
International Handbooks on Information Systems

Jacek Blazewicz
Klaus H. Ecker
Erwin Pesch
Günter Schmidt
Malgorzata Sterna
Jan Weglarz

Handbook on
Scheduling
From Theory to Practice

 Second Edition

International Handbooks on Information
Systems

Series editors

Peter Bernus
Jacek Blazewicz
Günter Schmidt
Michael J. Shaw

International Handbooks on Information Systems is a series of volumes offering
state-of-the-art surveys on selected topics of information theory and applications.

The scope of the series comprises topics such as architectures of information
systems, enterprise architecture, data management in information systems, electronic
commerce, knowledge management, ontologies and others. To date more than a
dozen volumes have been published, some of them in multiple editions.

The objective is to involve contributors who are the authoritative figures in this
area of information systems in each volume in order to provide a reference source
for problem solvers in business, industry, and government, which can also be used
by professional researchers and graduate students.

To this end, a distinguished international group of academics and practitioners will
be invited to contribute articles on their respective fields of expertise.

More information about this series at http://www.springer.com/series/3795

http://www.springer.com/series/3795

• Klaus H. Ecker • Erwin Pesch
Günter Schmidt • Malgorzata Sterna • Jan Weglarz

Handbook on Scheduling
From Theory to Practice

Second Edition

Jacek Blazewicz

International Handbooks on Information Systems
ISBN 978-3-319-99848-0 ISBN 978-3-319-99849-7 (eBook)
https://doi.org/10.1007/978-3-319-99849-7

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Jacek Blazewicz
Institute of Computing Science
Poznan University of Technology
Poznan, Poland

Institute of Bioorganic Chemistry
Polish Academy of Sciences
Poznan, Poland

European Centre for Bioinformatics
and Genomics
Poznan, Poland

Klaus H. Ecker
Institute of Informatics
Clausthal University of Technology
Clausthal-Zellerfeld, Germany

Günter Schmidt
Saarland University
Saarbrücken, Germany

University of Cape Town
Cape Town, South Africa

Malgorzata Sterna
Institute of Computing Science
Poznan University of Technology
Poznan, Poland

Jan Weglarz
Institute of Computing Science
Poznan University of Technology
Poznan, Poland

Poznan Supercomputing
and Networking Center
Poznan, Poland

Erwin Pesch
Faculty III - School of Economic Disciplines
University of Siegen
Siegen, Germany

HHL - Leipzig Graduate School of Management
Center for Advanced Studies in Management
Leipzig, Germany

Library of Congress Control Number: 2018956311

https://doi.org/10.1007/978-3-319-99849-7

FOREWORD

This handbook1 is a continuation of [1] which has received kind acceptance of
a wide readership, and, as [1], is the result of a long lasting German-Polish coop-
eration. Its specificity remains the same as it underlines a transition from theory
to practice in a wide spectrum of scheduling problems.

However, realizing the suggestion of the Publisher to prepare a new version
of the handbook, we decided to publish a new textbook rather than only a new
edition of the previous one. This followed from our conviction based on many
discussions that some important new subjects should be included. They are char-
acterized in Chapter 1. We also decided to enlarge the group of authors by in-
cluding Małgorzata Sterna.

We very much hope that in this way the handbook will be of interest to even
a wider audience than the previous one.

During the preparation of the book many colleagues have discussed with us
the different topics presented in it. We are not able to list all of them but we
would like to express our gratitude towards Nils Boysen, Nadia Brauner, Ed-
mund Burke, Ulrich Dorndorf, Maciej Drozdowski, Toan Phan Huy, Florian
Jaehn, Joanna Józefowska, Imed Kacem, Graham Kendall, Misha Kovalyov,
Dominik Kress, Wiesław Kubiak, Sebastian Meiswinkel, Jenny Nossack, Ceyda
Oğuz, Alena Otto, Denis Trystram and Dominique deWerra. Separate thanks are
due to Stanisław Gawiejnowicz who revised references and prepared Chapter 12.

References
[1] J. Błażewicz, K. Ecker, E. Pesch, G. Schmidt, J. Węglarz, Handbook on Scheduling -

From Theory to Applications, Springer Verlag, Berlin, 2007.

1 This work was partially supported by PUT grant No 09/91/DSPB/0649.

V

Contents

1 Introduction ... 1

References ... 9

2 Basics ... 11

2.1 Sets and Relations ... 11

2.2 Problems, Algorithms, Complexity 13
2.2.1 Problems and Their Encoding 13
2.2.2 Algorithms ... 15
2.2.3 Complexity .. 18

2.3 Graphs and Networks .. 23
2.3.1 Basic Notions .. 23
2.3.2 Special Classes of Digraphs 24
2.3.3 Networks .. 27

2.4 Enumerative Methods ... 34
2.4.1 Dynamic Programming 35
2.4.2 Branch and Bound ... 35

2.5 Heuristic and Approximation Algorithms 37
2.5.1 Approximation Algorithms 37
2.5.2 Local Search Heuristics 41

References .. 55

3 Definition, Analysis and Classification of Scheduling Problems 61

3.1 Definition of Scheduling Problems 61

3.2 Analysis of Scheduling Problems and Algorithms 66

3.3 Motivations for Deterministic Scheduling Problems 69

3.4 Classification of Deterministic Scheduling Problems 72

References .. 75

4 Scheduling on One Processor .. 77

4.1 Minimizing Schedule Length 77
4.1.1 Scheduling with Release Times and Deadlines 78
4.1.2 Scheduling with Release Times and Delivery Times 85

4.2 Minimizing Mean Weighted Flow Time 87

VII

VIII CONTENTS

4.3 Minimizing Due Date Involving Criteria 99
4.3.1 Maximum Lateness 100
4.3.2 Number of Tardy Tasks 108
4.3.3 Mean Tardiness ... 113
4.3.4 Mean Earliness .. 117

4.4 Minimizing Change-Over Cost 118
4.4.1 Setup Scheduling.. 118
4.4.2 Lot Size Scheduling 121

4.5 Other Criteria... 126
4.5.1 Maximum Cost ... 126
4.5.2 Total Cost ... 131

References .. 134

5 Scheduling on Parallel Processors 141

5.1 Minimizing Schedule Length 141
5.1.1 Identical Processors 141
5.1.2 Uniform and Unrelated Processors 162

5.2 Minimizing Mean Flow Time 172
5.2.1 Identical Processors 172
5.2.2 Uniform and Unrelated Processors 173

5.3 Minimizing Due Date Involving Criteria 177
5.3.1 Identical Processors 177
5.3.2 Uniform and Unrelated Processors 183

5.4 Lot Size Scheduling .. 186

References ... 191

6 Communication Delays and Multiprocessor Tasks 199

6.1 Introductory Remarks ... 199

6.2 Scheduling Multiprocessor Tasks 205
6.2.1 Parallel Processors .. 205
6.2.2 Dedicated Processors 213
6.2.3 Refinment Scheduling 219

6.3 Scheduling Uniprocessor Tasks with Communication Delays 221
6.3.1 Scheduling without Task Duplication 222
6.3.2 Scheduling with Task Duplication 225
6.3.3 Scheduling in Processor Networks 226

6.4 Scheduling Divisible Tasks 228

References ... 236

 CONTENTS IX

7 Scheduling in Hard Real-Time Systems 243

7.1 Introduction .. 243
7.1.1 What is a Real-Time System? 244
7.1.2 Examples of Real-Time Systems 245
7.1.3 Characteristics of Real-Time Systems 246
7.1.4 Functional Requirements for Real-Time Systems 247

7.2 Basic Notions .. 248
7.2.1 Structure of a Real-Time System 248
7.2.2 The Task Model ... 249
7.2.3 Schedules ... 250

7.3 Single Processor Scheduling 252
7.3.1 Static Priority Scheduling 253
7.3.2 Dynamic Priority Scheduling 262

7.4 Scheduling Periodic Tasks on Parallel Processors 264

7.5 Resources .. 265

7.6 Variations of the Periodic Task Model 266

References ... 267

8 Flow Shop Scheduling... 271

8.1 Introduction .. 271
8.1.1 The Flow Shop Scheduling Problem 271
8.1.2 Complexity ... 273

8.2 Exact Methods ... 274
8.2.1 The Algorithms of Johnson and Akers 274
8.2.2 Dominance and Branching Rules 277
8.2.3 Lower Bounds .. 278

8.3 Approximation Algorithms 282
8.3.1 Priority Rule and Local Search Based Heuristics 282
8.3.2 Worst-Case Analysis 285
8.3.3 No Wait in Process .. 289

8.4 Scheduling Flexible Flow Shops 291
8.4.1 Problem Formulation 291
8.4.2 Heuristics and Their Performance 294
8.4.3 A Model .. 296
8.4.4 The Makespan Minimization Problem 297
8.4.5 The Mean Flow Time Problem 311

References ... 316

X CONTENTS

9 Open Shop Scheduling ... 321

9.1 Complexity Results ... 321
9.2 A Branch and Bound Algorithm for Open Shop Scheduling 323

9.2.1 The Disjunctive Model of the OSP 323
9.2.2 Constraint Propagation and the OSP 326
9.2.3 The Algorithm and Its Performance........................ 332

References ... 341

10 Scheduling in Job Shops .. 345
10.1 Introduction .. 345

10.1.1 The Problem .. 345
10.1.2 Modeling ... 345
10.1.3 Complexity ... 353
10.1.4 The History ... 354

10.2 Exact Methods ... 357
10.2.1 Branch and Bound .. 358
10.2.2 Lower Bounds .. 358
10.2.3 Branching ... 360
10.2.4 Valid Inequalities ... 363

10.3 Approximation Algorithms 365
10.3.1 Priority Rules ... 365
10.3.2 The Shifting Bottleneck Heuristic 367
10.3.3 Opportunistic Scheduling 370
10.3.4 Local Search .. 372

10.4 Conclusions .. 392
References ... 393

11 Scheduling with Limited Processor Availability 403
11.1 Problem Definition ... 404
11.2 One Machine Problems ... 407
11.3 Parallel Machine Problems 409

11.3.1 Minimizing the Sum of Completion Times 409
11.3.2 Minimizing the Makespan 410
11.3.3 Dealing with Due Date Involving Criteria 418

11.4 Shop Problems ... 420
11.4.1 Flow Shop Problems 420
11.4.2 Open Shop Problems 423

11.5 Conclusions .. 423
References ... 425

 CONTENTS XI

12 Time-Dependent Scheduling .. 431

12.1 Introduction .. 432

12.2 Forms of Time-Dependent Processing Times 433
12.2.1 General Forms .. 433
12.2.2 Special Forms ... 434

12.3 One Machine Problems ... 436
12.3.1 Proportionally Deteriorating Processing Times 437
12.3.2 Proportional-Linearly Deteriorating Processing Times 438
12.3.3 Proportional-Linearly Shortening Processing Times 439
12.3.4 Linearly Deteriorating Processing Times 440
12.3.5 Linearly Shortening Processing Times 446
12.3.6 Non-Linearly Deteriorating Processing Times 447
12.3.7 Other One Machine Problems 448

12.4 Parallel Machine Problems 457
12.4.1 Proportionally Deteriorating Processing Times 457
12.4.2 Linearly Deteriorating Processing Times 462
12.4.3 Non-Linearly Deteriorating Processing Times 462

12.5 Dedicated Machine Problems 463
12.5.1 Proportionally Deteriorating Processing Times 463
12.5.2 Proportional-Linearly Deteriorating Processing Times 465
12.5.3 Linearly Deteriorating Processing Times 465
12.5.4 Non-Linearly Deteriorating Processing Times 466

References ... 467

13 Scheduling under Resource Constraints 475

13.1 Classical Model .. 475

13.2 Scheduling Multiprocessor Tasks 486

13.3 Scheduling with Continuous Resources 500
13.3.1 Introductory Remarks 501
13.3.2 Processing Speed vs. Resource Amount Model 502
13.3.3 Processing Time vs. Resource Amount Model 511
13.3.4 Ready Time vs. Resource Amount Model 517

References ... 521

14 Scheduling Imprecise Computations 527

14.1 Introduction .. 527

14.2 Imprecise Computation Model 530

XII CONTENTS

14.3 Late Work Model ... 532

14.3.1 Single Processor Problems 533
14.3.2 Parallel Processor Problems 545
14.3.3 Dedicated Processor Problems 550

14.4 Related Problems ... 566

14.5 Conclusions .. 569

 References ... 570

15 Online Scheduling ... 577

15.1 Online Scheduling Models .. 578

15.2 Online Scheduling Algorithms 580

15.3 Competitive Analysis ... 581
15.3.1 Competitive Ratio ... 582
15.3.2 Lower Bound ... 586
15.3.3 Adversary Method .. 586

15.4 Other Online Scheduling Models 590
15.4.1 Semi-Online Scheduling 590
15.4.2 Online Scheduling with Advice............................ 600
15.4.3 Resource Augmentation 601

15.5 Conclusions .. 602

 References ... 602

16 Constraint Programming and Disjunctive Scheduling 609
16.1 Introduction .. 609
16.2 Constraint Satisfaction .. 611

16.2.1 The Constraint Satisfaction and Optimization Problem ... 611
16.2.2 Constraint Propagation 613

16.3 The Disjunctive Scheduling Problem 625
16.3.1 The Disjunctive Model 626
16.3.2 Solution Methods for the DSP 629

16.4 Constraint Propagation and the DSP 629
16.4.1 Some Basic Definitions 630
16.4.2 Precedence Consistency Tests 632
16.4.3 Lower-Level Bound-Consistency 632
16.4.4 Input/Output Consistency Tests 641
16.4.5 Input/Output Negation Consistency Tests 648
16.4.6 Input-or-Output Consistency Tests....................... 654
16.4.7 Energetic Reasoning 655
16.4.8 Shaving ... 659

 CONTENTS XIII

16.4.9 A Comparison of Disjunctive Consistency Tests 660
16.4.10 Precedence vs. Disjunctive Consistency Tests 662

16.5 Conclusions .. 662
16.6 Appendix: Bound Consistency Revisited 663
References ... 667

17 Scheduling in Flexible Manufacturing Systems 671

17.1 Introductory Remarks ... 671

17.2 Scheduling Dynamic Job Shops 674
17.2.1 Introductory Remarks 674
17.2.2 Heuristic Algorithm for the Static Problem 675
17.2.3 Computational Experiments 681

17.3 Simultaneous Scheduling and Routing in some FMS 682
17.3.1 Problem Formulation 682
17.3.2 Vehicle Scheduling for a Fixed Production Schedule 684
17.3.3 Simultaneous Job and Vehicle Scheduling 689

17.4 Batch Scheduling in Flexible Flow Shops under Resource
Constraints ... 691
17.4.1 Introduction - Statement of the Problem 691
17.4.2 Mathematical Formulation 692
17.4.3 Heuristic Solution Approach 702

References ... 709

18 Computer Integrated Production Scheduling 713

18.1 Scheduling in Computer Integrated Manufacturing 714

18.2 A Reference Model for Production Scheduling 719

18.3 IPS: An Intelligent Production Scheduling System 727
18.3.1 Interactive Scheduling 734
18.3.2 Knowledge-based Scheduling 749
18.3.3 Integrated Problem Solving 754

References ... 758

19 Scheduling in Logistics .. 761

19.1 Introduction .. 761

19.2 Vehicle Routing Problem ... 762

19.3 Concrete Delivery Problem 767
19.3.1 Overview ... 767
19.3.2 Modeling the Concrete Delivery Problem 768

XIV CONTENTS

19.3.3 Related Models ... 776

19.4 Flight Gate Scheduling Problem 779
19.4.1 Overview ... 780
19.4.2 Modeling the Flight Gate Scheduling Problem 782
19.4.3 Related Models ... 789

19.5 Berth and Quay Crane Allocation Problem 792
19.5.1 Overview ... 793
19.5.2 Modeling the Berth and Quay Crane Allocation Problem .. 794
19.5.3 Related Models ... 800

19.6 Conclusions .. 802

 References ... 802

Index ... 813

1 Introduction

Scheduling problems can be understood in general as the problems of allocating
resources over time to perform a set of tasks being parts of some processes,
among which computational and manufacturing ones are most important. Tasks
individually compete for resources which can be of a very different nature, e.g.
manpower, money, processors (machines), energy, tools. The same is true for
task characteristics, e.g. ready times, due dates, relative urgency weights, func-
tions describing task processing in relation to allotted resources. Moreover,
a structure of a set of tasks, reflecting relations among them, can be defined in
different ways. In addition, different criteria which measure the quality of
the performance of a set of tasks can be taken into account.

It is easy to imagine that scheduling problems understood so generally ap-

pear almost everywhere in real-world situations. Of course, there are many as-

pects concerning approaches for modeling and solving these problems which are

of general methodological importance. On the other hand, however, some classes

of scheduling problems have their own specificity which should be taken into

account. Since it is rather impossible to treat all these classes with the same at-

tention in a framework of one book, some constraints must be put on the subject

area considered. In the case of this handbook these constraints are as follows.

First of all we focus on the problems motivated by applications from indus-

try and service operations management as well as from case studies of real - life

problems. Among others there is a detailed description of optimization proce-

dures for acrylic-glass production and the production of helicopter parts in

a flexible manufacturing system. We will describe the backbone of an efficient

decision support system for airport gate scheduling as well as a flexible flow

shop scheduling system in order to manufacture screws and car power brakes.

Second, we deal with deterministic scheduling problems (cf. [Bak74,

BCSW86, Bru07, BT09, CCLL95, CMM67, Cof76, Eck77, Fre82, Gaw08,

GK87, Len77, Leu04, LLR+93, Pin16, Rin76, RV09, TB06, TGS94, TSS94]),

i.e. those in which no variable with a non-deterministic (e.g. probabilistic) de-

scription appears. Let us stress that this assumption does not necessarily mean

that we deal only with static problems in which all characteristics of a set of

tasks and a set of resources are known in advance. We consider also dynamic

problems in which some parameters such as task ready times are unknown in

advance, and we do not assume any a priori knowledge about them; this ap-

proach is even more realistic in many practical situations.

Third, we consider problems in which a set of resources always contains

processors (machines). This means that we take into account the specificity of

these particular resources in modeling and solving corresponding scheduling

problems, but it does not mean that all presented methods and approaches are

restricted to this specificity only. The main reason for which we differentiate

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_1

1

https://doi.org/10.1007/978-3-319-99849-7_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_1&domain=pdf

2 1 Introduction

processors (we even do not call them "resources" for the convenience of a read-

er) is that we like to expose especially two broad (and not exclusive) areas of

practical applications of the considered problems, namely computer and manu-

facturing systems.

After the explanation of the handbook's title, we can pass to the description

of some of its deeper specificities. They can be meant as compromise we accept-

ed in multi-objective decision situations we had to deal with before and during

the preparation of the text. At the beginning, we found a compromise between

algorithmic (rather quantitative) and knowledge-based (rather qualitative) ap-

proaches to scheduling. We decided to present in the first chapters the algorith-

mic approach, and at the end to show how it can be integrated with the approach

coming from the area of Artificial Intelligence, in order to create a pretty general

and efficient tool for solving a broad class of practical problems. In this way we

also hopefully found a compromise between rather more computer and rather

more manufacturing oriented audience.

The second compromise was concerned with the way of presenting algo-

rithms: formal or descriptive. Basically we decided to adopt a Pascal-like nota-

tion, although we allowed for few exceptions in cases where such a presentation

would be not efficient.

Next we agreed that the presented material should realize a reasonable com-

promise between the needs of readers coming from different areas, starting from

those who are beginners in the field of scheduling and related topics, and ending

with specialists in the area. Thus we included some preliminaries concerning

basic notions from discrete mathematics (problems, algorithms and methods), as

well as, besides the most recent, also the most important classical results.

Summing up the above compromises, we think that the handbook can be ad-

dressed to a quite broad audience, including practitioners and researchers inter-

ested in scheduling, and also to graduate or advanced undergraduate students in

computer science/engineering, operations research, industrial engineering, man-

agement science, business administration, information systems, and applied

mathematics curricula.

Finally, we present briefly the outline of the handbook.

In Chapter 2 basic definitions and concepts used throughout the book are

introduced. One of the main issues studied here is the complexity analysis of

combinatorial problems. As a unified framework for this presentation the con-

cept of a combinatorial search problem is used. Such notions as: decision and

optimization problems, their encoding schemes, input length, complexity classes

of problems, are discussed and illustrated by several examples. Since the majori-

ty of scheduling problems are computationally hard, two general approaches

dealing with such problems are briefly discussed: enumerative and heuristic.

First, general enumerative approaches, i.e. dynamic programming and branch

and bound are shortly presented. Second, heuristic algorithms are introduced and

the ways of analysis of their accuracy in the worst case and on the average are

described. Then, we introduce the ideas of general local search metaheuristics

known under names: simulated annealing, tabu search, and ejection chains as

 1 Introduction 3

well as genetic algorithms. In contrast with previous approaches (e.g. hill-

climbing) to deal with combinatorially explosive search spaces about which little

knowledge is known a priori, the above mentioned metaheuristics, in combina-

tion with problem specific knowledge, are able to escape a local optimum. Basi-

cally, the only thing that matters, is the definition of a neighborhood structure in

order to step from a current solution to a next, probably better one. The neigh-

borhood structure has to be defined within the setting of the specific problem and

with respect to the accumulated knowledge of the previous search process. Fur-

thermore, frequently some random elements guarantee a satisfactory search di-

versification over the solution space. During the last years the metaheuristics

turned out to be very successful in the scheduling area; specific applications will

be described in Chapters 8, 9, 10 and 17.

The chapter is complemented by a presentation of the notions from sets and

relations, as well as graphs and networks, which will be used in the later chap-

ters.

In Chapter 3 definitions, assumptions and motivations for deterministic

scheduling problems are introduced. We start with the set of tasks, the set of pro-

cessors (machines) and the set of resources, and with two basic models in deter-

ministic scheduling, i.e. parallel processors and dedicated processors. Then,

schedules and their performance measures (optimality criteria) are described.

After this introduction, possible ways of analyzing scheduling problems are de-

scribed with a special emphasis put to solution strategies of computationally hard

problems. Finally, motivations for the use of the deterministic scheduling model

as well as an interpretation of results, are discussed. Two major areas of applica-

tions, i.e. computer and manufacturing systems are especially taken into account.

These considerations are complemented by a description of a classification

scheme which enables one to present deterministic scheduling problems in

a short and elegant way.

Chapter 4 deals with single-processor scheduling. The results given here

are mainly concerned with polynomial time optimization algorithms. Their

presentation is divided into several sections taking into account especially

the following optimality criteria: schedule length, mean (and mean weighted)

flow time, and due date involving criteria, such as maximum lateness, number of

tardy tasks, mean (and mean weighted) tardiness and a combination of earliness

and lateness. In each case polynomial time optimization algorithms are present-

ed, taking into account problem parameters such as the type of precedence con-

straints, possibility of task preemption, processing and arrival times of tasks, etc.

These basic results are complemented by some more advanced ones which take

into account change-over cost, also called lot size scheduling, and more general

cost functions. Let us stress that in this chapter we present a more detailed classi-

fication of subcases as compared to the following chapters. This follows from

the fact that the algorithms for the single-processor model are useful also in more

complicated cases, whenever a proper decomposition of the latter is carried out.

On the other hand, its relative easiness makes it possible to solve optimally in

polynomial time many more subcases than in the case of multiple processors.

4 1 Introduction

Chapter 5 carries on an analysis of scheduling problems where multiple

parallel processors are involved. As in Chapter 4, a presentation of the results is

divided into several subsections depending mainly on the criterion considered

and then on problem parameters. Three main criteria are analyzed: schedule

length, mean flow time and maximum lateness. A further division of the present-

ed results takes in particular into account the type of processors considered, i.e.

identical, uniform or unrelated processors, and then parameters of a set of tasks.

Here, scheduling problems are more complicated than in Chapter 4, so not as

many optimization polynomial time algorithms are available as before. Hence,

more attention is paid to the presentation of polynomial time heuristic algorithms

with guaranteed accuracy, as well as to the description of some enumerative al-

gorithms.

In Chapter 6 new scheduling problems arising in the context of rapidly de-

veloping manufacturing as well as parallel computer systems, are considered.

When formulating scheduling problems in such systems, one must take into ac-

count the fact that some tasks have to be processed on more than one processor

at a time. On the other hand, communication issues must be also taken into ac-

count in systems where tasks (program modules) are assigned to different pro-

cessors and exchange information between each other. In the chapter three mod-

els are discussed in a sequel. The first model assumes that each so-called multi-

processor task may require more than one processor at a time and communica-

tion times are implicitly included in tasks' processing times. The second model

assumes that uniprocessor tasks, each assigned to one processor, communicate

explicitly via directed links of the task graph. More precise approaches distin-

guish between coarse grain and fine grain parallelism and discuss their impact on

communication delays. Furthermore, task duplication often leads to shorter

schedules; this is in particular the case if the communication times are large

compared to the processing times. The last model is a combination of the first

two models and involves the so called divisible tasks.

Chapter 7 deals with another type of scheduling problems where the tasks

are periodic in the sense that they are processed repeatedly and with given fre-

quencies. Particularly in real-time systems designed for controlling some tech-

nical facility we are confronted with problems where sets of periodic tasks are to

be processed on a single processor or on a distributed or parallel processor sys-

tem. The chapter starts with a short introduction to real-time systems and dis-

cusses characteristic properties and general functional requirements of such sys-

tems. Then strategies for scheduling sets of periodic tasks on a single processor

and on a multiprocessor system are presented, and the classical results for

the rate monotonic and earliest deadline scheduling strategies are discussed from

their properties and performance points of view. Another important issue regards

runtime problems that appear if tasks use of non-preemptable (non-

withdrawable) resources. Finally, several variants of the periodic task model

allowing higher flexibility as compared to the simple periodic task model are

presented.

 1 Introduction 5

In Chapter 8 flow shop scheduling problems are described, i.e. scheduling

a set of jobs (composed of tasks) in shops with a product machine layout. Thus,

the jobs have the same manufacturing order. Recent local search heuristics as

well as heuristics relying on the two-machine flow shop scheduling problem -

which can easily be solved optimally - are considered. Some special flow shops

are introduced, e.g. permutation and no-wait ones. The hybrid or flexible flow

shop problem is a generalization of the flow shop in such a way that every job

can be processed by one among several machines on each machine stage. In re-

cent years a number of effective exact methods have been developed. A major

reason for this progress is the development of new job and machine based lower

bounds as well as the rapidly increasing importance of constraint programming.

We provide a comprehensive and uniform overview on exact solution methods

for flexible flow shops with branching, bounding and propagation of constraints,

under two different objective functions: minimizing the makespan of a schedule

and the mean flow time. For some simple cases we present heuristics with

known worst case performance and then describe a branch and bound algorithm

for the general case.

In Chapter 9 we consider the open shop problem where jobs without any

precedence constraints are supposed to be scheduled. Only few exact solution

methods are available and we motivate our presentation with a description of

optimal results for small open shop scheduling problems. We continue describ-

ing a branch-and-bound algorithm for solving this problem which performs bet-

ter than any other existing algorithm. The key to the efficiency of the algorithm

lies in the following approach: instead of analyzing and improving the search

strategies for finding solutions, the focus is on constraint propagation based

methods for reducing the search space. For the first time, many problem instanc-

es are solved to optimality in a short amount of computation time.

In Chapter 10 job shop scheduling problems are investigated. This is

the most general form of manufacturing a set of different jobs on a set of ma-

chines where each job is characterized by its specific machine order reflecting

the jobs production process. We introduce the commonly used representation of

the job shop scheduling problems: the disjunctive graph, and its efficient ma-

chine representation: the graph matrix, which can be generalized for any graph.

The most successful branch and bound ideas are described and we will see that

their branching structure is reflected in the neighborhood definitions of many

local search methods. In particular tabu search, ejection chains, genetic algo-

rithms as well as the propagation of constraints - this is closely related to

the generation of valid inequalities - turned out to become the currently most

powerful solution approaches. Moreover, we introduce priority rule based sched-

uling and describe a well-known opportunistic approach: the shifting bottleneck

procedure.

Chapter 11 deals with scheduling problems where the availabilities of pro-

cessors to process tasks are limited. In the preceding chapters the basic model

assumes that all machines are continuously available for processing throughout

the planning horizon. This assumption might be justified in some cases but it

6 1 Introduction

does not apply if certain maintenance requirements, breakdowns or other con-

straints that cause the machines not to be available for processing have to be

considered. In this chapter we generalize the basic model in this direction and

discuss results related to one machine, parallel machines, and shop scheduling

problems where machines are not continuously available for processing.

In Chapter 12 we are focused on time-dependent scheduling problems,
where job processing times are functions of the job starting times. Problems of
this kind compose the first group of scheduling problems with variable job pro-
cessing times discussed in the handbook. Another group of such problems, with
resource-dependent job processing times, is discussed in Chapter 13. We begin
this chapter with a short description of basics of time-dependent scheduling and
the main forms of time-dependent job processing times. Next, we review the
most important results of time-dependent scheduling, diving them into groups
with respect to machine environment and job processing times form. Whenever
it is possible, we illustrate our presentation by examples. As in the whole hand-
book, we discuss only deterministic algorithms and solution methods. Apart time
complexity and algorithms for time-dependent scheduling problems, we also
discuss two-agent time-dependent scheduling, bi-criteria time-dependent sched-
uling, properties of mutually related pairs of time-dependent scheduling prob-
lems and applications of matrix methods in time-dependent scheduling.

Chapter 13 deals with resource constrained scheduling. In the first two sec-

tions it is assumed that tasks require for their processing processors and certain

fixed amounts of discrete resources. The first section presents the classical model

where schedule length is to be minimized. In this context several polynomial

time optimization algorithms are described. In the next section this model is gen-

eralized to cover also the case of multiprocessor tasks. Two algorithms are pre-

sented that minimize schedule length for preemptable tasks under different as-

sumptions concerning resource requirements. The last section deals with prob-

lems in which additional resources are continuous, i.e. continuously-divisible.

We study three classes of scheduling problems of that type. The first one con-

tains problems with parallel processors and tasks described by continuous func-

tions relating their processing speeds to the resource amount allotted at a time.

The next two classes are concerned with single processor problems where task

processing times or ready times, respectively, are continuous functions of the

allotted resource amount.

Chapter 14 is devoted to a certain scheduling model - the imprecise compu-

tation model, inspired by practical applications arising in the hard real time envi-

ronment, introduced in Chapter 7. It allows trading off accuracy of computations

in favor of meeting deadlines imposed on tasks. In the imprecise computation

model tasks are composed of two subtasks: mandatory and optional ones. The

mandatory subtask has to be completed before the deadline in order to obtain a

feasible solution, but the optional subtask can be late or even left unfinished. The

mandatory subtask corresponds to producing a usable but approximate result

with the error modeled by the late part of the optional subtask. Completing both

subtasks on time corresponds to precise result with no error. The chapter starts

 1 Introduction 7

with exemplary applications which motivated such scheduling problems. Then,

we briefly present the general imprecise computation model and we pass, in the

next section, to its special case - the late work model, which assumes that tasks

consist of optional subtasks only. We present results related to single, parallel

and dedicated processors. Particularly, we show a few examples of classical so-

lution techniques introduced in Chapter 2, namely: the dynamic programming

and the polynomial time approximation scheme being a family of approximation

algorithms. Discussing late work problems, we refer to various topics of the

scheduling theory involving for example controllable processing times, time-

dependent processing times (i.e. scheduling with learning effect) or multi-agent

scheduling. In the last section, some related models inspired by the imprecise

computations, as well as mirror scheduling problems are mentioned.

The handbook focuses in general on deterministic scheduling models, which

assume that the complete knowledge of a problem instance is provided to a deci-

sion maker, i.e. to an algorithm, in advance. Chapter 15 introduces the funda-

mentals of online scheduling. The online scheduling can be considered as sched-
uling with incomplete information, because the decisions on executing tasks are
made without knowing a complete instance of the problem, i.e. the input is being
revealed to a decision maker piece-by-piece. Online scheduling models can be
considered as a bridge between deterministic scheduling and stochastic schedul-
ing, which copes with a problem input given as random variables with certain
probability distributions. Online algorithms compute partial schedules whenever
a new piece of information requests taking an action from them, i.e. the decisions
are made without full knowledge of the future. We present basic online schedul-
ing paradigms, such as online-over-list and online-over-time, which assume that
tasks appear in the system in a given sequence or at a given time moment. We
show the differences between clairvoyant and non-clairvoyant scheduling mod-
els, which reveal various amount of information on incoming tasks. Moreover,
we adjust the idea of precedence constraints and preemptions, introduced in
Chapter 3 for offline mode, to online mode. We present the general idea of de-
terministic and randomized online algorithms and describe the techniques used
for evaluating their efficiency, based on the competitive analysis and on the low-
er bound analysis involving the adversary method. These basic ideas are illus-
trated with a few examples. Moreover, we introduce some enhanced online
scheduling models, such as semi-online scheduling, online scheduling with ad-
vice or online scheduling with resource augmentation.

Constraint propagation is the central topic of Chapter 16. It is an elemen-

tary method for reducing the search space of combinatorial search and optimiza-

tion problems which has become more and more important in the last decades.

The basic idea of constraint propagation is to detect and remove inconsistent

variable assignments that cannot participate in any feasible solution through

the repeated analysis and evaluation of the variables, domains and constraints

describing a specific problem instance. We describe efficient constraint propaga-

tion methods also known as consistency tests for the disjunctive scheduling prob-

lem (DSP) applications of which will be introduced in machine scheduling chap-

8 1 Introduction

ters 8 to 10. We will further present and analyze both new and classical con-

sistency tests involving a higher number of variables. They still can be imple-

mented efficiently in a polynomial time. Further, the concepts of energetic rea-

soning and shaving are analyzed and discussed.

The other contribution is a classification of the consistency tests derived ac-

cording to the domain reduction achieved. The particular strength of using con-

sistency tests is based on their repeated application, so that the knowledge de-

rived is propagated, i.e. reused for acquiring additional knowledge. The deduc-

tion of this knowledge can be described as the computation of a fixed point.

Since this fixed point depends upon the order of the application of the tests, we

first derive a necessary condition for its uniqueness. We then develop a concept

of dominance which enables the comparison of different consistency tests as well

as a method for proving dominance.

Chapter 17 is devoted to problems which perhaps closer reflect some spe-

cific features of scheduling in flexible manufacturing systems than other chapters

do. Dynamic job shops are considered, i.e. such in which some events, particu-

larly job arrivals, occur at unknown times. A heuristic for a static problem with

mean tardiness as a criterion is described. It solves the problem at each time

when necessary, and the solution is implemented on a rolling horizon basis.

The next section deals with simultaneous assignment of machines and vehicles to

jobs. This model is motivated by the production of helicopter parts in some fac-

tory. First we solve in polynomial time the problem of finding a feasible vehicle

schedule for a given assignment of tasks to machines, and then present a dynam-

ic programming algorithm for the general case. In the last section we are model-

ing manufacturing of acrylic-glass as a batch scheduling problem on parallel

processing units under resource constraints. This section introduces the real

world problem and reveals potential applications of some of the material in the

previous chapters. In particular, a local search heuristic is described for con-

structing production sequences.

Chapter 18 serves two purposes. On one hand, we want to introduce a quite

general solution approach for scheduling problems as they appear not only in

manufacturing environments. On the other hand, we also want to survey results

from interactive and knowledge-based scheduling which were not covered in this

handbook so far. To combine both directions we introduce some broader aspects

like computer integrated manufacturing and object-oriented modeling. The

common goal of this chapter is to combine results from different areas to treat

scheduling problems in order to answer quite practical questions. To achieve this

we first concentrate on the relationship between the ideas of computer integrated

manufacturing and the requirements concerning solutions of the scheduling prob-

lems. We present an object-oriented reference model which is used for the im-

plementation of the solution approach. Based on this we discuss the outline of

an intelligent production scheduling system using open loop interactive and

closed loop knowledge-based problem solving. For reactive scheduling we sug-

gest to use concepts from soft computing. Finally, we make some proposals con-

cerning the integration of solution approaches discussed in the preceding chap-

References

ters with the ideas developed in this chapter. We use an example to clarify

the approach of integrated problem solving and discuss the impact for computer

integrated manufacturing.

Chapter 19 presents some examples of applying the scheduling theory for

solving problems arising in logistics. Since logistics is strictly related with trans-

portation, for the sake of completeness, we first present a short survey of various

variants of the famous vehicle routing problem, which concerns designing routes

for a fleet of vehicles to supply a set of customers. Since this problem is widely

studied in the literature, we provide numerous references, which can direct

the readers deeply interested in this field. Then we describe three problems aris-

ing in various modes of transportation, in overland, air and maritime transporta-

tion: the concrete delivery problem, the flight gate scheduling problem, and

the berth and quay crane allocation problem, respectively. Based on these exam-

ples we show various aspects of incorporating scheduling theory in logistics.

The concrete delivery problem is a vehicle routing problem in which schedules
for concrete mixer vehicles are constructed to deliver concrete from depots to
customers, taking into account the specificity of the perishable material being

transported. On this example we show the process of modelling complex real

world problems, providing the graph model and - based on it - the mixed integer

programming model. Then we present a selected approach for the flight gate

scheduling problem, concerning assigning aircrafts serving flights to airport

gates. The described method is an example of transforming a scheduling problem

to a related combinatorial problem (clique partitioning in this case), in order to

utilize known algorithms to solve new problems. Finally, on the example of

the berth and quay crane allocation problem, in which berths and cranes have to

be assigned to ships for loading/unloading containers transported by them, we

show a direct application of the scheduling models to solve this logistic case. For

all three mentioned problems we provide a rich set of references for readers

deeper interested in these and related subjects.

References

Bak74 K. Baker, Introduction to Sequencing and Scheduling, J. Wiley, New York,
1974.

BCSW86 J. Błażewicz, W. Cellary, R. Słowiński, J. Węglarz, Scheduling under Re-
source Constraints: Deterministic Models, J. C. Baltzer, Basel, 1986.

Bru07 P. Brucker, Scheduling Algorithms, Springer, 5
th

 ed., Berlin, 2007.

BT09 K. R. Baker, D. Trietsch, Principles of Sequencing and Scheduling, J. Wiley,
New Jersey, 2009.

CCLL95 P. Chretienne, E. G. Coffman, J. K. Lenstra, Z. Liu (eds.), Scheduling Theory
and its Applications, J. Wiley, New York, 1995.

CMM67 R. W. Conway, W. L. Maxwell, L. W. Miller, Theory of Scheduling, Addison-

Wesley, Reading, Mass., 1967.

9

1 Introduction 10

Cof76 E. G. Coffman, Jr. (ed.), Scheduling in Computer and Job Shop Systems,
J. Wiley, New York, 1976.

Eck77 K. Ecker, Organisation von parallelen Prozessen, BI-Wissenschaftsverlag,

Mannheim, 1977.

Fre82 S. French, Sequencing and Scheduling: An Introduction to the Mathematics of
the Job-Shop, Horwood, Chichester, 1982.

Gaw08 S. Gawiejnowicz, Time-Dependent Scheduling, Springer, Berlin-Heidelberg,
2008.

GK87 S. K. Gupta, J. Kyparisis, Single machine scheduling research, Omega-Int. J.
Manage. Sci. 15, 1987, 207-227.

Len77 J. K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre Tract

69, Amsterdam, 1977.

Leu04 J. Y.-T. Leung (ed.), Handbook of Scheduling: Algorithms, Models and Per-
formance Analysis, Chapman & Hall/CRC, Boca Raton, 2004.

LLR+93 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, Sequencing

and scheduling: Algorithms and complexity, in: S. C. Graves, A. H. G.

Rinnooy Kan, P. H. Zipkin (eds.), Handbook in Operations Research and
Management Science, Vol. 4: Logistics of Production and Inventory, Elsevier,

Amsterdam, 1993.

Pin16 M. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5
th

 ed., Springer,

New York, 2016.

Rin76 A. H. G. Rinnooy Kan, Machine Scheduling Problems; Classification, Com-
plexity and Computations, Martinus Nijhoff, The Hague, 1976.

RV09 Y. Robert, F. Vivien (eds.), Introduction to Scheduling, CRC Press, Boca Ra-

ton, 2009.

TB06 V. T’kindt, J.-C. Billaut, Multicriteria Scheduling: Theory, Models and Algo-
rithms, 2

nd
 ed., Springer, Berlin, 2006.

TGS94 V. S. Tanaev, V. S. Gordon, Y. M. Shafransky, Scheduling Theory. Single-
Stage Systems, Kluwer, Dordrecht, 1994.

TSS94 V. S. Tanaev, Y. N. Sotskov, V. A. Strusevich, Scheduling Theory. Multi-Stage
Systems, Kluwer, Dordrecht, 1994.

2 Basics

In this chapter we provide the reader with basic notions used throughout the
book. After a short introduction into sets and relations, decision problems, opti-
mization problems and the encoding of problem instances are discussed. The way
algorithms will be represented and problem membership of complexity classes
are other essential issues which will be discussed. Afterwards graphs, especially
certain types such as precedence graphs and networks that are important for
scheduling problems, are presented. The last two sections deal with algorithmic
methods used in scheduling such as enumerative algorithms (e. g. dynamic pro-
gramming and branch and bound) and heuristic approaches (e. g. tabu search,
simulated annealing, ejection chains, and genetic algorithms).

2.1 Sets and Relations

Sets are understood to be any collection of distinguishable objects, such as the set
{1, 2,...} of natural numbers, denoted by IN , the set IN0 of non-negative integers,
the set of real numbers, IR , or the set of non-negative reals IR�0 . Given real num-
bers a and b, a � b, then [a, b] denotes the closed interval from a to b, i.e. the set
of reals {x � a � x � b}. Open intervals ((a, b) := {x � a < x < b}) and half open in-
tervals are defined similarly.

In scheduling theory we are normally concerned with finite sets; so, unless
infinity is stated explicitly, the sets are assumed to be finite.

For set S, �S � denotes its cardinality. The power set of S (i.e. the set of all
subsets of S) is denoted by P (S). For an integer k, 0 � k � �S �, the set of all sub-
sets of cardinality k is denoted by Pk(S).

The Cartesian product S1 �...� Sk of sets S1 ,..., Sk is the set of all tuples of
the form (s1 , s2 ,..., sk) where si � Si , i = 1,..., k, i.e. S1 �...� Sk = {(s1 ,..., sk) �
si � Si , i = 1,..., k}. The k-fold Cartesian product S �...� S is denoted by S k.

Given sets S
1 ,..., Sk , a subset Q of S

1 �...� Sk is called a relation over
S

1 ,..., Sk . In the case k = 2, Q is called a binary relation. For a binary relation Q
over S1 and S2 , the sets S1 and S2 are called domain and range, respectively. If Q
is a relation over S1 ,..., Sk , with S1 = ... = Sk = S, then we simply say: Q is a (k-
ary) relation over S. For example, the set of edges of a directed graph (see Sec-
tion 2.3) is a binary relation over the vertices of the graph.

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_2

11

https://doi.org/10.1007/978-3-319-99849-7_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_2&domain=pdf

12 2 Basics

Let S be a set, and Q be a binary relation over S. Then, Q �1
 = {(a, b) � (b, a)

� Q } is the inverse to Q . Relation Q is symmetric if (a, b) � Q implies (b, a) �

Q . Q is antisymmetric if for a � b, (a, b) � Q implies (b, a) 	 Q . Q is reflexive if
(a, a) � Q for all a � S. Q is irreflexive if (a, a) 	 Q for all a � S. Q is transitive
if for all a, b, c � S, (a, b) � Q and (b, c) � Q implies (a, c) � Q .

A binary relation over S represents a partial order. A set with a binary rela-
tion is called a partially ordered set or poset if and only if it is reflexive, anti-
symmetric and transitive. A binary relation over S is called an equivalence rela-
tion (over S) if it is reflexive, symmetric, and transitive.

Given set J of n closed intervals of reals, J = {Ii � Ii = [ai , bi], ai � bi , i =
1,..., n}, a partial order �I on J can be defined by

Ii �I Ij
�� (Ii = Ij) or (bi � aj), i, j � {1,..., n} .

A poset Q over S is called an interval order if and only if there exists a bijection
from S to a set of intervals, si � Ii = [ai , bi], such that for any si , sj � S we have
(si , sj) � Q exactly when bi < aj .

Let l = (n1 ,..., nk) and l' = (n'1 ,..., n'k') be sequences of integers, and k, k' �
0. If k = 0 then l is the empty sequence. We say that l is lexicographically smaller
than l', written l <. l', if
(i) the two sequences agree up to some index j, but nj+1 < n'j+1 (i.e. there exists j,
0 � j � k, such that for all i, 1 � i � j, ni = n'i and nj+1 < n'j+1) , or if

(ii) sequence l is shorter, and the two sequences agree up to the length of l (i.e. k
< k' and ni = n'i for all i, 1 � i � k).

Let Q and P be binary relations over set S. Then the relational product
Q °P , defined as {(a, b) � �x � S, (a, x) � Q, (x, b) � P }, is a relation over S.
Generally, we write Q � for {(a, a) � a � S}, Q �

 = Q , and Q i+1
 = Q i

 °Q for i > 1.
The union Q * = �{Q i

 � i � 0} is called the transitive closure of Q .
A function from A to B (A � B ; A and B are not necessarily finite) is a re-

lation F over A and B such that for each a � A there exists just one b � B for
which (a, b) � F; instead of (a, b) � F we usually write F(a) = b. Set A is called
the domain of F and set {b � b � B , a � A , (a, b) � F} is called the range of F.
F is called surjective, or onto B if for each element b � B there is at least one el-
ement a � A such that F(a) = b. Function F is said to be injective, or one-one if
for each pair of elements, a1 , a2 � A , F(a1) = F(a2) implies a1 = a2 . A function
that is both surjective and injective is called bijective. A bijective function F: A
� A is called a permutation of A . Though we are able to represent functions in

 2.2 Problems, Algorithms, Complexity 13

special cases by means of tables we usually specify functions in a more or less
abbreviated way that specifies how the function values are to be determined. For
example, for n � IN, the factorial function n! denotes the set of pairs {(n, m) � n �
IN, m = n.(n � 1).. .3.2}. Other examples of functions are polynomials, exponen-
tial functions and logarithms.

We will say that function f : IN � IR �
 is of order g, written O(g(k)), if there

exist constants c and k� � IN such that f(k) � cg(k) for all k � k� .

2.2 Problems, Algorithms, Complexity

2.2.1 Problems and Their Encoding

In general, the scheduling problems we consider belong to a broader class of
combinatorial search problems. A combinatorial search problem � is a set of
pairs (I, A), where I is called an instance of a problem, i.e. a finite set of parame-
ters (understood generally, e.g. numbers, sets, functions, graphs) with specified
values, and A is an answer (solution) to the instance. As an example of a search
problem let us consider merging two sorted sequences of real numbers. Any in-
stance of this problem consists of two finite sequences of reals e and f sorted in
non-decreasing order. The answer is the sequence g consisting of all the elements
of e and f arranged in non-decreasing order.

Let us note that among search problems one may also distinguish two sub-
classes: optimization and decision problems. An optimization problem is defined
in such a way that an answer to its instance specifies a solution for which a value
of a certain objective function is at its optimum (an optimal solution). On the
other hand, an answer to an instance of a decision problem may take only two
values, either "yes" or "no". It is not hard to see, that for any optimization prob-
lem, there always exists a decision counterpart, in which we ask (in the case of
minimization) if there exists a solution with the value of the objective function
less than or equal to some additionally given threshold value y. (If in the basic
problem the objective function has to be maximized, we ask if there exists a so-
lution with the value of the objective function � y.) The following example clari-
fies these notions.

Example 2.2.1 Let us consider an optimization knapsack problem.
Knapsack
Instance: A finite set of elements A = {a1 , a2 ,..., an}, each of which has an in-
teger weight w(ai) and value v(ai), and an integer capacity b of a knapsack.

14 2 Basics

Answer: Subset A' � A for which �
ai �A'

 v(ai) is at its maximum, subject to the

constraint �
ai �A'

 w(ai) � b (i.e. the total value of chosen elements is at its maxi-

mum and the sum of weights of these elements does not exceed knapsack capaci-
ty b).

The corresponding decision problem is denoted as follows. (To distinguish opti-
mization problems from decision problems the latter will be denoted using capi-
tal letters.)

KNAPSACK
Instance: A finite set of elements A = {a1 , a2 ,..., an}, each of which has an in-
teger weight w(ai) and value v(ai) , an integer knapsack capacity b and threshold
value y.
Answer: "Yes" if there exists subset A' � A such that

�
ai �A'

 v(ai) � y and �
ai �A'

 w(ai) � b.

Otherwise "No".

When considering search problems, especially in the context of their solution by
computer algorithms, one of the most important issues that arises is a question of
data structures used to encode problems. Usually to encode instance I of problem
� (that is particular values of parameters of problem �) one uses a finite string
of symbols x(I). These symbols belong to a predefined finite set � (usually called
an alphabet) and the way of coding instances is given as a set of encoding rules
(called encoding scheme e). By input length (input size) �I� of instance I we mean
here the length of string x(I). Let us note that the requirement that an instance of
a problem is encoded by a finite string of symbols is the only constraint imposed
on the class of search problems which we consider here. However, it is rather a
theoretical constraint, since we will try to characterize algorithms and problems
from the viewpoint of the application of real computers.

Now the encoding scheme and its underlying data structure is defined in a
more precise way. For representation of mathematical objects we use set � that
contains the usual characters, i.e. capital and small Arabic letters, capital and
small Greek letters, digits (0,..., 9), symbols for mathematical operations such as
+, �, ×, /, and various types of parentheses and separators. The class of mathe-
matical objects, A , is then mapped to the set �* of words over the alphabet � by
means of a function �: A � �*, where �* denotes the set of all finite strings
(words) made up of symbols belonging to �. Each mathematical object A � A is
represented as a structured string in the following sense: Integers are represented
by their decimal representation. A square matrix of dimension n with integer el-

 2.2 Problems, Algorithms, Complexity 15

ements will be represented as a finite list whose first component represents ma-
trix dimension n, and the following n2 components represent the integer matrix
elements in some specific order. For example, the list is a structured string of the
form (n, a(1, 1),..., a(1, n), a(2, 1),..., a(2, n),..., a(n, n)) where n and all the
a(i, j) are structured strings representing integers. The length of encoding (i.e. the
complexity of storing) an integer k would then be of order logk, and that of a ma-
trix would be of order n2

logk where k is an upper bound for the absolute value of
each matrix element. Real numbers will be represented either in decimal notation
(e.g. 3.14159) or in half-logarithmic representation using mantissa and exponent
(e.g. 0.314159.10

1
). Functions may be represented by tables which specify the

function (range) value for each domain value. Representations of more compli-
cated objects (e.g. graphs) will be introduced later, together with the definition of
these types of objects.

As an example let us consider encoding of a particular instance of the knap-
sack problem defined in Example 2.2.1. Let the number n of elements be equal to
6 and let an encoding scheme define values of parameters in the following order:
n, weights of elements, values of elements, knapsack's capacity b. A string cod-
ing an exemplary instance is: 6, 4, 2, 12, 15, 3, 7, 1, 4, 8, 12, 5, 7, 28.

The above remarks do not exclude the usage of any other reasonable encod-
ing scheme which does not cause an exponential growth of the input length as
compared with other encoding schemes. For this reason one has to exclude unary
encoding in which each integer k is represented as a string of k 1's. We see that
the length of encoding this integer would be k which is exponentially larger, as
compared to the above decimal encoding.

In practice, it is worthwhile to express the input length of an instance as a
function depending on the number of elements of some set whose cardinality is
dominating for that instance. For the knapsack problem defined in Example 2.2.1
this would be the number of elements n, for the merging problem - the total
number of elements in the two sequences, for the scheduling problem - the num-
ber of tasks. This assumption, usually made, in most cases reduces practically to
the assumption that a computer word is large enough to contain any of the binary
encoded numbers comprising an instance. However, in some problems, for ex-
ample those in which graphs are involved, taking as input size the number of
nodes may appear too great a simplification since the number of edges in a graph
may be equal to n(n � 1)/2. Nevertheless, in practice one often makes this simpli-
fication to unify computational results. Let us note that this simplification causes
no exponential growth of input length.

2.2.2 Algorithms

Let us now pass to the notion of an algorithm and its complexity function. An al-
gorithm is any finite procedure for solving a problem (i.e. for giving an answer).
We will say that an algorithm solves search problem �, if it finds a solution for

16 2 Basics

any instance I of �. In order to keep the representation of algorithms easily un-
derstandable we follow a structural approach that uses language concepts known
from structural programming, such as case statements, or loops of various kinds.
Like functions or procedures, algorithms may also be called in an algorithm. Pa-
rameters may be used to import data to or export data from the algorithm. Be-
sides these, we also use mathematical notations such as set-theoretic notations.

In general, an algorithm consists of two parts: a head and a method. The
head starts with the keyword Algorithm, followed by an identifying number and,
optionally, a descriptor (a name or a description of the purpose of the algorithm)
and a reference to the author(s) of the algorithm. Input and output parameters are
omitted in cases where they are clear from the context. In other cases, they are
specified as a parameter list. In even more complex cases, two fields, Input (In-
stance): and Output (Answer): are used to describe parameters, and a field Meth-
od: is used to describe the main idea of the algorithm. As in PASCAL, a block is
embraced by begin and end. Each block is considered as a sequence of instruc-
tions. An instruction itself may again be a block, an assignment-, an else-, or a
case- operation, or a loop (for, while, repeat ... until, or a general
loop), a call of another algorithm, or an exit instruction to terminate a loop
instruction (exit loop, etc.) or the algorithm or procedure (just exit). The
right hand side of an assignment operation may be any mathematical expression,
or a function call. Case statements partition actions of the algorithm into several
branches, depending on the value of a control variable. Loop statements may
contain formulations such as: "for all a � M do ..." or " while M ���
do ...". If a loop is preempted by an exit statement the algorithm jumps to the
first statement after the loop. Comments are started with two minus signs and are
finished at the end of the line. If a comment needs more than one line, each
comment line starts with '--'.

Algorithms should reflect the main idea of the method. Details like output
layouts are omitted. Names for procedures, functions, variables etc. are chosen so
that they reflect the semantics behind them. As an example let us consider an al-
gorithm solving the problem of merging two sequences as defined at the begin-
ning of this section.

Algorithm 2.2.2 merge.
Input: Two sequences of reals, e = (e[1],..., e[n]) and f = (f [1],..., f [m]), both
sorted in non-decreasing order.
Output: Sequence g = (g[1],..., g[n + m]) in which all elements are arranged in
non-decreasing order.
begin
i := 1; j := 1; k := 1; -- initialization of counters

while (i � n) and (j � m) do

 -- the while loop merges elements of sequences e and f into g;
 -- the loop is executed until all elements of one of the sequences are merged

 2.2 Problems, Algorithms, Complexity 17

 begin

 if e[i] < f [j]
 then begin g[k] := e[i]; i := i + 1; end
 else begin g[k] := f [j]; j := j + 1; end;

 k := k + 1;
 end;

if i � n -- not all elements of sequence e have been merged

then for l := i to n do g[k + l � i] := e[l]
else

 if j � m -- not all elements of sequence f have been merged

 then for l := j to m do g[k + l � j] := f [l];
end;
The above algorithm returns as an answer sequence g of all the elements of e and
f, sorted in non-decreasing order of the values of all the elements.

As another example, consider the search problem of sorting in non-
decreasing order a sequence e = (e[1],..., e[n]) of n = 2k reals (i.e. n is a power of
2). The algorithm sort (Algorithm 2.2.4) uses two other algorithms that operate
on sequences: msort(i, j) and merge1(i, j, k). If the two parameters of msort, i and
j, obey 1 � i < j � n, then msort(i, j) sorts the elements of the subsequence
(e[i],..., e[j]) of e non-decreasingly. Algorithm merge1 is similar to merge (Al-
gorithm 2.2.2): merge1(i, j, k) (1 � i � j < k � n) takes the elements from the two
adjacent and already sorted subsequences (e[i],..., e[j]) and (e[j+1],..., e[k]) of e,
and merges their elements into (e[i],..., e[k]).

Algorithm 2.2.3 msort(i, j).
begin
case (i, j) of -- depending on relative values of i and j,
 -- three subcases are considered

 i = j: exit; -- terminate msort
 i = j � 1: if e[i] > e[j] then Exchange e[i] and e[j];

 i < j � 1:
 begin

 call msort(i, �(j + i)/2�);1
 -- sorts elements of subsequence (e[i],..., e[�(j + i)/2�])

 call msort(�(j + i)/2� + 1,�j);

 -- sorts elements of subsequence (e[�(j + i)/2� + 1],..., e[j])
 call merge1(i,��(j + i)/2�,�j);

1 �x� denotes the largest number less than or equal to x.

18 2 Basics

 -- merges sorted subsequences into sequence (e[i],..., e[j])
 end;

 end;

end;

Algorithm 2.2.4 sort.
begin
read(n);

read((e[1],..., e[n]));

call msort(1,�n);

end;

Notice that in the case of an optimization problem one may also consider an ap-
proximate (sub-optimal) solution that is feasible (i.e. fulfills all the conditions
specified in the description of the problem) but does not extremize the objective
function. It follows that one can also consider heuristic (sub-optimal) algorithms
which tend toward but do not guarantee the finding of optimal solutions for any
instance of an optimization problem. An algorithm which always finds an opti-
mal solution will be called an optimization or exact algorithm.

2.2.3 Complexity

Let us turn now to the analysis of the computational complexity of algorithms.
By the time complexity function of algorithm A solving problem � we understand
the function that maps each input length of an instance I of � into a maximal
number of elementary steps (or time units) of a computer, which are needed to
solve an instance of that size by algorithm A.

It is obvious that this function will not be well defined unless the encoding
scheme and the model of computation (computer model) are precisely defined. It
appears, however, that the choice of a particular reasonable encoding scheme and
a particular realistic computer model has no influence on the distinction between
polynomial- and exponential time algorithms which are the two main types of al-
gorithms from the computational complexity point of view [AHU74]. This is be-
cause all realistic models of computers 2 are equivalent in the sense that if a prob-
lem is solved by some computer model in time bounded from above by a poly-
nomial in the input length (i.e. in polynomial time), then any other computer
model will solve that problem in time bounded from above by a polynomial
(perhaps of different degree) in the input length [AHU74]. Thus, to simplify the

2 By "realistic" we mean here such computer models which in unit time may perform a

number of elementary steps bounded from above by a polynomial in the input length. This

condition is fulfilled for example by the one-tape Turing machine, the k-tape Turing ma-

chine, or the random access machine (RAM) under logarithmic cost of performing a single

operation.

 2.2 Problems, Algorithms, Complexity 19

computation of the complexity of polynomial algorithms, we assume that, if not
stated otherwise, the operation of writing a number as well as addition, subtrac-
tion and comparison of two numbers are elementary operations of a computer
that need the same amount of time, if the length of a binary encoded number is
bounded from above by a polynomial in the computation time of the whole algo-
rithm. Otherwise, a logarithmic cost criterion is assumed. Now, we define the
two types of algorithms.

A polynomial time (polynomial) algorithm is one whose time complexity
function is O(p(k)), where p is some polynomial and k is the input length of an
instance. Each algorithm whose time complexity function cannot be bounded in
that way will be called an exponential time algorithm.

Let us consider two algorithms with time complexity functions k and 3k
 , re-

spectively. Let us assume moreover that an elementary step lasts 1 �s and that the
input length of the instance solved by the algorithms is k = 60. Then one may
calculate that the first algorithm solves the problem in 60 �s while the second
needs 1.3.10

13 centuries. This example illustrates the fact that indeed the differ-
ence between polynomial- and exponential time algorithms is large and justifies
definition of the first algorithm as a "good" one and the second as a "bad" one
[Edm65].

If we analyze time complexity of Algorithm 2.2.2, we see that the number of
instructions being performed during execution of the algorithm is bounded by
c1(n + m) + c2 , where c1 and c2 are suitably chosen constants, i.e. the number of
steps depends linearly on the total number of elements to be merged.

Now we estimate the time complexity of Algorithm 2.2.4. The first two read
instructions together take O(n) steps, where reading one element is assumed to
take constant (O(1)) time. During execution of msort(1, n), the sequence of ele-
ments is divided into two subsequences, each of length n/2; msort is applied re-
cursively on the subsequences which will thus be sorted. Then, procedure merge1
is applied, which combines the two sorted subsequences into one sorted se-
quence. Now let T(m) be the number of steps msort performs to sort m elements.
Then, each call of msort within msort involves sorting of m/2 elements, so it
takes T(m/2) time. The call of merge1 can be performed in a number of steps
proportional to m/2 + m/2 = m, as can easily be seen. Hence, we get the recursion

T(m) = 2T(m/2) + cm ,

where c is some constant. One can easily verify that there is a constant c' such
that T(m) = c'mlogm solves the recursion 3. Taking all steps of Algorithm 2.2.4
together we get the time complexity O(logn) + O(n) + O(nlogn) = O(nlogn).

Unfortunately, it is not always true that we can solve problems by algorithms
of linear or polynomial time complexity. In many cases only exponential algo-
rithms are available. We will take now a closer look to inherent complexity of

3 We may take any fixed base for the logarithm, e.g. 2 or 10.

20 2 Basics

some classes of search problems to explain the reasons why polynomial algo-
rithms are unlikely to exist for these problems.

As we said before, there exist two broad subclasses of search problems: de-
cision and optimization problems. From the computational point of view both
classes may be analyzed much in the same way (strictly speaking when their
computational hardness is analyzed). This is because a decision problem is com-
putationally not harder than the corresponding optimization problem. That means
that if one is able to solve an optimization problem in an "efficient" way (i.e. in
polynomial time), then it will also be possible to solve a corresponding decision
problem efficiently (just by comparing an optimal value of the objective func-
tion 4 to a given constant y). On the other hand, if the decision problem is compu-
tationally "hard", then the corresponding optimization problem will also be
"hard" 5.

Now, we can turn to the definition of the most important complexity classes
of search problems. Basic definitions will be given for the case of decision prob-
lems since their formulation permits an easier treatment of the subject. One
should, however, remember the above dependencies between decision and opti-
mization problems. We will also point out the most important implications. In
order to be independent of a particular type of a computer we have to use an ab-
stract model of computation. From among several possibilities, we choose the
deterministic Turing machine (DTM) for this purpose. Despite the fact that this
choice was somehow arbitrary, our considerations are still general because all
the realistic models of computations are polynomially related.

Class P consists of all decision problems that may be solved by the deter-
ministic Turing machine in time bounded from above by a polynomial in the in-
put length. Let us note that the corresponding (broader) class of all search prob-
lems solvable in polynomial time, is denoted by FP [Joh90a]. We see that both,
the problem of merging two sequences and that of sorting a sequence belong to
that class. In fact, class FP contains all the search problems which can be solved
efficiently by the existing computers.

It is worth noting that there exists a large class of decision problems for
which no polynomial time algorithms are known, for which, however, one can
verify a positive answer in polynomial time, provided there is some additional
information. If we consider for example an instance of the KNAPSACK problem
defined in Example 2.2.1 and a subset A 1 � A defining additional information,
we may easily check in polynomial time whether or not the answer is "yes" in the
case of this subset. This feature of polynomial time verifiability rather than solv-
ability is captured by a non-deterministic Turing machine (NDTM) [GJ79].

4 Strictly speaking, it is assumed that the objective function may be calculated in polynomial

time.
5 Many decision problems and corresponding optimization problems are linked even more

strictly, since it is possible to prove that a decision problem is not easier than the corre-

sponding optimization problem [GJ79].

 2.2 Problems, Algorithms, Complexity 21

We may now define class NP of decision problems as consisting of all deci-
sion problems which may be solved in polynomial time by an NDTM.

It follows that P � NP. In order to define the most interesting class of deci-
sion problems, i.e. the class of NP-complete problems, one has to introduce the
definition of a polynomial transformation. A polynomial transformation from
problem �2 to problem �1 (denoted by �2 � �1) is a function f mapping the set
of all instances of �2 into the set of instances of �1 , that satisfies the following
two conditions:
1. for each instance I2 of �2 the answer is "yes" if and only if the answer for f(I2)

of �1 is also "yes",
2. f is computable in polynomial time (depending on problem size �I2�) by a

DTM.
We say that decision problem �1 is NP-complete if �1 � NP and for any

other problem �2 � NP, �2 � �1 [Coo71].
It follows from the above that if there existed a polynomial time algorithm

for some NP-complete problem, then any problem from that class (and also from
the NP class of decision problems) would be solvable by a polynomial time algo-
rithm. Since NP-complete problems include classical hard problems (as for ex-
ample HAMILTONIAN CIRCUIT, TRAVELING SALESMAN, SATISFI-
ABILITY, INTEGER PROGRAMMING) for which, despite many attempts, no
one has yet been able to find polynomial time algorithms, probably all these
problems may only be solved by the use of exponential time algorithms. This
would mean that P is a proper subclass of NP and the classes P and NP-complete
problems are disjoint.

Another consequence of the above definitions is that, to prove the NP-
completeness of a given problem �, it is sufficient to transform polynomially a
known NP-complete problem to �. SATISFIABILITY was the first decision
problem proved to be NP-complete [Coo71]. The current list of NP-complete
problems contains several thousands, from different areas. Although the choice
of an NP-complete problem which we use to transform into a given problem in
order to prove the NP-completeness of the latter, is theoretically arbitrary, it has
an important influence on the way a polynomial transformation is constructed
[Kar72]. Thus, these proofs require a good knowledge of NP-complete problems,
especially characteristic ones in particular areas.

As was mentioned, decision problems are not computationally harder than
the corresponding optimization ones. Thus, to prove that some optimization
problem is computationally hard, one has to prove that the corresponding deci-
sion problem is NP-complete. In this case, the optimization problem belongs to
the class of NP-hard problems, which includes computationally hard search
problems. On the other hand, to prove that some optimization problem is easy, it
is sufficient to construct an optimization polynomial time algorithm. The order of
performing these two steps follows mainly from the intuition of the researcher,

22 2 Basics

which however, is guided by several hints. In this book, by "open problems"
from the computational complexity point of view we understand those problems
which neither have been proved to be NP-complete nor solvable in polynomial
time.

Despite the fact that all NP-complete problems are computationally hard,
some of them may be solved quite efficiently in practice (as for example the
KNAPSACK problem). This is because the time complexity functions of algo-
rithms that solve these problems are bounded from above by polynomials in two
variables: the input length �I� and the maximal number max(I) appearing in an in-
stance I. Since in practice max(I) is usually not very large, these algorithms have
good computational properties. However, such algorithms, called pseudopolyno-
mial, are not really of polynomial time complexity since in reasonable encoding
schemes all numbers are encoded binary (or in another integer base greater than
2). Thus, the length of a string used to encode max(I) is log max(I) and the time
complexity function of a polynomial time algorithm would be O(p(�I�, log

max(I))) and not O(p(�I�, max(I))), for some polynomial p. It is also obvious that
pseudopolynomial algorithms may perhaps be constructed for number problems,
i.e. those problems � for which there does not exist a polynomial p such that
max(I) � p(�I�) for each instance I of �. The KNAPSACK problem as well as
TRAVELING SALESMAN and INTEGER PROGRAMMING belong to num-
ber problems; HAMILTONIAN CIRCUIT and SATISFIABILITY do not. How-
ever, there might be number problems for which pseudopolynomial algorithms
cannot be constructed [GJ78].

The above reasoning leads us to a deeper characterization of a class of NP-
complete problems by distinguishing problems which are NP-complete in the
strong sense [GJ78, GJ79].

For a given decision problem � and an arbitrary polynomial p, let �p denote
the subproblem of � which is created by restricting � to those instances for
which max(I) � p(�I�). Thus �p is not a number problem.

Decision problem � is NP-complete in the strong sense (strongly NP-
complete) if � � NP and there exists a polynomial p defined for integers for
which �p is NP-complete.

It follows that if � is NP-complete and it is not a number problem, then it is
NP-complete in the strong sense. Moreover, if � is NP-complete in the strong
sense, then the existence of a pseudopolynomial algorithm for � would be
equivalent to the existence of polynomial algorithms for all NP-complete prob-
lems, and thus would be equivalent to the equality P = NP. It has been shown
that TRAVELING SALESMAN and 3-PARTITION are examples of number
problems that are NP-complete in the strong sense [GJ79, Pap94].

From the above definition it follows that to prove NP-completeness in the
strong sense for some decision problem �, one has to find a polynomial p for
which �p is NP-complete, which is usually not an easy way. To make this proof
easier one may use the concept of pseudopolynomial transformation [GJ78].

 2.3 Graphs and Networks 23

To end this section, let us stress once more that the membership of a given
search problem in class FP or in the class of NP-hard problems does not depend
on the chosen encoding scheme if this scheme is reasonable as defined earlier.
The differences in input lengths for a given instance that follow from particular
encoding schemes have only influence on the complexity of the polynomial (if
the problem belongs to class FP) or on the complexity of the exponential algo-
rithm (if the problem is NP-hard). On the other hand, if numbers are written
unary, then pseudopolynomial algorithms would become polynomial because of
the artificial increase in input lengths. However, problems NP-hard in the strong
sense would remain NP-hard even in the case of such an encoding scheme. Thus,
they are also called unary NP-hard [LRKB77].

2.3 Graphs and Networks

2.3.1 Basic Notions

A graph is a pair G = (V , E) where V is the set of vertices or nodes, and E is
the set of edges. If E is a binary relation over V , then G is called a directed
graph (or digraph). If E is a set of two-element subsets of V , i.e. E � P 2(V),
then G is an undirected graph.

A graph G' = (V ', E') is a subgraph of G = (V , E) (denoted by G' � G), if
V ' � V , and E' is the set of all edges of E that connect vertices of V ' .

Let G1 = (V 1 , E
 1) and G2 = (V 2 , E

 2) be graphs whose vertex sets V 1 and
V 2 are not necessarily disjoint. Then G1 � G2 = (V 1 � V 2 , E

 1 � E
 2) is the un-

ion graph of G1 and G2 , and G1 � G2 = (V 1 � V 2 , E
 1 � E

 2) is the intersection
graph of G1 and G2 .

Digraphs G1 and G2 are isomorphic if there is a bijective mapping �: V 1 �
V 2 such that (v1 , v2) � E

 1 if and only if (�(v1) , �(v2)) � E
 2 .

A (undirected) path in a graph or in a digraph G = (V , E) is a sequence
i1 ,..., ir of distinct nodes of V satisfying the property that either (ik , ik+1) � E or
(ik+1 , ik) � E for each k = 1,..., r � 1. A directed path is defined similarly, except
that (ik , ik+1) � E for each k = 1,..., r � 1. A (undirected) cycle is a path together
with an edge (ir , i1) or (i1 , ir). A directed cycle is a directed path together with the
edge (ir , i1). We will call a graph (digraph) G acyclic if it contains no (directed)
cycle.

Two vertices i and j of G are said to be connected if there is at least one un-
directed path between i and j. G is connected if all pairs of vertices are connect-
ed; otherwise it is disconnected.

24 2 Basics

Let v and w be vertices of the digraph G = (V , E). If there is a directed path
from v to w, then w is called successor of v, and v is called predecessor of w. If
(v, w) � E , then vertex w is called immediate successor of v, and v is called im-
mediate predecessor of w. The set of immediate successors of vertex v is denoted
by isucc(v); the sets succ(v), ipred(v), and pred(v) are defined similarly. The car-
dinality of ipred(v) is called in-degree of vertex v, whereas out-degree is the car-
dinality of isucc(v). A vertex v that has no immediate predecessor is called initial
vertex (i.e. ipred(v) = �); a vertex v having no immediate successors is called fi-
nal (i.e. isucc(v) = �).

Directed or undirected graphs can be represented by means of their adjacen-
cy matrix. If V = {v1 ,..., vn}, the adjacency matrix is a binary n�n-matrix A. In
case of a directed graph, A(i, j) = 1 if there is an edge from vi to vj , and A(i, j) = 0
otherwise. In case of an undirected graph, A(i, j) = 1 if there is an edge between vi
and vj , and A(i, j) = 0 otherwise. The complexity of storage (space complexity) is
O(n2

). If the adjacency matrix is sparse, as e.g. in case of trees, there are better
ways of representation, usually based on linked lists. For details we refer to
[AHU74].

In many situations, it is appropriate to use a generalization of graphs called
hypergraphs. Following [Ber73] a finite hypergraph is a pair H = (V, H) where
V is a finite set of vertices, and H � P (V) is a set of subsets of V. The elements
of H are referred to as hyperedges. Hypergraphs can be represented as bipartite
graphs (see below): Let GH be the graph whose vertex set is V � H, and the set
of edges is defined as {{v, h} | h � H, and v � h }.

2.3.2 Special Classes of Digraphs

A digraph G = (V , E) is called bipartite if its vertex set V can be partitioned in-
to two subsets V 1 and V 2 such that for each edge (i, j) � E , i � V 1 and j � V 2 .

If a digraph G = (V , E) contains no directed cycle and no transitive edges
(i.e. pairs (u, w) of vertices for which there exists a different directed path from u
to w), it will be called a precedence graph. A corresponding binary relation will
be called a precedence relation ≺ over set V . A precedence graph G = (V , E)
(we also write (V , ≺), where ≺ is the corresponding precedence relation) can
always be enlarged to a partially ordered set (poset, see Section 2.1) ≺* by add-
ing transitive edges and all reflexive pairs (v, v) (v � V) to E . On the other hand,
given a poset (V , Q), where Q is a partial order over set V , we can always con-
struct a precedence graph (V , E) in the following way: E is obtained by taking
those pairs of elements (u, w), u � w, for which no sequence v1 ,..., vk of elements

 2.3 Graphs and Networks 25

with (u, v1) � Q , (vi , vi+1) � Q for i = 1,..., k � 1, and (vk , w) � Q can be found. It
can be constructed from a given poset in O(�V �2.8

) time [AHU74].
A digraph G = (V , E) is called a chain if in the corresponding poset (V , Q)

for any two vertices v and v' � V , v � v', either (v, v') � Q or (v', v) � Q (such a
poset is usually called a linear order). An anti-chain is a (directed) graph (V , E)
where E = � .

An out-tree is a precedence graph where exactly one vertex has in-degree 0,
and all the other vertices have in-degree 1. If G = (V , E) is an out-tree, then
graph G' = (V , E �1

) is called an in-tree. An out-forest (in-forest) is a disjoint un-
ion of out-trees (in-trees), respectively. An opposing forest is a disjoint union of
in-trees and out-trees.

A precedence graph ({a, b, c, d}, ≺) has N-structure if a ≺ c, b ≺ c, b ≺ d,
a ≺ / d, d ≺ / a, a ≺ / b, b ≺ / a, c ≺ / d, and d ≺ / c (see also Figure 2.3.1). A prece-
dence graph P is N-free if it contains no subset isomorphic to an N-structure.

To define another interesting class of graphs let us consider a finite set V

and a collection (Iv)v�V of intervals Iv on the reals. This collection defines a par-

tial order ≺ on V as follows:

 v ≺ w
 Iv is entirely before Iw .

Such a partial order is called an interval order. Without loss of generality, we

may assume that the intervals have the form [n1, n2) with n1 and n2 integral. It can

be shown that ≺ is an interval order if and only if the transitive closure of this

order does not contain 2K2 (see Figure 2.3.2) as an induced subgraph [Fis70].

a b

c d

Figure 2.3.1 N-structured precedence graph.

Figure 2.3.2 Graph 2K2 .

Finally we introduce a class of precedence graphs that has been considered fre-
quently in literature. Let S = (V , ≺) be a precedence graph, and let for each v �

V , Pv = (V v , ≺v) be a precedence graph, where all the sets V v (v � V) and V

are pair-wise disjoint. Let U = �
v �V

V v . Define (U, ≺U) as the following prece-

dence graph: for p, q � U, p ≺U q if either there are v, v' � V with v ≺ v' such
that p is a final vertex in (V v , ≺v) and q is an initial vertex in (V v' , ≺v'), or there

26 2 Basics

is v � V with p, q � V v , and p ≺v q. Then (U, ≺U) is called the lexicographic
sum of (Pv)v �V over S. Notice that each vertex v of the digraph S = (V , ≺) is re-
placed by the digraph (V v , ≺v) , and if vertex v is connected to v' in S (i.e. v ≺
v'), then each final vertex of (V v , ≺v) is connected to each initial vertex of (V v' ,

≺v') .

We need two special cases of lexicographic sums: If S = (V ,≺) is a chain,
the lexicographic sum of (Pv)v �V over S is called a linear sum. If S is an anti-
chain (i.e. v1 ≺ v2 � v1 = v2) , then the lexicographic sum of (Pv)v �V over S is
called disjoint sum. A series-parallel precedence graph is a precedence graph
that can be constructed from one-vertex precedence graphs by repeated applica-
tion of the operations linear sum and disjoint sum. Opposing forests are exam-
ples of series-parallel digraphs. Another example is shown in Figure 2.3.3.

Without proof we mention some properties of series-parallel graphs. A prec-
edence graph G = (V ,E) is series-parallel if and only if it is N-free. The question
if a digraph is series-parallel can be decided in O(�V � + �E �) time [VTL82].

The structure of a series-parallel graph as it is obtained by successive appli-
cations of linear sum and disjoint sum operations can be displayed by a decom-
position tree. Figure 2.3.4 shows a decomposition tree for the series-parallel
graph of Figure 2.3.3. Each leaf of the decomposition tree is identified with a
vertex of the series-parallel graph. An S-node represents an application of linear
sum (series composition) to the sub-graphs identified with its children; the order-
ing of these children is important: we adopt the convention that left precedes
right. A P-node represents an application of the operation of disjoint sum (paral-
lel composition) to the subgraphs identified with its children; the ordering of
these children is of no relevance for the disjoint sum. The series or parallel rela-
tionship of any pair of vertices can be determined by finding their least common
ancestor in the decomposition tree.

1

5 6 7 8

9

2 3 4

Figure 2.3.3 Example of a series-parallel digraph.

 2.3 Graphs and Networks 27

1

S

P

S S

2 S P P

P 9 3 4 7 8

5 6

Figure 2.3.4 Decomposition tree of the digraph of Figure 2.3.3.

2.3.3 Networks

In this section the problem of finding a maximum flow in a network is consid-
ered. We will analyze the subject rather thoroughly because of its importance for
many scheduling problems.

By a network we will mean a directed graph G = (V , E) without loops and
parallel edges, where each edge e � E is assigned a capacity c(e) � IR�0, and
sometimes a cost of a unit flow. Usually in the network two vertices s and t,
called a source and a sink, respectively, are specified.

A real-valued flow function � is to be assigned to each edge such that the fol-
lowing conditions hold for some F � IR�0 :

0 � �(e) � c(e) for each e � E , (2.3.1)

�
e �IN(v)

 �(e) � �
e �OUT(v)

 �(e) =
�
�

�F for v = s

0 for v � V � {s, t}

F for v = t ,

 (2.3.2)

where IN(v) and OUT(v) are the sets of edges incoming to vertex v and outgoing
from vertex v, respectively. The total flow (the value of flow) F of � is defined by

F := �
e �IN(t)

 �(e) � �
e �OUT(t)

 �(e) . (2.3.3)

Given a network, in the maximum flow problem we want to find a flow function
� which obeys the above conditions and for which total flow F is at its maxi-
mum.

28 2 Basics

Now, some important notions will be defined and their properties will be
discussed. Let S be a subset of the set of vertices V such that s � S and t 	 S,
and let S

_
 be the complement of S, i.e. S

_
 = V � S. Let (S , S

_
) denote a set of edg-

es of network G, each of which has its starting vertex in S and its target vertex in
S
_

. Set (S

_
, S) is defined in a similar way. Given some subset S � V , either set,

(S , S

_
) and (S

_
, S), will be called cut defined by S .

Following definition (2.3.3) we see that the value of flow is measured at the
sink of the network. It is however, possible to measure this value at any cut
[Eve79, FF62].

Lemma 2.3.1 For each subset of vertices S � V , we have

F = �
e �(S , S

_
)
 �(e) � �

e �(S
_

 , S)
 �(e) . (2.3.4)

Let us denote by c(S) the capacity of a cut defined by S ,

c(S) = �
e �(S , S

_
)
 c(e) . (2.3.5)

It is possible to prove the following lemma, which specifies a relation be-
tween the value of a flow and the capacity of any cut [FF62].

Lemma 2.3.2 For any flow function � having the value F and for any cut de-
fined by S we have

F � c(S) . (2.3.6)

From the above lemma we get immediately the following corollary that specifies
a relation between maximum flow and a cut of minimum capacity.

Corollary 2.3.3 If F = c(S), then F is at its maximum, and S defines a cut of
minimum capacity.

Let us now define, for a given flow �, an augmenting path as a path from s to t,
(not necessarily directed), which can be used to increase the value of the flow. If
an edge e belonging to that path is directed from s to t, then �(e) < c(e), otherwise
no increase in the flow value on that path would be possible. On the other hand,
if such an edge e is directed from t to s, then �(e) > 0 must be satisfied in order to
be able to increase the flow value F by decreasing �(e).

Example 2.3.4 As an example let us consider the network given in Figure
2.3.5(a). Each edge of this network is assigned two numbers, c(e) and �(e). It is
easy to check that flow � in this network obeys conditions (2.3.1) and (2.3.2) and

 2.3 Graphs and Networks 29

its value is equal to 3. An augmenting path is shown in Figure 2.3.5(b). The flow
on edge (5, 4) can be decreased by one unit. All the other edge flows on that path
can be increased by one unit. The resulting network with a new flow is shown in
Figure 2.3.5(c).

(a) c(e) / �(e)

3/1

2/1

3/2

2/2

1/0
1/0

2/2
2/1

1/1
1

2

3

4

5

6

ts

(b)
�(2,4) = 1 < c(2,4)

�(5,6) = 1 < c(5,6)

�(1,2) = 1 < c(1,2)

1

2 4

5

6
ts

�(5,4) = 1 > 0

(c) c(e) / �'(e)

3/2

2/2

1/0

2/2

1/0

2/2

1/0

3/2

2/2

1

2

3

4

5

6

ts

Figure 2.3.5 A network for Example 2.3.4:
 (a) a flow �(e) is assigned to each edge,
 (b) an augmenting path,
 (c) a new flow �'(e).

The first method proposed for the construction of a flow of a maximum value
was given by Ford and Fulkerson [FF62]. This method consists in finding an
augmenting path in a network and increasing the flow value along this path until

30 2 Basics

no such path remains in the network. Convergence of such a general method
could be proved for integer capacities only. A corresponding algorithm is of
pseudopolynomial complexity [FF62, Eve79].

An important improvement of the above algorithm was made by Edmonds
and Karp [EK72]. They showed that if the shortest augmenting path is chosen at
every step, then the complexity of the algorithm reduces to O(�V �3�E �), no matter
what are the edge capacities. Further improvements in algorithmic efficiency of
network flow algorithm were made by Dinic [Din70] and Karzanov [Kar74],
whose algorithms' running times are O(�V �2�E �) and O(�V �3), respectively. An al-
gorithm proposed by Cherkassky [Che77] allows for solving the max-flow prob-
lem in time O(�V �2�E �1/2

) .
Below, Dinic's algorithm will be described, since despite its relatively high

worst case complexity function, its average running time is low [Che80], and the
idea behind it is quite simple. It uses the notion of a layered network which con-
tains all the shortest paths in a network. This allows for a parallel increase of
flows in all such paths, which is the main reason of the efficiency of the algo-
rithm.

In order to present this algorithm, the notion of usefulness of an edge for a
given flow is introduced. We say that edge e having flow �(e) is useful from u to
v, if one of the following conditions is fulfilled:
1) if the edge is directed from u to v then �(e) < c(e) ;
2) otherwise, �(e) > 0 .

For a given network G = (V , E) and flow �, the following algorithm deter-
mines a corresponding layered network.

Algorithm 2.3.5 Construction of a layered network for a given network G =
(V , E) and flow function � [Din70].

begin
Set V 0 := {s}; T := {�}; i := 0;

while t 	 T do
 begin
 Construct subset T := {v � v 	 V j for j � i and there exists a useful edge
 from any of the vertices of V i to v};

 -- subset T contains vertices comprising a new layer of the layered network

 V i+1 := T ; -- a new layer of the network has been constructed

 i := i+1;
 if T = � then exit;

 -- no layered network exists, the flow value F is at its maximum
 end;
l := i; V l := {t};

 2.3 Graphs and Networks 31

for j := 1 to l do

 begin

E j := {e � e is a useful edge from a vertex belonging to layer V j�1 to a vertex
belonging to layer V j};

 for all e � E j do

 if e = (u,v) and u � V j�1 and v � V j

 then c~(e) := c(e) � �(e)
 else
 if e = (v,u) and u � V j�1 and v � V j

 then
 begin

 c~(e) := �(e);

 Change the orientation of the edge, so that e = (u,v);
 end;

 end; -- a layered network with new edges and capacities has been constructed

end;
In such a layered network a new flow function �~ with �~ = 0 for each edge e is as-
sumed. Then a maximal flow is searched for, i.e. one such that for each path
v0 (= s), v1 , v2 ,..., vl�1 , vl (= t), where ej = (vj�1 , vj) � E j and vj � V j , j = 1,
2,..., l, there exists at least one edge e such that �~(ej) = c~(ej) .

Let us note, that such a maximal flow may not be of maximum value. This
fact is illustrated in Figure 2.3.6 where all capacities c~(e) = 1. The flow depicted
in this figure is maximal and its value F = 1. It is not hard, however, to construct
a flow of value F = 2 .

t

ba

s

c d

� = 1

F = 1

0V 1 2 3

� = 1

� = 1

V V V

Figure 2.3.6 An example of a maximal flow which is not of maximum value.

32 2 Basics

The construction of a maximal flow for a given layered network is shown below.
It consists in finding augmenting paths by means of a labeling procedure. For
this purpose a depth first search label algorithm is used, that labels all the nodes
of the layered network, i.e. assigns to node u, if any, a label lab(e) that corre-
sponds to edge e = (v, u) in a layered network. The algorithm uses for each node v
a list isucc(v) of all immediate successors of v (i.e. all nodes u for which an arc
(v, u) exists in the layered network). Let us note that, if v belongs to layer V j ,
then u � isucc(v) belongs to layer V i+1 , and edge (v, u) � E j . The algorithm uses
recursively an algorithm label(v) that labels nodes being successors of v. Boolean
variable new(v) is used to check whether or not a given node has been visited and
consequently labeled. The algorithms are as follows.

Algorithm 2.3.6 label(v).
begin
new(v) := false; -- node v has been visited and labeled

for all u � isucc(v) do

if new(u) then

 begin

 if e = (v, u) � �
j=1

l
 E j then lab(u) := e;

 call label(u);

 end; -- all successors of node v have been labeled

end;

Algorithm 2.3.7 label.
begin
lab(s) := 0; -- a source of layered network has been labeled

for all v � V do new(v) := true; -- initialization

call label(s);

end; -- all successors of s in the layered network are now visited and labeled

Using the above algorithms as subroutines the following algorithm constructs a
maximal flow in the layered network. The algorithm will stop whenever no aug-
menting path exists; in this case the flow is maximal [Din70] (see also [Eve79]).

Algorithm 2.3.8 Construction of a maximal flow in a layered network [Din70].
begin
for all e � �

j=1

l
 E j do

 begin
� �1(e) := �~(e) := 0;

 c1(e) := c~(e);

 2.3 Graphs and Networks 33

 end; -- initialization phase

loop
 call label; -- all nodes, if any, have been labeled

 if node t is not labeled then exit;
 -- no augmenting path exists
 -- a maximal flow in a layered network has been constructed

 Find an augmenting path ap starting from node t backward and using labels;

� ! := min{c1(e) � e � ap};

 for all e � ap do

 begin

� � �1(e) := !;

� � �~(e) := �~(e) + �1(e);

 c1(e) := c1(e) � !;

 end; -- the value of a flow is increased along an augmenting path

 for all e with c1(e) = 0 do Delete e from the layered network;

 repeat
 Delete all nodes which have either no incoming or no outgoing edges;

 Delete all edges incident with such nodes;

 until all such edges and nodes are deleted;

 for all e � �
j=1

l
 E j do �1(e) := 0;

end loop;

end;

The flow constructed by the above algorithm is used to obtain a new flow in the
original network. Next, a new layered network is created and the above proce-
dure is repeated until no new layered network can be constructed. The obtained
flow has a maximum value. This is summarized in the next algorithm.

Algorithm 2.3.9 Construction of a flow of maximum value [Din70].
begin
�(e) := 0 for all e � E ;

loop
 call Algorithm 2.3.5;
 -- a new layered network is constructed for a flow function �
 -- if no layered network exists, then the flow has maximum value
 call Algorithm 2.3.8; -- a new maximal flow �~ is constructed

 for all e � E do

 begin

 if u � V j�1 and v � V j and e = (u, v) � E
 then �(e) := �(e) + �~(e);
 -- the value of the flow increases if edge e has the same direction

34 2 Basics

 -- in the original and in the layered network

 if u � V j�1 and v � V j and e = (v, u) � E
 then �(e) := �(e) � �~(e);
 -- the value of the flow decreases if edge e has opposite directions
 -- in the original and in the layered network
 end;
 -- the flow in the original network is augmented using the
 -- constructed maximal flow values
end loop;

end;

To analyze the complexity of the above approach let us call one loop of Algo-
rithm 2.3.9 a phase. We see that one phase consists of finding a layered network,
constructing a maximal flow �~ in the latter and improving the flow in the original
network. It can be proved [Din70, Eve79] that the number of phases is bounded
from above by O(�V �). The most complex part of each phase is to find a maximal
flow in a layered network. Since in Algorithm 2.3.8 a depth first search proce-
dure has been used for visiting a network, the complexity of one phase is
O(�V ��E �). The overall complexity of Dinic's approach is thus O(�V �2�E �) .

Further generalizations of the subject include networks with lower bounds
on edge flows, networks with linear total cost function of the flow where a flow
of maximum value and of minimum total cost is looked for, and a transportation
problem being a special case of the latter. All these problems can be solved in
time bounded from above by a polynomial in the number of nodes and edges of
the network. We refer the reader to [AMO93] or [Law76] where a detailed analy-
sis of the subject is presented.

2.4 Enumerative Methods

In this section we describe very briefly two general methods of solving many
combinatorial problems 6, namely the method of dynamic programming and the
method of branch and bound. Few remarks should be made at the beginning,
concerning the scope of this presentation. First, we will not go into details, since
both methods are broadly treated in literature, including basic scheduling books
[Bak74, Len77, Rin76a], and our presentation should only fulfill the needs of this
book. In particular, we will not perform a comparative study of the methods - the
interested reader is referred to [Cof76]. We will also not present examples, since
they will be given in the later chapters.

6 Dynamic programming can also be used in a wider context (see e.g. [Den82, How69,

DL79]).

 2.4 Enumerative Methods 35

Before passing to the description of the methods let us mention that they are
of implicit enumeration variety, because they consider certain solutions only in-
directly, without actually evaluating them explicitly.

2.4.1 Dynamic Programming

Fundamentals of dynamic programming were elaborated by Bellman in the
1950's and presented in [Bel57, BD62]. The name "Dynamic Programming" is
slightly misleading, but generally accepted. A better description would be "recur-
sive" or "multistage" optimization, since it interprets optimization problems as
multistage decision processes. It means that the problem is divided into a number
of stages, and at each stage a decision is required which impacts on the decisions
to be made in later stages. Now, Bellman's principle of optimality is applied to
draw up a recursive equation which describes the optimal criterion value at a
given stage in terms of the previously obtained one. This principle can be formu-
lated as follows: Starting from any current stage, an optimal policy for the rest of
the process, i.e. for subsequent stages, is independent of the policy adopted in the
previous stages. Of course, not all optimization problems can be presented as
multistage decision processes for which the above principle is true. However, the
class of problems for which it works is quite large. For example, it contains prob-
lems with an additive optimality criterion, but also other problems as we will
show in Sections 5.1.1 and 10.4.3.

If dynamic programming is applied to a combinatorial problem, then in order
to calculate the optimal criterion value for any subset of size k, we first have to
know the optimal value for each subset of size k � 1. Thus, if our problem is
characterized by a set of n elements, the number of subsets considered is 2n. It
means that dynamic programming algorithms are of exponential computational
complexity. However, for problems which are NP-hard (but not in the strong
sense) it is often possible to construct pseudopolynomial dynamic programming
algorithms which are of practical value for reasonable instance sizes.

2.4.2 Branch and Bound

Suppose that given a finite 7 set S of feasible solutions and a criterion " : S � IR ,
we want to find S* � S such that "(S*) = min

S �S
{"(S)} .

Branch and bound finds S* by implicit enumeration of all S � S through ex-
amination of increasingly smaller subsets of S. These subsets can be treated as
sets of solutions of corresponding sub-problems of the original problem. This

7 In general, |S | can be infinite (see, e.g. [Mit70, Rin76b]).

36 2 Basics

way of thinking is especially motivated if the considered problems have a clear
practical interpretation, and we will adopt this interpretation in the book.

As its name implies, the branch and bound method consists of two funda-
mental procedures: branching and bounding. Branching is the procedure of parti-
tioning a large problem into two or more sub-problems usually mutually exclu-
sive 8. Furthermore, the sub-problems can be partitioned in a similar way, etc.
Bounding calculates a lower bound on the optimal solution value for each sub-
problem generated in the branching process. Note that the branching procedure
can be conveniently represented as a search (or branching) tree. At level 0, this
tree consists of a single node representing the original problem, and at further
levels it consists of nodes representing particular sub-problems of the problem at
the previous level. Edges are introduced from each problem node to each of its
sub-problems nodes. A list of unprocessed nodes (also called active nodes) corre-
sponding to sub-problems that have not been eliminated and whose own sub-
problems have not yet been generated, is maintained.

8 If this is not the case, we speak rather about a division of S instead of its partition.

Suppose that at some stage of the branch and bound process a (complete) so-
lution S of criterion value "(S) has been obtained. Suppose also that a node en-
countered in the process has an associated lower bound LB > "(S). Then the node
needs not be considered any further in the search for S*, since the resulting solu-
tion can never have a value less than "(S). When such a node is found, it is elimi-
nated, and its branch is said to be fathomed, since we do not continue the bound-
ing process from it. The solution used for checking if a branch is fathomed is
sometimes called a trial solution. At the beginning it may be found using a spe-
cial heuristic procedure, or it can be obtained in the course of the tree search, e.g.
by pursuing the tree directly to the bottom as rapidly as possible. At any later
stage the best solution found so far can be chosen as a trial one. The value "(S)
for a trial solution S is often called an upper bound. Let us mention that a node
can be eliminated not only on the basis of lower bounds but also by means of so-
called elimination criteria provided by dominance properties or feasibility condi-
tions developed for a given problem.

The choice of a node from the set of generated nodes which have so far nei-
ther been eliminated nor led to branching is due to the chosen search strategy.
Two search strategies are used most frequently: jumptracking and backtracking.
Jumptracking implements a frontier search where a node with a minimal lower
bound is selected for examination, while backtracking implements a depth first
search where the descendant nodes of a parent node are examined either in an
arbitrary order or in order of non-decreasing lower bounds. Thus, in the jump-
tracking strategy the branching process jumps from one branch of the tree to an-
other, whereas in the backtracking strategy it first proceeds directly to the bottom
along some path to find a trial solution and then retraces that path upward up to
the first level with active nodes, and so on. It is easy to notice that jumptracking
tends to construct a fairly large list of active nodes, while backtracking maintains

 2.5 Heuristic and Approximation Algorithms 37

relatively few nodes on the list at any time. However, an advantage of jumptrack-
ing is the quality of its trial solutions which are usually much closer to optimum
than the trial solutions generated by backtracking, especially at early stages.
Deeper comparative discussion of characteristics of the search strategies can be
found in [Agi66, LW66].

Summing up the above considerations we can say that in order to implement
the scheme of the branch and bound method, i.e. in order to construct a branch
and bound algorithm for a given problem, one must decide about
(i) the branching procedure and the search strategy,
(ii) the bounding procedure or elimination criteria.

Making the above decisions one should explore the problem specificity and
observe the compromise between the length of the branching process and time
overhead concerned with computing lower bounds or trial solutions. However,
the actual computational behavior of branch and bound algorithms remains un-
predictable and large computational experiments are necessary to recognize their
quality. It is obvious that the computational complexity function of a branch and
bound algorithm is exponential in problem size when we search for an optimal
solution. However, the approach is often used for finding suboptimal solutions,
and then we can obtain polynomial time complexity by stopping the branching
process at a certain stage or after a certain time period elapsed.

2.5 Heuristic and Approximation Algorithms

As already mentioned, scheduling problems belong to a broad class of combina-
torial optimization problems (cf. Section 2.2.1). To solve these problems one
tends to use optimization algorithms which for sure always find optimal solu-
tions. However, not for all optimization problems, polynomial time optimization
algorithms can be constructed. This is because some of the problems are NP-
hard. In such cases one often uses heuristic (suboptimal) algorithms which tend
toward but do not guarantee the finding of optimal solutions for any instance of
an optimization problem. Of course, the necessary condition for these algorithms
to be applicable in practice is that their worst-case complexity function is bound-
ed from above by a low-order polynomial in the input length. A sufficient condi-
tion follows from an evaluation of the distance between the solution value they
produce and the value of an optimal solution. This evaluation may concern the
worst case or a mean behavior.

2.5.1 Approximation Algorithms

We will call heuristic algorithms with analytically evaluated accuracy approxi-
mation algorithms. To be more precise, we give here some definitions, starting

38 2 Basics

with the worst case analysis [GJ79].
If � is a minimization (maximization) problem, and I is any instance of it,

we may define the ratio RA(I) for an approximation algorithm A as

RA(I) = A(I)
OPT(I) (RA(I) = OPT(I)

A(I)) ,

where A(I) is the value of the solution constructed by algorithm A for instance I,
and OPT(I) is the value of an optimal solution for I. The absolute performance
ratio RA for an approximation algorithm A for problem � is then given as

RA = inf{r � 1 � RA(I) � r for all instances of �} .

The asymptotic performance ratio R#
A for A is given as

R#
A = inf{r � 1 � for some positive integer K, RA(I) � r for

 all instances of � satisfying OPT(I) � K } .

The above formulas define a measure of the "goodness" of approximation
algorithms. The closer R#

A is to 1, the better algorithm A performs.
More formally, an algorithm A is called �-approximation algorithm for prob-

lem �$�if for all instances I it constructs a feasible solution such that

|A(I) – OPT(I)| � % & OPT(I),

where % > 0, � = 1 + % for a minimization problem and � = 1 � % for a maximiza-
tion problem' For a minimization problem, we have A(I) � (1 + %) OPT(I), while

for a maximization problem there is A(I) � (1 � %) OPT(I). The worst case ratio �
(or in other words, the absolute performance ratio RA) is the quality measure for
an approximation algorithm. However, for some combinatorial problems it can
be proved that there is no hope of finding an approximation algorithm of a speci-
fied accuracy, i.e. this question is as hard as finding a polynomial time algorithm
for any NP-complete problem. For other combinatorial problems an approxima-
tion algorithm can be proposed, and even an approximation scheme can be de-
signed. An approximation scheme is a family of (1 + %)-approximation algo-

rithms over all 0 < % < 1 for a minimization problem, or a family of (1 � %)-
approximation algorithms for a maximization problem. A polynomial time ap-
proximation scheme (PTAS) is an approximation scheme of the polynomial time

complexity in the instance size, while a fully polynomial time approximation
scheme (FPTAS) is an approximation scheme with the complexity bounded by

the polynomial in the instance size and in 1/%. Obviously, such types of approxi-

mation methods are especially interesting, since they allow finding a trade-off be-

tween the quality of a solution and the time complexity necessary to construct it.

Fully polynomial time approximation schemes are the best methods which could

be proposed for an NP-hard problem.

 2.5 Heuristic and Approximation Algorithms 39

The relations between some classes of problems with respect to the exist-

ence of methods solving them, discussed e.g. by Shuurman and Woeginger

[SW07], are shown in Figure 2.5.1. It completes the presentation of the basic

complexity classes of combinatorial problems, given in Section 2.2.3, with some

algorithmic issues. Particular classes depicted in this figure correspond to prob-

lems from NP possessing polynomial time algorithms (P), pseudopolynomial

time algorithms, polynomial time approximation algorithms with finite/positive

worst case ratio � for minimization/maximization case (APX), or approximation

schemes (PTAS and FPTAS).

Figure 2.5.1 Relations between classes of problems possessing various types of

solution methods [SW07].

Analysis of the worst-case behavior of an approximation algorithm may be

complemented by an analysis of its mean behavior. This can be done in two
ways. The first consists in assuming that the parameters of instances of the con-
sidered problem � are drawn from a certain distribution D and then one analyzes
the mean performance of algorithm A.

In such an analysis it is usually assumed that all parameter values are realiza-
tions of independent probabilistic variables of the same distribution function.
Then, for an instance In of the considered optimization problem (n being a num-
ber of generated parameters) a probabilistic value analysis is performed. The re-
sult is an asymptotic value OPT(In) expressed in terms of problem parameters.
Then, algorithm A is probabilistically evaluated by comparing solution values
A(In) it produces (A(In) being independent probabilistic variables) with OPT(In)
[Rin87]. The two evaluation criteria used are absolute error and relative error.
The absolute error is defined as a difference between the approximate and opti-
mal solution values

P
FPTAS

PTAS

APX

NP pseudo-
polynomial

40 2 Basics

an = A(In) � OPT(In) .

On the other hand, the relative error is defined as the ratio of the absolute error
and the optimal solution value

bn =
A(In) � OPT(In)

OPT(In)
 .

Usually, one evaluates the convergence of both errors to zero. Three types of
convergence are distinguished. The strongest, i.e. almost sure convergence for a
sequence of probabilistic variables yn which converge to constant c is defined as

Pr{lim
n�#

yn = c } = 1 .

The latter implies a weaker convergence in probability, which means that for
every % > 0 ,

lim
n�#

 Pr {�yn � c� > %} = 0 .

The above convergence implies the first one if the following additional condition
holds for every % > 0 :

�
j=1

#
 Pr {�yn � c� > %} < # .

Finally, the third type of convergence, convergence in expectation holds if

lim
n�#

 �E(yn) � c� = 0 ,

where E(yn) is the mean value of yn .

It follows from the above definitions, that an approximation algorithm A is
the best from the probabilistic analysis point of view if its absolute error almost
surely converges to 0. Algorithm A is then called asymptotically optimal.

At this point one should also mention an analysis of the rate of convergence
of the errors of approximation algorithms which may be different for algorithms
whose absolute or relative errors are the same. Of course, the higher the rate, the
better the performance of the algorithm.

It is rather obvious that the mean performance can be much better than the
worst case behavior, thus justifying the use of a given approximation algorithm.
A main obstacle is the difficulty of proofs of the mean performance for realistic
distribution functions. Thus, the second way of evaluating the mean behavior of
heuristic algorithms are computational experiments, which is still used very of-
ten. In the latter approach the values of the given criterion, constructed by the
given heuristic algorithm and by an optimization algorithm are compared. This
comparison should be made for a representative sample of instances. There are
some practical problems which follow from the above statement and they are
discussed in [SVW80].

 2.5 Heuristic and Approximation Algorithms 41

2.5.2 Local Search Heuristics

In recent years more generally applicable heuristic algorithms for combinatorial
optimization problems became known under the name local search. Primarily,
they are designed as universal global optimization methods operating on a high-
level solution space in order to guide heuristically lower-level local decision
rules' performance to their best outcome. Hence, local search heuristics are often
called meta-heuristics or strategies with knowledge-engineering and learning ca-
pabilities reducing uncertainty while knowledge of the problem setting is ex-
ploited and acquired in order to improve and accelerate the optimization process.
The desire to achieve a certain outcome may be considered as the basic guide to
appropriate knowledge modification and inference as a process of transforming
some input information into the desired goal dependent knowledge.

Hence, in order to be able to transform knowledge, one needs to perform in-
ference and to have memory which supplies the background knowledge needed
to perform the inference and records the results of the inference for future use.
Obviously, an important issue is the extent to which problem-specific knowledge
must be used in the construction of learning algorithms (in other words the pow-
er and quality of inferencing rules) capable to provide significant performance
improvements. Very general methods having a wide range of applicability in
general are weak with respect to their performance. Problem specific methods
achieve a highly efficient learning but with little use in other problem domains.
Local search strategies are falling somewhat in between these two extremes,
where genetic algorithms or neural networks tend to belong to the former catego-
ry while tabu search or simulated annealing etc. are counted as examples of the
second category. Anyway, these methods can be viewed as tools for searching a
space of legal alternatives in order to find a best solution within reasonable time
limitations. What is required are techniques for rapid location of high-quality so-
lutions in large-size and complex search spaces and without any guarantee of op-
timality. When sufficient knowledge about such search spaces is available a pri-
ori, one can often exploit that knowledge (inference) in order to introduce prob-
lem-specific search strategies capable of supporting to find rapidly solutions of
higher quality. Without such an a priori knowledge, or in cases where close to
optimum solutions are indispensable, information about the problem has to be
accumulated dynamically during the search process. Likewise obtained long-term
as well as short-term memorized knowledge constitutes one of the basic parts in
order to control the search process and in order to avoid getting stuck in a locally
optimal solution. Previous approaches dealing with combinatorially explosive
search spaces about which little knowledge is known a priori are unable to learn
how to escape a local optimum. For instance, consider a random search. This can
be effective if the search space is reasonably dense with acceptable solutions,
such that the probability to find one is high. However, in most cases finding an
acceptable solution within a reasonable amount of time is impossible because
random search is not using any knowledge generated during the search process in

42 2 Basics

order to improve its performance. Consider hill-climbing in which better solu-
tions are found by exploring solutions "close" to a current and best one found so
far. Hill-climbing techniques work well within a search space with relatively
"few" hills. Iterated hill-climbing from randomly selected solutions can frequent-
ly improve the performance, however, any global information assessed during the
search will not be exploited. Statistical sampling techniques are typical alterna-
tive approaches which emphasize the accumulation and exploitation of more
global information. Generally speaking they operate by iteratively dividing the
search space into regions to be sampled. Regions unlikely to produce acceptable
solutions are discarded while the remaining ones will be subdivided for further
sampling. If the number of useful sub-regions is small this search process can be
effective. However, in case that the amount of a priori search space knowledge is
pretty small, as is the case for many applications in business and engineering, this
strategy frequently is not satisfactory.

Combining hill-climbing as well as random sampling in a creative way and
introducing concepts of learning and memory can overcome the above mentioned
deficiencies. The obtained strategies dubbed "local search based learning" are
known, for instance, under the names tabu search and genetic algorithms. They
provide general problem solving strategies incorporating and exploiting problem-
specific knowledge capable even to explore search spaces containing an expo-
nentially growing number of local optima with respect to the problem defining
parameters.

A brief outline of what follows is to introduce the reader into extensions of
the hill-climbing concept which are simulated annealing, tabu search, ejection
chains, and genetic algorithms. Let us mention that they are particular specifica-
tions of the above mentioned knowledge engineering and learning concept re-
viewed in [Hol75, Mic97, Jon90]. Tabu search develops to become the most
popular and successful general problem solving strategy. Hence, attention is
drawn to a couple of tabu search issues more recently developed. e.g. ejection
chains. Parts of this section can also be found embedded within a problem related
setting in [CKP95, PG97].

To be more specific consider the minimization problem min {"(x) | x � S}
where " is the objective function, i.e. the desired goal, and S is the search space,
i.e. the set of feasible solutions of the problem. One of the most intuitive solution
approaches to this optimization problem is to start with a known feasible solution
and slightly perturb it while decreasing the value of the objective function. In or-
der to realize the concept of slight perturbation let us associate with every x a
subset N (x) of S, called neighborhood of x. The solutions in N (x), or neighbors
of x, are viewed as perturbations of x. They are considered to be "close" to x.
Now the idea of a simple local search algorithm is to start with some initial solu-
tion and move from one neighbor to another neighbor as long as possible while
decreasing the objective value. This local search approach can be seen as the
basic principle underlying many classical optimization methods, like the gradient

 2.5 Heuristic and Approximation Algorithms 43

method for continuous non-linear optimization or the simplex method for linear
programming. Some of the important issues that have to be dealt with when im-
plementing a local search procedure are how to pick the initial solution, how to
define neighborhoods and how to select a neighbor of a given solution. In many
cases of interest, finding an initial solution creates no difficulty. But obviously,
the choice of this starting solution may greatly influence the quality of the final
outcome. Therefore, local search algorithms may be run several times on the
same problem instance, using different (e.g. randomly generated) initial solu-
tions. Whether or not the procedure will be able to significantly ameliorate a poor
solution often depends on the size of the neighborhoods. The choice of neighbor-
hoods for a given problem is conditioned by a trade-off between quality of the
solution and complexity of the algorithm, and is generally to be resolved by ex-
periments. Another crucial issue in the design of a local search algorithm is the
selection of a neighbor which improves the value of the objective function.
Should the first neighbor found improving upon the current solution be picked,
the best one, or still some other candidate? This question is rarely to be answered
through theoretical considerations. In particular, the effect of the selection crite-
rion on the quality of the final solution, or on the number of iterations of the pro-
cedure is often hard to predict (although, in some cases, the number of neighbors
can rule out an exhaustive search of the neighborhood, and hence, the selection
of the best neighbor). Here again experiments with various strategies are required
in order to make a decision. The attractiveness of local search procedures stems
from their wide applicability and (usually) low empirical complexity (see
[JPY88] and [Yan90] for more information on the theoretical complexity of local
search). Indeed, local search can be used for highly intricate problems, for which
analytical models would involve astronomical numbers of variables and con-
straints, or about which little problem-specific knowledge is available. All that is
needed here is a reasonable definition of neighborhoods, and an efficient way of
searching them. When these conditions are satisfied, local search can be imple-
mented to quickly produce good solutions for large instances of the problem.
These features of local search explain that the approach has been applied to a
wide diversity of situations, see [PV95, GLTW93, Ree93, AL97]. In the scheduling
area we would like to emphasize on two excellent surveys, [AGP95] as well as
[VAL96].

Nevertheless, local search in its most simple form, the hill-climbing, stops as
soon as it encounters a local optimum, i.e., a solution x such that "(x) � "(y) for
all y in N (x). In general, such a local optimum is not a global optimum. Even
worse, there is usually no guarantee that the value of the objective function at an
arbitrary local optimum comes close to the optimal value. This inherent short-
coming of local search can be palliated in some cases by the use of multiple re-
starts. But, because NP-hard problems often possess many local optima, even this
remedy may not be potent enough to yield satisfactory solutions. In view of this
difficulty, several extensions of local search have been proposed, which offer the
possibility to escape local optima by accepting occasional deteriorations of the

44 2 Basics

objective function. In what follows we discuss successful approaches based on
related ideas, namely simulated annealing and tabu search. Another interesting
extension of local search works with a population of feasible solutions (instead
of a single one) and tries to detect properties which distinguish good from bad
solutions. These properties are then used to construct a new population which
hopefully contains a better solution than the previous one. This technique is
known under the name genetic algorithm.

Simulated Annealing

Simulated annealing was proposed as a framework for the solution of combinato-
rial optimization problems by Kirkpatrick, Gelatt and Vecchi and, independently,
by Cerny, cf. [KGV83, Cer85]. It is based on a procedure originally devised by
Metropolis et al. in [MRR+53] to simulate the annealing (or slow cooling) of sol-
ids, after they have been heated to their melting point. In simulated annealing
procedures, the sequence of solutions does not roll monotonically down towards
a local optimum, as was the case with local search. Rather, the solutions trace an
up-and-down random walk through the feasible set S, and this walk is loosely
guided in a "favorable" direction. To be more specific, we describe the k

th itera-
tion of a typical simulated annealing procedure, starting from a current solution
x. First, a neighbor of x, say y � N (x), is selected (usually, but not necessarily, at
random). Then, based on the amplitude of ! := "(x) � "(y), a transition from x to y
(i.e., an update of x by y) is either accepted or rejected. This decision is made
non-deterministically: the transition is accepted with probability apk(!), where
apk is a probability distribution depending on the iteration count k. The intuitive
justification for this rule is as follows. In order to avoid getting trapped early in a
local optimum, transitions implying a deterioration of the objective function (i.e.,
with ! < 0) should be occasionally accepted, but the probability of acceptance
should nevertheless increase with !. Moreover, the probability distributions are
chosen so that apk+1(!) � apk(!). In this way, escaping local optima is relatively
easy during the first iterations, and the procedure explores the set S freely. But, as
the iteration count increases, only improving transitions tend to be accepted, and
the solution path is likely to terminate in a local optimum. The procedure stops if
the value of the objective function remains constant in L (a termination parame-
ter) consecutive iterations, or if the number of iterations becomes too large. In
most implementations, and by analogy with the original procedure of Metropolis
et al. [MRR+53], the probability distributions apk take the form:

apk (!) =
�
�

1 if ! � 0

eck! if ! < 0 ,

 2.5 Heuristic and Approximation Algorithms 45

where ck+1 � ck � 0 for all k, and ck ��# when k ��#. A popular choice for the
parameter ck is to hold it constant for a number L(k) of consecutive iterations,
and then to increase it by a constant factor: ck+1 = (k+1c0. Here, c0 is a small posi-
tive number, and (is slightly larger than 1. The number L(k) of solutions visited
for each value of ck is based on the requirement to achieve a quasi equilibrium
state. Intuitively this is reached if a fixed number of transitions is accepted. Thus,
as the acceptance probability approaches 0 we would expect L(k) ��#. Therefore
L(k) is supposed to be bounded by some constant B to avoid long chains of trials
for large values of ck. It is clear that the choice of the termination parameter and
of the distributions apk (k = 1, 2,...) (the so-called cooling schedule) strongly in-
fluences the performance of the procedure. If the cooling is too rapid (e.g. if B is
small and (is large), then simulated annealing tends to behave like local search,
and gets trapped in local optima of poor quality. If the cooling is too slow, then
the running time becomes prohibitive. Starting from an initial solution xstart and
parameters c0 and (a generic simulated annealing algorithm can be presented as
follows.

Algorithm 2.5.1 Simulated annealing [LA87, AK89].
begin
Initialize (xstart, c0, ();

k := 0;

x := xstart;

repeat
 Define L(k) or B;

 for t := 1 to L(k) do

 begin

 Generate a neighbor y � N (x);

 ! := "(x) � "(y);

 apk(!) := eck!;

 if random[0,1] � apk(!) then x := y

 end;

 ck+1 := (ck;

 k := k + 1;

until some stopping criterion is met
end;

Under some reasonable assumptions on the cooling schedule, theoretical results
can be established concerning convergence to a global optimum or the complexi-
ty of the procedure (see [LA87, AK89]). In practice, determining appropriate
values for the parameters is a part of the fine tuning of the implementation, and
still relies on experiments. We refer to the extensive computational studies in

46 2 Basics

[JAMS89, JAMS91] for the wealth of details on this topic. If the number of itera-
tions during the search process is large, the repeated computation of the ac-
ceptance probabilities becomes a time consuming factor. Hence, threshold ac-
cepting as a deterministic variant of the simulated annealing has been introduced
in [DS90]. The idea is not to accept transitions with a certain probability that
changes over time but to accept a new solution if the amplitude �! falls below a
certain threshold which is lowered over time. Simulated annealing has been ap-
plied to several types of combinatorial optimization problems, with various de-
grees of success (see [LA87, AK89, and JAMS89, JAMS91] as well as the bibli-
ography [CEG88]).

As a general rule, one may say that simulated annealing is a reliable proce-
dure to use in situations where theoretical knowledge is scarce or appears diffi-
cult to apply algorithmically. Even for the solution of complex problems, simu-
lated annealing is relatively easy to implement, and usually outperforms a hill-
climbing procedure with multiple starts.

Tabu Search

Tabu search is a general framework, which was originally proposed by Glover,
and subsequently expanded in a series of papers [GL97, Glo77, Glo86, Glo89,
Glo90a, Glo90b, GM86, WH89]. One of the central ideas in this proposal is to
guide deterministically the local search process out of local optima (in contrast
with the non-deterministic approach of simulated annealing). This can be done
using different criteria, which ensure that the loss incurred in the value of the ob-
jective function in such an "escaping" step (a move) is not too important, or is
somehow compensated for.

A straightforward criterion for leaving local optima is to replace the im-
provement step in the local search procedure by a "least deteriorating" step. One
version of this principle was proposed by Hansen under the name steepest de-
scent mildest ascent (see [HJ90], as well as [Glo89]). In its simplest form, the re-
sulting procedure replaces the current solution x by a solution y � N (x) which
maximizes ! := "(x) � "(y). If during L (a termination parameter) iterations no
improvements are found, the procedure stops. Notice that ! may be negative,
thus resulting in a deterioration of the objective function. Now, the major defect
of this simple procedure is readily apparent. If ! is negative in some transition
from x to y, then there will be a tendency in the next iteration of the procedure to
reverse the transition, and go back to the local optimum x (since x improves on
y). Such a reversal would cause the procedure to oscillate endlessly between x
and y. Therefore, throughout the search a (dynamic) list of forbidden transitions,
called tabu list (hence the name of the procedure) is maintained. The purpose of
this list is not to rule out cycling completely (this would in general result in
heavy bookkeeping and loss of flexibility), but at least to make it improbable. In
the framework of the steepest descent mildest ascent procedure, we may for in-

 2.5 Heuristic and Approximation Algorithms 47

stance implement this idea by placing solution x in a tabu list TL after every tran-
sition away from x. In effect, this amounts to deleting x from S. But, for reasons
of flexibility, a solution would only remain in the tabu list for a limited number
of iterations, and then should be freed again. To be more specific the transition to
the neighbor solution, i.e. a move, may be described by one or more attributes.
These attributes (when properly chosen) can become the foundation for creating
a so-called attribute based memory. For example, in a 0-1 integer programming
context the attributes may be the set of all possible value assignments (or chang-
es in such assignments) for the binary variables. Then two attributes which de-
note that a certain binary variable is set to 1 or 0, may be called complementary
to each other. A move may be considered as the assignment of the compliment
attribute to the binary variable. That is, the complement of a move cancels the ef-
fect of the considered move. If a move and its complement are performed, the
same solution is reached as without having performed both moves. Moves even-
tually leading to a previously visited solution may be stored in the tabu list and
are hence forbidden or tabu. The tabu list may be derived from the running list
(RL), which is an ordered list of all moves (or their attributes) performed
throughout the search. That is, RL represents the trajectory of solutions encoun-
tered. Whenever the length of RL is limited the attribute based memory of tabu
search based on exploring RL is structured to provide a short term memory func-
tion. Now, each iteration consist of two parts: The guiding or tabu process and
the application process. The tabu process updates the tabu list hereby requiring
the actual RL; the application process chooses the best move that is not tabu and
updates RL. For faster computation or storage reduction both processes are often
combined. The application process is a specification on, e.g., the neighborhood
definition and has to be defined by the user. The tabu navigation method is a ra-
ther simple approach requiring one parameter l called tabu list length. The tabu
navigation method disallows choosing any complement of the l most recent
moves of the running list in order to establish the next move. Hence, the tabu list
consists of a (complementary) copy of the last part of RL. Older moves are disre-
garded. The tabu status derived from the l most recent moves forces the algo-
rithm to go l moves away from any explored solution before the first step back-
wards is allowed. Obviously, this approach may disallow more moves than nec-
essary to avoid returning to a yet visited solution. This encourages the intention
to keep l as small as possible without disregarding the principle aim of never ex-
ploring a solution twice. Consequently, if l is too small the algorithm probably
will return to a local optimum just left. If a solution is revisited the same se-
quence of moves may be repeated consecutively until the algorithm eventually
stops, i.e. the search process is cycling. Thus danger of cycling favors large val-
ues for l. An adequate value for l has to be adopted with respect to the problem
structure, the cardinality of the considered problem instances (especially problem
size), the objective, etc. The parameter l is usually fixed but could also be ran-
domly or systematically varied after a certain number of iterations. The fact that
the tabu navigation method disallows moves which are not necessarily tabu led to

48 2 Basics

the development of a so called aspiration level criterion which may override the
tabu status of a move. The basic form of the aspiration level criterion is to choose
a move in spite of its tabu status if it leads to an objective function value better
than the best obtained in all preceding iterations. Another possible implementa-
tion would be to create a tabu list TL(y) for every solution y within the solution
space S. After a transition from x to y, x would be placed in the list TL(y), mean-
ing that further transitions from y to x are forbidden (in effect, this amounts to de-
leting x from N (y)). Here again, x should be dropped from TL(y) after a number
of transitions. For still other possible definitions of tabu lists, see e.g. [Glo86,
Glo89, GG89, HJ90, HW90]. Tabu search encompasses many features beyond
the possibility to avoid the trap of local optimality and the use of tabu lists. Even
though we cannot discuss them all in the limited framework of this survey, we
would like to mention two of them, which provide interesting links with artificial
intelligence and with genetic algorithms. In order to guide the search, Glover
suggests recording some of the salient characteristics of the best solutions found
in some phase of the procedure (e.g., fixed values of the variables in all, or in a
majority of those solutions, recurring relations between the values of the varia-
bles, etc.). In a subsequent phase, tabu search can then be restricted to the subset
of feasible solutions presenting these characteristics. This enforces what Glover
calls a "regional intensification" of the search in promising "regions" of the fea-
sible set. An opposite idea may also be used to "diversify" the search. Namely, if
all solutions discovered in an initial phase of the search procedure share some
common features, this may indicate that other regions of the solution space have
not been sufficiently explored. Identifying these unexplored regions may be help-
ful in providing new starting solutions for the search. Both ideas, of search inten-
sification or diversification, require the capability of recognizing recurrent pat-
terns within subsets of solutions. In many applications the aforementioned simple
tabu search strategies are already very successful, cf. [GLTW93, PV95, OK96].
A brief outline of the tabu search algorithm can be presented as follows.

Algorithm 2.5.2 Tabu search [Glo89, Glo90a, Glo90b].
begin
Initialize (x, tabu list TL, running list RL, aspiration function A(!, k));

xbest := x;
k := 1;
Specify the tabu list length lk at iteration k;

RL := �;

TL := �;

(:= #;
repeat
 repeat
 Generate neighbor y � N (x);

 ! := "(x) � "(y);

 2.5 Heuristic and Approximation Algorithms 49

 Calculate the aspiration value A(!, k);

 until A(!, k) < (or ! = max{ "(x) � "(y) | y is not tabu};

 Update RL, i.e. RL := RL � {some attributes of y};

 TL := {the last lk non-complimentary entries of RL};
 if A(!, k) < (then (:= A(!, k);

 x := y;

 if "(y) < "(xbest) then xbest := y;

 k := k + 1;

until some stopping criterion is met
end;

As mentioned above, tabu search may be applied in a more advanced way to in-
corporate different means for solid theoretical foundations. Other concepts have
been developed like the reverse elimination method or the reactive tabu search
incorporating a memory employing simple reactive mechanisms that are activat-
ed when repetitions of solutions are discovered throughout the search, see e.g.
[GL97].

Ejection Chains

Variable depth methods, whose terminology was popularized by Papadimitriou
and Steiglitz [PS82], have had an important role in heuristic procedures for op-
timization problems. The origins of such methods go back to prototypes in net-
work and graph theory methods of the 1950s and 1960s. A class of these proce-
dures called ejection chain methods has proved highly effective in a variety of
applications, see [LK73] which is a special instance of an ejection chain on the
TSP, and [Glo91, Glo96, DP94, Pes94, PG97, Reg98].

Ejection chain methods extend ideas exemplified by certain types of shortest
path and alternating path constructions. The basic moves for a transition from
one solution to another are compound moves composed of a sequence of paired
steps. The first component of each paired step in an ejection chain approach in-
troduces a change that creates a dislocation (i.e., an inducement for further
change), while the second component creates a change designed to restore the
system. The dislocation of the first component may involve a form of unfeasibil-
ity, or may be heuristically defined to create conditions that can be usefully ex-
ploited by the second component. Typically, the restoration of the second com-
ponent may not be complete, and hence in general it is necessary to link the
paired steps into a chain that ultimately achieves a desired outcome. The ejection
terminology comes from the typical graph theory setting where each of the paired
steps begins by introducing an element (such as a node, edge or path) that dis-
rupts the graph's preferred structure, and then is followed by ejecting a corre-
sponding element, in a way that recovers a critical portion of the structure. A
chain of such steps is controlled to assure the preferred structure eventually will

50 2 Basics

be fully recovered (and preferably, fully recovered at various intermediate stages
by means of trial solutions). The candidate element to be ejected in such instanc-
es may not be unique, but normally comes from a limited set of alternatives. The
alternating path construction [Ber62] gives a simple illustration. Here, the pre-
ferred graph structure requires a degree constraint to be satisfied at each node
(bounding the number of edges allowed to enter the node). The first component
of a paired step introduces an edge that violates such a degree constraint, causing
too many edges to enter a particular node, and thus is followed by a second com-
ponent that ejects one of the current edges at the node so that the indicated con-
straint may again be satisfied. The restoration may be incomplete, since the eject-
ed edge may leave another node with too few edges, and thus the chain is in-
duced to continue. A construction called a reference structure becomes highly
useful for controlling such a process, in order to restore imbalances at each step
by means of special trial solution moves, see [Glo91, Glo96, PG97]. Loosely
speaking, a reference structure is a representation of a (sometimes several) feasi-
ble solution such that, however, a very small number of constraints may be vio-
lated. Finding a feasible solution from a reference structure must be a trivial task
which should be performable in constant time. Ejection chain processes of course
are not limited to graph constructions. For example, they can be based on succes-
sively triggered changes in values of variables, as illustrated by a linked sequence
of zero-one exchanges in multiple choice integer programming applications or by
linked "bound escalations" in more general integer programs. The approach can
readily be embedded in a complete tabu search implementation, or in a genetic
algorithm or simulated annealing implementation. Such a method can also be
used as a stand-alone heuristic, which terminates when it is unable to find an im-
proved solution at the conclusion of any of its constructive passes. (This follows
the customary format of a variable depth procedure.) As our construction pro-
ceeds, we therefore note the trial solutions (e.g. feasible tours in case of a TSP)
that would result by applying these feasibility-recovering transformations after
each step, keeping track of the best. At the conclusion of the construction we
simply select this best trial solution to replace the current solution, provided it
yields an improvement. In this process, the moves at each level cannot be ob-
tained by a collection of independent and non-intersecting moves of previous
levels. The list of forbidden (tabu) moves grows dynamically during variable
depth search iteration and is reset at the beginning of the next iteration. In the
subsequent algorithmic description we designate the lists of variables (in the ba-
sis of a corresponding LP solution) locked in and out of the solution by the
names tabu-to-drop and tabu-to-add, where the former contains variables added
by the current construction (hence which must be prevented from being dropped)
and the latter contains variables dropped by the current construction (hence
which must be prevented from being added). The resulting ejection chain proce-
dure is shown in Algorithm 2.5.3. We denote the cost of a solution x by "(x). The
cost difference of a solution x' and x, i.e. "(x) � "(x'), where x' results from x by
replacing variable i by variable j will be defined by "ij. The reference structure

 2.5 Heuristic and Approximation Algorithms 51

that results by performing d ejection steps, is denoted by x(d), where d is the
"depth" of the ejection chain (hence x = x(0) for a given starting solution x).

Algorithm 2.5.3 Ejection chain [PG97].
begin
Start with an initial solution xstart;

x := xstart; x* := xstart;

Let s be any variable in x; -- s is the root

k* := s;
repeat
 d := 0; -- d is the current search depth

 while there are variables in x(d) that are not tabu-to-drop
and variables outside of x(d) that are not tabu-to-add do

 begin
 i := k*;

 d := d + 1;
 Find the best component move that maintains the reference structure,

where this 'best' is given by the variable pair i, j for which the gain
"i*j* = max{"ij | j is not a variable in x(d � 1) and i is a variable
 in x(d � 1); j is not tabu-to-add; i is not tabu-to-drop};

 Perform this move, i.e. introduce variable j* and remove variable i*
thus obtaining x(d) as a new reference structure at search depth d;

 j* becomes tabu-to-drop and i* becomes tabu-to-add;
 end;
 Let d* denote the search depth at which the best solution x*(d*)with

"(x*(d*)) = min{"(x*(d)) | 0 < d � n} has been found;

 if d* > 0 then x* := x*(d*); x := x*;

until d* = 0;

end;

The above procedure describes in its inner repeat ... until loop one it-
eration of an ejection chain search. The while ... do describes one com-
ponent move. Starting with an initially best solution x*(0), the procedure exe-
cutes a construction that maintains the reference structure for a certain number of
component moves. The new currently best trial solution x*(d*), encountered at
depth d*, becomes the starting point for the next ejection chain iteration. The it-
erations are repeated as long as an improvement is possible. The maximum depth
of the construction is reached if all variables in the current solution x are set tabu-
to-drop. The step leading from a solution x to a new solution consists of a vary-
ing number d* of component moves, hence motivating the "variable depth" ter-
minology. A continuously growing tabu list avoids cycling of the search proce-
dure. As an extension of the algorithm (not shown here), the whole repeat

52 2 Basics

... until part could easily be embedded in yet another control loop leading
to a multi-level (parallel) search algorithm, see [Glo96].

Genetic Algorithms

As the name suggests, genetic algorithms are motivated by the theory of evolu-
tion; they date back to the early work described in [Rec73, Hol75, Sch77], see
also [Gol89] and [Mic97]. They have been designed as general search strategies
and optimization methods working on populations of feasible solutions. Working
with populations permits to identify and explore properties which good solutions
have in common (this is similar to the regional intensification idea mentioned in
our discussion of tabu search). Solutions are encoded as strings consisting of el-
ements chosen from a finite alphabet. Roughly speaking, a genetic algorithm
aims at producing near-optimal solutions by letting a set of strings, representing
random solutions, undergo a sequence of unary and binary transformations gov-
erned by a selection scheme biased towards high-quality solutions. Therefore, the
quality or fitness value of an individual in the population, i.e. a string, has to be
defined. Usually it is the value of the objective function or some scaled version
of it. The transformations on the individuals of a population constitute the re-
combination steps of a genetic algorithm and are performed by three simple op-
erators. The effect of the operators is that implicitly good properties are identified
and combined into a new population which hopefully has the property that the
value of the best individual (representing the best solution in the population) and
the average value of the individuals are better than in previous populations. The
process is then repeated until some stopping criteria are met. It can be shown that
the process converges to an optimal solution with probability one (cf. [EAH91]).
The three basic operators of a classical genetic algorithm when a new population
is constructed are reproduction, crossover and mutation.

Via reproduction a new temporary population is generated where each mem-
ber is a replica of a member of the old population. A copy of an individual is
produced with probability proportional to its fitness value, i.e. better strings
probably get more copies. The intended effect of this operation is to improve the
quality of the population as a whole. However, no genuinely new solutions and
hence no new information are created in the process. The generation of such new
strings is handled by the crossover operator.

In order to apply the crossover operator the population is randomly parti-
tioned into pairs. Next, for each pair, the crossover operator is applied with a cer-
tain probability by randomly choosing a position in the string and exchanging the
tails (defined as the substring starting at the chosen position) of the two strings
(this is the simplest version of a crossover). The effect of the crossover is that
certain properties of the individuals are combined to new ones or other properties
are destroyed. The construction of a crossover operator should also take into con-
sideration that fitness values of offspring are not too far from those of their par-
ents, and that offspring should be genetically closely related to their parents.

 2.5 Heuristic and Approximation Algorithms 53

The mutation operator which makes random changes to single elements of
the string only plays a secondary role in genetic algorithms. Mutation serves to
maintain diversity in the population (see the previous section on tabu search).

Besides unary and binary recombination operators, one may also introduce
operators of higher arities such as consensus operators, that fix variable values
common to most solutions represented in the current population. Selection of in-
dividuals during the reproduction step can be realized in a number of ways: one
could adopt the scenario of [Gol89] or use deterministic ranking. Further it mat-
ters whether the newly recombined offspring compete with the parent solutions
or simply replace them.

The traditional genetic algorithm, based on a binary string representation of
solutions, is often unsuitable for combinatorial optimization problems because it
is very difficult to represent a solution in such a way that sub-strings have a
meaningful interpretation. Nevertheless, the number of publications on genetic
algorithm applications to sequencing and scheduling problems exploded.

Problems from combinatorial optimization are well within the scope of ge-
netic algorithms and early attempts closely followed the scheme of what Gold-
berg [Gol89] calls a simple genetic algorithm. Compared to standard heuristics,
genetic algorithms are not well suited for fine-tuning structures which are very
close to optimal solutions. Therefore, it is essential, if a competitive genetic algo-
rithm is desired, to compensate for this drawback by incorporating (local search)
improvement operators into the basic scheme. The resulting algorithm has then
been called genetic local search heuristic or genetic enumeration (cf. [Joh90b,
UAB+91, Pes94, DP95]). Each individual of the population is then replaced by a
locally improved one or an individual representing a locally optimal solution, i.e.
an improvement procedure is applied to each individual either partially (to a cer-
tain number of iterations, [KP94]) or completely. Some type of improvement
heuristic may also be incorporated into the crossover operator, cf. [KP94].

Putting things into a more general framework, a solution of a combinatorial
optimization problem may be considered as resolution of a sequence of local de-
cisions (such as priority rules or even more complicated ones). In an enumeration
tree of all possible decision sequences the solutions of the problem are represent-
ed as a path corresponding to the different decisions from the root of the tree to a
leaf (hence the name genetic enumeration). While a branch and bound algorithm
learns to find those decisions leading to an optimal solution (with respect to the
space of all decision sequences) genetics can guide the search process in order to
learn to find the most promising decision combinations within a reasonable
amount of time, see [Pes94, DP95]. Hence, instead of (implicitly) enumerating
all decision sequences a rudimentary search tree will be established. Only a poly-
nomial number of branches can be considered where population genetics drives
the search process into those regions which more likely contain optimal solu-
tions. The scheme of a genetic enumeration algorithm is subsequently described;
it requires further refinement in order to design a successful genetic algorithm.

54 2 Basics

Algorithm 2.5.4 Genetic enumeration [DP95, Pes94].
begin
Initialization: Construct an initial population of individuals each of which is a

string of local decision rules;

Assessment / Improvement: Assess each individual in the current population
introducing problem specific knowledge by special purpose heuristics (such as
local search) which are guided by the sequence of local decisions;

if special purpose heuristics lead to a new string of local decision rules
then
 replace each individual by the new one, for instance, a locally optimal one;
repeat

Recombination: Extend the current population by adding individuals obtained
by unary and binary transformations (crossover, mutation) on one or two
individuals in the current population;

Assessment / Improvement: Assess each individual in the current population
introducing problem specific knowledge by special purpose heuristics
(such as local search) which are guided by the sequence of local decisions;

 if special purpose heuristics lead to a new string of local decision rules
then
 replace each individual by the new one, for instance, a locally optimal one;

until some stopping criterion is met
end;

It is an easy exercise to recognize that the simple genetic algorithm as well as ge-
netic local search fits into the provided framework.

For a successful genetic algorithm in combinatorial optimization a genetic
meta-strategy is indispensable in order to guide the operation of good special
purpose heuristics and to incorporate problem-specific knowledge. An older con-
cept of a population based search technique which dates back in its origins be-
yond the early days of genetic algorithms is introduced in [Glo95] and called
scatter search. The idea is to solve 0-1 programming problems departing from a
solution of a linear programming relaxation. A set of reference points is created
by perturbing the values of the variables in this solution. Then new points are de-
fined as selected convex combinations of reference points that constitute good
solutions obtained from previous solution efforts. Non-integer values of these
points are rounded and then heuristically converted into candidate solutions for
the integer programming problem. The idea parallels and extends the idea basic
to the genetic algorithm design, namely, combining parent solutions in some way
in order to obtain new offspring solutions. One of the issues that differentiates
scatter search from the early genetic algorithm paradigm is the fact that the for-
mer creates new points strategically rather than randomly. Scatter search does not
prespecify the number of points it will generate to retain. This can be adaptively
established by considering the solution quality during the generation process. The
"data perturbation idea" meanwhile has gained considerable attention within the

 References 55

GA community. In [LB95] it is transferred as a tool for solving resource con-
strained project scheduling problems with different objective functions. The
basic idea of their approach may be referred to as a "data perturbation" method-
ology which makes use of so-called problem space based neighborhoods. Given
a well-known concept for deriving feasible solutions (e.g. a priority rule), a
search approach is employed on account of the problem data and respective per-
turbations. By modifying (i.e. introducing some noise or perturbation) the prob-
lem data used for the priority values of activities, further solutions within a cer-
tain neighborhood of the original data are generated.

The ideas mentioned above are paving the way in order to do some steps into
the direction of machine learning. This is in particular true if learning is consid-
ered to be a right combination of employing inference on memory. Thus, local
search in terms of tabu search and genetic algorithms emphasize such a unified
approach in all successful applications. This probably resembles most the human
way of thinking and learning.

References

Agi66 N. Agin, Optimum seeking with branch and bound, Manage. Sci. 13, 1966,
B176-185.

AGP95 E. J. Anderson, C. A. Glass, C. N. Potts, Local search in combinatorial optimi-
zation: applications in machine scheduling, Working paper, University of
Southampton, 1995.

AHU74 A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

AK89 E. H. L. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines,
J. Wiley, Chichester, 1989.

AL97 E. H. L. Aarts, J. K. Lenstra (eds.), Local Search in Combinatorial Optimiza-
tion, J. Wiley, New York, 1997.

AMO93 R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows, Prentice-Hall, Eng-
lewood Cliffs, N.J., 1993.

Bak74 K. Baker, Introduction to Sequencing and Scheduling, J. Wiley, New York,
1974.

BD62 R. Bellman, S. E. Dreyfus, Applied Dynamic Programming, Princeton Univer-
sity Press, Princeton, N.J., 1962.

Bel57 R. Bellman, Dynamic Programming, Princeton University Press, Princeton,
N.J., 1957.

Ber62 C. Berge, Theory of Graphs and its Applications, Methuen, London, 1962.

Ber73 C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.

CEG88 N. E. Collins, R. W. Eglese, B. L. Golden, Simulated annealing - an annotated
bibliography, American Journal of Mathematical and Management Sciences 8,
1988, 209-307.

56 2 Basics

Cer85 V. Cerny, Thermodynamical approach to the traveling salesman problem: an
efficient simulation algorithm, J. Optim. Theory Appl. 45, 1985, 41-51.

Che77 B. V. Cherkassky, An algorithm for building a max-flow in a network, running
in time O(V2E1/2), Mathematical Methods for Solving of Economic Problems 7,
1977, 117-126 (in Russian).

Che80 T.-Y. Cheung, Computational comparison of eight methods for the maximum
network flow problem, ACM Trans. Math. Softw. 6, 1980, 1-16.

CHW87 M. Chams, A. Hertz, D. de Werra, Some experiments with simulated annealing
for colouring graphs, Eur. J. Oper. Res. 32, 1987, 260-266.

CKP95 Y. Crama, A. Kolen, E. Pesch, Local search in combinatorial optimization,
Lect. Notes Comput. Sc. 931, 1995, 157-174.

Cof76 E. G. Coffman, Jr. (ed.), Scheduling in Computer and Job Shop Systems,
J. Wiley, New York, 1976.

Coo71 S. A. Cook, The complexity of theorem proving procedures, Proceedings of
the 3rd ACM Symposium on Theory of Computing, 1971, 151-158.

Den82 E. V. Denardo, Dynamic Programming: Models and Applications, Prentice-
Hall, Englewood Cliffs, N.J., 1982.

Din70 E. A. Dinic, An algorithm for the solution of the problem of maximal flow
with polynomial estimation, Dokl. Akad. Nauk SSSR 194, 1970, 754-757 (in
Russian).

DL79 S. E. Dreyfus, A. M. Law, The Art and Theory of Dynamic Programming,
Academic Press, New York, 1979.

DP94 U. Dorndorf, E. Pesch, Fast clustering algorithms, ORSA Journal on Compu-
ting 6, 1994, 141-153.

DP95 U. Dorndorf, E. Pesch, Evolution based learning in a job shop scheduling envi-
ronment, Comput. Oper. Res. 22,1995, 25-40.

DS90 G. Dueck, T. Scheuer, Threshold accepting: a general purpose optimization
algorithm appearing superior to simulated annealing, J. Comput. Phys. 90,
1990, 161-175.

EAH91 A. E. Eiben, E. H. L. Aarts, K. H. van Hee, Global convergence of genetic al-
gorithms: a Markov chain analysis, Lect. Notes Comput. Sc. 496, 1991, 4-9.

Edm65 J. Edmonds, Paths, trees and flowers, Can. J. Math.-J. Can. Math. 17, 1965,
449-467.

EK72 J. Edmonds, R. M. Karp, Theoretical improvement in algorithmic efficiency
for network flow problem, J. ACM 19, 1972, 248-264.

Eve79 S. Even, Graph Algorithms, Computer Science Press, New York, 1979.

FF62 L. R. Ford, Jr., D. R. Fulkerson, Flows in Networks, Princeton University
Press, Princeton, N.J., 1962.

Fis70 P. C. Fishburn, Intransitive indifference in preference theory: a survey, Oper.
Res. 18, 1970, 207-228

 References 57

GG89 F. Glover, H. J. Greenberg, New approaches for heuristic search: a bilateral
linkage with artificial intelligence, Eur. J. Oper. Res. 13, 1989, 563-573.

GJ78 M. R. Garey, D. S. Johnson, Strong NP-completeness results: motivation, ex-
amples, and implications, J. ACM 25, 1978, 499-508.

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

GL97 F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, Boston,
1997.

Glo77 F. Glover, Heuristic for integer programming using surrogate constraints,
Decis. Sci. 8, 1977, 156-160.

Glo86 F. Glover, Future paths for integer programming and links to artificial intelli-
gence, Comput. Oper. Res. 13,1986, 533-549.

Glo89 F. Glover, Tabu search - Part I, ORSA Journal on Computing 1, 1989, 190-
206.

Glo90a F. Glover, Tabu search - Part II, ORSA Journal on Computing 2, 1990, 4-32.

Glo90b F. Glover, Tabu search: a tutorial, Interfaces 20, 1990, 74-94.

Glo91 F. Glover, Multilevel tabu search and embedded search neighborhoods for the
traveling salesman problem, Working paper, University of Colorado, Boulder,
1991.

Glo96 F. Glover, Ejection chains, reference structures and alternating path methods
for traveling salesman problems, Discret Appl. Math. 65, 1996, 223-253.

Glo95 F. Glover, Scatter search and star-paths: beyond the genetic metaphor, OR
Spektrum 17, 1995, 125-137.

GLTW93 F. Glover, M. Laguna, E. Taillard, D. de Werra (eds.), Tabu Search, Ann.
Oper. Res. 41, Baltzer, Basel, 1993.

GM86 F. Glover, C. McMillan, The general employee scheduling problem: an inte-
gration of MS and AI, Comput. Oper. Res. 13, 1986, 563-573.

Gol89 D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, Mass., 1989.

HJ90 P. Hansen, B. Jaumard, Algorithms for the maximum satisfiability problem,
Computing 44, 1990, 279-303.

Hol75 J. H. Holland, Adaptation in Natural and Artificial Systems, The University of
Michigan Press, Ann Arbor, 1975.

How69 R. A. Howard, Dynamic Programming and Markov Processes, MIT Press,
Cambridge, Mass., 1969.

HW90 A. Hertz, D. de Werra, The tabu search metaheuristic: how we use it, Ann.
Math. Artif. Intell. 1, 1990, 111-121.

JAMS89 D. S. Johnson, C. R. Aragon, L. A. McGeoch, C. Schevon, Optimization by
simulated annealing: an experimental evaluation; Part I, Graph partitioning,
Oper. Res. 37, 1989, 865-892.

58 2 Basics

JAMS91 D. S. Johnson, C. R. Aragon, L. A. McGeoch, C. Schevon, Optimization by
simulated annealing: an experimental evaluation; Part II, Graph coloring and
number partitioning, Oper. Res. 39, 1991, 378-406.

Joh90a D. S. Johnson, A catalog of complexity classes, in: J. van Leeuwen (ed.),
Handbook of Theoretical Computer Science, Elsevier, New York, 1990,
69-161.

Joh90b D. S. Johnson, Local optimization and the traveling salesman problem, Lect.
Notes Comput. Sc. 443, 1990, 446-461.

Jon90 K. de Jong, Genetic-algorithm-based learning, in: Y. Kodratoff, R. Michalski
(eds.) Machine Learning, Vol. III, Morgan Kaufmann, San Mateo, 1990,
611-638.

JPY88 D. S. Johnson, C. H. Papadimitriou, M. Yannakakis, How easy is local search?
J. Comput. Syst. Sci. 37, 1988,79-100.

Kar72 R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,
J. W. Thatcher (eds.), Complexity of Computer Computation, Plenum Press,
New York, 1972, 85-103.

Kar74 A. W. Karzanov, Determining the maximum flow in a network by the method
of preflows, Dokl. Akad. Nauk SSSR 215, 1974, 434-437 (in Russian).

KGV83 S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi, Optimization by simulated an-
nealing, Science 220, 1983, 671-680.

KP94 A. Kolen, E. Pesch, Genetic local search in combinatorial optimization, Discret
Appl. Math. 48, 1994, 273-284.

Kub87 M. Kubale, The complexity of scheduling independent two-processor tasks on
dedicated processors, Inf. Process. Lett. 24, 1987, 141-147.

LA87 P. J. M. van Laarhoven, E. H. L. Aarts, Simulated Annealing: Theory and Ap-
plications, Reidel, Dordrecht, 1987.

Law76 E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart and Winston, New York, 1976.

LB95 V. J. Leon, R. Balakrishnan, Strength and adaptability of problem-space based
neighborhoods for resource constrained scheduling, OR Spektrum 17, 1995,
173-182.

Len77 J. K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre
Tracts 69, Amsterdam, 1977.

LK73 S. Lin, B. W. Kernighan, An effective heuristic algorithm for the traveling
salesman problem, Oper. Res. 21, 1973, 498-516.

LRKB77 J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Complexity of machine
scheduling problems, Annals of Discrete Mathematics 1, 1977, 343-362.

LW66 E. L. Lawler, D. E. Wood, Branch and bound methods: a survey, Oper. Res.
14, 1966, 699-719.

Mic97 Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,
Springer, Berlin, 1997.

 References 59

Mit70 L. G. Mitten, Branch-and-bound methods: general formulation and properties,
Oper. Res. 18, 1970, 24-34.

MRR+53 M. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation
of state calculations by fast computing machines, J. Chem. Phys. 21, 1953,
1087-1092.

OK96 I. H. Osman, J. P. Kelly, Meta-Heuristics: Theory and Applications, Kluwer,
Dordrecht, 1996.

Pap94 C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading,
Mass., 1994.

Pes94 E. Pesch, Learning in Automated Manufacturing, Physica, Heidelberg, 1994.

PG97 E. Pesch, F. Glover, TSP ejection chains, Discret Appl. Math. 76, 1997,
165-181.

PS82 C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, Englewood Cliffs, N.J., 1982.

PV95 E. Pesch, S. Voß (eds.), Applied Local Search, OR Spektrum 17, 1995.

Rec73 I. Rechenberg, Optimierung technischer Systeme nach Prinzipien der biolo-
gischen Evolution, Problemata, Frommann-Holzboog, 1973.

Ree93 C. Reeves (ed.), Modern Heuristic Techniques for Combinatorial Problems,
Blackwell Scientific Publishing, 1993.

Reg98 C. Rego, A subpath ejection method for the vehicle routing problem, Manage.
Sci. 44, 1998, 1447-1459.

Rin76a A. H. G. Rinnooy Kan, Machine Scheduling Problems: Classification, Com-
plexity and Computations, Martinus Nijhoff, The Hague, 1976.

Rin76b A. H. G. Rinnooy Kan, On Mitten’s axiom for branch and bound, Oper. Res.
24, 1976, 1176-1178.

Rin87 A. H. G. Rinnooy Kan, Probabilistic analysis of approximation algorithms,
Annals of Discrete Mathematics 31, 1987, 365-384.

Sch77 H.-P. Schwefel, Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie, Birkhäuser, Basel, 1977.

SVW80 E. A. Silver, R. V. Vidal, D. de Werra, A tutorial on heuristic methods, Eur. J.
Oper. Res. 5, 1980, 153-162.

SW07 P. Schuurman, G. J. Woeginger, Approximation schemes - a tutorial, in:
R. H. Moehring, C. N. Potts, A. S. Schulz, G. J. Woeginger, L. A. Wolsey
(eds.), Lectures on Scheduling, 2007, to appear, http://www.win.tue.nl/
~gwoegi/papers/ptas.pdf.

UAB+91 N. L. J. Ulder, E. H. L. Aarts, H.-J. Bandelt, P. J. M. van Laarhoven, E. Pesch,
Genetic local search algorithms for the traveling salesman problem, Lect. Notes
Comput. Sc. 496, 1991, 109-116.

VAL96 R. J. M. Vaessens, E. H. L. Aarts, J. K. Lenstra, Job shop scheduling by local
search, ORSA Journal on Computing 13, 1996, 302-317.

http://www.win.tue.nl/~gwoegi/papers.ptas.pdf
http://www.win.tue.nl/~gwoegi/papers.ptas.pdf

60 2 Basics

VTL82 J. Valdes, R. E. Tarjan, E. L. Lawler, The recognition of series parallel di-
graphs, SIAM J. Comput. 11, 1982, 298-313.

WH89 D. de Werra, A. Hertz, Tabu search techniques: a tutorial and an application to
neural networks, OR Spektrum 11, 1989, 131-141.

Yan90 M. Yannakakis, The analysis of local search problems and their heuristics,
Lect. Notes Comput. Sc. 415, 1990, 298-311.

3 Definition, Analysis and
Classification of Scheduling
Problems

Throughout this book we are concerned with scheduling computer and manufac-

turing processes. Despite the fact that we deal with two different areas of applica-

tions, the same model could be applied. This is because the above processes con-

sist of complex activities to be scheduled, which can be modeled by means of

tasks (or jobs), relations among them, processors, sometimes additional resources

(and their operational functions), and parameters describing all these items in

greater detail. The purpose of the modeling is to find optimal or sub-optimal

schedules in the sense of a given criterion, by applying best suited algorithms.

These schedules are then used for the original setting to carry out the various ac-

tivities. In this chapter we introduce basic notions used for such a modeling of

computer and manufacturing processes.

3.1 Definition of Scheduling Problems

In general, scheduling problems considered in this book1 are characterized by

three sets: set T = {T1 , T2 ,..., Tn} of n tasks, set P = {P1 , P2 ,..., Pm} of m pro-
cessors (machines) and set R = {R1 , R2 ,..., Rs} of s types of additional re-
sources R . Scheduling, generally speaking, means to assign processors from P

and (possibly) resources from R to tasks from T in order to complete all tasks

under the imposed constraints. There are two general constraints in classical

scheduling theory. Each task is to be processed by at most one processor at a time

(plus possibly specified amounts of additional resources) and each processor is

capable of processing at most one task at a time. In Chapters 6 and 13 we will

show some new applications in which the first constraint will be relaxed.

We will now characterize the processors. They may be either parallel, i.e.

performing the same functions, or dedicated i.e. specialized for the execution of

certain tasks. Three types of parallel processors are distinguished depending on

their speeds. If all processors from set P have equal task processing speeds, then

we call them identical. If the processors differ in their speeds, but the speed bi of

1 The notation presented in this section is extended in the following chapters of the book.

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_3

61

https://doi.org/10.1007/978-3-319-99849-7_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_3&domain=pdf

62 3 Definition, Analysis and Classification of Scheduling Problems

each processor is constant and does not depend on the task in T , then they are

called uniform. Finally, if the speeds of the processors depend on the particular

task processed, then they are called unrelated.

In case of dedicated processors there are three models of processing sets of

tasks: flow shop, open shop and job shop. To describe these models more pre-

cisely, we assume that tasks form n subsets 2 (chains in case of flow- and job

shops), each subset called a job. That is, job Jj is divided into nj tasks, T1j ,

T2j ,..., Tnj j , and two adjacent tasks are to be performed on different processors.

A set of jobs will be denoted by J . In an open shop the number of tasks is the

same for each job and is equal to m, i.e. nj = m, j = 1, 2,..., n. Moreover, T1j

should be processed on P1 , T2j on P2 , and so on. A similar situation is found in

flow shop, but, in addition, the processing of Ti�1 j should precede that of Tij for

all i = 1,..., nj and for all j = 1, 2,..., n. In a general job shop system the number

nj is arbitrary. Usually in such systems it is assumed that buffers between proc-

essors have unlimited capacity and a job after completion on one processor may

wait before its processing starts on the next one. If, however, buffers are of zero

capacity, jobs cannot wait between two consecutive processors, thus, a no-wait
property is assumed.

In general, task Tj � T is characterized by the following data.

1. Vector of processing times pj = [p1j , p2j ,..., pmj]
T

 , where pij is the time needed

by processor Pi to process Tj . In case of identical processors we have pij = pj , i =

1, 2,..., m. If the processors in P are uniform, then pij = pj /bi , i = 1, 2,..., m,

where pj is the standard processing time (usually measured on the slowest pro-

cessor) and bi is the processing speed factor of processor Pi . In case of shop

scheduling, the vector of processing times describes the processing requirements

of particular tasks comprising one job; that is, for job Jj we have pj = [p1j ,

p2j ,..., pnj j]
T

 , where pij denotes the processing time of Tij on the corresponding

processor.

2. Arrival time (or ready time) rj , which is the time at which task Tj is ready for

processing. If the arrival times are the same for all tasks from T , then it is as-

sumed that rj = 0 for all j.

3. Due date dj , which specifies a time limit by which Tj should be completed;

usually, penalty functions are defined in accordance with due dates.

4. Deadline d~j , which is a "hard" real time limit by which Tj must be completed.

5. Weight (priority) wj , which expresses the relative urgency of Tj .

6. Resource request (if any), as defined in Chapter 13.

2 Thus, the number of tasks in T is assumed to be � n.

 3.1 Definition of Scheduling Problems 63

Unless stated otherwise we assume that all these parameters, pj , rj , dj , d~j ,

and wj , are integers. In fact, this assumption is not very restrictive, since it is

equivalent to permitting arbitrary rational values. We assume moreover, that

tasks are assigned all required resources whenever they start or resume their pro-

cessing and that they release all the assigned resources whenever they are com-

pleted or preempted. These assumptions imply that deadlock cannot occur.

Next, some definitions concerning task preemptions and precedence con-

straints among tasks are given. A schedule is called preemptive if each task may

be preempted at any time and restarted later at no cost, perhaps on another pro-

cessor. If preemption of all the tasks is not allowed we will call the schedule non-
preemptive.

In set T precedence constraints among tasks may be defined. Ti ≺ Tj means

that the processing of Ti must be completed before Tj can be started. In other

words, in set T a precedence relation ≺ is defined. The tasks in set T are called

dependent if the order of execution of at least two tasks in T is restricted by this

relation. Otherwise, the tasks are called independent. A task set with precedence

relation is usually represented as a directed graph (a digraph) in which nodes cor-

respond to tasks and arcs to precedence constraints (a task-on-node graph). It is

assumed that no transitive arcs exist in precedence graphs. An example of a set

of dependent tasks is shown in Figure 3.1.1(a) (nodes are denoted by Tj /pj). Sev-

eral special types of precedence graphs have already been described in Section

2.3.2. Let us notice that in the case of dedicated processors (except in open shop

systems) tasks that constitute a job are always dependent, but the jobs themselves

can be either independent or dependent. There is another way of representing

task dependencies which is useful in certain circumstances. In this so-called ac-
tivity network, precedence constraints are represented as a task-on-arc graph,

where arcs represent tasks and nodes time events. Let us mention here a special

graph of this type called uniconnected activity network (uan), which is defined as

a graph in which any two nodes are connected by a directed path in one direction

only. Thus, all nodes are uniquely ordered. For every precedence graph one can

construct a corresponding activity network (and vice versa), perhaps using dum-

my tasks of zero length. The corresponding activity network for the precedence

graph from Figure 3.1.1(a), is shown in Figure 3.1.1(b). Note that we will show

in Section 5.1.1. the equivalence of the uniconnected activity network and the in-

terval order task-on-node representation (cf. also [BK02]).

Task Tj will be called available at time t if rj � t and all its predecessors

(with respect to the precedence constraints) have been completed by time t .

Now we will give the definitions concerning schedules and optimality crite-

ria. A schedule is an assignment of processors from set P (and possibly resources

from set R) to tasks from set T in time such that the following conditions are

satisfied:

64 3 Definition, Analysis and Classification of Scheduling Problems

� at every moment each processor is assigned to at most one task and each task is

processed by at most one processor 3,

� task Tj is processed in time interval [rj , #) ,

� all tasks are completed,

� if tasks Ti , Tj are in relation Ti ≺ Tj , the processing of Tj is not started before Ti

is completed,

� in the case of non-preemptive scheduling no task is preempted (then the sched-

ule is called non-preemptive), otherwise the number of preemptions of each task

is finite 4 (then the schedule is called preemptive),

� resource constraints, if any, are satisfied.

To represent schedules we will use the so-called Gantt charts. An example

schedule for the task set of Figure 3.1.1 on three parallel, identical processors is

shown in Figure 3.1.2. The following parameters can be calculated for each task

Tj , j = 1, 2,..., n, processed in a given schedule:

completion time Cj ,

flow time Fj = Cj � rj , being the sum of waiting and processing times;

lateness Lj = Cj � dj ,

tardiness Dj = max{Cj � dj , 0} ;

earliness Ej = max{dj � Cj , 0} .

For the schedule given in Figure 3.1.2 one can easily calculate the two first

parameters. In vector notation these are C = [3, 4, 5, 6, 1, 8, 8, 8] and F = C. The

other two parameters could be calculated, if due dates would be defined. Suppose

that due dates are given by the vector d = [5, 4, 5, 3, 7, 6, 9, 12]. Then the late-

nesses, tardinesses and earliness for the tasks in the schedule are: L = [�2, 0, 0, 3,

�6, 2, �1, �4], D = [0, 0, 0, 3, 0, 2, 0, 0], E = [2, 0, 0, 0, 6, 0, 1, 4].

To evaluate schedules we will use three main performance measures or op-
timality criteria:

Schedule length (makespan) Cmax = max{Cj} ,

mean flow time F
_
 =

1

n �
j=1

n
Fj ,

or mean weighted flow time F
_

w = �
j=1

n
wj Fj / �

j=1

n
wj ,

maximum lateness Lmax = max{Lj} .

3 As we mentioned, this assumption can be relaxed.
4 This condition is imposed by practical considerations only.

 3.1 Definition of Scheduling Problems 65

(a)

/3

/4

/1

/2

/1

/2

/3

/2

3T
T1

2T

5T

4T

7T

8T

6T

(b)

T /31

T /42

T /15

T' /02

T /24

T /13 T /26

T /37

T /28

Figure 3.1.1 An example task set
 (a) task-on-node representation

 (b) task-on-arc representation (dummy tasks are primed).

0 1 2 3 4 5 6 7 8

T1

T2

T3

T4

T8

T7

T6

T5

t

P1

P2

P3

Figure 3.1.2 A schedule for the task set given in Figure 3.1.1.

In some applications, other related criteria may be used, as for example: mean

tardiness D
_

 =
1

n �
j=1

n
Dj , mean weighted tardiness D

_

w = �
j=1

n
wj Dj / �

j=1

n
wj , mean earli-

ness E
_
 =

1

n �
j=1

n
Ej , mean weighted earliness E

_

w = �
j=1

n
wj Ej / �

j=1

n
wj , number of tardy

tasks U = �
j=1

n
Uj, where Uj = 1 if Cj > dj , and 0 otherwise, or weighted number of

tardy tasks Uw = �
j=1

n
wj Uj.

66 3 Definition, Analysis and Classification of Scheduling Problems

Again, let us calculate values of particular criteria for the schedule in Figure

3.1.2. They are: schedule length Cmax = 8, mean flow time F
_

 = 43/8, maximum

lateness Lmax = 3, mean tardiness D
 _

 = 5/8, mean earliness E
_

 = 13/8, and number

of tardy jobs U = 2. The other criteria can be evaluated if weights of tasks are

specified.

A schedule for which the value of a particular performance measure " is at

its minimum will be called optimal, and the corresponding value of " will be de-

noted by "*.

We may now define the scheduling problem � as a set of parameters de-

scribed in this subsection 5 not all of which have numerical values, together with

an optimality criterion. An instance I of problem � is obtained by specifying par-

ticular values for all the problem parameters.

We see that scheduling problems are in general of optimization nature (cf.

Section 2.2.1). However, some of them are originally formulated in decision ver-

sion. An example is scheduling to meet deadlines, i.e. the problem of finding,

given a set of deadlines, a schedule with no late task. However, both cases are

analyzed in the same way when complexity issues are considered.

A scheduling algorithm is an algorithm which constructs a schedule for a

given problem �. In general, we are interested in optimization algorithms, but

because of the inherent complexity of many problems of that type, approximation

or heuristic algorithms will be discussed (cf. Sections 2.2.2 and 2.5).

Scheduling problems, as defined above, may be analyzed much in the same

way as discussed in Chapter 2. However, their specificity raises some more de-

tailed questions which will be discussed in the next section.

3.2 Analysis of Scheduling Problems and
Algorithms

Deterministic scheduling problems are a part of a much broader class of combi-

natorial optimization problems. Thus, the general approach to the analysis of

these problems can follow similar lines, but one should take into account their

peculiarities. It is rather obvious that very often the time we can devote to solving

particular scheduling problems is seriously limited so that only low order poly-

nomial time algorithms may be used. Thus, the examination of the complexity of

these problems should be the basis of any further analysis.

It has been known for some time [Coo71, Kar72] (cf. Section 2.2) that there

exists a large class of combinatorial optimization problems for which most prob-

ably no efficient optimization algorithms exist. These are the problems whose de-

cision counterparts (i.e. problems formulated as questions with "yes" or "no" an-

5 Parameters are understood generally, including e.g. relation ≺.

 3.2 Analysis of Scheduling Problems and Algorithms 67

swers) are NP-complete. The optimization problems are called NP-hard in this

case. We refer the reader to [GJ79] and to Section 2.2 for a comprehensive

treatment of the NP-completeness theory, and in the following we assume

knowledge of its basic concepts like NP-completeness, NP-hardness, polynomial

time transformation, etc. It follows that the complexity analysis answers the

question whether or not an analyzed scheduling problem may be solved (i.e. an

optimal schedule found) in time bounded from above by a polynomial in the in-

put length of the problem (i.e. in polynomial time). If the answer is positive, then

an optimization polynomial time algorithm must have been found. Its usefulness

depends on the order of its worst-case complexity function and on the particular

application. Sometimes, when the worst-case complexity function is not low

enough, although still polynomial, a mean complexity function of the algorithm

may be sufficient. This issue is discussed in detail in [AHU74]. On the other

hand, if the answer is negative, i.e. when the decision version of the analyzed

problem is NP-complete, then there are several other ways of further analysis.

First, one may try to relax some constraints imposed on the original problem

and then solve the relaxed problem. The solution of the latter may be a good ap-

proximation to the solution of the original problem. In the case of scheduling

problems such a relaxation may consist of

� allowing preemptions, even if the original problem dealt with non-preemptive

schedules,

� assuming unit-length tasks, when arbitrary-length tasks were considered in the

original problem,

� assuming certain types of precedence graphs, e.g. trees or chains, when arbi-

trary graphs were considered in the original problem, etc.

Considering computer applications, especially the first relaxation can be jus-

tified in the case when parallel processors share a common primary memory.

Moreover, such a relaxation is also advantageous from the viewpoint of certain

optimality criteria.

Second, when trying to solve NP-hard scheduling problems one often uses

approximation algorithms which tend to find an optimal schedule but do not al-

ways succeed. Of course, the necessary condition for these algorithms to be ap-

plicable in practice is that their worst-case complexity function is bounded from

above by a low-order polynomial in the input length. Their sufficiency follows

from an evaluation of the difference between the value of a solution they produce

and the value of an optimal solution. This evaluation may concern the worst case

or a mean behavior. To be more precise, we use here notions that have been in-

troduced in Section 2.5, i.e. absolute performance ratio RA and asymptotic per-

formance ratio R#
A of an approximation algorithm A.

These notions define a measure of "goodness" of approximation algorithms;

the closer R#
A is to 1, the better algorithm A performs. However, for some combi-

natorial problems it can be proved that there is no hope of finding an approxima-

68 3 Definition, Analysis and Classification of Scheduling Problems

tion algorithm of a certain accuracy, i.e. this question is as hard as finding a pol-

ynomial time algorithm for any NP-complete problem.

Analysis of the worst-case behavior of an approximation algorithm may be

complemented by an analysis of its mean behavior. This can be done in two

ways. The first consists in assuming that the parameters of instances of the con-

sidered problem � are drawn from a certain distribution, and then the mean per-
formance of algorithm A is analyzed. One may distinguish between the absolute
error of an approximation algorithm, which is the difference between the ap-

proximate and optimal values and the relative error, which is the ratio of these

two (cf. Section 2.5). Asymptotic optimality results in the stronger (absolute)

sense are quite rare. On the other hand, asymptotic optimality in the relative

sense is often easier to establish. It is rather obvious that the mean performance

can be much better than the worst case behavior, thus justifying the use of a giv-

en approximation algorithm. A main obstacle is the difficulty of proofs of the

mean performance for realistic distribution functions. Thus, the second way of

evaluating the mean behavior of approximation algorithms, consisting of exper-

imental studies, is still used very often. In the latter approach, one compares solu-

tions, in the sense of the values of an optimality criterion, constructed by a given

approximation algorithm and by an optimization algorithm. This comparison

should be made for a large, representative sample of instances.

In this context let us mention the most often used approximation scheduling

algorithm which is the so-called list scheduling algorithm (which is in fact a gen-

eral approach). In this algorithm a certain list of tasks is given and at each step

the first available processor is selected to process the first available task on the

list. The accuracy of a particular list scheduling algorithm depends on the given

optimality criterion and the way the list has been constructed.

The third and last way of dealing with hard scheduling problems is to use

exact enumerative algorithms whose worst-case complexity function is exponen-

tial in the input length. However, sometimes, when the analyzed problem is not

NP-hard in the strong sense, it is possible to solve it by a pseudopolynomial op-

timization algorithm whose worst-case complexity function is bounded from

above by a polynomial in the input length and in the maximum number appearing

in the instance of the problem. For reasonably small numbers such an algorithm

may behave quite well in practice and it can be used even in computer applica-

tions. On the other hand, "pure" exponential algorithms have probably to be ex-

cluded from this application, but they may be used sometimes for other schedul-

ing problems which can be solved by off-line algorithms.

The above discussion is summarized in a schematic way in Figure 3.2.1. In

the following chapters we will use the above scheme when analyzing scheduling

problems.

 3.3 Motivations for Deterministic Scheduling Problems 69

3.3 Motivations for Deterministic Scheduling
Problems

In this section, an interpretation of the assumptions and results in deterministic

scheduling theory which motivate and justify the use of this model, is presented.

We will underline especially computer applications, but we will also refer to

manufacturing systems, even if the practical interpretation of the model is not for

this application area. In a manufacturing environment deterministic scheduling is

also known as predictive. Its complement is reactive scheduling, which can also

be regarded as deterministic scheduling with a shorter planning horizon.

Scheduling problem
(complexity analysis)

NP-hard problem

Relaxation Exact enumerative
algorithms

Approximation
algorithms

e.g. preemptions,
unit processing times (also pseudopolynomial-

time)

Performance analysis
- worst case behavior
- mean behavior
 a) probabilistic analysis
 b) simulation studies

Easy problem
Complexity improvement
- in the worst case
- mean (probabilistic analysis)

Figure 3.2.1 An analysis of a scheduling problem - schematic view.

Let us begin with an analysis of processors (machines). Parallel processors may

be interpreted as central processors which are able to process every task (i.e. eve-

ry program). Uniform processors differ from each other by their speeds, but they

do not prefer any type of tasks. Unrelated processors, on the contrary, are spe-

cialized in the sense that they prefer certain types of tasks, for example numerical

computations, logical programs, or simulation procedures. The processors may

have different instruction sets, but they are still of comparable processing capaci-

ty so they can process tasks of any type, only processing times may be different.

70 3 Definition, Analysis and Classification of Scheduling Problems

In manufacturing systems, pools of machines exist where all the machines have

the same capability (except possibly speed) to process tasks.

Completely different from the above are dedicated processors (dedicated

machines) which may process only certain types of tasks. The interpretation of

this model for manufacturing systems is straightforward but it can also be applied

to computer systems. As an example let us consider a computer system consist-

ing of an input processor, a central processor and an output processor. It is not

difficult to see that such a system corresponds to a flow shop with m = 3. On the

other hand, a situation in which each task is to be processed by an input/output

processor, then by a central processor and at the end again by the input/output

processor, can easily be modeled by a job shop system with m = 2. As far as an

open shop is concerned, there is no obvious computer interpretation. But this

case, like the other shop scheduling problems, has great significance in other ap-

plications, especially in an industrial environment.

By an additional resource we understand in this book a "facility" besides

processors the tasks to be performed compete for. The competition aspect in this

definition should be stressed, since "facilities" dedicated to only one task will not

be treated as resources in this book. In computer systems, for example, messages

sent from one task to another specified task will not be considered as resources.

In manufacturing environments tools, material, transport facilities, etc. can be

treated as additional resources.

Let us now consider the assumptions associated with the task set. As men-

tioned in Section 3.1, in deterministic scheduling theory a priori knowledge of

ready times and processing times of tasks is usually assumed. As opposed to oth-

er practical applications, the question of a priori knowledge of these parameters

in computer systems needs a thorough comment.

Ready times are obviously known in systems working in an off-line mode

and in control systems in which measurement samples are taken from sensing

devices at fixed time moments.

As far as processing times are concerned, they are usually not known a priori

in computer systems. Despite this fact the solution of a deterministic scheduling

problem may also have an important interpretation in these systems. First, when

scheduling tasks to meet deadlines, the only approach (when the task processing

times are not known) is to solve the problem with assumed upper bounds on the

processing times. Such a bound for a given task may be implied by the worst case

complexity function of an algorithm connected with that task. Then, if all dead-

lines are met with respect to the upper bounds, no deadline will be exceeded for

the real task processing times 6. This approach is often used in a broad class of

computer control systems working in a hard real time environment, where a cer-

tain set of control programs must be processed before taking the next sample

from the same sensing device.

6 However, one has to take into account list scheduling anomalies which will be explained

in Section 5.1.

 3.3 Motivations for Deterministic Scheduling Problems 71

Second, instead of exact values of processing times one can take their mean

values and, using the procedure described by Coffman and Denning in [CD73],

calculate an optimistic estimate of the mean value of the schedule length.

Third, one can measure the processing times of tasks after processing a task

set scheduled according to a certain algorithm A. Taking these values as an input

in the deterministic scheduling problem, one may construct an optimal schedule

and compare it with the one produced by algorithm A, thus evaluating the latter.

Apart from the above, optimization algorithms for deterministic scheduling

problems give some indications for the construction of heuristics under weaker

assumptions than those made in stochastic scheduling problems, cf. [BCSW86].

The existence of precedence constraints in computer systems also requires

an explanation. In the simplest case the results of certain programs may be the

input data for others. Moreover, precedence constraints may also concern parts of

the same program. A conventional, serially written program, may be analyzed by

a special procedure looking for parallel parts in it (see for example [RG69,

Rus69], or [Vol70]). These parts may also be defined by the programmer who

can use special programming languages supporting parallel concepts. Apart from

this, a solution of certain reliability problems in operating systems, as for exam-

ple the determinacy problem (see [ACM70, Bae74, Ber66]), requires an intro-

duction of additional precedence constraints.

We will now discuss particular optimality criteria for scheduling problems

from their practical significance point of view. Minimizing schedule length is

important from the viewpoint of the owner of a set of processors (machines),

since it leads to both, the maximization of the processor utilization factor (within

schedule length Cmax), and the minimization of the maximum in-process time of

the scheduled set of tasks. This criterion may also be of importance in a comput-

er control system in which a task set arrives periodically and is to be processed in

the shortest time.

The mean flow time criterion is important from the user's viewpoint since its

minimization yields a minimization of the mean response time and the mean in-

process time of the scheduled task set.

Due date involving criteria are of great importance in manufacturing sys-

tems, especially in those that produce to specific customer orders. Moreover, the

maximum lateness criterion is of great significance in computer control systems

working in the hard real time environment since its minimization leads to the

construction of a schedule with no task late whenever such schedules exist (i.e.

when L *
 max � 0 for an optimal schedule).

The criteria mentioned above are basic in the sense that they require specific

approaches to the construction of schedules.

72 3 Definition, Analysis and Classification of Scheduling Problems

3.4 Classification of Deterministic Scheduling
Problems

The great variety of scheduling problems we have seen from the preceding sec-

tion motivates the introduction of a systematic notation that could serve as a ba-

sis for a classification scheme. Such a notation of problem types would greatly

facilitate the presentation and discussion of scheduling problems. A notation

proposed by Graham et al. [GLL+79] and B)�la &zewicz et al. [BLRK83] will be

presented next and then used throughout the book.

The notation is composed of three fields (| * | ". They have the following

meaning: The first field (= (1, (2 describes the processor environment. Parame-

ter (1 � {�, P, Q, R, O, F, J} characterizes the type of processor used:

(1 = ��: single processor 7,

(1 = P : identical processors,

(1 = Q : uniform processors,

(1 = R : unrelated processors,

(1 = O : dedicated processors: open shop system,

(1 = F : dedicated processors: flow shop system,

(1 = J : dedicated processors: job shop system.

Parameter (2 � {�, k} denotes the number of processors in the problem:

(2 = ��: the number of processors is assumed to be variable,

(2 = k : the number of processors is equal to k (k is a positive integer).

The second field * = *1, *2, *3, *4, *5, *6, *7, *8 describes task and resource

characteristics. Parameter *1 � {�, pmtn} indicates the possibility of task

preemption:

*1 = ��: no preemption is allowed,

*1 = pmtn : preemptions are allowed.

Parameter *2 � {�, res} characterizes additional resources:

*2 = ��: no additional resources exist,

*2 = res : there are specified resource constraints; they will be described in

detail in Chapter 13.

Parameter *3 � {�, prec, uan, tree, chains} reflects the precedence constraints:

*3 = �, prec, uan, tree, chains : denotes respectively independent tasks,

general precedence constraints, uniconnected activity networks, precedence

constraints forming a tree or a set of chains.

Parameter *4 � {�, rj} describes ready times:

7 In this notation � denotes an empty symbol which will be omitted in presenting problems.

 3.4 Classification of Deterministic Scheduling Problems 73

*4 = ��: all ready times are zero,

*4 = rj : ready times differ per task.

Parameter *5 � {�, pj = p, p_ � pj � p
_
} describes task processing times:

*5 = ��: tasks have arbitrary processing times,

*5 = (pj = p) : all tasks have processing times equal to p units,

*5 = (p_ � pj � p
_

) : no pj is less than p_ or greater than p
_

.

Parameter *6 � {�, d~} describes deadlines:

*6 = � : no deadlines are assumed in the system (however, due dates may

be defined if a due date involving criterion is used to evaluate schedules),

*6 = d~ : deadlines are imposed on the performance of a task set.

Parameter *7 � {�, nj � k} describes the maximal number of tasks constituting a

job in case of job shop systems:

*7 = � : the above number is arbitrary or the scheduling problem is not a

job shop problem,

*7 = (nj � k): the number of tasks for each job is not greater than k.

Parameter *8 � {�, no-wait} describes a no-wait property in the case of schedul-

ing on dedicated processors:

*8 = � : buffers of unlimited capacity are assumed,

*8 = no-wait : buffers among processors are of zero capacity and a job after

finishing its processing on one processor must immediately start on the

consecutive processor.

The third field, ", denotes an optimality criterion (performance measure), i.e.

" � {Cmax , �Cj , �wj Cj , Lmax , �Dj , �wj Dj , �Ej , �wj Ej , �Uj , �wj Uj , �}, where

�Cj = F
_

 , �wj Cj = F
_

w , �Dj = D
_

, �wj Dj = D
_

w , �Ej = E
_

, �wj Ej = E
_

w , �Uj = U,

�wj Uj = Uw and "�" means testing for feasibility whenever scheduling to meet

deadlines is considered.

The use of this notation is illustrated by Example 3.4.1.

Example 3.4.1

(a) Problem P | | Cmax reads as follows: Scheduling of non-preemptable and
independent tasks of arbitrary processing times (lengths), arriving to the system
at time 0, on parallel, identical processors in order to minimize schedule length.

(b) O3 | pmtn, rj | �Cj stands for: Preemptive scheduling of arbitrary length
tasks arriving at different time moments in the three machine open shop, where
the objective is to minimize mean flow time.

74 3 Definition, Analysis and Classification of Scheduling Problems

At this point it is worth mentioning that scheduling problems are closely related

in the sense of polynomial transformation 8. Some basic polynomial transfor-

mations between scheduling problems are shown in Figure 3.4.1. For each graph

in the figure, the presented problems differ only by one parameter (e.g. by type

and number of processors, as in Figure 3.4.1(a)) and the arrows indicate the di-

rection of the polynomial transformation. These simple transformations are very

useful in many situations when analyzing new scheduling problems. Thus, many

of the results presented in this book can immediately be extended to cover a

broader class of scheduling problems.

8 This term has been explained in Section 2.2.

(a)

1

R

P

Q Rk

Qk

Pk

(b)

pmtn�

(c)

prec

tree

chain

�

(d)

�

rj

(e)

�p��p ��pj�

�

p = pj

p = 1j

 References 75

(f)

Fw
�

Dw
������ U

D , E����� U

F�

Lmax

Cmax

w, Ew

Figure 3.4.1 Graphs showing interrelations among different values of particu-
lar parameters

(a) processor environment
(b) possibility of preemption
(c) precedence constraints
(d) ready times
(e) processing times
(f) optimality criteria.

References

ACM70 ACM Record of the project MAC conference on concurrent system and paral-

lel computation, Wood's Hole, Mass., 1970.

AHU74 A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

Bae74 J. L. Baer, Optimal scheduling on two processors of different speeds, in:

E. Gelenbe, R. Mahl (eds.), Computer Architecture and Networks, North-

Holland, Amsterdam, 1974.

BCSW86 J. B)la
.
zewicz, W. Cellary, R. S)�lowiński, J. W,eglarz, Scheduling under Re-

source Constraints: Deterministic Models, J. C. Baltzer, Basel, 1986.

Ber66 A. J. Bernstein, Analysis of programs for parallel programming, IEEE Trans.
Comput. EC-15, 1966, 757-762.

BK02 J. Blazewicz, D. Kobler, Review of properties of different precedence graphs

for scheduling problems, Eur. J. Oper. Res. 142, 2002, 435-443.

BLRK83 J. B)la
.
zewicz, J. K. Lenstra, A. H. G. Rinnooy Kan, Scheduling subject to re-

source constraints: classification and complexity, Discret Appl. Math. 5, 1983,

11-24.

76 3 Definition, Analysis and Classification of Scheduling Problems

CD73 E. G. Coffman, Jr., P. J. Denning, Operating Systems Theory, Prentice-Hall,

Englewood Cliffs, N.J., 1973.

Coo71 S. A. Cook, The complexity of theorem proving procedures, Proceedings of
the 3rd ACM Symposium on Theory of Computing, 1971, 151-158.

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

GLL+79 R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimiza-

tion and approximation in deterministic sequencing and scheduling theory: a

survey, Annals of Discrete Mathematics 5, 1979, 287-326.

Kar72 R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,

J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press,

New York, 1972, 85-103.

RG69 C. V. Ramamoorthy, M. J. Gonzalez, A survey of techniques for recognizing

parallel processable streams in computer programs, AFIPS Conference Pro-
ceedings, Fall Joint Computer Conference, 1969, 1-15.

Rus69 E. C. Russel, Automatic Program Analysis, Ph.D. thesis, Department of Engi-

neering, University of California, Los Angeles, 1969.

Vol70 S. Volansky, Graph Model Analysi and Implementation of Computational Se-
quences, Ph.D. thesis, Report No. UCLA-ENG-7048, School of Engineering

Applied Sciences, University of California, Los Angeles, 1970.

4 Scheduling on One Processor

Single machine scheduling (SMS) problems seem to have received substantial

attention because of several reasons. These types of problems are important both

because of their own intrinsic value, as well as their role as building blocks for

more generalized and complex problems. In a multi-processor environment sin-

gle processor schedules may be used in bottlenecks, or to organize task assign-

ment to an expensive processor; sometimes an entire production line may be

treated as a single processor for scheduling purposes. Also, compared to multiple

processor scheduling, SMS problems are mathematically more tractable. Hence,

more problem classes can be solved in polynomial time, and a larger variety of

model parameters, such as various types of cost functions, or an introduction of

change-over cost, can be analyzed. Single processor problems are thus of rather

fundamental character and allow for some insight and development of ideas

when treating more general scheduling problems.

The relative simplicity of the single-processor scheduling on one hand, and

its fundamental character also for multiprocessor scheduling problems on the

other hand, motivate to discuss the single processor case to a wider extent. In the

next five sections we will study scheduling problems on one processor with the

objective to minimize the following criteria: schedule length, mean (and mean

weighted) flow time, due date involving criteria such as different lateness or tar-

diness functions, change-over cost and different maximum and mean cost func-

tions.

4.1 Minimizing Schedule Length

One of the simplest type of scheduling problems considered here is the problem

1 | prec | Cmax , i.e. one in which all tasks are assumed to be non-preemptable, or-

dered by some precedence relation, and available at time t = 0. It is trivial to ob-

serve that in whatever order in accordance with the precedence relation the tasks

are assigned to the processor, the schedule length is Cmax = �
j=1

n
 pj . If each task has

a given release time (ready time), an optimal schedule can easily be obtained by

a polynomial time algorithm where tasks are scheduled in the order of non-

decreasing release times. Similarly, if each task has a given deadline, the earliest

deadline scheduling rule would produce an optimal solution provided there exists

a schedule that meets all the deadlines. Thus in fact, problems 1 | rj | Cmax and

1 | | Lmax are equivalent as far as their complexities and solution techniques are

concerned. The situation becomes considerably more complex from the algo-

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_4

77

https://doi.org/10.1007/978-3-319-99849-7_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_4&domain=pdf

78 4 Scheduling on One Processor

rithmic complexity point of view if both, release times and deadlines restrict task

processing.

In the following section, for each task there is specified a release time and a

deadline by which the task is to be completed. The aim is then to find a schedule

that meets all the given deadlines and, in addition, minimizes Cmax .

4.1.1 Scheduling with Release Times and Deadlines

Problem 1 | rj , d~j | Cmax

In case of problem 1 | rj , d
~

j | Cmax , i.e. if the tasks are allowed to have unequal

processing times, a transformation from the 3-PARTITION problem 1 shows that

the problem is NP-hard in the strong sense, even for integer release times and

deadlines [LRKB77]. Only if all tasks have unit processing times, an optimiza-

tion algorithm of polynomial time complexity is available.

The general problem can be solved by applying a branch and bound algo-

rithm. Bratley et al. [BFR71] proposed an algorithm which is shortly described

below.

v (T)/r +p (T)/r +p

(T ,T)/ (T ,T)/ (T ,T)/
max{r +p ,r }

1 1 11 2 (T)/r +p2 2 2 n n n n

1 1 32

1 1 2 +p2

12 13
max{r +p ,r }1 1 3 +p3 max{r +p ,r }1 1 n +pn

1 n1n

v

vv v

v

root

Figure 4.1.1 Search tree in the branch and bound algorithm of Bratley et al.
[BFR71].

All possible task schedules are implicitly enumerated by a search tree construc-

tion, as shown in Figure 4.1.1. From the root node of the tree we branch to n new

1 The 3-PARTITION problem is defined as follows (see [GJ79]).

Instance: A finite set A of 3m elements, a bound B � IN, and a "size" s(a) � IN for each

a � A, such that each s(a) satisfies B/4 < s(a) < B/2 and such that �
 a�A

s(a) = mB.

Answer: "Yes" if A can be partitioned into m disjoint sets S1 , S2 ,. . . , Sm such that, for

1 � i � m, �a�S
 i
s(a) = B. Otherwise "No".

 4.1 Minimizing Schedule Length 79

nodes at the first level of descendant nodes. The ith of these nodes, vi , represents

the assignment of task Ti to be the first in the schedule, i = 1,..., n. Associated

with each node is the completion time of the corresponding task, i.e. ri + pi for

node vi . Next we branch from each node on the first level to n � 1 nodes on the

second level. Each of these represents the assignment of one of the n � 1 unas-

signed tasks to be the second in the schedule. Again, the completion time is asso-

ciated with each of the second level nodes. If vij is the successor node of vi to

which task Tj is assigned, the associated completion time would be

max{ri + pi , rj} + pj . This value represents the completion time of the partial

schedule (Ti , Tj). Continuing that way, on level k, 1 � k � n, there are n � k + 1

new nodes generated from each node of the preceding level. It is evident that all

the n! possible different schedules will be enumerated that way.

The order in which the nodes of the tree are examined is based on a back-

tracking search strategy. However, the algorithm uses two criteria to reduce the

number of search steps.

(i) Exceeding deadlines. Consider node v at level k � 1, and its n � k + 1 immedi-

ate successors on level k of the tree. If the completion time associated with at

least one of these nodes exceeds the deadline of the task added at level k, then all

n � k + 1 nodes may be excluded from further consideration. This follows from

the fact that if any of these tasks exceeds its deadline at level k (i.e. this task is at

k th position in the schedule), it will certainly exceed its deadline if scheduled

later. Since all the successors of node v represent orderings in which the task in

question is scheduled later, they may be omitted.

(ii) Problem decomposition. Consider level k of the search tree and suppose we

generate a node on that level for task Ti . This is equivalent to assigning task Ti in

position k of the schedule. If the completion time Ci of Ti in this position is less

than or equal to the smallest release time rmin among the yet unscheduled tasks,

then the problem decomposes at level k, and there is no need to enter another

branch of the search tree, i.e. one doesn't need to backtrack beyond level k. The

reason for this strong exclusion feature is that the best schedule for the remaining

n � k tasks may not be started prior to the smallest release time among these

tasks, and hence not earlier than the completion time Ci of the first k tasks.

Example 4.1.1 To demonstrate the idea of the branch and bound algorithm de-

scribed above consider the following sample problem of four tasks and vectors

describing respectively task release times, processing times, and deadlines, r =

[4, 1, 1, 0], p = [2, 1, 2, 2], and d~ = [7, 5, 6, 4]. The branch and bound algorithm

would scan the nodes of the search tree shown in Figure 4.1.2 in some order that

depends on the implementation of the algorithm. At each node the above criteria

(i) and (ii) are checked. We see that schedules (T4 , T2 , T3 , T1) and (T4 , T3 , T2 ,

T1), when started at time 0, obey all release times and deadlines. When a sched-

80 4 Scheduling on One Processor

ule is obtained, its optimality must be checked (a criterion for doing this is given

in Lemma 4.1.2).

root

(T)/61

(T)/22
(T)/33

(T)/24

(T T T T)/74 2 3 1

(T T T)/62 4 1

(T T)/62 1 (T T)/42 3

(T T)/42 4 (T T)/34 2

(T T T)/62 4 3 (T T T)/64 2 1 (T T T)/54 2 3

(T T T T)/74 3 2 1

(T T)/44 3

(T T T)/54 3 2

(T T)/64 1

(T T T)/64 3 1

Figure 4.1.2 Complete search tree of the sample problem of Example 4.1.1.

