i
j  , j = 1, 2,..., n, and delivery times from the storage area to particu-

lar machines 7i , i = 1, 2,..., m, is that possible to deliver all the required pieces of 

raw material on time, i.e. before the respective deadlines. If the answer is posi-

tive, a feasible vehicle schedule should be constructed. In general, this is equiva-

lent to determining a feasible solution to a Vehicle Routing with Time Windows 

(see e.g., [DLSS88]). Let J0 and Jn+1 be two dummy jobs representing the first 

departure and the last arrival of every vehicle, respectively. Also define two 

dummy machines P0 and Pm+1 on which J0 and Jn+1 are executed, respectively, 

and let 70 = 0, 7m+1 = M where M is an arbitrary large number. Denote by i(j) the 

index of the machine on which Jj is executed. For any two jobs Jj , Jj' , let cjj' be 

the travel time taken by a vehicle to make its delivery for job Jj' immediately af-

ter its delivery for Jj 

cjj' = { 
7i(j') � 7i(j) if 7i(j') � 7i(j) 
A � 7i(j') � 7i(j) if 7i(j') < 7i(j) 

j, j' = 0,..., n+1,  j � j'.
 



 17  Scheduling in Flexible Manufacturing Systems 

 

686 

a (k�1)a A A+a A+(k�1)a 2A 2A+a C t0

1V

2V

kV

a+7k7 i

 

Figure 17.3.3 An example vehicle schedule. 

If 7j + cjj' � 7j' , define a binary variable xjj' equal to 1 if and only if a vehicle 

makes its delivery for Jj' immediately after its delivery for Jj . Also, let uj be a 

non-negative variable denoting the latest possible delivery time of raw material 

for job Jj , j = 1,..., n. The problem then consists of determining whether there 

exist values of the variables satisfying  

�
j'=1

n
x0j' = �

j=1

n
xj n+1 = k , (17.3.1) 

�
j = 0, j � l

n+1

 xjl = �
j' = 0, j' � l

n+1

 xj' l = 1 , l = 1,..., n , (17.3.2) 

uj � uj' + Mxjj' � M � cjj' ,  j, j' = 1,..., n, j � j' , (17.3.3) 

0 � uj � d i
j  . (17.3.4) 

In this formulation, constraint (17.3.1) specifies that k vehicles are used, 

while constraints (17.3.2) associate every operation with exactly one vehicle. 

Constraints (17.3.3) and (17.3.4) guarantee that the vehicle schedule will satisfy 

time feasibility constraints. They are imposed only if xjj' is defined. This feasibil-

ity problem is in general NP-complete [Sav85]. However, for our particular prob-

lem, it can be solved in polynomial time because we can use the cyclic property 

of the schedule for relatively easily checking of the feasibility condition of the 

vehicle schedule for a given production schedule. The first schedule does not 

need to be constructed. When checking this feasibility condition one uses the job 

latest transportation starting times (using the assumption given at the beginning 

of this section) defined as follows 

sj = d i
j  � 7i,  j = m+1, m+2,..., n .  

The feasibility checking is given in Lemma 17.3.1. 
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Lemma 17.3.1  For a given ordered set of latest transportation starting times sj , 

sj � sj+1 , j = m+1, m+2,..., n, one can construct a feasible transportation sched-
ule for k vehicles if and only if 

sj � ( 9�j�m
k  ; � 1)A + [j � m � ( 9�j�m

k  ;  � 1)k � 1]a  

for all j = m+1, m+2,..., n, where 9� jk ; denotes the smallest integer not smaller 

than j/k . 

Proof. It is not hard to prove the correctness of the above formula taking into 

account that its two components reflect, respectively, the time necessary for an 

integer number of cycles and the delay of an appropriate vehicle in a cycle need-

ed for a transportation of the j 
th job in order.  

The conditions given in Lemma 17.3.1 can be checked in O(nlogn) time in the 

worst case. If one wants to construct a feasible schedule, the following polyno-

mial time algorithm will find it, whenever one exists. The basic idea behind the 

algorithm is to choose for transportation a job whose deadline, less correspond-

ing delivery time, is minimum - i.e., the most urgent delivery at this moment. 

This approach is summarized by the following algorithm. 

Algorithm 17.3.2  for finding a feasible vehicle schedule given a production 
schedule with m machines [BEF+91]. 
begin 
t := 0; l := 0; 

for j = m+1 to n do 

Calculate job's Jj latest transportation starting time;  -- initial values are set up 

Sort all the jobs in non-decreasing values of their latest transportation starting 

times and renumber them in this order; 

for j = m+1 to n do 

begin 
Calculate slack time of the remaining jobs; slj := sj � t; 

If any slack time is negative then stop; -- no feasible vehicle schedule exists 

Load job Jj onto an available vehicle; 

l := l + 1; 

if l � k � 1 then t := t + a 

else  
begin 
t := t � (k � 1)a + A; 

l := 0; 
end; 

end; -- all jobs are loaded onto the vehicles 

end; 
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A basic property of Algorithm 17.3.2 is proved in the following theorem. 

Theorem 17.3.3  Algorithm 17.3.2 finds a feasible transportation schedule 
whenever one exists. 

Proof. Suppose that Algorithm 17.3.2 fails to find a feasible transportation 

schedule while such a schedule S exists. In this case there must exist in S two 

jobs Ji and Jj such that sli < slj and Jj has been transported first. It is not hard to 

see that exchanging these two jobs, i.e., Ji being transported first, we do not 

cause the unfeasibility of the schedule. Now we can repeat the above pattern as 

long as such a pair of jobs violating the earliest slack time rule exists. After a 

finite number of such changes one gets a feasible schedule constructed according 

to the algorithm, which is a contradiction.  

Let us now calculate the complexity of Algorithm 17.3.2 considering the off-line 

performance of the algorithm. Then its most complex function is the ordering of 

jobs in non-decreasing order of their slack times. Thus, the overall complexity 

would be O(nlogn). However, if one performs the algorithm in the on-line mode, 

then the selection of a job to be transported next requires only linear time, pro-

vided that an unordered sequence is used. In both cases a low order polynomial 

time algorithm is obtained. We see that the easiness of the problem depends 

mainly on its regular structure following the cyclic property of the vehicle sched-

ule. 

Example 17.3.4  To illustrate the use of the algorithm, consider the following 

example. Let m the number of machines, n the number of jobs, and k the number 

of vehicles be equal to 3, 9 and 2, respectively. Transportation times for respec-

tive machines are 71 = 1, 72 = 1.5, 73 = 2, and cycle and loading and unloading 

times are A = 3, a = 0.5, respectively. A production schedule is given in Figure 

17.3.4(a). Thus the deadlines are d 1
5 = 3, d 1

7 = 7, d 2
6 = 6, d 2

8 = 7, d 3
4 = 2, d 3

9 = 8. 

They result in the latest transportation starting times s4 = 0, s5 = 2, s6 = 4.5, s7 = 

6, s8 = 5.5, s9 = 6. The corresponding vehicle schedule generated by Algorithm 

17.3.2 is shown in Figure 17.3.4(b). Job J9 is delivered too late and no feasible 

transportation schedule for the given production plan can be constructed.  

The obvious question is now what to do if there is no feasible transportation 

schedule. The first approach consists of finding jobs in the transportation sched-

ule that can be delayed without lengthening the schedule. If such an operation is 

found, other jobs that cannot be delayed are transported first. In our example 

(Figure 17.3.4(a)) job J7 can be started later and instead J9 can be assigned first 

to vehicle V1 . Such an exchange will not lengthen the schedule. However, it may 

also be the case that the production schedule reflects deadlines which cannot be 

exceeded, and therefore the jobs cannot be shifted. In such a situation, one may 

use an alternative production schedule, if one exists. As pointed out in [Sch89], it 
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is often the case at the FMS planning stage that several such plans may be con-

structed, and the operator chooses one of them. If none can be realized because 

of a non-feasible transportation schedule, the operator may decide to construct 

optimal production and vehicle schedules at the same time. One such approach 

based on dynamic programming is described in the next section. 
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Figure 17.3.4 Production and non-feasible vehicle schedules 
 (a) production schedule, 
 (b) vehicle schedule: J9 is delivered too late. 

17.3.3 Simultaneous Job and Vehicle Scheduling 

In this section, the problem of simultaneous construction of production and vehi-

cle schedules is discussed. As mentioned above, this problem is NP-hard, alt-

hough not strongly NP-hard. Thus, a pseudopolynomial time algorithm based on 

dynamic programming can be constructed for its solution. 

Assume that jobs are ordered in non-increasing order of their processing times, 

i.e. p1 �...� pn�1 � pn . Such an ordering implies that longer jobs will be processed 

first and processing can take place on machines further from the storage area, 

which is a convenient fact from the viewpoint of vehicle scheduling. 

Now let us formulate a dynamic programming algorithm using the ideas present-

ed in [GLL+79]. Define 
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xj(t1, t2,..., tm)  =  

�
.
�
.
  

 

 

 

 

 

 

 

true if jobs J1 , J2 ,..., Jj can be scheduled on 

machines P1 , P2 ,..., Pm in such a way that 

Pi is busy in time interval [0, ti], i = 1, 

2,..., m (excluding possible idle time fol-

lowing from vehicle scheduling), and the 

vehicle schedule is feasible 

false otherwise 

where 

x0(t1, t2,..., tm) = { 

true if ti = 0, i = 1, 2,..., m  

false otherwise. 

Using these variables, the recursive equation can be written in the following form  

xj(t1, t2,..., tm) =  

V
i=1

m
[xj�1(t1 , t2 ,..., ti�1 , ti � pi , ti+1 ,..., tm) ^ Zij(t1 , t2 ,..., ti�1, ti , ti+1 ,..., tm)] 

where 

Zij(t1, t2,..., ti�1, ti, ti+1,..., tm) =  

�.
�
. 

 

 

 

 

 

 

 

true if ti � pj � 7i �  

( 9�j�m
k  ;  � 1)A + [j � m � ( 9�j�m

k  ;  � 1)k � 1]a 

or j � m 

false otherwise 

is the condition of vehicle schedule feasibility, given in Lemma 17.3.1. 

Values of xj(&) are computed for ti = 0, 1,..., C, i = 1, 2,..., m, where C is an 

upper bound on the minimum schedule length C *  
max . Finally, C *  

max is determined 

as 

C *  
max = min{max{t1, t2,..., tm} | xn(t1, t2,..., tm) = true} . 

The above algorithm solves our problem in O(nCm
) time. Thus, for fixed m, 

it is a pseudopolynomial time algorithm, and can be used in practice, taking into 

account that m is rather small. To complete our discussion, let us consider once 

more the example from Section 17.3.2. The above dynamic programming ap-

proach yields schedules presented in Figure 17.3.5. We see that it is possible to 

complete all the jobs in 11 units and deliver them to machines in 8 units. 

To end this section let us notice that various extensions of the model are 

possible and worth considering. Among them are those including different routes 

for particular vehicles, an inspection phase as the second stage machine, resource 
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competition, and different criteria (e.g., maximum lateness). These issues are 

currently under investigation. 

Further extensions of the described FMS model have been presented in 

[BBFW94] and [KL95]. 
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Figure 17.3.5 Optimal production and vehicle schedule 
(a) production schedule, 
(b) vehicle schedule. 

17.4 Batch Scheduling in Flexible Flow Shops  
under Resource Constraints 

The cast-plate-method of manufacturing acrylic-glass gives raise to a batch 

scheduling problem on parallel processing units under resource constraints. This 

chapter introduces the real world problem as well as an appropriate mathematical 

programming formulation. The problem finally is solved heuristically. 

17.4.1 Introduction - Statement of the Problem  

The cast-plate-method for manufacturing acrylic-glass essentially consists of the 

preparation of a viscous chemical solution, pouring it in a mould i.e. between 

two plates of mineral glass (like a sandwich) and polymerizing the syrup to solid 

sheets. Sandwiches of the same product are collected on storage racks. Figure 

17.4.1 shows a manufacturing plant and its production facilities. 
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Figure 17.4.1 Procedure of manufacturing acrylic-glass. 

Depending on the included product, each rack has to be successively put into one 

to four water basins holding particular temperatures for pre-polymerization. Sub-

sequently, every rack has to be designed to a kiln where end-polymerization takes 

place, using a particular kiln temperature (temper cycle). As soon as polymeriza-

tion is concluded the racks are unloaded, i.e. the mineral glass plates are removed 

and the hardened acrylic-glass plates may be taken to the quality control section. 

The production cycle for the empty rack starts again, using a "new" solution, i.e. 

loading the rack with next sheets, see [FKPS91]. 

The goal of the optimization process was to find optimal (at least "good") 

production schedules for the weekly varying manufacturing program in order to 

improve the plant’s polymerization capacity utilization. 

17.4.2 Mathematical Formulation 

For a given manufacturing program (say: product mix) and a fixed time horizon 

we examine the polymerization area: 

T Pre-polymerization in (water-)basins: 

There is the choice between a given number of basins different in size and 

with different temperatures. Every basin can be heated to any temperature. 

Racks may be put into or taken out of the basins at any time. 

T End-polymerisation in kilns: 
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The present kilns solely differ in size. Every kiln can handle any temper cycle 

(i.e. heating up, processing, and cooling down). Kilns must not be opened 

while such a cycle is still in progress. 

The production units before and after the above mentioned polymerization 

area such as conveyer belts, kettles and quality control are linked through buffers 

and hence remain uncritical. Thus, we do not need to include those areas in our 

considerations about optimal schedules and consequently define the polymeriza-

tion area to be the optimization field. However, we have to consider the fact, that 

the number of storage racks for every type of rack is limited at any time (cf. 

global rack restrictions). 

The interval [0, H] is the given planning period (H = 10080 in minutes, i.e. a 

week); t � [0, H] denotes entry times, H is the planning horizon. For technical 

reasons we allow t to be an integer, but only decision variables with t � [0,..., H] 

in a feasible solution are of importance. 

The customers’ orders, as part of a given product mix, can be divided ac-

cording to their characteristic attributes such as type, size, and diameter. A job 
(product) Ji, i = 1,..., n, denotes all orders of the same type, size, and diameter. 

Size and diameter determine the type of rack to be used for job Ji, whereas 

the number 7i of racks needed can be figured out according to the racks’ holding 

capacity and the total requirement of sheets for that job. 

Each basin and each kiln is large enough in order to hold at least one rack 

regardless of its type. Furthermore the breadth of all basins and kilns is almost 

the same. They only differ in their length. Racks may only placed one after an-

other into basins or kilns. Even putting racks of the smallest breadth next to each 

other is impossible. Hence to satisfy capacity constraints we only need to consid-

er the production units’ length. So, a real number ?i according to the particular 

rack’s size is assigned to every job, where ?i equals the rack’s breadth if the 

(rack’s breadth �) rack’s length is smaller or equal the unit’s breadth, and where 

?i equals the rack’s length if the (rack’s breadth �) unit’s breadth is smaller than 

the rack’s length. The ?i should be chosen such that shunter distances are taken 

into consideration. 

A 1-basin job is a job that needs to pre-polymerize in one basin only. A 2-
basin job (3-basin, 4-basin) job is a job the sandwiches of which need to pass 

through two (three, four) basins with different temperatures. J is the set of all 

jobs and I = {1,..., n} is the set of indices for all jobs Ji � J. Il, l = 1,..., 4, is 

the set of indices for all l-basin jobs. Thus, I = I1 � I2 � I3 � I4; Ik � Ij = � for 

all k, j � {1,..., 4} and k � j. 
Each job has its unique work schedule to be applied to each rack of that job. 

Different jobs require different work schedules. A work schedule is a table of the 

following non-negative real numbers (considering multiple-basin jobs): 

T Maximum allowed waiting time in front of the basin area; 

T Basin 1: temperature and duration of stay, 
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T Basin 2: temperature and duration of stay, 

T Basin 3: temperature and duration of stay, 

T Basin 4: temperature and duration of stay; 

T Maximum allowed waiting time between basin- and kiln area; 

T Kiln: temperature and duration of stay. 

A rack, holding filled sandwiches, is the smallest unit to be scheduled. For 

racks holding sandwiches of the same job Ji we use the index l, l = 1,...,  7i. 

There are K different types of (empty) racks; ak gives the number of present 

racks for every type k, k = 1,...,  K. 

A basin q, q = 1,...,  Z, is characterized by its temperature uq and its length 

vqZ� (� = 1,...,  4) gives the number of basins of size � and Z = Z1 + Z2 + Z3

 + Z4 is the total number of basins in the considered plant. Besides the four dis-

tinct basin sizes we consider two distinct kiln sizes. 

A kiln r, r = 1,...,  N, is characterized by its length vr . N1 (N2) gives the 

number of large (small) kilns in the plant, N = N1 + N2 is the total number of 

kilns. 

The Model 

The following definitions and parameters are used to describe a mathematical 

model of the problem. 

Definitions and parameters: 

A fictitious kiln r, r = 1,...,  m, is one of the kilns supposed to run with a par-

ticular temperature ur . 

m total number of fictitious kilns (m = Nrt, where rt is the 

number of different temperatures required) 

r1 (r2) number of fictitious large (small) kilns (r1 = N1rt, r2 = N2rt) 
{1,...,  r1} set of indices concerning fictitious large kilns 

{r1 + 1,...,  m} set of indices concerning fictitious small kilns 

A fictitious basin q, q = 1,...,  Q, is one of the basins heated to a particular 

temperature. 

Q total number of fictitious basins (Q = Zqt, where 

qt is the number of different temperatures need-

ed) 

q1 (q2, q3, q4) number of fictitious small (medium-size, large, 

extra-large) basins (ql = Zlqt) 
{1,...,  q1} set of indices concerning small basins 

{q1 + 1,...,  q1 + q2} set of indices concerning medium-size basins 

{q1 + q2 + 1,...,  q1 + q2 + q3} set of indices concerning large basins 

{q1 + q2 + q3 + 1,...,  Q } set of indices concerning extra-large basins 
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Each rack l of job Ji with l = 7i is called a fictitious rack of job Ji. Fictitious 

racks are auxiliary tools. Let us illustrate their purpose: 

Consider rack l, where 1 � l � 7i, containing a 3-basin job. This rack has to 

pre-polymerize in three successive basins. We define fictitious racks as copies of 

the present rack in accordance to the steps of pre-polymerisation. A fictitious 

rack l + 7i is created to describe the original rack l in its second basin. Another 

fictitious rack l + 27i arises in accordance to its third step of pre-polymerisation. 

Thus, the rack index corresponds with the sequence of basins the existing rack 

passes through. Obviously, fictitious racks occur for multiple-basin jobs only, i.e. 

for i � I2 � I3 � I4. 

Let 7
_

i be the number of (real and fictitious) racks for job Ji, then 7
_

i := l7i if i 
� Il (l = 1,...,  4). 

We call jobs Ji and Jj compatible if their work schedules contain identical 

temperatures and durations for end-polymerization, meaning that racks holding 

sandwiches of those jobs may be assigned to the same kiln at one time (regard, a 

kiln cannot be opened during polymerization). Hence we define A = (aij), i, j = 

1,...,  n, as the job-compatibility matrix, that characterizes the jobs’ compatibility 

with respect to its mere chemical features (they determine the temperatures re-

quired in a kiln), its temper-time, and possible preferences. The matrix is defined 

as 

aij := { 1 if jobs Ji and Jj must not join the same kiln 

0 else. 

Finally we introduce some time parameters:  

(il time, when the l th rack of job Ji leaves the basin area 

2ilr (duration of) stay of the l th rack of job Ji in kiln r 

2ilq (duration of) stay of the l th rack of job Ji in basin q 

mi maximum allowed waiting time for a rack of job Ji between basin- 

and kiln area 

Hmax maximum allowed waiting time before entering the basin area 

Zmax maximum allowed waiting time for a rack of a multiple-basin job be-

tween two basins 

where 1 � i � n; 1 � l � 7i , 7
_

i, respectively; 1 � r � m; 1 � q � Q. 

Infeasible or undesirable assignments of job Ji to basin q (or kiln r) can be pre-

vented by fixing 2ilq = # (or 2ilr = #) for all l = 1,...,  7i . We may assume that 2ilq 

includes any kind of necessary setup times. Analogously, 2ilr includes setup 

times as well as heating up and cooling down times that occur in the temper cy-

cle. 

Remark: We assumed, that at time t = 0 every rack of the given production plan 

potentially stands by at the beginning of the basin area. (Of course, later on we 
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have to make sure, that the global rack restrictions are satisfied.) Granting excep-

tion to this assumption, the program can easily be remodeled by introducing 

times when rack l of job Ji enters and leaves the basin area. 

Our decision variables are 

xilrt � {0, 1} for i = 1,...,  n, l = 1,...,  7i, r = 1,...,  m, t = 0,...,  H, 

xilqt � {0, 1} for i = 1,...,  n, l = 1,...,  7
_

i, q = 1,...,  Q, t = 0,...,  H, 

where 

xilrt := { 1 if the l th rack of job Ji enters kiln r at time t, 
0 else. 

xilqt := { 1 if the lth rack of job Ji enters basin q at time t, 
0 else. 

For technical reasons we define auxiliary variables xilqt � {0, 1} for t < 0; i = 

1,...,  n; l = 1,...,  7
_

i; q = 1,...,  Q analogously. 

An entire allocation scheme for the basin area is denoted by x
_

 whereas x^ de-

notes an entire allocation scheme for the kiln area. According to the definition of 

xilqt and xilrt, both x
_

 and x^ represent a binary four-dimensional matrix. An alloca-

tion scheme for the entire polymerization area is denoted by (x
_

, x^). 

A mathematical programming model for the basin area is given below. 

Objective function: 

Minimize b1(x
_

) = �
i�I1

 �
l=1

7i

 �
q=1

Q
 �
t=0

H
) (t + 2ilq)xilqt +  

 �
i�I2

 �
l=1

7i

 �
q=1

Q
 �
t=0

H
 (t + 2i(7i+l)q)xi(7i+l)qt +  

 �
i�I3

 �
l=1

7i

 �
q=1

Q
 �
t=0

H
 (t + 2i(27i+l)q)xi(27i+l)qt +  

 �
i�I4

 �
l=1

7i

 �
q=1

Q
 �
t=0

H
 (t + 2i(37i+l)q)xi(37i+l)qt  

Minimize b2(x
_

) = max
i�I

l=1,...,7
_

i
q=1,...,Q
t=0,...,H

{(t + 2ilq)xilqt} 

subject to 

"waiting time constraints":  (17.4.1) 
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txilqt � Hmax for i � I;  l = 1,...,  7i ; 

 q = 1,...,  Q;  t = 0,...,  H (17.4.1a) 

txi(l+7i)�t � (7 + 2ilq)xilq7 � Zmax  

 i � I2 � I3 � I4;  l = 1,...,  7i ; 

 �, q = 1,...,  Q;  7, t = 0,...,  H  (17.4.1b) 

t&xi(l+27i)�t � (7 + 2i(l+7i)q)&xi(l+7i)q7 � Zmax  

 i � I3 � I4;  l = 1,...,  7i ; 

 �, q = 1,...,  Q;  7, t = 0,...,  H (17.4.1c) 

t&xi(l+37i)�t � (7 + 2i(l+27i)q)xi(l+27i)q7 � Zmax  

 i � I4;  l = 1,...,  7i ; 

 �, q = 1,...,  Q;  7, t = 0,...,  H (17.4.1d) 

"basin capacity constraints": (17.4.2) 

�
i=1

n
 �
l=1

7
_

i

?i [xilqt + xilq(t�1) + ... + xilq(t�2ilq�1)] � lq 

 for q = 1,...,  Q;  t = 0,...,  H 

"basin coordination constraints": (17.4.3) 

Using +1 := q1 + 1, +2 := q1 + q2, +3 := q1 + q2 + 1, +4 := q1 + q2 + q3 and +5 := 

q1 + q2 + q3 + 1 and the signum function sign: IR � IR>0 defined as 

sign(x)  = { 
1 if x > 0 

0 if x = 0 

�1 if x < 0 

we have the following constraints: 

�
q=1

q1

 sign[�
i=1

n
 �
l=1

7
_

i

(xilqt + xilq(t�1) + ... + xilq(t�2ilq�1))] � Z1 for t = 0,...,  H; 

�
q=+1

+2

 sign[�
i=1

n
 �
l=1

7
_

i

(xilqt + xilq(t�1) + ... + xilq(t�2ilq�1))] � Z2 for t = 0,...,  H; 

�
q=+3

+4

 sign[�
i=1

n
 �
l=1

7
_

i

(xilqt + xilq(t�1) + ... + xilq(t�2ilq�1))] � Z3 for t = 0,...,  H; 
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�
q=+5

Q

 sign[�
i=1

n
 �
l=1

7
_

i

(xilqt + xilq(t�1) + ... + xilq(t�2ilq�1))] � Z4 for t = 0,...,  H; 

"throughput constraints": (17.4.4) 

�
q=1

Q

 �
t=0

H
 xilqt = 1 for i = 1,...,  n;  l = 1,...,  7

_
i 

"basin-sequence constraints": (17.4.5) 

xilqt + xi(l+7i)�7 � 1 

 for i � I2;  l = 1,...,  7i;  �, q = 1,...,  Q;   

 t = 0,...,  H; 7 = 0,...,  t + 2ilq (17.4.5a) 

xilqt + xi(l+7i)�7 � 1 

 for i � I3;  l = 1,..., 27i;  �, q = 1,...,  Q;   

 t = 0,...,  H; 7 = 0,...,  t + 2ilq (17.4.5b) 

xilqt + xi(l+7i)�7 � 1 

 for i � I4;  l = 1,..., 37i;  �, q = 1,...,  Q;   

 t = 0,...,  H; 7 = 0,...,  t + 2ilq (17.4.5c) 

"binary constraints": (17.4.6) 

xilqt � {0, 1} for i = 1,...,  n;  l = 1,...,  7
_

i;  q = 1,...,  Q;  t = 0,...,  H 

"prohibiting infeasible assignments": (17.4.7) 

xilqt = 0 for l = 1,...,  7
_

i;  t = 0,...,  H 

 and for all (i, q) � I � {1,...,  Q}  

 such that job Ji is not to be designed to basin q 

"technical constraints": (17.4.8) 

xilqt = 0 for t < 0;  i = 1,...,  n; l = 1,...,  7
_

i;  q = 1,...,  Q . 

The objective function b1(x
_

) minimizes the sum of flow times of the racks in the 

basins area in order to gain an optimal throughput with respect to the given prod-

uct mix. The objective function b2(x
_

) gives the instant when the very last rack (as 

part of the given product mix) leaves the basin area. Minimizing b2(x
_

) corre-
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sponds to finishing processing of the given product mix in the basin area as soon 

as possible (i.e. minimizing the makespan). 

The waiting time constraints (17.4.1) assure that the maximum allowed wait-

ing time is observed by every rack before entering the first basin for all i � I 

(17.4.1a), between the first and the second basin for all i � I2 � I3 � I4 (17.4.1b), 

between the second and third basin for all i � I3 � I4 (17.4.1c), and before enter-

ing the fourth basin for all i � I4 (17.4.1d). The basin capacity constraints 

(17.4.2) guarantee that each basin’s capacity is never exceeded. The basin coor-

dination constraints (17.4.3) state that the number of fictitious basins to be cho-

sen at any time is limited by the number of physically present basins. This holds 

for basins of all different sizes. Throughput constraints (17.4.4) require that every 

fictitious rack is assigned to exactly one basin during the regarded planning peri-

od. The basin-sequence constraints (17.4.5) assure, that pre-polymerization for 

racks of multiple-basin jobs proceeds in due succession with respect to the par-

ticular work schedule. Inequalities (17.4.5a) guarantee that, considering 2-basin 

jobs, pre polymerization in the first basin has to be finished before continuing in 

a second basin. (17.4.5b) enforce the appropriate order of basins 1, 2, 3 for all 3-

basin jobs, for 4-basin jobs (17.4.5c) perform analogously. For every fictitious 

rack l of a job Ji a binary constraint (17.4.6) characterizes whether the rack is 

assigned to basin q at time t or not. The set of equations (17.4.7) are tools for 

precluding infeasible or objectionable assignments. Negative time subscripts t 
may occur in constraints (17.4.3). Thus, in (17.4.8) we also define decision vari-

ables xilqt for t < 0, though they are of no importance for the problem in practice. 

A mathematical programming model for the kiln area is formulated as follows: 

Objective function: 

Minimize _1(x^) = �
i=1

n
 �
l=1

7i

 �
r=1

m
 �
t=0

H
 [(t � (il) + 2ilr]xilrt 

Minimize _2(x^) = max
i=1,...,n
l=1,...,7
r=1,...,m
t=0,...,H

{(t + 2ilr)xilrt} 

subject to 

"availability constraints": (17.4.9) 

txilrt � (il for i = 1,...,  n ;  l = 1,...,  7i ;  r = 1,...,  m ;  t = 0,...,  H 

"waiting time constraints": (17.4.10) 

(t � (il)xilrt � mi for i = 1,...,  n ;  l = 1,...,  7i ;  r = 1,...,  m ;  t = 0,...,  H 

"kiln capacity constraints": (17.4.11) 
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�
i=1

n
 �
l=1

7i

 xilrt?i � vr   for r = 1, .., m ;  t = 0,...,  H 

"kiln coordination constraints": (17.4.12) 

�
r=1

r1

 sign[�
i=1

n
 �
l=1

7i

 (xilrt + xilr(t�1) + ... + xilr(t�2ilr+1))] � N1 

 for t = 0,...,  H (17.4.12a) 

�
r=r1+1

m
 sign[�

i=1

n
 �
l=1

7i

 (xilrt + xilr(t�1) + ... + xilr(t�2ilr+1))] � N2 

 for t = 0,...,  H (17.4.12b) 

"product compatibility constraints": (17.4.13) 

aij(xilrt + xjkrt) � 1 

 for i, j = 1,...,  n ; l = 1,...,  7i ;  k = 1,...,  7j ;  r = 1,...,  m;  t = 0,...,  H; 

"kiln closed constraints": (17.4.14) 

(xilr7 + xjkrt) � 1 for i, j = 1,...,  n ; l = 1,...,  7i ;  k = 1,...,  7j ;   

    r = 1,...,  m ;  7 = 0,...,  H ;  t = 7 + 1,...,  7 + 2ilr 

"throughput constraints": (17.4.15) 

�
r=1

m
 �
t=0

H
 xilrt = 1 for i = 1,...,  n; l = 1,...,  7i  

"binary constraints": (17.4.16) 

xilrt � {0, 1} for i = 1,...,  n ;  l = 1,...,  7i ;  r = 1,...,  m ;  t = 0,...,  H 

"job completion constraints": (17.4.17) 

(t + 2ilr)xilrt � H for i = 1,...,  n ; l = 1,...,  7i ;  r = 1,...,  m ;  t = 0,...,  H 

"prohibiting infeasible assignments": (17.4.18) 

xilrt = 0 for l = 1,...,  7i ;  t = 0,...,  H 

 for all (i, r) � I � {1,...,  m} such that job Ji is not to 

be assigned to a fictitious kiln r 

The objective function _1(x^) sums up the times that the racks of the given prod-

uct mix spend in the kiln area in accordance to the basin exit times (il given as a 
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function of a basin schedule x
_

. We minimize _1(x^) in order to gain an optimal 

throughput with respect to the kiln area. The objective function _2(x^) determines 

the time, when the very last rack of the given product mix leaves the kiln area. 

Minimizing _2(x^) corresponds with finishing polymerisation of all given racks in 

the kiln area as soon as possible, i.e. minimizing makespan. 

The availability constraints (17.4.9) assure, that no rack is assigned to a kiln 

prior to termination of its pre-polymerization in the basin area. Constraints 

(17.4.10) prevent that the maximum waiting time between release in the basin 

area and assignment to a kiln is exceeded for any rack. Constraints (17.4.11) 

make sure, that the capacity of each kiln is observed at any time. Constraints 

(17.4.12) state, that the number of fictitious kilns chosen at any time is limited by 

the number of physically present kilns. Constraints (17.4.13) require, that racks 

which are assigned to the same kiln at a time need to hold compatible jobs. The 

kiln closed constraints (17.4.14) state, that there is neither recharging nor untime-

ly removal of racks while polymerization is still in progress. Throughput con-

straints (17.4.15) require that every fictitious rack is assigned to exactly one kiln 

during the planning period. For every fictitious rack a binary constraint of 

(17.4.16) characterizes whether the rack is assigned to a kiln r at time t. The job 

completion constraints (17.4.17) state that all racks have to leave the kiln area 

during the planning period, i.e. until the planning horizon H. Constraints 

(17.4.18) exclude infeasible or objectionable assignments like priorities of par-

ticular customer orders. 