To recognize an optimal solution we focus our attention on certain groups of

tasks in a given feasible schedule. A block is a group of tasks such that the first

task starts at its release time and all the following tasks to the end of the schedule

are processed without idle times. Thus the length of a block is the sum of pro-

cessing times of the tasks in the block. If a block has the property that the release

times of all the tasks in the block are greater than or equal to the release time of

the first task in the block (in that case we will say that "the block satisfies the

release time property"), then the schedule found for this block is clearly optimal.

A block satisfying the release time property may be found by scanning the

given schedule, starting from the last task and attempting to find a group of tasks

of the described property. In particular, if T(n
 is the last task in the schedule and

Cmax = r(n
 + p(n

 , then {T(n
} is a block satisfying the release time property. An-

other example is a schedule (T(1
 ,..., T(n

) whose length is min
j

{rj} + � pj . In this

case the block consists of all the tasks to be performed.

The following lemma can be used to prove optimality of a schedule.

Lemma 4.1.2 If a schedule for problem 1 | rj , d
~

j | Cmax satisfies the release time
property then it is optimal.
Proof. The lemma follows immediately from the block definition and the release

time property.

 4.1 Minimizing Schedule Length 81

The condition of release time property is sufficient but not necessary, as can be

seen from simple examples. In this case this lemma cannot be used to prove op-

timality of a schedule constructed in the branch and bound procedure Then the

completion time C of the schedule can still be used for bounding further solu-

tions. This can be done by reducing all deadlines d~j to be at most C � 1, which

ensures that if other feasible schedules exist, only those that are better than the

solution at hand, are generated.

If task preemption is allowed, the problem 1 | pmtn, rj , d
~

j | Cmax can be formulated

as a maximum flow problem and can thus be solved in polynomial time

[BFR71].

Problem 1 | rj , pj = 1, d~j | Cmax

As already mentioned, if all release times are zero, the earliest deadline algo-

rithm would be exact. Now, in the case of unequal and non-integer release times,

it may happen that task Ti , though available for processing, must give preference

to another task Tj with larger release time, because of d~j < d~i . Hence, in such a

situation some idle interval should be introduced in the schedule in order to gain

feasibility. These idle intervals are called forbidden regions [GJST81]. A forbid-

den region is an interval (f1 , f2) of time (open both on the left and right) during

which no task is allowed to start if the schedule is to be feasible. Notice that we

do not forbid execution of a task during (f1 , f2) that had been started at time f1 or

earlier. Algorithm 4.1.3 shows how forbidden regions are used (a technique how

forbidden regions can be found is described in Algorithm 4.1.5). Let us assume

for the moment that we have found a finite set of forbidden regions F1 ,...,Fm .

The following algorithm represents a basic way of how a feasible schedule

can be generated. The algorithm schedules n unit time tasks, all of which must be

completed by some time d~ . Release times are of no concern, but no task is al-

lowed to start within one of the given forbidden regions F1 ,...,Fm . The algo-

rithm finds the latest possible time by which the first task must start if all of them

are to be completed by time d~ , without starting any task in a forbidden region.

Algorithm 4.1.3 Backscheduling of a set of unit time tasks {T1 ,...,Tn} with no
release times and common deadline d~ , considering a set of forbidden regions

[GJST 81].

begin
Order the tasks arbitrarily as T1 ,...,Tn;

for i := n downto 1 do

Start Ti at the latest time si � si+1 � 1 (or d~ � 1, if i = n) which does not fall into

a forbidden region;
end;

82 4 Scheduling on One Processor

Lemma 4.1.4 The starting time s1 found for T1 by Algorithm 4.1.3 is such that, if
all the given tasks (including T1) were to start at times strictly greater than s1 ,
with none of them starting in one of the given forbidden regions, then at least
one task would not be completed by time d~ .

Proof. Consider a schedule found by Algorithm 4.1.3. Let h0 = s1 , and let h1 ,...,

hj be the starting times of the idle periods (if any) in the schedule, and let hj+1 = d~

(see Figure 4.1.3). Notice that whenever (t1 , t2) is an idle period, it must be the

case that (t1 � 1, t2 � 1] is part of some forbidden region, for otherwise Algorithm

4.1.3 would have scheduled some task to overlap or finish during (t1 , t2]. Now

consider any interval (hi , hi+1], 0 � i � j. By definition of the times hi, the tasks

that are finished in the interval are scheduled with no idle periods separating

them and with the rightmost one finishing at time hi+1 . It follows that Algorithm

4.1.3 processes the maximum possible number of tasks in each interval (hi , hi+1].

Any other schedule that started all the tasks later than time s1 and finished them

all by time d~ would have to exceed this maximum number of tasks in some inter-

val (hi , hi+1], 1 � i � j, which is a contradiction.

forbidden
regions

schedule

h0

F1 F2 F3

T1 T2 T3 T4 T5 T6 T7

h1 h2 h3
t

Figure 4.1.3 A schedule with forbidden regions and idle periods.

We will use Algorithm 4.1.3 as follows. Consider any two tasks Ti and Tj such

that d~i � d~j . We focus our interest on the interval [ri, d
~

j], and assume that we have

already found a set of forbidden regions in this interval. We then apply Algo-

rithm 4.1.3, with d~ = d~j and with these forbidden regions, to the set of all tasks Tk

satisfying ri � rk � d~k � d~j . Let s be the latest possible start time found by Algo-

rithm 4.1.3 in this case. There are two possibilities which are of interest. If s < ri ,

then we know from Lemma 4.1.4 that there can be no feasible schedule since all

these tasks must be completed by time d~ , none of them can be started before ri ,

but at least one must be started by time s < ri if all are to be completed by d~ . If

ri � s < ri + 1, then we know that (s � 1, ri) can be declared to be a forbidden re-

gion, since any task started in that region would not belong to our set (its release

 4.1 Minimizing Schedule Length 83

time is less than ri) and it would force the first task of our set to be started later

than s, thus preventing these tasks from being completed by d~ .

The algorithm presented next essentially applies Algorithm 4.1.3 to all such

pairs of release times and deadlines in such a manner as to find forbidden regions

from right to left. This is done by "considering the release times" in order from

largest to smallest. To process a release time ri , for each deadline d~j � d~i the

number of tasks is determined which cannot start before ri and which must be

completed by d~j . Then Algorithm 4.1.3 is used (with d~ = d~j) to determine the lat-

est time at which the earliest such task can start. This time is called the critical
time ej for deadline d~j (with respect to ri). Letting e denote the minimum of all

these critical times with respect to ri , failure is declared in case of e < ri , or

(e � 1, ri) is declared to be a forbidden region if ri � e. Notice that by processing

release times from largest to smallest, all forbidden regions to the right of ri will

have been found by the time that ri is processed.

Once the forbidden regions are found in this way, we schedule the full set of

tasks starting from time 0, using the earliest deadline rule. This proceeds by ini-

tially setting t to the least non-negative time not in a forbidden region and then

assigning start time t to a task with lowest deadline among those ready at t. At

each subsequent step, we first update t to the least time which is greater than or

equal to the finishing time of the last scheduled task, and greater than or equal to

the earliest ready time of an unscheduled task, and which does not fall into a for-

bidden region. Then we assign start time t to a task with lowest deadline among

those ready (but not previously scheduled) at t .

Algorithm 4.1.5 for problem 1 | rj , pj = 1, d~j | Cmax [GJST81].

begin

Order tasks so that r1 � r2 �...� rn;

F := �; -- the set of forbidden intervals is initially empty

for i := n downto 1 do
 begin

 for each task Tj with d~j � d~i do

 begin

 if ej is undefined then ej := d~j � 1 else ej := ej � 1;

 while ej � F for some forbidden region F = (f1, f2) � F , do ej := f1;

 end;

 if i = 1 or ri�1 < ri

 then

 begin

 e := min{ej | ej is defined};

 if e < ri then begin write('No feasible schedule'); exit; end;

 if ri � e < ri + 1 then F := F � (e � 1, ri);

 end;

84 4 Scheduling on One Processor

 end;

t := 0;

while T � � do

 begin

 if ri > t for all Ti � T then t := min
Ti �T

{ri};

 while t � F for some forbidden region F = (f1, f2) � F , do t := f2;

 Assign Tk � {Ti | Ti � T such that d~k = min{d~i} and rk � t} next to the

processor;

 t := t + 1;
 end;

end;
The following facts concerning Algorithm 4.1.5 can easily be proved [GJST81].

(i) If the algorithm exits with failure, then there is no feasible schedule.

(ii) If the algorithm does not declare failure, then it finds a feasible schedule;

this schedule has minimum makespan among all feasible schedules.

(iii) The time complexity of the algorithm is O(n2
) .

In [GJST81], there is also presented an improved version of Algorithm 4.1.5

which runs in time O(nlogn) .

Problem 1 | prec, rj, d
~

j | Cmax

Problem 1 | prec, rj , d
~

j | Cmax is NP-hard in the strong sense because problem

1 | rj , d
~

j | Cmax already is. However, if all tasks have unit processing times (i.e.

problem 1 | prec, rj , pj = 1, d~j | Cmax) we can replace the problem by one of type

1 | rj , pj = 1, d~j | Cmax , which can then be solved optimally in polynomial time.

We will describe this approach below.

Given schedule S, let si be the starting time of task Ti , i = 1,..., n. A schedule

is called normal if, for any two tasks Ti and Tj , si < sj implies that d~i � d~j or rj >

si . Release times and deadlines are called consistent with the precedence relation

if Ti ≺ Tj implies that ri + 1 � rj and d~i � d~j � 1. The following lemma proves that

the precedence constraints are not of essential relevance if there is only one pro-

cessor.

Lemma 4.1.6 If the release times and deadlines are consistent with the prece-
dence relation, then any normal one-processor schedule that satisfies the release
times and deadlines must also obey the precedence relation.

Proof. Consider a normal schedule, and suppose that Ti ≺ Tj but si > sj . By the

consistency assumption we have ri < rj and d~i < d~j . However, these, together with

 4.1 Minimizing Schedule Length 85

rj � sj , cause a violation of the assumption that the schedule is normal, a contra-

diction from which the result follows.

Release times and deadlines can be made consistent with the precedence rela-

tion if release times are redefined by

r '(j
 = max ({r(j

} � {r '(i
 + 1 | T(i

 ≺ T(j
}) ,

and deadlines are redefined by

d~ '(j
 = min ({d~(j

} � {d~ '(i
 � 1 | T(j

 ≺ T(i
}) .

These changes obviously do not alter the feasibility of any schedule. Further-

more, it follows from Lemma 4.1.6 that a precedence relation is essentially irrel-

evant when scheduling on one processor. Having arrived at a problem of type

1 | rj , pj = 1, d~j | Cmax we can apply Algorithm 4.1.5 .

4.1.2 Scheduling with Release Times and Delivery Times

In this type of problems, task Tj is available for processing at time rj, needs pro-

cessing time pj, and, finally, has to spend some "delivery" time qj in the system

after its processing. We will generalize the notation introduced in Section 3.4 and

write 1 | rj , delivery times | Cmax for this type of problems. The aim is to find a

schedule for tasks T1 ,...,Tn such that the final completion time is minimal.

One may think of a production process consisting of two stages where the

first stage is processed on a single processor, and in the second stage some fin-

ishing operations are performed which are not restricted by the bottleneck pro-

cessor. We will see in Section 4.3.1 that maximum lateness problems are very

closely related to the problem considered here. Numerous authors, e.g. [BS74,

BFR73, FTM71, Pot80a, Pot80b, LLRK76, and Car82], studied this type of

scheduling problems. Garey and Johnson [GJ79] proved the problem to be NP-

hard in the strong sense.

Problem 1 | rj , delivery times | Cmax

Schrage [Sch71] presented a heuristic algorithm which follows the idea that a

task of maximal delivery time among those of earliest release time is chosen. The

algorithm can be implemented with time complexity O(nlogn) .

Algorithm 4.1.7 Schrage's algorithm for 1 | rj , delivery times | Cmax [Car82].

begin

t := min
Tj �T

{rj}; Cmax := t;

while T � � do

86 4 Scheduling on One Processor

 begin

 T ' := {Tj | Tj � T, and rj � t};

 Choose Tj � T ' such that pj = max
Tk �T '

{pk | qk = max
Tl �T '

{ql}};

 Schedule Tj at time t;

 T := T � {Tj};

 Cmax := max{Cmax, t + pj + qj};

 t := max{t + pj, min
Tl �T

{rl}};

 end;
end;

0 10 20 30 40 50

6T
1T

2T
3T

4T
5T

7T

53 t

Figure 4.1.4 A schedule generated by Schrage's algorithm for Example 4.1.8.

Example 4.1.8 [Car82] Consider seven tasks with release times r = [10, 13, 11,

20, 30, 0, 30], processing times p = [5, 6, 7, 4, 3, 6, 2], and delivery times q = [7,

26, 24, 21, 8, 17, 0]. Schrage's algorithm determines the schedule (T6 , T1 , T2 , T3 ,

T4 , T5 , T7) of length 53, which is shown in Figure 4.1.4. Execution on the single

processor is represented by solid lines, and delivery times are represented by

dashed lines. An optimal schedule, however, would be (T6 , T3 , T2 , T4 , T1 , T5 ,

T7), and its total length is 50.

Carlier [Car82] improved the performance of Schrage's algorithm. Furthermore,

he presented a branch and bound algorithm for the problem.

Problem 1 | pmtn, rj , delivery times | Cmax

If task execution is allowed to be preempted, an optimal schedule can be con-

structed in O(nlogn) time. We simply modify the while-loop in Schrage's al-

gorithm such that processing of a task is preempted as soon as a task with a high-

er priority becomes available ("preemptive version" of Schrage's algorithm). The

following result is mentioned without a proof (cf. [Car82]).

 4.2 Minimizing Mean Weighted Flow Time 87

Theorem 4.1.9 The preemptive version of Schrage's algorithm generates opti-
mal preemptive schedules in O(nlog n) time. The number of preemptions is not
greater than n � 1.

4.2 Minimizing Mean Weighted Flow Time

This section deals with scheduling problems subject to minimizing � wj Cj . The

problem 1 | | � wj Cj can be optimally solved by scheduling the tasks in order of

non-decreasing ratios pj /wj of processing times and weights. In the special case

1 | | � Cj (all weights are equal to 1), this reduces to the shortest processing time

(SPT) rule.

The problem of minimizing the sum of weighted completion times subject to

release dates is strongly NP-hard, even if all weights are 1 [LRKB77]. In the

preemptive case, 1 | pmtn, rj | � Cj can be solved optimally by a simple extension

of the SPT rule [Smi56], whereas 1 | pmtn, rj | � wj Cj turns again out to be strongly

NP-hard [LLL+84].

If deadlines are introduced, the situation is similar: 1 | d~j | � Cj can be solved

in polynomial time, but the weighted case 1 | d~j | � wj Cj is strongly NP-hard. Sev-

eral elimination criteria and branch and bound algorithms have been proposed

for this problem.

If the order of task execution is restricted by arbitrary precedence con-

straints, the problem 1 | prec | � wj Cj becomes NP-hard [LRK78]. This remains

true, even if all processing times pj are 1 or all weights wj are 1. For special clas-

ses of precedence constraints, however, polynomial time optimization algorithms

are known.

Problem 1 | | �� wj Cj

Suppose each task Tj � T has a specified processing time pj and weight wj; the

problem of determining a schedule with minimal weighted sum of task comple-

tion times, i.e. for which � wj Cj is minimal, can be optimally solved by means of

Smith's "ratio rule" [Smi56], also known as Smith's weighted shortest processing
time (WSPT) rule: Any schedule is optimal that puts the tasks in order of non-

decreasing ratios pj /wj . In the special case that all tasks have equal weights, any

schedule is optimal which places the tasks according to SPT rule, i.e. in non-

decreasing order of processing times.

In order to prove the optimality of the WSPT rule for 1 | | � wj Cj , we present

a far more general result due to Lawler [Law83] that includes 1 | | � wj Cj as a spe-

88 4 Scheduling on One Processor

cial case: Given a set T of n tasks and a real-valued function " which assigns

value "(+) to each permutation + of tasks, find a permutation +* such that

"(+*) = min{"(+) | + is a permutation of task set T } .

If we know nothing about the structure of function ", there is clearly nothing to

be done except evaluating "(+) for each of the n! possible different permutations

of the task set. But for a given function " we can sometimes find a transitive and

complete relation <
.
 on the set of tasks with the property that for any two tasks Ti ,

Tk , and for any permutation of the form (TiTk, we have

Ti <
.
 Tk � "((TiTk,) � "((TkTi,) . (4.2.1)

If such a relation exists for a given function ", we say: "" admits the relation <
.
",

or: "<
.
 is a task interchange relation for "". This means that whenever Ti and Tk

occur as adjacent tasks with Tk before Ti in a schedule, we are at least as well off

to interchange their order. This relation is also referred to as the adjacent pair-
wise interchange property. Hence we have the following theorem:

Theorem 4.2.1 If " admits a task interchange relation <. , then an optimal permu-
tation +* can be found by ordering the tasks according to <. .

Consider, for example, Smith's WSPT rule,

Ti <
.
 Tk
 pi /wi � pk /wk . (4.2.2)

If the last task in the subsequence (in (4.2.1) finishes at time t, the cost � wj Cj of

(TiTk, will be wi(t�+ pi)�+ wk(t�+ pi�+ pk)�+ C where C considers all the costs of

tasks in the subsequences (and ,. If Ti and Tk are interchanged, the cost of

(TkTi, will be wk(t�+ pk)�+ wi(t�+ pk�+ pi)�+ C. Clearly, because of (4.2.2), the first

sequence is of smaller cost than the second. As a consequence, the function

� wj Cj admits Smith's WSPT rule, hence, by Theorem 4.2.1, this rule solves

1 | | � wj Cj optimally.

Example 4.2.2 Let T = {T1 ,...,T10}, with processing times and weights given

by vectors p = [16, 12, 19, 4, 7, 11, 12, 10, 6, 8] and w = [2, 4, 3, 2, 5, 5, 1, 3, 6, 2].

The optimal schedule is obtained by sorting the tasks in order of non-decreasing

values of pj / wj , i.e. we get the task list (T9 , T5 , T4 , T6 , T2 , T8 , T10 , T3 , T1 , T7) .

The weighted sum of completion times is 6&6 + 13&5 + 17&2 + 28&5 + 40&4 + 50&3 +

58&2 + 79&3 + 95&2 + 105&1 = 1233. Note that interchanging any two tasks in the

schedule causes an increase of � wj Cj .

 4.2 Minimizing Mean Weighted Flow Time 89

Problem 1 | rj | �� wj Cj

If the task ready times are not identical, the problem has been proved to be NP-

hard even in the case that all weights are 1 [LRKB77]. We will present two heu-

ristic algorithms for scheduling tasks with equal weights, where each rule speci-

fies priority criteria for adding a task to an existing partial schedule, SU of al-

ready scheduled tasks U � T , starting with U = � .

Suppose that the schedule is constructed by adding one task at a time, start-

ing from the empty schedule. At any point, we have a partial schedule SU of task

set U � T , SU = (T(1
 ,...,T(�U �

) . The earliest start time of task Tj , sj , and its

completion time, Cj , satisfy

sj

�
�

= rj if j = (1

= max{ri , C(j�1
} if j = (j, j � 1 ,

� max{rj , C(�U �
} if Tj � T � U ;

(4.2.3)

Cj = sj + pj . (4.2.4)

The two heuristics are as follows.

A. The earliest completion time (ECT) rule: Select task Tj with Cj = min{Ci | Ti �

T � U }. Break ties by choosing Tj with sj = min
i

{si}, and further ties by choosing

Tj with minimum index j. Update sj and Cj using (4.2.3) and (4.2.4).

B. The earliest start time (EST) rule: Select task Tj with sj = min{si | Ti � T � U }.

Break ties by choosing Tj with Cj = min
i

{Ci}, and further ties by choosing Tj with

minimum index j. Update sj and Cj using (4.2.3) and (4.2.4).

For these two heuristics, no accuracy bounds are known. The main difficulty

arises from the fact that, since rj � 0, idle times may be inserted in the optimal

schedule. Consider the following example.

Example 4.2.3 Let T = {T1 ,...,T5} with processing times p = [3, 18, 17, 21, 25]

and ready times r = [35, 22, 34, 37, 66]. The ECT rule results in the schedule (T1 ,

T3 , T2 , T4 , T5). The final values of the earliest start time sj and the completion

times Cj are given by the vectors s = [35, 55, 38, 73, 94] and C = [38, 73, 55, 94,

119], respectively, and the sum of completion times is 379. An optimal schedule,

however, would be (T2 , T1 , T3 , T5 , T4) whose sum of completion times is 330.

An enumerative algorithm for solving the problem with equal weights optimally

was presented by Dessouky and Deogun [DD81]. This is a branch and bound

algorithm using a search tree in which a node at level k represents a partial

90 4 Scheduling on One Processor

schedule. If SU is such a partial schedule for a subset U of k tasks, then let C*
SU

denote the minimal total completion time of any schedule starting with SU . For

each node at level k, if SU = (T(1
 ,...,T(k

) is the corresponding partial schedule,

a lower bound CSU
 and an upper bound C�SU

 on C*
SU

 are computed. A successor

node at level k + 1 is obtained by selecting a task Ti � T � U and adding it to SU

in position k + 1 to form partial schedule (T(1
 ,...,T(k

 , Ti) .

At any iteration, the branch and bound search chooses for branching a node

that has currently the lowest lower bound CSU
 . Among the nodes generated from

the same parent node, dominance is tested. A partial schedule Si = (T(1
 ,...,T(k

 ,

Ti) is dominated if another partial schedule Sj = (T(1
 ,...,T(k

 ,Tj) exists, and C*
Si

 �

C*
Sj

 . A node whose partial schedule has been found dominated by that of another

node is eliminated from further consideration.

The crucial steps are indeed those where lower and upper bounds for the to-

tal completion time are estimated. For this, a number of tests are available (see

[DD81]).

An extension of this branch and bound algorithm to the case of unequal

weights is presented in [BR82].

The case in which the tasks have unit processing times can be solved in pol-

ynomial time [LRK80]. The preemptive case, 1 | pmtn, rj | � Cj , can be solved op-

timally by a simple modification of Smith's WSPT rule [Smi56], whereas

1 | pmtn, rj | � wj Cj turns out to be strongly NP-hard [LLL+84].

Problem 1 | d~j | �� wj Cj

Each task Tj becomes available for processing at time zero, has processing time

pj , a deadline d~j by which it must be completed (i.e. Cj � d~j , j = 1,..., n), and has

a positive weight wj . The tasks are to be processed without preemption. The ob-

jective is to find a schedule of the tasks which minimizes the sum of weighted

completion times � wj Cj , subject to meeting all deadlines. This problem was first

studied by Smith, who found a simple solution procedure for both, situations

with no deadlines, and those with deadlines, but with equal weights. Emmons

[Emm75] showed that Smith's procedure does not extend to the case of unequal

weights, and from Lenstra [Len77] we know that problem 1 | d~j | � wj Cj is NP-

hard. Burns [Bur76] constructed a pairwise interchange heuristic for this problem

that was improved by Miyazaki [Miy81]. Bansal [Ban80] developed an optimi-

zation algorithm based on a branch and bound approach and dominance criteria,

and used Smith's WSPT rule to calculate lower bounds. Potts and van Wassen-

hove [PW83] presented a branch and bound algorithm based on a Lagrangian

relaxation of the problem and found additional dominance criteria. Similar im-

provements have been presented by Kalra and Khurana [KK83], Posner [Pos85]

 4.2 Minimizing Mean Weighted Flow Time 91

and Bagchi and Ahmadi [BA87]. The latter used a task-splitting procedure to

compute lower bounds for the weighted sum of completion times.

In the following we will assume that at least one feasible schedule exists for

the given problem; this is easily checked by ordering the tasks in non-decreasing

order of deadlines. If any of the tasks in this sequence is completed after its dead-

line, then no feasible schedule exists. It can be shown that if tasks have agreeable

deadlines, i.e. pj /wj � pk /wk implies d~j � d~k for all tasks Tj and Tk , then an optimal

solution is obtained by ordering the tasks in non-decreasing order of their dead-

lines.

Another interesting heuristic algorithm for 1 | d~j | � wj Cj is Smith's backward
scheduling rule [Smi56]. Provided there exists a schedule in which all tasks meet

their deadlines, the algorithm chooses one task with largest ratio pj /wj among all

tasks Tj with d~j � p1 +...+ pn , and schedules the selected task last. It then contin-

ues by choosing an element of ratio among the remaining n � 1 tasks and placing

it in front of the already scheduled tasks, etc.

Algorithm 4.2.4 Smith's backward scheduling rule for 1 | d~j | � wj Cj [Smi56].

begin

p := �
i=1

n
 pi;

while T � � do

 begin

 T p := {Tj | Tj � T , d~j � p};

 Choose task Tj � T p such that pj /wj is maximal;

 Schedule Tj in position n;

 n := n � 1;

 T := T � {Tj};

 p := p � pj;

 end;

end;

This algorithm can be implemented to run in O(nlog n) time. We also know that

the algorithm is exact in the following cases (cf. [PW83]):

(i) unit processing times, i.e. for the problem 1 | pj=1, d~j | � wj Cj,

(ii) unit weights, i.e. for problem 1 | d~j | � Cj ,

(iii) agreeable weights, i.e. for problems where pi � pj implies wi � wj for all i
and j � {1,..., n}.

However, in case of arbitrary weights, simple examples show that this algorithm

is not exact.

We will present a branch and bound algorithm for 1 | d~j | � wj Cj . In order to

reduce the search for an optimal solution, dominance conditions are useful.

92 4 Scheduling on One Processor

Dominance theorems usually specify that if certain conditions are satisfied, then

task Ti precedes task Tj in at least one optimal schedule. When such conditions

are satisfied, we say that task Ti is a predecessor of task Tj , and Tj is successor of

Ti . In that way, dominance theorems result in a set of precedence constraints be-

tween pairs of tasks. It is clear that any enumerative algorithm can restrict its

search to schedules obeying these precedence constraints. Hence, if many prece-

dence constraints are found, the number of schedules to be investigated can be

considerably reduced. Following [PW83], we formulate without proof three ex-

amples of such constraints.

Lemma 4.2.5 Let T ' � T be a subset of tasks chosen such that for any Ti �

T � T ' and for any Tj , Tk � T ' with d~j � d~k , pi / wi � pj / wj � pk / wk holds. Then for
any pair of tasks Ti � T and Tj � T ' with d~i � d~j , there exists an optimal schedule
in which task Ti appears before task Tj .

For the next lemma, let A
 i denote the set of tasks which, according to the prece-

dence condition of Lemma 4.2.5, are successors of task Ti (i = 1,..., n) .

Lemma 4.2.6 If pi � pj , wi � wj and min{d~i , pj + �
Tk �T �Aj

 pk} � d~j , then there

exists an optimal schedule in which task Ti is processed before task Tj .

Lemma 4.2.7 If the tasks are renumbered so that d~i �...� d~n , and if pj + �
k=1

i
 pk >

d~i for some j with 1 � i � j � n, then tasks T1 ,...,Ti are scheduled before task Tj
in any feasible schedule.

Obviously, each deadline that exceeds the total processing time p = � pi can be

replaced by p without any changes of the resulting schedule. In addition, after

some precedence conditions have been derived, the deadline of each task Ti can

be reset to d~i = min{d~i , p � �
Tk � Ai

 pk} (i = 1,..., n) where A
 i is the set of succes-

sors of task Ti . Furthermore, the deadline of any task Ti which is predecessor of

another task Tj is reset using d~i = min{d~i , d
~

j � pj � �
Tk �Ai � Bj

 pk}, where Bj is the

set of predecessors of task Tj .

Reducing deadlines that way may induce additional precedence conditions

between tasks. Lemmas 4.2.6 and 4.2.7 are applied repeatedly until no additional

precedences can be found. It is indeed our aim to find as many precedences as

possible because they allow to reduce the deadlines, and thus decrease the num-

ber of potential schedules in the branch and bound algorithm.

Scheduling a set of tasks according to Smith's backward scheduling rule al-

lows to partition the task set T into blocks T
 1 ,...,T

 k . Assume that the tasks have

 4.2 Minimizing Mean Weighted Flow Time 93

been renumbered so that the schedule generated by Algorithm 4.2.4 is (T1 ,...,

Tn) . A task Tl' is called final if d~i � Cl' for i = 1,..., l' (implying Cl' = d~l') . The

reasoning behind this definition is that tasks T1 ,...,Tl' must be scheduled before

all other tasks in any feasible schedule. A set of tasks T
 i = {T(i

 ,...,T*i
} forms a

block if the following conditions are satisfied:

(i) (i = 1, or task T(i � 1 is final,

(ii) task Ti is not final for i = (i ,...,*i � 1 ,

(iii) T*i
 is final.

If the deadlines force tasks T1 ,...,T*i
 to be scheduled before all other tasks,

then the previous deadline adjustment procedures will ensure that d~j � C*i
 for j =

1,...,*i , and C*i
 = d~*i

 , thus, T*i
 will be the last task in a block.

The following theorem gives a sufficient condition for a schedule generated

by Smith's backward scheduling rule to be exact.

Theorem 4.2.8 A schedule generated by Smith's backward scheduling rule is
optimal if there is a block partition (in the above sense) of the given task set, the
tasks within each block being scheduled in non-decreasing order of pj / wj .

Proof. Suppose that the construction of blocks results in k blocks T
 1 ,...,T

 k . It is

clear that all tasks in block T
 j must precede all tasks in block T

 j+1 , j = 1,..., k � 1

in any feasible schedule. Therefore, the problem decomposes into sub-problems

each of which involves scheduling tasks within a block. From Smith's backward

scheduling rule we know that if the tasks within a block are scheduled in non-

decreasing order of pj / wj , then the schedule is optimal.

Example 4.2.9 Let T = {T1 ,...,T8} with processing times, deadlines and

weights as follows: p = [4, 3, 8, 2, 4, 7, 5, 4], d ~ = [13, 8, 38, 14, 9, 40, 25, 22], w =

[2, 6, 3, 3, 4, 2, 9, 2]. A feasible schedule is (T2 , T5 , T1 , T4 , T8 , T7 , T3 , T6). Apply-

ing Lemmas 4.2.5-4.2.7 allows to reduce the deadlines to d ~ = [13, 8, 37, 13, 9, 37,

22, 22], and Algorithm 4.2.4 defines the heuristic schedule (T2 , T4 , T5 , T1 , T7 , T8 ,

T3 , T6). We see that tasks T1 and T6 are final, hence both, the first four and the

last four tasks define a partial schedule. As within the partial schedules the val-

ues of pj / wj are non-decreasing, both partial schedules are optimal; hence the

total schedule is optimal.

In general we will not be able to partition the given set of tasks into blocks. Al-

gorithm 4.2.4 will then produce a schedule S that is not necessarily optimal.

However, as this schedule may be considered as an approximate solution, its val-

ue "S = � wj Cj serves as an upper bound for the value of an optimal schedule.

A branch and bound method can now be applied in the following way: a

node at level l of the search tree corresponds to a final partial schedule in which

94 4 Scheduling on One Processor

tasks are scheduled in the last l positions. The value of the partial schedule repre-

sents a lower bound for the schedule that can be obtained by descending from

that node. Hence, if the lower bound is greater than or equal to any upper bound
"S , the node can be discarded from further consideration.

An interesting modification of the problem is to allow tasks to be tardy up to

a given maximum allowable tardiness D � 0, i.e. the objective is to minimize

� wj Cj subject to Cj � d~j � D for j = 1,..., n. This problem is called constrained
weighted completion time (CWCT) problem [CS86]. This has been shown to be

NP-hard by Lenstra et al. [LRKB77]. From Chand and Schneeberger [CS86] we

know that the CWCT problem can be solved optimally, e.g. in the case that the

weight wj of each task is a non-increasing function of the processing time pj .

Furthermore they discussed a worst-case analysis of the WSPT heuristic and

showed that the accuracy performance ratio can become arbitrarily large in the

worst case.

The case where tasks have unit processing times and both, release times and

deadlines, is solvable as a linear assignment problem in O(n3
) time [LRK80]. As

can easily be shown there is no advantage to preempt task execution, as any solu-

tion that is optimal for 1 | d~j | � wj Cj is also optimal for 1 | pmtn, d~j | � wj Cj . Conse-

quently 1 | pmtn, d~j | � Cj can be solved in polynomial time, and the problems

1 | pmtn, d~j | � wj Cj and 1 | pmtn, rj , d
~

j | � wj Cj are NP-hard.

Problem 1 | prec | �� wj Cj

For general precedence constraints, Lawler [Law78] and Lenstra and Rinnooy

Kan [LRK78] showed that the problem is NP-hard. Sidney [Sid75] presented a

decomposition approach which produces an optimal schedule. Among others,

Potts [Pot85] presented an especially interesting branch and bound algorithm

where lower bounds are derived using a Lagrangian relaxation technique in

which the multipliers are determined by the cost reduction method. Optimization

scheduling algorithms running in polynomial time have been presented for tree-

like precedences [Hor72, AH73], for series-parallel precedences [Sid75, IIN81],

and for more general precedence relations [BM83, MS89].

Following [Sid75], a subset U - T is said to have precedence over subset

V - T if there exist tasks Ti � U and Tj � V such that Tj � succ(Ti). If this is the

case we will write U � V . A set U - T is said to be initial in (T , ≺) if (T � U)

�/ U, i.e. if (T � U) � U is not true. In effect, no task from T � U has a succes-

sor in U, or, in other words, for each task in U, all its predecessors are in U, too.

Obviously, there exists a feasible task order in which the elements of set U are

arranged before that of T��� U.

 4.2 Minimizing Mean Weighted Flow Time 95

For a non-empty set U - T , define p(U) = �
Ti �U

 pi, w(U) = �
Ti �U

 wi, and

�(U) = p(U) /w(U). We are interested in initial task sets that have some minimal-

ity property. Set U - T is said to be �*-minimal for (T , ≺) if

(i) U is initial in (T , ≺) ,

(ii) �(U) � �(V) for any V which is initial in (T , ≺), and

(iii) �(U) < �(V) for each proper initial subset V - U.

With these notations we are able to formulate the following algorithm.

Algorithm 4.2.10 Sidney's decomposition algorithm for 1 | prec | � wj Cj [Sid75,

IIN81].

begin

while T � � do

 begin

 Determine task set U that is �*-minimal for (T , ≺);

 Schedule the members of task set U optimally;

 T := T � U;

 end;
end;
From Sidney [Sid75] we know that a schedule is optimal if and only if it can be

generated by this algorithm. Instead of proving this fact, we give an intuitive ex-

planation why the algorithm works. Observe that at each step of the iteration, the

next subset added to the current schedule is an available subset (i.e. an initial

subset) that minimizes �(U) = p(U)/w(U). Thus, subsets containing tasks with

small processing times will be favored, which is consistent with the fact that such

tasks delay future tasks by relatively little amounts of time. Also, subsets con-

taining tasks with high deferral rates are favored, as we would expect from the

fact that it is costly to delay such tasks.

For implementing the first instruction of the while-loop, Ichimori et al.

[IIN81] gave an algorithm of time complexity O(n4
). Consequently, because of

the NP-hardness of the problem, the second step of Algorithm 4.2.10 must be of

exponential time complexity. Only for special types of precedence graphs such

as series parallel graphs, the second step of the Algorithm 4.2.10 can be imple-

mented to run in time polynomially bounded in the number of tasks.

Note that in the special case for which there are no precedence constraints

(i.e. ≺ is empty), Algorithm 4.2.10 reduces to the Smith's ratio rule introduced in

(4.2.2).

Example 4.2.11 [Sid75] Let T = {T1 ,...,T7}, and let the processing times and

weights be given by the vectors p = [5, 8, 3, 5, 3, 7, 6] and w = [1, 1, 1, 1, 1, 1, 1].

The precedence constraints are shown in Figure 4.2.1. The subset U = {T1 , T3} is

96 4 Scheduling on One Processor

initial, and p(U) = 8, w(U) = 2, �(U) = 4. It is easy to verify that there is no other

initial subset V with the property �(V) < �(U). Furthermore, the only proper

subset of U that is initial in (T , ≺) is {T1}, with �(T1) = p1 = 5 > �(U). Hence U

is �*-minimal.

If U is the first subset selected in the while-loop of Algorithm 4.2.10, the

schedule will start with tasks T1 and T3 , and the algorithm proceeds with task set

{T2 , T4 , T5 , T6 , T7}. Next the �*-minimal subset {T2 , T4 , T5} could be chosen,

which gives the partial schedule (T1 , T3 , T2 , T5 , T4) , etc.

T1 T2

T3 T4 T5

T6

T7

Figure 4.2.1 A precedence graph for Example 4.2.11.

A series of branch and bound algorithms have been developed for problem

1 | prec | � wj Cj during the last decades. A more recent algorithm was presented

by Potts [Pot85] where lower bounds are derived using a Lagrangian relaxation

technique in which the multipliers are determined by a cost reduction method. A

zero-one programming formulation of the problem uses variables xij (i, j =

1,..., n) defined by

xij =
�.
�
.

1 if i � j , and task Ti is scheduled before task Tj ,

0 otherwise.

The values of some xij are implied by the precedence constraints, while others

need to be determined. Let eij = 1 when the precedence constraints specify that

task Ti is a predecessor of task Tj and let eij = 0 otherwise. Now, since the com-

pletion of task Tj occurs at time �
i

 pi xij + pj , the problem can be written as

minimize �
i
 �

j
 pi xij wj (4.2.5)

subject to xij � eij (i, j = 1,..., n) , (4.2.6)

 xij + xji = 1 (i, j = 1,..., n; i � j) , (4.2.7)

 4.2 Minimizing Mean Weighted Flow Time 97

 xij + xjk + xki � 2 (i, j, k = 1,..., n; i � j; i � k; j � k) , (4.2.8)

 xij � {0, 1} (i, j = 1,..., n) , (4.2.9)

 xii = 1 (i = 1,..., n) . (4.2.10)

The constraints (4.2.6) ensure that xij = 1 whenever the precedence con-

straints specify that task Ti is a predecessor of task Tj . The fact that any task Ti is

to be scheduled either before or after any other task Tj is presented by (4.2.7).

The matrix X = [xij] may be regarded as the adjacency matrix of a complete

graph GX in which each edge has one of the two possible orientations, and where

G is a sub-graph of GX. As a matter of fact, each such graph GX has the property

that if it contains a cycle, then it contains a directed cycle with three edges. Thus

the constraints (4.2.7) and (4.2.8) ensure that GX contains no cycles. When all

constraints are satisfied, GX defines a complete ordering of the tasks in which

case GX is called the order graph of X .

Using (4.2.7) and (4.2.8), it is possible to derive more general cycle elimina-

tion constraints involving r edges. They are of the form

�
h=1

r
xih ih+1

 � r � 1 , (4.2.11)

where i1 ,..., ir correspond to r different tasks and where ir+1 = i1 . For example,

adding the constraints xhi + xij + xjh � 2 and xhj + xjk + xkh � 2, and using xjh + xhj =

1 yields xhi + xij + xjk + xkh � 3 .

The coefficient piwj of xij in (4.2.5) may be regarded as the cost of schedul-

ing task Ti before Tj . It is convenient to define the cost matrix C = [cij], where

the cost of scheduling task Ti before task Tj is

cij =
�.
�
.

piwj if eji = 0

if eji = 1
(i, j = 1,..., n, i � j). (4.2.12)

Whenever the precedence constraints specify that task Tj is a predecessor of task

Ti , we have cij = # which ensures that constraints (4.2.6) are satisfied without

applying them explicitly. The problem can now be written as

minimize �
i
 �

j
 cij xij

subject to (4.2.7)-(4.2.10).

For special classes of precedence constraints optimization scheduling algo-

rithms running in polynomial time are known. Horn [Hor72] and Adolphson and

Hu [AH73] discussed the problem for tree-like precedence graphs. For series-

parallel precedence graphs, Lawler [Law78] presented an O(nlogn) time algo-

rithm where an interchange relation similar to that presented in (4.2.1) is applied.

Ichimori et al. [IIN81] considered classes of graphs for which Algorithm 4.2.10

98 4 Scheduling on One Processor

has polynomial time complexity. They showed that if the precedence constraints

≺ are such that the �*-minimal subsets for (T , ≺) are series-parallel, Algorithm

4.2.10 can be implemented to run in O(n5
) time. In fact, Lawler [Law78] was

able to prove the existence of exact algorithms for scheduling problems with far

more general optimization criteria than � wj Cj . Let again " be a real-valued func-

tion on permutations. Note that a schedule for one processor is defined by a per-

mutation of the given task set, hence, as the order of task execution is restricted

by the given precedence constraints, only "feasible" permutations are allowed. A

permutation + is called feasible if Ti ≺ Tk implies that task Ti precedes task Tk

under +. The objective is to find a feasible permutation +* such that

"(+*) = min{"(+) | + feasible} .

Unfortunately, the task interchange relation introduced in (4.2.1) is not general

enough to solve this problem. Instead considering pairs of tasks, we should ra-

ther deal with pairs of strings of tasks: A string interchange relation is a transi-

tive and complete relation <
.
 on strings with the property that for any two disjoint

strings , and ,' of tasks, and any permutation of the form (,,'* we have

, <
.
 ,' � "((,,'*) � "((,',*) .

Smith's WSPT rule can again be used to define a string interchange relation: for

any string ,, define �, = �
Tj �,

 pj / �Tj �,
 wj , and , <

.
 ,'
 �, � �,' . A reasoning simi-

lar to that following (4.2.2) proves that function � wj Cj admits this string inter-

change relation <
.
.

Clearly, a string interchange relation implies a task interchange relation; but it

is not true in general that every function " which admits a task interchange rela-

tion also has a string interchange relation. Lawler's result is the following.

Theorem 4.2.12 [Law78] If " admits a string interchange relation <. and if the
precedence constraints ≺ are series-parallel, then an optimal permutation +*
can be found by an algorithm which requires O(nlogn) comparisons of strings
with respect to <. .

Recall from Section 2.3 that series-parallel precedences can be described by

means of a decomposition tree (see for example Figure 2.3.4). Working from the

bottom of the tree upward, we can compute a set of strings of tasks for each node

of the tree from the sets of strings obtained for its children. The objective is to

obtain a set of strings at the root such that concatenating these strings in order

according to <
.
 yields an optimal feasible schedule. We will accomplish this ob-

jective if each set S of strings obtained satisfies two conditions.

(i) Any concatenation of the strings in a set S in order according to <
.
 does not

contradict the order given by the precedence constraint ≺, and

 4.3 Minimizing Due Date Involving Criteria 99

(ii) At any point in the computation, let S1 ,...,Sk be the sets of strings computed

for nodes such that sets have not yet been computed for their parents. Then some

ordering of the strings in the set S
1 �...� Sk yields an optimal feasible sub-

schedule.

If the strings computed at the root are concatenated in order according to <
.
,

then condition (i) ensures that the resulting schedule is feasible, and condition
(ii) ensures that it is optimal.

There is another class of promising scheduling algorithms. These algorithms ob-

tain optimal schedules by finding optimal sub-schedules for progressively larger

modules of tasks until all tasks are scheduled. This idea can be, for example, ap-

plied to series-parallel graphs which can be built up recursively from modules as

specified by the decomposition tree (see Section 2.3.2). Möhring and Raderma-

cher [MR85] generalized the notion of a decomposition tree to arbitrary prece-

dence graphs. For the class of all precedence graphs built up by substitution from

prime (indecomposable) modules of size � k, k arbitrary, there is an optimization

algorithm of complexity O(n(k2
)
) to minimize � wj Cj . Sidney and Steiner [SS86]

improved this algorithm to run in O(nw+1
) time, where w denotes the maximum

width of a prime module.

The idea of decomposing posets into prime modules can also be applied to

optimization criteria other than � wj Cj , as for example for the exponential cost

function criterion (see Section 4.4.2). Monma and Sidney [MS87] proved that if

the objective function obeys certain interchange properties then the so-called job
module property is satisfied. The job module property says that any optimal solu-

tion to a sub-problem defined by a task module is consistent with at least one

optimal schedule for the entire problem.

Problems 1 | prec, rj | �� wj Cj and 1 | prec, d~j | � wj Cj

Lenstra and Rinnooy Kan [LRK80] proved that the problems 1 | chains, rj , pj = 1 |

� wj Cj and 1 | chains, d~j , pj = 1 | � wj Cj of scheduling unit time tasks subject to

chain-like precedence constraints and either arbitrary release dates or arbitrary

deadlines so as to minimize � wj Cj are both NP-hard.

4.3 Minimizing Due Date Involving Criteria

In this section scheduling problems with optimization criteria involving due

dates will be considered. These include: maximum lateness Lmax , weighted num-

ber of tardy tasks � wj Uj , mean weighted tardiness � wj Dj , and a combination of

earliness-tardiness criteria.

100 4 Scheduling on One Processor

4.3.1 Maximum Lateness

Whereas the problem 1 | | Lmax can easily be solved in polynomial time by Jack-

son's earliest due date algorithm, other cases turn out to be more complex. The

problem 1 | rj | Lmax is strongly NP-hard [LRKB77]. For this, and for 1 | prec, rj |

Lmax as well, solution methods based on branch and bound are known. If tasks

are preemptable or have unit processing time, the problem is easy, even if the

order of task execution is constrained by a precedence relation [Bla76, Sid78,

Mon82].

Problem 1 | | Lmax

The earliest due date algorithm (EDD rule) of Jackson [Jac55] provides a simple

and elegant solution to this problem. In this algorithm, tasks are scheduled in

order of non-decreasing due dates. The optimality of this rule can be proved by a

simple interchange argument. Let S be any schedule and S* be an EDD schedule.

If S � S* then there exist two tasks Tj and Tk with dk � dj , such that Tj immediate-

ly precedes Tk in S, but Tk precedes Tj in S*. Since dk � dj , interchanging the po-

sitions of Tj and Tk in S cannot increase the value of Lmax . A finite number of

such changes transforms S into S*, showing that S* is optimal. The EDD rule

minimizes maximum lateness and maximum tardiness as well.

Problem 1 | rj | Lmax

The problem 1 | rj | Lmax is known to be NP-hard in the strong sense [LRKB77].

Many exact algorithms have been proposed for this problem, but they are all

based on enumerative methods and their computation time grows exponentially

with the size of the problem. Research on this problem has focused on reducing

the computational time for scheduling large task sets. Achieving this goal will

also improve the efficiency of algorithms used to solve the more difficult Pm | rj |

Lmax problem by using the optimal solutions to the 1 | rj | Lmax problem [LLRK76].

There is certain symmetry inherent in the problem which becomes apparent

if the model is presented in an alternative way. In this delivery time model, there

are three processors, P1 , P2 , and P3 , where P1 and P3 are assumed to be non-
bottleneck processors of infinite capacity, and P2 is a bottleneck processor of

capacity 1 (i.e. only one task can be processed at a time). Each task Tj has to visit

P1 , P2 , P3 in that order and has to spend

� a head T
 j
 (1)

 on P1 during time interval [0, rj) ,

� a body T j
 (2)

 on P2 from time sj � rj to Cj = sj + pj ,

� a tail T j
 (3)

 on P3 from time Cj to Lj' = Cj + qj ,

 4.3 Minimizing Due Date Involving Criteria 101

where the processing time qj of tail T j
 (3)

 is assumed to be K � dj for some constant

K � max
i

 {di}. The objective is to minimize the maximum completion time Lmax' =

max
i

 {Li'} = Lmax + K. Notice that this model is exactly the same as the delivery

time model discussed in Section 4.1.2. Whereas the head part of a task simply

realizes the release time, the body part corresponds to the actual task to be pro-

cessed on the single processor, and the tail part represents the delivery time of

the task.

We will refer to the delivery time model as (r, p, q) where r, p, q are vectors

of dimension n specifying release times (heads), processing times (bodies), and

tails, respectively, for the tasks. It is interesting to note that problem (r, p, q) can

be reversed: the inverse problem is defined by (q, p, r), and an optimal schedule

for (q, p, r) can be reversed to obtain an optimal schedule for (r, p, q), with the

same value of Lmax .

Of particular importance are the algorithms of Bratley et al. [BFR73], Baker

and Su [BS74], and McMahon and Florian [MF75]. The algorithm of McMahon

and Florian (in the following referred to as MF algorithm) follows a novel ap-

proach in the way it applies the branch and bound method to scheduling prob-

lems. It searches for an optimal schedule over a tree of all possible schedules.

Unlike other branch and bound algorithms in which most nodes in the tree repre-

sent partial schedules, the MF tree defines a complete schedule on each node.

The schedule is used to derive a lower bound (LB) and an upper bound (UB) on

the optimal solution at that node. In addition, the value of the maximum lateness

of all tasks (Lmax) in the schedule is computed. The search strategy is of the

jumptracking type and follows always the node with the current lowest LB (the

current node). From that node, only schedules which can potentially reduce the

value of Lmax are generated. The current lowest upper bound (LUB) is continually

updated, and a node is eliminated if its LB � LUB. The search stops when the

current node passes an optimality test. The algorithm derives its efficiency from

the procedures which perform the following functions:

(1) construct a complete schedule at each node, including the initial schedule;

(2) test each schedule for optimality and compute the lower bound if the current

solution is not proven optimal;

(3) generate successor of a node.

The MF algorithm can be characterized as a forward scheduling procedure

since it starts by placing a task in the first position and continues to place tasks in

succeeding positions until it reaches the task in the last position. It turns out that

the MF algorithm tends to be inefficient when the problem (r, p, q) has a particu-

lar structure, for example when the range of ready times is less than that of due

dates. Recognizing this difficulty, Lenstra [Len77] reversed the problem to (q, p,

r). Since the ready times (rj) are exchanged with the values qj , the ranges of

ready times and due dates are exchanged, too. As a consequence, the perfor-

mance of the MF algorithm was improved considerably.

102 4 Scheduling on One Processor

Erschler et al. [EFMR83] introduced a new dominance concept which per-

mits a restricted set of schedules (the "most feasible ones") to be established on

the basis of the ordering of ready times and due dates only. In particular, this

dominance property is independent of task processing times, which is especially

attractive if the data are not reliable. Carlier [Car82] and Larson et al. [LDD85]

improved the previous algorithms with approaches following the MF algorithm,

where the principles of branching are quite different and fully exploiting the

problems' symmetrical features.

Compared to the branch and bound algorithms known for the problem in

question, heuristic algorithms such as special list scheduling algorithms can be

extremely efficient and often provide solutions adequate for practical applica-

tions. They can also be used to provide upper bounds on the criterion values of

optimal schedules. This practical and theoretical importance of the problem mo-

tivates the search for efficient approximation algorithms with guaranteed accura-

cies. Larson and Dessouky [LD78] considered eleven heuristic algorithms and

compared them experimentally. Kise et al. [KIM79] discussed several heuristic

strategies from a more theoretical point of view. Among them are simple heuris-

tics such as Jackson's EDD rule, or an algorithm where tasks are scheduled in

order of their ready times, or combinations of these two strategies. The main re-

sult of [KIM79] is that the relative deviation Lmax /L*
max of the approximate solu-

tions is not larger than 2 � 2/p where p is the sum of processing times of the tasks.

For an iterative version of Jackson's rule (IJ) Potts [Pot80b] was able to prove

Lmax(IJ) /L * max � 3/2 .

Hall and Shmoys [HS88] proved that a modification of IJ, MIJ, where the roles

of release times and delivery times are interchanged, guarantees

Lmax(MIJ) /L* max � 4/3 .

In the same paper, the authors also presented two algorithms A1k and A2k that

guarantee

Lmax(Aik) /L * max � 1 + 1/k for i = 1, 2 and natural k .

A1k runs in O(nlogn + nk16k2
+8k

) time, whereas A2k runs in O(2
4k

(nk)
4k+3

) time.

The case of equal due dates is equivalent to 1 | rj | Cmax which can be solved

optimally by scheduling the tasks in order of non-decreasing release dates (see

Section 4.1).

If all execution times pj are equal (but due dates are different), a polynomial

time method is not available, unless pj = 1 for all tasks Tj . If all tasks have unit

execution times (1 | rj , pj = 1 | Lmax), an optimal schedule is generated in polyno-

mial time by involving repeated application of Jackson's EDD rule.

 4.3 Minimizing Due Date Involving Criteria 103

Algorithm 4.3.1 Modification of EDD rule for 1 | rj , pj = 1 | Lmax [LLRK76].

begin

t := 0;

while T � � do

 begin

 t := max{t, min
Tj �T

{rj}};

 T ' := {Tj | Tj � T , rj � t};

 Choose Ti � {Tj | Tj � T ' for which dj = min{dk | Tk � T '}};

 T := T � {Ti};

 Schedule Ti at time t;

 t := t + 1;
 end;
end;

The proof of this result is straightforward and depends on the fact that no task

can become available during the processing of another one, so that it is never

advantageous to postpone processing the selected task Ti (recall that all rj's are

assumed to be integer).

If pj = p, where p is an arbitrary integer, Algorithm 4.3.1 is not exact if p

does not divide all rj . For example, if n = p = 2, r1 = 0, r2 = 1, d1 = 7, d2 = 5,

postponing T1 is clearly advantageous. Simons [Sim78] presented a more sophis-

ticated approach to solve the problem 1 | rj , pj = p | Lmax , where p is an arbitrary

integer.

Problem 1 | pmtn, rj | Lmax

For the preemptive case, 1 | pmtn, rj | Lmax , a modification of Jackson's rule due to

Horn [Hor74] solves the problem optimally in polynomial time.

Algorithm 4.3.2 for problem 1 | pmtn, rj | Lmax [Hor74].

begin

repeat

 �1 := min
Tj �T

{rj};

 if all tasks are available at time �1

 then �2 := #

 else �2 := min{rj | rj � �1};

 E := {Tj | rj = �1};

 Choose Tk � E such that dk = min
Tj �E

{dj};

� l := min{pk$ �2 � �1/;

104 4 Scheduling on One Processor

 Assign Tk to the interval [�1, �1 + l);

 if pk � l
 then T := T � {Tk}

 else pk := pk � l;

 for all Tj � E do rj := �1 + l;

until T = �;

end;

Problem 1 | prec, rj | Lmax

We first emphasize that the considerations concerning symmetry of problems

1 | rj | Lmax can be generalized to the case of precedence constraints. If a problem

is specified by a triple of vectors (r, p, q) and - in addition - a precedence relation

≺, this is clearly equivalent to the inverse problem defined by (q, p, r) and ≺'
with Ti ≺' Tj if Tj ≺ Ti. Again, an optimal schedule for a problem can be reversed

to obtain an optimal schedule for the original problem, with the same criterion

value.

Let us now examine the introduction of precedence constraints in the prob-

lem in detail. As a general principle, release times rj and tails qj may be replaced

by

rj = max {rj, max{ri + pi | Ti ≺ Tj}}

qj = min {qj, min{pi + qi | Tj ≺ Ti}} ,

because in every feasible schedule sj � Ci � ri + pi for all Tj with Ti ≺ Tj and Li' �

Cj + pi � qi for all Tj with Tj ≺ Ti . Hence, if Ti ≺ Tj , we may assume that ri + pi �

rj and qi � qj + pj .

It follows that the case in which all due dates are equal is again solved by

ordering the tasks according to non-decreasing rj . Such an ordering will respect

all precedence constraints in view of the preceding argument. If we apply this

method to the problem in which all rj's are equal, i.e. for 1 | prec | Lmax , the result-

ing algorithm can be interpreted as a special case of Lawler's more general algo-

rithm to minimize max
j

{Gj(Cj)} for arbitrary non-decreasing cost functions Gj

(cf. Section 4.5). A similar observation can be made with respect to the case pj =

1 for all j, where Algorithm 4.3.1 will produce a schedule respecting the prece-

dence constraints.

In the general case, however, the precedence constraints are not respected

automatically. Consider for example five tasks with release times r = [0, 2, 3, 0,

7], processing times p = [2, 1, 2, 2, 2], and tales q = [5, 2, 6, 3, 2], and the prece-

dence constraint T4 ≺ T2 (cf. [LRK73]); note that r4 + p4 � r2 and q4 � p2 + q2. If

the constraint T4 ≺ T2 is ignored, the unique optimal schedule is given by (T1 ,

 4.3 Minimizing Due Date Involving Criteria 105

T2 , T3 , T4 , T5) with value L *
max = 11. Explicit inclusion of this constraint leads to

L *
max = 12 .

The MF algorithm introduced by McMahon and Florian [MF75] can easily

be adapted to deal with given precedence constraints. Since we may assume that

ri < rj and qi > qj if Ti ≺ Tj , they are respected by the MF algorithm, and obvi-

ously, the lower bound remains valid.

Problem 1 | pmtn, prec, rj | Lmax

This problem can be solved in O(n2
) time by an application of the algorithm giv-

en in [Bla76], which combines the ideas of Lawler's approach to the solution of

problem 1 | prec | Lmax and these of Algorithm 4.3.2. We mention here that in fact

the much larger class of problems 1 | pmtn, prec, rj | Gmax , where quite arbitrary

cost functions are assigned to the tasks and maximum cost is to be minimized,

can be optimally solved in time O(n2
). This will be discussed in Section 4.5.

Minimizing Lateness Range

The usual type of scheduling problems considered in literature involves penalty

functions which are non-decreasing in task completion times. Conway et al.

[CMM67] refer to such functions as regular performance criteria. There are,

however, many applications in which non-regular criteria are appropriate. One

of them is the problem of minimizing the difference between maximum and min-

imum task lateness which is important in real life whenever it is desirable to give

equal treatment to all customers (tasks). That is, the delays in filling the customer

orders should be as nearly equal as possible for all customers. Another example

are file organization problems the objective is to minimize the variance of re-

trieval times for records in a file.

In spite of the importance of non-regular performance measures, very little

analytical work has been done in this area. Gupta and Sen [GS84] studied the

problem 1 | | Lmax � Lmin where the tasks are pair-wise independent, ready at time

zero, each having a due date dj and processing time pj . They used a heuristic rule

in which tasks are ordered according to non-decreasing values of dj � pj (mini-
mum slack time rule, MST), and ties are broken according to earliest due dates.

This heuristic allows to compute lower bounds for Lmax � Lmin which are then

used in a branch and bound algorithm to eliminate nodes from further considera-

tion.

A more general objective function has been considered by Raiszadeh et al.

[RDS87]. Their aim was to minimize the convex combination Z = 0(Lmax �

Lmin) + (1 � 0)Lmax , 0 � 0 � 1, of range of minimum and maximum lateness.

106 4 Scheduling on One Processor

Let all the tasks be arranged in the earliest due date order (EDD) and in-

dexed accordingly (T1 ,...,Tn). Thus for any two tasks Ti , Tj � T , if di < dj , we

must have i < j. Ties are broken such that di � pi � dj � pj , i.e. in the minimum

slack time (MST) order. If there is still a tie, it can be broken arbitrarily.

Let S be a schedule in which task Ti immediately precedes task Tj , and let S'
be constructed from S by interchanging tasks Ti and Tj without changing the po-

sition of any other task in S. Then, due to [RDS87], we have the following result

for the values Z of S and S' .

Lemma 4.3.3 (a) If di � pi � dj � pj , then Z(S) � Z(S') .

(b) If di � pi > dj � pj , then Z(S) � Z(S') � 0((di � pi) � (dj � pj)) .

Lemma 4.3.3 can be used to find lower bounds for an optimal solution. This

computation is illustrated in the following example.

Example 4.3.4 [RDS87] Consider n = 4 tasks with processing times and due

dates given by p = [6, 9, 11, 10] and d = [17, 18, 19, 20], respectively. For the

EDD ordering S = (T1 , T2 , T3 , T4) , the value of the optimization criterion is

Z(S) = 16 + 110. Call this ordering "primary". A "secondary" ordering (this nota-

tion is due to Townsend [Tow78]) is obtained by repeatedly interchanging

neighboring tasks Ti , Tj with di � pi > dj � pj , until tasks are in MST order. From

Lemma 4.3.3(b) we see that such an exchange operation will improve the criteri-

on value of the schedule by at most 0((di � pi) � (dj � pj)). For each interchange

operation the maximum potential reduction (MPR) of the objective function is

given in Table 4.3.1. Obviously, the value Z(S) of the primary order can never be

improved by more than 70, hence Z(S) � 70 = 16 + 40 is a lower bound on the

optimal solution.

Original Schedule Interchange Changed Schedule MPR

(T1, T2, T3, T4) T1 and T2 (T2, T1, T3, T4) 20

(T2, T1, T3, T4) T1 and T3 (T2, T3, T1, T4) 30

(T2, T3, T1, T4) T1 and T4 (T2, T3, T4, T1) 10

(T2, T3, T4, T1) T2 and T3 (T3, T2, T4, T1) 10

 total 70

Table 4.3.1.

This bounding procedure is used in a branch and bound algorithm where a search

tree is constructed according to the following scheme. A node at the r
th level of

the tree corresponds to a particular schedule with the task arrangement of the

first r positions fixed. One of the remaining n � r tasks is then selected for the

 4.3 Minimizing Due Date Involving Criteria 107

(r + 1)st position. The lower bound for the node is then computed as discussed

above. For this purpose the primary ordering will have the first r + 1 positions

fixed and the remaining n � r � 1 positions in the MST order. Pairwise inter-

changes of tasks are executed among the last n � r � 1 positions. At each step the

branching is done from a node having the least lower bound.

A performance measure similar to the one considered above is the average

deviation of task completion times. Under the restriction that tasks have a com-

mon due date d, a schedule which minimizes �
j=1

n
�Cj � d� has to be constructed.

This type of criterion has applications e.g. in industrial situations involving

scheduling, where the completion of a task either before or after its due date is

costly. It is widely recognized that completion after a due date is likely to incur

costs in the loss of the order and of customer goodwill. On the other hand, com-

pletion before the due date may lead to higher inventory costs and, if goods are

perishable, potential losses.

Raghavachari [Rag86] proved that optimal schedules are "V-shaped". Let Tk

be a task with the smallest processing time among all the tasks to be scheduled.

A schedule is V-shaped if all tasks placed before task Tk are in descending order

of processing time and the tasks placed after Tk are in ascending order of pro-

cessing time. For the special case of d = �
j=1

n
 pj , an optimal schedule for

1 | | � �Cj � d� can be obtained in the following way.

Algorithm 4.3.5 for problem 1 | | � �Cj � d� [Kan81].

Method: The algorithm determines two schedules, S �
 and S >

 . The tasks of S �
 are

processed without idle times, starting at time d � �
Tj �S �

 pj$ the tasks of S >
 are pro-

cessed without idle times, starting at time d .

begin

S �
 := �; S >

 := �; -- initialization: empty schedules

while T � � do

 begin

 Choose Tl � T such that pl = max
j

 {pj | Tj � T };

 T := T � {Tl}; S �
 := S �

 1 (Tl);

 -- Task Tl is inserted into the last position in sub-schedule S �

 if T � � do

 begin

 Choose Tl � T such that pl = max
j

 {pj | Tj � T };

 T := T � {Tl}; S >
 := (Tl) 1 S >

 ;

 -- Task Tl is inserted before the first task of sub-schedule S �

108 4 Scheduling on One Processor

 end;
 end;
end;
Bagchi et al. [BSC86] generalized this algorithm to the case

d �
�
�

 p1 + p3 +...+ pn�1 + pn if n is even

 p2 + p4 +...+ pn�1 + pn if n is odd,

where tasks are numbered in non-decreasing order of processing times, p1 �

p2 �...� pn .

An interesting extension of the above criteria is a combination of the late-

ness and earliness. To be more precise, one of the possible extensions is mini-

mizing the sum of earliness and absolute lateness for a set of tasks scheduled

around a common restrictive due date. This problem, known also as the mean

absolute deviation (MAD) one, is quite natural in just-in-time inventory systems

or in scheduling a sequence of experiments that depends on a predetermined ex-

ternal event [GTW88]. In [KLS90] it has been proved that this problem is equiv-

alent to the scheduling problem with the mean flow time criterion. Thus, all the

algorithms valid for the latter problem can be also used for the MAD problem.

On the other hand, however, if a due date is a restrictive one, the MAD problem

starts to be NP-hard (in the ordinary sense) even for one processor [HKS91]. A

pseudopolynomial time algorithm based on dynamic programming has been also

given for this case [HKS91].

On the other hand, one may consider minimizing total squared deviation

about a common unrestrictive due date. This problem is equivalent to the prob-

lem of minimizing the completion time variance and has been transformed to the

maximum cut problem in a complete weighted graph [Kub95]. Its NP-hardness

in the ordinary sense has been also proved [Kub93].

4.3.2 Number of Tardy Tasks

The problem of finding a schedule that minimizes the weighted number � wj Uj

of tardy tasks is NP-hard [Kar72], whereas the unweighted case is simple. Given

arbitrary ready times, i.e. in the case 1 | rj | � Uj , the problem is strongly NP-hard,

as was proved by Lenstra et al. [LRKB77]. If precedence constraints are intro-

duced between tasks then the problem is NP-hard, even in the special case of

equal processing times and chain-like precedence constraints. In [IK78], a heu-

ristic algorithm for problem 1 | tree, pj = 1 | � Uj is presented.

Problem 1 | | �� Uj

Several special cases do admit exact polynomial time algorithms. The most

common special case occurs when all weights are equal. Moore [Moo68] pub-

 4.3 Minimizing Due Date Involving Criteria 109

lished an optimization algorithm that solves the problem in polynomial time.

This algorithm sorts the tasks according to EDD rule (tasks with earlier due dates

first, also known as Hodgson's algorithm).

Algorithm 4.3.6 Hodgson's algorithm for 1 | | � Uj [Law82].

Input: Task set T = {T1,..., Tn}.

Method: The algorithm operates in two steps: first, the subset T � of tasks of T
that can be processed on time is determined; then a schedule is constructed for

the subsets T � , and T >
 = T � T � .

begin
Sort tasks in EDD order; -- w.l.o.g. assume that d1 � d2 �...� dn

T � := �;

p := 0; -- p keeps track of the execution time of tasks of T �
for j := 1 to n do
 begin

 T � := T � � {Tj};

 p := p + pj;

 if p > dj -- i.e. task Tj doesn't meet its due date

 then
 begin
 Let Tk be a task in T � with maximal processing time,

 i.e. with pk = max{pi | Ti � T �};

 p := p � pk;

 T � := T � � {Tk};

 end;
 end;

Schedule the tasks in T � according to EDD rule;

Schedule the remaining tasks (T � T �) in an arbitrary order;

end;

Without proof we mention that this algorithm generates a schedule with the min-

imal number of tardy tasks. The algorithm can easily be implemented to run in

O(nlogn) time.

Example 4.3.7 Suppose there are eight tasks with processing times p = [10, 6, 3,

1, 4, 8, 7, 6] and due dates d = [35, 20, 11, 8, 6, 25, 28, 9]. Set T � will be {T5 , T4 ,

T3 , T2 , T7 , T1}, and the schedule is (T5 , T4 , T3 , T2 , T7 , T1 , T6 , T8). Table 4.3.2

compares the due dates and completion times; note that the due dates of the last

two tasks are violated.

110 4 Scheduling on One Processor

 T5 T4 T3 T2 T7 T1 T6 T8

Due date dj 6 8 11 20 28 35 25 9

Completion time Cj 4 5 8 14 21 31 39 45

Table 4.3.2 Due dates and completion times in Example 4.3.7.

Problem 1 | | �� wj Uj

Karp [Kar72] included the decision version of minimizing the weighted sum of

tardy tasks in his list of 21 NP-complete problems. Even if all the due dates dj

are equal, the problem is NP-hard; in fact, this problem is equivalent to the knap-

sack problem and thus is not strongly NP-hard. An optimal solution for

1 | | � wj Uj can be specified by a partition of the task set T into two subsets T �

and T > as defined above. Thus it suffices to find an optimal partition of the task

set T .
Sahni [Sah76] developed an exact pseudopolynomial time algorithm for

1 | | � wj Uj with different due-dates which is based on dynamic programming and

requires O(n� wj) time. Using digit truncation, depending from which digit on the

weights are truncated, a series of approximation algorithms A1 ,...,Ak (a so-

called approximation scheme) with O(n3k) running time can be derived such that

� (wjU
�

j(Ak)) / U �*
w � 1 � 1/k ,

where U �j = 1 � Uj . Note that � wjU
�

j is the weighted sum of on-time tasks. It is

possible to decide in polynomial time whether � wj U*
j = 0. Gens and Levner

[GL78] developed an algorithm Bk with running time O(n3
) such that

UBk
w / U*

w � 1 + 1/k .

The same authors improved the implementation of algorithm Bk to run in

O(n2
logn + n2k) time [GL81].

When all processing times are equal, the problem 1 | pj = 1 | � wj Uj can easily

be solved. For the more general case of 1 | | � wj Uj where processing times and

weights are agreeable, i.e. pi < pj implies wi � wj , an exact O(nlog n) time algo-

rithm can be obtained by a simple modification of the Hodgson's algorithm

[Law76]. We will present this algorithm below.

Suppose tasks are placed and indexed in EDD order. For j � {1,..., n}, T �

is said to be j-optimal if T � � {T1 ,...,Tj} and the sum of weights of tasks in T �

is maximal with respect to all feasible sets having that property. Thus, an optimal

solution is obtained from an n-optimal set T � processed in non-decreasing due

 4.3 Minimizing Due Date Involving Criteria 111

date order, and then executing the tasks of T � T � in any order. Lawler's algo-

rithm is a variation of Algorithm 4.3.6 for the construction of j-optimal sets. The

following algorithm uses a linear ordering <&& induced on tasks by their relative
desirability, for inclusion in an on-time set, i.e.:

Ti <
& Tj if and only if pi > pj , or

 pi = pj and wi < wj , or

 pi = pj and wi = wj and i < j .

Algorithm 4.3.8 for problem 1 | | � wj Uj with agreeable weights [Law76].

begin

Sort tasks according to EDD rule; -- w.l.o.g. assume that d1 � d2 �...� dn

T 0
 := �;

for j := 0 to n – 1 do

 if p(T j�1
) + pj � dj

 -- p(T j�1
) denotes the sum of processing times of tasks in T j�1

 then T j
 := T j�1

 � {Tj}

 else

 begin

 Choose Tl � T j�1
 � {Tj} minimal with respect to <&;

 T j
 := (T j�1

 � {Tj}) � {Tl};

 end;
end;

It is easy to prove that for all j, T j
 is a j-optimal set. Hence, T n

 presents an exact

solution in the sense that all tasks of T n
 are completed on time, and the tasks of

T � T n
 are tardy.

Another special case considered by Sidney [Sid73] assumes that the tasks of

a given subset T ' � T must be completed on time. This problem can be formu-

lated as 1 | | � wj Uj where the weights wj are 0 or 1. Sidney presented two algo-

rithms of polynomial time complexity which generalize the Hodgson's algorithm

and solve the problem optimally.

Problem 1 | rj | � wj Uj

This scheduling problem is known to be NP-hard in the strong sense [LRKB77].

If, however, all weights are 1 and there are certain dependencies between ready

times and due dates, optimal schedules can be constructed in polynomial time.

Kise et al. [KIM78] used a variation of Lawler's Algorithm 4.3.8, and Lawler

[Law82] proved that the algorithm can be improved to run in O(nlog n) time. For

112 4 Scheduling on One Processor

a given set of tasks, the release times and due dates are called consistent, if ri < rj

implies di � dj for all tasks Ti , Tj . We start with ordering tasks according to both,

non-decreasing ready times and non-decreasing due dates. Without loss of gen-

erality we may assume that the tasks are already indexed appropriately, i.e. r1 �

r2 � ...� rn and d1 � d2 � ...� dn . Any schedule S can again be described by a

partition of task set T into on-time set T � and tardy set T > . Tasks of T � are pro-

cessed in EDD order, so they are ordered according to their indices. Let T �
{Tk1

 ,...,Tkm
}, k1 < ...< km . The completion time Cki

 of task Tki
 in this schedule is

given by

Ck1
 = rk1

 + pk1

Cki
 = max{Cki�1

, rki
} + pki

 (i = 2,..., m) .

Then the last task of T � is completed at time C(T �) = Ckm
 .

The following algorithm generates optimal schedules for the subsets

{T1 ,...,Ti} in the order of i = 1,..., n. Let an optimal schedule for {T1 ,...,Ti} be

specified by the subset Ei � {T1,..., Ti} of on-time tasks. Then, set En will yield

an optimal schedule for T.

Algorithm 4.3.9 for computing En [KIM78].

begin

Order tasks according to both, non-decreasing ready times and non-decreasing

due dates;
E0 := �;

for j := 1 to n do
 begin

 Ej := Ej�1 � {Tj};
 -- a sub-schedule S(Ej) is obtained by sequencing the tasks of Ej in EDD order

 if C(Ej) > dj

 -- C(Ej) denotes the completion time of the last task in S(Ej)

 then
 begin

Choose Tk � Ej such that the sub-schedule obtained for Ej � {Tk} in EDD

order is of minimal length;

 Ej := Ej � {Tk};

 end;
 end;

end;

 4.3 Minimizing Due Date Involving Criteria 113

We mention that, under the condition of consistent release times and due dates,

Algorithm 4.3.9 determines an optimal schedule for problem 1 | rj | � Uj in O(n2
)

time.

Example 4.3.10 Let 6 tasks already be ordered according to increasing ready

times, p = [4, 3, 3, 7, 7, 4], r = [0, 0, 4, 4, 5, 8], d = [4, 5, 7, 11, 14, 15]. Algorithm

4.3.9 determines set En to be En = {T2 , T3 , T6}, and the corresponding optimal

schedule is (T2 , T3 , T6 , T1 , T4 , T5) where the last three tasks are tardy.

If task preemptions are allowed, dynamic programming algorithms can be ap-

plied to solve 1 | pmtn, rj | � Uj in O(n5
) time, and 1 | pmtn, rj | � wj Uj in time

O(n3
(� wj)

2
). We refer the interested reader to [Law82].

Problem 1 | prec | �� wj Uj

Lenstra and Rinnooy Kan [LRK80] proved that the 3-PARTITION problem (see

Section 4.1.1) is reducible to the decision version of the problem 1 | chains, pj =

1 | � Uj. Hence, scheduling unit time tasks on a single processor subject to chain-

like precedence constraints so as to minimize the unweighted number of late

tasks is NP-hard in the strong sense. For 1 | forest | � wj Uj , Ibarra and Kim [IK78]

discussed an algorithm that finds for any positive integer k an approximate

schedule Sk
 such that

Uk
w /U*

w < 1 +
�

k+1 .

The approximate solution is found in O(knk+2
) time. They give also examples

showing that the algorithm is not applicable to tasks forming an arbitrary prece-

dence graph.

4.3.3 Mean Tardiness

In this section we will consider problems concerned with the minimization of

mean or mean weighted tardiness.

Problem 1 | | � wj Dj

McNaughton [McN59] has shown that preemption cannot reduce mean weighted

tardiness for any given set of tasks. Thus, an optimal preemptive schedule has

the same value of mean weighted tardiness as an optimal, non-preemptive sched-

ule. It has been shown by Lawler [Law77] and by Lenstra et al. [LRKB77] that

the problem of minimizing mean weighted tardiness is NP-hard in the strong

114 4 Scheduling on One Processor

sense. If all weights are equal, the problem is still NP-hard in the ordinary sense

[DL90]. If unit processing times are assumed but weights are arbitrary, the prob-

lem can be formulated as a linear assignment problem, and hence it can be

solved in O(n3
) time [GLL+79]. If in addition all tasks have unit weights, simply

sequencing tasks in non-decreasing order of their due dates minimizes the total

tardiness, and hence this special problem can be solved in O(nlog n) time.

In more detail we will consider another special problem of type 1 | | � wj Dj

where weights of tasks are agreeable (see Section 4.3.2) and processing times

are integer. Lawler [Law77] presented a pseudopolynomial dynamic program-

ming algorithm of the worst-case running time O(n4p) or O(n5pmax) , if p = � pj ,

and pmax = max{pj}, respectively. The algorithm is pseudopolynomial because its

time complexity is polynomial only with respect to an encoding in which pj val-

ues are expressed in unary notation (see Section 2.2). We are going to present

this algorithm.

Recall from Section 4.3.2 that weights of tasks of a set {T1 ,...,Tn} are

called agreeable iff pi < pj implies wi � wj for all i, j � {1,..., n}. The algorithm

is based on the following theorem which claims an important property of an op-

timal schedule for 1 | | � wj Dj .

Theorem 4.3.11 [Law77] Suppose the tasks are agreeably weighted and num-
bered in non-decreasing due date order, i.e. d1 � d2 �...� dn . Let task Tk be such
that pk = max{pj | j = 1,..., n}. Then there is some index 2, k � 2 � n, such that
there exists an optimal schedule S in which Tk is preceded by all tasks Tj with j �

2 and j � k, and followed by all tasks Tj with j > 2 .

Tk

t

T1 Tk�1 Tk+1 T2 T2+1 Tn

0 C2

Figure 4.3.1 An illustration of Theorem 4.3.11.

Thus, if Tk is a task with largest processing time, then for some task T2 , k � 2 �

n, there exists an optimal schedule where (see Figure 4.3.1)

(i) tasks T1 , T2 ,...,Tk�1 , Tk+1 ,...,T2 form a partial schedule starting at time 0,

which are followed by

(ii) task Tk, with completion time C2 = �
j � 2

 pj , followed by

(iii) tasks T2+1 , T2+2 ,...,Tn , forming another partial schedule starting at time C2 .

The overall schedule is optimal only if the partial schedules in (i) and (iii) are

optimal, for starting times 0 and C2 , respectively. This observation suggests a

 4.3 Minimizing Due Date Involving Criteria 115

dynamic programming algorithm for the problem solution. For any given subset

T ' of tasks and starting time t � 0, there is a well-defined scheduling problem.

An optimal schedule for problem (T , t) can be found recursively from the opti-

mal schedules for problems of the form (T ', t'), where T ' is a proper subset of T ,

and t' � t .

Algorithm 4.3.12 for problem 1 | | � wj Dj [Law77].

Method: The algorithm calls the recursive procedure sequence with parameters t,
denoting the start time of the sub-schedule to be determined, T ' representing a

subset of tasks numbered in non-decreasing due date order, and S' being an opti-

mal schedule for the tasks in T ' .

Procedure sequence(t, T ' ; var S');

begin

if T ' = � then S' is the empty schedule

else
 begin

 Let T1,..., Tm be the tasks of T ' , and d1 � d2 �...� dm;

 Choose Tk with maximum processing time among the tasks of T ';

 for 2 := k to m do
 begin

 Let T �2
 be the subset {Tj | j � 2, j � k} of T ' tasks;

 Let T >2
 be the subset {Tj | j > 2} of T ' tasks;

 Call sequence(t, T �2
, S �2

);

 C2 := t + �
j�2

 pj;

 Call sequence(C2,T >2
, S >2

);

 -- optimal sub-schedules for T �2 and T >2 are created

 S2 := S �2
 1 (Tk) 1 S >2;

 -- concatenation of sub-schedules and task Tk is constructed

Compute value D
_
2
w = � wj Dj of sub-schedule S2;

 end;

Choose S' with minimum value D
_
2
w among the schedules S2, k � 2 � m;

 end;

end;

begin -- main algorithm

Order (and index) tasks of T in non-decreasing due date order;

T := (T1,...,Tn);

116 4 Scheduling on One Processor

Call sequence(0, T , S);
 -- this call generates an optimal schedule S for T , starting at time 0
end;

It is easy to establish an upper bound on the worst-case running time required to

compute an optimal schedule for the complete set of n tasks. The subsets T '
which enter into the recursion are of a very restricted type. Each subset consists

of tasks whose subscripts are indexed consecutively, say from i to j, where pos-

sibly one of the indices, k, is missing, and where the processing times pi ,...,pj of

the tasks Ti ,...,Tj are less than or equal to pk. There are no more than O(n3
) such

subsets T ', because there are no more than n values for each of the indices, i, j, k;

moreover, several distinct choices of the indices may specify the same subset of

tasks. There are surely no more than p = �
j=1

n
 pj � npmax possible values of t. Hence

there are no more than O(n3p) or O(n4pmax) different calls of procedure sequence

in Algorithm 4.3.12. Each call of sequence requires minimization over at most n

alternatives, i.e. in addition O(n) running time. Therefore the overall running

time is bounded by O(n4p) or O(n5pmax) .

Example 4.3.13 [Law77] The following example illustrates performance of the

algorithm. Let T = {T1 ,...,T8}, and processing times, due dates and weights be

given by p = [121, 79, 147, 83, 130, 102, 96, 88], d = [260, 266, 269, 336, 337, 400,

683, 719] and w = [3, 8, 1, 6, 3, 3, 5, 6], respectively. Notice that task weights are

agreeable. Algorithm 4.3.12 calls procedure sequence with T = (T1 ,...,T8), T3 is

the task with largest processing time, so in the for-loop procedure sequence will

be called again for 2 = 3,..., 8. Table 4.3.3 shows the respective optimal sched-

ules if task T3 is placed in positions 2 = 3,..., 8 .

Problem 1 | prec | �� wj Dj

Lenstra and Rinnooy Kan [LRK78] studied the complexity of the mean tardiness

problem when precedence constraints are introduced. They showed that 1 | prec,

pj = 1 | � Dj is NP-hard in the strong sense. For chain-like precedence constraints,

they proved problem 1 | chains, pj = 1 | � wj Dj to be NP-hard.

 4.3 Minimizing Due Date Involving Criteria 117

2 sequence(C2, T', S') optimal schedule value D�2
w

3 sequence(0, {T1,T2}, S�3
)

sequence(347, {T4,T5,T6,T7,T8}, S>3
)

(T1,T2,T3,T4,T6,T7,T8,T5) 2565

4 sequence(0, {T1,T2,T4}, S�4
)

sequence(430, {T5,T6,T7,T8}, S>4
)

(T1,T2,T4,T3,T6,T7,T8,T5) 2084

5 sequence(0, {T1,T2,T4,T5}, S�5
)

sequence(560, {T6,T7,T8}, S>5
)

(T1,T2,T4,T5,T3,T7,T8,T6) 2007

6 sequence(0, {T1,T2,T4,T5,T6}, S�6
)

sequence(662, {T7,T8}, S>6
)

(T1,T2,T4,T6,T5,T3,T7,T8) 1928

7 sequence(0, {T1,T2,T4,T5,T6,T7}, S�7
)

sequence(758, {T8}, S>7
)

(T1,T2,T4,T6,T5,T7,T3,T8) 1785

8 sequence(0, {T1,T2,T4,T5,T6,T7,T8}, S�8
)

sequence(846, �, S>8
)

(T1,T2,T4,T6,T5,T7,T8,T3) 1111

Table 4.3.3 Calls of procedure sequence in Example 4.3.13.

4.3.4 Mean Earliness

It was pointed out by [DL90] that this problem is equivalent to the mean tardi-

ness problem. To see this, we replace the given mean earliness problem by an

equivalent mean tardiness scheduling problem.

Let C = �
j=1

n
 pj . We construct an instance T ' = {T'1 ,..., T'n} of the mean tardi-

ness problem, where p'j = pj for j = 1,..., n, and where the due dates are defined

by d'j = C � dj + pj . Suppose S is an optimal schedule for T . Define a schedule S'
for T ' as follows. If Tj is the kth task scheduled in S, then T'j will be the (n � k

+ 1)th task scheduled in S'. Clearly, we have C'j = C � Cj + pj , and hence

D'j = max{0, C'j � d'j}

 = max{0, (C � Cj + pj) � (C � dj + pj)}

 = max{0, dj � Cj} = Ej .

Thus, E� = D� '. Similarly, if S' is a schedule for T ' such that D� ' is minimum we can

construct a schedule S for T such that E� = D� '. Therefore, the minimum mean ear-

liness of T is the same as the minimum mean tardiness for T '. Hence, as we

118 4 Scheduling on One Processor

know that the mean tardiness problem on one processor is NP-hard, the mean

earliness problem must also be NP-hard.

4.4 Minimizing Change-Over Cost

This section deals with the scheduling of tasks on a single processor where under

certain circumstances a cost is inferred when the processor switches from one

task to another. The reason for such "change-over" cost might be machine setup

operations required if tasks of different types are processed in sequence.

First we present a more theoretical approach where a set of tasks subject to

precedence constraints is given. In this section the purpose of the precedence

relation ≺ is twofold: on one hand it defines the usual precedence constraints of

the form Ti ≺ Tj where task Tj cannot be started before task Ti has been complet-

ed. On the other hand, if Ti ≺ Tj , then we say that processing Tj immediately af-

ter Ti does not require any additional setup on the processor, so processing Tj

does not incur any change-over cost. But if Ti ⊀ Tj , i.e. Tj is not an immediate

successor of Ti , then processing Tj immediately after Ti will require processor

setup and hence will cause change-over cost.

The types of problems we are considering in Section 4.4.1 assume unit

change-over cost for the setups. The problem then is to find schedules that mini-

mize the number of setups.

In Section 4.4.2 we discuss a practically motivated model where jobs of dif-

ferent types are considered, and each job consists of a number of tasks. Processor

setup is required, and consequently change-over cost is incurred, if the processor

changes from one job type to another. Hence the tasks of each job type should be

scheduled in sequences or lots of certain sizes on the processor. The objective is

then to determine sizes of task lots, where each lot is processed non-

preemptively, such that certain inventory and deadline conditions are observed,

and change-over cost is minimized.

4.4.1 Setup Scheduling

Consider a finite partially ordered set G = (T, ≺*), where ≺* is the reflexive, an-

tisymmetric and transitive binary relation obtained from a given precedence rela-

tion ≺ as described in Section 2.3.2. Then, a linear extension of G is a linear or-

der (T , ≺*
L) that extends (T , ≺*), i.e. for all T', T" � T , T' ≺* T" implies T' ≺*

L

 T". For T = {T1 , T2 ,...,Tn}, if the sequence (T(1
 , T(2

 ,...,T(n
) from left to right

defines the linear order ≺*
L , i.e. T(1

 ≺*
L T(2

 ≺*
L ...

*
L T(n

 , then (T(1
 , T(2

 ,..., T(n
)

is obviously a schedule for (T ,) .

 4.4 Minimizing Change-Over Cost 119

Let L = (T(1
 , T(2

 ,...,T(n
) be a linear extension of G = (T , ≺*) where ≺* is

determined from precedence relation ≺. Two consecutive elements T(i
 , T(i+1

 of

L are separated by a jump (or setup) if and only if T(i
 ⊀ T(i+1

 . The total number

of jumps of L is denoted by s(L, G). The jump number s(G) of G is the minimum

number of jumps in some linear extension, i.e.

s(G) = min{s(L, G) | L is a linear extension of G} .

A linear extension L of G with s(L, G) = s(G) is called jump- (or setup-) optimal.
The problem of finding a schedule with minimum number of setups is often

called jump number problem.

If we assume that a jump causes change-over cost in the schedule, a jump-

optimal schedule for (T , ≺) would obviously be one in which the total change-

over cost is at minimum.

The notion of jump number has been introduced by Chein and Martin

[CM72]. The problem of determining the setup number s(G) and producing an

optimal linear extension for any given ordered set G has been considered by nu-

merous authors. While good algorithms have been found for certain restricted

classes of ordered sets, it has been shown by W. R. Pulleyblank [Pul75] that

finding the setup number even for partial orders of height one 2 is an NP-hard

problem.

For a general poset G = (T , ≺*), let K1 , K2 ,...,Kr be any minimum family

of disjoint chains (for definition of a chain we refer to Chapter 2.3.2) whose set

union of tasks is T . The concatenation K1 1 K2 1...1 Kr of these chains obvi-

ously is not necessarily a linear extension of G. On the other hand, any linear

extension L of a finite poset G can be expressed as a linear sum K1 1 K2 1...1

Kr of chains, chosen so that in each chain neighboring tasks Th and Tk are in rela-

tion Th ≺ Tk , and, for chains Ki , Ki+1 (i = 1,..., r � 1), the last task of Ki does not

precede the first task of Ki+1 . Notice that a linear extension represents a schedule

for (T , ≺) in an obvious way. Setups occur exactly between two neighboring

chains, i.e. between Ki and Ki+1 for i = 1,..., r � 1 .

The problem of scheduling precedence constrained tasks so that the number

of setups is minimum is now formalized to the question of finding a linear exten-

sion that consists of a minimum number of chains.

One way of solving this problem heuristically is to determine so-called

greedy linear extensions.

Algorithm 4.4.1 Greedy linear extension of a partially ordered set (T , ≺*) .

begin

i := 0;

2 A partial order G is of height one if each directed path in G has at most two vertices.

120 4 Scheduling on One Processor

while T � � do

 begin i := i + 1;

Let Ti � T be a task such that T k := { T � T | T ≺* Ti } forms a maximal

chain, i.e. there is no successor task T' of Ti for which { T � T | T ≺* T' } is

a chain;

 Let Ki be the chain of tasks of T i;

 T := T � T i;

 end;

r := i; -- r is the number of chains obtained

L := K1 1 K2 1...1 Kr;

end;

From the way the chains are constructed in this algorithm it is clear that L = K1 1

K2 1...1 Kr is a linear extension of G = (T , ≺*), and hence it is a schedule for

(T , ≺). Greedy linear extensions can be characterized in the following way.

A linear extension L of G is greedy if and only if, for some r, L can be repre-

sented as L = K1 1 K2 1...1 Kr , where each Ki is a chain in G, the last task of

Ki does not precede the first task of Ki+1 (for i = 1,..., r � 1), and for each Ki and

for any T � T which succeeds immediately the last task of Ki in G, there is a task

T' � Ki+1 �...� Kr such that T' ≺ T .

Example 4.4.2 To demonstrate how Algorithm 4.4.1 works, consider the prece-

dence graph shown in Figure 4.4.1(a). The algorithm first chooses task T3 , thus

getting the first chain K1 = (T3). If the tasks chosen next are T2 and T1 , then we

get chains K2 and K3 shown encircled in Figure 4.4.1(a). The corresponding

schedule is presented in Figure 4.4.1(b).

It can be shown that for any finite poset G there is a greedy linear extension L of

G satisfying s(G) = s(L, G). On the other hand, optimal linear extensions need

not to be greedy. Also, greedy linear extensions may be far from optimum. So,

for example, the setup number for the direct product of a two-element chain with

an n-element chain is 1, yet there is a greedy linear extension with n � 1 setups.

For some special classes of precedence graphs greedy linear extensions are

known to be always optimal with respect to number of setups. Series-parallel

graphs and N-free graphs are examples of such classes. For other examples and

results we refer the interested reader to [ER85] and [RZ86].

Another important class of precedence graphs are interval orders (see Sec-

tions 2.1 and 2.3.2). Since interval orders model the sequential and overlapping

structure of a set of intervals on the real line, they have many applications in sev-

eral fields such as scheduling, VLSI routing in computer science, and in differ-

ence relations in measurement theory [Fis85, Gol80]. Faigle and Schrader

 4.4 Minimizing Change-Over Cost 121

[FS85a and FS85b] presented a heuristic algorithm for the jump number problem

for an interval order. But Ali and Deogun [AD90] were able to develop an opti-

mization algorithm of time complexity O(n2
) for n elements. They also presented

a simple formula that allows to determine the minimal number of setups directly

from the given interval order.

(a)

T2T1
T3

T4 T5

T6 T7

K K K123

(b)

T3 T2 T1T5 T4T7 T6

t
Figure 4.4.1 An example for Algorithm 4.4.1

 (a) precedence graph and a chain decomposition,
 (b) corresponding schedule; crosses (×) mark setups.

4.4.2 Lot Size Scheduling

The problem investigated in this subsection arises if tasks are scheduled in lots

due to time and cost considerations. Let us consider for example the production

of gearboxes of different types on a transfer line. The time required to manufac-

ture one gearbox is assumed to be the same for all types. Changing from produc-

tion of one gearbox type to another requires a change of machine (processor)

installment to another state. As these change-overs are costly and time consum-

ing the objective is to minimize the number of change-overs or the sum of their

cost. The whole situation may be complicated by additional productional or envi-

ronmental constraints. For example, there are varying demands of gearbox types

over time. Storage capacity for in-process inventory of the produced items is lim-

ited. In-process inventory always increases if the production of a gearbox is fin-

ished; it is always decreased if produced items are delivered at given points in

time where demand has to be fulfilled. A feasible schedule will assign gearbox

122 4 Scheduling on One Processor

productions to the processor in such a way that lots of gearboxes of the same

type are manufactured without change-overs.

The problem can also be regarded as a special instance of the so-called mul-
ti-product lot scheduling problem with capacity constraints. For a detailed analy-

sis of this problem and its various special modifications we refer e.g. to [BY82,

FLRK80] and [Sch82]. All these models consider setup cost. Generally speaking,

setups are events that may occur every time processing of a task or job is initiat-

ed again after a pause in processing. In many real processing systems such setups

are connected with change-over costs.

Now, the lot size scheduling problem can be formulated as follows. Consid-

er K deadlines and n different types of jobs. Set Jj includes all jobs of the jth type,

j = 1,..., n, and let J = �
j=1

n
 Jj be the set of all jobs. Set Jj includes the jobs J 1

j ,...,

J K
j with deadlines d~j1 ,..., d~jK , respectively. Each job J k

j itself consists of a num-

ber njk of unit processing time tasks. Whereas task preemption is not allowed, the

processor may switch between jobs, even of different types. Only changing from

a job of one type to that of another type is assumed to induce change-over cost.

For each job type an upper bound Bj � IN0 on in-process inventory is given.

Starting with some initial job inventory we want to find a feasible lot size sched-

ule for the set J of jobs such that all deadlines are met, upper bounds on invento-

ry are not exceeded, and the sum of all unit change-over cost is minimized.

For the above manufacturing example this model means that the transfer line

is represented by the processor, and gearbox types relate to job types. Jobs J k
j

with deadlines d~jk represent demands for gearbox types at different points in

time. The number njk of tasks of each job J k
j represents the number of items of

gearbox type j required to be finished by time d~jk . Bound Bj relates to the limited

storage capacity for in-process inventory of the different types of gearboxes. At

each time d~jk the in-process inventory of job type j is decreased by njk .

Let us assume that H = max
jk

{d~jk} and that the processing capacity of the pro-

cessor during the interval [0, H] is decomposed in discrete unit time intervals

(UTI) numbered by h = 1,..., H. To ensure both, feasible production of all jobs

and a feasible schedule without idle time we assume that H = �
j=1

n
 nj where nj =

�
k=1

K
 njk represents the total number of tasks of Jj . The lot size scheduling problem

can now be formulated by the following mathematical programming problem.

Let xjh be a variable which represents the assignment of a job of type j to some

UTI h such that xjh = 1 if a job of this type is produced during interval h and xjh =

0 otherwise. Let yjh be a variable which represents unit change-over cost such

that yjh = 1 if jobs of different types are processed in UTI h � 1 and UTI h, and

yjh = 0 otherwise. Obviously, yjh represents unit change-over cost. Ijh represents

 4.4 Minimizing Change-Over Cost 123

in-process inventory of job type j at the end of UTI h, and njh is the correspond-

ing processing requirement (we set njh = 0 if there is no job with deadline d~jk =

h). Let again Bj denote the upper bound on inventory of job type j .

Minimize �
j=1

n
 �
h=1

H
 yjh (4.4.1)

subject to Ijh�1 + xjh � Ijh = njh j = 1,..., n; h = 1,..., H , (4.4.2)

 �
j=1

n
 xjh � 1 h = 1,..., H , (4.4.3)

 0 � Ijh � Bj j = 1,..., n; h = 1,..., H , (4.4.4)

 xjh � {0, 1} j = 1,..., n; h = 1,..., H , (4.4.5)

yjh =
�
�

1 if xjh � xjh�1 > 0

0 otherwise
 j = 1,..., n; h = 1,..., H . (4.4.6)

The above constraints can be interpreted as follows. Equations (4.4.2) assure

that the deadlines of all jobs are observed, (4.4.3) assure that at no time more

than one job type is being processed, (4.4.4) restrict the in-process inventory to

the given upper bounds. Equations (4.4.5) and (4.4.6) constrain all variables to

binary numbers. The objective function (4.4.1) minimizes the total number of

change-overs, respectively the sum of their unit cost. Note that for (4.4.1)-(4.4.6)

a feasible solution only exists if the cumulative processing capacity up to each

deadline is not less than the total number of tasks to be finished by this time.

The problem of minimizing the number of change-overs under the assump-

tion that different jobs of different types have also different deadlines was first

solved in [Gla68] by applying some enumerative method. There exist also dy-

namic programming algorithms for both, the problem with sequence-independent

change-over cost [GL88, Mit72] and for the problem with sequence-dependent

change-over cost [DE77]. For other enumerative methods see [MV90] and the

references given therein. A closely related question to the problem discussed

here has been investigated in [BD78], where each task has a fixed completion

deadline and an integer processing time. The question studied is whether there

exists a non-preemptive schedule that meets all deadlines and has minimum sum

of change-over cost. For arbitrary integer processing times the problem is already

NP-hard for unit change-over cost, three tasks per job type and two distinct dead-

lines, i.e. K = 2. Another similar problem was investigated in [HKR87] where the

existence of unit change-over cost depends on some given order of tasks, i.e.

tasks are indexed with 1, 2,..., and change-over cost occurs only if a task is fol-

lowed by some other task with larger index. This problem is solvable in polyno-

mial time.

124 4 Scheduling on One Processor

Schmidt [Sch92] proved that the lot size scheduling problem formulated by

(4.4.1)-(4.4.6) is NP-hard for n = 3 job types. Now we show that it can be solved

in polynomial time if n = 2 job types have to be considered only. The algorithm

uses an idea which can be described by the rule "schedule all jobs such that no

unforced change-overs occur". This rule always generates an optimal schedule if

the earliest deadline has to be observed only by jobs of the same type. In case the

earliest deadline has to be observed by jobs of either type the rule by itself is not

necessarily optimal.

To find a feasible schedule with minimum sum of change-over cost we must

assign all jobs to a number Z � H of non-overlapping production intervals such

that all deadlines are met, upper bounds on inventory are not exceeded, and the

number of all change-overs is minimum. Each production interval z � {1,..., Z}

represents the number of consecutive UTIs assigned only to jobs of the same

type, i.e. there exists only one setup for each z.

For simplicity reasons we now denote the two job types by q and r. Consid-

ering any production interval z, we may assume that a job of type q (r) is pro-

cessed in UTIs h, h + 1, h*; if h* < H it has to be decided whether to continue
processing of jobs q (r) at h*+1 or start a job of type r (q) in this UTI. Let

Urh* = min{ (i � h*) � (�
h=h*+1

i
 nrh � Irh*) | i = h* + 1,..., H } (4.4.7)

be the remaining available processing capacity minus the processing capacity

required to meet all future deadlines of Jr ,

Vqh* = �
h=1

H
 nqh � �

h=1

h*

 xqh (4.4.8)

be the number of not yet processed tasks of Jq, and

Wqh* = Bq � Iqh* (4.4.9)

be the remaining storage capacity available for job type q at the end of UTI h*.

In-process inventory is calculated according to

Iqh* = �
h=1

h*

 (xqh � nqh) . (4.4.10)

To generate a feasible schedule for job types q and r it is sufficient to change

the assignment from type q (r) to type r (q) at the beginning of UTI h* + 1, 1 �

h* < H, if Urh*&Vqh*&Wqh* = 0 for the corresponding job types in UTI h*. Applying

this UVW-rule is equivalent to scheduling according to the above mentioned "no

unforced change-overs" strategy. The following algorithm makes appropriate use

of the UVW-rule.

Algorithm 4.4.3 Lot size scheduling of two job types on a single processor
[Sch92].
begin

i := 1; x := r; y := q;

 4.4 Minimizing Change-Over Cost 125

while i < 3 do
 begin
 for h := 1 to H do

 begin

 Calculate Uxh, Vyh, Wyh according to (4.4.7)-(4.4.9);

 if Uxh&Vyh&Wyh = 0

 then
 begin

 Assign a job of type x;

 Calculate the number of change-overs;

 Exchange x and y;
 end

 else Assign a job of type y;
 end;

 i := i + 1; x := q; y := r;
 end;

Choose the schedule with minimum number of change-overs;
end;

Using Algorithm 4.4.3 we generate for each job type Jj a number Zj of produc-

tion intervals zj = 1,..., Zj which are called q-intervals in case jobs of type q are

processed, and r-intervals else, where Zq + Zr = Z . We first show that there is no

schedule having less change-overs than the one generated by the UVW-rule, if

the assignment of the first UTI (h = 1) and the length of the first production in-

terval (z = 1; either a q- or an r-interval) are fixed. For n = 2 there are only two

possibilities to assign a job type to h = 1. It can be shown by a simple exchange

argument that there does not exist a schedule with less change-overs and the first

production interval (z = 1) does not have UVW-length, if we fix the job type to be

processed in the first UTI. Note that fixing the job type for h = 1 corresponds to

an application of the UVW-rule considering an assignment of h = 0 to a job of

types q or r. From this we conclude that if there is no such assignment of h = 0

then for finding the optimal schedule it is necessary to apply the UVW-rule twice

and either assign job types q or r to h = 1. Let us first assume that z = 1 is fixed

by length and job type assignment. We have the following lemmas [Sch92].

Lemma 4.4.4 Changing the length of any production interval z > 1, as generat-
ed by the UVW-rule, cannot decrease the total number of change-overs.

Lemma 4.4.5 Having generated an UVW-schedule it might be possible to re-
duce the total number of production intervals by changing assignment and length
of the first production interval z = 1 .

Using the results of Lemmas 4.4.4 and 4.4.5 we simply apply the UVW-rule

twice, if necessary, starting with either job types. To get the optimal schedule we

126 4 Scheduling on One Processor

take that with less change-overs. This is exactly what Algorithm 4.4.3 does. As

the resulting number of production intervals is minimal the schedule is optimal

under the unit change-over cost criterion. For generating each schedule we have

to calculate U, V, and W at most H times. The calculations of each V and W re-

quire constant time. Hence it follows that the time complexity of calculating all

U is not more than O(H) if appropriate data structures are used. The following

example problem demonstrates the approach of Algorithm 4.4.3.

Example 4.4.6 J = {J1, J2}, d~11 = 3, d~12 = 7, d~13 = 10, d~21 = 3, d~22 = 7, d~23 = 10,

B1 = B2 = 10, n11 = 1, n12 = 2, n13 = 1, n21 = 1, n22 = 1, n23 = 4, and zero initial

inventory. Table 4.4.1 shows the two schedules obtained when starting with ei-

ther job type. Schedule S2 has minimum number of change-overs and thus is op-

timal.

 h: 1 2 3 4 5 6 7 8 9 10

Schedule S1: J1 J1 J2 J2 J2 J2 J1 J1 J2 J2

Schedule S2: J2 J2 J1 J1 J1 J1 J2 J2 J2 J2

Table 4.4.1 Two schedules for Example 4.4.6.

4.5 Other Criteria

In this section we are concerned with single processor scheduling problems

where each task Tj of the given task set T = {T1 ,...,Tn} is assigned a non-

decreasing cost function Gj. Instead of a due date, function Gj specifies the cost

Gj(Cj) that is incurred by the completion of task Tj at time Cj . We will discuss

two objective functions, maximum cost Gmax and total cost � Gj(Cj).

4.5.1 Maximum Cost

First we consider the problem of minimizing the maximum cost that is incurred

by the completion of the tasks. We already know that the problem 1 | rj | Gmax with

Gj(Cj) = Lj = Cj � dj for given due dates dj for the tasks, is NP-hard in the strong

sense (cf. Section 4.3.1). On the other hand, if task preemptions are allowed, the

problem becomes easy if the cost functions depend non-decreasingly on the task

completion times. Also, the cases 1 | prec | Gmax and 1 | pmtn, prec, rj | Gmax are

solvable in polynomial time.

 4.5 Other Criteria 127

Problem 1 | pmtn, rj | Gmax

Consider the case where task preemptions are allowed. Since cost functions are

non-decreasing, it is never advantageous to leave the processor idle when un-

scheduled tasks are available. Hence, the time at which all tasks will be complet-

ed can be determined in advance by scheduling the tasks in order of non-

decreasing release times rj . This schedule naturally decomposes into blocks,

where block B � T is defined as the minimal set of tasks processed without idle

time from time r(B) = min {rj | Tj � B} until C(B) = r(B) + �
Tj �B

 pj such that each

task Tk 	 B is either completed not later than r(B) (i.e. Ck � r(B)) or not released

before C(B) (i.e. rk � C(B)) .

It is easily seen that, when minimizing Gmax , we can consider each block B

separately. Let G *
max(B) be the value of Gmax in an optimal schedule for the tasks

in block B . Then G *
max(B) satisfies the following inequalities:

G *
max(B) � min

Tj �B
 {Gj(C(B))} ,

and

G *
max(B) � G * max(B � {Tj}) for all Tj � B.

Let task Tl � B be such that

Gl(C(B)) = min
Tj �B

 {Gj(C(B))} . (4.5.1)

Consider a schedule for block B which is optimal subject to the condition

that task Tl is processed only if no other task is available. This schedule consists

of two complementary parts:

(i) An optimal schedule for the set B � {Tl,} which decomposes into a number

of sub-blocks B1 ,...,Bb ,

(ii) A schedule for task Tl , where Tl is preemptively scheduled during the differ-

ence of time intervals given by [r(B), C(B)3 � �
j=1

b
[r(Bj), C(Bj)3 .

For any such schedule we have

Gmax(B) = max{Gl(C(B)), G * max(B � {Tl})} � Gmax(B).

It hence follows that there is an optimal schedule in which task Tl is scheduled as

described above.

The problem can now be solved in the following way. First, order the tasks

according to non-decreasing rj . Next, determine the initial block structure by

scheduling the tasks in order of non-decreasing rj . For each block B , select task

Tl � B subject to (4.5.1). Determine the block structure for the set B � {Tl} by

128 4 Scheduling on One Processor

scheduling the tasks in this set in order of non-decreasing rj , and construct the

schedule for task Tl as described above. By repeated application of this procedure

to each of the sub-blocks one obtains an optimal schedule. The algorithm is as

follows.

Algorithm 4.5.1 for problem 1 | pmtn, rj | Gmax [BLL+83].

Method: The algorithm recursively uses procedure oneblock which is applied to

blocks of tasks as described above.

Procedure oneblock(B � T);

begin

Select task Tl � B such that Gl(C(B)) = min
Tj �B

 {Gj(C(B))};

Determine sub-blocks B1 ,...,Bb of the set B � {Tl};

Schedule task Tl in the intervals [r(B), C(B)3 � �
j=1

b
[r(Bj), C(Bj)3;

for j := 1 to b do call oneblock(Bj);

end;

begin -- main algorithm

Order tasks so that r1 � r2 � ... � rn;

oneblock(T);
end;

We just mention that the time complexity of Algorithm 4.5.1 can be proved to be

O(n2
). Another fact is that the algorithm generates at most n � 1 preemptions.

This is easily proved by induction: It is obviously true for n = 1. Suppose it is

true for blocks of size smaller than |B |. The schedule for block B contains at

most |B i| � 1 preemptions for each sub-block B i , i = 1,..., b, and at most b

preemptions for the selected tasks Tl . Hence, and also considering the fact that

Tl 	 �
i=1

b
 B i , we see that the total number of preemptions is no more than

�
i=1

b
 (|B i| � 1) + b = |B | � 1. This bound on the number of preemptions is best possi-

ble. It is achieved by the class of problem instances defined by rj = j, pj = 2,

Gj(t) = 0 if t � 2n � j, and Gj(t) = 1 otherwise (j = 1,..., n). The only way to incur

zero cost is to schedule task Tj in the intervals [j � 1, j) and [2n � j, 2n � j + 1), j =

1,..., n. This uniquely optimal schedule contains n � 1 preemptions.

Note that the use of preemptions is essential in the algorithm. If no preemp-

tion is allowed, it is not possible to determine the block structure of an optimal

schedule in advance.

 4.5 Other Criteria 129

Problem 1 | prec | Gmax

Suppose now that the order of task execution is restricted by given precedence

constraints ≺ and tasks are processed without preemption. Problems of this type

can be optimally solved by an algorithm presented by Lawler [Law73]. The basic

idea of the algorithm is as follows: From among all tasks that are eligible to be

scheduled last, i.e. those without successors under the precedence relation , put

that task last that will incur the smallest cost in that position. Then repeat this

procedure on the set of n � 1 remaining tasks, etc. This rule is justified as follows:

Let T = {T1 ,...,Tn} be the set of all tasks, and let L � T be the subset of tasks

without successors. For any T ' � T let G*(T ') be the maximum task completion

cost in an optimal schedule for T '. If p denotes the completion time of the last

task, i.e. p = p1 + p2 +...+ pn , task Tl � L is chosen such that Gl(p) =

min
Tj �L

 {Gj(p)}. Then the optimal value of a schedule subject to the condition that

task Tl is processed last is given by max{G*(L � {Tl}), Gl(p)}. Since both,

G*(L � {Tl}) � G*(L) and Gl(p) � G*(L), the rule is proved.

The following algorithm finds a task that can be placed last in schedule S.

Then, having this task removed from the problem, the algorithm determines a

task that can be placed last among the remaining n �1 tasks and second-to-last in

the complete schedule, and so on.

Algorithm 4.5.2 for problem 1 | prec | Gmax [Law73].

begin
Let S be the empty schedule;

while T � � do

 begin

 p := �
Tj �T

 pj;

 Let L � T be the subset of tasks with no successors;

 Choose task Tk � L such that Gk(p) = min
Tj �L

 {Gj(p)};

� S := Tk 1 S; -- task Tk is placed in front of the first element of schedule S

 T := T � {Tk};

 end;
end;

Notice that this algorithm requires O(n2
) steps, where n is the number of tasks.

Example 4.5.3 Suppose there are five tasks {T1 ,...,T5} with processing times

p = [1, 2, 2, 2, 3] and precedence constraints as shown in Figure 4.5.1(a), and cost

functions as indicated in Figure 4.5.1(b). The last task in a schedule for this prob-

lem will finish at time p = 10. Among the tasks having no successors the algo-

130 4 Scheduling on One Processor

rithm chooses T3 to be placed last because G3(10) is minimum. Note that in the

final schedule, T3 will be started at time 8. Among the remaining tasks, {T1 , T2 ,

T4 , T5}, T4 and T5 have no successors, so these two tasks are the candidates for

being placed immediately before T3. The algorithm chooses T5 because at time 8

this task incurs lower cost to the schedule. Continuing this way Algorithm 4.5.2

will terminate with the schedule (T2 , T1 , T4 , T5 , T3) .

(a) T2T1

T5T4T3

(b)

ta2 a1 a4 a5 a3
0 2 3 5 8 10

G4
G2
G5

G3

G1

Gi(t)

Figure 4.5.1 An example problem for Algorithm 4.5.2
 (a) task set with precedence constraints,

(b) cost functions specifying penalties associated with task com-
pletion times.

Problem 1 | pmtn, prec, rj | Gmax

In case 1 | pmtn, prec, rj | Gmax , i.e. if preemptions are permitted, the problem is

much easier. Baker et al. [BLL+83] presented an algorithm which is an extension

of Algorithm 4.5.1. First, release dates are modified so that rj + pj � rk whenever

Tj precedes Tk . This is being done by replacing rk by max{rk , max{rj + pj | Tj +
 Tk}} for k = 2,..., n. The block structures are obtained as in Algorithm 4.5.1. As

the block structures are determined by scheduling tasks in order of non-

decreasing values of rj , this implies that we can ignore precedence constraints at

that level. Then, for each block B , the subset L � B of tasks that have no succes-

sor in B is determined. The selection of task Tl � B subject to equation (4.5.1) is

 4.5 Other Criteria 131

replaced by the selection of task Tl � B such that Gl(C(B)) = min
Tj �L

 {Gj(C(B))}.

This ensures that the selected task has no successors within block B. We mention

that this algorithm can still be implemented to run in O(n2
) time.

Example 4.5.4 [BLL+83] To illustrate the last algorithm consider five tasks {T1,

..., T5} whose processing times and release times are given by the vectors p = [4,

2, 4, 2, 4] and r = [0, 2, 0, 8, 14], respectively. The precedence constraints and cost

functions are specified in Figure 4.5.2(a) and (b), respectively. From the prece-

dence constraints we obtain the modified release dates r' = [0, 2, 4, 8, 14]. Taking

modified release dates instead of r, Algorithm 4.5.1 determines two blocks, B1 =

{T1 , T2 , T3 , T4} from time 0 to 12, and B2 = {T5} from 14 until 18 (Figure

4.5.2(c)). Block B2 consists of a single task and therefore represents an optimal

part of the schedule. For block B1 , we find the subset of tasks without successors

L1 = {T3 , T4} and select task T3 since G3(12) < G4(12). By re-scheduling the

tasks in B1 while processing task T3 (only if no other task is available), we obtain

two sub-blocks: B11 = {T1 , T2} from time 0 to 6, and B12 = {T4} from 8 until 10

(viz. Figure 4.5.2(c)). Block B12 needs no further attention. For block B11 we

find L11 = {T1 , T2} and select task T1 since G1(6) < G2(6). By rescheduling the

tasks in B11 again we finally obtain an optimal schedule (Figure 4.5.2(c)).

4.5.2 Total Cost

From [LRKB77] we know that the general problem 1 | | � Gj of scheduling tasks,

such that the sum of values Gj(Cj) is minimal, is NP-hard. If tasks have unit pro-

cessing times, i.e. for 1 | pj = 1 | � Gj , the problem is equivalent to finding a per-

mutation ((1 ,...,(n) of the task indices 1,..., n that minimizes � Gj(C(j
). This is

a weighted bipartite matching problem, which can be solved in O(n3
) time

[LLR+93]. For the case of arbitrary processing times, Rinnooy Kan et al.

[RKLL75] presented a branch an bound algorithm. The computation of lower

bounds on the costs of an optimal schedule follows an idea similar to that used in

the pj = 1 case.

132 4 Scheduling on One Processor

(a) T2T1

T3 T4

T5

(b)

t0 4 6 10 12 18

Gi(t) G4

G2

G5

G3

G1

(c)

t0 4 6 10 12 1814

T1 T2 T3 T4 T5
Initial
schedule

B B 1 2

t0 4 6 10 128

T1 T2 T3 T4 T3
1

New Schedule
for block B

B B 1211

t0 4 6 10 12 182 8 14

T1 T2 T1 T3 T4 T3 T5
Optimal
schedule

Figure 4.5.2 An example problem 1 | pmtn, prec, rj | Gmax
 (a) task set with precedence constraints,

(b) cost functions specifying penalties associated with task com-
pletion times,
(c) block schedules and an optimal preemptive schedule.

 4.5 Other Criteria 133

Suppose that p1 �... � pn , and define tk = p1 +...+ pk for k = 1,..., n. Then Gj(tk)
is a lower bound on the cost of scheduling Tj in position k, and an overall lower

bound is obtained by solving the weighted bipartite matching problem with coef-

ficients Gj(tk). In addition to lower bounds, elimination criteria are used to dis-

card partial schedules in the search tree. These criteria are generally of the form:

if the cost functions and processing times of Ti and Tj satisfy a certain relation-

ship, then there is an optimal schedule in which Ti precedes Tj .

A number of results are available for special kinds of cost functions. If all

cost functions depend linearly on the task completion times, Smith [Smi56]

proved that an optimal schedule is obtained by scheduling the tasks in order of

non-decreasing values of Gj(p)/pj where p = � pj .

For the case that cost of each task Tj is a quadratic function of its completion

time, i.e. Gj(Cj) = cj Cj
2
 for some constant cj , branch and bound algorithms were

developed by Townsend [Tow78] and by Bagga and Kalra [BK81]. Both make

use of task interchange relations similar to those discussed in Section 4.2 (see

equation (4.2.1)) to obtain sufficient conditions for the preference of a task Ti

over another task Tj . For instance, following [BK81], if ci � cj and pi � pj for

tasks Ti , Tj , then there will always be a schedule where Ti is performed prior to

Tj , and whose total cost will not be greater than the cost of any other schedule

where Ti is started later than Tj . Such a rule can be obviously used to reduce the

number of created nodes in the tree of a branch and bound procedure.

A similar problem was discussed by Gupta and Sen [GS83] where each task

has a given due date, and the objective is to minimize the sum of squares of late-

ness values, �
j=1

n
 Lj

2
 . If tasks can be arranged in a schedule such that every pair of

adjacent tasks Ti , Tj (i.e. Ti is executed immediately before Tj) satisfies the condi-

tions

pi � pj and
di
pi

 �� dj
pj

 ,

then the schedule can be proved to be optimal. For general processing times and

due dates, a branch and bound algorithm was presented in [GS83].

The problems of minimizing total cost are equivalent to maximization prob-

lems where each task is assigned a profit that urges tasks to finish as early as

possible. The profit of a task is described by a non-increasing and concave func-

tion Gj on the finishing time of the task. Fisher and Krieger [FK84] discussed a

class of heuristics for scheduling n tasks on a single processor to maximize the

sum of profits � Gj(Cj � pj) . The heuristic used in [FK84] is based on linear ap-

proximations of the functions Gj. Suppose several tasks have already been

scheduled for processing in the interval [0, t), and we must choose one of the re-

maining tasks to start at time t. Then the approximation of Gj is the linear func-

134 4 Scheduling on One Processor

tion through the points (t, Cj(t)) and (p, Cj(p)) where p = �
j=1

n
 pj . The task chosen

maximizes (Cj(t) � Cj(p))/t. The main result presented in [FK84] is that the heu-

ristic always obtains at least 2/3 of the optimal profit.

Finally we mention that there are few results available for the case that, in

addition to the previous assumptions, precedence constraints restrict the order of

task execution. For the total weighted exponential cost function criterion

�
j=1

n
 wj exp(� cCj)), where c is some given "discount rate", Monma and Sidney

[MS87] were able to prove that the job module property (see end of Section 4.2)

is satisfied. As a consequence, for certain classes of precedence constraints that

are built up iteratively from prime modules, the problem 1 | prec | � (wj exp(�cCj))

can be solved in polynomial time. As an example, series-parallel precedence

constraints are of that property. For more details we refer the reader to [MS87].

Dynamic programming algorithms for general precedence constraints and

for the special case of series-parallel precedence graphs can be found in [BS78a,

BS78b, and BS81], where each task is assigned an arbitrary cost function that is

non-negative and non-decreasing in time.

References

AD90 H. H. Ali, J. S. Deogun, A polynomial algorithm to find the jump number of
interval orders, Preprint, University of Nebraska-Lincoln, 1990.

AH73 D. Adolphson, T. C. Hu, Optimal linear ordering, SIAM J. Appl. Math. 25,

1973, 403-423.

BA87 U. Bagchi, R. H. Ahmadi, An improved lower bound for minimizing weighted

completion times with deadlines, Oper. Res. 35, 1987, 311-313.

Ban80 S. P. Bansal, Single machine scheduling to minimize weighted sum of comple-

tion times with secondary criterion - a branch-and-bound approach, Eur.
J. Oper. Res. 5, 1980, 177-181.

BD78 J. Bruno, P. Downey, Complexity of task sequencing with deadlines, set-up

times and changeover costs, SIAM J. Comput. 7, 1978, 393-404.

BFR71 P. Bratley, M. Florian, P. Robillard, Scheduling with earliest start and due date
constraints, Nav. Res. Logist. Quart. 18, 1971, 511-517.

BFR73 P. Bratley, M. Florian, P. Robillard, On sequencing with earliest starts and due
dates with application to computing bounds for the (n/m/G/Fmax) problem,

Nav. Res. Logist. Quart. 20, 1973, 57-67.

BH89 V. Bouchitte, M. Habib, The calculation of invariants of ordered sets, in:
I. Rival (ed.), Algorithms and Order, Kluwer, Dordrecht, 1989, 231-279.

BK81 P. C. Bagga, K. R. Kalra, Single machine scheduling problem with quadratic
functions of completion time - a modified approach, J. Inform. Optim. Sci. 2,

1981, 103-108.

 References 135

Bla76 J. B)�la
.
zewicz, Scheduling dependent tasks with different arrival times to meet

deadlines, in: E. Gelenbe, H. Beilner (eds.), Modelling and Performance Eval-
uation of Computer Systems, North-Holland, Amsterdam, 1976, 57-65.

BLL+83 K. R. Baker, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Preemptive
scheduling of a single machine to minimize maximum cost subject to release

dates and precedence constraints, Oper. Res. 31, 1983, 381-386.

BM83 H. Buer, R. H. Möhring, A fast algorithm for the decomposition of graphs and

posets, Math. Oper. Res. 8, 1983, 170-184.

BR82 L. Bianco, S. Ricciardelli, Scheduling of a single machine to minimize total
weighted completion time subject to release dates, Nav. Res. Logist. Quart. 29,

1982, 151-167.

BS74 K. R. Baker, Z.-S. Su, Sequencing with due dates and early start times to min-
imize maximum tardiness, Nav. Res. Logist. Quart. 21, 1974, 171-176.

BS78a K. R. Baker, L. Schrage, Dynamic programming solution for sequencing prob-
lems with precedence constraints, Oper. Res. 26, 1978, 444-449.

BS78b K. R. Baker, L. Schrage, Finding an optimal sequence by dynamic program-

ming: An extension to precedence related tasks, Oper. Res. 26, 1978, 111-120.

BS81 R. N. Burns, G. Steiner, Single machine scheduling with series-parallel prece-

dence constraints, Oper. Res. 29, 1981, 1195-1207.

BSC86 U. Bagchi, R.S. Sullivan, Y. L. Chang, Minimizing mean absolute deviation of

completion times about a common due date, Nav. Res. Logist. Quart. 33, 1986,

227-240.

Bur76 R. N. Burns, Scheduling to minimize the weighted sum of completion times

with secondary criteria, Nav. Res. Logist. Quart. 23, 1976, 25-129.

BY82 G .R. Bitran, H. H. Yanasse, Computational complexity of the capacitated lot
size problem, Manage. Sci. 28, 1982, 1174-1186.

Car82 J. Carlier, The one-machine sequencing problem, Eur. J. Oper. Res. 11, 1982,
42-47.

CM72 M. Chein, P. Martin, Sur le nombre de sauts d'une foret, Comptes Rendus de
l’Académie des Sciences Paris 275, serie A, 1972, 159-161.

CMM67 R. W. Conway, W. L. Maxwell, L. W. Miller, Theory of Scheduling, Addison-

Wesley, Reading, Mass., 1967.

Cof76 E. G. Coffman, Jr. (ed.), Scheduling in Computer and Job Shop Systems,

J. Wiley, New York, 1976.

CS86 S. Chand, H. Schneeberger, A note on the single-machine scheduling problem
with minimum weighted completion time and maximum allowable tardiness,

Nav. Res. Logist. Quart. 33, 1986, 551-557.

DD81 M. I. Dessouky, J. S. Deogun, Sequencing jobs with unequal ready times to
minimize mean flow time, SIAM J. Comput. 10, 1981, 192-202.

DE77 W. C. Driscoll, H. Emmons, Scheduling production on one machine with
changeover costs, AIIE Trans. 9, 1977, 388-395.

DL90 J. Du, J. Y.-T. Leung, Minimizing total tardiness on one machine is NP-hard,

Math. Oper. Res. 15, 1990, 483-495.

136 4 Scheduling on One Processor

EFMR83 J. Erschler, G. Fontan, C. Merce, F. Roubellat, A new dominance concept in
scheduling n jobs on a single machine with ready times and due dates,

Oper. Res. 31, 1983, 114-127.

Emm75 H. Emmons, One machine sequencing to minimize mean flow time with mini-
mum number tardy, Nav. Res. Logist. Quart. 22, 1975, 585-592.

ER85 M. H. El-Zahar, I. Rival, Greedy linear extensions to minimize jumps, Discret
Appl. Math. 11, 1985, 143-156.

Fis85 P. C. Fishburn, Interval Orders and Interval Graphs, J. Wiley, New York,

1985.

FK84 M. L. Fisher, A. M. Krieger, Analysis of a linearization heuristic for single

machine scheduling to maximize profit, Math. Program. 28, 1984, 218-225.

FLRK80 M. Florian, J. K. Lenstra, A. H. G. Rinnooy Kan, Deterministic production
planning: algorithms and complexity, Manage. Sci. 26, 1980, 669-679.

FS85a U. Faigle, R. Schrader, A setup heuristic for interval orders, Oper. Res. Lett. 4,
1985, 185-188.

FS85b U. Faigle, R. Schrader, Interval orders without odd crowns are defect optimal,

Report 85382-OR, University of Bonn, 1985.

FTM71 M. Florian, P. Trepant, G. McMahon, An implicit enumeration algorithm for

the machine sequencing problem, Manage. Sci. 17, 1971, B782-B792.

GJ76 M. R. Garey, D. S. Johnson, Scheduling tasks with non-uniform deadlines on

two processors, J. ACM 23, 1976, 461-467.

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

GJST81 M. R. Garey, D. S. Johnson, B. B. Simons, R. E. Tarjan, Scheduling unit-time

tasks with arbitrary release times and deadlines, SIAM J. Comput. 10, 1981,
256-269.

GK87 S. K. Gupta, J. Kyparisis, Single machine scheduling research, Omega-
Int. J. Manage. Sci. 15, 1987, 207-227.

GL78 G. V. Gens, E. V. Levner, Approximation algorithm for some scheduling prob-

lems, Engineering Cybernetics 6, 1978, 38-46.

GL81 G. V. Gens, E. V. Levner, Fast approximation algorithm for job sequencing

with deadlines, Discret Appl. Math. 3, 1981, 313-318.

GL88 A. Gascon, R. C. Leachman, A dynamic programming solution to the dynamic,

multi-item, single-machine scheduling problem, Oper. Res. 36, 1988, 50-56.

Gla68 C. R. Glassey, Minimum changeover scheduling of several products on one
machine, Oper. Res. 16, 1968, 342-352.

GLL+79 R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimiza-

tion and approximation in deterministic sequencing and scheduling: a survey,
Annals of Discrete Mathematics 5, 1979, 287-326.

Gol80 M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

 References 137

GS83 S. K. Gupta, T. Sen, Minimizing the range of lateness on a single machine,
Engineering Costs and Production Economics 7, 1983, 187-194.

GS84 S. K. Gupta, T. Sen, Minimizing the range of lateness on a single machine,

J. Oper. Res. Soc. 35, 1984, 853-857.

GTW88 M. R. Garey, R. E. Tarjan, G. T. Wilfong, One-processor scheduling with ear-

liness and tardiness penalties, Math. Oper. Res. 13, 1988, 330-348.

HKR87 T. C. Hu, Y. S. Kuo, F. Ruskey, Some optimum algorithms for scheduling

problems with changeover costs, Oper. Res. 35, 1987, 94-99.

HKS91 N. G. Hall, W. Kubiak, S. P. Sethi, Earliness-tardiness scheduling problems, II:
deviation of completion times about a restrictive common due date,

Oper. Res. 39, 1991, 847-856.

Hor72 W. A. Horn, Single-machine job sequencing with tree-like precedence ordering
and linear delay penalties, SIAM J. Appl. Math. 23, 1972, 189-202.

Hor74 W. A. Horn, Some simple scheduling algorithms, Nav. Res. Logist. Quart. 21,
1974, 177-185.

HS88 L. A. Hall, D. B. Shmoys, Jackson's rule for one-machine scheduling: making a

good heuristic better, Working paper OR 199-89, Department of Mathematics,
Massachusetts Institute of Technology, Cambridge, 1988.

IIN81 T. Ichimori, H. Ishii, T. Nishida, Algorithm for one machine job sequencing
with precedence constraints, J. Oper. Res. Soc. Japan 24, 1981, 159-169.

IK78 O. H. Ibarra, C. E. Kim, Approximation algorithms for certain scheduling

problems, Math. Oper. Res. 3, 1978, 197-204.

Jac55 J. R. Jackson, Scheduling a production line to minimize maximum tardiness,

Research report 43, Management Science Research Project, UCLA, 1955.

Kan81 J. J. Kanet, Minimizing the average deviation of job completion times about a
common due date, Nav. Res. Logist. Quart. 28, 1981, 643-651.

Kar72 R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,
J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press,

New York, 1972, 85-103.

KIM78 H. Kise, T. Ibaraki, H. Mine, A solvable case of a one-machine scheduling
problem with ready and due times, Oper. Res. 26, 1978, 121-126.

KIM79 H. Kise, T. Ibaraki, H. Mine, Performance analysis of six approximation algo-
rithms for the one-machine maximum lateness scheduling problem with ready

times, J. Oper. Res. Soc. Japan 22, 1979, 205-224.

KK83 K. R. Kalra, K. Khurana, Single machine scheduling to minimize waiting cost
with secondary criterion, Journal of Mathematical Sciences 16-18, 1981-1983,

9-15.

KLS90 W. Kubiak, S. Lou, S. Sethi, Equivalence of mean flow time problems and
mean absolute deviation problems, Oper. Res. Lett. 9, 1990, 371-374.

Kub93 W. Kubiak, Completion time variance minimization on a single machine is
difficult, Oper. Res. Lett. 14, 1993, 49-59.

Kub95 W. Kubiak, New results on the completion time varaince minimization, Discret
Appl. Math. 58, 1995, 157-168.

138 4 Scheduling on One Processor

Law64 E. L. Lawler, On scheduling problems with deferral costs, Manage. Sci. 11,
1964, 280-288.

Law73 E. L. Lawler, Optimal sequencing of a single machine subject to precedence

constraints, Manage. Sci. 19, 1973, 544-546.

Law76 E. L. Lawler, Sequencing to minimize the weighted number of tardy jobs,
Rairo-Rech. Oper.-Oper. Res. 10, 1976, Suppl. 27-33.

Law77 E. L. Lawler, A 'pseudopolynomial' algorithm for sequencing jobs to minimize

total tardiness, Annals of Discrete Mathematics 1, 1977, 331-342.

Law78 E. L. Lawler, Sequencing jobs to minimize total weighted completion time
subject to precedence constraints, Annals of Discrete Mathematics 2, 1978, 75-

90.

Law82 E. L. Lawler, Sequencing a single machine to minimize the number of late
jobs, Preprint, Computer Science Division, University of California, Berkeley,

1982.

Law83 E. L. Lawler, Recent results in the theory of machine scheduling, in:

A. Bachem, M. Grötschel, B. Korte (eds.), Mathematical Programming: The
State of the Art, Springer, Berlin, 1983, 202-234.

LD78 R. E. Larson, M. I. Dessouky, Heuristic procedures for the single machine

problem to minimize maximum lateness, AIIE Trans. 10, 1978, 176-183.

LDD85 R. E. Larson, M. I. Dessouky, R. E. Devor, A forward-backward procedure for

the single machine problem to minimize maximum lateness, IIE Trans. 17,

1985, 252-260.

Len77 J. K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre Tract

69, Mathematisch Centrum, Amsterdam, 1977.

LLL+84 J. Labetoulle, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Preemptive
scheduling of uniform machines subject to release dates, in: W. R. Pulleyblank

(ed.), Progress in Combinatorial Optimization, Academic Press, New York,
1984, 245-261.

LLRK76 B. J. Lageweg, J. K. Lenstra, A. H. G. Rinnooy Kan, Minimizing maximum

lateness on one machine: Computational experience and some applications,
Stat. Neerl. 30, 1976, 25-41.

LLRK82 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Recent development in

deterministic sequencing and scheduling: a survey, in: M. A. H. Dempster,

J. K. Lenstra, A. H. G Rinnooy Kan (eds.), Deterministic and Stochastic
Scheduling, Reidel, Dordrecht. 1982, 35-73.

LLR+93 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, Sequencing

and scheduling: Algorithms and complexity, in: S. C. Graves, A. H. G.

Rinnooy Kan, P. H. Zipkin (eds.), Handbook in Operations Research and
Management Science, Vol. 4: Logistics of Production and Inventory, Elsevier,

Amsterdam, 1993.

LM69 E. L. Lawler, J. M. Moore, A functional equation and its application to re-

source allocation and sequencing problems, Manage. Sci. 16, 1969, 77-84.

 References 139

LRK73 J. K. Lenstra, A. H. G. Rinnooy Kan, Towards a better algorithm for the job-
shop scheduling problem - I, Report BN 22, 1973, Mathematisch Centrum,

Amsterdam.

LRK78 J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity of scheduling under prece-
dence constraints, Oper. Res. 26, 1978, 22-35.

LRK80 J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity results for scheduling chains
on a single machine, Eur. J. Oper. Res. 4, 1980, 270-275.

LRKB77 J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Complexity of machine

scheduling problems, Annals of Discrete Mathematics 1, 1977, 343-362.

McN59 R. McNaughton, Scheduling with deadlines and loss functions, Manage. Sci. 6,

1959, 1-12.

MF75 G. B. McMahon, M. Florian, On scheduling with ready times and due dates to
minimize maximum lateness, Oper. Res. 23, 1975, 475-482.

Mit72 S. Mitsumori, Optimal production scheduling of multicommodity in flow line,
IEEE Trans. Syst., Man., Cybern. CMC-2, 1972, 486- 493.

Miy81 S. Miyazaki, One machine scheduling problem with dual criteria, J. Oper. Res.
Soc. Japan 24, 1981, 37-51.

Moe89 R. H. Möhring, Computationally tractable classes of ordered sets, in: I. Rival

(ed.), Algorithms and Order, Kluwer, Dordrecht, 1989, 105-193.

Mon82 C. L. Monma, Linear-time algorithms for scheduling on parallel processors,

Oper. Res. 30, 1982, 116-124.

Moo68 J. M. Moore, An n job, one machine sequencing algorithm for minimizing the
number of late jobs, Manage. Sci. 15, 1968, 102-109.

MR85 R. H. Möhring, F. J. Radermacher, Generalized results on the polynomiality of

certain weighted sum scheduling problems, Methods of Operations Research
49, 1985, 405-417.

MS87 C. L. Monma, J. B. Sidney, Optimal sequencing via modular decomposition:
Characterization of sequencing functions, Math. Oper. Res. 12, 1987, 22-31.

MS89 J. H. Muller, J. Spinrad, Incremental modular decomposition, J. ACM 36,

1989, 1-19.

MV90 T. L. Magnanti, R. Vachani, A strong cutting plane algorithm for production

scheduling with changeover costs, Oper. Res. 38, 1990, 456-473.

Pos85 M. E. Posner, Minimizing weighted completion times with deadlines,

Oper. Res. 33, 1985, 562-574.

Pot80a C. N. Potts, An algorithm for the single machine sequencing problem with
precedence constraints, Mathematical Programming Studies 13, 1980, 78-87.

Pot80b C. N. Potts, Analysis of a heuristic for one machine sequencing with release

dates and delivery times, Oper. Res. 28, 1980, 1436-1441.

Pot85 C. N. Potts, A Lagrangian based branch and bound algorithm for a single ma-

chine sequencing with precedence constraints to minimize total weighted com-
pletion time, Manage. Sci. 31, 1985, 1300-1311.

140 4 Scheduling on One Processor

Pul75 W. R. Pulleyblank, On minimizing setups in precedence constrained schedul-
ing, Report 81105-OR, University of Bonn, 1975.

PW83 C. N. Potts, L. N. van Wassenhove, An algorithm for single machine sequenc-

ing with deadlines to minimize total weighted completion time, Eur. J. Oper.
Res. 12, 1983, 379-387.

Rag86 M. Raghavachari, A V-shape property of optimal schedule of jobs about a
common due date, Eur. J. Oper. Res. 23, 1986, 401-402.

RDS87 F. M. E. Raiszadeh, P. Dileepan, T. Sen, A single machine bicriterion schedul-

ing problem and an optimizing branch-and-bound procedure, Journal of Infor-
mation and Optimization Sciences 8, 1987, 311-321.

RKLL75 A. H. G. Rinnooy Kan, B. J. Lageweg, J. K. Lenstra, Minimizing total costs in

one-machine scheduling, Oper. Res. 23, 1975, 908-927.

RZ86 I. Rival, N. Zaguiga, Constructing greedy linear extensions by interchanging

chains, Order 3, 1986, 107-121.

Sah76 S. Sahni, Algorithms for scheduling independent tasks, J. ACM 23, 1976,

116-127.

Sch71 L. E. Schrage, Obtaining optimal solutions to resource constrained network
scheduling problems, AIIE Systems Engineering Conference, Phoenix, Arizo-

na, 1971.

Sch82 L. E. Schrage, The multiproduct lot scheduling problem, in: M. A. H. Demp-

ster, J. K. Lenstra, A. H. G Rinnooy Kan (eds.), Deterministic and Stochastic
Scheduling, Reidel, Dordrecht, 1982.

Sch92 G. Schmidt, Minimizing changeover costs on a single machine, in: W. Bühler,

F. Feichtinger, F.-J. Radermacher, P. Feichtinger (eds.), DGOR Proceedings

90, Vol. 1, Springer, 1992, 425-432.

Sid73 J. B. Sidney, An extension of Moore's due date algorithm, in: S. E. Elmaghraby

(ed.), Symposium on the Theory of Scheduling and Its Applications, Springer,
Berlin, 1973, 393-398.

Sid75 J. B. Sidney, Decomposition algorithms for single-machine sequencing with

precedence relations and deferral costs, Oper. Res. 23, 1975, 283-298.

Sim78 B. Simons, A fast algorithm for single processor scheduling, Proceedings of
the 19th Annual IEEE Symposium on Foundations of Computer Science, 1978,

50-53.

Smi56 W. E. Smith, Various optimizers for single-stage production, Nav.
Res. Logist. Quart. 3, 1956, 59-66.

SS86 J. B. Sidney, G. Steiner, Optimal sequencing by modular decomposition: poly-

nomial algorithms, Oper. Res. 34, 1986, 606-612.

Tow78 W. Townsend, The single machine problem with quadratic penalty function of
completion times: a branch and bound solution, Manage. Sci. 24, 1978,

530-534.

VB83 F. J. Villarreal, R. L. Bulfin, Scheduling a single machine to minimize the

weighted number of tardy jobs, AIIE Trans. 15, 1983, 337-343.

5 Scheduling on Parallel Processors

This chapter is devoted to the analysis of scheduling problems in a parallel pro-
cessor environment. As before the three main criteria to be analyzed are schedule
length, mean flow time and lateness. Then, some more developed models of mul-
tiprocessor systems and lot size scheduling are described. Corresponding results
are presented in the four following sections.

5.1 Minimizing Schedule Length

In this section we will analyze the schedule length criterion. Complexity analysis
will be complemented, wherever applicable, by a description of the most im-
portant approximation as well as enumerative algorithms. The presentation of the
results will be divided into subcases depending on the type of processors used,
the type of precedence constraints, and to a lesser extent task processing times
and the possibility of task preemption.

5.1.1 Identical Processors

Problem P | | Cmax

The first problem considered is P | | Cmax where a set of independent tasks is to be
scheduled on identical processors in order to minimize schedule length. We start
with complexity analysis of this problem which leads to the conclusion that the
problem is not easy to solve, since even simple cases such as scheduling on two
processors can be proved to be NP-hard [Kar72].

Theorem 5.1.1 Problem P2 | | Cmax is NP-hard.

Proof. As a known NP-complete problem we take PARTITION [Kar72] which is
formulated as follows.

Instance: Finite set A and a size s(ai) � IN for each ai � A .

Answer: "Yes" if there exists a subset A' � A such that
 �

ai �A'
s(ai) = �

ai �A � A'
s(ai) .

 Otherwise "No".

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_ 5

141

https://doi.org/10.1007/978-3-319-99849-7_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_5&domain=pdf

142 5 Scheduling on Parallel Processors

Given any instance of PARTITION defined by the positive integers s(ai), ai � A ,
we define a corresponding instance of the decision counterpart of P2 | | Cmax by
assuming n = |A |, pj = s(aj), j = 1, 2,..., n, and a threshold value for the schedule

length, y = 1
2

 �
ai �A

s(ai) . It is obvious that there exists a subset A' with the desired

property for the instance of PARTITION if and only if, for the corresponding
instance of P2 | | Cmax , there exists a schedule with Cmax � y (cf. Figure 5.1.1).
This proves the theorem.

P A'

A A'

1

P2

t
Figure 5.1.1 A schedule for Theorem 5.1.1.

Since there is no hope of finding an optimization polynomial time algorithm for
P | | Cmax , one may try to solve the problem along the lines presented in Section
3.2. First, one may try to find an approximation algorithm for the original prob-
lem and evaluate its worst case as well as its mean behavior. We will present
such an analysis below.

One of the most often used general approximation strategies for solving
scheduling problems is list scheduling, whereby a priority list of the tasks is giv-
en, and at each step the first available processor is selected to process the first
available task on the list [Gra66] (cf. Section 3.2). The accuracy of a given list
scheduling algorithm depends on the order in which tasks appear on the list. One
of the simplest algorithms is the LPT algorithm in which the tasks are arranged
in order of non-increasing pj .

Algorithm 5.1.2 LPT Algorithm for P | | Cmax.

begin
Order tasks on a list in non-increasing order of their processing times;
 -- i.e. p1 �...� pn

for i = 1 to m do si := 0;

 -- processors Pi are assumed to be idle from time si = 0 on, i = 1,..., m

j := 1;
repeat
 sk := min{si};

 Assign task Tj to processor Pk at time sk;

 -- the first non-assigned task from the list is scheduled on the first processor
 -- that becomes free

 5.1 Minimizing Schedule Length 143

 sk := sk + pj; j := j + 1;

until j = n + 1; -- all tasks have been scheduled

end;

It is easy to see that the time complexity of this algorithm is O(nlog n) since its
most complex activity is to sort the set of tasks. The worst case behavior of the
LPT rule is analyzed in Theorem 5.1.3.

Theorem 5.1.3 [Gra69] If the LPT algorithm is used to solve problem P | | Cmax,
then

RLPT =
4

3
 �

1

3m . (5.1.1)

Space limitations prevent us from including here the proof of the upper bound in
the above theorem. However, we will give an example showing that this bound
can be achieved. Let n = 2m + 1, p = [2m � 1, 2m � 1, 2m � 2, 2m � 2,..., m + 1,
m + 1, m, m, m]. For m = 3, Figure 5.1.2 shows two schedules, an optimal one and
an LPT schedule.

We see that in the worst case an LPT schedule can be up to 33% longer than
an optimal schedule. However, one is led to expect better performance from the
LPT algorithm than is indicated by (5.1.1), especially when the number of tasks
becomes large. In [CS76] another absolute performance ratio for the LPT rule
was proved, taking into account the number k of tasks assigned to a processor
whose last task terminates the schedule.

Theorem 5.1.4 For the assumptions stated above, we have

RLPT(k) = 1 + 1k �
1

km . (5.1.2)

(a)

 30 5 6 9 t

P1

P2

P3

1T

2T

5T 6T

3T

4T

7T

(b)

 30 5 6 9 t

P1

P2

P3

1T

2T

5T 6T

3T

4T

7T

Figure 5.1.2 Schedules for Theorem 5.1.3
 (a) an optimal schedule,

 (b) LPT schedule.

This result shows that the worst-case performance bound for the LPT algorithm
approaches one as fast as 1 + 1/k.

144 5 Scheduling on Parallel Processors

On the other hand, it would be of interest to know how good the LPT algo-
rithm is on the average. Such a result was obtained by [CFL84], where the rela-
tive error was found for two processors on the assumption that task processing
times are independent samples from the uniform distribution on [0, 1] .

Theorem 5.1.5 Under the assumptions already stated, we have the following
bounds for the mean value of schedule length for the LPT algorithm, E(CLPT

max), for
problem P2 | | Cmax .

n
4 +

1
4(n+1) � E(CLPT

max) ��
n
4 + e

2(n+1) , (5.1.3)

where e = 2.7... is the base of the natural logarithm.

Taking into account that n/4 is a lower bound on E(C *
max) we get

E(CLPT
max)/E(C *

max) < 1 + O(1/n2
) .

Therefore, as n increases, E(CLPT
max) approaches the optimum no more slowly than

1 + O(1/n2) approaches 1. The above bound can be generalized to cover also the
case of m processors for which we have [CFL83]:

E(CLPT
max) ��

n
2m + (m

n) .

Moreover, it is also possible to prove [FRK86, FRK87] that CLPT
max � C *

max almost
surely converges to 0 as n � # if the task processing time distribution has a fi-
nite mean and a density function f satisfying f(0) > 0. It is also shown that if the
distribution is uniform or exponential, the rate of convergence is O(log(log n)/n).
This result, obtained by a complicated analysis, can also be guessed from simula-
tion studies. Such an experiment was reported by Kedia [Ked70] and we present
the summary of the results in Table 5.1.1. The last column presents the ratio of
schedule lengths obtained by the LPT algorithm and the optimal preemptive one.
Task processing times are drawn from the uniform distribution of the given pa-
rameters.

To conclude the above analysis we may say that the LPT algorithm behaves
quite well and may be useful in practice. However, if one wants to have better
performance guarantees, other approximation algorithms should be used, as for
example MULTIFIT introduced by Coffman et al. [CGJ78] or the algorithm pro-
posed by Hochbaum and Shmoys [HS87]. A comprehensive treatment of approx-
imation algorithms for this and related problems is given by Coffman et al.
[CGJ84].

 5.1 Minimizing Schedule Length 145

n, m
Intervals of task processing

time distribution Cmax CLPT
max 4 C *

max

6
9

15
6
9

15

3
3
3
3
3
3

1, 20
1, 20
1, 20

20, 50
20, 50
20, 50

20
32
65
59

101
166

1.00
1.00
1.00
1.05
1.03
1.00

8
12
20
8

12
20

4
4
4
4
4
4

1, 20
1, 20
1, 20

20, 50
20, 50
20, 50

23
30
60
74

108
185

1.09
1.00
1.00
1.04
1.02
1.01

10
15
20
10
15
25

5
5
5
5
5
5

1, 20
1, 20
1, 20

20, 50
20, 50
20, 50

25
38
49
65

117
198

1.04
1.03
1.00
1.06
1.03
1.01

Table 5.1.1 Mean performance of the LPT algorithm.

We now pass to the second way of analyzing problem P | | Cmax. Theorem 5.1.1
gave a negative answer to the question about the existence of an optimization
polynomial time algorithm for solving P2 | | Cmax. However, we have not proved
that our problem is NP-hard in the strong sense and we may try to find a pseudo-
polynomial optimization algorithm. It appears that, based on a dynamic pro-
gramming approach, such an algorithm can be constructed using ideas presented
by Rothkopf [Rot66]. Below the algorithm is presented for P | | Cmax; it uses
Boolean variables xj(t1 , t2 ,..., tm), j = 1, 2,..., n, ti = 0, 1,..., C, i = 1, 2,..., m,

where C denotes an upper bound on the optimal schedule length C *
max . The

meaning of these variables is the following

xj(t1, t2,..., tm) =

�.
�
.

true if tasks T1 , T2 ,..., Tj can be scheduled on
processors P1 , P2 ,..., Pm in such a way that Pi
is busy in time interval [0, ti], i = 1, 2,..., m ,

false otherwise.

Now, we are able to present the algorithm.

146 5 Scheduling on Parallel Processors

Algorithm 5.1.6 Dynamic programming for P | | Cmax [Rot66].

begin
for all (t1, t2,..., tm) � {0, 1,..., C}

m do x0(t1, t2,..., tm) := false;

x0(0, 0,..., 0) := true;

 -- initial values for Boolean variables are now assigned

for j = 1 to n do

 for all (t1, t2,..., tm) � {0, 1,..., C}
m do

xj(t1, t2,..., tm) = V
i=1

m
xj�1(t1, t2,..., ti�1, ti � pj, ti+1,..., tm); (5.1.4)

C *
max := min{max{t1, t2,..., tm} | xn(t1, t2,..., tm) = true}; (5.1.5)

 -- optimal schedule length has been calculated

Starting from the value C *
max, assign tasks Tn, Tn�1,..., T1 to appropriate

processors using formula (5.1.4) backwards;
end;

The above procedure solves problem P | | Cmax in O(nCm) time; thus for fixed m it
is a pseudopolynomial time algorithm. As a consequence, for small values of m
and C the algorithm can be used even in computer applications. To illustrate the
use of the above algorithm let us consider the following example.

Example 5.1.7 Let n = 3, m = 2 and p = [2, 1, 2]. Assuming bound C = 5 we get
the cube given in Figure 5.1.3(a) where particular values of variables xj(t1 , t2 ,...,
 tm) are stored. In Figures 5.1.3(b) through 5.1.3(e) these values are shown, re-
spectively, for j = 0, 1, 2, 3 (only true values are depicted). Following Figure
5.1.3(e) and equation (5.1.5), an optimal schedule is constructed as shown in
Figure 5.1.3(f).

The interested reader may find a survey of some other enumerative approaches
for the problem in question in [LLR+93].

Problem P | pmtn | Cmax

Now one may try the third way of analyzing the problem P | | Cmax (as suggested
in Section 3.2), i.e. on may relax some constraints imposed on problem P | | Cmax
and allow preemptions of tasks. It appears that problem P | pmtn | Cmax can be
solved very efficiently. It is easy to see that the length of a preemptive schedule
cannot be smaller than the maximum of two values: the maximum processing
time of a task and the mean processing requirement on a processor [McN59], i.e.:

C *
max = max{max

j
{pj}, 1

m 5
j=1

n
 pj} . (5.1.6)

 5.1 Minimizing Schedule Length 147

(a)

 C=5

C=5

n=30
1t

t 2

(b) j = 0, x0(t1,t2) (c) j = 1, x1(t1,t2)

t1
0 1 2 3 4 5

0
1
2
3
4
5

T

t2

T

T

0 1 2 3 4 5

0
1
2
3
4
5

t1

t2
(d) j = 2, x2(t1,t2) (e) j = 3, x3(t1,t2)

T
T

T
T

0 1 2 3 4 5

0
1
2
3
4
5

t1

t2

T
T

T
T

0 1 2 3 4 5

0
1
2
3
4
5

t1

t2

T
T

(f)

 t0 2 3

= 3
P1

P2

1T T2

T3

Cmax
*

Figure 5.1.3 An application of dynamic programming for Example 5.1.7

(a) a cube of Boolean variables,
(b)-(e) values of xj(t1,t2) for j = 0, 1, 2, 3, respectively (here T
stands for true),
(f) an optimal schedule.

148 5 Scheduling on Parallel Processors

The following algorithm given by McNaughton [McN59] constructs a schedule

whose length is equal to C *
max .

Algorithm 5.1.8 McNaughton's rule for P | pmtn | Cmax [McN59].

begin
C *

max := max{5
j=1

n
 pj /m, max

j
{pj}}; -- minimum schedule length

t := 0; i := 1; j := 1;
repeat
 if t + pj � C *

max

 then

 begin
 Assign task Tj to processor Pi , starting at time t;

 t := t + pj; j := j + 1;
 -- task Tj can be fully assigned to processor Pi,
 -- assignment of the next task will continue at time t + pj
 end
 else
 begin
 Starting at time t, assign task Tj for C *

max � t units to processor Pi;

 -- task Tj is preempted at time C *
max,

 -- processor Pi is now busy until C *
max,

 -- assignment of Tj will continue on the next processor at time 0
 pj := pj � (C *

max � t); t := 0; i := i + 1;

 end;
until j = n + 1; -- all tasks have been scheduled

end;
Note that the above algorithm is an optimization procedure since it always finds
a schedule whose length is equal to C *

max . Its time complexity is O(n) .
We see that by allowing preemptions we made the problem easy to solve.

However, there still remains the question of practical applicability of the solution
obtained this way. One has to ask if this model of preemptive task scheduling can
be justified, because it cannot be expected that preemptions are free of cost. Gen-
erally, two kinds of preemption costs have to be considered: time and finance.
Time delays originating from preemptions are less crucial if the delay caused by
a single preemption is small compared to the time the task continuously spends
on the processor. Financial costs connected with preemptions, on the other hand,
reduce the total benefit gained by preemptive task execution; but again, if the
profit gained is large compared to the losses caused by the preemptions the
schedule will be more useful and acceptable. These circumstances suggest the
introduction of a scheduling model where task preemptions are only allowed af-

 5.1 Minimizing Schedule Length 149

ter the tasks have been processed continuously for some given amount k of time.
The value for k (preemption granularity) should be chosen large enough so that
the time delay and cost overheads connected with preemptions are negligible. For
given granularity k, upper bounds on the preemption overhead can easily be es-
timated since the number of preemptions for a task of processing time p is lim-
ited by �p/k� . In [EH93] the problem P | pmtn | Cmax with k-restricted preemptions
is discussed: If the processing time pj of a task Tj is less than or equal to k, then
preemption is not allowed; otherwise preemption may take place after the task
has been continuously processed for at least k units of time. For the remaining
part of a preempted task the same condition is applied. Notice that for k = 0 this
problem reduces to the "classical" preemptive scheduling problem. On the other
hand, if for a given instance the granularity k is larger than the longest processing
time among the given tasks, then no preemption is allowed and we end up with
non-preemptive scheduling. Another variant is the exact-k-preemptive scheduling
problem where task preemptions are only allowed at those moments when the
task has been processed exactly an integer multiple of k time units. In [EH93] it
is proved that, for m = 2 processors, both the k-preemptive and the exact-k-
preemptive scheduling problems can be solved in time O(n). For m > 2 proces-
sors both problems are NP-hard.

Problem P | prec | Cmax

Let us now pass to the case of dependent tasks. At first tasks are assumed to be
scheduled non-preemptively. It is obvious that there is no hope of finding a poly-
nomial time optimization algorithm for scheduling tasks of arbitrary length since
P | | Cmax is already NP-hard. However, one may try again list scheduling algo-
rithms. Unfortunately, this strategy may result in an unexpected behavior of con-
structed schedules, since the schedule length for problem P | prec | Cmax (with
arbitrary precedence constraints) may increase if:
� the number of processors increases,
� task processing times decrease,
� precedence constraints are weakened, or
� the priority list changes.

Figures 5.1.4 through 5.1.8 indicate the effects of changes of the above men-
tioned parameters. These list scheduling anomalies have been discovered by
Graham [Gra66], who has also evaluated the maximum change in schedule
length that may be induced by varying one or more problem parameters. We will
quote this theorem since its proof is one of the shortest in that area and illustrates
well the technique used in other proofs of that type. Let there be defined a task
set T together with precedence constraints ≺. Let the processing times of the
tasks be given by vector p, let T be scheduled on m processors using list L, and

150 5 Scheduling on Parallel Processors

let the obtained value of schedule length be equal to Cmax. On the other hand, let
the above parameters be changed: a vector of processing times p' � p (for all the
components), relaxed precedence constraints ≺' � ≺, priority list L' and the
number of processors m'. Let the new value of schedule length be C ' max . Then the
following theorem is valid.

(a)

T /42 T /23

T /44 T /45 T /26

T /31

T /28T /137

(b)

P

P

0 3 4 5 9 13 15 17

1T 3T 4T 5T 6T 8T

2T 7T

1

2

t
Figure 5.1.4 (a) A task set, m = 2, L = (T1, T2, T3, T4, T5, T6, T7, T8),
 (b) an optimal schedule.

1T 3T 4T 6

2T 8T 5T 7T

t

1P

2P

0 3 4 5 6 9 10 11 23

T

Figure 5.1.5 Priority list changed: A new list L' = (T1, T2, T3, T4, T5, T6, T8, T7).

t

1T 4T 6T 8T

7T5T2T

1P

2P

0 2 3 6 7 8 18

3T

Figure 5.1.6 Processing times decreased; p'j = pj �� 1, j = 1, 2,..., n.

 5.1 Minimizing Schedule Length 151

0 2 3 4 6 7 8 19

3P

t

1T 5T

2T 6T 7T

8T4T3T

2P

1P

Figure 5.1.7 Number of processors increased, m = 3.

(a)

T /23

T /26T /45T /44

T /42T /31

T /137 T /28

(a)

 0 3 4 5 8 9 10 12 22 t

P2

P1 T1

T2

T3

T4

T5

T6 T8

T7

Figure 5.1.8 (a) Precedence constraints weakened,

(b) a resulting list schedule.

Theorem 5.1.9 [Gra66] Under the above assumptions,
C ' max
Cmax

 � 1 +
m�1

m' . (5.1.7)

Proof. Let us consider schedule S' obtained by processing task set T with primed
parameters. Let the interval [0, C ' max) be divided into two subsets, A and B , de-
fined in the following way:

A = {t � [0, C ' max) | all processors are busy at time t}, B = [0, C ' max) � A .

Notice that both A and B are unions of disjoint half-open intervals. Let Tj1 de-
note a task completed in S' at time C ' max , i.e. Cj1 = C ' max . Two cases may occur:

152 5 Scheduling on Parallel Processors

1. The starting time sj1 of Tj1 is an interior point of B . Then by the definition of
B there is some processor Pi which for some % > 0 is idle during interval [sj1 � %,

sj1) . Such a situation may only occur if we have Tj2 ≺' Tj1 and Cj2 = sj1 for some
task Tj2 .
2. The starting time of Tj1 is not an interior point of B . Let us also suppose that
sj1 � 0. Define x1 = sup{x | x < sj1 , and x � B } or x1 = 0 if set B is empty. By the
construction of A and B , we see that x1 � A , and processor Pi is idle in time
interval [x1 � %, x1) for some % > 0 . But again, such a situation may only occur if
some task Tj2 ' Tj1 is processed during this time interval.

It follows that either there exists a task Tj2 ≺' Tj1 such that y � [Cj2 , sj1) im-
plies y � A or we have: x < sj1 implies either x � A or x < 0 .

The above procedure can be inductively repeated, forming a chain Tj3 ,
Tj4 ,..., until we reach task Tjr for which x < sjr implies either x � A or x < 0.
Hence there must exist a chain of tasks

Tjr ≺' Tjr�1
 ≺'... ≺' Tj2 ≺' Tj1 (5.1.8)

such that at each moment t � B , some task Tjk is being processed in S'. This im-
plies that

�
6'�S'

 p' 6' � (m' � 1) �
k=1

r
 p' jk (5.1.9)

where the sum on the left-hand side is made over all idle-time tasks 6' in S'. But
by (5.1.8) and the hypothesis ≺' � ≺ we have

Tjr ≺ Tjr�1
 ≺...≺ Tj2 ≺ Tj1 . (5.1.10)

Hence,

Cmax � �
k=1

r
 pjk � �

k=1

r
 p' jk . (5.1.11)

Furthermore, by (5.1.9) and (5.1.11) we have

C ' max =
1

m' (�k=1

n
 p' k � �

6'�S'
 p' 6'3 �

1

m' (m Cmax + (m' � 1) Cmax) . (5.1.12)

It follows that
C ' max
Cmax

 � 1 +
m�1

m'

and the theorem is proved.

 5.1 Minimizing Schedule Length 153

From the above theorem, the absolute performance ratio for an arbitrary list
scheduling algorithm solving problem P | | Cmax can be derived.

Corollary 5.1.10 [Gra66] For an arbitrary list scheduling algorithm LS for
P | | Cmax we have

RLS = 2 �
1

m . (5.1.13)

Proof. The upper bound of (5.1.13) follows immediately from (5.1.7) by taking
m' = m and by considering the list leading to an optimal schedule. To show that
this bound is achievable let us consider the following example: n = (m � 1)m + 1,
p = [1, 1,..., 1, 1, m], ≺ is empty, L = (Tn , T1 , T2 ,..., Tn�1) and L' = (T1 , T2 , ...,

Tn). The corresponding schedules for m = 4 are shown in Figure 5.1.9.

(a) (b)

t0 1 2 3 4

P1

P2

P3

P4

T13

1T 4T 7T T10

2T 5T 8T T11

3T 6T T9 T12

 0 31 2 7 t
4T

P1

P2

P3

P4

1T

2T

3T

5T T9 T13

6T T10

7T T11

8T T12

Figure 5.1.9 Schedules for Corollary 5.1.10
 (a) an optimal schedule,
 (b) an approximate schedule.

It follows from the above considerations that an arbitrary list scheduling algo-
rithm can produce schedules almost twice as long as optimal ones. However, one
can solve optimally problems with tasks of unit lengths.

Problem P | prec, pj = 1 | Cmax

The first algorithm has been given for scheduling forests, consisting either of in-
trees or of out-trees [Hu61]. We will first present Hu's algorithm for the case of
an in-tree, i.e. for the problem P | in-tree, pj = 1 | Cmax. The algorithm is based on

the notion of a task level in an in-tree which is defined as the number of tasks on

the path to the root of the graph. The algorithm by Hu, which is also called level
algorithm or critical path algorithm is as follows.

154 5 Scheduling on Parallel Processors

Algorithm 5.1.11 Hu's algorithm for P | in-tree, pj = 1 | Cmax [Hu61].

begin
Calculate levels of the tasks;

t := 0;
repeat
 Construct list Lt consisting of all the tasks without predecessors at time t;

 -- all these tasks either have no predecessors

 -- or their predecessors have been assigned in time interval [0, t�1]

 Order Lt in non-increasing order of task levels;

 Assign m tasks (if any) to processors at time t from the beginning of list Lt;

 Remove the assigned tasks from the graph and from the list;

 t := t + 1;

until all tasks have been scheduled;

end;

The algorithm can be implemented to run in O(n) time. An example of its appli-

cation is shown in Figure 5.1.10.

4

3

2

1

1T 2T 3T 4T 5T

6T 7T 8T T9

T10 T11

T12

0 2 3 41 5 t

P1

P2

P3

1T

2T

3T

4T

5T

6T

7T

8T

T9

T10

T11

T12

Figure 5.1.10 An example of the application of Algorithm 5.1.11 for three pro-
cessors.

A forest consisting of in-trees can be scheduled by adding a dummy task that is

an immediate successor of only the roots of in-trees, and then by applying Algo-

rithm 5.1.11. A schedule for an out-tree can be constructed by changing the ori-

 5.1 Minimizing Schedule Length 155

entation of arcs, applying Algorithm 5.1.11 to the obtained in-tree and then read-

ing the schedule backwards, i.e. from right to left.

It is interesting to note that the problem of scheduling opposing forests (that

is, combinations of in-trees and out-trees) on an arbitrary number of processors is

NP-hard [GJTY83]. However, if the number of processors is limited to 2, the

problem is easily solvable even for arbitrary precedence graphs [CG72, FKN69,

Gab82]. We present the algorithm given by Coffman and Graham [CG72] since

it can be further extended to cover the preemptive case. The algorithm uses la-
bels assigned to tasks, which take into account the levels of the tasks and the

numbers of their immediate successors. The following algorithm assigns labels to

the tasks, and then uses them to find the shortest schedule for problem P2 | prec,

pj = 1 | Cmax.

Algorithm 5.1.12 Algorithm by Coffman and Graham for P2 | prec, pj = 1 | Cmax

[CG72].

begin
Assign label 1 to any task T0 for which isucc(T0) = �;
 -- recall that isucc(T) denotes the set of all immediate successors of T

j := 1;
repeat
 Construct set S of all unlabeled tasks whose successors are labeled;

 for all T � S do

 begin
 Construct list L(T) consisting of labels of tasks belonging to isucc(T);

 Order L(T) in decreasing order of the labels;
 end;

 Order these lists in increasing lexicographic order L(T[1]) <
. ...<. L(T[�S �]);

 -- see Section 2.1 for definition of <.

 Assign label j + 1 to task T[1];

 j := j + 1;

until j = n + 1; -- all tasks have been assigned labels

call Algorithm 5.1.11;
 -- here the above algorithm uses labels instead of levels when scheduling tasks
end;

A careful analysis shows that the above algorithm can be implemented to run in

time which is almost linear in n and in the number of arcs in the precedence

graph [Set76]; thus its time complexity is practically O(n2
). An example of the

application of Algorithm 5.1.12 is given in Figure 5.1.11.

It must be stressed that the question concerning the complexity of problem

Pm | prec, pj = 1 | Cmax with a fixed number m of processors is still open despite

the fact that many papers have been devoted to solving various subcases of prec-

156 5 Scheduling on Parallel Processors

edence constraints. If tasks with unit processing times are considered, the follow-

ing results are available. Problems P3 | opposing forest, pj = 1 | Cmax and

Pk | opposing forest, pj = 1 | Cmax are solvable in time O(n) [GJTY83] and

O(n2k�2
 logn) [DW85], respectively. On the other hand, if the number of availa-

ble processors is variable, then this problem becomes NP-hard. Some results are

also available for the subcases in which task processing times may take only two

values. Problems P2 | prec, pj = 1 or 2 | Cmax and P | prec, pj = 1 or k | Cmax are NP-

hard [DL88], while problems P2 | tree, pj = 1 or 2 | Cmax and P2 | tree, pj = 1 or

3 | Cmax are solvable in time O(nlogn) [NLH81] and O(n2
logn) [DL89], respec-

tively. Arbitrary processing times result in strong NP-hardness even for the case

of chains scheduled on two processors (problem P2 | chains | Cmax) [DLY91].

/ 11

/ 12

/ 13

/ 8

/ 9

/ 10

/ 5

/ 6

/ 3

/ 2

/ 1/ 7

/ 4

2T

1T

3T

4T

5T

6T

T9

T10

7T

8T

T11

T12

T13

0 2 3 41 5 76

*

t

P1

P2

3T

2T

1T

6T

5T

4T

T9

7T

8T

T10

T11

T12

T13
Cmax = 7

Figure 5.1.11 An example of the application of Algorithm 5.1.12 (tasks are
denoted by Tj /label).

Furthermore, several papers deal with approximation algorithms for P | prec, pj =

 1 | Cmax and more general problems. We quote some of the most interesting re-

sults. The application of the level algorithm (Algorithm 5.1.11) to solve P | prec,

pj = 1 | Cmax has been analyzed by Chen and Liu [CL75] and Kunde [Kun76]. The

following bound has been proved.

 5.1 Minimizing Schedule Length 157

Rlevel =

�
�

4

3
 for m = 2

2 �
1

m�1
 for m � 3 .

Algorithm 5.1.12 is slightly better, its bound is R = 2 �
2

m �
m � 3

m&Cmax*
 for m � 3

[BT94]. In this context one should not forget the results presented in Theorems

5.1.9 and 5.1.10, where list scheduling anomalies have been analyzed.

Problem P | pmtn, prec | Cmax

The analysis also showed that preemptions can be profitable from the viewpoint

of two factors. First, they can make problems easier to solve, and second, they

can shorten the schedule. Coffman and Garey [CG91] proved that for problem

P2 | prec | Cmax the least schedule length achievable by a non-preemptive schedule

is no more than 4/3 the least schedule length achievable when preemptions are

allowed. While the proof of this fact seems to be tedious, a very simple example

showing that this bound is met can easily be given for a set of three independent

tasks of equal length (cf. Figure 5.1.12).

(a)

0 1 2

tnpCmax =

P1

P2

T1

T2

T3

(b)

0 1

t
1/2 3/2

pCmax

4/3=
np

p

=

P1

P2

T1 T3

T3 T2

Cmax

Cmax

Figure 5.1.12 An example of 4/3 conjecture
 (a) non-preemptive scheduling,
 (b) preemptive scheduling.

In the general case of dependent tasks scheduled on processors in order to mini-

mize schedule length, one can construct optimal preemptive schedules for tasks

of arbitrary length and with other parameters the same as in Algorithm 5.1.11 or

5.1.12. The approach again uses the notion of the level of task Tj in a precedence

graph, by which is now understood the sum of processing times (including pj) of

158 5 Scheduling on Parallel Processors

tasks along the longest path between Tj and a terminal task (a task with no suc-

cessors). Let us note that the level of a task being executed is decreasing. We

have the following algorithm [MC69, MC70] for the problems P2 | pmtn,

prec | Cmax and P | pmtn, forest | Cmax . The algorithm uses a notion of a processor
shared schedule, in which a task receives some fraction * (��1) of the processing

capacity of a processor.

Algorithm 5.1.13 Algorithm by Muntz and Coffman for P2 | pmtn, prec | Cmax

and P | pmtn, forest | Cmax [MC69, MC70].

begin
for all T � T do Compute the level of task T;

t := 0; h := m;
repeat

 Construct set Z of tasks without predecessors at time t;

 while h > 0 and |Z | > 0 do

 begin

 Construct subset S of Z consisting of tasks at the highest level;

 if |S | > h

 then
 begin
 Assign * := h/|S | of a processing capacity to each of the tasks from S ;

 h := 0; -- a processor shared partial schedule is constructed
 end
 else
 begin
 Assign one processor to each of the tasks from S ;

 h := h � |S |; -- a "normal" partial schedule is constructed

 end;

 Z := Z � S ;

 end; -- the most "urgent" tasks have been assigned at time t
Calculate time 7 at which either one of the assigned tasks is finished or a

point is reached at which continuing with the present partial assignment

means that a task at a lower level will be executed at a faster rate * than a

task at a higher level;

 Decrease levels of the assigned tasks by (7 � t)*;

 t := 7; h := m;

 -- a portion of each assigned task equal to (7�t)* has been processed

until all tasks are finished;

call Algorithm 5.1.8 to re-schedule portions of the processor shared schedule

to get a normal one;
end;

 5.1 Minimizing Schedule Length 159

The above algorithm can be implemented to run in O(n2
) time. An example of its

application to an instance of problem P2 | pmtn, prec | Cmax is shown in Figure

5.1.13.

At this point let us also consider another class of the precedence graphs for

which the scheduling problem can be solved in polynomial time. To do this we

have to present precedence constraints in the form of an activity network (task-

on-arc precedence graph, viz. Section 3.1) whose nodes (events) are ordered in

such a way that the occurrence of node i is not later than the occurrence of node j,
if i < j.

(a)

T /27

11
T /4

12
T /3

13T /3

10T /5

T /39

T /48

T /66

T /55

T /43

T /22

T /31

T /14

(b)

0 2 4 9 10 11 13 17 18 22.5

11T 11T

10T
10T

12T

13T

T8

T7
10T

T9T9T6

T4T1

T6

T5

T3 T3

T2 T1

*=2/3

*=2/3

*=2/3

*=1/2
*=1/2

P2

P1

I.

t

t0 2 4 9 10 11 13 15 17 18 19.5 21 22.5

T3

T2 T1

T6

T5

T9 T8

T1 T4 T710T

11T 12T

10T 12T 13TP2

P1

II.

Figure 5.1.13 An example of the application of Algorithm 5.1.13
(a) a task set (nodes are denoted by Tj /pj),

(b) I: a processor-shared schedule, II: an optimal schedule.

160 5 Scheduling on Parallel Processors

Now, let S I denote the set of all the tasks which may be performed between the

occurrence of event (node) I and I + 1. Such sets will be called main sets. Let us

consider processor feasible sets, i.e. those main sets and those subsets of the

main sets whose cardinalities are not greater than m, and number these sets from

1 to some K. Now, let Qj denote the set of indices of processor feasible sets in

which task Tj may be performed, and let xi denote the duration of the ith feasible

set. Then, a linear programming problem can be formulated in the straightfor-

ward way [WBCS77, BCSW76b] (another LP formulation for unrelated proces-

sors is presented in Section 5.1.2 as the first phase of a two-phase method):

Minimize Cmax = �
i=1

K
 xi (5.1.14)

subject to �
i �Qj

 xi = pj , j = 1, 2,..., n ,

 xi � 0, i = 1, 2,..., K .

(5.1.15)

It is clear that the solution of the LP problem depends on the order of nodes

in the activity network; hence an optimal solution is found when this topological

order is unique. Such a situation takes place for a uniconnected activity network

(uan), i.e. one in which any two nodes are connected by a directed path in only

one direction. An example of a uniconnected activity network together with the

corresponding precedence graph is shown in Figure 5.1.14. On the other hand,

the number of variables in the above LP problem depends polynomially on the

input length, when the number of processors m is fixed. We may then use a non-

simplex algorithm (e.g. from [Kha79] or [Kar84]) which solves any LP problem

in time polynomial in the number of variables and constraints. Hence, we may

conclude that the above procedure solves problem Pm | pmtn, uan | Cmax in poly-

nomial time.

(a)

T4T1

T2 T5

T3

2

4

3

1

(b)

T2 T5

T1 T4

T3

Figure 5.1.14 (a) An example of a simple uniconnected activity network,
(b) The corresponding precedence graph.
Main sets S 1 = {T1, T2}, S 2 = {T2, T3, T4}, S 3 = {T4, T5}.

 5.1 Minimizing Schedule Length 161

Recently another LP formulation has been proposed which enables one to solve
problem P | pmtn, uan | Cmax in polynomial time, regardless of a number of pro-
cessors [JMR+04].

As we already mentioned the uniconnected activity network has a task-on-
node equivalent representation in a form of the interval order. Below, we present
a sketch of the proof [BK02]. Let us start with the following theorem which will
be given without a proof.

Theorem 5.1.14 Let G be an activity network (task-on-arc graph). G is unicon-
nected if and only if G has a Hamiltonian path.

Now, the following theorems may be proved [BK02].

Theorem 5.1.15 If G is a uan, then G is a task-on-arc representation of an
interval order.

Proof. By Theorem 5.1.14, G = (V , A) is composed of a Hamiltonian path
W = (v1 , … , vn) with possibly some additional arcs of the form (vi , vj) with i < j.
The interval order we are looking for is defined by the following collection of
intervals (Ia)a�A . For every arc a = (vi , vj) of A, we put the interval [i , j) into the
collection.

We have now to show that Ia = [i , j) is entirely to the left of Ia' = [i' , j') if
and only if a has to precede a' in the task precedence constraints represented by
G. This is easy to show, since:

Ia = [i , j) is entirely to the left of Ia' = [i' , j')

 j � i’

 there is a path from vj to vi' in G (along W)

 a with head j has to precede a' with tail i' .

If dummy tasks are not allowed, an interval order does not necessarily have a
task-on-arc representation. Indeed, if we consider the collection of intervals
{[1,2) , [1,3) , [2,4) , [3,4)}, its task-on-node representation is graph N in Figure
2.3.1. It implies that this partial order does not have a task-on-arc representation
without dummy tasks. But the equivalence of task-on-node and task-on-arc rep-
resentations can be obtained through the use of dummy tasks. Since we allow
them also here, the following result can be proved.

Theorem 5.1.16 Any interval order has a task-on-arc representation with a
Hamiltonian path (and therefore corresponds to a uan).

Proof. Consider any collection of intervals (Ia)a�A with Ia = [ba , ea). We define
the following graph G=(V,E). Set

V= { ba | a � A } � { ea | a � A }.

162 5 Scheduling on Parallel Processors

For any v in V, let next(v) be the vertex w > v such that there is no x in V with v +
x + w (next(v) is not defined for the largest ea). Set

A' = { (v , next(v)) | v � V and next(v) defined }
and

E = A' � { (ba , ea) | a � A } .

The arcs in A' represent dummy tasks. This graph G has indeed a Hamilto-
nian path, starting with the smallest ba (mina�A ea), following the arcs in A' and
ending at the largest ea (maxa�A ea). It remains to show that Ia = [ba , ea) is en-
tirely to the left of Ia' = [ba' , ea') if and only if arc (ba , ea) has to precede arc
[ba' , ea') in the task precedence constraints represented by G. We do not have to
deal with arcs in A' since they represent dummy tasks:

Ia=[ba , ea) is entirely to the left of Ia' = [ba' , ea')

 ea � ba'

 there is a path from ea to ba' in G (using the arcs in A')

 (ba , ea) with head ea has to precede (ba' , ea') with tail ba' .

The following corollary is a direct consequence of Theorems 5.1.15 and 5.1.16

Corollary 5.1.17 Let Q be a partial order. If dummy tasks are allowed, Q is an
interval order if and only if Q can be represented as a uan.

We may now conclude the above considerations with the following result:

P | pmtn , interval order | Cmax is solvable in polynomial time.
For general precedence graphs, however, we know from Ullman [Ull76] that the

problem is NP-hard. In that case a heuristic algorithm such as Algorithm 5.1.13

my be chosen. The worst-case behavior of Algorithm 5.1.13 applied in the case

of P | pmtn, prec | Cmax has been analyzed by Lam and Sethi [LS77]:

RAlg.5.1.13 = 2 �
2

m , m � 2 .

5.1.2 Uniform and Unrelated Processors

Problem Q | pj = 1 | Cmax

Let us start with an analysis of independent tasks and non-preemptive schedul-

ing. Since the problem with arbitrary processing times is already NP-hard for

identical processors, all we can hope to find is a polynomial time optimization

algorithm for tasks with unit standard processing times only. Such an approach

 5.1 Minimizing Schedule Length 163

has been given by Graham et al. [GLL+79] where a transportation network for-

mulation has been presented for problem Q | pj = 1 | Cmax . We describe it briefly

below.

Let there be n sources j, j = 1, 2,..., n, and mn sinks (i, k), i = 1, 2,..., m and

k = 1, 2,..., n. Sources correspond to tasks and sinks to processors and positions

of tasks on them. Let cijk = k/bi be the cost of arc (j, (i, k)); this value corresponds

to the completion time of task Tj processed on Pi in the kth position. The arc flow

xijk has the following interpretation:

xijk =
�
�

1 if Tj is processed in the kth position on Pi

0 otherwise.

The min-max transportation problem can be now formulated as follows:

Minimize max
i, j, k

 {cijk xijk} (5.1.16)

subject to� �
i=1

m
 �
k=1

n
 xijk = 1 for all j , (5.1.17)

� �
j=1

n
 xijk � 1 for all i, k , (5.1.18)

 xijk � 0 for all i, j, k . (5.1.19)

This problem can be solved by a standard transportation procedure (cf. Section

2.3) which results in O(n3
) time complexity, or by a procedure due to Sevast-

janov [Sev91]. Below we sketch this last approach. It is clear that the minimum

schedule length is given as

C *
max = sup {t | �

i=1

m
 �tbi� < n/ ' (5.1.20)

On the other hand, a lower bound on the schedule length for the above problem is

C' = n / �
i=1

m
 bi � C *

max . (5.1.21)

Bound C' can be achieved e.g. by a preemptive schedule. If we assign ki = �C'bi �
tasks to processor Pi , i = 1, 2,..., m, respectively, then these tasks may be pro-

cessed in time interval [0, C']. However, l = n � �
i=1

m
 ki tasks remain unassigned.

Clearly l � m � 1, since C'bi � �C'bi � < 1 for each i. The remaining l tasks are then

assigned one by one to those processors Pi for which min
i

{(ki + 1) / bi} is attained

at a given stage, where, of course, ki is increased by one after the assignment of a

task to a particular processor Pi . This procedure is repeated until all tasks are

164 5 Scheduling on Parallel Processors

assigned. We see that this approach results in an O(m2
)-algorithm for solving

problem Q | pj = 1 | Cmax .

Example 5.1.18 To illustrate the above algorithm let us assume that n = 9 tasks

are to be processed on m = 3 uniform processors whose processing speeds are

given by the vector b = [3, 2, 1]. We get C' = 9/6 = 1.5. The numbers of tasks

assigned to processors at the first stage are, respectively, 4, 3, and 1. A corre-

sponding schedule is given in Figure 5.1.15(a), where task T9 has not yet been

assigned. An optimal schedule is obtained if this task is assigned to processor P1 ,

cf. Figure 5.1.15(b).

(a) P1

0 1.0 1.50.5 t

P2

P3

T2 T3T1

T5 T6

T8

T4

T7

1 3 2 3 4 3/ / /

(b)

0 0.5 1.0 1.5 t

P1

P2

P3

T1 T2 T3 T4 T9

T5 T6 T7

T8

1 2 4 5

Cmax
* = 5 3/

Figure 5.1.15 Schedules for Example 5.1.18

 (a) a partial schedule,
 (b) an optimal schedule.

Problem Q | | Cmax

Since other problems of non-preemptive scheduling of independent tasks are NP-

hard, one may be interested in applying certain heuristics. One heuristic algo-

rithm which is a list scheduling algorithm, has been presented by Liu and Liu

[LL74a]. Tasks are ordered on the list in non-increasing order of their processing

times and processors are ordered in non-increasing order of their processing

speeds. Now, whenever a machine becomes free it gets the first non-assigned

task of the list; if there are two or more free processors, the fastest is chosen. The

worst-case behavior of the algorithm has been evaluated for the case of an m + 1

processor system, m of which have processing speed factor equal to 1 and the

remaining processor has processing speed factor b. The bound is as follows.

 5.1 Minimizing Schedule Length 165

R =

�
�

2(m+b)

b+2
 for b � 2

m+b
2

 for b > 2 .

It is clear that the algorithm does better if, in the first case (b � 2), m decreases

faster than b, and if b and m decrease in case of b > 2. Other algorithms have

been analyzed by Liu and Liu [LL74b, LL74c] and by Gonzalez et al. [GIS77].

Problem Q | pmtn | Cmax

By allowing preemptions, i.e. for the problem Q | pmtn | Cmax , one can find opti-

mal schedules in polynomial time. We present an algorithm given by Horvath et

al. [HLS77] despite the fact that there is a more efficient one by Gonzalez and

Sahni [GS78]. We do this because the first algorithm covers also precedence

constraints, and it generalizes the ideas presented in Algorithm 5.1.13. The algo-

rithm is based on two concepts: the task level, defined as previously as pro-

cessing requirement of the unexecuted portion of a task, but now expressed in

terms of a standard processing time, and processor sharing, i.e. the possibility of

assigning only a fraction * (0 � * � max{bi}) of processing capacity to some

task. Let us assume that tasks are indexed in order of non-increasing pj's and pro-

cessors are in order of non-increasing values of bi . It is quite clear that the mini-

mum schedule length can be estimated by

C *
max � C = max{ max

1 � k � m
{

Xk
Bk

}, {
Xn
Bm

} } (5.1.22)

where Xk is the sum of processing requirements (i.e. standard processing times

pj) of the first k tasks, and Bk is the collective processing capacity (i.e. the sum of

processing speed factors bi) of the first k processors. The algorithm presented

below constructs a schedule of length equal to C for the problem Q | pmtn | Cmax .

Algorithm 5.1.19 Algorithm by Horvath, Lam and Sethi for Q | pmtn | Cmax

[HLS77].

begin
for all T � T do Compute level of task T;

t := 0; h := m;
repeat
 while h > 0 do

 begin

 Construct subset S of T consisting of tasks at the highest level;

 -- the most "urgent" tasks are chosen

166 5 Scheduling on Parallel Processors

 if |S | > h

 then
 begin

Assign the tasks of set S to the h remaining processors to be processed

at the same rate * = �
i = m�h+1

m
 bi /

|S |;

 h := 0; -- tasks from set S share the h slowest processors
 end
 else
 begin

Assign tasks from set S to be processed at the same rate * on the fastest

|S | processors;

 h := h � |S |; -- tasks from set S share the fastest | S | processors

 end;
 end; -- the most urgent tasks have been assigned at time t

Calculate time moment 7 at which either one of the assigned tasks is finished

or a point is reached at which continuing with the present partial assign-

ment causes that a task at a lower level will be executed at a faster rate *

than a higher level task;
 -- note, that the levels of the assigned tasks decrease during task execution

Decrease levels of the assigned tasks by (7 � t)*;

t := 7 ; h := m;
 -- a portion of each assigned task equal to (7 � t)* has been processed

until all tasks are finished;
 -- the schedule constructed so far consists of a sequence of intervals during each

 -- of which certain tasks are assigned to the processors in a shared mode.

 -- In the next loop task assignment in each of these intervals is determined

for each interval of the processor shared schedule do

 begin
 Let y be the length of the interval;

 if g tasks share g processors

 then Assign each task to each processor for y/g time units
 else

 begin

Let p be the processing requirement of each of the g tasks in the inter-

val;

Let b be the processing speed factor of the slowest processor;

 if p/b < y

 then call Algorithm 5.1.8
 -- tasks can be assigned as in McNaughton's rule,
 -- ignoring different processor speeds
 else
 begin
 Divide the interval into g subintervals of equal lengths;

 5.1 Minimizing Schedule Length 167

Assign the g tasks so that each task occurs in exactly h intervals, each

time on a different processor;
 end;
 end;
 end;
 -- a normal preemptive schedule has now been constructed
end;

The time complexity of Algorithm 5.1.19 is O(mn2
). An example of its applica-

tion is shown in Figure 5.1.16.

(a)

1510.29.25.241.330

T1
T 1

T1

t

T1T2 T2
T2
T4

T2 T1 T4 T3

T 2
T 4
T5

T3
T2 T1 T4
T3 T5 T6

(b)

1510.29.25.241.330 t

T1T2T2

T1 T1 T2

T2 T1 T4 T3

T1 T4 T3 T2

T2 T1 T4 T3 T5 T6

T1 T4 T3 T5 T6 T2

T5T3T4T1T2

T1T4T3T5T2

T2T1 T4

T4T2 T1

Figure 5.1.16 An example of the application of Algorithm 5.1.19: n = 6, m = 2,

p = [20, 24, 10, 12, 5, 4], b = [4, 1]
(a) a processor shared schedule,
(b) an optimal schedule.

Problem Q | pmtn, prec | Cmax

When considering dependent tasks, only preemptive polynomial time optimiza-

tion algorithms are known. Algorithm 5.1.19 also solves problem Q2 | pmtn,

prec | Cmax , if the level of a task is understood as in Algorithm 5.1.13 where

standard processing times for all the tasks were assumed. When considering this

problem one should also take into account the possibility of solving it for uni-

connected activity networks and interval orders via the slightly modified linear

programming approach (5.1.14)-(5.1.15). It is also possible to solve the problem

by using another LP formulation which is described for the case of R | pmtn |

Cmax.

It is also possible to solve problem Q | pmtn, prec | Cmax approximately by the

two machine aggregation approach, developed in the framework of flow shop

168 5 Scheduling on Parallel Processors

scheduling [RS83] (cf. Chapter 8). In this case the two fastest processors are used

only, and the worst case bound is

Cmax
C *

max
 ���

�.
�
.

�
i=1

m/2

 max{b2i�1 /b1 , b2i /b2} if m is even,

�
i=1

�m/2�
 max{b2i�1 /b1 , b2i /b2} + bm /b1 if m is odd.

Problem R | pmtn | Cmax

Let us pass now to the case of unrelated processors. This case is the most diffi-

cult. We will not speak about unit-length tasks, because unrelated processors

with unit length tasks would reduce to the case of identical or uniform proces-

sors. Hence, no polynomial time optimization algorithms are known for prob-

lems other than preemptive ones. Also, very little is known about approximation

algorithms for this case. Some results have been obtained by Ibarra and Kim

[IK77], but the obtained bounds are not very encouraging. Thus, we will pass to

the preemptive scheduling model.