The holding time of each rack consists of the period of time spent in the op-

timization area and the time needed for filling (mounting) and dismounting. As-

sume that til is an empirical upper bound for this period of time for rack l of job 

Ji . Let 2
_

i be an upper bound for the flow time of job Ji in the basin area. It con-

sists of waiting times before and between the basins as well as of the pre-

polymerization times spent in the basins. Hence we obtain 2
_

i � max
q

{2ilq} + Hmax 

for all l = 1,...,  7i and all 1-basin jobs Ji, i � I1. The flow time for multiple-basin 

jobs is given by the sum of flow time in the respective basins and the waiting 

times spent between them. For a rack l of a 3-basin job Ji, i � I3, for instance, we 

get 

2
_

i � max
q

{2ilq} + max
q

{2i(7i+l)q} + max
q

{2i(27i+l)q} + Hmax + 2Zmax. 

Furthermore, we define Jk := {i � I | job Ji requires racks of type k} for every k � 

{1,...,  K}. Of course, I = �
k=1

K
 Jk . 

Using these notations, the global rack constraints can be formulated as fol-

lows: 

"global rack constraints": (17.4.19) 
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�
i�Jk

 �
l=1

7i

 �
q=1

Q
 (xilqt +...+ xilq(t-til+1)) � ak  for k = 1,...,    K; t = 0,...,  H 

�
i�Jk

 �
l=1

7i

 �
r=1

m
 (xilr(t+mi+2

_
i) +

...+ xilr(t+mi+2
_

i�til+1)) � ak 

    for k = 1,...,   K; t = 0,...,  H. 

The number of empty racks of any size is limited. Therefore the set of above 

constraints guarantees, that, with respect to each particular type of rack, no racks 

are scheduled unless/until a previously used (empty) storage rack falls vacant. 

Remark: The til are functions of (x
_

, x^). Thus, it is impossible to determine the 

values of til exactly a priori. The actual choice of til determines whether the glob-

al rack constraints are too restrictive with respect to the real world problem or 

whether they give a relaxation for the problem of short rack capacities. Efficient 

algorithms should dynamically adapt the til. The 2
_

i depend upon the quality of a 

presupposed basin schedule x
_

. The above remarks on til apply to 2
_

i analogously. 

17.4.3 Heuristic Solution Approach 

Several exact solution methods for 0-1 programming problems are proposed in 

literature (cf. [Bal67, Sch86, NW88]), however all of these are applicable for 

small problem sizes only. Hence, as our problem may include up to about 108
 

binary variables the only suitable solution methods are heuristics. 

On the first glance it seems to be appropriate to develop solution methods 

for the basin area and for the kiln area independently. However a final combina-

tion of two independently derived schedules could be impossible without exceed-

ing the feasible buffers between the two areas, so that the waiting time con-

straints might be violated. Thus, the only reasonable line of attack is an integrat-

ed optimization. During a forward computation feasible schedules for the basin 

area yield also feasible schedules for the kiln area, while a backward computa-
tion derives feasible schedules for the basin area from ones of the kiln area. 

In our practical problem we decided to use backward computation. This de-

cision was based on the observation that the kilns' capacity already has been no-

ticed to be a bottleneck for particular product mixes while the basins’ capacity 

appears to be less critical. Hence forward computation more often results in in-

feasible solutions. 

One kind of backward computation, called simple backward computation, 

first generates a feasible schedule for the kiln area and tries to adapt this schedule 

to the basin area such that none of the constraints becomes violated. The other 

kind, called simultaneous backward computation works rack after rack. First, one 

rack is assigned to some kiln and to some basin. In step i the i th rack is tried to fit 
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into the partial schedule such that none of the constraints will be violated. The 

procedure terminates when all racks have been considered. Before we are going 

into details, we provide a short description of the heuristics used for generation 

of feasible kiln schedules. 

Generation of Feasible Kiln Schedules 

We are going to introduce three greedy heuristics as well as two regret heuristics 

capable to generate feasible solutions for the kiln area. Both kinds of heuristics 

are based on priority rules. 

In order to get good feasible solutions intuition tells us that it seems to be 

reasonable to consider compatibility properties of the jobs. In order to avoid a 

waste of the kiln’s length racks of less compatible jobs should more likely be put 

into small kilns than racks of jobs of high compatibility. Hence we first need a 

measure for the job incompatibility. A useful measure will be the percentage of 

racks to which a job is incompatible, i.e. the values 

ui
1
 := 

1
7 M
N
O

P
Q
R�

j=1

n
 7i aij   where  7 := �

j=1

n
 7i . 

Value 7 is the sum of all racks in use and aij are coefficients of our compatibility 

matrix A as defined in the previous section. 

Similarly, we consider the rack size required for job Ji, and also the kiln size. 

Thus, let ui
2
 := 

?i
max

i
{?i}

 for all Ji � I, and ur
3
 := 

?r
max

r
{?r}

 for all r = 1,...,  N. If we 

use u
_

i
j
 := 1 � ui

j
 for j := 1, 2 and u

_
r
3
 := 1 � ur

3
 then we are able to define a character-

istic (job � kiln)-matrix S((,*,") = (s((,*,")ir) where (, *, " � [0, 1] and  

s((,*,")ir := [(1 � ()ui
1
 + (u

_
i
1
][(1 � *)ui

2
 + *u

_
i
2
][(1 � ")ur

3
 + "u

_
r
3
] . 

The triple ((,*,") is called a strategy and determines the "measure of quality" of 

assignment "rack of job Ji to kiln r". Among all possible matrices especially the 

entries of S(0,0,1) and S(1,1,0) correspond to our intuition. 

First we determine a feasible schedule for the kilns and then calculate a fea-

sible schedule for the basins. Hence it might be better to prefer multiple-basin 

jobs while filling the kilns. According to our strategy this implies that almost all 

basins are available for multiple-basin jobs, so that unfeasibilities are prevented. 

Thus delays of the product mix completion time are reduced. Furthermore, the 

number of racks to be produced of a particular job and their processing times in a 

kiln as well as in the basin area should be considered. This is motivated by the 

observation that jobs that will be in process for a long time probably determine 

the completion time of the schedule. Thus let 
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ui := �
l=1

7
_

i

max
q

{2ilq} + �
l=1

7i

max
r

{2ilr},  ui
4
 := 

ui
maxi {ui}

 ,  and  u
_

i
4
 := 1 � ui

4
 . 

Moreover the basin size is included by uq
5
 := 

lq
max

q
{lq}

 and u
_

q
5
 := 1 � uq

5
, for q = 

1,...,  Z. Taking these values into account for the matrix entries of S yields an-

other characteristic matrix S((,*,",,,%) = (s((,*,",,,%)ir) where ,, % � [0, 1] and 

s((,*,",,,%)ir := s((,*,")ir[(1 � ,)ui
4
 + ,u

_
i
4
][(1 � %)uq

5
 + %u

 _
q
5
]. The tuple ((,*,",,,%) 

will also be called a strategy. 

All subsequent heuristics should be applied several times in order to create 

good schedules. To increase the variety of solutions we finally add some random 

elements to the above mentioned strategies. Let z be a random variable uniformly 

distributed in [0,1]. Then S'((,*,") = (s'((,*,")ir) and S((,*,",,,%) = (s'((,*,",,,%)ir) 

are defined as s'((,*,")ir := s((,*,")ir z and s'((,*,",,,%)ir := s((,*,",,,%)ir z, respec-

tively. For convenience we only speak of matrix S = (sir), however, always keep-

ing in mind that any of the four above mentioned matrices might be used. 

Now we provide three greedy procedures GREEDY1, GREEDY2, and 

GREEDY3. GREEDY1 first chooses a kiln and then its jobs with respect to matrix 

S. GREEDY2 proceeds just the other way round whereas GREEDY3 searches for 

the maximum entry in S among all remaining feasible "job to kiln" assignments. 

Algorithm 17.4.1  GREEDY1 
begin 
repeat 

J := set of all jobs of which still racks have to be polymerized; 

if there are empty kilns 

then 
begin 
Choose an empty kiln r; 
repeat 

Choose a job Ji � J such that sir is maximum; 

if aij = 0 for a rack of job Jj already in kiln r  

then fill kiln r as far as possible with racks of job Ji; 

J := J � {Ji}; 

until J = � or r is full; -- run kiln r 

end 

else wait for the next time when a kiln will be unloaded; 

until all racks have been in polymerization; 
end; 
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Algorithm 17.4.2  GREEDY2 
begin 

J := set of all jobs; 

repeat 
K := set of all kilns not in process; -- i.e. those not completely loaded 

if K � � 

then 
begin 

Choose a job Ji � J of which the most racks are not polymerized; 

repeat 

Choose a kiln r � K such that sir is maximum; 

if aij = 0 for a rack of job Jj already in kiln r  

then fill kiln r as far as possible with racks of job Ji; 

K := K � {r}; 

until K = � or there are no more racks of job Ji; 

J := J � {Ji}; -- if J is empty then run all newly loaded kilns 

end 
else 
begin 

Wait for the next time when a kiln will be unloaded; 

J := set of all jobs of which still racks have to be polymerized; 

end; 

until all racks have been in polymerization; 
end; 

Algorithm 17.4.3  GREEDY3 
begin 
repeat 

K := set of all kilns not in process;  -- i.e. those not completely loaded 

J := set of all jobs of which still racks have to polymerize; 

SS := S; -- SS = (ssir) 

if K � � and J � � 

then 
repeat 
for all r � K do 

for all Ji � J do choose (i, r) such that ssir is maximum; 

if aij = 0  for racks of a job Jj already in kiln r 

then fill kiln r as far as possible with racks of job Ji; 

ssir := 0; 

until SS = 0; 

else 
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if K = � 

then wait for the next time when a kiln will be unloaded; 

until all racks have been in polymerization; 
end; 

The regret heuristics (as special greedy heuristics) are also based upon some 

matrix S. They are not only greedily grasping for the highest value in rows or 

columns of S but consider the differences of the entries. So assume that for each i 
= 1,...,  n we have a descending ordering of the values sir1

 �...� sirN
. Let also si1 r 

�...� sim r be descending orderings for all r = 1,...,  N. We define regrets ni := sir1
 

� sir2
, i = 1,...,  n, and or := si1 r � si2 r , r = 1,...,  N, and first try assignments 

where the above differences are largest. Heuristics REGRET1 and REGRET2 cor-

respond almost completely to GREEDY1 and GREEDY2, respectively; it is suffi-

cient to point to the slight distinction. In REGRET1 the empty kilns are chosen 

according to the descending list of or, i.e. kiln r where or is maximum comes 

first. Similarly, REGRET2 chooses the jobs Ji according to the descending order-

ing of ni, i.e. job Ji where ni is maximum comes first. Especially for the regret 

heuristics, variety of solutions increases if random elements influence the matrix 

entries. Otherwise many of the regrets ni and or will become zero. 

We resigned new computation of the regrets, whenever a "waiting" job or a 

"waiting" kiln "disappears", because of the insignificant solution improvement 

compared to the raise of computational complexity. 

Generation of Feasible Schedules  

Each time a kiln is in process it runs according to a special temper cycle. It is 

heated up to a particular temperature and later on cooled down. While the kiln is 

in process it must not be opened. This restriction does not apply to the basins. 

The basin temperatures are much lower than the kiln temperatures and racks may 

be put into or removed from basins at any time. Hence the basin temperature 

should be kept constant or temperature changes should be reduced to a minimum. 

The initial assignment of a particular temperature to each basin is done according 

to the number and size of the racks which have to pre-polymerize in this particu-

lar temperature as well as to the basin size. Procedures as used for job to kiln 

assignments should somewhat be adjusted. 

When the initial basin heating is completed backward computation may 

start. We first give an outline of the simple backward computation algorithm. Let 

tilq and tilr be the time when rack l (l = 1,...,  7
_

i or 7i) of job Ji (i = 1,...,  n) enters 

basin q (q = 1,...,  Z), and kiln r (r = 1,...,  N), respectively. Furthermore, let 

random(z) be a random number generator that initializes z with a random number 

from interval [0, 1]. Consider the sums of (at most 4) subsequent pre-
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polymerization times in basins of a rack of job Ji. Let 2i be sums’ mean value, 

 i = 1,...,  n. 

Algorithm 17.4.4  Simple Backward Computation 
Input: The algorithm starts with a feasible solution for the kiln area 

begin 
for all i � I do 

for l := 1 to 7i do 

begin -- compute possible starting times for prepolymerization 
random(z); 

tilq := tilr � 2i � zmi; 

if i � I2 � I3 � I4 then ti(7i+l)q := tilq + 2ilq; 

if i � I3 � I4 then ti(27i+l)q := ti(7i+l)q + 2i(7i+l)q; 

if i � I4 then ti(37i+l)q := ti(27i+l)q + 2i(27i+l)q; 

end 
repeat 

Take the earliest possible starting time tilq; 

if rack l of job Ji may be put into some basin q 

then pre-polymerize in q 

else 

if there is no basin for rack l available  

then 

if there is an empty basin  

then adapt its temperature for job Ji 

else pre-polymerization is impossible; 

until all racks have been considered or pre-polymerization is impossible; 
end; 

If pre-polymerization is impossible for some rack we can start the above proce-

dure once again and compute new starting times for pre-polymerization of all or 

some racks. Another possibility would be to generate a new schedule x^ for the 

kilns. 

The simultaneous backward computation is a simple extension of the heuris-

tics mentioned above for the kiln area. Whenever a rack is chosen (in any of 

these heuristics) to be assigned to some kiln at time t try to assign this rack to 

some basin at its possible pre-polymerization starting time (that is computed as 

in simple backward computation). If this assignment is possible it will also be 

realized and the next rack will be considered according to the heuristic in use. If 

this assignment is not possible the possible pre-polymerization starting time may 

be changed randomly or the procedure starts again with the next time step t + 1 

for a kiln assignment of the considered rack. 
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Several advises should be given in order to achieve some acceleration. Very 

long basin processing times that may occur, only for jobs Ji, i 	 I4, should be 

split into two processing times. Hence 1-basin jobs become 2-basin jobs and so 

on. During pre-polymerization basin changes are allowed and provide more flex-

ibility. Gaps of time during which a basin is not completely filled may be split 

when a new rack is put into. It should be observed that splittings of small gaps 

are preferred to avoid unnecessary splittings of long basin processing times. 

The Main Algorithm 

Up to now we only described the way a feasible schedule is computed. Accord-

ing to this schedule and its fitness (= value of its objective function) efforts were 

done for improvement. Slight changes of the parameters (, *, ", ,, % according to 

the objective function values lead to new solutions. A brief outline will describe 

the main idea. Five strategies ((,*,",,,%) and related schedules (see the preceding 

section) are randomly generated. Later on take the last five schedules and subdi-

vide the interval [0, 1] with respect to the fitness, i.e. the best schedule gets the 

largest part and the worst schedule the smallest one. Generate five random num-

bers in [0, 1]. Sum up the values of ( whereby the random numbers belong to the 

subparts in [0, 1] corresponding to the schedules with matrix parameters (. The 

new value ( is this sum divided by 5. Do the same procedure for the remaining 

parameters and generate the new schedule. This kind of search may be consid-

ered as a variant of tabu search. 

For convenience we use in our algorithmic description below (1
j
, (2

j
, (3

j
, (4

j
, 

(5
j
 instead of (, *, ", ,, %, respectively, in the j th solution. 

Algorithm 17.4.5  Schedule Improvement 
begin 
for j := 1 to 5 do 

Generate tuple nj := ((1
j
, (2

j
, (3

j
, (4

j
, (5

j
) at random and generate a  

schedule (x
_

, x^) and its fitness fj := b1(x
_

) + _1(x^); 

j := 5; 
repeat 

j := j + 1; 

nj := 0; 

for s := j � 5 to j � 1 do  zs := 
1

fs 

M
O

P
R1

fj�5
 + 

1

fj�4
 + 

1

fj�3
 + 

1

fj�2
 + 

1

fj�1

 ; 

Subdivide the interval [0, 1] in 5 parts, each of lengths zj�5, zj�4, zj�3, zj�2, zj�1;
for r := 1 to 5 do 

for i := 1 to 5 do 
begin 
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random(z); 

if z belongs to the subinterval of [0, 1] corresponding to the s th solu-

tion (j � 5 � s � j � 1) 

then (r
j
 := (r

j
 + (r

s; 

end; 
nj := 

1
5 ((1

j
, (2

j
, (3

j
, (4

j
, (5

j
); 

Generate a new schedule (x
_
, x^) according to nj and its fitness   

 fj := b1(x
_
) + _1(x^); 

until j is sufficiently large or some other stopping criteria are satisfied; 
end; 

This algorithm always looks for a better parameter constellation incorporating 

some random elements. The algorithm may also be applied to the alternative ob-

jective functions. 
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18  Computer Integrated  
Production Scheduling 

Within all activities of production management, production scheduling is a major 
part covering planning and control functions. By production management we 
mean all activities which are necessary to carry out production. The two main 
decisions to be taken in this field are production planning and production con-
trol. Production scheduling is a common activity of these two areas because 
scheduling is needed not only on the planning level as mainly treated in the pre-
ceding chapters but also on the control level. From the different aspects of pro-
duction scheduling problems we can distinguish predictive production schedul-
ing or offline-planning (OFP) and reactive production scheduling or online-
control (ONC). Predictive production scheduling serves to provide guidance in 
achieving global coherence in the process of local decision making. Reactive 
production scheduling is concerned with revising predictive schedules when un-
expected events force changes. OFP generates the requirements for ONC, and 
ONC creates feedback to OFP. 

Problems of production scheduling can be modeled on the basis of distribut-
ed planning and control loops, where data from the actual manufacturing process 
are used. A further analysis of the problem shows that job release to, job travers-
ing inside the manufacturing system and sequencing in front of the machines are 
the main issues, not only for production control but also for short term produc-
tion planning.  

In practice, scheduling problems arising in manufacturing systems are of 
discrete, distributed, dynamic and stochastic nature and turn out to be very com-
plex. So, for the majority of practical scheduling purposes simple and rigid algo-
rithms are not applicable, and the manufacturing staff has to play the role of the 
flexible problem solver. On the other hand, some kind of Decision Support Sys-
tems (DSS) has been developed to support solving these scheduling problems. 
There are different names for such systems among which "Graphical Gantt Chart 
System" and "Leitstand" are the most popular. Such a DSS is considered to be a 
shop floor scheduling system which can be regarded as a control post mainly 
designed for short term production scheduling. Many support systems of this type 
are commercially available today. A framework for this type of systems can be 
found in [EGS97]. 

Most of the existing shop floor production scheduling systems, however, 
have two major drawbacks. First, they do not have an integrated architecture for 
the solution process covering planning and control decisions, and second, they do 
not take sufficient advantage from the results of manufacturing scheduling theo-
ry. In the following, we concentrate on designing a system that tries to avoid 
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these drawbacks, i.e. we will introduce intelligence to the modeling and to the 
solution process of practical scheduling problems.  

Later in this chapter we suggest a special DSS designed for short term pro-
duction scheduling that works on the planning and on the control level. It makes 
appropriate use of scheduling theory, knowledge-based and simulation tech-
niques. The DSS introduced will also be called "Intelligent Production Schedul-
ing System" or IPS later.  

This chapter is organized as follows. First we give a short idea about the en-
vironment of production scheduling from the perspective of problem solving in 
computer integrated manufacturing (Section 18.1). Based on this we suggest a 
reference model of production scheduling for enterprises (Section 18.2). Consid-
ering the requirements of a DSS for production scheduling we introduce an archi-
tecture for scheduling manufacturing processes (Section 18.3). It can be used 
either for an open interactive (Section 18.3.1) or a closed loop solution approach 
(Section 18.3.2). Based on all this we use an example of a flexible manufacturing 
cell to show how knowledge-based approaches and ideas relying on traditional 
scheduling theory can be integrated within an interactive approach (Section 
18.3.3). Note that, in analogy, the discussion of all these issues can be applied to 
other scheduling areas than manufacturing.  

18.1 Scheduling in Computer Integrated Manu-
facturing 

The concept of Computer Integrated Manufacturing (CIM) is based on the idea 
of combining information flow from technical and business areas of a production 
company [Har73]. All steps of activities, ranging from customer orders to prod-
uct and process design, master production planning, detailed capacity planning, 
predictive and reactive scheduling, manufacturing and, finally, delivery and ser-
vice contribute to the overall information flow. Hence a sophisticated common 
database support is essential for the effectiveness of the CIM system. Usually, the 
database will be distributed among the components of CIM. To integrate all 
functions and data a powerful communication network is required. Examples of 
network architectures are hierarchical, client server, and loosely connected com-
puter systems. Concepts of CIM are discussed in detail by e.g. Ranky [Ran86] 
and Scheer [Sch91]. 

We repeat briefly the main structure of CIM systems. The more technically 
oriented components are Computer Aided Design (CAD) and Computer Aided 
Process Planning (CAP), often comprised within Computer Aided Engineering 
(CAE), Computer Aided Manufacturing (CAM), and Computer Aided Quality 
Control(CAQ). More businesslike components are the Production Planning Sys-
tem (PPS) and the already mentioned IPS. The concept of CIM is depicted in 
Figure 18.1.1 where edges represent data flows in either directions. In CAD, de-
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velopment and design of products is supported. This includes technical or physi-
cal calculations and drafting. CAP supports the preparation for manufacturing 
through process planning and the generation of programs for numeric controlled 
machines. Manufacturing and assembly of products are supported by CAM 
which is responsible for material and part transport, control of machines and 
transport systems, and for supervising the manufacturing process. Requirements 
for product quality and generation of quality review plans are delivered by CAQ. 
The objective of PPS is to take over all planning steps for customer orders in the 
sense of material requirements and resource planning. Within CIM, the IPS or-
ganizes the execution of all job- or task-oriented activities derived from customer 
orders.  

PRODUCTION PLANNING

PRODUCTION CONTROL

CAEBasic data
for planning

Quality
requirements

Basic data for
manufacturingJobs, tasks

Quality
assuranceCAM

C
A
Q

PPS

Orders

IPS

 
Figure 18.1.1 The concept of CIM. 

Problems in production planning and control could theoretically be represented 
in a single model and then solved simultaneously. But even if all input data 
would be available and reliable this approach would not be applicable in general 
because of prohibitive computing times for finding a solution. Therefore a practi-
cal approach is to solve the problems of production planning and control sequen-
tially using a hierarchical scheme. The closer the investigated problems are to the 
bottom of the hierarchy the shorter will be the time scale under consideration and 
the more detailed the needed information. Problems on the top of the hierarchy 
incorporate more aggregated data in connection with longer time scales. Deci-
sions on higher levels serve as constraints on lower levels. Solutions for prob-
lems on lower levels give feedback to problem solutions on higher levels. The 
relationship between PPS, IPS and CAM can serve as an example for a hierarchy 
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which incorporates three levels of problem solving. It is of course obvious that a 
hierarchical solution approach cannot guarantee optimality. The number of levels 
to be introduced in the hierarchy depends on the problem under consideration, 
but for the type of applications discussed here a model with separated tactical 
(PPS), operational (IPS), and physical level (CAM) seems appropriate.  

In production planning the material and resource requirements of the cus-
tomer orders are analyzed, and production data such as ready times, due dates or 
deadlines, and resource assignments are determined. In this way, a midterm or 
tactical production plan based on a list of customer orders to be released for the 
next manufacturing period is generated. This list also shows the actual produc-
tion requirements. The production plan for short term scheduling is the output of 
the production scheduling system IPS on an operational level. IPS is responsible 
for the assignment of jobs or tasks to machines, to transport facilities, and for the 
provision of additional resources needed in manufacturing, and thus organizes 
job and task release for execution. On a physical level CAM is responsible for 
the real time execution of the output of IPS. In that way, IPS represents an inter-
face between PPS and CAM as shown in the survey presented in Figure 18.1.2. 
In detail, there are four major areas the IPS is responsible for [Sch89a]. 

Computer aided production planning
Administration of basic data
Material requirements planning
Time and capacity requirements planning

Order release for scheduling

Computer aided production scheduling

Job and task release for execution

Computer aided execution
Manufacturing
Assembly
Handling
Transport
Storage

Preprocessing
Initialization
Operation
Supervision

PPS

IPS

CAM

 
Figure 18.1.2 Production planning, scheduling and execution. 

(1) Preprocessing: Examination of production prerequisites; the customer orders 
will only be released for manufacturing if all needed resources such as materials, 
tools, machines, pallets, and NC-programs are available.  
(2) System Initialization: The manufacturing  system or parts thereof have to be 
set up such that processing of released orders can be started. Depending on the 
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type of job, NC-programs have to be loaded, tools have to be mounted, and mate-
rials and equipment have to be made available at specific locations. 
(3) System Operation: The main function of short term production scheduling is 
to decide about releasing jobs for entering the manufacturing system, how to 
traverse jobs inside the system, and how to sequence them in front of the ma-
chines in accordance with business objectives and production requirements.  
(4) System Supervision and Monitoring: The current process data allow to check 
the progress of work continuously. The actual state of the system should always 
be observed, in order to be able to react quickly if deviations from a planned state 
are diagnosed. 

Offline planning (OFP) is concerned with preprocessing, system initializa-
tion and system operation on a predictive level, while online control (ONC) is 
focused mainly on system operation on a reactive level and on system supervi-
sion and monitoring. Despite the fact that all these functions have to be per-
formed by the IPS, following the purpose of this chapter we mainly concentrate 
on short term production scheduling on the predictive and the reactive level.  

One of the basic necessities of CIM is an integrated database system. Alt-
hough data are distributed among the various components of a CIM system, they 
should be logically centralized so that the whole system is virtually based on a 
single database. The advantage of such a concept would be redundancy avoid-
ance which allows for easier maintenance of data and hence provides ways to 
assure consistency of data. This is a major requirement of the database manage-
ment system (DBMS). The idea of an integrated data management within CIM is 
shown in Figure 18.1.3. 
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Figure 18.1.3 CIM and the database. 
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The computer architecture for CIM follows the hierarchical approach of problem 
solving which has already been discussed earlier in this section. The hierarchy 
can be represented as a tree structure that covers the following decision oriented 
levels of an enterprise: strategic planning, tactical planning, operational schedul-
ing, and physical manufacturing. At each level a host computer is coordinating 
one or more computers on the next lower level; actions at each level are carried 
out independently, as long as the requirements coming from the supervising level 
are not violated. The output of each subordinated level meets the requirements 
for correspondingly higher levels and provides feedback to the host. The deeper 
the level of the tree is, the more detailed are the processed data and the shorter 
has to be the computing time; in higher levels, on the other hand, the data are 
more aggregated. Figure 18.1.4 shows a distributed computer architecture, where 
the boxes assigned to the three levels PPS, IPS and CAM represent computers or 
computer networks. The leaves of the tree represent physical manufacturing and 
are not further investigated.  

Enterprise

PPS

CAM

Planning Computer

Scheduling
Computer

OFP-
Computer

ONC-
Computer

IPS

Strategic requirements

Storage Handling Machines Tools Transport Quality

 
Figure 18.1.4 Computer system in manufacturing. 

Apart from a vertical information flow, a horizontal exchange of data on the 
same level between different computers must be provided, especially in case of a 
distributed and global environment for production scheduling. Generally, differ-
ent network architectures to meet these requirements may be thought of. Stand-
ard protocols and interfaces should be utilized to allow for the communication 
between computers from different vendors. 
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18.2 A Reference Model for Production  
Scheduling 

In order to implement the solution approaches presented in the previous chapters 
within a framework of an IPS we need a basic description of the scheduling sys-
tem. Here we introduce a modeling approach integrating declarative representa-
tion and algorithmic solution [Sch96]. Problem representation and problem solu-
tion are strongly interconnected, i.e. data structures and solution methods have to 
be designed interdependently [Wir76]. We will suggest a reference model for 
production scheduling and show how problem description and problem solution 
can be integrated. To achieve this we follow the object-oriented modeling para-
digm. 

Object-oriented modeling attempts to overcome the disadvantage of model-
ing data, functions, and communication, separately. The different phases of the 
modeling process are analysis, design, and programming. Analysis serves as the 
main representation formalism to characterize the requirements from the view-
point of the application domain; design uses the results of analysis to obtain an 
implementation-oriented representation, and programming means translating this 
representation using some programming language into code. Comparing object-
oriented modeling with traditional techniques its advantages lie in data abstrac-
tion, reusability and extensibility of the model, better software maintenance, and 
direct compatibility of the models of different phases of the software develop-
ment process. Often it is also claimed that this approach is harmonizing the de-
centralization of organizations and their support by information systems. We will 
now develop an open object-oriented analysis model for production scheduling. 
In comparison to other models of this kind (see e.g. [RM93]) the model present-
ed here is a one to one mapping of the classification scheme of deterministic 
scheduling theory introduced in Chapter 3 to models of information systems for 
production scheduling. Following this approach we hope to achieve a better 
transformation of theoretical results to practical applications. 

A model built by object-oriented analysis consists of a set of objects com-
municating via messages which represent dynamic relations of pairs of them. 
Each object consists of attributes and methods here also called algorithms. Meth-
ods are invoked by messages and methods can also create messages themselves. 
Objects of the same type are classified using the concept of classes; with this 
concept inheritance of objects can be represented. The main static relations be-
tween pairs of objects are generalization/specialization and aggregation/decom-
position. 

Different methods for generating object-oriented models exist [DTLZ93], 
[WBJ90]. From a practical point of view the method should make it easy to de-
velop and maintain a system; it should assist project management by defining 
deliverables and effective tool support should be available. Without loss of gen-
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erality the object model for production scheduling which will be introduced here 
is based on the modeling approach called Object-Oriented Analysis or OOA sug-
gested by [CY91]. It is easy to use, easy to understand, and fulfils most of the 
above mentioned criteria. 

In Figure 18.2.1 the main classes and objects for production scheduling are 
represented using OOA notation. Relationships between classes or objects are 
represented by arcs and edges; edges with a semi-circle represent generaliza-
tion/specialization relations, edges with triangles represent aggregation/decompo-
sition, and arcs between objects represent communications by message passing. 
The arc direction indicates a transmitter/receiver relationship. The introduced 
classes, objects, attributes, methods, and relations are complete in the sense that 
applying the proposed model a production schedule can be generated; neverthe-
less it is easy to enlarge the model to represent additional business requirements.  

Each customer order is translated into a manufacturing order, also called job, 
using process plans and bill of materials. Without loss of generality we want to 
assume that a job refers always to the manufacturing of one part where different 
tasks have to be carried out using different resources.  

While in Figure 18.2.1 a graphical notation related to OOA is used, we will 
apply in the following a textual notation. We will denote the names of classes 
and objects by capital letters, the names of attributes by dashes, and the names of 
methods by brackets. In OOA notation relationships between classes or objects 
will be represented by arcs and edges; edges with a semi-circle represent general-
ization/specialization relations, edges with triangles represent aggregation, and 
arcs represent communications between objects by message passing. The direc-
tion of the arc indicates a transmitter-receiver relationship. The introduced clas-
ses, objects, attributes, methods, and relations are complete in the sense that ap-
plying the proposed model a production schedule can be generated; nevertheless 
it is easy to enlarge the model to represent additional business requirements. 

The main classes of production scheduling are JOB, BOM (BILL_OF_MA-
TERIALS), PP (PROCESS_PLAN), TASK, RESOURCE, and SCHEDULE. 
Additional classes are ORDER specialized to PURCHASING_ORDER and 
DISPATCH_ORDER and PLANNING specialized to STRATEGIC_P, TACTI-
CAL_P, and OPERATIONAL_P. The class RESOURCE is a generalization of 
MACHINE, TOOL, and STAFF. Without loss of generality we concentrate the 
investigation here only on one type of resources which is MACHINE; all other 
types of resources could be modeled in the same manner. In order to find the at-
tributes of the different classes and objects we use the classification scheme in-
troduced in Chapter 3. 

The objects of class BOM generate all components or parts to be produced 
for a customer order. With this the objects of class JOB will be generated. Each 
object of this class communicates with the corresponding objects of class PP 
which includes a list of the technological requirements to carry out some job. 
According to these requirements all objects of class TASK will be generated, 
which are necessary to process all jobs. 



 18.2  A Reference Model for Production Scheduling 721 

 

P L A N N IN G

TACTICAL_P OPERATIONAL_P

PP BOM

SCHEDULE RESOURCE

ORDER TOOL MACHINE STAFF

PURCHASING_ORDER

JOB

DISPATCH_ORDER

TASK

create_task create_job

objectives
constraints
resources
tasks
Gantt_chart
analyze_situation
generate_schedule

machine_number
availability
speed
capacity
qualification
job_list
calculate_availability
calculate_capacityjob_number

machine_list
ready_time
deadline
priority
status
check_job_processing

task_number
resources
processing time
preemption
earliest_start_time
latest_finish_time
predecessor
successor
status
determine_dates

STRATEGIC_P

 
Figure 18.2.1 Object-oriented analysis model for production scheduling. 