Problem R | pmtn | Cmax can be solved by a two-phase method. The first phase

consists in solving a linear programming problem formulated independently by

B)�la &zewicz et al. [BCSW76a, BCW77] and by Lawler and Labetoulle [LL78].

The second phase uses the solution of this LP problem and produces an optimal

preemptive schedule.

Let xij � [0, 1] denote the part of Tj processed on Pi . The LP formulation is

as follows:

Minimize Cmax (5.1.23)

subject to Cmax � �
j=1

n
 pij xij � 0 , i = 1, 2,..., m (5.1.24)

 Cmax � �
i=1

m
 pij xij � 0 , j = 1, 2,..., n (5.1.25)

� �
i=1

m
 xij = 1 , j = 1, 2,..., n . (5.1.26)

Solving the above problem, we get Cmax = C *
max and optimal values x*

ij .

However, we do not know how to schedule the task parts, i.e. how to assign these

parts to processors in time. A schedule may be constructed in the following way.

Let T = [t*
ij] be the m � n matrix defined by t*

ij = pij x*
ij , i = 1, 2,..., m, j = 1,

2,..., n. Notice that the elements of T reflect optimal values of processing times

of particular tasks on the processors. The jth column of T corresponding to task Tj

 5.1 Minimizing Schedule Length 169

will be called critical if �
i=1

m
 t*

ij = C *
max. By Y we denote an m � m diagonal matrix

whose element ykk is the total idle time on processor Pk, i.e. ykk = C *
max � �

j=1

n
 t*

kj .

Columns of Y correspond to dummy tasks. Let V = [T,Y] be an m � (n + m) ma-

trix. Now set U containing m positive elements of matrix V is defined as having

exactly one element from each critical column and at most one element from

other columns, and having exactly one element from each row. We see that U

corresponds to a task set which may be processed in parallel in an optimal sched-

ule. Thus, it may be used to construct a partial schedule of some length , > 0. An

optimal schedule is then produced as the union of the partial schedules. This pro-

cedure is summarized in Algorithm 5.1.20 [LL78].

Algorithm 5.1.20 Construction of an optimal schedule corresponding to LP
solution for R | pmtn | Cmax.

begin

C := C *
max;

while C > 0 do

 begin

 Construct set U ;
 -- thus a subset of tasks to be processed in a partial schedule has been chosen

 vmin := min
vij � U

 {vij};

 vmax := maxj � {j' | vij' 	U for i = 1,...,m}{�i v
ij
};

 if C � vmin � vmax

 then , := vmin

 else , := C � vmax;
 -- the length of the partial schedule is equal to ,

 C := C � ,;

 for each vij � U do vij := vij � ,;
 -- matrix V is changed; notice that due to the way , is defined,

 -- the elements of V can never become negative
 end;
end;
The proof of correctness of the algorithm can be found in [LL78].

Now we only need an algorithm that finds set U for a given matrix V. One of the

possible algorithms is based on the network flow approach. In this case the net-

work has m nodes corresponding to machines (rows of V) and n + m nodes corre-

sponding to tasks (columns of V), cf. Figure 5.1.17. A node i from the first group

is connected by an arc to a node j of the second group if and only if vij > 0. Arc

170 5 Scheduling on Parallel Processors

flows are constrained by b from below and by c = 1 from above, where the value

of b is 1 for arcs joining the source with processor-nodes and critical task nodes

with the sink, and b = 0 for the other arcs. Obviously, finding a feasible flow in

this network is equivalent to finding set U . The following example illustrates the

second phase of the described method.

SOURCE SINK

Processors
Tasks

1

2

m

1

n

n+1

n+m

n+2

Figure 5.1.17 Finding set U by the network flow approach.

Example 5.1.21 Suppose that for a certain scheduling problem a linear pro-

gramming solution of the two phase method has the form given in Figure

5.1.18(a). An optimal schedule is then constructed in the following way. First,

matrix V is calculated.

 T1 T2 T3 T4 T5 T6 T7 T8

V =

P1

P2

P3

�
8
8
9

�
:
:
; 3 2 1 4 0

 2 2 0 2 2

 2 1 4 0 1

�
8
8
9

�
:
:
; 0 0 0

 0 2 0

 0 0 2

 7 5 5 6 3 0 2 2

Then elements constituting set U are chosen according to Algorithm 5.1.20,

as depicted above. The value of a partial schedule length is , = 2. Next, the

while-loop of Algorithm 5.1.20 is repeated yielding the following sequence of

matrices Vi .

V1 =
�
8
8
9

�
:
:
; 1 2 1 4 0

 2 2 0 0 2

 2 1 2 0 1

�
8
8
9

�
:
:
; 0 0 0

 0 2 0

 0 0 2

 5.1 Minimizing Schedule Length 171

V2 =
�
8
8
9

�
:
:
; 1 2 1 2 0

 2 0 0 0 2

 0 1 2 0 1

�
8
8
9

�
:
:
; 0 0 0

 0 2 0

 0 0 2

V3 =
�
8
8
9

�
:
:
; 1 0 1 2 0

 0 0 0 0 2

 0 1 0 0 1

�
8
8
9

�
:
:
; 0 0 0

 0 2 0

 0 0 2

V4 =
�
8
8
9

�
:
:
; 1 0 1 1 0

 0 0 0 0 1

 0 0 0 0 1

�
8
8
9

�
:
:
; 0 0 0

 0 2 0

 0 0 2

V5 =
�
8
8
9

�
:
:
; 0 0 1 1 0

 0 0 0 0 0

 0 0 0 0 1

�
8
8
9

�
:
:
; 0 0 0

 0 2 0

 0 0 1

V6 =
�
8
8
9

�
:
:
; 0 0 0 1 0

 0 0 0 0 0

 0 0 0 0 0

�
8
8
9

�
:
:
; 0 0 0

 0 1 0

 0 0 1
 .

A corresponding optimal schedule is presented in Figure 5.1.18(b).

(a)

0 42 6 8 10

T5

T5T4

T3 T4T2T1

T1 T2

T1 T2 T3

P1

P2

P3

t

Cmax
* = 10

(b)

P1

P2

P3

0 42 6 8 10 t

T1

T4

T3

T4

T2

T1

T2

T1

T3

T4

T5

T2

T1

T5

T3 T4

T5

Figure 5.1.18 (a) A linear programming solution for an instance of
R | pmtn | Cmax ,
(b) an optimal schedule.

172 5 Scheduling on Parallel Processors

The overall complexity of the above approach is bounded from above by a poly-

nomial in the input length. This is because the transformation to the LP problem

is polynomial, and the LP problem may be solved in polynomial time using Kha-

chiyan's algorithm [Kha79]; the loop in Algorithm 5.1.20 is repeated at most

O(mn) times and solving the network flow problem requires O(z3
) time, where z

is the number of network nodes [Kar74].

Problem R | pmtn, prec | Cmax

If dependent tasks are considered, i.e. in the case R | pmtn, prec | Cmax , linear pro-

gramming problems similar to those discussed in (5.1.14)-(5.1.15) or (5.1.23)-

(5.1.26) and based on the activity network presentation, can be formulated. For

example, in the latter formulation one defines xijk as a part of task Tj processed on

processor Pi in the main set Sk . Solving the LP problem for xijk , one then applies

Algorithm 5.1.20 for each main set. If the activity network is uniconnected (a

corresponding task-on-node graph represents an interval order), an optimal

schedule is constructed in this way, otherwise only an approximate schedule is

obtained. Notice that in [JMR+04] a two-phase method has been proposed for

problem P | pmtn, uan | Cmax with the McNaughton algorithm applied for each

main set. This reduces the complexity of the second phase to O(n2
). In this paper

also several heuristics for ordering network nodes have been proposed and tested

experimentally, leading finally to an almost optimal algorithm for problem

P | pmtn, prec | Cmax .

We complete this chapter by remarking that introduction of ready times into the

model considered so far is equivalent to the problem of minimizing maximum

lateness. We will consider this type of problems in Section 5.3.

5.2 Minimizing Mean Flow Time

5.2.1 Identical Processors

Problem P | | �� Cj

In the case of identical processors and equal ready times preemptions are not

profitable from the viewpoint of the value of the mean flow time [McN59]. Thus,

we can limit ourselves to considering non-preemptive schedules only.

When analyzing the nature of criterion � Cj , one might expect that, as in the

case of one processor (cf. Section 4.2), by assigning tasks in non-decreasing or-

der of their processing times the mean flow time will be minimized. In fact, a

 5.2 Minimizing Mean Flow Time 173

proper generalization of this simple rule leads to an optimization algorithm for

P | | � Cj (Conway et al. [CMM67]). It is as follows.

Algorithm 5.2.1 SPT rule for problem P | | � Cj [CMM67].

begin
Order tasks on list L in non-decreasing order of their processing times;

while L � � do
 begin

Take the m first tasks from the list (if any) and assign these tasks arbitrarily to

the m different processors;

 Remove the assigned tasks from list L;
 end;
Process tasks assigned to each processor in SPT order;
end;
The complexity of the algorithm is obviously O(nlogn).

In this context let us also mention that introducing different ready times

makes the problem strongly NP-hard even for the case of one processor (see Sec-

tion 4.2 and [LRKB77]). Also, if we introduce different weights, then the 2-

processor problem without release times, P2 | | � wjCj , is already NP-hard

[BCS74].

Problem P | prec | �� Cj

Let us now pass to the case of dependent tasks. Here, P | out-tree, pj = 1 | � Cj is

solved by an adaptation of Algorithm 5.1.11 (Hu's algorithm) to the out-tree case

[Ros�], and P2 | prec, pj = 1 | � Cj is strongly NP-hard [LRK78]. In the case of

arbitrary processing times results by Du et al. [DLY91] indicate that even sim-

plest precedence constraints result in computational hardness of the problem.

That is problem P2 | chains | � Cj is already NP-hard in the strong sense. On the

other hand, it was also proved in [DLY91] that preemptions cannot reduce the

mean weighted flow time for a set of chains. Together with the last result this

implies that problem P2 | chains, pmtn | � Cj is also NP-hard in the strong sense.

Unfortunately, no approximation algorithms for these problems are evaluated

from their worst-case behavior point of view.

5.2.2 Uniform and Unrelated Processors

The results of Section 5.2.1 also indicate that scheduling dependent tasks on uni-

form or unrelated processors is an NP-hard problem in general. No approxima-

tion algorithms have been investigated either. Thus, we will not consider this

subject. On the other hand, in the case of independent tasks, preemptions may be

174 5 Scheduling on Parallel Processors

worthwhile, thus we have to treat non-preemptive and preemptive scheduling

separately.

Problem Q | | �� Cj

Let us start with uniform processors and non-preemptive schedules. In this case

the flow time has to take into account processor speed; so the flow time of task

Ti[k] processed in the kth position on processor Pi is defined as Fi[k] =
1

bi
 �
j=1

k
 pi[j] .

Let us denote by ni the number of tasks processed on processor Pi. Thus, n =

�
i=1

m
 ni . The mean flow time is then given by

F
_

 =

�
i=1

m

1

bi
 �
k=1

ni

(ni � k + 1)pi[k]

n . (5.2.1)

It is easy to see that the numerator in the above formula is the sum of n terms

each of which is the product of a processing time and one of the following coef-

ficients:

1

b1
n1,

1

b1
(n1 � 1) ,...,

1

b1
, 1

b2
n2,

1

b2
(n2 � 1) ,...,

1

b2
,...,

1

bm
nm,

1

bm
(nm � 1) ,...,

1

bm
 .

It is known from [CMM67] that such a sum is minimized by matching n smallest

coefficients in non-decreasing order with processing times in non-increasing or-

der. An O(nlogn) implementation of this rule has been given by Horowitz and

Sahni [HS76].

Problem Q | pmtn | � Cj

In the case of preemptive scheduling, it is possible to show that there exists an

optimal schedule for Q | pmtn | � Cj in which Cj � Ck if pj < pk . On the basis of

this observation, the following algorithm has been proposed by Gonzalez

[Gon77].

Algorithm 5.2.2 Algorithm by Gonzalez for Q | pmtn | � Cj [Gon77].

begin
Order processors in non-increasing order of their processing speed factors;

Order tasks in non-decreasing order of their standard processing times;

for j = 1 to n do

 begin
Schedule task Tj to be completed as early as possible, preempting when

necessary;
 -- tasks will create a staircase pattern "jumping" to a faster processor

 -- whenever a shorter task has been finished

 5.2 Minimizing Mean Flow Time 175

 end;

end;

t

Tm+2Tm+1Tm

T4T3 T5

T1

T2

T2

T3

T3

T4

T4P1

P2

P3

Pm

0

Figure 5.2.1 An example of the application of Algorithm 5.2.2.

The complexity of this algorithm is O(nlog n + mn). An example of its application

is given in Figure 5.2.1.

Problem R | | �� Cj

Let us now turn to the case of unrelated processors and consider problem

R | | � Cj . An approach to its solution is based on the observation that task Tj �

{T1 ,..., Tn} processed on processor Pi � {P1 ,..., Pm} as the last task contributes

its processing time pij to F
 _

. The same task processed in the last but one position

contributes 2pij , and so on [BCS74]. This reasoning allows one to construct an

(m n) � n matrix Q presenting contributions of particular tasks processed in dif-

ferent positions on different processors to the value of F
_

:

Q =

�
8
8
9

�
:
:
;[pij]

2[pij]

.

.

.

n[pij]

The problem is now to choose n elements from matrix Q such that

� exactly one element is taken from each column,

� at most one element is taken from each row,

� the sum of selected elements is minimum.

We see that the above problem is a variant of the assignment problem (cf.

[Law76]), which may be solved in a natural way via the transportation problem.

The corresponding transportation network is shown in Figure 5.2.2.

176 5 Scheduling on Parallel Processors

Careful analysis of the problem shows that it can be solved in O(n3
) time

[BCS74]. The following example illustrates this technique.

Example 5.2.3 Let us consider the following instance of problem R | | � Cj :

n = 5, m = 3, and matrix p of processing times

p =

�
8
8
9

�
:
:
; 3 2 4 3 1

 4 3 1 2 1

 2 4 5 3 4
 .

Using this data the matrix Q is constructed as follows:

Q =

�
8
8
8
8
8
8
8
9

 3 2 4 3 1

 4 3 1 2 1

 2 4 5 3 4

 6 4 8 6 2

 8 6 2 4 2

 4 8 10 6 8

 9 6 12 9 3

 12 9 3 6 3

 6 12 15 9 12

 12 8 16 12 4

 16 12 4 8 4

 8 16 20 12 16

 15 10 20 15 5

 20 15 5 10 5

 10 20 25 15 20 �
:
:
:
:
:
:
:
;

.

On the basis of this matrix a network as shown in Figure 5.2.2 is constructed.

1 1

i j

mn n

source
s t

sink

n n�m
arcs

(1,q)

total flow (n,0)

(1,0)

ij

arcs

n n�m
arcs

(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

arcs

Figure 5.2.2 The transportation network for problem R | | � Cj : arcs are denot-
ed by (c, y), where c is the capacity and y is the cost of unit flow.

 5.3 Minimizing Due Date Involving Criteria 177

Solving the transportation problem results in the selection of the underlined ele-

ments of matrix Q. They correspond to the schedule shown in Figure 5.2.3.

A very surprising result has been recently obtained by Sitters. Problem R | pmtn |

� Cj has been proved to be strongly NP-hard [Sit05].

0 1 2 3 t

T4

T1

T5 T2

T3

P1

P2

P3

F = �Cj = 10/5 = 2* 1�
n

�

Figure 5.2.3 An optimal schedule for Example 5.2.3.

5.3 Minimizing Due Date Involving Criteria

5.3.1 Identical Processors

In Section 4.3 we have seen that single processor problems with due date optimi-

zation criteria involving due dates are NP-hard in most cases. In the following we

will concentrate on minimization of Lmax criterion. It seems to be quite natural

that in this case the general rule should be to schedule tasks according to their

earliest due dates (EDD-rule, cf. Section 4.3.1). However, this simple rule of

Jackson [Jac55] produces optimal schedules under very restricted assumptions

only. In other cases more sophisticated algorithms are necessary, or the problems

are NP-hard.

Problem P | | Lmax

Let us start with non-preemptive scheduling of independent tasks. Taking into

account simple transformations between scheduling problems (cf. Section 3.4)

and the relationship between the Cmax and Lmax criteria, we see that all the prob-

lems that are NP-hard under the Cmax criterion remain NP-hard under the Lmax

criterion. Hence, for example, P2 | | Lmax is NP-hard. On the other hand, unit pro-

cessing times of tasks make the problem easy, and P | pj = 1, rj | Lmax can be solved

by an obvious application of the EDD rule [Bla77]. Moreover, problem P | pj = p,

rj | Lmax can be solved in polynomial time by an extension of the single processor

algorithm (see Section 4.3.1 and [GJST81]). Unfortunately very little is known

about the worst-case behavior of approximation algorithms for the NP-hard prob-

lems in question.

178 5 Scheduling on Parallel Processors

Problem P | pmtn, rj | Lmax

The preemptive mode of processing makes the solution of the scheduling prob-

lem much easier. The fundamental approach in that area is testing feasibility of

problem P | pmtn, rj , d
~

j | � via the network flow approach [Hor74]. Using this ap-

proach repetitively, one can then solve the original problem P | pmtn, rj | Lmax by

changing due dates (deadlines) according to a binary search procedure.

Let us now describe Horn's approach for testing feasibility of problem

P | pmtn, rj , d
~

j | �, i.e. deciding whether or not for a given set of ready times and

deadlines there exists a schedule with no late task. Let the values of ready times

and deadlines of an instance of P | pmtn, rj , d
~

j | � be ordered on a list in such a

way that e0 < e1 <...< ek , k < 2n, where ei stands for some rj or d~j . We construct a

network that has two sets of nodes, besides source and sink (cf. Figure 5.3.1).

The first set corresponds to time intervals in a schedule, i.e. node wi corresponds

to interval [ei�1 , ei], i = 1, 2,..., k. The second set corresponds to the task set. The

capacity of an arc joining the source of the network to node wi is equal to m(ei �

ei�1) and thus corresponds to the total processing capacity of m processors in this

interval. If task Tj could be processed in interval [ei�1 , ei] (because of its ready

time and deadline) then wi is joined to Tj by an arc of capacity ei � ei�1 . Node Tj

is joined to the sink of the network by an arc with capacity equal to pj and with a

lower bound on arc flow which is also equal to pj . We see that finding a feasible

flow pattern corresponds to constructing a feasible schedule and this test can be

made in O(n3
) time (cf. Section 2.3.3). A schedule is constructed on the basis of

flow values on arcs between interval and task nodes. Let us consider the follow-

ing example.

c = m(e �e) c=e �e

w1

w2

wk

T1

T2

Tn

k-1kk

b=p
c=p2

2

c =m(e �e)1 1 0

c =m(e �e)12 2

c = e �e1 0
b=p
c=p

1
1

b=p
c=p

n
n

k-1k

Figure 5.3.1 Network corresponding to problem P | pmtn, rj, d
~

j | � '

Example 5.3.1 Let n = 5, m = 2, p = [5, 2, 3, 3, 1], r = [2, 0, 1, 0, 2], and d = [8, 2,

4, 5, 8]. The corresponding network is shown in Figure 5.3.2(a), and a feasible

 5.3 Minimizing Due Date Involving Criteria 179

flow pattern is depicted in Figure 5.3.2(b). On the basis of this flow the feasible

schedule shown in Figure 5.3.2(c) is constructed.

(a)

c=6

c=2

c=4

c=2

c=2

c=1

c=1
c=1

c=1
c=1

c=2

c=1

c=1

c=1

c=3

c=2

c=2

c=3

c=2
b=5
c=5

b=2
c=2

b=3
c=3

b=3
c=3

b=1
c=1

S S1 2

1T

2T

3T

4T

5T

[0,1]

[1,2]

[2,4]

[4,5]

[5,8]

(b)

S1 S2

[0,1]

[1,2]

[2,4]

[4,5]

[5,8] 5T

4T

3T

2T

1T

2

2

4

2

4

1

1
1

1

1

2

11

1
3

1

5

2

3

3

1

(c)

 t0 1 2 4 5 8

T2 T2 T3 T1 T1

T4 T3 T4 T1 T4 T5

P1

P2

Figure 5.3.2 Finding a feasible schedule via network flow approach (Example
5.3.1)
(a) a corresponding network,

180 5 Scheduling on Parallel Processors

(b) a feasible flow pattern,
(c) a schedule.

In the next step a binary search can be conducted on the optimal value of Lmax,

with each trial value of Lmax inducing deadlines which are checked for feasibility

by means of the above network flow computation. This procedure can be imple-

mented to solve problem P | pmtn, rj | Lmax in O(n3
 min{n2

, logn + log max{pj}})

time [LLL+84].

Problem P | prec, pj = 1 | Lmax

Let us now pass to dependent tasks. A general approach in this case consists in

assigning modified due dates to tasks, depending on the number and due dates of

their successors. Of course, the way in which modified due dates are calculated

depends on the parameters of the problem in question. If scheduling non-

preemptable tasks on a multiple processor system only unit processing times can

result in polynomial time scheduling algorithms. Let us start with in-tree prece-

dence constraints and assume that if Ti ≺ Tj then i > j. The following algorithm

minimizes Lmax (isucc(j) denotes the immediate successor of Tj) [Bru76b].

Algorithm 5.3.2 Algorithm by Brucker for P | in-tree, pj = 1 | Lmax [Bru76b].

begin
d*

1 := 1 � d1; -- the due date of the root node is modified

for k = 2 to n do

 begin
 Calculate modified due date of Tk according to the formula

 d *k := max {1 + d *
isucc(k) , 1 � dk};

 end;

Schedule tasks in non-increasing order of their modified due dates subject to

precedence constraints;
end;

This algorithm can be implemented to run in O(nlogn) time. An example of its

application is given in Figure 5.3.3. Surprisingly out-tree precedence constraints

result in the NP-hardness of the problem [BGJ77].

However, when we limit ourselves to two processors, a different way of

computing modified due dates can be proposed which allows one to solve the

problem in O(n2
) time [GJ76]. In the algorithm below g(k, d *i) is the number of

successors of Tk having modified due dates not greater than d *i .

 5.3 Minimizing Due Date Involving Criteria 181

(a)

T8

T9

T7

T6

T1

T2

T3

T4

T10

T19

T18

T17

T16

T15

T11

T12

T13

T14

T5

T20

T23

T22

T21

T30

T32

T31

T29

T28

T27

T26

T25

T24

(b)

T1T2T5

T6T7

T3T4

T9 T8T20

T32 T31 T30

T23 T22 T21 T29 T28

T24T19 T10 T16 T15 T11

T18 T17

T14 T13 T12

T27 T26 T25

P1

P2

P3

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 t

Figure 5.3.3 An example of the application of Algorithm 5.3.2;

n = 32, m = 4, d = [16, 20, 4, 3, 15, 14, 17, 6, 6, 4, 10, 8, 9, 7, 10, 9, 10, 8,

2, 3, 6, 5, 4, 11, 12, 9, 10, 8, 7, 5, 3, 5]
(a) the task set,
(b) an optimal schedule.

182 5 Scheduling on Parallel Processors

Algorithm 5.3.3 Algorithm by Garey and Johnson for problem P2 | prec,

pj = 1 | Lmax [GJ76].

begin
Z := T ;

while Z � � do

 begin
Choose Tk � Z which is not yet assigned a modified due date and all of whose

successors have been assigned modified due dates;

 Calculate a modified due date of Tk as:

 d *k := min{dk , min{(d *i � 91
2 g(k, d *i);) � Ti � succ(Tk)}};

 Z := Z � {Tk};

 end;

Schedule tasks in non-decreasing order of their modified due dates subject to

precedence constraints;
end;

For m > 2 this algorithm may not lead to optimal schedules, as demonstrated in

the example in Figure 5.3.4. However, the algorithm can be generalized to cover

the case of different ready times too, but the running time is then O(n3
) [GJ77]

and this is as much as we can get in non-preemptive scheduling.

Problem P | pmtn, prec | Lmax

Preemptions allow one to solve problems with arbitrary processing times. In

[Law82b] algorithms have been presented that are preemptive counterparts of

Algorithms 5.3.2 and 5.3.3 and the one presented by Garey and Johnson [GJ77]

for non-preemptive scheduling and unit-length tasks. Hence problems P | pmtn,

in-tree | Lmax , P2 | pmtn, prec | Lmax and P2 | pmtn, prec, rj | Lmax are solvable in

polynomial time. Algorithms for these problems employ essentially the same

techniques for dealing with precedence constraints as the corresponding algo-

rithms for unit-length tasks. However, the algorithms are more complex and will

not be presented here.

 5.3 Minimizing Due Date Involving Criteria 183

5.3.2 Uniform and Unrelated Processors

Problem Q | | Lmax

From the considerations of Section 5.3.1 we see that non-preemptive scheduling

to minimize Lmax is in general a hard problem. Only for the problem Q | pj =

1 | Lmax a polynomial time optimization algorithm is known. This problem can be

solved via a transportation problem formulation as in (5.1.16) - (5.1.19), where

now cijk = k/bi � dj . Thus, from now on we will concentrate on preemptive sched-

uling.

(a)

3
T /0

2
T /0

4
T /0

7
T /1

5
T /4

8
T /3

9
T /3

T /310

T /513

T /514

T /515

T /511

T /512

1
T /3

6
T /4

(b)

L = 1max

t0 1 2 3 4 5 6

P1

P2

P3

T4

T3

T2

T7

T1

T8

T9

T5

T6

T10 T13

T14

T15

T11

T12

(c)

L = 0max
*

t0 1 2 3 4 5

T1

T4

T3

T2

T5

T6

T7 T8

T9T11

T12 T10

T13

T14

T15

P1

P2

P3

Figure 5.3.4 Non-optimal schedules generated by Algorithm 5.3.3 for m=3,
n=15, and all due dates dj = 5
(a) a task set (all tasks are denoted by Tj /d

*
j),

(b) a schedule constructed by Algorithm 5.3.3,
(c) an optimal schedule.

184 5 Scheduling on Parallel Processors

Problem Q | pmtn | Lmax

One of the most interesting algorithms in that area has been presented for prob-

lem Q | pmtn, rj | Lmax by Federgruen and Groenevelt [FG86]. It is a generalization

of the network flow approach to the feasibility testing of problem P | pmtn, rj ,

d~j | � described above. The feasibility testing procedure for problem Q | pmtn, rj ,

d~j | � uses tripartite network formulation of the scheduling problem, where the

first set of nodes corresponds to tasks, the second corresponds to processor-

interval (period) combination and the third corresponds to interval nodes. The

source is connected to each task node, the arc to the jth node having capacity pj ,

j = 1, 2,..., n. A task node is connected to all processor-interval nodes for all in-

tervals during which the task is available. All arcs leading to a processor-interval

node that corresponds to a processor of type r (processors of the same speed may

be represented by one node only) and an interval of length 7, have capacity (br �

br+1)7, with the convention bm+1 = 0. Every node (wi , r) corresponding to proces-

sor type r and interval wi of length 7i , i = 1, 2,..., k , is connected to interval node

wi and has capacity �j=1

r
 mj(br � br+1)7i , where mj denotes the number of proces-

sors of the jth type (cf. Figure 5.3.5). Finally, all interval nodes are connected to

the sink with incapacitated arcs. Finding a feasible flow with value �j=1

n
 pj in such

a network corresponds to a construction of a feasible schedule for Q | pmtn, rj ,

d~j | � . This can be done in O(mn3
) time.

Problem Q | pmtn, prec | Lmax

In case of precedence constraints, Q2 | pmtn, prec | Lmax and Q2 | pmtn, prec, rj |

 Lmax can be solved in O(n2
) and O(n6

) time, respectively, by the algorithms al-

ready mentioned [Law82b].

Problem R | pmtn | Lmax

As far as unrelated processors are concerned, problem R | pmtn | Lmax can be

solved by a linear programming formulation similar to (5.1.23) - (5.1.26) [LL78],

where xij
k
 denotes the amount of Tj processed on Pi in time interval [dk�1 + Lmax ,

dk + Lmax], and where due dates are assumed to be ordered, d1 < d2 <...< dn .

Thus, we have the following formulation:

Minimize Lmax (5.3.1)

 5.3 Minimizing Due Date Involving Criteria 185

3

2

�#

�#

�pn

�p1

�p2

source task nodes processor interval interval nodes sink

S1 S2

1T

2T

nT

kw

4w

3w

2w

1w

(w ,1)3

(w ,2)
3

(w ,3)

(w ,1)
2

(w ,2)2

(w ,3)

(w ,1)1

(w ,2)1

(w ,3)1

�b 73 2

�b 73 1

�(b �b)71 12

�(b �b)7132

�(m +m)(b �b)71 k2 2 3

�(m +m +m)b 721 k3 3

�m (b �b)71 21 k

�m (b �b)71 21 1

�(m +m)(b �b)71 12 2 3

�(m +m +m)b 721 13 3

�(b �b)7221

�(b �b)7
232

(w ,3)k

(w ,3)
4

(w ,1)k

(w ,2)k

(w ,2)4

(w ,1)
4

Figure 5.3.5 A network corresponding to scheduling problem Q | pmtn, rj, d
~

j | �
for three processor types.

186 5 Scheduling on Parallel Processors

subject to � �
i=1

m
 pij x(1)

ij � d1 + Lmax , j = 1, 2,..., n (5.3.2)

� �
i=1

m
 pij x(k)

ij � dk � dk�1 , j = k, k + 1,..., n; k = 2, 3,..., n (5.3.3)

� �
j=1

n
 pij x(1)

ij � d1 + Lmax , i = 1, 2,..., m (5.3.4)

� �
j=k

n
 pij x(k)

ij � dk � dk�1 , i = 1, 2,..., m; k = 2, 3,..., n (5.3.5)

� �
i=1

m
 �
k=1

j
 x(k)

ij = 1 j = 1, 2,..., n . (5.3.6)

Solving the LP problem we obtain n matrices T(k)
 = [t(k)*

ij], k = 1,..., n; then

an optimal solution is constructed by an application of Algorithm 5.1.20 to each

matrix separately.

In this context let us also mention that the case when precedence constraints

form a uniconnected activity network (or interval order in a different presenta-

tion), can also be solved via the same modification of the LP problem as de-

scribed for the Cmax criterion [Slo81].

5.4 Lot Size Scheduling

In this section the more advanced model of lot size scheduling on parallel pro-

cessors is presented. Consider the same problem as discussed in Section 4.4.2 but
now instead of one processor there are m processors available for processing all
tasks of all job types. Recall that the lot size scheduling problem can be solved in
O(H) time for one processor and two job types only, where H is the sum of tasks
of the two given jobs. In the following we want to investigate the problem in-
stance with two job types again but now allowing multiple identical processors.
First we introduce some basic notation. Then the algorithm is presented without
considering inventory restriction; later we show how to take these limitations
into account.

Assume that m identical processors Pi , i = 1, ..., m are available for pro-
cessing the set of jobs J which consist of two types only; due to capacity re-
strictions we want to assume that the final schedule is tight. Considering a num-
ber m > 1 of processors we must determine to which unit time interval (UTI) on
which processors a job has to be assigned. Because of continuous production
requirements we might also assume an assignment of UTI h = 0 to some job type;
this can be interpreted as an assignment of some job type to the last UTI of the
preceding schedule.

 5.4 Lot Size Scheduling 187

The idea of the algorithm is to assign task after task of the two job types,
now denoted by q and r, to empty UTI such that all deadlines are met and no oth-
er assignment can reduce change-over cost. In order to do this we have to classify
UTIs appropriately. Based on this classification we will present the algorithm.
With respect to each deadline dk we define a "sequence of empty UTI" (SEU) as
a processing interval [h*, h*

 + u � 1] on some processor consisting of u consecu-
tive and empty UTI. UTI h*

 � 1 is assigned to some job; UTI h*
 + u is either also

assigned to some job or it is the first UTI after the occurrence of the deadline.
Each SEU can be described by a 3-tuple (i , h*, u) where i is the number of the
processor on which the SEU exists, h* the first empty UTI and u the number of
the UTI in this SEU.

We differentiate between "classes" of SEU by considering the job types as-
signed to neighboring UTI h*

 � 1 and h*
 + u of each SEU. In case h*

 + u has no
assignment we denote this by "E"; all other assignments of UTI are denoted by
the number of the corresponding job type. Now a "class" is denoted by a pair [x ,
y] where x, y � {q , r , E}. This leads to nine possible classes of SEU from which
only classes [q , r], [q , E], [r , q], and [r , E], have to be considered.

Figure 5.4.1 illustrates these definitions using an example with an assign-
ment for UTI h = 0. For d1 = 6 we have a SEU (2,6,1) of class [1, E]; for d2 = 11
we have (1, 9, 3) of class [1, E], (2, 6, 2) of class [1, 2], (2, 10, 2) of class [2, E].

For each dk we have to schedule nqk � 0 and nrk � 0 tasks. We schedule the
corresponding jobs according to non-decreasing deadlines with positive time
orientation starting with k = 1 up to k = K by applying the following algorithm.

P1

P2

0 1 2 3 4 5 6 7 8 9 t

J1 J2J1 J1

J1 J1 J1 J1

J1 J1 J1

J2J2

J2

J2

Figure 5.4.1 Example schedule showing different SEU.

Algorithm 5.4.1 Lot size scheduling of two job types on identical processors
(LIM) [PS96].
begin
for k := 1 to K do
 while tasks required at d~k are not finished do
 begin
 if class [j , E] is not empty
 then Assign job type j to UTI h* of a SEU (i , h*, u) of class [j , E] with

minimum u

188 5 Scheduling on Parallel Processors

 else
 if classes [q , r] or [r , q] are not empty
 then Assign job type q(r) to UTI h* of a SEU (i , h*, u) of class

[q , r] ([r , q]) or if this class is empty to UTI h*
 + u � 1 of a

SEU (i , h*, u) of class [r , q] ([q , r])
 else Assign job type q(r) to UTI h*

 + u � 1 of a SEU (i , h*, u) of
 class [r , E] ([q , E]) with maximum u;

Use new task assignment to calculate SEU of classes [r , E], [r , q], [q , r],
and [q , E];

 end;
end;

In case the "while"-loop cannot be carried out no feasible schedule for the
problem under consideration exists. It is necessary to update the classes after
each iteration because after a task assignment the number u of consecutive and
empty UTI of the concerned SEU decreases by one and thus the SEU might even
disappear. Furthermore an assignment of UTI h* or h*

 + u � 1 might force the
SEU to change the class.

Let us demonstrate the approach by the following example. Let m = 3, J =
{J1, J2}, d~1 = 4, d~2 = 8, d~3 = 11, n11 = 3, n12 = 7, n13 = 5, n21 = 5, n22 = 6, n23 = 7
and zero initial inventory. Let us assume that there is a pre-assignment for h = 0
such that J1 is processed by P1 and J2 is processed by P2 and P3. In Figure 5.4.2
the optimal schedule generated by Algorithm 5.4.1 is given.

P1

P2

0 1 2 3 4 5 6 7 8 9 t

J1

J2

J1 J1

J2

J1

J2J2

J2

J2 J2

10 11

P3

J1 J1 J1 J1 J1 J1 J1

J1

J2

J1 J1 J1

J2J2 J2J2J2J2

J2 J2J2 J2

J1

J2

J2

12

Figure 5.4.2 Optimal schedule for the example problem.

It can be shown that Algorithm 5.4.1 generates an optimal schedule if one exists.
Feasibility of the algorithm is guaranteed by scheduling the job types according
to earliest deadlines using only free UTI of the interval [0, dk]. To prove optimal-
ity of the algorithm one has to show that the selection of the UTI for assigning
the task under consideration is best possible. These facts have been proved in the
following lemmas [PS96] which are formulated and proved for job type q, but
they also hold in case of job type r.

 5.4 Lot Size Scheduling 189

Lemma 5.4.2 There exists an optimal solution that can be built such that job
type q is assigned to UTI h* on processor Pi in case the selected SEU belongs to
classes [q , E] or [q , r]. If the SEU belongs to class [r , E] or [r , q] then q is as-
signed to UTI h*

 + u � 1 on processor Pi .

Lemma 5.4.3 Algorithm 5.4.1 generates schedules with a minimum number of
change-overs for two types of jobs.

The complexity of Algorithm 5.4.1 is O(Hm).
Let us now investigate how we can consider inventory restrictions for both

job types, i.e. for each job type an upper bound Bj on in-process inventory is giv-
en. If there are only two job types, limited in-process storage capacity can be
translated to updated demands of unit time tasks referring to given deadlines dk.
If processing of some job type has to be stopped because of storage limitations,
processing of the other job has to be started as Hm = 5j=1,...,n nj. This can be
achieved by increasing the demand of the other job type, appropriately.

Assume that a demand and inventory feasible and tight schedule exists for
the problem instance. Let Njk be the updated demand after some preprocessing
step now used as input for the algorithm. To define this input more precisely let
us first consider how many unit time tasks of some job type, e.g. q, have to be
processed up to some deadline dk:
� at most the number of tasks of job type q which does not exceed storage limit,

i.e. Lq = Bq � 5
 i=1,...,k�1 (Nqi � nqi);

� at least the number of required tasks of job type q, i.e.
 Dq = nqk � 5

 i=1,...,k�1 (Nqi � nqi);
� at least the remaining processing capacity reduced by the number of tasks of

job type r which can be processed feasibly. From this we get Rq = ck �
5

 i=1,...,k�1 (Nq
i
 + nqi) � (Br � 5

 i=1,...,k�1 (Nri + nri)), where ck = mdk is the total pro-
cessing capacity in the intervals [0, dk] on m processors.

The same considerations hold respectively for the other job type r.
With the following lemmas we show how the demand has to be updated

such that not only feasibility (Lemma 5.4.4) but also optimality (Lemma 5.4.6)
concerning change-overs is retained. We start with showing that Lj can be omit-
ted if we calculate Njk.

Lemma 5.4.4 In case that a feasible and tight schedule exists, Lj = Bj �
5i=1,...,k�1 (Nji � nji) can be neglected.

From the result of Lemma 5.4.4 we can define Njk more precisely by

190 5 Scheduling on Parallel Processors

Nqk := max{ nqk � 5
 i=1,...,k�1 (Nqi � nqi),

 ck � 5
 i=1,...,k�1 (Nqi + Nri) � (Br � 5

 i=1,...,k�1 (Nri � nri)} (5.4.1)

Nrk := max{ nrk � 5
 i=1,...,k�1 (Nri � nri),

 ck � 5
 i=1,...,k�1 (Nri + Nq

i
) � (Bq � 5i=1,...,k�1 (Nqi � nqi)} (5.4.2)

One may show [PS96] that after updating all demands of unit time jobs of type q
according to (5.4.1) the new problem instance is equivalent to the original one.
We omit the case of job type r and (5.4.2), which directly follows in an analo-
gous way. Notice that the demand will only be updated, if inventory restrictions
limit assignment possibilities up to a certain deadline dk. Only in this case the k th
interval will be completely filled with jobs. If no inventory restrictions have to be
considered equations (5.4.1) and (5.4.2) result in the original demand pattern.

Lemma 5.4.5 After adapting Nqk according to (5.4.1) the feasibility of the solu-
tion according to the inventory constraints on r is guaranteed.

Lemma 5.4.6 If
(i) nqk � 5

 i=1,...,k�1 (Nqi � nqi) �
ck � 5

 i=1,...,k�1 (Nqi + Nri) � (Br � 5
 i=1,...,k�1 (Nri � nri)

or
(ii) nqk � 5

 i=1,...,k�1 (Nqi � nqi) <
ck � 5

 i=1,...,k�1 (Nqi + Nri) � (Br � 5
 i=1,...,k�1 (Nri � nri)

for some deadline dk then a demand feasible and optimal schedule can be con-
structed.

The presented algorithm also solves the corresponding problem instance with
arbitrary positive change-over cost because for two job types only, minimizing
the number of change-overs is equivalent to minimizing the sum of their positive
change-over cost. In order to solve the practical gear-box manufacturing problem
where more than two job types have to be considered a heuristic has been im-
plemented which uses the ideas of the presented approach. The corresponding
scheduling rule is considered to be that no unforced change-overs should occur.
The resulting algorithm is part of a scheduling system, which incorporates a
graphical representation scheme using Gantt-charts and further devices to give
the manufacturing staff an effective tool for decision support. For more results on
the implementation of scheduling systems on the shop floor we refer to Chap-
ter 18.

 References 191

References

AH73 D. Adolphson, T. C. Hu, Optimal linear ordering, SIAM J. Appl. Math. 25,

1973, 403-423.

AHU74 A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

Ash72 S. Ashour, Sequencing Theory, Springer, Berlin, 1972.

Bak74 K. Baker, Introduction to Sequencing and Scheduling, J. Wiley, New York,

1974.

BCS74 J. Bruno, E. G. Coffman, Jr., R. Sethi, Scheduling independent tasks to reduce

mean finishing time, Commun. ACM 17, 1974, 382-387.

BCSW76a J. Błażewicz, W. Cellary, R. S)�lowiński, J. W,eglarz, Deterministic problems of
scheduling on parallel processors, Part I. Sets of independent jobs, Podstawy
Sterowania 6, 1976, 155-178 (in Polish).

BCSW76b J. Błażewicz, W. Cellary, R. S)�lowiński, J. W,eglarz, Deterministic problems of
scheduling on parallel processors, Part II. Sets of dependent jobs, Podstawy
Sterowania 6, 1976, 297-320 (in Polish).

BCW77 J. Błażewicz, W. Cellary, J. W,eglarz, A strategy for scheduling splittable tasks

to reduce schedule length, Acta Cybernetica 3, 1977, 99-106.

BGJ77 P. Brucker, M. R. Garey, D. S. Johnson, Scheduling equal-length tasks under

treelike precedence constraints to minimize maximum lateness, Math. Oper.
Res. 2, 1977, 275-284.

BK00 J. Błażewicz, D. Kobler, On the ties between different graph representation for

scheduling problems, Report, Poznan University of Technology, Poznan, 2000.

BK02 J. Błażewicz, D. Kobler, Review of properties of different precedence graphs

for scheduling problems, Eur. J. of Oper. Res. 142, 2002, 435-443.

Bla77 J. Błażewicz, Simple algorithms for multiprocessor scheduling to meet dead-

lines, Inf. Process. Lett. 6, 1977, 162-164.

Bru76a J. Bruno, Scheduling algorithms for minimizing the mean weighted flow-time,

in: E. G. Coffman, Jr. (ed.), Computer and Job-Shop Scheduling Theory,

J. Wiley, New York, 1976.

Bru76b P. J. Brucker, Sequencing unit-time jobs with treelike precedence on m proces-

sors to minimize maximum lateness, Proceedings of the IX. International Sym-
posium on Mathematical Programming, Budapest, 1976.

BT94 B. Braschi, D. Trystram, A new insight into the Coffman-Graham algorithm,

SIAM J. Comput. 23, 1994, 662-669.

CD73 E. G. Coffman, Jr., P. J. Denning, Operating Systems Theory, Prentice-Hall,

Englewood Cliffs, N. J., 1973.

CFL83 E. G. Coffman, Jr., G. N. Frederickson, G. S. Lueker, Probabilistic analysis of

the LPT processor scheduling heuristic, unpublished paper, 1983.

192 5 Scheduling on Parallel Processors

CFL84 E. G. Coffman, Jr., G. N. Frederickson, G. S. Lueker, A note on expected

makespans for largest-first sequences of independent task on two processors,

Math. Oper. Res. 9, 1984, 260-266.

CG72 E. G. Coffman, Jr., R. L. Graham, Optimal scheduling for two-processor sys-

tems, Acta Inform. 1, 1972, 200-213.

CG91 E. G. Coffman, Jr., M. R. Garey, Proof of the 4/3 conjecture for preemptive

versus nonpreemptive two-processor scheduling, Report, Bell Laboratories,

Murray Hill, 1991.

CGJ78 E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, An application of bin-packing

to multiprocessor scheduling, SIAM J. Comput. 7, 1978, 1-17.

CGJ84 E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, Approximation algorithms for

bin packing - an updated survey, in: G. Ausiello, M. Lucertini, P. Serafini

(eds.), Algorithm Design for Computer System Design, Springer, Vienna,

1984, 49-106.

CL75 N.-F. Chen, C. L. Liu, On a class of scheduling algorithms for multiprocessor

computing systems, in: T.-Y. Feng (ed.), Parallel Processing, Lect. Notes Com-
put. Sc. 24, 1975, 1-16.

CMM67 R. W. Conway, W. L. Maxwell, L. W. Miller, Theory of Scheduling, Addison-

Wesley, Reading, Mass., 1967.

Cof73 E. G. Coffman, Jr., A survey of mathematical results in flow-time scheduling

for computer systems, GI - 3. Jahrestagung, Hamburg, Springer, Berlin, 1973,

25-46.

Cof76 E. G. Coffman, Jr. (ed.), Scheduling in Computer and Job Shop Systems,

J. Wiley, New York, 1976.

CS76 E. G. Coffman, Jr., R. Sethi, A generalized bound on LPT sequencing, RAIRO-
Informatique 10, 1976, 17-25.

DL88 J. Du, J. Y-T. Leung, Scheduling tree-structured tasks with restricted execution

times, Inf. Process. Lett. 28, 1988, 183-188.

DL89 J. Du, J. Y-T. Leung, Scheduling tree-structured tasks on two processors to

minimize schedule length, SIAM Discret Math. 2, 1989, 176-196.

DLY91 J. Du, J. Y-T. Leung, G. H. Young, Scheduling chain structured tasks to mini-

mize makespan and mean flow time, Inform. Comput. 92, 1991, 219-236.

DW85 D. Dolev, M. K. Warmuth, Scheduling flat graphs, SIAM J. Comput. 14, 1985,

638-657.

EH93 K. H. Ecker, R. Hirschberg, Task scheduling with restricted preemptions, in:

A. Bode, M. Reeve, G. Wolf (eds.), Proceedings of PARLE93 - Parallel Archi-

tectures and Languages, Lect. Notes Comput. Sc. 694, 1993, 464-475.

FB73 E. B. Fernandez, B. Bussel, Bounds on the number of processors and time for

multiprocessor optimal schedules, IEEE Trans. Comput. 22, 1973, 745-751.

FG86 A. Federgruen, H. Groenevelt, Preemptive scheduling of uniform processors

by ordinary network flow techniques, Manage. Sci. 32, 1986, 341-349.

 References 193

FKN69 M. Fujii, T. Kasami, K. Ninomiya, Optimal sequencing of two equivalent pro-

cessors, SIAM J. Appl. Math. 17, 1969, 784-789 (Erratum: SIAM J. Appl.
Math. 20, 1971, 141).

Fre82 S. French, Sequencing and Scheduling: An Introduction to the Mathematics of
the Job-Shop, Horwood, Chichester, 1982.

FRK86 J. B. G. Frenk, A. H. G. Rinnooy Kan, The rate of convergence to optimality of

the LPT rule, Discret Appl. Math. 14, 1986, 187-197.

FRK87 J. B. G. Frenk, A. H. G. Rinnooy Kan, The asymptotic optimality of the LPT

rule, Math. Oper. Res. 12, 1987, 241-254.

Gab82 H. N. Gabow, An almost linear algorithm for two-processor scheduling,

J. ACM 29, 1982, 766-780.

Gar - M. R. Garey, Unpublished result.

Gar73 M. R. Garey, Optimal task sequencing with precedence constraints, Discrete
Math. 4, 1973, 37-56.

GG73 M. R. Garey, R. L. Graham, Bounds on scheduling with limited resources,

ACM SIGOPS Operating Systems Review, 1973, 104-111.

GG75 M. R. Garey, R. L. Graham, Bounds for multiprocessor scheduling with re-

source constraints, SIAM J. Comput. 4, 1975, 187-200.

GIS77 T. Gonzalez, O. H. Ibarra, S. Sahni, Bounds for LPT schedules on uniform

processors, SIAM J. Comput. 6, 1977, 155-166.

GJ76 M. R. Garey, D. S. Johnson, Scheduling tasks with nonuniform deadlines on

two processors, J. ACM 23, 1976, 461-467.

GJ77 M. R. Garey, D. S. Johnson, Two-processor scheduling with start-times and

deadlines, SIAM J. Comput. 6, 1977, 416-426.

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

GJST81 M. R. Garey, D. S. Johnson, B. B. Simons, R. E. Tarjan, Scheduling unit time

tasks with arbitrary release times and deadlines, SIAM J. Comput. 10, 1981,

256-269.

GJTY83 M. R. Garey, D. S. Johnson, R. E. Tarjan, M. Yannakakis, Scheduling oppos-

ing forests, SIAM J. Algebra. Discr. 4, 1983, 72-93.

GLL+79 R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimiza-

tion and approximation in deterministic sequencing and scheduling theory: a

survey, Annals of Discrete Mathematics 5, 1979, 287-326.

Gon77 T. Gonzalez, Optimal mean finish time preemptive schedules, Technical report

220, Computer Science Department, Pennsylvania State University, 1977.

Gra66 R. L. Graham, Bounds for certain multiprocessing anomalies, Bell Labs Tech.
J. 45, 1966, 1563-1581.

Gra69 R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl.
Math. 17, 1969, 416-429.

194 5 Scheduling on Parallel Processors

Gra76 R. L. Graham, Bounds on performance of scheduling algorithms, Chapter 5 in:

E. G. Coffman, Jr. (ed.), Scheduling in Computer and Job Shop Systems,

J. Wiley, New York, 1976.

GS78 T. Gonzalez, S. Sahni, Preemptive scheduling of uniform processor systems,

J. ACM 25, 1978, 92-101.

HLS77 E. G. Horvath, S. Lam, R. Sethi, A level algorithm for preemptive scheduling,

J. ACM 24, 1977, 32-43.

Hor73 W. A. Horn, Minimizing average flow time with parallel processors, Oper.
Res. 21, 1973, 846-847.

Hor74 W. A. Horn, Some simple scheduling algorithms, Nav. Res. Logist. Quart. 21,

1974, 177-185.

HS76 E. Horowitz, S. Sahni, Exact and approximate algorithms for scheduling non-

identical processors, J. ACM 23, 1976, 317-327.

HS87 D. S. Hochbaum, D. B. Shmoys, Using dual approximation algorithms for

scheduling problems: theoretical and practical results, J. ACM 34, 1987,

144-162.

Hu61 T. C. Hu, Parallel sequencing and assembly line problems, Oper. Res. 9, 1961,

841-848.

IK77 O. H. Ibarra, C. E. Kim, Heuristic algorithms for scheduling independent tasks

on nonidentical processors, J. ACM 24, 1977, 280-289.

Jac55 J. R. Jackson, Scheduling a production line to minimize maximum tardiness,

Research report 43, Management Research Project, University of California,

Los Angeles, 1955.

JMR+04 J. Jozefowska, M. Mika, R. Rozycki, G. Waligora, J. Weglarz, An almost

optimal heurisitc for preemptive Cmax scheduling of dependent tasks on paral-

lel identical machines, Ann. Oper. Res. 129, 2004, 205-216.

Joh83 D. S. Johnson, The NP-completeness column: an ongoing guide, J. Algorithms

4, 1983, 189-203.

Kar72 R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,

J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press,

New York, 1972, 85-103.

Kar74 A. W. Karzanov, Determining the maximal flow in a network by the method of

preflows, Dokl. Akad. Nauk. SSSR 215, 1974, 434-437 (in Russian).

Kar84 N. Karmarkar, A new polynomial-time algorithm for linear programming,

Combinatorica 4, 1984, 373-395.

KE75 O. Kariv, S. Even. An O(n2.5) algorithm for maximum matching in general

graphs, Proceedings of the 16th Annual Symposium on Foundations of Com-
puter Science, 1975, 100-112.

Ked70 S. K. Kedia, A job scheduling problem with parallel processors, Unpublished

report, Department of Industrial Engineering, University of Michigan, Ann Ar-

bor, 1970.

 References 195

Kha79 L. G. Khachiyan, A polynomial algorithm for linear programming, Dokl. Akad.
Nauk SSSR, 244, 1979, 1093-1096 (in Russian).

KK82 N. Karmarkar, R. M. Karp, The differencing method of set partitioning, Report

UCB/CSD 82/113, Computer Science Division, University of California,

Berkeley, 1982.

Kun76 M. Kunde, Beste Schranke beim LP-Scheduling, Bericht 7603, Institut für

Informatik und Praktische Mathematik, Universität Kiel, 1976.

Law73 E. L. Lawler, Optimal sequencing of a single processor subject to precedence

constraints, Manage. Sci. 19, 1973, 544-546.

Law76 E. L. Lawler, Combinatorial optimization: Networks and Matroids, Holt,

Rinehart and Winston, New York, 1976.

Law82a E. L. Lawler, Recent results in the theory of processor scheduling, in:

A. Bachem, M. Grötschel, B. Korte (eds.) Mathematical Programming: The
State of Art, Springer, Berlin, 1982, 202-234.

Law82b E. L. Lawler, Preemptive scheduling in precedence-constrained jobs on parallel

processors, in: M. A. H. Dempster, J. K. Lenstra, A. H. G. Rinnooy Kan (eds.),

Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 1982, 101-123.

Lee91 C.-Y. Lee, Parallel processor scheduling with nonsimultaneous processor

available time, Discret Appl. Math. 30, 1991, 53-61.

Len77 J. K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre Tract

69, Mathematisch Centrum, Amsterdam, 1977.

LL74a J. W. S. Liu, C. L. Liu, Performance analysis of heterogeneous multiprocessor

computing systems, in: E. Gelenbe, R. Mahl (eds.), Computer Architecture and
Networks, North Holland, Amsterdam, 1974, 331-343.

LL74b J. W. S. Liu, C. L. Liu, Bounds on scheduling algorithms for heterogeneous

computing systems, Technical report UIUCDCS-R-74-632, Department of

Computer Science, University of Illinois at Urbana-Champaign, 1974.

LL78 E. L. Lawler, J. Labetoulle, Preemptive scheduling of unrelated parallel pro-

cessors by linear programming, J. ACM 25, 1978, 612-619.

LLL+84 J. Labetoulle, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Preemptive

scheduling of uniform processors subject to release dates, in: W. R. Pulley-

blank (ed.), Progress in Combinatorial Optimization, Academic Press, New

York, 1984, 245-261.

LLRK82 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Recent developments in

deterministic sequencing and scheduling: a survey, in: M. A. H. Dempster,

J. K. Lenstra, A. H. G. Rinnooy Kan (eds.), Deterministic and Stochastic
Scheduling, Reidel, Dordrecht, 1982, 35-73.

LLR+93 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, Sequencing

and scheduling: Algorithms and complexity, in: S. C. Graves, A. H. G.

Rinnooy Kan, P. H. Zipkin (eds.), Handbook in Operations Research and
Management Science, Vol. 4: Logistics of Production and Inventory, Elsevier,

Amsterdam, 1993.

196 5 Scheduling on Parallel Processors

LRK78 J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity of scheduling under prece-

dence constraints, Oper. Res. 26, 1978, 22-35.

LRK84 J. K. Lenstra, A. H. G. Rinnooy Kan, Scheduling theory since 1981: an anno-

tated bibliography, in: M. O'h Eigearthaigh, J. K. Lenstra, A. H. G. Rinnooy

Kan (eds.), Combinatorial Optimization: Annotated Bibliographies, J. Wiley,

Chichester, 1984.

LRKB77 J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Complexity of processor

scheduling problems, Annals of Discrete Mathematics 1, 1977, 343-362.

LS77 S. Lam, R. Sethi, Worst case analysis of two scheduling algorithms, SIAM J.
Comput. 6, 1977, 518-536.

MC69 R. Muntz, E. G. Coffman, Jr., Optimal preemptive scheduling on two-

processor systems, IEEE Trans. Comput. 18, 1969, 1014-1029.

MC70 R. Muntz, E. G. Coffman, Jr., Preemptive scheduling of real time tasks on

multiprocessor systems, J. ACM 17, 1970, 324-338.

McN59 R. McNaughton, Scheduling with deadlines and loss functions, Manage. Sci. 6,

1959, 1-12.

NLH81 K. Nakajima, J. Y-T. Leung, S. L. Hakimi, Optimal two processor scheduling

of tree precedence constrained tasks with two execution times, Performance
Evaluation 1, 1981, 320-330.

PS96 M. Pattloch, G. Schmidt, Lotsize scheduling of two job types on identical pro-
cessors, Discret Appl. Math., 1996, 409-419.

Rin78 A. H. G. Rinnooy Kan, Processor Scheduling Problems: Classification, Com-
plexity and Computations, Nijhoff, The Hague, 1978.

RG69 C. V. Ramamoorthy, M. J. Gonzalez, A survey of techniques for recognizing

parallel processable streams in computer programs, AFIPS Conference Pro-
ceedings, Fall Joint Computer Conference, 1969, 1-15.

Ros� P. Rosenfeld, unpublished result.

Rot66 M. H. Rothkopf, Scheduling independent tasks on parallel processors, Man-
age. Sci. 12, 1966, 347-447.

RS83 H. Röck, G. Schmidt, Processor aggregation heuristics in shop scheduling,

Methods of Operations Research 45, 1983, 303-314.

Sah79 S. Sahni, Preemptive scheduling with due dates, Oper. Res. 5, 1979, 925-934.

SC80 S. Sahni, Y. Cho, Scheduling independent tasks with due times on a uniform

processor system, J. ACM 27, 1980, 550-563.

Sch84 G. Schmidt, Scheduling on semi-identical processors, Zeitschrift für OR A28,

1984, 153-162.

Sch88 G. Schmidt, Scheduling independent tasks with deadlines on semi-identical

processors, J. Oper. Res. Soc. 39, 1988, 271-277.

Set76 R. Sethi, Algorithms for minimal-length schedules, Chapter 2 in: E. G. Coff-

man, Jr. (ed.), Scheduling in Computer and Job Shop Systems, J. Wiley, New

York, 1976.

 References 197

Set77 R. Sethi, On the complexity of mean flow time scheduling, Math. Oper. Res. 2,

1977, 320-330.

Sev91 S. V. Sevastjanov, Private communication, 1991.

Sit05 R. Sitters, Complexity of preemptive minsum scheduling on unrelated parallel

machines, J. Algorithms 57, 2005, 37-48.

Slo78 R. Słowiński, Scheduling preemptible tasks on unrelated processors with addi-

tional resources to minimise schedule length, in: G. Bracci, R. C. Lockemann

(eds.), Information Systems Methodology, Lect. Notes Comput. Sc. 65, 1978,

536-547.

SW77 R. Słowiński, J. Węglarz, Time-minimal network model with different modes

of the execution of activities, Przeglad Statystyczny 24, 1977, 409-416 (in

Polish).

Ull76 J. D. Ullman, Complexity of sequencing problems, Chapter 4 in: E. G. Coff-

man, Jr. (ed.), Scheduling in Computer and Job Shop Systems, J. Wiley, New

York, 1976.

WBCS77 J. Węglarz, J. Błażewicz, W. Cellary, R. S)�lowiński, An automatic revised sim-

plex method for constrained resource network scheduling, ACM Trans. Math.
Softw. 3, 1977, 295-300.

Wer84 D. de Werra, Preemptive scheduling, linear programming and network flows,

SIAM J. Algebra. Discr. 5, 1984, 11-20.

6 Communication Delays and
Multiprocessor Tasks

6.1 Introductory Remarks

One of the assumptions imposed in Chapter 3 was that each task is processed on
at most one processor at a time. However, in recent years, with the rapid devel-
opment of manufacturing as well as microprocessor and especially multi-
microprocessor systems, the above assumption has ceased to be justified in some
important applications. There are, for example, self-testing multi-microprocessor
systems in which one processor is used to test others, or diagnostic systems in
which testing signals stimulate the tested elements and their corresponding out-
puts are simultaneously analyzed [Avi78, DD81]. When formulating scheduling
problems in such systems, one must take into account the fact that some tasks
have to be processed on more than one processor at a time. On the other hand,
communication issues must be also taken into account in systems where tasks (e.
g. program modules) are assigned to different processors and exchange infor-
mation between each other.

Nowadays, parallel and distributed systems are distinguished. In parallel sys-
tems, processors work cooperatively on parts of the same "big" job. A set of pro-
cessors is tightly coupled to establish a large multiprocessor system. Due to ra-
ther short communication links between processors, communication times are
small as compared to that in distributed systems, where several independent
computers are connected via a local or wide area network.

In general, one may distinguish two approaches to handle processor assign-
ment problems arising in the above context 1 [BEPT00, Dro96a, Vel93]. The first
approach, the so-called load balancing and mapping, assumes a program to be
partitioned into tasks forming an undirected graph [Bok81]. Adjacent tasks
communicate with each other, thus, their assignment to different processors
causes certain communication delay. The problem is to allocate tasks to proces-
sors in such a way that the total interprocessor communication is minimized,
while processor loads are balanced. This approach is based on graph theoretic
methods and is not considered in the following.

1 We will neither be concerned here with the design of proper partition of programs into

module tasks, nor with programming languages parallelism.

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_

199

6

https://doi.org/10.1007/978-3-319-99849-7_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_6&domain=pdf

200 6 Communication Delays and Multiprocessor Tasks

The other approach (discussed in this Chapter) assumes that, as in the classi-
cal scheduling theory, a program is partitioned into tasks forming a directed
graph. Here, nodes of the graph represent tasks and directed arcs show a one way
communication between predecessor tasks and successor tasks. Basically, there
exist three models describing the communication issues in scheduling.

In the first model [BDW84, BDW86, Llo81] each task may require more
than one processor at a time. During an execution of these multiprocessor tasks
communication among processors working on the same task is implicitly hidden
in a "black box" denoting an assignment of this task to a subset of processors
during some time interval. The second model assumes that uniprocessor tasks,
each assigned to one of the processors, need to communicate. If two such tasks
are assigned to different processors communication is explicitly performed via
links of the processor network [Ray87a, Ray87b, LVV96], and connected with
this some communication delay occurs. The last model is a combination of the
first two models and involves the so-called divisible tasks [CR88, SRL95]. A
divisible task (load) is a task that can be partitioned into smaller parts that are
distributed among the processors. Communication and computation phases are
interleaved during the execution of a task. Such a model is particularly suited in
cases where large data files are involved, such as in image processing, experi-
mental data processing or Kalman filtering.

In the following three sections basic results concerning the above three mod-
els will be presented. Before doing this processor, communication and task sys-
tems respectively, will be described in a greater detail.

As far as processor systems are concerned, they may be divided (as before)
into two classes: parallel and dedicated. Usually each processor has its local
memory. Parallel processors are functionally identical, but may differ from each
other by their speeds. On the other hand, dedicated processors are usually spe-
cialized to perform specific computations (functions). Several models of pro-
cessing task sets on dedicated processors are distinguished; flow shop, open shop
and job shop being the most representative. As defined in Chapter 3, in these
cases the set of tasks is partitioned into subsets called jobs. However, in the con-
text of the considered multiprocessor systems, dedication of processors may also
denote a preallocation feature of certain tasks to functionally identical processors.
As will be discussed later a task can be preallocated to a single processor or to
several processors at a time.

The property of a processor network with respect to communication perfor-
mance depends greatly on its specific topological structure. Examples of standard
network topologies are: linear arrays (processor chains), rings, meshes, trees,
hypercubes (Figure 6.1.1). Other, more recent network structures are the
de Bruijn [Bru46] or the Benes multiprocessor networks [Ben64]. Besides these,
a variety of so-called multistage interconnection networks [SH89] had been in-
troduced; examples are perfect shuffle networks [Sto71], banyans [Gok76], and
delta networks [KS86]. Finally, many more kinds of network structures like
combinations of the previous network types such as the cube connected cycles

 6.1 Introductory Remarks 201

networks [PV81], or network hierarchies (e.g. master-slave networks) can be
found in the literature.

(a) (b)

(c)

(d)

(e)

(f)

Figure 6.1.1 Basic interconnection networks:

(a) linear array,
(b) ring,
(c) mesh,
(d) hypercube,
(e) tree
(f) cube connected cycles network.

An important feature of a communication network is the ability (or lack) of a
single processing element to compute tasks and to communicate at the same
time. If this is possible we will say that each processing element has a communi-
cation coprocessor. Another important feature of the communication system is
the ability (or lack) of each processing element to communicate with other pro-
cessing elements via several communication links (or several ports) at the same
time. We will not discuss here message routing strategies in communication net-
works. However, we refer the interested reader to [BT89] where such strategies
like store-and-forward, wormhole routing, circuit switching, and virtual-cut-
through are presented and their impact on communication delays is discussed.

We will now discuss differences between the model of a task system as pre-
sented in Chapter 3 and the one proposed for handling communication issues in
multiprocessor systems. The main difference is caused by the fact that tasks (or a
task) processed by different processors must exchange information and such an
exchange introduces communication delays. These delays may be handled either
implicitly or explicitly. In the first case, the communication times are already
included in the task processing times. Usually, a task requires then more than one
processor at a time, thus, we may call it a multiprocessor task. Multiprocessor
tasks may specify their processor requirements either in terms of number of sim-

202 6 Communication Delays and Multiprocessor Tasks

ultaneously required processors, or in terms of an explicit specification of a pro-
cessor subset (or processor subsets) which is or are required for processing. In
the first case we will speak about parallel processor requirement, whereas in the
second we will speak about dedicated processor requirement.

An interesting question is the specification of task processing times. In case
of parallel processors one may define several functions describing the dependen-
cy of this time on the size of the processor system required by a task. In the fol-
lowing we will assume that the task processing time is inversely proportional to
the processor set size, i.e. pj

k = pj
1/k, where k is the size of a required processor

set. We refer the interested reader to [Dro96a] where more complicated models
are analyzed. In this context let us mention the processing systems where task
processing times are arbitrary functions of a number of processors allocated. Two
tasks are distinguished: malleable and moldable task models [Len04]. In the first
case, a number of processors allocated to a task may change during the execution
of this task. In the second case, this number is constant during the task execution.

In case of dedicated processors each task processing time must be explicitly
associated with the processor set required, i.e. with each processor set D which
can be assigned to task Tj processing time p j

D is associated. As in the classical
scheduling theory a preemptable task is completed if all its parts processed on
different sets of processors sum up to 1 if normalized to fractions of a unit.

As far as an explicit handling of communication delays is concerned one
may distinguish two subcases. In the first case each uniprocessor task requires
only one processor at a time and after its completion sends a message (results of
the computations) to all its successors in the precedence graph. We assume here
that each task represents some amount of computational activity. If two tasks, Ti
and Tj are in precedence relation, i.e. Ti ≺ Tj , then Tj will partly use information
produced by task Ti . Thus, only if both tasks are processed on different proces-
sors, transmission of the required data will be due, and a communication delay
will occur.

In the deterministic scheduling paradigm, we assume that communication
delays are predictable. If required we may assume that the delays depend on vari-
ous parameters like the amount of data, or on the distance between source and
target processor.

The transfer of data between tasks Ti and Tj can be represented by a data set
associated with the pair (Ti , Tj). Each transmission activity causes a certain delay
that is assumed to be fixed. If we assume that Ti and Tj are processed on Pk and
Pl , respectively, let c(Ti , Pk ; Tj , Pl) denote the delay due to transmitting the re-
quired data of Ti from Pk to Pl . That means we assume that after this time
elapsed the data are available at processor Pk . This delay takes into account the
involved tasks and the particular processors the tasks are processed on. However,
it is normally assumed to be independent of the actual communication workload
in the network.

 6.1 Introductory Remarks 203

The third case is concerned with the allocation of divisible tasks to different
processors. In fact, this model combines multiprocessor task scheduling with
explicit communication delays.

The (| * | " - notation of scheduling problems introduced in Section 3.4 will
now be enhanced to capture the different features of multiprocessor systems dis-
cussed above. Such changes were first introduced in [Vel93, Dro96a].

In the first field (() describing processor environment two parameters (3 and
(4 are added. Parameter (3 � {�, conn, linear array, ring, tree, mesh, hyper-
cube} describes the architecture of a communication network. The network types
mentioned here are only examples; the notation is open for other network types.

(3 = �: denotes a communication network in which communication delays
- either are negligible, or
- they are included in processing times of multiprocessor tasks, or
- for a given network they are included in communication times be-

tween two dependent tasks assigned to different processors.
(3 = conn: denotes an arbitrary network.
(3 = linear array, ring, tree, mesh, hypercube: denotes respectively a linear

array, ring, tree, mesh, or hypercube.
Parameter (4 � {�, no-overlap} describes the ability of a processor to com-
municate and to process a task in parallel.

(4 = �: parallel processing and communications are possible,
(4 = no-overlap: no overlapping of processing and communication.

In the second field (*) describing task characteristics, parameter *1 takes
more values than described in Section 3.4, and three new parameters *9, *10 and
*11 are added. Parameter *1 � {�, pmtn, div} indicates the possibility of task
preemptability or divisibility.

*1 = �: no preemption is allowed,
*1 = pmtn: preemptions are allowed,
*1 = div: tasks are divisible (by definition preemptions are also possible).

Parameter *9 � {spdp-lin, spdp-any, sizej , cubej , meshj , fixj , setj , �} describes
the type of a multiprocessor task. The first five-symbols are concerned with par-
allel processors, the next two with dedicated ones.

*9 = spdp-lin: denotes multiprocessor tasks which processing times are in-
versely proportional to the number of processors assigned,

*9 = spdp-any: processing times arbitrarily depend on the number of pro-
cessors granted (malleable and moldable are subproblems of this prob-
lem),

*9 = sizej : means that each task requires a fixed number of processors at a
time,

204 6 Communication Delays and Multiprocessor Tasks

*9 = cubej : each task requires a sub-hypercube of a hypercube processor
network,

*9 = meshj : each task requires a submesh for its processing,
*9 = fixj : each task can be processed on exactly one subgraph of the multi-

processor system,
*9 = setj : each task has its own collection of subgraphs of the multiproces-

sor system on which it can be processed,
*9 = �: each task can be processed on any single processor.

Parameter *10 � {com, cjk , cj* , c*k , c, c = 1, �} concerns the communication
delays that occur due to data dependencies.

*10 = com: communication delays are arbitrary functions of data sets to be
transmitted,

*10 = cjk : whenever Tj Tk, and Tj and Tk are assigned to different proces-
sors, a communication delay of a given duration cjk occurs,

10 = cj : the communication delays depend on the broadcasting task only,
*10 = c*k : the communication delays depend on the receiving task only,
*10= c: the communication delays are equal,
*10 = c = 1: each communication delay takes unit time,
*10 = �: no communication delays occur.

Parameter *11 � {dup, �}.

*11 = dup: task duplication is allowed.
*11 = �: task duplication is not allowed.

The third field " describing criteria is not changed.
Some additional changes describing more deeply architectural constraints of

multiprocessor systems have been introduced in [Dro96a] and we refer the read-
ers to this position.

In the following three sections scheduling multiprocessor tasks, scheduling
uniprocessor tasks with communication delays and scheduling divisible tasks
(i.e. multiprocessor tasks with communication delays) respectively, are dis-
cussed.

 6.2 Scheduling Multiprocessor Tasks 205

6.2 Scheduling Multiprocessor Tasks

In this Section we will discuss separately parallel and dedicated processors.

6.2.1 Parallel Processors

We start a discussion with an analysis of the simplest problems in which each
task requires a fixed number of parallel processors during execution, i.e. proces-
sor requirement denoted by sizej . Following B)�la &zewicz et al. [BDW84, BDW86]
we will set up the subject more precisely. Tasks are to be processed on a set of
identical processors. The set of tasks is divided into k subsets T 1 = {T1

 1, T2
 1,...,

Tn1
1 }, T 2 = {T1

 2, T2
 2,..., Tn2

2 },..., T k = {T1
 k, T2

 k,..., Tnk
 k} where n = n1 + n2+...+ nk.

Each task T i
 1, i = 1,..., ni, requires exactly one of the processors for its pro-

cessing and its processing time is equal to pi
1. Similarly, each task Ti

 l, where 1 < l
� k, requires l arbitrary processors simultaneously for its processing during a pe-
riod of time whose length is equal to pi

l. We will call tasks from T l width-l tasks
or T l-tasks. For the time being tasks are assumed to be independent, i.e. there are
no precedence constraints among them. A schedule will be called feasible if, be-
sides the usual conditions, each T l-task is processed by l processors at a time, l =
1,..., k. Minimizing the schedule length is taken as optimality criterion.

Problem P | pj = 1, sizej | Cmax

Let us start with non-preemptive scheduling. The general problem is NP- hard
(cf. Section 5.1), and starts to be strongly NP-hard for m = 5 processors [DL89].
Thus, we may concentrate on unit-length tasks. Let us start with the problem of
scheduling tasks which belong to two sets only: T 1 and T k, for arbitrary k, i.e.
problem P | pj = 1, sizej � {1, k} | Cmax. This problem can be solved optimally by
the following algorithm.

Algorithm 6.2.1 Scheduling unit tasks from sets T 1 and T k to minimize Cmax
[BDW86].

begin
Calculate the length of an optimal schedule according to the formula

 C *
max = max{ 9n1 + knk

m ; , 9nk /�mk � ; }; (6.2.1)

206 6 Communication Delays and Multiprocessor Tasks

Schedule T k-tasks in time interval [0, C *
max] using first-fit algorithm;

 -- see Section 13.1 for the description of the first-fit algorithm
Assign T 1-tasks to the remaining free processors;
end;

It should be clear that (6.2.1) gives a lower bound on the schedule length of an
optimal schedule and this bound is always met by a schedule constructed by Al-
gorithm 6.2.1.

If tasks belong to sets T 1, T 2 , ..., T k, where k is a fixed integer, the prob-
lem can be solved by an approach similar to that for the problem of non-
preemptive scheduling of unit processing time tasks under fixed resource con-
straints [BE83]. We will describe that approach in Section 13.1.

Problem P | pmtn, sizej | Cmax

Now, we will pass to preemptive scheduling. First, let us consider the problem of
scheduling tasks from sets T 1 and T k in order to minimize schedule length, i.e.
problem P | pmtn, sizej � {1, k} | Cmax . In [BDW84, BDW86] it has been proved
that among minimum-length schedules for the problem there always exists a fea-
sible normalized schedule, i.e. one in which first all T k-tasks are assigned in time
interval [0, C *

max] using McNaughton's rule (Algorithm 5.1.8), and then all T 1-
tasks are assigned, using the same rule, in the remaining part of the schedule (cf.
Figure 6.2.1).

T k

r Cmax
t0

1P

kP

kl+1P

k(l+1)P

mP
*

1m

-tasks

Figure 6.2.1 An example normalized schedule.

 6.2 Scheduling Multiprocessor Tasks 207

Following the above result, we will concentrate on finding an optimal schedule
among normalized ones. A lower bound on the schedule length Cmax can be ob-
tained as follows. Define

X = �
i=1

n1

 pi
1

 , Y = �
i=1

nk

 pi
k
 , Z = X + kY ,

pmax
1 = max

Ti
 1 � T 1

 {pi
1} , pmax

k = max
Ti

 k � T k
 {pi

k} .

Then,

Cmax �� C = max{Z/m, Y/ �m/k� , pmax
1

 , pmax
k } . (6.2.2)

It is clear that no feasible schedule can be shorter than the maximum of the above
values, i.e. mean processing requirement on one processor, mean processing re-
quirement of T k-tasks on k processors, the maximum processing time among T 1-
tasks, and the maximum processing time among T k-tasks. If mC > Z, then in any
schedule there will be an idle time of minimum length IT = mC � Z. On the basis
of bound (6.2.2) and the reasoning preceding it one can try to construct a preemp-
tive schedule of minimum length equal to C. However, this will not always be
possible, and one has to lengthen the schedule. Below we present the reasoning
that allows finding the optimal schedule length. Let l = �Y/C�. It is quite clear
that the optimal schedule length C *

max must obey the inequality

C � C *
max � Y/l .

We know that there exists an optimal normalized schedule where tasks are
arranged in such a way that kl processors are devoted entirely to T k-tasks, k pro-
cessors are devoted to T k-tasks in time interval [0, r], and T 1-tasks are scheduled
in the remaining time (cf. Figure 6.2.1). Let m1 be the number of processors that
can process T 1-tasks during time interval [0, r], i.e. m1 = m � (l + 1)k. In a normal-
ized schedule which completes all tasks by some time B, where C � B � Y/l, we
will have r = Y � Bl. Thus, the optimum value C *

max will be the smallest value of
B (B � C) such that the T 1-tasks can be scheduled on m1 processors available
during the interval [0, B] and on m1 + k processors available in the interval [r, B].
Below we give necessary and sufficient conditions for the unit width tasks to be
scheduled. To do this, let us assume that these tasks are ordered in such a way
that p1

1 � p2
1 �...� pn1

1 . For a given pair B, r with r = Y � Bl, let p1
1, p2

1,..., pj
1 be the

only processing times greater than B � r. Consider now two cases.

Case 1: j � m1 + k. Then T 1-tasks can be scheduled if and only if

208 6 Communication Delays and Multiprocessor Tasks

�
i=1

j
 [pi

1 � (B � r)] � m1r . (6.2.3)

To prove that this condition is indeed necessary and sufficient, let us first observe
that if (6.2.3) is violated the T 1-tasks cannot be scheduled. Suppose now that
(6.2.3) holds. Then one should schedule the excesses (exceeding B � r) of "long"
tasks T1

 1
 , T2

 1
 , ..., T j

 1
 , and (if (6.2.3) holds without equality) some other tasks on

m1 processors in time interval [0, r] using McNaughton's rule. After this opera-
tion the interval is completely filled with unit width tasks on m1 processors.

Case 2: j > m1 + k. In that case T 1-tasks can be scheduled if and only if

�
i=1

m1+k
 [pi

1 � (B � r)] �� m1r . (6.2.4)

Other long tasks will have enough space on the left hand side of the schedule
because condition (6.2.2) is obeyed.

Next we describe how the optimum value of schedule length (C *
max) can be

found. Let Wj = �
i=1

j
 pi

1
 . Inequality (6.2.3) may then be rewritten as

Wj � j(B � r) � m1(Y � Bl) .

Solving it for B we get

B �� (j � m1)Y + Wj
(j � m1)l + j .

Define

Hj = (j � m1)Y + Wj
(j � m1)l + j .

Thus, we may write

C *
max = max{C , Hm1+1 , Hm2+1 , ..., Hn1

} .

Let us observe that we do not need to consider values H1, H2,..., Hm1
 since the

m1 longest T 1-tasks will certainly fit into the schedule of length C (cf. (6.2.2)).
Finding the above maximum can clearly be done in O(n1 log n1) time by sorting
the unit width tasks by pi

1
 . But one can do better by taking into account the fol-

lowing facts.
1. Hi � C for i � m1 + k .

2. Hi has no local maximum for i = m1 + 1,..., m1 + k � 1 .

 6.2 Scheduling Multiprocessor Tasks 209

Thus, to find a maximum over Hm1+1 , ..., Hm1+k�1 and C we only need to apply a
linear time median finding algorithm [AHU74] and a binary search. This will
result in an O(n1) algorithm that calculates C *

max . (Finding the medians takes
O(n1) the first time, O(n1 /2) the second time, O(n1 /4) the third time, etc. Thus the
total time to find the medians is O(n1) .)

Now we are in the position to present an optimization algorithm for schedul-
ing width-1 and width-k tasks.

Algorithm 6.2.2 Scheduling preemptable tasks from sets T 1 and T k to minimize
Cmax [BDW86].

begin
Calculate the minimum schedule length C *

max;
Schedule T k-tasks in the interval [0, C *

max] using McNaughton's rule (Algorithm
5.1.8);

l := �Y / C *
max�; m1 := m � (l+1)k; r := Y � C *

maxl;
Calculate the number j of long T 1-tasks that exceed C *

max � r;
if j � m1 + k then
begin
Schedule the excesses of the long tasks and possibly some other parts of tasks

on m1 processors using McNaughton's rule to fill interval [0, r] complete-
ly;

Schedule the remaining processing requirement in interval [r, C *
max] on

m1 + k processors using McNaughton's rule;
end

else
begin
Schedule part ((m1 + k)(C *

max � r) /�i=1
j
 pi

1) ph
1 of each long task (plus possibly

parts of smaller tasks T 1
z with processing times p1

z, r < p1
z � Cmax � r) in in-

terval [r, C *
max] on m1 + k processors using McNaughton's rule;

-- if among smaller tasks not exceeding (C *
max � r) there are some tasks longer than r,

-- then this excess must be taken into account in the denominator of the above rate
Schedule the rest of the task set in interval [0, r] on m1 processors using

McNaughton's algorithm;
end;

end;

The optimality of the above algorithm follows from the preceding discussion. Its
time complexity is O(n1 + nk), thus we get O(n) .

210 6 Communication Delays and Multiprocessor Tasks

Considering the general case of preemptively scheduling tasks from sets T 1 ,

T 2,..., T k , i.e. the problem Pm | pmtn, sizej � {1,..., k} | Cmax , we can use a
proper linear programming approach to solve this problem in polynomial time.

Problem P | prec, sizej | Cmax

Let us now consider the case of non-empty precedence constraints. Arbitrary
processing times result in the strong NP-hardness of the problem, even for chains
and two processors [DL89]. In case of unit processing times the last problem can
be solved for arbitrary precedence constraints using basically the same approach
as in the Coffman-Graham algorithm (Algorithm 5.1.12) [Llo81]. On the other
hand, three processors result in a computational hardness of the problem even for
chains, i.e. problem P3 | chain, pj = 1, sizej | Cmax is strongly NP-hard [BL96].
However, if task requirements of processors are either uniform or monotone de-
creasing (or increasing) in each chain then the problem can be solved in
O(nlog n) time even for an arbitrary number m of processors (m < 2sizej for the
case of monotone chains) [BL96, BL02].

Problem Q | pmtn, sizej | Cmax

In [BDSW94] a scheduling problem has been considered for a multiprocessor
built up of uniform k-tuples of identical parallel processors. The processing time
of task Ti is the ratio pi

/bi, where bi is the speed of the slowest processor that
executes Ti. It is shown that this problem is solvable in O(nm + n log n) time if the
sizes are such that sizej � {1, k}, j = 1, 2,..., n. For a fixed number of processors,
a linear programming formulation is proposed for solving this problem in poly-
nomial time for sizes belonging to {1, 2,..., k}.

Problem Pm | pmtn, rj, sizej | Lmax

Minimization of other criteria has not been considered yet, except for maximum
lateness. In this context problem Pm | pmtn, rj, sizej | Lmax has been formulated as
a modified linear programming problem (5.1.14) - (5.1.15). Thus, it can be
solved in polynomial time for fixed m [BDWW96].

Let us consider now a variant of the above problem in which each task re-
quires a fixed number of processors being a power of 2, thus requiring a cube of
a certain dimension. Because of the complexity of the problem we will only con-
sider the preemptive case.

 6.2 Scheduling Multiprocessor Tasks 211

Problem P | pmtn, cubej | Cmax

In [CL88b] an O(n2) algorithm is proposed for building the schedule (if any ex-
ists) for tasks with a common deadline C. This algorithm builds so-called stair-
like schedules. A schedule is said to be stairlike if there is a function f (i) (i =
1,..., m) such that processor Pi is busy before time moment f (i) and idle after,
and f is non-increasing. Function f is called a profile of the schedule. Tasks are
scheduled in the order of non-increasing number of required processors. A task is
scheduled in time interval [C � pj , C], utilizing the first of the subcubes of the
task's size on each "stair" of the stairlike partial schedule. Using a binary search,
the C *

max is calculated in time O(n2(log n + log(max{pj}))). The number of
preemptions is at most n(n � 1)/2.

In [Hoe89], a feasibility-testing algorithm of the complexity O(n log n) is
given. To calculate C *

max with this algorithm O(n log n (log n + log(max{pj}))) time
is needed. This algorithm uses a different method for scheduling; it builds so-
called pseudo-stairlike schedules. In this case f(i) < f(j) < C, for i, j = 1,..., m,
implies that i > j. Each task is feasibly scheduled on at most two subcubes. Thus
the number of generated preemptions is at most n � 1.

A similar result is presented in [AZ90], but the number of preemptions is re-
duced to n � 2 because the last job is scheduled on one subcube, without preemp-
tion. This work was the basis for the paper [SR91] in which a new feasibility
testing algorithm is proposed, with running time O(mn). The key idea is to
schedule tasks in the order of non-increasing execution times, in sets of tasks of
the same size (number of required processors). Based on the claim that there ex-
ists some task in each optimal schedule utilizing all the remaining processing
time on one of the processors in the schedule profile, an O(n2m2) algorithm is
proposed to calculate C *

max.

Problem P | pmtn, cubej | Lmax

Again minimization of Lmax can be solved via linear programming formulation
[BDWW96].

Let us consider now the most complicated case of parallel processor re-
quirements specified by numbers of processors required, where task processing
times depend on numbers of processors assigned.

Problem P | spdp-any | Cmax

A dynamic programming approach leads to the observation that P2 | spdp-
any | Cmax and P3 | spdp-any | Cmax are solvable in pseudopolynomial time
[DL89]. Arbitrary schedules for instances of these problems can be transformed

212 6 Communication Delays and Multiprocessor Tasks

into so called canonical schedules. A canonical schedule on two processors is
one that first processes the tasks using both processors. It is completely deter-
mined by three numbers: the total execution times of the single-processor tasks
on processor P1 and P2, respectively, and the total execution time of the bipro-
cessor tasks. For the case of three processors, similar observations are made.
These characterizations are the basis for the development of the pseudopolyno-
mial algorithms. The problem P4 | spdp-any | Cmax remains open; no pseudopoly-
nomial algorithm is given.

Surprisingly preemptions do not result in polynomial time algorithms
[DL89].

Problem P | pmtn, spdp-any | Cmax

Problem P | pmtn, spdp-any | Cmax is proved to be strongly NP-hard by a reduction
from 3-Partition [DL89]. With restriction to two processors, P2 | pmtn, spdp-
any | Cmax is still NP-hard, as is shown by a reduction from PARTITION. Using
Algorithm 6.2.2 [BDW86], Du and Leung [DL89] show that for any fixed num-
ber of processors Pm | pmtn, spdp-any | Cmax is also solvable in pseudopolynomial
time. The basic idea of the algorithm is as follows. For each schedule S of
Pm | pmtn, sizej | Cmax , there is a corresponding instance of Pm | pmtn, spdp-
any | Cmax with sizes belonging to {1,..., k}, in which task Ti is an l-processor
task if it uses l processors with respect to S. An optimal schedule for the latter
problem can be found in polynomial time by Algorithm 6.2.2. What remains to
be done is to generate optimal schedules for instances of Pm | pmtn, sizej | Cmax
that correspond to schedules of Pm | pmtn, spdp-any | Cmax , and choose the short-
est among all. It is shown by a dynamic programming approach that the number
of schedules generated can be bounded from above by a pseudopolynomial func-
tion of the size of Pm | pmtn, spdp-any | Cmax .

If in the above problem one assumes a linear model of dependency of task
processing times on a number of processors assigned, the problem starts to be
solvable in polynomial time. That is problem P | pmtn, spdp-lin | Cmax is solvable
in O(n) time [DK99] and P | pmtn, rj, spdp-lin | Cmax is solvable in O(n2) time
[Dro96b].

On the other hand, the special case of malleable tasks received recently quite
considerable attention. It was proved that in the case of convex speed functions
(relating processing speed to the number of processors allocated), an optimal
schedule can be constructed by a sequential performance of tasks (being assigned
all available processors) [BKM+04]. The case of concave functions for all the
tasks is solvable in polynomial time for a fixed number of processors [BKM+06].

 6.2 Scheduling Multiprocessor Tasks 213

6.2.2 Dedicated Processors

In this section we will consider dedicated processor case. Following the remarks
of Section 6.1 we will denote here by T D the set of tasks each of which requires
set D of processors simultaneously. Task Ti � T D has processing time p i

D. For
the sake of simplicity we define by pD = �

Ti�T D
 p i

D the total time required by all

tasks which use set of processors D. Thus, e.g. p1,2,3 is the total processing time 2
of tasks each of which requires processors P1, P2, and P3 simultaneously. We
will start with task requirements concerning only one subset of processors for
each task, i.e. fixj requirements.

Problem P | pj = 1, fixj | Cmax

The problem with unit processing times can be proved to be strongly NP-hard for
an arbitrary number of processors [KK85]. Moreover, in [HVV94] it has been
proved that even the problem of deciding whether an instance of the problem has
a schedule of length at most 3 is strongly NP-hard. As a result there is no poly-
nomial time algorithm with worst case performance ratio smaller than 4/3 for
P | pj = 1, fixj | Cmax, unless P = NP. On the other hand, if the number of proces-
sors is fixed, then again an approach for non-preemptive scheduling of unit
length tasks under fixed resource constraints [BE93] (cf. Section 13.1) can be
used to solve the problem in polynomial time.

Problem P | fixj | Cmax

It is trivial to observe that the problem of non-preemptive scheduling tasks on
two processors under fixed processor requirements is solvable in polynomial
time. On the other hand, if the number of processors is increased to three, the
problem starts to be strongly NP-hard [BDOS92]. Despite the fact that the gen-
eral problem is hard we will show below that there exist polynomially solvable
cases of three processor scheduling [BDOS92]. Let us denote by R i the total time
processor Pi processes tasks. For instance, R1 = p1

 + p1,2
 + p1,3.

Moreover, let us denote by RR the total time during which two processors
must be used simultaneously, i.e. RR = p1,2

 + p1,3
 + p2,3. We obviously have the

following:

Lemma 6.2.3 [BDOS92] Cmax � max{max
i

{R i}, RR} for problem P3 | fixj | Cmax.

2 For simplicity reasons we write p1,2,3 instead of p{1,2,3}.

214 6 Communication Delays and Multiprocessor Tasks

Now we consider the case for which p1 � p2,3. The result given below also covers
cases p2 � p1,3 and p3 � p1,2, if we take into account renumbering of processors.

Theorem 6.2.4. [BDOS92] If p1 � p2,3, then P3 | fixj | Cmax can be solved in poly-
nomial time. The minimum makespan is then

Cmax = max{max
i

{R i}, RR}}.

Proof. The proof is constructive in nature and we consider four different subcas-
es.

Case a: p2 � p1,3 and p3 � p1,2. In Figure 6.2.2 a schedule is shown which can
always be obtained in polynomial time for this case. The schedule is such that
Cmax = RR, and thus, by Lemma 6.2.3, it is optimal.

1,3T

2T

1,3T

3T

1,2T
T 1

2,3T

Figure 6.2.2 Case a of Theorem 6.2.4.

Case b: p2 � p1,3 and p3 = p1,2. Observe that in this case R3 = max
i

{R i}. Hence, a

schedule which can be found in polynomial time is shown in Figure 6.2.3. The
length of the schedule is Cmax = R3 = max

i
{R i}, and thus this schedule is optimal

(cf. Lemma 6.2.3).

Case c: p2 � p1,3 and p3 � p1,2. Observe that R1 � R2 and R1 � R3. Two subcases
have to be considered here.

Case c': R2 � R3. The schedule which can be obtained in this case in poly-
nomial time is shown in Figure 6.2.4(a). Its length is Cmax = R3 = max

i
{R i}.

Case c": R2 = R3. The schedule which can be obtained in this case in poly-
nomial time is shown in Figure 6.2.4(b). Its length is Cmax = R2 = max

i
{R i}.

1,3T

2T

1,3TT 1

2,3T
3T

1,2T

Figure 6.2.3 Case b of Theorem 6.2.4.

 6.2 Scheduling Multiprocessor Tasks 215

(a) T 1

1,3T

2T

1,3T

3T

1,2T
2,3T

(b)

1,3T

2T
3T

2,3T

1,2T
1,3TT 1

Figure 6.2.4 Case c of Theorem 6.2.4.

Case d: p2 � p1,3 and p3 � p1,2. Note that the optimal schedule would be the same
as in Case b if we renumbered the processors.

It follows that the hard problem instances are those for which p1 > p2,3, p2 > p1,3
and p3 > p1,2. Let us call these cases the Hard-C subcases. However, also among
the problem instances which satisfy the Hard-C property, some particular cases
can be found which are solvable in polynomial time.

Theorem 6.2.5 [BDOS92] If Hard-C holds and

R1 � p2
 + p3

 + p2,3 or p1 � p2
 + p2,3 ,

then problem P3 | fixj | Cmax can be solved in polynomial time, and Cmax =
max

i
{R i}.

 (a)

2

1,3

2,3

1,2

3

T
T 1

T
T

T
T

1,3T

(b)

2

1,3

2,3

1,2

3

T 1

1,3

T
T

T
T

T

T
Figure 6.2.5 Two cases for Theorem 6.2.5.

216 6 Communication Delays and Multiprocessor Tasks

Proof. Observe that if R1 � p2
 + p3

 + p2,3 then R1 � R2 and R1 � R3. The schedule
which can be immediately obtained in this case is shown in Figure 6.2.5(a). As
Cmax = R1, the schedule is optimal by Lemma 6.2.3.

If p1 � p2
 + p2,3, the optimal schedule is as shown in Figure 6.2.5(b). In this

case Cmax = max{R1, R3}.

Observe that the optimal schedules found for the polynomial cases in Theorems
6.2.4 and 6.2.5 are all normal schedules, i.e. those in which all tasks requiring the
same set of processors are scheduled consecutively. Let us denote by C S

max the
schedule length of the best normal schedule for P3 | fixj | Cmax and by C *

max the
value of the minimum schedule length for the same instance of the problem.
Then [BDOS92]

C S max
C * max

 <
4
3 .

Since the best normal schedule can be found in polynomial time [BDOS92],
we have defined a polynomial time approximation algorithms with the worst case
behavior not worse than 4/3. Recently this bound has been improved. In [OST93]
and in [Goe95] new approximation algorithms have been proposed with bounds
equal to 5/4 and 7/6, respectively.

An interesting approach to the solution of the above problem is concerned
with the graph theoretic approach. The computational complexity of the problem
P | fixj | Cmax where |fixj| = 2 is analyzed in [CGJP85]. The problem is modeled by
the use of the so-called file transfer graph. In such a graph, nodes correspond to
processors, and edges correspond to tasks. A weight equal to the execution time
is assigned to each edge. A range of computational-complexity results have been
established. For example, the problem P | pj = 1, fixj | Cmax is easy when the file
transfer graph is one of the following types of a graph: bipartite, tree, one cycle
graph, star, caterpillar, cycle, path; but, in general, the problem is NP-hard. It is
proved that the makespan C LS

max of the schedule obtained with any list-scheduling
algorithm satisfies C LS

max � 2C *
max + max{0, max{pj}(1 � 2/d)}, where d is the max-

imum degree of any vertex in the graph.
In [Kub87], the problem is modeled by means of weighted edge coloring.

The graph model is extended in such a way that a task requiring one processor is
represented as a loop which starts and ends in the same node. The problem
P | fixj | Cmax, where |fixj| � {1,2} is NP-hard for the graph, which is either a star
with a loop at each non-central vertex or a caterpillar with only one loop. In
[BOS91] the problem P | fixj | Cmax is also analyzed with the use of the graph ap-
proach. This time, however, the graph reflecting the instance of the problem,
called a constraint graph, has nodes corresponding to tasks, and edges join two
tasks which cannot be executed in parallel. An execution time is associated with

 6.2 Scheduling Multiprocessor Tasks 217

each node. It is shown that the problem P | pj = 1, fixj | Cmax is NP-hard but can be
solved polynomially for m = 4 (P4 | pj = 1, fixj | Cmax). Next, when the constraint
graph is a comparability graph, the transitive orientation of such a graph gives an
optimal solution. In this case, Cmax is equal to the weight of the maximum weight
clique. The transitive orientation (if any exists) can be found in time O(dn2). For
the general case, when the constraint graph is not a comparability graph, a branch
and bound algorithm is proposed. In this case, the problem consists in adding
(artificial) edges such that the new graph is a comparability graph. The search is
directed by the weight of the heaviest clique in the new graph. Results of compu-
tational experiments are reported.

Another constrained version of the problem is considered in [HVV94]. It is
assumed that in problem P3 | fixj | Cmax all biprocessor tasks that require the same
processors are scheduled consecutively (the so-called block constraint). Under
this assumption this problem is solvable in pseudopolynomial time.

Problem P | pmtn, fixj | Cmax

Let us consider now preemptive case. In general the problem P | pmtn, fixj | Cmax
is strongly NP-hard [Kub90]. For simpler cases of the problem, however, linear
time algorithms have been proposed [BBDO94]. An optimal schedule for the
problem P2 | pmtn, fixj | Cmax does not differ from a schedule for the non-
preemptive case. For three processors (P3 | pmtn, fixj | Cmax), an optimal schedule
has the following form: biprocessor tasks of the same type are scheduled consec-
utively (without gaps and preemptions) and uniprocessor tasks are scheduled in
the free-processing capacity, in parallel with appropriate biprocessor tasks. The
excess of the processing time of uniprocessor tasks is scheduled at the end of the
schedule. The complexity of the algorithm is O(n). In a similar way, optimal
schedules can be found for P4 | pmtn, fixj | Cmax . When m is limited, the problem
Pm | pmtn, fixj | Cmax can be solved in polynomial time using feasible sets and a
linear programming approach [BBDO94].

Problem P | prec, fixj | Cmax

If we consider precedence constrained task sets, the problem immediately starts
to be computationally hard, since even problem P2 | chain, pj = 1, fixj | Cmax is
strongly NP-hard [HVV94] (cf.[BLRK83] where a similar proof has been used
for the resource constrained scheduling).

218 6 Communication Delays and Multiprocessor Tasks

Problem P | fixj | ��Cj

Let us consider now minimization of mean flow time. Problem Pk | pj = 1, fixj |
�Cj is still open. The general version of the problem has been considered in
[HVV94]. The main result is establishing NP-hardness in the ordinary sense for
P2 | fixj | �Cj . The question whether this problem is solvable in pseudopolynomial
time or NP-hard in the strong sense still has to be resolved. The weighted ver-
sion, however, is shown to be NP-hard in the strong sense. The problem with unit
processing times is NP-hard in the strong sense if the number of processors is a
part of the problem instance, but the complexity is still open in case of a fixed
number of processors. As could be expected, the introduction of precedence con-
straints does not simplify the computational complexity. It is shown that even the
problem with two processors, unit processing times, and chain-type precedence
constraints, is NP-hard in the strong sense.

Problem P | pmtn, fixj | Lmax

Since the non-preemptive scheduling problem with the Lmax criterion is already
strongly NP-hard for two processors [HVV94], more attention has been paid to
preemptive case. In [BBDO97a] linear time algorithms have been proposed for
problem P2 | pmtn, fixj | Lmax and for some special subcases of three and four pro-
cessor scheduling. More general cases can be solved by linear programming ap-
proach [BBDO97b] even for different ready times for tasks.

Problem P | setj | Cmax

Let us consider now the case of setj processor requirements. In [CL88b] this
problem is restricted to single-processor tasks of unit length. In the paper match-
ing technique is used to construct optimal solutions in O(n2m2) time. In [CC89]
the same problem is solved in O(min{ n, m}nmlog n) time by use of network
flow approach. More general cases have been considered in [BBDO95].

Problem P2 | setj | Cmax is NP-hard, but can be solved in pseudopolynomial
time by a dynamic programming procedure. In this case, the schedule length de-
pends on three numbers: total execution time of tasks requiring P1 (p1), tasks

requiring P2 (p2), and tasks requiring P1 and P2 (p1
2). In an optimal schedule, T 12

tasks are executed first, then uniprocessor tasks are processed in any order with-
out gaps. A similar procedure is proposed for a restricted version of P3 | setj | Cmax

in which one type of dual-processor task is absent (e.g., T 13). On the other hand,
for the problem P | setj | Cmax, the shortest processing time (SPT) heuristic is pro-

 6.2 Scheduling Multiprocessor Tasks 219

posed. Thus, tasks are scheduled in any order, in their shortest-time processing
configuration. A tight performance bound for this algorithm is m.

Some other cases, mostly restricted to | setj | = 1, are analyzed in [Bru95].

Problem Pm | pmtn, setj | Cmax

In case of preemptions again linear programming approach can be used to solve
the problem in polynomial time for fixed m [BBDO95].

Problem Pm | pmtn, setj | Lmax

Following the results for fixj processor requirements, most of the other cases for
setj requirements are computationally hard. One of the few exceptions is problem
Pm | pmtn, setj | Lmax which can be solved by linear programming formulation
[BBDO97b].

6.2.3 Refinement Scheduling

Usually deterministic scheduling problems are formulated on a single level of
abstraction. In this case all information about the processor system and the tasks
is known in advance and can thus be taken into account during the scheduling
process. We also know that generating a schedule that is optimal under a given
optimization criterion, is usually very time consuming in case of large task sys-
tems, due to the inherent computational complexity of the problem.

On the other hand, in many applications it turns out that detailed information
about the task system is not available at the beginning of the scheduling process.
One example is the construction of complex real-time systems that is only possi-
ble if the dependability aspects are taken into account from the very beginning;
adding non-functional constraints at a later stage does not work. Another exam-
ple are large projects that run over long periods; in order to settle the contract,
reasonable estimates must be made in an early stage when probably only the
coarse structure of the project and a rough estimate of the necessary resources are
known. A similar situation occurs in many manufacturing situations; the delivery
time must be estimated as part of the order although the detailed shop floor and
machine planning is not yet known.

A rather coarse grained knowledge of the task system in the beginning is re-
fined during later planning stages. This leads to a stepwise refinement technique
where intermediate results during the scheduling process allows to recognize
trends in
� processing times of global steps
� total execution time

220 6 Communication Delays and Multiprocessor Tasks

� resource requirements
� feasibility of the task system.
 In more detail, we first generate a schedule for the coarse grained (global)
tasks. For these we assume that estimates of processing times and resource re-
quirements are known. Next we go into details and analyze the structure of the
global tasks (refinement of tasks). Each global task is considered as a task system
by itself consisting of a set of sub-tasks, each having certain (may be estimated)
processing time and resource requirement. For each such sub-task a schedule is
generated which then replaces the corresponding global task. Proceeding this
way from larger to smaller tasks we are able to correct the task completion times
from earlier planning stages by more accurate values, and we get more reliable
information about the feasibility of the task system.

Algorithm 6.2.6 Refinement scheduling [EH94].
begin
Define the task set in terms of its structure (precedence relations), its estimated

resource consumption (execution times) and its deadlines;
-- Note that the deadlines are initially defined at the highest level (level 0)
-- as part of the external requirements.
-- During the refinement process it might be convenient to refine these
-- deadlines too; i.e. to assign deadlines to lower level tasks.
-- Depending on the type of problem, it might, however, be sufficient to prove
-- that an implementation at a particular level of refinement obeys the deadlines
-- at some higher level.

Schedule the given task set according to some discipline, e.g. earliest deadline
first;

repeat
Refine the task set, again in terms of its structure, its resource consumption

and possibly also its deadlines;
Try to schedule the refinement of each task within the frame that is defined by

the higher level schedule;
-- Essentially this boils down to introducing a virtual deadline that is the
-- finishing time of the higher level task under consideration.
-- Note also that the refined schedule might use more resources (processors)
-- than the initial one.
-- If no feasible schedule can be found, backtracking must take place.
-- In our case this means, that the designer has to find another task structure,
-- e.g. by redefining the functionality of the tasks or by exploiting additional
-- parallelism [VWHS95] (introduction of additional processors,
-- cloning of resources and replacement of synchronous by asynchronous
-- procedure calls).

Optimize the resulting refined schedule by shifting tasks;
-- This step aims at restructuring (compacting) the resulting schedule
-- in such a way that the number of resources (processors) is as small as possible.

 6.3 Scheduling Uniprocessor Tasks 221

until the finest task level is reached;
end;
The algorithm essentially defines a first schedule from the initial given task set
and refines it recursively. At each refinement step a preliminary schedule is de-
veloped that is refined (detailed) in the next step. This way, we will finally end
up with a schedule at the lowest level. The tasks are now the elementary actions
that have to be taken in order to realize all the initially given global tasks.

6.3 Scheduling Uniprocessor Tasks with
Communication Delays

The following simple example serves as an introduction to the problems we deal
with in the present section. Let there be given three tasks with precedences as
shown in Figure 6.3.1(a). The computational results of task T1 are needed by both
successor tasks, T2 and T3 . We assume unit processing times. For task execution
there are two identical processors, connected by a communication link. To
transmit the results of computation T1 along the link takes 1.5 units of time. The
schedule in Figure 6.3.1(b) shows a schedule where communication delays are
not considered. The schedule (c) is obtained from (b) by introducing a communi-
cation delay between T1 and T3 . Schedule (d) demonstrates that there are situa-
tions where a second processor does not help to gain a shorter schedule. The
fourth schedule, (e), demonstrates another possibility: if task T1 is processed on
both processors, an even shorter schedule is obtained. The latter case is usually
referred to as task duplication.

The problems considered in this area are often simplified by assuming that
communication delays are the same for all tasks (so-called uniform delay sched-
uling). Other approaches distinguish between coarse grain and fine grain paral-
lelism: In contrast to the latter, a high computation-communication ratio can be
expected in coarse grain parallelism. As pointed out before, task duplication of-
ten leads to shorter schedules; this is in particular the case if the communication
times are large compared to the processing times.

In Section 6.3.1, we discuss briefly recent results concerning algorithms and
complexity of task scheduling with communication delays, but without task du-
plication. The corresponding problems with task duplication are considered in
Section 6.3.2. Finally, in Section 6.3.3, we discuss the influence of particular
network structures on schedules.

222 6 Communication Delays and Multiprocessor Tasks

(a) T1

T2 T3

(b)

T1 T2

T3

P1

P2

0 1 2 t

(c)

T1

T3

T2P1

P2

10 2 3.52.5 t

(d)

T1 T3T2P1

P2

10 2 3 t

(e)

T1

T3

T2P1

P2 T1

0 1 2 t
Figure 6.3.1 (a) Precedence graph

(b) Schedule without consideration of communication delays
(c) Schedule considering communication from T1 to T3
(d) Optimal schedule without task duplication
(e) Optimal schedule with task duplication.

6.3.1 Scheduling without Task Duplication

Problem P | prec, c = 1, pj = 1 | Cmax

This problem was first discussed by Rayward-Smith in [Ray87a] who established
its strong NP-hardness. The question if P | prec, c = 1, pj = 1 | Cmax is NP-hard
for fixed m � 2 is still open. If the width of the precedence graph, i.e. the largest
number of incomparable tasks in (T ,≺), is bounded, then the problem can be
solved in polynomial time [Moh89, Vel93]. Picouleau [Pic91] proved that the
problem of deciding whether an instance has a schedule of makespan at most 3
can be decided in polynomial time. From Hoogeveen et al. [HLV94] we know,
however, that the same problem for schedules with Cmax at most equal to 4 is NP-
complete, even for bipartite graphs. As a consequence of this result we see that
there is no polynomial-time algorithm with performance bound < 5/4, unless P =
NP. Otherwise, for instances with Cmax = 4 the polynomial-time algorithm would
construct a schedule of length < 5 which would be optimal.

 6.3 Scheduling Uniprocessor Tasks 223

There are also results available for cases where the number m of processors
is unrestricted, i.e. if n � m. In such a case deciding whether Cmax < l can be done
in polynomial time for l � 5, but is NP-complete for l � 6 [Vel93].

Rayward-Smith [Ray87a] discussed the performance of demand schedules
(called greedy). The makespan CG

max of a demand schedule as compared to that of

an optimal schedule can be proved to be C
G
max

C * max
 � 3 � 2m .

In case of tree-like precedences, Lenstra et al. [LVV96] proved the problem
P | tree, c = 1, pj = 1 | Cmax to be NP-hard. However, for a fixed number of proces-
sors, i.e. for the problem Pm | tree, c = 1, pj = 1 | Cmax , an optimal algorithm of
polynomial time complexity exists [VRK92]. In case of an unbounded number of
processors (m � n), the problem can be solved in O(n) time [Chr89a].

In [BBGT96], the problem Q2 | in-tree, c = 1, pj = 1 | Cmax with two uniform
processors of speeds 2 and 1, respectively, was considered. Thus, the execution
of a task takes two units of time on the slower processor (P1) and one unit of
time on the faster processor (P2). The in-tree is assumed to be complete. If two
tasks being in relation ≺ are processed on different processors, the communica-
tion delay is one unit of time. An O(h) time algorithm is presented for this prob-
lem for trees of height h.

For the case of interval order precedences, the problem P | interval order,
c = 1, pj = 1 | Cmax can be solved in polynomial time [Pic92].

Problem P | prec, c, pj = 1 | Cmax

Assuming first an unbounded number of processors, we know from Jakoby et al.
[JR92] that the problem is NP-hard, in contrast to Chretienne's linear-time solu-
tion [CHR89a] for the same type of problem with c = 1.

If the number of processors is finite the problem of course remains hard. In
situations where the communication delays are large it can be useful to get in-
formation about how far the makespan is influenced by the largest communica-
tion delay. From [BGK96] it is known that the problem P | prec, c, pj = 1 | Cmax
with Cmax � c + 2 can be solved in polynomial time, whereas problem P | prec, c,
pj = 1 | Cmax with the question "Cmax= � c + 3" is NP-complete, even if prec = bi-
partite graph. Furthermore, there is a lower bound on the performance of approx-
imation algorithms. There exists no polynomial-time algorithm with performance
bound smaller than 1 + 1/(c + 3) for P | prec, c, pj = 1 | Cmax , unless P = NP. This
result holds even in the special case that the precedence relation is of bipartite
type.

For the same problem but where the precedence relation is a complete k-ary
tree, Jakoby and Reischuk [JR92] presented an O(n2log n)-time algorithm. If

224 6 Communication Delays and Multiprocessor Tasks

completeness of the tree is not guaranteed, the problem is NP-hard even for in-
trees where each task has in-degree at most 2.

Problem P | prec, cjk | Cmax

The problem is shown to be strongly NP-hard for binary tree precedences by a
transformation from Exact-3-Cover [JR92]. Only for the very restricted problem
P | tree, cjk | Cmax where trees are of depth 1, and under the assumption of infinite
number of processors, Picouleau [Pic92] was able to present an O(nlog n) time
algorithm. For general tree-like precedences and unit time tasks, the problem is
NP-hard even if the number of processors is unlimited.

Several other results for the general communication delay case make as-
sumptions on the relationship between the sizes of processing times and commu-
nication times: The granularity g of an instance can be defined as g :=
min

i
 {pi} /max

i, j
 {ci j}. An instance is said to be coarse grained if g � 1. Another

also useful definition is that of the grain of a task: The grain gj of task Tj is de-
fined by gj = min

i�ipred(Tj)
{pi}/ max

i�ipred(Tj)
{ci j}. Based on this notion, Chretienne and

Picouleau [CP91] use a less restrictive definition of instance granularity: An in-
stance is of coarse-grained type if gj � 1 for all j = 1,..., n. We will distinguish
between these two definitions by writing "g � 1" in the first and "gj � 1" in the
second case.

The problem P | prec, cjk , g � 1 | Cmax with an unlimited number of processors
was independently studied by Gerasoulis and Yang [GY92] and Picouleau
[Pic91]. Both presented approximation algorithms of performance 1+1/g. For
tree-like precedences, this problem can be solved in O(n) time [Chr89a, AHC90].
For P | prec, c, g � 1 | Cmax with c � 1 and again an unlimited number of processors
we know from [Pic91] and [Vel93] that it is NP-complete to decide whether an
instance has a schedule of length Cmax � 5 + 3c or Cmax � 6c, respectively.

From [CP91] we know that problem P | prec, cjk , gj � 1 | Cmax with an unlim-
ited number of processors and bipartite or series-parallel precedence constraints
is solvable in polynomial time.

Problem P | pmtn, c | Cmax

Rayward-Smith [Ray87b] studied problem P | pmtn, c | Cmax with unlimited num-
ber of processors, and where preemptions are allowed at integer points. It turns
out that the communication delays cause an increase of C *

max by at most c � 1
units of time. Thus problem P | pmtn, c = 1 | Cmax can be solved optimally by
McNaughton's rule (see Section 5.1). Surprisingly, the problem is strongly NP-
hard for any fixed c � 2.

 6.3 Scheduling Uniprocessor Tasks 225

6.3.2 Scheduling with Task Duplication

In this section the problem of scheduling single processor tasks with communica-
tion delays and task duplications will be considered. Most results available here
are obtained under the unrealistic assumption that the number of processors is
unlimited. This assumption allows to process copies of a task as often as required
in order to avoid communication, so that the maximum makespan is minimized.
A more realistic approach, however, would be one where the number of proces-
sors is m < n. The then required careful decision between the two options of task
duplication vs. acceptation of communication delay makes the problem much
more difficult.

Problem P | prec, c, dup | Cmax

The NP-completeness proof of Hoogeveen et al. [HLV94] for deciding whether
P | prec, c = 1, pj = 1 | Cmax has a schedule of the length is � 4 implies that answer-
ing the same question for problem P | prec, c = 1, pj = 1, dup | Cmax is NP-complete,
too.

Papadimitriou and Yannakakis showed that the problem P | prec, c, pj
 = 1, dup | Cmax, with an unlimited number of processors is NP-hard [PY90]. Even
more, the problem of deciding whether an instance of P | prec, c, pj = 1, dup | Cmax
has a solution with makespan Cmax � c + 3 is NP-complete [BGK96]. Following
[JKS89], P | prec, c, dup | Cmax can be solved via a dynamic programming ap-
proach in time O(nc+1).

Problem P | prec, cjk, dup | Cmax

An approximation algorithm proposed in [PY90] for problem P | prec, cjk ,
 dup | Cmax , under the assumption that the number of processors is unlimited,
brings out quite interesting ideas on the way to design heuristics that take com-
munication times into account. The algorithm proposed has time complexity
O(n2(e + nlog n)) where e denotes the number of precedence constraint task pairs.
An interesting fact is that this method can also be used to solve coarse-grained
problems (gj � 1 for j = 1,..., n) optimally in O(n2) time [CC91].

For out-tree precedences, scheduling tasks on an unlimited number of pro-
cessors can be done in polynomial time. In the case of in-tree precedence con-
straints, the problem can be transformed into an equivalent problem with out-tree
precedence constraints and duplications not allowed. From [Chr94] this problem
is known to be NP-hard.

226 6 Communication Delays and Multiprocessor Tasks

6.3.3 Scheduling in Processor Networks

Picouleau [Pic92] studied a variant of problem P | tree, cjk | Cmax where the num-
ber of processors is unlimited, the precedence relation can be represented as a
tree of depth 1, and a distance function is specified. For a pair of processors, Ph ,
Pi , their distance dhi is defined by dhi = |h � i|. The communication time c(Tj , Ph ,
Tk , Pi) is assumed as cjkdhi , provided that Tj ≺ Tk . The problem is shown to be
NP-hard by a transformation from PARTITION.

The distance function defined by Picouleau can be motivated as being ap-
propriate for linear array networks. For general network structures a distance
between two processors may be defined as the length of a shortest path that con-
nects a pair of processors. Such a model has been considered in [EH96]. El-
Rewini and Lewis [ERL90] also considered a distance function, and in addition
took contention into account. By contention we understand the event that two or
more data transmissions simultaneously have to pass a single communication
channel whose limited capacity enforces serialized transmission.

Hwang et al. [HCAL89] studied approximation list algorithms for schedul-
ing problems where the communication times depend both on the involved tasks
and on the processors which execute the tasks. The underlying communication
system model allows covering several types of systems such as fully connected
systems, hypercubes, or local area networks. The communication is assumed to
be contention free. The authors examined a simple strategy called extended list
scheduling, ELS, which is a straightforward extension of list scheduling. The
ELS method adopts a two-phase strategy. First tasks are allocated to processors
by applying list scheduling as if the underlying system were free of communica-
tion overhead. Second, the necessary communication is added to the schedule
obtained in the first phase. Denoting by CELS the makespan of a schedule derived
by applying the ELS method, and by C*

nocomm the makespan of an optimal sched-
ule for the same instance where communication delays are not considered,
Hwang et al. proved the following bound

CELS � (2 � 1n) C*
nocomm + 7max 5

T�T
T'�isucc(T)

>(T , T') .

Here, 7max = max{7 (P , P')} is the maximum time to transmit a packet of unit
length from one processor the another, >(T , T') is the length of a packet of data to
be sent from T to T' . It is also shown that this bound cannot be improved in gen-
eral.

Since the performance of ELS is unsatisfactory, an improved strategy called
the earliest task first, (ETF) was proposed in [HCAL89]. This algorithm uses a
greedy strategy where the earliest ready task is scheduled first. The strategy is
improved by the ability to postpone a scheduling decision to the next decision

 6.3 Scheduling Uniprocessor Tasks 227

moment if a task completion between two decision points may make a more ur-
gent task schedulable. The performance ratio obtained from a detailed analysis is

CETF � (2 � 1n) C *
nocomm + cmax

where cmax is the maximum communication requirement along all chains of T ,
that is

cmax = max{7max 5
k = 1

l�1
>(Tci

 , Tci+1
) | (Tc1

 , ..., Tcl
) is a chain in T } .

Very little is known about the design of efficient approximation algorithms
for the scheduling of task on a real multiprocessor topology. Of particular practi-
cal interest are also problems with constraints on communication channel capaci-
ties or unequal processor distances.

Ecker and Hodam [EH96] considered a similar model where communication
packets are of various lengths and transmission times per unit length message
depend on the given network topology. If Tj and Tk are processed on processors
Ph and Pi , respectively, the time for transmitting the required data of Tj to Tk is
c(Tj , Ph , Tk , Pi) = ?(Tj , Tk)d(Ph , Pi), where d(Ph , Pi), the distance between proces-
sors Ph and Pi , is the length of a shortest path from Ph to Pi . As further simplifi-
cation it is assumed that for Tj ≺ Tk the length of transmitted data ?(Tj , Tk) de-
pends only on task Tj . Moreover, in many applications it makes sense to say that
the amount of data produced by a task increases linearly with the processing time
of the task. This assumptions lead to the simplification ?(Tj , Tk) = +L pj where +L
� IR�0 is a packet length coefficient that measures the amount of data produced in
unit time by Tj , and pj is the processing time of this task. Six heuristic algorithms
were empirically compared. These include: hill-climbing, threshold accepting,
great deluge algorithm, record-to-record travel, simulated annealing, and tabu
search. The seed solution used in these heuristics is obtained by generating a crit-
ical path schedule. The paper [EH96] compares the performance of the heuristic
strategies for different network topologies.

To obtain a model that takes the network structure more accurately into ac-
count, Ecker and Hirschberg [EH93] introduced a formal description of net-
works. It was shown that hypergraphs are a useful tool to model the structural
and behavioral properties of networks that are needed for optimal organization of
communication in networks. The approach is very general in the sense that it can
be applied to different kinds of networks under various assumptions about the
transmission capabilities of links. Essentially the communication hypergraph
informs about maximal sets of simultaneous communication in the network. In
[EH93] this approach was used to develop scheduling strategies for "pure" com-
munication problems, i.e. problems where each task merely has to transmit data
of a certain amount from one processor to another. Several approximation algo-

228 6 Communication Delays and Multiprocessor Tasks

rithms for this problem have been defined, and their performances have been
compared against each other. Notice that such problems occur in different areas.
In synchronized multiprocessor systems, for example, processes are usually or-
ganized in alternating phases of computation and communication [BT89]. Here
the hypergraph approach can be applied to optimize the communication phase.

6.4 Scheduling Divisible Tasks

In this section we will consider the problem of scheduling divisible tasks. The
study of divisible load theory started from the consideration of intelligent sensor
networks by Cheng and Robertazzi [CR88]. An intelligent sensor is a single pro-
cessor based unit which can make measurements, compute and communicate
with other intelligent sensors. Later this intelligent sensor network application
was replaced by the application of load sharing in a multiprocessor environment.
The main problem in this research is to determine the optimal fraction of the
workload to assign to each processor. That is, when a network receives a burst of
data to process, one must decide what portion of the entire workload should be
kept by the distributing processor and what portion of the entire workload should
be distributed to each processor in order to minimize the total processing time.

In [CR88], recursive expressions for calculating the optimal load allocation
for linear daisy chains of processors were presented. This is based on the as-
sumption that for an optimal allocation of load, all processors must stop pro-
cessing at the same time. Intuitively, this is because otherwise some processors
would be idle while others were still busy. Analogous solutions were developed
for tree networks [CR90] and bus networks [BR91]. In [Rob93], the concept of
an equivalent processor that behaves identically to a collection of processors in
the context of a linear daisy chain of processors and a proof that, for such a net-
work structure, the optimal solution involves all processors stopping at the same
time were introduced. An analytic proof for bus networks that for a minimal so-
lution time all processors must finish computing at the same time was shown in
[SR96, BGM92].

In [SR94], a more sophisticated load sharing strategy was proposed for bus
networks that exploit the special structure of divisible load theory to yield a
smaller solution time when a series of tasks are submitted to the network. In
[SR95], a deterministic analysis is provided for the case when the processor
speed and the channel speed are time-varying due to the background tasks sub-
mitted to a distributed system. A stochastic analysis which makes use of Markov-
ian queuing theory was also introduced for the case when the arrival and depar-
ture times of the background tasks are not known. The equivalence of first dis-
tributing load either to left or to the right form a point in the interior of a linear
daisy chain is demonstrated in [GM94]. Optimal sequences of load distribution
in tree networks are described in [BGM94, KJL95]. In [BD95], a deterministic

 6.4 Scheduling Divisible Tasks 229

approach to find an optimal distribution of the load on a hypercube of processors
was proposed. Simple formulae were found to determine the distribution of the
task's load and the equivalent speed of the whole network of processors for two-
dimensional mesh architecture in [BD96]. A uniform methodology was presented
in [BD97] to achieve minimum completion time for a wide range of interconnec-
tion architectures, assuming that the communication time is equal to some start-
up value plus some amount proportional to the value of transferred data. An ex-
ample of optimal load allocation in a real time system appeared in [Had94]. Fi-
nally, in [BDGT99] a new broadcasting scheme to distribute parts of the task to
processors in a minimum time [PS96] was analyzed in the context of divisible
task processing.

We will illustrate the technique used in the analysis of divisible task pro-
cessing by an example of a hypercube communication network [BD95]. The goal
of the analysis is to find bounds for the performance of the above network ex-
pressed as:
� processing time of a task (processed by the whole network),
� processing speed of the whole network,
� speedup,
� processor utilization.

Problem P, cube | div, cubej | Cmax

A computer system to be considered consists of a set of identical processing ele-
ments (PE's): processors with local memories connected by a network of com-
munication links. The architecture of the interconnection network is assumed to
be a hypercube (see Figure 6.4.1), i.e. each processor is a node of a multidimen-
sional cube. For the hypercube of dimension d there are 2d processors in the sys-
tem. Each of the processors has direct links to d neighbors. The label of a proces-
sor is a binary number from the interval [0, 2d � 1]. Note, that each of the proces-
sor's neighbors has a label differing on exactly one position.

At time 0 a task arrives at processor P0. Some part (0 of the total load is pro-
cessed by processor P0, the rest of the load (1 � (0) is transmitted in equal parts to
its d neighbors for processing. Immediate neighbors of processor P0 take some
part (1 of the total load and retransmit the rest to the still idle neighbors. This
process is continued until the last idle processor in the hypercube is reached. We
assume that the processing time of the task on a standard processor is p, while on
processor with a different speed it is wp where w is proportional to the reciprocal
of the processor's speed. On the other hand, the transmission time of the whole
task's data is t for a standard data link, while for a link with different capabilities
it is zt where z is the reciprocal of the link bandwidth. We assume two things
about the processing element: it must receive its entire load before transmitting

230 6 Communication Delays and Multiprocessor Tasks

the proper part to the neighbors and it is capable of simultaneous transmitting
and computing.

P000 P001

P101P100

P011

P111P110

P010

d = 3

Figure 6.4.1 A hypercube architecture.

When processor P0 receives a burst of data to process (cf. Figure 6.4.2), it takes
(0 of it for local processing; (1 � (0) of the load is transmitted to d neighbors.
Since processor P0 has no 1 in its address, its neighbors have exactly one 1 in
their addresses. The part (1 � (0) transmitted from processor P0 is fairly divided
among all d neighbors. Then, each of the processors with only one 1 in the ad-
dress takes (1 of the whole load for local processing from the part it receives
from processor P0. The rest is transmitted, in equal shares, to its d � 1 idle neigh-
bors. Processors with one 1 in the address have d � 1 idle neighbors with exactly
two 1’s in the address. Note, that processors with one 1 in the address can be
reached from the originator of the load via only one link, while processors with
two 1’s can be accessed via two links. The process of data dissemination is re-
peated until the last processing element with address 11...1 is reached via d
links. Let us call by layer i a set of all processors reached in the same number i of
hops, starting from layer 0 consisting of the originator only (processor P0). The
last layer d consists of a single processor. Note, that data transmission does not
cause contention in use of any communication link because each link is used only
once and each communication path is one link long. As we already mentioned
the computations must finish on all exploited processors at the same time. The
following lemma describes useful topological properties of a hypercube.

Lemma 6.4.1 [BD95]. In each layer i of a d-dimensional hypercube there are
(d

i) processing elements each of which can be accessed through i communication
links and is capable of transmitting to d � i still idle processors.

 6.4 Scheduling Divisible Tasks 231

0

1

d�1

d

la
ye

rs
 o

f p
ro

ce
ss

or
s

communication

computation

computation

communication

communication

computation

computation

time

(� wpd

(� wpd�1

(� wp1

(� wp0

{(1�()/d}zt0

{(1�(�d()/(d�1)}0 1

0
Figure 6.4.2 Process of computation and data transfer

Let us consider now layer i and denote by Voli the amount of data received by a
processor in this layer, and by (̂i the part of the received load that is intercepted
for local processing by this processor. We see that

(i = (̂i Voli .

The processor in layer i works the same amount of time as it takes to transmit
data to d � i processors in layer i + 1 and to computer in layer i + 1 (cf. Figure
6.4.2). What is more, processors in layer i + 1 receive data to process from i + 1
links. Thus,

(̂iVoliwp =
(1 � (̂i)Voli((i + 1)wi+1p + zt)

d � i for i = 0,..., d � 1, (6.4.1)

where wi+1 is equivalent to a reciprocal of the speed for all processors in layers
i + 1,..., d which receive some part of the load from the considered processor in
layer i. Hence , (̂i is equal to

(̂i =
1

1 +
(d � 1)wp

(i + 1)wi+1p + zt

 for i = 0,..., d � 1 , (6.4.2)

The value of wi can be calculated according to the expression:

wi =
(̂iVoli wp

Voli p = (̂iw

232 6 Communication Delays and Multiprocessor Tasks

For i = 0 equation (6.4.1) has the following form

(̂0wp =
(1 � (̂0)(w1p + zt)

d ,

hence,

Vol0 = (0 = (̂0 =
1

1 +
dwp

 w1p + zt
 . (6.4.3)

Equations (6.4.2) and (6.4.3) form a set of expressions which can be solved for
(̂i , recursively starting from i = d � 1 (for which we know that (̂d = 1, wd = w)
until i = 1. Then, the portions (i of the whole load can be calculated. Thus, the
originator processes locally (0 of the whole load and sends to each of its d neigh-
bors a share of load equal to (1 � (0)/d. Each of processors in layer i (i = 1,..., d)

receives through i links a share of load equal to
(1 � (̂i�1)Voli�1

d � i + 1 , thus totally

i(1 � (̂i�1)Voli�1
d � i + 1 , from which (i =

i(1 � (̂i�1)Voli�1 (̂i
d � i + 1 is intercepted for local pro-

cessing.
Now, one can calculate an equivalent reciprocal of the speed for the whole

hypercube of processors:

weq =
(0wp

p = (0w .

Then, the speedup S, measured as a ratio of the sequential computation time, i.e.
on the sole originator, to the working time of the originator embedded in the hy-
percube, and the average processor utilization of (U) can be found:

S =
wp

(0wp =
1
(0

 = 1 +
dwp

w1p + zt ,

U =
S
2d =

1
2d(0

 ,

where w1 is calculated according to the above recursive procedure.
From the above formulae one can derive several qualitative conclusions. The

speedup depends on the dimension d of the hypercube but depends also on the
w1, which would have to decrease at least linearly in order to preserve linear
speedup. The average utilization of the processors has 2d in the denominator;
then again, to preserve linear speedup and utilization close to 1, (0 must decrease
very fast.

Using the above formulae one can analyze a performance of the hypercube
depending on such parameters as dimension of the hypercube (d), reciprocal of

 6.4 Scheduling Divisible Tasks 233

the communication speed (z), reciprocal of the processing speed (w) and size of
the computing task (p) [BD95].

� � @ A B C D E F G ��

ex
ec

ut
io

n
tim

e

w H���

w H��

w H��'�

0.01

0.1

1

10

100

(d)
Figure 6.4.3 Execution time vs. processor speed and dimension

As the first performance parameter we will analyze an execution time of the task
and its dependence on w, z, p, and d. The execution time of the task decreases
with the dimension of the hypercube. However, for faster processors (w = 0.1)
this reduction is relatively smaller than for slow processors (w = 10) where exe-
cution time can be reduced by two orders of magnitude (cf. Figure 6.4.3). Con-
clusion is that gain from parallel processing on slow processors is higher than on
fast processors. In Figure 6.4.4 we see that fast communication network (z = 0.1)
is more reasonable than the slow one (z = 10). In this picture a curve for z = 0 is
also included which is a case of the ideal network (without transportation de-
lays). Finally, Figure 6.4.5 demonstrates relative processing time as a function of
p and d .The relative execution time is equal to the quotient of the actual pro-
cessing time and processing time on the processor of the same speed. We see that
the gain from parallel processing is bigger for long tasks (p = 10).

234 6 Communication Delays and Multiprocessor Tasks

� � @ A B C D E F G ��

ex
ec

ut
io

n
tim

e
z = 1

z = 10

z = 0

0

0.2

0.4

0.6

0.8
z = 0.1

1.0

(d)
Figure 6.4.4 Execution time vs. communication speed and dimension.

� � @ A B C D E F G ��

re
la

tiv
e

ex
ec

ut
io

n
tim

e

p = 1

p = 10

p = 0.1

0

0.2

0.4

0.6

0.8

1.0

(d)
Figure 6.4.5 Execution time vs. size of the computing task p and dimension.

 6.4 Scheduling Divisible Tasks 235

� @ B F �D A@ DB �@F @CD C�@ ��@B

sp
ee

du
p

z = 1

z = 10

z = 0.1

0.1

1

10

100

1000

10E4

z = 0

(number of processors)

Figure 6.4.6 Speedup for different z vs. number of processors.

re
la

tiv
e

ex
ec

ut
io

n
tim

e

z = 1

z = 10

z = 0.1

0

0.2

0.4

0.6

0.8

1.0

� � @ A B C D E F G �� (d)
Figure 6.4.7 Utilization of processors for different z vs. dimension.

Next we analyze the impact of network parameters on the speedup (cf. Figure
6.4.6) and the utilization of processors (cf. Figure 6.4.7). In both figures curves
are presented for different values of z, including z = 0. The network with z = 0
represents an ideal network. As can be seen, the linear speedup can be achieved
when the communication medium is perfect. In more realistic cases (z > 0) the
speedup curve levels off very fast, especially for slow networks (z = 10). The
utilization of processors decreases with the size of the network. Only for the per-

236 6 Communication Delays and Multiprocessor Tasks

fect communication network, utilization equal to 1 can be achieved. On the other
hand, when we compare this result with Figure 6.4.4, the tendency to preserve
linear speedup by significantly improving of the network speed, may not be justi-
fied in practice.

To sum up one may say that the faster are the processors and the communi-
cation links, the more efficient is the hypercube. On the other hand, the gain from
parallel processing is more significant on slower (cheaper) processors than on
fast processors. Finally, as we demonstrated the linear speedup in the hypercube
can be obtained only in a perfect network with no communication delays at all.

References

AHC90 F. D. Anger, J. Hwang, Y. Chow, Scheduling with sufficiently loosely coupled
processors, J. Parallel Distrib. Comput. 9, 87-92, 1990.

AHU74 A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

Avi78 A. Avizienis, Fault tolerance: the survival attribute of digital systems, Proceed-
ings of the IEEE 66, 1978, 1109-1125.

AZ90 M. Ahuja, Y. Zhu, An O(log n) feasibility algorithm for preemptive scheduling
of n independent jobs on a hypercube, Inf. Process. Lett. 35, 1990, 7-11.

BBDO94 L. Bianco, J. Błażewicz, M. Drozdowski, P. Dell'Olmo, Scheduling preemptive
multiprocessor tasks on dedicated processors, Perform. Eval. 20, 1994,
361-371.

BBDO95 L. Bianco, J. Błażewicz, M. Drozdowski, P. Dell'Olmo, Scheduling multipro-
cessor tasks on a dynamic configuration of dedicated processors, Ann. Oper.
Res. 58, 1995, 493-517

BBDO97a L. Bianco, J. Błażewicz, M. Drozdowski, P. Dell'Olmo, Linear algorithms for
preemptive scheduling of multiprocessor tasks subject to minimal lateness,
Discret Appl. Math. 72, 1997, 25-46.

BBDO97b L. Bianco, J. Błażewicz, M. Drozdowski, P. Dell'Olmo, Preemptive multipro-
cessor task scheduling with release times and time windows, Ann. Oper.
Res.70, 1997, 43-55.

BBGT96 J. Błażewicz, P. Bouvry, F. Guinand, D. Trystram, Scheduling complete intrees
on two uniform processors with communication delays, Inf. Process. Lett. 58,
1996, 255-263.

BD95 J. Błażewicz, M. Drozdowski, Scheduling jobs on hypercubes, Parallel Com-
put. 21, 1995, 1946-1956.

BD96 J. Błażewicz, M. Drozdowski, The performance limits of a two dimensional
network of load-sharing processors, Foundations of Computing and Decision
Sciences 21, 1996, 3-15.

BD97 J. Błażewicz, M. Drozdowski, Distributed processing of divisible jobs with
communication startup costs, Discret Appl. Math. 76, 1997, 21-41.

 References 237

BDGT99 J. Błażewicz, M. Drozdowski, F. Guinand, D. Trystram, Scheduling under
architectural constraints, Discret Appl. Math. 94, 1999, 35-50.

BDOS92 J. Błażewicz, M. Drozdowski, P. Dell'Olmo, M. G. Speranza, Scheduling mul-
tiprocessor tasks on three dedicated processors, Inf. Process. Lett. 41, 1992,
275-280. (Corrigendum: Inf. Process. Lett. 49, 1994, 269-270).

BDSW90 J. Błażewicz, M. Drozdowski, G. Schmidt, D. de Werra, Scheduling independ-
ent two processor tasks on a uniform duo-processor system, Discret Appl.
Math. 28, 1990, 11-20.

BDSW94 J. Błażewicz, M. Drozdowski, G. Schmidt, D.de Werra, Scheduling independ-
ent multiprocessor tasks on a uniform k-processor system, Parallel Comput.
20, 1994, 15-28.

BDW84 J. Błażewicz, M. Drabowski, J. Weglarz, Scheduling independent 2-processor
tasks to minimize schedule length, Inf. Process. Lett. 18, 1984, 267-273.

BDW86 J. Błażewicz, M. Drabowski, J. Weglarz, Scheduling multiprocessor tasks to
minimize schedule length, IEEE Trans. Comput. C-35, 1986, 389-393.

BDWW96 J. Błażewicz, M. Drozdowski, D. de Werra, J. Weglarz, Deadline scheduling
of multiprocessor tasks, Discret Appl. Math. 65, 1996, 81-96.

BE83 J. Błażewicz, K. Ecker, A linear time algorithm for restricted bin packing and
scheduling problems, Oper. Res. Lett. 2, 1983, 80-83.

BEPT00 J. Błażewicz, K. Ecker, B. Plateau, D. Trystram, Handbook on Parallel and
Distributed Processing, Springer, Berlin-New York, 2000.

Ben64 V. E. Benes, Permutation groups, complexes, and rearrangeable connecting
networks, Bell Labs Tech. J. 43, 1964, 1619-1640.

BGK96 E. Bampis, A. Giannokos, J.-C. König, On the complexity of scheduling with
large communication delays, Eur. J. Oper. Res. 94, 1996, 252-260.

BGM92 V. Bharadwaj, D. Ghose, V. Mani, A study of optimality conditions for load
distribution in tree networks with communication delays, Technical report
423/GI/02-92, Department of Aerospace Engineering, Indian Institute of Sci-
ence, Bangalore, 1992.

BGM94 V. Bharadwaj, D. Ghose, V. Mani, Optimal sequencing and arrangement in
distributed single-level tree networks with communication delays, IEEE Trans.
Parallel Distrib. Syst. 5, 1994, 968-976.

BKM+04 J. Błażewicz, M. Kovalyov, M. Machowiak, D. Trystram, J. Weglarz, Schedul-
ing malleable tasks on parallel processors to minimize the makespan, Ann.
Oper. Res. 129, 2004, 65-80.

BKM+06 J. Błażewicz, M. Kovalyov, M. Machowiak, D. Trystram, J. Weglarz,
Preemptable malleable task scheduling problem, IEEE Trans. Comput. 55,
2006, 486-490.

BL96 J. Błażewicz, Z. Liu, Scheduling multiprocessor tasks with chain constraints,
Eur. J. Oper. Res. 94, 1996, 231-241.

238 6 Communication Delays and Multiprocessor Tasks

BLRK83 J. Błażewicz, J. K. Lenstra, A. H. G. Rinnooy Kan, Scheduling subject to re-
source constraints : classification and complexity, Discret Appl. Math. 5, 1983,
11-24

Bok81 S. H. Bokhari, On the mapping problem, IEEE Trans. Comput. C-30, 1981,
207-214.

BOS91 L. Bianco, P. Dell'Olmo, M. G. Speranza, Nonpreemptive scheduling of inde-
pendent tasks with dedicated resources, Report, IASI, Roma, 1991

BR91 S. Bataineh, T. G. Robertazzi, Bus oriented load sharing for a network of sen-
sor driven processors, IEEE Trans. Syst. Man. Cybern. 21, 1991, 1202-1205.

Bru46 N. G. de Bruijn, A combinatorial problem, Proceedings of the Section of Sci-
ences of the Koninklijke Nederlandse Akademie van Wetenschappen te Am-
sterdam 49, 1946, 758-764.

Bru95 P. Brucker, Scheduling Algorithms, Springer, Berlin, 1995.

BT89 D. Bertsekas, J. Tsitsiklis, Parallel and Distributed Computation, Prentice-
Hall, Englewood Cliffs, N.J., 1989.

CC89 Y. L. Chen, Y. H. Chin, Scheduling unit-time jobs on processors with different
capabilities, Comput. Oper. Res. 16, 1989, 409-417.

CC91 I. Y. Colin, P. Chretienne, C.P.M. scheduling with small communication de-
lays and task duplication, Oper. Res. 39, 1991, 680-684.

CGJP85 E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, A. S. La Paugh, Scheduling
file transfers, SIAM J. Comput. 14, 1985, 744-780.

Chr89a P. Chretienne, A polynomial algorithm to optimally schedule tasks over a vir-
tual distributed system under tree-like precedence constraints, Eur. J. Oper.
Res. 43, 1989, 225-230.

Chr89b P. Chretienne, Task scheduling over distributed memory machines, in:
M. Cosnard, Y. Robert, P. Quinton, M. Raynal (eds.), Parallel and Distributed
Algorithms, North-Holland, Amsterdam, 1989, 165-176.

Chr94 P. Chretienne, Tree scheduling with communication delays, Discret Appl.
Math. 49, 1994, 129-141.

CL88a G. I. Chen, T. H. Lai, Preemptive scheduling of independent jobs on a hyper-
cube, Inf. Process. Lett. 28, 1988, 201-206.

CL88b R. S. Chang, R. C. T. Lee, On a scheduling problem where a job can be exe-
cuted only by a limited number of processors, Comput. Oper. Res. 15, 1988,
471-478

CP91 P. Chretienne, C. Picouleau, The basic scheduling problem with interprocessor
communication delays, MASI Report 91/6, Institut Blaise Pascal, Paris, 1991.

CR88 Y. C. Cheng, T. G. Robertazzi, Distributed computation with communication
delays, IEEE Trans. Aerospace Electron. Syst. 24, 1988, 511-516

CR90 Y. C. Cheng, T. G. Robertazzi, Distributed computation with communication
delays, IEEE Trans. Aerosp. Electron. Syst. 26, 1990, 511-516.

 References 239

DD81 M. Dal Cin, E. Dilger, On the diagnostability of self-testing multimicroproces-
sor systems, Microprocess. Microprogr. 7, 1981, 177-184.

DK99 M. Drozdowski, W. Kubiak, Scheduling parallel tasks with sequential heads
and tails, Ann. Oper. Res. 90, 1999, 211-246.

DL89 J. Du, J. Y-T. Leung, Complexity of scheduling parallel tasks systems, SIAM
Discret. Math. 2, 1989, 473-487.

Dro96a M. Drozdowski, Selected Problems of Scheduling Tasks in Multiprocessor
Computer Systems, Poznan' University of Technology Press, Poznan' , 1996.

Dro96b M. Drozdowski, Real-time scheduling of linear speedup parallel tasks, Inf.
Process. Lett. 57, 1996, 35-40.

EH93 K. H. Ecker, R. Hirschberg, Scheduling communication demands in networks,
The IEEE Proceedings of the Workshop on Parallel and Distributed Real-Time
Systems, Newport Beach, California, April 13-15, 1993.

EH94 K. H. Ecker, D. Hammer, Integrated scheduling for CIM systems. Proceedings
of TIMS XXXII, Anchorage, 1994.

EH96 K. H. Ecker, H. Hodam, Heuristic algorithms for the task scheduling under
consideration of communication delays, Report, Technical University of
Clausthal,1996.

ERL90 H. El-Rewini, T. G. Lewis, Scheduling parallel program tasks onto arbitrary
target machines, J. Parallel Distrib. Comput. 9, 1990, 138-153.

GM94 D. Ghose, V. Mani, Distributed computation in a linear network : Closed-form
solutions and computational techniques, IEEE Trans. Aerosp. Electron. Syst.
30, 1994, 471-483.

Goe95 M. Goemans, An approximation algorithm for scheduling on three dedicated
processors, Discret Appl. Math. 61, 1995, 49-60.

Gok76 R. L. Goke, Banyan Networks for Partitioning Multiprocessor Systems, Ph.D.
thesis, University of Florida, Gainesville, 1976.

GT93 F. Guinand, D. Trystram, Optimal scheduling of UECT trees on two proces-
sors, Report, Universite Joseph Fourier, Grenoble, 1993.

GY92 A. Gerasoulis, T. Yang, On the granularity and clustering of directed acyclic
task graphs, Report TR-153, Department of Computer Science, Rutgers Uni-
versity, 1992.

Had94 E. Haddad, Communication protocol for optimal redistribution of divisible
load in distributed real-time systems, Proceedings of the ISMM International
Conference on Intelligent Information Management Systems, Washington,
1994, 39-42.

HCAL89 J.-J. Hwang, Y.-C. Chow, F. D. Anger, C.-Y. Lee, Scheduling precedence
graphs in systems with interprocessor communication times, SIAM J. Comput.
18, 1989, 244-257.

HLV94 J. A. Hoogeveen, J. K. Lenstra, B. Veltman, Three, four, five, six or the com-
plexity of scheduling with communication delays, Oper. Res. Lett. 16, 1994,
129-136.

240 6 Communication Delays and Multiprocessor Tasks

Hoe89 C. P. M. van Hoesel, Preemptive scheduling on a hypercube, Report 8963/A,
Econometric Institute, Erasmus University, Rotterdam, 1989.

HVV94 J. A. Hoogeveen, S. L. van de Velde, B. Veltman, Complexity of scheduling
multiprocessor tasks with prespecified processor allocation, Discret Appl.
Math. 55, 1994, 259-272.

JM84 D. S. Johnson, C. L. Monma, A scheduling problem with simultaneous ma-
chine requirement, Proceedings of TIMS XXVI, Copenhagen, 1984.

JR92 A. Jakoby, R. Reischuk, The complexity of scheduling problems with commu-
nication delays for trees, Proceedings of Scandinavian Workshop on Algorith-
mic Theory 3, 1992, 165-177.

KJL95 H. J. Kim, G. I. Jee, J. G. Lee, Optimal load distribution for tree network pro-
cessors, IEEE Trans. Aerosp. Electron. Syst. 32, 1996, 607-612.

KK85 H. Krawczyk, M. Kubale, An approximation algorithm for diagnostic test
scheduling in multicomputer systems, IEEE Trans. Comput. C-34, 1985,
869-872.

KL88 G. A. P. Kindervater, J. K. Lenstra, Parallel computing in combinatorial opti-
mization, Ann. Oper. Res. 14, 1988, 245-289.

KS86 C. P. Kruskal, M. Snir, A unified theory of interconnection network structure,
Preprint, 1986.

Kub87 M. Kubale, The complexity of scheduling independent two-processor tasks on
dedicated processors, Inf. Proc. Lett. 24, 1987, 141-147.

Kub90 M. Kubale, Preemptive scheduling of two-processor tasks on dedicated proces-
sors, Zeszyty Naukowe Politechniki S' laskiej, Automatyka 100, 1990, 145-153
(in Polish).

Len04 J. Y-T. Leung (ed.), Handbook of Scheduling. Algorithms, Models and Per-
formance Analysis, Chapman & Hall/CRC, Boca Raton, 2004.

Llo81 E. L. Lloyd, Concurrent task systems, Oper. Res. 29, 1981, 189-201.

LS77 S. Lam, R. Sethi, Worst case analysis of two scheduling algorithms, SIAM J.
Comput. 6, 1977, 518-536.

LVV96 J. K. Lenstra, M. Veldhorst, B. Veltman, The complexity of scheduling trees
with communication delays, J. Algorithms 20, 1996, 157-173.

Moh89 R. H. Möhring, Computationally tractable classes of ordered sets, in: I. Rival
(ed.), Algorithms and Order, Kluwer, Dordrecht, 1989, 105-193.

OST93 P. Dell'Olmo, M. G. Speranza, Z. S. Tuza, Easy and hard cases of a scheduling
problem on 3 dedicated processor, Report, IASI, Rome, 1995.

Pic91 C. Picouleau, Two new NP-complete scheduling problems with communica-
tion delays and unlimited number of processors. Report RP91/24, MASI, Insti-
tut Blaise Pascal, Universite Paris VI, 1991.

Pic92 C. Picouleau, Etude de problèmes d´optimization dans les systèmes distributés,
Ph.D. thesis, Université Paris VI, 1992.

 References 241

PS96 J. G. Peters, M. Syska, Circuit-switched broadcasting in torus networks, IEEE
Trans. Parallel Distrib. Syst. 7, 1996, 246-255.

PV81 F. P. Preparata, J. Vuillemin, The cube-connected cycles: A versatile network
for parallel computation, Commun. ACM 24, 1981, 300-309.

PY90 C. H. Papadimitriou, M. Yannakakis, Towards an architecture-independent
analysis of parallel algorithms, SIAM J. Comput. 19, 1990, 322-328.

Rob93 T. G. Robertazzi, Processor equivalence for a linear daisy chain of load sharing
processors, IEEE Trans. Aerosp. Electron. Syst. 29, 1993, 1216-1221.

Ray87a V. J. Rayward-Smith, UET scheduling with unit interprocessor communication
delays, Discret Appl. Math. 18, 1987, 55-71.

Ray87b V. J. Rayward-Smith, The complexity of preemptive scheduling given inter-
processor communication delays, Inf. Process. Lett. 25, 1987, 123-125.

SH89 T. H. Szymansky, V. C. Hamacher, On the universality of multipath multistage
interconnection networks, J. Parallel Distrib. Comput. 7, 1989, 541-569.

SR91 X. Shen, E. M. Reingold, Scheduling on a hypercube, Inf. Process. Lett. 40,
1991, 323-328.

SR94 J. Sohn, T. G. Robertazzi, A multi-job load sharing strategy for divisible jobs
on bus networks, Technical report 697, SUNY at Stony Brook College of En-
gineering and Applied Sciences, 1994.

SR95 S. Sohn, T. G. Robertazzi, An optimal load sharing strategy for divisible jobs
with time-varying processor speed and channel speed, Proceedings of the ISCA
International Conference on Parallel and Distributed Computing Systems,
Orlando, 1995, 27-32.

SR96 J. Sohn, T. G. Robertazzi, Optimal divisible job load sharing for bus networks,
IEEE Trans. Aerosp. Electron. Syst. 32, 1996.

SRL95 J. Sohn, T. G. Robertazzi, S. Luryi, Optimizing computing costs using divisible
load analysis, Report CEAS 719, University at Stony Brook, 1995.

Sto71 H. S. Stone, Parallel processing with the perfect shuffle, IEEE Trans. Comput.
C-20, 1971, 153-161.

Vel93 B. Veltman, Multiprocessor Scheduling with Communication Delays, Ph.D.
thesis, CWI-Amsterdam, 1993.

VRK92 T. A. Varvarigou, V. P. Roychowdhury, T. Kailath, unpublished manuscript,
1992.

VWHS95 J. P. C. Verhoosel, L. R. Welch, E. Liut, D. K. Hammer, A. D. Stoyenko,
A model for scheduling of object-based, distributed real-time systems, Real-
Time Syst. 8, 1995, 5-34.

7 Scheduling in Hard Real-Time
Systems

In Chapters 4 and 5 we analyzed scheduling problems in which the task perfor-
mance is subject to temporal restrictions such as release times or deadlines. The
present chapter deals with a similar problem, but where the tasks are to be pro-
cessed repeatedly, and each execution is restricted by release times and dead-
lines. The release times are regularly distributed over time with equal distances
called the task period. Such tasks are called periodic. The deadline is usually as-
sumed to coincide with the release time of the next period. In many applications
such as real-time systems we find problems where sets of periodic tasks are to be
processed on a single processor or on a distributed or parallel processor system.

The area of real-time systems is a field of applications that differs consider-
ably from the type of applications we have seen so far. A real-time system can
roughly be described as a computing system designed for controlling some tech-
nical facility. Before we deal with the scheduling problem in such systems, we
start with a short introduction to real-time systems, what we understand by them,
present some applications and discuss characteristic properties and general func-
tional requirements of such systems.

Section 7.1 introduces the main characteristics of real-time systems, presents
some application examples, and discusses the functional requirements for real-
time systems. A coarse idea of structuring a real-time system and about the na-
ture of the tasks is given in Section 7.2. Section 7.3 deals with the scheduling of
periodic tasks on a single processor. The rate monotonic and earliest deadline
first strategies are analyzed from both, properties and performance points of
view. The generalization to multiprocessor systems is discussed in Section 7.4.
In Section 7.5 we review shortly runtime problems caused by blockings due to
the use of non-preemptable (non-withdrawable) resources. We are not able to
present the details of synchronization protocols, but just touch the subject, and
discuss how blocking delays can be handled. Finally, in Section 7.6 we introduce
several variants of the periodic task model that are considered in literature in or-
der to gain higher flexibility as compared to the simple periodic task model.

7.1 Introduction

This chapter gives an overview on the peculiarities of real-time systems. An area
like real-time systems is in fact the merging point of many disciplines, ranging
form hardware and operating systems, to requirement analysis and design meth-

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_ 7

243

https://doi.org/10.1007/978-3-319-99849-7_7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_7&domain=pdf

244 7 Scheduling in Hard Real-Time Systems

odologies. Its many facets cannot be presented in the required detail, but our aim
is to give an overview including the definition and general characterization.

7.1.1 What is a Real-Time System?

The role played by real-time systems today is increasing with a surprising speed,
since our everyday life becomes more and more dependent on them. Real-time
systems are used to control industrial, medical, scientific, consumer, environ-
mental and other processes. They operate in close connection with technical sys-
tems called "environment" or "external system" (viz. Figure 7.1.1), such as pro-
duction facilities, power plants, and as well in embedded system applications.
The purpose of the real-time system (also called "internal system", in contrast to
the external system) is to enforce some specific behavior of the environment.
This is maintained by proper reactions within strict time limits in case the status
of the environment deviates from the required specification. Depending on the
nature of the applications, the internal system has many processes that are exe-
cuted repeatedly. Examples are the periodic measurement by instruments that
inform about the status of the controlled system, the evaluation of the measured
data, the computation of new data derived from the latter for e.g. monitoring
purposes and long term storage, and the generation of signals for controlling the
environment by adjusting the actuators appropriately, to ensure the required or
expected functioning of the environment.

Real-Time

System
Environment

control

data

sensed

data

"internal"

"external"
Figure 7.1.1 Communication between a controlled environment and a real-

time system.

There are several attempts to define real-time systems. In our opinion, the fol-
lowing definition given by [KKZ88] comprises the characteristics of a real-time
system most closely:

"A real-time system is defined as an interaction system that main-
tains an ongoing relationship with an asynchronous environment, i.e.
an environment that progresses irrespectively of the real-time system
in an uncooperative manner. The real-time system is fully responsi-

 7.1 Introduction 245

ble for the proper synchronization of its operation with respect to its
environment."

Closely related, or often even synonymously used, is the notion of an embedded
system. The computer is interfaced directly to the physical equipment of the en-
vironment. There is no exact definition available, but real-time systems are most-
ly to be considered as being embedded in larger environments. From the way this
term is used we may deduct that embedded systems can be understood as work-
ing autonomously and pertaining the complete internal system, including the
sensors, actuators and alarms. Similar to embedded systems are mechatronic sys-
tems, which can be understood as mechanical systems like machines, enhanced
by closely attached control devices. In such systems, the functionality of a ma-
chine is directly dependent on the real-time control system. The machine is use-
less if the computer system does not work properly. Typical examples of embed-
ded and mechatronic system applications are industrial robots, NC-machines and
car engine control, besides many others (viz. [WS98]).

One of the main characteristic of a real-time system is a strong interaction
with its environment. Technical systems demand from their control systems sig-
nificant computation and control processing, and a guarantee of predictable, reli-
able and timely operations. The problems the designer of a real-time system has
to face are manifold:
- Technical processes as presented by an external system are usually very com-
plex.
- The corresponding real-time systems consist of a large number of mutually
dependent components.
- The notion of "system" is difficult to handle. Essential dependencies between
parts of the system have to be realized.
- Both, the external system and the real-time system have to be partitioned into
smaller components ("partial systems", "partial processes").
- Knowledge about partial systems is usually incomplete.

7.1.2 Examples of Real-Time Systems

To guide the reader towards a better understanding of the subject we give some
insight to specific real-time applications. There are fundamental differences be-
tween non-real-time applications and real-time applications. Looking, for exam-
ple, at the differences between a compiler and a chemical process control pro-
gram we see that a program compilation can be fast or slow, depending on the
speed of the machine, the used language, and the size of the program. The user
more or less tolerates compilation time. A chemical process control program, in
contrast, controls an external process. Therefore the program steps must be syn-
chronized with the external events of the process. A careless design can result in
the danger of damages in the environment, as can easily be imaged when think-
ing on heat control in a chemical reactor.

246 7 Scheduling in Hard Real-Time Systems

- An environment such as a chemical factory consists in general of many com-
ponents that need to be controlled. A simple example regarding just one compo-
nent of a larger system is the control of an even flow of liquid in a pipe by a
valve. The computation to calculate the new valve angle may be quite complex.
The computer interacts with the facility using sensors and actuators. Depending
on the criticality of the application, there are hard or soft real-time requirements.
- Mechatronics is an interdisciplinary cooperation of mechanical engineering,
electronic engineering, and software engineering. Classical mechanical systems,
enhanced by electronic components allow the creation of new products of greater
functionality and adaptability. Typically, electronic system monitors the status of
the mechanical system via sensors and computes actuator signals for enforcing
certain optimal performance. Examples of mechatronic systems are automated
household appliances such as CD players, microwaves, and dishwashers. Traffic
control, complex car control systems, transportation systems and computer aided
manufacturing systems belong as well to the wide spectrum of real-time applica-
tions.
- Manufacturing: The entire manufacturing process from product design to fab-
rication is controlled by a large real-time system, usually distributed over many
computing resources. Here the soft real-time character is emphasized.
- Communication, command and control: Wide range of disparate applications
exhibit similar characteristics. They include airline seat reservation, air traffic
control, remote bank accounting and many others. Devices and instruments for
gathering information that is required for decision making are often distributed
over a wide geographical area. Mostly, the real-time requirements are of soft
character, with due dates and cost functions depending on the particular applica-
tion

To summarize, we see that the real-time requirements in these applications
differ considerably. The correctness of a real-time system depends not only on
the logical result of the computation but also on the time at which the results are
produced. The timing requirements can range from msec to hours, days, ...,
even within the same application. Another important point regards the urgency of
control actions. In hard real-time control, the deadlines have to be observed, and
the responses must occur within specified deadlines. In soft real-time control, in
contrast, actions may by delayed up to a certain extent (due dates), or the re-
sponse times, though hard, may be occasionally missed.

7.1.3 Characteristics of Real-Time Systems

In real-time systems time is a central issue. The operating system is responsible
for the timeliness of operations. Therefore, not only the time behavior of pro-
grams has to be well understood, but also scheduling theory turns out to be a key
discipline. In this connection, issues such as real-time mode of computer opera-
tions, management of different types of processes, time-, event-, and priority-
based interrupts, synchronization primitives, concept of tasks as a parallel pro-

 7.1 Introduction 247

gram thread in a multiprogramming environment, task scheduling operations,
and timing of task executions are fundamental. On the other hand, processor uti-
lization is less relevant, because the cost of any processor involved in a failure of
an external process is negligible as compared to the cost of damages caused by
the failed process. This is true even in comparatively inexpensive environments

What is instead required is dependable and predictable fulfillment of the re-
quirements. If a computer cannot guarantee reaction times, it may be unable to
cope appropriately with exceptional and emergency situations arising in the envi-
ronment and may thus violate the latter's safety requirements. The dynamics of
the physical system under control impose timing constraints that must be met
and therefore dictate the temporal behavior to be achieved. Therefore, the assur-
ance of the (functional and temporal) correctness of a real-time system, mainly
for those embedded in safety-critical systems, must be possible.

There are environments with hard and with soft timing constraints. They are
distinguished by the consequences of violating the timeliness requirement: soft
real-time environments are characterized by costs rising with increasing lateness
of results. In hard real-time environments such lateness is not permitted under
any circumstances, because late computer reactions are either useless or danger-
ous. In other words, the cost for missing deadlines in hard real-time environ-
ments are - from the application's point of view - considered as infinitely high.
Hard time constraints have to be determined precisely, and typically result from
the physical laws governing the technical processes being controlled.

One can already see that general questions from different knowledge areas
arise in connection with the realization of a real-time system. The construction of
real-time systems includes the requirement analysis and specification, formal
methods and models, refinement, language design, compilers, operating systems
and scheduling, hardware aspects, etc.. Solving the real-time system implementa-
tion problem thus needs a synergetic exertion of experts in various knowledge
areas. Our objective here is to concentrate on the scheduling aspect in real-time
systems.

7.1.4 Functional Requirements for Real-Time Systems

Technical systems demand from their control systems significant computation
and control processing, and the guarantee of predictable, reliable and timely op-
eration. Design problems to meet these requirements are manifold:

Timeliness: There are two general kinds of requirements: In relative timing
constraints, actions may have to be performed within a given interval of time rel-
ative to the occurrence of an external or internal event. Absolute timing con-
straints specify the system behavior for globally given points in time.

Predictability: The controlling real-time system must nevertheless handle
each external event predictably within the associated time constraints. The reac-
tions to be carried out by the computer must therefore be precisely planned in
order to get a fully predictable behavior.

248 7 Scheduling in Hard Real-Time Systems

Dependability refers to the general requirement of trustworthiness. The sys-
tem has to produce the right control signals at the right time (correctness). Ro-
bustness refers to the requirement that the system remains in a predictable state,
even if the environment does not correspond to the specification, e.g., if inputs
are not within a given range. Another condition is permanent readiness, meaning
that the real-time system does not terminate (e.g. as a result of a failure), and tol-
erance against software or hardware faults.

7.2 Basic Notions

The design of real-time systems is an iterative process in which solution concepts
and their verification is modified until a hopefully satisfying final solution is ob-
tained. Unfortunately, there is no closed design theory available. First we give a
coarse idea about the structure of a real-time system and about the nature of the
tasks. Then we introduce a formal task model and discuss general scheduling is-
sues.

7.2.1 Structure of a Real-Time System

A coarse view of the activities that should be performed by the real-time system
is presented in Figure 7.2.1. A 5-stage structure distinguishes

sensor evaluate
& decide actuator

environment

human

actuator
element

sensor
element

Figure 7.2.1 Five stage structure of a real-time system.

� sensors, which are devices informing about the status of the environment,
� sensor elements, which consist of the software modules that perform some
pre-processing on the measured data,
� an evaluation and decision stage, where the validity of pre-processed data is
checked and put into relation with other data such as historical data, and re-
quirements for changes in the environment are computed. In larger systems a da-
tabase or knowledge base will be needed for performing the required functions,
� actuator elements, which convert the required changes into control data for
the actuators, and

 7.2 Basic Notions 249

� actuators, which are the final devices to change the behavior of the environ-
ment.
A real-time system has in general several threads of control. Several types of
threads (also called end-to-end paths [Ger95]) are distinguished. A periodic path
is executed repeatedly, once in a period of fixed length, and the completion of
one execution must not exceed a given deadline. A typical example is to read
sensor data and update the current state of internal variables and outputs. An
asynchronous or aperiodic path responds to internal or external events, but pre-
cise request times for the execution are not known in advance. Usually, the min-
imum amount of time between two consecutive requests and a deadline, by
which an execution must be completed, are available.

We adopt here a simplified model in which each path is represented by a
task whose runtime conditions are specified by a number of attributes such as a
period or the requirement of a repeated execution guided by a given maximal
time lag, with or without deadlines (hard) or due dates (soft).

In the next section we present a more formal view of the task system and its par-
ticular properties.

7.2.2 The Task Model

Suppose we are given a set of tasks, T = { T1 ,..., Tn }. There are no precedences
between the tasks, and each task is characterized by a set of parameters that are
assumed to be integers. The notion of real-time scheduling refers to the condition
that given deadlines is observed. As discussed in Chapter 3, every task Tj charac-
terized by the following data:
- Processing time (pj) is usually be assumed to be the worst case execution
time.
- Ready times or release times (rj) and deadlines (d ~j) may be specified for each
task.
- A periodic task Tj is characterized by a sequence of equally distant release
times defining its period + j . In each interval one instance of the task is started. A
periodic task can thus be characterized as a potentially infinite sequence of in-
stances, each with a release time and a deadline. The ready times are usually the
left interval boundaries. The simplest condition for the deadlines is to assume the
right interval boundaries.
- Aperiodic tasks: The execution of a task may be triggered by an aperiodic
event such as a hardware interrupt, or by another task in case of a particular
computation result. Interrupts can take place at random intervals and be devastat-
ing if the system does not anticipate and correctly handle them.
- A sporadic task is an aperiodic task that is repeatedly executed. Instead of a
period, it is characterized by a minimum time tj between releases.. The inverse of

250 7 Scheduling in Hard Real-Time Systems

tj is referred as the maximum arrival rate. This allows us to handle sporadic tasks
as periodic with a period being the inverse of the maximum arrival rate.
- Task offset or phase: The first period of task Tj starts with an offset offsetj
(usually offsetj = 0). The i

th instance of Tj has then the release time offsetj
 + (i�1)+j . If the deadline is at the end of the period it is given by offsetj + i+j .
- The importance of task Tj is expressed by a numerical weight (priority) wj . In
case of task contention, higher critical tasks must be processed prior to less criti-
cal tasks. We assume here that tasks are immediately preempted at the release of
a higher priority task.
- Tasks may require additional renewable resources R(Tj) besides processors
(cf. Chapter 13). Because of their possible impact on the runtime behavior, we
are here only interested in resources that are exclusively used and non-
preemptable, where a task will keep hold on an assigned resource until its com-
pletion, even if the task is preempted. Examples of such resources are communi-
cation channels, buffers, storage devices, etc. .

7.2.3 Schedules
1

Feasibility

As before a schedule must obey all the conditions specified in Section 3.1. There
are two ways to specify schedules. An explicit specification contains the com-
plete and detailed description of the schedule with all the timing parameters and
processors which the tasks are assigned to for execution. For the non-preemptive
tasks, it suffices to specify the start time and the processor, for example by a se-
quence of pairs (start times, a processor). Alternatively, one may specify a list of
pairs (task, start time) for each processor. In the preemptive case we need to de-
fine the start times and duration of all processing intervals. Explicit schedules are
used in pre-runtime or off-line scheduling. An implicit description is based on a
scheduling rule, according to which the tasks are sequenced. This can be done by
means of priorities where tasks of higher priority are given preference. When a
schedule is constructed implicitly we talk about on-line scheduling.

For solving the scheduling problem we may have to make assumptions
about the number and type of processors. If processors have local memory there
would be no need to provide all processors with all the code segments. As a con-
sequence, a processor will only be able to process those tasks whose code is
stored locally. The problems we are confronted with, are manifold:
� How many processors are required, and how should the code be distributed.
� Find a feasible and safe schedule, in which also communication delays be-
tween pairs of dependent tasks are taken into account.

1 An interesting historical overview on real-time scheduling can be found in [SAA04].

 7.2 Basic Notions 251

� Which strategy should the runtime system follow in order to ensure correct
behavior.

General strategies for scheduling periodic tasks

Based on the priorities a simple priority-driven scheduling rule can be defined by
preempting an executed task immediately if an instance of a higher priority task
is requested. Conversely, a lower priority task is never able to preempt a higher
priority task. Of course, preempting a task and continuing it later causes delays
due to the context switches, but for simplicity reasons we neglect the task switch-
ing times.

For a given task set with priorities, a schedule can easily be determined. A
priority assignment is called feasible if the schedule resulting from that assign-
ment is feasible. Priorities can be
- fixed (or static): each task has a user- or system-defined priority that remains
constant for the lifetime of the task. Let T = {T1 ,..., Tn} be a task set with re-
spective priorities w1 ,..., wn . W.l.o.g. we assume that the priority assignment is
injective, i.e., any two tasks have different priorities. The (uniquely defined) pri-
ority list is the sequence of tasks ordered decreasingly with the priorities.
- dynamic: depending on execution parameters such as upcoming deadlines or
other runtime conditions, the priorities vary at runtime.

We distinguish two versions of priority driven task executions, pre-runtime (off-
line) and runtime (on-line) scheduling.

Off-line versus on-line scheduling

We give a short discussion of the pros and cons of the off-line and on-line
scheduling paradigm.

In off-line scheduling the schedule for the periodic processes is computed
during and explicitly specified the system design. The time efficiency of the
scheduling algorithm is not a critical concern. In most cases off-line scheduling
would provide a better chance to satisfy all the timing and resource constraints.
Then, at runtime, the periodic processes are executed according to the previously
computed schedule. As a further advantage of the pre-runtime approach, it is rel-
atively easy to take into account additional constraints, such as arbitrary release
times, deadlines, and precedences.

In on-line scheduling decisions about which task is to be executed next are
made at runtime. Compared to the off-line scheduling paradigm, the scheduler
has more work to perform at runtime, in particular if processes contain critical
sections. Another drawback is that an on-line algorithm may fail to provide a
feasible solution though it could be solved with the pre-runtime approach. Addi-
tional application constraints are likely to conflict with the priorities that are as-

252 7 Scheduling in Hard Real-Time Systems

signed at runtime to the processes. As an advantage, on-line scheduling generally
allows more flexible reaction on unforeseen or exceptional situations than off-
line schedules.

7.3 Single Processor Scheduling

In this section we concentrate on problems of scheduling periodic tasks on a sin-
gle processor. The tasks are assumed to be preemptable, and additional resources
besides processors are not considered. Hence the question we are dealing with is:
Given a set of n periodic tasks T = {T1 ,..., Tn} with respective processing times
(worst case execution times) p1 ,..., pn and request periods +1 ,..., +n , is it possi-
ble to process the tasks preemptively on a single processor? To answer this ques-
tion it is important to realize that each task Ti utilizes the fraction ui := pi /+i of
time the processor uses for execution. The total processor utilization

W := 5
i=1

n
 pi /+i

represents hence the fraction of time needed for executing the whole set of tasks.
Obviously, if W > 1 the processor is over-utilized and no feasible schedule will
exist. Hence W ≤ 1 is a necessary condition for schedulability.

The schedule construction is guided by the special way how the priorities are
defined. Well-known examples of priority rules are the rate monotonic (RM)
priority assignment defined by wj := 1/+j . This is a fixed priority rule, easy to
implement, and easy to manage. The earliest deadline first (EDF) priority as-
signment is dynamic. In this section we discuss the properties of both rules.

As an introduction we first consider the special and particularly simple case
of harmonic task sets.

Harmonic task sets

Let T = {T1 ,..., Tn} be a set of periodic tasks, indexed in order of increasing pe-
riods: +1 � +2 � ... � +n . Then T is called harmonic if, for each i � {2 ,..., n}, +i
is an integer multiple of +j for all j < i. The following Theorem shows that a set
of harmonic task can easily be scheduled, as long as the total utilization does not
exceed 1.

Theorem 7.3.1 Any harmonic task set with total utility W = 5 pi /+i � 1 can be
feasibly scheduled by the rate monotonic priority rule.

 7.3 Single Processor Scheduling 253

Proof. By an inductive argument we show that a feasible schedule can directly be
constructed, and the arrangement of the task instances follows exactly the given
priority rule. All task offsets are set to 0.

Starting with T1 , its instances are initiated at the instants 0 , +1 , 2+1 ,... .
Since T1 has highest priority, the instances are not preempted.

The tasks Ti , i = 2 , 3 ,..., n , are scheduled in that order of increasing periods.
Suppose the tasks T2 ,..., Ti�1 have already been successfully scheduled.

For Ti , the instances are scheduled at earliest possible instants after the times
0 , +i , 2+i ,... . They are filled preemptively in the gaps between the instances of
the tasks T1 ,..., Ti�1 . For schedulability, consider the first period of Ti : The in-
terval [0 , + i] contains + 1/+i instances of T1 , +2/+i instances of T2 ,..., and +i�1/+i
instances of Ti�1 . Notice that these are all integers due to the harmonic assump-
tion. So the processor time consumed by the higher priority tasks during this in-
terval is (+i/+1)p1 + (+i/+2) + ... + (+i/+i�1)pi�1 , and the processor utilization dur-
ing [0, + i] is p1/+1 + p1/+2 + ... + pi�1/+i�1 < W. Obviously, because of W � 1,
there is enough room left for the first instance of Ti . It is easy to see that the
same situation appears in the following periods of Ti . It follows by induction
that, since 5 pi /+i � 1, all tasks can be feasibly scheduled.

7.3.1 Static Priority Scheduling

We now turn to sets of general periodic tasks. Our aim is to find an optimal pri-
ority rule in the sense that if some priority assignment is feasible then the priority
rule is feasible as well. The following example shows that the way how priorities
are chosen may have consequences regarding the schedulability of a given task
set.

Example 7.3.2 Given tasks T1 and T2 with respective periods and processing
times +1 = 10, worst case execution time p1 = 5, and +2 = 20, p2 = 6. The tasks
are schedulable if we choose pr1 < pr2 . If pr1 > pr2 then no schedule exists (see
Figure 7.3.1).

We first introduce some basic definitions. The start time of the first period, t, is
called the task offset. The offset of task Tj � T is denoted by offsetj . It is as-
sumed that 0 ≤ offsetj ≤ +j for j = 1 ,..., n. The response time of a request for a
task Tj is the time span between the request and the completion time of the re-
sponse to that request. A critical instant for Tj is an instant at which a request for
Tj has maximum response time. The critical zone is the time interval between a
critical instant and the completion of the response.

254 7 Scheduling in Hard Real-Time Systems

(a)
T1

T2

0 +2

+1 @+1

(b)

T1

T2

0 +2

+1 @+1overflow

Figure 7.3.1 Influence of priorities: (a) pr1 < pr2; (b) pr2 < pr1 .

T1

T2

critical
zone

offset2 = 0

+1=3

+2=5

T1

T2

offset2 = 1 6 critical
zone

T1

T2

offset2 = 2 12 critical
zone

Figure 7.3.2 Dependency of the critical instant on the offset of T2 .

The positions of the critical zones may depend on the task offsets. Consider as an
example two tasks, T1 and T2 with +1 = 3, p1 = 1, +2 = 5, p1 = 3, and assume pr1
 > pr2 , and offset1 = 0. The higher priority task T1 is scheduled at time instants
0 , 3 , 6, etc. There are three different offsets for T2 : 0 , 1 , 2 (offset2 = 3 is obvious-
ly equivalent to offset2 = 0). Figure 7.3.2 shows three schedules for the different
offsets of T2 . We see that the maximum response time (i.e., the length of a criti-

 7.3 Single Processor Scheduling 255

cal zone) of T2 is 5. In the case of offset2 = offset1 = 0 the time 0 is a critical in-
stant.

Lemma 7.3.3 Given tasks T1 and T2 with respective periods + 1 and + 2 . Let pr1
 > pr2 . Then the maximum response time of T2 is gained if offset1 = offset2 .

Proof. Assume first +1 < +2 . Consider a request of T2 between t1 and t1 + +2 (see
Figure 7.3.3). In this interval task T1 will occur at times t2 (� t1), t2 + +1 ,..., t2
 + k+1 � t1 + +2 . Unless T2 is completed before time t2 + +1 , T2 will experience
certain delays caused by preemptions of the higher priority task T1 . We see that
making t2 smaller will not decrease the completion time of T2 . Hence the delay
of T2 will be largest if t2 = t1 .

t2

t1

t2+2+�t2++� t2+k+� t2+(k+1)+�

t1++@
Figure 7.3.3 Requests of T2 during one period of T1 .

If +1 > +2 (and still pr1 > pr2) and a feasible schedule exists then the maximum
response time of T2 is p1 + p2 which is gained if offset1 = offset2 .

Theorem 7.3.4 (Critical Instant Theorem, Liu and Layland [LL73]) A critical
instant of any task occurs whenever the task is requested simultaneously with
requests of all higher priority tasks.

Proof. Let the set T = {T1 ,..., Tm} of tasks be indexed in order of decreasing
priority: pr1 � pr2 � ... � prm. The theorem follows if, for all j = 2 ,..., m, the
previous lemma is repeatedly applied for i = 1 ,..., j�1.

Corollary 7.3.5 Consider a schedule for T1 ,..., Tm .
(i) If the requests for all tasks at their critical instants are fulfilled before their
respective deadlines, then the schedule is feasible.
(ii) Assume offsetj = 0 for j = 1 ,..., n, and let + be the maximum period. Then the
schedule is feasible, iff all task instances between 0 and + can be completed be-
fore their respective deadlines.

The next lemma establishes the preparation for the proof that the rate monotonic
rule is optimal, in the sense that if a task set that can be scheduled by any priority
assignment can also be scheduled by the rate monotonic assignment.

Lemma 7.3.6 Let T = {T1 , T2} and +1 < +2 . If there exists a feasible schedule
with pr2 > pr1 , then there exists also a feasible schedule with pr1 > pr2 .

256 7 Scheduling in Hard Real-Time Systems

Proof. From Theorem 7.3.4 we know the existence of a schedule with pr1 > pr2
implies that a critical instant for T2 occurs if it is requested simultaneously with
T1 . In other words, both tasks have the same offset. In this case we see that,
while T2 is executed once, at least �+2/+1� instances of T1 will be executed. Hence
a necessary condition for schedulability with pr1 > pr2 is

�+2/+1�&p1 + p2 � +2 . (7.3.1)

We have to show that (7.3.1) is true if T1 and T2 can be feasibly scheduled with
pr2 > pr1 . Obviously we have p1 + p2 � +1 . Condition (7.3.1) follows from this
condition because

�+2/+1� p1 + �+2/+1� p2 � �+2/+1� +1 � +2 and p2 � �+2/+1� p2 .

Hence we can conclude: If the schedule with pr2 > pr1 is feasible, then the
schedule with pr1 > pr2 is as well.

Interpretation of this result: If +1 < +2, and if p1 and p2 are such that the schedule
is feasible with pr2 > pr1 , it is also feasible with pr1 > pr2 . The opposite is not
true in general, as we have already seen from the Example 7.3.2. This is general-
ized by the following theorem:

Theorem 7.3.7 If a feasible priority assignment exists for some task set, the rate
monotonic priority assignment is feasible for that task set.
Proof. We use an adjacent pair-wise interchange property: Suppose the tasks are
indexed in order of increasing periods. Choose any priority assignment that de-
fines a feasible schedule. If the priorities are not rate monotonic there will be a
pair of "adjacent" tasks (Ti , Tj) in the priority list such that +i > +j . It is easy to see
from Lemma 7.3.6 that interchanging the priorities of Ti and Tj does not violate
feasibility of the schedule. The theorem follows because the rate monotonic order
can be obtained from any other order by a sequence of pair-wise interchanges.

From this theorem we conclude that the rate monotonic priority assignment can
be considered as the best among all priority lists. Despite this fact, it can easily
be seen that RM scheduling is not necessarily feasible, though the total utilization
is smaller than 1. For example, the two tasks T1: +1 = 12, p1 = 6, and T2: +2 = 18,
p2 = 7 have total utilization W = 8/9, but it cannot be feasibly scheduled by RM.

The question one my want to have answered is: What is the least upper
bound for W such that the rate monotonic rule can safely be blindly applied.
Based on the concept of critical instant both, Serlin [Ser67] and Liu and Layland
[LL73] proved a sufficient utilization-based condition for feasibility of the RM
policy.

Consider a schedule for a given feasible priority list. If the processor utiliza-
tion is sufficiently small it will be possible that feasibility is still kept even if

 7.3 Single Processor Scheduling 257

processing times are increased or periods are decreased. For particular problem
settings we may be able to reach 100 % processor utilization by such changes,
but in general it has to be expected that - sooner or later, depending on the priori-
ty list - we end up with some smaller utilization value.

In this sense we call the task set extreme (with respect to the priority list) (in
[LL73] extreme task set is called fully utilizing the processor) if increasing any
processing time or decreasing any period makes the priority list infeasible.

The question is to which extent the processor utilization can be increased by
such parameter changes, before the schedule becomes infeasible. Hence for a
given static priority-based scheduling rule, one would like to know the least up-
per bound of the utilization factor which is defined as the minimum of the utili-
zation factors over all extreme task sets. Such bound allows formulating a simple
sufficient schedulability criterion: As long as a task set has smaller utilization
than the least upper bound, feasibility is guaranteed. In fact, in view of the opti-
mality of the RM rule we are interested in such a bound for RM.

Theorem 7.3.8 [LL73] For a set of m tasks with RM priority order, the least
upper bound for the processor utilization is W (n) = n(21/n – 1).

Proof. We present the proof for n = 2 tasks T1 , T2 . Assuming +1 < +2 , RM
schedules T1 with higher priority than T2 . Hence, when starting the schedule at
time 0 , T1 will be processed non-preemptively at instants 0 , +1 , 2+1 , 3+ 1, …

It follows from Theorem 7.3.4 that the time 0 is a critical instant of T2 . The
idea is to increase p2 until {T1 , T2} is extreme, and then estimate the infimum
value for the utilization factor. Two cases are discussed separately:

(i) During the first period of T2 there are 9+2/+1; requests for T1 . All requests of
T1 in the critical time zone of T2 are completed before the next request of T2 :
Then we must have p1 ≤ +2 � +1&�+2/+1�, and consequently the largest possible
value of p2 is p2 = +2 – p1&9+2/+1; . The corresponding utilization factor calculates
to

W (2) = 1 + p1&[(1/+1) � (1/+2)&9+2/+1;] .

We see that W (2) is monotonically decreasing in p1

(ii) The execution of the 9+2/+1;
th request of T1 overlaps with the next request of

T2 : Then we must have p1 � +2 � +1&�+2/+1� , and consequently the largest possi-
ble value of p2 is p2 = – p1&9+2/+1; + +1&�+2/+1� . The corresponding utilization fac-
tor calculates to

W (2) = (+1/+2)&�+2/+1� + p1&[(1/+1) � (1/+2)&�+2/+1�] .

Now W (2) is monotonically increasing in p1 .

258 7 Scheduling in Hard Real-Time Systems

The minimum of W (2) in these two cases obviously is reached for p1 = +2 �
+1&�+2/+1� which gives us the expression

W (2) = 1 – (+1/+2)&[9+2/+1; � (+1/+2)]&[(+1/+2) � �+2/+1�] .

Using abbreviations I := �+2/+1� and f := (+2/+1) � �+2/+1� for the integer and frac-
tional part of +1/+2 we get

W (2) = 1 – f (1 – f)/(I + f) .

Since W (2) is monotonic increasing with I , the minimum of W (2) is obtained for
I = 1. W (2) is minimized for f = 21/2 – 1, which gives us the result W (2) = 2&(21/2 –
 1) I 0.83 . This completes the proof for n = 2 tasks.

The proof of the general case is omitted because it is based on the essentially
same idea, but requires more technical effort: showing that for determining the
least upper bound it suffices to restrict to +i/+j < 2 for all i and j (this corresponds
to the above condition I = 1), and stepwise maximizing the completion times p2 ,
 ..., pn until pi = +i+1 � +i for i = 2 ,..., n, which is again the minimization condi-
tion for W (n), and finally minimizing a multi-dimensional equation for W (n).

It should be mentioned that R. Devillers and J. Goossens [DG00] found out that
the proof of the n > 2 case is incomplete, but the bound is correct.

The above results lead us to the following remarks.

(i) For harmonic tasks {T1 , T2}, since the period of T2 is an integer multiple of
the period of T2 , we get W (2) = 1 (see also Theorem 7.3.1).

(ii) Notice that W (n) < W (n�1), and in the limit n � #, W (n) tends to ln (2) I
0.693. Moreover, except for the trivial case n = 1, the bound W (n) is never
reached, since it is irrational, while from our assumptions W is always rational.

(iii) Task sets with utilization smaller than W (n) can always be scheduled via the
RM rule. In this sense, the RM strategy can be considered as robust. This encour-
ages one to use a thumb rule in practice: If a task set utilizes the processor not
more than 70 %, the RM strategy can be even used as an on-line scheduling strat-
egy.

It should be emphasized that the upper bound W (n) = n(21/n – 1) is a suffi-
cient but not necessary condition for schedulability by the RM rule. On the other
hand, in special cases with larger utilization, the RM rule may still allow to con-
struct feasible schedules.

In practice, it is often possible to replace a given task set by a harmonic one,
where periods are slightly reduced, or task splitting is applied [SG90]. In task
splitting a task with period + and processing time p is replaced by k � 2 new
tasks, each with period +/k and processing time p/k. For example, if there are two
tasks with periods 11 and 15, the first period can be reduced to 10 (step (i)), and

 7.3 Single Processor Scheduling 259

replacing this task by two tasks, each with period 5, we end up with harmonic
tasks. As a drawback, the number of preemptions can be expected to be larger
than in a schedule for the original task set.

We realize that the RM algorithm is often able to produce a feasible schedule
though the total utilization is higher than W (n). For example, the tasks T1 , T2 with
the respective periods and processing times +1 = 5, +2 = 8; p 1 = 2, p2 = 4 have the
utilization factor W I 0.9 > W (3) I 0.779. The RM schedule is shown in Figure
7.3.4.

0 +�2

+�1 2+�1

2+�2

3+�1

3+�2

4+�1

T1

T2

critical instant of T2
Figure 7.3.4 Initial part of a feasible preemptive schedule.

For practical reasons one is interested in a simple criterion that decides upon ap-
plicability of RM. A necessary and sufficient characterization of the RM was giv-
en by Lehoczky et al. [LSD89]. The basis of the idea of their analysis is the fol-
lowing:

In a given task set {T1 ,..., Tn} with +1 � +2 � ... � +n , Tj (1 < j � n) can only
be preempted by tasks of higher priority, that is by the tasks T1 ,..., Tj�1. There-
fore, for determining schedulability of Tj , only the task set {T1 ,..., Tj} needs to
be considered.

Another point regards the task offsets: Though it is shown in [LL73] that the
critical instant 0 is sufficient for calculating bound W (n), critical instants > 0 may
also have to be considered for deriving a necessity condition.

We start with introducing some useful notion. To determine if a task Tj can
meet its deadline under worst case offsets, the processor demand made by the
task set is considered as a function of time (t). The cumulative workload on the
processor caused by the tasks T1 ,..., Tj over the interval [0 , t] if 0 is a critical in-
stant is denoted by

Wj(t) := 5
j

i=1
 pi 9 t

+ j; .

Furthermore, denote by Wj
~ (t) := Wj(t)/t the average workload of the first j tasks

per time unit in [0 , t], and let Wj
~ := min{ Wj

~ (t) | 0 < t � +j }, and W~ := max{ Wj
~ (t)

| 1 � j � n }. An exact characterization for schedulability of task Tj by the RM al-
gorithm is:

260 7 Scheduling in Hard Real-Time Systems

Theorem 7.3.9 [LSD89] Let T1 ,..., Tn be periodic tasks and +1 � +2 � ... � +n .
(i) Tj can be scheduled for all offsets offsetj � [0 , + j) by the RM algorithm if and

only if Wj
~ � 1.

(ii) The entire task set can be scheduled by the RM algorithm if and only if W~
� 1.

Proof. (i) Assume offseti = 0 for i = 1,..., n. Tj completes its first computation at
time t � [0 , +j] if and only if all the requests from all higher priority tasks are
completed at time t. The total processing request in [0 , t] is given by Wj(t), and

hence Tj is completed at time t if and only if Wj(t) = t, or equivalently, Wj
~ (t) = 1.

Since furthermore Wj(s) > s for s � [0 , t), it follows that a necessary and suffi-
cient condition for Tj to meet its deadline is the existence of a time t � [0 , +j]

such that Wj
~ = 1.

Using Theorem 7.3.4, we conclude that, under general offsets, a necessary
and sufficient condition for Tj to meet its deadline is Wj

~ � 1.
(ii) follows directly from (i).

For practical application of this theorem, let us analyze the properties of Wj
~ (t) in

greater detail:

Wj
~ (t) = 5

j

i=1

pi
t 9 t

+ j;
is a piecewise monotonically decreasing function that is strictly decreasing ex-
cept at a finite set of values, called RM scheduling points, and denoted by Sj .

When t is a multiple of one of the periods +i , Wj
~ (t) has a local minimum and

jumps to a higher value to the right (see Figure 7.3.5). Hence Sj = { k&+i | i = 1,
..., j, and k = 1,..., �+j /+i� }. Consequently, for determining the minimum of Wj

~
one needs to check the points of the finite set Sj .
This observation leads to the following

Corollary 7.3.10 (Theorem 2 in [LSD89]). Given a set of periodic tasks as in
the above Theorem.
(i) Tj can be scheduled for arbitrary offsets by the RM algorithm if and only if

Wj
~ := min{ 5

j

i=1

pi
t 9 t

+ j; | t � Sj }

(ii) T1 ,..., Tn can be scheduled by the RM algorithm for arbitrary offsets if and
only if

 7.3 Single Processor Scheduling 261

W~ := max{ Wj
~ | 1 � j � n } � 1.