An object of class JOB is characterized by the attributes "job_number", "ma-
chines", "machine_list", "ready_time", "deadline", "completion_time", "flow_ 
time", "priority", and "status". Some values of the attributes concerning time and 
priority considerations are determined by the earlier mentioned Production Plan-
ning System (PPS). The value of the attribute "machines" refers to these ma-
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chines which have the qualification to carry out the corresponding job; after gen-
erating the final production schedule the value of "machine_list" refers to the 
ordered number of these machines to which the job is assigned. The value of the 
attribute "status" gives an answer to the question if the job is open, scheduled,  or 
finished.  The method used by JOB is here <check_job_processing> which has 
the objective to supervise the progress of processing the job. Communication 
between JOB and SCHEDULE results in determining the values of "ma-
chine_list", "completion_time", "flow_time" and "status". 

Each object of class TASK contains structural attributes like "task_number", 
"resources", "processing_time", "completion_time", "finish_time", "preemption", 
"earliest_start_time", "latest_finish_time" and additional attributes like "prede-
cessor", "successor", and "status". The values of the two attributes referring to 
earliest start and latest finish time are determined by the object-owned method 
<determine_dates>. The parameters for this method are acquired by communica-
tion with objects of the class JOB. Again the attribute "status" is required for 
analyzing the current state of processing of the task under consideration. 

Objects of class MACHINE are described by the attributes "ma-
chine_number", "availability", "speed", "capacity", "qualification", and 
"job_list". The value of "qualification" is the set of tasks which can be carried out 
by the machine. The value of "job_list" is unknown at the beginning; after gener-
ating the schedule the value refers to the set of jobs and corresponding tasks to be 
processed by this machine. In the same sense the values of "availability" and "ca-
pacity" will be altered using the methods <calculate_availability> and <calcu-
late_capacity>. 

The task of the object SCHEDULE is to generate the final production sched-
ule. In order to do this the actual manufacturing situation has to be analyzed in 
terms of objective function and constraints to be considered. This leads to the 
determination of the values for the attributes "objectives" and "constraints" using 
the method <analyze_situation>. The method <generate_schedule> is construct-
ing the desired schedule. Calling this method the communication links to the 
objects of classes RESOURCE, JOB, and TASK respectively, are activated. To 
the attributes "resources" and "tasks" the input values for <generate_schedule> 
are assigned. The result of the method is a depiction of the production schedule 
which is  assigned to the attribute "Gantt_chart". The required data concerning 
tasks and resources like machines, availability, speed, processing times etc. are 
available through the communication links to the objects of classes TASK and 
RESOURCE. 

Example 18.2.1 The following example shows how an object-oriented model for 
production scheduling can be generated. When we refer to the objects of a par-
ticular class the first time we declare the name of the corresponding object, its 
attributes, and the value of the attributes. Later, we only declare the name of the 
object and the value of the attributes. All entries are abbreviated. 
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JOB1 "j_no" J1; 

 "machines" P1, P2; 
 "mach_list" open; 
 "ready" 0; 
 "deadline" open; 
 "prio" none; 
 "stat" open; 
JOB2 (J2; P2; open; 0; open; none; open) 

JOB3 (J3; P1; open; 2; open; none; open) 

There are three jobs which have to be processed. No given sequence for J1 exists 
but J2 can only be processed on P2 and J3 can only be processed on P1. The jobs 
can start to be processed at times 0 and 2; there is no deadline which has to be 
obeyed, all jobs have the same priority. The machine list and status of the jobs 
are open at the beginning; later they will assume the values of the permutation of 
the machines and scheduled, in_process, or finished, respectively. 

TASK11 "t_no" T11; 

 "res" P1, P2; 
 "p_time" 3; 
 "preempt" no; 
 "e_s_t" 0; 
 "l_f_t" open; 
 "pre" �; 
 "suc" T12, T13; 
 "stat" open; 
TASK12 (T12; P1, P2; 13; no; 3; open; T11; �; open) 

TASK13 (T13; P1, P2; 2; no; 3; open; T11; �; open) 

TASK20 (T20; P2; 4; no; 0; open; �; �; open) 

TASK31 (T31; P1; 2; no; 2; open; �; T32, T33, T34; open) 

TASK32 (T32; P1; 4; no; 4; open; T31; �; open) 

TASK33 (T33; P1; 4; no; 4; open; T31; �; open) 

TASK34 (T34; P1; 2; no; 4; open; T31; �; open) 

The three jobs consist of eight tasks; all tasks of job J1 can processed on all ma-
chines, all other tasks are only allowed to be processed on machine P2 or only on 
machine P1. Processing times, precedence constraints and ready times are 
known, preemption is not allowed, and again deadlines do not exist. The status of 
the tasks is open at the beginning; later it will also assume the values scheduled, 
in_process, or finished. 

MACHINE1 "m_no" P1; 

 "avail" [0,#); 
 "speed" 1; 
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 "capac" PC1; 

 "qualif" T11, T12, T13, T31, T32, T33, T34; 
 "j_list" open; 
MACHINE2 (P2; [0, #); 1; PC2; T11, T12, T13, T20; open) 

There are two machines available for processing. Both machines have the same 
speed. They are available throughout the planning horizon, capacity and qualifi-
cation are known. The job list, i.e. the sequence the jobs are processed by the 
machines is not yet determined. 

SCHEDULE "object" makespan; 
 "constr" open; 
 "res" P1, P2; 

 "tasks" T11, T12, T13, T31, T32, T33, T34; 
 "Gantt_chart" open; 

The objective here is to minimize the makespan, i.e. to find a schedule where 
max{Ci} is minimized. Besides task and machine related constraints no other 
constraints have to be taken into account. All input data to generate the desired 
production schedule is given, the schedule itself is not yet known. Calling the 
method <generate_schedule> will result in a time oriented assignment of tasks to 
machines. Doing this the attributes will assume the following values. 

JOB1 (J1; P1, P2; 0; 17; none; scheduled) 

JOB2 (J2; P2; 0; 4; none; scheduled) 

JOB3 (J3; P1; 3; 15; none; scheduled) 

TASK11 (T11; P1; 3; no; 0; 3; �; T12, T13; scheduled) 

TASK12 (T12; P2; 13; no; 4; 17; T11; �; scheduled) 

TASK13 (T13; P1; 2; no; 15; 17; T11; �; scheduled) 

TASK20 (T20; P2; 4; no; 0; 4; �; �; scheduled) 

TASK31 (T31; P1; 2; no; 3; 5; �; T32, T33, T34; scheduled) 

TASK32 (T32; P1; 4; no; 5; 9; T31; �; scheduled) 

TASK33 (T33; P1; 4; no; 9; 13; T31; �; scheduled) 

TASK34 (T34; P1; 2; no; 13; 15; T31; �; scheduled) 

All jobs and the corresponding tasks are now scheduled; job J1 will be processed 
on machines P1 and P2 within the time interval [0,17], job J2 on machine P2 in 
the interval [0,4] and job J3 on machine P1 in the interval [3,15]. 
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MACHINE1 (P1; [17,#); 1; PC1; T11, T12, T13, T31, T32, T33, T34; 

 T11, T31, T32, T33, T34, T13) 

MACHINE2 (P2; [17,#); 1; PC2; T11, T12, T13, T20; T20, T12) 

The availability of machines P1 and P2 has now been changed. Machine P1 is 
processing tasks T11, T13, and all tasks of job J3, machine P2 is processing tasks 
T20 and T12. The processing sequence is also given. 

SCHEDULE "object" makespan; 
 "constr" open; 
 "res" P1, P2; 

 "tasks" T11, T12, T13, T31, T32, T33, T34; 
 "Gantt_chart" generated; 

The schedule has now been generated and is depicted by a Gantt chart shown in 
Figure 18.2.2. adaptation  

P1

P2

T11

T20

T31 T32 T33 T34

T12

T13

t3 4 5 9 13 15 170  
Figure 18.2.2 Gantt chart for the example problem. 

Example 18.2.2 We now want to use the classical job shop scheduling problem 
as an example to show how the approach can be applied to dedicated models. 
Here we will concentrate especially on the interaction between problem represen-
tation and problem solution. The general job shop problem is treated in Chapter 
8. The object model is characterized by the classes JOB, TASK, MACHINE and 
SCHEDULE. Investigating attributes of the objects we only concentrate on some 
selection of them. The class JOB can be described as follows. 

JOB "j_no" Jj; 

 "machines " Permutation over Pi; 
 "mach_list" open; 
 "ready" 0; 
 "deadline" open; 
 "prio" none; 
 "stat" open; 

As we are investigating a simple job shop problem each job is assigned to all 
machines following some pre-specified sequence, ready times for all jobs are 
zero; deadlines and priorities have not to be considered. 

Each job consists of different tasks which are characterized by the machine 
where the task has to be processed and the corresponding processing time; 
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preemption is not allowed. Each task can be described by its predecessor or suc-
cessor task. Input data for the algorithm are the values of the attributes "res", 
"p_time", "pre" and "suc". The values of "e_s_t" are not obligatory because they 
can be derived from the values of the attributes "pre" and "suc". With this the 
class TASK can be described as follows. 

TASK "t_no" Tij; 

 "res" Pi; 

 "p_time" pij; 
 "preempt" no; 
 "e_s_t" rij; 
 "l_f_t" open; 
 "pre" Tkj; 

 "suc" Tlj; 
 "stat" open; 

MACHINE "m_no" Pi; 

 "avail" [0,#); 
 "speed" 1; 
 "capac" PCi; 

 "qualif" Tij; 
 "j_list" open; 

All machines are continuously available in the planning period under considera-
tion. The value of the attribute "capac" is not necessary to apply the algorithm, it 
is only introduced for completeness reasons. 
SCHEDULE "object" makespan; 
 "constr" open; 
 "res" P1,..., Pm; 

 "tasks" Tij; 
 "Gantt_chart" open; 
 <generate_schedule> simulated annealing;   

The objective is again to find a production schedule which minimizes the maxi-
mum completion time. Additional information for describing the scheduling situ-
ation is not available. The input data for the algorithm are the available ma-
chines, the processing times of all jobs on all machines and the corresponding 
sequence of task assignment. After the application of an appropriate algorithm 
(compare to Chapter 8) the corresponding values describing the solution of the 
scheduling problem are assigned to the attributes and the Gantt chart will be gen-
erated. 

We have shown using some examples that the object-oriented model can be 
used for representing scheduling problems which correspond to those investigat-
ed in the theory of scheduling. It is quite obvious that the model can be specified 
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to various individual problem settings. Thus we can use it as some reference for 
developing production scheduling systems. 

18.3 IPS: An Intelligent Production Scheduling 
System 

The problems of short term production scheduling are highly complex. This is 
not only caused by the inherent combinatorial complexity of the scheduling prob-
lem but also by the fact that input data are dynamic and rapidly changing. For 
example, new customer orders arrive, others are cancelled, or the availability of 
resources may change suddenly. This lack of stability requires permanent revi-
sions, and previous solutions are due to continuous adaptations. Scheduling 
models for manufacturing processes must have the ability to partially predict the 
behavior of the entire shop, and, if necessary, to react quickly by revising the 
current schedule. Solution approaches to be applied in such an environment must 
have especially short computing times, i.e. time- and resource-consuming models 
and methods are not appropriate on an operational level of production schedul-
ing.  

All models and methods for these purposes so far developed and partially 
reviewed in the preceding chapters are either of descriptive or of constructive 
nature. Descriptive models give an answer to the question "what happens if ...?", 
whereas constructive models try to answer the question "what has to happen so 
that ...?". Constructive models are used to find best possible or at least feasible 
solutions; descriptive models are used to evaluate decision alternatives or solu-
tion proposals, and thus help to get a deeper insight into the problem characteris-
tics. Examples of descriptive models for production scheduling are queuing net-
works on an analytical and discrete simulation on an empirical basis; construc-
tive models might use combinatorial optimization techniques or knowledge of 
human domain experts.  

For production scheduling problems one advantage of descriptive models is 
the possibility to understand more about the dynamics of the manufacturing sys-
tem and its processes, whereas constructive models can be used to find solutions 
directly. Coupling both model types the advantages of each would be combined. 
The quality of a solution generated by constructive models could then be evaluat-
ed by descriptive ones. Using the results, the constructive models could be re-
vised until an acceptable schedule is found. In many cases there is not enough 
knowledge available about the manufacturing system to build a constructive 
model from the scratch. In such situations descriptive models can be used to get a 
better understanding of the relevant problem parameters.  

From another perspective there also exist approaches trying to change the 
system in order to fit into the scheduling model, others simplify the model in 
order to permit the use of a particular solution method. In the meantime more 
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model realism is postulated. Information technology should be used to model the 
problem without distortion and destruction. In particular it can be assumed that in 
practical settings there exists not only one scheduling problem all the time and 
there is not only one solution approach to each problem, but there are different 
problems at different points in time. On the other hand the analysis of the compu-
tational complexity of scheduling problems gives also hints how to simplify a 
manufacturing process if alternatives for processing exist. 

Short term production scheduling is supported by shop floor information 
systems. Using data from an aggregated production plan a detailed decision is 
made in which sequence the jobs are released to the manufacturing system, how 
they traverse inside the system, and how they are sequenced in front of the ma-
chines. The level of shop floor scheduling is the last step in which action can be 
taken on business needs for manufacturing on a predictive and a reactive level.  

One main difference between these two scheduling levels is the liability of 
the input data. For predictive scheduling input data are mainly based on expecta-
tions and assumptions. Unforeseen circumstances like rush orders, machine 
breakdowns, or absence of employees can only be considered statistically, if at 
all. This situation is different in reactive scheduling where actual data are availa-
ble. If they are not in coincidence with the estimated data, situation-based revi-
sions of previous decisions have to be made. Predictive scheduling has to go 
hand in hand with reactive scheduling.  

Shop floor information systems available commercially today are predomi-
nately data administration systems. Moreover, they collect and monitor data 
available from machines and the shop floor. Mainly routine operations are car-
ried out by the shop floor system; the production manager is supported by offer-
ing the preliminary tools necessary for the development of a paperless planning 
and control process. Additionally, some systems are also offering various sched-
uling strategies but with limited performance and without advice when to apply 
them. It can be concluded that the current shop floor information systems are 
good at data administration, but for the effective solution of production schedul-
ing problems they are of very little help [MS92a, MS92b].  

An intuitive job processing schedule, based solely upon the experience of 
skilled production managers, does not take advantage of the potential strengths of 
an integrated IPS. Thus, the development of an intelligent system which inte-
grates planning and control within scheduling for the entire operation and sup-
ports effectively the shop floor management, becomes necessary. Such a system 
could perform all of the functions of the current shop floor scheduling systems 
and would also be able to generate good proposals for production schedules, 
which also take deviations from the normal routine into consideration. With the 
help of such concepts the problems involved in initializing and operating a man-
ufacturing system should be resolved.  

Practical approaches to production scheduling on the planning and control 
level must take also into account the dynamic and unpredictable environment of 
the shop floor. Due to business and technical considerations, most decisions must 
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be made before all the necessary information has been gathered. Production 
scheduling must be organized in advance. Predictive scheduling is the task of 
production planning and the basis for production control; where reactive schedul-
ing has to be able to handle unexpected events. In such a situation, one attempt is 
to adapt to future developments using a chronological and functional hierarchy 
within the decision making steps of production scheduling. This helps to create a 
representation of the problem that considers all available information [Sch89a].  

The chronological hierarchy leads to the separation of offline planning 
(OFP) and online control (ONC). Problems involved in production scheduling 
are further separated on a conceptual and a specific level in order to produce a 
functional hierarchy, too. The purpose of the chronological approach to prioriti-
zation is to be able to come to a decision through aggregated and detailed model-
ing, even if future information is unspecific or unavailable. Aside from fulfilling 
the functional needs of the organization, the basic concept behind the functional 
hierarchy is to get a better handle on the combinatorial difficulties that emerge 
from the attempt of simultaneously solving all problems arising in a manufactur-
ing environment. The IPS should follow hierarchical concepts in both, the chron-
ological and the functional aspect. The advantage of such a procedure consists 
not only in getting a problem-specific approach for investigation of the actual 
decision problem, but also in the representation of the decision making process 
within the manufacturing organization.  

Models and methods for the hierarchically structured scheduling of produc-
tion with its planning and control parts have been developed over the years and 
are highly advanced; see e.g. [KSW86, Kus86, Ste85, LGW86]. However, they 
lack integration in the sense of providing a concept, which encompasses the en-
tire planning and control process of scheduling. With our proposal for an IPS we 
try to bring these methods and models one step closer to practical application. 
The rudimentary techniques of solving predictive scheduling problems presented 
here work on a closed Analysis-Construction-Evaluation loop (ACE loop). This 
loop has a feedback mechanism creating an IPS on the levels of OFP and ONC 
[Sch92]. An overview over the system is shown in Figure 18.3.1.  

The OFP module consists of an analysis, a construction and an evaluation 
component. First, the problem instance is analyzed (A) in terms of objectives, 
constraints and further characteristics. In order to do this the first step for (A) is 
to describe the manufacturing environment with the scheduling situation as de-
tailed as necessary. In a second step from this description a specific model has to 
be chosen from a set of scheduling models in the library of the system. The anal-
ysis component (A) can be based upon knowledge-based approaches, such as 
those used for problems like classification.  

The problem analysis defines the parameters for the construction (C) phase. 
From the basic model obtained in (A), a solution for the scheduling problem is 
generated by (C) using some generic or specific algorithms. The result is a com-
plete schedule that has then to be evaluated by (E). Here the question has to be 
answered if the solution can be implemented in the sense that manufacturing ac-
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cording to the proposed solution meets business objectives and fulfils all con-
straints coming from the application. If the evaluation is satisfactory to the user, 
the proposed solution will be implemented. If not, the process will repeat itself 
until the proposed solution delivers a desirable outcome or no more improve-
ments appear to be possible in reasonable time. 

Problem

Analysis Construction

Evaluation

Strategy

Adaptation

Ad-hoc-
decisions

OFP

ONC

(A) (C)

(E)

System
status  

Figure 18.3.1 Intelligent problem solving in manufacturing. 

The construction component (C) of the ACE loop generates solutions for OFP. It 
bases its solution upon exact and heuristic problem solving methods. Unfortu-
nately, with this approach we only can solve static representations of quite gen-
eral problems. The dynamics of the production process can at best be only ap-
proximately represented. In order to obtain the necessary answers for a dynamic 
process, the evaluation component (E) builds up descriptive models in the form 
of queuing networks at aggregated levels [BY86] or simulation on a specific lev-
el [Bul82, Ca86]. With these models one can evaluate the various outcomes and 
from this if necessary new requirements for problem solution are set up.  

Having generated a feasible and satisfactory predictive schedule the ONC 
module will be called. This module takes the OFP schedule and translates its 
requirements to an ONC strategy, which will be followed as long as the schedul-
ing problem on the shop floor remains within the setting investigated in the anal-
ysis phase of OFP. If temporary disturbances occur, a time dependent strategy in 
the form of an ad-hoc decision must be devised. If the interruption continues for 
such a long time that a new schedule needs to be generated, the system will re-
turn to the OFP module and seek for an alternative strategy on the basis of a new 
problem instance with new requirements and possibly different objectives within 
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the ACE loop. Again a new ONC strategy has to be found which will then be 
followed until again major disturbances occur.  

As already mentioned, production scheduling problems are changing over 
time; a major activity of the problem analysis is to characterize the problem set-
ting such that one or more scheduling problems can be modeled and the right 
method or a combination of methods for constructing a solution can be chosen 
from a library of scheduling methods or from knowledge sources coming from 
different disciplines. With this there are three things to be done; first the manu-
facturing situation has to be described, second the underlying problem has to be 
modeled and third an appropriate solution approach has to be chosen. From this 
point of view one approach is using expert knowledge to formulate and model 
the problem using the reference model presented in the preceding section, and 
then using "deep"-knowledge from the library to solve it.  

The function of OFP is providing flexibility in the development and imple-
mentation of desirable production schedules. OFP applies algorithms which can 
either be selected from the library or may also be developed interactively on the 
basis of simulation runs using all components of the ACE loop. The main activi-
ty of the interaction of the three components of the loop is the resolution of con-
flicts between the suggested solution and the requirements coming from the deci-
sion maker. Whenever the evaluation of some schedule generated by (C) is not 
satisfactory then there exists at least some conflict between the requirements or 
business objectives of a problem solution and the schedule generated so far. 
Methods to detect and resolve these conflicts are discussed in the next section. 

The search for a suitable strategy within ONC should not be limited to rou-
tine situations, rather it should also consider e.g. breakdowns and their predicta-
ble consequences. ONC takes into consideration the scheduling requirements 
coming from OFP and the current state of the manufacturing system. To that end, 
it makes the short term adjustments, which are necessary to handle failures in 
elements of the system, the introduction of new requirements for manufacturing 
like rush orders or the cancellation of jobs. An algorithmic reaction on this level 
of problem solving based on sophisticated combinatorial considerations is gener-
ally not possible because of prohibitive computing times of such an approach. 
Therefore, the competence of human problem solvers in reaching quality, real-
time decisions is extremely important.  

OFP and ONC require suitable diagnostic experience for high quality deci-
sion making. Schedules generated in the past should be recorded and evaluated, 
for the purpose of using this experience to find solutions for actual problems to 
be solved. Knowledge-based systems, which could be able to achieve the quality 
of "self-learning" in the sense of case-based reasoning [Sch98], can make a sig-
nificant contribution along these lines. 

Solution approaches for scheduling problems mainly come from the fields of 

Operations Research (OR) and Artificial Intelligence (AI). In contrast to OR-

approaches to scheduling, which are focused on optimization and which were 

mainly covered in the preceding chapters, AI relies on satisfaction, i.e. it is suffi-
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cient to generate solutions which are accepted by the decision maker. Disregard-

ing the different paradigm of either disciplines the complexity status of the 

scheduling problems remains the same, as it can be shown that the decision vari-

ant of a problem is not easier than the corresponding optimization problem (see 

Section 2.2). Although the OR- and AI-based solution approaches are different, 

many efforts of either disciplines for investigating scheduling problems are simi-

lar; examples are the development of priority rules, the investigation of bottle-

neck resources and constraint-based scheduling. With priority scheduling as a 

job- or task-oriented approach, and with bottleneck scheduling as a resource-

oriented one, two extremes for rule-based schedule generation exist.  

Most of the solution techniques can be applied not only for predictive but al-

so for reactive scheduling. Especially for the latter case priority rules concerning 

job release to the system and job traversing inside the system are very often used 

[BPH82, PI77]. Unfortunately, for most problem instances these rules do not 

deliver best possible solutions because they belong to the wide field of heuristics. 

Heuristics are trying to take advantage from special knowledge about the charac-

teristics of the domain environment or problem description respectively and 

sometimes from analyzing the structure of known good solutions. Many AI-

based approaches exist which use domain knowledge to solve predictive and 

reactive scheduling problems, especially when modeled as constraint-based 

scheduling. 

OR approaches are built on numerical constraints, the AI approach is con-

sidering also non-numerical constraints distinguishing between soft and hard 
constraints. In this sense scheduling problems also can be considered as con-
straint satisfaction problems with respect to hard and soft constraints. Speaking 

of hard constraints we mean constraints which represent necessary conditions 

that must be obeyed. Among hard constraints are given precedence relations, 

routing conditions, resource availability, ready times, and setup times. In contrast 

to these, soft constraints such as desirable precedence constraints, due dates, 

work-in-process inventory, resource utilization, and the number of tool changes, 

represent rather preferences the decision maker wants to be considered. From an 

OR point of view they represent the aspect of optimization with respect to an 

objective function. Formulating these preferences as constraints too, will convert 

the optimization problem under consideration into a feasibility or a decision 

problem. In practical cases it turns out very often that it is less time consuming to 

decide on the feasibility of a solution than to give an answer to an optimization 

problem.  

The constraint satisfaction problem (CSP) deals with the question of finding 

values for the variables of a set X  = {x1 ,..., xn} such that a given collection C  of 

constraints c1 ,..., cm is satisfied. Each variable xi is assigned a domain zi which 

defines the set of values xi may assume. Each constraint is a subset of the Carte-

sian product z1 � z2 �...� zn that specifies conditions on the values of the varia-
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bles x1 ,..., xn . A subset Y � z1 � z2 �...� zn is called a feasible solution of the 

constraint satisfaction problem if Y meets all constraints of C , i.e. if Y  � �
j=1

n
 cj . 

The analysis of a constraint satisfaction problem either leads to feasible solu-

tions or to the result that for a given constraint set no such solution exists. In the 

latter case conflict resolution techniques have to be applied. The question in-

duced by a constraint satisfaction problem is an NP-complete problem [GJ79] 

and one of the traditional approaches to solve it is backtracking. In order to detect 

unfeasibility it is sometimes possible to avoid this computationally expensive 

approach by carrying out some preprocessing steps where conflicts between con-

straints are detected in advance.  

Example 18.3.1  For illustration purposes consider the following example prob-

lem with X  = {x1 , x2 , x3}, z1 = z2 = z3 = {0, 1}, and C  = {c1 , c2 , c3} represent-

ing the constraints  

x1 + x2 = 1 (18.3.1) 

x2 + x3 = 1 (18.3.2) 

x1 + x3 = y  for y � {0, 2} . (18.3.3) 

Feasible solutions for this example constraint satisfaction problem are given by 

Y11 = {(0, 1, 0)} and Y12 = {(1, 0, 1)}. If a fourth constraint represented by  

x2 + x3 = 0 (18.3.4) 

is added to C , conflicts arise between (18.3.2) and (18.3.4) and between (18.3.1), 

(18.3.3), and (18.3.4). From these we see that no feasible solution exists. Notice 

that no backtracking approach was needed to arrive at this result.  

To solve constraint satisfaction problems most AI scheduling systems construct a 

search tree and apply some search technique to find a feasible solution. A com-

mon technique to find feasible solutions quickly is constraint directed search. 

The fundamental philosophy uses a priori consistency checking techniques 

[DP88, Fre78, Mac77, Mon74]. The basic concept is to prune the search space 

before unfeasible combinations of variable values are generated. This technique 

is also known as constraint propagation. 

Apart from the discussed focus on constraints, AI emphasizes the role of 

domain specific knowledge in decomposing the initial problem according to sev-

eral perspectives like bottleneck resources, hierarchies of constraints, conflicting 

subsets of constraints, while ignoring less important details. Existing AI-based 

scheduling systems differentiate between knowledge representation (models) and 

scheduling methodology (algorithms). They focus rather on a particular applica-

tion than on general problems. The scheduling knowledge refers to the manufac-

turing system itself, to constraints and to objectives or preferences. Possible rep-
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resentation techniques are semantic networks (declarative knowledge), predicate 

logic (especially for constraints), production rules (procedural knowledge) and 

frames (all of it). Scheduling methodology used in AI is mainly based on produc-

tion rules (operators), heuristic search (guides the application of operators), op-

portunistic reasoning (different views of problem solving, e.g. resource-based or 

job-based), hierarchical decomposition (sub-problem solution, abstraction and 

distributed problem solving), pattern matching (e.g. using the status of the manu-

facturing system and given objectives for the application of priority rules), con-

straint propagation, reinforcement or relaxation techniques.  

In the next three sections we describe two approaches which use AI-based 
solution techniques to give answers to production scheduling problems. In Sec-
tion 18.3.1 we demonstrate open loop interactive scheduling and in Section 
18.3.2 we discuss some closed loop approaches using expert knowledge in the 
solution process of scheduling problems. In Section 18.3.3 we present an exam-
ple for integrated problem solving combining OR- and AI-based solution ap-
proaches. 

18.3.1 Interactive Scheduling  

We now want to describe how a constraint-based approach can be used within 
the ACE-loop to solve predictive scheduling problems interactively. Following 
Schmidt [Sch89b], decomposable problems can be solved via a heuristic solution 
procedure based on a hierarchical "relax and enrich" strategy (REST) with look 
ahead capabilities. Using REST we start with a solution of some relaxed feasibil-
ity problem considering hard constraints only. Then we enrich the problem for-
mulation step by step by introducing preferences from the decision maker. These 
preferences can be regarded as soft constraints. We can, however, not expect in 
general that these additional constraints can be met simultaneously, due to possi-
ble conflicts with hard constraints or with other preferences. In this case we have 
to analyze all the preferences by some conflict detection procedure. Having dis-
covered conflicting preferences we must decide which of them should be omitted 
in order to resolve contradictions. This way a feasible and acceptable solution 
can be generated.  

REST appears to be appealing in a production scheduling environment for 
several reasons. The separation of hard constraints from preferences increases 
scheduling flexibility. Especially, preferences very often change over time so that 
plan revisions are necessary. If relaxation and enrichment techniques are applied, 
only some preferences have to be altered locally while very often major parts of 
the present schedule satisfying hard constraints can be kept unchanged. A similar 
argument applies for acceptable partial schedules which may be conserved and 
the solution procedure can concentrate on the unsatisfactory parts of the schedule 
only.  
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This problem treatment can be incorporated into the earlier mentioned DSS 
framework for production scheduling which then includes an algorithmic module 
to solve the problem under the set of hard constraints, and a knowledge-based 
module to take over the part of conflict detection and implementation of con-
sistent preferences. Without loss of generality and for demonstration purposes 
only we want to assume in the following that the acceptability of a solution is the 
greater the more preferences are incorporated into the final schedule. For sim-
plicity reasons it is assumed that all preferences are of equal importance. 

In this section we describe the basic ideas of REST quite generally and 
demonstrate its application using an example from precedence constrained 
scheduling. We start with a short discussion of the types of constraints we want 
to consider. Then we give an overview on how to detect conflicts between con-
straints and how to resolve them. Finally, we give a simple example and present 
the working features of the scheduling system based on REST. 

Analyzing Conflicts 

Given a set of tasks T  = {T1 ,..., Tn}, let us assume that preferences concern the 
order in which tasks are processed. Hence the set of preferences PR  is defined as 
a subset of the Cartesian product, T  � T . Conflicts occur among contradictory 
constraints. We assume that the given hard constraints are not contradictory 
among themselves, and hence that and thus a feasible schedule that obeys all the 
hard constraints always exists. Obviously, conflicts can only be induced by the 
preferences. Then, two kinds of contradictions have to be taken into account: 
conflicts between the preferences and the hard constraints, and conflicts among 
preferences themselves. Following the strategy of REST we will not extract all of 
these conflicts in advance. We rather start with a feasible schedule and aim to 
add as many preferences as possible to the system.  

The conflicting preferences are mainly originated from desired task order-
ings, time restrictions and limited resource availabilities. Consequently, we dis-
tinguish between logically conflicting preferences, time conflicting preferences, 
and resource conflicting preferences.  

Logical conflicts between preferences occur if a set of preferred task order-
ings contains incompatible preferences. Logical conflicts can easily be detected 
by investigating the directed graph G = (T , P R ). This analysis can be carried out 
by representing the set of preferences as a directed graph G = (T , LC ) where T  is 
the set of tasks and LC � T  � T  represents the preferred processing orders 
among them.  

Example 18.3.2  To illustrate the approach we investigate an example problem 
where a set T  = {T1 , T2 , T3 , T4} of four tasks has to be scheduled. Let the pre-
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ferred task orderings be given by PR  = {PR1 , PR2 , PR3 , PR4 , PR5} with PR1 = 

(T1 , T2), PR2 = (T2 , T3), PR3 = (T3 , T2), PR4 = (T3 , T4), and PR5 = (T4 , T1).  

T1 T2

T3 T4

PR5

PR1

PR3

PR2

PR4  
Figure 18.3.2 G = (T , PR ) representing preferences in Example 18.3.2. 

Logical conflicts in G = (T , PR ) can be detected by finding all cycles of G (see 
Figure 18.3.2). From this we get two sets of conflicts, LC1 = {PR2 , PR3} and 

LC2 = {PR1 , PR2 , PR4 , PR5}.   

Time conflicts occur if a set of preferences is not consistent with time restrictions 
following from the initial solution obtained on the basis of the hard constraints. 
To detect time conflicts we must explicitly check all time conditions between the 
tasks. Hard constraints implying earliest beginning times EBj , latest beginning 
times LBj and processing times pj restrict the preferences that can be realized. So, 
if  

EBu + pu > LBv  (18.3.5) 

for tasks Tu and Tv , the preference (Tu , Tv) , would violate the time restrictions. 
More generally, suppose that for some k � IN and for tasks Tu1

 ,...,  Tuk
  and Tu 

there are preferences (Tu1
 , Tu2

 ), (Tu2
 , Tu3

 ) ,...,  (Tuk�1
 , Tuk

 ) and (Tuk
 , Tv ). These 

preferences imply that the tasks should be processed in order (Tu1
 ,...,  Tuk

 , Tv ). 
However, if this task sequence has the property  

Zuk
 + puk

 > LBv (18.3.6) 

where  

Zuk
 = max {EBuk

, max
l

{EBul
 + �

j=l

k�1

 pj}}  

then obviously the given set of preferences is conflicting. If (18.3.6) is true the 
time constraint coming from the last task of the chain will be violated.  
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Example 18.3.2 - continued - To determine time conflicts, assume that each task 
Tj has a given earliest beginning time EBj and a latest beginning time LBj as spec-
ified together with processing times pj in the following Table 18.3.1. 