Example 7.3.11 T1: p1 = 2, +1 = 5; T2: p2 = 4, +2 = 14; T3: p3 = 9, +3 = 33. The
total utilization is 0.96 > W(3) = 0.779 . The scheduling points are S1 = {5}, S2
 = {5 , 10 , 14}, S3 = {5 , 10 , 14 , 15 , 20 , 25 , 28 , 30 , 33}. For example, the minimum

of W2
~

 in the interval [0 , 14] is at t = 14 (see Figure 7.3.5).

5 10 14

W2(t)

t
0

 min(W2(t))

1.0

6/14

~

~

Figure 7.3.5 Graph of function W2
~ in the interval [0,14].

The following algorithm is based on Corollary 7.3.10:

Algorithm 7.3.12 Check_Schedulability.
Input: m periodic tasks T1 ,..., Tn with respective integer periods +1 ,..., +n and
integer processing times p1 ,..., pn .
Output: "schedulable" or "not schedulable"
begin
sort the tasks increasingly with the periods; -- let +1 � + 2 � … � +n
failed := false;
for j := 1 to n do
 for i := 1 to j do
 begin
 W~ := infinity ; -- set W~ to a value � 5

n

i=1

2pi
+ j

 for k := 1 to �+ j /+i� do
 begin
 t := k&+i ;

 if 5
j

i=1

pi
t 9 t

+ j; < W~ then W~ := 5
j

i=1

pi
t 9 t

+ j; ;

 end
 end;

262 7 Scheduling in Hard Real-Time Systems

if W~ < 1 then print "schedulable" else print "not schedulable" ;
end.
The correctness of Algorithm Check_Schelulability follows directly from the
corollary. The time complexity is O(n2&+n /+1).

7.3.2 Dynamic Priority Scheduling

The second priority rule to be presented is earliest deadline First (EDF) : at each
point of time, the next process to run is the one with the closest deadline. In con-
trast to RM, the EDF rule is dynamic because each time a new instance is re-
leased it has to be decided which of the current unfulfilled instances has closest
completion request. In the following Lemma, an overflow denotes an instant at
which an instance misses its deadline.

Lemma 7.3.13 (Theorem 6 in [LL73]). When the deadline driven scheduling
algorithm is used to schedule a set of tasks on a processor, and the tasks have
all offset = 0, there is no processor idle time prior to an overflow.

Proof. Given an EDF schedule and assume that an overflow occurs at time t3 .
Suppose there is an idle interval before t3 ; let [t1 , t2] be the last such interval.

Modify the schedule: For each task Tj whose first instance after the idle inter-
val is requested at a time t > t2 , move its and the following requests forward such
that the first of these is a time t2 . By this move, processor load is not decreased,
and hence

- the overflow will stay at t3 or be earlier,
- the time span between t2 and t3 will stay idle-free,
Hence in the modified schedule, each task instance is requested at the same

time t2 , there is an overflow at some time t3', and there is no idle interval be-
tween t2 and t3'. This however is a contradiction to the assumption that all tasks
have equal offsets and there is an idle interval before the overflow.

Case of general offsets: With the same argument as in the previous proof we
conclude that if an idle interval exists before an overflow, then the same task set
will have an overflow if all offsets are set to 0. Therefore we restrict w.l.o.g. our
considerations to task sets with offsets = 0.

Theorem 7.3.14 [LL73]. The tasks {T1 ,..., Tn} can be scheduled preemptively
by EDF if and only if W = 5 pi /+ i � 1.

Proof. W � 1 is necessary because otherwise a feasible schedule cannot exist be-
cause of processor overload.

 7.3 Single Processor Scheduling 263

For sufficiency, assume there is a task set with W � 1, where EDF is not fea-
sible. Let +C := lcm{+1 , +2 ,..., +n} be the cycle length of the schedule 2

 . Then
there is an overflow between the time 0 and +C . Assuming offsets 0, then +C is
the first time where the request times coincide again. Then an overflow must oc-
cur at some time t0 between 0 and +C .

For a detailed analysis, let a-instances denote the subset of instances with
request time t0 , and b-instances all instances with a deadline beyond t0 .

Case 1: None of b-instances are started before t0 . Then, since there is no idle pe-
riod in [0 , t0], the processing load is 5 t0/+i > t0 . Since furthermore x � �x� , we
get W = 5 pi/+i > 1, which contradicts W � 1. For an illustration see the example
below.

Case 2: Some of the b-instances are already processed before t0 , though their
deadline is beyond t0 . At the overflow time t0 , exactly one instance misses its
deadline, which must be one of the a-instances because the deadline coincides
with the next request time. This means that the overflowing a-instance must have
been processed for some time before t0 . This is only possible if it has highest
priority. In fact, all the a-instances have the same priority between some time t' <
t0 and t0 . Consequently, the b-instances processed before t0 must have been pro-
cessed before t' (see Figure 7.3.6). Even more, it is not possible that other a-
instances released before t' are processed after t' because their deadline (t0) is be-
fore those of the b-instances. Hence we can summarize: The interval [t' , t0] con-
tains only task instances that are initiated and have deadlines in this interval.
Therefore, the total processing demand in [t' , t0] is 5 �(t0 – t')/+i� , and, since there
is an overflow, 5 �(t0 – t')/+i� > t0 – t'. This implies again that W = 5 pi /+i > 1,
which contradicts W � 1.

t0t'

instances with release time
and deadline in [t', t0] b-instances deadlines of b-instances

Figure 7.3.6 Proof of Theorem 7.3.14: location of b-instances.

2 lcm is the least common multiple.

264 7 Scheduling in Hard Real-Time Systems

An example for case 1 in the proof consider the tasks T1 with +1 = 8, p1 = 4 and
T2 with +2 = 5, p2 = 3. The second instance of T1 is an a-instance which over-
flows at time 16; the third instance of T2 is a b-instance. Figure 7.3.7 shows the
schedule.

T1

T2

0 5 10

8

15

16

overflow

Figure 7.3.7 Proof of Theorem 7.3.14: An example to case 1.

Dertouzos [Der74] showed that EDF is optimal among all preemptive scheduling
algorithms: If, for a given set of periodic tasks, a feasible schedule exists then
EDF is also feasible.

7.4 Scheduling Periodic Tasks on Parallel
Processors

The real-time system is structured as collection of interconnected processors, for
executing a given set of periodic tasks. Besides processing times, delays caused
by communication should be taken into account, but for simplicity reasons we
assume here that communication delays are small compared to process run times
and can be neglected. After the set of tasks is properly distributed among the
processors, scheduling strategies as discussed in Section 7.3 can be applied sepa-
rately to each processor. There are two principal kinds of strategies:
- static binding, where each task is assigned to one specific processor, and
- dynamic binding, where tasks compete greedily for the use of the processors.

Dhall and Liu [DL78] showed that the global application of RM scheduling
on m processors cannot guarantee schedulability. In the following example, on-
line allocation (dynamic binding) of RM performs poorly.

Example 7.4.1 Given tasks T1 ,..., Tn to be processed on m = n�1 processors,
with processing times and periods pj = 2% < 1, +j = 1 (j = 1 ,..., n�1), and pn = 1,
+n = 1+% . The rate-monotonic strategy with dynamic binding assigns first tasks
T1 ,..., Tn�1 to processors P1 ,..., Pn�1 . Tn cannot be scheduled and misses its
deadline. The rate-monotonic strategy with static binding (off-line) could bound

 7.5 Resources 265

Tn to one of the processors. Since % is sufficiently small, the rest can distributed
among the other processors.

Distributing the tasks off-line (static binding) can be based on variations of the
well known bin packing strategy. Given periodic tasks T1 ,..., Tn with utilizations
ui = pi /+i � (0 , 1]. The problem is to partition the tasks into subsets such that the
sum of utilizations is not beyond 1, while the number of subsets is minimized.
The bin packing problem is known to be NP-hard [GJ79] (cf. Section 13.1). One
of the simplest strategies is First Fit (FF), in which the tasks T1 , T2 ,... are as-
signed to the fist processor as long as the sum of utilizations is � 1. Then the fill-
ing continues on the second processor, etc. .

The Rate Monotonic First Fit algorithm (RMFF) [DL78] is based on the first
fit allocation strategy and applies then RM on each processor separately. It is
known from Dhall Liu [DL78] that a safe use of RMFF may require between 2.4
and 2.67 times as many processors as an optimal partition.

Oh and Baker [OB98] proved that RMFF can schedule any task set on m
processors as long as the total utilization is not beyond m(21/2 – 1). This result
was improved by Lopez et al. [LDG01]: If the total utilization is bounded by
(m+1)(21/(m+1) – 1) then the task set is schedulable.

A more general result was obtained by Andersson et al. [ABJ01] who
showed that for any fixed priority multiprocessor scheduling algorithm, sched-
ulability is guaranteed if the total utilization is not higher than (m+1)/2. This
holds for both, static and dynamic binding.

Global RM scheduling seems to work well with small task utilizations. Let
0 � [0, 1] be an upper bound on the individual utilizations, then smaller values of
0 would allow for a larger total system utilization. For example, if 0 = m/(3m�2),
a total system utilization of at least m2/(3m�1) can be guaranteed [ABJ01]. Ba-
ruah and Goossens [BG03] proved that if 0 = 1/3, a system utilization � m/3 can
be gained, and Baker [Bak03] showed that for any 0 � 1, a system utilization of
(m/2)(1�0) + 1 can be guaranteed. On the other hand, if there are also tasks with
arbitrary task utilizations, an algorithm called RM-US(J) gives highest priority
to tasks with utilization � J, and schedules the remaining tasks with RM. Then a
system utilization of at least (m+1)/3 for J = 1/3 can be guaranteed [Bak03].

7.5 Resources

As pointed out in Section 7.2, tasks may need resources of limited availability
that can only be exclusively and non-preemptably accessed, thus leading to mu-
tual exclusions of tasks. A task holding a resource may block another task that
tries to access the same resource.

266 7 Scheduling in Hard Real-Time Systems

We first consider the situation for a fixed priority scheme such as rate
monotonic: Suppose a high priority task Th needs access to a resource that is
locked by another task Tl with lower priority. Since the resource is non-
preemptable and can hence not be withdrawn from Tl , Th has to wait regardless
of its high priority. This situation is called priority inversion. The problem is that
Th may be delayed for an undefined amount of time if Tl is preempted by other
tasks not requiring the resource.

There are special run-time protocols that organize the task execution in case
of priority inversion. The inheritance protocol and other synchronization proto-
cols for both, the single and the multiprocessor case, were introduced by, among
others, Sha et al. [SLR87] and Rajkumar et al. [RSLR94]. The basic inheritance
protocol, for example, gives the lower priority task temporarily (i.e., until it re-
leases the resource) the (higher) priority of the blocked task.

In a feasibility analysis one needs to know how long a task can be delayed
by tasks of lower priority. Depending on the synchronization protocol, upper
bounds for blocking times can be derived and taken into account. The worst case
execution times are simply enlarged by these blocking times.

For case of dynamic priorities such as earliest deadlines there are variations
of the previously mentioned run-time protocols, as for example the dynamic pri-
ority inheritance protocol. For details we refer to the book of Stankovic et al.
[SRSB98].

7.6 Variations of the Periodic Task Model

The introduced task model was generalized in many ways. A generalization is
discussed by Sorensen and Hamacher [Sor74, SH75] and similarly by Teixeira
[Tei78], in which the maximum response times need not be confined by the right
end of the period. Ramamrithram and Stankovic [RS84, RSC85] consider a dis-
tributed hard real-time model with one CPU per node and periodic and sporadic
processes. The periodic processes are assigned to CPUs initially and guaranteed
to meet their maximum response times. The sporadic tasks arrive randomly with
deadlines and unrestricted arrival rate. Accepted sporadic processes are locally
scheduled according to the preemptive earliest-deadline-first rule.

Another alternative is the model discussed by Chen et al. [CA94, CA95]
which assumes periodic tasks together with the additional, as they call it, "rela-
tive timing constraints" of a low and high jitter (viz. Figure 7.6.1) for the dis-
tance between two consecutive task instances.

 References 267

+j+j

Tj
i+1Tj

i

= +j � 0j

< +j + >j
sj

i sj
i+1

Figure 7.6.1 Task execution with low jitter 0j and high jitter >j .

Halang & Stoyenko [HS91] present a "frame superimposition" model for period-
ic processes with known processing time characteristics, release times and dead-
lines. In this model, one of the processes is chosen to start with its frame at some
time t0 . The frames of the other processes are then positioned in various ways
along the time line, relative to time t0 . Their algorithm shifts the frames exhaust-
ively and checks feasibility for every possible combination of frames.

Other generalizations regard processing times. Choi and Agrawala [CA97a]
assume that each task has a given lower and upper bound for the processing time.
Mok et al. [MC96a, MC96b] consider a model for real-time tasks, called multi-
frame model where the tasks are instantiated periodically, but with different exe-
cution times in each interval.

The model discussed in the Ph.D. thesis of Choi [Cho97] and in [CA97a] as-
sumes a cyclic execution of a set of tasks with precedences, relative inter-task
constraints in form of min/max conditions between start and finish times of any
two tasks. Furthermore, upper and lower bounds for task execution times are as-
sumed.

A similar model is end-to-end scheduling, as considered e.g. by Gerber
[Ger95] and Gerber et al. [GHS95 and GPS95], which deals with the scheduling
of sets of tasks with precedences, deadlines; various inter-task constraints, and
communication delays. Another model modification is discussed in [CAS97]
where repeating processes are considered, and the time between the processes is
newly determined at each iteration step by a so-called dynamic temporal control-
ler.

References

ABJ01 B. Andersson, S. Baruah, J. Johnsson, Static-priority scheduling on multiproces-
sors, Proceedings of the 22nd IEEE Real-Time Systems Symposium, London, UK,
2001, 193-202.

Bak03 T. P. Baker, Multiprocessor EDF and deadline monotonic schedulability analysis,
Proceedings of the 24th IEEE Real-Time Systems Symposium, 2003, 120-129.

BG03 S. Baruah, J. Goossens, Rate monotonic scheduling on uniform multiprocesors,
IEEE Trans. Comput. 52, 2003, 966-970.

CA94 S.-T. Cheng, A. K. Agrawala, Scheduling periodic tasks with relative timing con-
straints, Report CS-TR-3392, University of Maryland, 1994.

268 7 Scheduling in Hard Real-Time Systems

CA95 S.-T. Cheng, A. K. Agrawala, Allocation and scheduling of real-time periodic tasks
with relative timing constraints, Report CS-TR-3402, University of Maryland,
1995.

CA97a S. Choi, A. K. Agrawala, Dynamic dispatching of cyclic real-time tasks with rela-
tive constraints, Report CS-TR-3370, University of Maryland, 1997.

CAS97 S. Choi, A. K. Agrawala, L. Shi, Designing dynamic temporal controls for critical
systems, Report CS-TR-3804, University of Maryland, 1997.

Cho97 S. Choi, Dynamic Time-Based Scheduling for Hard Real-Time Systems, Ph.D. the-
sis, University of Maryland, 1997.

Der74 M. L. Dertouzos, Control robotics: the procedural control of physical processors,
Proceedings of IFIP Congress, 1974, 807-813.

DG00 R. Devillers, J. Goossens, Liu and Layland’s schedulability test revisited, Inf. Pro-
cess. Lett. 73, 2000, 157-161.

DL78 S. K. Dhall, C. L. Liu, On a real-time scheduling problem, Oper. Res. 26, 1978,
127-140.

Ger95 R. Gerber, Guaranteeing end-to-end timing processes, Proceedings of the IEEE
Real-Time Systems Symposium, 1995, 192-203.

GHS95 R. Gerber, S. Hong, M. Saksena, Guaranteeing real-time requirements with re-
source-based calibration of periodic processes, IEEE Trans. Softw. Eng. 21, 1995,
579-592.

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman, San Francisco, 1979.

GPS95 R. Gerber, W. Pugh, M. Saksena, Parametric dispatching of hard real-time tasks,
IEEE Trans. Comput. 44, 1995, 471-479.

HS91 W. A. Halang, A. D. Stoyenko, Constructing Predictable Real-Time Systems,
Kluwer Academic Publishers, Boston, 1991.

KKZ88 R. Koymans, R. Kuiper, E. Zijlstra, Paradigms for real-time systems, in: M. Joseph
(ed.), Formal Techniques in Real-Time and Fault-Tolerant Systems, Lect. Notes
Comput. Sc. 331, 1988, 159-174.

LDG01 J. M. Lopez, J. L. Diaz, D. F. Garcia, Minimum and maximum utilization bounds
for multiprocessor RM scheduling, Proceedings of the Euromicro Conference on
Real-Time Systems, Delft, Netherlands, 2001, 67-75.

LL73 C. L. Liu, J. W, Layland, Scheduling algorithms for multiprogramming in a hard-
real-time environment, J. ACM 20, 1973, 46-61.

LSD89 J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact
characterization and average case behavior, in: Proceedings of the IEEE Real-Time
Systems Symposium, 1989, 166-171.

MC96a A. K. Mok, D. Chen, A multiframe model for real-time tasks, University of Texas
at Austin, 1996.

MC96b A. K. Mok, D. Chen, A general model for real-time tasks, University of Texas at
Austin, 1996.

OB98 D. I. Oh, T. P. Baker, Utilization for N-processor rate monotone scheduling with
stable processor assignment, Real-Time Syst. 15, 1989, 183-193.

RS84 K. Ramamrithram, J. Stankovic, Dynamic task scheduling in distributed hard real-
time systems, Proceedings of the 4th IEEE International Conference on Distributed
Computing Systems, 1984, 96-107.

RSC85 K. Ramamrithram, J. Stankovic, S. Cheng, Evaluation of a flexible task scheduling
algorithm for distributed hard real-time systems, IEEE Trans. Comput. 34, 1985,
1130-1143.

 References 269

RSLR94 R. Rajkumar, L. Sha, J. P. Lehoczki, K. Ramamritham, An optimal priority inher-
itance policy for synchronization ion real-time systems, in: S. H. Son (ed.), Ad-
vances in Real-Time Systems, Englewood Cliffs, NJ, Prentice-Hall, 1994, 249-271.

SAA04 L. Sha, T, Abdelzaher, K.E. Årzén, A. Cervin, Th, Baker, A. Burns, G. Butazzo,
M. Caccamo, J. Lehoczky, A. Mok, Real time scheduling theory: A historical per-
spective, Real-Time Syst. 28, 2004, 101-155.

SG90 L. Sha, J. Goodenough, Real-time scheduling theory and Ada, IEEE Computer 23,
1990, 53-62.

SH75 P. Sorensen, V. Hamacher, A real-time system design methodology, Infor 13,
1975, 1-18.

SLR87 L. Sha, J. P. Lehoczki, R. Rajkumar, Task scheduling in distributed real-time sys-
tems, Proceedings of the IEEE Industrial Electronics Conference, Cambridge,
MA, 1987, 909-916.

Sor74 P. Sorensen, A Methodology for Real-Time System Development, Ph.D. thesis,
University of Toronto, 1974.

SRSB98 J. A. Stankovic, K. Ramamritham, M. Spuri, G. Buttazzo, Deadline Scheduling for
Real-Time Systems, Kluwer, Boston-Dordrecht-London, 1998.

Tei78 T. Teixeira, Static priority interrupt scheduling, Proceedings of the 7th Texas Con-
ference on Computing Systems, 15, 1978, 5.13-5.18.

WS98 J. Wikander, B. Svensson (eds.), Special Issue on Real-Time Systems in Mecha-
tronic Applications, Real-Time Syst. 14, 1998, 217-218

8 Flow Shop Scheduling

Consider scheduling tasks on dedicated processors or machines. We assume that

tasks belong to a set of n jobs, each of which is characterized by the same ma-

chine sequence. For convenience, let us assume that any two consecutive tasks of

the same job are to be processed on different machines. The type of factory lay-

out in the general case - handled in Chapter 10 - is the job shop; the particular

case where each job is processed on a set of machines in the same order is the

flow shop. The most commonly used performance measure will be makespan

minimization.

8.1 Introduction

8.1.1 The Flow Shop Scheduling Problem

A flow shop consists of a set of different machines (processors) that perform

tasks of jobs. All jobs have the same processing order through the machines, i.e.

a job is composed of an ordered list of tasks where the i
th

 task of each job is de-

termined by the same machine required and the processing time on it. Assume

that the order of processing a set of jobs J on m different machines is described

by the machine sequence P1 ,..., Pm . Thus job Jj � J is composed of the tasks T1j,

..., Tm j with processing times pij for all machines Pi , i = 1,..., m. There are sev-

eral constraints on jobs and machines: (i) There are no precedence constraints

among tasks of different jobs; (ii) each machine can handle only one job at a

time; (iii) each job can be performed only on one machine at a time. While the

machine sequence of all jobs is the same, the problem is to find the job sequenc-

es on the machines which minimize the makespan, i.e. the maximum of the com-

pletion times of all tasks. It is well known that - in case of practical like situa-

tions - the problem is NP-hard [GJS76].

Most of the literature on flow shop scheduling is limited to a particular case

of flow shop - the permutation flow shops, in which each machine processes the

jobs in the same order. Thus, in a permutation flow shop once the job sequence

on the first machine is fixed it will be kept on all remaining machines. The re-

sulting schedule will be called permutation schedule.

By a simple interchange argument we can easily see that there exists an op-

timal flow shop schedule with the same job order on the first two machines P1

and P2 as well as the same job order on the last two machines Pm–1 and Pm. Con-

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_

271

8

https://doi.org/10.1007/978-3-319-99849-7_8
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_8&domain=pdf

272 8 Flow Shop Scheduling

sider an optimal flow shop schedule. Among all job pairs with different pro-

cessing orders on the first two machines, let Ji and Jk be two jobs such that the

number of tasks scheduled between T1i and T1k is minimum. Suppose T1i is pro-

cessed before T1k (while T2i is processed after T2k). Obviously, T1k immediately

follows T1i and no other job is scheduled on machine P1 in between. Hence, in-

terchanging T1i and T1k has no effect on any of the remaining tasks' start times.

Repetitious application of this interchange argument yields the same job order on

the first two machine (and analogously for the last two machines). Consequently,

any flow shop scheduling problem consisting of at most three machines has an

optimal schedule which is a permutation schedule. This result cannot be extend-

ed any further as can be shown by a 2-job 4-machine example with p11 = p41 =

p22 = p32 = 4 and p21 = p31 = p12 = p42 = 1. Both permutation schedules have a

makespan of 14 while job orders (J2, J1) on P1 and P2 and (J1 , J2) on P3 and P4

lead to a schedule with a makespan of 12. Although it is common practice to

focus attention on permutation schedules, Potts et al. [PSW91] showed that this

assumption can be costly in terms of the deviation of the maximum completion

times, i.e. the makespans, of the optimal permutation schedule and the optimal

flow shop schedule. They showed that there are instances for which the objective

value of the optimal permutation schedule is much worse (in a factor more than

1/2 m) than that of the optimal flow shop schedule.

Any job shop model (see Chapter 10) can be used to model the flow shop

scheduling problem. We present a model basically proposed by Wagner [Wag59,

Sta88] in order to describe the permutation flow shop. The following decision

variables are used (for i, j = 1,..., n; k = 1,..., m):

zij =
�.
�
.

1 if job Ji is assigned to the j th position in the permutation,

0 otherwise;

 xjk = idle time (waiting time) on machine Pk before the start of the job in

position j in the permutation of jobs;

 yjk = idle time (waiting time) of the job in the j
th

 position in the permuta-

tion, after finishing processing on machine Pk, while waiting for ma-

chine Pk+1 to become free ;

 Cmax = makespan or maximum flow time of any job in the job set.

Hence we get the model:

Minimize Cmax

subject to �
j=1

n
 zij = 1, i = 1,..., n (8.1.1)

 �
i=1

n
 zij = 1, j = 1,..., n (8.1.2)

 8.1 Introduction 273

 �
i=1

n
 pri zi j+1 + yj+1 r + xj+1 r = yjr + �

i=1

n
 pr+1 i zij + xj+1 r +1 , (8.1.3)

 j = 1,..., n – 1; r = 1,..., m – 1

 �
j=1

n
 �
i=1

n
 pmi zij + �

j=1

n
 xjm = Cmax , (8.1.4)

 �
r=1

k–1

 �
i=1

n
 pri zi1 = x1k , k = 2,..., m (8.1.5)

 y1k = 0, k = 1,..., m –1 (8.1.6)

Equations (8.1.1) and (8.1.2) assign jobs and permutation positions to each

other. Equations (8.1.3) provide Gantt chart accounting between all adjacent

pairs of machines in the m-machine flow shop. Equation (8.1.4) determines the

makespan. Equations (8.1.5) account for the machine idle time of the second and

the following machines while they are waiting for the arrival of the first job.

Equations (8.1.6) ensure that the first job in the permutation would always pass

immediately to each successive machine.

8.1.2 Complexity

The minimum makespan problem of flow shop scheduling is a classical combi-

natorial optimization problem that has received considerable attention in the lit-

erature. Only a few particular cases are efficiently solvable, cf. [MRK83]:

(i) The two machine flow shop case is easy [Joh54]. In the same way the case of

three machines is polynomially solvable under very restrictive requirements on

the processing times of the intermediate machine [Bak74].

(ii) The two machine flow shop scheduling algorithm of Johnson can be applied

to a case with three machines if the intermediate machine is no bottleneck, i.e. it

can process any number of jobs at the same time, cf. [CMM67]. An easy conse-

quence is that the two machine variant with time lags is solvable in polynomial

time. That means for each job Ji there is a minimum time interval li between the

completion of job Ji on the first machine P1 and its starting time on the second

machine P2. The time lags can be viewed as processing times on an intermediate

machine without limited capacity. Application of Johnson’s algorithm to the

problem with two machines P1 and P2 , and processing times p1i + li and p2i + li on

P1 and P2 , respectively, yields an optimal schedule, cf. [Joh58, Mit58, MRK83].

(iii) Scheduling two jobs by the graphical method as described in [Bru88] and

first introduced by Akers [Ake56]. (Actually this method also applies in the more

general case of a job shop, cf. Chapter 10.)

274 8 Flow Shop Scheduling

(iv) Johnson’s algorithm solves the preemptive two machine flow shop

F2 | pmtn | Cmax .

(v) If the definition of precedence constraints Ji ≺ Jj specifies that job Ji must

complete its processing on each machine before job Jj may start processing on

that machine then the two machine flow shop problem with tree or series-parallel

precedence constraints and makespan minimization is solvable in polynomial

time, cf. [Mon79, Sid79, MS79].

Slight modifications, even in the case of two machines, turn out to be diffi-

cult, see [TSS94]. For instance, F3 | | Cmax [GJS76], F2|rj|Cmax [LRKB77],

F2 | | Lmax [LRKB77], F2 | | � Cj [GJS76], F2 | pmtn, rj | Cmax [CS81],

F2 | pmtn | Lmax [TSS94], F3 | pmtn | Cmax [GS78], F3 | pmtn | � Cj [LLR+93],

F2 | prec | Cmax [Mon80], and F2 | pmtn | � Cj [DL93] are strongly NP-hard.

8.2 Exact Methods

In this section we will be concerned with a couple of polynomially solvable cases

of flow shop scheduling and continue to the most successful branch and bound

algorithms. A survey on earlier approaches in order to schedule flow shops exact-

ly can be found in [Bak75, KK88]. Dudek et al. [DPS92] review flow shop se-

quencing research since 1954.

8.2.1 The Algorithms of Johnson and Akers

An early idea of Johnson [Joh54] turned out to influence the development of so-

lution procedures substantially. Johnson’s algorithm solves the F2 | | Cmax to op-

timality constructing an optimal permutation schedule through the following ap-

proach:

Algorithm 8.2.1 Johnson’s algorithm for F2 | | Cmax [Joh54].

begin
Let S1 contain all jobs Ji � J with p1i � p2i in a sequence of non-decreasing order

of their processing times p1i;

Let S2 contain the remaining jobs of J (not in S1) in a sequence of non-increasing

order of their processing times p2i;

Schedule all jobs on both machines in order of the concatenation sequence

(S1, S2);

end;

 8.2 Exact Methods 275

As Johnson’s algorithm is a sorting procedure its time complexity is O(nlogn).

The algorithm is based on the following sufficient optimality condition.

Theorem 8.2.2 [Joh54] Consider a permutation of n jobs where job Ji precedes
job Jj if min{ p1i, p2j } � min{ p2i, p1j } for 1 � i, j � n. Then the induced permu-
tation schedule is optimal for F2 | | Cmax .

Proof. Let + be a permutation defining a schedule of the flow shop problem with

n jobs. We may assume + = (1, 2,..., n). Then, there is an s � {1, 2,..., n} such

that the makespan Cmax(+) of the schedule equals

�
i=1

s
 p1i + �

i=s

n
 p2i = �

i=1

s
 p1i – �

i=1

s–1

 p2i + �
i=1

n
 p2i .

Hence minimization of the makespan min
+

{Cmax(+)} is equivalent to

min
+

{ max
1 � s � n

 !s(+)} where !s(+) = �
i=1

s
 p1i – �

i=1

s–1

 p2i .

Let +' be another permutation different from + in exactly two positions j and

j+1, i.e. the jobs’ order defined by +' is J1 , J2 ,..., Jj–1 , Jj+1 , Jj , Jj+2 , Jj+3 ,..., Jn .

As !s(+) = !s(+') for s = 1,..., j – 1, j + 2,..., n, we get, that max
1 � s � n

 !s(+) �

max
1 � s � n

 !s(+') holds if max{!j(+), !j+1(+)} � max{!j (+'), !j+1 (+')}. The latter is

equivalent to

max{ p1j , p1j � p2j + p1 j+1 } � max{ p1 j+1 , p1 j+1 – p2 j+1 + p1j }

which is equivalent to

p1j � p1 j+1 and p1j – p2j + p1 j+1 � p1 j+1

or

p1j � p1 j +1 – p2j+1 + p1j and p1j – p2j + p1 j+1 � p1 j+1 – p2j+1 + p1j .

Thus, if p1j � min{p1 j+1 , p2j} or p2 j+1 � min{p1 j+1 , p2j}, or equivalently, if

min{p1j , p2 j+1} � min{p1j+1 , p2j} then permutation + defines a schedule at least

as good as +'.
Among all permutations defining an optimal schedule, assume + is a permu-

tation satisfying Ji precedes Jj if min{p1i , p2j} � min{p2i , p1j}, for any two jobs Ji
and Jj where one is an immediate successor of the other in the schedule. It re-

mains to verify transitivity, i.e. if min{p1i , p2j} � min{p2i , p1j} implies Ji pre-

cedes Jj and min{p1j , p2k} � min{p2j , p1k} implies Jj precedes Jk then min{p1i ,

p2k} � min{p2i , p1k} implies Ji precedes Jk in +. There are 16 different cases to

distinguish according to the relative values of the four processing time pairs p1i ,

276 8 Flow Shop Scheduling

p2j ; p2i, p1j ; p1j , p2k and p2j , p1k . Twelve of the cases are easy to verify. The re-

maining four cases,

(1) p1i � p2j � p1k and p2i � p1j � p2k ;

(2) p1i � p2j � p1k and p2i � p1j � p2k ;

(3) p1i � p2j � p1k and p2i � p1j � p2k ; and

(4) p1i � p2j � p1k and p2i � p1j � p2k

imply that Ji may precede Jj or Jj may precede Ji . Hence, there is an optimal

schedule satisfying the condition of the theorem for any pair of jobs. Finally, ob-

serve that this schedule is uniquely defined in case of strict inequalities min{p1i,

p2 i+1} < min{p2i , p1 i+1} for all pairs i, i+1 in +. If min{p1i , p2 i+1} = min{p2i ,

p1 i+1} for a pair i, i+1 in + then an interchange of Ji and Ji+1 will not increase the

makespan. This proves that the theorem describes a sufficient optimality condi-

tion.

Johnson’s algorithm can be used as a heuristic when m > 2. Then the set of ma-

chines is divided into two subsets each of which defines a pseudo-machine hav-

ing a processing time equal to the processing time on the real machines assigned

to that subset. Johnson’s algorithm can be applied to this n-job 2-pseudo-

machine problem to obtain a permutation schedule. The quality of the outcome

heavily depends on the splitting of the set of jobs into two subsets. If m = 3 an

optimal schedule can be found from the two groups {P1 , P2} and {P2 , P3} if

max
i

 p2i � min
i

 p1i or max
i

 p2i � min
i

 p3i. Thus, for the pseudo machines {P1 , P2}

and {P2, P3} the processing times are defined as p{P1,P2},i = p1i + p2i and p{P2,P3},i

= p2i + p3i .

The problem of scheduling only two jobs on an arbitrary number of ma-

chines can be solved in polynomial time using the graphical method proposed by

[Bru88] and first introduced by Akers [Ake56].

Assume to process two jobs J1 and J2 (not necessarily in the same order) in

an m-machine flow shop. The problem can be formulated as a shortest path prob-

lem in the plane with rectangular objects as obstacles. The processing times of

the tasks of J1 (J2) on the machines are represented as intervals on the x-axis (y-

axis) which are arranged in order (next to each other) in which the corresponding

tasks are to be processed. An interval Ii1 (Ii2) on the x-axis (y-axis) is associated

to a machine Pi on which the job J1 (J2) is supposed to be processed. Let xF (yF)

denote the sum of the processing times of job J1 (J2) on all machines. Let F = (xF ,

yF) be that point in the plane with coordinates xF and yF. Any rectangular Ii1 � Ii2

defines an obstacle in the plane. A feasible schedule corresponds to a path from

the origin O = (0 , 0) to F avoiding passing through any obstacle. Such a path

consists of a couple of segments parallel to one of the axis or diagonal in the

plane. A segment parallel to the x-axis (y-axis) can be interpreted in such a way

 8.2 Exact Methods 277

that only job J1 (J2) is processed on a particular machine while J2 (J1) is waiting

for that machine, because parallel segments are only required if the path from O

to F touches the border of an obstacle. An obstacle defined by some machine Pi

and forcing the path from O to F to continue in parallel to one of the axis implies

an avoidance of a conflict among both jobs. Hence, an obstacle means to se-

quence both jobs with respect to Pi . Minimization of the makespan corresponds

to finding a shortest path from O to F avoiding all obstacles. The problem can be

reduced to the problem of finding an unrestricted shortest path in an appropriate

network G = (V, E). The set of vertices consists of O, F and all north-west and

south-east corners of all rectangles. Each vertex v (except F) has at most two

outgoing edges. These edges are obtained as follows: We are going from the

point in the plane corresponding to vertex v diagonally until we hit the border of

an obstacle or the boundary of the rectangle defined by O and F. In the latter case

F is a neighbor of v. The length dvF of the edge connecting v and F equals the

length of the projection of the diagonal part of the v and F connecting path plus

the length of the parallel to one of the axis part of this path. In other words, if v is

defined in the plane by the coordinates (xv , yv) then dvF = max{ xF – xv , yF – yv }.

If we hit the border of an obstacle, we introduce two arcs connecting the north-

west corner (say vertex u defined by coordinates (xu , yu)) and the south-east cor-

ner (say vertex w defined by coordinates (xw , yw)) to v. The length of the edge

connecting v to u is dvu = max{ xu – xv , yu – yv }. Correspondingly the length of

the edge connecting v and w is dvw = max{ xw – xv , yw – yv }. Thus an application

of a shortest path algorithm yields the minimum makespan. In our special case

the complexity of the algorithm reduces to O(mlog m), cf. [Bru88].

8.2.2 Dominance and Branching Rules

One of the early branch and bound procedures used to find an optimal permuta-

tion schedule is described by Ignall and Schrage [IS65] and, independently by

Lomnicki [Lom65]. Associated with each node of the search tree is a partial

permutation + defining a partial permutation schedule S+ on a set of jobs. Let J+
be the set of jobs from the schedule S+. A lower bound is calculated for any com-

pletion 7 of the partial permutation + to a complete permutation (+7). The lower

bound is obtained by considering the work remaining on each machine. The

number of branches departing from a search tree node (with a minimum lower

bound) equals the number of jobs not in S+ , i.e. for each job Ji with i �/ + a

branch is considered extending the partial permutation + by one additional posi-

tion to a new partial permutation (+i). Moreover extensions of the algorithm use

some dominance rules under which certain completions of partial permutations +

can be eliminated because there exists a schedule at least as good as + among the

completions of another partial permutation +'. Let Ck(+) denote the completion

278 8 Flow Shop Scheduling

time of the last job in S+ on machine Pk , i.e. Ck(+) is the earliest time at which

some job not in J+ could begin processing on machine Pk . Then +' dominates + if

for any completion 7 of + there exists a completion 7' of +' such that Cm(+'7') �

Cm(+7). An immediate consequence is the following transitive dominance crite-
rion.

Theorem 8.2.3 [IS65] If J+ = J+' and Ck(+') � Ck(+) for k = 1, 2,..., m, then +'
dominates + .

There are other dominance criteria reported in [McM69] and [Szw71, Szw73,

Szw78] violating transitivity. In general these dominance criteria consider sets J+
� J. We can formulate

Theorem 8.2.4 If Ck–1(+ji) – Ck–1(+i) � Ck(+ji) – Ck(+i) � pkj for k = 2,..., m, then
(+ji) dominates (+i).

8.2.3 Lower Bounds

Next we consider different types of lower bounds that apply in order to estimate

the quality of all possible completions 7 of partial permutations + to a complete

permutation (+7).

The amount of processing time yet required on the first machine is �
j�7

 p1j .

Suppose that a particular job Jj will be the last one in the permutation schedule.

Then after completion of job Jj on P1 an interval of at least �
k=2

m
 pkj must elapse

before the whole schedule can be completed. In the most favorable situation the

last job will be the one which minimizes the latter sum. Hence a lower bound on

the makespan is

LB1 = C1(+) + �
i�7

 p1i + min
j�7

{ �
k =2

m
 pkj} .

Similarly we obtain lower bounds (with respect to the remaining machines)

LBp = Cp(+) + �
i�7

 ppi + min
j�7

{ �
k=p+1

m
 pkj} , for p = 2,..., m – 1.

And on the last machine we get

LBm = Cm(+) + �
i�7

 pmi .

The lower bound proposed by Ignall and Schrage is the maximum of these m

bounds.

 8.2 Exact Methods 279

To illustrate the procedure let us consider a 4–job, 3-machine instance from

[Bak74]. The processing times pij can be found in Table 8.2.1.

pij J1 J2 J3 J4

P1 3 11 7 10

P2 4 1 9 12

P3 10 5 13 2

Table 8.2.1 Processing times of a 4-job, 3-machine instance.

Initially the permutation + is empty and four branches are generated from the

initial search tree node. Each branch defines the next (first) position 1, 2, 3, or 4

in +. The partial permutations +, the values Cp(+), and the lower bounds LBp, for

p = 1, 2, 3, and the maximum LB of the lower bounds obtained throughout the

search are given in Table 8.2.2.

+ C1(+) C2(+) C3(+) LB1 LB2 LB3 LB

1 3 7 17 37 31 37 37

2 11 12 17 45 39 42 45

3 7 16 29 37 35 46 46

4 10 22 24 37 41 52 52

1, 2 14 15 22 45 38 37 45

1, 3 10 19 32 37 34 39 39

1, 4 13 25 27 37 40 45 45

Table 8.2.2 Search tree nodes of the Ignall / Schrage [IS65] branch and
bound.

Two additional branches are generated from that node associated with permuta-

tion (1, 4). These branches immediately lead to feasible solutions (1, 3, 2, 4) and

(1, 3, 4, 2) with makespans equal to 45 and 39, respectively. Hence, (1, 3, 4, 2) is

a permutation defining an optimal schedule.

The calculation of lower bound can be strengthened in a number of ways. On

each machine Pk, except the first one, there may occur some idle time of Pk be-

tween the completion of job Ji and the start of its immediate successor Jj . The

idle time arises if Jj is not ready "in time" on the previous machine Pk–1 , in other

words Ck–1(+j) > Ck(+). Thus we can improve the aforementioned bounds if we

replace the earliest start time on Pr of the next job not in J+ by

280 8 Flow Shop Scheduling

C–1(+) = C1(+) and C–r(+) = max
k=1,2,...,r

{Ck(+) + min
j�+

{�
q=k

r–1

 pqj}}, for r = 2,..., m.

Besides the above machine based bound another job based bound can be calcu-

lated as follows: Consider a partial permutation + and let 7 be an extension to a

complete schedule S+7 . For any job Jj with j�7 we can calculate a lower bound

on the makespan of S+7 as C1(+) + �
k=1

m
 pkj + �

Ji�J�
 p1i + �

Ji�J@
 pmi where J1 (J2) are the

sets of jobs processed before (after) Jj in schedule S+7 , respectively. Since �
Ji�J�

 p1i

+ �
Ji�J@

 pmi � �
i�7
i�j

 min{ p1i, pmi} we get the following lower bounds:

LBJj
 = max

j�7
{ max

1�r�s�m
{ Cr(+) + �

q=r

s
 pqj + �

i�7
i�j

 min{pri, psi}}}

Let us consider the computation of lower bounds within a more general frame-

work which can be found in [LLRK78]. The makespan of an optimal solution of

any sub-problem consisting of all jobs and a subset of the set of machines defines

a lower bound on the makespan of the complete problem. In general these

bounds are costly to compute (the problem is NP-hard if the number of machines

is at least 3) except in the case of two machines where we can use Johnson’s al-

gorithm. Therefore let us restrict ourselves to the case of any two machines Pu

and Pv . That means only Pu and Pv are of limited capacity and can process only

one job at a time. Pu and Pv are said to be bottleneck machines, while the remain-

ing machines P1 ,..., Pu–1 , Pu+1 ,..., Pv–1 , Pv+1 ,..., Pm , the non-bottleneck ma-

chines, are available with unlimited capacity. In particular, a non-bottleneck ma-

chine may process jobs simultaneously. Since the three (at most) sequences of

non-bottleneck machines P1u = P1,..., Pu–1 ; Puv = Pu+1,..., Pv–1 , and Pvm = Pv+1,

..., Pm can be treated as one machine each (because we can process the jobs on

the non-bottleneck machines without interruption), it follows that (in our lower

bound computation) each partial permutation + defines a partial schedule for a

problem with at most five machines P1u , Pu , Puv , Pv , Pvm , in that order. Of

course, the jobs’ processing times on P1u , Puv , and Pvm have still to be defined.

We define for any job Ji the processing times

p1u i = max
r =1,2,...,u�1

{ Cr(+) + �
k=r+1

u–1

 pki } ; puv i = �
k=u+1

v–1

 pki ; pvm i = �
k=v+1

m
 pki ;

processing times on bottleneck machines are unchanged. Thus, the processing

times p1u i , puv i , and pvm i are the earliest possible start time of processing of job

Ji on machine Pu , the minimum time lag between completion time of Ji on Pu

and start time of Ji on Pv , and a minimum remaining flow time of Ji after com-

 8.2 Exact Methods 281

pletion on machine Pv , respectively. If u = v we have a problem of at most three

machines with only one bottleneck machine. Note, we can drop any of the ma-

chines P1u , Puv , or Pvm from the (at most) five machine modified flow shop

problem through the introduction of a lower bound r1u , ruv on the start time of

the successor machine, or a lower bound rvm on the finish time of the whole

schedule, respectively. In that case r1u = min
i�+

{p1u i}, ruv = min
i�+

{puv i}; rvm

 = min
i�+

{pvm i}. If u = 1, v = u + 1, or v = m we have r1u = C1(+), ruv = 0, or rvm = 0,

respectively. The makespan LB+((, *, ", ,, %) of an optimal solution for each of

the resulting problems defines a lower bound on the makespan of any completion

7 to a permutation schedule (+7). Hereby (equals P1u or r1u reflecting the cases

whether the start times on Pu are depending on the completion on a preceding

machine P1u or an approximation of them, respectively. In analogy we get " �

{Puv , ruv} and % � {Pvm , rvm}. Parameters * and , correspond to Pu and Pv , re-

spectively.

Let us consider the bounds in detail (neglecting symmetric cases):

(1) LB+(r1u , Pu , rum) = r1u + �
i=1
i�+

n
 pui + rum .

(2) The computation of LB+(r1u , Pu , Pum) amounts to minimization of the max-

imum completion time on machine Pum . The completion time of Ji on machine

Pum equals the sum of the completion time of Ji on machine Pu and the pro-

cessing time pum i . Hence, minimizing maximum completion time on machine

Pum corresponds to minimizing maximum lateness on machine Pu if the due date

of job Ji is defined to be �pum i . This problem can be solved optimally using the

earliest due date rule, i.e. ordering the jobs according to non-decreasing due

dates. In our case this amounts to ordering the jobs according to non-increasing

processing times pum i . Adding the value r1u to the value of an optimal solution

of this one-machine problem with due dates yields the lower bound LB+(r1u , Pu ,

Pum).

(3) The bound LB+(P1u , Pu , rum) leads to the solution of a one-machine problem

with release date p1u i for each job Ji . Ordering the jobs according to non-

decreasing processing time p1u i yields an optimal solution. Once again, adding

rum to the value of this optimal solution gives the lower bound LB+(P1u , Pu , rum).

(4) The computation of LB+(P1u , Pu , Pum) corresponds to minimizing maximum

lateness on Pu with respect to due dates �pum i and release dates p1u i . The prob-

lem is NP-hard, cf. [LRKB77]. Anyway, the problem can be solved quickly if the

number of jobs is reasonable, see the one-machine lower bound on the job shop

scheduling problem described in Chapter 10.

282 8 Flow Shop Scheduling

(5) Computation of LB+(r1u , Pu , ruv , Pv , rum) leads to the solution of a flow

shop scheduling problem on two machines Pu and Pv . The order of the jobs ob-

tained from Johnson’s algorithms will not be affected if Pv is unavailable until

Cv(+). Adding r1u and rum to the makespan of an optimal solution of this two ma-

chine flow shop scheduling problem yields the desired bound.

(6) Computation of LB+(r1u , Pu , Puv , Pv , rum) leads to the solution of a 3-

machine flow shop problem with a non-bottleneck machine between Pu and Pv .

The same procedure as described under (5) yields the desired bound. The only

difference being that Johnson’s algorithm is used in order to solve a 2-machine

flow shop with processing times pui + puv i and pvi + puv i for all i 	 +.

Computation of the remaining lower bounds require to solve NP-hard prob-

lems, cf. [LRKB77] and [LLRK78].

LB+(r1u , Pu , Puv , Pv , rum) and LB+(P1u , Pu , Pum) turned out to be the

strongest lower bounds. Let us consider an example taken from [LLRK78]: Let n

= m = 3; let p11 = p12 = 1, p13 = 3, p21 = p22 = p23 = 3, p31 = 3, p32 = 1, p33 = 2.

We have LB+(P1u , Pu , Pum) = 12 and LB+(r1u , Pu , Puv , Pv , rum) = 11. If p21 = p22

= p23 = 1 and all other processing times are kept then LB+(P1u , Pu , Pum) = 8 and

LB+(r1u , Pu , Puv , Pv , rum) = 9.

In order to determine the minimum effort to calculate each bound we refer

the reader to [LLRK78].

8.3 Approximation Algorithms

8.3.1 Priority Rule and Local Search Based Heuristics

Noteworthy flow shop heuristics for the makespan criterion are those of Camp-

bell et al. [CDS70] and Dannenbring [Dan77]. Both used Johnson’s algorithm,

the former to solve a series of two machine approximations to obtain a complete

schedule. The second method locally improved this solution by switching adja-

cent jobs in the sequence. Dannenbring constructed an artificial two machine

flow shop problem with processing times �
j=1

m
(m � j + 1)pji on the first artificial

machine and processing times �
j = 1

m
 j pji on the second artificial machine for each

job Ji , i = 1,..., n. The weights of the processing times are based on Palmer’s

[Pal65] ‘slope index’ in order to specify a job priority. Job priorities are chosen

so that jobs with processing times that tend to increase from machine to machine

will receive higher priority while jobs with processing times that tend to decrease

from machine to machine will receive lower priority. Hence the slope index, i.e.

 8.3 Approximation Algorithms 283

the priority to choose for the next job Ji is si = �
j=1

m
(m � 2j + 1)pji for i = 1,..., n.

Then a permutation schedule is constructed using the job ordering with respect to

decreasing si. Hundal and Rajgopal [HR88] extended Palmer’s heuristic by com-

puting two other sets of slope indices which account for machine (m + 1)/2 when

m is odd. Two more schedules are produced and the best one is selected. The two

sets of slope indices are si = �
j=1

m
(m � 2j + 2)pji and si = �

j=1

m
(m – 2j)pji for i = 1,..., n.

Campbell et al. [CDS70] essentially generate a set of m � 1 two machine

problems by splitting the m machines into two groups. Then Johnson’s two ma-

chine algorithm is applied to find the m – 1 schedules, followed by selecting the

best one. The processing times for the reduced problems are defined as p1ki

 = �
j=1

k
 pji and p2ki = �

j=m–k+1

m
 pji for i = 1,..., n, where p1ki (p2ki) represents the pro-

cessing time for job Ji on the artificial first (second) machine in the k th
 problem,

k = 1,..., m – 1.

Gupta [Gup71] recognizes that Johnson’s algorithm is in fact a sorting algo-

rithm which assigns an index to each job and sorts the jobs in ascending order by

these indices. He generalized the index function to handle also cases of more

than three machines. The index of job Ji is defined as

si = 0 / min
1�j�m–1

{pji + pj+1 i} for i = 1,..., n

where

0 =
�
�

1 if pji � p1i ,

�1 otherwise.

The idea of [HC91] is the heuristical minimization of gaps between succes-

sive jobs. They compute the differences dkij = pk+1 i – pkj for i, j = 1,..., n; k =

1,..., m � 1 and i � j. If job Ji precedes job Jj in the schedule, then the positive

value dkij implies that job Jj needs to wait on machine Pk+1 at least dkij units of

time until job Ji finishes. A negative value of dkij implies that there exist dkij units

of idle time between job Ji and job Jj on machine Pk+1 . Ho and Chang define a

certain factor to discount the negative values. This factor assigns higher values to

the first machines and lower values to last ones in order to reduce accumulated

positive gaps effectively. The discount factor is defined as follows:

,kij =
�.
�
.

0.9 (m – k – 1)
m – 2

 + 0.1 if dkij < 0,

1 otherwise

(for i, j = 1,..., n;

and k = 1,..., m – 1).

Combining the dkij and the discount factor, Ho and Chang define the overall re-

vised gap:

284 8 Flow Shop Scheduling

dRij = �
k=1

m�1

 dkij ,kij , for i, j = 1,..., n.

Let J[i] be the job in the i
th

 position of a permutation schedule defined by permu-

tation +. Then the heuristic works as follows:

Algorithm 8.3.1 Gap minimization heuristic [HC91].
begin
Let S be a feasible solution (schedule);

Construct values dRij for i, j = 1,..., n;

a := 1; b := n;
repeat
 S' := S;
 Let dR[a][u] = max

a<j<b
{dR[a][j]};

 Let dR[v][b] = min
a<j<b

{dR[j][b]};

 if dR[a][u] < 0 and dR[v][b] > 0 and | dR[a][u] | � | dR[v][b] |

 then

 begin
 a = a + 1;

 Swap the jobs in the positions a and u of S;
 end;

 if dR[a][u] < 0 and dR[v][b] > 0 and | dR[a][u] | > | dR[v][b] |

 then

 begin
 b = b – 1;

 Swap the jobs in the positions b and v of S;
 end;

 if | dR[a][u] | > | dR[v][b] |

 then

 begin
 a = a + 1;

 Swap the jobs in the positions a and u of S;

 end;

 if the makespan of S increased then S = S';

 until b = a + 2

end;

Simulation results show that the heuristic [HC91] improves the best heuristic

(among the previous ones) in three performance measures, namely makespan,

mean flow time and mean utilization of machines.

An initial solution can be obtained using the following fast insertion method

proposed in [NEH83].

 8.3 Approximation Algorithms 285

Algorithm 8.3.2 Fast insertion [NEH83].

begin
Order the n jobs by decreasing sums of processing times on the machines;

Use Aker’s graphical method to minimize the makespan of the first two jobs

on all machines;
 -- The schedule defines a partial permutation schedule for the whole problem.

for i = 3 to n do
Insert the i

th
 job of the sequence into each of the i possible positions in the

partial permutation and keep the best one defining an increased partial

permutation schedule;
end;

Widmer and Hertz [WH89] and Taillard [Tai90] solved the permutation flow

shop scheduling problem using tabu search. Neighbors are defined mainly as in

the traveling salesman problem by one of the following three neighborhoods:

(1) Exchange two adjacent jobs.

(2) Exchange the jobs placed at the i
th

 position and at the k
th

 position.

(3) Remove the job placed at the i
th

 position and put it at the k
th

 position.

Werner [Wer90] provides an improvement algorithm, called path search, and

shows some similarities to tabu search and simulated annealing. The tabu search

described in [NS96] resembles very much the authors’ tabu search for job shop

scheduling. Therefore we refer the reader to the presentation in the job shop

chapter. There are other implementations based on the neighborhood search, for

instance, the simulated annealing algorithm [OP89] or the genetic algorithm

[Ree95] or the parallel genetic algorithm [SB92].

8.3.2 Worst-Case Analysis

As mentioned earlier the polynomially solvable flow shop cases with only two

machines are frequently used to generate approximate schedules for those prob-

lems having a larger number of machines.

It is easy to see that for any active schedule (a schedule is active if no job can

start its processing earlier without delaying any other job) the following relation

holds between the makespan Cmax(S) of an active schedule and the makespan

Cmax
* of an optimal schedule:

Cmax(S) / Cmax
* � max

1�i�m
1�j�n

{pij}4min
1�i�m
1�j�n

{pij}

286 8 Flow Shop Scheduling

Gonzales and Sahni [GS78] showed that Cmax(S) / Cmax
* � m which is tight. They

also gave a heuristic H1 based on �m/2� applications of Johnson’s algorithm with

Cmax(S) / Cmax
* � 9m/2; where S is the schedule produced by H1.

Other worst-case performance results can be found in [NS93].

In [Bar81] an approximation algorithm has been proposed whose absolute

error does not depend on n and is proved to be

Cmax(S) – Cmax
* = 0.5 (m � 1) (3m � 1) max

1�i�m
1�j�n

{pij} .

where S is the produced schedule.

Potts [Pot85] analyzed a couple of approximation algorithms for F2│rj |

Cmax . The best one, called RJ', based on a repeated application of a modification

of Johnson’s algorithm has an absolute performance ratio of Cmax(S) / Cmax
* � 5/3

where S is the schedule obtained through RJ'.
In the following we concentrate on the basic ideas of machine aggregation

heuristics using pairs of machines as introduced by Gonzalez and Sahni [GS78]

and Röck and Schmidt [RS83]. These concepts can be applied to a variety of

other NP-hard problems with polynomially solvable two-machine cases (cf. Sec-

tions 5.1 and 13.1). They lead to worst case performance ratios of 9m/2;, and the

derivation of most of the results may be based on the following more general

lemma which can also be applied in cases of open shop problems modeled by

unrelated parallel machines.

Lemma 8.3.3 [RS83] Let S be a non-preemptive schedule of a set T of n tasks
on m � 3 unrelated machines Pi , i = 1,..., m. Consider the complete graph (P ,

E) of all pairs of machines, where E = {{Pi , Pj} | i, j = 1,..., m, and i � j}. Let
M be a maximum matching for (P , E). Then there exists a schedule S' where
(1) each task is processed on the same machine as in S, and S' has at most n
preemptions,
(2) all ready times, precedence and resource constraints under which S was fea-
sible remain satisfied,
(3) no pair {Pi , Pj} of machines is active in parallel at any time unless {Pi ,

Pj} � M , and

(4) the finish time of each task increases by a factor of at most 9m/2; .

Proof. In case of odd m add an idle dummy machine Pm+1 and match it with the

remaining unmatched machine, so that an even number of machines can be as-

sumed. Decompose S into sub-schedules S(q, f), q � M , f � {fq
1

 , fq
2

 ,..., f q
Kq}

where fq
1
 < fq

2
 <...< f q

Kq is the sequence of distinct finishing times of the tasks

which are processed on the machine pair q. Without loss of generality we assume

 8.3 Approximation Algorithms 287

that Kq � 1. Let fq
0
 = 0 be the start time of the schedule and let S(q, fq

k
) denote the

sub-schedule of the machine pair q during interval [fq
k�1

 , fq
k
]. The schedule S'

which is obtained by arranging all these sub-schedules of S one after the other in

the order of non-decreasing endpoints f, has the desired properties because (1):

each task can preempt at most one other task, and this is the only source of

preemption. (2) and (3): each sub-schedule S(q, f) is feasible in itself, and its po-

sition in S' is according to non-decreasing endpoints of f. (4): the finish time Cj'
of task Tj � T in S' is located at the endpoint of the corresponding sub-schedule

S(q(j), Cj) where q(j) is the machine pair on which Tj was processed in S, and Cj

is the completion time of Tj in S. Due to the non-decreasing endpoint order of the

sub-schedules it follows that Cj' � 9m/2;Cj .

For certain special problem structures Lemma 8.3.3 can be specialized so that

preemption is kept out. Then, the aggregation approach can be applied to prob-

lems F | | Cmax and O | | Cmax , and to some of their variants which remain solvable

in case of m = 2 machines. We assume that for flow shops the machines are

numbered that reflects the order each job is assigned to the machines.

We present two aggregation heuristics that are based on special conditions

restricting the use of machines.

Condition C1: No pair {Pi , Pj} of machines is allowed to be active in parallel at

any time unless {Pi , Pj} � M 1 = {{P2l�1 , P2l} | l = 1, 2,..., �m/2�} .

Condition C2: Let (P , E) be a bipartite graph where E = {{Pa , Pb} | a � {1,

2,..., 9m/2;}, b � {9m/2; + 1,..., m}, and let M 2 be a maximal matching for (P,

E). Then no pair {Pi, Pj} of machines is allowed to be active in parallel at any

time unless {Pi , Pj} � M 2 .

The following Algorithms 8.3.4 and 8.3.5 are based on conditions C1 and

C2, respectively.

Algorithm 8.3.4 Aggregation heuristic H1 for F | | Cmax [GS78].

begin

for each pair qi = {P2i�1 , P2i} � M 1
begin
Find an optimal sub-schedule S*

i for the two machines P2i�1 and P2i;

if m is odd
then

S *
9m/2; := an arbitrary schedule of the tasks on the remaining unmatched ma-

chine Pm;

288 8 Flow Shop Scheduling

S := S*
1 1 S*

2 1...1 S *
9m/2;;

end;

end;

As already mentioned, for F | | Cmax this heuristic was shown in [GS78] to have

the worst case performance ratio of Cmax(H1) / C *
max � 9m/2;. The given argument

can be extended to F | pmtn | Cmax and O | | Cmax , and also to some resource con-

strained models. Tightness examples which reach 9m/2; can also be constructed,

but heuristic H1 is not applicable if permutation flow shop schedules are re-

quired.

In order to be able to handle this restriction consider the following Algo-

rithm 8.3.5 which is based on condition C2. Assume for the moment that all ma-

chines with index less than or equal 9m/2; are represented as a virtual machine

P'1 , and those with an index larger than 9m/2; as a virtual machine P'1 . We again

consider the given scheduling problem as a two machine problem.

Algorithm 8.3.5 Aggregation heuristic H2 for F | | Cmax and its permutation
variant [RS83].

begin

Solve the flow shop problem for two machines P'1 , P'2 where each job Jj has

processing time aj = �
i=1

9m/2;
 pij on P'1 and processing time bj = �

i= 9m/2; +1

m
 pij on P'2 ,

respectively;

Let S be the two-machine schedule thus obtained;

Schedule the jobs on the given m machines according to the two machine

schedule S;
end;

The worst case performance ratio of Algorithm 8.3.5 can be derived with the

following Lemma 8.3.6.

Lemma 8.3.6 For each problem F | | Cmax (permutation flow shops included) and

O | | Cmax , the application of H2 guarantees Cmax(H2) / C *
max � 9m/2; .

Proof. Let S be an optimal schedule of length C *
max for an instance of the problem

under consideration. As M 2 from condition C2 is less restrictive than M 1 , it

follows from Lemma 8.3.3 that there exists a preemptive schedule S' which re-

mains feasible under C2, and whose length is C ' max/C * max � 9m/2;. By construc-

tion of M 2 , S' can be interpreted as a preemptive schedule of the job set on the

two virtual machines P'1 , P'2 , where P'1 does all processing which is required on

the machines P1 ,..., P9m/2; , and P'2 does all processing which is required on the

 8.3 Approximation Algorithms 289

machines P9m/2; +1 ,..., Pm . Since on two machines preemptions are not advanta-

geous the schedule S generated by algorithm H2 has length Cmax(H2) � C ' max �

9m/2; C *
max .

H2 can be implemented to run in O(n(m + log n)) for F | | Cmax and also for its

permutation variant using Algorithm 8.2.1. It is easy to adapt Lemma 8.3.3 to a

given preemptive schedule S so that the 9m/2; bound for H2 extends to F | pmtn |

Cmax as well.

The following example shows that the 9m/2; bound of H2 is tight for F | |

Cmax . Take m jobs Jj , j = 1,..., m, with processing times pij = p > 0 for i = j ,

whereas pij = % � 0 for i � j . H2 uses the processing times aj = p + (9m/2; � 1) % ,

bj = �m/2� % for j � 9m/2; , and aj = 9m/2; % , bj = p + (9m/2; � 1) % for j > 9m/2; .

Consider job sets J
k
 which consist of k copies of each of these m jobs. For an

optimal flow shop schedule for J
k
 we get C *

max = kp + (m � 1)(k + 1) % . The opti-

mal two machine flow shop schedule for J
k
 produced by H2 may start with all k

copies of J9m/2; +1 , J9m/2; +2 ,..., Jm and then continue with all k copies J1 , J2 ,...,

J9m/2; . On m machines this results in a length of Cmax(H2) =

(m � 1 + k �m/2�) % + 9m/2; pk . It follows that Cmax(H2) / C *
max approaches 9m/2; as

% � 0.

8.3.3 No Wait in Process

An interesting sub-case of flow shop scheduling is that with no-wait constraints

where no intermediate storage is considered and a job once finished on one ma-

chine must immediately be started on the next one.

The two-machine case, i.e. problem F2 | no-wait | Cmax , may be formulated as

a special case of scheduling jobs on one machine whose state is described by a

single real valued variable x (the so-called one state-variable machine problem)

[GG64, RR72]. Job Ji requires a starting state x = Ai and leaves with x = Bi .

There is a cost for changing the machine state x in order to enable the next job to

start. The cost cij of Jj following Ji is given by

cij =

�.
�
.

 KK
Bi

Aj

 f(x)dx if Aj � Bi ,

 KK
Aj

Bi

 f(x)dx if Bi > Aj ,

290 8 Flow Shop Scheduling

where f(x) and g(x) are integrable functions satisfying f(x) + g(x) � 0. The objec-

tive is to find a minimal cost sequence for the n jobs. Let us observe that problem

F2 | no-wait | Cmax may be modeled in the above way if Aj = p1j , Bj = p2j , f(x) = 1

and g(x) = 0. Cost cij then corresponds to the idle time on the second machine

when Jj follows Ji , and hence a minimal cost sequence for the one state-variable

machine problem also minimizes the completion time of the schedule for prob-

lem F2 | no-wait | Cmax . On the other hand, the first problem corresponds also to a

special case of the traveling salesman problem which can be solved in O(n2
) time

[GG64]. Unfortunately, more complicated assumptions concerning the structure

of the flow shop problem result in its NP-hardness. So, for example, Fm | no-
wait | Cmax is unary NP-hard for fixed m � 3 [Röc84].

As far as approximation algorithms are concerned H1 is not applicable here,

but H2 turns out to work [RS83].

Lemma 8.3.7 For F | no-wait | Cmax , the application of H2 guarantees
Cmax(H2) / C *

max � 9m/2; .

Proof. It is easy to see that solving the two machine instance by H2 is equivalent

to solving the given instance of the m machine problem under the additional con-

dition C2. It remains to show that for each no-wait schedule S of length Cmax

there is a corresponding schedule S' which is feasible under C2 and has length

C ' max � 9m/2; Cmax . Let J1 , J2 ,..., Jn be the sequence in which the jobs are pro-

cessed in S and let sij be the start time of job Jj , j = 1,..., n, on machine Ji , i =

1,..., m. As a consequence of the no-wait requirement, the successor Jj+1 of Jj

cannot start to be processed on machine Pi�1 before Jj starts to be processed on

machine Pi . Thus for q = 9m/2; we have sq+1

j � sq
j+1 �...� s1

j+qand for the finish

time Cj of job Jj we get Cj � sm
j+1 � sm�1

j+2 �...� sq+1

j+m�q � sq+1

j+q . This shows that if we

would remove the jobs between Jj and Jj+q from S, then S would satisfy C2 in the

interval [sq+1

j , sq+1

j+q]. Hence, for each k = 1,..., q the sub-schedule Sk of S which

covers only the jobs of the subsequence Jk , Jk+q , Jk+2q ,..., Jk+�(n�k)/q� q of J1 ,...,

Jn satisfies C2. Arrange these sub-schedules in sequence. None is longer than

Cmax , and each job appears in one of them. The resulting schedule S' is feasible

and has length C ' max � qCmax .

Using the algorithm of Gilmore and Gomory [GG64], H2 runs in O(n(m + logn))

time. The tightness example given above applies to the no-wait flow shop as

well, since the optimal schedule is in fact a no-wait schedule. Moreover, on two

machines it is optimal to have any alternating sequence of jobs Jb , Ja , Jb , Ja with

a � {1,..., 9m/2;} and b � {9m/2; + 1,..., m}, and in case of odd m this may be

 8.4 Scheduling Flexible Flow Shops 291

followed by all copies of J1 . When % tends to zero, the length of such a schedule

on m machines approaches 9m/2; kp, thus Cmax(H2) / C *
max approaches 9m/2; .

An interesting fact about the lengths of no-wait and normal flow shop

schedules, respectively, has been proved by Lenstra. It appears that the no-wait

constraint may lengthen the optimal flow shop schedule considerably, since

C *
max(no-wait) / C *

max < m for m � 2 .

8.4 Scheduling Flexible Flow Shops

8.4.1 Problem Formulation

The hybrid or flexible flowshop problem is a generalization of the flowshop in
such a way that every job can be processed by one among several machines on
each machine stage. In recent years a number of effective exact methods have
been developed. A major reason for this progress is the development of new job
and machine based lower bounds as well as the rapidly increasing importance of
constraint programming.

We consider the problem of scheduling n parts or jobs Jj , j = 1, 2,..., n,
through a manufacturing system that will be called a flexible flow shop (FFS), to
minimize the schedule length. An FFS consists of m � 2 machine stages or cen-
ters with stage l having kl � 1 identical parallel machines Pl 1 , Pl 2 ,..., Pl kl

 (see

Figure 8.4.1). For job Jj vector [p1j , p2j ,..., pmj]
T
 of processing times is known,

where pl j � 0 for all l, j. Task Tl j of job Jj may be processed on any of the kl ma-

chines. This is the generalization of the standard flow shop scheduling problem,

whereas all the remaining assumptions remain unchanged.

The jobs have to visit the stages in the same order starting from stage 1
through stage m. A machine can process at most one job at a time and a job can
be processed by at most one machine at a time. Preemption of processing is not
allowed. The scheduling problem consists of assigning jobs to machines at each
stage and sequencing the jobs assigned to the same machine so that some opti-
mality criterion C is minimized.

Note that the processing time pl j does not depend on the machine assigned to
job Jj at stage l. This notation is applied when stage l consists of identical parallel
machines. The completion time (which is a decision variable) of job Jj at stage l
will be denoted by C (l)

j .
A partial schedule S assigns some jobs to machines and fixes the pro-

cessing order of another subset of jobs. S can be modeled by a directed graph G =
(V, A), where V consists of nm+2 nodes, i.e., one node (j, l) for each job Jj at each
stage l and two additional nodes, 0 and *. A contains the arcs (directed edges)

292 8 Flow Shop Scheduling

(0,(j, l)) and ((j, l),*) for all nodes (j, l). Moreover, the arcs ((j, l), (j, l�1)) belong
to A for all j and 1 � l � m�1. Finally, whenever S fixes that job Ji precedes job Jj
at some stage l then arc ((i, l), (j, l)) belongs to A. The length of an arc ((i, l), x) �
A is pl i, where x is a node of G. The length of any arc (0, (i, l)) � A is null. A
path � in G is a sequence of nodes (�1, …, �e) such that � contains no node twice
and (�u, �u+1) � A for all 1 � u � e�1. The length of a path � is the sum of the
lengths of the arcs (�u, �u+1), 1 � u � e�1, along the path. Let h(x, y) represent the
length of the longest path between nodes x and y. If no path exists between x and
y in G, then h(x, y) = #. Finally, the release date or head r(l)

j of job Jj at stage l is
h(0, (j, l)), while its delivery time or tail q(l)

j is h((j, l), *) � pl j, see Blazewicz et al.
[BDP96]. Figure 8.4.1 is an example with m stages and kl machines at each stage
l.

Machines may remain idle and in-process inventory is allowed. This is im-

portant, since a restricted version of the problem was studied already by Salvador

[Sal73] who presented a branch and bound algorithm for FFS with no-wait

schedules and pl j > 0 for all l, j. He identified the problem in the polymerization

process where there are several effectively identical and thus interchangeable

plants each of which can be considered as a flow shop. Of course, all situations

where a parallel machine(s) is (are) added at least one stage of a flow shop to

solve a bottleneck problem or to increase the production capacity lead to the FFS

scheduling. Another interesting application of the problem was described by

Brah and Hunsucker [BH91] and concerns the running of a program on a com-

puter where the three steps of compiling, linking and running are performed in a

fixed sequence and we have several processors (software) at each step. Other real

life examples exist in the electronics manufacturing.

1

2

0 *

1 1

22

k1 2k mk

Figure 8.4.1 Schematic representation of a flexible flow shop.

Heuristics for the general FFS scheduling problem (in the sense stated above)

were developed by Wittrock [Wit85, Wit88], and by Kochbar and Morris

[KM87]. The first paper deals with a periodic algorithm where a small set of jobs

is scheduled and the schedule is repeated many times, whereas the second one

 8.4 Scheduling Flexible Flow Shops 293

presents a non-periodic algorithm. The basic approach in both cases is to decom-

pose the problem into three sub-problems: machine allocation, sequencing and

timing. The first sub-problem is to determine which jobs will visit which ma-

chine at each stage. The second sub-problem sequences jobs on each machine,

and the third one consists of finding the times at which the jobs should enter the

system. The heuristic algorithm developed by Kochbar and Morris considers set-

up times, finite buffers, blocking and starvation, machine down time, and current

and subsequent state of the system. The heuristics tend to minimize the effect of

setup times and blocking.

The standard (| * | " notation for classifying scheduling problems by Gra-
ham et al. [GLL+79] has been extended by Vignier et al. [VBP99] to take the
new machine environment into consideration. Here we will consider only models
with identical parallel machines at the stages and the objective is to minimize the
makespan, denoted by Fm | k1, k2 ,..., km | Cmax , and the mean flow time, Fm | k1,
 k2 ,..., km | 5Ci , respectively. In fact, we are not aware of efficient exact solution
procedures for the general m-stage problem with other processing environments.
By “general m-stage problem'' we mean that m is not restricted to a small con-
stant.

The general m-stage multiprocessor flowshop scheduling problem is strong-
ly NP-hard for all traditional optimality criteria, since the special cases F3 | | Cmax
and F2 | | 5Ci having only one machine at each stage are NP-hard in the strong
sense, as shown in Garey et al. [GJS76]. Moreover, the makespan minimization
problem is already NP-hard in the strong sense when m = 2 and max{k1, k2 } > 1
as shown by Gupta [Gup88]. Note that Hoogeveen et al. [HLV96] have proven
that F2 | 2 , 1 | Cmax is at least NP-hard in the ordinary sense, while its preemptive
version, F2 | 2,1, pmtn | Cmax, has been shown NP-hard in the strong sense.

In the following sections we will present some heuristics for simple sub-

problems of our problem for which the worst and average case performance is

known.

Then we provide a comprehensive and uniform overview on exact solution
methods for flexible flowshops with branching, bounding and propagation of
constraints under two different objective functions: minimizing the makespan of
a schedule and the mean flow time. This part is based on Kis and Pesch [KP05].

We do not discuss the large body of work on the two-stage special case. The
review by Vignier et al. [VBP99] offers an exhaustive overview on two-stage
problems.

We present a mixed integer-linear program modeling the constraints of both
the minimum makespan and the minimum mean flow time problems, respective-
ly. Then we consider the minimum makespan problem, followed by a discussion
on approaches for minimizing the mean flow time. The latter two sections have a
common structure: first various lower bounds are presented and compared if pos-
sible, then branching schemes and their merits are discussed.

294 8 Flow Shop Scheduling

8.4.2 Heuristics and Their Performance

The results presented in this section were obtained by Sriskandarajah and Sethi

[SS89]. In the sequel the FFS scheduling problem with m machine stages and ki

machines at stage i will be denoted by Fm | k1 , k2 ,..., km | Cmax .

Let us start with the problem F2 | k1 = 1, k2 = k � 2 | Cmax, and let us assume

that the buffer between the machine stages has unlimited capacity. First, consider

the list scheduling algorithm in which a list of the job indices 1, 2,..., n is given.

Jobs enter the first machine stage (i.e. machine P1) in the order defined by the

list, form the queue between the stages and are processed in center 2, whenever a

machine at this stage becomes available. Cmax denotes the schedule length of the

set of jobs when the list scheduling algorithm is applied, and C *
max is the mini-

mum possible schedule length of this set of jobs. Then the following theorem

holds.

Theorem 8.4.1 [SS89] For the list scheduling algorithm applied to the problem

Fm | km�1 = 1, km = k � 2 | Cmax we have

Cmax /C *
max � m + 1 �

1
k ,

and this is the best possible bound.

The proof of this theorem is based on Grahams result [Gra66] for algorithms

applied to the problem Pm | | Cmax (or F1 | k1 = k � 2 | Cmax) . The bound is, as we

remember from Section 5.1, Cmax /C *
max � 2 � 1/k .

Consider now Johnson's algorithm which, as we remember, is optimal for

problem F2 | | Cmax . The following can be proved.

Theorem 8.4.2 [SS89] For Johnson's algorithm applied to problems F2 | k1 = 1,

k2 = k = 2 | Cmax and F2 | k1 = 1, k2 = k � 3 | Cmax with Cmax � �
j=1

n
 p1j + max

j
{p2j} the

following holds:

Cmax /C *
max � 2 ,

and this is the best possible bound.

Theorem 8.4.3 [SS89] For Johnson's algorithm applied to the problem F2 | k1 =

1, k2 = k � 3 | Cmax with Cmax > �
j=1

n
 p1j + max

j
{p2j} we have

Cmax /C *
max � 1 + (2 �

1

k)(1 �
1

k) .

 8.4 Scheduling Flexible Flow Shops 295

Notice that the bounds obtained in Theorems 8.4.2 and 8.4.3 are better than those

of Theorem 8.4.1.

Let us now pass to the problem F2 | k1 = k2 = k � 2 | Cmax . The basic algorithm

is the following.

Algorithm 8.4.4 Heuristic Ha for F2 | k1 = k2 = k � 2 | Cmax [SS89].

begin
Partition the set of machines into k pairs {P11 , P21}, {P12 , P22},..., {P1k , P2k},

treating each pair as an artificial machine P'i , i = 1, 2,..., k, respectively;

for each job Jj � J do p'j := p1j + p2j;
call List scheduling algorithm;

-- this problem is equivalent to the NP-hard problem Pk | | Cmax (see Section 5.1),

-- where a set of jobs with processing times p'j is scheduled non-preemptively on a set

-- of k artificial machines; list scheduling algorithm solves this problem heuristically

for i = 1 to k do call Algorithm 8.2.1;
-- this loop solves optimally each of the k flow shop problems

-- with unlimited buffers, i.e. for each artificial machine P'i the processing times p'i
-- assigned to it are distributed among the two respective machines P1i and P2i

end;

Let us note, that in the last for loop one could also use the Gilmore-Gomory

algorithm, thus solving the k flow shop problems with the no-wait condition. The

results obtained from hereon hold also for the FFS with no-wait restriction, i.e.

for the case of no buffer between the machine stages. On the basis of the Gra-

ham's reasoning, in [SS89] the same bound as in Theorem 8.4.1 has been proved

for Ha , and this bound remains unchanged even if a heuristic list scheduling al-

gorithm is used in the last for loop. Since an arbitrary list scheduling algo-

rithm has the major influence on the worst case behavior of Algorithm Ha , in

[SS89] another Algorithm, Hb , was proposed in which the LPT algorithm is

used. We know from Section 5.1 that in the worst case LPT is better than an arbi-

trary list scheduling algorithm for Pm | | Cmax . Thus, one can expect that for Hb a

better bound exists than for Ha .

The exact bound RHb
 for Hb is not yet known, but Srishkandarajah and Sethi

proved the following inequality,

7

3
 �

2

3k � RHb
 � 3 �

1

k .

The same authors proved that if LPT in Hb is replaced by a better heuristic or

even by an exact algorithm, the bound would still be RHb
 � 2. The bound 2 has

also been obtained in [Lan87] for a heuristic which schedules jobs in non-

296 8 Flow Shop Scheduling

increasing order of p2j in FFS with m = 2 and an unlimited buffer between the

stages.

Computational experiments performed in [SS89] show that the average per-

formance of the algorithms presented above is much better than their worst case

behavior. However, further efforts are needed to construct heuristics with better

bounds (i.e. less than 2).

8.4.3 A Model

A mixed integer programming formulation for Fm | k1, k2 ,..., km | Cmax is given by
Guinet et al. [GSKD96]. The decision variables specify the order of jobs on the
machines and the completion times of the jobs at each stage:

xijkl = 1, if job Jj is processed directly after job Ji on machine Pk in stage l,
 0 otherwise,

x0ikl = 1, if job Ji is the first job on machine Pk at stage l,
 0 otherwise,

xi0kl = 1, if job Ji is the last job on machine Pk at stage l,
 0 otherwise,

C (l)
j = completion time of job Jj at stage l,

Cmax = completion time of all jobs.

The mixed integer programming formulation in [GSKD96] is as follows:

minimize Cmax (8.4.1)

subject to

 5
i=0,i�j

n
 5
k=1

kl

 xijkl = 1 L j = 1 ,..., n, l = 1 ,..., m (8.4.2)

 5
j=0

n
 xijkl � 1 L h = 0 ,..., n, k = 1 ,..., kl,

 l = 1 ,..., L
(8.4.3)

 5
i=0,i�h

n
xihkl � 5

j=0,j�h

n
xhjkl = 0 L h = 1 ,..., n, k = 1 ,..., kl,

 l = 1 ,..., L
(8.4.4)

 C (l)
i + 5

k=1

kl

 xijkl & pl j + (5
k=1

kl

xijkl � 1)B � C (l)
j

L i = 1 ,..., n,
 j = 1 ,..., n,
 l = 1 ,..., m

(8.4.5)

 C (l�1)
j + pl j � C (l)

j L j = 1 ,..., n, l = 2 ,..., m (8.4.6)

 8.4 Scheduling Flexible Flow Shops 297

 C (l)
j � Cmax L j = 1 ,..., n, l = 1 ,..., m (8.4.7)

 xijkl � {0, 1} L i = 0 ,..., n, j = 0 ,..., n,
 k = 1 ,..., kl, l = 1 ,..., m (8.4.8)

 C (l)
j � 0 L j = 1 ,..., n, l = 1 ,..., m (8.4.9)

In this program B is a very big constant, i.e., greater than the sum of all job pro-
cessing times.

The makespan minimization aspect of the problem is expressed by (8.4.1).
Constraints (8.4.2), (8.4.3) and (8.4.4) ensure that each job is processed precisely
once at each stage. In particular, (8.4.2) guarantees that at each stage l for each
job Jj there is a unique machine such that either Jj is processed first or after an-
other job on that machine. The inequalities (8.4.3) imply that at each stage there
is a machine on which a job has a successor or is processed last. Finally, at each
stage for each job there is one and only one machine satisfying both of the previ-
ous two conditions by (8.4.4). Constraints (8.4.5) and (8.4.6) take care of the
completion times of the jobs. Inequalities (8.4.5) ensure that the completion
times C (l)

i and C (l)
j of jobs Ji and Jj scheduled consecutively on the same machine

respect this order. On the other hand, inequalities (8.4.6) imply that jobs go
through the stages in the right order, i.e. from stage 1 through stage m. The con-
straint that the makespan is not smaller than the completion time of any job is
expressed by (8.4.7). The last two constraints specify the domains of the decision
variables.

To minimize the mean flow time instead of the makespan it is enough to re-
place the objective function (8.4.1) with the following one:

min 5
i=1

n
 C (m)

i (8.4.10)

Moreover, the variable Cmax and all constraints involving it can be dropped.

8.4.4 The Makespan Minimization Problem

First we discuss various techniques for obtaining lower bounds, then we present
branching schemes and also implementations and computational results.

Lower Bounds

Although we are concerned with the general m-stage problem, it is worth to reca-
pitulate lower bounds for the two-stage special case, since several ideas stem
from studying the latter problems. We will highlight the key ideas and cite papers
that appear to propose them. If not mentioned otherwise, we assume that at each
stage there are identical parallel machines.

298 8 Flow Shop Scheduling

I) Reduction to classical flowshop. Consider the classical flowshop scheduling
problem obtained by dividing the job processing times at each stage by the num-
ber of machines. That is, define the new processing time of job Jj at stage l as p~l j
= pl j/kl , l = 1 ,..., m, j = 1 ,..., n. The n new jobs with processing times p~l j at the
different stages constitute a classical flowshop scheduling problem. When L = 2,
this flowshop scheduling problem can be solved to optimality by Johnson's rule
[Joh54]. The optimum makespan CLB of the latter problem is a lower bound on
the optimum makespan of the original problem, as it is observed in Lee and
Vairaktarakis [LV94]. To see this, let S * be an optimal schedule for the two-stage
multiprocessor problem and suppose the jobs are indexed in non-decreasing or-
der of their completion time at stage 1, i.e., i < j iff C(1)

i � C(1)
j . Consider the first i

jobs at stage 1 and the last n�i+1 jobs at stage 2. Since the last n�i+1 jobs cannot
start earlier at the second stage than the completion of the first i jobs at the first
stage, the completion time Cmax(S *) satisfies

Cmax(S *) �
1
k1

 5
j=1

i
 p1 j +

1
k2

 5
j=1

n
 p2 j , 1 � i � n .

Now consider the two-stage flowshop scheduling problem with n jobs having the
above processing times. When sequencing the jobs at both stages in increasing
order of their indices we obtain a feasible schedule and a longest path in that
schedule with length C̄max . On this longest past there is a job h such that

C̄max = 5
j=1

h

p1 j
k1

 + 5
j=h

n

p2 j
k2

 .

We immediately see that C̄max � Cmax(S *). Moreover, as CLB � C̄max , the state-
ment follows.

II) Aggregation. This is a very rich class of lower bounds based on computing
the total amount of work on some stages or machines. Again, we begin with the
case m = 2 and the following two lower bounds, LB(1) and LB(2), are enhance-
ments of those suggested by Sriskandarajah and Sethi [SS89], generalizations of
the bounds proposed by Gupta and Tunc [GT91] and Gupta [Gup88] and are
reported in their present form by Guinet et al. [GSKD96].

LB(l) = min
i=1,…,n

 p3�l i) + max{ (5
i=1

n
 C (m)

i)/kl , max
i=1,…,n

 pm i }, l = 1, 2 . (8.4.11)

This bound is based on aggregating the work at stage l. Consider e.g., LB(1).
The processing of all jobs at the first stage cannot complete sooner than the max
in (8.4.11). In addition to that, the last job, say job Jj , finished at this stage must
be completed at the second stage too. The minimum amount of time spent by job
j at the second stage is expressed by the min in (8.4.11). Hence, LB(1) is a lower

 8.4 Scheduling Flexible Flow Shops 299

bound on the makespan. By reversing the time the same argument shows that
LB(2) is a lower bound on the makespan as well.

Lee and Vairaktarakis introduced a different set of lower bounds for the m =
2 case in [LV94]. Suppose the jobs are indexed in non-decreasing order of stage
1 processing times, i.e., p11 � … � p1 n . Let Pl q = 5j=1

q
 pl j denote the summation

of the q shortest job processing times at stage l. If k1 � k2 then

LB1 =
P1 k2

 + P2 n

k2
 (8.4.12)

is a lower bound on Cmax . Namely, because of the flowshop constraints, on each
machine at stage 2 there will be some idle time before processing may start, i.e.,
there will be a machine with idle time at least p11, a machine with idle time p12 ,
..., and a machine with idle time p1 k2

 . Consequently, the makespan is no less
than the average idle time plus the average workload at stage 2.

However, if k1 < k2 the above lower bound can be improved. Certainly, on
each machine at stage 2 there will be idle time before processing starts and these
idle times are at least p11 ,..., p1 k2

 , respectively. Moreover, on k2 � k1 of these
machines processing cannot start until at least two jobs are completed at stage 1.
Hence, an additional idle time of at least p11 units is unavoidable on k2 � k1 ma-
chines at stage 2. Consequently, the following

LB2 =
P1 k2

 + (k2 � k1)P11 + P2 n

k2
 (8.4.13)

is a lower bound on the makespan. By exploiting the symmetry of the two-stage
multiprocessor flowshop problem we obtain another two bounds by interchang-
ing the roles of stage 1 and stage 2. The new bounds will be

LB3 =
P2 k1

 + (k1 � k2)P21 + P1 n

k1
 if k1 � k2 , (8.4.14)

LB4 =
P2 k1

 + P1 n

k1
 if k1 < k2 . (8.4.15)

These lower bounds can be combined to obtain the following lower bound:

LB = { max{LB1 , LB3 , CLB} if k1 � k2

 max{LB2 , LB4 , CLB} if k1 < k2

where CLB is the lower bound of Lee and Vairaktarakis obtained by reduction to
classical flowshop.

300 8 Flow Shop Scheduling

Brah and Hunsucker proposed two bounds for the general m-stage problem,
one based on machines and another based on jobs [BH91]. Suppose all jobs are
sequenced on stages 1 through l�1 and a subset A of jobs is already scheduled at
stage l. Before describing the two bounds, we introduce additional notation.

J = set of all jobs,
A = set of jobs already scheduled at stage l,
S (l)(A) = partial schedule of jobs in A at stage l,
C[S (l)(A)]k = completion time of the partial sequence on machine k.

Notice that in order to compute C[S (l)(A)]k we have to fix the schedule of the
upstream stages.

Having fixed the schedule of all jobs on the first l�1 stages and that of the
jobs in A at stage l, the average completion time of all jobs at stage l,
ACT[S (l)(A)], can be computed as follows:

ACT[S (l)(A)] =
5k=1

kl C[S (l)(A)]k

 kl
 +

5j�J �A plj

kl
 (8.4.16)

It is worth mentioning that in any complete schedule of all jobs at stage l that
contains the partial schedule S (l)(A), there will be a job completing not sooner
than ACT[S (l)(A)].

The maximum completion time of jobs in A at stage l, MCT[S (l)(A)], is giv-
en by

MCT[S (l)(A)] = max
1� k � kl

 C[S (l)(A)]k . (8.4.17)

The machine based lower bound, LBM, is given by

LBM[S (l)(A)] =

�.
�
.

ACT[S (l)(A)] + min
i�J �A

{ 5
l' = l+1

m
pl' i }

if ACT[S (l)(A)] � MCT[S (l)(A)] ,

MCT[S (l)(A)] + min
i�A

 { 5
l' = l+1

m
pl' i }

otherwise

(8.4.18)

The rationale behind separating the two cases stems from the following observa-
tion. If ACT[S (l)(A)] � MCT[S (l)(A)] then the last job finished at stage l will be a
job in J �A. If ACT[S (l)(A)] < MCT[S (l)(A)] then the last job scheduled at stage
l may come from A or from J �A.

The job based lower bound, LBJ, is defined by

 8.4 Scheduling Flexible Flow Shops 301

LBJ[S (l)(A)] = min
1� k � kl

 { C[S (l)(A)]k } + max
i�J �A

 { 5
l' = l

m
 pl' i } . (8.4.19)

Finally, the composite lower bound, LBC, is given by

LBC[S (l)(A)] = max{ LBM[S (l)(A)] , LBJ[S (l)(A)] } . (8.4.20)

The LBM bound (8.4.18) is improved in Portmann et al. [PVDD98]. Namely, if
ACT[S (l)(A)] = MCT[S (l)(A)] and J �A � � then it may happen that

min
i�A

 { 5
l' = l+1

m
pl' i } > min

i�J �A
{ 5

l' = l+1

m
pl' i } (8.4.21)

holds, for the processing times of the jobs in A and in J �A are unrelated. In this
case LBM can be improved by the difference of the left and right hand sides of
(8.4.21). That is, if J �A � �, the improved lower bound becomes

LBM[S (l)(A)] =

�.
.
.
�
.
.
.

ACT[S (l)(A)] + min
i�J �A

{ 5
l' = l+1

m
pl' i }

if ACT[S (l)(A)] > MCT[S (l)(A)] ,

MCT[S (l)(A)] + min
i�A

 { 5
l' = l+1

m
pl' i }

if ACT[S (l)(A)] < MCT[S (l)(A)] ,
ACT[S (l)(A)] +

max{ min
i�J �A

{ 5
l' = l+1

m
pl' i }, min

i�A
{ 5

l' = l+1

m
pl' i }}

if ACT[S (l)(A)] = MCT[S (l)(A)] .

(8.4.22)

III) Bounds with heads and tails. The set of bounds in this category share the
property that they can be computed for any stage l and it is not assumed that all
jobs are completely scheduled on all upstream stages. This is in contrast with
bounds (8.4.18), (8.4.19) and (8.4.22) that heavily rely on this assumption. Lower
bounds based on heads and tails can easily be updated whenever a scheduling
decision has been made either through branching in a branch and bound proce-
dure or through propagation of constraints. While the basic idea of the bounds
(8.4.18), (8.4.19) and (8.4.22) is calculation of average processing times or aver-
age machine in process times, the main idea of the subsequent bounds is the cal-
culation and subsequent reduction of the domains of start times of the jobs at
each stage, i.e. the interval limited by the earliest and latest possible start and
completion times of the jobs, see [VHHL05].

To simplify notation, we fix stage l. Assume that a partial schedule S already
exists (maybe S is empty). We define a set B of n

_
 tasks with processing times p~j

 = pl j for each Tj � B , noting that j refers also to job Jj of the multiprocessor

302 8 Flow Shop Scheduling

flowshop scheduling problem. In addition to that, a ready time rj = r(l)
j and a de-

livery time qj = q(l)
j are defined for each task Tj , where r(l)

j and q(l)
j are deter-

mined with respect to the graph representation of the partial solution S.
The problem of scheduling n tasks on m

_
 = kl identical parallel machines sub-

ject to release dates and delivery times to minimize the makespan, Pm
_

 | rj , qj
 | Cmax , is a relaxation of the multiprocessor flowshop scheduling problem, as it is
pointed out by Carlier and Pinson [CP98]. Since this problem is NP-hard in the
strong sense, as the one machine special case 1 | rj , qj | Cmax already is [GJ77],
various lower bounds are proposed in Carlier [Car87]. All of these lower bounds
are lower bounds for the multiprocessor flowshop problem as well [CN00].

The most basic lower bound for the Pm
_

 | rj , qj | Cmax problem is

LB1 = max
Ti �B

 {ri + pi + qi} (8.4.23)

Now consider a subset B' of B and define the quantity

G(J) = min
Tj �B'

{rj} + 1
m
_ (5

Tj �B'
 pj) + min

Tj �B'
{qj}

Clearly, G(B') is a lower bound for the Pm
_

 | rj , qj | Cmax problem with respect
to any B' � B . Consequently, taking the maximum over all subsets B' of B we
obtain another lower bound:

LB2 = max
Tj �B'

{G(B')} , (8.4.24)

which can be computed in O(n
_
&log n

_
) time generating Jackson's preemptive

schedule for the one-machine scheduling problem with heads m
_

rj , processing
times pj and tails m

_
qj , see Carlier [Car87]. The optimal value of a preemptive

solution of the one machine problem is m
_

LB2 .
The next lower bound tries to take into account the heads and tails of differ-

ent operations in a more efficient way. Namely, let B' be a subset of B with |B' | �
m
_

. Denote ri1 ,..., rim
_ and qj1 ,..., qjm

_ the m
_

 smallest release times and delivery

times, respectively, of jobs in B' . Define the quantity G'(B') by

G'(B') = 1
m (5

u =1

m
_

 riu + 5
Tj �B'

 pj + 5
u =1

m
_

 qiu) (8.4.25)

It is shown in [Car87] that LB3, as defined by (8.4.26) below, is a lower bound
for the Pm | rj , qj | Cmax problem.

LB3 = max
B' � B, |B' | � m

_{G'(B')} (8.4.26)

In order to show this, we may assume that each machine is used from jobs of B' .

 8.4 Scheduling Flexible Flow Shops 303

A (every) machine is idle from time 0 to time ri1 , a second machine is idle from
time 0 to time

2i
r and the machine m

_
 is idle from 0 to rim

_ . Similarly, one machine

is idle after processing for qj1 time units, a second machine is idle for qj2 time
units, etc. Adding processing and idle times for all machines it is obvious that
(8.4.25) is a lower bound for any subset B' of B .

Bound (8.4.26) can straightforwardly be computed in O(n
_3) time [Van94],

[Per95]. However, it is shown in [CP98] that the stronger lower bound

LB4 = max{LB1 , LB3} (8.4.27)

can be computed in O(n
_
&log n

_
 + n

_
m
_
&log m

_
) time using Jackson's Pseudo Preemp-

tive schedule. In such a schedule, an operation may be processed on more than
one machine at a time. Moreover, it can be shown that the distance between the
non-preemptive optimal makespan and LB4 is at most 2pmax [Car87].

For the sake of completeness we mention that when schedule S is empty
then r (l)

i = 5l' =1
l�1

 pl' i and symmetrically q (l)
i = 5l' = l+1

L
 pl' i hold for each job Ji . For

this special case Santos et al. [SHD95] has proven that G'(B') (cf. equation
(8.4.25)) is a lower bound when B' consists of all jobs. Computational results
show that, on average, the lower bound is within 8% of the optimum.

An even stronger lower bound can be obtained by solving the preemptive
version of the Pm

_
 | rj , qj | Cmax problem using a network flow model. Fix a

makespan C and define deadlines dj = C � qj for each job Jj . Job Jj must be pro-
cessed in the interval [rj , dj] in order to complete all jobs by time C. There are at
most h � 2n different rj and dj values and let v1 , … , vh represent these values ar-
ranged increasingly, i.e., v1 < v2 < ... < vh . Let It = [vt ,vt+1), t = 1 ,..., h�1, repre-
sent h�1 intervals with lengths l1 ,..., lh�1. If It � [rj , dj] then a part min{lt , pj} of
job Jj can be processed in interval tI . Hence we form a capacitated network with
n
_

 + (h – 1) + 2 nodes, having one source node s, one sink node r, n
_

 nodes for rep-
resenting the jobs and h – 1 nodes for representing the intervals. Source s is con-
nected to each job node j with an arc of capacity pj . Each job node j is connected
to each interval It with It � [rj , dj] using an arc of capacity min{lt , pj}, and finally
each interval It is connected to the sink by an arc of capacity m

_
lt . In this network

there is a flow of value 5j pj if and only if the preemptive Pm
_

 | rj , qj , pmtn | Cmax
problem has a solution with makespan C. Using dichotomic search, the smallest
C admitting a compatible flow of value 5j pj can be found in polynomial time. It
is shown in Hoogeveen et al. [HHLV95] that the difference between the preemp-
tive makespan and LB4 is not more than m

_
/(m

_
�1)pmax . Nonetheless, this gap is

claimed to vanish in practice [CP98]. The drawback of this method is the rela-
tively high computation time for finding the maximum flow.

We close this section by a rather tricky lower bound of Carlier and Néron.

304 8 Flow Shop Scheduling

Let R1 ,..., Rm
_ denote the m

_
 smallest increasingly ordered machine availability

times at stage l, noting that they depend on the partial schedule S. Let

G' machine(B') = 1m
_ (max(R1 , ri1) + … + max(Rm

_
 , rim

_) + 5
Jj �B'

 pj + qi1 + … + qim).
 (8.4.28)

Now, if Rm + qjm < UB, then G' machine(B') is a lower bound on UB .
Let us briefly sketch the main ideas of the proof which can be found in

[CN00]. Let S be a schedule with a makespan of at most UB. If there exists a
machine Ph different from Pm

_ without any job from B' to process then the jobs
from B' scheduled on machine Pm

_ can be scheduled on machine Ph . From Rl

 � Rm
_ we know this will not increase the makespan of S. If no job from B' is pro-

cessed on machine Pm
_ consider the difference , = UB � Rm

_ � qim
_ > 0. A part , of

job Jim
_ (with release date rim

_ and tail qim
_) which is scheduled on some machine

can be scheduled in the interval [UB � qim
_ � , , UB � qim

_] on machine Pm
_ without

increasing the makespan. Thus, we can conclude, if there is a schedule with a
makespan of at most UB then there is also a (preemptive) schedule with a
makespan of at most UB in which all machines have to process at least a part of a
job from B' .

What remains is to sum up idle times and processing times of all machines
with respect to the (preemptive) schedule. The first machine is idle from 0 to R1
but also from 0 to ri1 . Therefore it is idle from 0 to max{R1 , ri1}. There is also a
machine idle from time UB � qi1 until time UB. Similar conclusions for the re-
maining machines yield the desired result.

Branch-and-Bound Methods

We have introduced several lower bounds in the previous section. Below we dis-
cuss branching schemes and search strategies.

The first branch-and-bound procedure for the Fm | k1,..., km | Cmax problem is
proposed in Brah and Hunsucker [BH91].

This procedure is a modification of the method developed by Bratley et al.

[BFR75] for scheduling on parallel machines. At each stage l two decisions must

be made: the assignment of the jobs to a machine Pl i , and the scheduling of jobs

on every machine at stage l. The enumeration is accomplished by generating a

tree with two types of nodes: node j denotes that job Jj is scheduled on the

current machine, whereas node j denotes that Jj is scheduled on a new ma-

chine, which now becomes the current machine. The number of nodes on

each branch is equal to the number of parallel machines used by that branch, and

 8.4 Scheduling Flexible Flow Shops 305

thus must be less than or equal to kl at stage l. The number of possible branches

at each stage l was established by Brah in [Bra88] as

N(n, kl) =
M
N
O

P
Q
Rn � 1

kl � 1
 nS
klS

 .

Consequently, the total number of possible end nodes is equal to

S(n, m, {kl}l=1

m
) = �

l=1

m

M
N
O

P
Q
Rn � 1

kl � 1
 nS
klS

 .

For the construction of a tree for the problem, some definitions and rules at

each stage l are useful. Let the level 0l represent the root node at stage l, and 1l ,

2l ,..., zl represent different levels of the stage, with zl being the terminal level of

this stage. Of course, the total number of levels is nm. The necessary rules for the

procedure generating the branching tree are the following.

Rule 1 Level 0i contains only the dummy root node of stage l, l = 1, 2,..., m

(each l is starting of a new stage).

Rule 2 Level 1l contains the nodes 1 , 2 ,..., x , where x = n � kl + 1 (any

number larger than x would violate Rules 5 and 7).

Rule 3 A path from level 0l to level jl , i = 1, 2,..., m, j = 1, 2,..., n, may be ex-

tended to the level (j+1)l by any of the nodes 1 , 2 ,..., n , 1 , 2 ,..., n

provided the rules 4 to 7 are observed (all unscheduled jobs at stage l are candi-

dates for and nodes as long as they do not violate Rules 4 to 7).

Rule 4 If a or a has previously appeared as a node at level jl , then a may not

be used to extend the path at that level (this assures that no job is scheduled twice

at one stage).

Rule 5 a may not be used to extend a path at level jl, which already contains

some node r with r > a (this is to avoid duplicate generation of sequences in

the tree).

Rule 6 No path may be extended in such a way that it contains more than kl

nodes at each stage l (this guarantees that no more than kl machines are used at

stage l).
Rule 7 No path may terminate in such a way that it contains less than kl

nodes at each stage l unless the number of jobs is less than kl (there is no ad-

vantage in keeping a machine idle if the processing cost is the same for all of the

machines).

A sample tree representation of a problem with 4 jobs and 2 parallel ma-

chines is given in Figure 8.4.2. All of the end nodes can serve as a starting point

for the next stage 0l+1 (l < m). All of the nodes at a subsequent stage may not be

candidates due to their higher value of lower bounds, and thus not all of the

306 8 Flow Shop Scheduling

nodes need to be explored. It may also be observed that all of the jobs at stage l
will not be readily available at the next stage, and thus inserted idle time will

increase their lower bounds and possibly remove them from further considera-

tions. This will help to reduce the span of the tree. The number of search nodes

could be further reduced, if the interest is in the subclass of active schedules

called non-delay schedules. These are schedules in which no machine is kept idle

when it could start processing some task.

The use of these schedules does not necessarily provide an optimal schedule,

but the decrease in the number of the nodes searched gives a strong empirical

motivation to do that, especially for large problems [Fre82].

Finally we describe the idea of the branch and bound algorithm for the prob-

lem. It uses a variation of the depth-first least lower bound search strategy, and is

as follows.

LEVEL

4 4

4

4

4 4

4

4 4

4

3

3

33

3 3 3

3

3 3 4

3 3

3 3

2

2 2

2 2

2

4

2

2 2

2

4

4 2 2

2 2

3

3

3

4

4

4

1

1

1

1

1

1

1 1 1

1 1

2

2

3

3 3

3 3 3

4

4 4 4

444

4

4 4

4 4

1

1

1

2

2

2

3

321

0i

1i

2 i

3i

4i

Figure 8.4.2 Tree representation of four jobs on two parallel machines.

Step 1 Generate n � k1 + 1 nodes at stage 1 and compute their lower bounds.

Encode the information about the nodes and add them to the list of un-

processed nodes. Initialize counters (number of iterations, time) defining

end of computation.

Step 2 Remove a node from the list of unprocessed nodes with the priority giv-

en to the deepest node in the tree with the least lower bound. Break ties

arbitrarily.

 8.4 Scheduling Flexible Flow Shops 307

Step 3 Procure all information about the retrieved node. If this is one of the end

nodes of the tree go to Step 5, while if this is the last node in the list of

unprocessed nodes then go to Step 6.

Step 4 Generate branches from the retrieved node and compute their lower

bounds. Discard the nodes with lower bounds larger than the current up-

per bound. Add the remaining nodes to the list of unprocessed nodes

and go to Step 2.

Step 5 Save the current complete schedule, as the best solution. If this is the

last branch of the tree, or if the limit on the number of iterations or

computation time has reached, then pass to the next step, otherwise go

to Step 2.

Step 6 Print the results and stop.

As we see, the algorithm consists of three major parts: the branching tree

generation, the lower bound computing, and the list processing part. The first two

parts are based on the concepts described earlier with some modifications utiliz-

ing specific features of the problem. For the list processing part, the information

is first coded for each branching node. If the lower bound is better than the best

available Cmax value of a complete solution (i.e. the current upper bound), pro-

vided it is available at the moment, the node is stored in the list of unprocessed

nodes. The information stored for each branching node is the following:

KODE = NPR � 1 000 000 + NPS � 10 000 + LSN � 100 + JOB

LBND = NS � 10 000 000 + NSCH � 100 000 + LB

where NPR is the machine number in use, NPS is the sequence number of this

machine, LSN is number of the last nodes, JOB is the index of the job, NS is

the index of the stage, NSCH is the number in the processing sequence, and LB is

the lower bound of the node.

The stage and the level numbers are coded in the opposite manner to their

position in the tree (the deepest node has the least value). Thus, the deepest node

is stored on top of the list and can be retrieved first. If two or more nodes are at

the same stage and level, the one with the least lower bound is retrieved first and

processed. Once a node is retrieved, the corresponding information is decoded

and compared with the last processed node data. If the node has gone down a

step in the tree, the necessary information, like sequence position and completion

time of the job on the retrieved node, is established and recorded. However, if the

retrieved node is at a higher or the same level as the previous node, the working

sequence and completion time matrix of the nodes lower than the present level

and up to the level of the last node are re-initialized. The lower bound is then

compared with the best known one, assuming it is available, and is either elimi-

nated or branched on except when this is the last node in the tree. The qualifying

nodes are stored in the list of unprocessed nodes according to the priority rule

described in Step 2 of the algorithm. However, in case this is the last node in the

308 8 Flow Shop Scheduling

tree, and it satisfies the lower bound comparison test, the working sequence posi-

tion and job completion time matrix along with the completion time of the

schedule is saved as the best known solution.

Of course, the algorithm described above is only a basic framework for fur-

ther improvements and generalizations. For example, in order to improve the

computation speed for large problems some elimination criteria, like the ones

developed in [Bra88] can be used together with the lower bounds. The lower

bound in Step 1 and Step 4 of the algorithm are computed according to (8.4.20),

using (8.4.18) and (8.4.19). The algorithm could also be applied for schedule

performance measures other than the schedule length, if corresponding lower

bounds would be elaborated. Moreover, the idea of the algorithm can be used in a

heuristic way, e.g. by setting up a counter of the number of nodes to be fully ex-

plored or by defining a percentage improvement index on each new feasible solu-

tion.

The algorithm of Portmann et al. [PVDD98] extends that of Brah and Hun-
sucker in several ways. First, it uses the improved machine based lower bound
(8.4.22) instead of (8.4.18) when computing (8.4.20). Moreover, it computes an
upper bound before starting to schedule the jobs at a new stage l. The upper
bound is computed by a genetic algorithm (GA) that determines a schedule of all
jobs at stages l through m. The schedule of the jobs at the first l�1 stages is fixed
and is given by the path from the root of the branching tree to the root node of
stage l. For details of GA we refer the reader to [RC92].

The results of a detailed computational study show that the method of Port-
mann et al. is able to solve problems to optimality with up to five stages and ten
or fifteen jobs. However, it seems that the method is very sensitive to the pattern
of the number of parallel machines at the stages. Another conclusion is that the
algorithm proves the optimality of solutions, within a given time limit, more fre-
quently when GA is used.

A Method Based on Constraint Propagation

The method of Carlier and Néron [CN00] is significantly different from that of
Brah and Hunsucker and of Portmann et al. The novelty of the approach consists
in working on all m parallel machine problems at the same time. Namely, instead
of solving the parallel machine problem completely at a stage, like in the branch-
and-bound algorithm of Brah and Hunsucker, the method selects a stage and the
next job to be processed at that stage. Having scheduled the selected job, heads
and tails are adjusted and the method proceeds with selecting a new stage.

First we discuss how to select the job to be scheduled next at some stage
with respect to a fixed upper bound UB. To simplify notation fix a stage l and
consider the m

_
 machine problem with m

_
 = kl . We identify the processing of job Ji

at stage l with task Ti . The processing time of task Ti is p~i = pl i and its starting
time (to be determined) will be ti . Let B denote the set of all m

_
 tasks. A central

 8.4 Scheduling Flexible Flowshops 309

notion is that of selection. A selection A for an m
_

-machine problem is an ordered
list of tasks {Ti1 , Ti2 ,..., Tih�1

 , Tih} such that: if Ti precedes Tj in A then ti < tj , or ti
 = tj and i < j. A selection is complete if B is totally ordered. To complete the
definition note that in a selection more than one task can be processed at the
same time, but the total number of tasks processed simultaneously cannot exceed
m.

Carlier [Car84] has proposed a simple list scheduling algorithm, the Strict
algorithm, to schedule tasks with respect to a selection at their earliest possible
date, the result is called strict schedule. It is shown that strict schedules dominate
all other schedules. Consequently, it is enough to work with strict schedules.

Let us fix an upper bound UB for the m-machine problem. A task Ti � B is
an input (output) of the m

_
-machine problem if and only if there exists a schedule

S = { tj | Tj � B } with makespan at most UB and verifying tj � ti (respectively tj
 + p~j � ti + p~i) for all Tj � B � {Ti}. Inputs and outputs will be selected by com-
puting lower bounds after fixing a task Ti to be scheduled before or after all other
unscheduled tasks. However, lower bounds may not detect that no schedule of
the remaining tasks with makespan at most UB exists.

For solving the makespan minimization problem, Carlier and Néron solve
the decision version of the problem and apply a dichotomic search to find the
smallest UB for which a solution exists.

The decision problem is solved by branch-and-bound in which branching
consists of fixing a task as input (or output) of a stage. More concretely, the
branch-and-bound method proceeds as follows:
Step 1. Determine the most critical (machine) center, which is the set of parallel
machines on some stage that will most likely create a bottleneck when schedul-
ing all jobs (see below). Decide if the selection is built according to inputs or
outputs. If selection based on outputs is chosen then reverse the problem.
Step 2. If bestsolution � UB then answer YES and stop. Otherwise, if all nodes
are explored then answer NO and stop. Otherwise proceed with Step 3.
Step 3. Choose the node N in the branch-and-bound tree to be explored. If the
current center, i.e. the parallel machine problem under consideration in node N, is
completely selected then proceed with Step 4, otherwise proceed with Step 6.
Step 4. If all centers are completely selected in N and solution � UB then answer
YES and stop. Otherwise, if there exists a center in N not completely selected
then choose the most critical center among the not completely selected ones as
the current center of N and proceed with Step 5. In all other cases proceed with
Step 6.
Step 5. Determine a solution for N. If the makespan of the solution found is not
greater than UB then answer YES and stop.
Step 6. Compute lower bounds with respect to the current center of N. If
lowerbounds > UB then discard node N and go to Step 2. Otherwise proceed with
Step 7.

310 8 Flow Shop Scheduling

Step 7. Apply local enumerations to N and proceed with Step 8.
Step 8. Determine the list of feasible inputs for the current center of N. For each
feasible input i create a new node by adding i to the partial selection of the cur-
rent center of N and adjust heads and tails. Go to Step 2.

Below we provide some details of this algorithm:
T The most critical center: a lower bound is computed for each m

_
 = kl-machine

problem. The m
_

-machine problem with the largest lower bound defines the
most critical center which will be selected first.

T The current center: the center where the selection is built and it is always the
most critical center.

T The search tree is visited in a depth-first manner such that, among the children
of a node, the child with the smallest release date of its input is chosen for ex-
ploration.

T Solutions are generated during the exploration of the tree using the Strict list
scheduling algorithm. The (ordered) list of operations for each center is de-
termined by either a complete selection, if available, or by sorting the opera-
tions in decreasing tail order (steps 4 and 5).

T Lower bounds are computed using eq. (8.4.25) and also eq. (8.4.28).
T Local enumerations at Step 7 refer to two things. On the one hand, unsched-

uled operations are selected in all possible ways while respecting UB in order
to improve their heads and tails. On the other hand, a restricted multiprocessor
flowshop problem is solved during the construction of the selection of the
most critical center.

T The selection of inputs at Step 8 consists in finding jobs that can be scheduled
next (before all other unscheduled jobs) without augmenting a lower bound
beyond UB.

The adjustments of heads and tails start from the current center and are propagat-
ed through the other centers. The efficiency of the head and tail based lower
bounds heavily depends on this propagation phase. Moreover it influences the
number of feasible inputs and therefore the size of the branching tree.

Assume task Te has been detected as a possible input in the current machine
center. There might be a partial selection within this center which is not yet com-

plete. Let B ~ be the set of unselected tasks. If Te is an input all other tasks cannot

start before the release time re of e, i.e. ri := max{ri , re} for all tasks Ti of B ~ . For
all machines Pk of the current center the machine availability time can be updated
to Rk := max{Rk , re} . The adjustment of the machine availability times again

might cause an increase of the release dates of all tasks from B ~ , i.e. ri := max{ri ,
 R1}, because a task cannot start before a machine becomes available.

In the domain of possible start times for task e on any machine the latest
possible start time is limited by

 8.4 Scheduling Flexible Flowshops 311

max{ UB � pe � qe , UB � 1
m
_ & (5Ti�B ~ pi + pe + qj1 + … + qjm

_) }

which implies the updating of the tail

qe := max{ qe ,
1
m
_ & (5Ti�B ~ pi + pe + qj1 + … + qjm

_) � pe } .

The complexity of this adjustment is at most O(m
_

n
_
).

Consider a partial selection and set B ~ of unselected tasks at a node in the

branch-and-bound tree. Let G'(B ~) be the lower bound (8.4.25) and UB the cur-
rent upper bound. Let , be the smallest non-negative integer such that

1
m
_ & (5u=1

m
_

 riu + , + 5Tj�B ~ pj + 5u=1

m
_

 qiu) > UB and rim

_+1 � ri1 � , .

Thus, we can conclude that ti1 < ri1 + , otherwise the aforementioned new

value G'(B ~), where the release date of Ti1 has been increased by ,, will be strictly
greater than UB. As ti1 + pi1 + qi1 � Ci1 + qi1 � UB we can set qi1 := max{qi1,
UB � (ri1 + , + pi1) + 1}. If the new qi1 is greater than the previous one, the same
deduction can be applied to qi2 . Similarly, adjustments can be derived for the
release dates leading to the following updates ri1 := max{ri1 , UB � (qi1 + ,' + pi1)
 + 1) .

The modification of the release dates of the tasks of the current center are
propagated to the subsequent machine centers and the new tails are propagated to
the previous machine centers.
For more details see [CN00].

As far as the benefits of this method are concerned, most of the problems
reported hard by Vignier [Vig97] are very easy to solve by constraint propaga-
tion. Those that are not solved immediately, are hard for the new method as well.
The method seems to perform well on problem instances in which there is a “bot-
tleneck'' center having one machine only.

8.4.5 The Mean Flow Time Problem

We are aware of only very few results on solving multiprocessor flowshop with
respect to the mean flow time objective. The general problem has been studied
by Azizoglu et al. [ACK01] and a special case where an optimal permutation
schedule is sought has been studied by Rajendran and Chaudhuri [RC92]. We
commence with a lower bound for the optimal permutation schedule problem and
continue with that for the general case. Then a branch-and-bound method for
each of the two problems will be presented.

312 8 Flow Shop Scheduling

Lower Bounds

Permutation flowshops

Before presenting the lower bound proposed by Rajendran and Chaudhuri for the
permutation flowshop problem we introduce additional notation.

2 = a permutation of jobs (indices of the jobs) that defines an available partial
schedule,

n' = the number of scheduled jobs in 2,
U = the set of unscheduled jobs,
R k

(l)(2) = the release time of machine Pk at stage l w.r.t. 2,
C(2j , l) = the completion time of an unscheduled job Jj � U at stage l when

appended to 2,
F(2) = the total flow-time of jobs in 2,
LBCj

 (l)(2) = the lower bound on the completion time of job Jj at stage l,
LB(2) = the lower bound on the total flow-time of all schedules beginning

with partial schedule 2.
In a permutation schedule the completion times of the jobs at the stages are

determined w.r.t. a permutation 2 of jobs. The completion times of the jobs in 2
are determined iteratively by using the processing times and machine assign-
ments. Namely, assuming that 2 = 2'j and that job Jj is assigned to machine Pk(j,l)
at stage l, the completion time of job Jj at the first stage is

C (1)(2'j) = Rk(j,1)
(1) + pl j .

The completion time at each stage l = 2 ,..., m (in this order) is determined
by

C (l)(2'j) = max{ C (l�1)(2'j) , Rk(j,l)
(l) } + pl j .

Finally, the release times of the machines at the stages l = 2 ,..., m are given by

Rk
(l)(2'j) = { C (l)(2'j) if k = k(j , l)

Rk
(l)(2) otherwise

.

Now we turn to the lower bound. To this end we need other expressions that
are defined next. The earliest time when an unscheduled job in U becomes avail-
able at stage l can be computed as follows:

 8.4 Scheduling Flexible Flowshops 313

s (l) = max

�.
�
.

min{ Rk
(1)(2) | 1 � k � k1 } + min

Jj�U
 { 5

q=1

l�1
 pq j} ,

min{ Rk
(2)(2) | 1 � k � k2 } + min

Jj�U
 { 5

q=1

l�1
 pq j} ,

...

min{ Rk
(l�1)(2) | 1 � k � kl�1 } + min

Jj�U
 { pl�1 j }

K.
U
.V

 (8.4.30)

Therefore, the earliest starting time of an unscheduled job is given by

max{ min{ Rk
(l)(2) | 1 � k � kl }, s (l) }

Let Rr
(l) denote min{ Rk

(l)(2) | 1 � k � kl }. With this notation the lower bound on
the completion time of job Jj1, where Jj1 � U , at stage l is given by

LBCj1
(l)(2) = max{Rr

(l), s (l)} + pl j1 + 5
q=l+1

m
pq j1 . (8.4.31)

We place tentatively Jj1 on machine Pr and update the machine's release time as

 Rr
(l) = max{Rr

(l),s (l)} + pl j1 . (8.4.32)

Now, updating Rr
(l) is correct only if Jj1 is an unscheduled job with smallest pro-

cessing time. Let j1 , j2,..., jn�n' be a permutation of the indices of all unscheduled
jobs in U satisfying pj1

(l)
 � pj2

(l)
 � … � pjn�n'

(l) , we compute LBCjt
(l)(2) for t = 1 , … ,

 n � n', in this order. Then we obtain the lower bound

LB (l)(2) = F(2) + 5
Jj�U

LBCj
(l) (2) ,

at stage l on the total flow time of all permutation schedules beginning with par-
tial schedule 2.

Finally, a lower bound on the total flow time of any schedule beginning with
2 is obtained by computing LB (l)(2) for all stages 1 � l � m and taking the maxi-
mum:

LB(2) = max
1� l � m

 LB (l)(2) . (8.4.33)

The general case

When schedules are not restricted to permutation schedules Azizoglu et al.
[ACK01] propose two other lower bounds obtained by solving two different re-
laxations of the following parallel machine problem. Let � (l) be the total flow
time problem on kl identical parallel machines and n tasks with processing times

314 8 Flow Shop Scheduling

pl 1 , … , pl n and ready times r1
 (l�1), … , rn

(l�1). If F (l) is the optimal flow time of
problem � (l) then F (l) is a lower bound on the optimal solution to the L-stage
flowshop problem. However, � (l) is NP-hard as is its single machine special
case. Hence, we compute lower bounds on F (l).

The first lower bound, LB1, is the optimum of a relaxation of � (l) when all
job ready times are set to minj{rj

(l�1)}. This problem can be solved to optimality
in polynomial time by the SPT rule, cf. Blazewicz et al. [BEPSW01].

In the second lower bound, LB2 , job ready times are kept, but instead of
solving a parallel machine problem, a single machine problem is considered.
More precisely, define n new tasks with processing times pl j /kl and ready times
rj

(l�1), j = 1,…,n. Total flow time minimization on a single machine with ready
times is NP-hard, Lenstra et al. [LRKB77], however its preemptive version can
be solved with the shortest remaining processing time (SRPT) rule, Schrage
[Sch68]. The preemptive optimum is a lower bound on the non-preemptive sin-
gle machine problem, therefore on F (l).

In the next section we describe algorithms using the bounds presented in this
section.

Branch-and-Bound Procedures

Permutation flowshops

Rajendran and Chaudhuri propose a very simple algorithm for solving the permu-
tation flowshop problem. Let k denote the minimum number of parallel machines
over all stages, that is, k = minl{kl}. The algorithm starts by generating M

O
P
Rn

k
nodes, one for each subset of k jobs out of the set of n jobs. In each of these
nodes the k jobs are placed on k distinct machines in every stage, and the partial
schedule 2 is defined accordingly. Then, the lower bound LB(2) (eq. 8.4.33) is
computed for each node and the node with the smallest lower bound is selected
for exploration. Exploring a node consists in generating n�n' new nodes, one for
each of the n�n' unscheduled jobs. When generating a new node using an un-
scheduled job Jj , then the operations of job Jj are joined to 2 starting with the
operation at stage 1 and finishing with the operation at stage m. An operation is
always placed on a machine having the smallest release time. After computing a
lower bound for each child generated, the procedure proceeds by choosing the
next node to branch from. The algorithm stops when a node with n�1 scheduled
jobs is chosen for exploration. Notice that in this case the lower bound matches
the flow time of the schedule obtained by scheduling the only unscheduled job.
Consequently, when the algorithm stops the node chosen augmented with the
unscheduled job constitutes an optimal solution to the permutation flowshop
problem.

 8.4 Scheduling Flexible Flowshops 315

As far as the power of the above method is concerned, instances up to 10
jobs, 15 stages and up to 4 machines at each stage are solved while exploring
only small search trees of less than 10.000 nodes in a short computation time
(less than a minute) on a mainframe computer.

The general case

For the general case, Azizoglu et al. propose a new branching scheme which is
different from that of Brah and Hunsucker (described in Section 8.4.4) developed
for the makespan minimization problem. In each stage, there are n nodes at the
first level of the tree, each node representing the assignment of a particular job to
the earliest available machine. A node at the n'

th level of the tree corresponds to
a partial sequence with n' jobs scheduled. Each node at level n' branches to
(n�n') nodes each is representing the assignment of an unscheduled job to the
earliest available machine.

The number of possible branches is thus n! at each stage. Therefore the total
number of leaves at the mth stage is (n!)m.

In fact, the branching scheme of Azizoglu et al. generates only a subset of
nodes generated by that of Brah and Hunsucker. The following example of Az-
izoglu et al. illustrates the difference between the two branching schemes. Sup-
pose there are four jobs satisfying p1 1 � p1 2 + p1 3 . At the first stage the branch-
ing scheme of Brah and Hunsucker would consider to assign job J1 to the first
machine and jobs J2 , J3 and J4 to the second machine in this order. In contrast,
the new branching scheme under the assumption on job processing times at the
first stage would not process job J4 on the second machine after jobs J2 and J3 ,
for processing job J4 on the first machine would dominate the former partial
schedule.

Another dominance relation between schedules comes from the following
observation. If max{Rr

(l), ri
(l�1)} + pl i � r j

 (l�1) , where Ji and Jj are distinct jobs not

yet scheduled at stage l and Rr
(l) is the earliest time point when a machine be-

comes available at stage l, then processing job Ji next dominates any schedule in
which job Jj is processed next. The branch-and-bound tree generated contains
only non-dominated nodes. A lower bound is computed for each node not elimi-
nated using either LB1 or LB2 (defined in the previous section).

Computational results show that the new branching scheme with LB1 outper-
forms the algorithm using the new branching scheme and LB2 and also the algo-
rithms using the branching scheme of Brah and Hunsucker with either lower
bound. The largest problem instances on which the methods were tested consist-
ed of 15 jobs, 2 stages and at most 5 parallel machines at a stage, and 12 jobs, 5
stages and 4 machines at a stage. Moreover, a general observation is that the
larger the number of machines at the first stage, the more difficult the problem
becomes. The results are in contrast with the permutation schedule case where

316 8 Flow Shop Scheduling

instances with considerably more stages can easily be solved.
For several other interesting conclusions about the properties of the pro-

posed algorithm and also that of the lower bounds we refer the interested reader
to [ACK01].

References

ACK01 M. Azizoglu, E. Cakmak, S. Kondakci, A flexible flowshop problem with total
flow time minimization, Eur. J. Oper. Res. 132, 2001, 528-538.

Ake56 S. B. Akers, A graphical approach to production scheduling problems, Oper.
Res. 4, 1956, 244-245.

Bak74 K. R. Baker, Introduction to Sequencing and Scheduling, J. Wiley, New York,

1974.

Bak75 K. R. Baker, A comparative study of flow shop algorithms, Oper. Res. 23,

1975, 62-73.

Bar81 I. Barany, A vector-sum theorem and its application to improving flow shop

guarantees, Math. Oper. Res. 6, 1981, 445-452.

BDP96 J. Blazewicz, W. Domschke, E. Pesch, The job shop scheduling problem:
Conventional and new solution techniques, Eur. J. Oper. Res. 93, 1996, 1-33.

BFR75 P. Bratley, M. Florian, P. Robillard, Scheduling with earliest start and due date

constraints on multiple machines, Nav. Res. Logist. Quart. 22, 1975, 165-173.

BH91 S. A. Brah, J. L. Hunsucker, Branch and bound algorithm for the flow shop
with multiple processors, Eur. J. Oper. Res. 51, 1991, 88-99.

Bru88 P. Brucker, An efficient algorithm for the job-shop problem with two jobs,

Computing 40, 1988, 353-359.

Car82 J. Carlier, The one machine sequencing problem, Eur. J. Oper. Res. 11, 1982,

42-47.

Car84 J. Carlier, Problèmes d'ordonnancement à contraintes de ressources:
algorithmes et complexité, Thèse d'État, MASI, 1984.

Car87 J. Carlier, Scheduling jobs with release dates and tails on identical machines to
minimize makespan, Eur. J. Oper. Res. 29, 1987, 298-306.

CDS70 H. G. Campbell, R. A. Dudek, M. L. Smith, A heuristic algorithm for the n job,

m machine sequencing problem, Manage. Sci. 16B, 1970, 630-637.

CMM67 R. W. Conway, W. L. Maxwell, L. W. Miller, Theory of Scheduling, Addison-

Wesley, Reading, Mass., 1967.

CP98 J. Carlier, E. Pinson, Jackson's pseudo preemptive schedule for the Pm | ri , qi
 | Cmax problem, Ann. Oper. Res. 83, 1998, 41-58.

CN00 J. Carlier, E. Néron, An exact method for solving the multi-processor flow-
shop, Rairo-Rech. Oper.-Oper. Res. 34, 2000, 1-25.

 References 317

CS81 Y. Cho, S. Sahni, Preemptive scheduling of independent jobs with release and

due times on open, flow and job shops, Oper. Res. 29, 1981, 511-522.

Dan77 D. G. Dannenbring, An evaluation of flow shop sequencing heuristics, Man-
age. Sci. 23, 1977, 1174-1182.

DL93 J. Du, J. Y.-T- Leung, Minimizing mean flow time in two-machine open shops

and flow shops, J. Algorithms 14, 1993, 24-44.

DPS92 R. A. Dudek, S. S. Panwalkar, M. L. Smith, The lessons of flowshop schedul-

ing research, Oper. Res. 40, 1992, 7-13.

GG64 P. C. Gilmore, R. E. Gomory, Sequencing a one-state variable machine: a solv-

able case of the traveling salesman problem, Oper. Res. 12, 1964, 655-679.

GJ77 M. Garey, D. S. Johnson, Two-processor scheduling with start times and dead-

lines, SIAM J. Comput. 6, 1977, 416-426.

GJS76 M. R. Garey, D. S. Johnson, R. Sethi, The complexity of flowshop and jobshop

scheduling, Math. Oper. Res. 1, 1976, 117-129.

Gra66 R. L. Graham, Bounds for certain multiprocessing anomalies, Bell Labs Tech.
J. 45, 1966, 1563-1581.

GLL+79 R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimiza-

tion and approximation in deterministic sequencing and scheduling theory:

a survey, Annals of Discrete Mathematics 5, 1979, 287-326.

GS78 T. Gonzalez, S. Sahni, Flowshop and jobshop schedules: complexity and ap-

proximation, Oper. Res. 26, 1978, 36-52.

GSKD96 A. Guinet, M. M. Solomon, P. K. Kedia, A. Dussauchoy, A computational
study of heuristics for two-stage flexible flowshops, Int. J. Prod. Res. 34,
1996, 1399-1415.

GT91 J. N. D. Gupta, E. Tunc, Schedules for the two-stage hybrid flowshop with
parallel machines at the second stage, Int. J. Prod. Res. 29, 1991, 1489-1502.

Gup71 J. N. D. Gupta, A functional heuristic algorithm for the flow-shop scheduling

problem, J. Oper. Res. Soc. 22, 1971, 39-47.

Gup88 J. N. D. Gupta, Two-stage hybrid flowshop scheduling problem, J. Oper. Res.
Soc. 39, 1988, 359-364.

HC91 J. C. Ho, Y.-L- Chang, A new heuristic for the n-job, M-machine flow-shop

problem, Eur. J. Oper. Res. 52, 1991, 194-202.

HHLV95 H. Hoogeveen, C. Hurkens, J. K. Lenstra and A. Vandevelde, Lower bounds
for the multiprocessor flow shop, Proceedings of the 2nd Workshop on Models
and Algorithms for Planning and Scheduling Problems, Wernigerode,
May 22-26, 1995.

HLV96 J. A. Hoogeveen, J. K. Lenstra, B. Veltman, Preemptive scheduling in a two-
stage multiprocessor flow shop is NP-hard, Eur. J. Oper. Res. 89, 1996,
172-175.

HR88 T. S. Hundal, J. Rajgopal, An extension of Palmer’s heuristic for the flow-shop

scheduling problem, Int. J. Prod. Res. 26, 1988, 1119-1124.

318 8 Flow Shop Scheduling

IS65 E. Ignall, L. E. Schrage, Application of the branch-and-bound technique to

some flow-shop scheduling problems, Oper. Res. 13, 1965, 400-412.

Joh54 S. M Johnson, Optimal two- and three-stage production schedules with setup

times included, Nav. Res. Logist. Quart. 1, 1954, 61-68.

Joh58 S. M. Johnson, Discussion: Sequencing n jobs on two machines with arbitrary

time lags, Manage. Sci. 5, 1958, 299-303.

KK88 T. Kawaguchi, S. Kyan, Deterministic scheduling in computer systems: a sur-

vey, J. Oper. Res. Soc. Jpn. 31, 1988, 190-217.

KM87 S. Kochbar, R. J. T. Morris, Heuristic methods for flexible flow line schedul-

ing, J. Manuf. Syst. 6, 1987, 299-314.

KP05 T. Kis, E. Pesch, A review of exact solution methods for the non-preemptive

multiprocessor flowshop problem, Eur. J. Oper. Res. 164, 2005, 592-608.

Lan87 M. A. Langston, Improved LPT scheduling identical processor systems,

RAIRO Technique et Science Informatiques 1, 1982, 69-75.

LLRK78 B. J. Lageweg, J. K. Lenstra, A. H. G. Rinnooy Kan, A general bounding

scheme for the permutation flow-shop problem, Oper. Res. 26, 1978, 53-67.

LLR+93 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, Sequencing

and scheduling: algorithms and complexity, in: S. C. Graves, A. H. G. Rinnooy

Kan, P. H. Zipkin, (eds.), Handbooks in Operations Research and Manage-
ment Science, Vol. 4: Logistics of Production and Inventory, Elsevier, Amster-

dam, 1993.

Lom65 Z. A. Lomnicki, A branch-and-bound algorithm for the exact solution of the

three-machine scheduling problem, J. Oper. Res. Soc.. 16, 1965, 89-100.

LRKB77 J. K. Lenstra, R. H. G. Rinnooy Kan, P. Brucker, Complexity of machine

scheduling problems, Annals of Discrete Mathematics 1, 1977, 343-362.

LV94 C. Y. Lee, G. L. Vairaktarakis, Minimizing makespan in hybrid flowshop,
Oper. Res. Lett. 16, 1994, 149-158.

McM69 G. B. McMahon, Optimal production schedules for flow shops, Canadian
Operations Research Society Journal 7, 1969, 141-151.

Mit58 L. G. Mitten, Sequencing n jobs on two machines with arbitrary time lags,

Manage. Sci. 5, 1958, 293-298.

Mon79 C. L. Monma, The two-machine maximum flow time problem with series-

parallel precedence relations: An algorithm and extensions, Oper. Res. 27,

1979, 792-798.

Mon80 C. L. Monma, Sequencing to minimize the maximum job cost, Oper. Res. 28,

1980, 942-951.

MRK83 C. L. Monma, A. H. G. Rinnooy Kan, A concise survey of efficiently solvable

special cases of the permutation flow-shop problem, Rairo-Rech. Oper.-Oper.
Res. 17, 1983, 105-119.

MS79 C. L. Monma, J. B. Sidney, Sequencing with series-parallel precedence, Math.
Oper. Res. 4, 1979, 215-224.

 References 319

NEH83 M. Nawaz, E. E. Enscore, I. Ham, A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem, Omega-Int. J. Manage. Sci. 11, 1983,

91-95.

NS93 E. Nowicki, C. Smutnicki, New results in the worst-case analysis for flow-shop

scheduling, Discret Appl. Math. 46, 1993, 21-41.

NS96 E. Nowicki, C. Smutnicki, A fast tabu search algorithm for the permutation

flow-shop problem, Eur. J. Oper. Res. 91, 1966, 160-175

OP89 I. H. Osman, C. N. Potts, Simulated annealing for permutation flow-shop

scheduling, Omega-Int. J. Manage. Sci. 17, 1989, 551-557.

OS90 F. A. Ogbu, D. K. Smith, The application of the simulated annealing algorithm

to the solution of the n/m/Cmax flowshop problem, Comput. Oper. Res. 17,

1990, 243-253.

Pal65 D. S. Palmer, Sequencing jobs through a multi-stage process in the minimum

total time - a quick method of obtaining a near optimum, J. Oper. Res. Soc. 16,

1965, 101-107.

Per95 M. Perregaard, Branch and Bound Methods for the Multiprocessor Jobshop
and Flowshop Scheduling Problems, Master’s thesis, Department of Computer
Science, University of Copenhagen, 1995.

Pot85 C. N. Potts, Analysis of heuristics for two-machine flow-shop sequencing sub-

ject to release dates, Math. Oper. Res. 10, 1985, 576-584.

PSW91 C. N. Potts, D. B. Shmoys, D. P. Williamson, Permutation vs. non-permutation

flow shop schedules, Oper. Res. Lett. 10, 1991, 281-284.

PVDD98 M.-C. Portmann, A. Vignier, D. Dardilhac, D. Dezalay, Branch and bound
crossed with GA to solve hybrid flowshops, Eur. J. Oper. Res. 107, 1998,
389-400.

RC92 C. Rajendran, D. Chaudhuri, A multi-stage parallel-processor flowshop prob-
lem with minimum flowtime, Eur. J. Oper. Res. 57, 1992, 111-122.

Ree95 C. Reeves, A genetic algorithm for flowshop sequencing, Comput. Oper. Res.
22, 1995, 5-13.

Röc84 H. Röck, The three-machine no-wait flow shop problem is NP-complete, J.
ACM 31, 1984, 336-345.

RR72 S. S. Reddi, C. V. Ramamoorthy, On the flow shop sequencing problem with

no wait in process, J. Oper. Res. Soc. 23, 1972, 323-331.

RS83 H. Röck, G. Schmidt, Machine aggregation heuristics in shop scheduling,

Methods of Operations Research 45, 1983, 303-314.

Sal73 M. S. Salvador, A solution of a special class of flowshop scheduling problems,

Proceedings of the Symposium on the theory of Scheduling and its Applica-
tions, Springer, Berlin, 1975, 83-91.

SB92 S. Stöppler, C. Bierwirth, The application of a parallel genetic algorithm to the

n/m/P/Cmax flowshop problem, in: T. Gulledge, A. Jones, (eds.), New Direc-
tions for Operations Research in Manufacturing, Springer, Berlin, 1992,

161-175.

320 8 Flow Shop Scheduling

Sch68 L. Schrage, A proof of the optimality of shortest remaining processing time
discipline, Oper. Res. 16, 1968, 687-690.

SHD95 D. L. Santos, J. L. Hunsucker, D. E. Deal, Global lower bounds for flow shops
with multiple processors, Eur. J. Oper. Res. 80, 1995, 112-120.

Sid79 J. B. Sidney, The two-machine maximum flow time problem with series-

parallel precedence relations, Oper. Res. 27, 1979, 782-791.

SS89 C. Sriskandarajah, S. Sethi, Scheduling algorithms for flexible flow-shops:
worst and average performance, Eur. J. Oper. Res. 43, 1989, 143-160.

Sta88 E. F. Stafford, On the development of a mixed-integer linear programming

model for the flowshop sequencing problem, J. Oper. Res. Soc. 39, 1988,

1163-1174.

Szw71 W. Szwarc, Elimination methods in the m � n sequencing problem. Nav. Res.
Logist. Quart. 18, 1971, 295-305.

Szw73 W. Szwarc, Optimal elimination methods in the m � n sequencing problem,

Oper. Res. 21, 1973, 1250-1259.

Szw78 W. Szwarc, Dominance conditions for the three-machine flow-shop problem,

Oper. Res. 26, 1978, 203-206.

Tai90 E. Taillard, Some efficient heuristic methods for the flow shop sequencing

problem, Eur. J. Oper. Res. 47, 1990, 65-74.

TSS94 V. S. Tanaev, Y. N. Sotskov, V. A. Strusevich, Scheduling Theory: Multi-
Stage Systems, Kluwer, Dordrecht, 1994.

Van94 A. Vandevelde, Minimizing the Makespan in a Multiprocessor Flow Shop,
Master’s thesis, Eindhoven University of Technology, 1994.

Vig97 A. Vignier, Contribution à la résolution des problèmes d'ordonnancement de
type monogamme, multimachines, Ph.D. thesis, Polytech Tours, 1997.

VBP99 A. Vignier, J.-C. Billaut and C. Proust, Les problèmes d'ordonnancement de
type flow shop hybride: état de l'art, Rairo-Rech. Oper.-Oper. Res. 33, 1999,
117-182.

VHHL05 A. Vandevelde, H. Hoogeveen, C. Hurkens, J. K. Lenstra, Lower bounds for

the head-body-tail problem on parallel machines: a computational study of the

multiprocessor flow shop, INFORMS J. Comput. 17, 2005, 305-320.

Wag59 H. M. Wagner, An integer linear-programming model for machine scheduling,

Nav. Res. Logist. Quart. 6, 1959, 131-140.

Wer90 F. Werner, On the combinatorial structure of the permutation flow shop prob-

lem, Zeitschrift für Operations Research 35, 1990, 273-289.

WH89 M. Widmer, A. Hertz, A new heuristic method for the flow shop sequencing

problem, Eur. J. Oper. Res. 41, 1989, 186-193.

Wit85 R. J. Wittrock, Scheduling algorithms for flexible flow lines, IBM J. Res. Dev.
29, 1985, 401-412.

Wit88 R. J. Wittrock, An adaptable scheduling algorithms for flexible flow lines,

Oper. Res. 33, 1988, 445-453.

9 Open Shop Scheduling

The formulation of an open shop scheduling problem is the same as for the flow

shop problem except that the order of processing tasks comprising one job may

be arbitrary.

Thus, the open shop scheduling problem (OSP) can be described as follows:
a finite set of tasks has to be processed on a given set of machines. Each task has
a specific processing time during which it may not be interrupted, i.e. preemption
is not allowed. Tasks are grouped to jobs (sets of tasks), so that each task belongs
to exactly one job. Furthermore, each task requires exactly one machine for pro-
cessing. The objective of the OSP is to schedule all tasks, i.e. determine their
start times, so as to minimize the maximum completion time (makespan) given
the additional constraints that (a) tasks which belong to the same job and (b)
tasks which use the same machine cannot be processed simultaneously.

9.1 Complexity Results

Problem O2 | | Cmax

Let us consider non-preemptive scheduling first. Problem O2 | | Cmax can be

solved in O(n) time [GS76]. We give here a simplified description of the algo-

rithm presented in [LLRK81]. For convenience let us denote aj = p1j , bj = p2j , A

= {Jj | aj � bj}, B = {Jj | aj < bj}, K1 = � aj and K2 = � bj .

Algorithm 9.1.1 Gonzalez-Sahni algorithm for O2 | | Cmax [GS76].

begin

Choose any two jobs Jk and Jl for which ak � max
Jj �A

 {bj} and bl � max
Jj �B

 {aj};

Set A ' := A � {Jk };

Set B ' := B � {Jl };

Construct separate schedules for B ' � {Jl} and A ' � {Jk} using patterns

shown in Figure 9.1.1; -- other tasks from A ' and B ' are scheduled arbitrarily

Join both schedules in the way shown in Figure 9.1.2;

Move tasks from B ' � {Jl} processed on P2 to the right;

 -- it has been assumed that K1 � al � K2 � bk ; the opposite case is symmetric

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_ 9

321

https://doi.org/10.1007/978-3-319-99849-7_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_9&domain=pdf

 9 Open Shop Scheduling 322

Change the order of processing on P2 in such a way that T2k is processed first on

this machine;
end;

The above problem becomes NP-hard as the number of machines increases to 3.

As far as heuristics are concerned we refer to the machine aggregation algorithms

introduced in Section 8.3.2 which use Algorithm 9.1.1 in the case of open shop.

t0

Jl

Jl

B'P1

P2 B'

 t0

A'P1

P2

Jk

JkA'

Figure 9.1.1 A schedule for Algorithm 9.1.1

P1

P2

t0

J l

Jl

Jk

Jk

B'

B'

A'

A'

Figure 9.1.2 A schedule for Algorithm 9.1.1.

Problem O | pmtn | Cmax

Again preemptions result in a polynomial time algorithm. That is, problem O |

pmtn | Cmax can be optimally solved by taking

C *
max = max {max

j
 {�

i=1

m
 pij}, max

i
 {�

j=1

n
 pij}}

and then by applying Algorithm 5.1.20 [GS76].

Problems O2 | | �� Cj and O2 | | Lmax

Let us mention here that problems O2 | | � Cj and O2 | | Lmax are NP-hard, as

proved in [AC82] and [LLRK81], respectively, and problem O | pmtn, rj | Lmax is

solvable via the linear programming approach [CS81].

As far as heuristics are concerned, arbitrary list scheduling and the SPT algo-

rithm have been evaluated for O | | � Cj [AC82]. Their asymptotic performance

ratios are R#
L = n and R#

SPT = m, respectively. Since the number of tasks is usually

much larger than the number of machines, the bounds indicate the advantage of

SPT schedules over arbitrary ones.

 9.2 A Branch and Bound Algorithm 323

A survey of results in open shop scheduling may be found in [DPP01,

KSZ91].

9.2 A Branch and Bound Algorithm for Open
Shop Scheduling

Only few exact solution methods are available for the open shop scheduling
problem. We describe a branch-and-bound algorithm of Dorndorf et al. [DPP01]
for solving this problem which performs better than other existing algorithms.
The key to the efficiency of the algorithm lies in the following approach: instead
of analyzing and improving the search strategies for finding solutions, the au-
thors focus on constraint propagation based methods for reducing the search
space. Extensive computational experiments on several sets of well-known
benchmark problem instances are reported. For the first time, many problem in-
stances are solved to optimality in a short amount of computation time.

9.2.1 The Disjunctive Model of the OSP

Studies have shown that within the class of intractable problems the OSP belongs
to the especially hard ones [BHJW97, GJP00]. As an example, the famous job
shop scheduling problem (JSP) which is a close relative of the OSP is easily
solvable by now for problem instances with up to 100 tasks, see e.g. [AC91,
CP94, CL95, MS96], while there still remain unsolved instances of the OSP with
less than 50 tasks.

In this chapter, we describe a branch-and-bound algorithm for solving the
OSP. Instead of analyzing and improving the search strategies, we especially
focus on constraint propagation based methods for reducing the search space. As
a positive side-effect, the constraint propagation algorithm implicitly calculates
strong lower bounds so that an explicit computation is not necessary. Extensive
computational experiments on several sets of well-known benchmark problem
instances show that this algorithm outperforms other exact solution methods for
the OSP. With this algorithm, for the first time, many problem instances were
solved to optimality within a very short amount of computation time.

The remainder of this chapter is organized as follows. Next we describe the
well-known disjunctive model of the OSP that is due to Roy and Sussmann
[RS64] and its extension by Błażewicz et al. [BPS00] and give a short review on
solution methods for the OSP. Section 9.2.2 introduces the basic concepts of
constraint propagation and presents several consistency tests which are used for
the reduction of the search space. These consistency tests are embedded in a
branch-and-bound algorithm that uses a branching scheme that is due to Brucker
et al. [BHJW97]. A short description of this algorithm is given in section 9.2.3.

324 9 Open Shop Scheduling

Extensive computational results of the branch-and-bound algorithms that use
different consistency tests are then presented in the last section.

The disjunctive model that has been introduced by Roy and Sussmann
[RS64] for the job shop scheduling problem can be easily adapted to the OSP.
Let T = {T1 ,..., Tn} be the set of tasks to be scheduled. The processing time of
task Ti � T is denoted with pi . Choosing sufficiently small time units, we can
always assume that the processing times are positive integer values. Each task is
associated a start time variable sti with domain set IN0. Since we want to mini-
mize the makespan, i.e. the maximum completion time of all tasks, the objective
function is Cmax(st1 ,..., stn) = maxTi�T{sti + pi}.

Let job(i) denote the job associated to a task Ti . Further, let)(imach be the
machine required by task Ti . Obviously, two tasks Ti and Tj cannot be processed
simultaneously at any time, if job(i) = job(j) or mach(i) = mach(j). These two
tasks (as a pair) will belong to set D of forbidden pairs. However, if Ti and Tj
cannot be processed in parallel then either Ti must finish before Tj can start or Tj
must be completed before Ti is started. Thus, given

D = {{i , j} | Ti , Tj � T , i � j, job(i) = job(j) W mach(i) = mach(j)},

the OSP can be written as the following model with disjunctive constraints

min{Cmax(st1 ,..., stn)}, sti � IN0 Ti � T ,
(sti + pi � stj) W (stj + pj � sti) {i , j} � D.

(9.2.1)

A schedule is an assignment S = (st1 ,..., stn) � IN0 � ... � IN0 of all start
time variables. For the sake of simplicity, we will use the same notation for vari-
ables and their assignments. Schedule S is feasible if it satisfies all constraints
given by (9.2.1). Reformulating the OSP, the goal is to find a feasible schedule
with minimal objective function value Cmax(S).

The significance of the disjunctive scheduling model for the development of
efficient solution methods is revealed if we consider its graph theoretical inter-
pretation. The disjunctive graph associated to an OSP instance is a weighted
graph G = (T , D , W) with the node set T , arc set D and the weight set W = { wij =
pi | {i , j} � D }. D is also called the set of disjunctive arcs. Since D is symmetric,
we will represent disjunctive arcs as doubly directed arcs. From now on, we will
further use the suggestive notation i X j for pairs (i , j), (j , i) of disjunctive arcs,
and i � j to specify one of the arc orientations.

A disjunctive graph is transformed into a directed graph by choosing one arc
orientation of each disjunctive arc pair i X j � D. We obtain a complete (partial)
selection if (at most) one arc orientation is chosen from each disjunctive arc pair.
The selection is acyclic if after the removal of all remaining undirected disjunc-
tions the resulting directed graph is acyclic.

There exists a simple and well-known many-to-one relationship between

 9.2 A Branch and Bound Algorithm 325

feasible schedules and complete, acyclic selections which allows us to restate the
OSP as a graph theoretical problem: find a complete and acyclic selection, so that
the longest path in the associated directed graph has a minimum length. Thus, it
is sufficient to search through the space of all selections which is of cardinality
2|D| instead of the space of all schedules which is of cardinality | IN0 |n.

Most solution methods for the OSP are based on this fundamental observa-

tion. However, due to the exceptionally intractable nature of the OSP, mainly

heuristic solution methods have been proposed. Simple list scheduling heuristics

based on priority dispatching rules have been examined by Guéret and Prins

[GP98a]. Matching algorithms are discussed by Bräsel et al. [BTW93] and

Guéret and Prins [GP98a, GP98b]. The shifting bottleneck procedure, originally

designed for the JSP, has been adapted by Ramudhin and Marier [RM96] to the

OSP. Another important class of heuristics are the insertion algorithms which

have been introduced by Werner and Winkler [WW95] for the JSP and general-

ized by Bräsel et al. [BTW93] for the OSP. Local search approaches (tabu

search) and genetic algorithms have been examined by Taillard [Tai93], Liaw

[Lia98] and Prins [Pri00]. Colak and Agarwal [CA05] developed a neural net-

work based meta-heuristic approach that allows integration of domain specific

knowledge. Learning strategies imply improved neighbour solutions. Blum and

Sampels [BS04, Blu05] applied ant colony optimization to shop scheduling.

Some of these heuristics, especially the genetic algorithm of Prins and the ant

colony optimization of Blum and Sampels, show a very good performance, and

for specific classes of OSP instances they often are able to find optimal solutions.

However, in general, the solutions found for arbitrary OSP instances are of

course of a suboptimal nature.

Only few exact solution methods are available for the OSP. A branch-and-
bound algorithm which applies a block-oriented branching scheme and some
basic constraint propagation methods for reducing the search tree has been pro-
posed by Brucker et al. [BHJW97]. Guéret et al. [GJP00] improved this algo-
rithm by using an intelligent backtracking technique which replaces the simple
depth-first search used by the former. They further applied some additional
search tree reduction methods in their branch-and-bound algorithm based on for-
bidden intervals (see Chapter 4.1), i.e. time intervals in which no task can start or
end in an optimal solution [GP98b]. All these exact solution methods are capable
of solving smaller OSP instances for which they naturally show a better perfor-
mance than the heuristic methods. However, even for simple, but larger OSP
instances for which the heuristic methods easily find an optimal solution, the
performance of the exact solution methods is rather poor, since the search space
reduction methods applied are not sufficient to handle the combinatorial explo-
sion. In the next section, we will therefore examine additional concepts for re-
ducing the search space which have been described in Dorndorf et al. [DPP01]. It
will turn out that these constraint propagation based methods are very efficient
and allow solving a large number of simple, hard and very hard OSP benchmark
instances which up to now have not been solved.

326 9 Open Shop Scheduling

9.2.2 Constraint Propagation and the OSP

Constraint propagation is an elementary method of search space reduction which
has become more and more important in the last decades. The basic idea of con-
straint propagation is to evaluate implicit constraints through the repeated analy-
sis of the variables, domains and constraints that describe a specific problem in-
stance. This analysis makes it possible to detect and remove inconsistent variable
assignments that cannot participate in any solution by a merely partial problem
analysis. A whole theory is devoted to the definition of different concepts of con-
sistency which, roughly speaking, define the maximal search space reduction that
is possible regarding some specific criteria and may serve as a theoretical back-
ground for propagation techniques. An exhaustive study of the theory of con-
straint propagation can be found in [Tsa93]. Dorndorf et al. [DPP99, DPP00]
examine constraint propagation techniques for disjunctive and cumulative sched-
uling problems; for the details we refer to Chapter 16.

Removing all inconsistent assignments is in general not possible due to an
exponentially increasing computational complexity, so we usually have to con-
tent ourselves with approximations. The main issue is to describe simple rules
which allow efficient search space reductions, but at the same time can be im-
plemented efficiently. These rules are called consistency tests. In the disjunctive
scheduling community, some of them are also known as immediate selection or
edge-finding rules.

Consistency tests are generally described through a condition and a search
space reduction rule. Whenever the condition is satisfied, the reduction rule is
executed. In order to describe the basic concepts of constraint propagation more
precisely, we will focus on domain consistency tests for the time being. Similar
results, however, apply for other types of consistency tests.

A domain consistency test is a consistency test which deduces domain reduc-
tions. Let !i be the current domain of the start time variable sti . If UB is an upper
bound of the optimal makespan, then we can initially set !i := [0 , UB – pi]. This
is necessary, since most consistency tests can only deduce domain reductions if
the current domains are finite. The upper bound UB can be found by applying a
simple heuristic method or by choosing the trivial value 5Ti �T pi . Given a cur-
rent domain for each start time variable, a domain consistency test maps a set
! = { !i | Ti � T } of current domains into a set !' = { !i' | Ti � T } of hopefully,
but not necessarily reduced current domains. Of course, a domain consistency
test only removes values, for which provably no feasible schedule S exists that
could be developed from ! .

In order to obtain the maximal domain reduction possible, it is not sufficient
to apply each of these tests only once. The reason for this is that after the reduc-
tion of several domains, additional domain adjustments could possibly be derived
using some of the tests which previously have failed in deducing any reductions.

 9.2 A Branch and Bound Algorithm 327

Thus, all consistency tests have to be applied in an iterative fashion rather than
only once until no more updates are possible. This is equivalent to the computa-
tion of a fixed point. Notice that this fixed point does not have to be unique and
in general depends upon the order of the application of the consistency tests.
Thus, for some application orders the domain reductions obtained may be strong-
er than for others. Fortunately, it is possible to show that for consistency tests
which satisfy a quite natural monotony property, the fixed point computed is al-
ways unique [DPP00, Chapter 16]. Since the consistency tests studied are all
monotonous in this sense, the application order is irrelevant regarding the extent
of the domain reduction. Regarding the complexity of the fixed point computa-
tion, however, the application order does play a very crucial role. Notice that the
revision of a single domain already forces all consistency tests to be reapplied in
the next iteration even though only a small number of constraints and variables
are possibly affected by this reduction. Thus, choosing an intelligent order can
decrease the computation time to a large extent. However, we will not deal with
this issue more closely, but choose a quite naive propagation order.

In the next subsections, we will describe the set of consistency tests used in
the algorithm. In addition to domain consistency tests, the disjunctive scheduling
model and its graph theoretical interpretation allow the definition of consistency
tests which operate on the set of complete selections. These consistency tests
reduce the set of complete selections by detecting sequences of tasks which must
occur in every optimal solution. Since this is done by selecting disjunctive arc
orientations, the latter approach has been often labeled immediate selection (see
e.g. [CP89, BJK94]) or edge-finding (see e.g. [AC91]). We will use the term
sequence consistency test as opposed to domain consistency tests and as used in
[DPP99,DPP00]. Domain and sequence consistency tests are two different con-
cepts which complement each other. Often, a situation occurs in which either
only reductions of the current domains or only arc orientations are deducible. The
best results, in fact, are obtained by applying both types of consistency tests, as
fixing disjunctive arcs may initiate additional domain reductions and vice versa,
cf. Chapter 16.

Input/Output Consistency Tests

Quite important for the development of efficient consistency tests for the OSP is
the concept of disjunctive cliques or cliques for short. We will say that Oc � T is
a clique if any pair of tasks in Oc cannot be processed in parallel, i.e. if all tasks
in Oc either belong to the same job or require the same machine. A clique Oc is
said to be maximal, if no true superset of Oc is a clique. Therefore, there exist |J |
maximal job cliques, where J denotes the set of jobs, and |P | maximal machine
cliques, where P denotes the set of machines (processors).

For the rest of this section, we will assume that Oc � T is a maximal clique

328 9 Open Shop Scheduling

and that all subsets A (tasks Ti) are subsets (elements) of this clique. Without loss
of generality we will number the indices of the elements of Oc by 1 , 2 ,..., | Oc |.
Let further esti := min !i and lsti := max !i denote the earliest and latest start time
of task Ti , and let ecti := esti + pi and lcti := lsti + pi denote the earliest and latest
completion time of task Ti . Finally, for a subset A - Oc of tasks, let ESTmin(A)
 := minTi�A esti , LCTmax(A) := maxTi�A lcti , and p(A) := 5Ti �A pi .

Given a clique of tasks A - Oc and an additional task Ti � Oc \ A, Carlier and
Pinson [CP89] were the first to derive conditions which imply that Ti has to be
processed before or after all tasks Tj � A. In the first case, they called Ti the
input of A, in the second case, the output of A, and so Dorndorf et al. [DPP00]
have chosen the name input/output conditions.

Theorem 9.2.1 (Input/Output Sequence Consistency Tests). Let A - Oc and Ti

 � Oc \ A. If the input condition

LCTmax(A � {Ti}) � ESTmin(A) < p(A � {Ti}) (9.2.2)

is satisfied then task Ti has to be processed before all tasks in A, for short, Ti �
A. Likewise, if the output condition

LCTmax(A) � ESTmin(A � {Ti}) < p(A � {Ti}) (9.2.3)

is satisfied then task Ti has to be processed after all tasks in A, A � Ti .

Domain consistency tests that are based on the input/output conditions can now
be simply derived. We will only examine the adjustment of the earliest start
times, as the adjustment of the latest start times can be handled analogously. Ob-
viously, if task Ti is the output of a clique A then Ti can only start if all tasks in A
have finished. Thus, the earliest start time of Ti is at least the maximum comple-
tion time of all tasks in A being scheduled without preemption. Unfortunately,
however, the computation of this makespan requires the solution of an NP-hard
single-machine scheduling problem. Therefore, if the current domains are to be
updated efficiently, we have to content ourselves with approximations of this
bound. The following theorem is due to Carlier and Pinson [CP89, CP90].

Theorem 9.2.2 (Output Domain Consistency Tests, part 1). If the output condi-
tion is satisfied for A - Oc and Ti � Oc \ A then the earliest start time of Ti can be
adjusted to esti := max{esti , Cmax

pr (A)}, where Cmax
pr (A) is the maximum comple-

tion time of all tasks in A being scheduled with preemption allowed.

Notice that the computation of Cmax
pr (A) has time complexity O(| A | log | A |)

[Jac56].

 9.2 A Branch and Bound Algorithm 329

It has already been mentioned that applying both sequence and domain con-
sistency tests together can lead to better search space reductions. Quite evidently,
any domain reductions deduced by Theorem 9.2.2 can lead to additional arc ori-
entations deduced by Theorem 9.2.1. We will now discuss the case in which the
inverse is also true. Imagine a situation in which A � Ti can be deduced for a
subset of tasks, but in which the output condition does not hold for the couple (A ,

Ti). Such a situation can actually occur as can be seen in the following example.
In Figure 9.2.1, an example with three tasks is shown. The earliest start time

of Ti is esti = 4, while its latest completion time is lcti = 9. The earliest start and
latest completion times of Tj and Tk are estj = estk = 0 and lctj = lctk = 9, respec-
tively. The processing times of Ti , Tj and Tk are pi = pj = pk = 3. Notice that we
can both deduce Tj � Ti and Tk � Ti using the input conditions for the couple
({Ti},Tj) and ({Ti},Tk), since e.g. LCTmax({Ti , Tj}) – esti = 5 < 6 = pi + pj . Thus,
we know that {Tj , Tk} � Ti . However, the output condition is not satisfied for
the couple ({Tj , Tk}, Ti) because LCTmax({Tj , Tk}) – ESTmin(Ti , Tj , Tk) = 9 = pi + pj
 + pk .

Ti

10 2 3 4 5 6 7 8 9

10 2 3 4 5 6 7 8 9

4 5 6 7 8 9

Tj

Tk

Figure 9.2.1 An example with three tasks.

This example motivates the following theorem as an extension of Theorem
9.2.2.

Theorem 9.2.3 (Input/Output Domain Consistency Tests, part 2). Let A - Oc and
Ti � Oc \ A. If A � Ti then the earliest start time of Ti can be adjusted to

esti := max{esti , Cmax
pr (A)} .

Here, the reader should recall once more that the subset A mentioned in the last
theorem does not have to coincide with the subset for which the input or the out-
put condition is satisfied.

An important question to answer now is whether there exist efficient algo-
rithms that implement the input/output consistency tests. An efficient implemen-
tation is obviously not possible if all pairs (A , Ti) of subsets A - Oc and tasks Ti

� Oc \ A are to be tested separately. Fortunately, it is not necessary to do so as has
been first shown by Carlier and Pinson [CP90] who have developed an O(|Oc|

2)

330 9 Open Shop Scheduling

algorithm for applying the input/output consistency tests described in Theorem
9.2.1 and Theorem 9.2.2 (It is common practice to only report the time complex-
ity for applying the consistency tests once for all couples (A , Ti). In general, how-
ever, the number of iterations necessary for computing the fixed point of current
domains has to be considered as well. This accounts for an additional factor c
which depends upon the size of the current domains, but is omitted here.) Several
years later, O(|Oc| log |Oc|) algorithms have been proposed by Carlier and Pinson
[CP94] and Brucker et al. [BJK94] which until now have the best asymptotic
performance, but are less efficient for smaller problem instances and require
quite complex data structures.

Nuijten [Nui94], Caseau and Laburthe [CL95] and Martin and Shmoys
[MS96] have chosen a solely domain oriented approach and have derived differ-
ent algorithms for implementing the input/output consistency tests that are based
on Theorem 9.2.2. Nuijten developed an algorithm with time complexity O(|Oc|

2)
which can be generalized to scheduling problems with discrete resource capacity.
Caseau and Laburthe presented an O(|Oc|

3) algorithm which works in an incre-
mental fashion, so that O(|Oc|

3) is a worst case, since not all consistency tests are
applied within an iteration of the fixed point computation. The algorithm pro-
posed by Martin and Shmoys [MS96] also has a time complexity of O(|Oc|

2).
Dorndorf et al. [DPP01] have implemented the input/output tests described

in Theorems 9.2.1 and 9.2.2. They could have used the O(|Oc|
2) algorithm of Car-

lier and Pinson for implementing Theorem 9.2.1 and then adjusted the current
domains according to Theorem 9.2.3. However, the algorithm of Carlier and Pin-
son already requires the adjustment of some of the domains and, in fact, is a
combination of the consistency tests described in Theorems 9.2.1 and 9.2.2.
Thus, many of these domain adjustments would be recomputed if Dorndorf et al.
afterwards applied the consistency tests described in Theorem 9.2.3. They have
therefore developed two algorithms which work in a purely sequential fashion,
one of which has a time complexity of O(|Oc|

3), while the other has a time-
complexity of O(|Oc|

2). These algorithms are based on the definition of task sets
as introduced by Caseau and Laburthe [CL95]. A detailed description of the algo-
rithms is given in [Pha00].

Given the arc orientations derived, the domain adjustments of Theorem 9.2.3
can then be applied with effort O(|Oc|

2
 log |Oc|) using Jackson's famous algorithm

[Jac56].
Note that the approach by Dorndorf et al. of first deducing the arc orienta-

tions and then applying the domain adjustments implies a higher time complexity
than for algorithms based on the purely domain oriented approach. However,
stronger domain reductions may be achieved, as demonstrated by the previous
example.

 9.2 A Branch and Bound Algorithm 331

Input/Output Negation Consistency Tests

In the last subsection, a condition has been described which implies that a task
has to be processed before (after) another set of tasks. In this subsection, the in-
verse situation, that a task cannot be processed first (last), is studied. The follow-
ing theorem is due to Carlier and Pinson [CP89, CP90]. For reasons near at hand,
Dorndorf et al. have chosen the name input/output negation for the conditions
described in this theorem.

Theorem 9.2.4 (Input/Output Negation Sequence Consistency Tests). Let A - Oc
and Ti � Oc \ A. If the input negation condition

LCTmax(A) – esti < p(A � {Ti}) (9.2.4)

is satisfied then task Ti cannot be processed before all tasks in A. Likewise, if the
output negation condition

LCTmax – ESTmin (A) < p(A � {Ti}) (9.2.5)

is satisfied then task Ti cannot be processed after all other tasks in A.

This theorem allows a reduction of the current domains which, in general, is
weaker than the one that has been described in Theorem 9.2.3. However, since
the input/output negation conditions are more often satisfied than the in-
put/output conditions, they will turn out to be quite important for solving the
OSP efficiently.

Let us study the input negation condition and the adjustments of earliest start
times. If (9.2.4) is satisfied for A - Oc and Ti � Oc \ A, there must be a task in A
which starts and finishes before Ti , although we generally do not know which
one. This proves the following theorem [CP89, CP90].

Theorem 9.2.5 (Input/Output Negation Domain Consistency Tests). If the input
negation condition is satisfied for A - Oc and Ti � Oc \ A then the earliest start
time of task Ti can be adjusted to esti := max{esti , minTu�A ectu} .

Input/output negation consistency tests have been applied by Nuijten [Nui94],
Baptiste and Le Pape [BL95] and Caseau and Laburthe [CL95] for the JSP. All
these algorithms only test some, but not all interesting couples (A , Ti). An algo-
rithm which deduces all domain reductions with a time complexity of O(|Oc|

2)
has only recently been developed by Baptiste and Le Pape [BL96]. Dorndorf et
al. [DPP01] have developed another algorithm which also performs all possible
domain adjustments in O(|Oc|

2). This algorithm uses some main ideas of Baptiste
and Le Pape, but can be better combined with the algorithms that Dorndorf et al.
have developed for the other consistency tests, since some computations can be

332 9 Open Shop Scheduling

reused, see again [Pha00] for the details.

Shaving

A closer look at the consistency tests presented so far reveals that they all share
the following common and simple idea: a hypothesis (e.g. task Ti starts at time
sti) can be refuted, if there exists no schedule so that this hypothesis is satisfied.
Consistency tests only differ in the kind of hypotheses that are made and the
proof for showing that no schedule can exist under these hypotheses. The input
negation consistency test, for instance, verifies for a given clique A of tasks
whether there exists a schedule in which some task Ti is started within the time
interval [esti , minTu�A ectu – 1]. This verification is carried out through a simple
test which compares the length of the time interval [esti , LCTmax(A)] with the
sum of processing times p(A � {Ti}). Replacing this simple test with other and
possibly more sophisticated tests leads to different and probably more powerful
consistency tests.

A general approach in which all hypotheses are of the kind: ''task Ti starts at
its earliest start time'' or ''task Ti starts at its latest start time'' has been proposed
by Martin and Shmoys under the name shaving [MS96]. In exact one-machine
shave the verification is carried out by solving an instance of a one-machine
scheduling problem in which sti := esti or, alternatively, sti := lsti. One-machine
shave relaxes the non-preemption requirement and tests whether a possibly
preemptive schedule exists under the aforementioned hypothesis. Carlier and
Pinson [CP94] and Martin and Shmoys [MS96] both proposed the computation
of fixed points as a method for proving that a feasible schedule cannot exist un-
der a certain hypothesis. More precisely, the hypothesis is falsified if a current
domain becomes empty during the fixed point computation.

Dorndorf et al, [DPP01] apply shaving by testing the hypotheses sti > t � !i
and sti < t � !i . Test values for t are chosen during a combination of bisection
and incremental search. Apparently, the application of shaving techniques can be
very costly. However, the search space reduction obtained by shaving by far off-
sets these costs.

9.2.3 The Algorithm and Its Performance

In general, the single application of constraint propagation is not sufficient for
solving the OSP. Although for certain problem instances the search space reduc-
tion may be of a considerable size, a branch-and-bound search is usually still
necessary for finding an optimal solution. In this section, we give a short descrip-
tion of the block branching scheme which has been described by Brucker et al.
[BJS94] for the JSP and, for instance, by [BHJW97] for the OSP and which we

 9.2 A Branch and Bound Algorithm 333

have used as well in our branch-and-bound algorithm. A deeper insight into the
nature of the block branching scheme is given by Phan Huy [Pha00], who dis-
cusses a generalization for shop scheduling problems with arbitrary disjunctive
constraints.

The block branching scheme requires the computation of a heuristic solution
(complete and acyclic selection) in each node of the branching tree that is com-
patible with the arc orientations already chosen. Dorndorf et al. [DPP01] chose as
a heuristic solution method the priority rule based dispatching heuristic that has
been described by Brucker et al. [BHJW97] in their algorithm B&B1. Given a
complete and acyclic selection, a critical path B, i.e. a path of maximal length is
chosen within the associated directed graph. This critical path is then decom-
posed into so-called maximal blocks, the definition of which is given in the fol-
lowing. A subpath B' = u1 � ... � ul of B of length l � 2 is a block iff, for all
i � j, we have ui X uj � D, i.e. iff two pairwise different tasks in B' are always
in disjunction, since they belong to the same job or require the same machine. A
block B' is said to be maximal, iff extending B' by even only one node (task) al-
ready violates the block condition. Obviously, given a critical path, there always
exists a unique decomposition into maximal blocks. Given this block decomposi-
tion, the block branching scheme as described by Brucker et al. [BJS94] is based
on the following observation:

Let S be a complete and acyclic selection and B a critical path in the corre-
sponding directed graph. If S is not optimal, i.e. there exists a selection S ' with a
smaller makespan, then there is a maximal block in B so that in S ' a task within
this block is processed before the first or after the last task of this block.

Thus, child nodes are created by moving tasks of a block to the beginning or
end of the block. Consequently, 2&(l – 1) child nodes are generated for each block
of length l > 2, while for blocks of length 2 obviously only one child node is gen-
erated. Improving this branching scheme, Brucker et al. [BJS94] described how
to fix additional arcs depending on the search nodes that have been already visit-
ed prior to the generation of the actual search node. Further they described the
particular role played by the first and the last block of the maximal block decom-
position, since the number of tasks to be moved to the beginning or end of these
blocks can be reduced. The search strategy of their branching algorithm has been
organized in a depth-first manner. For further details on the block branching
scheme we refer the reader to the work of Brucker et al. [BJS94, BHJW97].
Dorndorf et al. [DPP01] have used this branching scheme except for some minor
modifications regarding the branching order, i.e. the sequence in which the child
nodes are generated, see [Pha00] for the technical details.

Upon finding an improved solution in a node (initial solution in the root
node) of the branching tree, the makespan of this solution is, of course, used as
upper bound UB. The lower bounds used within the branch-and-bound algorithm
are the preemptive one-machine (one-job) lower bounds which are computed
using Jackson's algorithm [Jac56]. Notice, however, that stronger bounds are

334 9 Open Shop Scheduling

calculated in an implicit manner by the application of constraint propagation:
whenever an inconsistency is detected, for instance, if a current domain becomes
empty, we know that no solution can be generated from the actual search tree
node with a makespan of UB and, therefore, UB is indeed a lower bound for this
search tree node.

Dorndorf et al. [DPP01] have implemented the branch-and-bound algorithm
together with the constraint propagation techniques in C on Pentium II (333
MHz) in MSDOS environment. They have tested the algorithm on a large set of
benchmark problems that have been generated by Taillard [Tai93] (Tai-n-*) and
Brucker et al. [BHJW97] (Hur-n-*). All test instances are quadratic of size n
jobs and n machines, with n ranging from 6 to 20. We will see below that, on the
one hand, most of the quite large instances of Taillard are easily solved by Dorn-
dorf et al.’s algorithm. They have solved all the 10 � 10 instances, something
which none of the current exact algorithms is capable of, and even do so with an
average run time of less than a minute. Further, they have solved most of the
15 � 15 instances in several minutes and most of the 20 � 20 instances in less
than an hour. Among these instances, three instances (Tai-15-5, Tai-15-9, Tai-
20-6) have not been solved prior the start of their experiments. On the other
hand, the rather small instance Hur-7-1 of size 7 � 7 still remains open, although
they have been able to improve the current best lower bound from 1000 to 1021.

Brucker et al. [BHJW97] have proposed an explanation for this phenomenon
which is based on the work load of a problem instance. The work load of an OSP
instance is defined as follows: given a set of jobs J and a set of machines P . Let
OY be the maximal clique of tasks belonging to job JY and O� be the maximal
clique of tasks requiring machine P� . Let, further, LB := max{ max{ p(OY) | JY
� J }, max{ { p(O�) | P� � P } } define the trivial lower bound which is the
maximum of the job and machine bounds (the sum of processing times of tasks
belonging to a job or machine clique). The average work load WL is then defined
as

WL =
5

JY�J
 p(OY) + 5

P��P
 p(O�)

(| J | + |P |)&LB

If the work load of an OSP instance is close to 1 then all job and machine bounds
are not much smaller than LB, so that finding a solution with a makespan close to
LB is not very probable. On the contrary, an OSP instance with a low work load
tends to have an optimal solution with a makespan equal to the lower bound LB.
These problem instances are less hard to solve, since an optimal solution can be
more easily verified.

Considering this intuitive interpretation, it is possible to use the work load to
guide the choice of an appropriate solution strategy. The alternatives that are giv-
en are a top-down and a bottom-up strategy. Both strategies use the branch-and-
bound algorithm and only differ in the way of choosing the initial upper

 9.2 A Branch and Bound Algorithm 335

bound(s). The top-down strategy starts with a real upper bound which, in
[DPP01], is determined by the heuristic solution method and tries to improve
(decrease) this upper bound by applying the branch-and-bound algorithm. The
bottom-up approach uses a lower bound as a hypothetical upper bound and,
whenever the branch-and-bound algorithm does not find a solution which is con-
sistent with this upper bound, increases it by one time unit. This process is re-
peated until a solution is found.

Notice, that the top-down approach only applies the branch-and-bound algo-
rithm once, but that constraint propagation is less effective since the current do-
mains are less tight due to the high initial upper bound. Hence, searching the
whole search tree may require a higher computation time. The bottom-up ap-
proach, on the contrary, reinitializes the branch-and-bound algorithm several
times, but allows more constraint propagation since the current domains are
smaller. Therefore, the search trees that are created are smaller. Altogether, the
top-down approach seems to be more suited, if the optimal makespan is far from
the lower bound LB, since the multiple application of the branch-and-bound al-
gorithm within a bottom-up approach would offset its propagation advantages.
Also, according to this logic, the bottom-up approach is to be preferred if the
optimal makespan is near to the lower bound LB. Thus, it is straightforward to
choose the top-down approach whenever the work load of an OSP instance is
high and the bottom-up approach whenever the work load is low.

At first, however, we will only evaluate the top-down approach since this al-
lows to analyze better the impact of the different consistency tests. It seems justi-
fied to say that instances of the OSP, especially those with a high work load, are
generally more difficult to solve than instances of the JSP with the same number
of tasks, jobs and machines. To one part, this is due to the larger solution space:
not only machine sequences, but also job sequences have to be determined. Thus,
Dorndorf et al. [DPP01] have often encountered a situation in which the search
process was trapped in an unfavorable region of the search space from which it
could not escape within a reasonable amount of time. Another reason for the in-
tractability of the OSP, however, is the lack of strong lower bounds. In fact, if no
search is carried out, the lower bound LB is already the best bound one is able to
find. Thus, constraint propagation plays a more important role in reducing the
search space.

In the beginning, the experiments for the two different classes of consistency
tests (input/output and input/output negation consistency tests), have been carried
out for a set of smaller instances, namely, the instances Tai-7-* and Hur-6-*. The
results are shown in Table 9.2.1. CP1 applies the input/output tests as described
in Theorem 9.2.1 and Theorem 9.2.3, while CP2 applies both the input/output
tests and the input/output negation tests. Since [DPP01] have applied a top-down
strategy for CP1 and CP2 , they report for each problem instance the initial
upper bound found by the heuristic solution method (UBinit) in addition to the
optimal makespan (UBbest). They further report the number of search tree nodes
generated by each of the algorithms and the total run time. All of the instances

336 9 Open Shop Scheduling

have naturally been solved to optimality.

problem UBbest UBinit
CP1 CP2

nodes time nodes time
Hur-6-1 1056 1528 55634 149.7 s 36876 133.0 s
Hur-6-2 1045 1377 3291 7.3 s 1711 5.2 s
Hur-6-3 1063 1536 9737 23.9 s 5401 18.0 s
Hur-6-4 1005 1481 8553 20.3 s 4356 14.4 s
Hur-6-5 1021 1647 2983 6.4 s 1562 4.6 s
Hur-6-6 1012 1276 8406 19.7 s 4263 13.8 s
Hur-6-7 1000 1454 4557 11.5 s 3205 10.7 s
Hur-6-8 1000 1636 169 0.4 s 132 0.4 s
Hur-6-9 1000 1524 525 1.2 s 326 1.0 s
Tai-7-1 435 609 147 0.4 s 130 0.4 s
Tai-7-2 443 614 309 1.1 s 225 0.9 s
Tai-7-3 468 632 8789 36.6 s 5661 30.9 s
Tai-7-4 463 664 1892 7.5 s 1040 5.3 s
Tai-7-5 416 551 521 2.0 s 409 2.0 s
Tai-7-6 451 581 28347 124.5 s 16464 95.8 s
Tai-7-7 422 693 61609 254.5 s 30101 167.7 s
Tai-7-8 424 637 1467 5.9 s 961 5.0 s
Tai-7-9 458 551 237 0.8 s 194 0.8 s

Tai-7-10 398 576 25837 107.2 s 9427 53.2 s

Table 9.2.1 Results for some smaller instances (top-down).

Obviously, CP2 generates less search tree nodes and has a lower total run time
than CP1, although more constraint propagation is applied in each of the single
nodes. On average, CP2 generates approximately 40 % less search tree nodes
than CP1 and has a run time which is lower by about 25 %. Note, that a different
observation has been made for the JSP, see [Pha00]: although the number of
search tree nodes decreases as well, the total run time increases (for smaller in-
stances) due to the additional propagation effort. Thus, the additional application
of the input/output negation tests is more efficient for the OSP than for the JSP.
This can be explained as follows: the input/output tests, if applied on their own,
deduce only few arc orientations for the OSP in the beginning of the branch-and-
bound process, because at that time most of the current domains are just too large
and coincide with the trivial interval [0 , UB – pi]. Only at a certain depth of the
search tree, more arc orientations are deduced, however, the portion of the search
tree that can be pruned by that time is rather small. Consequently, the additional
application of the input/output negation tests improves the efficiency of the in-
put/output tests since the former are a relaxation of the latter and so are capable
of deducing domain reductions at an earlier stage of the branching process.

Next Dorndorf et al. [DPP01] tested the better algorithm CP2 on the larger
OSP instances Tai-10-* and the harder instances Hur-7-*. They further tested a
shaving variant of CP2, i.e. in each of the search tree nodes they applied the
shaving procedure described in Section 9.2.2 and used the input/output and in-

 9.2 A Branch and Bound Algorithm 337

put/output negation tests for detecting inconsistencies. The results for CP2 are
shown in Table 9.2.2 and those for the branch-and-bound algorithm with shaving
CPS2 in Table 9.2.3. In addition to the usual information listed further above,
they report for each problem instance the best upper bound found (UBfound) with-
in a time limit of 5 hours. Upper bounds shown in parentheses are either non
optimal or optimal, but could not be verified. As an example, 1048 is the best
upper bound known for the instance Hur-7-1 and 1052 is the best bound found by
CP2 within 5 hours of computation time.

Problem UBbest UBinit
CP2

UBfound nodes time
Hur-7-1 (1048) 1487 (1052) 2677448 18000.0 s
Hur-7-2 1055 1839 (1055) 2916573 18000.0 s
Hur-7-3 1056 1839 (1056) 2993406 18000.0 s
Hur-7-4 1013 1418 1013 960092 5796.4 s
Hur-7-5 1000 1188 1000 775960 4420.6 s
Hur-7-6 1011 1545 (1011) 2897640 18000.0 s
Hur-7-7 1000 1419 1000 1628 8.8 s
Hur-7-8 1005 1510 1005 208340 1197.6 s
Hur-7-9 1003 1435 1003 1807635 10797.5 s
Tai-10-1 637 949 637 418594 5455.7 s
Tai-10-2 588 751 588 123104 2219.9 s
Tai-10-3 598 854 (607) 1025042 18000.0 s
Tai-10-4 577 856 577 64244 1175.8 s
Tai-10-5 640 1057 640 8173 126.0 s
Tai-10-6 538 770 (555) 1012887 18000.0 s
Tai-10-7 616 904 (827) 2136045 18000.0 s
Tai-10-8 595 853 595 164977 2255.7 s
Tai-10-9 595 880 595 6036 98.1 s

Tai-10-10 596 894 (639) 1162480 18000.0 s

Table 9.2.2 Results for some larger instances (top-down).

Regarding the instances of Taillard, CP2 solves 6 of them. The run times for all
the instances that have been solved have a high standard deviation and vary from
2 minutes to 2 hours. This is because the optimal makespan may be hard to find,
but once found it is easily verified and in all cases coincides with the trivial low-
er bound LB. Regarding the instances of Brucker et al., CP2 solves 5 instances,
but none of the very hard instances Hur-7-1, Hur-7-2 and Hur-7-3. It finds, how-
ever, the optimal makespans of Hur-7-2 and Hur-7-3 without proof of optimality.

The results for CPS2 are much better. To the best of our knowledge, it is the
first exact algorithm which solves all 10 � 10 OSP instances of Taillard. It even
does so with an average run time of slightly above 10 minutes starting with a
rather high upper bound. Further, CPS2 solves nearly all instances of Brucker et
al. except the instance Hur7-1 which is still unsolved. The quality of CPS2 relies
on the fact that the extensive application of constraint propagation results in a
drastic reduction of the search tree. Quite impressively, the number of search tree

338 9 Open Shop Scheduling

nodes generated by CPS2 on average only amounts to 0.1% of the number of
nodes generated by CP2 . Therefore, the probability of getting lost in unfavoura-
ble regions of the search tree is significantly cut down. This underlines the im-
portance and effectiveness of enhanced constraint propagation techniques for
solving the OSP.

Problem UBbest UBinit
CPS2

UBfound nodes time
Hur-7-1 (1048) 1487 (1058) 4575 18000.0
Hur-7-2 1055 1839 1055 3364 9421.8
Hur-7-3 1056 1839 1056 3860 9273.5
Hur-7-4 1013 1418 1013 1123 2781.9
Hur-7-5 1000 1188 1000 742 1563.0
Hur-7-6 1011 1545 1011 5195 15625.1
Hur-7-7 1000 1419 1000 88 48.8
Hur-7-8 1005 1510 1005 209 318.8
Hur-7-9 1003 1435 1003 788 2184.9
Tai-10-1 637 949 637 612 1398.6
Tai-10-2 588 751 588 396 981.7
Tai-10-3 598 854 598 520 2664.3
Tai-10-4 577 856 577 496 847.1
Tai-10-5 640 1057 640 392 724.5
Tai-10-6 538 770 538 415 1101.5
Tai-10-7 616 904 616 565 982.8
Tai-10-8 595 853 595 461 837.3
Tai-10-9 595 880 595 222 655.1

Tai-10-10 596 894 596 562 993.8

Table 9.2.3 Results for some larger instances using shaving (top-down).

Up to now, we have applied a top-down solution approach which starts with an
initial upper bound and tries to improve, i.e decrease this upper bound. As an
alternative, we will now consider a bottom-up approach which starts with a lower
bound as hypothetical upper bound and increases this bound by one time unit
until a solution is found. The trivial job and machine based lower bound LB is
chosen as an initial lower bound. For the computation of more sophisticated
lower bounds which involves some search, we refer the reader to the work of
Guéret and Prins [GP99].

 The results for this approach are shown in Table 9.2.4. There are only the
results for the best algorithm, namely CPS2. UBbest denotes the best lower bound
found within a maximum run time of 5 hours. If LBbest is not written in paren-
theses then it also has been verified to be an upper bound. Again, all 10 � 10 in-
stances of Taillard are solved, however, this time with an average run time of less
than a minute. The results for the instances of Brucker are less impressive if
compared with the top-down approach. Studying the work load WL of each in-
stance, we can observe that the bottom-up approach is more efficient for instanc-
es with a lower work load, while the top-down approach shows better results for

 9.2 A Branch and Bound Algorithm 339

those with a higher work load. This perfectly fits with the intuitive remarks made
at the beginning of this section: instances with a lower work load tend to have an
optimal makespan close or equal to LB, so that only a few lower bounds have to
be tested in a bottom-up approach. On the contrary, instances with a higher work
load tend to have an optimal makespan which is far from the initial lower bound.
For these instances, the top-down approach is more efficient. Dorndorf et al. pro-
pose that the bottom-up approach is the favourite choice for problem instances
with a work load of less than 0.9, while the top-down approach is to be preferred
for instances with a work load greater than 0.95. For problem instances with a
work load between 0.9 and 0.95, the situation is less clear, see e.g. the problem
instance Hur-7-5 with a work load of 0.944 (bottom-up performs better) and Hur-
7-9 with a work load of 0.925 (top-down performs better).

Problem UBbest LB WL
CPS2

LBbest nodes time
Hur-7-1 (1048) 1000 1.000 (1021) 3974 18000.0
Hur-7-2 1055 1000 1.000 (1045) 5988 18000.0
Hur-7-3 1056 1000 1.000 (1042) 7057 18000.0
Hur-7-4 1013 1000 0.958 1013 5692 15178.1
Hur-7-5 1000 1000 0.944 1000 146 314.7
Hur-7-6 1011 1000 0.951 (1006) 5797 18000.0
Hur-7-7 1000 1000 0.879 1000 10 5.0
Hur-7-8 1005 1000 0.931 1005 194 625.5
Hur-7-9 1003 1000 0.925 1003 1376 4073.0
Tai-10-1 637 637 0.861 637 12 30.2
Tai-10-2 588 588 0.834 588 22 70.6
Tai-10-3 598 598 0.850 598 23 185.5
Tai-10-4 577 577 0.828 577 21 29.7
Tai-10-5 640 640 0.834 640 17 32.0
Tai-10-6 538 538 0.857 538 17 32.7
Tai-10-7 616 616 0.838 616 18 30.9
Tai-10-8 595 595 0.823 595 17 44.1
Tai-10-9 595 595 0.846 595 14 39.8

Tai-10-10 596 596 0.834 596 14 29.1

Table 9.2.4 Results for some larger instances using shaving (bottom-up).

Dorndorf et al. have also tested the bottom-up variant of CPS2 on the remaining
15 � 15 and 20 � 20 instances of Taillard for which no other results of exact so-
lution approaches have been reported in literature. These results are shown in
Table 9.2.5. Again, the bottom-up approach shows very good results. All 15 � 15
instances except one and 7 of the 20 � 20 instances have been solved, among
others the instances Tai-15-5, Tai-15-9 and Tai-20-6 that have not been solved
before. Except for the unsolved instances, the run time is always less than 12
minutes for the 15 � 15 instances and about an hour for the 20 � 20 instances.

Let us finally compare the results of the algorithms from [DPP01] with those
of some other branch-and-bound algorithms for the OSP. B&B1 of Brucker et al.

340 9 Open Shop Scheduling

[BHJW97] is a typical representative of their 6 slightly different algorithms and
the algorithm B&Bi of Guéret et al. [GJP00], where ‘i’ stands for intelligent
backtracking. These algorithms are compared with Dorndorf et al.’s combined
top-down/bottom-up approach which works as follows: whenever the work load
of an instance is at most 0.9, the bottom-up version of CPS2 is applied; for in-
stances with a work load greater than 0.9, on the contrary, the top-down version
of CPS2 is used.

Problem UBbest LB WL
CPS2

LBbest nodes time
Tai-15-1 937 937 0.800 937 42 481.4 s
Tai-15-2 918 918 0.834 (918) 193 18000.0 s
Tai-15-3 871 871 0.824 871 44 611.6 s
Tai-15-4 934 934 0.794 934 45 570.1 s
Tai-15-5 946 946 0.842 946 34 556.3 s
Tai-15-6 933 933 0.795 933 51 574.5 s
Tai-15-7 891 891 0.828 891 52 724.6 s
Tai-15-8 893 893 0.813 893 46 614.0 s
Tai-15-9 899 899 0.830 899 36 646.9 s

Tai-15-10 902 902 0.824 902 34 720.1 s
Tai-20-1 1155 1155 0.820 1155 59 3519.8 s
Tai-20-2 1241 1241 0.838 (1241) 69 18000.0 s
Tai-20-3 1257 1257 0.803 1257 77 4126.3 s
Tai-20-4 1248 1248 0.825 (1248) 92 18000.0 s
Tai-20-5 1256 1256 0.809 1256 56 3247.3 s
Tai-20-6 1204 1204 0.810 1204 65 3393.0 s
Tai-20-7 1294 1294 0.807 1294 48 2954.8 s
Tai-20-8 (1171) 1169 0.854 (1169) 69 18000.0 s
Tai-20-9 1289 1289 0.800 1289 69 3593.8 s

Tai-20-10 1241 1241 0.817 1241 65 4936.2 s

Table 9.2.5 Results for even larger instances using shaving (bottom-up).