Tj EBj LBj pj 

T1 7 7 5 
T2 3 12 4 
T3 13 15 2 
T4 12 15 0 

Table 18.3.1 Time parameters for Example 18.3.2. 

To check time conflicts we have to investigate time compatibility of the prefer-
ences PRi , i = 1,..., 5. Following (18.3.5), a first consistency investigation shows 
that each of the preferences, PR3 and PR5 , is in conflict with the time constraints. 
The remaining preferences, PR1 , PR2 , and PR4 would suggest execution of the 
tasks in order (T1 , T2 , T3 , T4). To verify feasibility of this sequence we have to 
check all its subsequences against (18.3.6). The subsequences of length 2 are 
time compatible because the only time conflicting sequences would be (T3 , T2) 
and (T4 , T1). For the total sequence (T1 , T2 , T3 , T4) we get Z3 = max {EB3 , EB1 + 

p1 + p2 , EB2 + p2} = 15 and Z3 + p3 > LB4 , thus the subset {PR1 , PR2 , PR4 } of 
preferences creates a time conflict. Similarly the two subsequences of length 3 
are tested: the result is that sequence (T1 , T2 , T3) realized by preferences PR1 and 
PR2 establishes a time conflict, whereas (T2 , T3 , T4) does not. So we end up with 
four time conflicting sets of preferences, TC1 = {PR3}, TC2 = {PR5}, TC3 = 
{PR1 , PR2}, and TC4 = {PR1 , PR2 , PR4}.  

If the implementation of some preference causes a resource demand at some time 
t such that it exceeds resource limits at this time, i.e. 

�
Ti �Tt

 Rk(Tj) > mk, k = 1,..., s , (18.3.7) 

then a resource conflict occurs. Here T t denotes the set of tasks being processed 
at time t, Rk(Tj) the requirement of resource of type Rk of task Tj , and mk the cor-
responding resource maximum supply.  

Example 18.3.2 - continued - As to the resource conflicts, assume that s = 1, m1
 = 1, and R1(Tj) = 1 for all j = 1,..., 4. Taking the given time constraints into ac-
count, we detect a conflict for PR1 from (18.3.7) since T2 cannot be processed in 
parallel with tasks T3 and T4 . Thus an additional conflicting set RC1 = {PR1} has 
to be introduced.   
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Coping with Conflicts 

Let there be given a set T  of tasks, and a set PR of preferences concerning the 
processing order of tasks. Assume that logical conflicting sets LC1 ,..., LC0 , 
time conflicting sets TC1 ,...,TC7 , and resource conflicting sets RC1 ,..., RC� 

have been detected. We then want to find out if there is a solution schedule that 
meets all the restrictions coming from these conflicting sets. This means that we 
need to find a subset PR ' of PR  of maximal cardinality such that none of the 
conflicting sets LCi , TCj , RCk contradicts PR ', i.e. is contained in PR '. 

Let LC := {LC1 ,..., LC0} be the set of all logically conflicting sets; the set 
TC of time conflicting sets and the set RC of resource conflicting sets are defined 
analogously. Define C  := LC � TC � RC , i.e. C  contains all the conflicting sets 
of the system. The pair IH := (PR , C) represents a hypergraph with vertices PR  
and hyperedges C . Since IH describes all conflicts arising in the system we refer 
to IH as the conflict hypergraph.  

Our aim is to find a suitable subset PR ', i.e. one that does not contain any of 
the hyperedges. We notice that if H1 � H2 for hyperedges H1 and H2, we need 
not to consider H2 since H1 represents the more restrictive conflicting set. Ob-
serving this we can simplify the hypergraph by eliminating all hyperedges that 
are supersets of other hyperedges. The hypergraph then obtained is referred to as 
the reduced conflict hypergraph.  

According to our measure of acceptability we are interested in the maximum 
number of preferences that can be accepted without loosing feasibility. This is 
justified if all preferences are of equal importance. If the preferences have differ-
ent weights we might be interested in a subset of preferences of maximum total 
weight. All these practical questions result in NP-hard problems [GJ79].  

To summarize the discussion we have to perform three steps to solve the 
problem. 
Step 1: Detect all the logically, time, and resource conflicting sets. 
Step 2: Build the reduced conflict hypergraph. 
Step 3: Apply some conflict resolution algorithm. 

Algorithm 18.3.3  frame (IH = (PR , C)); 

begin 
S := �; -- initialization of the solution set 
while PR  � � do 
begin 
Reduce hypergraph (PR , C); 
Following some underlying heuristic, choose preference PR � PR ; (18.3.8) 
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PR  := PR  � {PR}; 
if C �/  S � {PR} for all C � C then S := S � {PR}; 

-- P R  is accepted if the temporal solution set does not contain any conflicting preferences 

for all C � C do C := C � (PR  � PR ); 

-- the hypergraph is restricted to the new (i.e. smaller) set of vertices 
end; 

end; 

The algorithm is called frame because it has to be put in concrete form by intro-
ducing some specific heuristics in line (18.3.8). Based on the conflict hypergraph 
IH = (PR , C) heuristic strategies can easily be defined. We also mention that if 
preferences are of different importance their weight should be considered in the 
definition of the heuristics in (18.3.8).  

In the following we give a simple example of how priority driven heuristics 
can be defined. Each time (18.3.8) is performed, the algorithm chooses a prefer-
ence of highest priority. In order to gain better adaptability we allow that priori-
ties are re-computed before the next choice is taken. This kind of dynamics is 
important in cases where the priority values are computed from the hypergraph 
structure, because as the hypergraph gets smaller step by step its structure chang-
es during the execution of the algorithm, too. 

Heuristic DELTA-decreasing (,dec): Let ,: PR  � IN 
0 be the degree that as-

signs - in analogy to the notion of degree in graphs - each vertex PR � PR the 
number of incident hyperedges, i.e. the number of hyperedges containing vertex 
PR. The heuristic ,dec then arranges the preferences in order of non-increasing 
degree. This strategy follows the observation that the larger the degree of a pref-
erence is, the more subsets of conflicting preferences exist; thus such a prefer-
ence has less chance to occur in the solution set. To increase this chance we give 
such preference a higher priority.  

Heuristic DELTA-increasing (,inc): Define ,inc := � ,dec . This way preferences 
of lower degree get higher priority. This heuristic was chosen for comparison 
against the ,dec strategy. 

Heuristic GAMMA-increasing ("inc): Define ": PR  � IN 0 as follows: For PR 
� PR , let "(PR) be the number of vertices that do not have any common hy-
peredge with PR. The heuristic "inc then arranges the preferences in order of non-
decreasing cardinalities. The idea behind this strategy is that a preference with 
small "-value has less chance to be selected to the solution set. To increase this 
chance we give such preference a higher priority.  

Heuristic GAMMA-decreasing ("dec): Define "dec := � "inc . This heuristic was 
chosen for comparison against the "inc strategy. 



 18  Computer Integrated Production Scheduling 

 

740 

The above heuristics have been compared by empirical evaluation [ES93]. 
There it turned out that DELTA-decreasing, GAMMA-increasing behave consid-
erably better than DELTA-increasing and GAMMA-decreasing.  

Example 18.3.2 - continued - Summarizing all conflicts we get the conflict hy-
pergraph IH := (PR , C) where the set C contains the hyperedges 

{PR2 , PR3} 
{PR1 , PR2 , PR4 , PR5} 

(logically conflicting sets) 

{PR3} 
{PR5} 
{PR1 , PR2} 
{PR1 , PR2 , PR4} 

(time conflicting sets) 

{PR1} (resource conflicting set). 

Figure 18.3.3 shows the hypergraph where encircled vertices are hyperedges.  

PR2

PR5

PR4

PR3

PR1

 

Figure 18.3.3 IH = (PR , C) representing conflicts of the example problem. 

PR1 PR2

PR4

PR5 PR3
 

Figure 18.3.4 Reduced hypergraph representing conflicts of the example prob-
lem. 
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Since each of the hyperedges of cardinality > 1 contains a conflicting set of car-
dinality one, the reduced hypergraph has only the three hyperedges {PR1}, {PR3} 
and {PR5}, see Figure 18.3.4. A subset of maximal cardinality that is not in con-
flict with any of the conflicting sets is {PR2 , PR4}. Each of the above algorithms 
finds this solution as can easily be verified.   

Below we present a more complex example where not only the heuristics can be 
nontrivially applied; the example also demonstrates the main idea behind an in-
teractive schedule generation. 

Working Features of an Interactive Scheduling System 

The above described approach of REST with conflict detection mechanisms can 
be integrated into a DSS [EGS97]. Its general outline is shown in Figure 18.3.5. 

CONSTRUCTIONANALYSIS

EVALUATION

conflict 
detection

provisional
final schedule

basic 
schedule

hard 
constraints

soft
constraints

1

3 4

2

5

6

predictive
schedule

 
Figure 18.3.5 A DSS for the REST-approach. 

The DSS consists of four major modules: problem analysis, schedule generation, 
conflict detection and evaluation. Their working features can be organized by 
incorporating six phases. The first phase starts with some problem analysis inves-
tigating the hard constraints which have to be taken into account for any problem 
solution. Then, in the second phase a first feasible solution (basic schedule) is 
generated by applying some scheduling algorithm. The third phase takes over the 
part of analyzing the set of preferences of task constraints. In the fourth phase 
their interaction with the results of the basic schedule is clarified via the conflict 
detection module. In the fifth phase a compatible subset of soft constraints ac-
cording to the objectives of the decision maker is determined, from which a re-
vised schedule is generated. In the last phase the revised evaluated. If the evalua-
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tion is satisfactory a solution for the predictive scheduling problem is found; if 
not, the schedule has to be revised by considering new constraints from the deci-
sion maker. The loop stops as soon as a satisfactory solution has been found.  

The DSS can be extended to handle a dynamic environment. Whenever hard 
constraints have to be revised or the set of preferences is changing we can apply 
this approach on a rolling basis. 

Example 18.3.4  To demonstrate the working feature of the scheduling system 
consider an extended example. Let there be given a set of tasks T  = {T1 , T2 , T3 , 
T4 , T5 , T6 , T7 , T8}, and hard constraints as shown in Figure 18.3.6(a). Processing 
times and earliest and latest beginning times are given as triples (pj , EBj , LBj) 
next to the task nodes. In addition, concurrent task execution is restricted by two 
types of resources and resource requirements of the tasks are R(T1) = [2, 0], 
R(T2) = [2, 4], R(T3) = [0, 1], R(T4) = [4, 2], R(T5) = [1, 0], R(T6) = [2, 5], 
R(T7) = [3, 0], R(T8) = [0, 1]. The total resource supply is m = [5, 5].  
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T5
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t0 5 11 12

T2

1 2 7 9  
Figure 18.3.6 Illustration of Example 18.3.4 : 
 (a) hard constraints, 
 (b) a basic schedule. 

Having analyzed the hard constraints we generate a feasible basic schedule by 
applying some scheduling algorithm. The result is shown in Figure 18.3.6(b). 
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Feasibility of the schedule is gained by assigning a starting time sj to each task 
such that EBj � sj � LBj and the resource constraints are met. 

Describing the problem in terms of the constraint satisfaction problem, the 
variables refer to the starting times of the tasks, their domains to the intervals of 
corresponding earliest and latest beginning times and the constraints to the set of 
preferences. Let the set of preferences be given by PR  = {PR1 ,..., PR7} with 
PR1 = (T3 , T4) , PR2 = (T2 , T3) , PR3 = (T4 , T3) , PR4 = (T7 , T5) , PR5 = (T5 , T2) , 
PR6 = (T5 , T6) , and PR7 = (T4 , T5) (see Figure 18.3.7). Notice that the basic 
schedule of Figure 18.3.6(b) realizes just two of the preferences.  

Analyzing conflicts we start with the detection of logical conflicts. From the 
cycles of the graph in Figure 18.3.7 we get the logically conflicting sets LC1 = 
{PR1 , PR3} and LC2 = {PR1 ,  PR2 ,  PR5 , PR7}.  

T4

T1 T2

T3T8

T7

T6 T5

PR3

PR4
PR1

PR2

PR7

PR8

PR6
PR5

PR9

PR10

 
Figure 18.3.7 G = (T , PR ) representing preferences in Example 18.3.4. 

Task sequence Time conflicting set of preferences 

(T4 , T3) TC1 = {PR3} 

(T2 , T3 , T4) TC2 = {PR1 , PR2} 

(T7 , T5 , T6) TC3 = {PR4 , PR6} 

(T2 , T3 , T4, T5) TC4 = {PR1 , PR2 , PR7}  

(T3 , T4 , T5, T2) TC5 = {PR1 , PR5 , PR7} 

(T4 , T5 , T2, T3) TC6 = {PR2 , PR5 , PR7}  

(T5, T2 , T3 , T4) TC7 = {PR1 , PR2 , PR5} 

Table 18.3.2 Subsets of preferences being in time conflict. 
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For the analysis of time constraints we start with task sequences of length 2. We 
see that there is only one such conflict, TC1 . Next, task sequences of length 
greater than 2 are checked. Table 18.3.2 summarizes non-feasible task sequences 
and their corresponding time conflicting subsets of preferences.  

So far we found 2 logically conflicting sets and 7 time conflicting sets of prefer-
ences. In order to get the reduced hypergraph, all sets that already contain a con-
flicting set must be eliminated. Hence there remain 5 conflicting sets of prefer-
ences, {PR3}  {PR1 , PR2}, {PR4 , PR6}, {PR1 , PR5 , PR7} and {PR2 , PR5 , PR7}. 
The corresponing hypergraph is sketched in Figure 18.3.8.  

PR1 PR3PR2

PR7

PR4 PR5 PR6

 
Figure 18.3.8 Gc = (PR, E) representing logical and time conflicts of Example 

18.3.4. 

We did, however, not consider the resource constraints so far. To detect resource 
conflicts we had to find all combinations of tasks which cannot be scheduled 
simultaneously because of resource conflicts. Since in general the number of 
these sets increases exponentially with the number of tasks, we follow another 
strategy: First create a schedule without considering resource conflicts, then 
check for resource conflicts and introduce additional precedence constraints be-
tween tasks being in resource conflict. In this manner we proceed until a feasible 
solution is found. 

t0 5 10 121 2 7 8 9

T 5 T 6T 2

T 1 T 4T 3 T 7 T 8

 
Figure 18.3.9 Schedule for Example 18.3.4 without considering resource con-

flicts. 

To construct a first schedule, we aim to find a set of non-conflicting preferences 
of maximum cardinality, i.e. a maximum set that does not contain any of the hy-
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peredges of the above hypergraph. For complexity reasons we content ourselves 
with an approximate solution and apply algorithm frame. Heuristics GAMMA-
increasing, for example, selects the subset {PR1 , PR5 , PR6}  and we result in the 
schedule presented in Figure 18.3.9. Remember that we assumed for simplicity 
reasons that all preferences are equally weighted.  

The schedule of Figure 18.3.9 shows two resource conflicts, for T2 , T4 and 
for T6 , T8 . Hence T2 and T4 (and analogously T6 and T8) cannot be processed 
simultaneously, and we have to choose an order for these tasks. This way we end 
up with two additional hard constraints in the precedence graph shown in figure 
18.3.10(a). Continuing the analysis of constraints we result in a schedule that 
realizes the preferences PR5  and PR6 (Figure 18.3.10(b)).   
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Figure 18.3.10 Final schedule for Example 18.3.4 : 
 (a) precedence graph of Figure 18.3.6(a) with additional hard 

constraints (T4, T2) and (T8, T6), 
 (b) a corresponding schedule. 

We can now summarize our approach by the following algorithm: 

Algorithm 18.3.5  for interactive scheduling. 
begin 
Initialize 'Basic Schedule'; 

Collect preferences; 
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Detect conflicts; 
while conflicts exist do Apply frame; 
Generate final schedule; 
end; 

Reactive Scheduling 

Now assume that the predictive schedule has been implemented and some un-
foreseen disturbance occurs. In this case within the ACE loop (compare Figure 
18.3.1) reactive scheduling is concerned with revising predictive schedules as 
unexpected events force changes. Now we want to present some ideas how to 
interactively model parts of the reactive scheduling process using fuzzy logic. 
The idea is to apply this approach for monitoring and diagnosing purposes only. 
Based on the corresponding observations detailed reactive scheduling actions can 
be taken by the decision maker [Sch94]. 

An algorithmic reaction on the reactive level of problem solving based on 
sophisticated combinatorial considerations is generally not possible because of 
prohibitive computing times; therefore, the competence of human problem solv-
ers in reaching quality, real-time decisions is extremely important. The human 
problem solver should be supported by advanced modeling techniques. In order 
to achieve this we suggest the application of fuzzy logic because it allows to rep-
resent the vague, qualitative view of the human scheduler most conveniently. The 
underlying theory of fuzzy sets [Zad65] concentrates on modeling vagueness due 
to common sense interpretation, data aggregation and vague relations. Examples 
for common sense interpretation in terms of a human production scheduler are 
e.g. 'long queues of jobs' or 'high machine processing speed'. Data aggregation is 
used in expressions like 'skilled worker' or 'difficult situation' and vague relations 
are represented by terms like 'not much more urgent than' or 'rather equal'. 

Reactive scheduling requires suitable diagnostic support for quick decision 
making. This is intended with our approach modeling reactive scheduling by 
fuzzy logic. The two main components of the model we use are (1) linguistic 
variables [Zad73] and (2) fuzzy rules or better decision tables [Kan86]. A lin-
guistic variable L can be represented by the tuple L = (X, U, f) where set X repre-
sents the feasible values of L, set U represents the domain of L, and f is the mem-
bership function of L which assigns to each element x � X a fuzzy set 
A(x)={u, fx(u)} where fx(u) � [0, 1].  

A decision table (DT) consists of a set of conditions (if-part) and a set of ac-
tions (then-part). In case of multi conditions or multi actions conditions or ac-
tions respectively have to be connected by operators. If all conditions have only 
one precise value we speak of deterministic DT. In case we use fuzzy variables 
for representing conditions or actions we also can build non-deterministic DT. 
These tables are very much alike of how humans think. In order to represent the 
interaction of linguistic variables in DT we have to introduce set-theoretic opera-
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tions to find the resulting membership function. The most common operations 
are union, intersection and complement. In case of an union we have fC(u) = 
max{fA(u), fB(u)}, in case of an intersection fD(u) = min{fA(u), fB(u)}, and in case 
of the complement A° of A we have fA°(u) = 1 � fA(u). To understand the approach 
of modeling reactive scheduling by fuzzy logic better consider the following sce-
nario. 

There are queues of jobs in front of machines on the shop floor. For each job 
Jj the number of jobs Nj waiting ahead in the queue, its due date dj and its slack 
time sj = dj � t are known where t is the current time. Processing times of the jobs 
are subject to disturbances. Due date and machine assignment of the jobs are 
determined by predictive scheduling. The objective is to diagnose critical jobs, 
i.e. jobs which are about to miss their due dates in order to reschedule them. Nj 
and sj are the linguistic input variables and "becomes critical" is the output varia-
ble of the DT. Membership functions for the individual values of the variables 
are determined by a knowledge acquisition procedure which will not be de-
scribed here. The following DT shown in Table 18.3.3 represents the fuzzy rule 
system. 

AND Small Medium Great 
Few soon later not to see 

Some now later not to see 
Many now soon not to see 
Very now soon later 

Table 18.3.3 Decision table for fuzzy rule system. 

The rows represent the values of the variable Nj and the columns represent the 
values of the variable sj. Both variables are connected by an AND-operator in any 
rule. With the above Table 18.3.3 twelve rules are represented. Each element of 
the table gives one value of the output variable "becomes critical" depending on 
the rule. To find these results the membership functions of the input variables are 
merged by intersection operations to a new membership function describing the 
output variable of each rule. The resulting fuzzy sets of all rules are then com-
bined by operations which are applied for the union of sets. This procedure was 
tested to be most favorable from an empirical point of view. 

As a result the decision maker on the shop floor gets the information which 
jobs have to be rescheduled now, soon, later, or probably not at all. From this 
two possibilities arise; either a complete new predictive schedule has to be gen-
erated or local ad-hoc decisions can be taken on the reactive scheduling level. 
Control decisions based on this fuzzy modeling approach and their consequences 
should be recorded and evaluated, for the purpose of using these past decisions to 
find better solutions to current problems. Fuzzy case-based reasoning systems, 
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which should be able to achieve the quality of a self-learning system, could make 
a significant contribution along these lines. 

We have implemented our approach of modeling reactive scheduling by 
fuzzy logic as a demonstration prototype. Two screens serve as the user interface. 
On the first screen the jobs waiting in a machine queue and the slack time of the 
job under investigation are shown. An example problem is shown in Figure 
18.3.11. 

0 120 240 360 [Min]

few some many very small medium great

 
Figure 18.3.11 Interface of fuzzy scheduler. 

There are ten jobs waiting in a queue to be processed by some machine Pi, the 
job under consideration Jj is shown by a white rectangle. Above the queue the 
different fuzzy sets concerning the linguistic variable Nj and the values of the 
corresponding membership functions are represented. The slack time sj of job Jj 
is currently 130 minutes; again fuzzy sets and membership functions of this lin-
guistic variable are represented above the scale. 

Applying the rules of the DT results in a representation which is shown in 
Figure 18.3.12. The result of the first part of inference shows that for job Jj the 
output variable "becomes critical" is related to some positive values for "soon" 
and for "later" shown by white segments. From this it is concluded by the second 
part of inference that this job has to be checked again before it is about to be re-
scheduled. 

soon now

not to seelater
 

Figure 18.3.12 Result of inference. 
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18.3.2 Knowledge-based Scheduling 

Expert Systems are special kinds of knowledge-based systems. Expert systems 
are designed to support problem modeling and solving with the intention to 
simulate the capabilities of domain experts, e.g. problem understanding, problem 
solving, explaining the solution, knowledge acquisition, and knowledge restruc-
turing. Most expert systems use two types of knowledge: descriptive knowledge 
or facts, and procedural knowledge or knowledge about the semantics behind 
facts. The architecture of expert systems is mainly based on a closed loop solu-
tion approach. This consists of the four components storing knowledge, 
knowledge acquisition, explanation of results, and problem solution. In the fol-
lowing we will concentrate on such a closed loop problem solution processes. 
There is an important difference between expert systems and conventional prob-
lem solving systems. In most expert systems the model of the problem descrip-
tion and basic elements of problem solving are stored in a knowledge base. The 
complete solution process is carried out by some inference module interacting 
with the knowledge base. Conventional systems do not have this kind of separat-
ed structure; they are rather a mixture of both parts in one program. 

In order to implement an expert system one needs three types of models: a 
model of the domain, a model of the elementary steps to be taken, and a model of 
inference that defines the sequence of elementary steps in the process of problem 
solution. The domain is represented using descriptive knowledge about objects, 
their attributes and their relations as introduced in Section 18.2. In production 
scheduling for example, objects are machines, jobs, tasks or tools, attributes are 
machine states, job and task characteristics or tool setup times, and relations 
could be the subsumption of machines to machine types or tasks to jobs. The 
model of elementary steps uses production rules or other representations of pro-
cedural knowledge. For if-then rules there exists a unique input-output descrip-
tion. The model of inference uses combinations or sets of elementary steps to 
represent the solution process where a given start state is transformed to a desired 
goal state. This latter type of knowledge can also be knowledge of domain ex-
perts or domain independent knowledge. The goal of the expert system approach 
is mainly to improve the modeling part of the solution process to get closer to 
reality. 

To give a better understanding of this view we refer to an example given by 
Kanet and Adelsberger [KA87]: "... consider a simple scheduling situation in 
which there is a single machine to process jobs that arrive at different points in 
time within the planning period. The objective might be to find a schedule which 
minimizes mean tardiness. An algorithmic approach might entertain simplifying 
the formulation by first assuming all jobs to be immediately available for pro-
cessing. This simplified problem would then be solved and perhaps some heuris-
tic used to alter the solution so that the original assumption of dynamic arrivals is 
back in tack. The approach looks at reformulation as a means to 'divide et im-
pera'. On the other hand a reformulative approach may ... seek to find a 'richer' 
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problem formulation. For example the question might be asked 'is working over-
time a viable alternative?', or 'does there exist another machine that can accom-
plish this task?', or 'is there a subset of orders that are less critical than others?', 
and so on." 

On the other hand systems for production scheduling should not only repli-
cate the expert's schedule but extend the capabilities by doing more problem 
solving. In order to achieve this AI systems separate the scheduling model from a 
general solution procedure. In [Fox90] the shop floor scheduling model de-
scribed uses terms from AI. It is considered to be time based planning where 
tasks or jobs must be selected, sequenced, and assigned to resources and time 
intervals for execution. Another view is that of a multi agent planning problem, 
where each task or job represents a separate agent for which a schedule is to be 
created; the agents are uncooperative, i.e. each is attempting to maximize its own 
goals. It is also claimed that expert systems appear inappropriate for the purpose 
of problem solution especially for two reasons: (1) problems like production 
scheduling tend to be so complex that they are beyond the cognitive capabilities 
of the human scheduler, and (2) even if the problem is relatively easy, factory 
environments change often enough so that any expertise built up over time be-
comes obsolete very quickly. 

We believe that it is nevertheless possible to apply an expert system ap-
proach for the solution of production scheduling problems but with a different 
perspective on problem solving. Though, as already stated, expert systems are not 
appropriate for solving combinatorial search problems, they are quite reasonable 
for the analysis of models and their solutions. In this way expert systems can be 
used for building or selecting models for scheduling problems. An appropriate 
solution procedure can be selected for the model, and then the expert system can 
again support the evaluation of the solution.  

The scheduling systems reviewed next are not expert systems in their purest 
sense and thus we will use the more general term knowledge-based system. ISIS 
[SFO86, Fox87, FS84], OPIS [SPP+90] and CORTES [FS90] are a family of 
systems with the goal of modeling knowledge of the manufacturing environment 
using mainly constraints to support constraint guided search; knowledge about 
constraints is used in the attempt to decrease the underlying search space. The 
systems are designed for both, predictive and reactive scheduling. 

ISIS-1 uses pure constraint guided search, but was not very successful in 
solving practical scheduling problems. ISIS-2 uses a more sophisticated search 
technique. Search is divided into the four phases job selection, time analysis, 
resource analysis, and resource assignment. Each phase consists in turn of the 
three sub-phases pre-search analysis (model construction), search (construction 
of the solution), and post-search analysis (evaluation of the solution). In the job 
selection phase a priority rule is applied to select the next job from the given set 
of available jobs. This job is passed to the second phase. Here earliest start and 
latest finish times for each task of the job are calculated without taking the re-
source requirements into account. In phases three and four the assignment of re-
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sources and the calculation of the final start and finish times of all tasks of the 
job under consideration is carried out. The search is organized by some beam 
search method. Each solution is evaluated within a rule-based post-search analy-
sis. ISIS-3 tries to schedule each job using more information from the shop floor, 
especially about bottleneck-resources. With this information the job-centered 
scheduling approach as it is realized in ISIS-2 was complemented by a resource-
centered scheduler. 

As the architecture of ISIS is inflexible as far as modifications of given 
schedules are concerned, a new scheduling system called OPIS-1 was developed. 
It uses a blackboard approach for the communication of the two knowledge 
sources analysis and decision. These use the blackboard as shared memory to 
post messages, partial results and any further information needed for the problem 
solution. The blackboard is the exclusive medium of communication. Within 
OPIS-1 the "analyzer" constructs a rough schedule using some balancing heuris-
tic and then determines the bottlenecks. Decision is then taken by the resource 
and the job scheduler already implemented in ISIS-3. Search is centrally con-
trolled. OPIS-1 is also capable to deal with reactive scheduling problems, be-
cause all events can be communicated through the blackboard. In OPIS-2 this 
event management is supported by two additional knowledge sources which are a 
"right shifter" and a "demand swapper". The first one is responsible for pushing 
jobs forward in the schedule, and the second for exchanging jobs. Within the 
OPIS systems it seems that the most difficult operation is to decide which 
knowledge source has to be activated.  

The third system of the family we want to introduce briefly is CORTES. 
Whereas the ISIS systems are primarily job-based and OPIS switches between 
job-based and resource-based considerations, CORTES takes a task-oriented 
point of view, which provides more flexibility at the cost of greater search effort. 
Within a five step heuristic procedure a task is assigned to some resource over 
some time interval. 

Knowledge-based systems using an expert system approach should concen-
trate on finding good models for the problem domain and the description of ele-
mentary steps to be taken during the solution process. The solution process itself 
may be implemented by a different approach. One example for model develop-
ment considering knowledge about the domain and elementary steps to be taken 
can be found in [SS90]. Here a reactive scheduling problem is solved along the 
same line as OPIS works using the following problem categorization: (1) ma-
chine breakdown, (2) rush jobs, (3) new batch of jobs, (4) material shortage, (5) 
labor absenteeism, (6) job completion at a machine, and (7) change in shift. 
Knowledge is modularized into independent knowledge sources, each of them 
designed to solve a specific problem. If a new event occurs it is passed to some 
meta-analyzer and then to the appropriate knowledge source to give a solution to 
the analyzed scheduling problem. For instance, the shortage of some specific raw 
material may result in the requirement of rearranging the jobs assigned to a par-
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ticular machine. This could be achieved by using the human scheduler's heuristic 
or by an appropriate algorithm to determine some action to be taken. 

As a representative for many other knowledge-based scheduling systems - 
see [Ata91] for a survey - we want to describe SONIA which integrates both pre-
dictive and reactive scheduling on the basis of hard and soft constraints [CPP88]. 
The scheduling system is designed to detect and react to inconsistencies (con-
flicts) between a predictive schedule and the actual events on the shop floor. 
SONIA consists of two analyzing components, a capacity analyzer and an ana-
lyzer of conflicts, and further more a predictive and a reactive component, each 
containing a set of heuristics, and a component for managing schedule descrip-
tions. 

For representing a schedule in SONIA the resources needed for processing 
jobs are described at various levels of detail. Individual resources like machines 
are elements of resource groups called work areas. Resource reservation con-
straints are associated with resources. To give an example for such a constraint, 
(res; t1, t2, n; list-of-motives) means that n resources from resource group res are 
not available during the time interval (t1, t2) for the reasons given in the list-of-
motives. 

Each job is characterized by a ready time, a due date, precedence constraints, 
and by a set of tasks, each having resource requirements. To describe the pro-
gress of work the notions of an actual status and a schedule status are introduced. 
The actual status is of either kind "completed", "in-process", "not started", and 
the schedule status can be "scheduled", "selected" or (deliberately) "ignored". 
There may also be temporal constraints for tasks. For example, such a constraint 
can be described by the expression (time � t1t2 , k) where t1 and t2 are points in 
time which respectively correspond to the start and the finish time of processing 
a task, and k represents the number of time units; if there have to be at least t 
time units between processing of tasks Tj and Tj+1 , the corresponding expression 
would be (time � (end Tj)(start Tj+1), t). To represent actual time values, the 
origin of time and the current time have to be known. 

SONIA uses constraint propagation which enables the detection of incon-
sistencies or conflicts between predictive decisions and events happening on the 
shop floor. Let us assume that as a result of the predictive schedule it is known 
that task Tj could precede task Tj+1 while the actual situation in the workshop is 
such that Tj is in schedule status "ignored" and Tj+1 is in actual status "in pro-
cess". From this we get an inconsistency between these temporal constraints de-
scribing the predictive schedule and the ones which come from the actual situa-
tion. The detection of conflicts through constraint propagation is carried out us-
ing propagation axioms which indicate how constraints and logic expressions can 
be combined and new constraints or conflicts can be derived. The axioms are 
utilized by an interpreter. 

SONIA distinguishes between the three major kinds of conflicts: delays, ca-
pacity conflicts and breakdowns. The class of delays contains all conflicts which 
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result from unexpected delays. There are four subclasses to be considered, "Task 
Delay" if the expected finish time of a task cannot be respected, "Due-Date De-
lay" if the due date of a manufacturing job cannot be met, "Interruption Delay" if 
some task cannot be performed in a work shift determined by the predictive 
schedule, and "Global Tardiness Conflict" if it is not possible to process all of the 
selected tasks by the end of the current shift. The class of capacity conflicts refers 
to all conflicts that come from reservation constraints. There are three subclasses 
to be considered. If reservations for tasks have to be cancelled because of break-
downs we speak of "Breakdown Capacity Conflicts". In case a resource is as-
signed to a task during a work shift where this resource is not available, an "Out-
Of-Shift Conflict" occurs. A capacity conflict is an "Overload" if the number of 
tasks assigned to a resource during a given interval of time is greater than the 
available capacity. The third class consists of breakdowns which contains all 
subclasses from delays and capacity conflicts caused only by machine break-
downs. In the following we give a short overview of the main components of the 
SONIA system and its control architecture.  