The results have been summarized in Table 9.2.6. A dash indicates that the cor-
responding data have not been available. Brucker et al. chose a time limit of 50
hours on a Sun 4/20 workstation, whereas Guéret et al. stopped the search after
250000 backtracks which according to their time measurements corresponds to
approximately 3 hours on a Pentium PC with a clock pulse of 133 MHz. As the
results have been established on different platforms, they have to be interpreted
with care. However, especially regarding the Taillard instances, it seems fair to
say that the algorithm of Dorndorf et al. has a much better performance. While
neither B&B1 and B&Bi solve more than 3 of the 10 � 10 instances of Taillard to
optimality, they solve all 10 instances in an average run time of less than a mi-
nute. Notice further that even the version of CPS2 which works in a purely top-
down fashion as well solves all ten instances and that CP2 which does not use
shaving all the same solves 6 instances to optimality. Since the branching
schemes employed by all these exact algorithms are basically the same (except

 References 341

for the branching order in the algorithm of Dorndorf et al. and the intelligent
backtracking component in the algorithm of Guéret et al.), we can conclude that
the application of strong constraint propagation techniques sheds a new light on
the solvability of the OSP and allows to cope with instances of the OSP that for-
merly seemed intractable. Computational experiments on some famous test sets
of benchmark problem instances taken from literature demonstrate the efficiency
of this approach. For the first time, many problem instances are solved in a short
amount of computation time.

Problem UBbest B&B1a B&B1b CPS2c

nodes time nodes time nodes time
Hur-7-1 (1048) - >50 h - - 4575 >5 h
Hur-7-2 1055 - 35451.5 s - - 3364 9421.8 s
Hur-7-3 1056 - 176711.1 s - - 3860 9273.5 s
Hur-7-4 1013 - 77729.2 s - - 1123 2781.9 s
Hur-7-5 1000 - 6401.6 s - - 742 1563.0 s
Hur-7-6 1011 - 277271.1 s - - 5195 15625.1 s
Tai-10-1 637 - >50 h >250000 >3 h 12 30.2 s
Tai-10-2 588 44332 10671.5 s >250000 >3 h 22 70.6 s
Tai-10-3 598 - >50 h >250000 >3 h 23 185.5 s
Tai-10-4 577 163671 40149.4 s 26777 - 21 29.7 s
Tai-10-5 640 - >50 h >250000 >3 h 17 32.0 s
Tai-10-6 538 - >50 h >250000 >3 h 17 32.7 s
Tai-10-7 616 - >50 h 4843 - 18 30.9 s
Tai-10-8 595 - >50 h >250000 >3 h 17 44.1 s
Tai-10-9 595 97981 24957.0 s 245100 - 14 39.8 s

Tai-10-10 596 - >50 h >250000 >3 h 14 29.1 s
a Run time on a Sun 4/20 Workstation
b,c Run time on a Pentium II/133

Table 9.2.6 A comparison of computational results.

References

AC82 J. O. Achugbue, F. Y. Chin, Scheduling the open shop to minimize mean flow

time, SIAM J. Comput. 11, 1982, 709-720.

AC91 D. Applegate, W. Cook, A computational study of the job shop scheduling

problem, ORSA Journal on Computing 3, 1991, 149-156.

BHJW97 P. Brucker, J. Hurink, B. Jurisch, B. Wöstmann, A branch and bound algo-

rithm for the open shop problem, Discret Appl. Math. 76, 1997, 43-59.

BJK94 P. Brucker, B. Jurisch, A. Krämer, The job shop problem and immediate selec-

tion, Ann. Oper. Res. 50, 1994, 73-114.

BJS94 P. Brucker, B. Jurisch, B. Sievers, A fast branch and bound algorithm for the

job shop scheduling problem, Discret Appl. Math. 49, 1994, 107-127.

342 9 Open Shop Scheduling

BL95 P. Baptiste, C. Le Pape, A theoretical and experimental comparison of con-

straint propagation techniques for disjunctive scheduling, Proceedings of the
14th International Joint Conference on Artificial Intelligence, Montreal, 1995,

136-140.

BL96 P. Baptiste, C. Le Pape, Edge-finding constraint propagation algorithms for

disjunctive and cumulative scheduling, Proceedings of the 15th Workshop of
the U. K. Planning Special Interest Group, Liverpool, 1996.

Blu05 C. Blum, Beam-ACO – Hybridizing ant colony optimization with beam search:

An application to open shop scheduling, Comput. Oper. Res. 32, 2005,

1565-1591.

BPS00 J. Błażewicz, E. Pesch, M. Sterna, The disjunctive graph machine representa-

tion of the job shop scheduling problem, Eur. J. Oper. Res. 127, 2000,

317-331.

BS04 C. Blum, M. Sampels, An ant colony optimization algorithm for shop schedul-

ing problems, Journal of Mathematical Modelling and Algorithms 3, 2004,

285-308.

BTW93 H. Bräsel, T. Tautenhahn and F. Werner, Constructive heuristic algorithms for

the open shop problem, Computing 51, 1993, 95-110.

CA05 S. Colak, A. Agarwal, Non-greedy heuristics and augmented neural networks

for the open-shop scheduling problem, Nav. Res. Logist. 52, 2005, 631-644.

CL95 Y. Caseau, F. Laburthe, Disjunctive scheduling with task intervals, Technical

report 95-25, Laboratoire d'Informatique de l'Ecole Normale Superieure, Paris,

1995.

CP89 J. Carlier, E. Pinson, An algorithm for solving the job shop problem, Manage.
Sci. 35, 1989, 164-176.

CP90 J. Carlier, E. Pinson, A practical use of Jackson's preemptive schedule for solv-

ing the job shop problem, Ann. Oper. Res. 26, 1990, 269-287, 1990.

CP94 J. Carlier, E. Pinson, Adjustments of heads and tails for the job shop problem,

Eur. J. Oper. Res. 78, 1994, 146-161.

CS81 Y. Cho, S. Sahni, Preemptive scheduling of independent jobs with release and

due times on open, flow and job shops, Oper. Res. 29, 1981, 511-522.

DPP99 U. Dorndorf, T. Phan-Huy, E. Pesch, A survey of interval capacity consistency

tests for time and resource constrained scheduling, in: J. Weglarz (ed.), Project
Scheduling - Recent Models, Algorithms and Applications, Kluwer Academic

Publishers, Boston, 1999, 213-238.

DPP00 U. Dorndorf, E. Pesch, T. Phan-Huy, Constraint propagation techniques for

disjunctive scheduling problems, Artif. Intell. 122, 2000, 189-240.

DPP01 U. Dorndorf, E. Pesch, T. Phan-Huy, Solving the open shop scheduling prob-

lem, J. Sched. 4, 2001, 157-174.

GJP00 C. Gueret, N. Jussien, C. Prins, Using intelligent backtracking to improve

branch and bound methods: an application to open shop problems, Eur. J.
Oper. Res. 127, 2000, 344-354.

 References 343

GP98a C. Gueret, C. Prins. Classical and new heuristics for the open shop problem: a

computational evaluation, Eur. J. Oper. Res. 107, 1998, 306-314, 1998.

GP98b C. Gueret, C. Prins. Forbidden intervals for open-shop problems, Research

report 98/10/AUTO, Ecole de Mines de Nantes, Nantes, 1998.

GP99 C. Gueret, C. Prins, A new lower bound for the open-shop problem, Ann.
Oper. Res. 92, 1999, 165-183.

GS76 T. Gonzalez, S. Sahni, Open shop scheduling to minimize finish time, J. ACM

23, 1976, 665-679.

Jac56 J. Jackson, An extension on Johnson's results on job lot scheduling, Nav. Res.
Logist. Quart. 3, 1956, 201-203.

KSZ91 W. Kubiak, C. Srishkandarajah, K. Zaras, A note on the complexity of open

shop scheduling problems, Infor 29, 1991, 284-294.

Lia98 C. F. Liaw, An iterative improvement approach for nonpreemptive open shop

scheduling problem, Eur. J. Oper. Res. 111, 1998, 509-517.

LLRK81 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Minimizing maximum

lateness in a two-machine open shop, Math. Oper. Res. 6, 1981, 153-158 (Erra-

tum: Math. Oper. Res. 7, 1982, 635).

MS96 P. Martin, D. B. Shmoys, A new approach to computing optimal schedules for

the job shop scheduling problem, Proceedings of the 5th International Confer-
ence on Integer Programming and Combinatorial Optimization, 1996.

Nui94 W. P. M. Nuijten, Time and Resource Constrained Scheduling: A Constraint
Satisfaction Approach, Ph.D. thesis, Eindhoven University of Technology,

1994.

Pha00 T. Phan-Huy, Constraint Propagation in Flexible Manufacturing, Springer,

Heidelberg, 2000.

Pri00 C. Prins, Competitive genetic algorithms for the open-shop scheduling problem

Math. Meth. Oper. Res. 52, 2000, 389-411.

RM96 A. Ramudhin, P. Marier, The generalized shifting bottleneck procedure, Eur. J.
Oper. Res. 93, 1996, 34-48.

RS64 B. Roy, B. Sussmann, Les problemes d`ordonnancement avec contraintes dis-

jonctives, Note D. S. 9, SEMA, Paris, 1964.

Tai93 E. Taillard, Benchmarks for basic scheduling problems, Eur. J. Oper. Res., 64,

1993, 278-285.

Tsa93 E. Tsang, Foundations of Constraint Satisfaction. Academic Press, Essex,

1993.

WW95 F. Werner, A. Winkler, Insertion techniques for the heuristic solution of the job

shop problem, Discret Appl. Math. 58, 1995, 191-211.

10 Scheduling in Job Shops

In this chapter we continue scheduling of tasks on dedicated processors or ma-

chines. We assume that tasks belong to a set of jobs, each of which is character-

ized by its own machine sequence. We will assume that any two consecutive

tasks of the same job are to be processed on different machines. The type of fac-

tory layout is the job shop. It provides the most flexible form of manufacturing,

however, frequently accepting unsatisfactory machine utilization and a large

amount of work-in-process. Hence, makespan minimization is one of the objec-

tives in order to schedule job shops effectively, see e.g. [Pin95].

10.1 Introduction

10.1.1 The Problem

A job shop (cf. Section 3.1) consists of a set of different machines (like lathes,

milling machines, drills etc.) that perform tasks of jobs. Each job has a specified

processing order through the machines, i.e. a job is composed of an ordered list

of tasks each of which is determined by the machine required and the processing

time on it. There are several constraints on jobs and machines: (i) There are no

precedence constraints among tasks of different jobs; (ii) tasks cannot be inter-

rupted (non-preemption) and each machine can handle only one job at a time;

(iii) each job can be performed only on one machine at a time. While the ma-

chine sequence of the jobs is fixed, the problem is to find the job sequences on

the machines which minimize the makespan, i.e. the maximum of the completion

times of all tasks. It is well known that the problem is NP-hard [LRK79], and

belongs to the most intractable problems considered, cf. [LLR+93].

10.1.2 Modeling

There are different problem formulations, those in [Bow59, Wag59], and the

mixed integer formulation [Man60] are the first ones published; see also

[BDW91, BHS91, [MS96]. We have adopted the one presented in [ABZ88].

Let T = { T0 , T1 ,..., Tn } denote the set of tasks where T0 and Tn are con-

sidered as dummy tasks "start" (the first task of all jobs) and "end" (the last task

of all jobs), respectively, both of zero processing time. Let P denote the set of m

machines and A be the set of ordered pairs (Ti, Tj) of tasks constrained by the

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_10

345

https://doi.org/10.1007/978-3-319-99849-7_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_10&domain=pdf

346 10 Scheduling in Job Shops

precedence relations Ti Tj for each job. For each machine Pk , set Ek describes

the set of all pairs of tasks to be performed on this machine, i.e. tasks which can-

not overlap (cf. (ii)). For each task Ti , its processing time pi is fixed, and the ear-

liest possible starting time of Ti is ti , a variable that has to be determined during

the optimization. Hence, the job shop scheduling problem can be modeled as:

Minimize tn

subject to tj � ti � pi L (Ti , Tj) � A , (10.1.1)

 tj � ti � pi or ti � tj � pj L {Ti, Tj} � Ek , L Pk �P , (10.1.2)

 ti � 0 L Ti � T . (10.1.3)

Restrictions (10.1.1) ensure that the processing sequence of tasks in each job

corresponds to the predetermined order. Constraints (10.1.2) demand that there is

only one job on each machine at a time, and (10.1.3) assures completion of all

jobs. Any feasible solution to the constraints (10.1.1), (10.1.2), and (10.1.3) is

called a schedule.

An illuminating problem representation is the disjunctive graph model due

to [RS64]. It has mostly replaced the solution representation (within algorithms)

by Gantt charts as described in [Gan19, Cla22, Por68]. The latter, however, is

useful in user interfaces to graphically represent a solution to a problem.

In the edge-weighted graph there is a vertex for each task, additionally there

exist two dummy vertices 0 and n, representing the start and end of a schedule,

respectively. For every two consecutive tasks of the same job there is a directed

arc; the start vertex 0 corresponds to the first task T0 of every job and the vertex n

corresponds to the last task Tn of every job. For each pair of tasks {Ti, Tj} � Ek

that require the same machine there are two arcs (i, j) and (j, i) with opposite di-

rections. The tasks Ti and Tj are said to define a disjunctive arc pair or a disjunc-
tive edge. Thus, single arcs between tasks represent the precedence constraints on

the tasks of the same job and a pair of opposite directed arcs between two tasks

represents the fact that each machine can handle at most one task at the same

time. Each arc (i, j) is labeled by a weight pi corresponding to the processing time

of task Ti. All arcs from vertex 0 have label 0.

Figure 10.1.1 illustrates the disjunctive graph for a problem instance with 3

machines P1, P2, P3 and 3 jobs J1 , J2 , J3 with together 8 tasks/operations. The

machine sequences of jobs J1 , J2 , and J3 (see the rows of Figure 10.1.1(a)) are P1

� P2 � P3, P3 � P2 and P2 � P1 � P3, respectively. The processing times are

presented in Table 10.1.1.

 10.1 Introduction 347

P1 3 � 3

P2 2 4 6

P3 3 3 2

J1 J2 J3

Table 10.1.1 Processing times of a 3 job 3 machine instance.

(a)

0

0

0

0

3

3

3

3

3

3

3
3

3

3

2

2 2

22

6

4

4

2

n
3

6 2

23

6

4

1

2 1 3

(b)

0

1

0

0

0

3

3

3

3

3

3

3
3

3

33

2

2 2

22

2 16

4

4

2

n

Figure 10.1.1 (a) The disjunctive graph, and
(b) a feasible schedule for the problem instance of Table 10.1.1.

The job shop scheduling problem requires to find an order of the tasks on each

machine, i.e. to select one arc among all opposite directed arc pairs such that the

resulting graph G is acyclic (i.e. there are no precedence conflicts between tasks)

and the length of the maximum weight path between the start and end vertex is

minimal. Obviously, the length of a maximum weight or longest path in G con-

348 10 Scheduling in Job Shops

necting vertices 0 and i equals the earliest possible starting time ti of task Ti; the

makespan of the schedule is equal to the length of the critical path, i.e. the

weight of a longest path from start vertex 0 to end vertex n. Any arc (i, j) on a

critical path is said to be critical; if Ti and Tj are tasks from different jobs then

(i, j) is called a disjunctive critical arc, otherwise it is a conjunctive critical arc.
We agree on the convention, that, if vertex i is on a critical path, then task Ti is

said to be a critical task or on a critical path. For convenience we sometimes

identify a feasible job shop schedule and its disjunctive graph representation.
In order to improve a current schedule, we have to modify the machine order

of jobs (i.e. the sequence of tasks) on longest paths. Therefore a neighborhood

structure can be defined by (i) reversing a disjunctive critical arc, i.e. selecting

the opposite arc, or (ii) reversing a disjunctive critical arc such that this arc is

incident to an arc of the arc set A, cf. [ALLU94, LAL92, MSS88, VAL96].

For the problem instance of Table 10.1.1 and Figure 10.1.1(a) let us consider

the schedule defined by the job processing sequence J1 � J3 on machine P1, and

J1 � J2 � J3 on machine P2 and P3. Hence all tasks are lying on a longest path

of length 26, see Figure 10.1.1(b). Reversing the processing order of jobs J2 and

J3 on machine P2 yields a reduced makespan of 16 for the new schedule. Exten-

sions of the disjunctive graph representation including additional job shop con-

straints are discussed in [BPS99, BPS00, WR90].

Since most job shop scheduling problems are NP-hard, determining an op-

timal solution, or a solution of the satisfying quality, is usually a time consuming

process. The efficiency of an algorithm solving any problem depends mainly on

its idea, but one should not forget about the efficient management of problem

data. As we mentioned, the disjunctive graph allows conveniently representing

instances of the job shop scheduling problems, but the disjunctive graph, as any

graph, has to be represented in any algorithm as well. The choice of a graph rep-

resentation influences the run time or even the complexity of an algorithm.

Methods solving the job shop scheduling problems using the disjunctive graph

model repeat, many times, the same low-level operations, such as browsing pre-

decessors or successors of tasks, or determining tasks not bounded to a consid-

ered task with any precedence relation. Graph representations differ in the time

complexity of procedures performing these basic operations. In Section 2.3.1 we

introduced the classical graph representations such as the adjacency matrix and

linked lists [AHU74], which can be used for storing the disjunctive graph. How-

ever, for the disjunctive graph a specialized graph representation was proposed -

the graph matrix [BPS99, BPS00, BPS01, Ste00]. It combines the advantages of

these classical representations and ensures the best possible time complexity of

elementary operations. The graph matrix is a modified adjacency matrix with

embedded linked lists, such as predecessor lists, successor lists and lists of tasks

of an unknown mutual order. It allows retrieving various types of information on

relations between tasks in the optimal way: the mutual relation between two tasks

can be checked within constant time as in the adjacency matrix, while the sets of

 10.1 Introduction 349

tasks bounded by a given relation can be determined in the number of steps equal

to the number of these tasks as in the linked lists.

Figure 10.1.2 shows the disjunctive graph representing a partial solution to

the instance of the job shop scheduling problem defined before in Figure 10.1.1

and Table 10.1.1. Some disjunctive edges have been replaced with arcs determin-

ing the order of task execution. Moreover, for the sake of simplicity, the task

labels are changed to the consecutive numbers, and the processing times are

omitted. Let us remind that formally the start task 0 is a predecessor of all tasks,

and the end task 9 is a successor of all tasks (in Figure 10.1.2 only some of these

arcs are shown for the sake of simplicity).

Figure 10.1.2 The disjunctive graph for the problem instance in Figure 10.1.1.
representing an exemplary partial solution.

A(i, j) 0 1 2 3 4 5 6 7 8 9
0 0 1 1 1 1 1 1 1 1 1
1 0 0 1 0 0 0 0 1 0 1
2 0 0 0 1 0 1 0 0 0 1
3 0 0 0 0 0 0 0 0 0 1
4 0 0 0 1 0 1 0 0 0 1
5 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 1 0 1
7 0 0 0 0 0 0 0 0 1 1
8 0 0 0 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 0 0 0

Figure 10.1.3 The adjacency matrix for the graph in Figure 10.1.2.

The adjacency matrix for this disjunctive graph is given in Figure 10.1.3. As

we mentioned in Section 2.3.1, if there is an arc between vertex i and j then

A(i, j) = 1, otherwise A(i, j) = 0.

1

4

2 3

5

7 8

0 9

6

350 10 Scheduling in Job Shops

The adjacency matrix of size O(n2), where n denotes the number of vertices,

allows checking the mutual relation between vertices/tasks in the optimal O(1)

time, but determining e.g. the set of task successors/predecessors requires brows-

ing the whole matrix row/column in O(n) time.

The optimal browsing of task successors is ensured by the successor lists,

depicted in Figure 10.1.4(a). In this structure for a particular vertex i (marked in

bold), the list of its successors is given. However, checking the mutual relation

between two tasks requires O(n) time in this representation, and determining

the set of task predecessors requires O(n+m) time, where m denotes the number

of arcs. The predecessor lists, shown in Figure 10.1.4(b), offers the complemen-

tary efficiency: it allows fast determining the set of task predecessors in O(n)

time, but task successors are determined in O(n+m) time. Both structures require

O(n+m) space.

(a) 0 1 2 3 4 5 6 7 8 9 (b) 0
 1 2 7 9 1 0
 2 3 5 9 2 0 1
 3 9 3 0 2 4
 4 3 5 9 4 0
 5 9 5 0 2 4
 6 7 9 6 0
 7 8 9 7 0 1 6
 8 9 8 0 7
 9 9 0 1 2 3 4 5 6 7 8

Figure 10.1.4 The linked lists for the graph in Figure 10.1.2:
(a) the successor lists,
(b) the predecessor lists.

The graph matrix is an extension of the adjacency matrix of the same size

O(n2). Since in any disjunctive graph, the start vertex/task is a predecessor of all

tasks and the end vertex/task is a successor of all tasks, the first and the last rows

and columns of the adjacency matrix provide no specific information. They can

be used for storing the information on the first and the last elements of predeces-

sor/successor lists. Similarly, no disjunctive graph contains loops for particular

vertices, which allows to use the diagonal element for storing the first element of

the list of the tasks whose mutual relations to a considered task are not deter-

mined in a (partial) schedule.

The graph matrix G for the disjunctive graph in Figure 10.1.2 is given in

Figure 10.1.5. This matrix stores all successors and predecessors of tasks. Obvi-

ously, the algorithm designer can decide, whether the graph matrix should store

immediate successors/predecessors only (as the classical graph representations

given in Figures 10.1.3 and 10.1.4), or all successors/predecessors resulting from

a (partial) schedule (as in the graph matrix given in Figure 10.1.5).

 10.1 Introduction 351

G(i, j) 0 1 2 3 4 5 6 7 8 9
0 0 0 1 4 0 4 0 6 7 0
1 0 -4 11 13 -6 15 -6 16 16 2
2 1 1 -4 13 -6 13 -7 -8 -8 3
3 1 2 4 -5 4 -6 -7 -8 -8 0
4 0 -2 -6 13 -1 13 -7 -8 -8 3
5 1 2 4 -6 4 -3 -7 -8 -8 0
6 0 -2 -3 -4 -5 -5 -1 16 16 7
7 1 6 -3 -4 -5 -5 6 -2 16 8
8 1 6 -3 -4 -5 -5 7 7 -2 0
9 0 8 5 0 5 0 8 8 0 0

Figure 10.1.5 The graph matrix for the disjunctive graph in Figure 10.1.2.

More formally speaking, the graph matrix for the disjunctive graph reflects

the relations between tasks/vertices as follows (n is the label, i.e. the number,

assigned to the end vertex):

� if �n < G(i, j) < 0 then the relation between i and j is unknown,

� if 0 < G(i, j) < n then j is a predecessor of i,
� if n � G(i, j) < 2n then j is a successor of i,
� G(i, 0) � 0 and G(0, i) � 0 denote the first and the last vertex on the predeces-

sor list of vertex i, respectively,

� G(i, n) � 0 and G(n, i) � 0 denote the first and the last vertex on the successor

list of vertex i, respectively,

� |G(i, i)| � i denotes the first vertex of the list of vertices whose relation to i is

unknown,

� if j is an element of a certain list for vertex i then the next element of this list

is vertex |G(i, j)|, G(i, j) and G(i, j) � (n � 1) for the three lists mentioned

above, if this vertex is vertex j then the list ends on j (if the ends of lists do

not need to be directly accessible, then the elements G(0, i) and G(n, i) storing

the last elements of predecessor and successor lists can be used for storing

other pieces of information as e.g. the number of predecessors or successors).

The graph matrix allows checking the mutual relation between vertices as fast as

the adjacency matrix, and browsing lists as fast as the linked lists, with

the lowest possible time complexity. The detailed description of the graph matrix

and procedures managing it can be found in [BPS00].

Example 10.1.1 Consider vertex/task 2 in the disjunctive graph depicted in Fig-

ure 10.1.2. represented as the graph matrix shown in Figure 10.1.5 (n = 9). The

first vertex on its predecessor list is task G(2, 0) = 1. Task 1 is the only predeces-

sor of task 2, since it points to itself G(2, 1) = 1 (the end of the list is directly

352 10 Scheduling in Job Shops

stored in G(0, 2) = 1). The first vertex on the successor list of task 2 is task

G(2, 9) = 3. The next element of the list, determined by G(2, 3) � 8 = 5, is vertex

5. Vertex 5 is the last element of this list, since G(2, 5) � 8 = 5 (the end of the list

is directly stored in G(9, 2) = 5). Vertex 4 is the first vertex whose mutual rela-

tion to task 2 is unknown. It is determined by the element on the matrix diagonal

|G(2, 2)| = |�4| = 4. This set contains three more vertices: task 6 (|G(2, 4)| = 6),

task 7 (|G(2, 6)| = 7), and finally task 8 (|G(2, 7)| = 8). Task 8 is the last one in

this set (|G(2, 8)| = 8).

In order to check the mutual relation between two tasks it is enough to determine

the range to which the graph matrix entry belongs. For example, since there is

�9 < (G(4, 8) = �8) < 0, we know that the mutual order, i.e. the execution order,

of tasks 4 and 8 is unknown. Because 0 < (G(3, 4) = 4) < 9, we know that task 4

is a predecessor of task 3. Since 9 � (G(2, 5) = 13) < 18, we know that task 5 is

a successor of task 2.

The graph matrix was originally proposed as the disjunctive graph represen-

tation [BPS99, BPS00, Ste00], but its idea can be generalized for any graph

[BPS05, Ste00]. For an arbitrary graph we cannot use any matrix entry for storing

other pieces of information than the information on the relation between vertices.

For this reason heads of the linked lists must be stored outside the main body of

the matrix. The graph matrix has to be extended with additional columns storing

the label of the first vertex on particular lists, such as the list of predecessors,

successors, etc. Actually, the number of lists and their meaning depends on

the decisions taken by the algorithm designer. The mutual relation between verti-

ces is still represented by the range of matrix values, while the linked lists are

browsed based on the result of the modulo operation.

In Figure 10.1.6 we show an exemplary directed multigraph, while the gen-

eralized graph matrix representing it is given in Figure 10.1.7. The main body of

the matrix is extended for each vertex i with the heads of four lists of its succes-

sors (S), predecessors (P), vertices connected via a pair of opposite directed arcs

(C) and not connected to it (U, excluding vertex i).

Figure 10.1.6 The exemplary directed multigraph.

The generalized graph matrix reflects the relations between n vertices in

an arbitrary graph as follows:

1

2

3

4

6

5

 10.1 Introduction 353

T the first vertex of a particular list defined in the matrix for vertex i is stored in

an additional column, i.e. G(i, n+1), G(i, n+2), G(i, n+3), G(i, n+4), (for lists

S, P, C, U respectively, in the graph matrix in Figure 10.1.7), where zero de-

notes an empty list,

T the vertex following vertex j on the list for vertex i is determined by the value

|G(i, j)| mod (n+1), if |G(i, j)| mod (n+1) = j then j is the last element of the

list,

T the mutual relation between vertices i and j is determined by the interval to

which G(i, j) belongs, e.g. (�(n+1), 0), (0, n+1), ((n+1), 2(n+1)) and (2(n+1),

3(n+1)) (for lists U, S, P, C in Figure 10.1.7, respectively).

The detailed description of the generalized graph matrix can be found in

[BPS05].

G(i, j) 1 2 3 4 5 6 S P C U
1 0 12 4 4 13 13 3 2 0 0
2 1 20 -4 -5 -5 20 1 0 2 3
3 13 -4 0 -5 -5 13 0 1 0 2
4 13 -3 -3 0 5 13 5 1 0 2
5 1 -3 -3 11 20 20 1 4 5 2
6 3 19 4 4 20 20 1 0 2 0

Figure 10.1.7 The generalized graph matrix for the graph in Figure 10.1.6.

10.1.3 Complexity

The minimum makespan problem of job shop scheduling is a classical combina-

torial optimization problem that has received considerable attention in the litera-

ture. It belongs to the most intractable problems considered. Only a few particu-

lar cases are efficiently solvable:

T Scheduling two jobs by the graphical method as described in [Bru88] and first

introduced by Akers [Ake56] (see Section 7.2). In general this idea can be

used to compute good lower bounds sometimes superior to the one-machine

bounds [Car82, BJ93].

T The two machine flow shop case, i.e. the machine sequences of all jobs are the

same [Joh54, GS78], see Section 7.2.

T The two machine job shop problem where each job consists of at most two

tasks [Jac56].

T The two machine job shop case with unit processing times [HA82, KSS94].

T The two machine job shop case with a fixed number of jobs (and, of course,

repetitious processing of jobs on the machines, [Bru94]).

Slight modifications turn out to be difficult. The two machine job shop prob-

lem where each job consists of at most three tasks, the three machine job shop

problem where each job consists of at most two tasks, the three machine job shop

354 10 Scheduling in Job Shops

problem with three jobs are NP-hard, see [LRKB77, GS78, SS95]. The job shop

problems with two and three machines and task processing times equal to 1 or 2,

and equal to 1, respectively, are NP-hard even in the case of preemption, see

[LRK79].

10.1.4 The History

The history of the job shop scheduling problem, starting more than 40 years ago,

is also the history of two well known benchmark problems consisting of 10 jobs

and 10 machines as well as of 20 jobs and 5 machines and introduced by Fisher

and Thompson [FT63]. The data of these instances is presented in Table 10.1.2.

While the 20 job 5 machine instance turned out to be a challenge for ten years the

particular instance of a 10 job 10 machine problem opposed its solution for 25

years leading to a competition among researchers for the most powerful solution

procedure. Since then branch and bound procedures have received substantial

attention from numerous researchers. Early work was presented [BW65], fol-

lowed by [Gre68], whose method was based on Manne's integer programming

formulation. Further papers included [Bal69, CD70, FTM71, AH73], and [Fis73]

who obtained lower bounds by the use of Lagrange multipliers.

For long time the algorithm in [MF75] was the best exact solution method.

Instead of using worse bounds of [CD70] they combined the bounds for the one

machine scheduling problem with task arrival time and the objective function to

minimize maximum lateness with the enumeration of active schedules (see

[GT60]) among which are also optimal ones. An alternative approach whereby at

each stage one disjunctive arc of some crucial pair is selected leads to a computa-

tionally inferior method, [LLRK77].

Considerable effort has been invested in the empirical testing of various pri-

ority rules, see [Ger66], and the survey papers [DH70, PI77, Hau89].

During the 80's substantial algorithmic improvements were achieved and ac-

curately reflected by the stepwise optimum approach for the notorious 10-job 10-

machine problem. [FLL+83] applied computationally costly surrogate duality

relaxations, weighting and aggregating into a single constraint, either machine

capacity constraints or job-task precedence constraints. A first attempt to obtain

bounds by polyhedral techniques was made in [Bal85]. The neighborhood struc-

ture used in some recent local search algorithms is also mainly employed as

branching structure in the exact method of [BM85]. They rearrange tasks on a

longest path if the tasks use the same machine. [LLR+93] report that, with re-

spect to the famous 10 � 10 problem "Lageweg (1984) found a schedule of 930,

without proving optimality; he also computed a number of multi-machine lower

bounds, ranging from a three-machine bound of 874 to a six-machine bound of

907". So he was the first who found an optimal solution. Optimality of a sched-

ule of length 930 was first proved by Carlier and Pinson [CP89]. Their algorithm

is based on bounds obtained for the one machine problems with precedence con-

 10.1 Introduction 355

straints, task arrival times and allowed preemptions. This problem is polynomial-

ly solvable. Additionally, they used several simple but effective inference rules

on task subsets.

(a)
J1 1, 29 2, 78 3, 9 4, 36 5, 49 6, 11 7, 62 8, 56 9, 44 10, 21

J2 1, 43 3, 90 5, 75 10, 11 4, 69 2, 28 7, 46 6, 46 8, 72 9, 30

J3 2, 91 1, 85 4, 39 3, 74 9, 90 6, 10 8, 12 7, 89 10, 45 5, 33

J4 2, 81 3, 95 1, 71 5, 99 7, 9 9, 52 8, 85 4, 98 10, 22 6, 43

J5 3, 14 1, 6 2, 22 6, 61 4, 26 5, 69 9, 21 8, 49 10, 72 7, 53

J6 3, 84 2, 2 6, 52 4, 95 9, 48 10, 72 1, 47 7, 65 5, 6 8, 25

J7 2, 46 1, 37 4, 61 3, 13 7, 32 6, 21 10, 32 9, 89 8, 30 5,55

J8 3, 31 1, 86 2, 46 6, 74 5, 32 7, 88, 9, 19 10, 48 8, 36 4, 79

J9 1, 76 2, 69 4, 76 6, 51 3, 85 10, 11 7, 40 8, 89 5, 26 9, 74

J10 2, 85 1, 13 3, 61 7, 7 9, 64 10, 76 6, 47 4, 52 5, 90 8, 45

(b)
J1 1, 29 2, 9 3, 49 4, 62 5, 44

J2 1, 43 2, 75 4, 69 3, 46 5, 72

J3 2, 91 1, 39 3, 90 5, 12 4, 45

J4 2, 81 1, 71 5, 9 3, 85 4, 22

J5 3, 14 2, 22 1, 26 4, 21 5, 72

J6 3, 84 2, 52 5, 48 1, 47 4, 6

J7 2, 46 1, 61 3, 32 4, 32 5, 30

J8 3, 31 2, 46 1, 32 4, 19 5, 36

J9 1, 76 4, 76 3, 85 2, 40 5, 26

J10 2, 85 3, 61 1, 64 4, 47 5, 90

J11 2, 78 4, 36 1, 11 5, 56 3, 21

J12 3, 90 1, 11 2, 28 4, 46 5, 30

J13 1, 85 3, 74 2, 10 4, 89 5, 33

J14 3, 95 1, 99 2, 52 4, 98 5, 43

J15 1, 6 2, 61 5, 69 3, 49 4, 53

J16 2, 2 1, 95 4, 72 5, 65 3, 25

J17 1, 37 3, 13 2, 21 4, 89 5, 55

J18 1, 86 2, 74 5, 88 3, 48 4, 79

J19 2, 69 3, 51 1, 11 4, 89 5, 74

J20 1, 13 2, 7 3, 76 4, 52 5, 45

Table 10.1.2 (a) The 10 job 10 machine instance [FT63].

 (b) The 20 job 5 machine instance [FT63].
 Row j contains the order of the tasks of job Jj ;
 each entry (i, p) contains the index of machine Pi
 and the processing time pij on it.

356 10 Scheduling in Job Shops

Some algorithms developed in the 90's are still the job shop champions among

the exact methods. Besides the branch and bound implementations of Applegate

and Cook [AC91], Martin and Shmoys [MS96], and Perregaard and Clausen

[PC95], there are the branch and bound algorithms [CL95, BLN95, CP90, CP94,
BJS92, BJS94, BJK94]. The power of their methods basically results from some

inference rules which describe simple cuts, and a branching scheme such that

tasks which belong to a block (a sequence of tasks on a machine) on the longest

path are moved to the block ends, hence improving an idea described in

[GNZ86].

Throughout the chapter, experimental results are reported mainly for the

10 � 10 problem. Techniques that are giving good results on the 10 � 10 problem

need not necessarily perform well on other instances of the job shop scheduling

problem, even for instances of the same size (10 � 10) like [LA19, LA20, ORB2,

ORB3, ORB4] (a description of these instances may be found e.g. in [AC91]).

Applegate and Cook's algorithm is very efficient on the 10 � 10 problem, but

much less on other instances, in particular [LA19, ORB2 and ORB3]. On the

contrary, a lot of the successful approaches mentioned use important ideas from

Applegate and Cook's paper. An interesting benchmark is [LA21]. Vaessens

[Vae95] solved it with a modified version of Applegate and Cook's algorithm

(~40,000,000 nodes). Then it was solved by Baptiste et al. [BPN95] using

~4,000,000 nodes in ~48 hours, by Caseau and Laburthe [CL95] using

~2,000,000 nodes in ~24 hours, and by Martin and Shmoys [MS96] in about one

hour.
Tailored approximation methods viewed as an opportunistic (greedy-type)

problem solving process can yield optimal or near-optimal solutions even for

problem instances up to now considered as difficult, cf. [ABZ88, OS88, Sad91,

BLV95, DL93, BV98]. Hereby opportunistic problem solving or opportunistic

reasoning characterizes a problem solving process where local decisions on

which tasks, jobs, or machines should be considered next, are concentrated on

the most promising aspects of the problem, e.g. job contention on a particular

machine. Hence sub-problems often defining bottlenecks are extracted and sepa-

rately solved and serve as a basis from which the search process can expand.

Breaking down the whole problem into smaller pieces takes place until, eventual-

ly, sufficiently small sub-problems are created for which effective exact or heu-

ristic procedures are available. However the way in which a problem is decom-

posed affects the quality of the solution reached. Not only the type of decomposi-

tion such as machine/resource [ABZ88], job/order [DPP02], or event based

[Sad91] has a dramatic influence onto the outcome but also the number of sub-

problems and the order of their consideration. In fact, an opportunistic view sug-

gests that the initial decomposition be reviewed in the course of problem solving

to see if changes are necessary. The shifting bottleneck heuristic from [ABZ88]

and its improving modifications from [BLV95] and [DL93] are typical represent-

atives of opportunistic reasoning. It is resource based as there are sequences of

one machine schedules successively solved and their solutions introduced into

 10.2 Exact Methods 357

the overall schedule. In the 90's local search based scheduling became very popu-

lar; see the surveys [GPS92, AGP97, VAL96]. These algorithms are all based on

a certain neighborhood structure and some rules defining how to obtain a new

solution from existing ones. The first efforts to implement powerful general

problem solvers such as simulated annealing [LAL92, MSS88, Kol99, EAZ07],

tabu search [DT93], parallel tabu search [Tai94], and genetic algorithms

[ALLU94, NY91, YN92, SWV92a], finally culminated in the excellent tabu

search implementation of Nowicki and Smutnicki [NS96, NS05] and Balas and

Vazacopoulos [BV98]. Among the genetic based methods only a few,

e.g. [YN92, DP93a, DP93b, Mat96], could solve the notorious 10 job 10 ma-

chine problem optimally. Most of the current local search approaches rely on

naive search neighborhoods which fail to exploit problem specific knowledge.

Applications of local and probabilistic search methods to sequencing problems

are based on neighborhoods defined in the solution space of the problem. The

method in [SWV92a] is based on problem perturbation neighborhoods, i.e. the

original data is genetically perturbed and a neighbor is defined as a solution

which is obtained when a base heuristic is applied to the perturbed problem. The

obtained solution sequence for the perturbed problem is mapped to the original

data, i.e. the non-perturbed tasks are scheduled in the same way and the

makespan of the solution to the original problem data defines the quality of the

perturbed problem.

The local search heuristics like simulated annealing, tabu search, and genetic

algorithms are modestly robust under different problem structures and require

only a reasonable amount of implementation work with relatively little insight

into the combinatorial structure of the problem. Problem specific characteristics

are mainly introduced via some improvement procedures, the kind of representa-

tion of solutions as well as their modifications based on some neighborhood

structure.

In recent years job shop problems with additional specifics motivated from

practice have been investigated by few authors, e.g. job shop problems with

transport robots [BK06].

In the next section we will go into detail and present ideas of some exact al-

gorithms and heuristic approaches, see [BDP96], [JM99], and [Bru04].

10.2 Exact Methods

In this section we will be concerned with branch and bound algorithms, explor-

ing specific knowledge about the critical path of the job shop scheduling prob-

lem.

358 10 Scheduling in Job Shops

10.2.1 Branch and Bound

The principle of branch and bound is the enumeration of all feasible solutions of

a combinatorial optimization problem, say a minimization problem, such that

properties or attributes not shared by any optimal solution are detected as early as

possible. An attribute (or branch of the enumeration tree) defines a subset of the

set of all feasible solutions of the original problem where each element of the

subset satisfies this attribute. In general, attributes are chosen such that the union

of all attribute-defined subsets equals the set of all feasible solutions of the prob-

lem and any two of these subsets do not intersect. For each subset the objective

value of its best solution is estimated by a lower bound (bounding). An optimal

solution of a relaxation of the original problem such that this optimal solution

also satisfies the subset defining attribute, serves as a lower bound. In case the

lower bound exceeds the value of the best (smallest) known upper bound (a heu-

ristic solution of the original problem) the attribute-defined subset can be

dropped from further consideration. Otherwise, search is continued departing

from the most promising subset which is divided into smaller subsets through the

definition of additional attributes. Hence, at any search stage a subset of solutions

is defined by a set of attributes all of which are satisfied by these solutions.

We shall see that the attributes of a branch and bound process exactly corre-

spond to attributes forbidding moves in tabu search. Branching from one solution

subset to a new smaller one can be associated with a tabu search move.

10.2.2 Lower Bounds

One of the main drawbacks of all branch and bound methods is the lack of strong

lower bounds in order to cut branches of the enumeration tree as early as possi-

ble. Several types of lower bounds are applied in the literature, for instance,

bounds based on Lagrangian relaxation, see [Vel91], bounds based on the opti-

mal solution of a sub-problem consisting of only two or three jobs and all ma-

chines, see [Ake56, Bru88, BJ93]. However the most prominent bounding pro-

cedure has been described in [Car82, Pot80b]. Consider any task Ti in the job

shop respectively its associated vertex i in the disjunctive graph that may include

already a partial selection of arcs from disjunctive arc pairs. Then there is a long-

est path from the artificial vertex 0 to i of length ri as well as a longest path of

length qi connecting the end of vertex i to the last one, the dummy vertex n. Task

Ti cannot start to be processed earlier than its arrival time ri (also called release

time or head) and its processing has to be finished at the latest until its due date

tn � qi in order to cause no schedule delay. The time qi is said to be the tail of task

Ti. There exist m one-machine lower bounds for the optimal makespan of the job

shop scheduling problem where each bound is obtained from the exact solution

of a one-machine scheduling problem with release times, due dates, and minimi-

 10.2 Exact Methods 359

zation of the makespan. Although this problem is NP-complete Carlier's algo-

rithm quickly solves the one machine problems optimally for all problem sizes in

the job shop under consideration. In [BLV95] there is an even better branch and

bound procedure that can yield improved lower bounds. The method additionally

takes minimum delays between pairs of tasks into account. That means, if there

is a directed path connecting vertices i and j in the disjunctive graph, then

tj � ti � L(i, j) (10.2.1)

where L(i, j) is the i and j connecting path's length.

While the one machine scheduling problem with heads ri and tails qi , for all

tasks Ti, can be solved in O(nlogn) time if ri = rj , for all Ti , Tj , (use the longest

tail rule, i.e. schedule the jobs in order of decreasing tails) or if qi = qj , for all Ti,

Tj, (use the shortest head rule, i.e. schedule the jobs in order of increasing heads)

this is not true any longer if time lags L(i, j) are imposed, see [BLV95].

The branch and bound algorithms [Car82] and [BLV95] extensively make

use of the fact that the shortest makespan of a one machine schedule cannot fall

below

LB1(C) := min{ri | Ti � C} + �
Ti�C

 pi + min{qi � Ti � C } (10.2.2)

for any subset C of all tasks which have to be scheduled on a particular machine,

where pi is the processing time of task Ti. This lower bound can be calculated in

O(n&log n) time by solving the preemptive one machine problem without time

lags. It is well known, that the strongest bound LB1(C) equals the minimum

makespan of the preemptive version of Algorithm 4.1.2. Let us consider the idea

of branching. Consider a schedule produced by the longest tail rule, i.e. among

the released jobs schedule that one with longest tail. Let C := {T0, Ti1
, Ti2

,..., Tiz
,

Tn} be a sequence of tasks constituting a critical path. Further, let Tc be the last

task encountered in C such that qc < qiz , i.e. all tasks in C between Tc and Tn have

tails at least qiz . Let C’ denote the set of these tasks excluding Tc and Tn . Then

branching basically is based on the following observation: If ri � max{ti1 , tc} for

all Ti � C’, and if the part C(c, iz) of the critical path C connecting c to iz contains

no precedence relation then the longest tail schedule is optimal in case c = 0.

Otherwise, if c > 0, in any schedule better than the current one, task Tc either

precedes or succeeds all tasks in C’, cf. [BLV95].

There are a lot of additional inference rules - several are summarized in the

sequel - in order to cut the enumeration tree during a preprocessing or the search

phase, see [Car82, BLV95, CP89, CP90, CP94, BJS92, BJ94, CL95, AC91,

DPP00, DPP02, BB01].

360 10 Scheduling in Job Shops

10.2.3 Branching

Consider once more the one machine scheduling problem consisting of the set N

of tasks, release times ri and tails qi for all Ti � N . Let Cmax be the maximum

completion time of a feasible job shop schedule, i.e. Cmax is an upper bound for

the makespan of an optimal one machine schedule. Let EC , SC and C be subsets

of N such that EC , SC � C, and any task Tj � C also belongs to EC (SC) if there is

an optimal single machine schedule such that Tj is first (respectively last) among

all tasks in C. Then the following conditions hold for any task Tk of N :

If rk + �
Ti�C

 pi + min{qi | Ti � SC , Ti � Tk} > Cmax then Tk 	 EC , (10.2.3)

If min{ri � Ti � EC , Ti � Tk} + �
Ti�C

 pi + qk > Cmax then Tk 	 SC , (10.2.4)

If Tk 	 EC and LB1(C � {Tk}) + pk > Cmax then Tk � SC , (10.2.5)

If Tk 	 SC and LB1(C � {Tk}) + pk > Cmax then Tk � EC . (10.2.6)

The preceding results tell us that, if C contains only two tasks Ti and Tk such

that rk + pk + pi + qi > Cmax then task Ti is processed before Tk, i.e. from the dis-

junctive arc pair connecting i and k arc (i, k) is selected. Moreover (10.2.5) and

(10.2.6) can be used in order to adapt heads and tails within the branch and

bound process, see [Car82, CP89]. If (10.2.5) or (10.2.6) holds then one can fix

all arcs (i, k) or (k, i), respectively, for all tasks Ti � C, Ti � Tk. Application of

(10.2.3) to (10.2.6) guarantees an immediate selection of certain arcs from dis-

junctive arc pairs before branching into a sub-tree. There are problem instances

such that conditions (10.2.3) to (10.2.6) cut the enumeration tree substantially.

The branching structure of [CP89, CP90, CP94] is based on the disjunctive

arc pairs which define exactly two sub-trees. Let Ti and Tj be such a pair of tasks

which have to be scheduled on a critical machine, i.e. a machine with longest

initial lower bound (= the preemptive one machine solution). Then, roughly

speaking, according to [BR65], both sequences of the two tasks are checked with

respect to their regrets if they increase the best lower bound LB. Let

dij := max {0, ri + pi + pj + qj � LB} ,

dji := max {0, rj + pj + pi + qi � LB} , (10.2.7)

aij := min {dij, dji}, and bij := |dij � dji| .

Among all possible candidates of disjunctive arc pairs with respect to the

critical machine that one is chosen that maximizes bij and, in case of a tie, the

pair is chosen with the maximum aij . Carlier and Pinson were the first to prove

that an optimal solution of the 10 � 10 benchmark has a makespan of 930. In

 10.2 Exact Methods 361

order to reach this goal a lot of work had to be done. In 1971 Florian et al.

[FTM71] proposed a branch and bound algorithm where at a certain time the set

of available tasks is considered, i.e. all tasks without any unscheduled predeces-

sor are possible candidates for branching. At each node of the enumeration tree

the number of branches generated corresponds to the number of available tasks

competing for a particular machine. Branching continues from that node with

smallest lower bound regarding the node associated to the partial schedule. As

lower bounds Florian et al. used a one machine lower bound without considering

tails, i.e. the optimal sequencing of the tasks on this particular machine is in in-

creasing order of the earliest possible start times. They could find a solution of

1041 for the 10 � 10 benchmark, thus, a slight improvement compared to Balas’

best solution of 1177 obtained two years earlier. His work was based on the dis-

junctive graph concept where he considered two successor nodes in the enumera-

tion tree instead of as many nodes as there are conflicting tasks. McMahon and

Florian [MF75] laid the foundation for Carlier's one machine paper. Contrary to

earlier approaches where the nodes of the enumeration tree corresponded to in-

complete (partial) schedules, they associated a complete solution with each

search tree node. An initial solution and upper bound is obtained by Schrage's

algorithms, i.e. among all available (released) tasks choose always that one with

longest tail (earliest due date). Their objective is to minimize maximum lateness

on one machine where each task is described by its release time, the processing

time, and its due date. At any search node an MF-critical task Tj (with respect to

the node associated schedule) is defined to be a task that realizes the value of the

maximum lateness in the given schedule. Hence, an improvement is only possi-

ble if Tj is scheduled earlier. The idea of branching is to consider those tasks hav-

ing greater due dates than the MF-critical task (i.e. having smaller tails than the

MF-critical task) and to schedule these tasks after the MF-critical one. They con-

tinuously apply Schrage's algorithm in order to obtain a feasible schedule while

the heads are adapted appropriately. McMahon and Florian also used their

branching structure in order to solve the minimum makespan job shop scheduling

problem and reached a value of 972 for the 10 � 10 problem. Moreover, they

were the first to solve the Fisher and Thompson 5 � 20 benchmark to optimality,

i.e. a makespan of 1165.

In [LLRK77] the one machine lower bound is introduced, hence extending

the previously used lower bounds. They generated all active schedules branching

over the conflict set in Giffler and Thompson's algorithm (see Section 3) or

branching over the disjunctive arcs. A priority rule at each node of the search tree

delivers an upper bound. There is no report on the notorious 10 jobs 10 machines

problem.

Barker and McMahon [BM85] associated with each node in their enumera-

tion tree a sub-problem whose solutions are a subset of the solution set of the

original problem, a complete schedule, a BM-critical block in the schedule which

is used to determine the descendant sub-problems, and a lower bound on the val-

362 10 Scheduling in Job Shops

ue of the solutions of the sub-problem. The lower bound is a single machine low-

er bound as computed in [MF75]. Each node of the search tree is associated with

a different sub-problem. Hence at each node in the search tree there is a complete

schedule containing a BM-critical task (a BM-critical task is the earliest sched-

uled task Ti where ti + qi is at least the value of the best known solution) and an

associated BM-critical block (a continuous sequence of tasks on a single machine

ending with a BM-critical task). The BM-critical task must be scheduled earlier

if this sub--problem is to yield an improved solution. Thus, a set of sub-problems

is explored, in each of which a different member of the BM-critical block is

made to precede all other members or to be the last of the tasks in the block to be

scheduled. Earliest start times and tails are adapted accordingly. While Barker

and McMahon reached a value of 960 for the 10 � 10 problem they were not able

to solve the 5 � 20 problem to optimality. Only a value of 1303 is obtained.

Branching in the algorithm [BJS92, BJS94] is also restricted to moves of

tasks which belong to a critical path of a solution obtained by a heuristic based

on dispatching rules. For a block B, i.e. successively processed tasks on the same

machine, that belongs to a critical path, new sub-trees are generated if a task is

moved to the very beginning or the very end of this block. In any case the critical

path is modified and additional disjunctive arcs are selected according to formu-

lae (10.2.2)-(10.2.6) proposed in [CP89]. Brucker et al. [BJS92, BJS94] calculat-

ed different lower bounds: one machine relaxations and two jobs relaxation, cf.

[BJ93]. Moreover, if task Ti is moved before the block B, all disjunctive arcs {(i,
j) | Tj � B and Tj � Ti} are fixed. Hence,

ri + pi + max { max
Tj�B, Tj�Ti

 (pj + qj), �
Tj�B, Tj�Ti

 pj + min
Tj�B, Tj�Ti

 qj}

is a simple lower bound for the search tree node. Similarly, the value

max { max
Tj�B, Tj�Ti

 (rj + pj), �
 Tj�B, Tj�Ti

 pj + min
Tj�B, Tj�Ti

 rj} + pi + qi

is a lower bound for the search tree node if task Ti is moved to the very end posi-

tion of block B. In order to keep the generated sub-problems non-intersecting it

is necessary to fix some additional arcs. Promising sub-problems are heuristically

detected. The branch and bound [BJS92, BJS94] improves and accelerates the

branch and bound algorithm [CP89] substantially and easily reaches an optimal

schedule for the 10 � 10 problem. However, to find an optimal solution for the

5 � 20 problem within a reasonable amount of time was impossible.

If we add a value , at the left hand side of the head and tail update rules

(10.2.3) and (10.2.4) then they can be considered as equations. Depending on the

choice of Cmax integer , can also be positive. This results in the assignment of

time windows [rk, rk + ,] of possible start times of tasks Tk to task sets supposed

to be scheduled on the same machine. The branching idea of Martin and Shmoys

[MS96] uses the tightness of these windows as a branching criterion. For tight or

 10.2 Exact Methods 363

almost tight windows, where the window size equals (almost) the sum of the

processing times of the task set C, branching depends on which task in C is pro-

cessed first. When a task is chosen to be first the size of its window is reduced.

The size of the windows of the other tasks in C are updated in order to reflect the

fact that they cannot start until the chosen task is completed. Martin and Shmoys

needed about 9 minutes for finding an optimal schedule for the 10 � 10 problem.

Comparable propagation ideas (after branching on disjunctive arcs) based on

time window assignments to tasks are considered in [CL95]. They found an op-

timal schedule to the 10 � 10 problem within less than 3 minutes. In both papers,

the updating of windows on tasks of one machine causes further updates on all

other machines. This iterated one machine window reduction algorithm generat-

ed lower bounds superior to the one machine lower bound.

Perregaard and Clausen [PC95] obtained excellent results through a parallel

branch and bound algorithm on a 16-processor system based on Intel i860 pro-

cessors each with 16 MB internal memory. There is a peak performance of about

500 MIPS. As a lower bound Jackson's preemptive schedule is used. A branching

strategy is the one from [CP89] where a new disjunctive arc pair describes the

branches originating from a node, this is done in analogy to the rules (10.2.3)-

(10.2.7). Another branching strategy considered is the one described in [BJS94],

i.e. moving tasks to block ends. Perregaard and Clausen easily found optimal

solutions to the 10 � 10 and 5 � 20 problems, both in time much less than a mi-

nute (of course including the optimality proof). For some other even more diffi-

cult problems they could prove optimality or obtained results unknown up to

now.

10.2.4 Valid Inequalities

Among the most efficient algorithms for solving the job shop scheduling prob-

lem exactly is the branch and bound approach by Applegate and Cook [AC91]. In

order to obtain good lower bounds they developed cutting plane procedures for

both the disjunctive and the mixed integer problem formulation, see [Man60]. In

the latter case the disjunctive constraints can be modeled by introducing a binary

variable yij
k
 for any task pair Ti, Tj supposed to be processed on the same machine

Pk. The interpretation is, yij
k
 equals 1 if Ti is scheduled before Tj on machine Pk,

and 0 if Tj is scheduled before Ti. Let Z be some large constant. Then the follow-

ing inequalities hold for all tasks Ti and Tj on machine Pk :

ti � tj + pj � Zyij
k
 (10.2.8)

tj � ti + pi � Z(1 � yij
k
) (10.2.9)

364 10 Scheduling in Job Shops

Starting from the LP-relaxation, valid inequalities involving variables yij
k
 as well

as inequalities developed for the disjunctive programming formulation are gener-

ated. Consider a feasible solution and set C of tasks processed on the same ma-

chine Pk. Let Ti � C be a task processed on Pk and assume all members of the

subset Ci of C are scheduled before Ti on Pk. Then the start time ti of task Ti 	 Ci

satisfies

ti � min {rj | Tj � Ci} + �
Tj�Ci

 pj � min {rj | Tj � C} + �
Tj�Ci

 pj . (10.2.10)

In order to become independent of the considered schedule we multiply this ine-

quality by pi and take the sum over all members of C. Hence, we get the basic
cuts from [AC91]:

�
Ti�C

 ti pi � (�
Ti�C

 pi) min{rj | Tj � C} +
1

2
 �
Ti�C
Ti�Tj

 �
Tj�C
Tj�Ti

 pj pi . (10.2.11)

With the addition of the variables yij
k
 we can easily reformulate (10.2.10) and

obtain the half cuts

ti � min {rj � Tj � C} + �
Tj�C
Tj�Ti

 yji
k
 pj (10.2.12)

because yji
k
 = 1 if and only if Tj � Ci.

Let Ti and Tj be two tasks supposed to be scheduled on the same machine.

Let (and * be any two nonnegative parameters. Assume Ti is supposed to be

processed before Tj , then (ti + *tj � (ri + *(ri + pi) because ti � ri and task Tj can-

not start before Ti is finished. Similarly, under the assumption that Tj is sched-

uled before Ti, we get (ti + *tj � (rj + pj) + *rj . Thus, both inequalities hold, for

instance, if the right hand sides of these inequalities are equal. Both inequalities

are satisfied if (= pi + ri � rj and * = pj + rj � ri . Hence, the two-job cuts [Bal85]

(pi + ri � rj) ti + (pj + rj � ri) tj � pi pj + ri pj + rj pi (10.2.13)

sharpen (10.2.11) if ri + pi > rj and rj + pj > ri .

The lower bounds in the branch and bound algorithm [AC91] are based on

these inequalities, the corresponding reverse ones, i.e. considering the jobs in

reverse order, and a couple of additional cuts. The cutting plane based lower

bounds are superior to the one machine lower bounds, however, at the cost of

additional computation time. For instance, for the 10 � 10 problem Applegate and

Cook were able to improve the one machine bound of 808 obtained in less than

one second up to 824 (in 300 seconds) or 827 in 7500 seconds. The branch and

bound tree is established continuing the search from a tree node where the

 10.3 Approximation Algorithms 365

preemptive one machine lower bound is minimum. The branching scheme results

from the disjunctive model, i.e. each disjunctive edge defines two sub-problems

according to the corresponding disjunctive arcs. However, among all possible

disjunctive edges the one is chosen, connecting tasks Ti and Tj, which maximizes

the minimum {LB(i � j), LB(j � i)} where LB(i � j) and LB(j � i) are the two

preemptive one machine lower bounds for the generated sub-problems where the

disjunctive arcs (i, j) or (j, i), respectively, are selected. Furthermore, in a more

sophisticated branch and bound method branching is realized on the basis of the

values aij and bij of (10.2.7). Then, based on the work [CP89], inequalities

(10.2.3) and (10.2.4) are applied to all task subsets on each particular machine in

order to eliminate disjunctive edges, simplifying the problem. In order to get a

high quality feasible solution Applegate and Cook modified the shifting bottle-

neck procedure [ABZ88]. After scheduling all but s machines, for the remaining

s machines the bottleneck criterion (see below) is replaced by complete enumera-

tion. Not necessarily the machine with largest makespan is included into the par-

tial schedule but each of the remaining s machines is considered to be the one

introduced next into the partial schedule. The value s has to be small in order to

keep the computation time low.

In order to obtain better feasible solutions they proceed as follows. Given a

complete schedule the processing order of the jobs on a small number s of ma-

chines is kept fixed. The processing order on the remaining machines is skipped.

The resulting partial schedule can be quickly completed to a new schedule using

the aforementioned branch and bound procedure. If the new schedule is shorter

than the original, then this process is repeated with the restriction that the set of

machines whose schedules are kept fixed is modified. The number s of machines

to fix follows the need to have enough structure to rapidly fill in the rest of the

schedule and leave a sufficient amount of freedom for improving the processing

orders (see [AC91], for additional information on how to choose s). Applegate

and Cook easily found an optimal solution to the 10 � 10 job shop in less than 2

minutes (including the proof of optimality).

10.3 Approximation Algorithms

10.3.1 Priority Rules

Priority rules are probably the most frequently applied heuristics for solving (job

shop) scheduling problems in practice because of their ease of implementation

and their low time complexity. The algorithm of Giffler and Thompson [GT60]

can be considered as a common basis of all priority rule based heuristics. Let

Q (t) be the set of all unscheduled tasks at time t. Let ri and Ci denote the earliest

possible start and the earliest possible completion time, respectively, of task Ti.

366 10 Scheduling in Job Shops

The algorithm of Giffler and Thompson assigns available tasks to machines, i.e.

tasks which can start being processed. Conflicts, i.e. tasks competing for the

same machine, are solved randomly. A brief outline of the algorithm is given in

Algorithm 10.3.1.

Algorithm 10.3.1 The algorithm of Giffler and Thompson [GT60].
begin
t := 0; Q (t) := {T1,..., Tn��};

repeat
Among all unscheduled tasks in Q (t) let Tj* be the one with smallest comple-

tion time, i.e. Cj* = min {Cj | Tj � Q (t), Cj = max{t, rj} + pj}. Let Pk* denote

the machine Tj* has to be processed on;

Randomly choose a task Ti from the conflict set { Tj � Q (t) | Tj has to be pro-

cessed on machine Pk* and rj < Cj*};

Q (t) := Q (t) � {Ti};

Modify Cj for all tasks Tj � Q (t) supposed to be processed one machine Pk*;

Set t to the next possible task to machine assignment, i.e. Ci* = min{Ci | Ti is

in process on some machine Pk and there is at least one task in Q (t) that re-

quires Pk};

rj* := min{rj | Tj � Q (t)};

t := max{ Ci*, rj*};

until Q (t) is empty

end;

The Giffler-Thompson algorithm can generate all active schedules (a schedule is

said to be active, if no task can start its processing without delaying any other

task) among which are also optimal schedules. As the conflict set consists only of

tasks, i.e. jobs, competing for the same machine, the random choice of a task or

job from the conflict set may be considered as the simplest version of a priority

rule where the priority assigned to each task or job in the conflict set corresponds

to a certain probability. Many other priority rules can be considered, e.g. the total

processing time of all tasks succeeding Ti in a given job. A couple of rules are

collected in Table 10.3.1; for an extended summary and discussion see [PI77,
BPH82, Hau89]. The first column of Table 10.3.1 contains an abbreviation and

name of the rule while the last column describes which task or job in the conflict

set gets highest priority.

 10.3 Approximation Algorithms 367

 rule description

1. STT-rule
(shortest task time)

A task with a shortest processing time

on the considered machine.

2. LTT-rule
(longest task time)

A task with a longest processing time

on the machine considered.

3. LRPT-rule
(longest remaining processing time)

A task with a longest remaining job

processing time.

4. SRPT-rule
(shortest remaining processing time)

A task with a shortest remaining job

processing time.

5. LTRPT-rule
(longest task remaining processing

time)

A task with a highest sum of tail and

task processing time.

6. Random A task for the considered machine is

randomly chosen.

7. FCFS-rule
(first come first served)

The first task in the queue of jobs

waiting for the same machine.

8. SPT-rule
(shortest processing time)

A job with a smallest total processing

time.

9. LPT-rule
(longest processing time)

A job with a longest total processing

time.

10. LTS-rule
(longest task successor)

A task with a longest subsequent task

processing time.

11. SNRT-rule
(smallest number of remaining tasks)

A task with a smallest number of

subsequent tasks in the job.

12. LNRT-rule
(largest number of remaining tasks)

A task with a largest number of sub-

sequent tasks in the job.

Table 10.3.1 Priority rules.

10.3.2 The Shifting Bottleneck Heuristic

The shifting bottleneck heuristic ([ABZ88], [BLV95 and DMU97, PM00]) is one

of the most powerful procedures among heuristics for the job shop scheduling

problem. The idea is to solve for each machine a one machine scheduling prob-

lem to optimality under the assumption that a lot of arc directions in the optimal

one machine schedules coincide with an optimal job shop schedule. Consider all

tasks of a job shop scheduling instance that have to be scheduled on machine Pk.

In the (disjunctive) graph including a partial selection among opposite directed

arcs (corresponding to a partial schedule) there exists a longest path of length ri

368 10 Scheduling in Job Shops

from dummy vertex 0 to each vertex i corresponding to Ti scheduled on machine

Pk. Processing of task Ti cannot start before ri. There is also a longest path of

length qi from i to the dummy node n. Obviously, when Ti is finished it will take

at least qi time units to finish the whole schedule. Although the one machine

scheduling problem with heads and tails is NP-hard, there is the powerful branch

and bound method (see Section 10.2.2) proposed by Potts [Pot80b] and Carlier

[Car82, Car87] which dynamically changes heads and tails in order to improve

the tasks sequence.

The shifting bottleneck heuristic consists of two subroutines. The first one

(SB1) repeatedly solves one machine scheduling problems while the second one

(SB2) builds a partial enumeration tree where each path from the root to a leaf is

similar to an application of SB1. As its name suggests, the shifting bottleneck

heuristic always schedules bottleneck machines first. As a measure of the bottle-

neck quality of machine Pk, the value of an optimal solution of a one machine

scheduling problem on machine Pk is used. The one machine scheduling prob-

lems considered are those which arise from the disjunctive graph model when

certain machines are already sequenced. The task orders on sequenced machines

are fully determined. Hence sequencing an additional machine probably results in

a change of heads and tails of those tasks of which the machine order is still

open. For all machines not sequenced, the maximum makespan of the corre-

sponding optimal one machine schedules, where the arc directions of the already

sequenced machines are fixed, determines the bottleneck machine. In order to

minimize the makespan of the job shop scheduling problem, the bottleneck ma-

chine should be sequenced first. A brief statement of the shifting bottleneck pro-

cedure is given in Algorithm 10.3.2.

Algorithm 10.3.2 Shifting bottleneck (SB1) heuristic.
begin
Let P be the set of all machines and let P ' := � be the - initially empty - set of

all sequenced machines;
repeat
for Pk � P � P ' do

begin
Compute head and tail for each task Ti that has to be scheduled on

machine Pk;

Solve the one machine scheduling problem to optimality for machine Pk;

Let C(k) be the resulting makespan for this machine;
end;

Let Pk* be the bottleneck machine, i. e. C(k*) � C(k) for all Pk � P � P ';

P ' := P ' � { Pk*};

for Pk � P ' in the order of its inclusion do -- local re-optimization

 10.3 Approximation Algorithms 369

begin
Delete all arcs between tasks on Pk while all arc directions between tasks

on machines from P ' � {Pk} are fixed;

Compute heads and tails of all tasks on machine Pk and solve the one

machine scheduling problem and reintroduce the obtained task orders on

Pk;

end;
until P = P '

end;
The one machine scheduling problems, although they are NP-hard (contrary to

the preemptive case, cf. [BLL+83]), can quickly be solved using the algorithm

[Car82]. Unfortunately, adjusting heads and tails does not take into account a

possible already fixed processing order of tasks connecting two tasks Ti and Tj on

the same machine, whereby this particular machine is still unscheduled. So, we

get one machine scheduling problems with heads, tails, and time lags (minimum

delay between two tasks), problems which cannot be handled with Carlier's algo-

rithm. In order to overcome these difficulties an improved SB1 version is sug-

gested by Dauzere-Peres and Lasserre [DL93] using approximate one machine

solutions. Balas et al. [BLV95] solved the one machine problems exactly. So,

there is a SB1-heuristic superior to the SB1-heuristic proposed in [ABZ88]. On

average, the SB1-heuristic results from [BLV95] are slightly worse than those

obtained by the SB2-heuristic from [BLV95].

During the local re-optimization part of the SB1-heuristic, the task sequence

is re-determined for each machine, keeping the sequences of all other already

scheduled machines untouched. As the one machine problems use only partial

knowledge of the whole problem, it is not surprising, that optimal solutions will

not be found easily. This is even more the case because Carlier's algorithm con-

siders the one machine problem as consisting of independent tasks while some

dependence between tasks of a machine might exist in the underlying job shop

scheduling problem. Moreover, a monotonic decrease of the makespan is not

guaranteed in the re-optimization step of Adams et al. [ABZ88]. Dauzere-Peres

and Lasserre [DL93] were the first to improve the robustness of SB1 and to en-

sure a monotonic decrease of the makespan in the re-optimization phase and

eliminate sensitivity to the number of local re-optimization cycles. Contrary to

Carlier's algorithm, they update the task release time s each time they select a

new task by Schrage's procedure. They obtained a solution of 950 for the 10 � 10

problem using this modified version of the SB1-heuristic.

The quality of the schedules obtained by the SB1-heuristic heavily depends

on the sequence in which the one machine problems are solved and thus on the

order these machines are included in the set P '. Sequence changes may yield

substantial improvements. This is the idea behind the second version of the shift-

370 10 Scheduling in Job Shops

ing bottleneck procedure, i.e. the SB2-heuristic, as well as behind the second ge-

netic algorithm approach by Dorndorf and Pesch [DP95]. The SB2-heuristic ap-

plies a slightly modified SB1-heuristic to the nodes of a partial enumeration tree.

A node corresponds to a set P ' of machines that have been sequenced in a par-

ticular way. The root of the search tree corresponds to P ' = �. A branch corre-

sponds to the inclusion of machine Pk into P ', thus the branch leads to a node

representing an extended set P ' � {Pk}. At each node of the search tree a single

step of the SB1-heuristic is applied, i.e. machine Pk is included followed by a

local re-optimization. Each node in the search tree corresponds to a particular

sequence of inclusions of the machines into set P '. Thus, the bottleneck criterion

no longer determines the inclusion into P '. Obviously a complete enumeration of

the search tree is not acceptable. Therefore a breadth-first search up to depth l is

followed by a depth-first search. In the former case, for a search node corre-

sponding to set P ' all possible branches are considered which result from inclu-

sion of machine Pk 	 P '. Hence the successor nodes of node P ' correspond to

machine sets P ' � {Pk} for all Pk � P � P '. Beyond the depth l an extended bot-

tleneck criterion is applied, i.e. instead of | P � P ' | successor nodes there are sev-

eral successor nodes generated corresponding to the inclusion of the bottleneck

machine as well as several other machines Pk to P '.

10.3.3 Opportunistic Scheduling

For long time priority rules were the only possible way to tackle job shops of at

least 100 tasks [CGTT63]. Recently, generally applicable approximation proce-

dures such as tabu search, simulated annealing or genetic algorithm learning

strategies became very attractive and successive solution strategies. Their general

idea is to modify current solutions in a certain sense, where the modifications are

defined by a neighborhood operator, such that new feasible solutions are generat-

ed, the so called neighbors, which hopefully have an improved or at most limited

deterioration of their objective function value. In order to reach this goal problem

specific knowledge, incorporated by problem specific heuristics, has to be intro-

duced into the local search process of the general problem solvers (see Section

2.5.2).

Knowledge based scheduling systems have been built by various people us-

ing various techniques. Some of them are rule based systems others are based on

frame representations. Some of them use heuristic rules only to construct a

schedule, others conduct a constraint directed state space search. ISIS [Fox87,
FS84] is a constraint directed reasoning system for the scheduling of factory job

shops. The main feature is that it formalizes various scheduling influences in the

form of constraints on the system's knowledge base and uses these constraints to

 10.3 Approximation Algorithms 371

guide the search in order to generate heuristically the schedule. In each schedul-

ing cycle it first selects an order of tasks to be scheduled according to priority

rules and then proceeds through a level of analysis of existing schedules, a level

of constraint directed search and a level of detailed assignment of resources and

time intervals for each task in order. A large amount of work done by ISIS actu-

ally involves the extraction and organization of constraints that are created spe-

cifically for the problem under consideration. Scheduling relies only on order

based problem decomposition. The system OPIS [OS88, SFO86] which is a di-

rect descendant of ISIS attempts to make some progress by concentrating more

on bottlenecks and scheduling under the perspective of resource based decompo-

sition, cf. [ABZ88, CPP92, BLV95, DL93]. The term "opportunistic reasoning"

has been used to characterize a problem-solving process whereby activity is con-

sistently directed toward those actions that appear most promising in terms of the

current problem-solving state. The strategy is to identify the most "solvable" as-

pects of the problem (e.g. those aspects with the least number of choices or

where powerful heuristics are known) and develop candidate solutions to these

sub-problems. However the way in which a problem is decomposed affects the

quality of the solution reached. No sub-problem contains all the information of

the original problem. Sub-problems should be as independent as possible in

terms of effects of decisions on other sub-problems. OPIS is an opportunistic

scheduling system using a genetic opportunistic scheduling procedure. For in-

stance, it constantly redirects the scheduling effort towards those machines that

are likely to be the most difficult to schedule (so-called bottleneck machines).

Decomposing the job shop into single machine scheduling problems bottleneck

machines might get a higher priority for being scheduled first. Hence, dynamical-

ly revised decision making based on heuristic rules focuses on the most critical

decision points and the most promising decisions at these points, cf. [Sad91].

The average complexity of the procedures is kept on a very low level by inter-

leaving the search with application of consistency enforcing techniques and a set

of look-ahead techniques that help to decide which task to schedule next (i.e. so-

called variable-ordering and value-ordering techniques). Clearly, start times of

tasks competing for highly contended machines are more likely to become una-

vailable than those of other tasks. A critical variable is one that is expected to

cause backtracking, i.e. one which remaining possible values are expected to

conflict with the remaining possible values of other variables. A good value is

one that is expected to participate in many solutions. Contention between un-

scheduled tasks for a machine over some time interval is determined by the num-

ber of unscheduled tasks competing for that machine/time interval and the reli-

ance of each one of these tasks on the availability of this machine/time interval.

Typically, tasks with few possible starting times left will heavily rely on the

availability of any one of these remaining starting times in competition, whereas

tasks with many remaining starting times will rely much less on any one of these

times. Each starting time is assigned a subjective probability to be assigned to a

particular task. The task with the highest contribution to the demand for the most

372 10 Scheduling in Job Shops

contended machine/time interval is considered the most likely to violate a con-

straint, cf. [CL95, PT96].

Very recent solution approaches use ant colony optimization [MFP06, BS04]

and artificial immune systems [CAK+06] as successful and competitive algo-

rithms.

10.3.4 Local Search

An important issue is the extent to which problem specific knowledge must be

used in the construction of learning algorithms (in other words the power and

quality of inferencing rules) capable to provide significant performance im-

provements. Very general methods having a wide range of applicability in gen-

eral are weak with respect to their performance. Problem specific methods

achieve a highly efficient learning but with little use in other problem domains.

Local search strategies are falling somewhat in between these two extremes,

where genetic algorithms or neural networks tend to belong to the former catego-

ry while tabu search or simulated annealing etc. are counted as instances of the

second category. Anyway, these methods can be viewed as tools for searching a

space of legal alternatives in order to find a best solution within reasonable time

limitations. When sufficient knowledge about the search space is available a pri-

ori, one can often exploit that knowledge (inference) in order to introduce prob-

lem specific search strategies capable to find rapidly solutions of higher quality.

Whiteout such a priori knowledge, or in cases where close to optimum solutions

are indispensable, information about the problem has to be accumulated dynami-

cally during the search process. Likewise obtained long-term as well as short-

term memorized knowledge constitutes one of the basic parts in order to control

the search process and in order to avoid getting stuck in a locally optimal solu-

tion. In random search finding an acceptable solution within a reasonable amount

of time is impossible because any kind of random search is not using any

knowledge generated during the search process in order to improve its perfor-

mance. Any global information assessed during the search will not be exploited.

Local search algorithms (see section 2.5) provide general problem solving

strategies incorporating and exploiting problem-specific knowledge capable even

to explore search spaces containing an exponentially growing number of local

optima with respect to the problem defining parameters.

Tabu Search and Simulated Annealing Based Job Shop
Scheduling

In the 90's local search based scheduling of job shops became very popular; for a

survey see [VAL96, Vae95, AGP97, WW95]. These algorithms are all based on

a certain neighborhood structure. A simple neighborhood structure (N1) has been

used in the simulated annealing procedure of [LAL92]:

 10.3 Approximation Algorithms 373

N1: Transition from a current solution to a new one is generated by replacing in
the disjunctive graph representation of the current solution a disjunctive arc
(i, j) on a critical path by its opposite arc (j, i).

In other words, N1 means reversing the order in which two tasks Ti and Tj (or

jobs) are processed on a machine where these two tasks belong to a longest path.

This parallels the early branching structures of exact methods. It is possible to

construct a finite sequence of transitions leading from a locally optimal solution

to the global optimum, i.e. the neighborhood is connected. This is a necessary

and sufficient condition for asymptotic convergence of simulated annealing. On

average (on VAX 785 over 5 runs on each instance) it took about 16 hours to

solve the 10 � 10 benchmark to optimality. A value of 937 was reached within

almost 100 minutes. The 5 � 20 benchmark problem was solved to optimality

within almost 18 hours.

Lourenço [Lou93, Lou95] introduces a combination of small step moves

based on the neighborhood N1 and large step moves in order to reach new search

areas. The small steps are responsible for search intensification in a relatively

narrow area. Therefore a simple hill-climbing as well as simulated annealing are

used, both with respect to neighborhood N1. The large step moves modify the

current schedule and drive the search to a new region. Simultaneously a modest

optimization is performed to obtain a schedule reasonably close to a local opti-

mum by local search such as hill-climbing or simulated annealing. The large

steps considered are the following: Randomly select two machines and remove

all disjunctive arcs connecting tasks on these two machines in the current sched-

ule. Then solve the two one machine problems - using Carlier's algorithm or al-

lowing preemption and considering time lags - and return the obtained arcs ac-

cording to their one machine solutions into the whole schedule. Starting solutions

are generated through some randomized dispatching rules, one for an instance, in

the same way as in [Bie95] (see below).

More powerful neighborhood definitions are necessary. A neighborhood N2

defined in [MSS88], has been also applied in the local search improvement steps

of the genetic algorithms in [ALLU94]:

N2: Consider a feasible solution and a critical arc (i, j) defining the processing
order of tasks Ti and Tj on the same machine, say machine Pk. Define Tipred(i)
and Tisucc(i) to be the immediate predecessor and immediate successor of Ti,
respectively, on machine Pk. Restrict the choice of arc (i, j) to those vertices
for which at least one of the arcs (ipred(i), i) or (j, isucc(j)) is not on a long-
est path, i.e. i or j are block end vertices (cf. the branching structure in

BJS94). Reverse (i, j) and, additionally also reverse (ipred(h), h) and (l,
isucc(l)) - provided they exist - where Th directly precedes Ti in the job, and
Tl is the immediate successor of Tj in the job. The latter arcs are reversed
only if a reduction of the makespan can be achieved.

374 10 Scheduling in Job Shops

Thus, a neighbor of a solution with respect to N2 may be found by reversing more

than one arc. Within a time bound of 99 seconds the results of two simulated

annealing algorithms based on the two different neighborhood structures N1 and

N2 were 969 and 977, respectively, for the 10 � 10 problem as well as 1216 and

1245, respectively, for the 5 � 20 problem, see [ALLU94].

Dell'Amico and Trubian [DT93] considered the problem as being symmetric

and scheduled tasks bi-directionally, i.e. from the beginning and from the end, in

order to obtain a priority rule based feasible solution. The resulting two parts

finally are put together in order to constitute a complete solution. The neighbor-

hood structure (N3) employed in their tabu search extends the connected neigh-

borhood structure N1:

N3: Let (i, j) be a disjunctive critical arc. Consider all permutations of the three
vertices {ipred(i), i, j} and {i, j, isucc(j)} in which (i, j) is reversed.

Again, it is possible to construct a finite sequence of moves with respect to N3

which leads from any feasible solution to an optimal one. In a restricted version

N3' of N3 arc (i, j) is chosen such that either Ti or Tj is the end vertex of a block.

In other words, arc (i, j) is not considered as candidate when both (ipred(i), i) and

(j, isucc(j)) are on a longest path in the current solution. N3' is not any longer a

connected neighborhood. Another branching scheme is considered to define a

neighborhood structure N4:

N4: For all tasks Ti in a block move Ti to the very beginning or to the very end
of this block.

Once more, N4 is connected, i.e. for each feasible solution it is possible to con-

struct a finite sequence of moves, with respect to N4, leading to a globally opti-

mal solution. For a while the tabu search [DT93] was the most powerful method

to solve job shops. They were able to find an optimal solution to the 5 � 20 prob-

lem within 2.5 minutes and a solution of 935 to the 10 � 10 problem in about the

same amount of time.

N1 and N4 are also the two neighborhood structures used in the tabu search

of [SBL95]. In 40 benchmark problems they always obtained better solutions or

reduced running times compared to the shifting bottleneck procedure. For in-

stance, they generated an optimal solution to the 10 � 10 problem within 157 sec-

onds.

In the parallel tabu search Taillard [Tai94] used the N1 neighborhood. Every

15 iterations the length of the tabu list is randomly changed between 8 and 14.

He obtained high quality solutions even for very large problem instances up to

100 jobs and 20 machines.

Barnes and Chambers [BC95] also used N1 in their tabu search algorithm.

They fixed the tabu list length and whenever no feasible move is available the list

entries are deleted. Start solutions are obtained through dispatching rules.

 10.3 Approximation Algorithms 375

Nowadays, the most efficient tabu search implementations are described in

[NS96, NS05] and [BV98]. The size of the neighborhood N1 depends on the

number of critical paths in a schedule and the number of tasks on each critical

path. It can be pretty large. Nowicki and Smutnicki [NS96] consider a smaller

neighborhood (N5) restricting N1 (or N4) to reversals on the border of a block.

Moreover, they restrict to a single critical path arbitrarily selected

N5: A move is defined by the interchange of two successive tasks Ti and Tj,
where either Ti or Tj is the first or last task in a block that belongs to a criti-
cal path. In the first block only the last two tasks and symmetrically in the
last block of the critical path only the first two tasks are swapped.

The set of moves is not empty only if the number of blocks is more than one and

if at least one block consists of more than one task. In other words, if the set of

moves is empty then the schedule is optimal. If we consider neighborhoods N1

and N5 in more detail, then we can deduce: A schedule obtained from reversing

any disjunctive arc which is not critical cannot reduce the makespan; a move that

belongs to N1 but not to N5 cannot reduce the makespan. Let us go into more

detail of [NS96], see also [JRM00].

The neighborhood search strategy includes an aspiration criterion and reads

as follows:

Algorithm 10.3.3 Neighborhood search strategy of Nowicki-Smutnicki, [NS96].

begin
Let x be a current schedule (feasible solution) with makespan Cmax

x ;

N (x) denotes the set of all neighbors of x;

Cmax is the makespan of the currently best solution;

T is a tabu list;

Let A be the set {x' � N (x) | Move(x � x') � T and Cmax
x'

 < C max};
 -- i.e. all schedules in A satisfy the aspiration criterion

 -- to improve the currently best makespan.

if { N (x) | Move(x � x') is not tabu} � A is not empty

then
Select y such that

Cmax
y

 = min{Cmax
x'

 | x' � N (x) or if Move(x � x') is tabu then x' � A }

else
repeat

Drop the "oldest" entry in T and append a copy of the last element in T
until there is a non-tabu move Move(x � x');

Let Move(x � x') be defined by arc (i, j) in the disjunctive graph of x,

then append arc (j, i) to T
end;

376 10 Scheduling in Job Shops

The design of a classical tabu search algorithm is straightforward. A stopping

criterion is when the optimal schedule is detected or the number of iterations

without any improvement exceeds a certain limit. The initial solution can be gen-

erated using an insertion technique, e.g. as described in [NEH83]. Nowicki and

Smutnicki note that the essential disadvantage of this approach consists of loos-

ing information about previous runs. Therefore they suggest to build up a list of

the l best solutions and their associated tabu lists during the search. Whenever

the classical tabu search has finished go back to the most recent entry, i.e. the

best schedule x from this list of at most l solutions, and restart the classical tabu

search. Whenever a new best solution is encountered the list of best solutions is

updated. This extended tabu search "with backtracking" continues until the list of

best solutions is empty. Nowicki and Smutnicki obtained very good results; for

instance, they could solve the notorious 10 � 10 problem within 30 seconds to

optimality, even on a small personal computer. They solved the 5 � 20 problem

within 3 seconds to optimality.

The idea of Balas and Vazacopoulos [BV98] of the guided local search pro-

cedure is based on reversing more than one disjunctive arc at a time. This leads

to a considerably larger neighborhood than in the previous cases. Moreover,

neighbors are defined by interchanging a set of arcs of varying size, hence the

search is of variable depth and supports search diversification in the solution

space. The employed neighborhood structure (N6) is an extension of all previous-

ly encountered neighborhood structures. Consider any feasible schedule x and

any two tasks Ti and Tj to be performed on the same machine, such that i and j
are on the same critical path, say CP(0, n), but not necessarily adjacent. Assume

Ti is processed before Tj. Besides Tipred(i), Tipred(j) and Tisucc(i), Tisucc(j), the imme-

diate machine predecessors and machine successors of Ti and Tj in x, let Ta(i),

Ta(j) and Tb(i) and Tb(j) denote the job predecessors and job successors of tasks Ti

and Tj, respectively. Moreover, let r(i) := ri + pi and q(i) := pi + qi be the length of

a longest path (including the processing time pi of Ti) connecting 0 and i, or i and

n. An interchange on Ti and Tj either is a move of Ti right after Tj (forward inter-

change) or a move of Tj right before Ti (backward interchange). We have seen

that schedule x cannot be improved by an interchange on Ti and Tj if both tasks

are adjacent and none of the vertices corresponding to them is the first or the last

one of a block in CP(0, n). In other words, in order to achieve an improvement

either a(i) or b(j) must be contained in CP(0, n). This statement can easily be

generalized to the case where Ti is not an immediate predecessor of Tj. Thus for

an interchange on Ti and Tj to reduce the makespan, it is necessary that the criti-

cal path CP(0, n) containing i and j also contains at least one of the vertices a(i)
or b(j). Hence, the number of "attractive" interchanges reduces drastically and the

question remains, under which conditions an interchange on Ti and Tj is guaran-

teed not to create a cycle in the graph. It is easy to derive that a forward inter-

change on Ti and Tj yields a new schedule x' (obtained from x) if there is no di-

 10.3 Approximation Algorithms 377

rected path from b(i) to j in x. Similarly, a backward interchange on Ti and Tj will

not create a cycle if there is no directed path from i to a(j) in x.

Now, the neighborhood structure N6 can be introduced.

N6: A neighbor x' of a schedule x is obtained by an interchange of two tasks Ti
and Tj in one block of a critical path. Either task Tj is the last one in the
block and there is no directed path in x connecting the job successor of Ti to
Tj, or, task Ti is the first one in the block and there is no directed path in x
connecting Ti to the job predecessor of Tj.

Whereas the neighborhood N1 involves the reversal of a single arc (i, j) on a crit-

ical path the more general move defined by N6 involves the reversal of potential-

ly a large number of arcs.

Assume that an interchange on a task pair Ti, Tj results in a makespan in-

crease of the new schedule x' compared to the old one x. Then it is obvious that

every critical path in x' contains arc (j, i). The authors make use of this fact in

order to further reduce the neighborhood size. Consider a forward interchange

resulting in a makespan increase: Since (j, i) is a member of any critical path in x'
the arc (i, b(i)) is as well (because Ti became the last task in its block). We have

to distinguish two cases. Either the length of a longest path from b(i) to n in x,

say q(b(i)), exceeds the length of a longest path from b(j) to n in x, say q(b(j)) or

q(b(i)) � q(b(j)). In the former case q(b(i)) is responsible for the makespan in-

crease. In the latter case isucc(i) is the first task in its block in x'. Hence, the

length r(j) of a longest path in x connecting 0 to j is smaller than the length r'(i)
of a longest path in x' connecting 0 to i. Thus, the number of interchange candi-

dates can be reduced defining some guideposts. In a forward interchange a right

guidepost h is reached if q(b(h)) < q(b(i)); a left guidepost h is reached if r(j) <

r'(h) holds. Equivalently, in a backward interchange that worsens the makespan

of schedule x a left guidepost h is reached if r(ipred(h)) < r(ipred(j)); a right

guidepost h is reached if q(i) < q'(h) holds.

After an interchange that increased the makespan, if a left guidepost is

reached the list of candidates for an interchange is restricted to those task pairs

on a critical path in x' between 0 and j. If a right guidepost is reached candidates

for an interchange are chosen from the segment on a critical path in x' between j
and n. If both guideposts are reached the set of candidates is not restricted. Thus,

in summary, if the makespan increases after an interchange, available guideposts

restrict the neighborhood.

The guided local search procedure by Balas and Vazacopoulos [BV98] uses

the neighborhood structure N6 including the restrictions aforementioned. The

procedure builds up an incomplete enumeration (called neighborhood) tree. Each

node of the tree corresponds to a schedule, an edge of the tree joins two sched-

ules x and x' where descendant x' is obtained through an interchange on two tasks

Ti and Tj lying on a critical path in x. The arc (j , i) is fixed in all schedules corre-

378 10 Scheduling in Job Shops

sponding to the nodes of the sub-tree rooted at x'. The number of direct descend-

ants of x', i.e. the number of possible moves, is the entire neighborhood if x' is a

shorter schedule than x. It is the restricted (with respect to the guideposts) neigh-

borhood if the makespan of x' is worse than the one of x. The children of a node

corresponding to schedule x are ranked by their evaluations. The number of chil-

dren is limited by a decreasing function of the depth in the neighborhood tree.

After an interchange on Ti , Tj leading from x to schedule x' the arc (j , i) remains

fixed in all schedules of the sub-tree rooted in x'. Additionally, the arc (j , i) is also

fixed in all schedules corresponding to brothers of x' (i.e. children of x) having a

makespan worse than x' (in the sequence of the ranked list). Finally, besides arc

fixing and limits on the number of children a third factor is applied to keep the

size of the tree small. The depth of the tree is limited by a logarithmic function of

the number of tasks on the tree's level. Altogether, the size of the neighborhood

tree is bounded by a linear function of the number of tasks.

The number of neighborhood trees generated is governed by some rules. The

root of a new neighborhood tree corresponds to the best schedule available if it is

generated in the current tree. Otherwise, if the current tree is not a step into a

better local optimum the root of the new tree is randomly chosen among the

nodes of the current tree.

In order to combine local search procedures operating on different neighbor-

hoods (which makes it more likely to escape local optima and explore regions

not available by any single neighborhood structure) Balas and Vazacopoulos

combined their guided local search with the shifting bottleneck procedure. Re-

member, every time a new machine has been sequenced the shifting bottleneck

procedure re-optimizes the sequence of each previously processed machine, by

again solving a one machine problem with the sequence on the other machines

held fixed. The idea of Balas and Vazacopoulos is to replace the re-optimization

cycle of the shifting bottleneck procedure with the neighborhood trees of the

guided local search procedure. Whenever there are l fixed machine sequences

defining a partial schedule the shifting bottleneck guided local search (SB-GLS)

generates 2l|J | neighborhood trees instead of starting a re-optimization cycle. The

root of the first tree is defined by the partial schedule of the l already sequenced

machines. The roots of the other trees are obtained as described above. The best

schedule obtained from this incorporated guided local search is then used as a

starting point for continuation of the shifting bottleneck procedure. A couple of

modifications of SB-GLS ideas are applied which basically differ from SB-GLS

in the number of sequenced machines (hence the root of the first neighborhood

tree) in the shifting bottleneck part, cf. [BV98].

SB-GLS and its modifications is currently the most powerful heuristic to

solve job shop scheduling problems. It outperforms many others in solution qual-

ity and computation time. Needless to say that all versions of GLS and SB-GLS

easily could solve the 10 � 10 problem to optimality in time between 12 seconds

up to a couple of minutes (see [BV98] for the results of an extensive computa-

tional work).

 10.3 Approximation Algorithms 379

Excellent results are also presented in [ZLRG06]. The authors describe a

combination of tabu search and simulated annealing and use above mentioned

neighborhoods in their local search.

[HL06] combine an ant colony approach with the tabu search approach of

Nowicki and Smutnicki. The ant colony idea is based on the shifting bottleneck

idea, i.e., the ants are generating feasible one-machine schedules.

Genetic Based Job Shop Scheduling

As described in Section 2.5, a genetic algorithm aims at producing near-optimal

solutions by letting a population of random solutions undergo a sequence of

transformations governed by a selection scheme biased towards high-quality so-

lutions. The effect of the transformations is that implicitly good properties are

identified and combined into a new population which hopefully has the property

that the best solution and the average value of the solutions are better than in

previous populations. The process is then repeated until some stopping criteria

are met.

A solution of a combinatorial optimization problem may be considered as a

sequence of local decisions. A local decision for the job shop scheduling problem

might be the choice of a task to be scheduled next. In an enumeration tree of all

possible decision sequences a solution of the problem is represented as a path

corresponding to the different decisions from the root of the tree to some leaf.

Genetics can guide a search process in order to learn to find the most promising

decisions, see Algorithm 2.5.4.

In case of an interpretation of an individual solution as a sequence of deci-

sion rules as described first in [DP95], an individual of a population is consid-

ered to be a subset of feasible schedules from the set of all feasible schedules.

Each individual of the priority rule based genetic algorithm (P-GA) is a

string of n � 1 entries (f
 1 , f

 2 ,...,f
 n�1) where n � 1 is the number of tasks in the

underlying problem instance. An entry f
 i represents one rule of the set of priority

rules described in Table 10.3.1. The entry in the i th position says that a conflict

in the i
th

 iteration of the Giffler-Thompson algorithm should be resolved using

priority rule f
 i . More precisely, a task from the conflict set has to be selected by

rule f
 i ; ties are broken by a random choice. Within a genetic framework a best

sequence of priority rules has to be determined. An analogous encoding scheme

has been used in [DTV95]. An individual is divided into sub-strings of prefer-

ence lists. A sub-string defines preferences for task's selection for a particular

machine.

The crossover operator is straightforward. Obviously, the simple crossover

applies, where the sub-strings of two cut strings are exchanged, and which al-

ways yields feasible offspring. Heuristic information already occurs in the encod-

ing scheme and a particular improvement step - contrary to genetic local search

approaches, cf. [ALLU94] or [UAB+91] - is dropped. The mutation operator

380 10 Scheduling in Job Shops

applied with a very small probability simply switches a string position to another

one, i.e. the priority rule of a randomly chosen string entry is replaced by a new

rule randomly chosen among the remaining ones. The approach in [DP95] to

search a best sequence of decision rules for selecting tasks is just in line with the

ideas described in [FT63] on probabilistic learning of sequences consisting of

two priority rules, and [CGTT63], or [GH85] on learning how to find promising

linear combinations of basic priorities. Fisher and Thompson [FT63] were

amongst the first to suggest an adaptive approach by using a combination of rules

in a sequencing system. They proposed using two separate sequencing criteria

and, when a decision was taken, a random choice of a rule was made. Initially,

there was an equal probability of selecting each rule but as the system progressed

these probabilities were adjusted according to a predefined learning procedure.

The following rules: STT, LTT, LRPT, FCFS, least remaining job slack per task,

least remaining machine slack were considered in [CGTT63]. Their idea was to

create a rule (as a linear combination of the above mentioned priority rules) ca-

pable of decisions which cannot be specified by any of the rules in isolation. Fur-

thermore, the projection of the combined rule should yield each individual rule

(see also [GH85]). In their experiments they restricted consideration to STT and

LRT.

Besides using the genetic algorithm as a meta-strategy to optimally control

the use of priority rules, another genetic algorithm described in [DP95] controls

the selection of nodes in the enumeration tree of the shifting bottleneck heuristic

(shifting bottleneck based genetic algorithm, SB-GA). Remember that the SB2-

heuristic is only a repeated application of a part of the SB1-heuristic where the

sequence in which the one machine problems are solved is predetermined. Up to

some depth l, a complete enumeration tree is generated and a partial tree for the

remaining search levels. The SB2-heuristic tries to determine the best single ma-

chine sequence for the SB1-heuristic within a reasonable amount of time. This

can also be achieved by a genetic strategy, even in a more effective way.

The length of a string representation of an individual in the population

equals the number of machines in the problem which is equal to the depth of the

enumeration tree in the SB2-heuristic. Hence, an individual is encoded over the

alphabet from 1 to the number of machines and a partial string from the first to

the k th entry just describes the sequence in which the single machines are con-

sidered in the SB1-heuristic. As a crossover operator one can use any traveling

salesman crossover; Dorndorf and Pesch [DP95] chose the cycle crossover as

described in [Gol89]. The best solutions found for the 10 � 10 and 5 � 20 prob-

lem, were 960 (P � GA)/938 (SB � GA) and 1249 (P � GA)/1178 (SB � GA), respec-

tively. The running times are about 15 (P � GA)/2 (SB � GA) and 25 (P � GA)/1.5

(SB � GA) minutes.

Another genetic local search approach based on representation of the select-

ed disjunctive arcs is described in [ALLU94] or in [NY91]. Their ideas are stim-

ulated by the encouraging results obtained for the traveling salesman problem

 10.3 Approximation Algorithms 381

(cf. [UAB+91]). Aarts et al. [ALLU94] devise a multi-start local search embed-

ded into a genetic framework; hence the name genetic local search. Each solution

in the population is replaced by a locally optimal one with respect to moves

based on the neighborhoods N1 and N2 . The crossover idea is to implant a subset

of arcs from one solution to another. The parent solutions are randomly chosen.

The algorithm terminates when either all solutions in the population have equal

fitness, or the best makespan in the population has not changed for 10 genera-

tions. Within a time bound of 99 or 88 seconds for the 10 � 10 or 5 � 20 problem

the results of the genetic local search algorithms are worse than those from simu-

lated annealing. However the results are better than a multi-start local search on

randomly generated initial solutions.

The basic contribution of [NY91] is the representation of individuals in the

population. An individual representing a schedule is described by a 0-1 matrix

consisting of a column for each machine and a row for each pair of different jobs.

Hence, the number of rows is limited to
1

2
 | J |(| J | � 1) ordered job pairs. Entry 1 in

row (i, j) and column k indicates that job i is supposed to be processed before job

Jj on machine Pk. Otherwise, the entry is 0. The simple crossover (a random in-

dividual cut and tail exchange) and the simple mutation operators (flip an 0-1

entry) are applied. A harmonization algorithm turns a possibly inconsistent result

through cycle elimination into a feasible schedule. Even for a population size of

1000 and 150 generations the 10 � 10 problem and the 5 � 20 problem could not

be solved better than 965 and 1215, respectively.

A different approach has been followed in [SWV92]. The authors map the

original data of the underlying problem instance to slightly disturbed and genet-

ically controlled data representing new problem instances. The latter are solved

heuristically and the solutions, i.e. the tasks' processing orders, are considered to

be solutions of the original problem. Thus, the proposed neighborhood definition

is based on the fact that a heuristic algorithm is a mapping of a problem to a solu-

tion; hence a heuristic algorithm problem pair is an encoding of a solution. A

subset of solutions may be generated by the application of a single heuristic algo-

rithm to perturbed versions of the original problem. That is, neighboring solu-

tions are generated by applying the base heuristic to the perturbed problem,

which is obtained through adding uniformly distributed random numbers to the

job shop data. Then the solution is evaluated using the original problem data. The

simple crossover applies. Their results are 976 for the 10 � 10 and 1186 for the

5 � 20 problem.

Yamada and Nakano [YN92] were first to use the Giffler-Thompson algo-

rithm as crossover operator. The random selection of a next task is replaced by a

choice of the task with respect to one of the parent schedules. That is, in order to

resolve a conflict (i.e. choice of a next task from a set of tasks competing for the

same machine) randomly choose one parent schedule. Select that task from the

set of tasks in conflict which is also the first one processed from the conflict set

of the parent schedule. A huge population size of 2000 individuals led them find

382 10 Scheduling in Job Shops

an optimal schedule for the 10 � 10 problem. Their result on the 5 � 20 problem

was not better than 1184.

The representation in [Bie95] is motivated by the idea to employ the travel-

ing salesman crossover operators also in a job shop framework. He represented

an individual as a string of length equal to the number of tasks in the job shop.

An entry in this string is a job identification. The number of tasks of a job is the

number of not necessarily consecutive string entries with the same job identifica-

tion. For instance, if there are three jobs Ja , Jb , Jc having 3, 4, 3 tasks, respective-

ly, then a randomly generated string (b , a , b , b , c , a , c , c , b , a) says, that string

entries 1, 3, 4, and 9 correspond to the 1st, 2nd, 3rd, and 4th task of job Jb . Fur-

ther, if the first task of job Jc and the last task of job Jb happen to need the same

machine then Jc will come first. Now a TSP-crossover (cf. [KP94]) can be used

to implant a substring of one parent schedule to another one. Within run times of

about 9 to 10 minutes he reached a makespan of 936 and 1181 for the 10 � 10

and 5 � 20 problem. The population's size is 100.

Constraint Propagation, Decomposition and Edge-Guessing

The job shop scheduling problem is a typical representative of a binary constraint

satisfaction problem (CSP), i.e., generally speaking, there is a set of variables

each of which has its own domain of values. Find an assignment of values to

variables such that a set of constraints on variable pairs is satisfied, see Chapter

16 [DP88, Mes89, MJPL92]. Assume that there is an upper bound on the

makespan of an optimal schedule of the underlying job shop scheduling problem.

Then computing heads and tails assigns to each task an interval of possible start

times. Considering variable domains as possible task start times where the varia-

bles define the tasks in a schedule then the disjunctive graph illustrates the job

shop scheduling constraint satisfaction problem, hence it corresponds to the con-

straint graph, [Mon74]. A set of k variables is said to be k-consistent if it is k � 1-

consistent and for each subset of k � 1 variables holds: if a set of k � 1 values each

of which belongs to another of the k � 1 variable domains violates none of the

constraints on the considered k � 1 variables, then there is a value in the domain

of the remaining variable such that the set of all k values satisfies the set of con-

straints on the k variables. Let us assume that 0-consistency is always satisfied by

definition. A set of variables is k-consistent if each subset of k variables is k-

consistent. A 2-consistent set of variables is also said to be arc-consistent in or-

der to emphasize the relation with the edges in the constraint graph (cf.

[HDT92]). Consider a pair Ti , Tj of tasks. If for any two start times ti and tj of

tasks Ti and Tj , respectively, and any third task Tk there exists a start time tk of

task Tk such that ti , tj , tk satisfy constraints (10.1.1) to (10.1.3) then tasks Ti and

Tj are said to be path consistent. Hence, consistency checks, or roughly speaking

propagation of constraints will make implicitly defined constraints more visible

and will prune the search tree in a branch and bound algorithm. The job shop

 10.3 Approximation Algorithms 383

scheduling problem is said to be path consistent if all task pairs are path con-

sistent (cf. [Mac77, MH86, HL88]). Obviously, n-consistency, where n is the

number of tasks, immediately implies that a feasible schedule can be generated

easily, however, achieving n-consistency is in general not practicable. Moreover,

worse upper bounds on the makespan of an optimal schedule will hardly reduce

variable domains, i.e. only a few arc directions are fixed during the constraint

propagation process. The better the bounds the more arc directions can be fixed.

A detailed description of different levels of consistency for disjunctive schedul-

ing problems can be found in Chapter 16.

Pesch [Pes94] introduced other genetic approaches. In the first one, the one
machine constraint propagation based genetic algorithm (1MCP-GA), each entry

of an individual is an upper bound on the makespan of the corresponding one-

machine problem. In the second approach, the two job constraint propagation
based genetic algorithm (2JCP-GA), each entry of an individual of the 2J-GA is

replaced by an upper bound on the makespan of a sub-problem consisting of a

job pair. Whenever a new population is generated a local decision rule in the

sense of constraint propagation in order to achieve arc- and path-consistency is

applied simultaneously to each sub-problem (corresponding to an entry of an

individual) with respect to its upper bound which is (% above the optimal

makespan of the sub-problem. The number of newly fixed arc directions divided

by the number of arcs which were included into a cycle during the constraint

propagation process on the sub-problems, defines the fitness of an individual. An

individual of the population corresponds to a partial schedule. However each

population is transformed to a population of feasible solutions, where each indi-

vidual of a population is assessed in order to judge its contribution to a schedule.

Therefore Giffler-Thompson's algorithm is applied with respect to the partial

schedule representing individual. Ties are broken with respect to the complete

schedules that are attached to the parents (partial schedules) of the considered

offspring (partial schedule). Hence, the next task is chosen as in one of the par-

ents corresponding complete schedules with the same probability. In the first

population of complete schedules ties were broken randomly. For both problems,

the 10 � 10 and 5 � 20, the optimal solution was reached rather quickly using the

1MCP-GA. It was impossible to reach an optimum using 2JCP-GA. Only values

of 937 and 1175 could be found.

Dorndorf et al. [DPP02] took these ideas of combining constraint propaga-

tion with a problem decomposition approach in order to simplify the solution of

the job shop scheduling problem a step further. Based on the observation that

constraint propagation is more effective for ‘small’ problem instances the algo-

rithm consists of deducing task sequences that are likely to occur in an optimal

solution of the job shop scheduling problem.

The algorithm for which the name edge-guessing procedure has been chosen

- since with respect to the job shop scheduling problem the deduction of machine

sequences is mainly equivalent to orienting edges in a disjunctive graph - can be

applied in a preprocessing step, reducing the solution space, thus speeding up the

384 10 Scheduling in Job Shops

overall solution process. In spite of the heuristic nature of edge-guessing, it still

leads to near-optimal solutions. If combined with a heuristic algorithm, they

demonstrate that given the same amount of computation time, the additional ap-

plication of edge-guessing leads to better solutions. This has been tested on a set

of well-known job shop benchmark problem instances. Let us go into detail.

The solution of the job shop scheduling problem could be considerably sim-

plified if some ‘important’ disjunctive edges were oriented the right way in ad-

vance. Pesch and Tetzlaff [PT96], for instance, showed that regarding the famous

10 � 10 instance of the job shop scheduling problem, one single `difficult' edge

orientation exists which for the most part contributes to its intractability. Orient-

ing this edge in the right direction, the optimal solution is found and verified in a

fraction of the original time. Unfortunately, however, finding important edge

orientations which occur in an optimal solution must, by definition, be a difficult

task. Indeed, if an edge orientation can be easily found then orienting this edge

cannot simplify the solution of the problem a lot, because it can be easily found.

This dilemma can only be resolved if accuracy is sacrificed for efficiency, i.e. if

we accept that some edge orientations derived may be wrong. The simplest heu-

ristic method is a random selection of some edge orientations, however, the ‘de-

duced’ edge orientations will seldomly be oriented in the right direction.

A more sophisticated method for deducing edge orientations has been devel-

oped by Dorndorf et al. [DPP02] and Phan-Huy [PhH00], see also [PT96,

Pes94]. This method reduces the number of wrong edge orientations through the

combination of problem decomposition and constraint propagation techniques. In

the sequel, we will present some new developments of the edge-guessing proce-

dure for the job shop scheduling problem.

The next subsections motivate and describe the basic idea of edge-guessing

followed by a short description of the original procedure applied in [PhH00]

which decomposes problem instances in a parallel fashion. This parallel strategy

is less suited in case of stronger constraint propagation techniques. As a conse-

quence, this parallel approach very often leads to large cycle structures in the

corresponding disjunctive graph of a given problem instance. A major improve-

ment is obtained by the application of a sequential strategy which avoids the gen-

eration of cycles and, at the same time, leads to better edge orientations. Several

versions of this sequential approach are presented in the last subsection.

Edge-Guessing - The Basic Idea: The combination of problem decomposition
with constraint propagation is motivated by two observations: constraint propa-
gation deduces more edge orientations if (a) the problem instance is small, i.e.
contains a small number of tasks to be scheduled and (b) the initial upper bound
is tight and, thus, leads to smaller current domains. The basic idea of edge-
guessing is therefore to decompose a job shop scheduling problem instance into
smaller sub-problem instances, then to choose some appropriate upper bounds
UB for these sub-problem instances for which constraint propagation is then ap-
plied.

 10.3 Approximation Algorithms 385

The definition of a sub-problem instance is quite straightforward. Let I de-

note an instance of the job shop scheduling problem and A be a subset of tasks.

This allows us to derive a sub-problem I(A) with heads and tails which is ob-

tained by first removing all tasks Ti 	 A and all constraints involving some task

Ti 	 A from I. Heads and tails are then added to each remaining task which basi-

cally is a consideration of the earliest start time esti and latest completion time

lcti of each task Ti . This is necessary since otherwise no or only a few deductions

will be achieved through constraint propagation. The terms heads and tails are

more commonly used, since they allow a symmetric interpretation. The head ri of

Ti coincides with its earliest start time and can be interpreted as a lower bound of

the total processing time of tasks that must finish before Ti can start. Likewise,

the tail qi := UB – lcti can be interpreted as a lower bound of the total processing

time of tasks that must start after Ti has finished. Given a task Ti � A, its heads

and tails are considered by inserting a predecessor with processing time ri and a

successor with processing time qi .

Constraint propagation is then applied to this sub-problem instance using

some upper bound UB that still has to be specified. If the edge orientations de-

duced are inserted in the original problem instance I, i.e. if in the disjunctive

graph edge orientations of some disjunctive edge pairs are chosen, we obtain a

partial selection which hopefully simplifies the solution of I. We obtain a com-
plete (partial) selection if (at most) one edge orientation is chosen from each

disjunctive edge pair. The selection is acyclic, if after the removal of all remain-

ing undirected pairs of disjunctions the resulting directed graph is acyclic.

The essential feature of this procedure is a suitable choice of the upper

bounds. We will now describe this in more detail.

Let I be a job shop scheduling problem instance and I' a sub-problem in-

stance with heads and tails. Let Cmax(I) and Cmax(I') denote the respective optimal

makespan of I and I'. Quite evidently, for each optimal selection S of I, there ex-

ists a partial selection S' � S which is a complete selection of I' with a makespan

that will be denoted with Cmax(S'). Applying constraint propagation to the sub-

problem instance I' given the upper bound Cmax(S') now has two consequences.

The first consequence is due to what has been said further above: since I' is

‘smaller’ than I and Cmax(S') � Cmax(I), it is likely that more edges can be fixed

than if constraint propagation is directly applied to I. The second consequence is

due to the particular choice of the upper bound Cmax(S'). Trivially, the edge ori-

entations deduced define a partially optimal selection of I, i.e. must be contained

in an optimal selection of I, namely the original selection S itself which has been

assumed to be optimal. Thus, by decomposing I into many sub-problem instanc-

es, we could fix a high number of edges and approximate the optimal selection S

quite well.

386 10 Scheduling in Job Shops

Unfortunately, this line of reasoning has a major flaw, since in general

Cmax(S') is not known in advance. Thus, the problem is to find a good approxima-

tion of Cmax(S'). To start with, a possible choice is the optimal makespan Cmax(I')
of I'. However, since S' does not have to be an optimal solution of I', Cmax(I')
may be much smaller than Cmax(S'), and constraint propagation may deduce

wrong edge orientations. We therefore choose a proportional increase of Cmax(I')
by (%, that is, we apply constraint propagation to the sub-problem instance I'
using the hypothetical upper bound

UB(I',() := Cmax(I') &(1 + (/100) .

Since, in general, the computation of Cmax(I') is NP-hard, we will only

choose subproblem instances, for which the computation can be efficiently car-

ried out (e.g. single machine instances 1).

Choosing the parameter (, the following trade-off between efficiency and

accuracy of constraint propagation has to be considered: the greater (, the lower

the error probability, but the less edges are fixed; the smaller (, the more edges

are fixed, but the higher the probability that among these edges some are wrongly

oriented.

In general, there is no means to efficiently test whether a selection (as a

whole) is partially optimal, let alone to detect the edges that have been oriented

in the wrong direction. The only exception is when the insertion of the oriented

edges for a set of sub-problems results in a cycle. In this case, at least one upper

bound chosen and one edge orientation is wrong. After removing the cycle, how-

ever, wrong edge orientations still may exist. Likewise, if no cycle has been cre-

ated, this does not imply that the selection found is partially optimal. We cannot

conclude that the bounds chosen and the edges fixed are correct, but can only

deduce the trivial fact that constraint propagation has created no cycle. This reas-

serts the heuristic nature of edge-guessing.

In the original version of edge-guessing, a brute force approach has been ap-

plied which removes all edge orientations on all cycles. This simple approach,

however, also removes a high number of possibly correct edge orientations. An

improved edge-guessing procedure avoids the generation of cycles. To better

understand this procedure, we start with a description of the original edge-

guessing procedure.

A Parallel Strategy: The edge-guessing procedure presented by Pesch and Tetz-
laff [PT96] and Phan Huy [PhH00] decomposes a job shop scheduling problem
instance I into sub-problem instances I(A1),..., I(Ad), where A1,..., Ad � T are
some subsets of tasks. Constraint propagation is separately applied to each of
these instances with the upper bound UB(I(Ad'), (d'), d' = 1,..., d. A static choice

1 Notice that here the consideration of heads and tails is crucial, since otherwise no edge

orientations can be derived at all.

 10.3 Approximation Algorithms 387

of (, i.e. all (d' are set to a constant value ([PT96], and a choice which is guid-
ed by a genetic algorithm, a modification of what has been described above, have
been studied. The edge orientations deduced define partial and acyclic selections
S1,..., Sd of the corresponding sub-problem instances. Setting S := S1 � ... � Sd ,
however, we might not obtain an acyclic selection of I. In this case, all disjunc-
tive edge orientations in S that belong to a cycle are removed.

We finally obtain a partial and acyclic selection which hopefully simplifies
the solution of I. The complete parallel edge-guessing procedure is shown in Al-
gorithm 10.3.4.

Algorithm 10.3.4 Parallel edge-guessing [DPP02].
begin
A1,..., Ad � T are subsets of tasks;
(1,..., (d are non-negative real numbers;
for d' := 1 to d do
 begin
 UBd' := UB(I(Ad'), (d');
 constraint_propagation(I(Ad');
 Sd' := {new edge orientations};
 end;
S := S1 � ... � Sd ;
E := {edge orientations that are contained in a cycle};
return (S \ E);
end;
A Sequential Strategy: The main problem in applying a parallel approach is that
we do not know which of the sub-problem instances has been responsible for the
creation of cycles. Thus, we run the risk of removing too many edge orientations.
The solution is to adopt a sequential approach which allows us to much better
control the generation and removal of cycles: only some edge orientations, but
not all that are contained in a cycle have to be removed. This will be described in
more detail in the following.

Let A1,..., Ad be subsets of tasks. Start with I(A1) and apply constraint prop-

agation to this instance with an upper bound UB(I(A1), (1). Observe that we ob-

tain a partial selection S1 which must be acyclic due to the choice of the upper

bound. Therefore continue with the next sub-problem instance I(A2) to which

constraint propagation is applied using the upper bound UB(I(A2), (2), and obtain

a partial selection S2 . If the selection S := S1 � S2 induces a cycle then some of

the newly derived edge orientations in S2 have created this cycle. Thus, all edges

in S2 are removed and constraint propagation is reapplied with a higher upper

388 10 Scheduling in Job Shops

bound. Dorndorf et al. opted for increasing (2 by one percentage point, since this

showed the best results. This procedure is repeated until no more cycles are gen-

erated. Then proceed with the remaining sub-problem instances I(A3),..., I(Ad) in

the same manner. The complete procedure is shown in Algorithm 10.3.5.

Algorithm 10.3.5 Sequential edge-guessing 1 [DPP02].
begin
A1,..., Ad � T are subsets of tasks;
(1,..., (d are non-negative real numbers;
S := �;
for d' := 1 to d do
 begin
 Snew := S;
 repeat
 cycle := false;
 UBd' := UB(I(Ad'), (d');
 constraint_propagation(I(Ad');
 Snew := Snew � {new edge orientations};
 if Snew induces a cycle then
 begin
 Snew := S;
 (d' := (d' + 1;
 cycle := true;
 end;
 until not cycle;
 S := Snew;
 end;
return (S);
end;

Some remarks have to be made. First, this algorithm terminates, because in the

worst case, choosing a sufficiently high upper bound in the d' th iteration will not

deduce any edge orientations. Therefore, it must end up in a situation without

cycles, as in the beginning of each iteration none existed. Second, even if the

same subsets are taken, the sub-problem instances I(Ad'), d' = 1,..., d, usually

differ from the ones defined in the last section in spite of the similar notation.

This is due to the fact that the edge orientations derived by I(A1), ..., I(Ad'�1) are

considered in the d' th iteration which leads to stronger heads and tails and, by

this, to the deduction of a greater number of edge orientations.

The last observation leads to an improvement of the sequential edge-

guessing procedure. If any edge orientations are deduced in the d' th iteration, this

 10.3 Approximation Algorithms 389

consequently has as well an effect on the heads and tails of the sub-problem in-

stances I(A1), ..., I(Ad'�1). Therefore, constraint propagation is re-applied to these

modified instances using the upper bounds UB(I(A1),(1),..., UB(I(Ad'�1), (d'�1),

that have been determined in the previous iterations, and re-continue with apply-

ing constraint propagation to I(Ad') whenever its heads and tails have changed.

This process is repeated until a fixed point is reached or a cycle is created. In the

latter case, all edges are removed that have been deduced in the current iteration

and restart the process with a greater upper bound for the d' th sub-problem in-

stance, while the upper bounds for all problem instances with a lower index are

left unchanged. This procedure is shown in Algorithm 10.3.6.

Algorithm 10.3.6 Sequential edge-guessing 2 [DPP02].
begin
A1,..., Ad � T are subsets of tasks;
(1,..., (d are non-negative real numbers;
S := �;
for d' := 1 to d do
 begin
 Snew := S;
 repeat
 fixed_point := true;
 cycle := false;
 for d" := d' downto 1 do
 begin
 UBd" := UB(I(Ad"), (d");
 constraint_propagation(I(Ad");
 if some heads and tails have changed then fixed_point := false;
 Snew := Snew � {new edge orientations};
 if Snew induces a new cycle then
 begin
 Snew := S;
 (d' := (d' + 1;
 cycle := true;
 break;
 end;
 end;
 until fixed_point and not(cycle);
 S := Snew;
 end;
return (S);
end;

390 10 Scheduling in Job Shops

All that is left is to specify the order A1,..., Ad in which the sub-problem instanc-

es are traversed. Instead of choosing a static order as indicated in the Algorithms

10.3.5 and 10.3.6, Dorndorf et al. actually implemented a dynamic rule which

chooses the sub-problem instance with the maximal optimal makespan. This is

justified by better results.

The introduced general method which combines constraint propagation with

a problem decomposition approach can be applied in a preprocessing step before

the actual solution of a problem, reducing the solution space and thus speeding

up the overall solution process.

Since the solution of the job shop scheduling problem is mainly equivalent

to orienting edges in a disjunctive graph, [DPP02] have named the preprocessing

step the edge-guessing procedure. Several strategies in which sub-problem in-

stances are examined in parallel or in a sequential manner are proposed. While

the parallel approach analyzes sub-problem instances separately, so that con-

straint propagation only deduces information within each sub-problem, the se-

quential approach propagates information throughout the whole problem graph.

Thus, more processing sequences (edge orientations) are deduced than with a

parallel approach. The stronger consistency tests cause a further increase in the

number of edge orientations that have been derived. Additionally, they have not

only been able do derive more but also better edge orientations.

This has been verified by combining edge-guessing with a truncated branch-

and-bound algorithm. Especially for larger and harder problem instances, the

hybrid algorithm performs better than the pure truncated branch-and-bound algo-

rithm, since it finds better solutions within a smaller or comparable amount of

computation time.

However, for even larger and harder instances, truncated branch-and-bound

may not be the best choice as a solution method. Therefore, in advanced research

studies Dorndorf et al. have combined edge-guessing with local search algo-

rithms which up to now provide the best solutions for the job shop scheduling

problem. More precisely, they have combined popular tabu search algorithms

with edge-guessing by incorporating the derived edges in a tabu list. Again, they

have been able to produce better results for the combined algorithm than for the

isolated tabu search algorithm. These encouraging results emphasize the potential

of edge-guessing.

The main interest of constraint programming is the enormous flexibility that

results from the fact that each constraint propagates independently from the ex-

istence or non-existence of other constraints. It appears that, within each con-

straint, considered separately, any type of technique (in particular OR algorithms)

can be used. It appears that the propagation process can be organized to guaran-

tee that propagation steps will occur in an order consistent with Ford's flow algo-

rithm (hence with the same time complexity) [CL95]. Aggoun and Beldiceanu

[AB93] present a construct called the "cumulative" constraint, incorporated in

the CHIP constraint programming language. Using the cumulative constraint,

Aggoun and Beldiceanu find the optimal solution of the 10 � 10 problem [MT63]

 10.3 Approximation Algorithms 391

in about 30 minutes (but cannot prove its optimality). Nuijten [NA96, Nui94]

presents a variant of the algorithm by Carlier and Pinson [CP90] to update time-

bounds of activities. It appears that this variant can easily be incorporated in a

constraint satisfaction framework. Baptiste and Le Pape [BP95] explore various

techniques based on "edge-finding" and "energetic reasoning" with the aim of

integrating such techniques in Ilog Schedule, an industrial software tool for con-

straint-based scheduling. In all of these cases, the flexibility inherent to constraint

programming is maintained, but more efficient techniques can be archived using

the wealth of the OR algorithmic work [BPS98, BPS00, DPP00].

Ejection Chains

Variable depth procedures (see Section 2.5) have had an important role in heuris-

tic procedures for optimization problems.

An application with respect to neighborhood structure N1 describes a move

to a neighboring solution in which the processing order of tasks Ti and Tj is

changed. The considered neighborhood structure is connected, i.e. for any two

solutions (including the optimal one) x and y there is a sequence of moves, with

respect to N1, connecting x to y. The gain g(i, j) affected by such a move from x

to y can be estimated based on considerations about the minimal length of the

critical path of the resulting disjunctive graph G(y). Finding the exact gain of a

move would generally involve a longest path calculation. The gain of a move can

be negative, thus leading to a deterioration of the objective function. In [DP94] a

local search procedure is presented based on a compound neighborhood struc-

ture, each component consists of the neighborhood defined above. It is a variable

depth search or ejection chain consisting of a simple neighborhood structure at

each depth which is composed to complex and powerful moves. The basic idea is

similar to the one used in tabu search, the main difference being that the list of

forbidden (tabu) moves grows dynamically during a variable depth search itera-

tion and is reset at the beginning of the next iteration. The algorithm is outlined

in the following where "(x) is the objective function value (makespan).

Algorithm 10.3.7 Ejection chain job shop scheduling [DP94].

begin
Start with an initial solution x* and the corresponding acyclic graph G(x*);

x := x*;
repeat

TL := �; -- TL is the tabu list
d := 0; -- d is the current search depth

while there are non-tabu critical arcs in G(x(d)) do
begin
d := d + 1;

392 10 Scheduling in Job Shops

Find the best move, i.e. the disjunctive critical arc (i*, j*) for which

g(i*, j*) = max{ g(i, j) | (i, j) is a disjunctive critical arc

 which is not in TL};
 -- note that g(i*, j*) can be negative

Make this move, i.e. replace arc (i*, j*), thus obtaining the solution x(d)

and its acyclic graph G(x(d)) at the search depth d;

TL := TL � {(j*, i*)};
end;

Let d
* denote the search depth at which the best solution x(d

*) with

"(x(d
*)) = min {"(x(d) � 0 < d � n (k � 1)/2} has been found;

if d
* > 0 then begin x* := x*(d

); x := x end;

until d
* = 0;

end;
Starting with an initially best solution x*(0), the procedure looks ahead for a cer-

tain number of moves and then sets the new currently best solution x*(d) for the

next iteration to the best solution found in the look-ahead phase at depth d
*.

These steps are repeated as long as an improvement is possible. The maximal

look-ahead depth is reached if all critical disjunctive arcs in the current solution

are set tabu. The step leading from a solution x in iteration k to a new solution in

the next iteration consists of a varying number d
* of moves in the neighborhood,

hence the name variable depth search where a complex compound move results

from a sequence of compressed simpler moves. The algorithm can escape local

optima because moves with negative gain are possible. A continuously increasing

growing tabu list avoids cycling of the search procedure. As an extension of the

algorithm, the whole repeat ... until part could easily be embedded in yet

another control loop (not shown here) leading to a multi-level (parallel) search

algorithm.

A genetic algorithm with variable depth search has been implemented in [DP93],

i.e. each individual of a population is made locally optimal with respect to the

ejection chain based embedded neighborhood described in Algorithm 2.5.3. The

algorithm has run five times on each problem instance, and all instances have

been solved to optimality within a CPU time of ten minutes for a single run. The

algorithm has always solved the notoriously difficult 10 � 10 instance.

10.4 Conclusions

Although the 10 � 10 problem is not any longer a challenge it provides a way to

briefly get an impression of how powerful a certain method can be. For detailed

comparisons of solution procedure - if this is possible at all under different ma-

chine environments - this is obviously not enough and there are many other

 References 393

benchmark problems some of them with unknown optimal solution, see [Tai93].

It is apparent from the discussion that local search methods are the most power-

ful tool to schedule job shops. However, a stand alone local search cannot be

competitive to those methods incorporating problem specific knowledge either

by problem decomposition, special purpose heuristics, constraints and propaga-

tion of variables, domain modification, neighborhood structures (e.g. neighbor-

hoods where each neighbor of a feasible schedule is locally optimal, cf.

[BHW96, BHW97]), etc. or any composition of these tools.

The analogy of branching structures in exact methods and neighborhood

structures reveals parallelism that is largely unexplored.

References

AB93 A. Aggoun, N. Beldiceanu, Extending CHIP in order to solve complex sched-

uling and placement problems, Math. Comput. Model. 17, 1993, 57-73.

ABZ88 J. Adams, E. Balas, D. Zawack, The shifting bottleneck procedure for job shop

scheduling, Manage. Sci. 34, 1988, 391-401.

AC91 D. Applegate, W. Cook, A computational study of the job-shop scheduling

problem, ORSA Journal on Computing 3, 1991, 149-156.

AGP97 E. J. Anderson, C. A. Glass, C. N. Potts, Local search in combinatorial optimi-

zation: applications in machine scheduling, in: E. Aarts, J. K. Lenstra (eds.),

Local Search in Combinatorial Optimization, Wiley, New York, 1997.

AH73 S. Ashour, S. R. Hiremath, A branch-and-bound approach to the job-shop

scheduling problem, Int. J. Prod. Res. 11, 1973, 47-58.

AHU74 A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

Ake56 S. B. Akers, A graphical approach to production scheduling problems,

Oper. Res. 4, 1956, 244-245.

ALLU94 E. H. L. Aarts, P. J. P. van Laarhoven, J. K. Lenstra, N. L. J. Ulder, A compu-

tational study of local search shop scheduling, ORSA Journal on Computing 6,

1994, 118-125.

Bal69 E. Balas, Machine sequencing via disjunctive graphs: an implicit enumeration

algorithm, Oper. Res. 17, 1969, 941-957.

Bal85 E. Balas, On the facial structure of scheduling polyhedra, Mathemati-
cal Programming Studies 24, 1985, 179-218.

BB01 W. Brinkköter, P. Brucker, Solving open benchmark problems for the job shop

problem, J. Sched. 4, 2001, 53-64.

BC95 J. W. Barnes, J. B. Chambers, Solving the job shop scheduling problem using

tabu search, IIE Trans. 27, 1995, 257-263.

BDP96 J. Błażewicz, W. Domschke, E. Pesch, The job shop scheduling problem: con-

ventional and new solution techniques, Eur. J. Oper. Res. 93, 1996, 1-33.

394 10 Scheduling in Job Shops

BDW91 J. Błażewicz, M. Dror, J. Weglarz, Mathematical programming formulations

for machine scheduling: a survey. Eur. J. Oper. Res. 51, 1991, 283-300 .

BHS91 S. Brah, J. Hunsucker, J. Shah, Mathematical modeling of scheduling prob-

lems, J. Inf. Optim. Sci. 12, 1991, 113-137.

BHW96 P. Brucker, J. Hurink, F. Werner, Improving local search heuristics for some

scheduling problems, Discret Appl. Math. 65, 1996, 97-122.

BHW97 P. Brucker, J. Hurink, F. Werner, Improving local search heuristics for some

scheduling problems: Part II, Discret Appl. Math 72, 1997, 47-69.

Bie95 C. Bierwirth, A generalized permutation approach to job shop scheduling with

genetic algorithms, OR Spektrum 17, 1995, 87-92.

BJ93 P. Brucker, B. Jurisch, A new lower bound for the job-shop scheduling prob-

lem, Eur. J. Oper. Res. 64, 1993, 156-167.

BJK94 P. Brucker, B. Jurisch, A. Krämer, The job-shop problem and immediate selec-

tion, Ann. Oper. Res. 50, 1994, 73-114.

BJS92 P. Brucker, B. Jurisch, B. Sievers, Job-shop (C codes), Eur. J. Oper. Res. 57,

1992, 132-133.

BJS94 P. Brucker, B. Jurisch, B. Sievers, A branch and bound algorithm for the job-

shop scheduling problem, Discret Appl. Math. 49, 1994, 107-127.

BK06 P. Brucker, S. Knust, Complex Scheduling, Springer, Berlin 2006.

BLL+83 K. R. Baker, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Preemptive

scheduling of a single machine to minimize maximum cost subject to release

dates and precedence constraints, Oper. Res. 31, 1983, 381-386.

BLV95 E. Balas, J. K. Lenstra, A. Vazacopoulos, One machine scheduling with de-

layed precedence constraints, Manage. Sci. 41, 1995, 94-109.

BM85 J. R. Barker, G. B. McMahon, Scheduling the general job-shop, Manage. Sci.
31, 1985, 594-598.

Bow59 E. H. Bowman, The scheduling sequencing problem, Oper. Res. 7, 1959,

621-624.

BP95 P. Baptiste, C. Le Pape, A theoretical and experimental comparison of con-

straint propagation techniques for disjunctive scheduling, Proceedings of the
14th International Joint Conference on Artificial Intelligence, Montreal, 1995.

BPH82 J. H. Blackstone, D. T Phillips, G. L. Hogg, A state of the art survey of dis-

patching rules for manufacturing job shop tasks, Int. J. Prod. Res. 20, 1982,

27-45.

BPN95a P. Baptiste, C. Le Pape, W. Nuijten, Constraint-based optimization and ap-

proximation for job-shop scheduling, Proceedings of the AAAI-SIGMAN
Workshop on Intelligent Manufacturing Systems, Montreal, 1995.

BPN95b P. Baptiste, C. Le Pape, W. Nuijten, Incorporating efficient operations research

algorithms in constraint-based scheduling, Proceedings of the 1st Joint Work-
shop on Artificial Intelligence and Operations Research, Timberline Lodge,

Oregon, 1995.

 References 395

BPS98 J. Błażewicz, E. Pesch, M. Sterna, A branch and bound algorithm for the job

shop scheduling problem, in: A. Drexl, A. Kimms (eds.) Beyond Manufactur-
ing Resource Planning (MRPII), Springer, 1998, 219-254.

BPS99 J. Błażewicz, E. Pesch, M. Sterna, A note on disjunctive graph representation,

Bull. Pol. Acad. Sci.-Tech. Sci. 47, 1999, 103-114.

BPS00 J. Błażewicz, E. Pesch, M. Sterna, The disjunctive graph machine representa-

tion of the job shop problem, Eur. J. Oper. Res. 127, 2000, 317-331.

BPS01 J. Błażewicz, E. Pesch, M. Sterna, Extension of disjunctive graph model for

job shop scheduling problem, in: B. Fleischmann, R. Lasch, U. Derigs,

W. Domschke, U. Rieder, (eds.), Operations Research Proceedings 2000,

Springer, Heidelberg, 2001, 359-365.

BPS05 J. Błażewicz, E. Pesch, M. Sterna, A novel representation of graph structures

in web mining and data analysis, Omega-Int. J. Manage. Sci. 33, 2005, 65-71.

BR65 P. Bertier, B. Roy, Trois examples numeriques d'application de la procedure

SEP, Note de travail No. 32 de la Direction Scientifique de la SEMA, 1965.

Bru88 P. Brucker, An efficient algorithm for the job-shop problem with two jobs,

Computing 40, 1988, 353-359.

Bru94 P. Brucker, A polynomial algorithm for the two machine job-shop scheduling

problem with a fixed number of jobs, OR Spektrum 16, 1994, 5-7.

Bru04 P. Brucker, Scheduling Algorithms, 4
th

 ed., Springer, Berlin 2004.

BS04 C. Blum, M. Sampels, An ant colony optimization algorithm for shop schedul-

ing problems, Journal of Mathematical Modelling and Algorithms 3, 2004,

285-308.

BV98 E. Balas, A. Vazacopoulos, Guided local search with shifting bottleneck for

job shop scheduling, Manage. Sci. 44, 1998, 262-275.

BW65 G. H. Brooks, C. R. White, An algorithm for finding optimal or near-optimal

solutions to the production scheduling problem, Journal of Industrial Engi-
neering 16, 1965, 34-40.

CAK+06 M. Chandrasekaran, P. Asokan, S. Kumanan, T. Balamurugan, S. Nickolas,

Solving job shop scheduling problems using artificial immune system, Int. J.
Adv. Manuf. Technol. 31, 2006, 580-593.

Car82 J. Carlier, The one machine sequencing problem, Eur. J. Oper. Res. 11, 1982,

42-47.

Car87 J. Carlier, Scheduling jobs with release dates and tails on identical machines to

minimize the makespan, Eur. J. Oper. Res. 29, 1987, 298-306.

CD70 J. M. Charlton, C. C. Death, A generalized machine scheduling algorithm, J.
Oper. Res. Soc. 21, 1970, 127-134.

CGTT63 W. B. Crowston, F. Glover, G. L. Thompson, J. D. Trawick, Probabilistic and

parametric learning combinations of local job shop scheduling rules, ONR re-

search memorandum No. 117, GSIA, Carnegie-Mellon University, Pittsburg,

1963.

396 10 Scheduling in Job Shops

CL95 Y. Caseau, F. Laburthe, Disjunctive scheduling with task intervals, Working

paper, Ecole Normale Supérieure, Paris, 1995.

Cla22 W. Clark, The Gantt Chart: A Working Tool of Management, 1
st
 ed., The

Ronald Press, New York, 1923.

CP89 J. Carlier, E. Pinson, An algorithm for solving the job-shop problem, Manage.
Sci. 35, 1989, 164-176.

CP90 J. Carlier, E. Pinson, A practical use of Jackson’s preemptive schedule for

solving the job shop problem, Ann. Oper. Res. 26, 1990, 269-287.

CP94 J. Carlier, E. Pinson, Adjustments of heads and tails for the job-shop problem,

Eur. J. Oper. Res. 78, 1994, 146-161.

CPN96 Y. Caseau, C. Le Pape, W. P. M. Nuijten, private communication, 1996.

CPP92 C. Chu, M. C. Portmann, J. M. Proth, A splitting-up approach to simplify job-

shop scheduling problems, Int. J. Prod. Res. 30, 1992, 859-870.

DH70 J. E. Day, P. M. Hottenstein, Review of sequencing research, Nav. Res. Logist.
Quart. 17, 1970, 11-39.

DL93 S. Dauzere-Peres, J. -B. Lasserre, A modified shifting bottleneck procedure for

job-shop scheduling, Int. J. Prod. Res. 31, 1993, 923-932.

DMU97 E. Demirkol, S. Mehta, R. Uzsloy, A computational study of the shifting bot-

tleneck procedure for job shop scheduling problems, J. Heuristics 3, 1997,

111-137.

DP88 R. Dechter, J. Pearl, Network-based heuristics for constraint satisfaction prob-

lems, Artif. Intel. 34, 1988, 1-38.

DP93 U. Dorndorf, E. Pesch, Combining genetic and local search for solving the job

shop scheduling problem, Proceedings of Symposium on Applied Mathemati-
cal Programming and Modeling, Budapest, 1993, 142-149.

DP94 U. Dorndorf, E. Pesch, Variable depth search and embedded schedule neigh-

borhoods for job shop scheduling, Proceedings of the 4th International Work-
shop on Project Management and Scheduling, 1994, 232-235.

DP95 U. Dorndorf, E. Pesch, Evolution based learning in a job shop scheduling envi-

ronment, Comput. Oper. Res. 22, 1995, 25-40.

DPP99 U. Dorndorf, T. Phan Huy, E. Pesch, A survey of interval capacity consistency

tests for time- and resource-constrained scheduling, in: J. W,eglarz (ed.) Project
Scheduling - Recent Models, Algorithms and Applications, Kluwer Academic

Publ., 1999, 213-238.

DPP00 U. Dorndorf, E. Pesch, T. Phan Huy, Constraint propagation techniques for

disjunctive scheduling problems, Artif. Intell. 122, 2000, 189-240.

DPP02 U. Dorndorf, E. Pesch, T. Phan-Huy, Constraint propagation and problem

decomposition: A preprocessing procedure for the job shop problem, Ann.
Oper. Res. 115, 2002, 125-145.

DT93 M. Dell'Amico, M. Trubian, Applying tabu-search to the job shop scheduling

problem, Ann. Oper. Res. 41, 1993, 231-252.

 References 397

DTV95 F. Della Croce, R. Tadei, G. Volta, A genetic algorithm for the job shop prob-

lem. Comput. Oper. Res. 22, 1995, 15-24.

EAZ07 A. El-Bouri, N. Azizi, S. Zolfaghri, A comparative study of a new heuristic

based on adaptive memory programming and simulated annealing: the case of

job shop scheduling, Eur. J. Oper. Res. 177, 2007, 1894-1910.

Fis73 M. L. Fisher, Optimal solution of scheduling problems using Lagrange multi-

pliers: Part I, Oper. Res. 21, 1973, 1114-1127.

FLL+83 M. L. Fisher, B. J. Lageweg, J. K. Lenstra, A. H. G. Rinnooy Kan, Surrogate

duality relaxation for job shop scheduling, Discret Appl. Math. 5, 1983, 65-75.

Fox87 M. S. Fox, Constraint-Directed Search: A Case Study of Job Shop Scheduling,

Pitman, London, 1987.

FS84 M. S. Fox, S. F. Smith, ISIS - a knowledge based system for factory schedul-

ing, Expert Syst. 1, 1984, 25-49.

FT63 H. Fisher, G. L. Thompson, Probabilistic learning combinations of local job-

shop scheduling rules, in: J. F. Muth, G. L. Thompson (eds.), Industrial Sched-
uling, Prentice Hall, Englewood Cliffs, N.J., 1963.

FTM71 M. Florian, P. Trépant, G. McMahon, An implicit enumeration algorithm for

the machine sequencing problem, Manage. Sci. 17, 1971, B782-B792.

Gan19 H. L. Gantt, Efficiency and democracy, Transactions of the American Society
of Mechanical Engineers 40, 1919, 799-808.

Ger66 W. S. Gere, Heuristics in job-shop scheduling, Manage. Sci. 13, 1966,

167-190.

GH85 P. J. O. Grady, C. Harrison, A general search sequencing rule for job shop

sequencing, Int. J. Prod. Res. 23, 1985, 951-973.

GNZ85 J. Grabowski, E. Nowicki, S. S. Zdrzalka, A block approach for single ma-

chine scheduling with release dates and due dates, Eur. J. Oper. Res. 26, 1985,

278-285.

Gol89 D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, Mass., 1989.

GPS92 C. A. Glass, C. N. Potts, P. Shade, Genetic algorithms and neighborhood-

neighborhood search for scheduling unrelated parallel machines, Working pa-

per no. OR47, University of Southampton.

Gre68 H. H. Greenberg, A branch and bound solution to the general scheduling prob-

lem, Oper. Res. 16, 1968, 353-361.

GS78 T. Gonzalez, S. Sahni, Flowshop and jobshop schedules: Complexity and ap-

proximation, Oper. Res. 20, 1978, 36-52.

GT60 B. Giffler, G. L. Thompson, Algorithms for solving production scheduling

problems, Oper. Res. 8, 1960, 487-503.

HA82 N. Hefetz, I. Adiri, An efficient optimal algorithm for the two-machines unit-

time job-shop schedule length problem, Math. Oper. Res. 7, 1982, 354-360.

398 10 Scheduling in Job Shops

Hau89 R. Haupt, A survey of priority-rule based scheduling, OR Spektrum 11, 1989,

3-16.

HDT92 P. van Hentenryck, Y. Deville, C. - M. Teng, A generic arc-consistency algo-

rithm and its specializations, Artif. Intell. 57, 1992, 291-321.

HL88 C. C. Han, C. H. Lee, Comments on Mohr and Hendersons path consistency

algorithm, Artif. Intell. 36, 1988, 125-130.

HL06 K.-L. Huang, C.-J. Liao, Ant colony optimization combined with taboo search

for the job shop scheduling problem, Working paper, 2006, National Taiwan

University of Science and Technology, Taipei.

Jac56 J. R. Jackson, An extension of Johnson's results on job lot scheduling, Nav.
Res. Logist. Quart. 3, 1956, 201-203.

JM99 A.S. Jain, S. Meeran, Deterministic job shop scheduling: past, present and

future, Eur. J. Oper. Res. 113, 1999, 390-434.

Joh54 S. M. Johnson, Optimal two- and three-stage production schedules with setup

times included, Nav. Res. Logist. Quart. 1, 1954, 61-68.

JRM00 A.S. Jain, B. Rangaswamy, S. Meeran, New and “stronger” job-shop neigh-

bourhoods: a focus on the method of Nowicki and Smutnicki (1996), J. Heu-
ristics 6, 2000, 457-480.

KP94 A. Kolen, E. Pesch, Genetic local search in combinatorial optimization, Discret
Appl. Math. 48, 1994, 273-284.

Kol99 M. Kolonko, Some new results on simulated annealing applied to the job shop

scheduling problem, Eur. J. Oper. Res. 113, 1999, 123-136.

KSS94 W. Kubiak, S. Sethi, C. Srishkandarajah, An efficient algorithm for a job shop

problem, Mathematics of Industrial Systems 1, 1995, 203-216.

LAL92 P. J. M. van Laarhoven, E. H. L. Aarts, J. K. Lenstra, Job shop scheduling by

simulated annealing, Oper. Res. 40, 1992, 113-125 .

LLRK77 B. Lageweg, J. K. Lenstra, A. H. G. Rinnooy Kan, Job-shop scheduling by

implicit enumeration, Manage. Sci. 24, 1977, 441-450.

LLR+93 E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, Sequencing

and scheduling: algorithms and complexity, in: S. C. Graves, A. H. G. Rinnooy

Kan, P. H. Zipkin (eds.), Handbooks in Operations Research and Management
Science, Vol. 4: Logistics of Production and Inventory, Elsevier, Amsterdam,

1993.

Lou93 H. R. Lourenço, A Computational Study of the Job-Shop and Flow Shop
Scheduling Problems, Ph.D. thesis, Cornell University, 1993.

Lou95 H. R. Lourenço, Job-shop scheduling: Computational study of local search and

large-step optimization methods, Eur. J. Oper. Res. 83, 1995, 347-364.

LRK79 J. K. Lenstra, A. H. G. Rinnooy Kan, Computational complexity of discrete

optimization problems, Annals of Discrete Mathematics 4, 1979, 121-140.

LRKB77 J. K. Lenstra, R. H. G. Rinnooy Kan, P. Brucker, Complexity of machine

scheduling problems, Ann. Discrete Mathematics 4, 1977, 121-140.

 References 399

Mac77 A. K. Mackworth, Consistency in networks of relations, Artif. Intell. 8, 1977,

99-118.

Man60 A. S. Manne, On the job shop scheduling problem, Oper. Res. 8, 1960, 219-

223.

Mat96 D. C. Mattfeld, Evolutionary Search and the Job Shop, Physica, Heidelberg,

1996.

Mes89 P. Meseguer, Constraint satisfaction problems: an overview, AI Commun. 2,

1989, 3-17.

MF75 G. B. McMahon, M. Florian, On scheduling with ready times and due dates to

minimize maximum lateness, Oper. Res. 23, 1975, 475-482.

MFP06 J. Montgomery, C. Fayad, S. Petrovic, Solution representation for job shop

scheduling problems in ant colony optimization, Lect. Notes Comput. Sc. 4150,

2006, 484-491.

MH86 R. Mohr, T. C. Henderson, Arc and path consistency revisited, Artif. Intell. 28,

1986, 225-233.

MJPL92 S. Minton, M. D. Johnston, A. B. Philips, P. Laird, Minimizing conflicts: a

heuristic repair method for constraint satisfaction and scheduling problems, Ar-
tif. Intell. 58, 1992, 161-205.

Mon74 U. Montanari, Networks of constraints: fundamental properties and applica-

tions to picture processing, Inf. Sci. 7, 1974, 95-132.

MS96 P. Martin, D. Shmoys, A new approach to computing optimal schedules for the

job shop scheduling problem, Proceedings of the 5th International Conference
on Integer Programming and Combinatorial Optimization, 1996.

MSS88 H. Matsuo, C. J. Suh, R. S. Sullivan, A controlled search simulated annealing

method for the general job shop scheduling problem, Working paper 03-04-88,

University of Texas Austin, 1988.

MT63 J. F. Muth, G. L. Thompson (eds.), Industrial Scheduling, Prentice Hall, Eng-

lewood Cliffs, N.J., 1963.

NA96 W. P. M. Nuijten, E. H. L. Aarts, A computational study of constraint satisfac-

tion for multiple capacitated job shop scheduling, Eur. J. Oper. Res. 90, 1996,

269-284.

NEH83 M. Nawaz, E. E. Enscore, I. Ham, A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem, Omega-Int. J. Manage. Sci. 11, 1983,

91-95.

NS96 E. Nowicki, C. Smutnicki, A fast taboo search algorithm for the job shop prob-

lem, Manage. Sci. 42, 1996, 797-813.

NS05 E. Nowicki, C. Smutnicki, An advanced tabu search algorithm for the job shop

problem, J. Sched. 8, 2005, 145-159.

Nui94 W. P. M. Nuijten, Time and Resource Constrained Scheduling, Ponsen &

Looijen, Wageningen, 1994.

400 10 Scheduling in Job Shops

NY91 R. Nakano, T. Yamada, Conventional genetic algorithm for job shop problems,

in: R. K. Belew, L. B. Booker (eds.), Proceedings of the 4th International Con-
ference on Genetic Algorithms, Morgan Kaufmann, 1991, 474-479.

OS88 P. S. Ow, S. F. Smith, Viewing scheduling as an opportunistic problem-solving

process, Ann. Oper. Res. 12, 1988, 85-108.

PC95 M. Perregaard, J. Clausen, Parallel branch-and-bound methods for the job-shop

scheduling problem, Working paper, University of Copenhagen, 1995.

Pes94 E. Pesch, Learning in Automated Manufacturing, Physica, Heidelberg, 1994.

PhH00 T. Phan-Huy, Constraint Propagation in Flexible Manufacturing, Springer,

Berlin, 2000.

PI77 S. S. Panwalkar, W. Iskander, A survey of scheduling rules, Oper. Res. 25,

1977, 45-61.

Pin95 M. L. Pinedo, Scheduling Theory, Algorithms and Systems, 1
st
 ed., Prentice-

Hall, Englewood Cliffs, N.J., 1995.

PM00 F. Pezzella, E. Merelli, Tabu search method guided by shifting bottleneck for

the job shop scheduling problem, Eur. J. Oper. Res. 120, 2000, 297-310.

Por68 D. B. Porter, The Gantt chart as applied to production scheduling and control,

Nav. Res. Logist. Quart. 15, 1968, 311-317.

Pot80 C. N. Potts, Analysis of a heuristic for one machine sequencing with release

dates and delivery times, Oper. Res. 28, 1980, 1436-1441.

PT96 E. Pesch, U. Tetzlaff, Constraint propagation based scheduling of job shops,

INFORMS J. Comput. 8, 1996, 144-157.

RS64 B. Roy, B. Sussmann, Les problémes d´ordonnancement avec contraintes dis-

jonctives, SEMA, Note D. S. No. 9., Paris, 1964.

Sad91 N. Sadeh, Look-Ahead Techniques for Micro-Opportunistic Job Shop Schedul-
ing, Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, 1991.

SBL95 D. Sun, R. Batta, L. Lin, Effective job shop scheduling through active chain

manipulation, Comput. Oper. Res. 22, 1995, 159-172.

SFO86 S. F. Smith, M. S. Fox, P. S. Ow, Constructing and maintaining detailed pro-

duction plans: investigations into the development of knowledge-based factory

scheduling systems, AI Magazine, 1986, 46-61.

SS95 Y. N. Sotskov, N. V. Shaklevich, NP-hardness of shop scheduling problems

with three jobs, Discret Appl. Math.59, 1995, 237-266.

Ste00 M. Sterna, Problems and Algorithms in Non-Classical Shop Scheduling, Ph.D.
thesis, Scientific Publishers of the Polish Academy of Sciences, Poznań, 2000.

SWV92 R. H. Storer, S. D. Wu, R. Vaccari, New search spaces for sequencing prob-

lems with application to job shop scheduling, Manage. Sci. 38, 1992,

1495-1509.

Tai94 E. Taillard, Parallel tabu search technique for the job shop scheduling problem,

ORSA Journal on Computing 6, 1994, 108-117.

 References 401

UAB+91 N. L. J. Ulder, E. H. L. Aarts, H. -J. Bandelt, P. J. P. van Laarhoven, E. Pesch,

Genetic local search algorithms for the traveling salesman problem, Lect. Notes
Comput. Sc. 496, 1991, 109-116.

Vae95 R. J. P. Vaessens, Generalized Job Shop Scheduling: Complexity and Local
Search, Ph.D. thesis, University of Technology Eindhoven, 1995.

VAL96 R. J. P. Vaessens, E. H. L. Aarts, J. K. Lenstra, Job shop scheduling by local

search, INFORMS J. Comput. 8, 1996, 302-317.

Vel91 S. van de Velde, Machine Scheduling and Lagrangian Relaxation, Ph.D. the-

sis, Centrum Wiskunde & Informatica, Amsterdam, 1991.

Wag59 H. P. Wagner, An integer linear programming model for machine scheduling,

Nav. Res. Logist. Quart. 6, 1959, 131-140.

WR90 K. P. White, R. V. Rogers, Job-shop scheduling: limits of the binary disjunc-

tive formulation, Int. J. Prod. Res. 28, 1990, 2187-2200.

WW95 F. Werner, A. Winkler, Insertion techniques for the heuristic solution of the job

shop problem, Discret Appl. Math. 50, 1995, 191-211.

YN92 T. Yamada, R. Nakano, A genetic algorithm applicable to large-scale job-shop

problems, in: R. Männer, B. Manderick (eds.), Parallel Problem Solving from
Nature 2, Elsevier, 1992, 281-290.

ZLRG06 C.Y. Zhang, P.G. Li, Y.Q. Rao, Z.L. Guan, A very fast TS/SA algorithm for

the job shop scheduling problem, Working paper, 2006, Huazhong University,

Wuhan.

11 Scheduling with Limited
Processor Availability1

1 This paper is based on O. Braun, J, Breit, G. Schmidt, Deterministic Machine Scheduling with

Limited Machine Availability, Discussion paper B0403, Saarland University, 2004.

In scheduling theory the basic model assumes that all machines are continuously
available for processing throughout the planning horizon. This assumption might
be justified in some cases but it does not apply if certain maintenance require-
ments, breakdowns or other constraints that cause the machines not to be availa-
ble for processing have to be considered. In this chapter we discuss results relat-
ed to deterministic scheduling problems where machines are not continuously
available for processing.

Examples of such constraints can be found in many areas. Limited availa-
bilities of machines may result from pre-schedules which exist mainly because
most of the real world resources planning problems are dynamic. A natural ap-
proach to cope with a dynamic environment is to trigger a new planning horizon
when the changes in the data justify it. However, due to many necessities, as
process preparation for instance, it is mandatory to take results of earlier plans as
fixed which obviously limits availability of resources for any subsequent plan.
Consider e.g. ERP (Enterprise Resource Planning) production planning systems
when a rolling horizon approach is used for customer order assignment on a tac-
tical level. Here consecutive time periods overlap where planning decisions tak-
en in earlier periods constrain those for later periods. Because of this arrange-
ment orders related to earlier periods are also assigned to time intervals of later
periods causing the resources not to be available during these intervals for orders
arriving after the planning decisions have been taken. The same kind of problem
may be repeated on the operational level of production scheduling. Here pro-
cessing of some jobs is fixed in terms of starting and finishing times and machine
assignment. When new jobs are released to the shop floor there are already jobs
assigned to time intervals and machines while the new ones have to be processed
within the remaining free processing intervals.

Another application of limited machine availability comes from operating
systems for mono- and multi-processors, where subprograms with higher priority
will interfere with the current program executed. A similar problem arises in
multi-user computer systems where the load changes during the usage. In big
massively parallel systems it is convenient to change the partition of the proces-
sors among different types of users according to their requirements for the ma-
chine. Fluctuations related to the processing capacity can be modeled by inter-
vals of different processor availability. Numerous other examples exist where the
investigation of limited machine availability is of great importance and the prac-

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_11

403

https://doi.org/10.1007/978-3-319-99849-7_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_11&domain=pdf

404 11 Scheduling with Limited Processor Availability

tical need to deal with this type of problem has been proven by a growing de-
mand for commercial software packages. Thus, recently the analysis of these
problems has attracted many researchers.

In the following we will investigate scheduling problems with limited ma-
chine availability in greater detail. The research was started by G. Schmidt
[Sch84]. The review focuses on deterministic models with information about the
availability constraints. Earlier surveys of this research area can be found in
[SS98, Sch00, Lee04]. For stochastic scheduling problems with limited machine
availability and prior distributions of the problem parameters see [GGN00,
LS95b, LS97]. We will survey results for one machine, parallel machine and
shop scheduling problems in terms of intractability and polynomial time algo-
rithms. In some places also results from enumerative optimization algorithms
and heuristics are analyzed. Doing this we will distinguish between non-
preemptive and preemptive scheduling. We will finish with some conclusions
and some suggestions for future research.

11.1 Problem Definition

A machine system with limited availability is a set of machines (processors)
which does not operate continuously; each machine is ready for processing only
in certain time intervals of availability. Let P = {Pi | i = l ,..., m} be the set of
machines with machine Pi only available for processing within Si given time in-
tervals [Bi

 s, Fi
 s), s = l ,..., Si and Bi

 s+1 > Fi
 s for all s = l ,..., Si�1 . Bi

 s denotes the
start time and Fi

 s the finish time of s th interval of availability of machine Pi .
We want to find a feasible schedule if one exists, such that all tasks can be

processed within the given intervals of machine availability optimizing some
performance criterion. Such measures considered here are completion time and
due date related and most of them refer to the maximum completion time, the
sum of completion times, and the maximum lateness.

The term preemption is used as defined before. Often the notion of resuma-
bility is used instead of preemption. Under a resumable scenario a task may be
interrupted when a machine becomes unavailable and resumed as the machine
becomes available again without any penalty. Under the non-resumable scenario
task preemption is generally forbidden. The most general scenario is semi-
resumability. Let xj denote the part of task Tj processed before an interruption
and let , � [0,1] be a given parameter. Under the semi-resumable scenario ,xj
time units of task Tj have to be re-processed after the non-availability interval.
The total processing time for task Tj is given by xj + ,xj + (pj � xj) = ,xj + pj .

In the following we base the discussion on the three field (| * | " classifica-
tion introduced in Chapter 3. We add some entry denoting machine availability
and we omit entries which are not relevant for the problems investigated here.

 11.1 Problem Definition 405

The first field (= (1(2(3 describes the machine (processor) environment.
In [Sch84] and [LS95a] different patterns of availability are discussed for the
case of parallel machine systems (parameter (3). These are constant, zigzag, de-
creasing, increasing, and staircase. Let 0 = t1 < t2 < ... < tj < ... < tq be the
points in time where the availability of a certain machine changes and let m(tj) be
the number of machines being available during time interval [tj, tj+1) with m(tj) >
0. It is assumed that the pattern is not changed infinitely often during any finite
time interval. According to these cases parameter (3 � {�, NCzz , NCinc , NCdec ,
NCinczz , NCdeczz , NCsc , NCwin} denotes the machine availability. NC relates to the
non-continuous availability of the machines.
1. If all machines are continuously available (t = 0) then the pattern is called con-
stant; (3 = �.

2. If there are only k or k�l machines in each interval available then the pattern is
called zigzag; (3 = NCzz .
3. A pattern is called increasing (decreasing) if for all j from IN the number of
machines m(tj) � max1 � u � j�1{m(tu)} (m(tj) � min1 � u � j�1{m(tu)}), i.e. the number
of machines available in interval [tj-1 , tj) is not more (less) than this number in
interval [tj , tj+1); (3 = NCinc (NCdec).

4. A pattern is called increasing (decreasing) zigzag if, for all j from IN, m(tj) �
max1 � u � j�1{m(tu) � 1} (m(tj) � min1 � u � j�1{m(tu) + 1}); (3 = NCinczz (NCdeczz).
5. A pattern is called staircase if for all intervals the availability of machine Pi
implies the availability of machine Pi+1 ; (3 = NCsc . A staircase pattern is shown
in the lower part of Figure 11.1.1; grayed areas represent intervals of non-
availability. Note that patterns (l)-(4) are special cases of (5).

P1

P2

P3

P4

P1

P2

P3

P4

'

'

'

'

Figure 11.1.1 Rearrangement of arbitrary patterns.

406 11 Scheduling with Limited Processor Availability

6. A pattern is called arbitrary if none of the conditions (l)-(5) applies; (3 =
NCwin . Such a pattern is shown in the upper part of Figure 11.1.1 for machines
P1, P2, P3, P4; patterns defined in (l)-(5) are special cases of the one in (6).

Machine systems with arbitrary patterns of availability can always be trans-
lated to a composite machine system forming a staircase pattern [Sch84]. A
composite machine is an artificial machine consisting of at most m original ma-
chines. The transformation process works in the following way. An arbitrary
pattern is separated in as many time intervals as there are distinct points in time
where the availability of at least one machine changes. Now in every interval
periods of non-availability are moved from machines with smaller index to ma-
chines with greater index or vice versa. If there are m(tj) machines available in
some interval [tj , tj+1) then after the transformation machines P1 ,...,Pm(tj) will
be available in [tj , tj+1) and Pm(tj+1) ,..., Pm will not be available, where 0 < m(tj)
< m. Doing this for every interval we generate composite machines. Each of
them consists of at most m original machines with respect to the planning hori-
zon.

An example for such a transformation where periods of non-availability are
moved from machines with greater index to machines with smaller index, con-
sidering m = 4 machines, is given in Figure 11.1.1 Non-availability is represent-
ed by the grayed areas. From machines P1, P2, P3, P4 composite machines P'1, P'2,
P'3, P'4 are formed. Composite machines which do not have intervals of availabil-
ity can be omitted from the problem description. Then the number of composite
machines in each interval is the maximum number of machines simultaneously
available. The time complexity of the transformation is O(qm) where q is the
number of points in time, where the availability of an original machine is chang-
ing. If this number is polynomial in n or m machine scheduling problems with
arbitrary patterns of non-availability can be transformed in polynomial time to a
staircase pattern. This transformation is useful as, first, availability at time t is
given by the number of available composite machines and, second, some results
are obtained assuming this hypothesis.

The second field * = *1 ,...,*8 describes task (job) and resource characteris-
tics. We will only refer here to parameter *1.
Parameter *1 � {�, t � pmtn, pmtn} indicates the possibilities of preemption:
T *1 = �: no preemption is allowed,
T *1 = t � pmtn: tasks may be preempted, but each task must be processed by

only one machine,
T *1 = pmtn: tasks may be arbitrarily preempted.
Here we assume that not only task (*1 = t � pmtn) but also arbitrary (task and
machine) preemptions are possible (*1 = pmtn). If there is only one machine ded-
icated to each task then task preemptions and arbitrary preemptions become
equivalent. For single machine and shop problems this difference has not to be

 11.2 One Machine Problems 407

considered. Of course the rearrangement of an arbitrary pattern to a staircase
pattern is only used when arbitrary preemption is allowed. In what follows the
number of preemptions may be a criterion to appreciate the value of an algo-
rithm. When the algorithm applies to staircase patterns, the number of preemp-
tions for an arbitrary pattern is increased by at most mq.

The third field, ", denotes a single optimality criterion (performance meas-
ure). In some recent papers multiple criteria scheduling models with limited ma-
chine availability are investigated, see e.g. [QBY02, LY03]. We will further in-
vestigate models with single optimality criteria.

Many of the problems considered later are solved applying simple priority
rules which can be executed in O(n log n) time. The rules order the tasks in some
way and then iteratively assign them to the most lightly loaded machine. The
following rules as already introduced in Chapter 3 are the most prominent.
T Shortest Processing Time (SPT) rule. With this rule the tasks are ordered ac-

cording to non-decreasing processing times.
T Longest Processing Time (LPT) rule. The tasks are ordered according to non-

increasing processing times.
T Earliest Due Date (EDD) rule. Applying this rule all tasks are ordered accord-

ing to non-decreasing due dates.

11.2 One Machine Problems

One machine problems are of fundamental character. They can be interpreted as
building blocks for more complex problems. Such formulations may be used to
represent bottleneck machines or an aggregation of a machine system. For one
machine scheduling problems the only availability pattern which has to be inves-
tigated is a special case of zigzag with k = 1.

Let us consider first problems where preemption of tasks (jobs) is not al-
lowed. If there is only a single interval of non-availability and 5Cj is the objec-
tive (l, NCzz | | 5Cj) [ABFR89] show that the problem is NP-hard. The Shortest
Processing Time (SPT) rule leads to a tight relative error of RSPT < 2/7 for this
problem [LL92]. [SPR+05] presents a modified SPT-heuristic with an improved
relative error of 3/17. He also develops a dynamic programming algorithm for
the same problem capable of solving problem instances with up to 25000 tasks. It
is easy to see that also problem l, NCwin | | Cmax is NP-hard [Lee96].

If preemption is allowed the scheduling problem becomes easier. For
l, NCwin | pmtn | Cmax , it is obvious that every schedule is optimal which starts at
time zero and has no unforced idle time, that is, the machine never remains idle
while some task is ready for processing. Preemption is never useful except when
some task cannot be finished before an interval of non-availability occurs. This
property is still true for completion time based criteria if there is no precedence
constraint and no release date, as it is assumed in the rest of this section.

408 11 Scheduling with Limited Processor Availability

While the sum of completion times (l , NCwin | pmtn | 5Cj) is minimized by
the SPT rule the problem of minimizing the weighted sum (l , NCwin

 | pmtn | 5wjCj) is NP-hard [Lee96]. Note that without availability constraints
Smith's rule [Smi56] solves the problem. Maximum lateness is minimized by the
Earliest Due Date (EDD) rule [Lee96]. If the number of tardy tasks has to be
minimized (l , NCwin | pmtn | 5Uj) the EDD rule of Moore and Hodgson's algo-
rithm [Moo68] can be modified to solve this problem also in O(n log n) time
[Lee96]. Note that if we add release times or weights for the jobs the problem is
NP-hard already for a continuously available machine ([LRB77] or [Kar72]).
Details can be found in Chapter 4.

Lorigeon et al. [LBB02a] investigate a one-machine problem where each
task has a release date rj and a delivery duration qj . The machine is not available
for processing during a single given interval. A task may only be preempted for
the duration of the non-availability interval and resumed as the machine becomes
available again. The objective is to find a schedule minimizing maxj{Cj+qj}. The
problem is a generalization of a well-known NP-hard problem studied by Carlier
[Car82]. Lorigeon et al. provide a branch-and-bound algorithm which solves
2133 out of 2250 problems instances with up to 50 tasks.

There are also results concerning problems where an interval of non-
availability is regarded as a decision variable. Qi et al. [QCT99] study a model in
which the machine has to be maintained after a maximum of ,1 time units. Each
such maintenance activity has a constant duration of ,2 time units. The goal is to
find a non-preemptive schedule which obeys the maintenance restrictions and
minimizes 5Cj . The problem is proved to be NP-hard in the strong sense. Qi et
al. propose heuristics and a branch-and-bound algorithm.

Graves and Lee [GL99] study several variants of the same problem. Besides
processing a task requires a setup operation on the machine. If a task is preempt-
ed by an interval of non-availability an additional (second) setup is required be-
fore the processing of the task can be resumed. Maintenance activities have to be
carried out after a maximum of ,1 time units. If there are at most two mainte-
nance periods then the problem is NP-hard in the ordinary sense for the objec-
tives Cmax , 5Cj , 5wjCj , and Lmax . Dynamic programming algorithms are pro-
vided to solve the problems in pseudo-polynomial time. If there is exactly one
period of maintenance the problem is polynomially solvable for the objectives
5Cj (by a modification of the SPT rule) and Lmax (by a modification of the EDD
rule). Minimizing 5wjCj turns out to be NP-hard in the ordinary sense. Two
pseudo-polynomial time dynamic programming algorithms are provided to solve
this problem.

Lee and Leon [LL01] study a problem in which a production rate modifying
activity of a given duration has to be scheduled in addition to n tasks. A task Tj
processed before the activity requires pj time units on the machine while the pro-

 11.3 Parallel Machine Problems 409

cessing time of the same task becomes 2j pj if it is scheduled after the production
rate modifying activity. Preemption is not allowed. The objective is to find a
starting time for the rate-modifying activity and a task sequence such that several
regular functions are optimized. The problem can be solved in polynomial time
for the objectives Cmax and 5Cj . For the objective 5wjCj the authors develop
pseudo-polynomial dynamic programming algorithms. For the objective Lmax the
EDD rule is optimal for the practical case where the production rate is increased
by the activity. The general case with arbitrary 2j is NP-hard.

11.3 Parallel Machine Problems

In this section we cover formulations of parallel machine scheduling problems
with availability constraints.

11.3.1 Minimizing the Sum of Completion Times

In case of continuous availability of the machines (P | | 5Cj) the problem can be
solved applying the SPT rule. If machines have only different beginning times Bi
(this corresponds to an increasing pattern of availability) the problem can also be
solved by the SPT rule [KM88, Lim91]. If m = 2 and there is only one finish time
Fi

 s on one machine which is finite (this corresponds to a zigzag pattern of availa-
bility) the problem becomes NP-hard [LL93]. In the same paper Lee and Liman
show that for P2, NCZZ | | 5Cj , where machine P2 is continuously available and
machine P1 has one finish time which is smaller than infinity, the SPT rule with
the following modification leads to a tight relative error of RSPT < 1/2:

Step 1: Assign the shortest task to P2 .
Step 2: Assign the remaining tasks in SPT order alternately to both machines

until some time when no other task can be assigned to P1 without vi-
olating F1 .

Step 3: Assign the remaining tasks to P1 .
Figure 11.3.1 illustrates how that bound can be reached asymptotically

(when %% tends toward 0). In both examples, the modified SPT rule leads to a
large idle time for machine P1 . For fixed m the SPT rule is asymptotically opti-
mal if there is no more than one interval of non-availability for each machine
[Mos94].

In case there is only one interval of non-availability for each machine, the
problem is NP-hard. In [LC00] a branch and bound algorithm based on the col-
umn generation approach is given which also solves the problem where 5wjCj is

410 11 Scheduling with Limited Processor Availability

minimized.

T1

T2

T3 T4

P1

P2

% 10 + % 20 + %100

p1 = p2 = %, p3 = p4 = 10

�Cj = 30 + 4%
(optimum is 20 + 5%)

T1

P1

P2 T2 T3

10 20 + % 30 + %0

p1 = 10, p2 = p3 = 10 + %

�Cj = 60 + 3%
(optimum is 40 + 3%)

Figure 11.3.1 Examples for the modified SPT rule.

11.3.2 Minimizing the Makespan

Let us first investigate non-preemptive scheduling. J. D. Ullman [Ull75] analyses
the complexity of the problem P, NCwin | | Cmax . It is NP-hard in the strong sense
for arbitrary m (3-partition is a special case) even if the machines are continuous-
ly available. If machines have different beginning times Bi (P, NCinc | | Cmax) the
Longest Processing Time (LPT) rule leads to a relative error of RLPT < 1/2 �
l/(2m) or of RMLPT < 1/3 if the rule is appropriately modified [Lee91]. The first
bound is tight. The modification uses dummy tasks to simulate the different ma-
chine starting times Bi . For each machine Pi a task Tj with processing time pj = Bi
is inserted. The dummy tasks are merged into the original task set and then all
tasks are scheduled according to the LPT rule under an additional restriction that
only one dummy task is assigned to each machine. After finishing the schedule,
all dummy tasks are moved to the head of the machines followed by the remain-
ing tasks assigned to each Pi . The MLPT rule runs in O((n + m)&log(n + m) +
(n + m)&m) time. In [LHYL97] Lee's bound of 1/3 reached by MLPT is improved
to 1/4.

Using the bin-packing algorithm called the MULTIFIT it is shown in [CH98]
that the bound of this algorithm is 2/7 + 2�k, where k is the selected number of
the major iterations in MULTIFIT.

Note that the LPT algorithm leads to a relative error of RLPT < 1/3 � l/(3m)
for continuously available machines [Gra69]. H. Kellerer [Kel98] presents a dual
approximation algorithm using a bin packing approach leading to a tight bound
of 1/4, too.

In [LSL05] a problem with two machines and one interval of non-
availability is considered. For non-resumable and resumable cases the problem is
solved by enumerative techniques.

 11.3 Parallel Machine Problems 411

Now let us investigate results for preemptive scheduling. If all machines are
only available in one and the same time interval [B, F) and tasks are independent
the problem is of type P | pmtn | Cmax Following [McN59] it can be shown that
there exists a feasible machine preemptive schedule if and only if maxj{pj} � (F
� B) and 5j pj � m(F � B). There exists an O(n) algorithm which generates at
most m � l preemptions to construct this schedule. If all machines are available in
an arbitrary number S = 5i Si of time intervals [Bi

s
 , Fi

 s), s = l ,..., Si and the ma-
chine system forms a staircase pattern, it is possible to generalize McNaughton's
condition and show that a feasible preemptive schedule exists if and only if the
following m conditions are met [Sch84]:

5j=1
k pj � 5i=1

k PCi Lk = 1,..., m � 1, (11.3.1-k)

5j=1
n pj � 5i=1

m PCi (11.3.1-m)

with p1 � p2 � ... � pn and PC1 � PC2 � ... � PCm , where PCj is the total pro-
cessing capacity of machine Pi . Such a schedule can be constructed in O(n +
m&log m) time after the processing capacities PCi are computed, with at most
S � 1 preemptions in case of a staircase pattern (remember that any arbitrary pat-
tern of availability can be converted into a staircase one at the price of additional
preemptions). Note that in the case of the same availability interval [B, F) for all
machines McNaughton's conditions are obtained from (11.3.1-1) and (11.3.1-m)
alone. This remains true for zigzag patterns as then (11.3.1-2) ,..., (11.3.1-m�1)
are always verified if (11.3.1-1) is true (there is one availability interval for all
machines but Pm). The algorithm to solve the problem applies five rules which
are explained now.

Let us consider two arbitrary processors Pk and Pl with PCk > PCl as shown
in Figure 11.3.2. Let [k

a
 , [k

b
 , and [k

c denote the processing capacities of proces-
sor Pk in the intervals [Bk

1
 , Bl

1], [Bl
1

 , F l
N(l)], and [Fl

N(l), F k
N(k)], respectively. Then

obviously, PCk = [k
a

 + [k
b

 + [k
c
 .

P

F FB B

l

1 1
ll ll

N(l) N(l)

B F

P
1 1 B F

k

kk k k
N(k) N(k)

k[a
k[b

k[c

t

Figure 11.3.2 Staircase pattern for two arbitrary processors.

412 11 Scheduling with Limited Processor Availability

Assume that the tasks are ordered according to non-increasing processing times
and that the processors form a staircase pattern as defined above. All tasks Tj are
scheduled in the given order one by one using one of the five rules given below.
Rules 1 - 4 are applied in the case where 1 � j < m, pj > min

i
 {PCi}, and if there

are two processors Pk and Pl such that PCl = max
i

 {PCi | PCi < pj} and PCk =

min
i

 {PCi | PCi � pj}. Rule 5 is used if m � j � n or pj � min
i

 {PCi}. First we de-

scribe the rules, and after that we prove that their application always constructs a
feasible schedule, if one exists. To avoid cumbersome notation we present the
rules in a semi-formal way.

Rule 1. Condition: pj = PCk .
Schedule task Tj on processor Pk such that all the intervals [Bk

 r, Fk
 r], r =

1,..., N(k), are completely filled; combine processors Pk and Pl to form a compo-
site processor, denoted again by Pk , which is available in all free processing in-
tervals of the original processor Pl , i.e. define PCk = PCl and PCl = 0 .

Rule 2. Condition: pj � PCl > max{[k
a

 , [k
c} and pj � [k

b � min{[k
a

 , [k
c} .

Schedule task Tj on processor Pk in its free processing intervals within [Bl
1, F l

N(l)].
If [k

a (respectively [k
c) is minimum use all the free processing intervals of Pk in

[Bk
1, Bl

1] ([F l
N(l), F k

N(k)]) to schedule Tj , and schedule the remaining processing re-
quirements of that task (if there is any) in the free processing intervals of Pk
within [F l

N(l), F k
N(k)] ([Bk

1, Bl
1]) from left to right (right to left) such that the rth pro-

cessing interval is completely filled with Tj before the r + 1st (r � 1st) interval is
used, respectively. Combine processors Pk and Pl to a composite processor Pk
which is available in the remaining free processing intervals of the original pro-
cessors Pk and Pl , i.e. define PCk = PCk + PCl � pj and PCl = 0 .

Rule 3. Condition: pj � PCl > max{[k
a

 , [k
c} and pj � [k

b < min{[k
a

 , [k
c} .

If [k
a ([k

c) is minimum, schedule task Tj on processor Pk such that its free pro-
cessing intervals in [Bk

1, Bl
1] ([F l

N(l), F k
N(k)]) are completely filled with Tj, further

fill processor Pk in the intervals [Bl
 r, Fl

 r], r = 1,..., N(l), completely with Tj and
use the remaining processing capacity of Pk in the interval [Bl

1, F l
N(l)] to schedule

task Tj with its remaining processing requirement such that Tj is scheduled from
left to right (right to left) where the r + 1st (r � 1st) interval is not used before the
rth interval has been completely filled with Tj , respectively. After doing this there
will be some time t in the interval [Bl

1, F l
N(l)] up to (after) this time task Tj is con-

tinuously scheduled on processor Pk . Time t always exists because pj � min{[k
a

 ,
[k

c} < [k
b

 . Now move Tj with its processing requirement which is scheduled after

 11.3 Parallel Machine Problems 413

(before) t on processor Pk to processor Pl in the corresponding time intervals.
Combine processors Pk and Pl to a composite processor Pk which is available in
the remaining free processing intervals of the original processors Pk and Pl , i.e.
define PCk = PCk + PCl � pj and PCl = 0 .

Rule 4. Condition: pj � PCl � max{[k
a

 , [k
c} .

Schedule task Tj on processor Pl such that all its intervals [Bl
r, Fl

r], r = 1 ,..., N(l)
are completely filled with Tj . If [k

a ([k
c) is maximum, schedule task Tj with its

remaining processing requirement on processor Pk in the free processing inter-
vals of [Bk

1, Bl
1] ([F l

N(l), F k
N(k)]) from left to right (right to left) such that the rth pro-

cessing interval is completely filled with Tj before the r + 1st (r � 1st) interval is
used, respectively. Combine processors Pk and Pl to a composite processor Pk
which is available in the remaining free processing intervals of the original pro-
cessor Pk , i.e. define PCk = PCk + PCl � pj and PCl = 0 .

Rule 5. Condition: remaining cases.
Schedule task Tj and the remaining tasks in any order in the remaining free pro-
cessing intervals successively from left to right starting with processor Pk , switch
to a processor Pi , i < k only if the i + 1st processor is already completely filled.

To show the optimality of rules 1 - 5 one may use the following lemma and theo-
rem [Sch84].

Lemma 11.3.1 After having scheduled a task Tj , j � {1 ,..., m � 1}, on some
processor Pk according to rules 1 or 2, or on Pk and Pl according to rules 3 or 4,
the following observations are true:
(1) The remaining free processing intervals of processors Pk and Pl are disjoint.
(2) Combining processors Pk and Pl to a composite processor Pk results in a

new staircase pattern.
(3) If all inequalities of (11.3.1-k), k = 1,..., m hold before scheduling task Tj ,

the remaining processing requirements and processing capacities after
scheduling Tj still satisfy inequalities (11.3.1-k), k = 1,..., m .

(4) The number of completely filled or completely empty intervals is �
i=1

m
 N(i) � K

where K is the number of only partially filled intervals, K � j < m.

We are now ready to prove the following theorem. The proof is constructive and
leads to an algorithm that solves our problem.

414 11 Scheduling with Limited Processor Availability

Theorem 11.3.2 For a system of m semi-identical processors with staircase
pattern of availability and a given set T of n tasks there will always be a feasible
preemptive schedule if and only if all inequalities (11.3.1) hold.

Proof. We assume that pj > min
i

 {PCi} for j = 1,..., m � 1; otherwise the theorem

is always true if and only if the inequality (11.3.1-m) holds, as can easily be seen.
There always exists a feasible preemptive schedule for T1 . Now assume that the
first z tasks have been scheduled feasibly according to rules 1 - 4. We show that
Tz+1 also can be scheduled feasibly:

(i) 1 < z < m: after scheduling task Tz all inequalities (11.3.1) hold according to
Lemma 11.3.1. Then pz+1 � PC1

z
 , hence task Tz+1 can be scheduled feasibly on

processor P1 .

(ii) m � z � n: after scheduling the first m � 1 tasks using rules 1-4, m � 1 proces-
sors are completely filled with tasks. Since PC2

z�1 = PC3
z�1 = ... = PCm

z�1 = 0

and PC1
z�1 � �

j=z

n
 pj, task Tz can be scheduled on processor P1 , and the remaining

tasks can also be scheduled on this processor by means of rule 5.

The following algorithm makes appropriate use of the five scheduling rules.

Algorithm 11.3.3 Algorithm by Schmidt [Sch84] for semi-identical processors.
begin
Order the m largest tasks Tj according to non-increasing processing times and

schedule them in the given order;

for all i � {1,..., m} do PCi := �
r=1

N(i)
 PCi

 r;

repeat
 if j < m and pj > min

i
 {PCi}

 then
 begin

Find processor Pl with PCl = max
i

 {PCi | PCi < pj} and processor Pk with

PCk = min
i

 {PCi | PCi � pj};

 if PCk = pj
 then call rule 1
 else
 begin
 Calculate [k

a, [k
b, and [k

c;
 if pj � PCl > max{[k

a, [k
c}

 then

 11.3 Parallel Machine Problems 415

 if pj � [k
b � min {[k

a, [k
c}

 then call rule 2 else call rule 3;
 else call rule 4;
 end;
 end
 else call rule 5;
until j = n;
end;

The number of preemptions generated by the above algorithm and its complexity
are estimated by the following theorems [Sch84].

Theorem 11.3.4 Given a system of m processors P1 ,...,Pm of non-continuous
availability, where each processor Pi is available in N(i) time intervals. Then, if
the processor system forms a staircase pattern and the tasks satisfy the inequali-
ties (11.3.1), Algorithm 11.3.3 generates a feasible preemptive schedule with at

most (�
i=1

m
 N(i)) � 1 preemptions.

Theorem 11.3.5 The time complexity of Algorithm 11.3.3 is O(n + m log m) .

Notice that if all processors are only available in a single processing interval and
all these intervals have the staircase property the algorithm generates feasible
schedules with at most m � 1 preemptions. If we further assume that Bi = B and
Fi = F for all i = 1 ,..., m Algorithm 11.3.3 reduces to McNaughton's rule
[McN59] with time complexity O(n) and at most m � 1 preemptions.
There is a number of more general problems that can be solved by similar ap-
proaches.
(1) Consider the general problem where the intervals of m semi-identical proces-
sors are arbitrarily distributed as shown in Figure 11.3.3(a) for an example prob-
lem with m = 3 processors. Reordering the original intervals leads to a staircase
pattern which is illustrated in Figure 11.3.3(b). Now each processor P'i , with
PC'i > 0 is a composite processor combining processors Pi, Pi+1 ,...,Pm, and each
interval [B' r

i , F' ri] is a composite interval combining intervals of availability of
processors Pi, Pi+1 ,..., Pm. The numbers in the different intervals of Figure
11.3.3(b) correspond to the number of original processors where that interval of
availability is related to. After reordering the original intervals this way the prob-

lem consists of at most Q' � Q = �
i=1

m
 N(i) intervals of availability. Using Algo-

rithm 11.3.3, O(m) preemptions are possible in each interval and thus O(mQ) is
an upper bound on the number of preemptions which will be generated for the
original problem.

416 11 Scheduling with Limited Processor Availability

(a)

P2

P3

P1

t

(b)

P'2

P'3

P'1

t

T1 T2 T1 T1T2 T2 T2

T2T2 T2

T3 T3

T3

T3

T3 T3

T3

Figure 11.3.3 Example for arbitrary processing intervals

(a) general intervals of availability,
(b) corresponding staircase pattern.

(2) If there is no feasible preemptive schedule for the problem at least one of the
inequalities of (11.3.1) is violated; this means that the processing capacity of at
least one processor is insufficient. We now increase the processing capacity in
such a way that all the tasks can be feasibly processed. An overtime cost function
might be introduced that measures the required increase of processing capacity.
Assume that an increase of one time unit of processing capacity results in an in-
crease of one unit of cost. If some inequality (11.3.1-q) is violated we have to

increase the total capacity of the first q processors by �
j=1

q
 (pj � PCj) in case of 1 �

q < m; hence the processing capacity of each of the processors P1,..., Pq is in-

creased by 1
q �

j=1

q
(pj � PCj) . If inequality (11.3.1-m) is violated, the cost minimum

increase of all processing capacities is achieved if the processing capacity of

each processor is increased by 1
m (�

j=1

n
 pj � �

j=1

m
 PCj). Now Algorithm 11.3.3 can be

used to construct a feasible preemptive schedule of minimum total overtime cost.
Checking and adjusting the m inequalities can be done in O(m) time, and then
Algorithm 11.3.3 can be applied. Hence a feasible schedule of minimal overtime
cost can be constructed in O(n + mlogm) time.
(3) If each task Tj also has a deadline d~j the problem is not only to meet start and
finish times of all intervals but also all deadlines. The problem can be solved by
using a similar approach where the staircase patterns and the given deadlines are
considered. Since all the tasks may have different deadlines, the resulting time

 11.3 Parallel Machine Problems 417

complexity is O(nmlogn). A detailed description of this procedure can be found
in [Sch88]. It is also proved there that the algorithm generates at most
Q + m(s � 1) � 1 preemptions if the semi-identical processor system forms a stair-
case pattern, and m(Q + s � 1) � 1 preemptions in the general case, where s is the
number of different deadlines. We mention that this approach is not only dedi-
cated to the deadline problem. It can also be applied to a problem where all the
tasks have different ready times and the same deadline, as these two situations
are of the same structure.

The corresponding optimization problem (P, NCsc | pmtn | Cmax) is solved by
an algorithm that first computes the lower bounds LB1 , LB2 , ..., LBm obtained
from the conditions above (see Figure 11.3.4). Cmax cannot be smaller than LBk ,
k = l ,..., m � l, obtained from (11.3.1-k). The sum of availabilities of machines
P1 , ..., Pk during time interval [0, LBk) may not be smaller than the sum of pro-
cessing times of tasks T1 , ..., Tk . The sum of all machine availabilities during
time interval [0, LBm) must also be larger than or equal to the sum of processing
times of all tasks. In the example of Figure 11.3.4, Cmax = LB3 . The number of
preemptions is S � 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

P1

P2

P3

P4

T2 T2

T2

T3

T3T3

T1

T4 T5

LB3

 T1 T2 T3 T4 T5

pj 12 7 7 2 1
LBj 12 11 38/3 149/12 38/3

Figure 11.3.4 Minimizing the makespan on a staircase pattern.

When precedence constraints are added, Liu and Sanlaville [LS95a] show that
problems with chains and arbitrary patterns of non-availability (i.e. P, NCwin |
 pmtn, chains | Cmax) can be solved in polynomial time applying the Longest Re-
maining Path (LRP) first rule and the processor sharing procedure of [MC70]. In
the same paper it is also shown that the LRP rule could be used to solve problems
with decreasing (increasing) zigzag patterns and tasks forming an outforest (in-
forest) (P, NCdeczz | pmtn, out-forest | Cmax or P, NCinczz | pmtn, in-forest | Cmax). In
case of only two machines and arbitrary (which means zigzag for m = 2) patterns

418 11 Scheduling with Limited Processor Availability

of non-availability (P2, NCwin | pmtn, prec | Cmax) this rule also solves problems
with arbitrary task precedence constraints with time complexity and number of
preemptions of O(n 2). These results are deduced from those obtained for unit
execution time scheduling by list algorithms (see Dolev and Warmuth [DW85b,
DW85a]). The LRP algorithm is nearly on-line, as are all priority algorithms
which extend list algorithms to preemption [Law82]. Indeed these algorithms
first build a schedule admitting processor sharing. These schedules execute tasks
of the same priority at the same speed. This property is respected when
McNaughton's rule is applied. If machine availability changes unexpectedly, the
property does not hold any more.

Applying the LRP rule results in a time complexity of O(n&log n + nm) and a
number of preemptions of O((n + m) 2 � nm) which both can be improved. There-
fore in [BDF+00] an algorithm is given which solves problem P, NCwin |
 pmtn, chains | Cmax with N < n chains in O(N + m&log m) time generating a num-
ber of preemptions which is not greater than the number of intervals of availabil-
ity of all machines. If all machines are only available in one processing interval
and all intervals are ordered in a staircase pattern the algorithm generates feasible
schedules with at most m � l preemptions. This result is based on the observation
that preemptive scheduling of chains for minimizing schedule length can be
solved by applying an algorithm for the independent tasks problem. Having more
than two machines in the case of arbitrary precedence constraints or an arbitrary
number of machines in the case of a tree precedence structure makes the problem
NP-complete [BDF+00].

When tasks require more than one processor they are called multiprocessor
tasks. In [BDDM03] polynomial algorithms are given for the following cases:

T tasks have various ready times and require either one or all processors;
T sizes of the tasks are powers of 2.

11.3.3 Dealing with Due Date Involving Criteria

In [Hor74] it is shown that P | pmtn, rj, d ~j | � can be solved in O(n 3&min{n 2,
log n + log pmax}) time. The same flow-based approach can be coupled with a
bisection search to minimize maximum lateness Lmax (see [LLLR79], where the
method is also extended to uniform machines). A slightly modified version of the
algorithm still applies to the corresponding problem where the machines are not
continuously available. If the number of changes of machine availabilities during
any time interval is linear in the length of the interval this approach can be im-
plemented in O(n 3pmax

 3&(log n + log pmax)) [San95]. When no ready times are giv-
en but due dates have to be considered, maximum lateness can be minimized for
the problem (P, NCwin | pmtn | Lmax) using the approach suggested by [Sch88] in
O(nm&log n) time. The method needs to know all possible events before the next
due date.

 11.3 Parallel Machine Problems 419

If there are not only due dates but also ready times are to be considered
(problem P, NCwin | rj, pmtn | Lmax) Sanlaville [San95] suggests a nearly on-line
priority algorithm with an absolute error of A � (m � l/m)pmax if the availability of
the machines follows a constant pattern and of A � pmax if machine availability
refers to an increasing zigzag pattern. The priority is calculated according to the
Smallest Laxity First (SLF) rule, where laxity (or slack time) is the difference
between the task's due date and its remaining processing time. The SLF algo-
rithm runs in O(n 2pmax) time and is optimal in the case of a zigzag pattern and no
release dates.

[LS95a] shows that results for Cmax minimization in cae of in-forest prece-
dence graphs and increasing zigzag patterns (P, NCinczz | pmtn, in-forest | Cmax)
can be extended to Lmax , using the SLF rule on the modified due dates. Figure
11.3.5 shows an optimal SLF schedule for the given precedence constraints.

T1 T2

T3 T4

T5 T6

T7

 T1 T2 T3 T4 T5 T6 T7

pj 2 3 2 2 5 3 2

dj 8 7 8 5 7 9 10

d 'j 4 4 6 5 7 8 10

P1

P2

P3

P4

T1

T2 T3

T5

T6 T7

T5

T5

T5 T5

T4T4

T1

T5

T1

0 1 2 2.752.66 3.66 5.665 8 10

T1

Figure 11.3.5 Minimizing Lmax on an increasing zigzag pattern.

The modified due date is given by dj ' = min{dj ' , ds(j)' + ps(j)} where Ts(j) is the
successor of Tj when it exists. In the same way, minimizing Lmax on two ma-
chines with availability constraints is achieved using SLF with a different modi-
fication scheme. If there are due dates, release dates and chain precedence con-
straints to be considered (P, NCwin | rj ,chains, pmtn | Lmax) the problem can be
solved using a binary search procedure in combination with a linear program-
ming formulation [BDF+00]. In case of multiprocessor tasks there exists a poly-
nomial algorithm to minimize Lmax if the number of processors is fixed
[BDDM03].

Lawler and Martel [LM89] solved the weighted number of tardy jobs prob-
lem on two uniform machines, i.e. Q2 | pmtn | 5wjUj . The originality of their

420 11 Scheduling with Limited Processor Availability

paper comes from the fact that they show a stronger result, as the speeds of the
processors may change continuously (and even be 0) during the execution.
Hence, it includes as a special case availability constraints on two uniform ma-
chines. They use dynamic programming to propose pseudo-polynomial algo-
rithms (O(5wj n2), or O(n2pmax) to minimize the number of tardy jobs). Nothing
however is said about the effort needed to compute processing capacity in one
interval.

If there are more than two uniform machines to be considered and the prob-
lem is to minimize maximum lateness for jobs which have different release dates
(Q, NCwin | rj , pmtn | Lmax) the problem can be solved in polynomial time by a
combined strategy of binary search and network flow [BDF+00]. In the same
paper the problem is generalized taking unrelated machines, i.e. machine speeds
cannot be represented by constant factors, into account. This problem can also be
solved in polynomial time applying a combination of binary search and the two-
phase method given in [BEP+96].

11.4 Shop Problems

The literature on shop scheduling problems with limited machine availability is
concentrated on flow shops and open shops. We are aware of only two papers
dealing with the job shop. The paper of Aggoune [Agg04b] studies the two-job
special case of this problem under the makespan criterion. He proposes exten-
sions of the well known geometric algorithm by Akers and Friedman [AF55] for
problems J, NCwin | pmtn, n = 2 | Cmax and J, NCwin | n = 2 | Cmax . The algorithms
run in polynomial time. Braun et al. [BLS05] investigate problem J2, NCwin |
 pmtn | Cmax and derive sufficient conditions for the optimality of Jackson's rule.

11.4.1 Flow Shop Problems

The flow shop scheduling problem for two machines with a constant pattern of
availability minimizing Cmax (F2 | | Cmax and F2 | pmtn | Cmax) can be solved in
polynomial time by Johnson's rule [Joh54]. C.-Y. Lee [Lee97] has shown that
this problem becomes already NP-hard if there is a single interval of non-
availability on one machine only. For the case where the tasks can be resumed he
also gives approximation algorithms which have relative errors of 1/2 if this in-
terval is on machine P1 or of 1/3 if the interval of non-availability is on machine
P2 . The approximation algorithms are based on a combination of Johnson's rule
and a modification of the ratio rule given in [MP93]. Lee also proposes a dynam-
ic programming algorithm for the case with one interval only.

Improved approximation algorithms for the resumable problem with one in-
terval are presented in [CW00], [Bre04a] and [NK04]. In the first paper a 1/3-

 11.4 Shop Problems 421

approximation for the case with the interval on P1 is presented. The second paper
provides a 1/4-approximation for the case with the interval occurring on P2 . The
third paper finally describes a fully polynomial-time approximation scheme for
the general case with one interval of non-availability, no matter on which ma-
chine. Ng and Kovalyov show that these two problems are in fact symmetrical. A
polynomial-time approximation scheme for the case where general preemption is
allowed (not only resumability) is presented in [Bre04b].

In [KBF+02] it is shown that the existence of approximation algorithms for
flow shop scheduling problems with limited machine availability is more of an
exception. It is proved that no polynomial time heuristic with a finite worst case
bound can exist for F2, NCwin | pmtn | Cmax when at least two intervals of non-
availability are allowed to occur. Furthermore it is shown that makespan minimi-
zation becomes NP-hard in the strong sense if an arbitrary number of intervals
occurs on one machine only. On the other hand, there always exists an optimal
schedule where the permutation of jobs scheduled between any two consecutive
intervals obeys Johnson's order. However, the question which jobs to assign be-
tween which intervals remains intractable.

Due to these negative results a branch and bound algorithm is developed in
[KBF+02] to solve F2, NCwin | pmtn | Cmax . The approach uses Johnson's order
property of jobs scheduled between two consecutive intervals. This property
helps to reduce the number of solutions to be enumerated. Computational exper-
iments were carried out to evaluate the performance of the branch-and-bound
algorithm. In the test problem instances intervals of non-availability were al-
lowed to occur either only on P1 , or only on P2 , or on both machines. The first
result of the tests was that these instances were equally difficult to solve. The
second result was that the algorithm performed very well when run on randomly
generated problem instances; 1957 instances out of 2000 instances could be
solved to optimality within a time limit of 1000 seconds. However, it could also
be shown that there exist problem instances which are much harder to solve for
the algorithm. These were instances in which the processing time of a job on the
second machine was exactly twice its processing time on the first machine.

In order to speed up the solution process, a parallel implementation of the
branch and bound algorithm is presented in [BFKS97]. Computations have been
performed on l, 2, 3, up to 8 processors. The experiment has been based on in-
stances for which computational times of the sequential version of the algorithm
were long. The maximum speed up gained was between 1.2 and 4.8 in compari-
son to the sequential version for 8 processors being involved in the computation.

Based on the above results in [BBF+01] constructive and improvement heu-
ristics are designed for F2, NCwin | pmtn | Cmax . They are empirically evaluated
using test data from [KBF+02] and new difficult test data. It turned out that a
combination of two constructive heuristics and a simulated annealing algorithm
could solve 5870 out of 6000 easy problem instances and 41 out of 100 difficult
instances. The experiments were run on a PC and the time limit to achieve this
result was roughly 60 seconds per instance. The worst relative errors were 2.6%

422 11 Scheduling with Limited Processor Availability

and 44.4% above the optimum, respectively. The combination of two construc-
tive heuristics could only solve 5812 out of 6000 easy instances and 13 out 100
difficult instances with an average computation time of 0.33 seconds and 3.96
seconds per instance, respectively. These results in [BBF+01] suggest that the
heuristic algorithms are very good options for solving flow shop scheduling
problems with limited machine availability.

In [Bra02] and [BLSS02] sufficient conditions for the optimality of John-
son's rule in the case of one or more intervals of non-availability (i.e. for
F2, NCwin | pmtn | Cmax) are derived. To find the results the technique of stability
analysis is used and it is shown that in most cases Johnson's permutation remains
optimal. These results are comparable to [KBF+02] but improve the running time
for finding optimal solutions, such that instances with 10,000 jobs and 1,000
intervals of non-availability can be treated.

The non-preemptive case of the two-machine flow shop with limited ma-
chine availability is studied by [CW99]. In general, this problem is not approxi-
mable for the makespan criterion if at least two intervals of non-availability may
occur. Cheng and Wang investigate the case where there are exactly two such
intervals. One of them starts at the same time when the other one ends (consecu-
tive intervals). They provide a 2/3-approximation algorithm for this problem.

[Lee99] studies the two-machine flow shop with one interval of non-
availability under the semi-resumable scenario. He provides dynamic program-
ming algorithms for this problem as well as approximation algorithms with worst
case errors of l and 1/2, depending on whether the interval occurs on the first or
on the second machine.

Quite a few papers exist on the two-machine no-wait flow shop. For con-
stant machine availability and the makespan criterion this problem is polynomi-
ally solvable [GG64, HS96]. Espinouse et al. [EFP99, EFP01] study the case
with one interval of non-availability. They show that the problem is NP-hard no
matter if preemption is allowed or not, and not approximable if at least two in-
tervals occur. They also provide approximation algorithms with a worst-case
error of 1. Improved heuristics with worst-case errors of 1/2 are presented by
[CL03a]. They also treat the case where each of the two machines has an interval
of non-availability and these two intervals overlap. In the second paper [CL03b]
provides a polynomial-time approximation scheme for this problem. [KS04] also
study the case with one interval of non-availability. They provide a 1/2-
approximation algorithm capable of handling the semi-resumable scenario and a
1/3-approximation algorithm for the resumable scenario. The non-preemptive m-
machine flow shop with two intervals of non-availability on each machine and
the makespan objective is studied by [Agg04a] and [AP03]. In [Agg04a] two
cases are considered. In the first case, intervals of non-availability are fixed
while in the second case intervals are assigned to time windows and their actual
start times are decision variables. A genetic algorithm and a tabu search proce-
dure are evaluated for test data with up to 20 jobs and 10 machines. The most
important result is that flexible start times of the intervals of non-availability
result in considerably shorter schedules. In [AP03] intervals of non-availability

 11.5 Conclusions 423

have fixed start and finish times. The proposed heuristic is based on the approach
presented in [Agg04b]. The jobs in a sequence are grouped in pairs. Each pair is
scheduled optimally using the algorithm in [Agg04b]. This approach is embed-
ded into a tabu search algorithm. Experiments indicate that the heuristic is capa-
ble of finding good solutions for problem instances with up to 20 jobs.

11.4.2 Open Shop Problems

The literature on open shop scheduling problems (for a survey see also [BF97])
with limited machine availability is focused on the two-machine case and the
objective of makespan minimization. The case with constant pattern of machine
availability (O2 | | Cmax) can be solved in linear time by an algorithm due to
[GS76].

It is essential to distinguish between two kinds of preemption. The less re-
strictive case is investigated by [VS95]. They use a model where the processing
of a job may be interrupted and later resumed on the same machine. In the inter-
val between interruption and resumption the job may be processed on a different
machine. It is shown that under this assumption the problem is polynomially
solvable even for arbitrary numbers of machines and intervals of non-
availability.

In the more restrictive case the processing of a job on a machine may be in-
terrupted by the processing of other jobs or by intervals of non-availability. In
the interval between the start and the end of a task, no other task of the same job
may be processed. This model is similar to the open shop with no-pass con-
straints as introduced by Cho and Sahni [CS81].

J. Breit [Bre00] proves that this latter problem is NP-hard even for a single
interval of non-availability and not approximable within a constant factor if at
least three such intervals occur. For the case with one interval there exists a
pseudopolynomial dynamic programming algorithm [LBB02b] as well as a line-
ar time approximation algorithm with an error bound of 1/3 [BSS01]. The special
case in which the interval occurs at the beginning of the planning horizon is
solved by a linear time algorithm due to [LP93]. M. A. Kubzin et al. [KSBS02]
present polynomial-time approximation schemes for the case with an arbitrary
number of intervals on one machine and a continuously available second ma-
chine, as well as for the case with exactly one interval on each machine. The
non-preemptive model is studied by J. Breit et al. [BSS03]. They provide a linear
time 1/3-approximation algorithm and show that the problem with at least two
intervals is not approximable within a constant factor.

11.5 Conclusions

We reviewed results on scheduling problems with limited machine availability.

424 11 Scheduling with Limited Processor Availability

The number of results shows that scheduling with availability constraints attracts
more and more researchers, as the importance of the applications is recognized.
The results presented here are of various kinds. In particular, when preemption is
not authorized it will logically entail NP-hardness of the problem. If one is inter-
ested in solutions for non-preemptive problems enumerative algorithms have to
be applied; otherwise approximation algorithms are a good choice. Performance
bounds may often be obtained, but their quality will depend on the kind of avail-
ability patterns considered. If worst case bounds cannot be found, heuristics
which can only be evaluated empirically have to be applied.

Most of the results reviewed are summarized in Table 11.5.1. The table dif-
fers for a given problem type between performance criteria entailing NP-
hardness and those for which a polynomial algorithm exists.

Problem Polynomially solvable NP-hard
1, NCwin 5Cj , Cmax

1, NCwin | pmtn 5Cj , Cmax , Lmax , 5Uj
5wj Cj , 5wj Uj (constant

availability)
P, NCinc 5Cj
P, NCzz 5Cj
P2, NCwin | pmtn, prec Cmax , Lmax
P, NCzz | pmtn, tree Cmax , Lmax (in-tree) Cmax (for NCwin)
P, NCwin | pmtn, chains Cmax , Lmax
P, NCwin | pmtn, rj Cmax , Lmax
Q, NCwin | pmtn, rj Cmax , Lmax

F2, NCwin | pmtn Cmax (single non-
availability interval)

O, NCwin | pmtn Cmax

O2, NCwin | pmtn(no-pass) Cmax (single non-
availability interval)

J, NCwin | n = 2 Cmax
J, NCwin | pmtn, n = 2 Cmax

Table 11.5.1 Summary of results.

There are many interesting fields for future research.

1. As our review indicates there are many open questions in shop scheduling,
e.g., for job shop models comparatively few results are available.

2. Stability analysis introduces sufficient conditions for schedules to be optimal
in the case of machine availability restrictions. Extensions to open shops and job
shops seem to be interesting in this field.

3. In almost all papers reviewed in this chapter machine availability restrictions
are regarded as problem input. There are, however, many cases in which decision

 References 425

makers have some influence on these restrictions. For example, one may think of
a situation where the start time of a maintenance activity for a machine can be
chosen within certain limits. In such situations machine availability restrictions
become decision variables.

4. To the best of our knowledge there exist no papers dealing with limited ma-
chine availability and multiple objective functions. Such models may, however,
be very interesting, especially in cases where machine availability restrictions are
decision variables. For example, in a case where several machines have to un-
dergo a maintenance activity it may be desirable to minimize the time span be-
tween start of the first and end of the last activity while a different objective
function is applied for the task scheduling.

5. There are many practical cases where periods of non-availability are not
known in advance. In these cases we might apply online scheduling. Some re-
sults are already available. In [AS01] it is shown that there are instances where
no on-line algorithm can construct optimal makespan schedules if machines
change availability at arbitrary points in time. It is also impossible for such an
algorithm to guarantee that the solution is within a constant ratio c if there may
be time intervals where no machine is available. Albers and Schmidt also report
that things look better if the algorithm is allowed to be nearly on-line. In such a
case we assume that the algorithm always knows the next point in time when the
set of available machines changes. Now optimal schedules can be constructed.
The algorithm presented has a running time of O(qn + S), where q is the number
of time instances where the set of available machines changes and S is the total
number of intervals where machines are available. If at any time at least one ma-
chine is available, an on-line algorithm can construct schedules which differ by
an absolute error c from an optimal schedule for any c > 0. This implies, that not
knowing machine availabilities does not really hurt the performance of an algo-
rithm, if arbitrary preemptions are allowed.

References

ABFR89 I. Adiri, J. Bruno, E. Prostig, A. H. G. Rinnooy Kan, Single machine flow-time
scheduling with a single breakdown, Acta Inform. 26, 1989, 679-696.

AF55 S. B. Akers, J. Friedman, A non-numerical approach to production scheduling
Problems, Oper. Res. 3, 1955, 429-442.

Agg04a R. Aggoune, Minimizing the makespan for the flow shop scheduling problem
with availability constraints, Eur. J. Oper. Res. 153, 2004, 534-543.

Agg04b R. Aggoune, Two-job shop scheduling problems with availability constraints,
Proceedings of the 14th International Conference on Automated Planning and
Scheduling, AAAI Press, 2004, 253-259.

AP03 R. Aggoune, M.-C. Portmann, Flow shop scheduling problem with limited
machine availability: a heuristic approach, International Conference on Indus-
trial Engineering and Production Management, l, 2003, 140-149.

426 11 Scheduling with Limited Processor Availability

AS01 S. Albers, G. Schmidt, Scheduling with unexpected machine breakdowns. Dis-
cret Appl. Math. 110, 2001, 85-99.

BBF+01 J. Blazewicz, J. Breit, P. Formanowicz, W. Kubiak, G. Schmidt, Heuristic
algorithms for the two-machine flowshop with limited machine availability,
Omega-Int. J. Manage. Sci. 29, 2001, 599-608.

BDDM03 J. Blazewicz, P. Dell'Olmo, M. Drozdowski, P. Maczka, Scheduling multipro-
cessor tasks on parallel processors with limited availability, Eur. J. Oper. Res.
149, 2003, 377-389.

BDF+00 J. Blazewicz, M. Drozdowski, P. Formanowicz, W. Kubiak, G. Schmidt,
Scheduling preemptable tasks on parallel processors with limited availability,
Parallel Comput. 26, 2000, 1195-1211.

BEP+96 J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, J. Weglarz, Scheduling Com-
puter and Manufacturing Processes, Springer, Berlin, 1996.

BF97 J. Blazewicz, P. Formanowicz, Scheduling jobs on open shops with limited
machine availability, Rairo-Oper. Res. 36, 1997, 149-156.

BFKS97 J. Blazewicz, P. Formanowicz, W. Kubiak, G. Schmidt, A note on a parallel
branch and bound algorithm for the flow shop problem with limited machine
availability, Working paper, Poznan University of Technology, Poznan, 1997.

BLS05 O. Braun, N. M. Leshchenko, Y. N. Sotskov, Optimality of Jackson's permuta-
tions with respect to limited machine availability, Int. Trans. Oper. Res. 13,
2006, 59-74.

BLSS02 O. Braun, T.-C. Lai, G. Schmidt, Y. N. Sotskov, Stability of Johnson's sched-
ule with respect to limited machine availability, Int. J. Prod. Res. 40, 2002,
4381-4400.

Bra02 O. Braun, Scheduling Problems with Limited Available Processors and Limited
Number of Preemptions, Ph.D. thesis, Saarland University, 2002 (in German).

Bre00 J. Breit, Heuristic Scheduling Algorithms for Flow Shops and Open Shops with
Limited Machine Availability, Ph.D. thesis, Saarland University, 2000 (in
German).

Bre04a J. Breit, An improved approximation algorithm for two-machine flow shop
scheduling with an availability constraint, Inf. Process. Lett. 90, 2004,
273-278.

Bre04b J. Breit, A polynomial-time approximation scheme for the two-machine flow
shop scheduling problem with an availability constraint, Comput. Oper. Res.
33, 2006, 2143-2153.

BSS01 J. Breit, G. Schmidt, V. A. Strusevich, Two-machine open shop scheduling
with an availability constraint, Oper. Res. Lett. 29, 2001, 65-77.

BSS03 J. Breit, G. Schmidt, V. A. Strusevich, Non-preemptive two-machine open
shop scheduling with non-availability constraints, Math. Meth. Oper. Res. 57,
2003, 217-234.

Car82 J. Carlier, The one machine sequencing problem. Eur. J. Oper. Res. 11, 1982,
42-47.

 References 427

CH98 S.-Y. Chang, H.-C. Hwang, The worst-case analysis of the multifit algorithm
for scheduling nonsimultaneous parallel machines, Working paper, Department
of Industrial Engineering, Pohang University of Science and Technology,
1998.

CL03a T.-C. E. Cheng, Z. Liu. 3/2-approximation for two-machine no-wait flowshop
scheduling with availability constraints, Inf. Process. Lett. 88, 2003, 161-165.

CL03b T.-C. E. Cheng, Z. Liu. Approximability of two-machine no-wait flowshop
scheduling with availability constraints, Oper. Res. Lett. 31, 2003, 319-322.

CS81 Y. Cho, S. Sahni, Preemptive scheduling of independent jobs with release and
due dates times on open, flow and job shop, Oper. Res. 29, 1981, 511-522.

CW99 T.-C. E. Cheng, G. Wang, Two-machine flowshop scheduling with consecutive
availability constraints, Inf. Process. Lett. 71, 1999, 49-54.

CW00 T.-C. E. Cheng, G. Wang, An improved heuristic for two-machine flowshop
scheduling with an availability constraint, Oper. Res. Lett. 26, 2000, 223-229.

DW85a D. Dolev, M. K. Warmuth, Profile scheduling of opposing forests and level
orders, SIAM J. Algebra. Discr. 6, 1985, 665-687.

DW85b D. Dolev, M. K. Warmuth, Scheduling flat graphs, SIAM J. Comput. 14, 1985,
638-657.

EFP99 M. L. Espinouse, P. Formanowicz, B. Penz, Minimzing the makespan in the
two-machine no-wait flow-shop with limited machine availability, Comput.
Ind. Eng. 37, 1999, 497-500.

EFP01 M. L. Espinouse, P. Formanowicz, B. Penz, Complexity results and approx-
imation algorithms for the two machine no-wait flow-shop with limited ma-
chine availability, J. Oper. Res. Soc. 52, 2001, 116-121.

GG64 P. C Gilmore, R. E. Gomory, Sequencing a one-state variable machine: a solv-
able case of the traveling salesman problem, Oper. Res. 12, 1964, 655-679.

GGN00 M. Gourgand, N. Grangeon, S. Norre, A review of the stochastic flow-shop
scheduling problem, Journal of Decision Systems 9, 2000, 183-213.

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

GL99 G. H. Graves, C.-Y. Lee, Scheduling maintenance and semi-resumable jobs on
a single machine, Nav. Res. Log. 46, 1999, 845-863.

Gra69 R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl.
Math. 17, 1969, 416-429.

GS76 T. Gonzalez, S. Sahni, Open shop scheduling to minimize finish time, J. ACM
23, 1976, 665-679.

Hor74 W. A. Horn, Some simple scheduling algorithms, Nav. Res. Log. 21, 1974,
177-185.

HS96 N. G. Hall, C. Sriskandarajah, A survey of machine scheduling problems with
blocking and no-wait in process, Oper. Res. 44, 1996, 510-525.

Joh54 S. M. Johnson, Optimal two- and three-stage production schedules with setup
times included, Nav. Res. Logist. Quart. 1, 1954, 61-68.

428 11 Scheduling with Limited Processor Availability

Kar72 R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,
J. W. Thatcher (eds.), Complexity of Computer Computations, 1972, 85-103.

KBF+02 W. Kubiak, J. Blazewicz, P. Formanowicz, J. Breit, G. Schmidt, Two-machine
flow shops with limited machine availability, Eur. J. Oper. Res.136, 2002,
528-540.

Kel98 H. Kellerer, Algorithms for multiprocessor scheduling with machine release
time, IIE Trans. 31, 1998, 991-999.

KM88 M. Kaspi, B. Montreuil, On the scheduling of identical parallel processes with
arbitrary initial processor available time, Research report 88-12, School of In-
dustrial Engineering, Purdue University, 1988.

KS04 M. A. Kubzin, V. A. Strusevich, Two-machine flow shop no-wait scheduling
with a nonavailability interval, Nav. Res. Log. 51, 2004, 613-631.

KSBS02 M. A. Kubzin, V. A. Strusevich, J. Breit, G. Schmidt, Polynomial-time ap-
proximation schemes for the open shop scheduling problem with non-
availability constraints, Paper 02/IM/100, School of Computing and Mathemat-
ical Science, University of Greenwich, 2002.

Law82 E. L. Lawler, Preemptive scheduling of precedence constrained jobs on parallel
machines, in: Dempster et al. (eds.), Deterministic and Stochastic Scheduling,
Reidel, Dordrecht, 1982, 101-123.

LBB02a T. Lorigeon, J.-C. Billaut, J.-L. Bouquard, Availability constraint for a single
machine problem with heads and tails, Proceedings of the 8th International
Workshop on Project Management and Scheduling, 2002, 240-243.

LBB02b T. Lorigeon, J.-C. Billaut, J.-L. Bouquard, A dynamic programming algorithm
for scheduling jobs in a two-machine open shop with an availability constraint,
J. Oper. Res. Soc. 53, 2002, 1239-1246.

LC00 C.-Y. Lee, Z.-L. Chen, Scheduling jobs and maintenance activities on parallel
machines, Nav. Res. Log. 47, 2000, 145-165.

Lee91 C.-Y. Lee, Parallel machine scheduling with non-simultaneous machine avail-
able time, Discret Appl. Math. 30, 1991, 53-61.

Lee96 C.-Y. Lee, Machine scheduling with an availability constraint, J. Global Op-
tim. 9, 1996, 363-384.

Lee97 C.-Y. Lee, Minimizing the makespan in the two-machine flowshop scheduling
problem with an availability constraint, Oper. Res. Lett. 20, 1997, 129-139.

Lee99 C.-Y. Lee, Two-machine flowshop scheduling with availability constraints,
Eur. J. Oper. Res. 114, 1999, 420-429.

Lee04 C.-Y. Lee, Machine scheduling with availability constraints, in: J. Y.-T. Leung
(ed.), Handbook of Scheduling, Chapman & Hall/CRC Press, 2004, 22.1-22.13.

LHYL97 G. Lin, Y. He, Y. Yao, H. Lu, Exact bounds of the modified LPT algorithm
applying to parallel machines scheduling with nonsimultaneous machine avail-
able times, Applied Mathematics Journal of Chinese Universities 12, 1997,
109-116.

Lim91 S. Liman, Scheduling with Capacities and Due-Dates, Ph.D. thesis, University
of Florida, 1991.

 References 429

LL92 C.-Y. Lee, S. D. Liman, Single machine flow-time scheduling with scheduled
maintenance, Acta Inform. 29, 1992, 375-382.

LL93 C.-Y. Lee, S. D. Liman, Capacitated two-parallel machine scheduling to mini-
mize sum of job completion time, Discret Appl. Math. 41, 1993, 211-222.

LL01 C.-Y. Lee, V. J. Leon, Machine scheduling with a rate-modifying activity, Eur.
J. Oper. Res. 128, 2001, 119-128.

LLLR79 J. Labetoulle, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Preemptive
scheduling of uniform machines subject to due dates, Technical Paper B W
99/79, Centrum Wiskunde & Informatica, Amsterdam, 1979.

LM89 E. L. Lawler, C. U. Martel, Preemptive scheduling of two uniform machines to
minimize the number of late jobs, Oper. Res. 37, 1989, 314-318.

LP93 L. Lu, M. E. Posner, An NP-hard open shop scheduling problem with poly-
nomial average time complexity, Math. Oper. Res. 18, 1993, 12-38.

LRB77 J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Complexity of processor
scheduling problems, Annals of Discrete Mathematics 1, 1977, 343-362.

LS95a Z. Liu, E. Sanlaville, Preemptive scheduling with variable profile, precedence
constraints and due dates, Discret Appl. Math. 58, 1995, 253-280.

LS95b Z. Liu, E. Sanlaville, Profile scheduling of list algorithms, in: P. Chretienne et
al. (eds.) Scheduling Theory and its Applications, Wiley, 1995, 91-110.

LS97 Z. Liu, E. Sanlaville, Stochastic scheduling with variable profile and prece-
dence constraints, SIAM J. Comput. 26, 1997, 173-187.

LSL05 C.-J. Liao, D.-L. Shyur, C.-H. Lin, Makespan minimization for two parallel
machines with an availability constraint, Eur. J. Oper. Res. 160, 2005,
445-456.

LY03 C.-Y. Lee, G. Yu, Logistics scheduling under disruptions, working paper, De-
partment of Industrial Engineering and Engineering Management, The Hong
Kong University of Science and Technology, Hong Kong, 2003.

MC70 R. Muntz, E. G. Coffman, Preemptive scheduling of real-time tasks on mul-
tiprocessor systems, J. ACM 17, 1970, 324-338.

McN59 R. McNaughton, Scheduling with deadlines and loss functions, Manage. Sci. 6,
1959, 1-12.

Moo68 J. M. Moore, An n job one machine sequencing algorithm for minimizing the
number of late jobs, Manage. Sci. 15, 1968, 102-109.

Mos94 G. Mosheiov, Minimizing the sum of job completion times on capacitated
parallel machines, Math. Comput. Model. 20, 1994, 91-99.

MP93 T. E. Morton, D. W. Pentico, Heuristic Scheduling Systems, J. Wiley, New
York, 1993.

NK04 C. T. Ng, M. Y. Kovalyov, An FPTAS for scheduling a two-machine flowshop
with one unavailability interval, Nav. Res. Logist. 51, 2004, 307-315.

QBY02 X. Qi, J. F. Bard, G. Yu, Disruption management for machine scheduling: the
case of SPT schedules, Working paper, Department of Management Science
and Infomation Systems, College of Business Administration, The University
of Texas, 2002.

430 11 Scheduling with Limited Processor Availability

QCT99 X. Qi, T. Chen, F. Tu, Scheduling the maintenance on a single machine, J.
Oper. Res. Soc. 50, 1999, 1071-1078.

SPR+05 C. Sadfi, B. Penz, C. Rapine, J. Blazewicz, P. Formanowicz, An improved
approximation algorithm for the single machine total completion time schedul-
ing problem with availability constraints, Eur. J. Oper. Res. 161, 2005, 3-10.

San95 E. Sanlaville, Nearly on line scheduling of preemptive independent tasks, Dis-
cret Appl. Math. 57, 1995, 229-241.

Sch84 G. Schmidt, Scheduling on semi-identical processors, Zeitschrift für Opera-
tions Research A28, 1984, 153-162.

Sch88 G. Schmidt, Scheduling independent tasks with deadlines on semi-identical
processors, J. Oper. Res. Soc. 39, 1988, 271-277.

Sch00 G. Schmidt, Scheduling with limited machine availability, Eur. J. Oper. Res.
121, 2000, 1-15.

Smi56 W. E. Smith, Various optimizers for single-stage production, Nav. Res. Log.
Quart. 3, 1956, 59-66.

SS98 E. Sanlaville, G. Schmidt, Machine scheduling with availability constraints,
Acta Inform. 35, 1998, 795-811.

ST95 D. D. Sleator, R. E. Tarjan, Amortized efficiency of list update and paging
rules, Commun. ACM 28, 1995, 202-208.

U1175 J. D. Ullman, NP-complete scheduling problems, J. Comput. Syst. Sci. 10,
1975, 384-393.

VS95 G. Vairaktarakis, S. Sahni, Dual criteria preemptive open-shop problems with
minimum makespan, Nav. Res. Log. 42, 1995, 103-121.

 12 Time-Dependent Scheduling

In previous chapters we have always assumed that the processing times of tasks
are fixed and described by numbers. Scheduling problems with such a model of
task processing times are considered in classical scheduling theory. Despite a
very large scope of applicability of this theory, the above assumptions seem to be
too restrictive, since in some situations we deal with tasks which have variable
processing times. For example, while waiting for processing tasks may deterio-
rate or shorten what may cause some changes of their processing times. The task
processing times may also depend on available amounts of discrete or continuous
resources, and the increase (decrease) of these amounts may affect the processing
times as well. The phenomenon of variable processing times is often encountered
in modern manufacturing systems, where processing times are changing in view
of varying processing conditions. Therefore, in recent decades in scheduling
theory have been appeared new research domains, collectively called modern
scheduling theory, where scheduling problems with different forms of variable
processing times are studied and solved using more specific methods than those
applied in classical scheduling theory.

There are known a few distinct groups of models of variable processing
times. In this chapter1, we are focused on scheduling problems with time-
dependent processing times. This means that the processing time of each task is a
function of the task starting time. Scheduling problems with task processing
times of this form, in short called time-dependent scheduling problems, are con-
sidered in time-dependent scheduling, a dynamically developing research domain
of modern scheduling theory. These problems compose the first group of schedu-
ling problems with variable processing times considered in the handbook. The
second group of such problems, where task processing times depend on the
amounts of delivered resources, is discussed in Chapter 13.

The aim of this chapter is to present a general overview of time-dependent
scheduling. Therefore, we present only the most fundamental results. However,
in order to give the reader a more deep insight into discussed problems,
we illustrate our presentation by a number of examples.

In time-dependent scheduling literature we deal with jobs which are com-
posed of operations, regardless of the machine environment in which these jobs
are processed. However, in order to keep our terminology consistent with the one
introduced in Chapter 3, in this chapter operations are called tasks and we write
about jobs only in the context of dedicated machine scheduling problems.

1 This chapter is based on S. Gawiejnowicz, Time-Dependent Scheduling: Main Results and
Research Directions, report 139/2018, Faculty of Mathematics and Computer Science, Adam
Mickiewicz University in Poznań, January 2018.

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_12

431

https://doi.org/10.1007/978-3-319-99849-7_12
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_12&domain=pdf

 12 Time-Dependent Scheduling

432

This chapter is organized into five sections. In Section 12.1, we introduce
the reader into time-dependent scheduling. Next, in Section 12.2, we define the
main forms of time-dependent processing times. Finally, in Sections 12.3-12.5,
we review the main results concerning one, parallel and dedicated machine time-
dependent scheduling problems, respectively.

12.1 Introduction

Time-dependent scheduling problems are defined similarly as in classical sched-
uling theory by specifying the set of machines, the set of tasks and optimality
criteria. The main feature of time-dependent scheduling problems is the specifi-
cation of variable task processing times: in classical scheduling the processing
times are numbers, while in time-dependent scheduling they are functions of the
task starting times. Though time-dependent task processing times may be arbi-
trary, space limitations force us to discuss only time-dependent scheduling prob-
lems with task processing times which are continuous single-variable functions
of the task starting times. Apart machines no other resources are needed to com-
plete the tasks. We also assume that task processing times are affected only by
the starting times of the tasks, whereas other factors such as continuous re-
sources (cf. Chapter 13, [SS07]) or learning effect ([ABG+14, SR17]) have no
influence on the processing times.

Time-dependent scheduling has many applications. We deal with time-
dependent scheduling problems when any delay causes an increase (a decrease)
of the processing times of executed tasks. Examples are repayment of multiple
loans [GKD87], recognizing aerial threats [HLW93], scheduling maintenance
procedures [Mos94], de-rusting operations [GKP06c] and medical proce-
dures [WDZ14, ZWW15], modeling of fire fighting [RP06], optimization in car
industry [JS16]. We refer the reader to [Gaw08, Section 5.3] for other examples.

In time-dependent scheduling mainly processing times defined by monotone
functions are considered. This results in two main research directions in time-
dependent scheduling. The first direction is focused on problems with task (job)
deterioration, where task (job) processing times are non-decreasing (or increas-
ing) functions of the task (job) starting times. This means that the processing
times deteriorate in time, i.e. a task (job) started later has not lower (larger) pro-
cessing time than the same task (job) started earlier. Tasks (jobs) with time-
dependent processing times of this type are called deteriorating tasks (jobs). The
second direction deals with task (job) shortening, where task (job) processing
times are non-increasing (or decreasing) functions of the task (job) starting times.
Then, the processing times shorten in time, i.e. the processing time of a task (job)
becomes not larger (shorter) if it is started later. Tasks (jobs) with time-
dependent processing times of this type are called shortening tasks (jobs).

Analytical apparatus of time-dependent scheduling is diversified. On one
hand, the vast of time-dependent scheduling problems can be solved using solu-

 12.2 Forms of Time-Dependent Processing Times 433

tion methods applied in classical scheduling theory (cf. Chapters 2 and 3). Proofs
by a pairwise task interchange argument, mathematical induction and by a con-
tradiction are the most common. On the other hand, time-dependent scheduling
problems may need other approaches such as priority-generating functions
[SR17, TGS94], signatures [GKP02, GKP06a], matrix approach [Gaw08], solu-
tion methods for multiplicative problems [NBCK10], properties of mutually
related scheduling problems [GK14, GKP09a, GKP09b], new methods of prov-
ing NP-completeness [CSN16] or composition operator properties [KMS17].

In this chapter, mainly scheduling problems with deteriorating tasks, as the
most popular, are reviewed. We are focused on time complexity, solution meth-
ods and mutual relations between the problems. No special attention is paid to
the construction or analysis of algorithms, since the algorithms are constructed
and analyzed in the same way as in classical scheduling (cf. Chapter 2). As in the
whole of the handbook, we consider only deterministic methods and algorithms.

12.2 Forms of Time-Dependent Processing Times

In this section, we formally define time-dependent task (job) processing times.

12.2.1 General Forms

The general form of time-dependent processing times depends on machine envi-
ronment. In time-dependent parallel machine scheduling problems, the pro-
cessing time pj of the jth task is a function of the starting time Sj of the task,

pj(Sj) = g j(Sj) , (12.2.1)

where gj are arbitrary non-negative functions of Sj � 0 for 1 � j � n.
In time-dependent dedicated machine scheduling problems, the processing

time pij of the ith task of the jth job is in the form of

pij(Sij) = gij(Sij) , (12.2.2)

where gij are arbitrary non-negative functions of Sij ≥ 0 for 1� i � ni , 1 � j � n.
The second way of describing the time-dependent processing time of a task,

pj(Sj) = aj + fj(Sj) , (12.2.3)

where constants aj � 0 and functions fj are arbitrary non-negative functions of
Sj ≥ 0 for 1 � j � n, is more often encountered than the form (12.2.1).

Similarly, the form of the time-dependent processing time of a task,

pij(Sij) = aij + fij(Sij) , (12.2.4)

where Sij � 0 and fij are arbitrary non-negative functions of Sij � 0 for 1� i � ni

 12 Time-Dependent Scheduling

434

and 1 � j � n, is more common than the form (12.2.2). Coefficient aj (aij) is
called the basic processing time of the jth task (the ith task of the jth job).

Because the forms (12.2.3) and (12.2.4) of task processing times give us
more information about the processing time of a task than the forms (12.2.1) and
(12.2.2), in further considerations we mainly use the functions fj(Sj) and fij(Sij).

12.2.2 Special Forms

In the time-dependent scheduling literature mainly a few special forms of time-
dependent task processing times are studied. For simplicity, and to indicate that
the starting time Sj is the variable on which the processing time pj depends,
in this section we write pj(t) and fj(t) instead of pj(Sj) and fj(Sj) , respectively.
Similarly, we write pij(t) and fij(t) instead of pij(Sij) and fij(Sij) , respectively.

First, we describe the main special forms of the processing times of deterio-
rating tasks. The most simple form of task deterioration is proportional deterio-
ration. In this case, we assume that task processing time pj(t) is in the form of

pj(t) = bjt , (12.2.5)

where bj > 0 for 1 ≤ j ≤ n and t denotes the starting time of the jth task. Coeffi-
cient bj is called the deterioration rate of the jth task, 1 ≤ j ≤ n. In order to avoid
the case when all proportionally deteriorating task processing times are equal to
zero, we assume that the starting time of any task t � t0 > 0.

Example 12.2.1 Let n = 2, b1 = 2, b2 = 1 and t0 = 1. Then p1(t) = 2t and p2(t) = t.
Since the processing times p1(t) and p2(t) are strictly increasing functions of the
task starting times, they deteriorate in time. In view of monotonicity of the pro-
cessing times, an optimal schedule for the instance is a non-delay schedule.
Hence, we can identify a sequence of task indices and the schedule correspond-
ing to this sequence. In our case, there exist two non-delay schedules, 21 = (1, 2)
and 22 = (2, 1), such that p1(1) = 2 and p2(3) = 3 in schedule 21, while p2(1) = 2
and p1(3) = 6 in schedule 22. Notice that Cmax(21) = Cmax(22) = 6.

A more general form of task deterioration than proportional is proportional-
linear deterioration, in which task processing time pj(t) is in the form of

pj(t) = bj (a + bt) , (12.2.6)

where bj > 0 for 1 ≤ j ≤ n, a ≥ 0, b ≥ 0 and t ≥ t0 ≥ 0.

The next form of task deterioration is linear deterioration. In this case, task
processing time pj(t) is a linear function of the task starting time,

pj(t) = aj + bjt , (12.2.7)

 12.2 Forms of Time-Dependent Processing Times 435

where aj > 0, bj > 0 for 1 ≤ j ≤ n and t ≥ t0 ≥ 0. Coefficient aj is called the basic
processing time of the jth task, 1 ≤ j ≤ n.

Example 12.2.2 Let n = 2, a1 = 2, b1 = 1, a2 = 3, b2 = 2 and t0 = 0. Then
p1(t) = 2 + t and p2(t) = 3 + 2t. Hence, p1(0) = 2, p2(2) = 7 in schedule 21, while
p2(0) = 3, p1(3) = 5 in schedule 22, where schedules 21 and 22 are defined as in
Example 12.2.1. Notice that Cmax(21) = 9 ≠ Cmax(22) = 8.

Throughout the chapter, we say that deteriorating tasks have proportional, pro-
portional-linear or linear processing times if the processing times are in the form
of (12.2.5), (12.2.6) or (12.2.7), respectively. We then call them in short propor-
tional (proportional-linear, linear) or proportionally (proportional-linearly, lin-
early) deteriorating tasks. Otherwise, we say that the tasks have non-linear pro-
cessing times and call them in short non-linearly deteriorating tasks.

Now, we describe the main special forms of the processing times of shorten-
ing tasks. The simplest form of task processing time shortening is proportional-
linear shortening in which task processing time pj(t) is in the form of

pj(t) = bj (a � bt) , (12.2.8)

where a > 0, b > 0, shortening rates bj are rational, and conditions

0 < bjb < 1 (12.2.9)

and

 (12.2.10)

are satisfied for 1 ≤ j ≤ n and t ≥ t0 ≥ 0. Conditions (12.2.9) and (12.2.10) assure
that task processing times (12.2.8) are positive in any non-delay schedule.

Example 12.2.3 Let n = 2, b1 =
2
3, b2 =

3
4, a = 2, b =

1
5 and t0 = 0. Then

p1(t) =
2
3 (2 �

1
5 t) and p2(t) =

3
4 (2 �

1
5 t). Hence, p1(0) =

4
3, p2(

4
3) =

13
10 in schedule

21, while p2(0) =
3
2, p1(

3
2) =

17
15 in schedule 22, where schedules 21 and 22 are de-

fined as in Examples 12.2.1-12.2.2. Notice that Cmax(21) = Cmax(22) =
79
30 .

A special case of proportional-linear shortening is the one when a = 1, i.e.
when task processing time pj(t) is in the form of

pj(t) = bj (1 � bt) , (12.2.11)

where bj > 0 for 1 ≤ j ≤ n, b > 0 and t ≥ t0 ≥ 0. In this case, condition (12.2.10)

takes the form of b (�
i=1

n
 bi � bmin) < 1 , where bmin = min

1 ≤ j ≤ n
 { bj }.

b (�
1

n
 bi � bj) < a

i=

 12 Time-Dependent Scheduling

436

The next type of task shortening is linear shortening, in which task pro-
cessing times are in the form of

pj(t) = aj � bjt , (12.2.12)

where aj > 0, bj > 0 for 1 ≤ j ≤ n, shortening rates bj are rational, conditions

0 < bj < 1 (12.2.13)

and

b j (�i=1

 n
 ai � aj) < aj (12.2.14)

hold for 1 ≤ j ≤ n and t ≥ t0 ≥ 0.

Example 12.2.4 Let n = 2, a1 = 2, b1 =
1
7, a2 = 3, b2 =

1
5 and t0 = 0. Then

p1(t) = 2 �
1
7 t and p2(t) = 3 �

1
5 t. Hence, p1(0) = 2, p2(2) =

13
5 in schedule 21,

while p2(0) = 3, p1(3) =
11
7 in schedule 22, where schedules 21 and 22 are defined

as in Examples 12.2.1-12.2.3. Notice that Cmax(21) =
23
5 ≠ Cmax(22) =

32
7 .

In this chapter, we say that shortening tasks have proportional-linear or linear
processing times if the processing times pj(t) are in the form of (12.2.8) or
(12.2.12), respectively. We then call them in short proportional-linear (linear) or
proportional-linearly (linearly) shortening tasks. Otherwise, we say that the
tasks have non-linear processing times and call them in short non-linearly short-
ening tasks.

In the next three sections, we review the main time-dependent scheduling
results. Denoting the considered problems we use the notation introduced in
Chapter 3, with extensions proposed in [ABG+14, Gaw08], concerning mainly
the second field of the notation, where the form of task (job) processing times is
specified. For brevity, we write pj and pij instead of pj(t) and pij(t) , respectively.
By 2 and b[j] we denote a feasible schedule and deterioration rate of the task
scheduled in the jth position in a schedule, respectively. We also identify a given
sequence of deterioration rates and a schedule corresponding to the sequence.

12.3 One Machine Problems

In this section, we review the main one machine time-dependent scheduling re-
sults which constitute the major part of time-dependent scheduling literature.

 12.3 One Machine Problems 437

12.3.1 Proportionally Deteriorating Processing Times

Proportional processing times (12.2.5) are very popular in time-dependent
scheduling and, in many cases, lead to problems solvable in polynomial time.

Theorem 12.3.1 (a) Problem 1 | pj = bjt | Cmax is solvable in O(n) time and

Cmax(2) = t0 \j=1

n
(1 + b[j]) (12.3.1)

does not depend on schedule 2.

(b) Problem 1 | pj = bjt | Lmax is solvable in O(n log n) time by scheduling tasks in
non-decreasing order of due dates.

(c) Problem 1 | pj = bjt, prec | Gmax is solvable in O(n2) time by scheduling tasks
using modified Lawler's algorithm.

(d) Problem 1 | pj = bjt | �C j is solvable in O(n log n) time by scheduling tasks in
non-decreasing order of deterioration rates and

�Cj(2) = t0 �j=1

n
 \
k=1

j
(1 + b[k]). (12.3.2)

(e) Problem 1 | pj = bjt | �wjCj is solvable in O(n log n) time by scheduling tasks

in non-decreasing order of
 bj

wj(1+bj)
 ratios.

(f) Problem 1| pj = bjt | �Uj is solvable in O(n log n) time by scheduling tasks
using modified Hodgson's algorithm.

Formulae (12.3.1) and (12.3.2) can be proved by mathematical induction. Theo-
rem 12.3.1 (a)-(e) can be proved by a pairwise task interchange argument
[Mos94] or by using properties of isomorphic scheduling problems [GK14]
discussed in Section 12.3.7. Modifications of Lawler’s [Law73] and Hodgson’s
algorithm [Moo68] consist in the replacement of task processing times pj by task
deterioration rates bj .

The time complexity of problem 1 | pj = bjt | �Tj is unknown.

Example 12.3.2 Let n = 3, b1 = 5, b2 = 2, b3 = 1 and t0 = 1. Then p1(t) = 5t,
p2(t) = 2t and p3(t) = t. There exist 6 non-delay schedules for the instance:
21 = (1, 2, 3), 22 = (1, 3, 2), 23 = (2, 1, 3), 24 = (2, 3, 1), 25 = (3, 1, 2) and
26 = (3, 2, 1). All the schedules, by Theorem 12.3.1 (a), have the same

 12 Time-Dependent Scheduling

438

Cmax = 36. On the other hand, by Theorem 12.3.1 (d) there exists only one opti-
mal schedule for this instance for the �Cj criterion, 26 , with �Cj (26) = 44.

The time complexity and the construction of fully polynomial-time approxima-
tion schemes (FPTASes, cf. Chapter 2.5) for a few one-machine time-dependent
scheduling problems with proportional tasks, task rejection [SGK13] and the
Cmax , �Cj , Lmax and Tmax criteria are considered in [CS09]. The ordinary NP-
hardness of these problems is demonstrated by reductions from the SUBSET
PRODUCT problem [Joh82]:

Instance: Finite set Y , a size s(yi) ��IN for each yi � Y and an integer H.
Answer: "Yes" if there exists a subset Y ' � Y such that \

yi �Y '
s(yi) = H.

 Otherwise "No".

 Some authors have analyzed the performance of online algorithms
(cf. Chapter 15) for one machine time-dependent scheduling with proportional
tasks and non-zero ready times. Following [LZWH12], any online algorithm for
problem 1 | rj, pj = bjt | �Cj is at least (1 + bmax)-competitive. This result is gener-
alized in [YW13] by showing that for problem 1 | rj, pj = bjt | �Cj

(, where (> 0
is a constant, no online algorithm is better than (1 + bmax)(-competitive.

In [Gaw07, MZW12] it is proved, by reductions from the SUBSET
PRODUCT problem, that problem 1 | rj, pj = bjt | Lmax is NP-hard in the ordinary
sense even if there are two distinct ready times.

There are also results available for one machine problems with proportional
tasks and non-empty precedence constraints. In [WWJ11] the one machine prob-
lem with proportionally deteriorating tasks is solved by using the approach de-
scribed after Example 12.3.5. The task precedence constraints are in the form of
a set of m � 2 chains and may be one of two types introduced in [DKD97]. In the
first type, called strong chain precedence constraints, between tasks of a given
chain no task from another chain can be inserted. In the second type, called weak
chain precedence constraints, such insertions are possible. The criterion of opti-

mality is in the form of �i�j wijCij
2, where 1 ≤ i ≤ m, 1 ≤ j ≤ ni and �

i=1

m
 ni = n.

A model of scheduling with a time-dependent piecewise constant task pro-

scribed in [AGGG17]. For a few one-machine problems with proportional tasks
polynomial algorithms are proposed.

12.3.2 Proportional-Linearly Deteriorating Processing Times

Time-dependent scheduling problems with proportional-linear task processing
times (12.2.5) are similar to those with proportional processing times (12.3.6).

cessing rate, similar to scheduling with rate-modifying activities [S 17], is de-R

 12.3 One Machine Problems 439

Theorem 12.3.3 (a) Problem 1 | pj = bj (a + bt) | Cmax is solvable in O(n) time
and

Cmax(2) = (t0 + ab) \
j=1

n
 (1 + b[j]b) � ab (12.3.3)

does not depend on schedule 2.

(b) Problem 1 | pj = bj (a + bt) | Lmax is solvable in O(n log n) time by scheduling
tasks in non-decreasing order of due dates.

(c) Problem 1 | pj = bj (a + bt), prec | Gmax is solvable in O(n2) time by schedul-
ing tasks using modified Lawler's algorithm.

(d) Problem 1 | pj = bj (a + bt) | �Cj is solvable in O(n log n) time by scheduling

tasks in non-decreasing order of
 bj

1+bjb
 ratios and

 (12.3.4)

(e) Problem 1 | pj = bj (a + bt) | �wjCj is solvable in O(n log n) time by schedul-

ing tasks in non-decreasing order of
 bj

wj (1 + bjb) ratios.

(f) Problem 1 | pj = bjt | �Uj is solvable in O(n log n) time by scheduling tasks
using modified Hodgson's algorithm.
(g) Problem 1 | pj = bj (a + bt) | �Tj is NP-hard in the ordinary sense, even if
a = 0 and b = 1.

Formulae (12.3.3) and (12.3.4) can be proved by mathematical induction. Theo-
rem 12.3.3 (b)-(f) can be proved by a pairwise task interchange argument
[Kon98] or by using properties of isomorphic scheduling problems [GK14] dis-
cussed in Section 12.3.7. Theorem 12.3.3 (d) follows from Theorem 12.3.3 (e)
with wj = 1 for 1 ≤ j ≤ n. Theorem 12.3.3 (g) follows from a result in [DL90].

The time complexity of problem 1| pj = bj(a + bt)|�Tj is open for a ≠ 0 and b ≠ 1.

In [MTY16] it is shown that any online algorithm for one machine problem
1 | rj, pj = bj(a + bt) | � wjCj is at least (1 + sgn(a) + bmaxb)-competitive.

12.3.3 Proportional-Linearly Shortening Processing Times

Similar results to those of Theorem 12.3.3 one can obtain for linear-proportional
shortening task processing times (12.2.8). For example, replacing in (12.3.3)
coefficients b and a by, respectively, �b and 1 leads to the formula

�Cj(2) = (t0 + ab) �
j=1

n
 \

1

j
(1 + b[k]b) � na

b .

k=

 12 Time-Dependent Scheduling

440

Cmax(2) = (t0 � 1b) \
j=1

n
 (1 � b[j]b) + ab

for problem 1 | pj = bj (1 � bt) | Cmax. Modifying similarly (12.3.4), we obtain that

for problem 1 | pj = bj (1 � bt) | �Cj .

12.3.4 Linearly Deteriorating Processing Times

Unlike time-dependent scheduling problems with proportional or proportional-
linear task processing times, time-dependent scheduling problems with linear
processing times (12.2.7) are intractable, since only the one machine time-
dependent scheduling problem with the Cmax criterion is easy.

Theorem 12.3.4 (a) Problem 1 | pj = aj + bjt | Cmax is solvable in O(n log n) time
by scheduling tasks in non-increasing order of ratios bj/aj and

Cmax(2) = �
i=1

n
 a[i] \

k=i+1

n
(1 + b[k]) + t0\i=1

n
 (1 + b[i]). (12.3.5)

(b1) Problem 1 | pj = aj + bjt | Lmax is NP-hard in the ordinary sense, even if there
is only one ak ≠ 0 for some 1 ≤ k ≤ n, and due dates of all tasks with aj = 0 are
equal.

(b2) Problem 1 | pj = aj + bjt | Lmax is NP-hard in the ordinary sense, even if there
are only two distinct due dates.

(c) Problem 1 | pj = aj + bjt | Gmax is NP-hard in the ordinary sense.

(d) Problem 1 | pj = aj + bjt | � wjCj is NP-hard in the ordinary sense.

(e) Problem 1 | pj = aj + bjt | � Uj is NP-hard in the ordinary sense.

(f) Problem 1 | pj = aj + bjt | � Tj is NP-hard in the ordinary sense.

Formula (12.3.5) can be proved by mathematical induction. Theorem 12.3.4 (a)
is proved by a few authors, who applied a pairwise task interchange argument
[GG88, Waj86], priority-generating functions [TGS94] and properties of a par-
tial order relation [GP95]. Theorem 12.3.4 (b1) can be proved using a reduction
from the SUBSET PRODUCT problem [Kon97]. Theorem 12.3.4 (b2) can be
proved using a reduction from the PARTITION problem [BJ00]. Theorem 12.3.4

�Cj(2) = (t0 � ab) �
j=1

n
 \

1

j
(1 � b[k]b) + na

b
k=

 12.3 One Machine Problems 441

(c), (e), (f) follow from Theorem 12.3.4 (b). Theorem 12.3.4 (d) can be proved
using a reduction from the 3-PARTITION problem [BJK02].

The time complexity of problem 1 | pj = aj + bjt | � Cj for aj � 0 is unknown.

Example 12.3.5 Let n = 3, a1 = 1, b1 = 3, a2 = 2, b2 = 1, a3 = 3, b3 = 2 and t0 = 0.
Then p1(t) = 1 + 3t, p2(t) = 2 + t and p3(t) = 3 + 2t. By Theorem 12.3.4 (a) there
exists only one optimal schedule for this instance for the Cmax criterion, 22 , with
Cmax (22) = 14, where 22 is defined as in Example 12.3.2.

A few generalizations of problem 1 | pj = aj + bjt | Cmax are considered in [RS15],
where all tasks have the same deterioration rate, while the machine is restored to
a better state after the completion of a maintenance activity. It has turned out that
any of the problems can be reduced to a linear assignment problem with a prod-
uct matrix and can be solved in polynomial time.

There are also known extensions of problem 1 | pj = aj + bjt | Cmax to non-
empty task precedence constraints. In [TGS94, Chapter 3] we learn how to solve
in polynomial time one machine time-dependent scheduling problems with linear
tasks, non-empty precedence constraints and the Cmax criterion, applying priori-
ty-generating functions. The main idea is as follows. First, we have to show that
for a given problem there exists a priority function, assigning to each task a pri-
ority and such that there holds an inequality between the priorities of task se-
quences and the values of criterion function for the sequences. Then, we prove
that an optimal schedule for the problem can be obtained in O(n log n) time by
scheduling tasks in non-increasing order of these priorities. In [GPSW08] a few
one-machine scheduling problems with different forms of linear tasks are solved
by using priority-generating functions. Similar results, obtained in another way,
are presented in [Gaw08, Chapter 13], where one machine time-dependent
scheduling problems with linear tasks, the Cmax criterion and task precedence
constraints in the form of chains, a tree or a series-parallel digraph are consid-
ered. The problems can be solved in O(n log n) time by scheduling tasks in an
order of some ratios. In [WNC08] the same approach is applied to a one machine
time-dependent scheduling problem with series-parallel precedence constraints.

Problem 1 | pj = 1 + bj t | ��Cj

This special case of problem 1 | pj = aj + bjt | � Cj, when aj = 1 for 1 ≤ j ≤ n, is
one of open problems in time-dependent scheduling and for the first time formu-
lated in [Mos91]. The most important property proved there is the V-shape prop-
erty, which states that if a schedule is optimal for the 1 | pj = 1 + bjt | � Cj prob-
lem, then the schedule is V-shaped, i.e. tasks scheduled before (after) the task
with the smallest deterioration rate are sequenced in non-increasing (non-
decreasing) order of their deterioration rates (slightly another definition of

 12 Time-Dependent Scheduling

442

a V-shaped schedule is given in Chapter 4). The V-shape property implies the
bound O(2n) on the number of possibly optimal schedules for the latter problem.

Though problem 1 | pj = 1 + bjt | � Cj is studied for more than 25 years, dur-
ing all these years the bound O(2n) was considered as the best possible. Recent-
ly, this bound has been improved. Let *j = 1 + b j for all j, and let

!k(r, q) = �
 j=1

q-k-1
 \

j=i

q-k-1
*j � �

i=q-k+1

q-1
 \
j=q-k+1

i
*j � 1

aq
 �
i=q+1

n
 \
j=q-k+1

i
*j

and

]k(r, q) = 1
ar

 �
i=1

r-1
 \

j=i

r+k-1
*j + �

i=r+1

r+q-1
 \

j=i

r+k-1
*j � �

i=r+k+1

n
 \
j=r+k+1

i
*j,

where 1 ≤ r < q ≤ n, k = 1, 2, …, q � r.

Theorem 12.3.6 [GK17] Let * = (*1, *2,…, *n) be a sequence of task deteriora-
tion rates corresponding to an optimal schedule for problem 1| pj = 1 + bjt | � Cj .
Then (a) * is V-shaped and the minimal element of * equals *m, where 1 < m < n,

(b) there hold inequalities !1(m−1, m+1) = �
j=1

m−1
 \

k=j

m−1
*k � �

i=m+2

n
 \
k=m+2

i
*k ≥ 0 and

]1(m−1, m+1) = �
j=1

m−2
 \

k=j

m−2
*k � �

i=m+1

n
 \
k=m+1

i
*k ≤ 0 .

Theorem 12.3.6 implies an improved bound on the number of possibly optimal
schedules for problem 1 | pj = 1 + bjt | � Cj. Given an instance * of this prob-
lem, let VI (*) and VII (*) denote the sets of all schedules which satisfy the V-
shape property and conditions (a), (b) of Theorem 12.3.6. Moreover, let VD (*)
denote the set of all V-shaped schedules for * such that the index m of the mini-
mal element am belongs to a set D. Finally, let 1 < u < v, where u =
{*i: i = 1,2,…,n} and v = max {*i: i = 1,2,…,n}. Then the following result, de-

creasing the bound O(2n) by the O(
1
n) factor, can be proved.

Theorem 12.3.7 [GK17] Let c(n) =
2
+n 2n(1 + O(

1
n)). Then

|VII (*)| ≤ |VD (*)| ≤ (1 +
log v � log u
log v + log u n) � c(n)

and, if v is sufficiently close to u, |VD (*)| ≥ c(n).

In [GKP02, GKP06a] a greedy algorithm is proposed for problem 1 | pj =

 1 + bjt | � Cj , based on properties of some functions S�(*) and S+(*) of the se-

 12.3 One Machine Problems 443

quence * = (*1, *2,…, *n) of task deterioration rates for the problem. These func-
tions, called signatures, are defined as follows:

S�(*) = M(*̄) � M(*) = �
i=1

n
 �
j=1

i
 *j � �

i=1

n
 �
j=i

n
 *j (12.3.6)

and

S+(*) = M(*̄) + M(*), (12.3.7)

where *̄ = (*n, *n-1,…, *1) is the sequence of task deterioration rates with re-

versed order of elements compared to *, and M(*) =

1 + �
i=1

n
 �
k=i

n
 *k .

The basic properties of signatures (12.3.6) and (12.3.7) are summarized in
the following result, where ((|*|") denotes the sequence composed of subse-
quences (, * and " in that order and B is the product of all *j.

Lemma 12.3.8 [GKP06a] For a given sequence * and numbers (> 1, " > 1,
there hold the following equalities:
(a) F((|*|") = F(*) + (M (*̄) + " M(*) + (B",
(b) F("|*|() = F(*) + " M (*̄) + (M(*) + (B",
(c) F((|*|") � F("|*|() = ((� ") S�(*),
(d) F((|*|") + F("|*|() = ((+ ") S+(*) + 2 (F(*) + (B").

Based on Lemma 12.3.8 we can prove the following result.

Theorem 12.3.9 [GKP06a] (a) Let there be given sequence * and numbers
(> 1, " > 1. Then F((|*|") ≤ F("|*|() if and only if ((� ") S�(*) ≤ 0. Moreover,
there holds a similar equivalence, if in this equivalence we replace the symbol
' ≤ ' with ' ≥ '.
(b) Let * = (*1, *2,…, *n) be ordered non-decreasingly, u = (u1, u2,…, uk-1) be
a V-shaped schedule constructed from the first k�1 elements of *, (= *k > 1,

" = *k+1 > 1, where 1 < k < n, and let (≤ ". Then inequality S�(u) ≥ 0 implies
inequality F((|u|") ≤ F("|u|(). Moreover, there holds a similar implication, if in
this equivalence symbols ' ≥ ' and ' ≤ ' are exchanged.

By Theorem 12.3.9 (a) the checking of inequality F((|u|") ≤ F("|u|() can be re-
placed by the checking of inequality ((� ") S�(*) ≤ 0. Theorem 12.3.9 (b),
in turn, gives us a greedy strategy for finding a near-optimal schedule for the
problem, based on the behavior of signature S�(&) only.

Theorem 12.3.9 allows us to formulate an O(n log n) Algorithm 12.3.10 for
problem 1 | pj = 1 + bjt | � Cj. Given a V-shaped partial schedule u composed of

F(*) = �
j=1

n
 �
i=1

j
 �
k=i

j
 *k

 12 Time-Dependent Scheduling

444

the first k ≥ 1 elements of non-decreasingly ordered sequence *, this algorithm
constructs a new schedule by greedy adding to the previous partial schedule two
new tasks corresponding to the elements (= *k > 1 and " = *k+1 > 1 in such a
way that the order of (and * indicated by Theorem 12.3.9 (b) is preferred.

Algorithm 12.3.10 for problem 1 | pj = 1 + bjt | � Cj [GKP02, GKP06c].
 begin
 *[0] := max { *j: 0 ≤ j ≤ n };
 Arrange sequence *

^
 � {*[0]} in non-decreasing order;

 -- *[1] ≤ *[2] ≤ … ≤ *[n]
 if n is odd then
 u := (*[1]);

 for i := 2 to n-1 step 2 do
 if S�(u) ≤ 0 then u := (*[i+1]|u|*[i])
 else u := (*[i]|u|*[i+1]);

 end;
else

 u := (*[1], *[2]);
 for i := 3 to n-1 step 2 do
 if S�(u) ≤ 0 then u := (*[i+1]|u|*[i])
 else u := (*[i]|u|*[i+1]);
 end;
 u := (*[0]|u);
 end;
Algorithm 12.3.10 can be simplified for regular sequences *

^
 that are composed

of consecutive elements of arithmetic, geometric or Fibonacci sequence (see
[Gaw08, Chapter 10] for details). In such a case the sign of S�(*) varies periodi-
cally and hence we can omit the verification of the sign in if-sentences of both
for-loops in Algorithm 12.3.10. This, in turn, leads us to a simplified version of
this algorithm, running in O(n) time. Numerical experiments have shown (cf.
[Gaw08, Chapter 10]) that both, Algorithm 12.3.10 and its simplified version,
construct better near-optimal schedules than those constructed by other algo-
rithms (e.g. those proposed in [Mos91]).

Though the status of the time complexity of problem 1 | pj = 1 + bjt | � Cj is
still open, there are known special cases of this problem solvable in polynomial
time. In [KO09] it is proved that if all tasks have distinct deterioration rates and

for any 1 ≤ i ≠ j ≤ n inequality bi > bj implies inequality bi ≥
bmin+1

bmin
 bj +

1
bmin

, then

problem 1 | pj = 1 + bjt | � Cj is solvable in O(n log n) time.

 12.3 One Machine Problems 445

Some authors have proposed FPTASes for the problem. For example, for the
special case of problem 1 | pj = 1 + bjt | � Cj, when all task deterioration rates
are not smaller than a certain u > 0, an FPTAS is proposed in [Oce10].

Problem 1 | pj = 1 + bj t | ||C(b)||p

A generalization of problem 1 | pj = 1 + bjt | � Cj , 1 | pj = 1 + bjt | ||C(b)||p is
considered in [GK15] where C(b) denotes the vector of task completion times for
schedule b. The criterion in the new problem is the lp vector norm || &||p , where

1 ≤ p ≤ +#. Given x = (x1, x2, …, xn) , norm ||x||p = (�
j=1

n
 |xj|

p)1/p if 1 ≤ p < +# and

||x||p = max j { |xj|: 1 ≤ j ≤ n } if p = +#. Applying to the latter problem a matrix
approach (cf. [Gaw08, Chapter 12]), in which a scheduling problem is formu-
lated as a matrix equation and a schedule for the problem is a solution of the
equation, one can prove the following result.

Theorem 12.3.11 [GK15] If A(b)C(b) = d is the matrix equation describing
schedule b for an instance of problem 1 | pj = 1 + bjt | ||C(b)||p , then holds ine-
quality log ||C(b)||p ≤ 1p log ||C(b)||1 + (1 � 1p) log ||C(b)||# .

Theorem 12.3.11 says that criterion ||&||p is controlled by norms ||&||1 and ||&||#
which correspond to criteria �Cj and Cmax, respectively [Gaw08, Chapter 10].

In [Mos91] it is proved that for problem 1 | pj = 1 + bjt | � Cj does hold the
symmetry property saying that ||C(b)||1 = ||C(b̄)||1 , where b ¯ denotes sequence b
with the reversed order of elements. This property does not hold for problem
1 | pj = 1 + bjt | ||C(b)||p with p > 1, except a finite number of values of p.

Theorem 12.3.12 [GK15] If vectors b ≠ b ¯, then schedules for problem
1 | pj = 1 + bjt | ||C(b)||p are symmetric only for finite number of p ≥ 1 and there
exists p0 > 1 such that for all p > p0 we have ||C(b)||p ≠ ||C(b ¯)||p .

A similar result holds for the V-shape property, since now optimal schedules
may be weakly V-shaped or k-weakly V-shaped, where 0 ≤ k ≤ n (see [GK15] for
details). Let p1 , pk , p�(n�k) and p# denote some constants (cf. [GK15]) and let

b
p
 denote an optimal schedule for problem 1 | pj = 1 + bjt | ||C(b)||p.

Theorem 12.3.13 [GK15] Let b = (b1, b2, …, bn) be a sequence of deterioration
rates for problem 1 | pj = 1 + bjt | ||C(b)||p such that bi > 1, bi ≠ bj for 1 ≤ i ≠ j ≤ n.
If for a given k � {1,2,…,n�1} we have pk = p�(n�k) > 1, then

(a) if 1 ≤ p ≤ p# then b
p
 is weakly V-shaped and the time complexity of the prob-

 12 Time-Dependent Scheduling

446

lem cannot be less than that of the problem with p = 1;
(b) if pk ≤ p ≤ p1, then b

p
 is k-weakly V-shaped and the time complexity of the

problem is O(nk + n log n);
(c) if p1 < p, then b

p
 is 0-weakly V-shaped and the time complexity of the problem

is O(n log n).

Theorems 12.3.11-12.3.13 imply that using index p � [1, +#] of the lp norm, we
can divide the interval [1, +#] by numbers 1 ≤ p# < p1 < +# in such a way that
for all p � [p1, +#] the problem has the same time complexity, O(n log n), as the
l# norm case which is equivalent to minimizing the Cmax criterion, while the one
with p � [1, p#] is similar to the l1 norm case which is equivalent to minimizing
the �Cj criterion. These results also show that an optimal schedule for the prob-
lem with p � [1, p#] is weakly V-shaped and that finding it is at least as difficult
as solving the problem with p = 1. Finally, they allow us to state that for
p � [p#, p1] the time complexity of problem 1 | pj = 1 + bjt | ||C(b)||p is
O(nk + n log n), where k � {1, 2, …, n�1} is the number of tasks scheduled after
the task with deterioration rate bmin .

12.3.5 Linearly Shortening Processing Times

Time-dependent scheduling of linearly shortening tasks is less popular research
topic than time-dependent scheduling of linearly deteriorating tasks. The first
results concerning shortening tasks are presented in [HLW93], where the prob-
lem of the existence of a feasible schedule for one machine problem with linearly
shortening tasks (12.2.12) and non-zero deadlines is considered. The ready times
of all tasks are equal to zero, task processing times satisfy conditions (12.2.13),
(12.2.14) and for 1 ≤ j ≤ n there are satisfied inequalities

bjdj
~ < aj ≤ dj

~ . (12.3.8)

 Under the above assumptions there holds the following result, which can be
proved by reductions from the 3-PARTITION and PARTITION problem.

Theorem 12.3.14 [HLW93] If aj, bj and dj satisfy conditions (12.2.13), (12.2.14)

and (12.3.8), then problem 1 | pj = aj � bjt, dj
~ | � is

(a) NP-hard in the strong sense, if there is an arbitrary number of deadlines;

(b) NP-hard in the ordinary sense, if there are only two distinct deadlines;
(c) solvable in O(n log n) time by scheduling tasks in non-increasing order of
aj/bj ratios, if all deadlines are identical.

 12.3 One Machine Problems 447

Applying reductions from the 3-PARTITION problem one can also prove that
problem 1 | pj = aj � bjt, dj

~ | � is intractable if bj = b or aj = 1 for 1 ≤ j ≤ n.

Theorem 12.3.15 (a) [CD99] Problem 1 | pj = aj � bt, dj
~ | � is NP-hard in the

strong sense.
(b) [CD03] Problem 1 | pj = 1 � bjt, dj

~ | � is NP-hard in the strong sense.

One machine problems with linearly shortening tasks, precedence constraints and
the Cmax criterion are considered in [GLC11, Wan09]. The authors have pro-
posed polynomial algorithms for precedence constraints in the form of a set of
chains, a series-parallel digraph [GLC11, Wan09] and a tree [GLC11], using the
same approach as the one for problem 1 | pj = aj + bjt | Cmax .

12.3.6 Non-Linearly Deteriorating Processing Times

Relatively little is known about one machine time-dependent scheduling with
non-linear task processing times. In [MS80] problem 1 | pj = aj + f (t) | Cmax is
considered, where function f (t) is differentiable,

f (t) ≥ 0 for t ≥ 0, (12.3.9)

if t1 ≤ t2, then f (t1) ≤ f (t2) (12.3.10)

and
df(t)
dt ≥ 0 for t ≥ 0. (12.3.11)

Applying a pairwise task interchange argument one can prove the following re-
sult.

Theorem 12.3.16 [MS80] If f (t) satisfies conditions (12.3.9)-(12.3.11), then
problem 1 | pj = aj + f (t) | Cmax is solvable in O(n log n) time by scheduling
tasks in non-decreasing order of their basic processing times aj.

A similar result holds for problem 1 | pj = aj + f (t) | �Cj , which is solvable in
O(n log n) time by scheduling tasks in non-decreasing order of aj‘s [Gaw97].

Several authors have considered one machine time-dependent scheduling
problems with special forms of non-linearly deteriorating tasks. In [GG88] heu-
ristic algorithms for one machine time-dependent scheduling problem with non-
linearly deteriorating tasks and the Cmax criterion are considered. Tasks have
quadratic processing times, pj(t) = aj + bjt + cjt

2, or polynomial processing
times, pj(t) = aj + bjt + cjt

2 + ... + mjt
m, where aj > 0, bj > 0, …, mj > 0 for

 12 Time-Dependent Scheduling

448

1 ≤ j ≤ n. In [Kon98] the time complexity and properties of one machine time-
dependent scheduling problem with the Cmax , Lmax , �wjCj , �Cj and �Uj criteria
are addressed. The processing times of tasks are in the form of pj(t) = bj_(t),
where _(t) is a convex or concave function. In [KY07] a few one-machine prob-
lems with special cases of polynomial task processing times, the Cmax and �Cj
criteria are considered. There it is shown that the problems are polynomially
solvable by scheduling tasks in non-increasing (or non-decreasing) order of their
basic processing times. In [KY12] one machine problems with task processing
times in the form of pj = aj (1 + t)c, c > 0, and the Cmax, �wjCj and �Cj

k criteria
are considered. There it is shown that the problem with the first criterion is solv-
able in polynomial time. In [WW12] polynomial algorithms for one machine
problems with more general processing times, pj = bj (a + bt)c with c � 0, and the
Cmax and �Cj criteria are proposed. In [JS16] the ordinary NP-hardness of the
problem of minimizing the total discrepancy time for a set of non-linearly deteri-
orating tasks, formulated as one machine time-dependent scheduling problem
with non-linear task processing times and the Cmax criterion, has been shown by
a reduction from the NP-complete problem EVEN-ODD PARTITION [Kar72]:

Instance: Finite set A of pairs of elements, size s(ai) � IN for each ai � A .
Answer: "Yes" if there exists a subset A' � A such that | A' | = | A |,
 �

ai �A '
s(ai) = �

ai ��A��A '
s(ai) and A' contains exactly one element

 from each pair.
 Otherwise "No".

12.3.7 Other One Machine Problems

The above presented groups of results do not exhaust the list of all research
directions developed in one machine time-dependent scheduling. Below we
review a few other such groups, related to new research directions in the area.

Bi-criteria time-dependent scheduling problems

In time-dependent scheduling problems usually only a single optimality criterion
is used. In practice, however, we often have to optimize two criteria simultane-
ously [TB06] what leads us to bi-criteria time-dependent scheduling problems.

The first approach to bi-criteria time-dependent scheduling is to apply clas-
sic multi-criteria methods. The first paper on this topic, [GKP06c], considers two
one machine time-dependent scheduling problems called, respectively, TDPS
and TDBS. In both there are given n + 1 linearly deteriorating tasks with pro-
cessing times in the form of pj = 1 + bjt , 0 ≤ j ≤ n. Let Sn and 2+ denote the set
of all permutations of sequence (1, 2, …, n) and a schedule in which tasks are

 12.3 One Machine Problems 449

ordered according to + � Sn , respectively. Moreover, let *̂ = (*0, *1, …, *n) and
* = (*1, *2,…, *n), where *j = 1 + bj for j = 0,1,…, n.

The TDPS problem is to find a Pareto optimal schedule *� with respect to
the total completion time and the maximum completion time criteria, i.e. to find

such a schedule *� that the pair (�
j=0

n
Cj(*�), max

0 ≤ j ≤ n
 {Cj(*�)}) of the values of the

�Cj and Cmax criteria for this schedule is Pareto optimal.
The TDBS problem is to find a scalar optimal schedule *� for which the

value of the criterion ||&||(0) is minimal, where the minimum is taken with respect
to the ordinary relation ≤ and ||&||(0) denotes the convex combination of the �Cj
and Cmax criteria in the form of

||C(*̂+)||(0) = 0 �
j=0

n
 Cj(*̂+) + (1 � 0) max

0 ≤ j ≤ n
 { Cj(*̂+)},

where C(*̂+) = (C0(*̂+), C1(*̂+), ..., Cn(*̂+)) is the vector of task completion times

for a given sequence C(*̂+) and 0 � [0,1] is an arbitrary but fixed number.
The first result to be mentioned is a sufficient condition for *� to be a

(weakly) Pareto optimal schedule to the TDPS problem.

Theorem 12.3.17 [GKP06c] (a) A sufficient condition for schedule *� to be
weakly Pareto optimal for the TDPS problem is that *� is optimal with respect
to the criterion ||&||(0) , where 0 ≤ 0 ≤ 1.
(b) A sufficient condition for schedule *� to be Pareto optimal for the TDPS
problem is that *� is optimal with respect to the criterion ||&||(0), where
0 ≤ 0 < 1. In particular, the sequence obtained by the non-increasing ordering
of *� is Pareto optimal for the TDPS problem.

Example 12.3.18 [GKP06c] Let * = (6,3,4,5,2). Then �Cj(*) = 281 and
Cmax(*) = 173. By Theorem 12.3.19 we know that each non-increasing sequence
is Pareto optimal for the TDPS problem. Thus *� = (6,5,4,3,2) is Pareto optimal
for this problem, with �Cj(*�) = 261 and Cmax(*�) = 153.

Let *max = max{*1, *2, …, *n}, *min = min{*1, *2, …, *n} and

00 =
*max � 1

*max n−1 � 1
 (12.3.12)

and

01 =
*min � 1

*min n−1 � 1
 . (12.3.13)

 12 Time-Dependent Scheduling

450

Theorem 12.3.19 [GKP06c] Let schedule *� =(*�1 , *�2 ,…, *�n) be optimal with
respect to the criterion ||&||(0) and let 00 and 01 be defined by formulae (12.3.12)
and (12.3.13), respectively. Then 0 < 00 ≤ 01 < 1 and there hold the following
implications:
(a) if 0 � [0, 00], then *� is non-increasing;
(b) if 0 � [01,1], then schedule *� is V-shaped and, if *� contains distinct ele-
ments, then 00 < 01.

Example 12.3.20 [GKP06c] Let *̂ = (5,3,2,4). Then *min = 2, *max = 4, 00 =
1
5

and 01 =
1
3 . By Theorem 12.3.19, for any 0 � [0,

1
5] the optimal schedule for the

TDBS problem is non-increasing, *� = (5,4,3,2), while for any 0 � [
1
5 ,1] the

optimal schedule for the problem is V-shaped.

Example 12.3.21 [GKP06c] Let *̂ = (2,3,4,5), ||C(*)||(0) =
1
7�Cj(*) +

6
7Cmax(*).

Then * = (5, 4, 3, 2), by Theorem 12.3.19, is optimal for || & ||(0) , since

0 =
1
7 < 00 =

1
5 . For the same *̂ and ||C(*)||(0) =

6
7 �Cj(*) +

1
7 Cmax(*), any opti-

mal schedule is V-shaped since 0 =
6
7 > 01 =

1
3 . There are four V-shaped sched-

ules: (5, 4, 2, 3), (5, 4, 3, 2), (5, 2, 3, 4), (5, 3, 2, 4), the optimal one is (5,4,2,3).

Theorems 12.3.17 and 12.3.19 are necessary conditions of optimality of a sched-
ule for problems TDPS and TDBS. Also a sufficient condition of optimality of a
schedule for problem TDBS is proved in [GKP06c]. Let 0T be a constant depend-
ing on sequence * (see [GKP06c, Definition 6]).

Theorem 12.3.22 [GKP06c] If 0�[0,1], then a sufficient condition for a se-
quence * = (*1, *2,…, *n) to be optimal with respect to the criterion ||&||(0) is that
* is non-increasing and 0 ≤ 0 ≤ 0T .

Example 12.3.23 [GKP06c] Let * = (1.5, 1.3, 1.1, 1.2, 1.4). Then we have
*min = 1.1, *max = 1.4 and 00 = 0.23 < 0T = 0.24 .

Time-dependent scheduling with mixed task processing times

Time-dependent processing times of tasks from the same set usually are of the
same form. In [GL10] a new model of time-dependent scheduling, called mixed
deterioration is proposed, where task processing times from the same set may be
functions of distinct forms. Let 1 | pj � {aj, n1; bjt, n2; aj + bjt, n3} | f denote

 12.3 One Machine Problems 451

the one machine scheduling problem with n1 fixed tasks, n2 proportional tasks, n3
linear tasks and criterion f , and let n = n1 + n2 + n3.

Theorem 12.3.24 [GL10] (a) Problem 1 | pj � {aj, n1; bjt, n2; aj + bjt, n3} | Cmax
is solvable in O(n log n) time by scheduling linear tasks in non-increasing order
of bj/aj ratios, next proportional tasks in an arbitrary order and finally fixed
tasks in an arbitrary order.

(b) Problem 1 | pj � {aj,1; bjt, n � 1; aj + bjt, 0} | Lmax is NP-hard in the ordinary
sense.

More general problems, with arbitrary precedence constraints and the Gmax crite-
rion, are considered in [DG13], where it is shown that some of the problems can
be solved in polynomial time by using a modified Lawler's algorithm. In [D14]
is presented a polynomial algorithm for the one machine time-dependent sched-
uling problem with the Gmax criterion, mixed processing times and precedence
constraints defined by a graph whose vertices can be partitioned into k � 2 dis-
joint sets such that no two vertices within the same set are adjacent.

Time-dependent scheduling on a machine with limited availability

Considering one machine time-dependent scheduling problems we assumed so
far that machine is continuously available for processing. However, this assump-
tion does not allow us to model scheduling problems in which a maintenance of
the machine is needed. In such a case there are assumed k � 1 non-availability
periods [Wi$1,Wi$2], where t0 < W1$1 and Wi$1 < Wi$2 for 1 ≤ i ≤ k, in which the
machine is not available for processing (cf. Chapter 11). We denote the existence
of k � 1 non-availability periods by symbol h1$k in the first field of the three-
field notation [Gaw08, Section 5.3].

The existence of machine non-availability period(s) has consequences: since
the start time of a non-availability period may occur before a task has been com-
pleted, tasks may be non-resumable (resumable). A task is said to be non-
resumable (resumable), if it is interrupted by the start time of the non-availability
period, and the task must be (does not need to be) restarted after the machine
becomes available again. Non-resumable (resumble) tasks are denoted in the
second field of the three-field notation by nres (res) [Gaw08]. Now, we briefly
review the main time-dependent scheduling results from this area.

Let 1,h1$k | pj = bjt , nres | f denote one machine time-dependent schedul-
ing problem with non-resumable proportional tasks, k ≥ 1 non-availability peri-
ods and criterion f. In the first paper on this subject, [WL03], a one machine
scheduling problem with resumable tasks, proportional processing times, a single
period of the machine non-availability and the Cmax criterion, that is problem
1,h1$1 | pj = bjt, nres | Cmax, is solved using a mathematical programming ap-

 12 Time-Dependent Scheduling

452

proach. The next result was proved using reductions from the SUBSET
PRODUCT problem.

Theorem 12.3.25 (a) [Gaw05, JHC06] Problem 1,h1$1 | pj = bjt, nres | Cmax is
NP-hard in the ordinary sense.

(b) [JHC06] Problem 1,h1$1 | pj = bjt, nres| �Cj is NP-hard in the ordinary sense.

An FPTAS for problem 1,h1$1 | pj = bjt, nres| Cmax is proposed in [JHC06]. The
time complexity of problem 1,h1$k | pj = bjt, nres| Cmax, where k � 1, is considered
in [Gaw07]. The problem with resumable tasks is intractable.

Theorem 12.3.26 [GK10] (a) Problem 1,h1$1 | pj = bjt , res | Cmax is NP-hard in
the ordinary sense.

(b) There exists an FPTAS for problem 1,h1$1 | pj = bjt , res | Cmax .

(c) There does not exist a polynomial approximation algorithm with a constant
worst-case ratio for problem 1,h1$k | pj = bjt , res | Cmax, k ≥ 2, unless P = NP.

Theorem 12.3.26 (a) is proved by using a reduction from the SUBSET
PRODUCT problem. The FPTAS in Theorem 12.3.26 (b) is constructed using an
approach introduced in [Woe00]. The main idea is as follows.

First, a dynamic programming Algorithm 12.3.27 for our problem is formu-
lated. This algorithm goes through n phases, where the kth phase of the algo-
rithm, 1 ≤ k ≤ n, generates a set S k of states. Any state in S k is a vector
S = [t1, t2], encoding a partial schedule for the problem. The sets S 1, S 2, …, S n
are constructed iteratively, using two functions, F1 and F2 . Next, as an optimal
schedule we choose the one which corresponds to the minimal value of a func-
tion G(S) . Finally, applying [Woe00, Lemma 6.1, Theorem 2.5], one can prove
that problem 1,h1$1 | pj = bjt , res | Cmax is a DP-benevolent problem. This means
that Algorithm 12.3.27 can be used in design of an FPTAS for the former prob-
lem (we refer the reader to [Woe00] for more details). With the notation
!1 := W1 � W2, Algorithm 12.3.27 can be formulated as follows.

Algorithm 12.3.27 for problem 1,h1$1 | pj = bjt , res | Cmax [GK10].
 begin
 S 0 := {[t0, !1]};

 7 := t0 �j=1

n
 (1+bj);

 for k := 1 to n do
 S k := �;
 for each S � S k−1 do

 F1(bk, t1, t2) := [t1, t2(1+bk)];

 12.3 One Machine Problems 453

 end;
 for each S � S n do
 G(S) := 7 + t2;
 return min { G(S): S � S n }

end;

Proof of Theorem 12.3.26 (c) is made by contradiction: it is shown that the exist-
ence for problem 1,h1$k | pj = bjt, res | Cmax, k ≥ 2, an approximation algorithm
with a constant worst-case ratio would allow to solve the SUBSET PRODUCT
problem in polynomial time, which is impossible unless P = NP.

Some approximation algorithms for problem 1,h1$1 | pj = bjt, nres | Cmax are
analyzed in [JHC06]. First we mention a result on the competitive ratio (cf.
Chapter 15) of online algorithm LS (List Scheduling, [Gra66]) for this problem.

Theorem 12.3.28 If t0 ≤ W1$1, then algorithm LS is
W1$1

t0
-competitive for problem

1,h1$1 | pj = bjt, nres | Cmax.

The next result in [JHC06] concerns the worst-case ratio of offline algorithm
LDR (Largest Deterioration Rate first) for problem 1,h1$1| pj = bjt, nres | Cmax.

Theorem 12.3.29 If 1 + bmin ≤
W1$1

t0
, then the worst-case ratio of algorithm LDR

for problem 1,h1$1 | pj = bjt, nres | Cmax equals 1 + bmin and 1 otherwise.

In [FLZZ11] are given counterparts of Theorems 12.3.25 and 12.3.26 for resum-
able linearly deteriorating tasks and the �Cj criterion.

Time-dependent two-agent scheduling problems

The second approach to time-dependent bi-criteria scheduling is based on the
observation that in considered earlier time-dependent scheduling problems there
is no competition among the processed tasks. This is a lack from the point of
view of modern manufacturing systems, where competition is an important issue.
Hence, during the last few years the problems of multi-agent scheduling (some-
times also called agent scheduling) have gained increasing attentions [ABG+14,
PGF14]. In the simplest case of multi-agent scheduling, two-agent scheduling,
the set of tasks is divided between two agents, A and B, possessing their own
optimality criteria and competing for access to the available machine. The aim is
to find a schedule which, in a predefined sense, satisfies both the agents.

 if t1(1+bk) < W1 then F2(bk, t1, t2) := [t1(1+bk), t2] ;
S k := S k � { F1(bk, t1, t2) } � { F2(bk, t1, t2) } ;

 end;

 12 Time-Dependent Scheduling

454

Multi-agent scheduling problems originated in [BS03] and [AMPP04],
where several two-agent scheduling problems with fixed task (job) processing
times are considered. Growing interest to such problems resulted in the appear-
ance of time-dependent multi-agent scheduling problems which now we review.

The first paper on time-dependent multi-agent scheduling, [LT08], has con-
sidered one machine two-agent scheduling problem with proportional tasks and
the Cmax and Lmax criteria, denoted in the extended three-field notation
[ABG+14] as 1 | CO, pj = bjt, Cmax

B ≤ Q | Lmax
A . Similar results, for one machine

time-dependent scheduling with proportional tasks and setups, are presented in
[LTZ10]. Since time-dependent scheduling problems with proportional tasks
have a similar nature to their counterparts with fixed tasks [AMPP04]
(cf. remarks after Theorem 12.3.32), both are solvable in polynomial time and
have similar properties. A branch-and-bound algorithm for problem
1| CO, pj = aj + bt, �U j

 B
 = 0 | �wj

A
Cj

A
 is proposed in [LWSW10]. A few polyno-

mial algorithms for one machine two-agent time-dependent scheduling problems
with proportional-linear tasks are presented in [LYZ11]. In [GLLW11] a one
machine two-agent time-dependent scheduling problem with proportional tasks
and the objective to minimize the total tardiness of the first agent, provided that
no tardy job is allowed for the second agent, is solved exactly by a branch-and-
bound algorithm and heuristically by an evolutionary algorithm. Problem
1 | CO, pj = bj(1�bt) | fmax

A
 , fmax

B
 is discussed in [YCW12], while problem

1 | CO, pj = aj + bjt | �wj
A
 C j

A
 + ` Lmax

B
 is examined in [GS14].

Theorem 12.3.30 [GS14] Problem 1 | CO, pj = aj + bjt | �wj
A
C j

A
 + ` Lmax

B
 is NP-

hard in the ordinary sense, even if ` = 1 and agent B has only two tasks.

The proof of Theorem 12.3.30 uses a reduction from the following NP-complete
EQUAL PRODUCTS problem [GJ79]:

Instance: Finite set Y , a size s(yj) � IN for each yj � Y .
Answer: "Yes" if there exists a subset Y ' � Y such that

 \
j �Y '

 s(yj) = \
j���Y − Y '

 s(y j).

 Otherwise "No".

In [YC+15] the results of [LYZ11] are extended to other combinations of
the two agents’ objective functions. In [HL17] is considered one machine two-
agent time-dependent scheduling problem with proportional-linear tasks. Similar
problems, but with non-zero ready times of tasks, are addressed in [TZLL17].

There exist time-dependent scheduling problems which have properties
similar to their counterparts with fixed task processing times. This similarity can
be explained using the notion of mutually related scheduling problems. We com-
plete this section by a brief review of three groups of such scheduling problems.

 12.3 One Machine Problems 455

Equivalent time-dependent scheduling problems

Some of the problems mentioned in Theorems 12.3.2, 12.3.5 and 12.3.6 are
closely related [CD98, CD00, CDL04, GKP06c]. For example, problems
1 | pj = aj + bjt | Cmax and 1 | pj = bjt | �Cj are related, since by assuming in for-
mula (12.3.6) that t0 = 0 and a[i] = 1 for 1 ≤ i ≤ n, we obtain formula (12.3.2) with
t0 = 1. This fact is explained in [GKP09a]. The main idea is as follows.

First, applying the matrix approach [GKP02, GKP06c], we define a trans-
formation between pairs of time-dependent scheduling problems. Next, based on
some properties of this transformation, we introduce the class of equivalent time-
dependent scheduling problems. This class is composed of pairs of time-
dependent scheduling problems, called initial problem and transformed problem,
which have different linear task processing times and use different criteria but
are strictly related. The transformation changes the form of task processing times
and task weights in the initial problem, generating the transformed problem with
new task processing times and weights. Both the problems are strictly related and
a schedule is optimal for the initial problem if and only if the schedule construct-
ed by this transformation is optimal for the transformed problem.

Theorem 12.3.31 [GKP09a] Let *j = 1 + bj for 1 ≤ j ≤ n. Then the following
time-dependent scheduling problems are equivalent:
(a) 1 | pj = bjt | �*jCj and 1 | pj = bjt (1 + t) | Cmax ,
(b) 1 | pj = aj + bt | �Cj and 1 | pj = 1 + bt | �ajCj ,
(c) 1 | pj = bjt | �ajCj and 1 | pj = aj + bt | Cmax .

Conjugate time-dependent scheduling problems

In [CD98] a symmetry is indicated between one machine time-dependent sched-
uling problems with linearly deteriorating tasks and corresponding problems
with linearly shortening tasks: a given schedule for the first problem can be used
for the construction of a schedule for the latter problem. The explanation of this
phenomenon is given in [GKP09b] and resulted in introducing the second class
of mutually related scheduling problems. The main idea is as follows.

First, in [GKP09b] is introduced a conjugacy formula that relates the values
of objectives for two problems mutually related as above. Next, using the formu-
la, a new class of mutually related time-dependent scheduling problems, called
conjugate problems, has been defined. This class also is composed of pairs of
time-dependent scheduling problems but they have other properties than the ear-
lier discussed equivalent time-dependent scheduling problems.

The first problem in a pair of conjugate problems, called the initial problem,
is a time-dependent scheduling problem with linear tasks and the �wjCj criterion.
The second problem in the pair, called the conjugate problem, is obtained from

 12 Time-Dependent Scheduling

456

the initial problem by a transformation that differs from the one for equivalent
problems. Both the problems are related by the conjugacy formula.

Theorem 12.3.32 [GKP09b] Problems 1 | pj = aj � *jt | �wjCj , where *j =
bj

1 + bj
 ,

and 1 | pj = wj + bjt | �ajCj , where aj > �1, are conjugated

Isomorphic scheduling problems

Equivalent problems and conjugate problems are not the only classes of mutually
related scheduling problems. The third class of such problems, called isomor-
phic scheduling problems, was defined in [GK14]. This class is also composed of
pairs of scheduling problems but only the first problem in a pair is a classic
scheduling problem with fixed task processing times, while the second one is its
time-dependent counterpart with proportional-linear processing times.

Formally, the new class is defined as follows [GK14]. First, a generic
scheduling problem with fixed processing times, GP | | Cmax , is defined. In view
of its generality, this problem includes many one, parallel and dedicated machine
scheduling problems. Next, isomorphic problems are defined by a one-to-one
transformation of instances of the generic problem into instances of time-
dependent scheduling problems with proportional-linear processing times.

The above transformation is based on the notion of (",`)-reducibility, a gen-
eralization of a similar notion introduced in [Kon96]. Speaking very broadly, two
scheduling problems are isomorphic, if one of them is a classic scheduling prob-
lem with fixed processing times, while the second one is a time-dependent coun-
terpart of the problem with linear-proportional processing times, obtained from
the first one by functions " and ` in such a way that certain conditions hold for
arbitrary, corresponding each to other, instances of these two problems.

Theorem 12.3.33 [GK14] Problem GP | | Cmax is (",`)-reducible to problem

GP | pj = bj (a + bt) | Cmax with " = ` = 2x �
a
b

Theorem 12.3.33 gives us a strong tool for proving the polynomial-time solvabil-
ity of certain time-dependent scheduling problems. For example, using this result
one can prove some cases of Theorems 12.3.1 and 12.3.3 or to show that prob-
lem 1 | rj, pj = bj (a + bt) | Cmax is solvable in O(n log n) time by scheduling tasks
in non-decreasing order of ready times rj [GK14]. We refer the reader to [GK14,
Section 6] for other examples of such proofs.

Problems constituting a pair of isomorphic problems have similar properties.
In [GK14] some properties of isomorphic scheduling problems were proved that
show how to convert polynomial algorithms for scheduling problems with fixed
processing times into polynomial algorithms for their proportional-linear coun-
terparts. Before presenting the next result, we introduce two new notions.

 12.4 Parallel Machine Problems 457

Parameters of a scheduling problem related to time (e.g. processing times,
release dates) are time parameters. A scheduling algorithm is a time-independent
scheduling algorithm, if its running time does not depend on time parameters.
Let A be an algorithm for a scheduling problem with fixed processing times and
let A ¯ be a time-dependent counterpart of A in which fixed processing times are
replaced by time-dependent proportional-linear processing times.

Theorem 12.3.34 [GK14] Let scheduling algorithm A generate an optimal
schedule for any instance of problem GP | | Cmax. Then scheduling algorithm A ¯
generates an optimal schedule for any instance of problem
GP | pj = bj (a + bt) | Cmax . Moreover, if algorithm A is time-independent and
runs in O(f(n)) time, then algorithm A ¯ runs in O(f(n) + n) time, where n is the
number of tasks (jobs).

This result completes our review of one machine time-dependent scheduling. For
more details we refer the reader to the following references. Review of one
machine time-dependent scheduling [Gaw96] presents the subject jointly with
discrete-continuous scheduling, in which for the completion of tasks (jobs) are
necessary both discrete resources (e.g. processors or machines) and continuous
resources (e.g. energy or power). Two other reviews on time-dependent schedul-
ing one can find in [AW99] and [CDL04]: the first is focused on one machine
problems, while the other discusses one, parallel and dedicated machine prob-
lems. The only monograph on time-dependent scheduling is [Gaw08], Chapter 6
of this book includes a detailed discussion of one machine problems. Monograph
[ABG+14] is focused on multi-agent scheduling problems with fixed processing
times, its Chapter 6 includes a brief discussion of one machine time-dependent
agent scheduling problems. One machine time-dependent scheduling problems
are also discussed in Chapters 8 and 9 of monograph [SR17], devoted to schedul-
ing problems with rate-modifying activities.

12.4 Parallel Machine Problems

Parallel machine time-dependent scheduling problems are scarcely investigated,
as compared to the problems with proportionally deteriorating tasks. Most of the
parallel machine problems turn out to be intractable.

12.4.1 Proportionally Deteriorating Processing Times

The first considered problem of this group is a two-machine time-dependent
scheduling problem with proportional tasks and the Cmax criterion.

 12 Time-Dependent Scheduling

458

Theorem 12.4.1 [Kon97, Mos98] Problem P2 | pj = bjt | Cmax is NP-hard in the
ordinary sense.

The proof of Theorem 12.4.1 uses a reduction from the SUBSET PRODUCT
problem [Kon97] or the EQUAL PRODUCTS problem [Mos98].

If the number of machines is variable, the problem is harder.

Theorem 12.4.2 [Kon96] Problem P | pj = bjt | Cmax is NP-hard in the strong
sense.

In proof of Theorem 12.4.2 (the proof is also repeated in [JC09]) there is used a
reduction from the following 4-PRODUCT problem [Kon96]:

Instance: Positive rational number D � | Q+, finite set U = {1,2,…,4p} ,

Answer: "Yes" if there exist disjoint subsets U 1, U 2, …, U p such that
U1 � U 2 � … � U p = U and �

i� U j
 s(ui) = D for 1 ≤ j ≤ p.

Otherwise "No".

Several authors analyzed the performance of approximation algorithms for
scheduling proportional tasks on parallel identical machines. All these algorithms
are modified versions of approximation algorithms for classic scheduling prob-
lems, in which fixed task processing times are replaced by task deterioration
rates. Let f (A) and f (OPT) denote the value of criterion f for a schedule genera-
ted by algorithm A and the value of f for an optimal schedule, respectively.

In [HB97] is estimated the worst-case ratio (cf. Chapter 15) of algorithm
LDR (cf. Section 12.3.7) for problem Pm | pj = bjt | Cmax. The LDR algorithm is
a modified version of algorithm LPT (Longest Processing Time first, [Gra69]),
where tasks are rearranged in non-increasing order of deterioration rates, and
then algorithm LS (cf. Section 12.3.7) is applied.

Theorem 12.4.3 For algorithm LDR applied to problem Pm | pj = bjt | Cmax

there holds inequality
Cmax(LDR)
 Cmax(OPT) ≤ (1+b[k])

m �1
m (1+ b[n])

�
[n] � [k]

m , where [n] and

[k] denote the index of the bmin rate and the index of the last completed task, re-
spectively.

Theorem 12.4.3 shows that the worst-case ratio of algorithm LDR is not bounded
by a constant, if task deterioration rates are arbitrary. In [CS07] is analyzed the
performance of algorithm LS with bounded task deterioration rates.

a size D�<�saui 3�<� D� for each i ��U .
5 3

 12.4 Parallel Machine Problems 459

Theorem 12.4.4 (a) If t0 = 1 and bj � (0,1], then for algorithm LS applied to

problem P2 | pj = bjt | Cmax there holds the inequality
Cmax(LS)

 Cmax(OPT) ≤ 2.

(b) If t0 = 1 and bj � (0,(], where 0 < (≤ 1, then for algorithm LS applied to

problem Pm | pj = bjt | Cmax there holds the inequality
Cmax(LS)

 Cmax(OPT) ≤ 2
m−1

m .

Results similar to those of Theorem 12.4.4 are presented in [CWH09].

Theorem 12.4.5 If t0 = 1, then for algorithms LS and LDR applied to problem
Pm | pj = bjt | Cmax there hold the following two inequalities:

log Cmax(LS)
log Cmax(OPT) ≤ 2 � 1

m

and

log Cmax(LDR)
log Cmax(OPT) ≤ 43 � 1

3m .

The performance of a semi-online version of LS was analyzed in [CS09].

Theorem 12.4.6 If t0 = 1 and only the maximum deterioration rate bmax is
known, then the semi-online version of algorithm LS applied to problem

Pm | pj = bjt | Cmax is (1+bmax)
m�1

m -competitive.

The offline version of Theorem 12.4.6, where all task deterioration rates are
known, is discussed in [LZXW11]. A generalization of Theorem 12.4.4 for the
case rj � 0 can be found in [YOWX12].

Theorem 12.4.7 (a) For problem P2 | rj, pj = bjt | Cmax no online algorithm is
better than (1+bmax)-competitive.

(b) For problem Pm | rj, pj = bjt | Cmax algorithm LS is (1+bmax)
2(

m�1
 m)

-
competitive.
In [YOWX12] Theorem 12.3.28 has been generalized to the case of two machi-
nes and a single non-availability period on one of the machines.

Theorem 12.4.8 For problem P2, h1$1 | pj = bjt, nres | Cmax no online algorithm

is better than (max {
W1$1
 t0

, 1 + bmax})-competitive.

 12 Time-Dependent Scheduling

460

Theorem 12.4.5 suggests that there exists a relation between the worst-case
performance of approximation algorithms for scheduling problems with fixed
task processing times and of their time-dependent counterparts with proportional
tasks. This relation is established in [GK14], where the relationship of approxi-
mation algorithms for isomorphic scheduling problems was analyzed (see the
end of Section 12.3.7). Before we present this result, we introduce a new nota-
tion. Let A ¯ denote a time-dependent counterpart of a given algorithm A, where
fixed processing times are replaced by proportional-linear processing times.
Then, there holds the following result, including a formula which generalizes the
formulae given in Theorem 12.4.5.

Theorem 12.4.9 [GK14] Let A be an approximation algorithm for problem

GP | | Cmax such that
Cmax(A)

Cmax(OPT) ≤ rH < +#. Then for the approximation algo-

rithm A ¯ for problem GP | pj = bj(a + bt) | Cmax there holds the equality

log (Cmax(A) +
a
b)

 log (Cmax(OPT) +
a
b)

 =
Cmax(A)

 Cmax(OPT) .

Theorems 12.4.5 and 12.4.9 show that the ratio
log Cmax(A)

log Cmax(OPT) for A = LS or

A = LDR is bounded. However, the ratio
Cmax(A)

 Cmax(OPT) may be unbounded.

Example 12.4.10 [Gaw97] Consider the following instance of problem
P2 | pj = bjt | Cmax, where p1 = p2 = Kt, p3 = K2t for some constant K > 0.
Let both machines start to work at time t0 > 0. Then for K � +# we have

Cmax(LS)
 Cmax(OPT) =

K2 + 1
 K + 1 � +# .

Example 12.4.10 shows that for unbounded task deterioration rates algorithm LS
may generate arbitrarily bad schedules. A similar example for algorithm LDR
is presented in [Mos02].

Some authors have considered parallel machine time-dependent scheduling
problems with task rejection. In [LY10] are proposed FPTASes for proportional
tasks and criterion Cmax or �Cj plus total rejection cost and an O(n2) algorithm
for criterion �Cmax

(k) plus total rejection cost.
Parallel machine time-dependent scheduling problems have also been

considered using game theory concepts. Problem Pm | pj = bjt | Cmax is formulat-
ed as a non-cooperative game in [LLL14], where the players are task owners, the
strategies are machines and the utility of a player is inversely proportional to the

 12.4 Parallel Machine Problems 461

maximum completion time of the last task assigned to the machine selected by
the player. A J(n log n) algorithm is proposed for this game by constructing
a schedule which converges to a Nash equilibrium2 in a linear number of rounds.
Also investigated is a game-theoretic counterpart of Theorem 12.4.7, saying that
the price of anarchy of the algorithm, i.e. the ratio between the worst possible
Nash equilibrium maximum completion time and the optimal maximum comple-

tion time [KP09], equals (1+bmax)
m�1

m [LLL14]. In [CLTY17] are considered par-
allel machine time-dependent scheduling problems with proportional tasks, the
Cmax , �Cj and the total machine load �Cmax

(k) criteria. These problems are formu-
lated as scheduling games with proportional selfish tasks that wish to minimize
their completion times when choosing a machine on which they will be pro-
cessed. The machines are equipped with coordination mechanisms, which help to
avoid the chaos caused by competition among tasks. Each machine examines all
deterioration rates of tasks assigned to the machine and determines the task pro-
cessing order, according to a scheduling policy which is the same for all ma-
chines. Similar parametric bounds on the price of anarchy as those given in
[LLL14] are obtained for three scheduling policies, the SDR (Smallest Deteriora-
tion Rate first), LDR (cf. Section 12.3.7) and MS (MakeSpan).

By applying reductions from the SUBSET PRODUCT or 4-PRODUCT
problems one can prove the intractability of parallel machine scheduling of pro-
portional tasks with the �Cj criterion.

Theorem 12.4.11 (a) [Che96, Kon97] Problem P2 | pj = bjt | �Cj is NP-hard in
the ordinary sense.
(b) [JC09] Problem P | pj = bjt | �Cj is NP-hard in the strong sense.

In [Che96] is analyzed the worst-case performance of algorithm SDR for prob-
lem P2 | pj = bjt | �Cj, in which first all tasks are rearranged in non-decreasing
order of their deterioration rates bj and next, as long as there are tasks to sched-
ule, the first available task is assigned to the first available machine.

Theorem 12.4.12 For algorithm SDR applied to problem P2 | pj = bjt | �Cj there

holds the inequality
�Cj(SDR)
 �Cj(OPT) ≤ max {

1+bn
1+b1

, 2
n-1 +

(1+b1) (1+bn)
 1+b2

}.

Similarly to algorithm LS (cf. Example 12.3.10), in [Che96] there is given an
example showing that schedules constructed by SDR may be arbitrarily bad. It is

2 Nash equilibrium is a strategy vector such that every player cannot further increase its util-

ity by choosing a different strategy, while the strategies of other players are fixed. In terms of
scheduling theory it means that a schedule is a Nash equilibrium if no task in the schedule can
reduce its cost by moving to another machine [KP09].

 12 Time-Dependent Scheduling

462

further proved that for problem P2 | pj = bjt | �Cj there does not exist a polyno-
mial approximation algorithm with a constant worst-case ratio, since its exist-
ence would imply the existence of a pseudo-polynomial algorithm for the strong-
ly NP-hard 3-PARTITION problem what is impossible unless P = NP.

An FPTAS for problem Pm | pj = bjt | �Cj is proposed in [JC08]. The FPTAS
is based on the following scheme introduced earlier in [KK98]. First, some auxil-
iary variables, a set of vectors and some problem-specific functions of the vec-
tors are defined. Next, iteratively one constructs a sequence of sets
Y1, Y2, …, Yn�1 satisfying some conditions. In each iteration, set Yj is partitioned
into subsets in such a way that for any two vectors from the same subset the val-
ues of some defined earlier functions are close enough. After that from each such
subset only the solution with the minimal value of an earlier defined function is
chosen and used in the next iteration, while all remaining solutions are discarded.
The final solution is a vector from the last constructed set, Yn�1.

Based on the above scheme, in [JC09] are proposed FPTASes for problems
Pm | pj = bjt | Cmax and Pm | pj = bjt | �Cj, while in [ZT14] such an FPTAS is pro-
posed for problem Pm | pj = bjt, nres | �wjCj .

12.4.2 Linearly Deteriorating Processing Times

The parallel machine time-dependent scheduling problem Pm | pj = d + bjt | �Cj
is considered in [GKP04, GKP06b], where some of its properties are proved and
a heuristic algorithm for the problem is proposed. In [TG10] a parallel machine
early/tardy task scheduling problem with task processing times in the form of
pj = aj + bt is solved by using a mathematical programming approach.

12.4.3 Non-Linearly Deteriorating Processing Times

Relatively little is known about multi-machine time-dependent scheduling with
non-linear task processing times. There is known, however, the following result.

Theorem 12.4.13 [Gaw97] If b(t) is an arbitrary increasing function satisfying
condition (12.3.10), then problem Pm | pj = aj + b(t) | �Cj is solvable in
O(n log n) time by scheduling tasks using the SDR algorithm.

A special case of Theorem 12.4.13, b(t) = bt, is considered in [KY08]. In
[KHY09] the latter form of task processing times is applied to a parallel unrelat-
ed machine problem. In [TG10] can be found a mathematical programming ap-
proach to a parallel machine early/tardy task scheduling problem with task pro-
cessing times in the form of pj = aj + btc, where c > 0.

 12.5 Dedicated Machine Problems 463

This result completes our review of parallel-machine time-dependent sched-
uling. A brief review of that part of time-dependent scheduling gives [CDL04],
more details one can find in [Gaw08, Chapter 7]. Some parallel-machine time-
dependent scheduling problems are also considered in [SR17, Chapter 11].

12.5 Dedicated Machine Problems

In this section, we review the main results of time-dependent scheduling on
dedicated machines.

12.5.1 Proportionally Deteriorating Processing Times

Unlike parallel machine time-dependent scheduling problems with proportional
task processing times (12.2.5), some time-dependent shop scheduling problems
with this type of job processing times are solvable in polynomial time. The first
such example is the two-machine time-dependent flow shop problem.

Theorem 12.5.1 [Kon96, Mos02] Problem F2 | pij = bijt | Cmax is solvable in
O(n log n) time by scheduling jobs using modified Johnson's algorithm.

The proof of Theorem 12.5.1 in [Kon96] uses the notion of isomorphic problems
(cf. Section 12.3.7), while in the proof in [Mos02] first a few schedules in which
jobs are scheduled in another order than the one generated by modified Johnson's
algorithm [Joh54] are constructed and next one shows that so constructed sched-
ules cannot be optimal.

Example 12.5.2 Let us consider an instance of problem F2 | pij = bijt | Cmax in
which n = 3, b11 = 2, b12 = 3, b21 = 3, b22 = 1, b31 = 4, b32 = 4 and t0 = 1. Then
modified Johnson’s algorithm generates schedule (1, 3, 2).

A few authors considered different variants of the two-machine time-dependent
flow shop. In [ZT12] a two-machine flow shop with dependent proportional jobs
and the Cmax criterion is addressed. Job precedence constraints are in the form of
a set of chains and may be one of following two types: In the first type, job Jj
preceding job Jk means that Jk cannot start on a machine before Jj is completed
on this machine. In job precedence constraints of the second type, job Jk cannot
start on a machine before job Jj is completed on another machine. It is claimed
that the problem can be solved in polynomial-time for the first type precedence
constraints, while it is NP-hard in the strong sense for the second type of prece-
dence constraints. Proof of this latter result uses a reduction from the 4-
PRODUCT problem. In [CTSZ14] the hierarchical scheduling of two-machine

 12 Time-Dependent Scheduling

464

flow shop with proportional jobs and the objective to minimize the �Cj criterion
subject to minimum of the Cmax criterion is addressed. Some properties of the
problem are established, and a mixed integer programming formulation and a
branch-and-bound algorithm are proposed. In [CTSZ15] a similar approach was
applied to the two-machine time-dependent flow shop problem with the weighted
sum of criteria Cmax and �Cj .

The flow shop problem with proportional jobs on m ≥ 3 machines is intrac-
table and hard to approximate, even if some deterioration rates are equal.

Theorem 12.5.3 (a) [Kon96] Problem F3 | pij = bijt | Cmax is NP-hard in the
strong sense.

(b) [KG01] For problem F3 | pij = bijt , b1j = b3j = b | Cmax does not exist a poly-
nomial-time approximation algorithm with the worst-case ratio bounded by a
constant, unless P = NP.

The proof of Theorem 12.5.3 (a) uses a reduction from the 4-PRODUCT prob-
lem [Kon96] (independently, in [Mos02] the ordinary NP-hardness of the prob-
lem was verified by a reduction from the EQUAL PRODUCTS problem). Theo-
rem 12.5.3 (b) is proved [KG01] by showing that the existence of a polynomial-
time approximation algorithm for considered problem leads to a contradiction
(cf. Section 12.3.2).

A few authors have considered other variants of time-dependent flow shop prob-

machine flow shop on no-idle dominant machines with linear jobs in the form of
pij = aij + bt and the Cmax criterion. Similar cases of the three-machine flow shop
with proportional jobs, dominating machines3 and the Cmax criterion are consid-
ered in [JK+17, Wan10, WSSW10, WW13].

The results mentioned above show that time-dependent flow shops have
similar properties to their counterparts with fixed job processing times. The same
phenomenon can be observed in the case of time-dependent open shops. For
example, in [Mos02] it is proved that the value of Cmax for any schedule 2 for
problem O2 | pij = bijt | Cmax satisfies the inequality

Cmax
� (2) ≥ { �

j=1

n
 (1 + b1j), �j=1

n

 (1 + b2j), max
1 ≤ j ≤ n

 { (1 + b1j)(1 + b2j)}},

which is a counterpart of the inequality for problem O2 | | Cmax [Pin16],

Cmax
� (2) ≥ { �

j=1

n
 p1j , �j=1

n

 p2j , max
1 ≤ j ≤ n

 { p1j + p2j}}.

3 In classical scheduling theory machine Mr dominates machine Ms in a flow shop with

dominating machines [HG95] if max { prj: 1 ≤ j ≤ n } ≤ min { psj: 1 ≤ j ≤ n }, in time-dependent
flow shop scheduling with dominant machines [CSH07] definition is similar but job processing
times are replaced by job deterioration rates.

lems. In [CSH07, SSCW10, SSWW12] are considered a few cases of multi-

 12.5 Dedicated Machine Problems 465

The two-machine open shop problem with proportional jobs can be solved in
polynomial time by using the modified algorithm for problem O2 | | Cmax .

Theorem 12.5.4 [Kon96, Mos02] Problem O2 | pij = bijt | Cmax is solvable in
O(n) time by scheduling jobs using a modified Gonzalez-Sahni algorithm.

The proof of Theorem 12.5.4 in [Kon96] uses the notion of isomorphic prob-
lems (cf. Section 12.3.7). The proof in [Mos02] analyses possible types of
schedules generated by a modified Gonzalez-Sahni algorithm [GS76] and shows
that each of them is optimal.

Example 12.5.5 Let us consider the data from Example 12.5.2 as an instance of
problem O2 | pij = bijt | Cmax . The modified Gonzalez-Sahni algorithm generates
the schedule (1, 2, 3; 3, 1, 2) in which on the first machine jobs are scheduled in
the order (1, 2, 3), while on the second machine the jobs are in the order (3, 1, 2).

The three-machine time-dependent open shop problem is intractable, even if job
deterioration rates are restricted.

Theorem 12.5.6 (a) [Kon96, Mos02, TP11] Problem O3 | pij = bijt | Cmax is NP-
hard in the ordinary sense.
(b) [KG01] Problem O3 | pij = bijt, b3j = b| Cmax is NP-hard in the ordinary sense.

The proof of part (a) uses a reduction from the SUBSET PRODUCT problem
[Kon96] or the EQUAL PRODUCTS problem [Mos02, TP11]. The proof of
part (b) uses a reduction from the SUBSET PRODUCT [KG01], where it is also
stated the conjecture that the two-machine job shop with proportional jobs is
intractable. This conjecture is proved in [Mos02] by a reduction from the
EQUAL PRODUCTS problem.

Theorem 12.5.7 Problem J2| pij = bijt |Cmax is NP-hard in the ordinary sense.

12.5.2 Proportional-Linearly Deteriorating Processing Times

In [Kon99] it is shown that Theorems 12.5.1 and 12.5.4 can be generalized to the
case of proportional-linear job processing times (12.2.6). Some properties of this
generalized shop problems are proved in [KG01].

12.5.3 Linearly Deteriorating Processing Times

The change of linear-proportional processing times into linear ones makes shop
problems difficult: already two-machine flow shop and open shop problems with
linear job processing times and the Cmax criterion are intractable.

 12 Time-Dependent Scheduling

466

Theorem 12.5.8 [KG01] (a) Problem F2 | pij = aij + bijt | Cmax is NP-hard in the
strong sense.
(b) Problem O2 | pij = aij + bijt | Cmax is NP-hard in the ordinary sense.

Some authors indicated easy cases of time-dependent flow shop problems.
In [MSS10] it is proved that problem Fm | pij = aj + bjt | Cmax is solvable
in O(n log n) time by scheduling jobs in non-decreasing order of ratios aj/bj .
In [FG18] it is noticed that the same rule solves the same problem with the �Cmax

(k)
criterion as well.

12.5.4 Non-Linearly Deteriorating Processing Times

Some authors considered time-dependent flow shop problems with non-linear
jobs. In [MS80] it is shown that problem F2 | pij = aij + f (t) | Cmax , where func-
tion f (t) is differentiable, satisfies condition (12.3.10) and a special case of con-

df(t)
dt ≥ 0 > 0 for t ≥ 0. (12.5.1)

For this problem, the difference between the optimal Cmax
� and Cmax(2�) for a

schedule 2� obtained by scheduling jobs in non-decreasing order of a1j values
(1 ≤ j ≤ n) is estimated in [MS80].

Lemma 12.5.9 [MS80] Let S(aij, n1, n2) = �
n1

n2
 aij and F(C1j , n1, n2) = f (�

n1

n2
 C1j).

Then for any differentiable function f (t), satisfying conditions (12.3.10) and
(12.5.1), there exists a finite number N0 such that for all n ≥ N0

S(aij , 1, n) + F(C1j , 0, n�1) ≥ S(ai+1$ j , k�1, n�1) + F(C1j , 0, k�2) (12.5.2)

for any i and k such that 1 ≤ i ≤ m � 1, 2 ≤ k ≤ n, C1$ 0 = 0 and
C1 j = a1 j + F(C1 j , 0, j�1) for 1 ≤ j ≤ n.

If f (t) is a differentiable function satisfying conditions (12.3.10) and (12.5.1),
then applying Lemma 12.5.9 the following result can be proved.

Theorem 12.5.10 [MS80] (a) Let 2� denote a schedule for the problem
Fm | pij = aij + f (t) | Cmax in which jobs are scheduled in non-decreasing order of
a1j values, where 1 ≤ j ≤ n. If the number of jobs n satisfies the inequality
(12.5.2), then either 2� is an optimal schedule or the optimal schedule is one of k
≤ n � 1 schedules +, in which the last job satisfies the inequality S(ai$+n

 , 2, m) <

dition (12.3.11) in the form of

 References 467

S(ai$2�n
 , 2, m) and the first n � 1 jobs are scheduled in non-decreasing order of

a1j values.
(b) Let 2� denote a schedule for the problem F2 | pij = aij + f (t) | Cmax in which
jobs are scheduled in non-decreasing order of a1j values, where 1 ≤ j ≤ n. Then
Cmax

� � Cmax(2�) ≤ ai$2�n
 � minj { a2j}.

Theorem 12.5.10 completes our review of main time-dependent scheduling re-
sults. Introductory view of time-dependent dedicated machine scheduling one
can find in [CDL04], more detailed presentation is given in [Gaw08, Chapter 8].
Some time-dependent flow shops and open shops are also mentioned in [TSS94].

References

ABG+14 A. Agnetis, J.-C. Billaut, S. Gawiejnowicz, D. Pacciarelli, A. Soukhal, Multi-
agent Scheduling: Models and Algorithms, Springer, Berlin-Heidelberg, 2014.

AGGG17 A. Arigliano, G. Ghiani, A. Grieco, E. Guerriero, Single-machine time-
dependent scheduling problems with fixed rate-modifying activities and re-
sumable jobs, 4OR-Q. J. Oper. Res. 15, 2017, 201�215.

AMPP04 A. Agnetis, P. Mirchandani, D. Pacciarelli, A. Pacifici, Scheduling problems
with two competing agents, Oper. Res. 52, 2004, 229�242.

AW99 B. Alidaee, N. K. Womer, Scheduling with time dependent processing times:
review and extensions, J. Oper. Res. Soc. 50, 1999, 711�720.

BJ00 A. Bachman, A. Janiak, Minimizing maximum lateness under linear deteriora-
tion, Eur. J. Oper. Res. 126, 2000, 557�566.

BJK02 A. Bachman, A. Janiak, M. Y. Kovalyov, Minimizing the total weighted com-
pletion time of deteriorating jobs, Inf. Process. Lett. 81, 2002, 81�84.

BS03 K. Baker, J. C. Smith, A multiple criterion model for machine scheduling,
J. Sched. 6, 2003, 7�16.

CD00 T.-C. E. Cheng, Q. Ding, Single machine scheduling with deadlines and in-
creasing rates of processing times, Acta Inform. 36, 2000, 673�692.

CD03 T.-C. E. Cheng, Q. Ding, Scheduling start time dependent tasks with deadlines
and identical initial processing times on a single machine, Comput. Oper. Res.
30, 2003, 51�62.

CD98 T.-C. E. Cheng, Q. Ding, The complexity of scheduling starting time depend-
ent tasks with release times, Inf. Process. Lett. 65, 1998, 75�79.

CD99 T.-C. E. Cheng, Q. Ding, The time dependent makespan problem is strongly
NP-complete, Comput. Oper. Res. 26, 1999, 749�754.

CDL04 T.-C. E. Cheng, Q. Ding, B. M.-T. Lin, A concise survey of scheduling with
time-dependent processing times, Eur. J. Oper. Res. 152, 2004, 1�13.

 12 Time-Dependent Scheduling

468

Che96 Z.-L. Chen. Parallel machine scheduling with time dependent processing times,
Discret Appl. Math. 70, 1996, 81�93 (Erratum: Discret Appl. Math. 75, 1996,
103).

CLTY17 Q. Chen, L. Lin, Z. Tan, Y. Yan, Coordination mechanisms for scheduling
games with proportional deterioration, Eur. J. Oper. Res. 263, 2017, 380�389.

CS07 M.-B. Cheng, S.-J. Sun, A heuristic MBLS algorithm for the two semi-online
parallel machine scheduling problems with deterioration jobs, Journal of
Shanghai University 11, 2007, 451�456.

CS09 Y.-S. Cheng, S.-J. Sun, Scheduling linear deteriorating jobs with rejection on a
single machine, Eur. J. Oper. Res. 194, 2009, 18�27.

CSH07 M.-B. Cheng, S.-J. Sun, L.-M. He, Flow shop scheduling problems with dete-
riorating jobs on no-idle dominant machines, Eur. J. Oper. Res. 183, 2007,
115–124.

CSN16 T.-C. E. Cheng, Y. Shafransky, C.-T.Ng, An alternative approach for proving
the NP-hardness of optimization problems, Eur. J. Oper. Res. 248, 2016,
52�58.

CTSZ14 M.-B. Cheng, P. R. Tadikamalla, J. Shang, S.-Q. Zhang, Bicriteria hierarchical
optimization of two-machine flow shop scheduling problem with time-
dependent deteriorating jobs, Eur. J. Oper. Res. 234, 2014, 650�657.

CTSZ15 M.-B. Cheng, P. R. Tadikamalla, J. Shang, B. Zhang, Two-machine flow shop
scheduling with deteriorating jobs: minimizing the weighted sum of makespan
and total completion time, J. Oper. Res. Soc. 66, 2015, 709�719.

CWH09 M.-B. Cheng, G.-Q. Wang, L.-M. He, Parallel machine scheduling problems
with proportionally deteriorating jobs, Int. J. Syst. Sci. 40, 2009, 53�57.

D14 M. Dębczyński, Maximum cost scheduling of jobs with mixed variable pro-
cessing times and k-partite precedence constraints, Optim. Lett. 8, 2014,
395�400.

DG13 M. Dębczyński, S. Gawiejnowicz, Scheduling jobs with mixed processing
times, arbitrary precedence constraints and maximum cost criterion, Comput.
Ind. Eng. 64, 2013, 273�279.

DKD97 M. Dror, W. Kubiak, P. Dell’Olmo, Scheduling chains to minimize mean flow
time, Inf. Process. Lett. 61, 1997, 297�301.

DL90 J. Du, J. Y.-T. Leung, Minimizing total tardiness on one machine is NP-hard,
Math. Oper. Res. 15, 1990, 483�495.

FG18 S. Fiszman, G. Mosheiov, Minimizing total load on a proportionate flowshop
with position-dependent processing times and rejection, Inf. Process. Lett. 132,
2018, 39�43.

FLZZ11 B. Fan, S. Li, L. Zhou, L. Zhang, Scheduling resumable deteriorating jobs on a
single machine with non-availability constraints, Theor. Comput. Sci. 412,
2011, 275�280.

Gaw05 S. Gawiejnowicz, Complexity of scheduling deteriorating jobs with machine or
job availability constraints, Book of Abstracts of the 7th Workshop on Models
and Algorithms for Planning and Scheduling Problems, June 6-10, 2005,
Siena, Italy, 140�141.

 References 469

Gaw07 S. Gawiejnowicz, Scheduling deteriorating jobs subject to job or machine
availability constraints, Eur. J. Oper. Res. 180, 2007, 472�478.

Gaw08 S. Gawiejnowicz, Time-Dependent Scheduling, Springer, Berlin-Heidelberg,
2008.

Gaw96 S. Gawiejnowicz, Brief survey of continuous models of scheduling, Founda-
tions of Computing and Decision Sciences 21, 1996, 81�100.

Gaw97 S. Gawiejnowicz, Scheduling Jobs with Varying Processing Times, Ph.D. the-
sis, Poznań University of Technology, Poznań, 1997 (in Polish).

GG88 J. N. D. Gupta, S. K. Gupta, Single facility scheduling with nonlinear pro-
cessing times, Comput. Ind. Eng. 14, 1988, 387�393.

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

GK10 S. Gawiejnowicz, A. Kononov, Complexity and approximability of scheduling
resumable proportionally deteriorating jobs, Eur. J. Oper. Res. 200, 2010,
305�308.

GK14 S. Gawiejnowicz, A. Kononov, Isomorphic scheduling problems, Ann. Oper.
Res. 213, 2014, 131�145.

GK15 S. Gawiejnowicz, W. Kurc, Structural properties of time-dependent scheduling
problems with the lp norm objective, Omega-Int. J. Manage. Sci. 57, 2015,
196�202.

GK17 S. Gawiejnowicz, W. Kurc, A new necessary condition of optimality for a
single machine scheduling problem with deteriorating jobs, Proceedings of the
13th Workshop on Models and Algorithms for Planning and Scheduling Prob-
lems, Seeon Abbey, Germany, June 12-16, 2017, 177�179.

GKD87 S. K. Gupta, A. S. Kunnathur, K. Dandapani, Optimal repayment policies for
multiple loans, Omega-Int. J. Manage. Sci. 15, 1987, 323�330.

GKP02 S. Gawiejnowicz, W. Kurc, L. Pankowska, A greedy approach for a time-
dependent scheduling problem, Lect. Notes Comput. Sc. 2328, 2002, 79�86.

GKP04 S. Gawiejnowicz, W. Kurc, L. Pankowska, Minimizing time-dependent total
completion time on parallel identical machines, Lect. Notes Comput. Sc. 3019,
2004, 89�96.

GKP06a S. Gawiejnowicz, W. Kurc, L. Pankowska, Analysis of a time-dependent
scheduling problem by signatures of deterioration rate sequences, Discret Appl.
Math. 154, 2006, 2150�2166.

GKP06b S. Gawiejnowicz, W. Kurc, L. Pankowska, Parallel machine scheduling of
deteriorating jobs by modified steepest descent search, Lect. Notes Comput. Sc.
3911, 2006, 116�123.

GKP06c S. Gawiejnowicz, W. Kurc, L. Pankowska, Pareto and scalar bicriterion sched-
uling of deteriorating jobs, Comput. Oper. Res. 33, 2006, 746�767.

GKP09a S. Gawiejnowicz, W. Kurc, L. Pankowska, Equivalent time-dependent sched-
uling problems, Eur. J. Oper. Res. 196, 2009, 919�929.

GKP09b S. Gawiejnowicz, W. Kurc, L. Pankowska, Conjugate problems in time-
dependent scheduling, J. Sched. 12, 2009, 543�553.

 12 Time-Dependent Scheduling

470

GL10 S. Gawiejnowicz, B. M.-T. Lin, Scheduling time-dependent jobs under mixed
deterioration, Appl. Math. Comput. 216, 2010, 438�447.

GLC11 S. Gawiejnowicz, T.-C. Lai, M.-H. Chiang, Scheduling linearly shortening jobs
under precedence constraints, Appl. Math. Model. 35, 2011, 2005�2015.

GLLW11 S. Gawiejnowicz, W.-C. Lee, C.-L. Lin, C.-C. Wu, Single-machine scheduling
of proportionally deteriorating jobs by two agents, J. Oper. Res. Soc. 62, 2011,
1983�1991.

GP95 S. Gawiejnowicz, L. Pankowska, Scheduling jobs with varying processing
times, Inf. Process. Lett. 54, 1995, 175�178.

GPSW08 V. S. Gordon, C. N. Potts, V. A. Strusevich, J. D. Whitehead, Single machine
scheduling models with deterioration and learning: handling precedence con-
straints via priority generation, J. Sched. 11, 2008, 357�370.

Gra66 R. L. Graham, Bounds for certain multiprocessing anomalies, Bell Labs Tech.
J. 45, 1966, 1563�1581.

Gra69 R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl.
Math. 17, 1969, 416�429.

GS14 S. Gawiejnowicz, C. Suwalski, Scheduling linearly deteriorating jobs by two
agents to minimize the weighted sum of two criteria, Comput. Oper. Res. 52,
2014, 135�146.

GS76 T. Gonzalez, S. Sahni, Open shop scheduling to minimize finish time, J. ACM
23, 1976, 665�679.

HB97 Y.-C. Hsieh, D. L. Bricker, Scheduling linearly deteriorating jobs on multiple
machines, Comput. Ind. Eng. 32, 1997, 727�734.

HG95 J. Ho, J. N. D. Gupta, Flowshop scheduling with dominant machines, Comput.
Oper. Res. 22, 1995, 237�246.

HL17 C. He, J. Y.-T. Leung, Two-agent scheduling of deteriorating jobs, J. Comb.
Optim. 34, 2017, 362�367.

HLW93 K. I.-J. Ho, J. Y.-T. Leung, W-D. Wei, Complexity of scheduling tasks with
time-dependent execution times, Inf. Process. Lett. 48, 1993, 315�320.

JC08 M. Ji, T.-C. E. Cheng, Parallel-machine scheduling with simple linear deterio-
ration to minimize total completion time, Eur. J. Oper. Res. 188, 2008,
342�347.

JC09 M. Ji, T.-C. E. Cheng, Parallel-machine scheduling of simple linear deteriorat-
ing jobs, Theor. Comput. Sci. 410, 2009, 3761�3768.

JHC06 M. Ji, Y. He, T.-C. E. Cheng, Scheduling linear deteriorating jobs with an
availability constraint on a single machine, Theor. Comput. Sci. 362, 2006,
115�126.

Joh54 S. M. Johnson, Optimal two and three stage production schedules with setup
times included, Naval Res. Logist. Quart. 1, 1954, 61�68.

Joh82 D. S. Johnson, The NP-completeness column: an ongoing guide, J. Algorithms
2, 1982, 393�405.

 References 471

JK+17 A.-A. Jafari, H. Khademi-Zare, M. M. Lotfi, R. Tavakkoli-Moghaddam,
A note on “On three-machine flow shop scheduling with deteriorating jobs”,
Int. J. Prod. Econ. 191, 2017, 250–252.

JS16 F. Jaehn, H. A. Sedding, Scheduling with time-dependent discrepancy times,
J. Sched. 19, 2016, 737�757.

Kar72 R. M. Karp, Reducibility among combinatorial problems, in: R.E. Miller,
J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press,
New York, 1972, 85�103.

KG01 A. Kononov, S. Gawiejnowicz, NP-hard cases in scheduling deteriorating jobs
on dedicated machines, J. Oper. Res. Soc. 52, 2001, 708�718.

KHY09 W.-H. Kuo, C.-J. Hsu, D.-L. Yang, A note on unrelated parallel machine
scheduling with time-dependent processing times, J. Oper. Res. Soc. 60, 2009,
431�434.

KK98 M. Y. Kovalyov, W. Kubiak, A fully polynomial approximation scheme for
minimizing makespan of deteriorating jobs, J. Heuristics 3, 1998, 287�297.

KMS17 Y. Kawase, K. Makino, K. Seimi, Optimal composition ordering problems for
piecewise linear functions, Algorithmica, 2017, in press, doi:10.1007/s00453-
017-0397-y.

KO09 M. Kubale, K. Ocetkiewicz, A new optimal algorithm for a time-dependent
scheduling problem, Control Cybern. 38, 2009, 713–721.

Kon96 A. Kononov, Combinatorial complexity of scheduling jobs with simple linear
deterioration, Discrete Analysis and Operations Research 3, 1996, 15�32
(in Russian).

Kon97 A. Kononov, Scheduling problems with linear increasing processing times, in:
U. Zimmermann et al. (eds.), Operations Research 1996, Springer, Berlin-
Heidelberg, 1997, 208�212.

Kon98 A. Kononov, A single machine scheduling problems with processing times
proportional to an arbitrary function, Discrete Analysis and Operations Re-
search 5, 1998, 17�37 (in Russian).

Kon99 A. Kononov, On the Complexity of the Problems of Scheduling with Time-
Dependent Job Processing Times, Ph.D. thesis, Sobolev Institute of Mathemat-
ics, Novosibirsk, 1999 (in Russian).

KP09 E. Koutsoupias, C. Papadimitriou, Worst-case equilibria, Computer Science
Review 3, 2009, 65–69.

KY07 W.-H. Kuo, D.-L. Yang, Single-machine scheduling problems with start-time
dependent processing time, Comput. Math. Appl. 53, 2007, 1658�1664.

KY08 W.-H. Kuo, D.-L. Yang, Parallel-machine scheduling with time-dependent
processing times, Theor. Comput. Sci. 393, 2008, 204�210.

KY12 W.-H. Kuo, D.-L. Yang, Single-machine scheduling with deteriorating jobs,
Int. J. Syst. Sci. 43, 2012, 132–139.

Law73 E. L. Lawler, Optimal sequencing of a single machine subject to precedence
constraints, Manage. Sci. 19, 1973, 544�546.

 12 Time-Dependent Scheduling

472

LLL14 K. Li, C. Liu, K. Li, An approximation algorithm based on game theory for
scheduling simple linear deteriorating jobs, Theor. Comput. Sci. 543, 2014,
46�51.

LT08 P. Liu, L. Tang, Two-agent scheduling with linear deteriorating jobs on a sin-
gle machine, Lect. Notes Comput. Sc. 5092, 2008, 642�650.

LTZ10 P. Liu, L. Tang, X. Zhou, Two-agent group scheduling with deteriorating jobs
on a single machine, Int. J. Adv. Manuf. Technol. 47, 2010, 657�664.

LWSW10 W.-C. Lee, W.-J. Wang, Y.-R. Shiau, C.-C. Wu, A single-machine scheduling
problem with two-agent and deteriorating jobs, Appl. Math. Model. 34, 2010,
3098�3107.

LY10 S.-S. Li, J.-J. Yuan, Parallel-machine scheduling with deteriorating jobs and
rejection, Theor. Comput. Sci. 411, 2010, 3642�3650.

LYZ11 P. Liu, N. Yi, X. Zhou, Two-agent single-machine scheduling problems under
increasing linear deterioration, Appl. Math. Model. 35, 2011, 2290�2296.

LZWH12 M. Liu, F.-F. Zheng, S.-J. Wang, J.-Z. Huo, Optimal algorithms for online
single machine scheduling with deteriorating jobs, Theor. Comput. Sci. 445,
2012, 75�81.

LZXW11 M. Liu, F.-F. Zheng, Y.-F. Xu, L. Wang, Heuristics for parallel machine
scheduling with deterioration effect, Lect. Notes Comput. Sc. 6831, 2011,
46�51.

Moo68 J. Moore, An n job, one machine sequencing algorithm for minimizing the
number of late jobs, Manage. Sci. 15, 1968, 102�109.

Mos02 G. Mosheiov, Complexity analysis of job-shop scheduling with deteriorating
jobs, Discret Appl. Math. 117, 2002, 195�209.

Mos91 G. Mosheiov, V-shaped policies for scheduling deteriorating jobs, Oper. Res.
39, 1991, 979�991.

Mos94 G. Mosheiov, Scheduling jobs under simple linear deterioration, Comput.
Oper. Res. 21, 1994, 653�659.

Mos98 G. Mosheiov, Multi-machine scheduling with linear deterioration, Infor 36,
1998, 205�214.

MS80 O. I. Melnikov, Y. M. Shafransky, Parametric problem of scheduling theory,
Cybern. Syst. Anal. 15, 1980, 352�357.

MSS10 G. Mosheiov, A. Sarig, J. Sidney, The Browne–Yechiali single-machine
sequence is optimal for flow-shops, Comput. Oper. Res. 37, 2010, 1965–1967.

MTY16 R. Ma, J.-P. Tao, J.-J. Yuan, Online scheduling with linear deteriorating jobs to
minimize the total weighted completion time, Appl. Math. Comput. 273, 2016,
570�583.

MZW12 C. Miao, Y. Zhang, C. Wu, Scheduling of deteriorating jobs with release dates
to minimize the maximum lateness, Theor. Comput. Sci. 462, 2012, 80�87.

NBCK10 C.-T. Ng, M. S. Barketau, T.-C. E. Cheng, M. Y. Kovalyov, „Product Partiti-
on“ and related problems of scheduling and systems reliability: Computational
complexity and approximation, Eur. J. Oper. Res. 207, 2010, 601�604.

 References 473

Oce10 K. M. Ocetkiewicz, A FPTAS for minimizing total completion time in a single
machine time-dependent scheduling problem, Eur. J. Oper. Res. 203, 2010,
316�320.

PGF14 P. Perez-Gonzalez, J. M. Framinan, A common framework and taxonomy for
multicriteria scheduling problem with interfering and competing jobs: multi-
agent scheduling problems, Eur. J. Oper. Res. 235, 2014, 1–16.

Pin16 M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5th ed., Springer,
Berlin-Heidelberg, 2016.

RP06 N. P. Rachaniotis, C. P. Pappis, Scheduling fire-fighting tasks using the con-
cept of ’’deteriorating jobs’’, Can. J. For. Res. 36, 2006, 652�658.

RS15 K. Rustogi, V. A. Strusevich, Single machine scheduling with time-dependent
linear deterioration and rate-modifying maintenance, J. Oper. Res. Soc. 66,
2016, 505�515.

SGK13 D. Shabtay, N. Gaspar, M. Kaspi, A survey of offline scheduling with rejec-
tion, J. Sched. 16, 2013, 3�28 (Erratum: J. Sched. 18, 2015, 329).

SR17 V. A. Strusevich, K. Rustogi, Scheduling with Time-Changing Effects and
Rate-Modifying Activities, Springer, Berlin-Heidelberg, 2017.

SS07 D. Shabtay, G. Steiner, A survey of scheduling with controllable processing
times, Discret Appl. Math. 155, 2007, 1643�1666.

SSCW10 L.-H. Sun, L.-Y. Sun, K. Cui, J.-B. Wang, A note on flow shop scheduling
problems with deteriorating jobs on no-idle dominant machines, Eur. J. Oper.
Res. 200, 2010, 309–311.

SSWW12 L.-H. Sun, L.-Y. Sun, M.-Z. Wang, J.-B. Wang, Flow shop makespan mini-
mization scheduling with deteriorating jobs under dominating machines, Int. J.
Prod. Econ. 138, 2012, 195�200.

TB06 V. T’kindt, J.-C. Billaut, Multicriteria Scheduling: Theory, Models and Algo-
rithms, 2nd ed., Springer, Berlin-Heidelberg, 2006.

TG10 M. D. Toksarı, E. Güner, The common due-date early/tardy scheduling prob-
lem on a parallel machine under the effects of time-dependent learning and lin-
ear and nonlinear deterioration, Expert Syst. Appl. 37, 2010, 92�112.

TGS94 V. S. Tanaev, V. S. Gordon, Y. M. Shafransky, Scheduling Theory: Single-
Stage Systems, Kluwer, Dordrecht, 1994.

TSS94 V. S. Tanaev, Y. N. Sotskov, V. A. Strusevich, Scheduling Theory: Multi-
Stage Systems, Kluwer, Dordrecht, 1994.

TP11 K. Thörnblad, M. Patriksson, A note on the complexity of flow-shop schedul-
ing with deteriorating jobs, Discret Appl. Math. 159, 2011, 251�253.

TZLL17 L. Tang, X. Zhao, J.-Y. Liu, J. Y.-T. Leung, Competitive two-agent scheduling
with deteriorating jobs on a single and parallel-batching machine, Eur. J. Oper.
Res. 263, 2017, 401-411.

Waj86 W. Wajs, Polynomial algorithm for dynamic sequencing problem, Archiwum
Automatyki i Telemechaniki 31, 1986, 209�213 (in Polish).

Wan09 J.-B. Wang, Single machine scheduling with decreasing linear deterioration
under precedence constraints, Comput. Math. Appl. 58, 2009, 95–103.

 12 Time-Dependent Scheduling

474

Wan10 J.-B. Wang, Flow shop scheduling with deteriorating jobs under dominating
machines to minimize makespan, Int. J. Adv. Manuf. Technol. 48, 2010,
719�723.

WDZ14 Y. Wu, M. Dong, Z. Zheng, Patient scheduling with periodic deteriorating
maintenance on single medical device, Comput. Oper. Res. 49, 2014, 107�116.

WL03 C.-C. Wu, W.-C. Lee, Scheduling linear deteriorating jobs to minimize
makespan with an availability constraint on a single machine, Inf. Process.
Lett. 87, 2003, 89�93.

WNC08 J.-B. Wang, C.-T. Ng, T.-C. E. Cheng, Single-machine scheduling with deteri-
orating jobs under a series–parallel graph constraint, Comput. Oper. Res. 35,
2008, 2684�2693.

Woe00 G. J. Woeginger, When does a dynamic programming formulation guarantee
the existence of a fully polynomial time approximation scheme (FPTAS)?
INFORMS J. Comput. 12, 2000, 57�73.

WSSW10 L. Wang, L.-Y. Sun, L.-H. Sun, J.-B. Wang, On three-machine flow shop
scheduling with deteriorating jobs, Int. J. Prod. Econ. 125, 2010, 185�189.

WW12 J.-B. Wang, M.-Z. Wang, Single-machine scheduling with nonlinear deteriora-
tion, Optim. Lett. 6, 2012, 87–98.

WW13 J.-B. Wang, M.-Z. Wang, Minimizing makespan in three-machine flow shops
with deteriorating jobs, Comput. Oper. Res. 40, 2013, 547�557.

WWJ11 J.-B. Wang, J.-J. Wang, P. Ji, Scheduling jobs with chain precedence con-
straints and deteriorating jobs, J. Oper. Res. Soc. 62, 2011, 1765-1770.

YC+15 Y.-Q. Yin, T.-C. E. Cheng, L. Wan, C.-C. Wu, J. Liu, Two-agent single-
machine scheduling with deteriorating jobs, Comput. Ind. Eng. 81, 2015,
177�185.

YCW12 Y.-Q. Yin, S.-R. Cheng, C.-C. Wu, Scheduling problems with two agents and a
linear non-increasing deterioration to minimize earliness penalties, Inf. Sci.
189, 2012, 282�292.

YOWX12 S. Yu, J.-T. Ojiaku, P. W.-H. Wong, Y. Xu, Online makespan scheduling of
linear deteriorating jobs on parallel machines, Lect. Notes Comput. Sc. 7287,
2012, 260�272.

YW13 S. Yu, P. W.-H. Wong, Online scheduling of simple linear deteriorating jobs to
minimize the total general completion time, Theor. Comput. Sci. 487, 2013,
95�102.

ZT12 C.-L. Zhao, H.-Y. Tang, Two-machine flow shop scheduling with deteriorating
jobs and chain precedence constraints, Int. J. Prod. Econ.136, 2012, 131�136.

ZT14 C.-L. Zhao, H.-Y. Tang, Parallel machines scheduling with deteriorating jobs
and availability constraints, Jpn J. Ind. Appl. Math. 31, 2014, 501–512.

ZWW15 X.-G. Zhang, H. Wang, X.-P. Wang, Patient scheduling problems with de-
ferred deteriorated functions, J. Comb. Optim. 30, 2015, 1027�1041.

13 Scheduling under Resource
Constraints

The scheduling model we consider now is more complicated than the previous

ones, because any task, besides processors, may require for its processing some

additional scarce resources. Resources, depending on their nature, may be classi-

fied into types and categories. The classification into types takes into account

only the functions resources fulfill: resources of the same type are assumed to

fulfill the same functions. The classification into categories will concern two

points of view. First, we differentiate three categories of resources from the

viewpoint of resource constraints. We will call a resource renewable, if only its

total usage, i.e. temporary availability at every moment, is constrained. A re-

source is called non-renewable, if only its total consumption, i.e. integral availa-

bility up to any given moment, is constrained (in other words this resource once

used by some task cannot be assigned to any other task). A resource is called

doubly constrained, if both total usage and total consumption are constrained.

Secondly, we distinguish two resource categories from the viewpoint of resource

divisibility: discrete (i.e. discretely-divisible) and continuous (i.e. continuously-

divisible) resources. In other words, by a discrete resource we will understand a

resource which can be allocated to tasks in discrete amounts from a given finite

set of possible allocations, which in particular may consist of one element only.

Continuous resources, on the other hand, can be allocated in arbitrary, a priori

unknown, amounts from given intervals.

In the next three sections we will consider several basic sub-cases of the re-

source constrained scheduling problem. In Sections 13.1 and 13.2 problems with

renewable, discrete resources will be considered. In Section 13.1 it will in partic-

ular be assumed that any task requires one arbitrary processor and some units of

additional resources, while in Section 13.2 tasks may require more than one pro-

cessor at a time (cf. also Chapter 6). Section 13.3 is devoted to an analysis of

scheduling with continuous resources.

13.1 Classical Model

The resources to be considered in this section are assumed to be discrete and re-

newable. Thus, we may assume that s types of additional resources R1 , R2 ,..., Rs

are available in m1 , m2 ,..., ms units, respectively. Each task Tj requires for its

processing one processor and certain fixed amounts of additional resources speci-

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_13

475

https://doi.org/10.1007/978-3-319-99849-7_13
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_13&domain=pdf

476 13 Scheduling under Resource Constraints

fied by the resource requirement vector R(Tj) = [R1(Tj) , R2(Tj) ,..., Rs(Tj)], where

Rl(Tj) (0 � Rl(Tj) � ml) , l = 1, 2,..., s, denotes the number of units of resource Rl

required for the processing of Tj . We will assume here that all required resources

are granted to a task before its processing begins or resumes (in the case of

preemptive scheduling), and they are returned by the task after its completion or

in the case of its preemption. These assumptions define a very simple rule to pre-

vent system deadlocks (see e.g. [CD73]) which is often used in practice, despite

the fact that it may lead to a not very efficient use of the resources.

We see that such a model is of special value in manufacturing systems where

tasks, besides processors, may require additional limited resources for their pro-

cessing, such as manpower, tools, space etc. One should also not forget about

computer applications, where additional resources can stand for primary

memory, mass storage, channels and I/O devices. Before discussing basic results

in that area we would like to introduce a missing part of the notation scheme in-

troduced in Section 3.4 that describes additional resources. In fact, they are de-

noted by parameter *2 � {�, res 0,�}, where

*2 = �: no resource constraints,

*2 = res 0,�: there are specified resource constraints;

0, ,, � � {&, k} denote respectively the number of resource types, resource limits

and resource requirements. If

0, ,, � = & then the number of resource types, resource limits and resource

requirements are respectively arbitrary, and if

0, ,, � = k, then, respectively, the number of resource types is equal to k,

each resource is available in the system in the amount of k units and the re-

source requirements of each task are equal to at most k units.

At this point we would also like to present possible transformations among

scheduling problems that differ only by their resource requirements (see Figure

13.1.1). In this figure six basic resource requirements are presented. All but two

of these transformations are quite obvious. Transformation �(res&&&) � �(res1&&)
has been proved for the case of saturation of machines and additional resources

[GJ75] and will not be presented here. The second, �(res1&&) � �(res&11), has

been proved in [BBKR86]; to sketch its proof, for a given instance of the first

problem we construct a corresponding instance of the second problem by assum-

ing the parameters all the same, except resource constraints. Then for each pair

Ti , Tj such that R1(Ti) + R1(Tj) > m1 (in the first problem), resource Rij available

in the amount of one unit is defined in the second problem. Tasks Ti , Tj require a

unit of Rij , while other tasks do not require this resource. It follows that R1(Ti) +

R1(Tj) � m1 in the first problem if and only if Rk(Ti) + Rk(Tj) � 1 for each resource

Rk in the second problem.

 13.1 Classical Model 477

res&&&

res&&1

res&11

res111

res1&1

res1&&

sat

Figure 13.1.1 Polynomial transformations among resource constrained
scheduling problems.

We will now pass to the presentation of some important results obtained for the

above model of resource constrained scheduling. Space limitations prohibit us

even from only quoting all these results, however, an extensive survey may be

found in [BCSW86, BDM+99, Weg99]. As an example we chose the problem of

scheduling tasks on parallel identical processors to minimize schedule length.

Basic algorithms in this area will be presented.

Let us first consider the case of independent tasks and non-preemptive

scheduling.

Problem P2 | res&&&&, pj = 1 | Cmax

The problem of scheduling unit-length tasks on two processors with arbitrary

resource constraints and requirements can be solved optimally by the following

algorithm.

Algorithm 13.1.1 Algorithm by Garey and Johnson for P2 | res&&&, pj = 1 | Cmax

[GJ75].

begin

Construct an n-node (undirected) graph G with each node labeled as a distinct

task and with an edge joining Ti to Tj if and only if Rl(Ti) + Rl(Tj) � ml ,

l = 1, 2,..., s;

Find a maximum matching F of graph G;

Put the minimal value of schedule length C *
max = n � | F |;

478 13 Scheduling under Resource Constraints

Process in parallel the pairs of tasks joined by the edges comprising set F ;

Process other tasks individually;
end;

Notice that the key idea here is the correspondence between maximum matching

in a graph displaying resource constraints and the minimum-length schedule. The

complexity of the above algorithm clearly depends on the complexity of the algo-

rithm determining the maximum matching. There are several algorithms for find-

ing it, the complexity of the most efficient by Kariv and Even [KE75] being

O(n2.5
). An example of the application of this algorithm is given in Figure 13.1.2

where it is assumed that n = 6, m = 2, s = 2, m1 = 3, m2 = 2, R(T1) = [1, 2],

R(T2) = [0, 2], R(T3) = [2, 0], R(T4) = [1, 1], R(T5) = [2, 1], and R(T6) = [1, 0] .

An even faster algorithm can be found if we restrict ourselves to the one-

resource case. It is not hard to see that in this case an optimal schedule will be

produced by ordering tasks in non-increasing order of their resource requirements

and assigning tasks in that order to the first free processor on which a given task

can be processed because of resource constraints. Thus, problem P2 | res1&&, pj = 1 |

Cmax can be solved in O(nlogn) time.

If in the last problem tasks are allowed only for 0-1 resource requirements,

the problem can be solved in O(n) time even for arbitrary ready times and an

arbitrary number of machines, by first assigning tasks with unit resource re-

quirements up to m1 in each slot, and then filling these slots with tasks having

zero resource requirements [Bla78].

(a) (b) F = {(T1 , T6), (T2 , T3), (T4 , T5)}

T2

T3

T4

T1

T6

T5

T3

T2T1

T6

T4

T5

P1

P2

t0 1 2 3

Cmax
* = n � | | = 3F

Figure 13.1.2 An application of Algorithm 13.1.1:

 (a) graph G corresponding to the scheduling problem,
 (b) an optimal schedule.

 13.1 Classical Model 479

Problem P | res sor, pj = 1 | Cmax

When the number of resource types, resource limits and resource requirements

are fixed (i.e. constrained by positive integers s, o, r, respectively), problem P |

res sor, pj = 1 | Cmax is still solvable in linear time, even for an arbitrary number of

processors [BE83]. We describe this approach below, since it has a more general

application. Depending on the resource requirement vector [R1(Tj) , R2(Tj) ,...,

Rs(Tj)] � {0, 1,..., r}
s
, the tasks can be distributed among a sufficiently large

(and fixed) number of classes. For each possible resource requirement vector we

define one such class. The correspondence between the resource requirement

vectors and the classes will be described by a 1-1 function f : {0, 1,..., r}
s
 �

{1, 2,..., k}, where k is the number of different possible resource requirement

vectors, i.e. k = (r + 1)
s
. For a given instance, let ni denote the number of tasks

belonging to the ith class, i = 1, 2,..., k. Thus all the tasks of class i have the same

resource requirement f �1
(i). Observe that most of the input information describ-

ing an instance of problem P | res sor, pj = 1 | Cmax is given by the resource re-

quirements of n given tasks (we bypass for the moment the number m of proces-

sors, the number s of additional resources and resource limits o). This input may

now be replaced by the vector v = (v1 ,v2 ,..., vk) � IN
k
0 , where vi is the number of

tasks having resource requirements equal to f �1
(i), i = 1, 2,..., k. Of course, the

sum of the components of this vector is equal to the number of tasks, i.e. �
i=1

k
 vi =

n .

We now introduce some definitions useful in the following discussion. An

elementary instance of P | res sor, pj = 1 | Cmax is defined as a sequence R(T1),

R(T2),..., R(Tu), where each R(Ti) � {1, 2,..., r}
s
 � {(0, 0,..., 0)}, with properties

u � m and �
i=1

u
 R(Ti) � (o, o,..., o). Note that the minimal schedule length of an

elementary instance is always equal to 1. An elementary vector is a vector v �

IN
k
0 which corresponds to an elementary instance. If we calculate the number L of

different elementary instances, we see that L cannot be greater than (o + 1)
(r+1)

s�1
,

however, in practice L will be much smaller than this upper bound. Denote the

elementary vectors (in any order) by b1 , b2 ,..., bL .

We observe two facts. First, any input R(T1), R(T2),..., R(Tn) can be consid-

ered as a union of elementary instances. This is because any input consisting of

one task is elementary. Second, each schedule is also constructed from elemen-

tary instances, since all the tasks which are executed at the same time form an

elementary instance.

Now, taking into account the fact that the minimal length of a schedule for

any elementary instance is equal to one, we may formulate the original problem

480 13 Scheduling under Resource Constraints

as that of finding a decomposition of a given instance into the minimal number

of elementary instances. One may easily see that this is equivalent to finding a

decomposition of the vector v = (v1 ,v2 ,..., vk) � IN
k
0 into a linear combination of

elementary vectors b1 , b2 ,..., bL , for which the sum of coefficients is minimal:

Find e1 , e2 ,..., eL � IN
k
0 such that �

i=1

L
 eibi = v and �

i=1

L
 ei is minimal.

Thus, we have obtained a linear integer programming problem, which in the

general case, would be NP-hard. Fortunately, in our case the number of variables

L is fixed. It follows that we can apply a result due to Lenstra [Len83] which

states that the linear programming problem with fixed number of variables can be

solved in polynomial time depending on both, the number of constraints of the

integer linear programming problem and loga, but not on the number of varia-

bles, where a is the maximum of all the coefficients in the linear integer pro-

gramming problem. Thus, the complexity of the problem is O(2
L2

(k loga)
cL

), for

some constant c. In our case the complexity of that algorithm is O(2
L2

(k logn)
cL

) <

O(n). Since the time needed to construct the data for this integer programming

problem is O(2
s
(L + logn)) = O(logn), we conclude that the problem P | res sor,

pj = 1 | Cmax can be solved in linear time.

Problem Pm | res sor | Cmax

Now we generalize the above considerations for the case of non-unit processing

times and tasks belonging to a fixed number k of classes only. That is, the set of

tasks may be divided into k classes and all the tasks belonging to the same class

have the same processing and resource requirements. If the number of processors

m is fixed, then the following algorithm, based on dynamic programming, has

been proposed by B)�la &zewicz et al. [BKS89]. A schedule will be built step by

step. In every step one task is assigned to a processor at a time. All these assign-

ments obey the following rule: if task Ti is assigned after task Tj , then the starting

time of Ti is not earlier than the starting time of Tj . At every moment an assign-

ment of processors and resources to tasks is described by a state of the assign-
ment process. For any state a set of decisions is given each of which transforms

this state into another state. A value of each decision will reflect the length of a

partial schedule defined by a given state to which this decision led. Below, this

method will be described in a more detail.

The state of the assignment process is described by an m × k matrix X, and

vectors Y and Z. Matrix X reflects numbers of tasks from particular classes al-

ready assigned to particular processors. Thus, the maximum number of each en-

try may be equal to n. Vector Y has k entries, each of which represents the num-

ber of tasks from a given class not yet assigned. Finally, vector Z has m entries

 13.1 Classical Model 481

and they represent classes which recently assigned tasks (to particular processors)

belong to.

The initial state is that for which matrices X and Z have all entries equal to 0

and Y has entries equal to the numbers of tasks in the particular classes in a given

instance.

Let S be a state defined by X, Y and Z. Then, there is a decision leading to

state S' consisting of X', Y' and Z' if and only if

 t � {1,..., k} such that Yt > 0 , (13.1.1)

|M | = 1 , (13.1.2)

where M is any subset of

F = {i | �
1�j�k

 Xij pj = min
1�g�m

{ �
1�j�k

 Xgj pj}} ,

and finally

Rl(Tt) � ml � �
1�j�k

 Rl(Tj) �{g | Zg = j}� , l = 1,2,..., s , (13.1.3)

where this new state is defined by the following matrices

X'ij = {
Xij + 1 if i � M and j = t ,

Xij otherwise,

Y'j = {

Yj � 1 if j = t ,
Yj otherwise,

(13.1.4)

Z'i = {

t if i � M ,

Zi otherwise.

In other words, a task from class t may be assigned to processor Pi, if this class is

non-empty (inequality (13.1.1) is fulfilled), there is at least one free processor

(equation (13.1.2)), and resource requirements of this task are satisfied (equation

(13.1.3)).

If one (or more) conditions (13.1.1) through (13.1.3) are not satisfied, then

no task can be assigned at this moment. Thus, one must simulate an assignment

of an idle-time task. This is done by assuming the following new state S" :

X"ij = { Xij if i 	 F ,

Xhj otherwise,

Y" = Y , (13.1.5)

Z"i = {
Zi if i 	 F ,

0 otherwise,

482 13 Scheduling under Resource Constraints

where h is one of these g, 1 � g � m, for which

�
1�j�k

 Xgj pj = min
1�i�m
i	F

 { �
1�j�k

 Xij pj} .

This means that the above decision leads to state S'' which repeats a pattern of

assignment for processor Ph , i.e. one which will be free as the first from among

those which are busy now.

A decision leading from state S to S' has its value equal to

max
1�i�m

{ �
1�j�k

 Xij pj} . (13.1.6)

This value, of course, is equal to a temporary schedule length.

The final state is that for which the matrices Y and Z have all entries equal to

0. An optimal schedule is then constructed by starting from the final state and

moving back, state by state, to the initial state. If there is a number of decisions

leading to a given state, then we choose the one having the least value to move

back along it. More clearly, if state S follows immediately S', and S (S' respec-

tively) consists of matrices X, Y, Z (X', Y', Z' respectively), then this decision

corresponds to assigning a task from Y � Y' at the time min
1�i�m

{ �
1�j�k

 Xij pj }.

The time complexity of this algorithm clearly depends on the product of the

number of states and the maximum number of decisions which can be taken at

the states of the algorithm. A careful analysis shows that this complexity can be

bounded by O(nk(m+1)
), thus, for fixed numbers of task classes k and of processors

m, it is polynomial in the number of tasks.

Let us note that another dynamic programming approach has been described

in [BKS89] in which the number of processors is not restricted, but a fixed upper

bound on task processing times p is specified. In this case the time complexity of

the algorithm is O(nk(p+1)
) .

Problem P | res&&&&, pj = 1 | Cmax

It follows that when we consider the non-preemptive case of scheduling of unit

length tasks we have five polynomial time algorithms and this is probably as

much as we can get in this area, since other problems of non-preemptive schedul-

ing under resource constraints have been proved to be NP-hard. Let us mention

the parameters that have an influence on the hardness of the problem. First, dif-

ferent ready times cause the strong NP-hardness of the problem even for two

processors and very simple resource requirements, i.e. problem P2 | res1&&, rj , pj =

1 | Cmax is already strongly NP-hard [BBKR86] (From Figure 13.1.1 we see that

problem P2 | res&11, rj , pj = 1 | Cmax is strongly NP-hard as well). Second, an in-

crease in the number of processors from 2 to 3 results in the strong NP-hardness

 13.1 Classical Model 483

of the problem. That is, problem P3 | res1&&, rj , pj = 1 | Cmax is strongly NP-hard as

proved by Garey and Johnson [GJ75]. (Note that this is the famous 3-

PARTITION problem, the first strongly NP-hard problem.) Again from Figure

13.1.1 we conclude that problem P3 | res&11, rj , pj = 1 | Cmax is NP-hard in the

strong sense. Finally, even the simplest precedence constraints result in the NP-

hardness of the scheduling problem, that is, the P2 | res111, chains, pj = 1 | Cmax is

NP-hard in the strong sense [BLRK83]. Because all these problems are NP-hard,

there is a need to work out approximation algorithms. We quote some of the re-

sults. Most of the algorithms considered here are list scheduling algorithms

which differ from each other by the ordering of tasks on the list. We mention

three approximation algorithms analyzed for the problem 1.

1. First fit (FF). Each task is assigned to the earliest time slot in such a way that

no resource and processor limits are violated.

2. First fit decreasing (FFD). A variant of the first algorithm applied to a list

ordered in non-increasing order of Rmax(Tj) , where Rmax(Tj) = max{Rl(Tj)/ml | 1 �

l � s} .

3. Iterated lowest fit decreasing (ILFD - applies for s = 1 and pj = 1 only). Order

tasks as in the FFD algorithm. Put C as a lower bound on C *
max. Place T1 in the

first time slot and proceed through the list of tasks, placing Tj in a time slot for

which the total resource requirement of tasks already assigned is minimum. If we

ever reach a point where Tj cannot be assigned to any of C slots, we halt the itera-

tion, increase C by 1, and start over.

Below we will present the main known bounds for the case m < n. In

[KSS75] several bounds have been established. Let us start with the problem P |

res1&&, pj = 1 | Cmax for which the three above mentioned algorithms have the fol-

lowing bounds:

27

10
 � 9 37

10m; < R#
FF < 27

10
 � 24

10m
 ,

R#
FFD = 2 � 2

m
 ,

RILFD �� 2 .

We see that the use of an ordered list improves the bound by about 30%. Let us

also mention here that problem P | res&&&, pj = 1 | Cmax can be solved by the approx-

imation algorithm based on the two machine aggregation approach by Röck and

1 Let us note that the resource constrained scheduling for unit task processing times is

equivalent to a variant of the bin packing problem in which the number of items per bin is

restricted to m. On the other hand, several other approximation algorithms have been ana-

lyzed for the general bin packing problem and the interested reader is referred to [CGJ84]

for an excellent survey of the results obtained in this area.

484 13 Scheduling under Resource Constraints

Schmidt [RS83], as described in Section 7.3.2 in the context of flow shop sched-

uling. The worst case behavior of this algorithm is R = 9m2 ; .

Problem P | res&&& | Cmax

For arbitrary processing times some other bounds have been established. For

problem P | res&&& | Cmax the first fit algorithm has been analyzed by Garey and

Graham [GG75]:

R#
FF = min{m+1

2
 , s + 2 �

2s+1

m
} .

Finally, when dependent tasks are considered, the first fit algorithm has been

evaluated for problem P | res&&&, prec | Cmax by the same authors:

R#
FF = m .

Unfortunately, no results are reported on the probabilistic analysis of approxima-

tion algorithms for resource constrained scheduling.

Problem P | pmtn, res1&1 | Cmax

Now let us pass to preemptive scheduling. Problem P | pmtn, res1&1 | Cmax can be

solved via a modification of McNaughton's rule (Algorithm 5.1.8) by taking

C *
max = max{max

j
{pj}, �

j=1

n
 pj /m, �

Tj �ZR
 pj /m1}

as the minimum schedule length, where ZR is the set of tasks for which R1(Tj) =

1. The tasks are scheduled as in Algorithm 5.1.8, the tasks from ZR being sched-

uled first. The complexity of the algorithm is obviously O(n).

Problem P2 | pmtn, res&&& | Cmax

Let us consider now the problem P2 | pmtn, res&&& | Cmax . This can be solved via a

transformation into the transportation problem [BLRK83].

Without loss of generality we may assume that task Tj , j = 1, 2,..., n, spends

exactly pj /2 time units on each of the two processors. Let (Tj , Ti) , j � i, denote a

resource feasible task pair, i.e. a pair for which Rl(Tj) + Rl(Ti) � ml , l = 1, 2,..., s.

Let Z be the set of all resource feasible pairs of tasks. Z also includes all pairs

of the type (Tj , Tn+1), j = 1, 2,..., n, where Tn+1 is an idle time (dummy) task.

Now we may construct a transportation network. Let n + 1 sender nodes corre-

spond to the n + 1 tasks (including the idle time task) which are processed on

 13.1 Classical Model 485

processor P1 and let n + 1 receiver nodes correspond to the n + 1 tasks processed

on processor P2 . Stocks and requirements of nodes corresponding to Tj, j =

1, 2,..., n, are equal to pj /2, since the amount of time each task spends on each

processor is equal to pj /2. The stock and the requirement of two nodes corre-

sponding to Tn+1 are equal to �
j=1

n
 pj /2, since these are the maximum amounts of

time each processor may be idle. Then, we draw directed arcs (Tj , Ti) and (Ti , Tj)

if and only if (Tj , Ti) � Z , to express the possibility of processing tasks Tj and Ti

in parallel on processors P1 and P2 . In addition we draw an arc (Tn+1 , Tn+1).

Then, we assign for each pair (Tj , Ti) � Z a cost associated with arcs (Tj , Ti) and

(Ti , Tj) equal to 1, and a cost associated with the arc (Tn+1 , Tn+1) equal to 0. (This

is because an interval with idle times on both processors does not lengthen the

schedule). Now, it is quite clear that the solution of the corresponding transporta-

tion problem, i.e. the set of arc flows {x*
ji }, is simply the set of the numbers of

time units during which corresponding pairs of tasks are processed (Tj being pro-

cessed on P1 and Ti on P2) .

The complexity of the above algorithm is O(n4
 log 5 pj) since this is the

complexity of finding a minimum cost flow in a network, with the number of

vertices equal to O(n) .

Problem Pm | pmtn, res&&&& | Cmax

Now let us pass to the problem Pm | pmtn, res&&& | Cmax . This problem can still be

solved in polynomial time via the linear programming approach (5.1.14) -

(5.1.15) but now, instead of the processor feasible set, the notion of a resource
feasible set is used. By the latter we mean the set of tasks which can be simulta-

neously processed because of resource limits (including processor limit). At this

point let us also mention that problem P | pmtn, res&&1 | Cmax can be solved by the

generalization of the other linear programming approach presented in (5.1.24) -

(5.1.27). Let us also add that the latter approach can handle different ready times

and the Lmax criterion. On the other hand, both approaches can be adapted to cov-

er the case of the uniconnected activity network in the same way as that de-

scribed in Section 5.1.1.

Finally, we mention that for the problem P | pmtn, res1&& | Cmax , the approxi-

mation algorithms FF and FFD had been analyzed by Krause et al. [KSS75]:

R#
 FF = 3 �

3

m ,

R #
 FFD = 3 �

3

m .

486 13 Scheduling under Resource Constraints

Surprisingly, the use of an ordered list does not improve the bound.

13.2 Scheduling Multiprocessor Tasks

In this section we combine the model presented in Chapter 6 with the resource

constrained scheduling. That is, each task is assumed to require one or more pro-

cessors at a time, and possibly a number of additional resources during its execu-

tion. The tasks are scheduled preemptively on m identical processors so that

schedule length is minimized.

We are given a set T of tasks of arbitrary processing times which are to be

processed on a set P = {P1 ,..., Pm} of m identical processors. There are also s

additional types of resources, R1 ,..., Rs , in the system, available in the amounts

of m1 ,..., ms � IN units. The task set T is partitioned into subsets,

T j
 = {T1

 j
,..., Tnj

 j
} , j = 1, 2,..., k,

k being a fixed integer � m, denoting a set of tasks each requiring j processors

and no additional resources, and

T jr
 = {T 1

 jr
,..., T nj

r
 jr

} , j = 1, 2,..., k,

k being a fixed integer � m, denoting a set of tasks each requiring j processors

simultaneously and at most ml units of resource type Rl , l = 1,..., s (for simplicity

we write superscript r to denote "resource tasks", i.e. tasks or sets of tasks requir-

ing resources). The resource requirements of any task T i
 jr

 , i = 1, 2,..., nj
r

 , j = 1,

2,..., k, are given by the vector R(T i
 jr

) � (m1 , m2 ,..., ms) .

We will be concerned with preemptive scheduling, i.e. each task may be pre-

empted at any time in a schedule, and restarted later at no cost (in that case, of

course, resources are also preempted). All tasks are assumed to be independent,

i.e. there are no precedence constraints or mutual exclusion constraints among

them. A schedule will be called feasible if, besides the usual conditions each task

from T j
 � T jr

 for j = 1, 2,..., k is processed by j processors at a time, and at

each moment the number of processed T jr
-tasks is such that the numbers of re-

sources used do not exceed the resource limits. Our objective is to find a feasible

schedule of minimum length. Such a schedule will be called optimal.
First we present a detailed discussion of the case of one resource type (s = 1)

available in r units, unit resource requirements, i.e. resource requirement of each

task is 0 or 1, and j � {1, k} processors per task for some k � m. So the task set is

assumed to be T = T 1 � T 1r
 � T k � T kr

 . A scheduling algorithm of complexi-

ty O(nm) where n is the number of tasks in set T , and a proof of its correctness

 13.2 Scheduling Multiprocessor Tasks 487

are presented for k = 2. Finally, a linear programming formulation of the schedul-

ing problem is presented for arbitrary values of s, k, and resource requirements.

The complexity of the approach is bounded from above by a polynomial in the

input length as long as the number of processors is fixed.

Process of Normalization

First we prove that among minimum length schedules there exists always a

schedule in a special normalized form: A feasible schedule of length C for the set

T 1 � T 1r
 � T k � T kr

 is called normalized if and only if w � IN 0, L � [0, C)

such that the number of T k
-, T kr

-tasks executed at time t � [0, L) is w + 1, and

the number of T k
-,T kr

-tasks executed at time t � [L, C) is w (see Figure 13.2.1).

We have the following theorem [BE94].

Theorem 13.2.1 Every feasible schedule for the set of tasks T 1 � T 1r
 � T k �

T kr
 can be transformed into a normalized schedule.

Proof. Divide a given schedule into columns such that within each column there

is no change in task assignment. Note that since the set of tasks and the number

of processors are finite, we may assume that the schedule consists only of a finite

number of different columns. Given two columns A and B of the schedule, sup-

pose for the moment that they are of the same length. Let n j
A , njr

 A , n j
B , njr

 B denote

the number of T j
-, T jr

-tasks in columns A and B, respectively, j � {1, k}. Let n0
A

and n0
B be the numbers of unused processors in A and B, respectively. The proof

is based on the following claim.

-tasks

-tasks

CL0

T k T kr

1 1r

Pm

P1

-,

-,
t

T T

Figure 13.2.1 A normalized form of a schedule.

Claim 13.2.2 Let A and B be columns as above of the same length, and nk
B +

nkr
B � nk

A + nkr
A + 2. Then it is always possible to shift tasks between A and B in

such a way that afterwards B contains one task of type T k or T kr less than be-
fore. (The claim is valid for any k � 2.)

488 13 Scheduling under Resource Constraints

Proof. We consider two different types of task shifts, �1 and �2 . They are pre-

sented below in an algorithmic way. Algorithm 13.2.3 tries to perform a shift of

one T k-task from B to A, and, conversely, of some T 1-and T 1r
-tasks from A to

B. Algorithm 13.2.4 tries to perform a shift of some, say j + 1 T kr
-tasks from B

to A, and, conversely, of j T k-tasks and some T 1-, T 1r
-tasks from A to B .

T k

kr

1

1r

k �n0
A

A B

kr

n0
A

k

T

T
T

T

T

Figure 13.2.2 Shift of tasks in Algorithm 13.2.3.

Algorithm 13.2.3 Shift �1 .

begin

if nk
B > 0 -- i.e. B has at least one task of type T k

then

 begin

 Shift one task of type T k from column B to column A;

 -- i.e. remove one of the T k-tasks from B and assign it to A

 if n0
A < k

 then

 begin

 if n1
A + n0

A � k

 then Shift k � n0
A T 1-tasks from A to B

 else

 if There are at least k � n0
A � n1

A unused resources in B

 then

 begin

 Shift n1
A T 1-tasks from A to B;

 Shift k � n0
A�n1

A T 1r
-tasks from A to B;

 end

 else write(' �1 cannot be applied: resource conflict');

 end;

 13.2 Scheduling Multiprocessor Tasks 489

 end

else write(' �1 cannot be applied: B has no T k-task');

end;

Algorithm 13.2.4 Shift �2 .

begin

if nkr
B > 0 -- i.e. B has at least one task of type T kr

then

 begin

 if n1r
A = 0

 then

 begin

 Shift one T kr
-task from B to A;

 if n0
A < k

 then

 if nkr
A < r -- i.e. no resource conflicts in A

 then Shift k � n0
A T 1-tasks from A to B

 else Write(' �2 cannot be applied: resource conflict');

 end

 else -- i.e. in the case of n1r
A > 0

 begin

 if there are numbers j, 01, and 02 such that

� � � � 01 + 02 = k � n0
A if n0

A < k, and 1 otherwise,

 0 � j < 02,

 j � nk
A, j < nkr

B,

� � � � 01 � n1
A, 02 � n1r

A ,

 nkr
B + 02 � j � 1 � r,

 nkr
A + n1r

A + j + 1 � 02 � r

 then -- perform the following shifts simultaneously

 begin

 Shift j + 1 T kr
-tasks from B to A;

 Shift j T k-tasks from A to B;

 Shift 01 T 1-tasks from A to B;

 Shift 02 T 1r
-tasks from A to B;

 end

 else write(' �2 cannot be applied');

 end;

 end

490 13 Scheduling under Resource Constraints

else write(' �2 cannot be applied: B has no T kr
-task');

end;

Before we prove that it is always possible to change columns A and B in the pro-

posed way by means of shifts �1 and �2 we formulate some assumptions and

simplifications on the columns A and B (detailed proofs are left to the reader).

(a1) Without loss of generality we assume that all the tasks in A and B are pair-

wise independent, i.e. they are not parts of the same task.

(a2) nk
A + nkr

A � nk
B + nkr

B � 2 (condition of Claim 13.2.2). From that we get

n1r
A + n1

A + n0
A � n1r

B + n1
B + n0

B + 2k.

(a3) We restrict our considerations to the case n1r
A � n1r

B + k because otherwise

shift �1 or �2 can be applied without causing resource problems.

(a4) Next we can simplify the considerations to the case n1r
B

 = 0. Following (a3)

and the fact that, whatever shift we apply, at most k tasks of type T 1r
 are shifted

from A to B (and none from B to A) we conclude that we can continue our proof

without considering n1r
B tasks of type T 1r

 in both columns.

(a5) Now we assume n0
A = 0 or n0

B = 0 as we can remove all the processors not

used in both columns.

(a6) Again we can simplify our considerations by assuming n0
B = 0 and n1

B = 0.

For suppose n0
B > 0 or n1

B > 0, we can remove all the idle processors and T 1-tasks

from column B and n0
B + n1

B idle processors or tasks of type T 1 or T 1r
 from col-

umn A. This can be done because there are enough tasks T 1 and T 1r
 (or idle pro-

cessors) left in column A .

The two columns are now of the form shown in Figure 13.2.3.

Now we consider four cases (which exhaust all possible situations) and prove

that in each of them either shift �1 or �2 can be applied. Let " = min{n1r
A , max{k

� n0
A , 1}} .

Case I: nkr
B + " � r, nk

B > 0. Here �1 can be applied.

Case II: nkr
B + " � r, nk

B = 0. In this case �2 can be applied.

Case III: nkr
B + " > r, nk

B > 0 .

If 0 � n1r
A � k � n0

A,

or n1r
A > k � n0

A , k � n0
A � 0 ,

or n1r
A > k � n0

A > 0, n0
A + n1

A � k ,

 13.2 Scheduling Multiprocessor Tasks 491

or n1r
A > k � n0

A > 0, n0
A + n1

A < k, nkr
B + k � n0

A � n1
A � r ,

we can always apply �1 . In the remaining sub-case,

n1r
A > k � n0

A > 0, n0
A + n1

A < k, nkr
B + k � n0

A � n1
A > r ,

�1 cannot be applied and, because of resource limits in column B, a �2-shift is

possible only under the additional assumption

nkr
B + k � n0

A � n1
A � nk

A � 1 � r .

What happens in the sub-case nkr
B + k � n0

A � n1
A � nk

A � 1 > r will be discussed in a

moment.

1T
1rT

A B

(n)

(n)

A
1

1r
(n)
(n)

idle (n)
A

A

A
k

kr
A

(n)k

(n)kr

B

B

kT kT

krT
krT

0

Figure 13.2.3 Restructuring columns in Claim 13.2.2.

Case IV: nkr
B + " > r, nk

B = 0 .

Now, �2 can be applied, except when the following conditions hold simultane-

ously:

n1r
A > k � n0

A > 0, n0
A + n1

A < k � 1, and

nkr
B + k � n0

A � n1
A � nk

A � 1 > r .

We recognize that in cases III and IV under certain conditions neither of the

shifts �1 , �2 can be applied. These conditions can be put together as follows:

nk
B � 0, and nkr

B + k � n0
A � n1

A � nk
A � 1 > r .

We prove that this situation can never occur: From resource limits in column A

we get

nkr
B + k � n0

A � n1
A � nk

A � 1 > r � n1r
A + nkr

A .

Together with knkr
B � m we obtain

(k � 1)(n1
A + n1r

A + n0
A) � k(k � 1) < 0 ,

492 13 Scheduling under Resource Constraints

but from (a2) we know n1
A + n1r

A + n0
A � 2k, which contradicts k > 1 .

Having proved Claim 13.2.2, it is not hard to prove Theorem 13.2.1. First, we

observe that the number of different columns in each feasible schedule is finite.

Then, applying shifts �1 or �2 a finite number of times we will get a normalized

schedule (for pairs of columns of different lengths only a part of the longer col-

umn remains unchanged but for one such column this happens only a finite num-

ber of times).

Before we describe an algorithm which determines a preemptive schedule of

minimum length we prove some simple properties of optimal schedules [BE94].

Lemma 13.2.5 In a normalized schedule it is always possible to process the
tasks in such a way that the boundary between T k-tasks and T kr

-tasks contains
at most k steps.

Proof. Suppose there are more than k steps, say k + i, i � 1, and the schedule is of

the form given in Figure 13.2.4. Suppose the step at point L lies between the first

and the last step of the T k-, T kr
-boundary.

k

k
k

C0

I

n +n
+n

n

n
k

1 1r

0
I I

I

I

I

kr

k

nII
kr

n +n
+n

1

0
II

II

II

T

T

T T
1r1

kr

k
nk

II

,
1r

II

L

Figure 13.2.4 k-step boundary between T k- and T kr-tasks.

We try to reduce the location of the first step (or even remove this step) by ex-

changing parts of T kr
-tasks from interval I with parts of T k-tasks from interval

II. From resource limits we know:

n1r
 II + nkr

II � r, n1r
I + nkr

I � r .

As there are k + i steps, we have nkr
I = nkr

II + k + i. Consider possible sub-cases:

 13.2 Scheduling Multiprocessor Tasks 493

(i) If n1r
II + nkr

II < r, then exchange the T k- and T kr
-tasks in question. This ex-

change is possible because in I at least one T kr
-task can be found that is inde-

pendent of all the tasks in II, and in II at least one T k-task can be found that is

independent of all the tasks in I .

(ii) If n1r
II + nkr

II = r, then the shift described in (i) cannot be performed directly.

However, this shift can be performed simultaneously with replacement of a T 1r
-

task from II by a T 1-task (or idle time) from I, as can be easily seen.

If the step at point L in Figure 13.2.4 is the leftmost or rightmost step among

all steps considered so far, then the step removal works in a similar way.

Corollary 13.2.6 In case k = 2 we may assume that the schedule has one of the
forms shown in Figure 13.2.5.

L C L C L C
type A type B type C

,1T 1r ,1T 1rTT ,1T 1rT

2T
2rT

2T

2rT
2T

2rT

Figure 13.2.5 Possible schedule types in Corollary 13.2.6.

Lemma 13.2.7 Let k = 2. In cases (B) and (C) of Figure 13.2.5 the schedule can
be changed in such a way that one of the steps in the boundary between T k and
T kr is located at point L, or it disappears.

Proof. The same arguments as in the proof of Lemma 13.2.5 are used.

Corollary 13.2.8 In case k = 2, every schedule can be transformed into one of
the types given in Figure 13.2.6.

Let us note that if in type B1 (Figure 13.2.6) not all resources are used during

interval [L, C), then the schedule can be transformed into type B2 or C2. If in

type C1 not all resources are used during interval [L, C), then the schedule can be

transformed into type B2 or C2. A similar argument holds for schedules of type

A .

494 13 Scheduling under Resource Constraints

The Algorithm

In this section an algorithm of scheduling preemptable tasks will be presented

and its optimality will then be proved for the case k = 2. Now, a lower bound for

the schedule length can be given. Let

X j
 = �

Ti �T j pi
 j

 , Xjr
 = �

T i
jr �T jr p i

jr
 , j = 1, k .

It is easy to see that the following formula gives a lower bound on the schedule

length,

C = max{C r
max, C'} (13.2.1)

where

C r
max = (X1r

 + Xkr
)/r ,

and C' is the optimum schedule length for all T 1-, T 1r
-, T k-, T kr

-tasks without

considering resource limits (cf. Section 6.1).

L C L C L C

type A

C L C

type B1 type C1

type C2type B2
LL´ L´

T 2r T 2r T 2r

T 2
T 2 T 2

T ,1 1rT T ,1 1rT T ,1 1rT

T ,1 1rTT ,1 1rT

T 2 T 2
T 2r T 2r

Figure 13.2.6 Possible schedule types in Corollary 13.2.8.

In the algorithm presented below we are trying to construct a schedule of type B2

or C2. However, this may not always be possible because of resource constraints

causing "resource overlapping" in certain periods. In this situation we first try to

correct the schedule by exchanging some critical tasks so that resource limits are

not violated, thus obtaining a schedule of type A, B1 or C1. If this is not possible,

i.e. if no feasible schedule exists, we will have to re-compute bound C in order to

remove all resource overlappings.

 13.2 Scheduling Multiprocessor Tasks 495

Let L and L' be the locations of steps as shown in the schedules of type B2 or

C2 in Figure 13.2.6. Then

L c (X2
+ X2r

) mod C, and L' c X2r
 mod C . (13.2.2)

In order to compute resource overlapping we proceed as follows. Assign T 2-

and T 2r
-tasks in such a way that only one step in the boundary between these two

types of tasks occurs; this is always possible because bound C was chosen

properly. The schedule thus obtained is of type B2 or C2. Before the T 1- and

T 1r
-tasks are assigned we partition the free part of the schedule into two areas,

LA (left area) and RA (right area) (cf. Figure 13.2.7). Note that a task from T 1 �

T 1r
 fits into LA or RA only if its length does not exceed L or C � L, respectively.

Therefore, all "long" tasks have to be cut into two pieces, and one piece is as-

signed to LA, and the other one to RA. We do this by assigning a piece of length

C � L of each long task to RA, and the remaining piece to LA (see Section 5.4 for

detailed reasoning). The excess e(Ti) of each such task is defined as e(Ti) = pi �

C + L, if pi > C � L, and 0 otherwise.

LL´ C

LA RA

2r

1

RA

RA
z

n

m1r

try to exchange

OL

T

2T

1T 1rT,

1rT

Figure 13.2.7 Left and right areas in a normalized schedule.

The task assignment is continued by assigning all excesses to LA, and, in addi-

tion, by putting as many as possible of the remaining T 1r
-tasks (so that no re-

source violations occur) and T 1-tasks to LA. However, one should not forget that

if there are more long tasks in T 1 � T 1r
 than z1 + 2 (cf. Figure 13.2.7), then each

such task should be assigned according to the ratio of processing capacities of

both sides LA and RA, respectively. All tasks not being assigned yet are assigned

to RA. Hence only in RA resource limits may be violated. Take the sum OL of

processing times of all T 1r
-tasks violating the resource limit. OL is calculated in

the algorithm given below. Of course, OL is always less than or equal to C � L,

496 13 Scheduling under Resource Constraints

and the T 1r
-tasks in RA can be arranged in such a way that at any time in [L, C)

no more than r + 1 resources are required.

Resource overlapping (OL) of T 1r
- and T 2r

-tasks cannot be removed by ex-

changing T 1r
-tasks in RA with T 1-tasks in LA, because the latter are only the

excesses of long tasks. So the only possibility to remove the resource overlapping

is to exchange T 2r
-tasks in RA with T 2-tasks in LA (cf. Figure 13.2.7). Suppose

that 7 (� OL) is the maximal amount of T 2-, T 2r
-tasks that can be exchanged in

that way. Thus resource overlapping in RA is reduced to the amount OL � 7. If
OL � 7 = 0, then all tasks are scheduled properly and we are done. If OL � 7 > 0,

however, a schedule of length C does not exist. In order to remove the remaining

resource overlapping (which is in fact OL � 7) we have to increase the schedule

length again.

Let nRA be the number of T 2- or T 2r
-tasks executed at the same time during [L,

C). Furthermore, let z1 be the number of processors not used by T 2- or T 2r
-tasks

at time 0, let m 1r
RA be the number of processors executing T 1r

-tasks in RA (cf.

Figure 13.2.7), and let l1
RA be the number of T 1-tasks executed in RA and having

excess in LA. The schedule length is then increased by some amount !C, i.e.

C = C + !C, where !C = min {!Ca, !Cb, !Cc} , (13.2.3)

and !Ca, !Cb, and !Cc are determined as follows.

(a) !Ca = OL � 7

m 1r
RA + (m � z1 � 2)/2 + l1

RA
 .