(i) Predictive Components The predictive components are responsible for gener-
ating an off-line schedule and consist of a selection and an ordering component. 
First a set of tasks is selected and resources are assigned to them. The selection 
depends on other already selected tasks, shop status, open work shifts and jobs to 
be completed. Whenever a task is selected its schedule status is "selected" and 
the resulting constraints are created by the schedule management system. The 
ordering component then uses an iterative constraint satisfaction process utilizing 
heuristic rules. If conflicts arise during schedule generation, backtracking is car-
ried out, i.e. actions coming from certain rules are withdrawn. If no feasible 
schedule can be found for all the selected tasks a choice is made for the tasks that 
have to be rejected. Their schedule status is set to "ignored" and the correspond-
ing constraints are deleted.  

(ii) Reactive Components. For reactive scheduling three approaches to resolve 
conflicts between the predictive schedule and the current situation on the shop 
floor are possible: Predictive components can generate a complete new schedule, 
the current schedule is modified globally forward from the current date, or local 
changes are made. The first approach is the case of predictive scheduling which 
already been described above. The easiest reaction to modify the current schedule 
is to reject tasks, setting their scheduling status to "ignored" and deleting all re-
lated constraints. Of course, the rejected task should be that one causing the con-
flicts. If several rejections are possible the problem gets far more difficult and 
applicable strategies have still to be developed. Re-scheduling forward from the 
current date is the third possibility of reaction considered here. In this case very 
often due dates or ends of work shifts have to be modified. An easy reaction 
would simply by a right shift of all tasks without modifying their ordering and 
the resource assignments. In a more sophisticated approach some heuristics are 
applied to change the order of tasks.  
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(iii) Analysis Components. The purpose of the analyzers is to determine which of 
the available predictive and reactive components should be applied for schedule 
generation and how they should be used. Currently, there are two analysis com-
ponents implemented, a capacity analyzer and a conflict analyzer. The capacity 
analyzer has to detect bottleneck and under-loaded resources. These detections 
lead to the application of scheduling heuristics, e.g. of the kind that the most crit-
ical resources have to be scheduled first; in the same sense, under-loaded re-
sources lead to the selection of additional tasks which can exploit the resources. 
The conflict analyzer chooses those available reactive components which are 
most efficient in terms of conflict resolution. 

(iv) Control Architecture. Problem solving and evaluating knowledge have to be 
integrated and adjusted to the problem solving context. A blackboard architecture 
is used for these purposes. Each component can be considered as an independent 
knowledge source which offers its services as soon as predetermined conditions 
are satisfied. The blackboard architecture makes it possible to have a flexible 
system when new strategies and new components have to be added and integrat-
ed. The domain blackboard contains capacity of the resources determined by the 
capacity analyzer, conflicts which are updated by the schedule management, and 
results given by predictive and reactive components. The control blackboard con-
tains the scheduling problem, the sub-problems to be solved, strategies like heu-
ristic rules or meta-rules, an agenda where all the pending actions are listed, poli-
cies to choose the next pending action and a survey of actions which are currently 
processed. 

SONIA is a knowledge-based scheduling system which relies on constraint satis-
faction where the constraints come from the problem description and are then 
further propagated. It has a very flexible architecture, generates predictive and 
reactive schedules and integrates both solution approaches. A deficiency is that 
nothing can be said from an ex-ante point of view about the quality of the solu-
tions generated by the conflict resolution techniques. Unfortunately also a 
judgement from an ex-post point of view is not possible because there is no em-
pirical data available up to now which gives reference to some quality measure of 
the schedule. Also nothing is known about computing times. As far as we know, 
this lack of evaluation holds for many knowledge-based scheduling systems de-
veloped until today. 

18.3.3 Integrated Problem Solving 

In this last section we first want to give an example to demonstrate the approach 
of integrating algorithms and knowledge within an interactive approach for OFP 
and ONC relying on the ACE loop. For clarity purposes, the example is very 
simple. Let us assume, we have to operate a flexible manufacturing cell that con-
sists of identically tooled machines all processing with the same speed. These 
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kinds of cells are also called pools of machines. From the production planning 
system we know the set of jobs that have to be processed during the next period 
of time e.g. in the next shift. As we have identical machines we will now speak 
of tasks instead of jobs which have to be processed. The business need is that all 
tasks have to be finished at the end of the next eight hour shift. With this the 
problem is roughly stated. 

Using further expert knowledge from scheduling theory for the analysis of 
the problem we get some insights using the following knowledge sources (see 
Chapter 5 for details): 

(1) The schedule length is influenced mainly by the sequence the tasks enter 
the system, by the decision to which machine an entering task is assigned next, 
and by the position an assigned task is then given in the corresponding machine 
queue. 

(2) As all machines are identically tooled each task can be processed by all 
machines and with this also preemption of tasks between machines might be pos-
sible. 

(3) The business need of processing all tasks within the next eight hour shift 
can be translated in some objective which says that we want to minimize sched-
ule length or makespan. 

(4) It is well known that for identical machines, independent tasks and the 
objective of minimizing makespan, schedules with preemptions of tasks exist 
which are never worse than schedules where task preemption is not allowed. 

From the above knowledge sources (1)-(4) we conclude within the problem 
analysis phase to choose McNaughton's rule [McN59] to construct a first basic 
schedule. From an evaluation of the generated schedule it turns out that all tasks 
could be processed within the next shift. Another observation is that there is still 
enough idle time to process additional tasks in the same shift. To evaluate the 
dynamics of the above manufacturing environment we simulate the schedule 
taking also transportation times of the preempted tasks to the different machines 
into account. From the results of simulation runs we now get a better understand-
ing of the problem. It turns out that considering transportation of tasks the sched-
ule constructed by McNaughton's rule is not feasible, i.e. in conflict according to 
the restriction to finish all tasks within the coming shift. The transport times 
which were neglected during static schedule generation have a major impact on 
the schedule length. 

From this we must analyze the problem again and with the results from the 
evaluation process we derive the fact that the implemented schedule should not 
have machine change-overs of any task, to avoid transport times between ma-
chines. 

Based on this new constraint and further knowledge from scheduling theory 
we decide now to use the longest processing time heuristic to schedule all tasks. 
It is shown in Chapter 5 that LPT gives good performance guarantees concerning 
schedule length and problem settings with identical machines. Transport times 
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between machines do not have to be considered any more as each task is only 
assigned to one machine. Let us assume the evaluation of the LPT-schedule is 
satisfactory. 

Now, we use earliest start and latest finish times for each task as constraints 
for ONC. These time intervals can be determined using the generated OFP-
schedule. Moreover we translate the LPT rule into a more operational scheduling 
rule which says: release all the tasks in a non-increasing order of processing 
times to the flexible manufacturing cell and always assign a task to the queue of a 
machine which has least actual total work to process. The machine itself selects 
tasks from its own queue according to a first-come-first-served (FCFS) strategy. 

As long as the flexible manufacturing cell has no disturbances ONC can 
stick to the given translation of the LPT-strategy. Now, assume a machine breaks 
down and that the tasks waiting in the queue have to be assigned to queues of the 
remaining machines. Let us further assume that under the new constraints not all 
the tasks can be finished in the current shift. From this a new objective occurs for 
reactive scheduling which says that as many tasks as possible should be finished. 
Now, FCFS would not be the appropriate scheduling strategy any longer; a suita-
ble ad-hoc decision for local repair of the schedule has to be made. Finding this 
decision on the ONC-level means again to apply some problem analysis also in 
the sense of diagnosis and therapy, i.e. also ad-hoc decisions follow some analy-
sis-construction sequence. If there is enough time available also some simulation 
runs could be applied, but in general this is not possible. To show a way how the 
problem can be resolved similar rules as these from Table 18.3.4 could be used.  

For the changed situation, the shortest processing time (SPT) rule would 
now be applied. The SPT rule is proposed due to the expectation that this rule 
helps to finish as many tasks as possible within the current shift. In case of fur-
ther disturbances that cause major deviations from the current system status, OFP 
has to be reactivated for a global repair of the schedule. 

At the end of this section we want to discuss shortly the relationship of our 
approach to solve production scheduling problems and the requirements of inte-
grated problem solving within computer integrated manufacturing. The IPS has 
to be connected to existing information systems of an enterprise. It has interfaces 
to the production planning systems on a tactical level of decision making and the 
real-time oriented CAM-systems. It represents this part of the production sched-
uling system which carries out the feedback loop between planning and execu-
tion. The vertical decision flow is supplemented by a horizontal information flow 
from CAE and CAQ. The position of the IPS within CIM is shown in Figure 
18.3.13. 

We gave a short introduction to an IPS which uses an interactive scheduling 
approach based on the ACE loop. Analysis and evaluation are carried out mainly 
by the decision maker, construction is mainly supported by the system. To that 
end a number of models and methods for analysis and construction have been 
devised, from which an appropriate selection should be possible. The modular 
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and open architecture of the system offers the possibility of a step by step imple-
mentation which can be continuously adapted to changing requirements. 

/* Goal rule

Rule 0100

IF         Machine.Sequence = known
THEN  Machine.Schedule = completed
END

/* Determine the scheduling strategy

/* SPT-rule to reduce system overload

Rule 1000

IF         Machine.Status = overloaded
AND    Queue.Orders = not_late
AND    System.Status = overloaded
THEN  Machine.Sequence = 
             proc(SPT_Processing, Machine.Duration)

/* FCFS-default strategy

Rule 1500 SELFREF

IF         Machine.Sequence = notknown
THEN  Machine.Sequence = 
             proc(FCFS_Processing, Machine.Arrival)
END

/* Determine the status of the machine

Rule 2000

IF        Machine.Backlog > 40
THEN  Machine.Status = overloaded
END

/* Determine the status of the queue

Rule 3000

IF         Queue.Minbuffer > 20
THEN  Queue.Jobs = not_late
END

/* Determine the status of the system

Rule 4000

IF         System.Jobs > 30
AND    Machine.Number_overloaded > 4
THEN  System.Status = overloaded
END

 
Table 18.3.4 Example problem for reactive scheduling. 

PPS CAE

CAM CAQ

ONC

IPS

OFP

 
Figure 18.3.13 IPS within CIM. 
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A further application of the system lies in a distributed production scheduling 
environment. The considered manufacturing system has to be modeled and ap-
propriately decomposed into subsystems. For the manufacturing system and each 
of its subsystems corresponding IPS apply, which are implemented on different 
computers connected by an appropriate communication network. The IPS on the 
top level of the production system serves as a coordinator of the subsystem IPS. 
Each IPS on the subsystem level works independently fulfilling the requirements 
from the master level and communicating also with the other IPS on this level. 
Only if major decisions which requires central coordination the master IPS is 
also involved. 
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19  Scheduling in Logistics 

Logistic and transportation related problems are crucial for various human activi-
ties, since moving people, items, goods, etc., between different locations is a part 
of nearly all processes met in industry, agriculture, or generally speaking in busi-
ness, as well as in healthcare, social care and other aspects of human life. Coping 
with these types of problems in managing military actions during World War II 
initiated the area of operations research and are still a focus of attention of scien-
tists and practitioners (cf. e.g. [BL07, MSH14]). The definition of logistics has 
been developing over the years. Nowadays logistics might be considered as a part 
of supply chain management, as is recommended by one of recognized trade or-
ganizations: the Council of Supply Chain Management Professionals (CSCMP, 
former Council of Logistics Management). CSCMP sees logistics as 
[CSCMP13]: “the process of planning, implementing, and controlling procedures 
for the efficient and effective transportation and storage of goods including ser-
vices, and related information from the point of origin to the point of consump-
tion for the purpose of conforming to customer requirements; this definition in-
cludes inbound, outbound, internal, and external movements.” Since transporta-
tion science is a separate scientific discipline, we do not intend even to scratch its 
scope. Instead, in this chapter we want to show exemplary applications of sched-
uling theory for solving specific logistic problems, and illustrate interrelations 
between various scientific fields.        

19.1 Introduction 

Logistics is often associated with transport processes, controlling the movements 
of cars, trucks, ships, planes, etc., which can be formulated as vehicle routing 
problems. Some aspects of vehicle routing are mentioned in Section 17.3 in con-
text of scheduling vehicles for a production schedule in an exemplary flexible 
manufacturing system. Since the vehicle routing problem (VRP) cannot be omit-
ted when logistics is discussed, in Section 19.2 we provide a short overview of 
VRPs in order to illustrate the wide range of issues studied within this field. 
This section introduces and completes the later presentations of selected applica-
tions of scheduling theory to some logistic problems. Moreover, it is a source of 
numerous references for the readers more interested in VRPs. In the following 
sections we present three exemplary studies of logistic problems, which arise in 
main modes of transport. Section 19.3 deals with the problem of delivering 
ready-mixed concrete in overland transportation. In Section 19.4 we describe the 
flight gate scheduling problem arising in air transportation, while in Section 19.5 
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the berth and quay crane allocation problem related to maritime transportation is 
discussed. These three examples obviously do not exhaust the subject of applying 
scheduling theory in logistics, but they show the variety of possible modeling and 
solving methods.   

19.2 Vehicle Routing Problem 

The vehicle routing problem (VRP) belongs to the most widely studied problems 

in operations research due to its practical importance. The general VRP concerns 

designing routes for a fleet of vehicles to supply a set of customers. It has its 

origin in the truck dispatching problem formulated by Dantzig and Ramser in 

1959 [DR59], which concerned minimizing the travel distance of a fleet of ho-

mogenous trucks delivering oil from a central hub to a set of gas stations. Then 

the problem was generalized by Clarke and Wright in 1964 [CW64], who con-

sidered the process of supplying a set of customers from a central depot with 

trucks of various capacities, taking into account geographical locations. Since 

that time a lot of models have been proposed, extending the basic already NP-

hard formulation [LRK81], by incorporating additional parameters and con-

straints motivated from real world conditions. Presenting details of the vehicle 

routing problem is beyond the scope of this handbook, because the VRP itself is 

a subject of numerous books (cf. e.g. [CLSV07, GRW08, TV14]) and surveys. 

The number of papers devoted to this problem is increasing exponentially with 

ca. 6.1% annual growth rate [EVR09]. For the sake of completeness, we shortly 

present the main research streams for the vehicle routing problem based on clas-

sifications proposed by Eksioglu et al. [EVR09] and later extensions by Braekers 

et al. [BRN16]. We sketch out variants of VRP and supply the deeply interested 

reader with corresponding surveys.  

The basic variant of the vehicle routing problem, called the capacitated VRP 

(e.g. [Lap09]), can be formulated as follows. Let G = (V, E) be a directed graph, 

with vertex set V = {0,..., n}, where vertex 0 represents a depot and vertices 

{1,..., n} represent customers. Each customer i is described by a non-negative 

demand qi , which has to be satisfied by a fleet of m identical vehicles, each with 

capacity Q. The travel connections between the customers and depot are repre-

sented by the arc set E = {(i, j) | i,  j � V,  i � j}. Each arc (i, j) is assigned a 

weight cij which corresponds to the travel cost between i and j. In the simplest 

version travel costs, distances and travel times are considered as equivalent. Each 

vehicle visits a subset of vertices along a route that starts and ends at the depot, 

and the total demand of the customers along a route does not exceed the vehicle 

capacity Q.  The goal is to design a route for each vehicle, starting and ending at 

the depot, such that each customer is visited exactly once, and the total cost of all 
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vehicles is minimized. In this formulation of VRP it is often additionally required 

that the length of each route does not exceed a given limit L. VRP is called sym-
metric if cij = cji for all (i, j) � E, otherwise asymmetric. This basic model has 

been extended over the years with various additional components motivated by 

real-world applications.  

First, allowing a fleet of vehicles with varying capacities leads to the hetero-
geneous or mixed fleet VRP (e.g. [KBJL16]). The capacity of vehicles may be 

described in terms of weight, volume, number of pallets, etc. The heterogeneity 

of vehicles causes the need of fulfilling synchronization requirements between 

them, concerning special, temporal and load aspects, which lead to the VRP with 
multiple synchronization constraints (e.g. [Dre12a]).  

Then, instead of a single depot providing goods to customers, a set of vari-

ous depots serving customers is considered in the VRP with multiple depots (e.g. 

[MTLF+15]). Since depots may have various characteristics, customers may re-

quire specific subsets of depots for serving them. Moreover, in this case, vehicles 

may have different starting and ending locations. In most VRPs, the vehicles 

should finish their tour at a depot. In the open VRP a vehicle does not necessarily 

return to a depot, instead it may, for example, stop at a car park or at the driver’s 

home after having served all customers (e.g. [LGW07]). 

The description of customers can be extended with additional parameters 

such as time windows, which determine time intervals within which deliveries to 

particular customers should or have to occur. In the case of soft time windows, 
service delays are penalized. In the case of hard time windows, a vehicle must 

not arrive late but can arrive before the given interval and wait until the customer 

becomes available. The VRP with time windows (e.g. [BG05a, BG05b, GT10]) 

can be considered as a combination of two subproblems [GT10]. If the capacity 

constraints are relaxed, it reduces to a multiprocessor scheduling problem with 

sequence dependent setup times, where release times and deadlines represent 

time windows. On the other hand, if the time windows constraints are relaxed, it 

reduces to a bin packing problem. The time windows can be defined not only for 

customers, but also for depots, for vehicles (or for drivers), or even for roads (e.g. 

[IGP00]). The VRP with time windows, as other variants of VRP, is usually a 

multi-objective optimization problem. The goal might be [GT10]: minimizing 

the number of vehicle routes, minimizing the total travel time, the total travel 

distance of vehicles, or minimizing the total time spent for deliveries including 

vehicles waiting times, as well as maximizing the total number of served cus-

tomers, etc.  

Due to the increasing attention paid to “green” logistics, which takes into ac-

count environmental, ecological and social effects of logistic polices, issues and 

objectives related to them are also studied in the context of the vehicle routing 

problem. In the green VRP (e.g. [LCH+14]) the balance between environmental 

and economic cost is considered. In particular, in the green VRP attention is paid 

to, e.g. fuel consumption or emission related to vehicles movements (e.g. 

[MCL17]).    
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Taking into account real world conditions, as for example environmental is-

sues considered in the green VRP, usually requires a more detailed description of 

the vehicle routes. In the classical VRP the travel cost between locations is as-

sumed to be constant. In the real environments, where vehicles are moving on 

real roads, the travel time (influencing the travel cost) depends not only on 

the distance between two locations, but also on the time of day (e.g. considering 

rush hours) or weather conditions. Such fluctuating travel times are considered in 

the time-dependent VRP (e.g. [GGG15]).  

Furthermore, in the most VRP models, the problem parameters are assumed 

to be deterministic and known in advance. However, in many applications pa-

rameters such as customer demands, service times or travel times, are uncertain 

and can be described with probability distributions, leading to the stochastic VRP 

(e.g. [RPH16]).  

As we have mentioned, the traditional VRP deals mostly with deterministic 

environments in contrast to the dynamic VRP (e.g. [PGGM13]) where schedules 

for vehicles designed at the beginning of the planning period may have to be 

modified and adjusted to new circumstances, such as receiving additional infor-

mation on e.g. vehicle locations, occurrence of a new customer request, or vehi-

cle breakdowns.   

Another variant of VRP, the vehicle routing problem with pickup and deliv-
ery (e.g. [BCGL07]) concerns rather dispatching goods than supplying customers 

from a central depot. In this model, some objects or people (called just commodi-
ties) have to be picked up from one location and delivered to another one, i.e. 

transported between origins and destinations. Depending on the number of ori-

gins and destinations various models have been studied [BCGL07]. In some situ-

ations any location may serve as a source or as a destination for any commodity 

(many-to-many). In others, commodities initially located at one depot are deliv-

ered to different customers, who also have commodities destined to this depot 

(one-to-many-to-one), or each commodity has given single origin and destination 

(one-to-one) as in courier companies. Pickup and delivery operations can be per-

formed at customer places in various ways [BCGL07]. In some situations pickup 

and delivery are combined during one vehicle visit. In others they may be com-

bined or separated, or only one operation - either pickup or delivery - is requested 

by a single customer. According to a further extension, a single vehicle may per-

form a few pick-ups and drop-offs in one route (VRP with backhauls [POP13]). 

In this case some customers require deliveries (called also linehauls) and others 

wait for pick-ups (called also backhauls), so goods are transported from the de-

pot to linehaul customers and from backhaul customers to the depot. In the dial-
a-ride problem (DRP, e.g. [CL07, MLP14]) goods or persons have to be trans-

ported between pickup and delivery locations under certain service restrictions 

(as in patient transportation). 
Under real world conditions, the planning of vehicle movements is per-

formed in single or multiple planning horizons. In the latter case, considered in 

the periodic VRP (e.g. [CW14a, CW14b]), the customers require deliveries on 
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one or more days within a given planning period. In consequence the customers 

can be visited more than once, but with limited frequency. Deliveries can be 

planned, for example, at a predetermined set of alternatives, or they should ap-

pear every given number of days. In other periodic models, a minimum or 

a maximum interval between deliveries is defined. Independently of the variant 

of the periodic VRP, at each period the decision is taken, which orders should be 

served in this period, and which orders are fulfilled in the next planning intervals.   

As we have mentioned, the classical VRP assumes that each customer is 

served by only one vehicle, which is too restrictive in many real world situations. 

Multiple visits to the same customer are allowed in the VRP with split deliveries 

(e.g. [AS12]). In other models multiple use of vehicles is possible, when the same 

vehicle may perform several trips for pickups or deliveries within the same plan-

ning period.   

The above listed variants of the vehicle routing problem are often combined 

in order to reflect the complex nature of real world applications, resulting in the 

rich VRP (e.g. [Dre12b, LKS15]. A further natural extension of the vehicle rout-

ing problem is a location-routing problem (LRP, e.g. [DS15, PP14]), which 

combines two important logistic problems: facility location and vehicle routing. 

In LRP the decision on the location of facilities serving customers (such as de-

pots, warehouses, plants) is taken simultaneously with the decision on the vehicle 

routes rooted at those facilities.     

In order to summarize the variety of the vehicle routing models studied in the 

literature and mentioned above, we provide one of the VRP taxonomies proposed 

by Eksioglu et al. [EVR09] and extended later by Braekers et al. [BRN16]. The 

classification scheme allows grouping the rich literature on the vehicle routing 

problems with taking into account various attributes.  

Some of them concern the research methodology (type of study), which be-

sides theory, implementation documented and survey, review or meta-research 

includes applied methods. Due to NP-hardness of vehicle routing problems, they 

are solved by: exact methods, classical heuristics, metaheuristics, simulation and 

real-time solution methods.  

Since proposing methods solving VRPs is usually combined with computa-

tional experiments to validate their efficiency, the research can be further classi-

fied due to data characteristics. The studies can be based on real world data, 

synthetic data, both types of data, or even no data. But taking into account the 

formulation of the vehicle routing problem, especially important in the process of 

reflecting the real-world problems in terms of the formal models, the following 

three groups of attributes distinguished in [EVR09] and [BRN16] are essential. 

They concern: scenario, physical features and information type.   

The crucial components of the VRP definition are reflected in scenario 
characteristics, which include: 

T number of stops on route: known/deterministic, partially known and partially 
probabilistic; 



766 19  Scheduling in Logistics 

 

T load splitting constraints: splitting deliveries allowed or not allowed;  
T customer service demand quantity: deterministic, stochastic, unknown 

(i.e. unknown in advance but provided in real-time); 
T request times of new customers: deterministic, stochastic, unknown; 
T onsite service/waiting time: deterministic, dependent (e.g. time or vehicle de-

pendent), stochastic, unknown; 
T time window structure: soft, strict or mixed time windows; 
T time horizon: single or multi-period; 
T backhauls: nodes in the transportation network request simultaneous pickups 

and deliveries, or nodes request either pickups or deliveries; 
T node/arc covering constraints: precedence and coupling constraints, subset 

covering constraints, recourse allowed (e.g. return to the depot in order to re-
fill). 

The factors directly influencing the solution of VRP are included in problem 
physical characteristics, which concern: 

T transportation network design: directed network, undirected network; 
T location of customers: customers on nodes, arc routing instances (in most 

VRPs customers, i.e. nodes, should be supplied, but in some models the arcs 
must be visited, e.g. in routing winter gritting vehicles); 

T geographical location of customers: urban (i.e. scattered with a pattern), rural 
(i.e. randomly scattered), mixed; 

T number of points of origin: single origin, multiple origin; 
T number of points of loading/unloading: single depot, multiple depots; 
T time window type: restriction on customers, on depots/hubs, on driv-

ers/vehicles, on roads; 
T number of vehicles: single vehicle, limited number of vehicles, unlimited 

number of vehicles; 
T capacity consideration: capacitated vehicles, uncapacitated vehicles;   
T vehicle homogeneity/capacity: similar vehicles, load-specific vehicles, hetero-

geneous vehicles, customer-specific vehicles; 
T travel time: deterministic, function dependent (i.e. a function of current time), 

stochastic, unknown; 
T objective: travel time dependent, distance dependent, vehicle dependent, oper-

ation dependent, function of lateness, implied hazard/risk related, other. 
The uncertainty and the variability of data describing VRPs are reflected in 

information characteristics, which focus on: 
T evolution of information: static, partially dynamic; 
T quality of information: known (i.e. deterministic), stochastic, forecast, un-

known (i.e. real time); 
T availability of information: local, global; 
T processing of information: centralized, decentralized.  

The above presented taxonomy of the vehicle routing problems [EVR09, 
BRN16] is only one of concepts for classifying the research on VRPs (cf. e.g. 
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[BG81, Bod75, DJL+99, DLS90, MJS98, Psa95]). Nevertheless, it shows 
the immensity and variety of models for the vehicle routing problem.      

19.3 Concrete Delivery Problem 

The concrete delivery problem, which deals with planning routes for ready-
mixed concrete trucks to deliver concrete from depots to customers, is an inter-
esting and challenging problem, combining vehicle routing with scheduling is-
sues, involving some specific parameters and constraints. Within this section, we 
present the research by Asbach et al. [ADP09, Asb08] on one of several variants 
of this problem.  

19.3.1 Overview  

Scheduling of concrete deliveries is particularly difficult due to the specificity of 
the product being delivered. The ready-mixed concrete is a perishable product, 
which cannot reside in vehicles too long. Exceeding allowed time not only de-
creases the quality of this product, but may even lead to its hardening and de-
stroying the barrel, causing high penalty and maintenance cost for the vehicle’s 
owner. Moreover, vehicles should be fully loaded with concrete to prevent an 
increased rate of concrete hardening. Since partial loads of vehicles are not ad-
visable, trucks deliver concrete to a single customer and return to the depot for 
refilling. If the size of customer order exceeds the capacity of a vehicle, multiple 
deliveries have to be done within a certain time limit to allow continuing con-

struction work before earlier received concrete hardens. The fleet of mixer vehi-
cles used for delivering concrete is usually heterogeneous. Vehicles differ in their 
capacity and specialized equipment, such as pumps that might be required by 
customers. Furthermore, concrete is a custom specified material. Since concrete 
produced by various manufacturers may vary in its characteristics and quality, 
customers may order concrete from specific producers meeting their require-
ments.  

Besides the parameters and constraints resulting from the specificity of 
the product, the concrete delivery problem involves parameters and constraints 
met in other logistic problems. The delivery plan is usually constructed for 
a certain planning period, such as a working day. Construction sites, called cus-
tomers, as well as producers, called depots, work in specific time intervals within 
this planning period. Similarly, the vehicle fleet operates within a given time 
period. The length of vehicle schedule results not only from the travel time nec-
essary to move between various locations, but also from the service time neces-
sary for loading or unloading the vehicles, parking them and maintaining. More-
over, consecutive deliveries to the same customer or shipments from the same 
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depots usually cannot overlap and they have to be separated in time, due to lim-
ited capacity of construction sites and concrete plants, or due to some additional 
preparations required. The quality of the delivery plan results from the total cost 
of fulfilling customer orders, which includes delivery cost and vehicle usage cost, 
as well as possible penalties paid to customers whose orders are not performed to 
their full satisfaction.    

The concrete delivery problem is an example of the vehicle routing problem, 
combining various models sketched in the previous section. It can be considered 
as the VRP with multiple depots, heterogeneous fleet, time windows, split deliv-
eries, multiple use of vehicles, and additional constraints resulting from real 
world conditions, which altogether justify classifying the concrete delivery prob-
lem as a rich VRP.  

19.3.2 Modeling the Concrete Delivery Problem  

The concrete delivery problem can be more formally described by the following 
set of parameters and constraints. Based on them a graph model is formulated, 
and finally a mixed integer programming model is given [ADP09].  

The problem definition contains three sets: the set of depots, the set of cus-
tomers and the set of vehicles, and some additional parameters such as: 
7 = [τ1 , τ2]  the planning period (e.g. a working day),  
" the maximum time that concrete may stay within a vehicle before 

hardening. 
The set of depots D = {D1 ,..., Dm} contains depots d � D (in most places, 

for the sake of simplicity, we write d instead of Dd) which are characterized by: 

s(d) the service time for a vehicle necessary for e.g. parking, filling with 

concrete and maintenance, 

[a(d), b(d)] the time window restricting the time of releasing vehicles from 

the depot, 

mintl(d) the minimum time lag between two vehicles requiring fill-

ing/reloading at the depot. 

The set of customers C = {C1 ,..., Cn} contains customers c � C (as in 

the case of depots, we simply write c instead of Cc) described by the following 

parameters: 

q(c)  the (positive) demand of concrete, 

*(c) the penalty cost for not delivering the full concrete demand, 

s(c) the service time for an arriving vehicle necessary for e.g. parking, 

unloading and cleaning, 

[a(c), b(c)] the hard time window for deliveries to the customer; within 

this interval the optional first delivery deadline b′(c) might be de-

fined, denoting the requested time of the first delivery in the plan-

ning period,  
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mintl(c) the minimum time lag between two consecutive deliveries, which 

allows to prepare the construction site for accepting another deliv-

ery, 

maxtl(c) the maximum time lag between two consecutive deliveries, which 

prevents the concrete becoming solid on the construction site, 

D(c) � D  the optional subset of depots which can produce concrete meeting 

the customer’s requirements; if all deliveries to customer c have to 

come from the same depot, then c is called single-source-customer 

(denoted with ssc(c) = 1), 

K(c) � K  the optional subset of vehicles from the fleet accepted by the cus-

tomer due to e.g. requested equipment such as pumps; the minimum 

size of a vehicle belonging to this set is denoted by Kmin(c). 

Finally, the set of vehicles K = {K1 ,..., Kp} contains vehicles k � K (as in 

the previous cases we often write k instead of Kk) for which we define:  

q(k) the capacity specifying the number of concrete units which the ve-

hicle can deliver,  

O(k)  the starting location for the vehicle at the beginning of the working 

day,  

F(k)  the required ending location for the vehicle at the end of the work-

ing day, 

((k)  the vehicle usage cost denoting the accumulated cost of using 
this vehicle during the planning period, 

[a(k), b(k)] the time window within which the vehicle is available for operating.  

Starting locations for all vehicles k � K form the set O = {O(1),..., O(p)} 

and their ending locations constitute the set F = {F(1),..., F(p)}. 

The travel time t̄  and travel cost z̄ between particular locations, including 

depots and customers locations, are described by two functions respecting the 

triangle inequality:  
t̄  : (C � D � O � F) � (C � D � O � F) � IN0 ,  

z̄ : (C � D � O � F) � (C � D � O � F) � IN0 .  
Based on the above presented set of parameters, the concrete delivery prob-

lem can be formulated as a graph model, or more precisely as a network flow 

model (cf. Section 2.3.3). The problem is represented as the weighted twofold 

multigraph G = (V, E, t, z), shown in Figure 19.3.1, containing vertices from V 

corresponding to each possible delivery to a customer, reload of a vehicle at a 

depot, starting and ending locations for a vehicle, and arcs from E corresponding 

to a part of a route which could appear in an optimal solution of this problem. 

Arcs are described by a travel cost z and a travel time t determined based on the 

corresponding functions z̄ and t̄  given above.  
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Figure 19.3.1  Scheme of the graph for the concrete delivery problem  [ADP09]. 

Each customer c � C is modeled by a set of customer nodes C c
G

  = {Cc1 ,..., 

Cc ñ(c)}, where ñ(c) = 9q(c) / Kmin(c); is an upper bound of the number of deliver-

ies to this customer, resulting from its demand and the minimum capacity of ve-

hicles which can supply it.  

Each depot d � D is modeled by a set of depot nodes D d
G

 ={Cd1 ,...,  Cd ñ(d)}, 

where ñ(d) = �(b(d) � a(d)) / mintl(d)�  + 1 is an upper bound of the number of 

reloads of vehicles in this depot, resulting from the duration of its working period 

and the minimum time span between consecutive reloads.  
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from the fleet, i.e. (u, v, 1),..., (u, v, p), but those arcs that cannot be a part of an 

optimal route are excluded from the graph. 

For each vehicle k � K there is an arc (O(k), F(k), k), which is selected to a 

solution if this vehicle is not used within the analyzed planning horizon, and it 

only moves from its starting location to the final location. The travel cost and 

time defined for such arcs are respectively z(O(k), F(k), k) = z̄(O(k), F(k)) and   

t(O(k), F(k), k) = t̄ (O(k), F(k)).  