This formula considers the fact that the parts of T 1r
-tasks violating resource lim-

its have to be distributed among other processors. By lengthening the schedule

the following processors will contribute processing capacity:

� m 1r
RA processors executing T 1r

-tasks on the right hand side of the schedule,

� (m � z1� 2)/2 pairs of processors executing T 2- or T 2r
-tasks and contributing

to a decrease of L (and thus lengthening part RA),

� l1
RA processors executing T 1-tasks whose excesses are processed in LA (and

thus decreasing their excesses, and hence allowing part of T 1r
 to be processed

in LA).

(b) If the schedule length is increased by some ! then L will be decreased by

nRA!, or, as the schedule type may switch from C2 to B2 (provided L was small

enough, cf. Figure 13.2.6), L would be replaced by C + ! + L � nRA!. In order to

avoid the latter case we choose ! in such a way that the new value of L will be 0,

i.e. !Cb = L /nRA .

 13.2 Scheduling Multiprocessor Tasks 497

Notice that with the new schedule length C + !C, !C � {!Ca , !Cb}, the

length of the right area RA, will be increased by !C(nRA + 1) .

(c) Consider all tasks in T 1 with non-zero excesses. All tasks in T 1 whose ex-

cesses are less than !C(nRA + 1) will have no excess in the new schedule. Howev-

er, if there are tasks with larger excess, then the structure of a schedule of length

C + !C will be completely different and we are not able to conclude that the new

schedule will be optimal. Therefore we take the shortest task Ts of T 1 with non-

zero excess and choose the new schedule length so that Ts will fit exactly into the

new RA, i.e.

!Cc =
ps � C + L
1 + nRA

 .

The above reasoning leads to the following algorithm [BE94].

Algorithm 13.2.9
Input: Number m of processors, number r of resource units, sets of tasks T 1 ,

T 1r
 , T 2 , T 2r

 .

Output: Schedule for T 1 � T 1r
 � T 2 � T 2r

 of minimum length.

begin

 Compute bound C according to formula (13.2.1);
 repeat

 Compute L, L' according to (13.2.2), and the excesses for the tasks of

T 1 � T 1r,

 Using bound C, find a normalized schedule for T 2- and T 2r
-tasks by assign-

ing T 2r
-tasks from the top of the schedule (processors Pm, Pm�1,...,) and

from left to right, and by assigning T 2-tasks starting at time L, to the pro-

cessors Pz1+1 and Pz1+2 from right to left (cf. Figure 13.2.8);

 if the number of long T 1- and T 1r
-tasks is � z1+ 2

 then

Take the excesses e(T) of long T 1- and T 1r
-tasks, and assign them to the left

area LA of the schedule in the way depicted in Figure 13.2.8
else
Assign these tasks according to the processing capacities of both sides LA and

RA of the schedule, respectively;

 if LA is not completely filled

 then Assign T 1r
-tasks to LA as long as resource constraints are not violat-

ed;

 if LA is not completely filled

498 13 Scheduling under Resource Constraints

 then Assign T 1-tasks to LA;

 Fill the right area RA with the remaining tasks in the way shown in Figure

13.2.8;

 if resource constraints are violated in interval [L, C)

 then

 Compute resource overlapping OL � 7 and correct bound C according to

(13.2.3);

 until OL � 7 = 0;

end;

L0

LA RA

m

z1

1
C

P

P

P

1T

2rT

1rT

1T

1rT

2T

Figure 13.2.8 Construction of an optimal schedule.

The optimality of Algorithm 13.2.9 is proved by the following theorem [BE94].

Theorem 13.2.10 Algorithm 13.2.9 determines a preemptive schedule of mini-
mum length for T 1 � T 1r

 � T 2 � T 2r in time O(nm) .

The following example demonstrates the use of Algorithm 13.2.9.

Example 13.2.11 Consider a processor system with m = 8 processors, and r = 3

units of resource. Let the task set contain 9 tasks, with processing requirements

as given in the following table:

 T1 T2 T3 T4 T5 T6 T7 T8 T9

processing times

number of processors

number of resource units

10

2

1

5

2

0

5

2

0

5

2

0

10

1

1

8

1

1

2

1

1

3

1

0

7

1

0

Table 13.2.1.

Then,

X1
 = 10 , X1r

 = 20 , X2
 = 15 , X2r

 = 10 ,

C r
max = (X1r

 + X2r
)/r = 10 , C' = (X1

 + X1r
 + 2X2

 + 2X2r
)/m = 10 ,

 13.2 Scheduling Multiprocessor Tasks 499

i.e. C = 10 and L = 5. The first loop of Algorithm 13.2.9 yields the schedule

shown in Figure 13.2.9. In the schedule thus obtained a resource overlapping

occurs in the interval [8,10). There is no way to exchange tasks, so 7 = 0, and an

overlapping of amount 2 remains. From equation (13.2.3) we obtain !Ca = 1/3,

!Cb = 5/2, and !Cc = 2/3. Hence the new schedule length will be C = 10 + !Ca =

10.33, and L = 4.33, L' = 10.0. In the second loop the algorithm determines the

schedule shown in Figure 13.2.10, which is now optimal.

OL

1T

P1
0 2 5 8 10

P8 2r

2T 2
3T 2

4T 2

9T 1

5T 1r
6T 1r

8T 1
7T 1r

9T 1

Figure 13.2.9 Example schedule after the first loop of Algorithm 13.2.9.

0 10.33109.674.670.33 2.671 7.33

P8

P1

L = 4.33

1T 2r

9T 1

2T 2
3T 2

4T 2

6
T1r

2T 2

7T
1r

8T 1

9T 1
7T 1r

6T 1r

5T 1r

4T 2

Figure 13.2.10 Example schedule after the second loop of Algorithm 13.2.9.

Linear Programming Approach to the General Case

In this section we will show that for a much larger class of scheduling problems

one can find schedules of minimum length in polynomial time. We will consider

tasks having arbitrary resource and processor requirements. That is, the task set T

is now composed of the following subsets:

500 13 Scheduling under Resource Constraints

T j
, j = 1,..., k, tasks requiring j processors each and no resources, and

T jr
, j = 1,..., k, tasks requiring j processors each and some resources.

We present a linear programming formulation of the problem. Our approach

is similar to the LP formulation of the project scheduling problem, cf. (5.1.15)-

(5.1.16). We will need a few definitions. By a resource feasible set we mean here

a subset of tasks that can be processed simultaneously because of their total re-

source and processor requirements. Let M be the number of different resource

feasible sets. By variable xi we denote the processing time of the i th resource fea-

sible set, and by Q j we denote the set of indices of those resource feasible sets

that contain task Tj � T . Thus the following linear programming problem can be

formulated:

Minimize �
i=1

M
 xi

subject to �
i�Q j

 xi = pj for each Tj � T ,

 xi � 0, i = 1, 2,..., M .

As a solution of the above problem we get optimal values x*
i of interval

lengths in an optimal schedule. The tasks processed in the intervals are members

of the corresponding resource feasible subsets. As before, the number of con-

straints of the linear programming problem is equal to n, and the number of vari-

ables is O(nm
). Thus, for a fixed number of processors the complexity is bounded

from above by a polynomial in the number of tasks. On the other hand, a linear

programming problem may be solved (using e.g. Karmarkar's algorithm [Kar84])

in time bounded from above by a polynomial in the number of variables, the

number of constraints, and the sum of logarithms of all the coefficients in the LP

problem. Thus for a fixed number of processors, our scheduling problem is solv-

able in polynomial time.

13.3 Scheduling with Continuous Resources

In this section we consider scheduling problems in which, apart from processors,

also continuously-divisible resources are required to process tasks. Basic results

will be given for problems with parallel, identical processors (Section 13.3.2) or

a single processor (Sections 13.3.3, 13.3.4) and one additional type of continu-

ous, renewable resource. This order of presentation follows from the specificity

of task models used in each case.

 13.3 Scheduling with Continuous Resources 501

13.3.1 Introductory Remarks

Let us start with some comments concerning the concept of a continuous re-

source. As we remember, this is a resource which can be allotted to a task in an

arbitrary, unknown in advance amount from a given interval. We will deal with

renewable resources, i.e. such for which only usage, i.e. temporary availability is

constrained at any time. This "temporary" character is important, since in practice

it is often ignored for some doubly constrained resources which are then treated

as non-renewable. For example, this is the case of money for which usually only

the consumption is considered, whereas they have also a "temporary" nature.

Namely, money treated as a renewable resource mean in fact a "flow" of money,

called rate of spending or rate of investment, i.e. an amount available in a given

period of a fixed length (week, month). The most typical example of a (renewa-

ble) continuous resource is power (electric, hydraulic, pneumatic) which, howev-

er, is in general doubly constrained since apart from the usage, also its consump-

tion, i.e. energy, is constrained. Other examples we get when parallel "proces-

sors" are driven by a common power source. "Processors" mean here e.g. ma-

chines with proper drives, electrolytic tanks, or pumps for refueling navy boats.

We should also stress that sometimes it is purposeful to treat a discrete (i.e.

discretely-divisible) resource as a continuous one, since this assumption can sim-

plify scheduling algorithms. Such an approach is allowed when there are many

alternative amounts of (discrete) resource available for processing each task. This

is, for example, the case in multiprocessor systems where a common primary

memory consists of hundreds of pages (see [Weg80]). Treating primary memory

as a continuous resource we obtain a scheduling problem from the class we are

interested in.

In the next two sections we will study scheduling problems with continuous

resources for two models of task processing characteristic (time or speed) vs.

(continuous) resource amount allotted. The first model is given in the form of a

continuous function: task processing speed vs. resource amount allotted at a giv-

en time (Section 13.3.2), whereas the second one is given in the form of a con-

tinuous function: task processing time vs. resource amount allotted (Section

13.3.3). The first model is more natural in majority of practical situations, since it

reflects directly the "temporary" nature of renewable resources. It is also more

general and allows a deep a priori analysis of properties of optimal schedules due

to the form of the function describing task processing speed in relation to the

allotted amount of resource. This analysis leads even to analytical results in some

cases, and in general to the simplest formulations of mathematical programming

problems for finding optimal schedules. However, in situations when all tasks

use constant resource amounts during their execution, both models are equiva-

lent. Then rather the second model is used as the direct generalization of the tra-

ditional, discrete model.

In Section 13.3.4 we will consider another type of problems, where task pro-

cessing times are constant, but their ready times are functions of a continuous

502 13 Scheduling under Resource Constraints

resource. This is another generalization of the traditional scheduling model

which is important in some practical situations.

13.3.2 Processing Speed vs. Resource Amount Model

Assume that we have m identical, parallel processors P1 , P2 ,..., Pm , and one

additional, (continuous, renewable) resource available in amount Û. For its pro-

cessing task Tj � T requires one of the processors and an amount of a continuous

resource uj(t) which is arbitrary and unknown in advance within interval (0, Û] .

The task processing model is given in the form:

x
.
j(t) = dxj(t) /dt = fj[uj(t)], xj(0) = 0, xj(Cj) = x~j (13.3.1)

where xj(t) is the state of Tj at time t, fj is a (positive) continuous, non-decreasing

function, fj(0) = 0, Cj is the (unknown in advance) completion time of Tj , and

x~j > 0 is the known final state, or processing demand, of Tj . Since a continuous

resource is assumed to be renewable, we have

�
j=1

n
 uj(t) � Û for each t . (13.3.2)

As we see, the above model relates task processing speed to the (continuous)

resource amount allotted to this task at time t. Let us interpret the concept of a

task state. By the state of task Tj at time t, xj(t), we mean a measure of progress of

the processing of Tj up to time t or a measure of work related to this processing.

This can be, for example, the number of standard instructions of a computer pro-

gram already processed, the volume of a fuel bunker already refueled, the amount

of a product resulting from the performance of Tj up to time t, the number of

man-hours or kilowatt-hours already spent in processing Tj , etc.

Let us point out that in practical situations it is often quite easy to construct

this model, i.e. to define fj , j = 1, 2,..., n. For example, in computer systems ana-

lyzed in [Weg80], the fj's are progress rate functions of programs, closely related

to their lifetime curves, whereas in problems in which processors use electric

motors, the fj's are functions: rotational speed vs. current density.

Let us also notice that in the case of a continuous resource changes of the re-

source amount allotted to a task within interval (0, Û] does not mean a task

preemption.

To compare formally the model (13.3.1) with the model

pj = 6j(uj), uj � (0, Û] (13.3.3)

where pj is the processing time of Tj and 6j is a (positive) continuous, non-

increasing function, notice that the condition xj(Cj) = x~j is equivalent to

 13.3 Scheduling with Continuous Resources 503

de
0

Cj

 fj[uj(t)]dt = x~j . (13.3.4)

Thus, if uj(t) = uj, i.e. is constant for t � (0,Cj], we have

Cj = pj = x~j /fj(uj), i.e. 6j = x~j /fj(uj) . (13.3.5)

In consequence, if Tj is processed using a constant resource amount uj , (13.3.5)

defines the relation between both models. It is worth to underline that, as we will

see, on the basis of the model (13.3.1) one can easily and naturally find the con-

ditions under which tasks are processed using constant resource amounts in an

optimal schedule.

Assume now that the number n of tasks is less than or equal to the number m

of machines, and that tasks are independent. The first assumption implies that in

fact we deal only with the allocation of a continuous resource, since the assign-

ment of tasks to machines is trivial. This is a "pure" (continuous) resource alloca-

tion problem, as opposed to a "mixed" (discrete-continuous) problem, when we

have to deal simultaneously with scheduling on machines (considered as a dis-

crete resource) and the allocation of a continuous resource.

If n � m (then it is sufficient to assume n = m, since for n < m, m � n ma-

chines are idle) our goal is to find a piece-wise continuous vector function u*(t) =

(u*
1(t), u*

2(t),..., u*
n(t)), u*

j (t) � 0, j = 1, 2,..., n, such that (13.3.1) and (13.3.2) are

satisfied, and Cmax = max{Cj} reaches its minimum C *
max . This problem was

studied in a number of papers (see [Weg82] as a survey) under different assump-

tions concerning task and resource characteristics. Below we present few basic

results useful in our future considerations. To this end we need some additional

denotations.

Let us denote by U the set of resource allocations, i.e. all values of a vector

function u(t), or all points u = (u1 , u2 ,..., un) � IRn
 , uj � 0 for j = 1, 2,..., n, satis-

fying the relation

�
j=1

n
 uj � Û .

Further, we will denote by V the set defined as follows:

v = (v1, v2,..., vn) � V if and only if u � U ,

and vj = fj(uj), j = 1, 2,..., n .
(13.3.6)

As the functions fj are monotonic for j = 1, 2,..., n, it is obvious that (13.3.5) de-

fines a univalent mapping between U and V , and thus we can call the points v

transformed resource allocations. It is easy to prove (see, e.g. [Weg82]) that

C *
max as a function of final states of tasks x~ = (x~1 , x~2 ,..., x~n) can always be ex-

pressed as

504 13 Scheduling under Resource Constraints

C *
max(x

~) = min{Cmax > 0 | x~/Cmax � coV } (13.3.7)

where coV is the convex hull of V , i.e. the set of all convex combinations of the

elements of V . Notice that (13.3.7) gives a simple geometrical interpretation of

an optimal solution of our problem. Namely, it says that C *
max is always reached

at the intersection point of the straight line given by the parametric equations

vj = x~j /Cmax, j = 1, 2,..., n (13.3.8)

and the boundary of set coV . Since, according to (13.3.6), the shape of V , and

thus coV , depends on functions fj , j = 1, 2,..., n, we can study the form of opti-

mal solutions in relation to these functions. Let us consider two special, but very

important cases:

(i) concave fj, j = 1, 2,..., n, and

(ii) fj � cj uj, cj = fj(Û)/Û, j = 1, 2,..., n .

It is easy to check that in case (i) set V is already convex, i.e. coV = V . Thus,

the intersection point defined above is always a transformed resource allocation

(see Figure 13.3.1 for n = 2).

Û

u0 1

u2

 U

Û f (Û)1

f (Û)2
v = x/Cmax

v 1
*

v 2
*

 V

v0 1

v2

~

f concave, j = 1, 2j

Figure 13.3.1 The case of concave fj , j = 1, 2.

This means that in the optimal solution tasks are processed fully in parallel using

constant resource amounts u*
j , j = 1, 2,..., n. To find these amounts let us notice

that the equation of the boundary of V has the form �
j=1

n
 fj

�1
(vj) = Û (we substitute

uj from (13.3.6) for the equation of the boundary of U , i.e. �
j=1

n
 uj = Û), where fj

�1

is the function inverse to fj , j = 1, 2,..., n. Substituting vj from (13.3.8), we get

for the above equation

 13.3 Scheduling with Continuous Resources 505

�
j=1

n
 fj
�1

(x~j /Cmax) = Û . (13.3.9)

For given x~j , j = 1, 2,..., n, the (unique) positive root of this equation is equal to

the minimum value C *
max of Cmax . Of course

u*
j = fj

�1
(x~j /C *

max), j = 1, 2,..., n . (13.3.10)

It is worth to note that equation (13.3.9) can be solved analytically for some im-

portant cases. In particular, this is the case of fj = cj u
1/(j
j , cj > 0, (j � {1, 2, 3, 4},

j = 1, 2,..., n, when (13.3.9) reduces to an algebraic equation of an order � 4.

Furthermore, if (j = (� 1, j = 1, 2,..., n, we have

C *
max = [

1

Û �
j=1

n
 (x~j

/cj)
(]1/(

. (13.3.11)

Û

Û

u0 1

u2

f (Û)2

f (Û)1

S

v0 1

v2

f � c u , j = 1, 2j j j

 V
 U

v = x/Cmax
~

Figure 13.3.2 The case of fj � cjuj, cj = fj (Û)/Û, j = 1, 2.

Let us pass to the case (ii). It is easy to check that now set V lies entirely inside

simplex S spanned on the points (0,..., 0, fj (Û), 0,..., 0), where fj (Û) appears on

the jth position, j = 1, 2,..., n (see Figure 13.3.2 for n = 2). This clearly means

that coV = S , and that the intersection point of the straight line defined by

(13.3.7) and the boundary of S most probably is not a transformed resource allo-

cation (except for the case of linear fj , j = 1, 2,..., n). However, one can easily

verify that the same value C *
max is obtained using transformed resource alloca-

tions whose convex combination yields the intersection point just discussed.

These always are, of course, the extreme points on which simplex S is spanned.

This fact implies directly that in case (ii) there always exists the solution of the

length C *
max = �

j=1

n
 x~j /fj(Û) in which single tasks are processed consecutively (i.e.

506 13 Scheduling under Resource Constraints

on a single machine) using the maximum resource amount Û. Of course, this

solution is not unique if we assume that there is no time loss concerned with a

task preemption. However, there is no reason to preempt a task if preemption

does not decrease C *
max .

Thus, in both cases, (i) and (ii), there exist optimal solutions in which each

task is processed using a constant resource amount. Consequently, in these cases

the model (13.3.1) is mathematically equivalent to the model (13.3.3).

In the general case of arbitrary functions fj , j = 1, 2,..., n, one must search

for transformed resource allocations whose convex combination fulfills (13.3.8)

and gives the minimum value of Cmax .

Assume now that tasks are dependent, i.e. that a non-empty relation is de-

fined on T . To represent we will use task-on-arc digraphs, also called activity

networks (see Section 3.1). In this representation we can order nodes, i.e. events

in such a way that the occurrence of node i is not later than the occurrence of

node j if i < j. As is well known, such an ordering is always possible (although

not always unique) and can be found in time O(n2
) (see, e.g. [Law76]). Using this

ordering one can utilize the results obtained for independent tasks to solve corre-

sponding resource allocation problems for dependent tasks. To show how it

works we will need some further denotations. Denote by T k the subset of tasks

which can be processed in the interval between the occurrence of nodes k and k +

1, by x~jk � 0 a part of Tj � T k (i.e. a part of x~j) processed in the above interval, by

!*
k({x~jk}Tj �T k) the minimum length of this interval as a function of task parts

{x~jk}Tj �T k , and by K j the set of indices of T k's such that Tj � T k .

Of course, task parts {x~jk}Tj �T k are independent for each k = 1, 2,..., K � 1; K

being the total number of nodes in the network, and thus for calculating of !k's as

functions of these parts, we can utilize the results obtained for independent tasks.

To illustrate this approach let us start with the case (ii) discussed previously.

Considering the optimal solution in which task parts are processed consecutively

in each interval k we see that this is equivalent to the consecutive processing of

entire tasks in an order defined by relation . Moreover, this result is independ-

ent on the ordering of nodes in the network. Unfortunately, the last statement is

not true in general for other cases of fj's.

Consider now the case (i) of concave fj , j = 1, 2,..., n, and assume that nodes

are ordered in the way defined above. Thus, for calculating !*
k({x~jk}Tj �T k) , k = 1,

2,..., K � 1, one must solve for each T k an equation of type (13.3.9)

�
Tj �T k

 fj
�1

(x~jk
/!k) = Û . (13.3.12)

of which !*k is the (unique) positive root for given {x~jk}Tj �T k . As already men-

tioned before, this equation can be solved analytically for some important cases.

 13.3 Scheduling with Continuous Resources 507

The step which remains is to find a division of x~j's into parts x~*
jk , j = 1, 2,..., n;

k � K j ensuring the minimum value of Cmax . This is equivalent to the solution of

the following non-linear programming problem:

Minimize Cmax = �
k=1

K�1

 !*
k({x~jk}Tj �T k) (13.3.13)

subject to �
k�K j

x~jk = x~j, j = 1, 2,..., n , (13.3.14)

 x~jk � 0, j = 1, 2,..., n, k � K j . (13.3.15)

It can be proved (see e.g. [Weg82]) that Cmax given by (13.3.13) is a convex

function of x~jk's for arbitrary fj's, thus we have a convex programming problem

with linear constraints. Its solution is the optimal solution of our problem for the

preemptive case and given ordering of nodes. Using the Lagrange theorem one

can verify that for fj = cj uj
1/(

, (> 1, when C *
max is given by (13.3.11), the solution

does not depend on the ordering of nodes. Of course, this is always true when the

ordering of nodes is unique, i.e. for a uan (cf. Section 3.1). In general, however,

in order to find a solution which is optimal over all possible orderings of nodes

one must solve the corresponding convex programming problem for each of

these orderings and choose a solution with the smallest value of Cmax .

To illustrate the way of formulating the optimization problem (13.3.13)-

(13.3.15) let us consider a simple example.

1

2

3

4

T4

0

T5

T3

T1

T2

2! 3!1! t

Figure 13.3.3 Example of a uniconnected activity network.

Example 13.3.1 Consider the uan given in Figure 13.3.3. Let Û = 1, fj = uj for

j = 1, 3, 5, and fj = 2u1/2
j for j = 2, 4. Subsets of tasks which can be processed be-

tween the occurrence of consecutive nodes are:

T 1 = {T1 , T2}, T 2 = {T2 , T3 , T4}, T 3 = {T4 , T5}

508 13 Scheduling under Resource Constraints

Sets of indices of T k's such that Tj � T k are:

K 1 = {1}, K 2 = {1, 2}, K 3 = {2}, K 4 = {2, 3}, K 5 = {3} .

Since all the functions fj are concave, we use equation (13.3.12) to calculate

!*
k({x~jk}Tj �T k) for k = 1, 2, 3. For !*

1 we have

x~11/!*
1 + x~ 2

21
/4!*

1
2
 = 1 ,

and thus !*
1(x~11 , x~21) = (x~11 + x~ 2

11 + x~ 2
21)

/2. Similarly,

x~ 2
22

/4!*
2

2
 + x~32

/!*
2 + x~ 2

42
/4!*

2
2
 = 1 ,

!*
2(x~22 , x~32 , x~42) = (x~32 + x~ 2

22 + x~ 2
32 + x~ 2

42)
/2

and

x~ 2
43

/4!*
3

2
 + x~53

/!*
3 = 1 ,

!*
3(x~43 , x~53) = (x~53 + x~ 2

43 + x~ 2
53)

/2 .

The problem is to minimize the sum of the above functions subject to the con-

straints x~11 = x~1 , x~21 + x~22 = x~2 , x~32 = x~3 , x~42 + x~43 = x~4 , x~53 = x~5 , x~jk � 0 for all j,
k. Eliminating five of the variables from the above constraints, a problem with

two variables remains.

Notice that the reasoning performed above for dependent tasks remains valid if

we replace the assumption n � m by �T k� � m, k =1, 2,..., K � 1 .

Let us now consider the case that the number of machines is less than the

number of tasks which can be processed simultaneously 2. We start with inde-

pendent tasks and n > m. To solve the problem optimally for the preemptive case

we must, in general, consider all possible assignments of machines to tasks, i.e.

all m-element combinations of tasks from T . Keeping for them denotation T k ,

k = 1, 2,..., M
O

P
Rn

m , we obtain a new optimization problem of type (13.3.13)-

(13.3.15).

For the non-preemptive case we consider all maximal sequences of T k's such

that each task appears in at least one T k and all T k's containing the same task are

consecutively indexed (non-preemptability!). Such sequences will be called fea-
sible. It is easy to notice that a feasible sequence consists of n � m + 1 elements

(i.e. sets T k). To find an optimal schedule in the general case we have to solve

2 Recall that this assumption is not needed when in the optimal solution tasks are processed

on a single machine, i.e. if fj � cjuj, cj = fj(Û)/Û, j = 1, 2, ..., n.

 13.3 Scheduling with Continuous Resources 509

the problem of type (13.3.13)-(13.3.15) for each of the feasible sequences and to

choose the best solution.

It is easy to see that finding an optimal schedule is computationally very dif-

ficult in general, and thus it is purposeful to construct heuristics. For the non-

preemptive case the idea of a heuristic approach can be to choose one or several

feasible sequences of m-tuples of tasks described above and solve a problem of

type (13.3.13)-(13.3.15) for each of them. These sequences can be chosen in

many different ways. A general advise is based on the following reasoning. As-

sume n = 5 and m = 3. Then, a feasible sequence consists of 5 � 3 + 1 = 3 sets T k

of 3 elements each. Exemplary feasible sequences are: S 1 = ({T1, T2, T3}, {T2,

T3, T4}, {T3, T4, T5}), S 2 = ({T1, T2, T3}, {T1, T2, T4}, {T1, T2, T5}).

Define now the structure of a sequence as the vector (|K 1|, |K 2|, ..., |K n|)

where |K j| is the cardinality of the set of indices of those T k's for which Tj � T k .

It is easy to see that the structure of S 1 is (1, 2, 3, 2, 1), whereas that of S 2 is (3,

3, 1, 1, 1). The basic idea is to study the correspondence between the structure of

feasible sequences and the vector of processing demands x~ of tasks in order to

achieve possibly uniform workload for particular machines. If all fi are concave

and identical then we can even identify optimal sequences. For example, under

the above assumptions, and n = 5, m = 3, x~ = (10, 20, 30, 20, 10), sequence S 1 is

optimal, whereas S 2 is optimal for x~ = (30, 30, 10, 10, 10). This follows from the

fact that the division of processing demands of tasks defined as x~j /|K j|, j = 1, 2,

..., 5, corresponds exactly to the uniform workload. Particular algorithms, their

worst case behavior and computational results are given in [JW98].

Another idea, for an arbitrary problem type, consists of two steps:

(a) Schedule task from T on machines from P for task processing times pj =

x~j /fj(ûj) , j = 1, 2,..., n, where the ûj's are fixed resource amounts.

(b) Allocate the continuous resource among parts of tasks in the schedule ob-

tained in step (a).

Usually in both steps we take into account the same optimization criterion

(Cmax in our case), although heuristics with different criteria can also be consid-

ered. Of course, we can solve each step optimally or heuristically. In the majority

of cases step (b) can easily be solved (numbers of task parts processed in parallel

are less than or equal to m; see Figure 13.3.4 for m = 2, n = 4) when, as we re-

member, even analytic results can be obtained for the sets T k . However, the

complexity of step (a) is radically different for preemptive and non-preemptive

scheduling. In the first case, the problem under consideration can be solved ex-

actly in O(n) time using McNaughton's algorithm, whereas in the second one it is

NP-hard for any fixed value of m ([Kar72]; see also Section 5.1). In the latter

case approximation algorithms as described in Section 5.1, or dynamic pro-

510 13 Scheduling under Resource Constraints

gramming algorithms similar to that presented in Section 13.1 can be applied

(here tasks are divided into classes with equal processing times).

The question remains how to define resource amounts ûj , j = 1, 2,..., n, in

step (a). There are many ways to do this; some of them were described in

[BCSW86] and checked experimentally in the preemptive case. Computational

experiments show that solutions produced by this heuristic differ from the opti-

mum by several percent on average. However, further investigations in this area

are still needed. Notice also that we can change the amounts û when performing

steps (a) and (b) iteratively.

t0

P2

P1 T1

T3 T4

T2

Figure 13.3.4 Parts of tasks processed in parallel in an example schedule.

Let us stress once again that the above two-step approach is pretty general, since

it combines (discrete) scheduling problems (step (a)) with problems of continu-

ous resource allocation among independent tasks (step (b)). Thus, in step (a) we

can utilize all the algorithms presented so far in this book, as well as many oth-

ers, e.g. from constrained resource project scheduling (see, e.g. [W99]). On the

other hand, in step (b) we can utilize several generalizations of the results pre-

sented in this section. We will mention some of them below, but first we say few

words about dependent tasks and �T k� > m for at least one k. In this case one has

to combine the reasoning presented for dependent tasks and n � m, and that for

independent tasks and n > m. This means, in particular, that in order to solve the

preemptive case, each problem of type (13.3.13)-(13.3.15) must be solved for all

m-elementary subsets of sets T k , k = 1, 2,..., K � 1.

We end this section with few remarks concerning generalizations of the re-

sults presented for continuous resource allocation problems. First of all we can

deal with a doubly constrained resource, when, apart from (13.3.2), also the con-

straint �
j=1

n

de
0

Cj

 fj[uj(t)]dt � V^ is imposed, V^ being the consumption constraint

[Weg81]. Second, each task may require many continuous resource types. The

processing speed of task Tj is then given by x
.
j(t) = fj[uj1(t), uj2(t),..., ujs(t)], where

ujl(t) is the amount of resource Rl allotted to Tj at time t, and s is the number of

different resource types. Thus in general we obtain multi-objective resource allo-

cation problems of the type formulated in [Weg91]. Third, other optimality crite-

ria can be considered, such as de
0

Cmax

 g[u(t)]dt [NZ81], �wjCj [NZ84a, NZ84b] or

 13.3 Scheduling with Continuous Resources 511

Lmax [Weg89]. Finally, sequences of sets of dependent tasks can be studied

[JS88].

Let us also mention about an application to Grid Scheduling [MWW04]. An

extensive survey pf the results concerning scheduling under resource constraints

can be found in [WJMW11].

13.3.3 Processing Time vs. Resource Amount Model

In this section we consider problems of scheduling non-preemptable tasks on a

single machine, where task processing times are linear, decreasing and continu-

ous functions of a continuous resource. The task processing model is given in the

form

pj = bj � ajuj , u
~j � uj � u~j, j = 1, 2,..., n (13.3.16)

where aj > 0, bj > 0, and u
~j and u~j � [0, bj /aj] are known constants. The continu-

ous resource is available in maximal amount Û, i.e. �
j=1

n
 uj � Û. Although now the

resource is not necessarily renewable (this is not a temporary model), we will

keep denotations as introduced in Section 13.3.2. Scheduling problems using the

above model were broadly studied by Janiak in a number of papers we will refer

to in the sequel. Without loss of generality we can restrict our considerations to

the case that lower bounds u
~j of resource amounts allotted to the particular tasks

are zero. This follows from the fact that in case of u
~j > 0 the model can be re-

placed by an equivalent one in the following way: replace bj by bj � aju~j and u~j by

u~j � u
~j , j = 1, 2,..., n, and Û by Û � �

i=1

n
 u
~ i , finally, set all u

~j = 0. Given a set of

tasks T = {T1 ,..., Tn}, let z = [z(1),..., z(n)] denote a permutation of task indices

that defines a feasible task order for the scheduling problem, and let Z be the set

of all such permutations (partial or complete ones). A schedule for T can then be

characterized by a pair (z, u) � Z � U . The value of a schedule (z, u) with re-

spect to the optimality criterion " will be denoted by "(z, u). A schedule with an

optimal value of " will briefly be denoted by (z*, u*).

Let us start with the problem of minimizing Cmax for the case of equal ready

times and arbitrary precedence constraints [Jan88a]. Using a slight modification

of the notation introduced in Section 3.4, we denote this type of problems by 1 |
prec, pj = bj � ajuj , �uj � Û | Cmax . It is easy to verify that an optimal solution (z*,

u*) of the problem is obtained if we chose an arbitrary permutation z � Z and

allocate the continuous resource according to the following algorithm.

512 13 Scheduling under Resource Constraints

Algorithm 13.3.2 for finding u* for 1 | prec, pj = bj � ajuj , �uj � Û | Cmax

[Jan88a].
begin
for j := 1 to n do u*

j := 0;

while T � � and Û > 0 do

 begin

 Find Tk � T for which ak = max
j

{aj};

 u*
k := min{u~k,Û};

 Û := Û � u*
k;

 T := T � {Tk};

 end;
u* := [u*

1,..., u*
n]; -- u* is an optimal resource allocation

end;

Obviously, the time complexity of this algorithm is O(n log n).

Consider now the problem with arbitrary ready times, i.e. 1 | prec, rj , pj = bj �

ajuj , �uj � Û | Cmax . One can easily prove that an optimal solution (z*,u*) of the

problem is always found if we first schedule tasks according to an obvious modi-

fication of Algorithm 4.5.2 by Lawler - thus having determined z* - and then al-

locate the resources according to Algorithm 13.3.3.

Algorithm 13.3.3 for finding u* for 1 | prec, rj, pj = bj � ajuj , �uj � Û | Cmax

[Jan88a].
begin
for j := 1 to n do u*

j := 0;

Sz*(1) := rz*(1);

l := 1;

for j := 2 to n do Sz*(j) := max{rz*(j), Sz*(j�1) + bz*(j�1)};

 -- starting times of tasks in permutation z* for u* have been calculated

J := {z*}; -- construct set J

while J ��� and Û � 0 do

 begin

 Find the biggest index k, l � k � n, for which rz*(k) = Sz*(k);

 J := {z*(j) | k � j � n, and u * z*(j) < u~z*(j)};

 Find index t for which az*(t) = max{az*(j) | z*(j) � J };

 d := min{Sz*(i) � rz*(i) | t < i � n};

 y := min{u~z*(t), Û, d/az*(t)};

 u * z*(t) := u * z*(t) + y;

 Û := Û � y;

 for i := t to n do Sz*(i) := Sz*(i) � yaz*(t);

 13.3 Scheduling with Continuous Resources 513

 l := k;
 -- new resource allocation and task starting times have been calculated
 end;

u* := [u*
1,..., u*

n]; -- u* is an optimal resource allocation

end;

The complexity of this algorithm is O(n2
), and this is the complexity of the whole

approach for finding (z*, u*), since Algorithm 4.5.2 is also of complexity O(n2
) .

Let us now pass to the problems of minimizing maximum lateness Lmax.

Since problem 1 | prec, pj = bj � ajuj , �uj � Û | Lmax is equivalent to problem 1 |

prec, rj , pj = bj � ajuj , �uj � Û | Cmax (as in the case without additional resources),

its optimal solution can always be obtained by finding z* according to the Algo-

rithm 4.5.2 and u* according to a simple modification of Algorithm 13.3.3.

It is also easy to see that problem 1 | rj , pj = bj � ajuj , �uj � Û | Lmax is strongly

NP-hard, since the restricted version 1 | rj | Lmax is already strongly NP-hard (see

Section 4.3). For the problem 1 | prec, rj , pj = bj � ajuj , �uj � Û | Lmax where in

addition precedence constraints are given, an exact branch and bound algorithm

was presented by Janiak [Jan86c].

Finally, consider problems with the optimality criteria �Cj and �wjCj. Prob-

lem 1 | prec, pj = bj � ajuj , �uj � Û | �Cj is NP-hard, and problem 1 | rj , pj = bj �

ajuj , �uj � Û | �Cj is strongly NP-hard, since the corresponding restricted versions

1 | prec | �Cj and 1 | rj | �Cj are NP-hard and strongly NP-hard, respectively (see

Section 4.2). The complexity status of problem 1 | pj = bj � ajuj , �uj � Û | �wjCj is

still an open question. It is easy to verify for any given z � Z the minimum value

of �wjCj in this problem is always obtained by allocating the resource according

to the following algorithm of complexity O(nlogn) .

Algorithm 13.3.4 for finding u* for 1 | pj = bj � ajuj , �uj � Û | �wjCj [Jan88a].

begin

J := { z }; -- construct set J
while J ��	 do

 begin

Find z(k) � J for which az(k)
j=k

n
wz(j) = max

z(i)�J
{az(i)
j=i

n
wz(j)};

 u*
z(k) := min{u~z(k), max{0, Û}};

 Û := Û � u*
z(k);

 J := J � { z(k) };

 end;

514 13 Scheduling under Resource Constraints

u* := [u*
1 ,..., u*

n]; -- u* is an optimal resource allocation

end;

An exact algorithm of the same complexity can also be given for this problem if

for any two tasks Ti , Tj either Ti <& Tj or Tj <& Ti , where Ti <& Tj means that bi � bj ,

ai � aj , u~i � u~j , and wi � wj . In this case the optimal permutation z* is obtained by

ordering the jobs according to <&, and the algorithm of the optimal resource allo-

cation is as follows: u *
z*(j) = min{u~z*(j) , max{0, Ûj}} for j = 1, 2,..., n, where Û1 =

Û, Ûj+1 = Ûj � u *
z*(j) , j = 1, 2,..., n � 1 .

Now let us pass to the criterion which is specific to scheduling problems

with additional continuous resources, namely to the criterion denoting the total

resource utilization, i.e. U = �
j=1

n
 uj . This criterion should be minimized subject to

the constraint " < "^ where " is a classical schedule performance measure and "^ is a

given value of ". Of course, scheduling problems of minimizing �uj are closely

related to corresponding problems with criterion ". Additionally, we use the fact

that for the considered problems it is easy to calculate the maximum value "~ of " .

We illustrate this idea for the criterion " = Cmax , i.e. for problem 1 | prec, pj =

bj � ajuj , Cmax < C^ | �uj . It is obvious that the upper bound for Cmax , C~ max =

min
z �Z

 {Cmax(z, 0)} = Cmax(z*, 0). Thus, we have the following modification of Al-

gorithm 13.3.2.

Algorithm 13.3.5 for finding u* for 1 | prec, pj = bj � ajuj , Cmax � C^ | �uj [Jan91a].

begin

for j := 1 to n do u*
j := 0;

U := 0;

Cmax := C~ max;

while T ��� and Cmax > C^ do

begin

Find Tk � T for which ak = max
j

{aj};

u*
k := min{u~k, max{0, (Cmax � C^) /ak}};

U := U + u*
k;

Cmax := Cmax � aku*
k;

T := T � {Tk};

end;

if T = � and Cmax > C^
then no solution exists
else u* := [u*

1 ,..., u*
n]; -- u* is an optimal resource allocation

end;

 13.3 Scheduling with Continuous Resources 515

Knowing how to solve a problem for criteria " and �uj , one can also find the set

of all Pareto-optimal (i.e. efficient or non-dominated) solutions (zP
 , uP) for bi-

criterion problems ([Jan91a]). As an example, consider the problem 1 | prec, pj =

bj � ajuj | Cmax ^ �uj . Of course, C
~ max = min

z �Z
 {Cmax(z, u~)} = �

j=1

n
 (bj � aju

~
j) is a lower

bound for Cmax . In our problem, for each value Cmax � [C
~ max , C~ max], any feasible

permutation z � Z can be taken as Pareto-optimal permutation zP. In order to

find the set U
P of all Pareto-optimal resource allocations uP, we determine the

Pareto curve (which is a convex, decreasing and piece-wise linear function) from

the following algorithm of time complexity O(nlogn).

Algorithm 13.3.6 for finding the Pareto curve in 1 | prec, pj = bj � ajuj |

Cmax ^ �uj [Jan91a].

begin

for j := 1 to n do u*
z(j) := 0;

i := 0;

C 0
max := C~ max;

U 0
 := 0;

while T ��� do

begin

i := i + 1;

Find Tk � T for which ak = max
j

{aj};

u*
k := u~k;

C i
max := C i�1

max � aku
~

k;

U i
 := U i�1

 + u~k;

ai
 := 1/ak;

T := T � {Tk};

for l := 1 to n do ui
l := u*

l;

end;

end;

Obtained pairs (C0
max , U 0

) , (C1
max , U 1

) ,..., (Cn
max , U n

) are consecutive break-

points of the Pareto curve; ai
 is the slope of the ith segment of this curve, i = 1,

2,..., n. The set U P is the sum of n segments joining the points ui
 , ui+1

 , i = 0, 1,

2,..., n � 1 , where u0
 = 0.

In [JK96] the problem was considered with given deadlines d ~j and minimi-

zation of the total weighted resource consumption, i.e. the problem 1 | pj = bj � aj

516 13 Scheduling under Resource Constraints

uj , Cj � d ~j | 5 wjuj . This problem is solvable in O(n log n) time for a continuous-

ly-divisible resource and is NP-hard for a discrete resource. A fully polynomial

approximation scheme is presented for the last case.

The paper [CJK98] is devoted to the following machine scheduling prob-

lems with linear models of task processing times and with a discrete resource: 1 |

pj = bj � ajuj , F1 � K | F2 , 1 | pj = bj � ajuj , F2 � K | F1 and 1 | pj = bj � ajuj | F1 ^

F2 , where F1 and F2 is a criterion of resource and completion time type, respec-

tively. More precisely, F1 � {gmax , 5 uj , 5 wjuj} and F2 � {Cmax , cmax , 5 Uj ,

5 wjUj , 5 Cj , 5 wjCj }, where gmax = max{gj(uj)} (gj(uj) is a nondecreasing re-

source cost function), cmax = max{cj(Cj)} (cj(Cj) is a nondecreasing penalty cost

function), and 5 wjUj is the weighted number of tardy tasks (see Section 3.1).

Computational complexities of the problems and the general scheme for the con-

struction of Pareto sets and Pareto set ε-approximations were also presented.

 In [Jan99] the model (13.3.16) was extended to one with pj = bj + a'j Sj � ajuj ,

where Sj is a task starting time and a'j is a task model parameter. The problems of

minimization of the makespan, the total completion time and the lateness with

the extended model including the constraint on the maximal resource amount U^ ,

and also their inverse versions, were investigated e.g. in [IJR00].

Further generalizations concern the application of the model (13.3.16) for

machine setup times [Jan99]. Single machine batch scheduling with resource

dependent setup and processing time was examined in [CJK01], where polyno-

mial time algorithms were presented to find an optimal batch sequence and re-

source allocations such that either the total weighted consumption 5 wjuj is min-

imized subject to meeting task deadlines dj , or the maximum task lateness is

minimized subject to an upper bound on the total weighted resource consump-

tion. Next, single machine group scheduling with resource dependent setup and

processing times with continuous or discrete resource were considered in [NCJK

05, JKP05] for various criteria.

To end this section let us mention some results obtained for the processing time

vs. resource amount model in case of dedicated processors. Two-machine flow

shop problems with linear task models were studied by Janiak [Jan88b, Jan89a],

where it was proved that the problem is NP-hard for the single criteria " = Cmax

and " = ��uj , even for identical values of aj on one of the machines and fixed pro-

cessing times on the second machine. Approximation algorithms and an exact

branch and bound algorithm were also presented in these papers. Flow shop and

job shop problems with convex task models were considered in [GJ87, Jan86b,

Jan88c, Jan88d, JS94, JP98, CJ00].

 13.3 Scheduling with Continuous Resources 517

13.3.4 Ready Time vs. Resource Amount Model

In this section we assume that task processing times are given constants but ready

times are continuously dependent on the amount of allocated continuous re-

source, i.e.

rj = fj(uj), u~j � uj � u~j, j = 1, 2,..., n , (13.3.17)

where all the lower and upper bounds of resource allocations, u
~j and u~j , are

known constants.

As in Section 13.3.3 tasks are assumed to be non-preemptable, and we con-

sider single machine problems only. Problems of this type appear e.g. in the ingot

preheating process in steel mills [Jan91b].

Problem 1 | rj = fj(uj), ��uj � Û | Cmax

This problem is strongly NP-hard even in the special case of linear functions fj
(see (13.3.16)) and u

~j = 0, j = 1, 2,..., n, and is NP-hard in the case of aj = a, j =

1, 2,..., n [Jan91b]. However, for identical models of rj , i.e. for fj = f, u
~j = u

~
 and

u~j = u~ for all j, the problem can be solved in polynomial time. In this case we

know from [Jan86c] that an optimal solution (z*,u*) is obtained by scheduling

tasks according to non-increasing processing times pj (thus defining permutation

z*) and by allocating the continuous resource for z* according to the following

formulas: if

f(u~z*(1)) + �
j=1

n
 pz*(j) � f(u

~
) + �

j=2

n
 pz*(j)

where

u~z*(1) = min{(Û � (n � 1)u
~
) , u~} ,

then

u *
z*(1) = u~z*(1), u*

z(j) = u
~
, j = 2, 3,..., n .

Otherwise,

u *
z*(j) = f �1(r � (�

i=j

k�1

 pz*(i) + d)), j = 1, 2,..., k � 1 ,

u *
z*(k) = f �1

(r � d) , u *
z*(j) = u

~
, j = k + 1, k + 2,..., n ,

where r = f(u
~
), and k � 1 is the maximal natural number such that

(�
j=1

k�1

 f �1(r � �
i=j

k�1

 pz*(i)) + (n � (k � 1))u
~
 � Û) and (f �1(r � �

j=1

k�1

 pz*(j)) � u~) ,

518 13 Scheduling under Resource Constraints

d = min{(r � �
j=1

k�1

 pz*(j) � f(u~)), d'} ,

with d' following from the equation

�
j=1

k�1

 f �1(r � �
i=j

k�1

 pz*(i) � d') + f �1
(r � d') + (n � k)u

~
 = Û .

Thus, if we are able to calculate f, f �1
 and d' in time O(g(n)), then (z*, u*) is cal-

culated in O(max{g(n), nlogn}) time, i.e. this time is polynomial if g(n) is poly-

nomial. For example, this is the case if f is linear. In special situations where fj is

linear and bj = b for j = 1,2,..., n, algorithms of time complexity O(nlogn) exist.

These situations are as follows:

(i) u~j = u~, pj = p, j = 1, 2,..., n ,

(ii) aj = a, pj = p, j = 1, 2,..., n .

An optimal solution (z*, u*) is obtained by scheduling the tasks according to non-

increasing values of aj in case (i), non-increasing u~j in case (ii), and by allocating

the continuous resource using corresponding modifications of the above formu-

lae [Jan89b].

For arbitrary linear functions fj , Janiak [Jan89b] was able to prove that for

given z � Z , an optimal resource allocation uz
* can be calculated in O(n2

) time

using the following algorithm.

Algorithm 13.3.7 for finding u* for 1 | rj = bj � ajuj, �uj � Û | Cmax [Jan89b].

begin
for j := 1 to n do

 begin
 u* z(j) := 0;

 Cz(j) := bz(j) + �
i=j

n
 pz(i);

 end;
J := {z(j) | j = 1, 2,..., n};

l := 0;

C0 := 0;

J 0 := 0;

while J � � do

 begin
 l := l + 1;

 Find set J l = {z(j) | z(j) � J and Cz(j) = min
z(i)�J

 {Cz(i)}};

 J = J � J l;

 13.3 Scheduling with Continuous Resources 519

 end;
Q := J l;

while (Û ≠ 0 and l ≠ 0 and min
j �Q

 {u~j � u*
j} ≠ 0) do

 begin
 x := min {Cq � Cp, Û/ �

j �Q
 (1/aj) , min

j �Q
 {aj(u

~
j � u*

j)}};

 -- p and q are indices of tasks belonging to sets Q and J l�1, respectively

 for j � Q do u*
j := u*

j + x/aj;

 Û := Û � �
j �Q

 x/aj;

 l := l � 1;

 Q := Q � J l;

 end;
u*

z := [u*
1 ,..., u*

n]; -- uz
* is an optimal resource allocation for permutation z

end;
In the same paper it has been shown that in the case of aj = a, u~j = u~ , pj = p for j =

1, 2,..., n, an optimal solution (z*, u*) is obtained when tasks are scheduled in

order of non-decreasing bj and the resource is allocated according to Algorithm

13.3.7. The same is also true for problems in which the above permutation is in

accordance with the non-increasing orders of aj , u~j and pj . Of course, Algorithm

13.3.7 can also be used for finding resource allocations for permutations z � Z

defined heuristically. In [Jan89b] 25 such heuristics with the (best possible)

worst case bound 2 were compared experimentally. The best results for "low"

resource level (Û = 0.2&�
j=1

n
 u~j) were produced by ordering tasks according to non-

decreasing bj , whereas for "high" resource level (Û = 0.9&�
j=1

n
 u~j) sorting tasks ac-

cording to non-decreasing values of bj � aju
~

j turned out to be most efficient.

Problem 1 | rj = fj(uj), Cmax �� C^ | �uj

Similarly as for 1 | rj = fj(uj) , �uj � Û | Cmax it can be proved that the considered

problem is already strongly NP-hard for fj = bj � ajuj , j = 1, 2,..., n, and NP-hard

for aj = a, j = 1, 2,..., n (see [Jan91b]). Also similarly to the solution of the first

problem, if fj = f, u
~j = u

~
 for all j, the problem is solved optimally by scheduling

tasks according to non-increasing pj (thus defining permutation z*) and by allo-

cating the resource according to the following condition. If

r + �
j=1

n
 pj � C^ � pz*(1), where r = f(u

~
) ,

520 13 Scheduling under Resource Constraints

then

u *
z*(1) = f �1(C^ � �

j=1

n
 pj), u *

z*(j) = u
~
, j = 2, 3,..., n ,

and otherwise

u *
z*(j) = f �1(C^ � �

i=j

n
 pz*(i)) = f �1(r � �

i=j

k�1

 pz*(i) � d) for j = 1, 2,..., k � 1 ,

u *
z*(k) = f �1(C^ � �

i=k

n
 pz*(i)) = f �1

(r � d) ,

u *
z*(j) = f �1

(r) = u
~
, j = k + 1, k + 2,..., n ,

where k is the maximal natural number such that

�
i=1

k�1

 pz*(i) � r + �
j=1

n
 pj � C^ ,

d = r + �
j=1

n
 pj � C^ � �

i=1

k�1

 pz*(i) = r + �
i=k

n
 pz*(i) � C^ .

Thus, if we are able to calculate f and f �1
 in O(g(n)) time, then finding (z*, u*)

needs O(max{g(n), nlogn}) time.

Notice that it is generally sufficient to consider C^ for which C
~ max � C^ �

C~ max , where C
~ max = min

z�Z
 Cmax(z, u~) and C~ max = min

z�Z
 Cmax(z, u

~
). In particular, for

identical fj , u
~j , u~j , j = 1, 2,..., n, we have

Cmax(z, u~) = C
~ max= f(u~) + �

j=1

n
 pj

and

Cmax(z, u
~

) = C~ max = f(u
~
) + �

j=1

n
 pj for each z � Z .

If functions fj are not identical and linear, then for given z � Z an optimal uz
*

is obtained in O(n) time using the formula [Jan91b]

u* z(j) = max{0, (bz(j) + �
i=j

n
 pz(i) � C^)/az(j)}, j = 1, 2,..., n . (13.3.18)

This follows simply from the linear programming formulation of the problem.

On the same basis it is easy to see that the cases:

(i) bj = b, u~j = u~, pj = p, j = 1, 2,..., n ,

(ii) bj = b, aj = a, pj = p, j = 1, 2,..., n ,

(iii) aj = a, u~j = u~, pj = p, j = 1, 2,..., n

 References 521

are solvable in O(nlogn) time by scheduling tasks according to non-increasing aj

in case (i), non-increasing u~j in case (ii), and non-increasing bj in case (iii), and

by allocating the resource according to (13.3.18). For each of these cases z* does

not depend on C^ , and C
~ max = Cmax(z*, u~) , C~ max = Cmax(z*, 0) .

Heuristics in which z is defined heuristically and uz
* is calculated according

to (13.3.18) were studied in [Jan91b]. The best results were obtained by schedul-

ing tasks according to non-decreasing bj . Unfortunately, the worst-case perfor-

mance of these heuristics is not known.

On the basis of the presented results, the set of all Pareto-optimal solutions

can be constructed for some bi-criterion problems of type 1 | rj = fj(uj) | Cmax ^

� uj using the ideas described in [JC94]. For linear models this set was con-

structed in [Jan 91b].

The problems considered in this section were generalized in [Jan 97] for the

case with arbitrary precedence constraints, where it was proved that they are NP-

hard even for identical linear models of rj . When additionally all processing

times are identical, the optimal solution (z*, u*) can be constructed in O(n2
) time.

In [JL94, Jan99] the single and parallel machine scheduling problems with

nonlinear function: release time vs. resource consumption, common for all tasks,

with different task resource consumption rates were considered. The following

criteria were minimized: the total weighted task completion time subject to a

constrained maximal resource amount [JL94], the total resource utilization sub-

ject to a constrained total weighted completion time, and the bi-criteria approach

[Jan99]. The borders between NP-hard and polynomially solvable cases were

found.

Further generalization of the release time model was made in [Jan99], where

the single machine scheduling problem with the model (13.3.1) applied to release

times was considered. Due to some problem properties, the difficult dynamic

resource allocation problem was reduced to a simple convex programming one.

Some approximation algorithms with the worst case analysis were also present-

ed.

References

BBKR86 J. B)�la

.
zewicz, J. Barcelo, W. Kubiak, H. Röck, Scheduling tasks on two pro-

cessors with deadlines and additional resources, Eur. J. Oper. Res. 26, 1986,

364-370.

BCSW86 J. B)�la

.
zewicz, W. Cellary, R. S)�lowiński, J. W,eglarz, Scheduling under Re-

source Constraints: Deterministic Models, J. C. Baltzer, Basel, 1986.

BDM+99 P. Brucker, A. Drexl, R. Möhring, K. Neumann, E. Pesch, Resource-

constrained project scheduling: notation, classification, models, and methods,

Eur. J. Oper. Res. 112, 1999, 3-41.

522 13 Scheduling under Resource Constraints

BE83 J. B)�la

.
zewicz, K. Ecker, A linear time algorithm for restricted bin packing and

scheduling problems, Oper. Res. Lett. 2, 1983, 80-83.

BE94 J. B)�la

.
zewicz, K. Ecker, Multiprocessor task scheduling with resource require-

ments, Real-Time Syst. 6, 1994, 37-54.

BKS89 J. B)�la

.
zewicz, W. Kubiak, J. Szwarcfiter, Scheduling independent fixed-type

tasks, in: R. S)�lowiński, J. W,eglarz (eds.), Advances in Project Scheduling,

Elsevier, Amsterdam, 1989, 225-236.

Bla78 J. B)�la

.
zewicz, Complexity of computer scheduling algorithms under resource

constraints, Proceedings of the 1st Meeting AFCET - SMF on Applied Mathe-
matics, Palaiseau, 1978, 169-178.

BLRK83 J. B)�la

.
zewicz, J. K. Lenstra, A. H. G. Rinnooy Kan, Scheduling subject to re-

source constraints: classification and complexity, Discret Appl. Math. 5, 1983,

11-24.

CD73 E. G. Coffman Jr., P. J. Denning, Operating Systems Theory, Prentice-Hall,

Englewood Cliffs, N. J., 1973.

CGJ84 E. G. Coffman Jr., M. R. Garey, D. S. Johnson, Approximation algorithms for

bin-packing - an updated survey, in: G. Ausiello, M. Lucertini, P. Serafini

(eds.), Algorithms Design for Computer System Design, Springer, Vienna,

1984, 49-106.

CGJP83 E. G. Coffman Jr., M. R. Garey, D. S. Johnson, A. S. La Paugh, Scheduling

file transfers in a distributed network, Proceedings of the 2nd ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, Montreal, 1983.

CJ00 T.-C. E. Cheng, A. Janiak, A permutation flow-shop scheduling problem with

convex models of operation processing times, Ann. Oper. Res. 96, 2000, 39-60.

CJK98 T.-C. E. Cheng, A. Janiak , M.Y. Kovalyov, Bicriterion single machine sched-

uling with resource dependent processing times, SIAM J. Optim. 8, 1998,

617-630.

CJK01 T.-C. E. Cheng, A. Janiak , M.Y. Kovalyov, Single machine batch scheduling

with resource dependent setup and processing times, Eur. J. Oper. Res. 135,

2001, 177-183.

GG75 M. R. Garey, R. L. Graham, Bounds for multiprocessor scheduling with re-

source constraints, SIAM J. Comput. 4, 1975, 187-200.

GJ75 M. R. Garey, D. S. Johnson, Complexity results for multiprocessor scheduling

under resource constraints, SIAM J. Comput. 4, 1975, 397-411.

GJ87 J. Grabowski, A. Janiak, Job-shop scheduling with resource-time models of

operations, Eur. J. Oper. Res. 28, 1987, 58-73.

IJR00 D. Iwanowski, A. Janiak, A. Rogala, Scheduling jobs with start time and re-

source dependent processing times, in: K. Inderfurth, G. Schwodianer,

W. Domschke, F. Juhnke, P. Kleinschmidt, G. Wascher (eds), Operations Re-
search Proceedings 1999, Springer, Berlin, 2000, 389-396.

Jan86a A. Janiak, One-machine scheduling problems with resource constraints, in:

A. Prékopa, J. Szelezán, B. Strazicky (eds.), System Modelling and Optimiza-

tion, Lect. Notes Contr. Inf. 84, 1986, 358-364.

 References 523

Jan86b A. Janiak, Flow-shop scheduling with controllable operation processing times,

in: H. P. Geering, M. Mansour (eds.), Large Scale Systems: Theory and Appli-
cations, Pergamon Press, 1986, 602-605.

Jan86c A. Janiak, Time-optimal control in a single machine problem with resource

constraints, Automatica 22, 1986, 745-747.

Jan88a A. Janiak, Single machine sequencing with linear models of jobs subject to

precedence constraints, Archiwum Automatyki i Telemechaniki 33, 1988,

203-210.

Jan88b A. Janiak, Permutation flow shop problem with linear models of operations,
Zeszyty Naukowe Politechniki Śl

 YYaskiej, Automatyka 94, 1988, 125-138 (in

Polish).

Jan88c A. Janiak, Minimization of the total resource consumption in permutation

flow-shop sequencing subject to a given makespan, Journal of Modelling,
Simulation and Control 13, 1988, 1-11.

Jan88d A. Janiak, General flow-shop scheduling with resource constraints, Int. J.
Prod. Res. 26, 1988, 1089-1103.

Jan89a A. Janiak, Minimization of resource consumption under a given deadline in

two-processor flow-shop scheduling problem, Inf. Process. Lett. 32, 1989,

101-112.

Jan89b A. Janiak, Minimization of the blooming mill standstills - mathematical model.

Suboptimal algorithms, Zeszyty Naukowe AGH, Mechanika 8, 1989, 37-49.

Jan91a A. Janiak, Exact and Approximation Algorithms of Job Scheduling and Re-
source Allocation in Discrete Industrial Processes, Prace Naukowe Instytutu

Cybernetyki Technicznej Politechniki Wrocławskiej 87, Monografie 20,

Wrocław, 1991 (in Polish).

Jan91b A. Janiak, Single machine scheduling problem with a common deadline and

resource dependent release dates, Eur. J. Oper. Res. 53, 1991, 317-325.

Jan97 A. Janiak, Computational complexity analysis of single machine scheduling

problems with job release dates dependent on resources, in: U. Zimmermann,

U. Derigs, W. Gaul, R.H. Möhring, K.P. Schuster (eds.), Operations Research
Proceedings 1996, Springer, Berlin, 1997, 203-207.

Jan98a A. Janiak, Single machine sequencing with linear models of release dates, Nav.
Res. Logist. 45, 1998, 99-113.

Jan98b A. Janiak, Minimization of the makespan in a two-machine problem under

given resource constraints, Eur. J. Oper. Res. 107, 1988, 325-337.

Jan99 A. Janiak, Selected Problems and Algorithms of Scheduling and Resource
Allocation, Akademicka Oficyna Wydawnicza PLJ, Warszawa 1999 (in

Polish).

JC94 A. Janiak, T.-C. E. Cheng, Resource optimal control in some simple-machine

scheduling problems, IEEE Trans. Aut. Contr. 39, 1994, 1243-1246.

JK96 A. Janiak, M. Y. Kovalyov, Single machine scheduling subject to deadlines

and resource dependent processing times, Eur. J. Oper. Res. 94, 1996,

284-291.

524 13 Scheduling under Resource Constraints

JKP05 A. Janiak , M. Y. Kovalyov, M.-C. Portmann, Single machine group schedul-

ing with resource dependent setups and processing times, Eur. J. Oper. Res.

162, 2005, 112-121.

JL94 A. Janiak, C.-L. Li, Scheduling to minimize the total weighted completion time

with a constraint on the release time resource consumption, Math. Comput.
Model. 20, 1994, 53-58.

JP98 A. Janiak, M.-C. Portmann, Genetic algorithm for the permutation flow-shop

scheduling problem with linear models of operations, Ann. Oper. Res. 83,

1998, 95-114.

JS88 A. Janiak, A. Stankiewicz, On time-optimal control of a sequence of projects

of activities under time-variable resource, IEEE Trans. Aut. Contr. 33, 1988,

313-316.

JS94 A. Janiak, T. Szkodny, Job-shop scheduling with convex models of operations,

Math. Comput. Model. 20, 1994, 59-68.

JW98 J. Józefowska, J. W,eglarz, On a methodology for discrete-continuous schedul-

ing, Euro. J. Oper. Res. 107, 1998, 338-353.

Kar72 R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,

J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press,

New York, 1972, 85-103.

Kar84 N. Karmarkar, A new polynomial-time algorithm for linear programming,

Combinatorica 4, 1984, 373-395.

KE75 O. Kariv, S. Even, An O(n2) algorithm for maximum matching in general

graphs, Proceedings of the 16th Annual IEEE Symposium on Foundations of
Computer Science, 1975, 100-112.

KSS75 K. L. Krause, V. Y. Shen, H. D. Schwetman, Analysis of several task-

scheduling algorithms for a model of multiprogramming computer systems, J.
ACM 22, 1975, 522-550 (Erratum: J. ACM 24, 1977, 527).

Law76 E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,

Rinehart and Winston, New York 1976.

Len83 H. W. Lenstra, Jr., Integer programming with a fixed number of variables,

Math. Oper. Res. 8, 1983, 538-548.

McN59 R. McNaughton, Scheduling with deadlines and loss functions, Manage. Sci.
12, 1959, 1-12.

MWW04 M. Mika, G. Waligóra, J. Węglarz, A metaheuristic approach to scheduling

workflow jobs on a grid, in: J. Nabrzyski, J. M. Schopf, J. Węglarz (eds.), Grid
Resource Management, Kluwer, Boston 2004, 295-318.

NCJK05 C.T. Ng, T.-C. E. Cheng, A. Janiak, M. Y. Kovalyov, Group scheduling with

controllable setup and processing times, Minimizing total weighted completion

time, Ann. Oper. Res. 133, 2005, 163-174.

NZ81 E. Nowicki, S. Zdrzalka, Optimal control of a complex of independent opera-

tions, Int. J. Syst. Sci. 12, 1981, 77-93.

 References 525

NZ84a E. Nowicki, S. Zdrzalka, Optimal control policies for resource allocation in an

activity network, Eur. J. Oper. Res. 16, 1984, 198-214.

NZ84b E. Nowicki, S. Zdrzalka, Scheduling jobs with controllable processing times as

an optimal control problem, Int. J. Contr. 39, 1984, 839-848.

SW89 R. S)�lowiński, J. W,eglarz (eds.), Advances in Project Scheduling, Elsevier,

Amsterdam, 1989.

WBCS77 J. W,eglarz, J. B)�la

.
zewicz, W. Cellary, R. S)�lowiński, An automatic revised sim-

plex method for constrained resource network scheduling, ACM Trans. Math.
Softw. 3, 295-300, 1977.

Weg80 J. W,eglarz, Multiprocessor scheduling with memory allocation - a determinis-

tic approach, IEEE Trans. Comput. C-29, 1980, 703-709.

Weg81 J. W,eglarz, Project scheduling with continuously-divisible, doubly constrained

resources, Manage. Sci. 27, 1981, 1040-1052.

Weg82 J. W,eglarz, Modelling and control of dynamic resource allocation project

scheduling systems, in: S. G. Tzafestas (ed.), Optimization and Control of Dy-
namic Operational Research Models, North-Holland, Amsterdam, 1982.

Weg89 J. W,eglarz, Project scheduling under continuous processing speed vs. resource

amount functions, 1989. in: R. S)�lowiński, J. W,eglarz (eds.), Advances in Pro-
ject Scheduling, Elsevier, 1989, 273-277.

Weg91 J. W,eglarz, Synthesis problems in allocating continuous, doubly constrained

resources, in: H. E. Bradley (ed.), Operational Research '90 - Selected Papers
from the 12th IFORS International Conference, Pergamon Press, Oxford,

1991, 715-725.

Weg99 J. W,eglarz (ed.), Project Scheduling - Recent Models, Algorithms and Applica-
tions, Kluwer Academic Publ., 1999.

WJMW11 J. Węglarz, J. Józefowska, M. Mika, G. Waligóra, Project scheduling with

finite or infinite number of activity processing modes, Eur. J. Oper. Res. 208,

2011, 177-205.

14 Scheduling Imprecise
Computations

The previous chapters focused on various scheduling models, such as single or
parallel processors (Chapters 4, 5) and shop systems (Chapters 8, 9, 10), and
presented results for different performance measures. The following sections
extend the deadline and due date models discussed in Chapters 4, 5 and 7 by
models of imprecise computations. These deal with a kind of “soft” time con-
straints that play an important role in practice and inspire the development of
new models, not only including new concepts of task or processor characteris-
tics, but also new and more sophisticated concepts of performance measures.

14.1 Introduction

The imprecise computation model is an excellent example for the evolution of
scheduling models. According to the basic definition of scheduling problems
provided in Section 3.1 all given tasks have to be completed to meet feasibility.
However, in many practical applications, only partial execution of tasks or even
rejecting one or the other task is acceptable. This relaxed requirement is taken
care of in the imprecise computation model where the tasks are assumed to be
composed of two subtasks, a mandatory and an optional part. The first one has to
be completed before a given deadline, while the second one can be delayed, or
even canceled.

For the mandatory parts, approaches from the previous chapters can be used
to arrive at a first, coarse solution. Processing the optional parts then allows im-
proving the quality of the schedule.

The imprecise computation model was introduced in the context of real-time
systems, see e.g. [LLS+91a, LNL87a, LNL87b, LNLK87]. A special case of
imprecise computations is the concept of late work, where tasks have no manda-
tory part and consist only of the less critical part. This model was originally pro-
posed [Bla84] as an extension of the classical due date problem presented in Sec-
tion 3.1. Both concepts are practically justified. We already pointed out that the
optimization criteria such as maximum lateness, mean or mean weighted tardi-
ness, are very useful in computer control systems. For tasks not completed before
their due dates a penalty is normally calculated with respect to the amount of
delay. However, in these applications one would rather like to penalize the de-
layed portions of the tasks, no matter when they are completed. This is, for ex-
ample, the case for a computer system that collects data from sensing devices.
Exceeding a deadline causes the complete loss of uncollected data, and conse-

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_14

527

https://doi.org/10.1007/978-3-319-99849-7_14
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_14&domain=pdf

528 14 Scheduling Imprecise Computations

quently reduces the precision of the measurement procedure. It follows that the
weighted information loss criterion, introduced in [Bla84] and called afterwards
weighted late work criterion, is better suited for these situations, as it takes into
account the weighted loss of those parts of tasks which remain unprocessed at
their deadlines. Similar problems arise in manufacturing environments, e.g. in
FMS (flexible manufacturing system) or CIM (computer integrated manufactur-
ing), discussed in Chapters 17 and 18. In particular, late work is applicable in
computerized control systems where data are collected and processed periodical-
ly [Leu04], or in optimizing batches of burn-in operations for VLSI chip manu-
facturing [RDX13]. Focusing rather on the size of late parts than on the amount
of the delay might be crucial not only for managing production processes, but
also for their planning. Shift length or planning horizon might be considered as
a common due date for tasks, whose late parts model parts of customer orders
not completed at the agreed due date, i.e. task parts which must be scheduled in
the next planning period, or which must be paid as overtime work [Ste07a].

There are many more situations in practice where the late work criterion
plays an essential role. In agriculture, for example, different stretches of land are
to be harvested [PW92a, PW92b] by a single harvester or several harvesters. Any
part of the crop not gathered by a given date (which differs according to the site)
is spoiled and can no longer be used. Hence in this case minimizing the total late
work corresponds to minimizing the quantity of wasted crop. Similarly one can
consider other - more complex - cultivation processes such as spreading fertiliz-
ers or pesticides [BPSW04a, Ste06]. For particular stretches of land, various
tasks are to be performed, involving one or several specialized agricultural ma-
chines. Natural conditions may determine the sequence and time intervals in
which this cultivation work has to be done. The amount of fertilizers or pesti-
cides not delivered on time to the site negatively impacts the crop and the gain.

In software engineering, while validating new applications, tests which
should be run for certain software modules can be considered as tasks [Ste06].
They are either independent of each other or related by a set of predefined prece-
dence constraints and have to be scheduled before given due dates. The tasks
might be executed by a single software developer or by a team, and are corre-
spondingly modeled by a single processor or by a set of processors. Tests not
completed on time increase the probability of not detecting faults and bugs, and
negatively impact the quality of software.

In other situations variations in processing times of dynamic algorithms or
congestion on the communication network makes meeting all timing constraints
at all times difficult. An approach to minimize this difficulty is to trade the quali-
ty of the results produced by the tasks off for the amount of processing time re-
quired to produce the results. Such a trade-off can be realized by using
the imprecise computation technique [CLL90, LLL87, LNL87a]. This technique
prevents timing faults and achieves graceful degradation by making sure that
an approximate result of an acceptable quality is available to the user whenever
the exact result of the desired quality cannot be obtained on time. An example of
a real-time application where one may prefer timely, though approximate, results

 14.1 Introduction 529

to late, but exact, results is image processing. It is often better to have quickly
produced frames of fuzzy images than perfect images produced too late. Another
example is tracking. When a tracking system is overloaded and cannot compute
all the accurate location data in time, one may, instead, choose to have their
rough estimates that can be computed in less time.

The above presented examples show the wide range of applications of the
imprecise computation model and particularly of the special late work model. As
mentioned, the imprecise computation model has its origin in the real-time envi-
ronment where often specific approaches are required for taking into account its
non-deterministic and dynamic nature. The late work model is - on the one hand
- a special case where task execution is generally optional, but - on the other
hand - introduces a new objective function where the late parts of tasks are pe-
nalized. Criteria based on the late work can be considered in any scheduling
model, including those discussed in the other chapters of the handbook. This
double nature of late work, i.e. scheduling model and performance measure,
makes it an especially interesting subject of research.

 Scheduling of imprecise computation tasks with mandatory and optional
subtasks is generally more difficult, because it involves feasibility issues as well
as optimization processes. For this reason polynomial time solvability is rather
unlikely even in the simplest cases. Actually, the research on imprecise computa-
tions seems to be more focused on specific applications (e.g. [BH98, CC00,
CY14, HFL96, PB10, SK12, WF08]) than on systematic studies. Corresponding
publications from industry or military (e.g. designing automatically driven cars
or missile tracking) are generally of restricted accessibility. That is why we shall
only touch on the area of imprecise computations (Section 14.2), and instead
concentrate extensively on late work scheduling in Section 14.3. As was pointed
out above late work scheduling not only is an important issue in practice, it is
also a very attractive subject for scientific work [Ste11]. In the field of late work
scheduling a wide range of algorithmic techniques is used, such as dynamic pro-
gramming methods, mathematical programming models, approximation algo-
rithms including polynomial time approximation schemes, and general strategies
such as branch and bound and metaheuristic algorithms. Moreover, late work, as
an objective function, is applied in various fields of contemporary scheduling
theory such as multi-agent scheduling or time-dependent scheduling.

In this chapter we concentrate on the late work scheduling, i.e. on the opti-
mization aspects of imprecise computations. Nevertheless, in Section 14.2 we
give a short overview of the imprecise computation model, including the main
research areas related to it. The more interested readers are directed to the sur-
veys given more recently by Leung [Leu04, Leu08a, Leu08b] and earlier by Liu
et al. [LLS+91b, LSL+94]. In Section 14.3 we focus on late work scheduling
problems, intensively studied in last years. Section 14.4 presents some related
scheduling models, based on the late work as well as on the early work parame-
ters. The relations between them give the opportunity to discuss some interesting
issues regarding approximability of scheduling problems (cf. Section 2.5.1).

530 14 Scheduling Imprecise Computations

14.2 Imprecise Computation Model

The imprecise computation model has been introduced in the field of hard real-
time scheduling (cf. Chapter 7) to allow for trading off accuracy of computations
in favor of meeting deadlines or to handle temporary overload, as well as to en-
hance fault tolerance of such systems.

In the imprecise computation model, every hard real-time task Tj (with pro-
cessing time pj) is logically decomposed into two subtasks, a mandatory part and
an optional part. The mandatory subtask is a portion of computation (of length
pj

m), which has to be completed before the task deadline in order to obtain a fea-
sible solution. The optional subtask (of duration pj

o) represents the computation
that refines the result from the mandatory part but can be left unfinished. In other
words, executing the mandatory subtask only corresponds to producing an ap-
proximate but acceptable result (possibly with an error), whereas the optional
subtask allows minimizing the error or optimizing the initial result. A typical
situation can be found in cases where, due to overload or failure, the system is
prevented from producing the precise result (with no error) but instead presents
an inexact approach that can be improved if more processor capacity is available
[LSL+94]. Late parts can thus be interpreted to model an error that should be
minimized. The total task processing time pj is defined by the sum pj

m + pj
o .

In hard real time systems, where tasks are usually time-critical, the impre-
cise computation technique can be used to gain responsiveness and robustness
[LSL+94]. It is assumed that under normal operating conditions all optional sub-
tasks, corresponding for example to pieces of work, portions of computations, or
units of data to be transmitted, can be completed on-time with the desired preci-
sion. If this, however, is not possible due to system faults or overloads, the op-
tional subtasks or parts thereof can be skipped in order to ensure solution feasi-
bility by completing at least the mandatory parts. The results of tasks whose op-
tional subtasks are not fully completed are called imprecise. In addition to
the hard-real time applications the imprecise computation model can be used in
the analysis of iterative algorithms [Leu04]. In such case the mandatory subtask
represents the effort needed to determine an initial solution, while the optional
subtask corresponds to the subsequent iterations for improving the solution
quality.

In the simplified situation, where the tasks in a system have no mandatory
part (pj

m = 0), the whole processing time is assigned to the optional subtasks
(pj = pj

o). The imprecise computation scheduling problem is then reduced to
the late work minimization problem, which is broadly discussed in the next sec-
tion.

Scheduling imprecise computations not only includes optimization, but also
feasibility related issues. In that sense, late work problems are easier to deal with
because feasibility questions do not appear. Of course, methods proposed for

 14.2 Imprecise Computation Model 531

the imprecise computation model can be applied for late work scheduling, but
there exist simpler approaches. Leung [Leu04] observed that for single machine
problems with preemptions, any algorithm proposed for the total weighted late
work (i.e. the weighted sum of late parts of task processing times) can be used to
solve the imprecise computation problem. Treating mandatory and optional sub-
tasks of a task as two different tasks and setting the weight of each mandatory
subtask to a value larger than that of any optional subtask, all mandatory sub-
tasks will be guaranteed to be completed (supposed a feasible schedule exists for
the mandatory subtasks). Unfortunately a similar approach cannot be applied for
multi-processor problems, because mandatory and optional subtasks of a task
cannot be executed in parallel on different processors. Moreover, such strategy
cannot be used for non-weighted and non-preemptive cases, because mandatory
subtasks cannot be separated from optional subtasks and awarded with larger
weights. For these reasons, the two research fields, imprecise computation
scheduling and late work scheduling, have been developing separately, although
they obviously influence each other.

Imprecise computation scheduling problems have been investigated for vari-
ous objective functions, such as minimizing the total error (e.g. [CSLG89]) or
minimizing the number of imprecisely scheduled tasks (e.g. [HLW97, SLC91]).
In order to take into account not only the total error, but also the distribution of
errors among tasks, criteria based on minimizing the maximum normalized error
(determined as the fraction of a task error divided by the processing time of its
optional part) under the constraint that the total error is minimized (e.g. [SL95]),
and doubly weighted tasks (e.g. [HLW94, WLP07]) were proposed. The doubly
weighted tasks are described by two weights wj

T and wj
M

 , used for determining

two distinct error criteria: the total wT-weighted error and the maximum wM-

weighted error (e.g. [Ho04]). The imprecise computation model was also extend-
ed with a 0/1-constraint, signaling that particular optional subtasks are either
fully executed or fully discarded (see e.g. [HLW97, SLC91]). Moreover, period-
ic tasks, where each task is a periodic sequence of identical operations and the
ready time and deadline are determined by the respective beginning and end of
the period, were studied (e.g. [CLL90]).

Recently Shioura et al. [SSS16, SSS18] noticed that the imprecise computa-
tion model can be considered as a scheduling model with controllable processing
times (cf. [MM14, NZ90, SS07, Vic80a, Vic80b]. In this model, the task pro-
cessing time pj is not given in advance, but is selected from a given interval
[lj , uj] . Compressing the processing time from its longest value uj to pj allows

decreasing the task completion time, but causes additional cost. Shioura et al.
[SSS15, SSS16] observed that the imprecise computation of a task can be mod-

eled as a task with controllable processing times by setting the respective lengths

of the mandatory and the optional parts to pj
m = lj and pj

o = uj – pj
m

 .

In consequence, results obtained for problems with controllable processing times

can as well be used to tackle imprecise computation problems.

532 14 Scheduling Imprecise Computations

14.3 Late Work Model

The late work parameter Yj extends the set of the classical due date parameters

lateness Lj , tardiness Dj , earliness Ej , and number of tardy tasks Uj introduced

in Section 3.1 for estimating the quality of schedules. In non-preemptive models,

the late work is equal to the size of the late part of task Tj , Yj = min{max{Cj � dj ,

0}, pj } , i.e.:

 Yj =
�.
�
.

0
Cj���dj
pj

if Cj � dj ,

if dj < Cj < dj + pj ,
if dj + pj � Cj .

(14.3.1)

In preemptive models, the duration of late parts of a task must be added up.
Based on this parameter, the following criteria can be used to evaluate schedules
with n tasks:

total late work Y = �
j=1

n
Yj

or, more general,

total weighted late work Yw = �
j=1

n
 wjYj .

To be consistent with the notation introduced in Section 3.4 for characterizing
scheduling problems, we use the short cuts �Yj and �wjYj for late work problems.

Figure 14.3.1 Due date involving parameters - overview [Ste11].

Late work is closely related to tardiness Dj but bounded from above by

the processing time, i.e. Yj = min{Dj , pj }. On the other hand, it is related to

dj

Lj

dj

Dj

dj

Uj

1

Cj Cj Cj

Cj dj

Ej

dj

Ej+Dj

Cj Cj dj

Yj

dj+pj

pj

 14.3 Late Work Model 533

the number of tardy tasks Uj (see Figure 14.3.1), because its value is also limited,

unlike to the case of other parameters. Late work based performance measures

are regular functions, i.e. non-decreasing with task completion times [Pin16], in

contrast to the earliness involving criteria, which are non-regular. Moreover, for

all due date based criteria their value is non-decreasing with the deviation of the

task completion time from the due date. Since minimizing the total (weighted)

late work is not easier than minimizing the maximum lateness [BPSW00], the

graph of interrelations among scheduling criteria presented in Figure 3.4.1(f) can

be extended with the late work based criteria as shown in Figure 14.3.2.

Figure 14.3.2 Extended graph showing interrelations among different optimality

criteria.

Moreover, we see from the definition of late work, cf. equation (14.3.1) and the
definition of Uj (Section 3.1), that the total (weighted) late work and the total
(weighted) number of tardy tasks are the same for non-preemptive scheduling
problems with unit processing times for a single processor and for parallel iden-
tical and uniform processors [Ste00].

14.3.1 Single Processor Problems

The results obtained for the single machine scheduling problems with the total
late work criterion contain interesting examples of utilizing approaches devel-
oped for other scheduling models and for other combinatorial optimization prob-
lems.

Problem 1 | pmtn | ��Yj

The single machine preemptive problem is one of relatively few cases with late
work which is solvable in polynomial time. Potts and Van Wassenhove [PW92a]
proposed an algorithm, based on the similarity of the late work and the tardiness
parameters.

Dw, Ew

D, E

Lmax

Cmax

Uw

U

Yw

Y
Fw

F

534 14 Scheduling Imprecise Computations

First the tasks, numbered in the earliest due date order, are scheduled by

Jackson’s algorithm [Jac55] presented in Section 4.3.1. It minimizes the maxi-

mum tardiness to the value of Dmax = max{ max
1 � j � n

 {�
k=1

j
 pk � dj }, 0}.

If Dmax = 0, then �Yj = 0, and Jackson’s schedule is optimal for problem

1 | pmtn | �Yj . If Dmax > 0 the schedule is modified by shifting Dmax units of work

after the last task in the sequence. First the critical task Tj is determined for

which �
k=1

j�1

 pk < Dmax �� �k=1

j
 pk . The optimal schedule for 1 | pmtn | �Yj is built by

executing �
k=1

j
 pk � Dmax units of the critical task Tj , followed by tasks Tj+1 ,...,

Tn , T1 ,..., Tj�1 , and the remaining Dmax � �
k=1

j�1

 pk units of task Tj . Such a schedule

requires at most one preemption and minimizes the total late work to �Yj = Dmax .

The above presented algorithm solves problem 1 | pmtn | �Yj in O(nlogn)

time, due to the necessity of sorting tasks.

Problem 1 | pmtn | ��wjYj

The total weighted late work scheduling problem for a single processor can be
solved in polynomial time by backward scheduling (cf. Algorithm 4.2.4). Hariri
et al. [HPW95] extended the approach proposed for the unweighted case.

Algorithm 14.3.1 Algorithm for 1 | pmtn | �wjYj [HPW95].

begin

Renumber tasks in EDD order forming set T = {T1 ,..., Tn};
t := dn;
while T � � and t � 0 do

 begin
 Determine the set of available tasks A = {Tj ��Tj � T, dj � t};
 Choose Tj � A with the maximum weight wj;
 if there exists task Tk , with largest k, such that t � pj < dk < t
 then s := dk
 else s := max{t � pj , 0};
 Schedule t ��s units of task Tj within interval [s, t];
 pj := pj ��at ��s3;
 t := s;
 if pj = 0

 then T := T ��fTj/;

 14.3 Late Work Model 535

 if dj < t for all Tj � T

 then t := max
Tj�T

{ dj };

 end;
end;
Algorithm 14.3.1 determines an optimal schedule with at most n preemptions in
O(nlogn) time. The proof of correctness can be found in [HPW95].

Problem 1 | pmtn, rj | ��Yj

Introducing ready times does not make the problem intractable. Under the as-

sumption that all parameters are integers problem 1 | pmtn, rj | �Yj can be solved
by an algorithm proposed by Hochbaum and Shamir [HS90]. Minimizing the
total late work is equivalent to minimizing the number of tardy task units. They
modeled the scheduling problem with minimizing the number of tardy task units
as a transportation problem (cf. Section 2.3).

First all distinct ready times and due dates are sorted in non-decreasing or-
der, determining all possible distinct time moments ui , such that 0 = u0 < u1 < ...

< um < UB. UB is the length of a fictitious schedule where all tasks are executed

in the order of their ready times. Assuming that decision variables xji correspond

to the number of units of task Tj processed within the time interval [ui�1 , ui), and

the penalty caused by tardy units is defined as

cji =
�
�

0 if rj < ui � dj ,

1 if ui > dj ,

the problem can be formulated as follows:

Minimize �
j=1

n
 �
i=1

m
 xji cji (14.3.2)

subject to� �
i=1

m
 xji = pj for all j, (14.3.3)

� �
j=1

n
 xji = ui � ui�1 for all i, (14.3.4)

 xji � 0 and integer for all j, i. (14.3.5)

This problem can be solved in O(n 3logn + n 2log 2n) time by the flow algorithm

of Orlin [Orl88], but the faster specialized approach in [HS90] requires only

O(nlogn) time. The above approach can also be applied to the problem without
ready times, 1 | pmtn | �Yj [HS91].

536 14 Scheduling Imprecise Computations

Problem 1 | pmtn, rj | ��wjYj

The algorithm proposed by Hochbaum and Shamir [HS90] for 1 | pmtn, rj | �Yj

can be adjusted to the weighted case by modifying the penalty given to the tardy

units of particular tasks:

cji =
�
�

0 if rj < ui � dj ,

wj if ui > dj .

An apparent approach is to solve the corresponding transportation problem by

Orlin’s method [Orl88] which needs O(n
3
logn +n

2log2n) time. An alternative

specialized two-phase algorithm designed by Hochbaum and Shamir [HS90]

takes O(n
2
) time. It first determines the optimal number of early units for each

task, and then applies O(n) times the procedure proposed for the unweighted

case. Another two-phase algorithm, proposed by Yu [Yu91] and Leung et al.
[LYW94], decreased the time complexity to O(nlogn + nk), where k denotes the

number of distinct task weights. The algorithm divides the set of tasks into sub-

sets corresponding to various weights, and applies to them algorithms proposed

in [HS90] and [SLC91]. The latter approach was designed for the single machine

problem in the imprecise computation model.

Problem 1 | | �Yj

The non-preemptive late work scheduling problem on a single processor is
NP-hard. Potts and Van Wassenhove [PW92a] presented a transformation from
the subset sum problem, a special case of the knapsack problem. Moreover,
based on the similarity of problem 1 | | �Yj with the knapsack problem, they pro-
posed a pseudopolynomial time dynamic programming algorithm (see Section
2.4.1) for proving the binary NP-hardness.

Theorem 14.3.2 [PW92a] Problem 1 | | �Yj is NP-hard.

Proof. As a known NP-complete problem we take SUBSET SUM [Kar72] which
is formulated as follows.

Instance: Finite set A , a size s(aj) � IN for each aj � A , and a constant b.

Answer: "Yes" if there exists a subset A' � A such that
 �

aj �A'
s(aj) = b .

 Otherwise "No".

Given any instance of SUBSET SUM defined by the positive integers s(aj) for
aj �A , we define a corresponding instance of the decision counterpart of 1 | | �Yj
by assuming n = |A | + 1 tasks. For tasks Tj , j = 1, 2,..., n, we set pj = s(aj), and

dj = b. For Tn+1 we set pn+1 = 1, and dn+1 = b + 1. A threshold value for the total

 14.3 Late Work Model 537

late work is equal to y = �
aj �A

s(aj) ��b. It is obvious that there exists a subset A'

with the desired property for the instance of SUBSET SUM if and only if, for
the corresponding instance of 1 | | �Yj , there exists a schedule with �Yj � y.

The schedule is shown in Figure 14.3.3.

Figure 14.3.3 A schedule for Theorem 14.3.2.

The alternative NP-hardness proof, based on a transformation from the partition
problem (defined in Section 5.1.1 and used in the complexity analysis of many
scheduling problems) was proposed be Leung [Leu04].

The results obtained for a single processor inspired the treatment of more
general, also intractable, scheduling models without preemptions. The structure
of an optimal schedule - similar to the one shown in the following Theorem
14.3.3 where the set of tasks is divided into the subsets of early, partially early,
and of late tasks - can be observed for parallel and dedicated processor problems
as well. This result is extremely powerful from the algorithmic point of view,
since it eliminates the sequencing element of problems involving the analysis of
up to n! permutations by replacing it with analyzing at most 2n possible subsets
(in the branch and bound method [PW92b] for example).

Theorem 14.3.3 [PW92a] There exists an optimal solution to 1 | | �Yj in which
the early and partially early tasks are sequenced first in EDD order followed by
the late tasks sequenced in arbitrary order.

Solving the non-preemptive problem for a single processor with dynamic pro-
gramming is based on the above mentioned structure of an optimal schedule.
Assuming that the tasks are numbered in the earliest due date order, a recursion
is defined on variables fj(t) that represent the minimum total late work for tasks
T1 ,..., Tj scheduled so that the last early or partially early task finishes at time t.

Algorithm 14.3.4 Dynamic programming for 1 | | �Yj [PW92a].

begin
for j = 1 to n do bj = min{�

i=1

j
 pi , max

1 � i � j
{di + pi ��1}};

 -- bj represents the bound of the completion time of early and partially early tasks

 -- among tasks T1 ,..., Tj

dj

b b+1

dn+1

b y

 Tn+1 P1

t

A' A�A'

538 14 Scheduling Imprecise Computations

for j = 1 to n do
 for t = 0 to bj do

fj(t) := #;
f0(0) := 0;
for j = 1 to n do
 for t = 0 to bj do
 if t < dj + pj
 then
 fj(t):= min{ fj�1(t ��pj) + max{t ��dj , 0}, fj�1(t) ��pj};
 -- the first term corresponds to the decision to schedule Tj early

 -- or partially early, the second one to the decision to schedule Tj late
 else
 fj(t):= fj�1(t) ��pj;
The minimum total late work is given by min

0 � t � bn

{fn(t)};

end;

The above algorithm solves problem 1| | �Yj in O(n min{�
j=1

n
 pj , max

1 � j � n
{dj + pj}})

time. The computational time can be reduced to O(n(Dmax + pmax)) by a redun-
dant state elimination, where Dmax denotes the maximum tardiness and pmax the
maximum task processing time [PW92a]. The storage space required by dynamic
programming can be reduced by termination tests, but without computational
time reduction [PW92a].

Relinquishing the requirement of optimally solving problem 1 | | �Yj , an
(1+1/k)-approximation algorithm based on the branch and bound method
[PW92b], working in O(n

k+1) time and O(n) space, can be applied. Moreover,
the above presented dynamic programming method gives the basis for a fully
polynomial time approximation scheme, which is a family of (1+%)-approxi-
mation algorithms with time and space requirements of O(n 2/%) and O(n/%), re-
spectively [PW92b].

For the interested reader we mention that problem 1| | �Yj is an example of

the DP-benevolent problem [Woe00] which is understood as a combinatorial

problem accessible by a dynamic programming approach, where certain structur-

al conditions guarantee the existence of a fully polynomial time approximation

scheme (FPTAS).

Problem 1, h1 | r-a | ��Yj

The approaches proposed by Potts and Van Wassenhove [PW92a, PW92b] can

be adjusted to the single processor case with one non-availability period (cf. Sec-

tion 11.2 and [MCZ10] for example). Yin et al. [YXC+16] investigated the sin-

 14.3 Late Work Model 539

gle processor case with one fixed maintenance activity (denoted h1), and resum-

able availability constraints (denoted r-a). They proposed two dynamic pro-

gramming methods of pseudopolynomial time complexity. In contrast to the

problem with a continuously available processor, there is no polynomial (1 + %)-

approximation algorithm for 1, h1 | r-a | �Yj for limited % < +# unless P = NP.

A fully polynomial time approximation scheme exists for the modified problem,

where the criterion value is increased with the maximum task processing time

pmax , i.e. for 1, h1 | r-a | (�Yj + pmax).

Problem 1 | dj = d | ��Yj

In case of a common due date, the non-preemptive scheduling problem on a sin-
gle processor is trivial. Any task ordering leads to a schedule which is optimal

with regard to max{(�
j=1

n
 pj) � d$��/�[PW92a].

Problem 1 | pj = p | �Yj

In case of identical task processing times, the problem of minimizing the total
late work is polynomially solvable in O(nlogn) time [PW92a]. Assuming that all
tasks are indexed in the earliest due date order, either the sequence
(Tu+1 ,..., Tn , T1 ,…, Tu) or (Tu'+1 ,..., Tn , T1 ,..., Tu') is optimal, where u =
�Dmax / p� , u′ = 9Dmax / p; , and Dmax denotes the maximum tardiness for tasks if

scheduled according to the EDD rule.

Problem 1 | chains, pj = 1 | �Yj

Imposing precedence constraints on tasks, even in the simplest case of chains
with unit processing time tasks, makes the problem NP-hard. Taking into ac-
count the equivalence of total late work and total number of tardy tasks for non-
preemptive scheduling problems with unit processing times, problem 1 | chains,
pj = 1 | �Yj is equivalent to the NP-hard problem 1 | chains, pj = 1 | �Uj [LRK80].

Problem 1 | p-batch | �Yj

In industrial production processes, parts requiring similar operations are often
grouped in batches, to be executed by a “batching machine” [PK00]. The batch-
ing machine can be bounded or unbounded, depending whether the batch size is
limited or not. Due to technical conditions, tasks belonging to the same batch are
executed jointly and have the same start and completion time. The problem of
organizing tasks in batches with the objective of minimizing total late work was

540 14 Scheduling Imprecise Computations

considered by Ren et al. [RZS09]. Two types of batch-based operation models
are distinguished by Brucker in [Bru07], the p-batch and the s-batch model. In
the p-batch model the production machine, considered as a single processor, is
able to process many tasks simultaneously. An example is the manufacturing of
circuit boards, where the parts are placed together in one box or pallet to be heat-
ed in an oven. The simultaneously processed tasks have the same completion
time which is then determined by the longest processing time among the tasks. In
the s-batch model a pallet with a batch of product parts is moved from one ma-
chine to another for processing. The tasks are executed sequentially and the
batch completion time is determined by the sum of task processing times. The
parts placed on the pallet may have different due dates. In both models, tasks
with small due dates may cause high due date penalties.

Ren et al. [RZS09] proved that the scheduling problem with a single un-
bounded parallel batching machine and the total late work, 1 | p-batch | �Yj , is
binary NP-hard. This was shown by a transformation from the partition problem
(cf. Section 5.1.1). They noticed that problem 1 | p-batch | �Yj can be solved by a

generic dynamic programming approach (designed by Brucker et al. [BGH+98])

for batching problems with regular functions requiring O(n
2�pj) time and

O(n�pj) space. Since this dynamic programming algorithm can be modified such
that it automatically leads to a fully polynomial approximation scheme
[BGH+98], problem 1 | p-batch | �Yj is another example of the DP-benevolent

problem [Woe00].

The intractability of this problem results in the NP-hardness of other and

more complex models. Nevertheless Zhang and Wang [ZW05] independently

showed the NP-hardness for the weighted variant 1 | p-batch | �wjYj by another

transformation from the partition problem.

Problem 1 | | ��Yj
A: Lmax

B

Wang et al. [WKS+17] introduced the late work criterion into the multi-agent
scheduling problems (also see [ABG+14]). In particular, in two-agent scheduling
problems two agents, A and B, compete for resources to perform their respective
sets of non-preemptive tasks [AMPP04]. The majority of problems discussed in

this handbook can be considered as scheduling problems with a single agent pos-

sessing all tasks to be executed.

In problem 1 | | �Yj
A: Lmax

B the goal is to minimize the total late work �Yj
A of

agent A, possessing nA so-called A-tasks, under the constraint that the maximum

lateness Lmax
B of agent B, possessing nB B-tasks, does not exceed a given thresh-

old U. Problem 1 | | �Yj
A: Lmax

B is NP-hard, because it is an extension of 1| | �Yj
with a sufficiently large value for the threshold. Such a two-agent problem can
be solved by a pseudopolynomial time dynamic programming approach, based
on the following property of an optimal schedule:

 14.3 Late Work Model 541

Theorem 14.3.5 [WKS+17] There exists an optimal schedule for 1 | | �Yj
A: Lmax

B

which satisfies the following properties:
(i) all tasks are processed without idle time, and the first task starts at time

zero;
(ii) all late A-tasks are processed after all early and partially early A-tasks and

all B-tasks;
(iii) the early and partially early A-tasks are processed in EDD order of their

due dates dj
A;

(iv) the B-tasks are processed in non-decreasing order of their modified due
dates Ďj

B.

The modified due date Ďj
B for a B-task Tj

B is computed from the given threshold

U for the maximum lateness of agent B and its original due date dj
B

 :
Ďj

B ��dj
B = U. Task Tj

B is then feasibly scheduled if and only if Cj
B � Ďj

B
 .

Wang et al. [WKS+17] proposed two dynamic programming algorithms
solving problem 1 | | �Yj

A: Lmax
B with time complexities O(nAnB �pj

A) and
O(nAnB min{�pj

A + �pj
B, max{ max

1 � k � nA

{pk
A + dk

A ���}, ĎnB
B }).

A similar research has been done by Zhang and Wang [ZW17] for two-agent
scheduling with the weighted late work criterion for the first agent and any max-
imum cost function non-decreasing with task completion times for the second
agent, i.e. for 1 | | �wj

AYj
A: fmax

B
 . Among others, they considered special cases of

this problem with a common due date (dj
A = d A) and with identical task pro-

cessing times (pj
A = p A) for the first agent.

Problem 1 | pjr = pj r a | ��Yj

In the classical scheduling theory, the processing times of tasks are assumed to
be fixed and known in advance. To consider the specificity of real world prob-
lems, this classical assumption has been relaxed by assuming that the task pro-
cessing times depend on time or position in the schedule (called also learning
effect). This so-called time-dependent scheduling (e.g. [Bis08, CDL04, Gaw08,
Mos01, SR17] and Chapter 12) is motivated from the fact that in many realistic
settings the efficiency of the production facility (a machine, a worker) changes
with time with the consequence of improving or degrading the performance.

Wu et al. [WYW+16] considered the non-preemptive single processor prob-
lem with the total late work criterion and a position-based learning effect. In such
case, the processing time of task Tj (j = 1, 2,..., n) depends on its normal pro-
cessing time pj (without any learning effect), its position r in the schedule
(r = 1, 2,..., n), and a given control parameter a (a < 0), as for example
pjr = pj r

a.

542 14 Scheduling Imprecise Computations

Since the problem without learning effect (i.e. a = 0) is NP-hard, Wu et al.
[WYW+16] proved a few features of an optimal solution which allowed for de-
signing a branch and bound algorithm as well as a genetic algorithm. In particu-
lar, they showed (see Theorem 14.3.6) that the optimal solution is based on the
earliest due date sequence, similar to the previously discussed problems. As for
problem 1 | | �Yj (see Theorem 14.3.3), if a set of early and partially early tasks is
selected, they should be scheduled in EDD order, provided their due dates and
normal processing times are agreeable. The remaining tasks can be scheduled in
arbitrary order.

Theorem 14.3.6 [WYW+16] There exists an optimal schedule for problem
1 | pjr = pj r

a | �Yj in which the set of early and partially early tasks is sequenced
in EDD order, followed by the late tasks sequenced in SPT order if the given task
processing times and due dates are agreeable, i.e. di � dj implies pi � pj for all
tasks Ti and Tj .

Problem 1 | | ��wjYj

The non-preemptive weighted late work scheduling problem on a single proces-
sor is obviously NP-hard, since its unweighted variant is already intractable. As

problem 1 | | �Yj , problem 1 | | �wjYj is binary NP-hard, due to the existence of
a pseudopolynomial time algorithm. In contrast to the non-weighted case (cf.
Theorem 14.3.3), the early and partially early tasks do not need to be executed in
EDD order in an optimal schedule. The structure of this schedule is determined
by Theorem 14.3.7.

Theorem 14.3.7 [HPW95] There exists an optimal sequence of early and par-
tially early tasks 2, such that tasks with the same dj are sequenced in non-
increasing order of wj and, for each Tj of 2, at most one task Tk with dk < dj is
scheduled after Tj in 2 .

From the above theorem, we know that the optimal schedule consists of a se-
quence of early and partially early tasks, called a non-late sequence, followed by
the late tasks in arbitrary order. In an optimal non-late sequence, tasks are almost
scheduled in EDD order (some tasks can be deferred from their EDD positions),
and tasks with the same due date are scheduled in non-increasing order of their
weights.

Hariri et al. [HPW95] proposed a dynamic programming recursion fj(t, i)
that determines the minimum total weighted late work for tasks T1 ,..., Tj , as-

suming that non-late tasks among {T1 ,..., Tj}�fTi/ are completed at time t, and
any task Ti deferred from its EDD position contributes wi pi to the value fj(t, i).
Their approach is sketched in Algorithm 14.3.8.

 14.3 Late Work Model 543

Algorithm 14.3.8 Dynamic programming for 1 | | �wjYj [HPW95].

begin
for j = 1 to n do
 for t = 0 to �

k=1

j
 pk do

 for i = 0 to j do
fj(t, i) := #;

 f0(0, 0) := 0;
for j = 1 to n do
 for t = 0 to �

k=1

j
 pk do

 begin
Ajt = {Ti | di < dj , di < t < di + pi , i = 1,..., j ���/;

-- set Ajt contains tasks of reversed pair Tj , Ti with regard to EDD order,
-- completed at time t

if t < dj + pj
then fj(t, 0) := min{ fj��(t, 0) + wj pj ,

 fj��(t ��pj , 0) + wj max{t ��dj , 0},

 min
i�Ajt

{fj��(t ��pj ��pi , i) + wi (t ��di ��pi)}}

 else fj(t, 0) := min{ fj��(t, 0) + wj pj ,

 min
i�Ajt

{fj��(t ��pj ��pi , i) + wi (t ��di ��pi)}};

for i = 1 to j ��� do
begin

if t < di

then fj(t, i) := min{ fj��(t, i) + wj pj , fj��(t ��pj , i)}

else fj(t, i) := #;
end;

if t < dj

then fj(t, j) := fj��(t, 0) + wj pj

else fj(t, j) := #;
end;

The minimum total weighted late work is given by min
0 � t � �pj

ffn(t, 03/;

end;

Algorithm 14.3.8 solves the problem 1 | | �wjYj in O(n

2�pj) time within O(n
2�pj)

space.
Kovalyov et al. [KPW94] proposed an alternative dynamic programming al-

gorithm, where the total weighted late work is a state variable. Based on round-

544 14 Scheduling Imprecise Computations

ing down the criterion value, it gave the basis for the proposal of a family of

(1+%)-approximation algorithms with O(n
3
logn + n

3
/%) time complexity. As in

the unweighted case, problem 1 | | �wjYj is an example of the DP-benevolent

problem [Woe00].

The previously mentioned algorithms for minimizing the total (weighted)

late work are closely related to the methods proposed for the optimization criteria

based on (weighted) tardiness. Kolliopoulos and Steiner [KS06] formalized the

relation between late work and tardiness based measures for the weighted case.

In Theorem 14.3.9 they showed that problem 1 | | �wjYj achieves an O(�pj)-
approximation with respect to the total weighted tardiness �wjDj , which means

that for any schedule the following inequality holds �wjDj � �pj·�wjYj . It fol-

lows that as long as the processing times do not grow faster than some polyno-

mial with regard to the number of tasks, i.e. �pj = O(p(n)), we have a non-trivial

relational bound between these criteria which is independent of the task weights.

Due to the existence of the pseudopolynomial time algorithm proposed by Hariri

et al. [HPW95], and FPTAS designed by Kovalyov et al. [KPW94], if

�pj = O(p(n)) for some polynomial p(n), problem 1 | | �wjYj can be solved in

polynomial time.

Theorem 14.3.9 [KS06] If �pj = O(p(n)), where p(n) is a polynomial, then
an optimal schedule 2 for problem 1 | | �wjYj can be obtained in polynomial
time, and the total weighted tardiness for this schedule, Dw(2) , is within a poly-
nomial factor off the optimum for problem 1 | |�wjDj , Dw(2*) , i.e.

 Dw(2) � p(n) Dw(2*).

Problem 1 | dj = d | ��wjYj

Similar to the unweighted case 1 | dj = d | �Yj , the non-preemptive weighted
scheduling problem on a single processor with a common due date is solvable in
polynomial time [HPW95]. In the following theorem it is assumed that tasks are
numbered in non-increasing order of their weights.

Theorem 14.3.10 [HPW95] For problem 1 | dj = d | �wjYj , any sequence of tasks,
in which tasks T1 ,..., Tj�1 are scheduled before task Tj , and tasks Tj+1 ,..., Tn

after task Tj , where �
i=1

j�1

 pi < d � �
i=1

j
 pi , is optimal.

The schedule described in the above theorem can be constructed in O(n) time,
since the critical task Tj can be found without renumbering tasks from the medi-
an weight [HPW95].

 14.3 Late Work Model 545

Problem 1 | pj = p | ��wjYj

In case of identical task processing times, the problem of minimizing the
weighted total late work is solvable in O(n

3) time by a transformation to the lin-
ear assignment problem [HPW95]. Since the completion time of a task depends
on its position i (i = 1,..., n) in the sequence and is equal to ip , the weighted

late work for task Tj scheduled at position i is determined by cji = wj min{max{ip

� dj , 0}, p}. The optimal schedule for problem 1 | pj = p | �wjYj corresponds to

a solution of the linear assignment problem with costs cji , which can be con-

structed by the method given by Lawler [Law76].

Problem 1 | rj , pj = 1 | �wjYj

As for unit processing times the weighted total late work is equivalent to the

weighted number of tardy tasks, the non-preemptive problem 1 | rj , pj = 1 | �wjYj

can be solved in at most O(n
7
) steps by the algorithm designed for 1 | rj , pj = p |

�wjUj by Baptiste [Bap99].

Taking into account the NP-hardness of the basic non-preemptive schedul-

ing problems 1 | | �Yj and 1 | | �wjYj , scheduling models enhanced with additional

parameters or constraints are, in general, also NP-hard. As for other intractable

problems, the general strategies described in Sections 2.4 and 2.5 can be applied

for them, among them in particular branch and bound algorithms (e.g. [HPW95,
PW92b, WKS+17, WYW+16]) and metaheuristic methods such as genetic algo-
rithms [WYW+16], tabu search [WKS+17], and simulated annealing [WCC+11].

14.3.2 Parallel Processor Problems

After discussing preemptive and non-preemptive single processor scheduling
problems with the late work criterion we next concentrate on corresponding
multiprocessor problems. As most non-preemptive single processor problems
have been shown to be NP-hard and hence solvability by a polynomial time algo-
rithm cannot be expected for the multiprocessor case, we mainly will discuss
solution strategies for preemptive scheduling and only mention few very special
results for the non-preemptive case.

Problem P | pmtn, rj | �wjYj

In contrast to other due-date involving criteria such as mean or mean weighted
tardiness, the problem of scheduling preemptable tasks subject to minimize total
weighted late work can be solved in polynomial time. Below we present
the approach of Błażewicz and Finke [BF87] for transforming this problem to

546 14 Scheduling Imprecise Computations

a minimum flow cost problem in a special network (cf. Section 5.3.1 where the
algorithm by Horn [Hor74], for problem P | pmtn, rj , d

~
j | � , has been described).

Let us order the ready times rj and due dates dj in non-decreasing order and
let among these there be k � 2n different values ak (i.e. rj or dj), indexed in in-
creasing order. These values define k � 1 time intervals [a1 , a2] ,..., [ak�1 , ak] ,
where the length of the i th interval is ti = ai+1 � ai . The network G = (V , E) is
constructed as follows. Its set of vertices consists of source S1 , sink S2 , and two
groups of vertices: the first corresponding to tasks Tj , j = 1, 2,..., n, the second
corresponding to time intervals [ai , ai+1] , i = 1, 2,..., k � 1 (cf. Figure 14.3.4).

Figure 14.3.4 A network corresponding to problem P | pmtn, rj | �wjYj .

The source S1 is joined to each task vertex Tj by an arc of capacity equal to the
processing time pj . Each task vertex Tj is joined by an arc to any interval node
[ai , ai+1] in which Tj can be feasibly processed, i.e. rj � ai and dj � ai+1 , and
the capacity of the arc is set to ti . Moreover, vertex Tj , j = 1, 2,..., n, is joined
to the sink S2 by an arc of capacity equal to pj . Each interval node [ai , ai+1] ,
i = 1, 2,..., k � 1, is joined to the sink by an arc of capacity equal to mti , which is

equal to the processing capacity of the m processors in that interval. The cost for
the arc directly joining Tj with sink S2 is equal to the corresponding weight wj .
All other arc cost values are zero. The objective now is to find a flow pattern for
which the value of flow from S1 to S2 is equal to �j=1

n
 pj and whose total cost is

minimal.

 T1

S1 S2

 p1 , 0
 T2

Tn

 p2 , 0

 pn , 0

 p1 , w1

 p2 , w2

pn , wn

 t2 , 0

 tk�1 , 0

 mt1 , 0

 mt2 , 0

 mtk�1 , 0

[a1 , a2]

[a2 , a3]

[ak�1 , ak]

 t1 , 0

 t2 , 0

[a3 , a4]
 t3 , 0

 t3 , 0

 tk�1 , 0

�
�
�

 mt3 , 0
�
�
�

 14.3 Late Work Model 547

It is clear that by solving the above network flow problem we also find
an optimal solution to the original scheduling problem. The total cost of the flow
is equal to the weighted sum of the processing times of those parts of tasks which
are unprocessed at their due dates. An optimal schedule is then constructed step-
by-step, separately for each interval, by taking the flow values on arcs joining
task nodes with interval nodes and using McNaughton’s Algorithm 5.1.8
[McN59]. Parts of tasks exceeding their respective due dates, if any, are pro-
cessed at the end of the schedule. In [BF87] an upper bound on the number of
preemptions has been proved to be (2n � 1)(m � 1).

Let us now calculate the complexity of the above approach. Clearly, it is
predominated by the complexity of finding the minimum cost flow in a network
with O(n) nodes and O(n2

) arcs. Using a result by Orlin [Orl88] who presented
an O(|E |&log|V |&(|E | + |V |&log |V |))-time algorithm for the minimum cost maxi-
mum flow problem (V and E respectively denote the set of nodes and the set of
arcs), the overall complexity of the presented approach is O(n4

log n). Leung
[Leu04] noticed that the number of arcs in the network can be reduced from
O(n2

) to O(nlogn) based on an idea given by Chung et al. [CSLG89] for the im-
precise computation model, where a balanced binary tree is used to represent
time intervals. As a result, the overall complexity decreases to O(n2

log
3n).

Problem P | pmtn, rj | ��Yj

The approach proposed for the weighted total late work problem on parallel iden-
tical processors, P | pmtn, rj | �wjYj , can be obviously applied for the unweighted

case, by assuming zero cost for the arcs. The maximum flow in the network with

O(n) nodes and O(n2
) arcs, or even with only O(nlogn) arcs (based on the same

result as for the weighted case [CSLG89, Leu04]), can be found, for example, by
an O(|V |&|E |&log|V |)-time algorithm of Tarjan [Tar83] (where again V and E
respectively denote the set of nodes and arcs). As a result the overall complexity
of this approach is O(n2

log
2n) [Leu04].

Problem Q | pmtn, rj | �wjYj

The above approach given for parallel identical processors can be generalized to
cover the case of uniform processors [BF87], by modifying the constraints im-
posed on flow values. Since processors differ in their speeds, bk , the total capaci-

ty in time interval [ai , ai+1] is given by �
k=1

m
bk ti instead of mti as in the identical

processor case. Any subset of r tasks processed in parallel cannot consume more

than �
min{m,r}

k=1
bk ti units of the processor capacity. The approach is based on the

maximum flow in the network, similar to the one proposed by Federgruen and

548 14 Scheduling Imprecise Computations

Groenevelt [FG86] for the maximum lateness criterion (cf. Section 5.3.2), and

determines the assignment of tasks to intervals. An optimal schedule is con-

structed by scheduling tasks within particular intervals by the Gonzalez and

Sahni’s algorithm [GS78] (cf. Section 5.1.2). The overall complexity of
the whole approach in this case is O(m2n4

log mn) [Leu04].

Problem Q | pmtn, rj | ��Yj

As for parallel identical processors, the unweighted scheduling problem for
the uniform processors can be solved by the same approach as the one proposed
for the weighted case, Q | pmtn, rj | �wjYj , by assuming zero cost for all arcs.

The maximum flow determines an optimal schedule which can be constructed in

O(m2n3
log mn) time [Leu04].

As for a single processor (cf. Section 14.3.1), some results for parallel pro-
cessors have been obtained based on the equivalence between the total late work
criterion and the total number of tardy tasks criterion. This was proven for non-
preemptive scheduling problems with unit processing times [BPSW00]. Problem
Pm | rj , pj = 1 | �wjYj can be solved by the algorithm proposed for

Pm | rj , pj = p | �wjUj by Baptiste et al. [BBKT04]. The more general case with

an arbitrary number of identical processors, P | rj , pj = 1 | �wjYj can correspond-

ingly be modeled as a network flow problem and solved in polynomial time.

Problem Q | pj = 1 | �wjYj with parallel uniform processors can be modeled as

an assignment problem and also solved in polynomial time. On the other hand,

problem P2 | chains , pj = 1 | �Yj with two identical processors and tasks bounded

by chain precedence constraints, is NP-hard, as follows from the NP-hardness of

the one-processor problem 1 | chains, pj = 1 | �Uj [LRK80].
If tasks are to be processed non-preemptively, the corresponding scheduling

problems become intractable. The intractability of problem 1 | | �Yj implies

the intractability of parallel processor problems with arbitrary due dates. Some

results for non-preemptive cases have been also reported in the literature.

Błażewicz [Bla84] mentioned that problem P | | �Yj is NP-hard in the strong

sense. But even simpler models with parallel processors, where all tasks have

the same due date, are known to be NP-hard.

Problem P2 | dj = d | �Yj

Chen et al. [CSHB16] proved the NP-hardness of the common due date problem

P2 | dj = d | �Yj by presenting a transformation from the partition problem

[Kar72]. Assuming that the tasks in the scheduling problem correspond to the

elements of the partition problem, the processing times correspond to the element

 14.3 Late Work Model 549

sizes and the common due date is equal to half of the total processing time of

tasks, the schedule with zero late work corresponds to the partition of the set of

elements into two subsets of equal sizes.

Problem P2 | dj = d | �Yj is binary NP-hard, since it can be solved by

a simple pseudopolynomial dynamic programming algorithm [CSHB16].

The method determines the optimal total late work with a recursive function

f(j, A, B), which denotes the total late work for j tasks scheduled on two proces-

sors, assuming that there are at most A and B units of fully early tasks on them:

 f(j, A, B) := min{ f(j�1, max{0, A� pj}, B) + max{0, pj� A },

 f(j�1, A, max{0, B� pj}) + max{0, pj� B }}.

The dynamic programming calculates the minimum total late work equal to

f(n, d, d), in O(nd 2) time, under zero initial conditions.

It is worth to be mentioned that for the two-processor common due date

problem with weighted total late work, P2 | dj = d | � wjYj , which is obviously

also NP-hard, list algorithms, ant colony, simulated annealing and genetic algo-

rithms are available [XZK15].

Problem P | dj = d | ��Yj

If the number of processors is arbitrary, the problem P | dj = d | �Yj is unary NP-

hard, as was shown by Chen et al. [CSHB16] by a transformation from

the 3-partition problem [GJ79] defined in Section 4.1.1. The 3n tasks in

the scheduling problem correspond to 3n elements of the 3-partition problem,

and the processing times correspond to the sizes of these elements. In this case,

the common due date is equal to the parameter B of the 3-partition problem.

The total size of all elements, i.e. the total processing time, is equal to nB, and

the particular processing times are bounded by fractions of B, i.e. ¼ B < pj < ½ B.

The schedule for n processors with zero late work corresponds to the partition of

the set of elements into n disjoint sets of size B.

Late work criteria have also been investigated for more complex theoretical and

realistic models, such as unrelated parallel processors with sequence-dependent

set-up times, task release times, processors eligibility and precedence constraints

(Rk | rj , sij , Mj , prec | �Yj in [AR16]); identical parallel processors with task-

dependent communication delays and precedence constraints

(Pk | prec, comu | �wjYj in [ARS+14]); the resource-constrained project schedul-

ing problem with the weighted late work criterion, finish-to-start type precedence

relations with zero time lag, and one or more constrained renewable resources

[RHA13]; and the assembling manufacture system, where several suppliers pro-

vide component parts to a manufacturer for assembling products from all parts

delivered [RDX13]. For these problems, which are NP-hard, mathematical pro-

gramming formulations are provided, and general solution strategies such as

550 14 Scheduling Imprecise Computations

branch and bound [ARS+14, RHA13] or metaheuristics were applied [AR16,

XZK15].

14.3.3 Dedicated Processor Problems

The NP-hardness of non-preemptive one-processor problems with late work cri-
terion results in the NP-hardness of most models with dedicated processors, par-
ticularly flow, open and job shop problems (see the respective Chapters 8, 9, and
10). As in the case of the parallel processors, allowing task preemptions offers
the chance for polynomial solvability. Non-preemptive problems, on the other

hand, are in general intractable.

In case of dedicated processors, one apparent way to define the late work of

a job is adding up the sizes of all late parts building the job. Assuming that job Jj

is composed of n
 j tasks T1j ,..., Tnj j , the late work Yi j of a task Ti j with pro-

cessing time pi j is determined based on its completion time Ci j and the job due

date d
 j as:

 Yi j = min{max{Ci j � dj , 0}, pi j}, (14.3.6)

while the job late work Yj is determined as the sum of late work of its tasks, i.e.:

Yj = �
i=1

nj

 Yi j . (14.3.7)

Problem O | pmtn, rj | ��wjYj

The open shop problem with preemptive jobs and ready times can be solved by
a generalization of the approach proposed for the parallel identical processor
case, P | pmtn, rj | �wjYj , described in Section 14.3.2.

Błażewicz et al. [BPSW04a] provided the linear programming formulation
for problem O | pmtn, rj | �wjYj . It is based on the time intervals within which
jobs can be scheduled. These time intervals are determined by unique ready
times and due dates which are sequenced in non-decreasing order. The method
determines optimal portions of particular jobs executed in these intervals. Let
time points al (l = 1,..., k, where k � 2n) be defined as in problem P | pmtn, rj |
�wjYj , and denote by pijr the portion of job Jj (j = 1,..., n) executed on proces-

sor Pi (i = 1,..., m) within the time interval [ar , ar+1] (r = 1,..., k�1). The linear

programming is defined as follows:

Minimize �
j=1

n
 �
i=1

m
 �

r=1
dj � ar

k�1

wj pijr (14.3.8)

 14.3 Late Work Model 551

subject to� �
r=1

ar < rj

k�1

 pijr = 0 for all i, j, (14.3.9)

� �
r=1

rj � ar

k�1

 pijr = pij for all i, j, (14.3.10)

 �
i=1

m
 pijr � ar+1 � ar for all j, r, (14.3.11)

 �
j=1

n
 pijr � ar+1 � ar for all i, r, (14.3.12)

 0 � pijr � pij for all i, j, r. (14.3.13)

This linear programming formulation with O(nmk) = O(n2m) variables and

O(n2
+nm) constraints determines the optimal portions pijr of job Jj executed on

processor Pi in time interval [ar , ar+1]. For each interval [ar , ar+1], except

the last one, portions of jobs of size pijr > 0 are scheduled by the algorithm by

Gonzalez and Sahni [GS76] designed for O | pmtn | Cmax (cf. Section 9.1). A sin-

gle run of this method requires O(s2
(n+m)

0.5
) time, which can be reduced to

O(s2
), where s denotes the number of tasks assigned to an interval [Bru07].

The portions of tasks assigned to the last time interval [ak , ak+1] are late, and can

be executed in arbitrary order at the end of the schedule.

As mentioned at the beginning of this section, due to the NP-hardness of

the single processor non-preemptive case, the late work minimization problems

for dedicated processors are in general also NP-hard. Some of them can be

solved in pseudopolynomial time by dynamic programming. Examples are pre-

sented in the following part of this section for the two-processor open, flow and

job shop with common due date. These approaches show that the complexity of

the methods increases with complexity of the models, from open shop and flow

shop to job shop. Moreover, these dynamic programming methods can be con-

sidered as a generalization of the approach proposed for the single processor

problem 1 | | � Yj (cf. Section 14.3.1). As in the single processor case, it suffices

to divide the set of jobs into subsets of early, partially early and totally late jobs

to solve a shop problem. The schedule corresponding to such a partition of jobs

can be easily constructed in polynomial time. The set of early jobs should be

scheduled in the way which minimizes the maximum makespan. The solutions of

the two-processor open, flow and job shop subproblems with minimizing Cmax

can be determined in polynomial time by the respective algorithms of Gonzalez

and Sahni [GS76], Johnson [Joh54], and Jackson [Jac56]. The subschedule con-

structed for the early jobs by the mentioned methods has to be followed by the

partially late jobs, and then by the totally late jobs in arbitrary order. A similar

552 14 Scheduling Imprecise Computations

strategy was applied for solving closely related problems with a minimum

weighted number of tardy jobs [JJK94].

Problem O2 | dj = d | ��wjYj

The two-processor open shop problem with weighted total late work is binary
NP-hard even for the common due date case.

Theorem 14.3.11 [BPSW04a] Problem O2 | dj = d | �wjYj is binary NP-hard.

Proof. As a known NP-complete problem we take PARTITION [Kar72] as
defined in Section 5.1.1. Given an instance of PARTITION, with elements aj

belonging to set A of the total size �
aj �A

s(aj) = 2B, we construct an instance of

the scheduling problem with n = |A |+1 jobs, where n jobs have processing times

equal to sizes of the corresponding elements, p1j = p2j = s(aj), and unit weights

wj = 1. The last job has the same processing time on both processors p1n = p2n =

B and a very large weight wn = 2B+1. The common due date is set to d = 2B.

There exists a subset A' � A such that �
aj �A'

s(aj) = �
aj �A � A'

s(aj), if and only if

there exists a schedule with total weighted late work not exceeding 2B. If there

exists a subset A' with the desired property, the schedule, constructed as in

Figure 14.3.5, has the criterion value equal to �wjYj = 2B.

In any solution of problem O2 | dj = d | �wjYj with �wjYj � 2B, job Jn must be pro-

cessed early due to its very large weight. Without loss of generality we assume

that Jn is first processed on processor P1 . The remaining jobs with unit weights

must be executed without idle times, particularly before job Jn on P2 (cf. Figure

14.3.5). The subsets of jobs processed before and after job Jn on P2 determine

the solution of the partition problem.

Figure 14.3.5 A schedule for illustrating Theorem 14.3.11.

The transformation from the partition problem to the decision counterpart of

O2 | dj = d | �wjYj proves the NP-hardness of this scheduling problem, while

the existence of a pseudo-polynomial time algorithm (Algorithm 14.3.12 formu-

lated below) proves its binary NP-hardness.

P1

P2

Jn

Jn A' A � A'

A' A � A'

B 3B d = 2B t

 14.3 Late Work Model 553

Problem O2 | dj = d | �wjYj can be solved by a dynamic programming

[BPSW04a, Ste06]. The method is formulated as a procedure maximizing

the total weighted early work instead of minimizing the total late work. For each

job its early work Xj is equal to its processing time, being the sum of its task pro-

cessing times, decreased by the late work, Xj = �pij � Yj . The relation between

the criteria, late work and early work, is discussed in detail in the next Sec-

tion 14.4. As far as optimal solutions are considered, the optimal early work de-

termines the optimal late work in the system.

Based on this equivalence the dynamic programming algorithm calculates

fk(A, B, a1, a2) as the maximum weighted early work for jobs Jk ,...$ Jn provided

that there are at most (d � A) units of early work of these jobs on processor P1

and at most (d � B) units on processor P2. This means that A, B are reserved time

intervals for early tasks of the remaining jobs J1 ,...$ Jk�1 , where 0 � A � d and

0 � B � d. Parameters a1�{0 , 1} and a2�{0 , 1} indicate whether there are par-

tially early tasks of the remaining jobs J1 ,...$ Jk�1 on P1 and P2 , respectively. To

determine fk(A, B, a1, a2) for particular parameter values, we have to consider all

possible ways of scheduling job Jk , and calculate the value (ci) contributed by Jk

to the optimal weighted early work. Job Jk can be scheduled

− early on both processors:

 c1 = wk (p1k + p2k) + fk+1(A + p1k , B + p2k , a1, a2),

− early on P1 and late on P2:

 c2 = wk p1k + fk+1(A + p1k , B, a1, a2),

− late on P1 and early on P2:

 c3 = wk p2k + fk+1(A, B + p2k , a1, a2),

− early on P1 and partially early on P2:

 c4 = max
{t | 1� t < p2k

, B+t � d}

{wk (p1k + t)+ fk+1(A + p1k , B + t, a1, 1)},

− partially early on P1 and early on P2:

 c5 = max
{t | 1� t < p1k

, A+t � d}

{wk (t + p2k)+ fk+1(A + t, B + p2k , 1, a2)},

− late on P1 and partially early on P2:

 c6 = max
{t | 1� t < p2k

, B+t � d}

{wk t + fk+1(A, B + t, a1, 1)},

− partially early on P1 and late on P2:

 c7 = max
{t | 1� t < p1k

, A+t � d}

{wk t + fk+1(A + t, B, 1, a2)},

− late on both processors:

 c8 = fk+1(A, B, a1, a2).

Depending on the values A, B, a1 and a2 not all schedules mentioned above are

possible for job Jk . Calculating the value of the recurrence function

fk(A, B, a1, a2) we chose the feasible ways of scheduling job Jk , which ensure

the maximum total weighted early work, as shown in Algorithm 14.3.12.

554 14 Scheduling Imprecise Computations

Algorithm 14.3.12 Recurrence function fk(A, B, a1, a2) of dynamic program-
ming for O2 | dj = d | �wjYj [Ste06].

begin
if (A + p1k � d) and (B + p2k � d) and (p1k + p2k � d) then

 -- job Jk can be early on both processors

 fk(A, B, a1, a2) :=

�.
�
.

max{c1, c2, c3, c4, c5, c6, c7, c8}, if a1=0 and a2=0

max{c1, c2, c3, c4, c6, c8}, if a1=1 and a2=0

max{c1, c2, c3, c5, c7, c8}, if a1=0 and a2=1

max{c1, c2, c3, c8}, if a1=1 and a2=1

if (A + p1k � d) and (B + p2k � d) and (p1k + p2k > d) then
 -- job Jk cannot be totally early on both processors because it is too long

 fk(A, B, a1, a2) :=

�.
�
.

max{c2, c3, c4, c5, c6, c7, c8}, if a1=0 and a2=0

max{c2, c3, c4, c6, c8}, if a1=1 and a2=0

max{c2, c3, c5, c7, c8}, if a1=0 and a2=1

max{c2, c3, c8}, if a1=1 and a2=1

if (A + p1k � d) and (d � p2k < B � d) then
 -- job Jk cannot be early on processor P

2

 fk(A, B, a1, a2) :=

�.
�
.

max{c2, c4, c6, c7, c8}, if a1=0 and a2=0

max{c2, c4, c6, c8}, if a1=1 and a2=0

max{c2, c7, c8}, if a1=0 and a2=1

max{c2, c8}, if a1=1 and a2=1

if (d � p1k < A � d) and (B + p2k � d) then
 -- job Jk cannot be early on processor P

1

 fk(A, B, a1, a2) :=

�.
�
.

max{c3, c5, c6, c7, c8}, if a1=0 and a2=0

max{c3, c6, c8}, if a1=1 and a2=0

max{c3, c5, c7, c8}, if a1=0 and a2=1

max{c3, c8}, if a1=1 and a2=1

if (d � p1k < A � d) and (d � p2k < B � d) then
 -- job Jk cannot be totally early on P

1
 and P

2
 because of processor workloads

 fk(A, B, a1, a2) :=

�.
�
.

max{c6, c7, c8}, if a1=0 and a2=0

max{c6, c8}, if a1=1 and a2=0

max{c7, c8}, if a1=0 and a2=1

c8, if a1=1 and a2=1

if (A = d) and (B = d) then
 -- job Jk has to be late

 fk(A, B, a1, a2) := c8;

end;

 14.3 Late Work Model 555

Combining the recurrence function with zero initial conditions leads to the com-

plete dynamic programming method, which determines early, late and partially

early tasks of jobs. The optimal weighted total early work is equal to

f1(0, 0, 0, 0). Early tasks of jobs are scheduled by the Gonzalez and Sahni ap-

proach [GS76] proposed for O2 | | Cmax (cf. Algorithm 9.1.1). Late tasks of jobs

are executed in arbitrary order at the end of the schedule after partially late tasks

on both processors, if any.

The whole method runs in O(nd
3
) time [Ste06] (an alternative approach re-

quiring O(n3d
2
) time is also available [BPSW04a]).

Problem F2 | dj = d | ��wjYj

A result similar to Theorem 14.3.11 can be proved for the two-processor flow
shop problem with weighted total late work and common due date.

Theorem 14.3.13 [BPSW05a] Problem F2 | dj = d | �wjYj is binary NP-hard.

Proof. As in the proof of Theorem 14.3.11 we start from problem PARTITION
[Kar72]. For a given instance of partition with elements aj of size s(aj) belonging
to set A with total size �

aj �A
s(aj) = 2B, we construct an instance of the flow shop

scheduling problem with n = | A |+1 jobs. The first n jobs have unit weights

wj = 1 and zero processing times on P1, p1j = 0, and processing times on P2 equal

to the sizes of the corresponding elements, p2j = s(aj). The last job has the same

processing time on both processors p1n = p2n = B and a very large weight,

wn = B+1. The common due date is set to d = 2B. There exists a subset

A' � A such that �
aj �A'

s(aj) = �
aj �A � A'

s(aj), if and only if there exists a schedule

with the total weighted late work not exceeding B (cf. Figure 14.3.6).

The transformation from the partition problem to the decision counterpart of

F2 | dj = d | �wjYj proves the NP-hardness of this scheduling problem, while

the existence of a pseudo-polynomial time algorithm (Algorithms 14.3.14 and

14.3.15 formulated below) proves its binary NP-hardness.

 Figure 14.3.6 A schedule for illustrating Theorem 14.3.13.

Problem F2 | dj = d | �wjYj can be solved in pseudopolynomial time by dynamic

programming, which - as for the open shop problem - maximizes the total

P1

P2

Jn

Jn A' A � A'
B 3B d = 2B t

556 14 Scheduling Imprecise Computations

weighted early work. We assume that all jobs are sequenced in Johnson’s order

[Joh54] (cf. Algorithm 8.2.1).

Considering each job as the first late job in the system, denoted with Ĵn ,

leads to different values of initial conditions of the recurrence function

fn(A, B, t, a). Then fk(A, B, t, a) allows taking decisions on the remaining jobs
J ���{Ĵn}, whether to execute them late or early. For the sake of clarity, these jobs

are numbered in Johnson's order from Ĵ1 to Ĵn�1 .

The initial conditions in Algorithm 14.3.14 determine the value fn(A, B, t, a)

equal to the maximum weighted early work under the following conditions:

T Ĵn starts on processor P1 exactly at time A, and not before time B on P2 ,

T exactly t time units are reserved for executing some tasks of jobs J ���{Ĵn} on

processor P1 after Ĵn and before d,

T and either there is a job (a = 1) or there is no job (a = 0) from J ���{Ĵn} execu-

ted partially early on processor P1 after Ĵn and before d.

Algorithm 14.3.14 Initial conditions fn(A, B, t, a) of dynamic programming for
F2 | dj = d | �wjYj [BSPW05a].

begin
if (((A � d��p1n) and (d��p2n<B� d)) or ((d��p1n��p2n<A<d��p1n) and (B�d)))

 and (0 � t � d��p1n��A) and (a�{0, 1})
then fn(A, B, t, a) := wn p1n + wn(d ��max{A + p1n , B});

 -- job Ĵn is early on processor P
1
 and partially early on processor P

2

if (d��p1n<A�d) and (B�d) and (t=0) and (a=0)
then fn(A, B, t, a) := wn (d ��A);

 -- job Ĵn is partially early on processor P
1
 and late on processor P

2

if otherwise,
then fn(A, B, t, a) :=���#;

 -- infeasible scheduling of job Ĵn which would not be the first late job

end;
Under the assumption that Ĵn is the first late job, recurrence function fk(A, B, t, a)

is calculated for the remaining jobs Ĵk � J ���{Ĵn} in reverse Johnson’s order, i.e.

for k = n�1,..., 1. Similar to the initial conditions, fk(A, B, t, a) denotes the max-

imum weighted early work, assuming that:

T the first job from Ĵk , Ĵk+1 ,..., Ĵn starts on processor P1 exactly at time A, and

not earlier than at time B on P2 ,

T exactly t time units are reserved for executing jobs from Ĵ1 ,..., Ĵk�1 on pro-

cessor P1 after Ĵn before d,

 14.3 Late Work Model 557

T there is a job (a = 1) or there is no job (a = 0) from Ĵ1 ,..., Ĵk�1 executed par-

tially early on processor P1 after Ĵn and before the common due date d.

Algorithm 14.3.15 Recurrence function fk(A, B, t, a) of dynamic programming
for F2 | dj = d | �wjYj [BSPW05a].

begin
if (A + p1k � d) and (max{A + p1k , B}+ p2k � d) then
 -- job Ĵk can be scheduled early on both processors

 fk(A, B, t, a) :=

max

�
�

 fk+1(A+p1k , max{A+p1k , B}+p2k , t, a) + wk(p1k+p2k),

 fk+1(A, B, t, a),
 fk+1(A, B, t+p1k , a) + wk p1k ,

max
1�T<p

1k

and t+T�d

 {fk+1(A, B, t+T, 1) + wkT}, if (a = 0)

 -- particular terms correspond to scheduling job Ĵk early on both processors, late on

 -- both processors, early on P
1
 and late on P

2
, partially early on P

1
 and late on P

2

if (A + p1k > d) or (max{A + p1k, B}+ p2k > d) then
 -- job Ĵk cannot be early on both processors

 fk(A, B, t, a) :=

max

�.
�
.

 fk+1(A, B, t, a),

 fk+1(A, B, t+p1k , a) + wk p1k ,
max

1�T<p
1k

and t+T�d

 {fk+1(A, B, t+T, 1) + wk T}, if (a = 0)

if otherwise, then
 -- job Ĵk cannot be feasibly scheduled

 fk(A, B, t, a) := ��#
end;
The dynamic programming algorithm for F2 | dj = d | �wjYj given above runs in

O(n
2d

4
) time. For each possible selection of the first late job Ĵn among n jobs,

initial conditions are settled in O(d
3
) time. Then calculating the recurrence func-

tion takes O(d
4
) time for each job among the remaining n – 1 jobs from J � {Ĵn}.

Based on these calculations, the optimal first late job is determined, for which

f1(0, 0, 0, 0) is maximal. Finally, the optimal schedule is constructed by schedul-

ing the early jobs in Johnson’s order in O(nlogn) time and the late and partially

late jobs in arbitrary order in O(n) time.

The efficiency of the above presented dynamic programming was evaluated

in the computational experiments, and compared to list algorithms [BPSW04b,
BPSW05b] and metaheuristic methods such as simulated annealing, tabu search
and variable neighborhood search [BPSW05c, BPSW08].

558 14 Scheduling Imprecise Computations

It is worth to be mentioned that the two-processor unweighted flow shop prob-
lem with a common due date, F2 | dj = d | �Yj , is also binary NP-hard. Similar to

the weighted case, Lin et al. [LLL06] showed this by a transformation from
the partition problem. Moreover, the dynamic programming algorithm presented
above for the weighted case can also be used to solve the problem with total late
work, assuming that wj = 1 for all jobs. Some dominance properties were proved

for F2 | dj = d | �Yj [Ste07b], showing that in optimal solutions early jobs should

in general be selected in non-decreasing order of their processing times. In addi-
tion to these theoretical results, Lin et al. [LLL06] designed a branch and bound
and a tabu search algorithm for F2 | dj = d | �Yj . The flow shop problem with

three processors, F3 | dj = d | �Yj , is already strongly NP-hard, as was shown by

Chen et al. [CCX+17] by a transformation from the 3-partition problem.

The flow shop problem with two distinct due dates, F2 | dj � {d1, d2} | �Yj is

NP-hard due to a transformation from the partition problem [Leu04, LLL06],

while F2 | | �Yj is already strongly NP-hard due to a transformation from the 3-

partition problem [Leu04]. For the more complex version with release times,

F2 | rj | �Yj , a genetic algorithm was proposed by Pesch and Sterna [PS09],

while for the problem with an arbitrary number of processors and with learning

effect, F | pijr = pij r
a | �Yj (cf. Section 14.3.1), Chen et al. [CCX+17] proposed a

particle swarm optimization algorithm.

Problem J2 | dj = d, nj ≤ 2 | ��wjYj

Due to the fact that the two-processor flow shop problem with weighted total late
work and common due date is NP-hard, the job shop problem, being its generali-

zation, is also NP-hard [BPSW07, GJ79]. Moreover, as in the flow shop case,
a pseudopolynomial time dynamic programming approach exists for the problem
with at most two tasks in a job, J2 | dj = d, nj ≤ 2 | �wjYj [BPSW07]. Although

the idea is similar to that of the algorithm proposed for flow shop, the arbitrary

precedence constraint imposed on tasks building jobs makes the approach much

more complicated. First of all, there might be two partially early tasks of jobs on

both processors, or only one partially early task either on P1 or on P2 , or there is

no partially early task of jobs on any processor. These three cases must be distin-

guished while determining the initial conditions. Secondly, the recurrence func-

tion formulation must be adjusted to the different possible precedence constraint

patterns, in which jobs might be processed on only one processor, first on P1

then on P2 , or the other way around. More precisely speaking, in dynamic pro-

gramming for problem J2 | dj = d, nj ≤ 2 | �wjYj , we consider all possible subsets

of jobs with partially early tasks, JP, where 0 ≤ |JP| ≤ 2, and determine initial

conditions for them. Then, by calculating the recurrence function subject to set

JP, for all remaining jobs from J ��JP we determine their optimal way of schedul-

ing: totally early, totally late or early on its first processor and late on the second

 14.3 Late Work Model 559

one. For the sake of simplicity, we distinguish the subset of jobs J1 that has to be

processed first (only) on processor P1 , and the subset of jobs J2 = J � J1 that has

to be processed first (only) on processor P2 . As previously discussed for

the open and flow shop problems, we maximize the total weighted early work,

determining in this way the minimum total weighted late work.

Initial conditions, presented in Algorithm 14.3.16, determine the value

fñ+1(A, t1, L1, B, t2, L2) equal to the maximum weighted early work for the set of

jobs with partially early tasks JP, where ñ = |J ��JP|, assuming that:

T the totally early tasks of these jobs (if any) start on processor P1 exactly at

time A and exactly at time B on processor P2,

T exactly t1 , t2 time units of early tasks and exactly L1 , L2 units of partially late

tasks are executed on the respective processors P1 and P2 .

As mentioned, we distinguish three possible cases, when |JP| � {0, 1, 2}.

Algorithm 14.3.16 Initial conditions fñ+1(A, t1, L1, B, t2, L2) of dynamic pro-
gramming for J2 | dj = d, nj ≤ 2 | �wjYj [BPSW07].

begin
if |JP| =2, where JP = {Ja , Jb} then

 -- Ja is a job with partially early task on P
1

 -- Jb is a job with partially early task on P
2

begin
 if (Ja � J1) and (Jb � J1) then
 begin
 if (0 � A � min{d � L1, d � L2} � p1b) and (t1 = p1b) and
 (0 < L1 < p1a) and (0 � B � d � L2) and (t2 = 0) and
 (0 < L2 < p2b)

 then fñ+1(A, t1, L1, B, t2, L2) := wa L1 + wb(p1b + L2)

 -- Ja is partially early on P
1
 and late on P

2

 -- Jb is early on P
1
 and partially early on P

2

 else fñ+1(A, t1, L1, B, t2, L2) := ��#;
 end;
 if (Ja � J1) and (Jb � J2) then
 begin
 if (0 � A � d � L1) and (t1 = 0) and (0 < L1 < p1a) and

 (0 � B � d � L2) and (t2 = 0) and (0 < L2 < p2b)

 then fñ+1(A, t1, L1, B, t2, L2) := wa L1 + wb L2

 -- Ja is partially early on P
1
 and late on P

2

 -- Jb is partially early on P
2
 and late on P

1

 else fñ+1(A, t1, L1, B, t2, L2) := ��#;
 end;

560 14 Scheduling Imprecise Computations

if (Ja � J2) and (Jb � J2) then

 begin
 if (0 � A � d � L1) and (t1 = 0) and (0 < L1 < p1a) and

 (0 � B � min{d � L1, d � L2} � p2a) and (t2 = p2a) and
 (0 < L2 < p2b)

 then fñ+1(A, t1, L1, B, t2, L2) := wa(p2a + L1) + wb L2

 -- Ja is early on P
2
 and partially early on P

1

 -- Jb is partially early on P
2
 and late on P

1

 else fñ+1(A, t1, L1, B, t2, L2) := ��#;
 end;

if (Ja � J2) and (Jb � J1) then
 begin
 if (0 � A � min{d � L1, d � L2} � p1b) and (t1 = p1b) and

 (0 < L1 < p1a) and (0 � B � min{d � L1, d � L2} � p2a) and
 (t2 = p2a) and (0 < L2 < p2b)

 then fñ+1(A, t1, L1, B, t2, L2) := wa(p2a + L1) + wb(p1b + L2)

 -- Ja is early on P
2
 and partially early on P

1

 -- Jb is early on P
1
 and partially early on P

2

 else fñ+1(A, t1, L1, B, t2, L2) := ��#;
 end;
end;

if |JP| = 1, where JP = {Ja} then

 -- Ja is the only job with a partially early task either on P
2
 or on P

1

begin
 if (Ja � J1) then

 begin
 if (0 � A � d � L2 � p1a) and (t1 = p1a) and (L1 = 0) and
 (0 � B � d � L2) and (t2 = 0) and (0 < L2 < p2a)

 then fñ+1(A, t1, L1, B, t2, L2) := wa(p1a + L2);
 -- Ja is early on P

1
 and partially early on P

2

 if (0 � A � d � L1) and (t1 = 0) and (0 < L1 < p1a) and
 (0 � B � d) and (t2 = 0) and (L2 = 0)

 then fñ+1(A, t1, L1, B, t2, L2) := waL1;
 -- Ja is partially early on P

1
 and late on P

2

 if otherwise,
 then fñ+1(A, t1, L1, B, t2, L2) := ��#;

 end;

 14.3 Late Work Model 561

 if (Ja � J2) then
 begin
 if (0 � A � d � L1) and (t1 = 0) and (0 < L1 < p1a) and
 (0 � B � d � L1 ��p2a) and (t2 = p2a) and (L2 = 0)

 then fñ+1(A, t1, L1, B, t2, L2) := wa(p2a + L1);

 -- Ja is early on P
2
 and partially early on P

1

 if (0 � A � d) and (t1 = 0) and (L1 = 0) and
 (0 � B � d ��L2) and (t2 = 0) and (0 < L2 < p2a)

 then fñ+1(A, t1, L1, B, t2, L2) := waL2;

 -- Ja is partially early on P
2
 and late on P

1

 if otherwise,
 then fñ+1(A, t1, L1, B, t2, L2) := ��#;

 end;
end;

if |JP| = 0 then
 -- there is no job with a partially early task on either processor in a schedule

begin
 if (0 � A � d) and (t1 = 0) and (L1 = 0) and

 (0 � B � d) and (t2 = 0) and (L2 = 0)

 then fñ+1(A, t1, L1, B, t2, L2) := 0
 else fñ+1(A, t1, L1, B, t2, L2) := ��#;

end;
end;
As for the initial conditions, the definition of the recurrence function becomes

much more complex for the job shop model in comparison to the flow shop

model discussed previously, although the idea of this procedure is analogous to

that of the flow shop. After selecting the set of jobs with partially early tasks, JP,

the recurrence function calculations allow scheduling the remaining jobs from

J ��JP, i.e. jobs whose tasks are executed totally early or totally late in a sched-

ule. Each such job can be processed totally early, early on one processor and late

on the other, or totally late. We assume that all jobs from J ��JP are numbered in

Jackson’s order [Jac56], which is optimal from the schedule length point of view

(cf. Section 10.1.3). In this sequence, (Ĵ1 ,..., Ĵu , Ĵu+1 ,..., Ĵñ) where ñ = |J ��JP|,

the first u jobs belong to the subset of jobs processed first (only) on P1 ,

{Ĵ1 ,..., Ĵu} = J1 ��JP, while the remaining belong to the subset of jobs processed

first (only) on P2 , {Ĵu+1 ,..., Ĵñ} = J2 ��JP. The recurrence function formulation

must be properly adjusted to both subsets of jobs. The jobs are processed in

the reversed Jackson’s order, for k = ñ,..., 1, so the recurrence function is calcu-

lated first for J2 ��JP, then for J1 ��JP.

562 14 Scheduling Imprecise Computations

The value of the recurrence function fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2),

calculated for J2 ��JP according to Algorithm 14.3.17, denotes the maximum

total early work of jobs {Ĵk ,..., Ĵñ}�JP provided that:

T the first job from this set starts exactly at time B on P2 , and not earlier than at

time A on P1 (jobs from J1 ��JP will be scheduled within this interval),

T there are at least r2 time units in interval [B, d] reserved for executing the sec-

ond tasks of jobs from J1 ��JP on P2 , and exactly r1 time units in interval

[A, d] reserved for processing jobs from J2 ��JP on P1 ,

T the first tasks of late jobs from {Ĵk ,..., Ĵñ}�JP are processed exactly t2 time

units on P2 before d, and exactly T2 units are reserved on P2 before d for

the first tasks of late jobs Ĵi � J2 ��JP, for i < k,

T there are exactly L1 and L2 units of partially late tasks before d on P1 and P2

respectively (they belong to jobs from JP).

Parameter F denotes the assumed completion time of the last early job from

the remaining jobs J1 ��JP on P1. Parameters t1 and T1 are not relevant in

this phase of dynamic programming.

Algorithm 14.3.17 Recurrence function fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) of
dynamic programming for J2 | dj = d, nj ≤ 2 | �wjYj , given for jobs processed
first (only) on P2 [BPSW07].
begin
if u + 1 � k � ñ ��� then
if (B + t2 + T2 + r2 + L2 � d) and (A + r1 + L1 � d) and
 (t1 + T1 � A) and (F � A ��t1 � T1)

 -- job Ĵk can be feasibly scheduled

then
 if (B + p2k + t2+ T2 + r2 + L2 � d) and (max{A, B + p2k} + p1k + L1 � d)

and (p1k � r1)

 then
 -- job Ĵk can be scheduled early on both processors

 fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=

max

�
.
�
.

wk(p1k + p2k) +

 fk+1(max{A, B + p2k }+ p1k , t1, T1, r1��p1k , L1, F,

 B+p2k , t2, T2, r2, L2),

wk p2k +

 fk+1(A, t1, T1, r1, L1, F,

 B, t2 ���p2k , T2 + p2k , r2, L2) if p2k ≤ t2 ,
 fk+1(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2)

 14.3 Late Work Model 563

 -- the first term corresponds to scheduling Ĵk early on both processors (if job Ĵk

 -- is processed on P
2
 only, it is a one-task job, this term has to be removed);

 -- the second term corresponds to scheduling Ĵk early on P
2
 and late on P

1
;

 -- the third term corresponds to scheduling Ĵk totally late

 else
 -- job Ĵk has to be late at least on processor P

1

 fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=

max

�.
�
.

wk p2k +

 fk+1(A, t1, T1, r1, L1, F,

 B, t2���p2k , T2 + p2k , r2, L2) if p2k ≤ t2 ,

 fk+1(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2)
else fk(A, t1, T1, L1, r1, F, B, t2, T2, r2, L2) := ��#;

if k = ñ then
-- the recurrence function for the last job in J2 ˗ JP, i.e. for Ĵñ , is slightly different than

-- for other jobs from this set, because it is calculated based on initial conditions fñ+1

if (B + t2 + T2 + r2 + L2 � d) and (A + r1 + L1 � d) and
 (t1 + T1 � A) and (F � A ��t1 � T1)
then
 if (B + p2k + t2+ T2 + r2 + L2 � d) and
 (max{A, B + p2k} + p1k + L1 � d) and (p1k � r1)

 then
 fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=

max

�.
�
.

wk(p1k + p2k) + fñ+1(F, t1, L1, B + p2k , t2, L2),

wk p2k + fñ+1(F, t1, L1, B, t2���p2k , L2) if p2k ≤ t2 ,
 fñ+1(F, t1, T1, B, t2, L2)

 -- if job Ĵk is processed on P
2
 only, the first term has to be removed

 else
 fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=

max

�.
�
.

wk p2k +

 fñ+1(F, t1, L1, B, t2���p2k , L2) if p2k ≤ t2 ,
 fñ+1(F, t1, T1, B, t2, L2)

else fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) := ��#;
end;

The recurrence function fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) for jobs from

J1 ��JP is determined by the analogous Algorithm 14.3.18. In this case the func-

tion value corresponds to the maximum weighted early work of jobs

{Ĵk ,..., Ĵñ}�JP provided that:

T the first job from this set starts exactly at time A on P1, and not earlier than at

time B on P2 (jobs from J2 ��JP are scheduled within this interval by Algo-

rithm 14.3.17),

564 14 Scheduling Imprecise Computations

� there are at least r1 time units in interval [A, d] reserved for the second tasks

of jobs J2 ��JP on P1 (this interval is used by Algorithm 14.3.17), and exactly

r2 time units in interval [B, d] reserved on P2 before d for the second tasks of

early jobs Ĵi � J1 ��JP, for i < k,

� the first tasks of late jobs from {Ĵk ,..., Ĵñ}�JP are processed exactly t1 time

units on P1 before d, and exactly T1 units are reserved on P1 before d for

the first tasks of late jobs Ĵi � J1 ��JP, for i < k,

� there are exactly L1 and L2 units of partially late tasks on P1 and P2 , respec-

tively (they belong to jobs from JP).

Parameter F denotes the completion time of the last early job in {Ĵk ,..., Ĵñ}�JP

on processor P1. Parameters t2 and T2 are not relevant in this phase of dynamic

programming.

Algorithm 14.3.18 Recurrence function fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) of
dynamic programming for J2 | dj = d, nj ≤ 2 | �wjYj , given for jobs processed
first (only) on P1 [BPSW07].

begin
if � � k � u � 1 then

if (A + t1+ T1 + r1 + L1 � d) and (B + r2 + L2 � d) and
 (t2 � B) and (T2 = 0)

 -- job Ĵk can be feasibly scheduled

then
 if (A + p1k + t1+ T1 + r1 + L1 � d) and
 (max{A + p1k , B} + p2k + r2 + L2 � d)
 then
 -- job Ĵk can be scheduled early on both processors

 fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=

max

�
�
�
�

wk(p1k + p2k) +

 fk+1(A+p1k , t1, T1, r1, L1, A+p1k ,

 max{A+p1k , B}+ p2k , t2, T2, r2+p2k , L2),
wk p1k +

 fk+1(A, t1��p1k , T1 + p1k , r1, L1, A,

 B, t2, T2, r2, L2) if p1k ≤ t1 ,
 fk+1(A, t1, T1, r1, L1, A, B, t2, T2, r2, L2)

 -- the first term corresponds to scheduling Ĵk early on both processors;

 -- the second term corresponds to scheduling Ĵk early on P
1
 and late on P

2
;

 -- the third term corresponds to scheduling Ĵk totally late;

 -- if job Ĵk is processed on processor P
1
 only (it is a one-task job),

 -- the first term has to be removed

 14.3 Late Work Model 565

 else
 -- job Ĵk has to be late at least on processor P

2

 fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=

max

�.
�
.

wk p1k +

 fk+1(A, t1��p1k , T1 + p1k , r1, L1, A,

 B, t2, T2, r2, L2) if p1k ≤ t1 ,
 fk+1(A, t1, T1, r1, L1, A, B, t2, T2, r2, L2)

else fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) := ��#;
if k = u then

-- the recurrence function for the last job in J1 � JP, i.e. for Ĵu, is slightly different than

-- for other jobs from this set, because it is calculated based on recurrence function value

-- determined for the first job from other set of jobs J2� JP, i.e. for job Ĵu+1

if (A + t1+ T1 + r1 + L1 � d) and (B + r2 + L2 � d) and
 (t2 � B) and (T2 = 0)
then
 if (A + p1k + t1+ T1 + r1 + L1 � d) and
 (max{A + p1k, B} + p2k + r2 + L2 � d)

then

 fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=

max

�.
.
�
.
.

wk(p1k + p2k) +

 fu+1(A + p1k + t1 + T1, t1, T1, d ��(A +��p1k + t1 + T1 + L1),

 L1, A+ p1k , 0, t2, T2, r2 + p2k , L2),
wk p1k +

 fu+1(A + t1 + T1, t1 ��p1k , T1 + p1k , d ��(A�����p1k + t1 + T1 + L1),

 L1, A+ p1k , 0, t2, T2, r2, L2) if p1k ≤ t1 ,

 fu+1(A + t1 + T1, t1, T1, d ��(A + t1 + T1 + L1), L1,

 A, 0, t2, T2, r2, L2)

 -- if job Ĵk is processed on processor P
1
 only the first term has to be removed

 else
 fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) :=

max

�
�

wk p1k +

 fu+1(A + t1 + T1, t1 ��p1k , T1 + p1k , d ��(A�����p1k + t1 + T1 + L1),

 L1, A+ p1k , 0, t2, T2, r2, L2) if p1k ≤ t1 ,

 fu+1(A + t1 + T1, t1, T1, d ��(A + t1 + T1 + L1),

 L1, A, 0, t2, T2, r2, L2)

else fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) := ��#;
end;

Initial conditions must be determined for all O(n
2
) two-job subsets of jobs with

partially early tasks, for all O(n) one-job subsets, and for the empty set, requiring

566 14 Scheduling Imprecise Computations

O(d
6
) time. The recurrence function is calculated for the remaining O(n) jobs in

O(d
11

) time. For each set of jobs with partially early tasks the maximum total

weighted early work is equal to the maximum value of f1(0, t1, 0, r1, L1, 0, B, t2,
0, 0, L2) for 0 ≤ t1, r1, L1, B, t2, L2 ≤ d. The optimal solution is constructed based

on the decisions from dynamic programming by scheduling early jobs by Jack-

son’s algorithm. The generalization from the flow shop approach to the job shop
case increased the computational complexity of dynamic programming signifi-
cantly from O(n

2d
4
) to the overall complexity O(n

3d
11

).
Similar to the flow shop problem, the theoretical studies on the job shop

model are completed in the literature with some proposals of metaheuristic ap-
proaches: genetic and simulated annealing algorithms [PW15, PWW18].

14.4 Related Problems

In Section 14.3 we defined the late work criterion and discussed problems con-

cerned with minimizing the total (weighted) late work. When presenting

the results for shop models, we announced the idea of early work, which can be

used for evaluating the quality of schedules. In the literature, different modifica-

tions of the original late work criterion can be found, leading to different sched-

uling models.

Kethley and Alidaee [KA02], for example, extended the original definition

of late work (cf. equation (14.3.1)) by introducing multiple due dates for a single

task Tj . In particular, for two due dates d j
1

 and d j
2

 , the modified late work can be

defined as:

Y'j =

�.
�
.

0
Cj���d j

1

d j
2

 ��d j
1

if Cj � d j
1

if d j
1

 < Cj < d j
2

if d j

2
 � Cj .

(14.4.1)

In the case of late work (cf. Figure 14.3.1) the maximum value of this parameter

is achieved, when a task becomes totally late with regard to its due date, whereas

in the case of the modified late work this moment is determined by the second

due date d j
2

 (cf. Figure 14.4.1). The presented modification of the cost parameter

can be further extended to other piece-wise linear [KAW14] or even arbitrary

non-decreasing functions.

The notion of early work already appeared in the studies on shop models and

was used for simplifying the presentation of solution methods. In the previous

section we pointed out the close relationship between late and early work and

the role in optimization processes.

 14.4 Related Problems 567

Figure 14.4.1 Late work parameter with two due dates [Ste11].

Following [CKL+18] the early work can be defined as:

 Xj =

�.
�
.

pj
dj���aCj���pj)
0

if Cj � dj

if dj < Cj < dj + pj
if dj + pj � Cj .

(14.4.2)

The equivalence between the minimum total (weighted) late work �Yj (�wjYj)

and the maximum total (weighted) early work �Xj (�wj Xj) was used in the litera-
ture in the analysis of optimal solutions (cf. [BPSW04a, BPSW05a, BPSW07,
CSHB16]). It is worth to be underlined that both criteria are equivalent when
optimal schedules are constructed, but they are not equivalent in case of approx-
imate solutions (cf. Section 2.5.1). For example, for the common due date prob-
lem P2 | dj = d | �Yj with two identical processors and the minimum total late
work criterion no polynomial time approximation scheme exist unless

P = NP [AAWY98, SC17], while for the analogous problem with maximum

total early work, P2 | dj = d | �Xj , such a scheme is available [SC17]. As we

showed in Section 14.3.2 the problem P2 | dj = d | �Yj is NP-hard due to a trans-

formation from the partition problem [CSHB16], since the existence of a sched-

ule with zero late work corresponds to the existence of a set partition. The nature

of the total late work criterion, which may take zero value, results in the non-

approximability of the considered problem. There exists no polynomial time ap-

proximation algorithm with finite performance guarantee, unless P = NP
[AAWY98] for P2 | dj = d | �Yj . In particular, there exists no polynomial time

approximation scheme (PTAS), because a hypothetical PTAS would have solved

the partition problem in polynomial time [AAWY98]. On the contrary, for
the corresponding problem with total early work, P2 | dj = d | �Xj , there exists

an approximation algorithm with a finite approximation ratio. Algorithm 15.3.2

presented in the next chapter solves the online version of this problem, where

the set of tasks is unknown in advance as in the offline version, but the tasks are

released one by one. This list approach can be as well applied in the offline

mode, i.e. for P2 | dj = d | �Xj , and it is a (5�1)-approximation algorithm for

this problem. Moreover a polynomial time approximation scheme exists, which

pj

d j
2

 � d j
1

d j
2

 d j
1

 d j
1

 + pj Cj

Yj'

568 14 Scheduling Imprecise Computations

constructs solutions with guaranteed (1�3%) quality with regard to an optimal

solution, within O(max{n, 1/% 2
1/%

 }) time for a given constant 0 < % < 1. As

mentioned above, no PTAS can be constructed for the problem P2 | dj = d | �Yj
with minimazing the total late work unless P = NP. For problem P2 | dj = d | �Xj

with maximizing the total early work, however, such an approach exists due to

different nature of these performance measures.
Next we present a polynomial time approximation scheme for

P2 | dj = d | �Xj [SC17] that uses a classical technique for constructing PTAS.

When designing an approximation scheme, the instance is transformed into

a special form that is easier to deal with [ST07, SW07]. One can also, for exam-

ple, structure the output by cutting the output space of the problem, or manipu-

late the execution of the algorithm by providing it with some auxiliary infor-

mation.

The approximation algorithm A% for P2 | dj = d | �Xj works in three phases.

In the first phase, the original instance I of the problem with task set T is simpli-

fied to an instance Ĭ with a modified task set Ť, with regard to a given constant
% � (0,1). The set Ť contains all “big” tasks from T with processing time pj > %d.

Small tasks from T, i.e. those with pj � %d, are replaced with �PS/%d� identical

tasks with processing time %d, where PS denotes the accumulated processing time

of the small tasks in T. Then, in the second phase, the approximation algorithm

A% constructs an optimal schedule for instance Ĭ. It can be proved, that this in-
stance contains at most �3/% � tasks, whose number is independent of the size of

the original instance I. Hence, even the trivial enumerative algorithm of checking
all subsets of tasks and executing them on the first processor and the remaining
tasks on the second processor, finds the optimal schedule for the simplified in-
stance Ĭ in O(max{n, 1/% 2

1/%
 })-time, which is polynomial in the size of the orig-

inal instance I. Finally, in the third phase, the approximation algorithm A% trans-

forms the optimal schedule constructed for Ĭ into a feasible schedule for the orig-

inal instance I. It assigns all big tasks with processing time exceeding %d to the

same processor on which they are executed in instance Ĭ. Then some small tasks
with processing time not exceeding %d are scheduled on the first processor (as-
suming without loss of generality that the workload of the first processor is not
smaller than that of the second one). Together they consume at most Š1 + 2%d
time units, where Š1 denotes the accumulated duration of the short tasks from Ĭ
assigned to this processor in the optimal solution for Ĭ. The remaining small tasks

are assigned to the second processor. It can be proved, that the total early work

of the schedule constructed by algorithm A% in this way is at least (1 � 3%) times

the optimal total early work for P2 | dj = d | �Xj . Hence, for 0 < % < 1, A% presents

a PTAS, i.e. a family of approximation algorithms, for this scheduling problem

(proofs and details can be found in [SC17]).

 14.5 Conclusions 569

Based on the late and early work parameters, another pair of criteria is of inter-

est: the maximum total (weighted) late work and the minimum total (weighted)

early work, with application fields different from the ones mentioned in Section

14.1. For example, the minimum total early work criterion may be important in

distributed computing settings for modeling the minimum amount of data which

may have to be temporarily stored by a server before transferring them to another

computer [BYM16]. The maximum total late work may be used in optimization

processes for which the lowest cost of processing starts at the time modeled by

due dates [CKL+18]. However, there are only few results for those performance

measures. Ben-Yehoshua and Mosheiov [BYM16] studied the single machine

scheduling problem with the minimum total early work criterion and no machine

idle time assumption. They proved its binary NP-hardness by constructing

a transformation from the partition problem and proposing a pseudo-polynomial

dynamic programming algorithm.

The late and early work based criteria were investigated also in the context

of mirror scheduling. Mirror scheduling problems [CKL+18] are problems with
dependent input parameters, such that for any feasible solution of one problem
there exists a mirror solution feasible for the other problem with the same objec-
tive function value, and vice versa. Consequently, both problems can be solved
by the same methods, and both are (strongly) NP-hard or both (pseudo) polyno-
mially solvable. The examples of mirror problems can be found among maxi-
mum lateness and minimum makespan problems (e.g. 1| prec | Lmax and 1| rj ,

prec | Cmax), or with minimum total tardiness and minimum total earliness, as
well as with early and late work as discussed in this chapter. Denoting with
fmin(Yj) an arbitrary non-decreasing function of late work to be minimized, and

with fmin(Xj) the corresponding function of early work, the parallel processor

problems P | prec, Cmax ≤ T | fmin(Yj) and P | prec, Cmax ≤ T | fmin(Xj) with bound-

ed makespan are mirror problems. Similar mirror problems with late and early

work to be maximized are P | prec, Cmax ≤ T | fmax(Yj) and P | prec, Cmax ≤ T |
fmax(Xj) [CKL+18].

14.5 Conclusions

The results obtained for the imprecise computation model and its special case of

the late work model show that the scheduling theory is still a vivid research

domain. Influenced by problems originating from practice these models have

justified themselves in the course of time. The studies performed in this field

have been often inspired by results obtained for other scheduling models, show-

ing that despite the increasing specialization - which can as well be observed in

scheduling theory - the interrelations between various research areas should not

and cannot be lost.

570 14 Scheduling Imprecise Computations

References

AAWY98 N. Alon, Y. Azar, G. J. Woeginger, T. Yadid: Approximation schemes for
scheduling on parallel machines, J. Sched. 1, 1998, 55-66.

ABG+14 A. Agnetis, J.-C. Billaut, S. Gawiejnowicz, D. Pacciarelli, A. Soukhal, Multi-
agent Scheduling: Models and Algorithms, Springer, Berlin, 2014.

AMPP04 A. Agnetis, P. B. Mirchandani, D. Pacciarelli, A. Pacifici, Scheduling problems
with two competing agents, Oper. Res. 52, 2004, 229-242.

AR16 M. Afzalirad, J. Rezaeian, Design of high-performing hybrid meta-heuristics
for unrelated parallel machine scheduling with machine eligibility and prece-
dence constraints, Eng. Optim. 48, 2016, 706-726.

ARS+14 F. Abasian, M. Ranjbar, M. Salari, M. Davari, S. M. Khatami, Minimizing the
total weighted late work in scheduling of identical parallel processors with
communication delays, Appl. Math. Model. 38, 2014, 3975-3986.

Bap99 P. Baptiste, Polynomial time algorithms for minimizing the weighted number
of late jobs on a single machine with equal processing times, J. Sched. 2, 1999,
245-252.

BBKT04 P. Baptiste, P. Brucker, S. Knust, V. G. Timkovsky, Ten notes on equal-
processing-time scheduling. At the frontiers of solvability in polynomial time,
4OR- Q. J. Oper. Res. 2, 2004, 111-127.

BF87 J. Błażewicz, G. Finke, Minimizing mean weighted execution time loss on
identical and uniform processors, Inf. Process. Lett. 24, 1987, 259-263.

BGH+98 P. Brucker, A. Gladky, H. Hoogeveen, M. Y. Kovalyov, C. N. Potts, T. Tau-
tenhahn, S. L. van de Velde, Scheduling a batching machine, J. Sched. 1, 1998,
31-54.

BH98 S. K. Baruah, M. E. Hickey, Competitive on-line scheduling of imprecise com-
putations, IEEE Trans. Comput. 47, 1998, 1027-1032.

Bis08 D. Biskup, A state-of-the-art review on scheduling with learning effect, Eur. J.
Oper. Res.188, 2008, 315-329.

Bla84 J. Błażewicz, Scheduling preemptible tasks on parallel processors with infor-
mation loss, Technique et Science Informatiques 3, 1984, 415-420.

BPSW00 J. Błażewicz, E. Pesch, M. Sterna, F. Werner, Total late work criteria for shop
scheduling problems, in: K. Inderfurth, G. Schwödiauer, W. Domschke,
F. Juhnke, P. Kleinschmidt, G. Wäscher (eds.), Operations Research Proceed-
ings 1999, Springer, Berlin, 2000, 354-359.

BPSW04a J. Błażewicz, E. Pesch, M. Sterna, F. Werner, Open shop scheduling problems
with late work criteria, Discret Appl. Math. 134, 2004, 1-24.

BPSW04b J. Błażewicz, E. Pesch, M. Sterna, F. Werner, Flow shop scheduling with late
work criterion - choosing the best solution strategy, Lect. Notes Comput. Sc.
3285, 2004, 68-75.

BPSW05a J. Błażewicz, E. Pesch, M. Sterna, F. Werner, The two-machine flow-shop
problem with weighted late work criterion and common due date, Eur. J. Oper.
Res. 165, 2005, 408-415.

 References 571

BPSW05b J. Błażewicz, E. Pesch, M. Sterna, F. Werner, A comparison of solution proce-
dures for two-machine flow shop scheduling with late work criterion, Comput.
Ind. Eng. 49, 2005, 611-624.

BPSW05c J. Błażewicz, E. Pesch, M. Sterna, F. Werner, Metaheuristics for late work
minimization in two-machine flow shop with common due date, Lect. Notes
Artif. Intel. 3698, 2005, 222-234.

BPSW07 J. Błażewicz, E. Pesch, M. Sterna, F. Werner, A note on two-machine job shop
with weighted late work criterion, J. Sched. 10, 2007, 87-95.

BPSW08 J. Błażewicz, E. Pesch, M. Sterna, F. Werner, Metaheuristic approaches for the
two-machine flow-shop problem with weighted late work criterion and com-
mon due date, Comput. Oper. Res. 35, 2008, 574-599.

Bru07 P. Brucker, Scheduling Algorithms, 5th ed., Springer, Berlin, 2007.

BYM16 Y. Ben-Yehoshua, G. Mosheiov, A single machine scheduling problem to min-
imize total early work, Comput. Oper. Res. 73, 2016, 115-118.

CC00 A. Castorino, G. Ciccarella, Algorithms for real-time scheduling of error-
cumulative tasks based on the imprecise computation approach, J. Syst. Archi-
tect. 46, 2000, 587-600.

CCX+17 X. Chen, V. Chau, P. Xie, M. Sterna, J. Błażewicz, Complexity of late work
minimization in flow shop systems and a particle swarm optimization algo-
rithm for learning effect, Comput. Ind. Eng. 111, 2017, 176-182.

CDL04 T.-C. E. Cheng, Q. Ding, B. M. T. Lin, A concise survey of scheduling with
time-dependent processing times, Eur. J. Oper. Res. 152, 2004, 1-13.

CKL+18 X. Chen, S. Kovalev, Y. Liu, M. Sterna, I. Chalamon, J. Błażewicz, Mirror
scheduling problems with early work and late work criteria, Technical report
RA-1/2018, Institute of Computing Science, Poznań University of Technology.

CLL90 J.-Y. Chung, J. W. S. Liu, K.-J. Lin, Scheduling periodic jobs that allow im-
precise results, IEEE Trans. Comput. 39, 1990, 1156-1174.

CSHB16 X. Chen, M. Sterna, X. Han, J. Błażewicz, Scheduling on parallel identical
machines with late work criterion: offline and online cases, J. Sched. 19, 2016,
729-736.

CSLG89 J.-Y. Chung, W.-K. Shih, J. W. S. Liu, D. W. Gilles, Scheduling imprecise
computations to minimize total error, Microproc. Microprog. 27, 1989,
767-774.

CY14 H. Chishiro, N. Yamasaki, Practical imprecise computation model: theory and
practice, Proceedings of the 17th IEEE International Symposium on Ob-
ject/Component/Service-Oriented Real-Time Distributed Computing, 2014,
198-205.

FG86 A. Federgruen, H. Groenevelt, Preemptive scheduling of uniform processors by
ordinary network flow techniques, Manage. Sci. 32, 1986, 341-349.

Gaw08 S. Gawiejnowicz, Time-Dependent Scheduling, Springer, Berlin-Heidelberg,
2008.

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

572 14 Scheduling Imprecise Computations

GS76 T. Gonzalez, S. Sahni, Open shop scheduling to minimize finish time, J. ACM
23, 1976, 665-679.

GS78 T. Gonzalez, S. Sahni, Preemptive scheduling of uniform processor systems,

J. ACM 25, 1978, 92-101.

HFL96 D. Hull, W.-C. Feng, J. W. S. Liu, Operating system support for imprecise

computation, in: Flexible Computation in Intelligent Systems: Results, Issues,
and Opportunities, Cambridge, 1996, 96-99.

HLW94 K. I.-J. Ho, J. Y.-T., Leung, W.-D. Wei, Minimizing maximum weighted error
for imprecise computation tasks, J. Algorithms 16, 1994, 431-452.

HLW97 K. I.-J. Ho, J. Y.-T., Leung, W.-D. Wei, Scheduling imprecise computation
tasks with 0/1-constraint, Discret Appl. Math. 78, 1997, 117-132.

Ho04 K. I.-J. Ho, Dual criteria optimization problems for imprecise computation
tasks, in: J. Y.-T. Leung (ed.) Handbook of Scheduling: Algorithms, Models,
and Performance Analysis, Chapman & Hall/CRC, Boca Raton, 2004,
35.1-35.26.

Hor74 W. A. Horn, Some simple scheduling algorithms, Nav. Res. Logist. Quart. 21,

1974, 177-185.

HPW95 A. M. A. Hariri, C. N. Potts, L. N. van Wassenhove, Single machine schedul-
ing to minimize total weighted late work, ORSA Journal on Computing 7,
1995, 232-242.

HS90 D. S. Hochbaum, R. Shamir, Minimizing the number of tardy job units under
release time constraints, Discret Appl. Math. 28, 1990, 45-57.

HS91 D. S. Hochbaum, R. Shamir, Strongly polynomial algorithms for the high mul-
tiplicity scheduling problem, Oper. Res. 39, 1991, 648-653.

Jac55 J. R. Jackson, Scheduling a production line to minimize maximum tardiness,
Research report 43, Management Science Research Project, University of Cali-
fornia, Los Angeles, 1955.

Jac56 J. R. Jackson, An extension of Johnson’s results on job IDT scheduling, Nav.
Res. Logist. Quart. 3, 1956, 201-203.

JJK94 J. Józefowska, B. Jurisch, W. Kubiak, Scheduling shops to minimize the
weighted number of late jobs, Oper. Res. Lett. 16, 1994, 277-283.

Joh54 S. M. Johnson, Optimal two- and three-stage production schedules with setup
times included, Nav. Res. Logist. Quart. 1, 1954, 61-68.

KA02 R. B. Kethley, B. Alidaee, Single machine scheduling to minimize total
weighted late work: a comparison of scheduling rules and search algorithms,
Comput. Ind. Eng. 43, 2002, 509-528.

Kar72 R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,
J. W. Thatcher (eds.), Complexity of Computer Computation, Plenum Press,
New York, 1972, 85-103.

KAW14 R. B. Kethley, B. Alidaee, H. Wang, Single machine scheduling to minimize a
modified total late work function with multiple due dates, Production & Manu-
facturing Research: An Open Access Journal 2, 2014, 624-640.

 References 573

KPW94 M. Y. Kovalyov, C. N. Potts, L. N. van Wassenhove, A fully polynomial ap-
proximation scheme for scheduling a single machine to minimize total
weighted late work, Math. Oper. Res. 19, 1994, 86-93.

KS06 S. G. Kolliopoulos, G. Steiner, Approximation algorithms for minimizing the
total weighted tardiness on a single machine, Theor. Comput. Sci. 355, 2006,
261-273.

Law76 E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rin-
hart and Winston, New York, 1976.

Leu04 J. Y.-T. Leung, Minimizing total weighted error for imprecise computation
tasks and related problems, in: J. Y.-T. Leung (ed.) Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, Chapman & Hall/CRC, Boca
Raton, 2004, 34.1-34.16.

Leu08a J. Y.-T. Leung, Imprecise computation model: total weighted error and maxi-
mum weighted error, in: I. Lee, J. Y.-T. Leung, S. H. Son (eds.), Handbook of
Real-Time and Embedded Systems, Chapman & Hall/CRC, Boca Raton, 2008,
7.1-7.14.

Leu08b J. Y.-T. Leung, Imprecise computation model: bicriteria and other related prob-
lems, in: I. Lee, J. Y.-T. Leung, S. H. Son (eds.), Handbook of Real-Time and
Embedded Systems, Chapman & Hall/CRC, Boca Raton, 2008, 8.1-8.11.

LLL87 J. W. S. Liu, K. J. Lin, C. L. Liu, A position paper for the 1987 IEEE Work-
shop on real-time operating systems, Proceedings of the IEEE Workshop on
Real-Time Operating Systems, Cambridge, Massachusetts, 1987.

LLL06 B. M. T. Lin, F. C. Lin, R. T. C. Lee, Two-machine flowshop scheduling to
minimize total late work, Eng. Optim. 38, 2006, 501-509.

LLS+91a J.W.-S. Liu, K.-J. Lin, W.-K. Shih, A.C.-S. Yu, J.-Y. Chung, W. Zhao, Algo-
rithms for scheduling imprecise computations, IEEE Computer 24, 1991,
58-68.

LLS+91b J. W.-S. Liu, K.-J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, W. Zhao, Algo-
rithms for scheduling imprecise computations, in: A. M. van Tilborg,
G. M. Koob (eds.), Foundations of Real-Time Computing: Scheduling and Re-
source Management, Kluwer, Boston, 1991.

LNL87a K.-J. Lin, S. Natarajan, J. W.-S. Liu, Imprecise results: utilizing partial compu-
tations in real-time systems, Proceedings of the IEEE 8th Real-Time Systems
Symposium, San Jose, California, 1987.

LNL87b K.- J. Lin, S. Natarajan, J. W.-S. Liu, Scheduling real-time, periodic jobs using
imprecise results, Proceedings of the IEEE 8th Real-Time Systems Symposium,
San Jose, California, 1987.

LNLK87 K.-J. Lin, S. Natarajan, J. W.-S. Liu, T. Krauskopf, Concord: a system of im-
precise computations, Proceedings of the IEEE Computer Software and Appli-
cations Conference, Tokyo, 1987.

LSL+94 J. W. S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, J.-Y. Chung, Imprecise compu-
tations, Proceedings of the IEEE 82, 1994, 83-94.

LRK80 J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity results for scheduling chains
on a single machine, Eur. J. Oper. Res. 4, 1980, 270-275.

574 14 Scheduling Imprecise Computations

LYW94 J. Y.-T. Leung, V. K. M. Yu, W.-D. Wei, Minimizing the weighted number of
tardy task units, Discret Appl. Math. 51, 1994, 307-316.

McN59 R. McNaughton, Scheduling with deadlines and loss functions, Manage. Sci. 6,
1959, 1-12.

MCZ10 Y. Ma, C. Chu, C. Zua, A survey of scheduling with deterministic machine
availability constraints, Comput. Ind. Eng. 58, 2010, 199-211.

MM14 B. Mor, G. Mosheiov, Batch scheduling of identical jobs with controllable
processing times, Comput. Oper. Res. 41, 2014, 115-124.

Mos01 G. Mosheiov, Scheduling problems with a learning effect, Eur. J. Oper. Res.
132, 2001, 687-693.

NZ90 E. Nowicki, S. Zdrzałka, A survey of results for sequencing problems with
controllable processing times, Discret Appl. Math. 26, 1990, 271-287.

Orl88 J. Orlin, A faster strongly polynomial minimum cost flow algorithm, Proceed-
ings of the 20th ACM Symposium on the Theory of Computing, 1988, 377-387.

PB10 D. Poleš, L. Budin, Imprecise computation model, synchronous periodic real-
time task set and total weighted error, Journal of Computing and Information
Technology 18, 2010, 393-400.

Pin16 M. L. Pinedo, Scheduling. Theory, Algorithms, and Systems, 5
th

 ed., Springer,

New York, 2016.

PK00 C. N. Potts, M. Y. Kovalyov, Scheduling with batching: a review, Eur. J.
Oper. Res. 120, 2000, 228-249.

PS09 E. Pesch, M. Sterna, Late work minimization in flow shops by a genetic algo-
rithm, Comput. Ind. Eng. 57, 2009, 1202-1209.

PW92a C. N. Potts, L. N. van Wassenhove, Single machine scheduling to minimize
total late work, Oper. Res. 40, 1992, 586-595.

PW92b C. N. Potts, L. N. van Wassenhove, Approximation algorithms for scheduling a
single machine to minimize total late work, Oper. Res. Lett. 11, 1992, 261-266.

PW15 H. Piroozfard, K. Y. Wong, Job shop scheduling problem with late work crite-
rion, AIP Conference Proceedings 1660, 2015, doi: 10.1063/1.4915694.

PWW18 H. Piroozfard, K. Y. Wong, W. P. Wong, Minimizing total carbon footprint
and total late work criterion in flexible job shop scheduling by using an im-
proved multi-objective genetic algorithm, Resour. Conserv. Recy. 128, 2018,
267-283.

RDX13 J. Ren, D. Du, D. Xu, The complexity of two supply chain scheduling prob-
lems, Inf. Process. Lett. 113, 2013, 609-612.

RHA13 M. Ranjbar, S. Hosseinabadi, F. Abasian, Minimizing total weighted late work
in the resource-constrained project scheduling problem, Appl. Math. Model. 37,
2013, 9776-9785.

RZS09 J. Ren, Y. Zhang, G. Sun, The NP-hardness of minimizing the total late work
on an unbounded batch machine, Asia Pac. J. Oper. Res. 26, 2009, 351-363.

SC17 M. Sterna, K. Czerniachowska, Polynomial time approximation scheme for
two parallel machines scheduling with a common due date to maximize early
work, J. Optim. Theory Appl. 174, 2017, 927-944.

 References 575

SK12 G. L. Stavrinides, H. D. Karatza, Scheduling real-time DAGs in heterogeneous
clusters by combining imprecise computations and bin packing techniques for
the exploitation of schedule holes, Futur. Gener. Comp. Syst. 28, 2012,
977-988.

SL95 W.-K. Shih, J. W. S. Liu, Algorithms for scheduling imprecise computation
with timing constraints to minimize maximum error, IEEE Trans. Comput. 44,
1995, 466-470.

SLC91 W.-K. Shih, J. W. S. Liu, J.-Y. Chung, Algorithms for scheduling imprecise
computations with timing constraints, SIAM J. Comput. 20, 1991, 537-552.

SR17 V. A. Strusevich, K. Rustogi, Scheduling with Time-Changing Effects and
Rate-Modifying Activities, Springer, Berlin, 2017.

SS07 D. Shabtay, G. Steiner, A survey of scheduling with controllable processing
times, Discret Appl. Math. 155, 2007, 1643-1666.

SSS15 A. Shioura, N. V. Shakhlevich, V. A. Strusevich, Scheduling imprecise compu-
tation tasks on parallel machines to minimize linear and non-linear error penal-
ties: reviews, links and improvements, Discussion paper no. 2015-09, Depart-
ment of Social Engineering, Graduate School of Decision Science and Tech-
nology, Tokyo Institute of Technology, 2015.

SSS16 A. Shioura, N. V. Shakhlevich, V. A. Strusevich, Application of submodular
optimization to single machine scheduling with controllable processing times
subject to release dates and deadlines, INFORMS J. Comput. 28, 2016,
148-161.

SSS18 A. Shioura, N. V. Shakhlevich, V. A. Strusevich, Preemptive models of sched-
uling with controllable processing times and of scheduling with imprecise
computation: a review of solution approaches, Eur. J. Oper. Res. 266, 2018,
795-818.

ST07 H. Shachnai, T. Tamir, Polynomial-time approximation schemes, in:
T. F. Gonzalez (ed.), Handbook of Approximation Algorithms and Metaheuris-
tics, Chapmann & Hall/CRC, Boca Raton, 2007.

Ste00 M. Sterna, Problems and Algorithms in Non-Classical Shop Scheduling, Ph.D.
thesis, Scientific Publishers of the Polish Academy of Sciences, Poznań, 2000.

Ste06 M. Sterna, Late Work Scheduling in Shop Systems, Dissertations 405, Publish-
ing House of Poznań University of Technology, Poznań, 2006.

Ste07a M. Sterna, Late work minimization in a small flexible manufacturing system,
Comput. Ind. Eng. 52, 2007, 210-228.

Ste07b M. Sterna, Dominance relations for two-machine flow shop problem with late
work criterion, Bull. Pol. Acad. Sci.-Tech. Sci. 55, 2007, 59-69.

Ste11 M. Sterna, A survey of scheduling problems with late work criteria, Omega-
Int. J. Manage. Sci. 39, 2011, 120-129.

SW07 P. Schuurman, G. J. Woeginger, Approximation schemes - a tutorial, in:
R. H. Moehring, C. N. Potts, A. S. Schulz, G. J. Woeginger, L. A. Wolsey
(eds.), Lectures on Scheduling, to appear, http://www.win.tue.nl/
~gwoegi/papers/ptas.pdf, 2007.

http://www.win.tue.nl/~gwoegi/papers/ptas.pdf
http://www.win.tue.nl/~gwoegi/papers/ptas.pdf

576 14 Scheduling Imprecise Computations

Tar83 R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial
and Applied Mathematics, Philadelphia, 1983.

Vic80a R. G. Vickson, Choosing the job sequence and processing times to minimize
total processing plus flow cost on a single machine, Oper. Res. 28, 1980,
1155-1167.

Vic80b R. G. Vickson, Two single machine sequencing problems involving controlla-
ble job processing times, AIIE Transactions 12, 1980, 258-262.

WCC+11 C.-C. Wu, H.-M. Chen, S.-R. Cheng, C.-J. Hsu, W.-H. Wu, Simulated anneal-
ing approach for the single-machine total late work scheduling problem with a
position-based learning, Proceedings of the 18th IEEE International Confer-
ence on Industrial Engineering and Engineering Management, 2011, 839-843.

WF08 G. R. Wiedenhof, A. A. Fröhlich, Using imprecise computation techniques for
power management in real-time embedded systems, in: B. Kleinjohann, W.
Wolf, L. Kleinjohann (eds.), Distributed Embedded Systems: Design, Middle-
ware and Resources. IFIP - The International Federation for Information Pro-
cessing 271, Springer, Boston, 2008, 121-130.

WKS+17 D.-J. Wang, C.-C. Kang, Y.-R. Shiau, C.-C. Wu, P.-H. Hsu, A two-agent sin-
gle-machine scheduling problem with late work criteria, Soft Comput. 21,
2017, 2015-2033.

WLP07 G. Wan, J. Y.-T. Leung, M. L. Pinedo, Scheduling imprecise computation
tasks on uniform processors, Inf. Process. Lett. 104, 2007, 45-52.

Woe00 G. J. Woeginger, When does a dynamic programming formulation guarantee
the existence of a fully polynomial time approximation scheme (FPTAS)?
INFORMS J. Comput. 12, 2000, 57-74.

WYW+16 C.-C. Wu, Y. Yin, W.-H. Wu, H.-M. Chen, S.-R. Cheng, Using a branch-and-
bound and a genetic algorithm for a single-machine total late work scheduling
problem, Soft Comput. 20, 2016, 1329-1339.

XZK15 Z. Xu, Y. Zou, X. Kong, Meta-heuristic algorithms for parallel identical ma-
chines scheduling problem with weighted late work criterion and common due
date, SpringerPlus 4, 2015, 1-13.

Yu91 K. M. Yu, Approximation Algorithms for Minimizing the Number of Tardy
Units in Real-Time System, Ph.D. thesis, University of Texas at Dallas Rich-
ardson, 1991.

YXC+16 Y. Yin, J. Xu, T.-C. E. Cheng, C.-C. Wu, D.-J. Wang, Approximation schemes

for single-machine scheduling with a fixed maintenance activity to minimize
the total amount of late work, Nav. Res. Logist. Quart. 63, 2016, 172-183.

ZW05 Y. Zhang, L. Wang, The NP-completeness of a new batch scheduling problem,
Journal of Systems Science and Mathematical Sciences 25, 2005, 13-17.

ZW17 X. Zhang, Y. Wang, Two-agent scheduling problems on a single-machine to
minimize the total weighted late work, J. Comb. Optim. 33, 2017, 945-955.

15 Online Scheduling

Online scheduling can be considered as scheduling with incomplete information,
where the decisions on executing tasks have to be made without knowing the
complete problem instance, and the input data is provided piece-by-piece. Re-
garded as an enhanced scheduling model [PS09], online scheduling serves as a
bridge between deterministic scheduling and stochastic scheduling [Pin16]. In
deterministic (offline) models the input data are fully available in advance. In
stochastic models the input data, unknown in advance, are represented by random
variables with certain probability distributions (the studies usually involve queu-
ing theory). In online models the input data is gradually revealed to an algorithm.

Online algorithms compute partial solutions whenever a new piece of infor-
mation requests taking an action, without providing information about future
requests. The studies of online approaches focus mainly on the analysis of the
quality of obtained solutions. Obviously online algorithms can never perform
better than an optimal offline algorithm would have done if the problem instance
was known in advance.

Dealing with this type of problems is practically important because many re-
al world problems are of online character, where immediate decisions based on
partial information are required. Among others such problems arise in resource
allocation, distributed computing, data structuring, robotic and scheduling.
Online scheduling is a wide area of many shapes reflecting the various kinds of
applications where decisions in face of incomplete information are requested.
This variety is mirrored in the vast publication list at the end of the chapter.
Among others, good surveys on online algorithms and online scheduling algo-
rithms can be found in [Alb03, Alb09, BEY98, FW98, PST04, and Sga98].