Then, for each vehicle we have arcs (O(k), Ddi , k) linking starting location 

for a vehicle with every node Ddi � DG
  (where i = 1,..., ñ(d)), representing 

the first trip of the vehicle to be filled up with concrete at depot d.  The travel 

cost, equal to z(O(k), Ddi , k) = z̄(O(k), d) + ((k), takes into account not only the 
cost of traveling from O(k) to d, but also the accumulated cost ((k) of using this 
vehicle in the given planning horizon. Travel times are set to t(O(k), Ddi , k) =  

t̄ (O(k), d). 

The trips of loaded vehicles are represented by arcs (Ddi , Ccj , k) correspond-

ing to the trip of vehicle k from depot d to customer c (i = 1,..., ñ(d); 

j = 1,..., ñ(c)). Such arcs are created only if customer c accepts concrete from 

producer d, d � D(c), if k is a feasible vehicle for a delivery to customer c, k � 

K(c), and the travel time from d to c does not exceed the maximum time that 

concrete may stay within the vehicle, t̄ (d, c) � ". As in previous cases the travel 

cost and travel time for an arc are respectively defined as z(Ddi , Ccj , k) = z̄(d, c) 

and t(Ddi , Ccj , k) = t̄ (d, c). 

The trips of unloaded vehicles from customer c to depot d are modeled by 

arcs (Cci , Ddj , k) for all k � K(c) and i = 1,..., ñ(c),  j = 1,..., ñ(d)). The travel 

cost and time are equal to z(Cci , Ddj , k) = z̄(c, d) and t(Cci , Ddj , k) = t̄ (c, d).  

Finally, the last trips of vehicles from customers to their final locations are 

modeled by arcs (Cci , F(k), k), if k � K(c) (i = 1,..., ñ(c)). They are described by 

the travel cost and time defined respectively as z(Cci , F(k), k) = z̄(c, F(k)) and 

t(Cci , F(k), k) = t̄ (c, F(k)).  

Based on the presented graph model, the mixed integer programming model 

is formulated, which is founded on four decision variables. The first one xuvk , 

related to the arc (u, v, k) � E, determines the route taken by vehicle k. 

xuvk = 

�.
�
. 

 

 

 

 

 

 

 

 

1 
 
 
 

if vehicle k � K  
 
 

supplies customer c (u = Cci),  
reloads at depot d (u = Ddi) or 
starts its tour (u = O(k)) and  
moves afterwards to v, 

0 otherwise.  

The second one wu , related to each node u � V, determines times of supplying 
customers, reloading at depots and starting and ending tours.  
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wu = 

�.
�
. 

 

 

 

 

 

 

 

 

 

 

time 
 
 
 

at which vehicle k � K  
 
 

supplies customer c (u = Cci),   
reloads at depot d (u =Ddi), 
starts its tour (u = O(k)) or  
finishes its tour (u = F(k)) 

 if xuvk = 1 for some arcs (u, v, k) � E, 
undefined if xuvk = 0  for all arcs (u, v, k) � E. 

The third one yc , defined for customer c � C, indicates whether the demand of 
this customers is satisfied in the current schedule.  

yc = 
�
�
  

 

 

 
1 if the total demand q(C) of customer c � C  is satisfied, 
0 otherwise. 

The last variable 2cd , dedicated for the single-source-customers c � C (i.e. 
ssc(c)  = 1), determines depot d � D(c) producing concrete for customer c.   

2cd = 

�.
�
. 

 

 

 

 

 

1 if there is at least one delivery from depot d � D  
to customer  c � C, 

0 otherwise. 

For the sake of simplicity, !k
�
(u)  denotes the set of predecessors of node u � V  

via vehicle k � K with respect to the graph G, i.e. !k
�
(u)  = {v � (v, u, k) � E}, 

while !k
+
(u)  denotes the set of its successors, i.e. !k

+
(u)  = {v � (u, v, k) � E}.  

The mixed integer programming formulation is now given by: 

Minimize �
(u,v,k)�E

 z(u,v,k) xuvk + �
c�C

 (1�yc)*(c)                           (19.3.1) 

subject to� �

�
v�!k

+(O(k))
 xO(k)vk = 1 for k�K   (19.3.2) 

�
u�!k

�(F(k))
 xuF(k)k = 1 for k�K   (19.3.3) 

�
u�!k

�(v)
 xuvk � �

u�!k
+(v)

 xvuk = 0 for k�K, v�CG
 � DG

   (19.3.4) 

�
k�K

 �
v�!k

+(u)
 xuvk � 1 for u�CG

  (19.3.5) 

�
k�K

 �
v�!k

+(u)
 xuvk � 1 for u�DG

  (19.3.6) 
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�
k�K

 �
v�!k

+(Cc(i+1) )
xCc(i+1) 

vk � �
k�K

 �
v�!k

+(Cci )
xCci vk � 0 for c � C, 

      i = {1,..., ñ(c)�1}   

(19.3.7) 

�
u�Cc

G
 �
k�K

 �
v�!k

+(u)
 xuvk q(k) � q(c) yc  for c � C (19.3.8) 

�M (1� xuvk) + s(u) + t(u, v, k) � wv � wu  for (u, v, k) � E  (19.3.9) 

M (1� xuvk) + " + s(u) � wv � wu for (u, v, k) � E  
     with u�DG

 , v�CG
  

(19.3.10) 

wu � a(u) for u�V (19.3.11) 

wu � b(u) for u�V (19.3.12) 

wCc1
 � b′(c) for c � C (19.3.13) 

wCc(i+1)
 � wCci

 � mintl(c)  for c � C, 

      i = {1,..., ñ(c)�1} 

(19.3.14) 

wCc(i+1)
 � wCci

 � maxtl(c)  for c � C, 

      i = {1,..., ñ(c)�1} 

(19.3.15) 

wDd(i+1)
 � wDdi

 � mintl(d) for d � D, 

      i = {1,..., ñ(d)�1} 

(19.3.16) 

�
k�K

 �
u�Dd

G
 �
v�Cc

G
 xuvk � 2cd M for c�C with ssc(c)=1 

     d�D(c) 

(19.3.17) 

�
d�D(c)

 2cd � 1 for c�C with ssc(c)=1 (19.3.18) 

xuvk � {0, 1} for (u, v, k) � E (19.3.19) 

wu � 7 for u�V (19.3.20) 

yc � {0, 1} for c � C (19.3.21) 

2cd � {0, 1} for c�C with ssc(c)=1 

d�D(c) 

(19.3.22) 

The goal of scheduling vehicles is to minimize the total cost (19.3.1), which 

consists of the sum of travel costs (i.e. z(u, v, k)) and the total penalty cost for 

customers whose demand is not satisfied (i.e. *(c)). The vehicle usage cost is 



774 19  Scheduling in Logistics 

 

incorporated into the objective function by the travel costs of arcs linking O(k) to 

depots from DG
 for particular vehicles (increased with ((k)).  

Constraints (19.3.2) and (19.3.3) ensure that each vehicle k � K leaves its 

starting location O(k) and arrives to its final location F(k) exactly once, respec-

tively. Formula (19.3.4) is a flow conservation constraint for nodes related to 

customers and depots. Formulas (19.3.5) and (19.3.6) ensure that each customer 

node and depot node is used at most once. Constraint (19.3.7), needed by 

(19.3.13) and (19.3.16), makes sure that customers are supplied in consecutive 

intervals only (i.e. no customer node Cci is supplied by a vehicle, if no vehicle 

supplied this customer in the preceding intervals, represented by nodes Cci'  for 

i′ < i). Formula (19.3.8) ensures that the decision variable yc properly indicates 

whether the demand of customer c is satisfied, while formula (19.3.9) connects 

decision variables x to variables w taking into account travel times (t(u, v, k)) and 

service times (s(u)). Constraint (19.3.10) prevents solutions in which concrete 

stays too long in vehicles, exceeding the maximum time ", while constraints 

(19.3.11) and (19.3.12) ensure that time windows are respected for all nodes, i.e. 

customers, depots and vehicles (assuming that for each vehicle k � K, its time 

window is reflected in the time windows related to its starting and ending loca-

tions, i.e. a(k) = a(O(k)) and b(k) = b(F(k))). Constraint (19.3.13) makes sure that 

the first delivery to each customer c � C respects the required first delivery dead-

line (b′(c)), if it is defined. Formulas (19.3.14), (19.3.15) and (19.3.16) ensure 
that the time lags for customers (minimum and maximum) and depots (mini-
mum) are respected. Constraints (19.3.17) and (19.3.18) are devoted to single-
source-customers c � C, allowing determining the proper value of variable 2cd 

and ensuring that only one depot produces the concrete for these customers. Fi-

nally, constraints (19.3.19-22) define domains of decision variables.  

The above described concrete delivery problem is NP-hard, since, as many 

problems involving vehicle routing, it incorporates the traveling salesman prob-

lem. 

Theorem 19.3.1  [ADP09] The concrete delivery problem defined by (19.3.1)-
(19.3.22) is strongly NP-hard. 

Proof. The concrete delivery problem obviously belongs to NP. Moreover, the 
well-known traveling salesman problem (cf. Section 2.2.3 and see e.g. 
[ABCC07]) with the triangle inequality (!-TSP) reduces to our problem. The 
traveling salesman problem is defined as follows: 

Instance: Finite set of n cities {1,..., n} and travel cost function  
 zTSP

  : {1,..., n} � {1,..., n} � IN0 , and a constant b. 

Answer: "Yes" if there exists a tour that goes through every city exactly 
once with the total cost not exceeding b.  

 Otherwise "No". 
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For a given instance of the traveling salesman problem, the concrete delivery 
problem is defined by constructing a set of customers C =  {C1,..., Cn} with unit 

demand (q(c) = 1) and the set of depots D = {D1,..., Dn} with the same cardinal-

ity. Customers, corresponding to cities, accept concrete from any depot (i.e. 

D(c) = D for each c). Concrete has to be delivered by a single vehicle K = {K1} 

with unit capacity (q(K1) = 1). Customers Ci and depots Di for particular 

i = 1,..., n are located at the same place. The starting and ending locations for 

a vehicle, O(K1) and F(K1), are at depot D1. Consequently, the travel cost is de-

fined as follows (assuming that zTSP
 (i, i) = 0  for i = 1,..., n): 

T z̄(O(K1), F(K1)) = 0, 
T z̄(O(K1), Di) = zTSP

 (1, i) for i = 1,..., n, 
T z̄(Di , Cj) = zTSP

 (i, j) for i, j = 1,..., n, 
T z̄(Ci , Dj) = zTSP

 (i, j) for i, j = 1,..., n, 
T z̄(Ci , F(K1)) = zTSP

 (i, 1) for i = 1,..., n, 
T z̄(u, v) = b + 1 for the remaining arcs (u, v).  

The cost of using a vehicle is set to zero, ((K1) = 0, while the penalty cost of 

not satisfying the customer demand is set to *(Ci) = b + 1 for all i = 1,..., n. 

Travel times are set to zero and the remaining time parameters are set to the 

values which ensure trivial fulfilling the constraints corresponding to them (they 

are set to zero or to a very big value).  

It is easy to show that there exists the solution to the concrete delivery prob-

lem with the total cost not exceeding b if and only if there exists a tour in the !-
TSP with the cost less than or equal b.                                                                    

Due to NP-hardness of the concrete delivery problem and the large size of in-
stances of this problem which are met in practice, the problem cannot be solved 
optimally within reasonable time. Asbach et al. [ADP09] proposed a method that 
combines the usage of CPLEX solver with a local search approach. The algo-
rithm was initialized with a feasible solution, which was then improved by itera-
tively un-scheduling and re-scheduling one or two customers at the same time. 
Firstly the unscheduled customers were inserted into the schedule by solving 
(with CPLEX) the corresponding mixed integer programming model with unde-
termined decision variables corresponding to them. Then, because of the high 
computational time consumption, solving mathematical models was replaced by 
using a greedy constructive heuristic to incorporate unscheduled customers into a 
solution again. The solution space was searched until a local optimum was 
reached, or the assumed time limit or the number of iterations were exceeded. 
The precise modeling of the concrete delivery problem, reflecting all factors im-
portant from the practical point of view, first as the graph and then in the terms 
of the mathematical programing formulation gave the basis for proposing effi-
cient methods solving this logistic problem.  
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19.3.3 Related Models  

The network flow model for the concrete delivery problem presented in the pre-

vious section is only one of various models proposed to support solving logistic 

problems arising in this branch of industry. Not intending to present the complete 

survey of research on the concrete delivery problem, we would like to mention 

other models and methods considered in this context. Most approaches presented 

in the literature were inspired and often adjusted to the specificity of the real 

world cases. 

A somewhat simpler variant of the above problem was studied by Hertz et 

al. [HUW12]. It allows, for example, overlapping of deliveries to a single cus-

tomer, and replaces time windows for vehicles with the total availability of each 

truck. Moreover, it takes into account different objective functions such as mini-

mizing the total duration of deliveries and minimizing the total number of vehi-

cles used to satisfy the customer demands. Hertz et al. proposed two integer line-

ar programming models. The former is a two-phase approach: firstly a set of de-

liveries is assigned to a fleet of vehicles, second the route for vehicles is con-

structed. Both subproblems are formulated as integer linear programming mod-

els. The latter is a unique integer linear program combining both subproblems in 

one model. The former model solved with CPLEX required shorter computation-

al time, while the latter generated the solutions of a higher quality.   

Durbin [Dur03] as well as Durbin and Hoffman [DH08] investigated 

the problem with a homogenous fleet of vehicles at Virginia Concrete company, 

proposing mixed integer programing models based on time-space networks. They 

designed the decision-support system for accepting or rejecting new customer 

orders, scheduling accepted orders, timing truck drivers’ work, assigning drivers 

to deliveries, dispatching drivers to customers and back to plants, and scheduling 

the loading of trucks at the plants. The system uses the minimum-cost network 

flow optimization technique and tabu-search metaheuristic algorithm.  

Feng et al. [FCW04] proposed genetic algorithms and simulation techniques 

for the single-depot problem to support the work of a ready-mixed concrete batch 

plant in Taiwan. The company managers have to construct efficient schedules of 

dispatching vehicles of the same capacity, taking into account both timeliness 

and flexibility, and balancing operations at construction sites and the plant. From 

the business point of view, to maximize production and profit of the plant, trucks 

should be dispatched to as many as possible different customers. As queues of 

concrete mixers waiting for unloading should be avoided, Feng et al. focused on 

minimizing the total waiting time for vehicles at a customer site.  

Tommelein and Li [TL99] discussed the concrete delivery as an example of 

just-in-time production, since concrete is utilized immediately upon arrival at the 

construction site. Following this idea Wu and Low [WL07] developed the just-

in-time purchasing model for ready-mixed concrete suppliers.  

A more general variant of the concrete delivery problem was investigated by 

Naso et al. [NSTK07], who designed a hybrid genetic algorithm combined with 
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constructive heuristics. They focused on systematic modeling, with mathematical 

programming methods, and solved the concrete delivery problem as the problem 

of just-in-time production and supply of ready-mixed concrete, with special at-

tention to the real world situation in the Netherlands. In the hybrid algorithm, the 

genetic algorithm optimizes scheduling of concrete production and loading at the 

production plants, while the constructive heuristic optimizes routing vehicles to 

customers. Then Silva et al. [SFA+05] continued the research and focused on the 

second phase proposing a hybrid metaheuristic: the genetic algorithm combined 

with ant colony optimization algorithm, to solve it.    

Schmid et al. [SDH+09] proposed two hybrid solution methods: a metaheu-

ristic solving the network flow model and an exact algorithm based on the mixed 

integer programming model, as well as a variable neighborhood search for an-

other integer multicommodity network flow model, similar to the general vehicle 

routing problem formulation [SDH+10]. Their research was motivated by a me-

dium size concrete company in Alto Adige, Italy.   

Matsatsinis [Mat04] studied the multi-depot vehicle routing problem with 

time windows for modeling the problem of routing pumps. Pumps must arrive 

and be set up at the customers site before concrete delivery is started. This prob-

lem, arising in a Greek company, involves scheduling two types of vehicles: 

pumps and trucks. Matsatsinis designed a decision support system for this case 

by iteratively improving an initial assignment proposed by the plant managers. 

Yan and Lai [YL07] proposed a mixed integer network flow model combin-

ing concrete production schedules and truck dispatch. This was inspired by a real 

world case arising in the northern Taiwan, and was validated with the usage of 

CPLEX. Liu et al. [LZL14] also applied the network flow model and a genetic 

algorithm, for testing on data obtained from a concrete company located in Wu-

han, China.   

The complex scheduling problems, such as the concrete delivery problem, 

are often solved by constructing mathematical programming models and apply-

ing optimization software packages and/or metaheuristics, but other approaches 

also have been tried.  

Misir et al. [MVV+11] applied a hyper-heuristic algorithm (see e.g. 

[BGH+13]) to the concrete delivery problem, which is a high-level approach for 

searching the space of heuristics instead of directly scanning solution space.  

Graham et al. [GFS06] used the neural network methodology (see e.g. 

[Gur97, Hay99]), particularly a feed-forward network and an Elman network, to 

solve the concrete delivery problem in the United Kingdom.   

Lin et al. [LWHW10] modeled the concrete delivery problem arising at 

a company located in Pingtung in Taiwan as a job shop problem (cf. Chapter 10) 

with recirculation, time windows, demand postponement and transportation 

costs. In this model, the construction sites are represented as jobs, trucks are rep-

resented as processors, and particular deliveries are represented as tasks. Recircu-

lation means that some jobs may be processed more than once by the same pro-

cessor. 
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As most other researchers, Kinable et al. [KWB14] proposed the mixed in-

teger programming model for maximizing the number of satisfied customers 

weighted by their demand. Additionally, they constructed solutions using a con-

straint programming model (cf. Chapter 16). Moreover, they proposed a kind of 

taxonomy for the concrete delivery problem, which we provide as a summary of 

this section. The variants of the concrete delivery problem result mainly from the 

following crucial components distinguished by Kinable et al. [KWB14]: 

T time windows/time limits:  
� hard delivery time windows impose deliveries within predefined time inter-

vals;  
� hard delivery start time defines the requested start time for deliveries; 
� soft delivery time windows allow violating predefined time intervals or pre-

ferred start times for deliveries; 
� vehicle usage time results from a time window within which a vehicle op-

erates, or from a time interval within which it is non-available, e.g. due to 
maintenance, or from a certain amount of vehicle usage time;  

� concrete perish time represents the maximum amount of time which con-
crete may reside in the vehicle before losing its quality and hardening; 

T start/end locations of vehicles: all vehicles may start and/or return to a central 
depot or to a (specific) production center; in the mixed variant a truck may 
start and/or end its tour at a depot or at the center;     

T production depots: 
� homogenous/heterogeneous: depots may be identical or they may differ in 

e.g. the type of produced concrete or capability of serving customers; 
� scheduling: vehicles reloads must be organized at depots, if vehicles cannot 

be served simultaneously;    
T loading/unloading: the time of loading/unloading vehicles may be constant 

(fixed rate) or dependent on customer, vehicle, type of concrete, etc. (dynamic 
rate);   

T fleet: similarly as in the case of depots, vehicles can be identical (homoge-
nous) or they may differ in their capacity or special equipment (heterogene-
ous);  

T instrumentations: some deliveries may require additional specialized equip-
ment (such as pumps), which can be a part of vehicle equipment or must be 
transported separately to the customer; 

T deliveries/restrictions:  
� synchronization: synchronization of deliveries may be necessary in case 

they cannot overlap, and/or minimum/maximum time lags have to be taken 
into account;  

� revisits: a single vehicle may perform multiple deliveries for a single cus-
tomer;  

� vehicle requirements: some vehicles are not allowed for deliveries due to 
the type of concrete to be delivered or the vehicle size expected at the con-
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struction site; 
� reload / shared deliveries: vehicles have either to reload after each delivery 

(reload) or they can supply several customers without being reloaded at 
the depots (shared deliveries);  

� split delivery: customers may request multiple deliveries served by different 
trucks; 

� single source: customers may request concrete delivered from the same 
production site; 

T objectives: 
� minimizing vehicle usage determined by the frequency of using a vehicle or 

by the total time of using a vehicle, etc.; 
� minimizing wastage which corresponds to the amount of concrete delivered 

to customers and exceeding their demand (vehicles should be fully loaded 
to prevent increasing rate of concrete hardening in case of their partial 
load); 

� minimizing delay determined based on the deviation from soft time re-
strictions; 

� minimizing outsourcing needed in order to serve customers for which de-
liveries cannot be feasibly scheduled; 

� minimizing operating costs of various types incurred at the depots or at 
the construction sites; 

� maximizing utilization balance which allows to balance the usage of partic-
ular vehicles;  

� minimizing travel time or distance; 
� minimizing number of vehicles used or used per customer; 
� maximizing number of satisfied customers.  

The presented collection of parameters, constraints and objective functions 
shows that the concrete delivery problem, although it concerns a specific logistic 
problem, covers the variety of research domains. 

19.4 Flight Gate Scheduling Problem 

Airport management is a complex logistic problem (cf. e.g. [BBO03]) which 

covers e.g. managing aircraft arrival/departure sequences, the usage of the run-

way(s) and other fixed as well as mobile resources, managing staff and passenger 

services. More formally speaking it includes: aircraft scheduling (i.e. assigning 

aircrafts to flights operated by an airline), crew scheduling (i.e. assigning crew 

members, pilots and flight attendants to particular flights), disruption manage-

ment (i.e. real-time irregular operation scheduling), aircraft landing scheduling 

(cf. e.g. [BMP13, BMP17]), ground operation scheduling, etc.  
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The flight gate scheduling problem (FGS, or the flight gate assignment prob-

lem, FGA) is one of crucial components of the airport management, which sig-

nificantly influences other aspects of airport operation. Generally speaking, 

the flight gate scheduling problem concerns assigning the aircraft serving a flight 

to the gate and determining the start and completion times of serving this aircraft. 

Obviously, the gate assignment influences both the operational efficiency of 

the airport and the convenience of passengers. Most of airline station operations 

are performed at the gates, such as servicing aircrafts, embarking and disembark-

ing passengers, handling their baggage, or handling the cargo. Airport managers 

are especially interested in maximizing the utilization of resources such as gates 

and terminals, minimizing the number of gate conflicts, unassigned flights or 

flight delays, while airline managers - concerned in increasing passenger satisfac-

tion - tend to minimize the passenger walking distance between gates or the air-

craft traveling distance from runway to the gate. Due to multiple criteria and 

multiple constraints, solving FGS rarely leads to finding optimal schedules. The 

goal of the research is rather constructing feasible schedules, assuring hard con-

straints and providing a compromise between various objectives.       

Similarly, as in the case of the concrete delivery problem, we do not intend 

to present the complete survey of results obtained for the flight gate scheduling 

problem in the literature (see e.g. [QYY04, YY99]), which is much richer than 

for the concrete delivery case due to the intensive growth of air transport traffic. 

We present only selected approaches as examples of modeling logistic problems 

in terms of scheduling theory. In particular, in Section 19.4.2, we present the 
results obtained by Dorndorf et al. [DJP08, DJP12, DJP17].     

19.4.1 Overview  

The flight gate scheduling problem is a highly constrained problem, which solu-
tions may be evaluated taking into account various objectives. As we announced 
in the previous section, the problem concerns assigning flights to gates within 
time. Flights are understood as aircrafts serving those flights, while gates repre-

sent the aircraft stands directly at the terminal as well as off-pier stands on 

the airport apron. Obviously one gate can serve only one aircraft at the same 

time. Moreover, while assigning aircrafts to gates specific space restrictions and 

service requirements must be fulfilled. For example, due to the large size of 

some assigned aircrafts, the neighboring gates may serve aircrafts only of a cer-

tain size, or they are not available at all until the large aircraft leaves its stand. 

Similarly some international flights must be assigned to gates having access to 

governmental inspection facilities. In case of changing an aircraft location at 

the airport, the aircraft must be towed, which causes additional costs and de-

creases the time available for ground service operations. On the other hand, such 

relocations of aircrafts allow the airport managers temporarily move the planes 

with long ground time from the gates, releasing them for serving other planes 
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meanwhile. From the time point of view, some minimum ground times and min-

imum time gaps between subsequent flights must be obeyed. 

Depending on the planning horizon single or multiple time slot models may 

be considered [DDNP07]. In a single time slot model (e.g. [BTT84]), a batch of 

flights has to be assigned to gates within a single time period. Consequently only 

one flight can be assigned to one gate. A multiple time slot model (e.g. [HC98]) 

requires dividing the given time interval into a fixed number of slots of properly 

chosen duration.  

Optimizing the gate assignment may be done with regard to various objec-

tives, passenger-oriented or airport-oriented [DDNP07], such as minimizing: 

the number of un-gated aircrafts, the number of aircraft towing procedures, 

the total walking distance for passengers or their total delay, the baggage trans-

portation distance, the deviation from a reference schedule, or maximizing ful-

filled preferences of certain flights to be assigned to particular gates.  

As for all optimization problems, constructing solutions of a good quality, 

preferably nearly optimal, is desired also for the flight gate scheduling problem.  

But due to high input data uncertainty, which is related to the specificity of 

the airport management, the flexibility and robustness of a schedule is nearly 

important. In the real world situation various unexpected events may occur such 

as: flight earliness or delay, flight or gate breakdowns, emergency flights, chang-

es in weather conditions, etc. Thus, the schedule should allow for quick updates 

minimizing a negative impact on other airlines, airport activities and passenger 

satisfaction.   

The real process of flight gate scheduling is strictly related to the specificity 

of the airport at which it is managed, and the objectives which are crucial for it. 

For these reasons, in the literature the variety of models and approaches can be 

found, taking into account various parameters and constraints. The basic concept 

is based on the mathematical formulation of the flight gate scheduling problem, 

such as integer or linear programing, as well as mixed integer linear or non-linear 

programing. For example, Lim et al. [LRZ05] and Diepen et al. [DAHS12, 

Die08] used integer linear programming to support Amsterdam Schiphol Airport. 

They minimized the sum of the delay penalties and the total walking distance 

[LRZ05], as well as the deviation of arrival and departure times of busses serving 

gates [DAHS12, Die08]. The same type of the model was proposed by Babić et 

al. [BTT84] for minimizing passenger walking distance. The binary integer pro-

gramming model was used by Bihr [Bih90], then by Mangoubi and Mathaisel 

[MM85] as well as by Yan et al. [YSC02] in order to minimize passenger walk-

ing distances at Toronto International Airport and Chiang Kai-Shek Airport re-

spectively. Tang et al. [TYH10] developed a gate reassignment framework and 

an application supporting Taiwan International Airport. Prem Kumar and Bier-

laire [PKB14] used a binary integer programming model for multiobjective 

scheduling in order to maximize passenger connection revenues, minimize zone 

usage costs, and maximize gate plan robustness. Bolat used mixed integer linear, 

non-linear programming [Bol99, Bol01] and quadratic mixed binary program-
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ming [Bol00] models to support managing King Khaled International Airport in 

Riyadh in order to minimize the range of slack times and the variance or the 

range of gate idle times. The binary quadratic programming model appeared also 

in the research by Ding et al. [DLRZ04a, DLRZ05]. 

Some cases of the flight gate scheduling problem can be formulated not only 

as mathematical programming models, but they can be transformed to other op-

timization problems, for example, to the quadratic assignment problem 

[DLRZ04a], or a multi-mode resource constrained project scheduling problem 

[DDNP07, Dor02] (cf. Chapter 13). As an example of such a transformation, we 

present in Section 19.4.2, the model proposed by Dorndorf et al. [DJP08] strictly 

related to the clique partitioning problem [DP94]. This model can be easily ex-

tended by taking into account the difference to a reference flight gate schedule 

[DJP12], and stochastic arrival and departure times [DJP17]. Dorndorf et al. 

[DJL+07] discussed also the issues concerning robustness of the gate assignment, 

i.e. disruption management.   

19.4.2 Modeling the Flight Gate Scheduling Problem  

The flight gate scheduling problem can be modeled [DJP08, DJP17] as a relation  

f: N � M mapping a set of activities N = {1,..., n} to a set of available gates 

M = {n + 1,..., n + m}. Gate n + m � M represents the dummy gate with unlim-

ited capacity. It does not model any real aircraft position, but is used for proper 

problem solving. Dummy gate assignments are often used in practical applica-

tions, where it is hard to construct a feasible solution. Dummy assignments have 

to be eliminated by a decision maker.   

The model distinguishes three types of activities i � N related to aircrafts: 

arrival, parking and departure. The activities associated with a particular aircraft, 

representing its arrival, parking and departure, form a sequence i, j, k � N, within 

which j and k are successors of i and j respectively. If no parking is needed for an 

aircraft, then k is successor of i. Correspondingly each activity has only one suc-

cessor which can be determined by the following function U: N � N � {0}: 

Assigning different activities, related to the same aircraft, to different gates 

(i.e. f(i) � f( j) for U(i) = j) will require towing it. 

For each activity i � N a set of feasible gates M(i) is defined, which excludes 

gates for different reasons, e.g.  size of the aircraft, lack of necessary equipment, 

or legal restrictions (see constraints (19.4.2) in the model given in the reminder 

of this section). 

The time relations between activities are described by a symmetric matrix 

T = [tij]n�n which contains the length of time interval tij between any two activi-

U(i) = 
�
�
  

  

 

 
 j if  j is successor of i,  
0 otherwise. 
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ties i � N, j � N. Assuming that Si and Ci denote the starting time and completion 

time of flight activity i � N, this time parameter for two activities i and j is calcu-

lated as max{Sj � Ci , Si � Cj}. With times tij we can model overlapping re-
strictions as well as reward gaining flexibility in assignments. If tij < 0, then ac-

tivities i and j overlap in |tij| time units, and they cannot be assigned to the same 

gate (see (19.4.3) in the following model). This restriction does not concern as-

signments to the dummy gate n + m. Values tij � 0 represent buffer times. An 

auxiliary value � � IN  allows classifying buffer times tij � 0 as low, if and only if 

tij < �. By definition, for a pair of succeeding activities i, j (U(i) = j),  tij = �. Us-

ing threshold value � one can construct flexible schedules, avoiding assigning 

activities with low buffer times to the same gate (see (19.4.7) in the model).  

Shadow restrictions are introduced for prohibiting the assignment of two big 

aircrafts to neighboring gates, in order to avoid wing tips overlapping. They are 

modeled by a set S � N � M � N � M. Each element (i, k, j, l) � S forbids from 

assigning i to k (i.e. f(i) = k) and j to l (i.e. f(j) = l). Obviously shadow restrictions 

may be defined only for overlapping activities, and they do not concern the 

dummy gate n + m.   

The preference matrix P = [pik]n�m defines for every assignment of activity i 
to gate k its preference score. The preference scores reflect the domain specific 

knowledge and are determined by the aircraft managers. Since assignments to 

a dummy gate should be avoided, the preference scores related to it are dominat-

ed by other scores, i.e.: pi(n+m) < pik for all i � N, k � M(i) � {n + m}. Based on 

this value, an auxiliary preference score is determined as pik
*  = pik � pi(n+m) for all 

i � N, k � M(i). 
For evaluating the gate assignment, Dorndorf et al. [DJP08] used a weighted 

linear combination of three objectives. The first one, z1, represents the accumu-

lated preference score of the assignment, i.e.: 

z1 = ��
i=1

n
 pi f(i)  = ��

i=1

n
 pi(n+m) � �

i=1

n
 pi f(i)

*  . 

The second one, z2, determines the number of towing actions, required if two 

successive activities for an aircraft are assigned to various gates: 

z2 = | {i � N | U(i) � 0 � f(i) � f(U(i))} |. 

The flexibility of the schedule is reflected with the third objective, z3, defined as: 

z3 = �
{(i� j) | i < j� f(i) = f(j) � n+m}

 max{� � tij , 0}. 

This objective takes into account only activities with small buffer time (tij < �) 
assigned to the same gate. In the real world situation, such activities may cause 

a trouble, if the first one is delayed. 
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The objective function for the optimization problem is the sum of the three 

objectives, z1 , z2 , z3 , respectively weighted with (1 , (2 , (3 . The above de-

scribed constraints are reflected in the restrictions imposed on the relation  

f: N � M. 

Minimize g(f ) = (1z1(f ) + (2z2(f ) +  (3z3(f )                             (19.4.1)  

subject to� �

f(i) � M(i) � M   for i � N, (19.4.2) 

f(i) � f(j) 

 

for tij < 0, 

      f(i) � n + m,  

      i � N, j � N, 

(19.4.3) 

f(i) � k W f( j) � l for (i, k, j, l) � S, (19.4.4) 

z1 = � �
i=1

n
 pi f(i)

*  ,  (19.4.5) 

z2 = | {i � N | U(i) � 0 ^ f(i) � f(U(i))} |,  (19.4.6) 

z3 = �
{(i$ j) | i < j$ f(i) = f(j) � n+m}

 max{7 � tij , 0}.  (19.4.7) 

The above formulated model can be adjusted to the real world situations by tak-

ing into account more detailed information. For example, instead of minimizing 

the total number of aircraft towing actions (calculated in (19.4.6)), it is possible 

to take into account more precise information on towing times. If towing times 

are provided, additional constraints can prohibit towing actions which durations 

would exceed the available time for parking [DJP17]. Assuming that towij de-

notes the tow time necessary for towing an aircraft from gate i to gate j (where 

towii = 0), the following additional constraint can be defined for an aircraft and 

incorporated into the optimization model: 

Si" � Ci � towf(i) f(i') + towf(i') f(i") for succeeding activities for 

an aircraft i, i', i" � N. 
(19.4.8) 

Equation (19.4.8) ensures that total towing time from the gate of arrival f(i) to 

the parking location f(i') and from this location to the departure gate f(i") does not 

exceed the available time for parking.   

Since the airport management is a multiobjective process, the function given 

in (19.4.1) can be easily modified by taking into account objectives different 

from z1 , z2 , z3 . Dorndorf et al. [DJP12] extended the linear combination by an 

objective representing the deviation from a reference schedule. This is useful if 

flight activities are managed on a daily basis and case to case alterations are re-

quired.      
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The presented model can be further adjusted [DJP17] to real world condi-

tions by replacing deterministic arrival and departure times Si , Ci of an aircraft 

by stochastic times modeled with respective functions XSi
 : IN � IR and  

XCi
 : IN  � IR. Under these assumptions P(XSi

 = x) and P(XCi
 = y) respectively de-

scribe the probability that activity i starts at time x and completes at time y. In the 

stochastic variant some of the exact parameters are replaced by distribution func-

tions estimated from historical data.   

Sometimes relaxations of the presented model are also practically justified. 

For example, for some airports the shadow restrictions given in (19.4.4) are not 

defined (i.e. S = �). In this special case the flight gate scheduling problem can be 

transformed to the clique partitioning problem. This interesting transformation is 

presented in the following parts of this section for the basic model defined in 

equations (19.4.1)-(19.4.7) with S = � [DJP08]. 

The clique partitioning problem (CPP) is an optimization problem defined for a 

complete, undirected, edge-weighted graph G = (V, E, W ) with vertex set  

V = {1,..., a}, edge set E � V � V containing all two-element subsets {i, j} of 
set V  for i � j, and symmetric edge weights W = [wij]a�a , where wij = wji � IR � 

{�#}. The goal is to find a partition of the set of vertices into cliques (vertex 

subsets) so that the sum of all edge weights within all cliques is maximized. The 

clique partitioning problem is NP-hard [DF85, GW89] unless the weights are all 

positive or are all negative. Dorndorf and Pesch [DP94] presented the following 

optimization model for CPP based on the binary variables xij defined for the 

edges {i, j} � E: 

The proposed constraints guarantee the transitivity of the above relation.      

Maximize �
1�i<j�a

wij xij                                                                   

subject to� �

xij + xjk � xik � 1   for 1 � i < j < k � a,   

xij � xjk + xik � 1 for 1 � i < j < k � a, (19.4.9) 

� xij + xjk + xik � 1  for 1 � i < j < k � a,  

xij � {0, 1} for 1 � i < j � a.  

Transforming the flight gate scheduling problem to the clique partitioning 
problem given in equations (19.4.9), we construct the graph with a = n + m � 1 
vertices representing, in order, n flight activities and m � 1 real gates. A matching 

xij = 
�
�
  

  

 

 
1 if vertices i and j belong to the same clique,  
0 otherwise. 
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of flight activities to gates is modeled with a correspondence relation. If vertex 
i � n is in relation to vertex k > n, this means that flight activity i is assigned to 
gate k. Flight activities assigned to a dummy gate n + m are represented by verti-
ces i being in relation to no vertex greater than n (such cliques are called dummy-
gate cliques). Relations joining two vertices modeling real gates, i.e. k, l > n, are 
prohibited by properly chosen edge weights. Consequently, each vertex repre-
senting the flight activity i � n is related to at most one vertex k > n, i.e. each 
flight activity is assigned to exactly one gate (including the dummy gate). The 
idea of representing a solution of the flight gate scheduling problem in terms of 
a correspondence relation in the clique is illustrated in Example 19.4.1 [DJP08]. 

Example 19.4.1  Let us consider five flight activities {1, 2, 3, 4, 5} and two 
gates {6, 7} depicted in Figure 19.4.1 with circles and hexagons respectively. 
Correspondence relations are presented with bold edges. Two flight activities 2 
and 3 are assigned to gate 7, while flights activities 1, 4 and 5 are assigned to a 
dummy gate, because they are not in relation with any particular (real) gate (i.e. 
vertices 1, 4 and 5 are in relation neither to 6 nor to 7).     

Figure 19.4.1 Correspondence relation for Example 19.4.1. 

More formally speaking, the gate scheduling  problem is modeled with the clique 
G = (V, E, W ), where V = {1,..., n + m � 1},  E = {{i, j} | i � V,  j � V ,  i � j}, 
and edge weights W  are defined for i, j � n as follows:  

wij = 

�
�
  

 

  

 

 

 

�# if tij < 0, (19.4.10)
(2 if tij � 0 ^ (U(i) = j W U(j) = i), (19.4.11)
�(3 max{7 � tij, 0} if tij � 0 ^ (U(i) � j ^ U(j) � i), (19.4.12)

for i � n and j > n as: 

1 

2 

3 

5 

4 

7 6 
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wij = 
�
�
  

 

 

 
�# if j � M(i), (19.4.13)
(1 pij

* if j = M(i), (19.4.14)

and, finally, for i, j > n as:  

 wij = �#.                                                                                          (19.4.15) 

Weights determined in (19.4.10), (19.4.11) and (19.4.12) are defined for edges 
linking vertices representing pairs of flight activities. Since overlapping activities 
cannot be assigned to the same gate, such an assignment is avoided in (19.4.10) 
by imposing negative infinite weights. The edge weight for two non-overlapping 
activities of the same aircraft (i.e. succeeding activities) is set to (2 by (19.4.11). 

If such two activities are assigned to the same gate, there is no need to tow an 

aircraft, and the objective function value is increased by (2. In the clique parti-

tioning model avoiding tows is rewarded instead of punishing tows as in the ob-

viously equivalent original flight gate scheduling model. Finally, the remaining 

pairs of non-overlapping activities are weighted with zero if there is enough 

buffer time, or with the negated weighted difference between this buffer time and 

the low buffer threshold value 7 (19.4.12). In the latter case assigning flights with 

the low buffer time to the same gate is punished.  

Equations (19.4.13) and (19.4.14) define the weights of edges which model 

the assignment of flight activities to gates. If an assignment is infeasible because 

the gate does not belong to the set of gates appropriate for a particular flight, the 

weights are set to negative infinity in order to prohibit such a schedule. Other-

wise it is rewarded with the weighted preference score. The graph does not con-

tain any vertex representing the dummy gate present in the original flight gate 

scheduling model. But the preference score for this gate is zero, so the objective 

function value in both models is fully relevant. As we have mentioned, unsched-

uled flights, assigned to the dummy gate, are represented by cliques modeling 

only flight activities.   

The last equation (19.4.15) assigns negative infinite weights to edges linking 

vertices representing two gates, which cannot belong to the same clique in any 

feasible solution.  

Modifications of the flight gate scheduling model, such as taking into ac-

count the before mentioned deviation from a reference schedule or stochastic 

arrival and departure times, can be incorporated into the clique partitioning mod-

el by proper modifying the definition of edge weights (cf. [DJP12] and [DJP17]).  

A solution of the clique partitioning problem defined in (19.4.9) and 

(19.4.10) - (19.4.15) is feasible if and only if its objective function value is great-

er than �#. However, this allows more feasible solutions than the flight gate 
scheduling problem defined in (19.4.1) - (19.4.7) with S = �. The graph model 
distinguishes cliques not containing any gate vertex, while in the scheduling 
model they correspond to the same assignment to the dummy gate (in Example 
19.4.1, vertices 4 and 5 belong to the same clique and the activities correspond-
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ing to them are assigned to the dummy gate; the same schedule would be con-
structed if these vertices were not in the same clique). To assure the same num-
ber of solutions in both models, it suffices to ensure that succeeding flight activi-
ties (i.e. the flight activities for the same aircraft) are assigned to the same dum-
my-gate clique and non-succeeding flight activities are not assigned to the same 
dummy-gate clique. The equivalence of both discussed models results from the 
existence of a bijection from the set of feasible solutions of the flight scheduling 
problem to the set of feasible solutions of the clique partitioning problem. This 
relation between both models is expressed and proved in Theorem 19.4.2. 

Theorem 19.4.2. [DJP08] There exists a bijection between the sets of feasible 
solutions of CPP and FGS with S = �, so that every feasible solution f of FGS 
corresponds to one and only one feasible solution x of CPP and vice versa. 
The objective functions differ only by the sign and by a constant.  

Proof. The solution of the clique partitioning problem corresponding to the solu-
tion of the flight gate scheduling problem is defined as follows:  

 xij = 

�.
�
. 

 

 

 

 

 

 

 

 

  

 

1 if f(i) = f(j) � n + m,  i, j � n or
  f(i) = f(j) = n + m ^  

(U(i) = j W U(j) = i),   i, j � n or
  f(i) = f(j) = n + m ^  

((U(i) = h ^ U(h) = j) W (U(j) = h ^ U(h) = i)), i, h, j � n or
  f(i) = j,                                                         i � n, j > n, 
0 otherwise. 

The solution of FGS corresponding to the solution CPP is defined as follows: 

f(i) = 
�
�
  

 

 

 
 j if xij = 1, j > n, 
n + m otherwise. 

For the above transformation, we define: 
� the set of vertices assigned to a dummy gate: 

N1 = {i � N | f(i) = n + m} = {i � N | xij = 0 for each j > n}, 

� the set of vertices assigned to real gates: 

N2 = N � N1, 

� the set of succeeding pairs of vertices: 

U1 = {(i, j) � N � N | i < j, U(i) = j W U(j) = i}, 

� the set of non-succeeding pairs of vertices assigned to the same gate:  

U2 =  {(i, j) � N � N | i < j, U(i) � j ^ U(j) � i,  f(i) = f(j)} = 

 {(i, j) � N � N | i < j, U(i) � j ^ U(j) � i,  xij = 1}. 
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These sets and the fact that xij = 0 whenever wij = �#, are used in the following 
transformation of the objective functions from CPP to FGS: 

 �
1�i<j�n+m�1

wij xij = �
1�i<j�n

wij xij + �
1� i�n<j� n+m�1

wij xij + �
n<i<j� n+m�1

wij xij 

  = �
1�i<j�n

wij xij + �
1� i�n<j� n+m�1

wij xij + 0 

  = �
(i, j)�U

1

(2 xij + �
(i, j)�U

2

(�(3 max{7 � tij, 0}) +  �
i�N

2

(1(pi f(i)� pi(n+m)) 

  = (2|{(i, j) � U1| xij =1}| � (3z3 + (1 �
i�N

1
� N

2

 pi f(i)
*  

  = (2(|U1| � |{(i, j) � U1| xij = 0}|) � (3z3 + (1 �i�N
 pi f(i)

*  

  = (2|U1| � (2z2 � (3z3 � (1z1 

  = (2|U1| � g(f).                                                                                                             

The objective functions for the clique partitioning problem and the flight gate 

scheduling problem differ only by the sign and by the constant (2|U1|.                    
  

Due to Theorem 19.4.2 an optimal solution of the clique partitioning problem 
corresponds to an optimal solution of the flight gate scheduling problem and any 
method solving CPP can be applied to solve FGS. The clique partitioning prob-
lem is NP-hard, but it can be solved efficiently by heuristic algorithms. These 
methods allow also for taking into account additional problem constraints, such 
as the so far omitted shadow restrictions. For example, Dorndorf et al. [DJP08, 
DJP12, DJP17] proposed ejection chain algorithms (see Section 2.5.2) for the 
different variants discussed in this section. Hence transforming the logistic flight 
gate scheduling problem to the clique partitioning problem allows utilizing 
methods developed over the years for CPP to solve FGS.   

19.4.3 Related Models  

As in the case of the concrete delivery problem, we focus on one selected ap-

proach to flight gate scheduling based on its equivalence to the clique partition-

ing problem. It is an example of using a graph model to solve a scheduling mod-

el. Due to high diversity and complication of flight gate scheduling, as well as its 

economic importance, this problem received, especially in recent years, a lot of 

attention from the scientific community, and many other approaches have been 

proposed to solve it. We do not intend to present a survey of results, which can 

be found in the literature (cf. e.g. [DDNP07, QYY04, YY99]), but instead give a 

flavor of the variety of other ideas proposed to solve this problem. A kind of tax-

onomy of approaches proposed for FGS in the literature is given by Dorndorf et 



790 19  Scheduling in Logistics 

 

al. [DDNP07], who paid attention to: type of models, type of objectives and sin-

gle/multiple time slot models, and by Bouras et al. [BGSS14], who take into ac-

count: type of models, type of objectives and type of the research (theoreti-
cal/real case study).  

As we mentioned in Section 19.4.1 the flight gate scheduling problem is 

usually  formulated as a mathematical model due to the numerous parameters and 

constraints describing it. Nevertheless, some researchers solve FGS by trans-

forming it to other combinatorial optimization problems. We presented in details 

such a transformation to the clique partitioning problem proposed by Dorndorf et 

al. [DJP08]. Other researchers based their approaches on the similarity of FGS to 

the quadratic assignment problem (cf. e.g. Drexl and Nikulin [DN08], Haghani 

and Chen [HC98]). Yan and Chang [YC98] developed another multi-commodity 

network flow model, similarly as Bard et al. [BYA01], who proposed an integral 

minimum cost network flow model. The extended example of mathematical 

modeling of the real world problem can be found in Section 19.3 for the concrete 

delivery problem. Now we will shortly present the transformation of the flight 

gate scheduling to the quadratic assignment problem proposed by Ding et al. 

[DLRZ04a], as another example of the usage of the equivalences between com-

binatorial problems in the process of solving them. 

The quadratic assignment problem (QAP) (cf. [Oba79] and e.g. [LABN+07, 

PRW94]) is a classical combinatorial optimization problem, used for example for 

modeling facility location problems, where a set of facilities has to be assigned to 

a set of locations in order to optimize the product flow between facilities. The 

flight gate scheduling problem in a natural way fits this optimization framework, 

since flights can be treated as facilities, while gates can be considered as loca-

tions. Ding et al. [DLRZ04a] define the FGS with the following parameters: 

� N   the set of flights arriving at and/or departing from the airport, n = | N |, 
� M   the set of gates available at the airport, m = | M |, 
� ai  the arrival time of flight i, 1 � i � n, 
� di the departure time of flight i, 1 � i � n, di > ai , 
� wkl the passenger walking distance from gate k to l, 1 � k, l � m, 
� fij the number of passengers transferring from flight i to j, 1 � i, j � n (more-

over fi0 , f0i denote the number of originating departure passengers and dis-

embarking arrival passengers of flight i respectively). 
Additional dummy gates are used for modeling entrance/exit of the airport 
(gate 0), and the airport apron accepting flights when no gate is available (gate 
m + 1). For dummy gates wk0 represents the walking distance between gate k and 
the entrance/exit of the airport, while w(m+1)k represents the walking distance 

from the apron to gate k, which is usually much larger than distances inside ter-

minal(s). The mathematical formulation uses the following binary decision vari-

ables for 1 � i � n, 1 � k � m + 1: 



 19.4 Flight Gate Scheduling Problem 791 

 

and is formulated as follows [DDNP07]: 

Minimize �
i=1

n
 yi(m+1)                                        (19.4.16) 

Minimize  �
i=1

n
 �
j=1

n
 �
k=1

m+1

 �
l=1

m+1

 fij wkl yik yjl +  

  �
i=1

n
 �
k=1

m+1

 f0i w0k yik + �
i=1

n
 �
k=1

m+1

 fi0 wk0 yik     (19.4.17) 

subject to� �

�
k=1

m+1

 yik = 1 
1 � i � n, (19.4.18) 

yik yjk (dj � ai)(di � aj) � 0 1 � i, j � n, 1 � k � m, (19.4.19) 

yik � {0, 1} 1 � i � n, 1 � k � m +1. (19.4.20) 

The first objective (19.4.16) minimizes the number of flights not assigned to any 

gate, but served at the airport apron. The second formula (19.4.17) represents 

the classical objective for the QAP problem, i.e. the total walking distance of 

three groups of passengers: transfer, originating departure and disembarking arri-

val passengers. Constraint (19.4.18) assures that each flight is assigned to exactly 

one gate, while (19.4.19) forbids overlapping of two flights assigned to the same 

gate. (19.4.20) defines the domain of decision variables. This variant of the flight 

gate scheduling problem was solved by Ding et al. [DLRZ04a] with greedy heu-

ristic, tabu search and variable neighborhood search metaheuristics.  

Majority of research on the flight gate scheduling problem concern deterministic 

models. Stochastic parameters were taken into account e.g. by Şeker and Noyan 

[SN12], Yan and Tang [YT07], Genç et al. [GEE+12] or Dorndorf et al. 
[DJP17]. Independently of the type of model, its proposal is obviously not suffi-
cient to solve the problem. Mathematical models can be solved with the usage of 
optimization software, but usually dedicated approaches are more efficient. 
Dorndorf et al. [DDNP07] pointed out that in case of the flight gate scheduling 
problem two types of approaches are developed: founded on the mentioned 
mathematical programming techniques, or on rule based expert systems.  

Within the former group, Babić et al. [BTT84] for example designed 
the branch and bound algorithm with some acceleration procedures. Mangoubi 
and Mathaisel [MM85] used a linear programming relaxation and greedy heuris-
tics, while Wirasinghe and Bandara [WB90] proposed an approximation algo-
rithm. Xu and Bailey [XB01] designed a tabu search algorithm. This metaheuris-
tic framework improved by a new neighborhood search technique was used also 

yik = 
�
�
  

  

 

 
1 if flight i is assigned to gate k,  
0 otherwise, 
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by Ding et al. [DLRZ04a, DLRZ04b, DLRZ05], while Gu and Chung [GC99] 
proposed a genetic algorithm.  

The latter approaches, founded on simulation and rule based expert systems, 
allow to some extent to overcome difficulties encountered by the classical opera-
tion research methods in coping with uncertain information, multiple objectives, 
or real-time processing (cf. e.g. [BS88, Gos90, JJY97, SM91, SS93]). 

Finally, approaches combining both above mentioned concepts are proposed, 
which are especially important from a practical point of view. They integrate 
expert systems with mathematical programming methods in order to increase the 
quality of optimization and the flexibility of a solution at the same time. 
For example, Cheng [Che97, Che98a, Che98b, Che98c] equipped a knowledge-
based gate assignment system with mathematical programming techniques, while 
Baron [Bar69] and Hamzawi [Ham86] combined rule based methods with a sim-
ulation analysis.  

19.5 Berth and Quay Crane Allocation Problem 

As airports, seaports are complex systems whose efficient managing is related to 

various optimization problems (cf. e.g. [CFNR07, SP12]). Within maritime cargo 

transportation (cf. e.g. [CVR15, MLWL05]) two basic types of cargo can be dis-

tinguished: bulk shipping and container shipping. Goods such as coal, ore, grain 

or cement are transported by the specialized bulk carriers, while variety of other 

goods is transported within standard-size steel containers by container ships. We 

focus on the latter type of maritime transportation, particularly on the process of 

loading/unloading container ships, which require solving three main problems: 

deciding on the berth at which a vessel is moored (the Berth Allocation Problem, 

BAP), assigning cranes which are used for moving containers (the Quay Crane 

Allocation Problem, QCAP) and scheduling these cranes (the Quay Crane 

Scheduling Problem, QCSP). Obviously, loading/unloading a ship is only a part 

of the whole process, which includes also transferring and storing containers in 

the stack, and then their delivery/dispatching by various means of transport, such 

as trains, trucks or other ships.  

The berth and quay crane allocation problem and the flight gate scheduling 

problem, discussed in Section 19.4, are similar but there are also significant dif-

ferences between them. In both cases resources have to be allocated to ships or 

aircrafts, which are respectively moored at berths or served at airport gates. But, 

in contrast to an aircraft which is located at a single gate at a time, a ship can be 

loaded/unloaded by many cranes operating at the same time. 

As in the previous two sections, the reader deeper interested in various mod-

els for the berth allocation and quay crane allocation as well as scheduling prob-

lems is referred to surveys (for example, [BBM17, BM10, BM15]). We discuss 

in more details the problem of simultaneous allocation of berth and quay cranes 
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to a vessel, not taking into account scheduling cranes. As an example, we present 

the approach proposed by Błażewicz et al. [BCMO11].          

19.5.1 Overview  

The berth allocation problem requires assigning a set of vessels to available 

berths within a given planning horizon. Vessels are described by numerous pa-

rameters [ISNP05] such as their length and draft, required water depth, expected 

arrival, handling and departure times, etc. In case of static arrivals, the ship arri-

val times are given as soft constraints only, or they are not defined at all. Such a 

situation appears when vessels waiting at the port can be managed immediately. 

In case of dynamic arrivals, arrival times are fixed and they determine the earli-

est starting times for handling vessels. The handling times can be fixed and 

known in advance, or depending on the berthing position, on the number of as-

signed cranes and on their schedule.   

Depending on the real structure of seaports, berths are also subject of various 

restrictions [ISNP05]. In discrete layout, the berth is a section of the quay, which 

is distinguished due to its construction or for organizational reasons. 

In continuous layout, ships can berth at arbitrary positions. In hybrid layout, 
the quay is divided into specific berths, but some berths can serve a few small 

ships at the same time, and large ships can be assigned to more than one berth at 

the same time. In most cases, a vessel is handled at one berth only for the whole 

process of its loading/unloading, but some seaports allow repositioning a ship. 

Ships moored at berths are loaded/unloaded by cranes, which are lined up 

alongside the quay. They have restricted ability to move. In particular, they usual-

ly cannot pass each other. Obviously the problems of assigning berths and cranes 

are interrelated. Particularly, in the discrete berth layout cranes are usually dedi-

cated for berths, and hence the assignment of cranes is determined by the berth 

allocation. In many cases, the number of cranes allocated to handle a ship is 

a decision variable, which is often restricted by additional requirements [BM10]. 

The decisions taken during the crane assignment may concern the allocation of 

a given number or a given set of specific cranes to vessels. For ships a minimum 

number of required cranes can be defined. Moreover, due to spatial constraints 

the number of cranes assigned to a vessel is bounded above. The number of allo-

cated cranes can be fixed (time-invariant assignment), or it can be modified dur-

ing the ship handling (variable-in-time assignment).  
The quality of solutions is estimated in the view of various objective func-

tions [BM10], such as minimizing: the vessel waiting times, vessel handling 

times or vessel completion times, the ship tardiness with regard to the due dates, 

the workload of port resources, minimizing the deviation between the ship arrival 

order and their service order, the number of not served vessels, or the number of 

ships assigned apart from their desired berthing position, etc. 
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The berth allocation (and in consequence berth and quay crane allocation) 

problem is NP-hard. It can be related to the partition problem [Lim98], two di-

mensional cutting stock problem [ISNP05], and single machine scheduling prob-

lem with release times [HO03]. In the next section, the approach based on the 

relation between the berth and quay crane allocation problem and a selected 

scheduling problem is presented.  

19.5.2  Modeling of the Berth and Quay Crane  
Allocation Problem  

The approach presented in this section was proposed by Błażewicz et al. 

[BCMO11], inspired by the specificity of Hongkong International Terminals. 

They considered the continuous layout, where the quay is treated as a berth and 

the positions of ships have to be determined along this quay. The decision on 

assigning cranes to ships is incorporated into the decision on their berthing posi-

tion in order to optimize the port resource utilization. The vessel handling time 

depends on the number of cranes allocated to it. Moreover, since the time-

invariant assignment is studied, the number of cranes assigned to load/unload a 

ship is fixed for the whole handling interval. The method was designed for ter-

minal managers to support making decisions on port resource utilization, during 

constructing an initial solution a few weeks before the actual arrival of vessels. 

The management of terminals [MLWL05] can be done at two levels: a prelimi-

nary allocation of berths and quay cranes based on the projected draft of ships 

made in advance, and an actual allocation based on the real information on ves-

sels available just before their arrival. Determining the initial solution allows 

proper positioning quay cranes at the berths, which allows for their further allo-

cation to incoming ships. Since after positioning quay cranes, changing their po-

sitions is costly or even impossible due to special restrictions, the number of 

cranes assigned to a certain vessel should not be changed. The number of quay 

cranes allocated to a ship influences berthing duration of it. In reality, the de-

crease of handling time with the number of crane is not a linear function.   

Błażewicz et al. [BCMO11] model the berth and quay crane allocation prob-

lem directly as the problem of scheduling moldable tasks. As defined in Chap-

ter 6, a moldable task is a multiprocessor task that is executed in parallel on a 

previously specified number of processors. The moldable task model, proposed 

by Turek et al. [TWY92], and expanded by Ludwig [Lud95] and Mounié et al. 

[MRT99], perfectly fits the considered variant of the berth and quay crane alloca-

tion problem. In the general moldable task scheduling model, n non-preemptive 

tasks have to be executed on m processors, where the task processing time de-

pends on the number of assigned processors. The processing time ti(ri) for task Ti 

(1 � i � n) to which ri processors are assigned (1 � ri � m) is equal to ti(ri) = 

pi / fi(ri), where  pi denotes the amount of work associated to Ti , i.e. its processing 
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time on a single processor pi = ti(1), and fi(ri) denotes the processing speed func-

tion. The processing speed function is a non-decreasing discrete function, which 

defines the relation between the task processing time and the number of proces-

sors assigned to it.  

In the berth and quay crane allocation model proposed by Błażewicz et al. 

[BCMO11], moldable tasks represent ships and processors represent quay cranes 

located along the berths. The ship turn-around time, equivalent to the task pro-

cessing time, depends on the number of cranes assigned for serving it, i.e. to 

the number of assigned processors. Minimizing the turn-around time for all 

ships, important especially for the port manager but also for ships owners, corre-

sponds to minimizing the schedule makespan. The concept of moldable tasks 

allows relating the ship handling time to the number of dedicated cranes. The 

possibility of defining various processing speed functions increases the flexibility 

of the model. Moreover, due to physical restrictions, the number of cranes which 

can handle ships is limited by the ship length and the number of available cranes. 

These limits are reflected by bounds, ri
l and ri

u
 , imposed on tasks. Each task Ti 

can be executed by ri processors, where 1 � ri
l � ri � ri

u � m  for 1 � i � n.    

The problem of scheduling moldable tasks is NP-hard [DL89]. Due to its 

similarity to the bin-packing problem, it can be solved, for example, by 2-

approximation [TWY92] and 3-approximation [MRT99] algorithms. Błaże-

wicz et al. [BCMO11] proposed another approach to this problem, based on the 

continuous model, in which the processors are considered as a continuously di-

visible renewable resource bounded from above (cf. Chapter 13). Under this as-

sumption an approximate solution is constructed by using the continuous model 

developed by Węglarz [Weg82] for the resource constrained scheduling problem. 

This approximate and possibly infeasible solution is then converted to a discrete 

approximate solution of the original moldable tasks scheduling problem. The 

approximate infeasible schedule is discretized by properly rounding non-integer 

allocations of processors to tasks.    

In order to relax the discrete model to the continuous model, the discrete 

task processing speed function is interpolated with piecewise linear functions 

between the integer points. Such moldable task scheduling problem is in general 

intractable, but with concave functions it can be solved optimally in polynomial 

time O(n max{m, nlog
2m}) [BKM+04], and with convex functions in linear 

time [BMW+00, BKM+06]. It is also possible to approximate the points of the 

processing speed functions by more general continuous functions, and relax the 

discrete problem to another continuous problem, but this approach appeared to 

be less attractive from the practical point of view [BMMT01].  

To solve the berth and quay crane allocation problem we next follow the ap-

proach proposed by Węglarz [Weg82] for the continuous resource constrained 

scheduling problem. As in Section 13.3.2, let us denote the set of feasible re-

source allocations r = (r1 ,..., rn ) with 
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R = {r = (r1 ,..., rn ) | ri � 0 ^ �
i=1

n
ri � m}, 

and the set of feasibly transformed resource allocations u = (u1,..., un ) with 

U = {(u1 ,..., un ) |  ui = fi(ri), 1 � i � n, r � R}. 

Vector p = ( p1 ,..., pn ) is constructed by the amount of work associated to par-

ticular tasks. We know that the minimum makespan Ccont
*   is determined by the 

intersection point u* of line u = p / C (C > 0) and the boundary of set Uconv being 

the convex hull of set U in the n-dimensional space of transformed resource allo-

cation (cf. Section 13.3.2 and Figure 13.3.1). 

In the continuous problem used to solve the berth and quay crane allocation 

problem, functions fi(ri) are assumed to be piecewise linear and concave. Hence 

set U is a convex polytope in the n-dimensional space of transformed allocations  

u = (u1 ,..., un ) and U = Uconv. In consequence, the crucial intersection point u* 

can be found by bisection search. Based on its coordinates ui
* = fi(ri

*), i = 1,..., n, 

the optimal resource allocation r * = (r1
* ,..., rn

*) can be determined such that: 

ri
* � 0, i = 1,..., n, 

�
i=1

n
 ri

* = m, 

Ccont
*   = pi / fi(ri

*),  i = 1,..., n. 

In the optimal solution for the continuous problem all tasks are executed within 

the same time interval [0, Ccont
*  ] with the amount of resources given in vector  

r * = (r1
* ,..., rn

*). 
Finally the continuous solution has to be transformed to a feasible solution 

for the discrete problem. This is done by rounding the resource values ri
* . 

Błażewicz et al.  [BCMO11] proposed a specialized suboptimal algorithm which 

replaces fractional quantities of ri
* by discrete numbers of processors r̄ i on which 

particular tasks are executed, and then constructs a feasible schedule for this as-

signment. This algorithm, which is sketched below, runs in O(nlogn) time and 

guarantees good performance in the average case.  

The rounding scheme proposed in [BCMO11] corrects the processor alloca-

tions ri
* that do not fit the feasible range [ri

l, ri
u] by rounding them up or down, 

depending whether the lower or upper bound is violated. Allocations not exceed-

ing 1.5 or greater than 2 are rounded down, while allocations from range  

[1.5, 2] are rounded up. Rounding the processors allocations up for some tasks 

leads to an infeasible allocation if the total number of assigned processors ex-

ceeds m. Such cases are properly treated by a correction procedure following the 

rounding step. Błażewicz et al. [BCMO11] noticed that an alternative simple 
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rounding scheme which rounds processor allocations for tasks down, r̄ i = �ri
*� ,  

except from r̄ i < 1, which are replaced by 1, may increase task processing times 
not more than by factor 2. Such a rounding scheme automatically guarantees fea-
sibility of the schedule, because the number of processors assigned to all tasks 
does not exceed the total number of processors m, but the makespan of the dis-
crete schedule may be at most twice as large as the makespan of the continuous 
schedule.  

After determining by the above presented rounding scheme the number of 

processors assigned to particular tasks (r̄ i ), they are scheduled by an iterative 

approach. Roughly speaking, tasks are scheduled in non-increasing order of their 

processing times up to time C = Ccont
*   , starting with the currently longest task on 

some processor, followed by other tasks whose execution do not exceed time C 
on this processor. If the number of processors m̄ used is equal to the real number 

of processors m, the algorithm terminates. If m̄ < m, then the idle processors are 

assigned consecutively to a currently longest task in order to decrease its pro-

cessing time. If tasks are scheduled on too many processors, m̄ > m, then 

the tasks executed on the excess processors (m̄ � m) are rescheduled, starting 

from time C, in the next scheduling interval, by applying the same procedure.    

The whole heuristic method proposed by Błażewicz et al. [BCMO11] for 

scheduling moldable tasks on parallel processors is outlined in Algorithm 19.5.1. 

Algorithm 19.5.1 Heuristic for scheduling moldable tasks [BCMO11]. 
begin 

determine optimal continuous processor allocation ri
* for tasks Ti ; 

calculate Ccont
*   := pi / fi(ri

*) for tasks Ti ; 
for i = � to n do 

 if ((ri
* � ri

l ) or (ri
* � ri

u )) then  
  begin 
   if (ri

* � ri
 l )  then r̄ i := ri

l; 
   if (ri

* � ri
 u ) then r̄ i := ri

u; 
  end; 
 else 
  begin 
   if ((ri

* > 2 ) or (ri
* < 1.5 )) 

   then r̄ i := �ri
*� 

   else r̄ i := 2; 
  end; 
estimate the completion time of tasks with C := max

1 � i � n
{pi}; 

determine the number of used processors m̄ := �
i=1

n
 r̄ i ; 
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construct schedule S by assigning tasks to processors in parallel in non-
decreasing order of  their processing times ti(r̄ i)  = pi / fi(r̄ i), starting with 
time zero, then starting with the longest task check if it is possible to fit 
this task next to another task (on the same processor) without exceeding 
time C, and update the schedule and the number of used processors m̄ ac-
cordingly; 

if m̄ = m then  return;  
while m̄ < m do  assign an idle processor to the longest task; 
if m̄ > m then  reschedule tasks scheduled on the excess processors  
   starting from time C using the same algorithm; 

end; 
To briefly illustrate the use of Algorithm 19.5.1 let us consider the following 
example [BCMO11]. 

Example 19.5.2 Consider n = 8 tasks with processing times p =  [1, 8, 4, 2, 7, 5, 
25, 60] and a processing speed function given as  fi(ri) = ri

0.5. Tasks have to be 

scheduled on at most m = 6 processors. Moreover, the following bounds are giv-
en: ri

l = 2 for i = 1,...,7 and  r8
u = 3. The optimal solution of the continuous prob-

lem has the makespan Ccont
*   = 34.64, which results from the continuous processor 

allocation: r* =  [0.04, 0.33, 0.16, 0.08, 0.29, 0.20, 1.02, 3.88]. The first discrete 

processor allocation obtained as a result of rounding is r̄ = [2, 2, 2, 2, 2, 2, 2, 3]. 

The initial schedule obtained for this allocation is given in Figure 19.5.1(a). Its 
makespan C is equal to Ccont

*   and the number of required processors (m̄ = 17) 

exceeds the number of available processors (the tasks whose allocation is infea-

sible are marked in gray). Schedule S constructed by Algorithm 19.5.1 is shown 

in Figure 19.5.1(b). It has the same makespan C = Ccont
*   = 34.64. Since the num-

ber of required processors (m̄ = 7) still exceeds the real number of processors 

(m = 6) task T1 becomes a new instance for the same algorithm. Algorithm 19.5.1 
reschedules this task, assigning it to 6 processors. The final schedule with the 
makespan C = 35.05 is depicted in Figure 19.5.1(c).   

The efficiency of Algorithm 19.5.1 was studied by Błażewicz et al. [BCMO11] 
both from the theoretical and experimental points of view. They mainly analyzed 
the average behavior in computational experiments, which confirmed the ap-
plicability of this approach for solving the berth and quay crane allocation prob-
lem. The computational experiments showed that on average the heuristic solu-
tions do not exceed 1.5 of the optimal schedule length. 
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Figure 19.5.1  Schedules constructed by Algorithm 19.5.1 in Example 19.5.2. 
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19.5.3 Related Models  

The berth allocation problem, the quay crane allocation problem and the quay 

crane scheduling problem received high interest from researchers and resulted in 

hundreds of papers presenting various models and algorithms. Bierwirth and 

Meisel [BM15] collected more than 120 papers in years 2010-2014 only, com-

pleting their first extensive survey on these subjects [BM10]. The most popular 

approaches are based on heuristics and metaheuristics (e.g. [GPK+14], such as 

genetic and evolutionary algorithms, tabu search, simulated annealing, greedy 

randomized adaptive search, variable neighborhood search, greedy rules) from 

one hand, and on the mixed integer linear programming models solved with op-

timization solvers and branching based algorithms, on the other hand. Bierwirth 

and Meisel [BM10, BM15] also proposed classification schemes for the berth 

and quay crane allocation problems and the quay crane scheduling problems, 

which show the wide range of issues related to this branch of maritime logistics. 

We sketch out this taxonomy to summarize the section. 

For the berth and quay crane allocation problems, the following crucial 

components of the models are distinguished: 

T spatial attribute which concerns the berth layout (discrete, continuous, hy-
brid) and the possible relation between a vessel draft and a set of feasible 
berthing positions (e.g. due to required water depth);   

T temporal attribute which characterizes the ship arrival process; in case of:   
� static arrivals vessels wait for being served at the port; 
� dynamic arrivals particular ships reach the port at individual deterministic 

arrival times; 
� stochastic arrivals particular ships reach the port at individual stochastic ar-

rival times defined by continuous random distributions or discrete probabil-
ity of occurrence; 

� cyclic arrivals vessels arrive at the port cyclically in a given time interval 
following the liner schedules; 

Additional temporal attributes can be defined such as due date for the vessel 
departure, or maximum waiting time before unloading/loading has to start;       

T handling time attribute indicates the way in which vessel handling times are 
determined, they can be: 
� fixed, i.e. deterministic and constant; 
� position dependent, i.e. related to the berth allocation; 
� quay crane assignment dependent; 
� quay crane schedule dependent; 
� stochastic, i.e. defined by continuous random distributions or discrete prob-

ability of occurrence; 
T performance measure:  

� minimizing vessel waiting time before berthing, handling time, or comple-
tion time; 
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� minimizing tardy vessel departures, or vessel speedup; 
� optimizing resource utilization (berths, cranes, vehicles, manpower, ener-

gy); 
� optimizing vessel positioning by assigning berthing positions close to 

the yard in order to save horizontal transport capacity. 
The quay crane scheduling problem mentioned at the beginning of this sec-

tion concerns loading/unloading the containers of a single ship with a set of as-
signed quay cranes. Bierwirth and Meisel [BM10, BM15] distinguished for this 
problem the following attributes: 
T task attribute defines the granularity in which the vessel containers are aggre-

gated into crane tasks; the following aggregation levels can be considered in 
which tasks correspond to loading and unloading of all containers : (1) within 
a certain bay area, (2) within a single bay, (3) belonging to a single containers 
group of a bay, or (4) belonging to given containers stacks of a bay; in the 
most detailed model (5) a crane task may correspond to a single container;    

T crane attributes characterize the cranes, mainly their time availability (ready 
times or time windows) as well as initial and/or final positions; moreover,  
travel times can be given if the time required to move cranes between bays or 
alongside vessels is not negligible; 

T interference attributes impose restrictions on crane movements, since rail-
mounted quay cranes cannot pass each other (non-crossing) in contrast to 
most rubber-tired cranes; additionally with regard to operational rules, some 
safety margins have to be kept between cranes during operation;  

T performance measure can be calculated with regard to:  
� task completion times  or  quay crane finish times; 
as well as to: 
� the ratio between the crane operating time and the vessel handling time 

(crane utilization rate); 
� the number of container moves per hour (crane throughput); 
� the total crane movement time along the quay. 

It is worth to be mentioned, that the quay crane allocation and scheduling 

problems arise not only at seaside transshipment ports but in any container ter-

minals (e.g. [HHY15, VK03]). In particular, the problem of optimizing container 

movements can be met at any transshipment yard, where containers are shifted 

between various means of transport, not only ships, but also trains or trucks (see 

e.g. [Ali02, BFJP13, BG02, BJP11, BJP12, LTMO14, WMW17]. Due to the 

practical importance, different operation research methods have been applied to 

support various aspects of managing container terminals. The interested readers 

are referred to the rich literature devoted to this subject, particularly to survey 

papers such as [SV08, SVS04, VK03, VBS07].  
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19.6 Conclusions 

In this chapter, we presented exemplary applications of scheduling theory in lo-

gistics, arising in overland, air and maritime transportation. Each of these exam-

ples allowed us to emphasize various aspects of handling real world problems.  

Most of real world cases are complex problems which have to be described 

with numerous parameters and constraints. The process of constructing the math-

ematical model, reflecting the specificity of a practical situation, was presented in 

the example of the concrete delivery problem. The concrete delivery problem can 

be studied as a vehicle routing problem with multiple depots, heterogonous fleet 

and time windows. From this point of view, its description completed the short 

survey of VRP models provided at the beginning of the chapter. However, we 

focused on the graph based model for the concrete delivery problem, which gave 

the basis for the mixed integer programming model. Such a mathematical model 

can be used directly in optimization solvers, or it can be solved by dedicated 

methods. Proposing mathematical programming models for complex real-world 

cases is a commonly used research strategy.  

In case of the flight gate scheduling problem the opposite scenario was pre-

sented: the mathematical formulation of the problem was transformed to a graph 

problem. This transformation allowed for using algorithms proposed for clique 

partitioning for solving the related scheduling problem. Studying interrelations 

between various combinatorial problems may give an opportunity to adopt 

known approaches to solve new cases.  

Finally, for the berth and quay crane allocation problem we sketched out an 

approach based on the interrelations between various scheduling models. This 

logistic case can be formulated as the problem of scheduling moldable tasks, and 

solved heuristically using the approach proposed for the continuous resource-

constrained scheduling problem.  
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Feasible 
permutation  98 
resource set  500 
schedule  124, 412, 415, 530 
solution  18, 530 

FF algorithm  483 
FFD algorithm  483 
FFS  291 
Final vertex  25 
Fine grain parallelism  221 
First come first served rule (FCFS)  756 
First fit 

algorithm (FF)  483, 583 
decreasing algorithm (FFD)  483 

Fixed  
priority  251 
production schedule  684 

Fixture  682 
Flexible 

flow shop  291 
manufacturing 

cell 714, 754 
system  671, 683 

Flight gate scheduling problem  779 
Flow  27 

maximum  27, 33 
minimum 

cost  485 
total cost  34 

shop  62, 271, 292, 555 
flexible  291 
permutation  271 
problems  420, 555 
two-machine  463, 464, 465, 516, 

555 
time  64  (check these three) 
total  27 
value of  27 

FMS  671 
Forbidden region  81, 324 
Forest  153 

in-  25 
opposing  25, 155, 156 

out-  25 
FP class  20 
FPTAS  438, 445, 452, 460, 462 
Frame superimposition  267 
Frontier search  36 
Function  12 

bijective  12 
complexity  15 
concave  448 
convex  448 
differentiable  447, 466 
injective, one-one  12 
non-regular  533  
order of  13 
regular  533 
surjective, on to  12 

Functional hierarchy  729 
Fuzzy 

logic  746 
rule  747 
set  746 
variables  746 

� G � 

Game theory  586 
Gantt chart  64 
Gap minimization heuristic  284 
Garey and Johnson algorithm  182, 477 
General 

precedence constraint  94 
purpose machine  671 

Genetic algorithm  41, 44, 52 
constraint propagation based  383 
enumeration  53 
local search  53 

Guided local search  378 
Giffler and Thompson algorithm 361, 365 
Gilmore-Gomory algorithm  295 
Global scheduling procedure  681 
Gonzalez-Sahni algorithm  321, 465, 548, 

551, 555 
Grain  224 
Granularity  224 
Graph  23 

acyclic  23 
bipartite  24 
connected  23 
directed  23 
disconnected  23 
disjunctive  346 
intersection  23 
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Graph (continued) 
isomorphic  23 
matrix  348 
order  97 
representations  24, 348 
task-on-arc  63 
undirected  23 
union  23 

Greedy linear extension  119 
GSP rule  681 

�� H � 

Half  
cuts  364 
open interval  11 

HAMILTONIAN CIRCUIT  21 
Hard 

constraints  732 
real time environment  70 

Harmonic task set  252 
Head 358 

of a task  101 
of an algorithm  16 

Heuristic  37, 41, 71, 102, 164, 293, 447, 
462, 509, 732 
algorithm  18 
balancing  751 
Dannenbring  282 
gap minimization  284 
genetic local search  53 
machine aggregation  286 
Palmer  282 
shifting bottleneck  356, 367 

Heuristics 
regret  706 

Hierarchical solution  716 
Hill climbing  42 
Hodgson's algorithm  109, 110, 437, 439 
Horn's approach  178 
Horvath, Lam and Sethi algorithm  165 
Hu's algorithm  154 
HYB rule  681 
Hybrid rule  681 
Hypercube  200 
Hyperedge  24 
Hypergraph  24 

reduced  738 
Hyper-heuristic  777 

� I � 

Identical 
parallel machines  545, 683 
processors  61, 141, 172, 177 

ILFD algorithm  483 
Immediate 

predecessor  24 
selection  326, 630 
successor  24 

Implicit  
enumeration  35 
schedule  250 

Imprecise computations  527, 530 
In- 

degree  24 
forest  25 
process 

inventory  121 
time  71 

tree  25, 153, 180 
Incoming edge  27 
Inconsistent variable assignment  610 
Independent tasks  63, 162, 503, 508 
Information loss  528 
Ingot preheating process  517 
Initial vertex  25 
Injective function  12 
Input  16 

length  14 
size  14 

Input/output  
conditions  328, 642 
negation domain consistency test  650 
sequence consistency test  642 

Instance  13, 16, 66 
coarse-grained  224 
elementary  479 

Integer programming 21 
linear  480, 551 
mixed  464, 771, 790 

Intelligent production scheduling  714 
Interactive scheduling  734 
Interchange 

property  88 
relation  88 
string relation  98 

Intersection graph  23 
Interval 

closed  11 
composite  415 
half open  11 
of availability  415 
open  11 
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order  12, 25 
scheduling  579 

Inverse relation  12 
ipred  24 
IPS  714, 719, 729, 756 
Irreflexive relation  12 
ISIS  750 
Isomorphic  

graphs  23 
scheduling problems  437, 439, 456, 

460, 463, 465 
isucc  24 
Iterated lowest fit decreasing algorithm 

(ILFD)  483 

�� J � 

Jackson's algorithm  100, 534, 566 
Job  62, 431, 720 

deterioration  432 
module property  99, 134 
release  713 
shop  62, 345 

dynamic  674 
problem  516, 558, 725 

shortening  432 
traversing  713 
type  122 

Johnson's algorithm  273, 274, 294, 463, 
557 

j-optimal task set  111 
Jump  119 

number  119 
optimal  119 

Jumptracking  36 
search strategy  101 

� K � 

Karmarkar's algorithm  500 
k-ary relation  11 
k-consistency  617 
k-consistent  382 
k-d-consistency  618 
k-d-consistent  619 
k-feasibility  617 
k-feasible  617 
k-restricted preemption  149 
k-weakly V-shaped schedule  445, 446 
Khachiyan's algorithm  172 
KNAPSACK  20, 22 

problem  13, 110 

Knowledge 
based 

approach  714 
system  749, 791 

descriptive  749 
procedural  749 
representation  733 

� L � 

Labeling procedure  32 
Lagrangian relaxation technique  96 
Largest processing time (LPT)  142, 143, 

295 
Late work  527, 532 

modified  566 
Lateness  64 

maximum  64 
Lawler's algorithm  129, 437, 439, 451, 

512 
Layered network  30 
Learning  

algorithm  41 
effect  432, 541 

Level  157 
algorithm  153, 156 

Lexicographic 
order  155 
sum  26 

Lexicographically smaller  12 
Lifetime curve  502 
Limited processor availability  403, 538 
Linear 

assignment problem  441 
extension  118, 119 

greedy  119, 120 
integer programming  480 
order  25 
programming  160, 167, 168, 172, 184, 

210, 322, 485, 499, 500, 551 
sum  26 

Linked list  24, 348 
List 

scheduling  142, 322 
algorithm  68, 153, 164, 294, 453 
anomalies  149 
extended  226 

Local  
balancing and mapping  199 
memory  200 
search  41, 354, 357, 372 

Logically conflicting preferences  735 
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Logistics  761 
Longest 

path  158 
processing time (LPT)  458, 755 

Lot scheduling 121, 186 
multi-product  122 

Lower bound  36, 586 
Lower-level bound-consistency  632 
LPT 

algorithm  142, 143, 295, 458 
mean performance  145 
rate of convergence  144 
relative error  144 
rule  755 
simulation study  144 
worst-case behavior  143 

LS algorithm  453, 458, 459, 460, 461 

�� M � 

Machine  61, 720 
aggregation heuristic  286 
augmentation  601 
dedicated  70 
dominating  464 
identical  755 
no-idle dominant  464 
non-availability period  451 
scheduling  682 
state  289 

Main sets  160 
Maintenance activity  441 
Makespan  64, 410, 755 
Malleable task model  202, 212 
Mandatory subtask  530 
Manufacturing system 69, 713 
Master-slave network  201 
Material  70 

handling system  671 
Mathematical  

induction  433, 437, 439, 440 
programming  122, 501, 768, 771, 784, 

790 
Matrix  

adjacency  24, 348 
approach  433, 445, 455 
graph  348 

Maximizing total 
early work  553, 556, 559, 566, 569 
late work  569 

Maximum 
allowable tardiness  94 

cost  126 
flow  27, 28, 81 
in-process time  71 
lateness  64, 71, 99 
value 

flow  33 
McNaughton's rule  148, 415, 484, 509, 

547, 755 
MDD rule  681 
Mean 

earliness  117 
flow time  64, 71, 172 
in-process time  71 
performance  39, 68 

of LPT  145 
tardiness  65, 116, 676 
weighted 

flow time  64, 87 
tardiness  65, 99, 113 

Measure of 
acceptability  738 
performance  64 

Mechatronic system  245 
Merge  16, 17 
Merging  13 
Mesh  200 
Meta-heuristics  41 
Method  16 

adversary 586 
enumerative  34 

Minimizing 
change-over cost  118 
Lmax  177 
maximum  

cost  126 
lateness  99 

mean 
flow time  172 
weighted flow time  87 

schedule length  77, 141 
total 

cost  131 
early work  566, 569 
late work  527, 532 

weighted 
number of tardy tasks  99, 108, 110 
tardiness  99, 113 

Minimum 
cost flow  485 
slack time rule (MST)  105 
total 

cost flow  34 
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overtime cost  416 
Min-max transportation problem  163 
Mirror scheduling problems  569 
Mixed  

deterioration  450 
resource  503 

Model 
analysis  719 
constructive  727 
descriptive  727 
object-oriented  719 
of computation  18 
online-over-list  578 
online-over-time  578 
reference  719 

Modified 
due date  180, 541 
job due date rule (MDD)  681 
late work  566  
task due date (MTD)  675 

Module of tasks  99 
Moldable task model  202, 794 
Monotonous consistency test  623 
msort  17 
MST rule  105 
MTD  

algorithm  675 
rule  675, 681 

Multi-agent  
planning  750 
scheduling  453, 454, 457, 540 

MULTIFIT  144 
Multi-frame model  267 
Multi-objective resource allocation 

problem  510 
Multiplicative problems  433 
Multiprocessor task 200, 201, 486 

scheduling  486 
Multi-product lot scheduling  122 
Multistage  

decision process  35 
interconnection network  200 

Mutation  52 
Mutual exclusion  265 
Mutually related scheduling problems  

433, 454, 455, 456 

�� N � 

Nash equilibrium  461 
NC-machine  671 
NDTM  20 

Negation domain consistency test  650 
Neighborhood  42 
Network  27 

activity  63, 159, 172, 506 
 communication  714 

flow  169, 178, 184, 546 
layered  30 
queuing  727, 730 
transportation  163 
uniconnected activity  63, 485 

N-free precedence graph  25 
Node  23 

consistency  617 
final  25 
initial  25 
predecessor  24 
successor  24 

Non-availability periods  451 
Non-clairvoyant scheduling  578 
Non-cooperative game  460 
Non-delay schedule  306, 434, 435, 437 
Non-deterministic Turing machine  20 
Non-linear programming problem  507 
Non-periodic algorithm  293 
Non-preemptable tasks  511, 579 
Non-preemptive  477, 482, 507, 509, 579 

schedule  63, 64, 172, 174 
scheduling  149, 162, 177, 510 

Non-regular criterion  105, 533 
Non-renewable resource  475 
Norm 

lp  445, 446 
vector  445 

Normal schedule  84 
Normalized schedule  206, 487 
Notation 
    three-field  72, 451, 454 
No-wait 

constraint  289 
flow shop  290 
property  62 
schedule  292 

NP class  21 
NP-complete  21, 67 

in the strong sense  22 
strongly  22 

NP-hard  67 
problem  21, 37, 438, 439, 440, 446, 

447, 451, 452, 458, 461, 462, 463, 
464, 465, 466 

unary  23 
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N-structure  25 
Number 

of tardy tasks  65 
problem  22 

�� O � 

Off-line 
planning  713, 729 
scheduling  250, 251, 577 

OFP  713, 729, 754 
ONC  713, 729, 754 
One machine problems  407, 533 
One-one function  12 
One state-variable machine problem  289 
Oneblock procedure  128 
Online  

algorithm  438, 439, 453, 459, 580,  
586 
deterministic  580 
optimal  586 
randomized  580  
scalable  602 

control  713, 729 
scheduling model 250, 251 

list  578 
over-list  578 
over-time  578 
semi-online advice  600 
sequence  578 
time  578 
time-stamp  578 
with  advice 600 

per request   600 
with rejections  579 
with resource augmentation  601 
with withdrawal  591 

On-time set  112 
OOA  720 
Open 

interval  11 
shop  62, 423, 465, 550 

scheduling  321 
Operation  431 
Operations research  731, 761 
OPIS  750 
Opportunistic scheduling  370 
Opposing forest  25, 155, 156 
Optimal 

asymptotically  40 
online algorithm  586 
schedule  66, 486 

solution  13, 18, 37 
Optimality  

condition 
necessary  450 
sufficient  449, 450 

criterion  64, 71 
additive  35 
makespan  64 
maximum  

cost  126 
lateness  64 

mean 
flow time  64 
tardiness  65 
weighted 

flow time  64 
tardiness  65 

number of tardy tasks  65 
performance measure  64, 532 
schedule length  64 
total  

early work  566 
late work  527, 532 
resource utilization  514 

weighted number of tardy tasks  65 
Optimization 

algorithm  18 
combinatorial  727 
efficient  66 
problem  13, 20 

constraint  611 
pseudopolynomial  68, 145, 536, 549, 

553, 556, 558, 
Optional subtask  530 
OR  731, 761 
Order 

graph  97 
interval  12 
lexicographic  155 
of a function  13 
partial  12 

Ordered set 
partially  12 

Ordering of nodes  507 
Out- 

degree  24 
forest  25 
tree  25, 153, 173, 180 

Outgoing edge  27 
Output  16 

consistency test  656 
domain consistency test  643 
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Overtime cost function  416 

�� P � 

P class  20 
Packet length coefficient  227 
Pairwise task interchange argument  433, 

437, 439, 440, 447 
Pallet  682 
Palmer heuristic  282 
Parallel 

machine problems  409, 545 
processor  61, 69, 200 

scheduling  141, 545 
requirement  202 

Parallelism 
coarse grain  221 
fine grain  221 

Pareto  
curve  515 
optimal  

schedule  449 
solution  515, 521 

Part 
machine-preemption  672 
preemption  672 
scheduling  682 

Partial order  12 
properties  440 
selection  628 

Partially ordered set  12 
PARTITION  142, 440, 446, 537, 548, 

552, 555 
Path  23 

augmenting  28, 32 
consistency  617 
consistent  382 
critical  153 
directed  23 
longest  158 
shortest  30 
undirected  23 

Patterns of availability  405 
p-batch model  540 
Perfect shuffle network  200 
Performance 

average case  581 
measure  64, 532 
ratio 

absolute  38, 153, 582 
asymptotic  38 

worst-case  38, 286, 288, 581 

Periodic  
algorithm  292 
task  249 

Permutation  12 
feasible  98 
flow shop  271 
schedule  271 

Planning  720 
offline  729 

P-node  26 
Polymerization process  292 
Polynomial 

time  
algorithm  19 
approximation scheme  38, 568 

transformation  21 
Poset  12 
Power set  11 
PPS  714 
Precedence 

and disjunctive constraints  610 
consistency test   632 
constraint  63, 71, 129, 156, 438, 441, 

447, 451, 463, 625 
general constraint  94 
graph  24 

N-free  25 
task-on-arc  159 

in-tree  180 
out-tree  180 
relation  24, 732 
series-parallel  26, 98, 441, 447 
strong chain  438 
weak chain  438 

pred  24 
Predecessor 

immediate  24 
vertex  23 

Predictability  247 
Predictable operation  247 
Predictive 

level  717 
production scheduling  713 
scheduling  69, 714, 750 

Preemption  63, 157, 165, 322, 415, 579 
granularity  149 
part  672 
part-machine  672 
task  506 

Preemptive  103, 508, 579 
algorithm  167 
processing  178 
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Preemptive (continued) 
schedule  63, 64, 146 
scheduling  168, 174, 182, 206 

Preferences 
logically conflicting  735 
resource conflicting  735 
time conflicting  735 

Preprocessing  716 
Pre-runtime scheduling  250 
Price of anarchy  461 
Prime module  99, 134 
Principle of optimality  35 
Priority  62 

driven scheduling  251 
dynamic  251 
fixed  251 
function  441 
inversion  266 
rule  307, 361, 365, 580, 675, 681, 732, 

734, 750 
static  251 

Priority-generating function 433, 440, 441 
Problem 

3-PARTITION  22, 78, 113, 441, 446, 
447, 462, 483, 549 

4-PRODUCT  458, 461, 463, 464 
berth allocation  792 
bin packing  583 
clique partitioning  785 
combinatorial 

optimization  66 
search  13 

concrete delivery  767 
conjugate  456 
constrained weighted completion time  

94 
constraint satisfaction  732 
convex programming  507 
CWCT  94 
decision  13, 20, 732 
determinacy  71 
deterministic scheduling  66 
DP-benevolent  452, 538, 540, 544 
EQUAL PRODUCTS  454, 458, 464, 

465 
EVEN-ODD PARTITION  448 
feasibility  530, 732 
flight gate scheduling  779 
generic  456 
HAMILTONIAN CIRCUIT  21 
initial  455 
instance  13 

INTEGER PROGRAMMING  21 
job shop  465, 516, 558 
KNAPSACK  13, 20, 110 
linear 

assignment 441 
integer programming  480 
programming  160 

mathematical programming  122 
maximum flow  28, 81 
min-max transportation  163 
multiobjective resource allocation  510 
mutually related scheduling  433, 454, 

455, 456 
non-linear programming  507 
NP-complete  67 
NP-hard  21, 37, 67, 440, 448, 461, 

464, 465, 466 
number  22 
optimization  13, 20 
PARTITION  142, 440, 446, 537, 548, 

552, 555 
project scheduling  500 
quadratic assignment  790 
quay crane allocation  792 
SATISFIABILITY  21 
scheduling  61, 66, 67 
SUBSET  

PRODUCT  438, 440, 452, 453, 
458, 461, 465 

SUM  536 
tardiness  113 
TDBS  448, 449, 450 
TDPS  448, 449, 450 
time-dependent scheduling 

bi-criteria  448, 453 
conjugate  455 
equivalent  455 
transformed  455 

transportation  34, 175, 484, 535 
TRAVELING SALESMAN  21, 290, 

774 
two-machine  

flow shop  463, 464, 465, 516, 555 
job shop  558 
open shop 464, 465, 552 

vehicle routing  762 
Procedural knowledge  749 
Procedure 

labeling  32 
oneblock  128 

Process  
plan  720 
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planning  714 
Processing 

capacity  165 
speed  502 

factor  62 
vs. resource amount model  502 

time  62, 70 
basic  434, 435 
linear  435, 436 
non-linear  435, 436 
polynomial  447 
proportional  435 
proportional-linear  435, 436 
quadratic  447 
standard  62 
time-dependent  431 
variable  431 
vector of  62 
vs. resource amount model  501, 

511 
Processor  61 

augmentation  601 
composite  412, 415 
dedicated  61, 70, 516, 550 
feasible sets  160 
identical  61, 141, 172, 177, 545 
parallel  61, 69, 545 
shared schedule  158 
sharing  165 
speed  61 
uniform  62, 69, 162, 173, 183, 547 
unrelated  62, 160, 162, 168, 173, 183 
utilization  252 

Production 
control  713 
management  713 
planning  713 

system  714 
schedule  684 
scheduling  713 

intelligent  714 
predictive  713 
reactive  713 
shop floor  713 
short term  714 

Programming 
convex  507 
dynamic  34, 110, 113, 123, 134, 145, 

452, 480, 509, 537, 543, 549, 553, 
556, 558, 689 

integer  768, 771 
linear  485, 499, 500, 551 

mathematical  501, 768, 771, 784, 790 
non-linear  507 
zero-one  96 

Progress rate function  502 
Project scheduling  500, 510, 673, 674 
Property 

no-wait  62 
symmetry  445 
V-shape  441 

Pseudopolynomial 
algorithm  22, 110, 114, 145, 536, 549, 

553, 556, 558, 689 
optimization algorithm  68 

Purchasing-order  720 

�� Q � 

Quadratic assignment problem  790 
Quay crane allocation problem  792 
Queuing network  727 

closed  671 

� R � 

Range  11, 12 
Rate-modifying activity  438, 457 
Rate monotonic  

First Fit algorithm  265 
rule  252 
strategy  243 

Rate of convergence  40, 144 
Ratio 

asymptotic performance  322 
competitive  453, 582 
rule  87 
worst-case performance  286, 581 

Reactive 
level  717 
production scheduling  713 
scheduling  69, 681, 714, 746, 750 

Ready time  62, 70, 77, 249, 417, 512, 
732 
vs. resource amount model  517 

Realistic computer model  18 
Real-time 

environment  70 
hard  70 
scheduling  249 
system  243, 244 

Reasonable encoding scheme  15 
Reduced hypergraph  738 
Reflexive relation  12 
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Regret heuristics  706 
Regular  

performance criterion  105, 533 
sequence  444 

Relation  11 
antisymmetric  12 
binary  11 
equivalence  12 
inverse  12 
irreflexive  12 
k-ary  11 
precedence  732 
reflexive  12 
symmetric  12 
transitive  12 

Relative 
desirability  111 
error  40, 68 
timing constraints  266 

Relax and enrich strategy  734 
Relaxation  67 

technique  734 
Release time  77, 85 

property  80 
Reliable operation  247 
Renewable resource  250, 475, 501, 502 
Reproduction  52 
Resource  61, 70, 475, 720 

additional  70 
allocation  503 
augmentation  601 

machine  601 
processor  601 
speed  601 

availability  732 
categories  475 
conflicting preferences  735 
constrained scheduling  475 
constraint  475 
continuous  431, 457, 475, 500, 502, 

795 
discrete  431, 457, 475, 501 
discrete-continuous  503 
discretely-divisible  501 
doubly constrained  475 
feasible set  485, 500 
limit  476, 479 
mixed  503 
non-renewable  475 
project scheduling  510 
renewable  250, 475, 501, 502 
request  62 

requirement  476, 672 
type  475, 476, 479 

fixed number  479 
utilization  514, 732 

Response time  253 
Request  578 
REST  734 
Ring  200 
RM rule  252 
RMFF algorithm  265 
Rolling horizon  673, 674, 681 
Rotational speed  502 
Routing conditions  732 
Rule 

backward scheduling  91 
critical ratio  681 
earliest 

completion time (ECT)  89 
deadline  77, 83 
due date (EDD)  100, 177, 534, 539, 

541, 681 
start time (EST)  89 

EDD  102, 103, 177, 534, 539, 541 
first come first served (FCFS)  756 
GSP  681 
hybrid (HYB)  681 
largest processing time (LPT)  142, 

143, 295 
McNaughton  148, 415, 484, 510, 547, 

755 
minimum slack time (MST)  105 
modified 

due date (MDD)  681 
task due date (MTD)  675, 681 

MTD  681 
priority  580, 732, 734, 750 
shortest processing time (SPT)  87, 

173, 322, 681, 756 
Smith's 

backward scheduling  91, 534 
ratio  87 
weighted shortest processing time 

(WSPT)  87, 90 
UVW  124 
weighted shortest processing time 

(WSPT)  87 

�� S � 

Safety-critical system  247 
SATISFIABILITY  21 
s-batch  model  540 
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Scatter search  54 
Scenario   

event-triggered  578 
time-triggered  578 

Schedule  63, 720 
acceptable  727 
feasible  124, 412, 415 
k-weakly V-shaped  445, 446 
length  64, 71, 141, 294, 755 
non-delay  306, 434, 435, 437 
non-preemptive  63, 64, 172, 174, 579 
normal  84 
normalized  206, 487 
no-wait  292 
optimal  66, 486 
Pareto optimal  449 
partial V-shaped  443 
performance measure  64, 532 
preemptive  63, 64, 146, 579 
production  684  
scalar optimal 449 
status  752 
to meet deadlines  77 
vehicle  686 
V-shaped  441, 442 
weakly V-shaped  445 

Scheduling 
agent  453 
algorithm  66 
anomalies  149 
clairvoyant  578 
constraint based  732 
deterministic  69 
discrete-continuous  457 
dynamic job shop  674 
early/tardy tasks  462 
flexible job shop  291 
game  461 
imprecise computations  527, 530 
in flexible manufacturing systems  671 
interactive  734 
interval  579 
list  142, 322, 580 
lot size  121, 186 
mirror  569 
multiprocessor tasks  486 
multi-agent  453, 454, 457, 540 
non-clairvoyant  578 
non-preemptive  149, 162, 177, 510, 

579 
off-line  250, 251, 578 
online  250, 251, 578 

open shop  321, 550 
parallel processor  141, 545 
policy  461 

LDR  461 
MS  461 
SDR  461 

predictive  69, 750 
production  713 

preemptive  168, 174, 206 
preemptive-restart  579 
preemptive-resume  579 
pre-runtime  250 
priority-driven  251, 580 
problem  61, 66, 67 

bi-criteria  448 
conjugate  455 
deterministic   69 
equivalent  455 
generic   456 
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