In this chapter, we present the fundamentals of online scheduling and sum-
marize comments on online algorithms provided in other parts of this handbook.
We show the essential ideas and definitions related to online deterministic and
randomized scheduling and mention other related fields. The basic scheduling
models are introduced in Section 15.1, while the idea of online algorithms is
sketched in Section 15.2. Section 15.3 presents commonly used techniques of
evaluating online algorithms: the competitive analysis, the lower bound analysis,
and the adversary method. Extensions of classical online models, such as semi-
online scheduling, online scheduling with advice and online scheduling with re-
source augmentation are touched in Section 15.4. Since online scheduling is a
wide field of research we focus on showing only the specificity of this domain
and provide extended examples illustrating the basic ideas introduced in this
chapter. We refer the more interested readers to the numerous references provid-
ed in particular sections.

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_15

577

https://doi.org/10.1007/978-3-319-99849-7_15
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_15&domain=pdf

578 15 Online Scheduling

15.1 Online Scheduling Models

In online scheduling problems, the information on an input instance is not avail-
able in advance. It can be revealed to a scheduler in different ways leading to
various online scheduling models (cf. [PST04, Sga98]. Online scheduling models
are sometimes called dynamic scheduling models in contrast to static (offline)
ones (cf. [DTE03, TE08]).

In general, in online computations two basic models are studied: online-
over-list and online-over-time paradigm. In the online-over-list model the tasks
(or more generally speaking - requests) are served in the order of their occur-
rence. This concept fits the event-triggered scenarios. In the online-over-time
model, tasks (requests) become available for service at their arrival times. This
concept corresponds to the time-triggered scenarios, which can be met in many
real time problems (cf. Chapter 7).

In online-over-list scheduling (also called online-list model, e.g. [PST04], or
sequence model, e.g. [Kru00]) it is assumed that the tasks are presented to the
scheduler in strict sequential order. Based on the parameters of the current task,
the scheduler determines a processor and a feasible time interval for execution.
This decision is in general irreversible (cf. Section 15.4). Only after the current
task is scheduled, the next one becomes known. This implies in particular that
the scheduling decision is independent of properties of the following tasks.

Online-over-time scheduling (also called online-time, e.g. [PST04], or time-
stamp model, e.g. [Kru00]) assumes that tasks become known at their ready
times. In this model, scheduling decisions can be delayed and tasks are not nec-
essarily scheduled in the order of their occurrence. The decision upon scheduling
a particular task may depend on all released but not yet scheduled tasks. As in the
previous case, the taken decisions are usually irreversible.

The above presented concepts of online-over-list and online-over-time algo-

rithms are common in various fields within the area of online optimization. Often

the scheduling model is enhanced by additional specific assumptions (e.g.

[PST04, Sga98]). For example, in so-called clairvoyant scheduling models (e.g.

[Kob18]) the task parameters, particularly processing times, are revealed to the

decision maker (i.e. to an online algorithm) at the task release times. This is in

contrast to non-clairvoyant scheduling models (e.g. [BDKS04, Edm00, HS06,

MPT94, RS08]) where task parameters remain unknown after task arrival. In an

extreme situation no processing times at all are conveyed to the scheduler. Bend-

er et al. [BMR02] proposed the intermediate model of semi-clairvoyant schedul-
ing (cf. e.g. [BLMS+04]), which assumes only an approximate knowledge of the

task processing times. In the strong semi-clairvoyant model, a constant approxi-

mation of the remaining processing time of a task is known, while in the weak

semi-clairvoyant model a constant approximation of the original processing time

is provided.

 15.1 Online Scheduling Models 579

As mentioned, an online-over time algorithm decides on currently available

tasks, which can be scheduled or delayed. In general, the tasks appear for sched-

uling at their release times, but the availability of tasks may also be restricted by

precedence constraints. According to a (directed) precedence graph, a task be-

comes known to the online algorithm only after all its predecessors have been

processed (cf. e.g. [AE02]) or some of them have been started (cf. e.g. [TE08]).

Dependencies given by an undirected graph describe conflicts between tasks.

The conflict graph presents pairs of conflicting tasks that cannot be executed

simultaneously. However, it does not determine the order of processing of con-

flicting tasks (cf. e.g. [BC96, GG75]). This type of problems is often met in the

resource-constrained scheduling (cf. Chapter 13). In the online mode (cf. e.g.

[EHKR09]), the conflict graph is revealed to an online algorithm progressively:

when a new task arrives to the system then the conflict edges to all already re-

leased tasks become known.

The interval scheduling model is yet another concept considered in the field

of online scheduling (cf. [FN95, HTW17, KLPS07, Lip94, Woe94]). It assumes

that each task has a given time interval for execution. Tasks that cannot be com-

pleted within their intervals have to be rejected. In this case, the input is a finite

set of intervals to be scheduled, where two overlapping intervals cannot be

scheduled together. Typically, the quality of such solutions is evaluated with re-

gard to the (weighted) number of accepted tasks.

The idea of rejection can also be incorporated into other online scheduling

models, since it fits the specificity of online mode. In online scheduling with

rejections an incoming task upon arrival may be assigned to a processor or re-

jected, usually with some rejection cost, (cf. e.g. [BLMS+00, DH06, EZH11,

HM00, Sei01]).

Task preemption (cf. Section 3.1) can be conveyed to online scheduling with

certain variation. In the non-preemptive model, tasks once started have to be

completed without any interruption, and the obtained schedule is non-

preemptive. In the preemptive-resume model, preempted tasks are resumed later

on the same or on a different processor. The total processor time of a task is

equal to its original processing time. This is in contrast to the preemptive-restart
model [HPW00, SWW95], where tasks after preemption are restarted and the

already achieved partial progress is lost. Such preemptions are also called abor-
tions, and the unfinished parts of tasks are removed from the schedule. Conse-

quently, the final schedule is non-preemptive.

The above mentioned models do not exhaust the whole range of online

scheduling. In the literature, other concepts are also investigated. For example, in

studies on real-time systems, the task description is completed with the deadline

and the task weight (called also the task relative value), and the goal is to maxim-

ize the weight (the value) of tasks completed feasibly before their deadlines (cf.

e.g. [BKM+91, DM89, KP00b, PSTW02]). In order to take into account other

real world conditions, communications between processors (cf. e.g. [DK93,

580 15 Online Scheduling

DKMK99]) or their breakdowns (cf. e.g. [AS01, KP00c, KP05]) are examples

that can be incorporated into the online models.

15.2 Online Scheduling Algorithms

Independently of the investigated online paradigm, online algorithms can be de-

terministic or randomized. In the case of the deterministic online algorithms,

the decisions taken on the input instance data, which are revealed progressively,

are deterministic. In contrast, the randomized online algorithms (e.g. [BDB+94,

BL04, MR95]) take random decisions while scheduling new tasks. In this case,

we want to determine the expected objective function value, where the expecta-

tion is taken over the random choices. Within this chapter, as in the whole hand-

book, we focus on the deterministic online algorithms. Nevertheless, for the sake

of completeness, in Section 15.3.3 we present some basic definitions for random-

ized online algorithms.

As mentioned in the previous section, the deterministic online algorithms are

closely related to list scheduling algorithms (cf. Section 3.2 or Section 5.1), pri-
ority-driven-scheduling rules (cf. Section 7.2.3) or priority rules (cf. Section

8.3.1 and Section 10.3.1). Some of the offline list or priority based algorithms

can be used in the online mode, as long as they do not require knowledge of the

entire input, as would be necessary, for example, for sorting all tasks, or selecting

tasks with a minimum or maximum parameter value. The origins of online

scheduling and the competitive analysis used to evaluate the performance of

online algorithms (see Section 15.3), can already be discerned in the Graham’s

work [Gra66] on the scheduling problem for parallel identical processors pre-

sented in Section 5.1. The algorithm proposed by Graham scheduled each task to

a processor with the minimum workload. Formally the transfer of the idea to

online scheduling was formulated by Sahni and Cho [SC79] and undertaken by

Davis and Jaffe [DJ81]. Since then, a variety of online scheduling models and

related online algorithms have been proposed. Although the algorithms are usual-

ly adjusted to the specificity of the considered problem, in the field of online

scheduling some standard approaches exist. Similarly, in the field of offline

scheduling, some standard list or priority rule based algorithms are often used,

usually as fast heuristic approaches.

Pruhs et al. [PST04] distinguished in their survey a few standard approaches
for solving the deterministic online-over-time scheduling problems. For clairvoy-
ant models, in which the task characteristics are known after their appearance,
basic strategies can be applied, such as:
- First-In-First-Out (FIFO): the task with the earliest release time is selected,

- Shortest Remaining Processing Time (SRPT): the task with the smallest re-
maining processing time is chosen,

 15.3 Competitive Analysis 581

- Shortest Task First (STF): the task with the shortest processing time is sched-
uled first,

- Highest Density First (HDF): the task with the highest density, defined as
the task weight divided by its processing time, is executed first.

For non-clairvoyant preemptive models, in which the task characteristics, par-

ticularly their processing times, remain unknown for the online algorithms, the

following approaches are commonly used:

- Round Robin (RR): an equal amount of processing resources is assigned to all

tasks,

- Shortest Elapsed Time First (SETF): all processing resources are assigned to

the task that has been processed the least so far,

- Multilevel Feedback (MF): tasks are served by a collection of queues. After

processing a task for some target time (defined for particular queues), it is

shifted to the next queue. This rule allows keeping the number of task preemp-

tions logarithmic in the number of tasks.

In the case of online-over-list problems, in general an algorithm has to immedi-
ately schedule a current task. As there is only one current task to be scheduled the
decision concerns merely the assignment of a processor.

15.3 Competitive Analysis

The quality of online algorithms is usually estimated by evaluating their worst
case performance. The average case performance of online algorithms is also of
interest, but it requires a reasonable approximation of input data distribution
(Poisson or exponential distributions are often considered). In the worst case
analysis of online algorithms the quality of solutions is compared to the quality
of solutions determined by offline algorithms. While the latter has the complete
knowledge of the input instance at hand, only partial information is available for
online algorithms. In the competitive analysis, the online algorithm is evaluated
by using the best offline criterion value as a reference. Such an analysis shows
how far the results of an online algorithm can drop behind an optimal offline
solution. The competitive analysis was proposed by Sleator and Tarjan [ST85],
and developed by Karlin et al. [KMRS88] in the context of enhancing the per-
formance of bus-based multiprocessor systems. Hence, the roots of the competi-
tive analysis of online algorithms come partially from the scheduling theory,
from the mentioned papers and also from Graham’s analysis [Gra66] of the prop-
erties of list algorithms for scheduling tasks on identical processors (cf. Section
5.1.1).

582 15 Online Scheduling

15.3.1 Competitive Ratio

In general, the deterministic online algorithm is �-competitive if the value of the
objective function of its solution is no more than � times the optimal offline val-
ue for all problem instances. More precisely, assuming that I denotes an input
instance, A(I) denotes the criterion value for an online solution constructed by
algorithm A, and OPT(I) denotes the optimal criterion value for an offline solu-
tion, then A is called �-competitive, if for any instance I and fixed constant b

A(I) � � OPT(I) + b

(this definition is given for a minimization problem, for a maximization problem
we obviously have OPT(I) � � A(I) + b). If the inequality holds with constant
b = 0, then the online algorithm is called strictly �-competitive.

Because scheduling problems are usually scalable (particularly the task pro-
cessing times are scalable) and the objective can attain arbitrarily large values
and dominate constant b [PST04], we call an online scheduling algorithm A
�-competitive, instead of strictly �-competitive [PST04], for a minimization
problem, if there is

A(I) � � OPT(I) (15.3.1)

or for a maximization problem, if there is

OPT(I) � � A(I). (15.3.2)

The competitive ratio �A of algorithm A is the infimum of � such that online
algorithm A is �-competitive.

The competitive analysis corresponds to the method of evaluating offline
approximation algorithms as discussed in Section 2.5.1. The competitive ratio
determined for a deterministic online algorithm corresponds to the absolute per-
formance ratio (or approximation ratio) defined for an approximation algorithm.
The competitive ratio for the online randomized algorithms is defined in Section
15.3.3, since we had to first introduce the idea of the adversary method. In both
cases of offline and online algorithms, the competitive/approximation ratios al-
low evaluating their performance. In the case of offline approximation algo-
rithms, the performance is restricted by the computational power limitations,
resulting from time or memory limitations. In the case of online algorithms, the
performance is limited by the lack of information on the input data, which are not
available in advance.

Efficient online algorithms are algorithms with a competitive ratio as small
as possible, preferably being a constant independent of input parameters. For
some online scheduling algorithms, the competitive ratio may depend, for exam-
ple, on the number of processors. It should not be related to the number of tasks,
which is unknown in the online environment.

 15.3 Competitive Analysis 583

Example 15.3.1 To illustrate the competitive analysis for deterministic online
scheduling algorithms, we focus on the example of an online version of
the scheduling problem with identical processors and the total early work
criterion introduced in the previous chapter (cf. Section 14.3.2). We present
the results obtained by Chen et al. [CSHB16] for the online-over-list problem
with a common due date P | dj = d, online-over-list | �Xj . The offline version of

this problem, i.e. P | dj = d | �Xj , is NP-hard [CSHB16] (it is equivalent to NP-

hard problem with the total late work criterion as far as the computational

complexity is concerned, see Section 14.4).

Problem P | dj = d, online-over-list | �Xj should be solved by an online algo-
rithm which schedules tasks Tj one by one. When a current task is scheduled, the

next one may appear, and its processing time pj becomes known to the algorithm.

The goal is to maximize the total amount of work �Xj executed before a common

due date d. The early work for task Tj is defined as Xj = min{pj , max{0, d � Cj +

pj}}, where Cj denotes the completion time of Tj (cf. equation (14.4.2)).

The above defined scheduling problem reminds of the well-known optimiza-
tion problem - the bin packing problem. The bin packing problem requires as-
signing items of given weights to bins, so that the total weight of items in each
bin does not exceed its capacity and the number of used bins is minimized (cf.
e.g. [MT90]). The bin packing problem is a generalization of the knapsack prob-
lem, defined in Example 2.2.1, to multiple knapsacks. It is widely studied in of-
fline as well as in online modes (cf. e.g. [Sga14]). In the above scheduling prob-
lem P | dj = d, online-over-list | �Xj the processors can be considered as bins,
each of the capacity d, that have to be packed with tasks, but the number of pro-
cessors - in contrast to the number of bins - is fixed and given as a part of
the input (m).

The simple online algorithm proposed in [CSHB16], called Extended First
Fit (EFF), is similar to the First Fit algorithm designed for bin packing, which
assigns items to the first bin to which an incoming item fits. EFF (Algorithm
15.3.2) schedules an incoming task on the first fitting processor, i.e. on the first
in the row of processors whose workload does not exceed the assumed ratio �m d.
If no such processor exists, the task is assigned to the processor with the mini-
mum workload.

Algorithm 15.3.2 Algorithm for P | dj = d, online-over-list | �Xj [CSHB16].

begin

�m = (2m2 � 2m + 1 � 1) / (m � 1);
j := 0;

for i := 1 to m do Cj
 i := 0;

 -- Cj
 i denotes the workload of processor i after scheduling task Tj

while there is a new task in the input do

584 15 Online Scheduling

 begin
 j := j +1;
 i := 1;

 while i � m do
 if Cj�1

 i + pj � �m d then break;
 else i := i +1;
 if i � m
 then schedule Tj on Pi (i.e. Cj

 i := Cj�1
 i + pj);

 -- scheduling a new task on the first fitting processor
 else schedule Tj on Pi with Cj�1

 i = min
1 � k � m

{Cj�1
k };

 -- scheduling a new task on the processor with the minimum workload

 end;
end;
Theorem 15.3.3 [CSHB16] The competitive ratio of Algorithm 15.3.2 is

�m =
2m2 � 2m + 1 � 1

m � 1 .

Proof. Let us consider a solution constructed by EFF after scheduling the last
task Tn in the input sequence. Let us assume that processors are numbered in

non-increasing order of their workloads Cn
i
 . We denote the optimal offline crite-

rion value, i.e. the optimal total early work, with X * and the criterion value of the

schedule constructed by Algorithm 15.3.2 with X EFF. We show that

X * � �m X EFF (see equation (15.3.2)) for any input instance.

If max
1 � i � m

{Cn
i} � d then all tasks are early, the online schedule is optimal, i.e.

X EFF = X * = �pj , and the theorem holds.
If min

1 � i � m
{Cn

i} � d then there is a late task on each processor, and the interval

[0, d] is completely occupied by tasks. Then the schedule is optimal, i.e. X EFF =

X * = md, and the theorem holds too.
If min

1 � i � m
{Cn

i} < d < max
1 � i � m

{Cn
i} then two additional subcases have to be ana-

lyzed.

Case 1: min
1 � i � m

{Cn
i} < d < max

1 � i � m
{Cn

i} � �m d

In this case the workload on at least one processor exceeds d. Let us assume that

there are k � 1 such processors, then

X *

X EFF �

�
i=1

k
Cn

i + �
i=k+1

m
Cn

i

kd + �
i=k+1

m
Cn

i
 �

�
i=1

k
Cn

i

kd �
k&�m d

kd = �m .

 15.3 Competitive Analysis 585

Case 2: min
1 � i � m

{Cn
i} < d < �m d < max

1 � i � m
{Cn

i}

Let us denote with Tq the last task on the processor with the maximum workload,

which was the processor with the minimum workload CA before assigning Tq due

to the idea of EFF algorithm. Let us denote with CB � CA the second smallest

workload before scheduling Tq .

If CA > 0 then CB > 0 and there are some tasks executed on both processors.

Moreover, CA + CB > �m d, because otherwise these tasks would be assigned to

one processor according to the first fit rule. CB � CA implies that CB > 1/2 �m d,

and because on at least one processor some tasks are late and on other processors

the workload is greater than CB, we have X EFF � d + (m � 1)&CB > d + (m � 1)&1/2

�m d. Thus the EFF performance can be bounded as

X *

X EFF <
m d

d + (m�1) 1
2
 �m d =

2m

2 + (m�1) �m
 .

Taking into account the value of �m , we have

X *

X EFF <
2m

2 + (m�1)
2m2 � 2m + 1 � 1

m � 1

 = �m .

If CA = 0, then the input sequence contains a “big” task with the processing time

exceeding �m d. Let us consider the input sequence without this task for which

the optimal offline early work is X
 _

 * and the quality of the schedule constructed

by the analyzed algorithm is X
 _

 EFF. Using the same reasoning as before we get

X
 _

 */X
 _

 EFF � �m that leads to

X *

X EFF =
X
 _

 * + d
X
 _

 EFF + d � �m .

For details of the proof we refer the reader to [CSHB16]. We see that Algorithm
15.3.2 for problem P | dj = d, online-over-list | �Xj has a competitive ratio �m
dependent on the number of processors m. More precisely, �m is increasing with
the number of processors [CSHB16]. The worst case performance of this algo-
rithm is not determined by a constant, it is only upper bounded by 2 (since �# =

2 for m � #). But for a fixed number of processors k, i.e. for problems Pk | dj
 = d, online-over-list | �Xj , the competitive ratio of Algorithm 15.3.2 becomes

constant, equal to �k = (2k2 � 2k + 1 � 1) / (k � 1). As a consequence, for ex-
ample, the basic two-processor problem, P2 | dj = d, online-over-list | �Xj , can be
solved by the Extended First Algorithm with the competitive ratio �2 = 5 � 1,

so Algorithm 15.3.2 is (5 � 1)-competitive algorithm for this scheduling case.

586 15 Online Scheduling

15.3.2 Lower Bound

The competitive ratio shows the worst case behavior of a given online algorithm.
In order to estimate the loss in the solution quality for online scheduling prob-
lems, with regard to the offline situation, the lower bound is also determined. An
online scheduling problem has the lower bound �̄ if no online scheduling algo-
rithm has a competitive ratio smaller than �̄.

The lower bound estimates the quality of any online algorithm, by providing
an instance or a set of instances that attain(s) a significant error for any online
method.

In the case of deterministic online algorithms, the lower bound proposal re-
quires providing a suitable set of input instances (sequences). In the case of the
randomized online algorithms, the lower bound analysis is more difficult, since it
requires bounding the expected criterion value determined by an arbitrary ran-
domized algorithm for a specific input instance from below. For this type of
online algorithms, the approach based on Yao’s principle is commonly used
[Yao77]. Yao’s principle says that the worst case performance of the best ran-
domized online algorithm is equal to the average performance of the best deter-
ministic online algorithm on the worst input distribution.

We call an online algorithm optimal, if its competitive ratio is equal to
the lower bound of the problem.

15.3.3 Adversary Method

In the case of the lower bound, the competitive analysis is often performed by the
adversary method, which relates to ideas known from game theory (cf. e.g.
[MS08, OR94, Pet15]). The game theory is the formal study of conflict and co-
operation that allows modeling and designing decision-making processes in in-
teractive environments. Games describe strategic interactions within which
a player makes interdependent decisions while developing his strategy, taking
into account the other player’s possible decisions or strategies.

Online scheduling algorithms can be seen as request-answer games. Accord-
ing to this concept, the online algorithm, as a player, constructs a schedule for
the sequence of tasks provided by the adversary (adversary sequence). In other
words, the algorithm is competing against an adversary, who generates the input
sequence of tasks. The adversary is interested in maximizing the difference be-
tween the quality of the online solution and his own solution determined based
on the knowledge of the complete set of tasks. To obtain this goal, the adversary
generates a malicious input sequence, difficult for an online algorithm to handle.

Such game-theoretic view is especially useful for investigating randomized
algorithms, because in the case of deterministic online algorithms the adversary
knows the scheduling policy, and the decisions taken by the algorithm are well
defined. In the case of randomized online algorithms, the adversary has less pow-

 15.3 Competitive Analysis 587

er since the scheduling decisions of algorithms are open/unknown. On the other
hand, in some cases, the randomization of an online algorithm may lead to de-
creasing its competitive ratio.

First we show an example of the lower bound analysis for a particular de-
terministic online algorithm. Then we provide some basic definitions and ideas
related to randomized online algorithms.

Example 15.3.4 To illustrate the idea of the lower bound of a deterministic
online scheduling problem proved using the adversary method, we return to the
two-processor variant of the scheduling problem P2 | dj = d, online-over-list | �Xj

of Example 15.3.1. As an adversary sequence we use the classical adversary se-
quence for the competitive analysis of two-processor cases [FKT89].

Theorem 15.3.5 [CSHB16] No deterministic online algorithm for problem

P2 | dj = d, online-over-list | �Xj has a competitive ratio smaller than 5 � 1.

Proof. Let us consider the input instance with the common due date

d = (5 + 1)/2. The first two tasks released by the adversary have unit processing

times (p1 = p2 = 1). There are only two ways to schedule the tasks, either on the

same processor or on different processors.

If the online algorithm schedules the tasks on the same processor, the adversary

finishes the input sequence. The online algorithm constructs the schedule with

the criterion value XA, which is worse than the quality of the optimal offline

schedule X * (cf. Figure 15.3.1):

X *

X A =
2

d = 5 � 1.

If the online algorithm assigns tasks to different processors, then the adversary

releases one more task with the processing time equal to 2 (p3 = 2). The online

algorithm again constructs a schedule worse than the optimal offline schedule

(cf. Figure 15.3.2):

X *

X A =
2d

1 + d = 5 � 1.

Hence, the competitive ratio of any deterministic online algorithm is not smaller

than the lower bound 5 � 1.

In Example 15.3.1 we noticed that the exemplary online algorithm Extended
First Fit (Algorithm 15.3.2) solves the considered two-processor problem
P2 | dj = d, online-over-list | �Xj with the competitive ratio �2 = 5 � 1. Since

this ratio is equal to the lower bound for the considered problem, proved in Theo-

rem 15.3.5, EFF is an optimal deterministic online algorithm for problem

588 15 Online Scheduling

P2 | dj = d, online-over-list | �Xj [CSHB16]. This online scheduling problem has

a tight bound.

Figure 15.3.1 Schedules for the first adversary sequence in the proof of
Theorem 15.3.5, constructed by:
(a) an online algorithm,

(b) an optimal offline algorithm.

Figure 15.3.2 Schedules for the second adversary sequence in the proof of
Theorem 15.3.5, constructed by:
(a) an online algorithm,
(b) an optimal offline algorithm.

As we have mentioned above, the lower bound analysis of randomized online
algorithms is more difficult than that of deterministic methods. Depending on the
kind of information which is available for the adversary, three basic adversary
models are studied for the randomized online algorithms [BDB+94]: oblivious
adversary, adaptive online adversary and adaptive offline adversary.

In the oblivious adversary model, the adversary generates the whole input
sequence before the online algorithm serves it. In other words, first the input se-
quence is constructed, then the randomized online algorithm is run, and
the quality of the solution is compared to the optimal offline solution.

In the adaptive online adversary model, the adversary releases requests
(tasks in the case of online scheduling) based on the online algorithm’s behavior
observed from the already released requests. The adversary, constructing the ref-
erence solution, also works online. Based on full knowledge of the state of the
randomized algorithm, it generates the next element of the input sequence. The
quality of the online solution is compared to the online performance of the adver-
sary.

The adaptive offline adversary model is similar to the previous, because the
adversary also knows the internal state of the randomized algorithm, but the

P1

P2

 d = (5 + 1)/2 t

(a)
P1

P2

d = (5 + 1)/2 t

(b)
T1 T2 T1

T2

T1 T2 T1

 T2

 T3

 T3

P1

P2

 d = (5 + 1)/2 t

(a)
P1

P2

 d = (5 + 1)/2 t

(b)

 15.3 Competitive Analysis 589

quality of its solution is compared to the offline solution constructed by the ad-
versary.

The particular adversary models differ in the power given to the adversary.
The oblivious adversary is the weakest type, since it has to generate the whole
input sequence without any knowledge of the behavior of the online randomized
algorithm. This model is relevant to online scheduling problems, in which the
decisions taken on a partial schedule do not influence future input [PST04]. The
adaptive adversaries are much stronger because they have insight in the online
algorithm behavior for incoming requests (tasks), whereas the adaptive online
adversary is not stronger than the adaptive offline one.

In the literature devoted to online optimization, other types of adversaries

can be also met, such as the statistical adversary, which generates an input satis-

fying given statistical assumptions [Rag92], or the diffuse adversary, which gen-

erates an input according to a probability distribution taken from a certain class

of possible distributions known to an online algorithm [KP00a].

The competitive ratio of a randomized online algorithm A is defined with regard
to a specific adversary.

A randomized online algorithm is �-competitive algorithm against an obliv-
ious adversary (or just �-competitive algorithm), if E[A(I)] � � OPT(I) (or
E[A(I)] � � OPT(I)), where E[A(I)] denotes the expected criterion value for
a solution constructed by A for instance I. We have to take into account the ex-
pected value, since the behavior of the randomized algorithm might change for
each run of this method for input I. This expected value is compared to the opti-
mal offline solution OPT(I).

A randomized online algorithm is �-competitive algorithm against an adap-
tive online (offline) adversary if for all adaptive adversaries ADV there is
E[A] � � E[AADV], where E[A] and E[AADV] denote the expectations of the criteri-
on values obtained respectively by algorithm A and adversary ADV, taken over
the random choices made by A.

Ben-David et al. [BDB+94] discussed more formally the relative strength of
particular adversaries, proving - among others - the following three theorems.

Theorem 15.3.6 [BDB+94] If there exists an (-competitive randomized online
algorithm against any adaptive offline adversary then there exists
an (-competitive deterministic online algorithm.

Theorem 15.3.7 [BDB+94] If A is an (-competitive randomized online algo-
rithm against any adaptive online adversary and there exists a *-competitive
randomized online algorithm against any oblivious adversary, then A is
an ((&*)-competitive randomized online algorithm against any adaptive offline
adversary.

590 15 Online Scheduling

Theorem 15.3.8 [BDB+94] If there exists an (-competitive randomized online
algorithm against any adaptive online adversary, then there exists also
an (2-competitive deterministic online algorithm.

Theorem 15.3.6 implies that randomization of online algorithms does not help

against the adaptive offline adversary, which is the strongest type of adversaries.

Theorems 15.3.6 and 15.3.7 imply Theorem 15.3.8, which shows that the exist-

ence of randomized online algorithms leads to the existence of a deterministic

online algorithm with at most quadratically worse performance.

15.4 Other Online Scheduling Models

The classical online scheduling models assume that the problem input is un-

known in advance and the decisions taken by an online algorithm are irrevocable.

Relaxing the assumptions leads to other online models, such as semi-online

scheduling or online scheduling with advice. Resource augmentation is another

online model where, instead of providing additional information about the input

or giving more flexibility, the online algorithm can budget additional power

(such as increased processor speed) in comparison to the offline algorithm.

15.4.1 Semi-Online Scheduling

The classical online scheduling models are based on two assumptions, (1) that no

information on an input instance is known in advance, and (2) already taken de-

cisions on tasks cannot be changed. Relaxing these assumptions leads to semi-
online scheduling models. Obviously the additional knowledge of the problem

parameters or the additional flexibility given to scheduling algorithms allows

improving their efficiency in comparison to classical online models. It is interest-

ing which type of additional information or which kind of additional flexibility

may increase the quality of constructed solutions and to what extent, expressed,

for example, with competitive ratios or lower bounds.

Relaxing the former assumption (1) means that some additional pieces of in-

formation on input data are available in advance (e.g. [AH12, TZ13]). This type

of semi-online problems, where partial information on input data is provided, is

located between an online problem, where no knowledge of the future is given,

and an offline problem, where the full knowledge is available. The additional

partial information on the problem data may concern, in the case of scheduling

algorithms, various instance parameters. For example, the provided information

may concern:

- the optimal offline value of the objective function (e.g. [AR01, LHL14,

NTHC09]),

 15.4 Other Online Scheduling Models 591

- the maximum processing time of tasks or the range of processing times of

tasks (e.g. [Du04, HD05, HZ99]),

- the total processing time of all tasks (e.g. [AH12, CKK05, KKST97,

PCL06]) or a subset of tasks (e.g. [CDD+15]),

- the ordering of incoming tasks (e.g. [EF02, SSW00]),

- the end of an input sequence, i.e. on the fact that a currently released task is

the last task (e.g. [ZY02]),

- the fact that the last task of an input instance has the maximum processing

time (e.g. [ZY02]),

- the total number of tasks and on some features of a precedence graph, such

as the length of the longest chain of tasks, the ratio between tasks with and

without successor, or the number of tasks without successor (e.g. [DTE03]).

Semi-online models are also considered in online scheduling problems with pro-

cessor non-availability. Non-availability periods model processor breakdowns,

which are usually unexpected. But in other situations, the scheduler might be

provided with additional information on the next time point when the availability

of a subset of processors changes (cf. e.g. [AS01, San95, SS98]). Such models

are also called nearly online (e.g. [SS98]) or online with lookahead (e.g. [AS01]).

Relaxing the latter assumption (2) means that some algorithmic extensions

are possible, particularly decisions on scheduling tasks do not have to be taken

immediately or are partially reversible. This type of semi-online scheduling mod-

els allows online algorithms for:

- delaying decisions on executing tasks using a buffer with limited capacity

for temporal storing incoming tasks (e.g. [DLC+14, KKST97, Zha97]),

- modifying previously taken decisions by rescheduling a limited number or

a limited amount of task processing times (e.g. [CL10, CLB+11, CXD+13,

DWHG11, LXCZ09, MLW11, TY08, WBC+12]).

Semi-online scheduling problems, for which the algorithm can reassign some

already scheduled tasks, while serving a new one, are also called online schedul-
ing problems with bounded migration [SSS09]. The migration factor specifies

the limitation imposed on the number or on the size of migrated tasks. The mi-

gration factor equal to zero leads to the classical online scheduling model, while

the infinite migration factor lead to the classical offline scheduling model. There

are also studied online scheduling problems with withdrawal, where a fixed

number of tasks previously scheduled may be withdrawn from the schedule after

the input task sequence is finished (cf. e.g. [EZH11]).

The further natural extension of the above mentioned concepts of semi-

online scheduling is combining them, for example, by providing to an algorithm

a few pieces of information simultaneously, or providing additional knowledge

of the input instance and allowing rescheduling some tasks at the same time. This

concept leads to the semi-online problems with combined information (cf. e.g.

[CCWL12, CW16, DH04, TH02]). The natural question arises whether the addi-

tional combined pieces of information allow increasing the quality of solutions,

and hence whether or not they are useful from the scheduling point of view.

592 15 Online Scheduling

In addition to the extensions mentioned above, other non-classical concepts

of online scheduling can be found in the literature. For example, there are also

online methods which run in parallel a few online algorithms, constructing vari-

ous schedules for duplicated tasks, from which the best solution is selected when

the input task sequence is finished (e.g. [KKST97]). Other models assume that

the additional information provided to a semi-online algorithm is not accurate or

it is uncertain [TH07]. For example, instead of the maximum processing time or

the optimal criterion value, only lower and upper bounds are known.

Example 15.4.1 In order to illustrate the impact of relaxations in semi-online

scheduling models on the quality of constructed schedules, we return to the two

identical processors problem with a common due date and the total early work

criterion, P2 | dj = d, online-over-list | �Xj , discussed in Examples 15.3.1 and

15.3.4. We showed that the lower bound for this problem is equal to

5 � 1 I 1.2361 (see Theorem 15.3.5) and Algorithm 15.3.2 is an optimal algo-

rithm, i.e. the algorithm with the competitive ratio equal to this lower bound (see

Theorem 15.3.3).
As we mentioned, the additional pieces of information revealed to semi-

online algorithms may allow improving the competitive ratio. As an example we
show the results obtained by Chen et al. [CKL+18].

Completing the set of input parameters known in advance with the total pro-
cessing time of tasks, allows decreasing slightly the lower bound to 6/5 = 1.2.

The lower bound of this semi-online problem, P2 | dj = d, semi-online, �pj | �Xj ,

is proved in Theorem 15.4.2.

Theorem 15.4.2 [CKL+18] No deterministic semi-online algorithm for problem

P2 | dj = d, semi-online, �pj | �Xj has a competitive ratio smaller than 6/5.

Proof. Let us consider the input instance with the common due date d = 3 and

the total processing time �pj = 6.

The first two tasks released by the adversary have unit processing times

(p1 = p2 = 1). They can be scheduled by any semi-online algorithm only in two

ways: either on the same processor or on different processors.

If the semi-online algorithm schedules the tasks on the same processor,

the adversary releases two more tasks with the same processing time equal to 2

(p3 = p4 = 2). In this case, the semi-online algorithm can construct the schedule

with the criterion value XA equal to at most 5, so XA � 5, while the adversary

builds the optimal solution with X * = 6 (cf. Figure 15.4.1).

If the semi-online algorithm assigns the tasks to different processors, then the

adversary releases two more tasks but with the processing times equal to 1 and 3

(p3 = 1, p4 = 3). In this case, the efficiency of the semi-online algorithm and

the adversary is the same as previously, i.e. XA � 5 and X * = 6 (cf. Figure 15.4.2).

In both cases, the lower bound is X */XA � 6/5.

 15.4 Other Online Scheduling Models 593

Figure 15.4.1 Schedules for the first adversary sequence in the proof of
 Theorem 15.4.2, constructed by:
(a) a semi-online algorithm,

(b) an optimal offline algorithm.

Figure 15.4.2 Schedules for the second adversary sequence in the proof of
Theorem 15.4.2, constructed by:
(a) a semi-online algorithm,

(b) an optimal offline algorithm.

From Theorem 15.4.2 we learn that the information on the total processing time

allows semi-online algorithms to improve their efficiency. We demonstrate

the idea by presenting an exemplary algorithm, Algorithm 15.4.3 [CKL+18],

which takes advantage from the additional knowledge of �pj . We prove its com-

petitive ratio in Theorem 15.4.4.

Algorithm 15.4.3 Algorithm for P2 | dj = d, semi-online, �pj | �Xj [CKL+18].

begin

j := 0;

Cj
1 := 0;

Cj
2 := 0;

 -- Cj
i denotes the workload of processor i after scheduling task Tj

if there is a new task in the input then

 begin
 j := j +1;
 if Cj�1

1 + pj � 1/3�pj

 then schedule Tj on P1;
 -- Step 1

 if 1/3�pj < Cj�1
1 + pj � 2/3�pj

 then schedule Tj on P1

 and then schedule all the remaining tasks on P2 and stop;
 -- Step 2

 T3

 T2 T1 T1

 T2

 T3 T4

T4

P1

P2

 d = 3 t

(a)
P1

P2

 t

(b)

 d = 3

T4

T1

 T2

T1 T2 T3 T3

T4

P1

P2

 d = 3 t

(a)
P1

P2

 t

(b)

 d = 3

594 15 Online Scheduling

 if 2/3�pj < Cj�1
1 + pj

 then schedule Tj on P2

 and then schedule all the remaining tasks on P1 and stop;
 -- Step 3

 end;
end;
Theorem 15.4.4 [CKL+18] The competitive ratio of Algorithm 15.4.3 is � = 6/5.

Proof. Let us consider a solution constructed by Algorithm 15.4.3 after schedul-
ing the last task Tn in the input sequence. Let X * � min{2d, �pj} denote the op-

timal offline criterion value, i.e. the optimal total early work, and let X A be the

criterion value of a schedule constructed by Algorithm 15.4.3. We show that

X */X A � 6/5 for any input instance.

If max{Cn
1

 , Cn
2} � d then all tasks are early and the online schedule is optimal, i.e.

X A = X * = �pj , and the theorem holds.
If min{Cn

1
 , Cn

2} � d then there is a late task on both processors and X A = X * = 2d,

i.e. the online schedule is optimal and the theorem holds too.
If min{Cn

1
 , Cn

2} < d < max{Cn
1

 , Cn
2} then X A = d + min{Cn

1
 , Cn

2} and two addi-

tional cases have to be analyzed.

Case 1: If Algorithm 15.4.3 stops at Step 2, then 1/3�pj < Cn
1 � 2/3�pj. Since

Cn
1 + Cn

2 = �pj , workload Cn
2 is also bounded by 1/3�pj and 2/3�pj , i.e.

1

3 �pj � min{Cn
1

 , Cn
2} < d < max{Cn

1
 , Cn

2} �
2

3 �pj .

If d �
1

2 �pj , then
X *

X A �
2d

d + min{Cn
1

 $ Cn
2}

 �
2d

d +
1

3 �pj

 �
2d

d +
2
3 d

 =
6

5
 .

If d >
1

2 �pj , then
X *

X A �
�pj

d + min{Cn
1

 $ Cn
2}

 �
�pj

1

2 �pj +
1

3 �pj

 =
6

5
 .

Case 2: If Algorithm 15.4.3 stops at Step 3, then the input sequence contains

a very big task which is scheduled on processor P2 and the remaining tasks are

executed on processor P1. We denote the processing time of this task with pq ,

where pq > 1/3�pj due to the conditions of Steps 1 and 3.

If pq � 1/2�pj, the schedule constructed by Algorithm 15.4.3 is optimal. Other-

wise, if 1/3�pj < pq < 1/2�pj, then Cn
1 = �pj � pq is bounded with 1/3�pj and

2/3�pj . As in the previous case

1

3 �pj � min{Cn
1

 , Cn
2} < d < max{Cn

1
 , Cn

2} �
2

3 �pj

leads to X */X A � 6/5.

 15.4 Other Online Scheduling Models 595

From Theorem 15.4.4 we know that Algorithm 15.4.3 is 6/5-competitive. Taking

into account the lower bound for the considered problem P2 | dj = d, semi-
online, �pj | �Xj equal to 6/5 (see Theorem 15.4.2), we conclude that Algorithm

15.4.3 is optimal.

Analogous results hold for the semi-online scheduling problem where in-

stead of the total processing time, the optimal total early work is revealed to the

algorithm. The problem P2 | dj = d, semi-online, X * | �Xj has the lower bound 6/5,

and there exists an optimal 6/5-competitive semi-online algorithm being a simple

modification of Algorithm 15.4.3 [CKL+18].

The information on the optimal criterion value does not provide additional

computational power to the online algorithms in comparison to the information

on the total duration of all tasks. In both cases the lower bound was the same 6/5.

But if semi-online algorithms are provided with additional pieces of information,

particularly information on the total processing time and on the maximum pro-

cessing time, then the lower bound can be decreased from 6/5 = 1.2 to 10/9 I 1.1,

as we show in the next Example 15.4.5.

Example 15.4.5 The semi-online scheduling problem with a common due date

and two identical processors, where the input includes the values of the total and

of the maximum processing times, P2 | dj = d, semi-online, �pj & pmax | �Xj , has

the lower bound equal to 10/9 as proved in Theorem 15.4.6. The mentioned

problem is actually an example of a semi-online scheduling problem with com-

bined information, because the information on two input parameters is revealed

to an online algorithm in advance.

Theorem 15.4.6 [CKL+18] No deterministic semi-online algorithm for problem

P2 | dj = d, semi-online, �pj & pmax | �Xj has the competitive ratio smaller than
10/9.

Proof. Let us consider the input instance with the common due date d = 5,

the total processing time of all tasks �pj = 10 and the maximum processing time

pmax = 3. The first two tasks released by the adversary have the processing times

p1 = 1 and p2 = 3. If the semi-online algorithm schedules the tasks on the same

processor, the adversary releases three more tasks with the identical processing

times p3 = p4 = p5 = 2 (cf. Figure 15.4.3).

If the semi-online algorithm assigns tasks to different processors, then the adver-

sary releases one more task with unit processing time (p3 = 1).

If the semi-online algorithm schedules this task together with task T2 , then

the adversary releases two more tasks with the processing times p4 = 3 and

p5 = 2, respectively (cf. Figure 15.4.4).

596 15 Online Scheduling

Figure 15.4.3 Schedules for the first adversary sequence in the proof of
Theorem 15.4.6, constructed by:
(a) a semi-online algorithm,

(b) an optimal offline algorithm.

Figure 15.4.4 Schedules for the second adversary sequence in the proof of
Theorem 15.4.6, constructed by:
(a) a semi-online algorithm,

(b) an optimal offline algorithm.

Figure 15.4.5 Schedules for the third adversary sequence in the proof of
Theorem 15.4.6, constructed by:
(a) a semi-online algorithm,

(b) an optimal offline algorithm.

Figure 15.4.6 Schedules for the fourth adversary sequence in the proof of
Theorem 15.4.6, constructed by:
(a) a semi-online algorithm,

(b) an optimal offline algorithm.

P1

P2

 d = 5 t

T1
(a) (b)

T2

T3 T4

 T5 P1

P2

 d = 5 t

T1

T2

T3 T4

T5

P1

P2

 d = 5 t

T1
(a) (b)

T2 T3

T4 T5 P1

P2

 d = 5 t

T1

T2

T3 T4

T5

P1

P2

 d = 5 t

T1
(a) (b)

T2

T3

T4

T5 P1

P2

 d = 5 t

T1

T2

T3 T6 T5 T4

T6

P1

P2

 d = 5 t

T1
(a) (b)

T2

T3 T4 T5 P1

P2

 d = 5 t

T1

T2

T3

T6

 T5

T4 T6

 15.4 Other Online Scheduling Models 597

If the semi-online algorithm schedules task T3 together with task T1 , then

the adversary releases a task with the unit processing time p4 = 1. Depending on

the decision taken by the semi-online algorithm, the adversary releases two more

tasks with processing times p5 = 3 and p6 = 1 if task T4 was scheduled on the

same processor as task T3 (cf. Figure 15.4.5), or otherwise with p5 = p6 = 2 (cf.

Figure 15.4.6).

In all cases, the semi-online algorithm can construct the schedule with

the criterion value XA equal to at most 9 (XA � 9), while the adversary builds

the solution with the optimal total early work X * = 10. Hence, the lower bound of

the considered problem is X */X A � 10/9.

From Theorem 15.4.6 we know that providing more pieces of additional infor-

mation within the problem input gives an opportunity to increase the efficiency

of the semi-online algorithm. In particular, providing the information on the total

and on the maximum task processing times simultaneously improves the quality

of a semi-online schedule in comparison to the situation when only the infor-

mation on the total processing time is revealed (cf. Theorem 15.4.2 in Example

15.4.1).

The algorithm presented below [CKL+18] utilizes the knowledge of two in-

put parameters, �pj and pmax , solving the considered problem with the competi-

tive ratio 10/9 (proved in Theorem 15.4.9). Since this competitive ratio is equal

to the lower bound of the problem (proved in Theorem 15.4.6), Algorithm 15.4.7

is an optimal semi-online method for the semi-online scheduling problem with

combined information P2 | dj = d, semi-online, �pj & pmax | �Xj .

Algorithm 15.4.7 Algorithm for P2 | dj = d, semi-online, �pj & pmax | �Xj
[CKL+18].
begin

j := 0;

Cj
1 := 0;

Cj
2 := 0;

 -- Cj
i denotes the workload of processor i after scheduling task Tj

if there is a new task in the input then

 begin
 j := j +1;
 if 0 < pmax � 1/5�pj

 then schedule all incoming tasks Tj on P1
 until 2/5�pj � Cj�1

1 + pj � 3/5�pj,

 then schedule all the remaining tasks on P2

 and stop;
 -- Step 1

598 15 Online Scheduling

 if 2/5�pj � pmax � �pj

 then schedule incoming tasks Tj on P1
 except from the first task Tj with pj = pmax which is scheduled on P2

and stop;
 -- Step 2

 if 1/5�pj < pmax < 2/5�pj

 then
 -- Step 3

 begin
 if 2/5�pj � Cj�1

i + pj � 3/5�pj for i = 1, 2

 then schedule task Tj on Pi
 and all the remaining tasks on the other processor,
 and stop;
 -- Step 3.1

 if 2/5�pj � Cj�1
i + pj + pmax � 3/5�pj for i = 1, 2 and

 the first task with the processing time pmax has yet not come
 then schedule task Tj and the first task with pmax once came on Pi
 and all the remaining tasks on the other processor,
 and stop;
 -- Step 3.2

 if pj � 1/5�pj or Tj is the first task with the processing time pmax
 then schedule task Tj on processor P1;
 otherwise
 begin
 schedule task Tj on processor P2;

 if two tasks with pi > 1/5�pj have been already scheduled on P2

 then schedule all the remaining tasks on P1

 and stop;
 end;
 -- Step 3.3

 end;
 end;
end;
As in the previous examples we denote the optimal total early work with X * and

the criterion value of a schedule built by Algorithm 15.4.7 with X A.

Lemma 15.4.8 [CKL+18] If in the solution constructed by Algorithm 15.4.7, the
condition 2/5�pj � Cn

 i � 3/5�pj is true for any processor i �{1, 2}, then X */X A �

10/9.

 15.4 Other Online Scheduling Models 599

Proof. If for any processor its workload is in interval [2/5�pj, 3/5�pj] then

the workload of the other processor is also in this interval.

If d �
1

2 �pj then
X *

X A �
2d

d + min{Cn
1 $ Cn

2}
 �

2d

d +
2

5 �pj

 �
2d

d +
4

5 d
 =

10

9
 .

If d > 12 �pj then
X *

X A �
�pj

d + min{Cn
1

 $ Cn
2}

 �
�pj

1

2 �pj +
2

5 �pj

 =
10

9
 .

Theorem 15.4.9 [CKL+18] The competitive ratio of Algorithm 15.4.7 is
� = 10/9 .

Proof. If Algorithm 15.4.7 stops at Step 1, Step 3.1 or Step 3.2 then the theorem
holds by Lemma 15.4.8. If the algorithm stops at Step 2 and 1/2�pj � pmax � �pj

then it constructs the optimal offline schedule, otherwise (if 2/5�pj � pmax <

1/2�pj) the theorem holds by Lemma 15.4.8 again. So the crucial situation is

when the algorithm executes Step 3.3, i.e. when max{Cn
1

 $ Cn
2} > 3/5�pj .

Case 1: Let us assume Cn
1 > 3/5�pj . According to Step 3.3, only small tasks with

pj � 1/5�pj and the first task in the input with the maximum processing time pmax

are scheduled on P1 . The first task with pmax has to start before 2/5�pj and to

finish after 3/5�pj , otherwise the algorithm would stop at Step 3.1 or Step 3.2.

Let us denote the task scheduled before this task as Tq . This task has pq � 1/5�pj .

There is Cq�1
1 + pmax < 2/5�pj , otherwise the algorithm would stop at Step 3.1 or

Step 3.2 before assigning Tq to P1 . There is also Cq�1
1 + pq+ pmax > 3/5�pj , since

the first task with pmax finishes after 3/5�pj. From both conditions we have

pq > 1/5�pj , although we assumed pq � 1/5�pj . From this contradiction, we

know that Cn
1 cannot be greater than 3/5�pj .

Case 2: Let us assume Cn
2 > 3/5�pj . We claim that there are two tasks on P2 and

the schedule is optimal. We know that the input has at most 4 “big” tasks with

processing time larger than 1/5�pj . One of them is scheduled on P1 due to Step

3.3, and all tasks on P2 are big (at most three tasks). If there is only one big task

on P2 , then it should have the processing time larger than 3/5�pj , exceeding

pmax . If there are two big tasks on P2 , their total processing time exceeds 3/5�pj

and the algorithm constructs the optimal offline schedule. According to Step 3.3,

there cannot be three big tasks on P2 .

For details of the proofs we refer the reader to [CKL+18].

600 15 Online Scheduling

15.4.2 Online Scheduling with Advice

Online algorithms with advice are yet another type of online algorithms. These

methods are provided by a trusted oracle with some bits of advice about the prob-

lem input (cf. [BFK+17, BKK+17, Doh15, KK11, Kom16, RRS15]). The oracle

knows the entire input instance and has no computational limitations. It provides

additional knowledge of the problem input via the advice tape built of advice
bits. The efficiency of an online algorithm with advice depends apparently on the

amount of information provided by the oracle, i.e. on the advice complexity, ex-

pressed as the maximum number of bits of an advice tape describing a request

appearing on input.

With regard to the advice complexity, in general, two modes of providing

advices are considered [DKP09]: helper mode and answerer mode. In the helper
mode an online algorithm receives a non-negative number of advice bits before

processing an incoming request. In the answerer mode, a strictly positive number

of advice bits are provided to an online algorithm, but on its request. In some

applications online algorithms are also studied, which gain additional knowledge

from not receiving any advice bit.

Following this classification, another concept has been developed, which

distinguishes: online advice model and semi-online advice model. In the online
advice model [EFKR11], called also advice per request model, the algorithms are

provided with a quantified amount of information about the future in online

manner. The definition of the advice given to the algorithm with each incoming

request (i.e. task in the context of scheduling) is a part of the specification of the

algorithm. In the semi-online advice model [BKK+09, BKK+17], called advice
tape model, the algorithms are provided with the advices on the entire sequence

of requests in offline manner, i.e. the algorithm can read an infinite advice tape at

any position. The algorithm is provided with an unbounded number of supply

bits and decides when to stop requesting for more bits. This model relates to the

answerer mode, but the number of requested bits must be determined by the algo-

rithm.

Online algorithms with advice have, in general, lower efficiency than an op-

timal offline algorithm, but they may construct better schedules than classical

online algorithms. In particular, an online algorithm with O(p(n)) time complexi-

ty provided with b bits of advice, can be transformed into an offline approxima-

tion algorithm with time complexity O(p(n)2b) by running it for all possible 2b

advice strings [BFK+17]. It is also possible to use an online algorithm with ad-

vice to run various algorithms depending on the advice bits in order to obtain a

better competitive ratio than any deterministic online algorithm in this way

[BKL+17].

The studies on online algorithms with advice concern mainly two aspects

[BFK+17]: determining the number of bits of advice necessary and sufficient for

obtaining a given competitive ratio, or determining the algorithm efficiency with

regard to a given number of bits.

 15.4 Other Online Scheduling Models 601

Boyar et al. [BFK+17] underlined in their survey on online algorithms with

advice the relations between these methods and other online approaches. In par-

ticular, lower bounds determined for online algorithms with advice are very

strong theoretical results. Because there is no restriction imposed on the type of

advice, the lower bound analysis concerns situations where any possible infor-

mation on the input is available, which can be encoded within a sufficiently small

number of bits of an advice tape. These results can be used in the studies on

semi-online algorithms, which make use of a specific type of information provid-

ed to them (cf. Section 15.4.1). Actually, depending on the type of advice provid-

ed by an oracle, an online algorithm with advice can be considered as a semi-

online algorithm. Furthermore some research problems related to randomized

online algorithms (cf. Section 15.2) can be formulated as equivalent problems

related to online algorithms with advice, for example, allowing determining low-

er and/or upper bounds for the randomized approaches.

15.4.3 Resource Augmentation

The idea of resource augmentation, introduced by Sleator and Tarjan [ST85] in
the context of the paging/caching problem (cf. also [You94]), was used in
the field of scheduling by Philips et al. [PSTW02]. Kalyanasundaram and Pruhs

[KP00b] noticed that the classical competitive analysis does not differentiate

between online algorithms that have significantly different performance in com-

putational experiments. Moreover, the optimal online algorithms are sometimes

unnecessarily complicated and the competitive ratio might be unrealistically high

when typical input instances are taken into account. In the resource augmentation

model the online algorithm receives more resources in comparison to an optimal

offline scheduler, such as faster processors or more processors, to execute incom-

ing tasks. Additional resources given to online algorithms partly compensate

the lack of information on the problem input. They allow improving the competi-

tive ratio in some cases. In general, two main types of resources can be augment-

ed, leading to the models of speed augmentation and processor augmentation.

If the speed augmentation is considered, the online algorithm runs with

speed s > 1 on each processor, while the optimal offline algorithm runs with

speed 1 (cf. e.g. [CLLW06, LNST16, TMC08]). As a result, the online algorithm

completes a task faster than the offline algorithm. If the online algorithm with

speed s is (-competitive compared to the optimal offline schedule with speed 1

[PSTW02], such an algorithm is called s-speed (-competitive. In the case of

speed augmentation, scalable online algorithms are of the special interest.

An online algorithm is scalable if it has a constant competitive ratio when given

(1+%)-speed, where % is a constant. Such algorithms can be compared in theoreti-

cal studies to the optimal offline algorithms with any small amount of speed

augmentation, and they often behave efficiently in practice. More formally,

602 15 Online Scheduling

a scalable online algorithm is O(1)-competitive with (1+�)-speed for any fixed

� > 0 with regard to the optimal offline schedule with speed 1.

If the processor augmentation (or machine augmentation) is considered,

the online algorithms receive additional processors for executing tasks (cf. e.g.

[ES06]). This model gives in general less additional power to the online algo-

rithm than the speed augmentation. The online algorithm is v-processor
�-competitive, if the algorithm using vm processors is �-competitive compared to

the optimal offline schedule using m processors [PSTW02].

15.5 Conclusions

In this chapter we shortly introduced the wide and important branch of schedul-

ing theory related to online optimization. The online scheduling models meet

expectations of many real world applications, since the practical problems have

often to cope with the lack or with the dynamic nature of information. The online

scheduling is obviously strictly related to offline scheduling, but it has its unique

character as well. On one hand, the optimal offline solutions serve as reference

solutions for the online methods, and the online methods are evaluated using

the techniques similar to the techniques used in the offline mode, such as the

competitive analysis corresponding to the worst case analysis. On the other hand,

online scheduling draws upon game theory or stochastic analysis, incorporating

their concepts into the scheduling theory.

References

AE02 Y. Azar, L. Epstein, On-line scheduling with precedence constraints, Discret
Appl. Math. 119, 2002, 169-180.

AH12 S. Albers, M. Hellwig, Semi-online scheduling revisited, Theor. Comput. Sci.
443, 2012, 1-9.

Alb03 S. Albers, Online algorithms: a survey, Math. Programming 97, 2003, 3-26.

Alb09 S. Albers, Online scheduling, in: Y. Robert, F. Vivien (eds.), Introduction to
Scheduling, Chapman and Hall/CRC Press, Boca Raton, 2009, 51-7.

AR01 Y. Azar, O. Regev, On-line bin-stretching, Theor. Comput. Sci. 268, 2001,
17-41.

AS01 S. Albers, G. Schmidt, Scheduling with unexpected machine breakdowns,
Discret Appl. Math.110, 2001, 85-99.

BC96 B. S. Baker, E. G. Coffman, Mutual exclusion scheduling, Theor. Comput. Sci.
162, 1996, 225-243.

BDB+94 S. Ben-David, A. Borodin, R. Karp, G. Tardos, A. Wigderson, On the power
of randomization in on-line algorithms, Algorithmica 11, 1994, 2-14.

 References 603

BDKS04 N. Bansal, K. Dhamdhere, J. Könemann, A. Sinha, Non-clairvoyant scheduling
for minimizing mean slowdown, Algorithmica 40, 2004, 305-318.

BEY98 A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis,
Cambridge University Press, New York, 1998.

BFK+17 J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen, J. W. Mikkelsen, Online
algorithms with advice: a survey, ACM Comput. Surv. 50, 2017, 19:1-19:34.

BKK+09 H.-J. Böckenhauer, D. Komm, R. Královič, R. Královič, T. Mömke, On the
advice complexity of online problems, Lect. Notes Comput. Sc. 5878, 2009,
331-340.

BKK+17 H.-J. Böckenhauer, D. Komm, R. Královič, R. Královič, T. Mömke, Online
algorithms with advice: the tape model, Inf. Comput. 254, 2017, 59-83.

BKL+17 J. Boyar, S. Kamali, K.-S. Larsen, A. López-Ortiz, On the list update problem
with advice, Inf. Comput. 253, 2017, 411-423.

BKM+91 S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, On-
line scheduling in the presence of overload, Proceedings of the 32nd Annual
Symposium on Foundations of Computer Science, 1991, 100-110.

BL04 L. Becchetti, S. Leonardi, Nonclairvoyant scheduling to minimize the total
flow time on single and parallel machines, J. ACM 51, 2004, 517-539.

BLMS+00 Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, L. Stougie, Multi-
processor scheduling with rejection, SIAM Discret. Math. 13, 2000, 64-78.

BLMS+04 L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, K. Pruhs, Semi-clairvoy-
ant scheduling, Theor. Comput. Sci. 324, 2004, 325-335.

BMR02 M. A. Bender, S. Muthukrishnan, R. Rajaraman, Improved algorithms for

stretch scheduling, Proceedings of the 13th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2002, 762-771.

CCWL12 Q. Cao, T. C. E. Cheng, G. Wan, Y. Li, Several semi-online scheduling prob-
lems on two identical machines with combined information, Theor. Comput.
Sci. 457, 2012, 35-44.

CDD+15 X. Chen, N. Ding, G. Dósa, X. Han, He Jiang, Online hierarchical scheduling
on two machines with known total size of low-hierarchy jobs, International
Journal of Computational Mathematics 92, 2015, 873-881.

CKK05 T. C. E. Cheng, H. Kellerer, V. Kotov, Semi-on-line multiprocessor scheduling
with given total processing time, Theor. Comput. Sci. 337, 2005, 134-146.

CKL+18 X. Chen, S. Kovalev, Y. Liu, M. Sterna, I. Chalamon, J. Błażewicz, Mirror
scheduling problems with early work and late work criteria, Technical report
RA-1/2018, Institute of Computing Science, Poznań University of Technology,
Poznań, 2018.

CL10 Q. Cao, Z. Liu, Online scheduling with reassignment on two uniform ma-
chines, Theor. Comput. Sci. 411, 2010, 2890-2898.

CLB+11 X. Chen, Y. Lan, A. Benko, G. Dósa, X. Han, Optimal algorithms for
online scheduling with bounded rearrangement at the end, Theor. Comput.
Sci. 412, 2011, 6269-6278.

604 15 Online Scheduling

CLLW06 W.-T. Chan, T.-W. Lam, K.-S. Liu, P. W.-H. Wong, New resource augmenta-
tion analysis of the total stretch of SRPT and SJF in multiprocessor scheduling,
Theor. Comput. Sci. 359, 2006, 430-439.

CSHB16 X. Chen, M. Sterna, X. Han, J. Błażewicz, Scheduling on parallel identical
machines with late work criterion: offline and online cases, J. Sched. 19, 2016,
729-736.

CW16 Q. Cao, G. Wan, Semi-online scheduling with combined information on two
identical machines in parallel, J. Comb. Optim. 31, 2016, 686-695.

CXD+13 X. Chen, Z. Xu, G. Dósa, X. Han, H. Jiang, Semi-online hierarchical schedul-
ing problems with buffer or rearrangements, Inf. Process. Lett. 113, 2013,
127-131.

DH04 G. Dósa, Y. He, Semi-online algorithms for parallel machine scheduling prob-
lem, Computing 72, 2004, 355-363.

DH06 G. Dósa, Y. He, Preemptive and non-preemptive on-line algorithms for sched-
uling with rejection on two uniform machines, Computing 76, 2006, 149-164.

DJ81 E. Davis, J. M. Jaffe, Algorithms for scheduling tasks on unrelated processors,
J. ACM 28, 1981, 721-736.

DK93 X. Deng, E. Koutsoupias, Competitive implementation of parallel programs,
Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms,
1993, 455-461.

DKMK99 X. Deng, E. Koutsoupias, P. MacKenzie, Competitive implementation of paral-
lel programs, Algorithmica 23, 1999, 14-30.

DKP09 S. Dobrev, R. Královič, D. Pardubská, Measuring the problem-relevant infor-
mation in input, Rairo-Inform. Theor. Appl.-Theor. Inform. Appl. 43, 2009,
585-613.

DLC+14 N. Ding, Y. Lan, X. Chen, G. Dósa, H. Guo, X. Han, Online minimum
makespan scheduling with a buffer, Int. J. Found. Comput. Sci. 25, 2014,
525-536.

DM89 M. L. Dertouzos, A. K. Mok, Multiprocessor on-line scheduling of hard-real-
time tasks, IEEE Trans. Softw. Eng. 15, 1989, 1497-1506.

Doh15 J. Dohrau, Online makespan scheduling with sublinear advice, Lect. Notes
Comput. Sc. 8939, 2015, 177-188.

DTE03 A. R. Diaz, A. Tchernykh, K. H. Ecker, Algorithms for dynamic scheduling of
unit execution time tasks, Eur. J. Oper. Res. 146, 2003, 403-416.

Du04 D. Du, Optimal preemptive semi-online scheduling on two uniform processors,
Inf. Process. Lett. 92, 2004, 219-223.

DWHG11 G. Dósa, Y. Wang, X. Han, H. Guo, Online scheduling with rearrangement on
two related machines, Theor. Comput. Sci. 412, 2011, 642-653.

Edm00 J. Edmonds, Scheduling in the dark, Theor. Comput. Sci. 235, 2000, 109-141.

EF02 L. Epstein, L. M. Favrholdt, Optimal preemptive semi-online scheduling to
minimize makespan on two related machines, Oper. Res. Lett. 30, 2002,
269-275.

 References 605

EFKR11 Y. Emek, P. Fraigniaud, A. Korman, A. Rosén, Online computation with ad-
vice, Theor. Comput. Sci. 412, 2011, 2642-2656.

EHKR09 G. Even, M. M. Halldórsson, L. Kaplan, D. Ron, Scheduling with conflicts:
online and offline algorithms, J. Sched. 12, 2009, 199-224.

ES06 L. Epstein, R. van Stee, Optimal on-line flow time with resource augmentation,
Discret Appl. Math. 154, 2006, 611-621.

EZH11 L. Epstein, H. Zebedat-Haider, Online scheduling with rejection and with-

drawal, Theor. Comput. Sci. 412, 2011, 6666-6674.

FKT89 U. Faigle, W. Kern, G. Turán, On the performance of on-line algorithms for
partition problems, Acta Cybernetica 9, 1989, 107-119.

FN95 U. Faigle, W. M. Nawijn, Note on scheduling intervals on-line, Discret Appl.
Math. 58, 1995, 13-17.

FW98 A. Fiat, G. J. Woeginger (eds.), On-line algorithms. The state of the art, Lect.
Notes Comput. Sc. 1442, 1998.

GG75 M. R. Garey, R. L. Graham, Bounds for multiprocessor scheduling with re-
source constraints, SIAM J. Comput. 4, 1975, 187-200.

Gra66 R. L. Graham, Bounds for certain multiprocessing anomalies, Bell Labs Tech.
J. 45, 1966, 1563-1581.

HD05 Y. He, G. Dósa, Semi-online scheduling jobs with tightly-grouped processing

times on three identical machines, Discret Appl. Math. 150, 2005, 140-159.

HM00 Y. He, X. Min, On-line uniform machine scheduling with rejection, Computing
65, 2000, 1-12.

HPW00 H. Hoogeveen, C. N. Potts, G. J. Woeginger, On-line scheduling on a single

machine: maximizing the number of early jobs, Oper. Res. Lett. 27, 2000,

193-197.

HS06 M. E. Hussein, U. Schwiegelshohn, Utilization of nonclairvoyant online

schedules, Theor. Comput. Sci. 362, 2006, 238-247.

HTW17 M. Hopf, C. Thielen, O. Wendt, Competitive algorithms for multistage online

scheduling, Eur. J. Oper. Res. 260, 2017, 468-481.

HZ99 Y. He, G. Zhang, Semi on-line scheduling on two identical machines, Compu-
ting 62, 1999, 179-187.

KK11 D. Komm, R. Královič, Advice complexity and barely random algorithms,

Lect. Notes Comput. Sc. 6543, 2011, 332-343.

KKST97 H. Kellerer, V. Kotov, M. G. Speranza, Z. Tuza, Semi on-line algorithms for

the partition problem, Oper. Res. Lett. 21, 1997, 235-242.

KLPS07 A. W. J. Kolen, J. K. Lenstra, C. H. Papadimitriou, F. C. R. Spieksma, Interval
scheduling: a survey, Nav. Res. Logist. Quart. 54, 2007, 530-543.

KMRS88 A. R. Karlin, M. S. Manasse, L. Rudolph, D. D. Sleator, Competitive snoopy
caching, Algorithmica 3, 1988, 79-119.

Kob18 K.M. Kobayashi, Improved lower bounds for online scheduling to minimize
total stretch, Theor. Comput. Sci. 705, 2018, 84-98.

606 15 Online Scheduling

Kom16 D. Komm, An Introduction to Online Computation. Determinism, Randomiza-
tion, Advice, Springer, Cham, 2016.

KP00a E. Koutsoupias, C. H. Papadimitriou, Beyond competitive analysis, SIAM J.
Comput. 30, 2000, 300-317.

KP00b B. Kalyanasundaram, K. Pruhs, Speed is as powerful as clairvoyance, J. ACM
47, 2000, 617-643.

KP00c B. Kalyanasundaram, K. Pruhs, Fault-tolerant real-time scheduling, Algorith-
mica 28, 2000, 125-144.

KP05 B. Kalyanasundaram, K. Pruhs, Fault-tolerant scheduling, SIAM J. Comput.,
34, 2005, 697-719.

Kru00 S. O. Krumke, Online Optimization: Competitive Analysis and Beyond, Habili-
tation thesis, Technische Universität Berlin, Berlin, 2001.

LHL14 K. Lee, H.-C. Hwang, K. Lim, Semi-online scheduling with GoS eligibility
constraints, Int. J. Prod. Econ. 153, 2014, 204-214.

Lip94 R. Lipton, Online interval scheduling, Proceedings of the 5th Annual ACM-
SIAM Symposium on Discrete Algorithms, 1994, 302-311.

LNST16 G. Lucarelli, K.-T. Nguyen, A. Srivastav, D. Trystram, Online non-preemptive
scheduling in a resource augmentation model based on duality, Proceedings of
the 24th Annual European Symposium on Algorithms 57, 2016, 1-17.

LXCZ09 M. Liu, Y. Xu, C. Chu, F. Zheng, Online scheduling to minimize modified
total tardiness with an availability constraint, Theor. Comput. Sci. 410, 2009,
5039-5046.

MLW11 X. Min, J. Liu, Y. Wang, Optimal semi-online algorithms for scheduling prob-
lems with reassignment on two identical machines, Inf. Process. Lett. 111,
2011, 423-428.

MPT94 R. Motwani, S. Phillips, E. Torng, Nonclairvoyant scheduling, Theor. Com-
put. Sci. 130, 1994, 17-47.

MR95 R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University
Press, New York, 1995.

MS08 B. Monien, U.-P. Schroeder (eds.), Algorithmic game theory, Lect. Notes
Comput. Sc. 4997, 2008.

MT90 S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Imple-
mentations, J. Willey, New York, 1990.

NTHC09 C. T. Ng, Z. Tan, Y. He, T. C. E. Cheng, Two semi-online scheduling prob-
lems on two uniform machines, Theor. Comput. Sci. 410, 2009, 776-792.

OR94 M. J. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press, Cam-
bridge, 1994.

PCL06 J. Park, S. Y. Chang, K. Lee, Online and semi-online scheduling of two ma-
chines under a grade of service provision, Oper. Res. Lett. 34, 2006, 692-696.

Pet15 H. Peters, Game Theory. A Multi-Level Approach, Springer, Heidelberg, 2015.

 References 607

Pin16 M. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5th ed., Springer,
New York, 2016.

PS09 C. N. Potts, V. A. Strusevich, Fifty years of scheduling: a survey of milestones,
J. Oper. Res. Soc. 60 (Suplement 1), 2009, 41-68.

PST04 K. Pruhs, J. Sgall, E. Torng, Online scheduling, in: J. Y.-T. Leung (ed.) Hand-
book of Scheduling: Algorithms, Models, and Performance Analysis, Chapman
& Hall/CRC, Boca Raton, 2004, 15.1-15.43.

PSTW02 C. A. Phillips, C. Stein, E. Torng, J. Wein, Optimal time-critical scheduling via
resource augmentation, Algorithmica 32, 2002, 163-200.

Rag92 P. Raghavan, A statistical adversary for on-line algorithms, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science 7, 1992, 79-83.

RRS15 M. P. Renault, A. Rosén, R. van Stee, Online algorithms with advice for bin
packing and scheduling problems, Theor. Comput. Sci. 600, 2015, 155-170.

RS08 J. Roberts, N. Schabanel, Non-clairvoyant scheduling with precedence con-
straints, Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete
Algorithm, 2008, 491-500.

San95 E. Sanlaville, Nearly on line scheduling of preemptive independent tasks, Dis-
cret Appl. Math.. 57, 1995, 229-241.

SC79 S. Sahni, Y. Cho, Nearly on line scheduling of a uniform processor system
with release times, SIAM J. Comput. 8, 1979, 275-285.

Sei01 S. S. Seiden, Preemptive multiprocessor scheduling with rejection, Theor.
Comput. Sci. 262, 2001, 437-458.

Sga98 J. Sgall, On-line scheduling, Lect. Notes Comput. Sc. 1442, 1998, 196-231.

Sga14 J. Sgall, Online bin packing: old algorithms and new results, Lect. Notes Com-
put. Sc. 8493, 2014, 362-372.

SS98 E. Sanlaville, G. Schmidt, Machine scheduling with availability constraints,
Acta Inform. 35, 1998, 795-811.

SSS09 P. Sanders, N. Sivadasan, M. Skutella, Online scheduling with bounded migra-
tion, Math. Oper. Res. 34, 2009, 481-498.

SSW00 S. Seiden, J. Sgall, G. Woeginger, Semi-online scheduling with decreasing job
sizes, Oper. Res. Lett. 27, 2000, 215-221.

ST85 D. D. Sleator, R. E. Tarjan, Amortized efficiency of list update and paging
rules, Commun. ACM 28, 1985, 202-208.

SWW95 D. B. Shmoys, J. Wein, D. P. Williamson, Scheduling parallel machines on-
line, SIAM J. Comput. 24, 1995, 1313-1331.

TE08 A. Tchernykh, K. H. Ecker, Worst case behavior of list algorithms for dynamic
scheduling of non-unit execution time tasks with arbitrary precedence con-
strains, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E91-A, 2008,
2277-2280.

TH02 Z. Tan, Y. He, Semi-on-line problems on two identical machines with com-
bined partial information, Oper. Res. Lett. 30, 2002, 408-414.

608 15 Online Scheduling

TH07 Z. Tan, Y. He, Semi-online scheduling problems on two identical machines
with inexact partial information, Theor. Comput. Sci. 377, 2007, 110-125.

TMC08 E. Torng, J. McCullough, SRPT optimally utilizes faster machines to minimize
flow time, ACM Trans. Algorithms 5, 2008.

TY08 Z. Tan, S. Yu, Online scheduling with reassignment, Oper. Res. Lett. 36, 2008,

250-254.

TZ13 Z. Tan, A. Zhang, Online and semi-online scheduling, in: P. M. Pardalos,

D.-Z. Du, R. Graham (eds.), Handbook of Combinatorial Optimization,

Springer, New York, 2013, 2191-2252.

WBC+12 Y. Wang, A. Benko, X. Chen, G. Dósa, H. Guo, X. Han, C. Sik-Lányi, Online

scheduling with one rearrangement at the end: revisited, Inf. Process. Lett. 112,

2012, 641-645.

Woe94 G. J. Woeginger, On-line scheduling of jobs with fixed start and end times,
Theor. Comput. Sci. 130, 1994, 5-16.

Yao77 A. C.-C. Yao, Probabilistic computations: toward a unified measure of com-
plexity, Proceedings of the 18th Annual Symposium on Foundation of Comput-
er Science, 1977, 222-227.

You94 N. E. Young, The k-server dual and loose competitiveness for paging, Algo-
rithmica 11, 1994,525-541.

Zha97 G. Zhang, A simple semi on-line algorithm for P2||Cmax with a buffer, Inf. Pro-
cess. Lett. 61, 1997, 145-148.

ZY02 G. Zhang, D. Ye, A note on on-line scheduling with partial information, Com-
put. Math. Appl. 44, 2002, 539-543.

16 Constraint Programming and
Disjunctive Scheduling

Constraint propagation is an elementary method for reducing the search space of
combinatorial search and optimization problems which has become more and
more important in the last decades. The basic idea of constraint propagation is to
detect and remove inconsistent variable assignments that cannot participate in
any feasible solution through the repeated analysis and evaluation of the varia-
bles, domains and constraints describing a specific problem instance.

 This chapter is based on Dorndorf et al. [DPP00] and its contribution is
twofold. The first contribution is a description of efficient constraint propagation
methods also known as consistency tests for the disjunctive scheduling problem
(DSP) which is a generalization of the classical job shop scheduling problem
(JSP). By applying an elementary constraint based approach involving a limited
number of search variables, we will derive consistency tests that ensure 3-b-
consistency. We will further present and analyze both new and classical con-
sistency tests which to some extent are generalizations of the aforementioned
consistency tests involving a higher number of variables, but still can be imple-
mented efficiently with a polynomial time complexity. Further, the concepts of
energetic reasoning and shaving are analyzed and discussed.

The other contribution is a classification of the consistency tests derived ac-
cording to the domain reduction achieved. The particular strength of using con-
sistency tests is based on their repeated application, so that the knowledge de-
rived is propagated, i.e. reused for acquiring additional knowledge. The deduc-
tion of this knowledge can be described as the computation of a fixed point.
Since this fixed point depends upon the order of the application of the tests, we
first derive a necessary condition for its uniqueness. We then develop a concept
of dominance which enables the comparison of different consistency tests as well
as a simple method for proving dominance. An extensive comparison of all con-
sistency tests is given. Quite surprisingly, we will find out that some apparently
stronger consistency tests are subsumed by apparently weaker ones. At the same
time an open question regarding the effectiveness of energetic reasoning is an-
swered.

16.1 Introduction

Exact solution methods for solving combinatorial search and optimizations prob-
lems generally consist of two components: (a) a search strategy which organizes
the enumeration of all potential solutions and (b) a search space reduction strate-

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_16

609

https://doi.org/10.1007/978-3-319-99849-7_16
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_16&domain=pdf

610 16 Constraint Programming and Disjunctive Scheduling

gy which diminishes the number of potential solutions. However, due to the ex-
ponentially growing size of the search space, even an intelligent organization of
the search will eventually fail, so that only the application of efficient search
space reduction mechanisms will allow the solution of more difficult problems.
Consequently, as an elementary method of search space reduction, constraint
propagation has become more and more important in the last decades. Constraint
propagation has its origins in the popular field of constraint programming which
models combinatorial search problems as special instances of the constraint sat-
isfaction problem (CSP) . The basic idea of constraint propagation is to evaluate
implicit constraints through the repeated analysis of the variables, domains and
constraints that describe a specific problem instance. This analysis makes it pos-
sible to detect and remove inconsistent variable assignments that cannot partici-
pate in any solution by a merely partial problem analysis.

One of our main objectives is to present and derive efficient constraint prop-
agation techniques also known as consistency tests for the disjunctive scheduling
problem (DSP) which is a generalization of the classical job shop scheduling
problem (JSP). The DSP constitutes a perfect object of study due to the trade-off
between its computational complexity and its simple description. On the one
hand, within the class of NP-hard problems the DSP has been termed to be one
of the most intractable problems. This view is best supported by the notorious
10 × 10 problem instance of the JSP introduced by Muth and Thompson [MT63]
which resisted any solution attempts for several decades and was only solved
more than 25 years later by Carlier and Pinson [CP89]. On the other hand, the
disjunctive model introduced by Roy and Sussman [RS64] provides an illustra-
tive and simple representation of the DSP which is only based on two types of
constraints which in scheduling are known as precedence and disjunctive con-
straints.

An elementary analysis of the DSP involving a limited number of search
variables derives the consistency tests that ensure 3-b-consistency. These con-
sistency tests can be generalized and, although their application does not estab-
lish a higher level of consistency, they enable powerful domain reductions in
polynomial time. Notice, that establishing n-consistency for any n is NP-hard,
thus the existence of a polynomial algorithm is not very probable. Furthermore
the concepts of energetic reasoning and shaving are presented.

The other objective of this chapter is a classification of the consistency tests
derived according to the domain reduction achieved. A new dominance criterion
that allows a comparison of consistency tests in the aforementioned sense and
simple methods for proving dominance are presented. An extensive study of all
consistency tests is given. Quite surprisingly, comparing the extent of the search
space reduction induced, we will find out that some apparently stronger con-
sistency tests are subsumed by apparently weaker ones.

The remainder of this chapter is organized as follows. Section 16.2 introduc-
es the CSP. Several concepts of consistency are proposed which may serve as a
theoretical basis for constraint propagation techniques. We define consistency
tests and present the aforementioned dominance criterion for comparing them.

 16.2 Constraint Satisfaction 611

Section 16.3 describes the DSP and examines its relation to the CSP. Section
16.4 extensively describes constraint propagation techniques for the DSP. Notice
that although we focus on the basic DSP, the results of this work also apply in an
unchanged manner to some important extensions of the DSP, for instance, the
DSP with release times and due dates. Section 16.5 finally summarizes the re-
sults.

16.2 Constraint Satisfaction

Search and optimization problems such as the disjunctive scheduling problem
are generally modelled as special subclasses of the constraint satisfaction prob-
lem (CSP) or the constraint optimization problem (COP) . We will give a short
introduction to these problem classes in subsection 16.2.1. In subsection 16.2.2
we will then describe constraint propagation methods and different concepts of
consistency.

16.2.1 The Constraint Satisfaction and Optimization Problem

The CSP can be roughly described as follows: ''Given a domain specification,
find a solution x, such that x is a member of a set of possible solutions and it sat-
isfies the problem conditions'' [Ama70]. The COP additionally requires that the
solution found optimizes some objective function.

The CSP was first formalized and studied by Huffman [Huf71], Clowes
[Clo71] and Waltz [Wal75] in vision research for solving line-labelling prob-
lems. Haralick and Shapiro [HS79, HS80] and Mackworth [Mac92] discuss gen-
eral algorithms and applications of CSP solving. Van Hentenryck [Hen92] and
Cohen [Coh90] tackle the CSP from a constraint logic programming viewpoint.
Comprehensive overviews on the CSP are provided by Meseguer [Mes89] and
Kumar [Kum92]. An exhaustive study of the theory of constraint satisfaction and
optimization can be found in [Tsa93]. We will only present the necessary aspects
and start with some basic definitions.

The domain of a variable is the set of all values that can be assigned to the
variable. We will assume in this section that domains are finite and later allow
for infinite but discrete domains. The domain associated with the variable x is
denoted by D (x). If V = {x1 ,..., xn} is a set of variables and DOM = { D (x1),
..., D (xn) } the set of domains, then an assignment a = {a1 ,..., an} is an element
of the Cartesian product D (x1) ×...× D (xn) ; in other words, an assignment in-
stantiates each variable xi with a value ai � D (xi) from its domain.

A constraint c on DOM is a function c : D (xi1) ×...× D (xik) � {true, false} ,
where V ' := {xi1 ,..., xik} is a non empty set of variables. The cardinality | V ' | is
also called the arity of c. If | V ' | = 1 or | V ' | = 2 then we speak of unary and bina-

612 16 Constraint Programming and Disjunctive Scheduling

ry constraints respectively. An assignment a = D (x1) ×...× D (xn) satisfies c iff
c(ai1 ,...,aik) = true.

Definition 16.2.1
An instance I of the constraint satisfaction problem (CSP) is defined by a tuple
I = (V , DOM , CONS), where V is a finite set of variables, DOM the set of associ-
ated domains and CONS a finite set of constraints on DOM. An assignment a is
feasible iff it satisfies all constraints in CONS. A feasible assignment is also
called a solution of I. We denote with F (I) the set of all feasible assignments
(solutions) of I.

Given an instance I of the CSP, the associated problem is to find a solution a �
F (I) or to prove that I has no solution.

As distinguished from the constraint satisfaction problem, the constraint op-
timization problem searches for a solution which optimizes a given objective
function. We will only consider the case of minimization, as maximization can
be handled symmetrically.

Definition 16.2.2
An instance of the constraint optimization problem (COP) is defined by a tuple
I = (V , DOM , CONS, z), where (V , DOM , CONS) is an instance of the CSP and z
an objective function z : D (x1) ×...× D (xn) � IR . Defining

zmin(I) := { min
b�F (I)

 z(b) if F (I) ≠ �,

otherwise,

an assignment a is called an optimal solution of I iff a is feasible and z(a) =
zmin(I).

Given an instance I of the COP, the associated problem is to find an optimal
solution of I and to determine zmin(I).

It is not hard to see that the CSP and the COP are intractable and belong to
the class of NP-hard problems (c.f. Section 2.2).

An instance of the CSP can be represented by means of a graph (constraint
graph) which visualizes the interdependencies between variables that are in-
duced by the constraints. If we restrict our attention to unary and binary con-
straints then the definition of a constraint graph G is quite straightforward. The
vertex set of G corresponds to the set of all variables V, while the edge set is
defined as follows: two vertices xi , xj � V, i ≠ j, are connected by an undirected
edge iff there exists a constraint c(xi , xj) � CONS. This can be generalized to
constraints of arbitrary arity using the notion of hypergraphs [Tsa93]. Figure
16.2.1 shows a typical CSP instance and the corresponding constraint graph.

 16.2 Constraint Satisfaction 613

16.2.2 Constraint Propagation

From a certain point of view, the CSP and the COP are quite simple problems.
Since we assumed that the domains of a CSP instance I are finite which for most
interesting problems is not a serious restriction, I can be solved by a simple gen-
erate-and-test algorithm that works as follows: enumerate all assignments
a � D (x1) ×...× D (xn) and verify whether a satisfies all constraints c � CONS;
stop if the answer is "yes''. The COP can be solved by enumerating all feasible
assignments and storing the one with minimal objective function value.

Unfortunately, this method is not practicable due to the size of the search
space which grows exponentially with the number of variables. In the worst case,
all assignments of a CSP instance have to be tested which cannot be carried out
efficiently except for problem instances too small to be of any practical value.
Thus, it suggests itself to examine methods which reduce the search space prior
to starting (or during) the search process.

One such method of search space reduction which only makes use of simple
inference mechanisms and does not rely on problem specific knowledge is
known as constraint propagation. The origins of constraint propagation go back
to Waltz [Wal72] who more than three decades ago developed a now well-
known filtering algorithm for labelling three-dimensional line diagrams.

The basic idea of constraint propagation is to make implicit constraints more
visible through the repeated analysis and evaluation of the variables, domains
and constraints describing a specific problem instance. This makes it possible to
detect and remove inconsistent variable assignments that cannot participate in
any solution by a merely partial problem analysis.

Two complexity related problems arise when performing constraint propaga-
tion. One problem depends upon the number of variables and constraints that are
examined simultaneously, while the other problem is caused by the size of the
domains. These problems are usually tackled by limiting the number of variables
and constraints (local consistency with respect to all subsets of k variables) and
the number of domain assignments (domain- or d-consistency, bound- or b-
consistency) that are considered in the examination. These different concepts
will be discussed further below. We start with some simple examples, as this is
the easiest way to introduce constraint propagation.

Example 16.2.3

Let I = (V , DOM , CONS) be the CSP instance shown in Figure 16.2.1. A simple
analysis of the constraints (i) to (vi) allows us to reduce the domains of the varia-
bles x1 , x2 and x3 . We distinguish between the domains D (xi) and the reduced
domains ,(xi). At the beginning, of course, ,(xi) = D (xi) for i � {1 , 2 , 3}.

614 16 Constraint Programming and Disjunctive Scheduling

V = {x1 , x2 , x3},
D(x1) = {1,...,10},
D(x2) = {1,...,10},
D(x3) = {1,...,10},
(i) 1 � x1 � 4,
(ii) 1 � x2 � 4,
(iii) 1 � x3 � 4,
(iv) x1 + x2 = 4,
(v) x1 + x3 = 5,
(vi) x2 + x3 � 6.

1

2 3

{1,...,10}

{1,...,10} {1,...,10}

Figure 16.2.1 Example 16.2.3.

1

2 3

{1 , 2 , 3 , 4}

{1 , 2 , 3 , 4} {1 , 2 , 3 , 4}
Figure 16.2.2 Step 1.

1

2 3

{1 , 2 , 3}

{1 , 2 , 3} {3 , 4}
Figure 16.2.3 Steps 2, 3 and 4.

1. The unary constraints (i) - (iii) yield the trivial but considerable reduction
,(x1) := ,(x2) := ,(x3) := {1 , 2 , 3 , 4} (see Figure 16.2.2).

2. We next examine pairs of variables. Let us start with the pair (x1 , x2) and
the constraint (iv). If we choose, for instance, the assignment a1 = 4 then
there obviously exists no assignment a2 � ,(x2) = {1,..., 4} which satis-
fies (iv) x1 + x2 = 4. Hence, the value 4 can be removed from ,(x1). The
same argument is not applicable to a1 = 1 , 2 , 3, so we currently can only
deduce ,(x1) := {1 , 2 , 3}.

3. Since (iv) is symmetric in x1 and x2 , we can as well set ,(x2) := {1 , 2 , 3}.
4. Consider now the pair (x2 , x3) and constraint (vi). As a2 � {1 , 2 , 3}, i.e.

a2 � 3, the constraint (vi), x2 + x3 � 6, is only satisfied for a3 � 3. We
therefore obtain ,(x3) := {3 , 4} (see Figure 16.2.3).

5. Now let us turn to the pair (x1 , x3) and constraint (v). Since a3 = 3 or a3
 = 4, constraint (v), x1 + x3 = 5, yields a1 ≠ 3, and we can set ,(x1)
:= {1 , 2}.

6. Finally, studying constraint (iv) once more, we can remove a2 = 1 and set

 16.2 Constraint Satisfaction 615

,(x2) := {2 , 3} (see Figure 16.2.4).

1

2 3

{1 , 2 }

{2 , 3} {3 , 4}
Figure 16.2.4 Steps 5 and 6.

1

2 3

{1}

{3} {4}
Figure 16.2.5 The final step.

At this point, no more values can be excluded from the current domains through
the examination of pairs of variables. If we stop propagation now then the search
space reduction is already of a considerable size. Prior to our simple analysis, the
search space was of cardinality | D (x1) × D (x2) × D (x3) | = 10&10&10 = 1000,
afterwards the cardinality dropped down to | ,(x1) × ,(x2) × ,(x3) | = 2&2&2 = 8.

Extending our analysis to triples of variables reduces the search space even
more. Given, for instance, a1 = 2, constraint (iv) implies a2 = 2, while (v) implies
a3 = 3. Since a2 + a3 = 5 < 6, this is a contradiction to the constraint (vi). Reduc-
ing ,(x1) to {1}, we can immediately deduce ,(x2) = {3} and ,(x3) = {4} which
is shown in Figure 16.2.5. Hence, only the assignment a = (1 , 3 , 4) is feasible and
F (I) = {(1 , 3 , 4)} is the solution space of I .

Example 16.2.4
Consider now the CSP instance I = (V , DOM , CONS) shown in Figure 16.2.6.
Here, the constraint a mod b = c yields true, if a divided by b has a remainder of
c. It is possible to show that this CSP instance has eight feasible solutions:

F (I) = {(4 , 7 , 5), (4 , 7 , 10), (5 , 6 , 1), (5 , 6 , 6), (9 , 2 , 5), (9 , 2 , 10), (10 , 1 , 1),
(10 , 1 , 6)}

V = {x1 , x2 , x3},
D (x1) = {1,...,10},
D (x2) = {1,...,10},
D (x3) = {1,...,10},
(i) (x1 + x2) mod 10 = 1,
(ii) (x1 & x3) mod 5 = 0,
(iii) (x2 + x3) mod 5 = 2.

1

2 3

{1,...,10}

{1,...,10} {1,...,10}
Figure 16.2.6 Example 16.2.4.

However, finding these solutions using only constraint propagation is not as easy

616 16 Constraint Programming and Disjunctive Scheduling

as in Example 16.2.3. It is not hard to see that the corresponding current domains
,(x1), ,(x2) and ,(x3) cannot be reduced by examining pairs of variables. Consid-
er, for instance, the pair (x1 , x2) and constraint (i): for each assignment a1 � ,(x1),
there exists an assignment a2 � ,(x2) such that (i) is satisfied. Similar conclu-
sions can be drawn if the roles of x1 and x2 are interchanged or if we study the
pairs (x2 , x3) and (x1 , x3).

To derive further information, we have to examine pairs of assignments. We
may, for instance, find out that the assignments {1} × {1,..., 9} of the variables
x1 and x2 cannot participate in any feasible solution, since they do not satisfy
constraint (i). Thus given a1 = 1, the only interesting assignment is a2 = 10. Simi-
lar results can be obtained for a1 = 2, etc. This analysis, however, increases the
overhead in terms of computational complexity and storage capacity considera-
bly, since pairs of assignments have to be dealt with, and it is not clear at all
whether this additional overhead can be offset by the search space reduction
achieved.

These examples demonstrate that constraint propagation can be quite powerful,
reducing the search space of a "favourable'' CSP instance to a great extent after a
few steps of propagation. In the worst case, however, constraint propagation
does not yield a substantial reduction of the search space and even slows down
the complete solution process due to the additional computations. In general, the
outcome of constraint propagation lies between these two extremes: some but not
all infeasible solutions can be discarded if constraint propagation is restricted to
techniques which can be implemented efficiently. Thus, constraint propagation
complements, but does not replace a systematic search.

After this intuitive introduction to constraint propagation, it is now neces-
sary to provide a theoretical environment which allows us to design and assess
constraint propagation techniques. We have informally described constraint
propagation as "the reduction of the search space of a CSP instance through the
analysis of variables, domains and constraints''. The question how far this reduc-
tion should be carried out, we would readily answer "as far as possible''. Re-
member, however, that any CSP instance is uniquely determined through its var-
iables, domains and constraints. Thus, if we took this description literally then
constraint propagation would just be a synonym to solving the CSP which of
course is not sensible, because we initially have introduced constraint propaga-
tion in order to simplify the solution of the CSP. Further, we already have seen
that constraint propagation is only useful up to a certain extent due to an increas-
ing computational complexity. We therefore present different concepts of con-
sistency which may serve as a theoretical basis for propagation techniques.
Roughly speaking, a concept of consistency defines the maximal search space
reduction that is possible regarding some specific criteria.

 16.2 Constraint Satisfaction 617

k-Consistency

The first concepts of consistency have been presented in the early seventies by
Montanari [Mon74], who introduced the notions of node-, arc- and path-
consistency. Roughly speaking, these concepts are based on the examination of
constraints containing k variables, where k = 1, 2, 3, with their names being de-
rived from the representation of a CSP instance as a constraint graph. Notice,
that in the last section examples have been given of how to achieve node- and
arc-consistency which will be seen more clearly further below. These concepts of
consistency have been generalized by Freuder [Fre78] in a natural manner to the
notion of k-consistency. For a detailed analysis of k-consistency see for instance
[Tsa93]. We will only describe the basic ideas in an informal way.

In order to define k-consistency we have to introduce the notion of k-
feasibility. Let a = (a1,...,an) be an assignment of a given CSP instance. A par-
tial assignment of k variables (ai1,..., aik) is k-feasible, if it satisfies all con-
straints which contain these variables only (or any subset of them). The motiva-
tion of the definition of k-consistency is based on the following observation: a
can only be feasible, if for a given k any partial assignment (ai1,..., aik) is k-
feasible. Inversely, any partial assignment of k variables, that is not feasible, is
not interesting and hints at an inconsistent state.

In Freuder's words [Fre78] k-consistency is achieved if for any (k – 1)-
feasible assignment of k – 1 variables (taken from a set ,(xi1,..., xik�1

) � D (xi1)
× ... × D (xik�1

)) and any choice of a k
th variable, there exists an assignment of

the k
th variable (taken from a set ,(xik) � D (xik)), such that the assignment of the

k variables taken together is k-feasible.
Note that the property of k-consistency is always relative to the sets ,(xi1,

..., xik�1
) and ,(xik). Thus, in order to establish k-consistency, starting from an

inconsistent state, this implicitly requires a (k – 1)-dimensional administration of
these sets. At the beginning, these sets contain all assignments, that is, ,(xi1,
..., xik�1

) := D (xi1) × ... × D (xik�1
) and ,(xik) := D (xik). Inconsistent assignments

are then eventually discarded, until k-consistency is reached.
1-consistency is quite easy to achieve: if xi � V is a variable and c(xi) is a

unary constraint then all assignments ai � ,(xi) for which c(ai) = false are re-
moved. In order to establish 2-consistency, pairs of variables xi , xj � V and bina-
ry constraints c(xi , xj) have to be examined: an assignment ai � ,(xi) can be re-
moved if c(ai , aj) = false for all aj � ,(xj). Analogously, 3-consistency requires
the examination of triples of variables xi , xj , xk � V and removes pairs of as-
signments (ai , aj) � ,(xi , xj), etc. As already mentioned, 1- and 2-consistency
coincide with the notions of node- and arc-consistency, whereas 2- and 3-
consistency taken together are equivalent to path-consistency, see e.g. [Mon74,

618 16 Constraint Programming and Disjunctive Scheduling

Mac77, MH86, Tsa93]. 1-, 2- and 3-consistency have also been summarized un-
der the name of lower-level consistency as opposed to higher-level consistency,
since only small subsets of variables, domains and constraints are evaluated sim-
ultaneously.

Efficient algorithms for establishing 1-, 2- and 3-consistency and an analysis
of their complexity have been presented, among others, by Montanari [Mon74],
Mackworth [Mac77], Mackworth and Freuder [MF85], Mohr and Henderson
[MH86], Dechter and Pearl [DP88], Han and Lee [HL88], Cooper [Coo89] and
Van Hentenryck et al. [HDT92]. Improved arc consistency algorithms AC-6 and
AC-7 have been presented by Bessière [Bes94] and by Bessière et al. [BFR99].
Chen [Che99] has proposed a new arc consistency algorithm, AC-8, which re-
quires less computation time and space than AC-6 and AC-7. Cooper developed
an optimal algorithm which achieves k-consistency for arbitrary k [Coo89].
Jeavons et al.[JCC98] have identified a number of constraint classes for which
some fixed level of local consistency is sufficient to ensure global consistency.
They characterize all possible constraint types for which strong k-consistency
guarantees global consistency, for each k � 2. Other methods for solving the CSP
through the sole application of constraint propagation (solution synthesis) have
been proposed by Freuder [Fre78], Seidel [Sei81] and Tsang and Foster [TF90].
The deductive approach proposed by Bibel [Bib88] is closely related to solution
synthesis.

Domain-Consistency

Cooper's optimal algorithm [Coo89] for achieving k-consistency requires testing
all subsets ,(xi1,..., xik�1

) � D (xi1) �...� D (xik�1
) of (k – 1)-feasible assignments

which is only practicable for small values of k. We therefore describe two weak-
er concepts of consistency.

The first concept is based on only storing the 1-dimensional sets ,(xi)
� D (xi) for all variables xi � V . For reasons near at hand, ,(xi) is also called the
current domain of xi. Intuitively, we can at most discard all values ai � ,(xi) for
which there exist no assignments aj � ,(xj), j � i, such that (a1 , ..., ai , ..., an) is
feasible. Alternatively, the feasibility condition can be replaced with the suffi-
cient condition of k-feasibility which leads to a lower level of consistency. We
refer to this concept of consistency as domain-consistency or k-d-consistency.
Domain-consistency has been used, among others, by Nuijten [Nui94]. Formal
definitions are provided below.

Definition 16.2.5

Let I = (V ,DOM ,CONS) be an instance of the CSP. If ,(xi) � D (xi) is the cur-
rent domain of the variable xi � V then ,(xi) is complete iff, for all feasible as-
signments a = (a1 , ..., an), the value ai is contained in ,(xi).

 16.2 Constraint Satisfaction 619

Definition 16.2.6

Let I = (V ,DOM ,CONS) be an instance of the CSP and ! := { ,(xi) | xi � V } be
the set of current domains, so that ,(xi) � D (xi) is complete1.

1. ! is k-d-consistent for 1 � k � n iff, for all subsets V' := {xi1,..., xik�1
} of

k – 1 variables and any k
th variable xik 	 V' , the following condition

holds:
L aik � ,(xik), ai1 � ,(xi1),..., aik�1

 � ,(xik�1
) :

(ai1,..., aik) is k-feasible.

2. ! is strong k-d-consistent for 1 � k � n iff ! is k'-d-consistent for all
1 � k' � k.

The following naive algorithm establishes k-d-consistency: start with ,(xi)
:= D (xi) for all xi � V ; choose variable xik and assignment aik � ,(xik); test
whether there exists a subset of k – 1 variables V' := {xi1,..., xik�1

} which does
not contain xik, so that (ai1,..., aik�1

, aik) is not k-feasible for all ai1 � ,(xi1), ...,
aik�1

 � ,(xik�1
); if the answer is ''yes'' then remove the assignment aik from ,(xik);

repeat this process with other assignments and/or variables until no more domain
reductions are possible.

Example 16.2.7
Let us reconsider Example 16.2.4. After establishing n-d-consistency, the re-
duced domains ,(xi) contain only assignments ai � D (xi) for which there exists a
feasible solution (a1 , a2 , a3) � F (I). Since the solution space is

F (I) = {(4,7,5), (4,7,10), (5,6,1), (5,6,6), (9,2,5), (9,2,10), (10,1,1), (10,1,6)}

we obtain ,(x1) = {4,5,9,10}, ,(x2) = {1,2,6,7}, and ,(x3) = {1,5,6,10}. After the
reduction, the search space is of size | ,(x1) � ,(x2) � ,(x3) | = 4&4&4 = 64 as com-
pared to the original search space of size | D (x1) � D (x2) � D (x3) | =
10&10&10 = 1000 which is considerably larger.

This gives us an indication of the maximal search space reduction that is possible
if a solely domain oriented approach is chosen. Notice, however, that we did not
yet discuss how to establish n-d-consistency other than to apply the naive algo-
rithm, so an important question is whether there exists an efficient implementa-
tion after all. Before we deal with this issue, however, we will first present an-
other concept of consistency.

1 The completeness property which is usually omitted in other definitions of consistency

ensures that no feasible solutions are removed. Without this property, ∆ := {�, …, �}
would be n-d-consistent which obviously is not intended.

620 16 Constraint Programming and Disjunctive Scheduling

Bound-Consistency

Storing all values of the current domains ,(x1),..., ,(xn) still might be too costly.
An interval oriented encoding of ,(xi) provides an alternative if D (xi) is totally
ordered, for instance, if D (xi) � IN0. In this case, we can identify ,(xi) with the
interval ,(xi) := [li , ri] := {li , li + 1,..., ri – 1, ri}, so that only the “left'' and
“right'' bounds of ,(xi) have to be stored. Therefore, this concept of consistency
is usually referred to as bound-consistency or k-b-consistency. Bound-
consistency has been discussed, among others, by Moore [Moo66], Davis
[Dav87], van Beek [Bee92] and Lhomme [Lho93].

Definition 16.2.8 (k-b-consistency).

Let I = (V ,DOM ,CONS) be an instance of the CSP and ! := { ,(xi) | xi � V } be
the set of current domains, so that ,(xi) � D (xi) is complete.

1. ! is k-b-consistent for 1 � k � n iff, for all subsets V ' := {xi1 ,...,xik�1
} of

k – 1 variables and any k
th variable xik 	 V ', the following condition holds:

L aik � {lik , rik}, ai1 � ,(xi1),...,aik�1
 � ,(xik�1

) :

 (ai1 ,...,aik) is k-feasible.

2. ! is strongly k-b-consistent for 1 � k � n iff ! is k'-b-consistent for all
1 � k' � k.

A naive algorithm for establishing k-b-consistency is obtained by slightly modi-
fying the naive k-d-consistency algorithm: instead of choosing aik � ,(xik), we
may only choose (and remove) aik � {lik , rik}.

As a negative side effect, only the bounds li and ri , but no intermediate value
li < ai < ri can be discarded, except, if due to the repeated removal of other as-
signments, ai eventually becomes the left or right bound of the current domain.
Thus, bound-consistency is a weaker concept than domain-consistency.

Example 16.2.9

We again examine the Examples 16.2.4 and 16.2.7. Establishing n-b-consistency
must lead to the domain intervals ,(x1) = [4,10], ,(x2) = [1,7] and ,(x3) = [1,10].
Here, the size of the reduced search space is | ,(x1) � ,(x2) � ,(x3)| = 7&7&10 = 490
compared with the size of the original search space (1000) and the size of the n-
d-consistent search space (64).

Unfortunately, the following complexity result applies.

 16.2 Constraint Satisfaction 621

Theorem 16.2.10
Establishing n-b-consistency for the CSP is an NP-hard problem.

Proof. Consider an instance I of the CSP. Let ! = { ,(xi) | xi � V } be the corre-
sponding set of current domains, such that ! is N-b-consistent. Obviously, F (I) is
not empty iff there exists xi � V satisfying ,(xi) � �.

A similar proof shows that establishing n-d-consistency is NP-hard as well.

Consistency Tests

In general, establishing k-consistency is ruled out due to the complex data struc-
tures that are necessary for the administration of the k-feasible subsets. In the last
subsection we have further seen that establishing n-d- or n-b-consistency is an
NP-hard problem. Consequently, using constraint propagation in order to solve
the CSP is only sensible if we content ourselves with approximations of the con-
cepts of consistency that have been introduced.

An important problem is to derive simple rules which will lead to efficient
search space reductions, but at the same time can be implemented efficiently
with a low polynomial time complexity. These rules are known as consistency
tests and are generally described through a condition-instruction pair Z and B .
Intuitively, the semantics of a consistency test is as follows: whenever condition
Z is satisfied, B has to be executed. Z may be, for instance, an equation or ine-
quality, while B may be a domain reduction rule. We will often use the short-
hand notation Z � B for consistency tests.

Example 16.2.11
Let us derive a consistency test for the CSP instance I described in Example
16.2.3. Consider the constraint (vi) x2 + x3 � 6. Given an assignment a2 of x2 , we
can remove a2 from ,(x2) if there exists no assignment a3 = ,(x3) satisfying (vi).
However, we do not really have to test all assignments in ,(x3), because if (vi) is
not satisfied for a3 = max ,(x3) then it is not satisfied for any other assignment in
,(x3) and vice versa. Hence, for any a2 � D (x2),

 "(a2) : a2 + max ,(x3) < 6 � ,(x2) := ,(x2) \ {a2}

defines a consistency test for I.

Of course, this example is quite simple and it may not seem clear whether any
advantages can be drawn from such elementary deductions. Surprisingly, how-
ever, an analogously simple analysis will allow us to derive powerful consisten-
cy tests for particular classes of constraints as will be seen in one of the subse-
quent sections.

622 16 Constraint Programming and Disjunctive Scheduling

One of our objectives is to compare consistency tests. This requires a condi-
tion which enables us to determine whether certain consistency tests are "at least
as good'' as certain others. Intuitively, this applies if the deductions implied by a
set of consistency tests are "at least as good'' as those implied by another set. In
order to elaborate this rather vague description, we will focus on domain con-
sistency tests, i.e. consistency tests which deduce domain reductions. Similar
results, however, apply for other types of consistency tests.

Let us derive a formal definition of domain consistency tests. Let J := 2D(x1)

 �...� 2D(xn), where 2D(xi) denotes the set of all subsets of D (xi). Given !, !' � J,
that is, ! = { ,(xi) | xi � V } and !' = { ,'(xi) | xi � V }, we say that

1. ! � !' iff ,(xi) � ,'(xi) for all xi � V ,
2. ! �

/
 !' iff ! � !', and there exists xi � V , such that ,(xi) �/

 ,'(xi).
Domain consistency tests have to satisfy two conditions. First, current do-

mains are either reduced or left unchanged. Second, only assignments ai� ,(xi)
are removed for which no feasible assignment a = (a1 , ..., ai , ..., an) exists, be-
cause otherwise solutions would be lost. Since, however, we do not need the
second condition in order to derive the results of this section, only the first one is
formalized.

Definition 16.2.12

A domain consistency test " is a function " : J � J satisfying "(!) � ! for all
! � J.

Suppose now that a set of domain consistency tests is given. In order to obtain
the maximal domain reduction possible, these tests have to be applied repeatedly
in an iterative fashion rather than only once. The reason for this is that, after the
reduction of some domains, additional domain adjustments can possibly be de-
rived using some of the tests which have previously failed in deducing any re-
ductions. This has been demonstrated, for instance, in Example 16.2.3. Thus, the
deduction process should be carried out until no more adjustments are possible
or, in other words, until the set ! of current domains becomes a fixed point. The
standard fixed point procedure is shown in Algorithm 16.2.13.

Algorithm 16.2.13 Fixed point

Input: !: set of current domains;
begin
 repeat
 !old := !;
 for all (" � g) do ! := "(!); -- g is a set of consistency tests
 until (! := !old);
end;

 16.2 Constraint Satisfaction 623

It is important to mention that the fixed point computed does not have to be
unique and usually depends upon the order of the application of the consistency
tests. For this reason we will only study monotonous consistency tests for which
the order of application does not affect the outcome of the domain reduction pro-
cess. This result will be derived in the following.

Definition 16.2.14

A consistency test " is monotonous iff the following condition is satisfied:

 L!, !' � J : ! � !' � "(!) � "(!') . (16.2.1)

Let us first define the !-fixed-point mentioned above. Let g be a set of monoto-
nous domain consistency tests. For practical reasons we will always assume that
g is finite. Let "# := ("g)g�IN � gIN be a series of domain consistency tests in g,
such that

L " � g, L h � IN, g > h : "g = " . (16.2.2)

The series "# determines the order of application of the consistency tests. The
last condition ensures that every consistency test in g is (a priori) infinitely often
applied. Starting with an arbitrary set ! of current domains, we define the series
of current domain sets (!g)g�IN induced by "# through the following recursive
equation

!0 := ! ,
!g := "g(!g�1) .

Since all domains D (xi) are finite and !g � !g�1 due to Definition 16.2.12, there
obviously exists g* � IN, such that !g = !g* for all g � g*. We can therefore de-
fine "#(!) := !g* . The next question to answer is whether "#(!) really depends
on the chosen series "# .

Theorem 16.2.15 Unique fixed points. [DPP00].

If g is a set of monotonous domain consistency tests and "# , " '# � gIN are series
satisfying (16.2.2) then "#(!) = " '#(!).

Proof. For reasons of symmetry we only have to show "#(!) � " '#(!).
Let (!g)g�IN and (!' g')g'�IN be the series induced by "# and " '# respectively. It is
sufficient to prove that for all g' � IN, there exists g � IN, such that !g � ! 'g' .
This simple proof will be carried out by induction.

 The assertion is obviously true for g' = 0. For g' > 0, we have ! 'g' = " 'g' (!' g'�1).
By the induction hypothesis, there exists h � IN, such that !h � !' g'�1. Further,
(16.2.2) implies that there exists g > h satisfying "g = " 'g' . Since g > h, we know

624 16 Constraint Programming and Disjunctive Scheduling

that !g�1 � !h . Using the monotony property of "g , we can conclude

!g = "g(!g�1) � "g(!h) � "g(!' g'�1) = " 'g' (!' g'�1) = ! 'g' .

This completes the induction proof.

Definition 16.2.16

Let g be a set of monotonous domain consistency tests, ! a set of current do-
mains and "# � gIN an arbitrary series satisfying (16.2.2). We define g(!) := "#
(!) to be the unique !-fixed-point induced by g and !.

Based on these observations, we can now propose a dominance criterion for do-
main consistency tests.

Definition 16.2.17

Let g, g' be sets of monotonous consistency tests.

 1. g dominates g' (g ≻= g') iff g(!) � g'(!) for all ! � J .

2. g strictly dominates g' (g ≻ g') iff g ≻= g', and there exists ! � J, such
that g(!) �/ g'(!).

 3. g is equivalent to g' (g ~ g') iff (g ≻= g') and (g' ≻= g).

The next theorem provides a simple condition for testing dominance of domain
consistency tests. Basically, the theorem states that a set of domain consistency
tests g dominates another set g' if all domain reductions implied by the tests in g'
can be simulated by a finite number of tests in g.

Theorem 16.2.18

Let g, g' be sets of monotonous consistency tests. If for all "' � g' and all ! � J,
there exist "1, ..., " d � g, so that

 (" d h...h "1)(!) � "'(!) (16.2.3)

then g ≻= g'.

Proof. Let "# and " '# � gIN be series satisfying (16.2.2) . Let, further, (!g)g�IN
and (!' g')g'�IN be the series induced by "# and " '# respectively. Again, we will
prove by induction that for all g' � IN, there exists g � IN, such that !g � ! 'g' ,
since this immediately implies g(!) � g'(!).

The assertion is obviously true for g' = 0. Therefore, let g' > 0 and ! 'g' = " 'g'
(!' g'�1). By the induction hypothesis, there exists h � IN, such that !h � !' g'�1 .

Let "1, ..., " d � g be the sequence of consistency tests satisfying (16.2.3) for

 16.3 The Disjunctive Scheduling Problem 625

" 'g' and !h . There exist gd >...> g1 > h satisfying "g1
 = "1, ..., "gd

 = " d due to
(16.2.2). Without loss of generality, we assume that gd = h + d, ..., g1 = h + 1, so
that

!h+d = ("h+d h...h "h+1)(!h) � " 'g' (!h) � " 'g' (!' g'�1) = !' g'

which proves the induction step. This verifies the dominance relation g ≻= g'.

Example 16.2.19
Let us reconsider the consistency tests derived in Example 16.2.11:

"(a2) : a2 + max ,(x3) < 6 � ,(x2) := ,(x2) \ {a2} .

Instead of defining a consistency test for each a2 � D (x2), it is sufficient to apply
a single consistency test to obtain the same effects. Observe that if a2 can be re-
moved then all assignments a'2 < a2 can be removed as well, so that we can re-
place a2 � ,(x2) with min ,(x2). This leads to the consistency test:

" : min ,(x2) + max ,(x3) < 6 � ,(x2) := ,(x2) \ { min ,(x2) } .

Obviously, if a2 can be removed from ,(x2) using "(a2) then " removes a2 after at
most a2 – min ,(x2) + 1 steps. Thus, g := {"} dominates g' := { "(a2) | a2
 � D (x2) }. Accordingly, g' dominates g, because g' i g. This proves that g and
g' are equivalent.

16.3 The Disjunctive Scheduling Problem

The disjunctive scheduling problem (DSP) is a natural generalization of im-
portant scheduling problems like the job shop scheduling problem (JSP) which
has been extensively studied in the last decades, or the open shop scheduling
problem (OSP) which only in recent years has attracted more attention in sched-
uling research.

The DSP can be described as follows [Pha00]: a finite set of tasks each of
which has a specific processing time, has to be scheduled with the objective of
minimizing the makespan, i.e. the maximum of the completion times of all tasks.
Preemption is not allowed which means that tasks must not be interrupted during
their processing. In general, tasks cannot be processed independently from each
other due to additional technological requirements or scarcity of resources. The
DSP considers two kinds of constraints between pairs of tasks which model spe-
cial classes of restrictions: precedence and disjunctive constraints.
T Precedence constraints which are also known as temporal constraints specify

a fixed processing order between pairs of tasks. Precedence constraints cover
technological requirements of the kind that some task Ti must finish before

626 16 Constraint Programming and Disjunctive Scheduling

another task Tj can start, for instance, if the output of Ti is the input of Tj .

T Disjunctive constraints prevent the simultaneous or overlapping processing of
tasks without, however, specifying the processing order. If a disjunctive con-
straint is defined between two tasks Ti and Tj then one of the alternatives "Ti
before Tj'' or "Tj before Ti'' must be enforced, but which one is not predeter-
mined. Disjunctive constraints model the resource demand of tasks in a
scheduling environment with scarce resource supply. More precisely, the ca-
pacity of each resource like special machines, tools or working space is one
unit per period of processing time. Tasks use at most a (constant) unit amount
of each resource per processing period. Due to the limited amount of re-
sources, two tasks requiring the same resource cannot be processed in parallel.

Note that the term disjunctive constraint, as introduced here and as common-
ly used in scheduling, is a special case of the general concept of disjunctive con-
straints.

The DSP and its subclasses have been extensively studied in academic re-
search, since its simple formulation, on the one hand, and its intractability, on the
other hand, make it a perfect candidate for the development and analysis of effi-
cient solution techniques. Indeed, the solution techniques that have been derived
for the DSP have contributed a lot to the improvement of methods for less ideal-
ized and more practice oriented problems. Extensions of the DSP generally con-
sider sequence-dependent setup times, minimal and maximal time lags, multi-
purpose and parallel machines, non-unit resource supply and demand, machine
breakdowns, stochastic processing times, etc.

Section 16.3.1 formulates the DSP as a constraint optimization problem with
disjunctive constraints as proposed by Roy and Sussman [RS64] for the JSP. The
strength of this model becomes apparent later once the common graph theoretical
interpretation of the disjunctive scheduling model is presented. In Section 16.3.2,
solution methods for the DSP that are based on constraint propagation are briefly
discussed.

16.3.1 The Disjunctive Model

Let B = {1, ..., n} be the index set of tasks to be scheduled. The processing time
of task Ti , i � B is denoted with pi . By choosing sufficiently small time units, we
can always assume that the processing times are positive integer values. With
each task there is associated a start time domain variable sti with domain set
D(sti) = IN0 .

If a precedence or disjunctive constraint is defined between two tasks then
we say that these tasks are in conjunction or disjunction respectively. The tasks
in conjunction are specified by a relation C � B � B . If (i , j) � C then task Ti has
to finish before task Tj can start. Instead of writing (i , j) � C we will therefore
use the more suggestive i � j � C. The tasks in disjunction are specified by a

 16.3 The Disjunctive Scheduling Problem 627

symmetric relation D � B � B . Whenever (i , j) � D, tasks Ti and Tj cannot be
processed in parallel. Since (i , j) � D implies (j , i) � D, we will write i X j � D.
Finally, let Z = { pi | i � B } be the set of processing times.

An instance of the DSP is uniquely determined by the tuple I = (B , C , D , Z).
Since we want to minimize the makespan, i.e. the maximal completion time of
all tasks, the objective function is Cmax(I) = max

 i�B{sti + pi}. The DSP can be
written as follows:

minimize {Cmax(I)}
sti � D(sti) = IN0 i � B,
(i) sti + pi � stj i � j � C,
(ii) sti + pi � stj W stj + pi � sti i X j � D.

Let us first define an assignment ST = (st1, ..., stn) � D(st1) �...�D(stn) of
all start time variables. For the sake of simplicity, we will use the same notation
for variables and their assignments. An assignment ST is feasible, i.e. it defines a
schedule (cf. Section 3.1), if it satisfies all precedence constraints (i) and all dis-
junctive constraints (ii). Reformulating the DSP, the problem is to find a feasible
schedule with minimal objective function value Cmax(I). Obviously, for each in-
stance of the DSP, there exists a feasible and optimal schedule.

A Graph Theoretical Approach

The significance of the disjunctive scheduling model for the development of ef-
ficient solution methods is revealed if we consider its graph theoretical interpre-
tation. In analogy to Section 10.1, a disjunctive graph is a weighted graph
G = (B , C , D , W) with node set B, arc sets C, D � B � B where D is symmetric,
and weight set W. C is called the set of precedence arcs, D the set of disjunctive
arcs. Each arc i � j � C � D is labelled with a weight wi� j � W. Since D is
symmetric, we will represent disjunctive arcs as doubly directed arcs and some-
times refer to i X j as a disjunctive edge. Notice that i X j � D is labelled with
two possibly different weights, wi� j and wj� i .

Let I = (B , C , D , Z) be an instance of the DSP. In order to define the associ-
ated disjunctive graph G(I), we first introduce two dummy tasks start (0) and
end (*) so as to obtain a connected graph. Obviously, start precedes all tasks,
while end succeeds all tasks. Further, the processing times of start and end are
zero.

Definition 16.3.1

If I = (B , C , D , Z) is an instance of the DSP then G(I) := (B*
 , C *

 , D , W) is the
associated disjunctive graph, where
 B* := B � {0 , *},

628 16 Constraint Programming and Disjunctive Scheduling

 C * := C � { 0 � i | i � B � {*} } � { i � * | i � B � {0} },
 W = { wi� j = pi | i � j � C * � D } .

Example 16.3.2

Let I = (B , C , D , Z) be an instance of the DSP with B = {1, ..., 8}, C = { 1 � 2

� 3, 4 � 5, 6 � 7 � 8 } and D = { 1 X 4, 1 X 6, 4 X 6, 2 X 7, 3 X 5, 3 X 8,
5 X 8 }. The corresponding disjunctive graph G = (B*

 , C *
 , D , W) is shown in

Figure 16.3.1.2

0

1 2 3

4 5

6

*

7 8
Figure 16.3.1 A disjunctive graph.

A disjunctive graph is transformed into a directed graph by orienting disjunctive
edges.

Definition 16.3.3

Let G = (B , C , D , W) be a disjunctive graph, and S � D.
1. S is a partial selection iff i � j � S implies j � i 	 S for all

i X j � D.
2. S is a complete selection iff either i � j � S or j � i � S for all

i X j � D.
3. A complete selection S is acyclic iff the directed graph GS = (B, C � S)

is acyclic.

Thus, we obtain a complete (partial) selection if (at most) one edge orientation is
chosen from each disjunctive edge i X j � D. The selection is acyclic if the re-
sulting directed graph is acyclic, ignoring any remaining undirected disjunctive
edges. There is a close relationship between complete selections and schedules
(let us remind that schedules are always feasible, as defined in Section 3.1). In-
deed, if we are only interested in optimal schedules, then it is sufficient to search
through the space of all selections which is of cardinality 2|D| instead of the space
of all schedules which is of cardinality |IN0|

n. The DSP can thus be restated as a
graph theoretical problem: find a complete and acyclic selection, such that the
length of the longest path in the associated directed graph is minimal.

2 We have not depicted all of the trivial edges involving the dummy operations start and

end. Further, the specification of the weights has been omitted.

 16.4 Constraint Propagation and the DSP 629

16.3.2 Solution Methods for the DSP

Countless is the number of solution methods proposed for the JSP which consti-
tutes the most famous subclass of the DSP. A detailed survey is provided by
Błażewicz et al. in [BDP96]. We only focus on solution methods which have
incorporated constraint propagation techniques in some way or another. Particu-
larly, constraint propagation has been used in exact solution methods most of
which are based on a search space decomposition approach of the branch-and-
bound kind. It seems fair to say that the advances in solving the JSP that have
been made in the last decade can be attributed to a large extent to the develop-
ment of efficient constraint propagation techniques. Undoubtedly, the algorithm
of Carlier and Pinson presented in [CP89] marked a milestone in the JSP history,
since for the first time an optimal solution for the notorious 10 � 10 problem
instance proposed by Muth and Thompson [MT63] has been found and its opti-
mality proven. Amazingly, due to the evolution of solution techniques and grow-
ing computational power, this formerly unsolvable instance can now be solved
within several seconds. Important contributions towards this state of the art have
been made among others by Applegate and Cook [AC91], Carlier and Pinson
[CP90], Brucker et al. [BJS94, BJK94], Caseau and Laburthe [CL95], Baptiste
and Le Pape [BL95] and Martin and Shmoys [MS96], to name only a few. In
addition to using constraint propagation techniques in exact solution methods,
the opinion eventually gains ground that combining constraint propagation with
heuristic solution methods is most promising. Advances in this direction have
been reported by Nuijten [Nui94], Pesch and Tetzlaff [PT96], Phan Huy [Pha96]
and Nuijten and Le Pape [NL98].

16.4 Constraint Propagation and the DSP

In Section 16.2.2, constraint propagation has been introduced as an elementary
method of search space reduction for the CSP or the COP. In this section, we
examine how constraint propagation techniques can be adapted to the DSP. An
important issue is the computational complexity of the techniques applied which
has to be weighed against the search space reduction obtained. Recall that estab-
lishing n-, n-d- and n-b-consistency for instances of the CSP or the COP are NP-
hard problems. It is not difficult to show that the same complexity result applies
if we confine ourselves to the more special DSP. Thus, if constraint propagation
is to be of any use in solving the DSP, we will have to content ourselves with
approximations of the consistency levels mentioned above.

In the past years, two constraint propagation approaches have been studied
with respect to the DSP: a time oriented and a sequence oriented approach. The
time oriented approach is based on the concept of domain or bound-consistency.
Each task has a current domain of possible start times. Domain consistency tests
remove inconsistent start time assignments from current domains and, by this,

630 16 Constraint Programming and Disjunctive Scheduling

reduce the set of schedules that have to be examined. In contrast to the time ori-
ented approach, the sequence oriented approach reduces the set of complete se-
lections by detecting sequences of tasks, i.e. selecting disjunctive edge orienta-
tions which must occur in every optimal solution. Hence, the latter approach has
been often labelled immediate selection (see e.g. [CP89, BJK94]) or edge-finding
(see e.g. [AC91]). We will use the term sequence consistency test as used in
[DPP99].

Domain and sequence consistency tests are two different concepts which
complement each other. Often, a situation occurs in which either only reductions
of the current domains or only edge orientations are deducible. The best results,
in fact, are obtained by applying both types of consistency tests, as fixing dis-
junctive edges may initiate additional domain reductions and vice versa.

Section 16.4.1 introduces some notation which will be used later. The sub-
sequent sections are concerned with the definition of domain and sequence con-
sistency tests for the DSP. For the sake of simplicity, precedence and disjunctive
constraints will be treated separately. At first, the simple question of how to im-
plement constraint propagation techniques for precedence constraints is dis-
cussed in Sections 16.4.2.

In Sections 16.4.3 through 16.4.8, disjunctive constraints are examined, and
both already known and new consistency tests will be presented. We assume that
precedence constraints are not defined and that all tasks are in disjunction which
leads to the special case of a single-machine scheduling problem [Car82].

Section 16.4.3 examines which consistency tests have to be applied in order
to establish lower-level bound-consistency, that is, strong 3-b-consistency. Sec-
tions 16.4.4 and 16.4.5 present the well-known input/output and input/output
negation consistency tests first proposed by Carlier and Pinson [CP89] and com-
pare different time bound adjustments. Section 16.4.6 describes a class of new
consistency tests which is based on the input-or-output conditions and is due to
Dorndorf et al. [DPP99]. Section 16.4.7 takes a closer look at the concept of en-
ergetic reasoning proposed by Erschler et al. [ELT91] and classifies this concept
with respect to the other consistency tests defined. Section 16.4.8, finally, deals
with a class of consistency tests known as shaving which has been introduced by
Carlier and Pinson [CP94] and Martin and Shmoys [MS96].

In Section 16.4.9, the results for the disjunctive constraints are summarized.
Finally, Section 16.4.10 discusses how to interleave the application of the prece-
dence and disjunctive consistency tests derived. It is worthwhile to mention that
a separate analysis of precedence and disjunctive constraints leads to weaker
consistency tests as compared to cases where both classes of constraints are sim-
ultaneously evaluated. However, it remains an open question whether simple and
efficient consistency tests can be developed in this case.

16.4.1 Some Basic Definitions

For the rest of this subsection, let I = (B , C , D , Z) be an instance of the DSP. Each

 16.4 Constraint Propagation and the DSP 631

task Ti , i � B has a current domain ,(sti) � D(sti). In order to avoid misinterpre-
tations between the start time variable sti and its assignment (for which the nota-
tion sti is used as well), we will write ,i instead of ,(sti). We assume that some
real or hypothetical upper bound UB on the optimal makespan is known or giv-
en, so that actually ,i � [0 , UB – pi]. This is necessary, since most of the con-
sistency tests derived only deduce domain reductions or edge orientations if the
current domains are finite. In general, the tighter the upper bound, the more in-
formation can be derived.

The earliest and latest start time of task Ti are given by esti := min ,i and lsti
 := max ,i . We will interpret ,i as an interval of start times, i.e. ,i = [esti , lsti]
 = { esti , esti + 1, ..., lsti � 1, lsti}, although a set oriented interpretation is possi-
ble as well. We also need the earliest and latest completion time ecti := esti + pi
and lcti := lsti + pi of task Ti .

Sometimes, it is important to distinguish between the earliest and latest start
time before and after a domain reduction. We will then use the notation est i

 * and
lst i

 * for the adjusted earliest and latest start times. We will often examine subsets
A � B of tasks and define p(A) := 5 i�A pi , ESTmin(A) := min i�A esti , and
LCTmax(A) := max i�A lcti . Finally, Cmax(p,(A)) and Cmax(p ,

 pr(A)) denote the op-
timal makespan if all tasks in A are scheduled within their current domains with-
out preemption or with preemption allowed.

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

10 11 1232
x

lstest lctect
Figure 16.4.1 Two tasks Ti , Tj with pi = 4 and pj = 3.

Examples of consistency tests will be illustrated as in Figure 16.4.1 [Nui94]
which shows two tasks Ti and Tj . For task Tj , the interval [estj , lctj] = [0,8] of
times at which Tj may be in process is shown as a horizontal line segment. Possi-
ble start times [estj , lstj] = [0,5] are depicted as black circles, while the remaining
times [lstj+1 , lctj] = [6,8] are marked with tick marks. A piston shaped bar of size
pj = 3, starting at estj = 0, indicates the processing time of task Tj . The chosen
representation is especially well-suited for describing the effect of domain con-
sistency tests. If a starting time is proven to be inconsistent then the correspond-
ing time will be marked with an x, as for instance the start time 2 on the time
scale of task Ti .

632 16 Constraint Programming and Disjunctive Scheduling

16.4.2 Precedence Consistency Tests

Precedence constraints determine the order in which two specific tasks Ti and Tj
have to be processed. If, for instance, task Ti has to finish before task Tj can start,
then the earliest start time of Tj has to be greater than or equal to the earliest
completion time of Ti. Likewise, an upper bound of the latest completion time of
Ti is the latest start time of Tj . This proves the following well-known theorem.

Theorem 16.4.1 Precedence consistency test.

If i, j � B and i � j � C then the following domain reduction rules apply:

estj := max{ estj , esti + pi }, (16.4.1)

lsti := min{ lsti , lstj � pi }. (16.4.2)

Of course, applying the consistency tests (16.4.1) and (16.4.2) until no more up-
dates are possible is equivalent to the computation of a longest (precedence) path
in the disjunctive graph, see [Chr75] for a standard algorithm. This algorithm
traverses all tasks in a topological order which ensures that (16.4.1) and (16.4.2)
only have to be applied once for each precedence arc.

16.4.3 Lower-Level Bound-Consistency

From this Section through Section 16.4.8, we will study the more interesting
class of disjunctive constraints. For the sake of simplicity, we assume that B is a
clique, i.e. all tasks in B are in disjunctions. We, further, assume that the set of
precedence constraints is empty. We will, at first, discuss how disjunctive con-
straints interact with respect to some concept of consistency. For two reasons we
opted for bound-consistency as the concept of consistency to work with. First of
all, bound-consistency requires the least amount of storage capacity, since the
current domains can be interpreted as intervals, so only the earliest and latest
start times have to be memorized. Second, the most powerful consistency tests
described in the following only affect/use the earliest and latest start times. In-
deed, no efficient consistency tests which make use of "inner'' start times are
currently known.

 16.4 Constraint Propagation and the DSP 633

Symbol Description

 "(h)
A,i h � 4: output consistency test for the couple (A , i),

h � 5: input negation consistency test for the couple (A , i)
,i current domain of Ti : ,i � IN0
esti earliest start time of Ti : esti = min ,i
est i

 * adjusted earliest start time of Ti
ecti earliest completion time of Ti : ecti = esti + pi
lcti latest completion time of Ti : lcti = lsti + pi
lsti latest start time of Ti : lsti = max ,i
lst i

 * adjusted latest start time of Ti
pi(t1, t2) interval processing time of Ti in the time interval [t1, t2)
[t1, t2) time interval: [t1, t2) = { t1, t1 + 1, ..., t2 � 1 }
[t1, t2] time interval: [t1, t2] = { t1, t1 + 1, ..., t2 }
A subset of tasks: A � B
A � i (i � A) Ti has to be processed after (before) all tasks in A
Cmax(p,(A)) optimal makespan if all tasks in A are scheduled without

preemption
Cmax(p ,

 pr(A)) optimal makespan if all tasks in A are scheduled with
preemption allowed

g¬ in (h) set of input negation consistency tests
gout (h) set of output consistency tests
ESTmin(A) minimal earliest start time in A : ESTmin(A) = min i�A{esti}
LBh(A) time bound adjustment for output consistency tests
LBh(A, i) time bound adjustment for input negation consistency tests
LCTmax(A) maximal latest completion time in A :

LCTmax(A) = max i�A{lcti}
B(t1,t2) subset of tasks which must be processed completely or par-

tially in the time interval [t1, t2) :
B(t1,t2) = { i � B | pi (t1, t2) > 0 }

p(A) sum of processing times in A : p(A) = 5 i�A pi
p(A, t1, t2) sum of interval processing times in A in the time interval

[t1, t2) : p(A, t1, t2) = 5 i�A pi(t1, t2)
T (A) task set of A : T (A) = T (ESTmin(A), LCTmax(A))
T (t1, t2) task set: T (t1, t2) = { i � B | t1 � esti , lcti � t2 }

Table 16.4.1: List of symbols.

Our goal is to examine which domain consistency tests have to be applied in or-
der to establish strong 3-b-consistency which is also known as lower-level
bound-consistency. 1-b-consistency is trivially established, since unary con-

634 16 Constraint Programming and Disjunctive Scheduling

straints are not involved, so only 2-b- and 3-b-consistency remain to be studied.
The corresponding consistency tests will be derived through an elementary

and systematic evaluation of all constraints. This “bottom up'' approach is quite
technical, but it closes the gap that is usually left by the consistency tests which
are due to the researcher's inspiration and insight into the problem's nature. As a
consequence, we will rediscover most of these consistency tests which have been
“derived'' in a “top down'' fashion in a slightly stronger version.

2-b-Consistency

In order to test for 2-b-consistency, pairs of different tasks have to be examined.
If Ti , i � B is a task and sti � {esti , lsti} an assignment of its start time, then sti is
(currently) consistent and cannot be removed if there exists another task Tj ,
j � B, and an assignment stj � ,j , such that sti and stj satisfy the disjunctive con-
straint i X j :

 stj � ,j : sti + pi � stj W stj + pj � sti . (16.4.3)

Of course, if (16.4.3) is satisfied for all pairs (i , j) then 2-b-consistency is es-
tablished. Since ,j = [estj , lstj], this condition can be simplified as follows:

sti + pi � lstj W estj + pj � sti . (16.4.4)

Suppose now that 2-b-consistency is not yet established. We will first show
how to derive a well-known consistency test which removes an inconsistent as-
signment sti = esti through a simple evaluation of (16.4.4). Similar arguments
lead to a consistency test for removing the assignment sti = lsti . These consisten-
cy tests have been first proposed by Carlier and Pinson [CP89]. Obviously, if
(16.4.4) is not satisfied for sti = esti then we can remove esti , i.e.

esti + pi > lstj ^ estj + pj > esti � esti = esti + 1. (16.4.5)

Observe that after adjusting esti , the condition esti + pi > lstj on the left side
of (16.4.5) is still satisfied. Therefore, we can increase esti as long as estj + pj
 > esti , i.e. until estj + pj � esti . This leads to the improved consistency test

esti + pi > lstj � esti = max{ esti , estj + pj }. (16.4.6)

Analogously, testing sti = lsti leads to the consistency test

estj + pj > lsti � lsti = min{ lsti , lstj � pi }. (16.4.7)

Let g2 be the set of consistency tests defined by (16.4.6) and (16.4.7) for all tasks
Ti � Tj . The next lemma in combination with Theorem 16.2.15 ensures that there
exists a unique fixed point g2(!), i.e. applying the consistency tests in g2 in an
arbitrary order until no more updates are possible will always result in the same
set of current domains.

 16.4 Constraint Propagation and the DSP 635

Lemma 16.4.2

g2 is a set of monotonous consistency tests.

Proof. For reasons of symmetry, it is sufficient to examine the consistency tests
given by (16.4.6). Let ! = { [estl , lstl] | l � B } and !' = { [estl ' , lstl '] | l � B }. If
! � !', that is, estl ' � estl and lstl � lstl ' for all l � B then

esti ' + pi > lstj ' � esti + pi > lstj

 �
(13.4.6)

 est i
 * = max{ esti , estj + pj }

 � est i
 * � max{ esti ' , estj ' + pj }

 � est i
 * � esti '

 *
As all other earliest and latest start times remain unchanged, estl '

 * � est l
 * and

lst l
 * � lstl '

 * for all l � B which proves the monotony property.

Altogether, the following theorem has been proven, see also [Nui94].

Theorem 16.4.3

For all ! � J, g2(!) is 2-b-consistent.

Example 16.4.4
Consider the situation that has been depicted in Figure 16.4.1. Since esti + pi
 = 6 > 5 = lstj , we can adjust esti = max{esti , estj + pj} = max{2,3} = 3 accord-
ing to (16.4.6). Note that the current domain of task Tj remains unchanged if
(16.4.7) is applied.

g2(!) can be computed by repeatedly testing all pairs i , j � B, i � j, until no more
updates are possible. We will discuss other algorithms which subsume the tests
for 2-b-consistency at a later time. As a generalization of the pair test Focacci
and Nuijten [FN00] have proposed two consistency tests for shop scheduling,
with sequence dependent setup times between pairs of tasks processed by the
same disjunctive resource.

3-b-Consistency

In order to test for 3-b-consistency, triples of pairwise different tasks have to be
examined. Again, let Ti , i � B, be a task, and sti � {esti , lsti}. The start time sti is
(currently) consistent and cannot be removed if there exist j, k � B, such that i, j,
k are indices of pairwise different tasks, and there exist assignments stj � ,j , stk
� ,k , such that sti , stj , and stk satisfy the disjunctive constraints i X j, i X k,

636 16 Constraint Programming and Disjunctive Scheduling

and j X k. Let us first consider this condition for sti = esti :

 stj� ,j , stk � ,k : { (esti + pi � stj W stj + pj � esti) ^
(esti + pi � stk W stk + pk � esti) ^
(stj + pj � stk W stk + pk � stj) .

(16.4.8)

Again, if (16.4.8) is satisfied for all triples (i , j , k) then 3-b-consistency is estab-
lished. This condition is equivalent to

 stj� ,j , stk � ,k :

(esti + pi � stj ^ stj + pj � stk) W
(esti + pi � stk ^ stk + pk � stj) W
(stj + pj � esti ^ esti + pi � stk) W
(stk + pk � esti ^ esti + pi � stj) W
(stj + pj � stk ^ stk + pk � esti) W
(stk + pk � stj ^ stj + pj � esti) .

(16.4.9)

Each line of (16.4.9) represents a permutation of the tasks Ti , Tj , Tk , e.g. the first
line corresponds to the sequence i � j � k. Since ,j = [estj , lstj] and ,k = [estk ,
 lstk], (16.4.9) is equivalent to:

 stj� ,j , stk � ,k :

(esti + pi � stj ^ stj + pj � lstk) W (i)
(esti + pi � stk ^ stk + pk � lstj) W (ii)
(estj + pj � esti ^ esti + pi � lstk) W (iii)
(estk + pk � esti ^ esti + pi � lstj) W (iv)
(estj + pj � stk ^ stk + pk � esti) W (v)
(estk + pk � stj ^ stj + pj � esti) . (vi)

 (16.4.10)

In analogy to the case of establishing 2-b-consistency, we can increase esti := esti
 + 1 if (16.4.10) is not satisfied. However, in spite of the previous simplifica-
tions, testing (16.4.10) still is too costly, since the expression on the right side
has to be evaluated for all stj � ,j and stk � ,k . In the following lemmas, we
therefore replace the conditions (i), (ii), (v) and (vi) which either contain stj or stk
with simpler conditions.

Lemma 16.4.5

If ! is 2-b-consistent and the conditions (iii) and (vi) are not satisfied then the
following equivalence relations hold:

 stj� ,j , stk � ,k : { (esti + pi � stj ^ stj + pj � lstk) W (i)
(esti + pi � stk ^ stk + pk � lstj) (ii)

(16.4.11)

 16.4 Constraint Propagation and the DSP 637

 esti + pi + pj � lstk W esti + pi + pk � lstj (16.4.12)

 max{ lctj � esti , lctk � esti } � pi + pj + pk (16.4.13)

Proof. Let us prove the first equivalence. The direction � is obvious, so only j
has to be shown. Let (16.4.12) be satisfied. Without loss of generality, we can
assume that either (a) esti + pi + pj � lstk and esti + pi + pk > lstj , or that (b) lstk �
lstj if both, esti + pi + pj � lstk and esti + pi + pk � lstj . Studying the two cases esti
 + pi � estj and esti + pi < estj separately, we can show that in both cases there
exists stj � ,j , such that condition (i) is satisfied.

Case 1: Let esti + pi � estj . If we can prove that esti + pi � lstj then choosing stj
 := esti + pi is possible, as then stj � [estj , lstj] = ,j , esti + pi � stj and stj + pj
 = esti + pi + pj � lstk . Thus, condition (i) is satisfied. In order to prove esti + pi �
lstj , we use the assumption that condition (iii) is not satisfied, i.e. that estj + pj >
esti or esti + pi > lstk . It follows from esti + pi < esti + pi + pj � lstk that the second
inequality cannot be satisfied, so that actually estj + pj > esti . Thus, indeed, esti
 + pi � lstj , as we have assumed 2-b-consistency (see (16.4.6)).

Case 2: Let esti + pi � estj . If estj + pj � lstk , setting stj := estj � ,j again satisfies
condition (i). We now have to show that, in fact, estj + pj � lstk . Again, we will
use the assumption that 2-b-consistency is established. If estj + pj > lstk then
(16.4.7) implies lstk � lstj � pk and lstk < lstj . Further, as esti + pi + pj � lstk � lstj
 � pk we can conclude esti + pi + pk � lstj . So both inequalities of (16.4.12) are
satisfied, but lstk < lstj . This is a contradiction to the assumption (b).

The second equivalence is easily proven by adding pk and pj , respectively,
on both sides of inequalities (16.4.12) .

Lemma 16.4.6

If ! is 2-b-consistent then the following equivalence relations hold:

 stj� ,j , stk � ,k : { (estj + pj � stk ^ stk + pk � esti) W (v)
(estk + pk � stj ^ stj + pj � esti) (vi)

 (16.4.14)

esti � max{estj + pj + pk , estk + pk} W
esti � max{estk + pk + pj , estj + pj}

(16.4.15)

 esti � max{min {estj , estk} + pj + pk , estj + pj , estk + pk} (16.4.16)

Proof. We prove the first equivalence. Again, the direction � is obvious, so we
only have to show j. Let (16.4.15) be satisfied. We assume without loss of gen-
erality that estj � estk . This implies max{ estk + pk + pj , estj + pj } � estk + pk + pj
 � max{ estj + pj + pk , estk + pk }, so that esti � max{ estj + pj + pk , estk + pk } (*).

638 16 Constraint Programming and Disjunctive Scheduling

Case 1: Let estj + pj � estk . If estj + pj > lstk then the 2-b-consistency (16.4.6)
implies estj � estk + pk and estj � estk which is a contradiction, so that actually estj
 + pj < lstk . We can set stk := estj + pj � [estk , lstk] = ,k , and condition (v) is satis-
fied due to (*).
Case 2: Let estj + pj < estk . Choosing stk := estk � ,k again satisfies condition (v)
due to (*). A standard proof verifies the second equivalence.

Given that 2-b-consistency is established, we can therefore replace (16.4.10)
with the following equivalent and much simpler condition which can be tested in
constant time:

(max{lctj � esti , lctk � esti} � pi + pj + pk) W (i + ii)
(estj + pj � esti ^ esti + pi � lstk) W (iii)
(estk + pk � esti ^ esti + pi � lstj) W (iv)
(esti � max{min{estj , estk} + pj + pk , estj + pj , estk + pk}) . (v + vi)

(16.4.17)

Resuming our previous thoughts, we can increase esti := esti + 1 if (16.4.17) is
not satisfied. Observe that if (i + ii) is not satisfied before increasing esti then it is
not satisfied after increasing esti . Therefore, we can proceed as follows: first,
test whether (i + ii) holds. If this is not the case then increase esti until one of the
conditions (iii), (iv) or (v + vi) is satisfied. Fortunately, this incremental process
can be accelerated by defining appropriate time bound adjustments.

Deriving the correct time bound adjustments requires a rather lengthy and
painstaking analysis which is provided in Section 16.6 (Appendix). At the mo-
ment, we will only present an intuitive development of the results which avoids
the distraction of the technical details.

Two cases have to be distinguished. In the first case, increasing esti will
never satisfy conditions (i + ii), (iii) and (iv). This can be interpreted as the situa-
tion in which Ti can neither be processed at the first, nor at the second position,
but must be processed after Tj and Tk. We then have to increase esti until condi-
tion (v + vi) is satisfied. Notice that this is always possible by choosing esti suffi-
ciently large, i.e. by setting

esti := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} .

However, it is possible to show that the seemingly weaker adjustment

esti := max{esti , min{estj , estk} + pj + pk}

is sufficient if it is combined with the tests for establishing 2-b-consistency or,
more precisely, if after the application of this adjustment the 2-b-consistency
tests are again applied. This leads to the following two consistency tests:

 16.4 Constraint Propagation and the DSP 639

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} < pi + pj + pk

� esti := max{esti , min{estj , estk} + pj + pk},
(16.4.18)

esti + pi > max{lstj , lstk}
� esti := max{esti , min{estj , estk} + pj + pk} .

(16.4.19)

It is both important to establish 2-b-consistency prior and after the application of
these consistency tests, since the application of the latter test can lead to a 2-b-
inconsistent state.

A generalization of these tests will be later described under the name in-
put/output consistency tests. Trivial though it may seem, it should nevertheless
be mentioned that the consistency tests (16.4.18) and (16.4.19) are not equiva-
lent. Furthermore, observe that if the left side of (16.4.19) is satisfied then the
consistency tests for pairs of tasks (16.4.6) can be applied to both (i , j) and (i , k),
but may lead to weaker domain adjustments. We will give some examples which
confirm these assertions.

Example 16.4.7
Consider the example depicted in Figure 16.4.2. Since

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} = 9 < 10 = pi + pj + pk ,

we can adjust esti := max{esti , min{estj , estk} + pj + pk} = max{3,7} = 7 accord-
ing to (16.4.18). By comparison, no deductions are possible using (16.4.19), as
esti + pi = 6 < 7 = max{lstj , lstk}.

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

10 11 12
xx

9 10 11

Tk 2 3 4 5 6 7 8 9

xx
3

Figure 16.4.2 Consistency test (16.4.18).

Example 16.4.8
In Figure 16.4.3 another example is shown. Here, the consistency test (16.4.18)
fails, as

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} = 9 = pi + pj + pk .

The consistency test for pairs of tasks described in (16.4.6) can be applied to (i , j)
and (i , k), but leaves estj unchanged, since estj + pj = estk + pk = 3 < 4 = esti . On-
ly the consistency test (16.4.19) correctly adjusts esti := max{esti , min{estj , estk}

640 16 Constraint Programming and Disjunctive Scheduling

+ pj + pk} = max{4,6} = 6.

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

10 11 12
xx

9

Tk 10 2 3 4 5 6 7 8 9
Figure 16.4.3 Consistency test (16.4.19).

Let us now turn to the second case in which the condition (i + ii) is not satisfia-
ble, but increasing esti will eventually satisfy (iii) or (iv). This can be interpreted
as the situation in which Ti cannot be processed first, but either j � i � k or
k � i � j are feasible. The corresponding consistency test is as follows:

max
v�{j,k}

{lctv � esti} < pi + pj + pk

� esti := max{esti , min{ectj , ectk}}.
(16.4.20)

A generalization of this test will be later described under the name input/output
negation consistency test.

Example 16.4.9
Consider the example of Figure 16.4.4. No domain reductions are possible using
the consistency tests (16.4.18) and (16.4.19). Since, however, maxv�{j,k}{lctv
 � esti} = 7 < 9 = pi + pj + pk , we can adjust esti := max{esti , min{ectj , ectk}} =
max{2, 3} = 3 using the consistency test (16.4.20).

Ti

10 2 3 4 5 6 7 8

4 5 6 7 8 9

Tj

3
x

9

Tk 1 2 3 4 5 6 7 8 9

2

Figure 16.4.4 Consistency test (16.4.20).

The adjustments of the latest start times can be handled symmetrically. The same
line of argumentation allows us to derive the following three consistency tests:

max
u�{j,k}, v�{i,j,k}, u�v

{lctv � estu} < pi + pj + pk

� lsti := min{lsti , max{lctj , lctk} � pj � pk � pi},
(16.4.21)

min{estj + pj , estk + pk} > lsti (16.4.22)

 16.4 Constraint Propagation and the DSP 641

� lsti := min{lsti , max{lctj , lctk} � pj � pk � pi},

max
u�{j,k}

{lcti � estu} < pi + pj + pk

� lsti := min{lsti , max{lstj , lstk} � pi}.
(16.4.23)

Let g3 be the set of consistency tests defined in (16.4.18)-(16.4.23) for all pair-
wise different triples of tasks with indices i, j, k � B, and let g2,3 := g2 � g3 . It
can be shown that all consistency tests in g2,3 are monotonous, so g2,3(!) is well
defined. We have proven the following theorem.

Theorem 16.4.10

For all ! � J, g2,3(!) is strongly 3-b-consistent.

Notice that g3(g2(!)) does not have to be strongly 3-b-consistent, since the ap-
plication of some of the consistency tests in g3 can result in current domains
which are not 2-b-consistent. So, indeed, the consistency tests in g2 and g3 have
to be applied in alternation.

Obviously, g2,3(!) can be computed by repeatedly testing all pairwise dif-
ferent pairs and triples of tasks. However, as will be seen in the following sec-
tions, there exist more efficient algorithms.

16.4.4 Input/Output Consistency Tests

In the last section, domain consistency tests for pairs and triples of tasks have
been described. It suggests itself to derive domain consistency tests for a greater
number of tasks through a systematic evaluation of a greater number of disjunc-
tive constraints. For the sake of simplicity, we will refrain from this rather tech-
nical approach and follow the historical courses which finally leads to the defini-
tion of these powerful consistency tests. Note, however, that we must not expect
that the consistency tests derived will establish some higher level of bound-
consistency, since great store has been set on an efficient implementation.

At first, we will present generalizations of the consistency tests (16.4.18)
and (16.4.19). A closer look at these tests reveals that not only domain reduc-
tions but also processing orders of tasks can be deduced. It is convenient to first
introduce these sequence consistency tests so as to simplify the subsequent
proofs.

Sequence Consistency Tests

Given a subset of task indices A �/ B and an additional task Ti , i 	 A, Carlier and
Pinson [CP89] were the first to derive conditions which imply that Ti has to be

642 16 Constraint Programming and Disjunctive Scheduling

processed before or after all tasks Tj , j � A. In the first case, they called i the
input of A, in the second case, the output of A, and so the name input/output
conditions seems justified.

Theorem 16.4.11 (Input/Output Sequence Consistency Tests).

Let A �/ B and i 	 A. If the input condition

max
u�A, v�A�{i}, u�v

{lctv � estu < p(A � {i}) (16.4.24)

is satisfied then task Ti has to be processed before all tasks in A, for short, i � A.
Likewise, if the output condition

max
u�A�{i}, v�A, u�v

{lctv � estu} < p(A � {i}) (16.4.25)

is satisfied then task Ti has to be processed after all tasks in A, for short, A � i.

Proof. If Ti is not processed before all tasks in A then the maximal amount of
time for processing all tasks in A � {i} is bounded by maxu�A, v�A�{i}, u�v {lctv �
estu}. This leads to a contradiction if (16.4.24) is satisfied. Analogously, the sec-
ond assertion can be shown.

The original definition of Carlier and Pinson is slightly weaker. It replaces the
input condition with

LCTmax(A � {i}) � ESTmin(A) < p(A � {i}). (16.4.26)

Likewise, the output condition is replaced with

LCTmax(A) � ESTmin(A � {i}) < p(A � {i}). (16.4.27)

We will term these conditions the modified input/output conditions.. There are
situations in which only the input/output conditions in their stricter form lead to a
domain reduction. For a discussion of the computational complexity of algo-
rithms that implement these tests see the end of Section 16.4.

Example 16.4.12
In Example 16.4.7 (see Figure 16.4.2), we have seen that

max
u�{i,j,k}, v�{j,k}, u�v

{lctv � estu} = 9 < 10 = pi + pj + pk ,

so that the output (16.4.25) implies {j , k} � i. By comparison, the modified
output condition is not satisfied since

LCTmax({ j , k }) � ESTmin({ i , j , k}) = lctj � estj = 11 > 10 = pi + pj + pk .

 16.4 Constraint Propagation and the DSP 643

Domain Consistency Tests

Domain consistency tests that are based on the input/output conditions can now
be simply derived. Here and later, we will only examine the adjustment of the
earliest start times, since the adjustment of the latest start times can be handled
analogously. Clearly, if i is the output of a subset A then Ti cannot start before all
tasks of A have finished. Therefore, the earliest start time of Ti is at least
Cmax(p,(A)), i.e. the makespan if all tasks in A are scheduled without preemption.
Unfortunately, however, determining Cmax(p,(A)) requires the solution of the
NP-hard single-machine scheduling problem [GJ79]. Thus, if the current do-
mains are to be updated efficiently, we have to content ourselves with approxi-
mations of this bound. Some of these approximations are proposed in the next
theorem which is a generalization of the consistency test (16.4.19) derived in the
last subsection. This theorem is mainly due to Carlier and Pinson [CP90],
Nuijten [Nui94], Caseau and Laburthe [CL95] and Martin and Shmoys [MS96].
The proof is obvious and is omitted.

Theorem 16.4.13 (output domain consistency tests, part 1).

If the output condition is satisfied for A �/ B and i 	 A then the earliest start time
of Ti can be adjusted to esti := max{esti , LBh(A)}, h � {1 , 2 , 3 , 4}, where

 (i) LB1(A) := maxu�A{ ectu},

 (ii) LB2(A) := ESTmin(A) + p(A),

 (iii) LB3(A) := Cmax(p,
 pr(A)),

 (iv) LB4(A) := Cmax(p,(A)) .

Dominance Relations

Let us compare the domain reductions that are induced by the output domain
consistency tests and the different bounds. For each h � {1 , 2 , 3 , 4}, we denote
with gout (h) := { "A,i

 (h) | A �/ B, i 	 A } the set of output domain consistency tests
defined in Theorem 16.4.13:

"A,i
 (h) := max

u�A�{i}, v�A, u�v
{lctv � estu} < p(A � {i}) � esti := max{esti , LBh(A)}.

Lemma 16.4.14
The following dominance relations hold:

1. gout(1) ≺= gout(3) ≺= gout(4) ,
2. gout(2) ≺= gout(3) ≺= gout(4) .

644 16 Constraint Programming and Disjunctive Scheduling

Proof. As LB3(A) � LB4(A), the relation "A,i
 (4)(!) � "A,i

 (3)(!) holds for all A �/ B,
i 	 A and ! � J. Theorem 16.2.18 then implies that gout(3) ≺= gout(4). Further,
Carlier [Car82] has shown the following identity for the preemptive bound:

LB3(A) = max
��V�A

{ESTmin(V) + p(V) }. (16.4.28)

Since the maximum expression in (16.4.28) considers all single-elemented sets
and A itself, LB1(A) � LB3(A) and LB2(A) � LB3(A). Again, using Theorem
16.2.18, we can conclude that gout(1) ≺= gout(3) and gout(2) ≺= gout(3).

Intuitively, it seems natural to assume that gout(1) is strictly dominated by
gout(3), while gout(3) is strictly dominated by gout(4). Indeed, this is true. Re-
member that, since gout(1) ≺= gout(3) has already been shown, we only have to
find an example in which gout(3) leads to a stronger domain reduction than
gout(1) in order to verify gout(1) ≺ gout(3). The same naturally holds for gout(3)
and gout(4).

Example 16.4.15
Consider the situation illustrated in Figure 16.4.5 with five tasks with indices i, j,
k, l, m. The table in Figure 16.4.5 lists all feasible sequences and the associated
schedules. Examining the start times of the feasible schedules shows that the
domains ,j , ,k , ,l , ,m cannot be reduced. Likewise, it can be seen that i is the
output of A = {j , k , l , m} with the earliest start time being LB4(A) = 10. In fact,
the output condition holds, as

max
u�A�{i}, v�A, u�v

{lctv � estu} = 10 < 11 = p(A � {i}) ,

so that we can adjust esti using one of the bounds of Theorem 16.4.13. Apart
from LB4(A) = 10, it is possible to show that LB1(A) = 7, LB2(A) = 9 and LB3(A)
 = 9. Obviously, LB1(A) < LB3(A) < LB4(A) = 10. Notice that, after the adjust-
ment of esti , no other adjustments are possible if the same lower bound is used
again, so that a fixed point is reached. This confirms the conjecture gout(1) ≺ gout
(3) ≺ gout(4).

It remains to classify gout(2). Comparing LB1(A) and LB2(A) shows that all three
cases LB1(A) < LB2(A), LB1(A) = LB2(A) and LB1(A) > LB2(A) can occur. Further,
comparing LB2(A) and LB3(A) reveals that LB2(A) � LB3(A) and sometimes LB2
(A) < LB3(A). So we would presume that gout(1) and gout(2) are not comparable,
while gout(2) is strictly dominated by gout(3). This time, however, our intuition
fails, since in fact gout(2) and gout(3) are equivalent.

 16.4 Constraint Propagation and the DSP 645

Ti

10 2 3 4

4 5 6 7 8 9

Tj

3
x

Tk 1 2 3 4 5 6 7 8 9

210

3 4 5 6 7 8
Tl

9

Tm 5 6 7 8

10 11 12

10

10

0

x x x x xx x x x

sequence sti stj stk stl stm
j � k � m � l � i 10 0 2 7 5
j � l � m � k � i 10 0 8 3 6
k � j � m � l � i 10 2 0 7 5

Figure 16.4.5 Comparing gout(1), gout(3) and gout(4).

Theorem 16.4.16 (dominance relations for output consistency tests). [DPP00]

gout(1) ≺ gout(2) ~ gout(3) ≺ gout(4).

Proof. We only have to prove gout(3) ≺= gout(2). It is sufficient to show that for all
A �/ B, i 	 A and all ! � J, one of the following cases applies:

(1) "A,i
 (3)(!) = "A,i

 (2)(!) ,

(2) V �/ A : "A,i
 (3)(!) = "V,i

 (2)("A,i
 (2)(!)) .

Once more, Theorem 16.2.18 will then lead to the desired result. Let us assume
that the output condition (16.4.25) is satisfied for some A �/ B and i 	 A. We
have to compare the bounds:

(i) LB2(A) = ESTmin(A) + p(A) ,

(ii) LB3(A) = max��V�A{ESTmin(V) + p(V)} ,

If LB2(A) = LB3(A) then "A,i
 (2) and "A,i

 (3) deduce the same domain reductions and
case (1) applies. Let us therefore assume that LB2(A) < LB3(A). Since the
preemptive bound is determined by (16.4.28) , there exists V - A, V � �, such
that LB3(A) = ESTmin(V) + p(V). Since LB2(A) < LB3(A), this is equivalent to

ESTmin(A) + p(A) < ESTmin(V) + p(V) . (16.4.29)

Subtracting p(V) from both sides yields

ESTmin(A) + p(A � V) < ESTmin(V) (16.4.30)

646 16 Constraint Programming and Disjunctive Scheduling

The last inequality will be used at a later time. Assume now that esti has been
adjusted by applying "A,i

 (2)
 . Note that this means that esti is increased or remains

unchanged. Thus, if the output condition is satisfied for the couple (A , i) prior
the adjustment of esti then it is satisfied after the adjustment, so that

max
u�A�{i},v�A,u�v

{lctv � estu
 *} < p(A � {i}) (16.4.31)

still holds for est i
 * := max{esti , LB2(A)} and estu

 * = estu for all u � i. If we do not
maximize over all but only a subset of values then we obtain a lower bound of
the left side of this inequality and

max
u�A,v�V,u�v

{lctv � estu
 *} < p(A � {i}) . (16.4.32)

Rewriting p(A � {i}) = p(V � {i}) + p(A � V) then leads to

max
u�A,v�V,u�v

{lctv � (estu
 * + p(A � V)} < p(A � {i}) . (16.4.33)

The left side of (16.4.33) can be simplified using the identity

max
u�A,v�V,u�v

{lctv � (estu
 * + p(A � V))}

= max
v�V

{lctv � (ESTmin
 * (A) + p(A � V))}. (16.4.34)

This is not apparent at once and requires some explanations. At first, the
term on the left side of (16.4.34) seems to be less than or equal to the term on the
right side, since ESTmin

 * (A) � estu
 * for all u � A. We now choose u' � A such that

estu'
 * = ESTmin

 * (A). If u' � V - A then ESTmin
 * (V) = ESTmin

 * (A). Since the earliest
start times of all tasks with indices in A did not change, this is a contradiction to
(16.4.30). Thus, the left side of (16.4.34) assumes the maximal value for u =
u' 	 V , and both terms are indeed identical. Therefore, (16.4.33) is equivalent to

max
v�V

{lctv � (ESTmin
 * (A) + p(A � V))} < p(V � {i}). (16.4.35)

The left side of (16.4.35) can be approximated using (16.4.30) which tells us that
for all u � V :

estu
 * > ESTmin

 * (A) + p(A � V) (16.4.36)

Likewise, we can deduce

est i
 * � LB2(A) = ESTmin

 * (A) + p(A) > ESTmin
 * (A) + p(A � V) . (16.4.37)

So, ESTmin
 * (A) + p(A � V) in (16.4.35) can be replaced by estu

 * for all u � V � {i}
which yields

max
u�V�{i},v�V,u�v

{lctv � estu
 *} < p(V � {i}) (16.4.38)

Observe that this is nothing but the output condition for the couple (V , i).

 16.4 Constraint Propagation and the DSP 647

Since LB2(V) = ESTmin
 * (V) + p(V) = LB3(A), a subsequent application of "V,i

 (2) leads
to the same domain reduction and the second case (2) applies. This completes
our proof.

Sequence Consistency Tests Revisited

It has already been mentioned that applying both sequence and domain con-
sistency tests together can lead to better search space reductions. Quite evidently,
any domain reductions deduced by Theorem 16.4.13 can lead to additional edge
orientations deduced by Theorem 16.4.11. We will now discuss the case in
which the inverse is also true.

Imagine a situation in which A � i can be deduced for a subset of tasks, but
in which the output condition does not hold for the couple (A , i). Such a situation
can actually occur as has, for instance, been shown in Example 16.4.8 for the
three tasks Ti , Tj , Tk : while j � i and k � i can be separately deduced without,
however, implying a domain reduction, the output condition fails for the couple
({j , k} , i). This motivates the following obvious theorem as an extension of Theo-
rem 16.4.13.

Theorem 16.4.17 (Input/Output Domain Consistency Tests, part 2).

Let A �/ B and i 	 A. If A � i then the earliest start time of task Ti can be adjust-
ed to esti := max{esti, LBh(A)}, h � {1 , 2 , 3 , 4}.

Algorithms and Implementation Issues

An important question to answer now is whether there exist efficient algorithms
that implement the input/output consistency tests. There are two obstacles which
have to be overcome: the computation of the domain adjustments and the detec-
tion of the couples (A , i) which satisfy the input/output conditions.

Regarding the former, computing the non-preemptive bound is ruled out due
to the NP-hardness result. At the other extreme, the “earliest completion time
bound'' (LB1) is a too weak approximation. Therefore, only the “sum bound''
(LB2) or the preemptive bound (LB3) remain candidates for the domain adjust-
ments. Recall that both bounds are equivalent with respect to the induced !-
fixed-point. Regarding the computational complexity, however, the two bounds
are quite different: on the one hand, computing LB2 requires linear time com-
plexity O(|A |) in contrast to the O(|A | log |A |) time complexity for computing
LB3 . On the other hand, establishing the !-fixed-point, LB2 usually has to be
computed more often than LB3 , and it is not clear which factor - complexity of
bound computation or number of iterations - dominates the other.

Let us turn to the second problem. An efficient implementation of the in-
put/output consistency tests is obviously not possible if all pairs (A , i) of subsets

648 16 Constraint Programming and Disjunctive Scheduling

A �
/
 B and tasks Ti , i 	 A are to be tested separately. Fortunately, it is not neces-

sary to do so as has been first shown by Carlier and Pinson [CP90]. They devel-
oped an O(n2) algorithm (with n = | B |) which deduces all edge orientations and
all domain reductions that are implied by the modified input/output conditions
and the preemptive bound adjustment3. The fundamental idea was to test the
modified input/output conditions and to compute the preemptive bound adjust-
ments simultaneously. Several years later, Carlier and Pinson [CP94] and Bruck-
er et al. [BJK94] presented O(n log n) algorithms which until now have the best
asymptotic performance, but require quite complex data structures.

Nuijten [Nui94], Caseau and Laburthe [CL95] and Martin and Shmoys
[MS96] have chosen a solely domain oriented approach and proposed different
algorithms for implementing Theorem 16.4.13 based again on the modified in-
put/output conditions. Nuijten developed an O(n2) algorithm which as well can
be applied to scheduling problems with discrete resource capacity. Caseau and
Laburthe presented an O(n3) algorithm based on the concept of task sets which
works in an incremental fashion, so that O(n3) is a seldom worst case. The algo-
rithm introduced by Martin and Shmoys [MS96] has a time complexity of O(n2).

An O(n3) algorithm which deduces all edge orientations implied by Theorem
16.4.11 has been derived by Phan Huy [Pha00]. He also presents an O(n2

 log n)
for deriving all domain adjustments implied by Theorem 16.4.17.

16.4.5 Input/Output Negation Consistency Tests

In the last subsection, conditions have been described which imply that a task
has to be processed before (after) another set of tasks. In this subsection, the in-
verse situation that a task cannot be processed first (last) is studied.

Sequence Consistency Tests

The following theorem is due to Carlier and Pinson [CP89]. For reasons near at
hand, we have chosen the name input/output negation for the conditions de-
scribed in this theorem.

Theorem 16.4.18 (Input/Output Negation Sequence Consistency Tests).

Let A �/ B and i 	 A. If the input negation condition

3 It is common practice to only report the time complexity for applying all consistency tests

once. In general, the number of iterations necessary for computing the ∆-fixed-point has to
be considered as well. In the worst case, this accounts for an additional factor c which de-
pends upon the size of the current domains. In practice, however, c is a rather small con-
stant.

 16.4 Constraint Propagation and the DSP 649

LCTmax(A) � esti < p(A � {i}) (16.4.39)

is satisfied then task Ti cannot be processed before all tasks Tj , j � A. Likewise,
if the output negation condition

lcti � ESTmin(A) < p(A � {i}) (16.4.40)

is satisfied then task Ti cannot be processed after all other tasks Tj , j � A.

Proof. If Ti is processed before Tj , j � A then all tasks with indices in A have to
be processed within the time interval [esti , LCTmax(A)). This leads to a contradic-
tion if (16.4.39) is satisfied. The second assertion can be shown analogously.

The input/output negation conditions are a relaxation of the input/output condi-
tions and so are more often satisfied. However, the conclusions drawn in Theo-
rem 16.4.18 are usually weaker than those drawn in Theorem 16.4.11, except for
A contains a single task4. An important issue is therefore the development of
strong domain reduction rules based on the limited information deduced.

Domain Consistency Tests

We will only study the input negation condition and the adjustments of earliest
start times. Let us suppose that (16.4.39) is satisfied for A �/ B and i 	 A. Since,
then, Ti cannot be processed before all tasks Tj , j � A, there must be a task in A
which starts and finishes before Ti , although we generally do not know which
one. Thus, a lower bound of the earliest start time of Ti is

LB5(A , i) = min
u�A

{ectu} (16.4.41)

Caseau and Laburthe [CL95] made the following observation: if Ti cannot be
processed first then, in any feasible schedule, there must exist a subset
� � V � A, so that V � i � A � V. As a necessary condition, this subset V has to
satisfy

LCTmax((A � V) � {i}) � ESTmin(V) � p(A � {i}) . (16.4.42)

Consequently, they proposed

LB6(A , i) = min
��V�A

{ LB2(V) | V satisifies (16.4.42) } (16.4.43)

as a lower bound for the earliest start time of Ti . Notice, however, that if V satis-
fies (16.4.42) then the one-elemented set V' := {u} � V with estu = ESTmin(V)
satisfies (16.4.42) as well. Further, LB2(V) = ESTmin(V) + p(V) = estu + p(V)

4 In this case, the input/output negation sequence consistency test coincides with the in-

put/output sequence consistency test for pairs of operations.

650 16 Constraint Programming and Disjunctive Scheduling

� estu + pu = LB2(V'), so that the expression in (16.4.43) is minimal for a one-
element set. Therefore, setting Au := (A � {u}) � {i} we can rewrite

 LB6(A , i) = min
u�A

{ ectu | LCTmax(Au) � estu � p(Au � {u}} (16.4.44)

This bound has a quite simple interpretation: the minimal earliest completion
time is only chosen among all tasks which do not satisfy the input negation con-
dition, because those who do, cannot start at the first position.

Up to now, esti has been adjusted to the earliest completion time of some
single task. The time bound adjustment can be improved if a condition is derived
that detects a situation in which more than one task have to be processed before
Ti . Observe that if for a subset � � V � A the sequence V � i � A � V is feasi-
ble then the following condition must hold:

LCTmax((A � V) � {i}) � esti � p((A � V) � {i}) . (16.4.45)

This implies the lower bounds on the earliest start time:

LB7(A , i) := min
��V�A

{ LB2(V) | V satisfies (16.4.45)} (16.4.46)

LB8(A , i) := min
��V�A

{ LB3(V) | V satisfies (16.4.45)} (16.4.47)

Finally, we can try to find the exact earliest start time of task Ti by computing

LB9(A , i) := min
��V�A

{ LB4(V) | V � i � A � V is feasible} . (16.4.48)

The following theorem which is a generalization of the consistency test
(16.4.20) summarizes the results derived above.

Theorem 16.4.19 (Input/Output Negation Domain Consistency Tests).

If the input negation condition is satisfied for A �/ B and i 	 A then the earliest
start time of task Ti can be adjusted to esti := max{esti , LBh(A , i)}, h � {5 , 6 , 7 ,

8 , 9}.

Dominance Relations

For h � {5 , 6 , 7 , 8 , 9}, let g¬in(h) := { "A,i
 (h) | A �/ B, i 	 A} denote the set of input

negation domain consistency tests defined in Theorem 16.4.19:

"A,i
 (h) : LCTmax(A) � esti < p(A � {i}) � esti := max{esti , LBh(A , i)} .

Lemma 16.4.20
The following dominance relations hold:
 1. g¬in(5) ≺= g¬in(6) ≺= g¬in(9),

 16.4 Constraint Propagation and the DSP 651

 2. g¬in(5) ≺= g¬in(7) ≺= g¬in(8) ≺= g¬in(9).

Lemma 16.4.21

g¬in(5) ~ g¬in(6).

Proof. We only have to prove that g¬in(6) ≺= g¬in(5). It is sufficient to show that
for all A �/ B, i 	 A and ! � J, there exist A1

 ,..., Ar �/ B such that

("Ar,i
 (5) h...h "A1,i

 (5))(!) � "A,i
 (6)(!) (16.4.49)

For the sake of simplicity, we omit an exact proof but only describe the basic
ideas. Let U � A denote the index set of tasks satisfying the input negation condi-
tion, i.e. U := { u � A | LCTmax(Au) � estu < p(Au � {u})} with Au := (A � {u}) �
{i}.

Recall that

(i) LB5(A , i) = min
u�A

{ectu} ,

(ii) LB6(A , i) = min
u�A�U

{ ectu} .

If both bounds are identical then, obviously, "A,i
 (6)(!) = "A,i

 (5)(!). This identity, for
instance, holds if U is empty. Thus, in the following, we restrict our attention to
the case | U | > 0. If u � A is a task satisfying ectu = LB5(A , i) < LB6(A , i) then
u � U and

estu + p(Au � {u}) = ectu + p(Au) > LCTmax(Au) .

If the earliest start time of Ti has been adjusted to est i
 * := max{esti, LB5(A , i)} by

applying "A,i
 (5) then we have est i

 * � ectu , so

est i
 * + p(Au) > LCTmax(Au) � LCTmax(Au � {i})

or
est i

 * + p((A � {u}) � {i}) > LCTmax(A � {u})

which is the input negation condition for the couple (A � {u} , i). Therefore, est i
 *

can be adjusted once more to LB5(A � {u}, i). If LB5(A � {u}, i) = LB6(A � {u}, i)
then we are done, since LB6(A � {u}, i) � LB6(A, i). Otherwise, we are in the
same situation as above which allows us to continue in the same manner. Finally,
observe that the number of adjustments is finite and bounded by | A |.

Example 16.4.22
Consider the example shown in Figure 16.4.6 with four tasks indexed as i, j, k, l.
A closer look at the set of feasible schedules reveals that ,j , ,k and ,l cannot be
reduced. Likewise, it can be seen that i cannot be the input of A = {j , k , l} which

652 16 Constraint Programming and Disjunctive Scheduling

is detected by the input negation condition, since LCTmax(A) � esti = 11 –
5 < 11 = p(A � {i}). Using LB5 , no time bound adjustment is possible, since LB5
(A , i) = 3. However, there exists no feasible schedule in which only one task is
processed before Ti . Indeed, LB7(A , i) = 6 leads to a stronger time bound adjust-
ment. After the domain reduction, a fixed point is reached, so this example and
Lemma 16.4.20 prove that g¬in(5) ≺ g¬in(7).

Ti

10 2 3 4

5 6 7 8 9

Tj

Tk 2 3 4 5 6 7 8 9

5 6 7 8
Tl

9

10 11 12

10

10

x
13

5 6 7 8 9 10 11

11

11

sequence sti stj stk stl
j � k � i � l 6 0 3 8
j � k � l � i 9 0 3 6
j � l � k � i 11 0 8 5
k � j � l � i 11 5 2 8
k � l � j � i 11 8 2 5

Figure 16.4.6 Comparing g¬in(5) and g¬in(7).

Lemma 16.4.23

g¬in(7) ~ g¬in(8) .

Proof. Similar to Theorem 16.4.16.

Example 16.4.24
Consider the situation in Figure 16.4.7 with five tasks indexed as i, j, k, l, m.
Again, ,j, ,k, ,l and ,m cannot be reduced. Further, it can be seen that i is the
output of A = {j , k , l , m} with the earliest start time being LB9(A , i) = 9. However,
the output condition is not satisfied for the couple (A , i). The input negation con-
dition holds, since LCTmax(A) – esti = 11 – 1 < 11 = p(A � {i}), but LBh(A , i) = 1
for all h � {5 , 6 , 7 , 8). Thus, the current domain of Ti remains unchanged if these
bound adjustments are applied, i.e. a fixed point is reached. This and Lemma
16.4.20 prove the relation g¬in(8) ≺ g¬in(9).

 16.4 Constraint Propagation and the DSP 653

Ti

10 2

4 5 6 7 8 9

Tj

3
x

Tk 1 2 3 4 5 6 7 8 9

21

3 4 5 6 7 8
Tl

9

Tm 5 6 7

10 11 12

10

x x x xx x x
13

4 5 6 7 8 93 10 11

11

2

4

sequence sti stj stk stl stm
j � k � m � l � i 9 0 1 6 4
j � l � m � k � i 10 0 7 2 5
k � m � l � j � i 10 9 1 6 4
l � m � j � k � i 11 7 8 2 5
l � m � k � j � i 11 10 7 2 5

Figure 16.4.7 Comparing g¬in(8) and g¬in(9).

Altogether, we have proven the following theorem.

Theorem 16.4.25 (dominance relations for input negation consistency tests).

g¬in(5) ~ g¬in(6) ≺ g¬in(7) ~ g¬in(8) ≺ g¬in(9) .

Algorithms and Implementation Issues

Input negation consistency tests which use the “simple earliest completion time
bound'' (LB5) as time bound adjustment and their output negation counterparts
have been applied by Nuijten [Nui94], Baptiste and Le Pape [BL95] and Caseau
and Laburthe [CL95]. Caseau and Laburthe have integrated the tests in their
scheduling environment based on task sets in a straightforward manner which
yields an algorithm with time complexity O(n3). All these algorithms only test
some, but not all interesting couples (A , i). An algorithm which deduces all do-
main reductions with time complexity O(n2) has only been developed by Baptiste
and Le Pape [BL96]. A similar implementation is proposed by Phan Huy in
[Pha00]. Nuijten and Le Pape [NL98] derived several consistency tests which are
similar to the input/output negation consistency tests with the time bound ad-
justment LB8 and can be implemented with time complexity O(n2 log n) and
O(n3) respectively.

654 16 Constraint Programming and Disjunctive Scheduling

16.4.6 Input-or-Output Consistency Tests

In this subsection, some new consistency tests are presented which are not sub-
sumed by the consistency tests presented in the previous subsections. They are
based on the input-or-output conditions which have been introduced by Dorndorf
et al. [DPP99].

Domain and Sequence Consistency Tests

The input-or-output conditions detect situations in which either (a) a task Ti has
to be processed first or (b) a task Tj has to be processed last within a set of tasks.
There exists a sequence and a domain oriented consistency test based on the in-
put-or-output condition. Both tests are summarized in the next theorem.

Theorem 16.4.26 (input-or-output consistency tests).

Let A �/ B and i, j 	 A. If the input-or-output condition

max
u�A�{j},v�A�{i},u�v

{lctv � estu} < p(A � {i , j}) (16.4.50)

is satisfied then either task Ti has to be processed first or task Tj has to be pro-
cessed last within A � {i , j}. If i � j then task Ti has to be processed before Tj
and the domains of Ti and Tj can be adjusted as follows:

estj := max{estj , esti + pi} ,

lstj := min{lsti , lstj � pi} .

Proof. If Ti is neither processed before, nor Tj processed after all other tasks in
A � {i , j} then all tasks in A � {i , j} have to be processed within a time interval
of maximal size

max
u�A�{j},v�A�{i},u�v

{lctv � estu}.

This is a contradiction to (16.4.50).
 Now, since Ti has to be processed first or Tj processed last within A � {i , j},

we can deduce that Ti has to be processed before Tj if i � j. This immediately
implies the domain deductions described above.

By substituting (16.4.50) with

LCTmax((A � {i}) � ESTmin(A � {j}) < p(A � {i , j}) , (16.4.51)

we obtain the modified input-or-output conditions which can be tested more easi-
ly, but are less often satisfied than the input-or-output conditions.

 16.4 Constraint Propagation and the DSP 655

Example 16.4.27
In Figure 16.4.8 an example for the application of the input-or-output consisten-
cy tests with four tasks indexed as i, j, k, l is shown.
Since

max
u�{j,k,l},v�{i,k,l},u�v

{lctv � estu} = 6 < 7 = p({i , j , k , l})

we can conclude that Ti has to be processed before Tj . Thus, we can adjust estj :=
4 and lsti := 4.

Ti

3 4

5 6 7 8

Tj

Tk
2 3 4 5 6 7 8

Tl

x

5 6 7 8 9

1 2 3 4

2 3 4 5 6 7 8

x

Figure 16.4.8 The input-or-output consistency test.

Algorithms and Implementation Issues

Deweß [Dew92] and Brucker et al. [BJK94] discuss conditions which examine
all permutations of a fixed length r and which are thus called r-set conditions.
Brucker et al. [BJK94] developed an O(n2) algorithm for testing all 3-set condi-
tions which is equivalent to testing all input-or-output conditions for triples of
tasks. Phan Huy [Pha00] developed an O(n3) algorithm for deriving all edge ori-
entations implied by the modified input-or-output conditions. This algorithm can
be generalized to an O(n4) algorithm which deduces all edge orientations implied
by the input-or-output conditions.

16.4.7 Energetic Reasoning

The conditions described in the previous subsections for testing consistency were
all founded on the principle of comparing a time interval in which a set of tasks
A has to be processed with the total processing time p(A) of these tasks. The time
intervals chosen were defined through the earliest start and latest completion
times of some of the tasks. This fundamental principle can be generalized by
considering arbitrary time intervals [t1 , t2), on the one hand, and replacing simple
processing time p(A) with interval processing time p(A , t1 , t2), on the other hand.
Erschler et al. [ELT91], see also [LEE92], were the first to introduce this idea
under the name of energetic reasoning. Indeed, the interval processing time can

656 16 Constraint Programming and Disjunctive Scheduling

be interpreted as resource energy demand which encounters a limited resource
energy supply that is defined through the time interval. The original concept of
Erschler et al. considered cumulative scheduling problems with discrete resource
capacity. Their results have been improved by Baptiste and Le Pape [BL95] for
disjunctive constraints. We will take a closer look at these results and compare
them to the consistency tests described so far.

Interval Processing Time

Let us first define the interval processing time of a task Ti for a given time inter-
val [t1 , t2), t1 < t2 . The interval processing time pi(t1 , t2) is the smallest amount of
time during which Ti has to be processed within [t1 , t2). Figure 16.4.9 shows four
possible situations: (1) Ti can be completely contained within the interval, (2)
overlap the entire interval, (3) have a minimum processing time in the interval
when started as early as possible or (4) have a minimum processing time when
started as late as possible. The fifth situation not depicted applies whenever, giv-
en the current domains, Ti does not necessarily have to be processed within the
given time interval. Consequently,

pi(t1 , t2) := max{ 0, min{pi , t2 � t1 , ecti � t1 , t2 � lsti }}. (16.4.52)

3 4

5 6

3 4 5

5 6 8 9

3 4

1

4 5 6 8

(1)

(2)

(3)

(4)

1

9 107

2

2 7

Figure 16.4.9 Types of relations between a task and a time interval.

The interval processing time of a subset of tasks A is given by p(A , t1 , t2) :=
5i�A pi(t1 , t2). Finally, let B(t1,t2) := { i � B | pi(t1 , t2) > 0 } denote the set of tasks
which have to be processed completely or partially within [t1 , t2).

Energetic Input/Output Consistency Tests

Baptiste and Le Pape [BL95] examined situations in which the earliest start time
of a task Ti can be updated using the concept of interval processing times. As-
sume, for instance, that Ti finishes before t2 . The interval processing time of Ti in

 16.4 Constraint Propagation and the DSP 657

[t1 , t2) would then be pi'(t1 , t2) = min{pi , t2 � t1 , ecti � t1}.5 However, if t2 � t1
 < p(B � {i} , t1 , t2) + pi'(t1 , t2) then the assumption cannot be true, so that Ti has to
finish after t2. Baptiste and Le Pape showed that esti can be then updated to

esti := max{esti , t1 + p(B � {i} , t1 , t2) }. (16.4.53)

A stronger domain reduction rule is presented in the following theorem.

Theorem 16.4.28 Energetic output conditions.

Let i � B and t1 < t2. If the energetic output condition

t2 � t1 < p(B � {i} , t1 , t2) + min{pi , t2 � t1 , ecti � t1} (16.4.54)

is satisfied then B(t1,t2) � {i} is not empty, and Ti has to be processed after all
tasks of B(t1,t2) � {i} . Consequently, esti can be adjusted to esti := max{esti ,
LBh(B(t1,t2) � {i})}, h � {1 , 2 , 3 , 4} .

Proof. If (16.4.54) is satisfied then p(B � {i} , t1 , t2) > 0 and B(t1,t2) � {i} is not
empty. Furthermore, Ti must finish after t2 . By definition, all tasks in B(t1,t2) � {i}
have positive processing times in the interval [t1 , t2) and so must start and finish
before Ti . This proves B(t1,t2) � {i} � i from which follows the domain reduction
rule.

Energetic input conditions can be defined in a similar way. Observe that the do-
main adjustment in Theorem 16.4.28 is stronger than the one defined in (16.4.53)
if the "sum bound'' (LB2) or a stronger bound is used. We omit the simple proof
due to the observations made in the following.

Up to now, it remained an open question which time intervals were especial-
ly suited for testing the energetic input/output conditions in order to derive
strong domain reductions. We will sharpen this question and ask whether Theo-
rem 16.4.28 really leads to stronger domain reductions at all if compared with
other known consistency tests. Quite surprisingly, the answer is “no''.

Theorem 16.4.29 (comparing output and energetic output conditions).
If the energetic output condition

 t2 � t1 < p(B � {i} , t1 , t2) + min{pi , t2 � t1 , ecti � t1}

is satisfied for a task Ti , i � B and the time interval [t1 , t2) then the output condi-
tion

max
u�A�{i},v�A,u�v

{lctv � estu} < p(A � {i})

5 Here and later, we will assume that pi'(t1 , t2) � 0 which is not a serious restriction.

658 16 Constraint Programming and Disjunctive Scheduling

is satisfied for the couple (B(t1,t2) � {i} , i).

Proof. If the energetic output condition is satisfied then B(t1,t2) � {i} is not empty,
and there exists a task Tv with v � B(t1,t2) � {i}. Let us first consider the case
u � B(t1,t2) � {i}, u � v. We can approximate the right side of (16.4.54) and obtain

t2 � t1 < p(B � {i} , t1 , t2) + pi

 = p(B � {i , u , v} , t1 , t2) + pu(t1 , t2) + pv(t1 , t2) + pi . (16.4.55)

Since u, v � B(t1,t2) , we know from (16.4.52) that t2 � lstv � pv(t1 , t2) and ectu � t1
 � pu(t1 , t2), and we can approximate

t2 � t1 < p(B � {i , u , v} , t1 , t2) + ectu � t1 + t2 � lstv + pi (16.4.56)

which is equivalent to

lstv � ectu < p(B � {i , u , v} , t1 , t2) + pi . (16.4.57)

Note that p(B � {i , u , v} , t1 , t2) � p(B(t1,t2) � {i , u , v}), so we arrive at

lstv � ectu < p(B(t1,t2) � {u , v}) . (16.4.58)

or, equivalently,

lctv � estu < p(B(t1,t2)) . (16.4.59)

Now, consider the case u = i � v. Using (16.4.54) , we have

 t2 � t1 < p(B � {i} , t1 , t2) + ecti � t1

 = p(B � {i , v} , t1 , t2) + pv(t1 , t2) + ecti � t1 . (16.4.60)

We can, again, substitute pv(t1 , t2) with t2 � lstv and obtain

lstv � ecti < p(B � {i , v} , t1 , t2) . (16.4.61)

A similar line of argumentation as above leads to

lctv � esti < p(B(t1,t2)) . (16.4.62)

Finally, combining (16.4.59) and (16.4.62) leads to the output condition for the
couple (B(t1,t2) � {i} , i) which proves our assertion.

A similar result applies for the energetic input condition. Inversely, a quite sim-
ple proof which is omitted shows that the input/output conditions are subsumed
by the energetic generalizations, so that both concepts are in fact equivalent.

 16.4 Constraint Propagation and the DSP 659

Other Energetic Consistency Tests

It is possible to derive input/output negation conditions and input-or-output con-
ditions that are based on energetic reasoning. However, as in the case of the in-
put/output conditions, they do not imply additional domain reductions which are
not also deduced by the corresponding non-energetic conditions. We therefore
omit a detailed presentation of these conditions.

The results of this subsection have an important implication. They tell us
that for the disjunctive scheduling problem, all known consistency tests that are
based on energetic reasoning are not more powerful than their non-energetic
counterparts. It is not clear whether this holds for arbitrary consistency tests, alt-
hough we strongly assume this. A step towards proving this conjecture has been
made in [DPP99] where it has been shown that, regardless of the chosen con-
sistency tests, the interval processing times p(A , t1 , t2) can always be replaced by
the simple processing times p(A).

16.4.8 Shaving

All consistency tests presented so far share the common idea that a possible start
time sti of a task Ti can be removed from its current domain ,i if there exists no
feasible schedule in which Ti actually starts at that time. In this context, the con-
sistency tests that have been introduced in the Sections 16.4.3 through 16.4.7 can
be interpreted as sufficient conditions for proving that no feasible schedule can
exist which involve a specific start time assignment sti . In Section 16.4.3, for
instance, we have tested the sufficient condition whether there exists a 2- or 3-
feasible start time assignment.

This general approach has been summarized by Martin and Shmoys under
the name shaving [MS96]. They proposed additional shaving variants. Exact
one-machine shave verifies whether a non-preemptive schedule exists by solving
an instance of the one-machine scheduling problem in which the start time sti
� {esti , lsti} is fixed. Quite obviously, exact one-machine shave is NP-hard and
equivalent to establishing n-b-consistency. One-machine shave relaxes the non-
preemption requirement and searches for a (possibly) preemptive schedule.

Carlier and Pinson [CP94] and Martin and Shmoys [MS96] independently
proposed the computation of !-fixed-points as a method for proving the non-
existence of a feasible schedule. Given a set of consistency tests g and a set of
current domains, say !', a feasible schedule cannot exist if a current domain in
g(!') is empty. Carlier and Pinson, and Martin and Shmoys who coined the name
C-P shave have chosen the modified input/output domain consistency tests and
the precedence consistency tests as underlying set of consistency tests. Martin
and Shmoys have further proposed double shave which applies C-P shave for
detecting inconsistencies. Torres and Lopez [TL00] review possible extensions
of shaving techniques that have been proposed for job shop scheduling. Dorndorf

660 16 Constraint Programming and Disjunctive Scheduling

et al. [DPP01] very successfully apply shaving techniques to the open shop
scheduling problem (OSP), which is a special case of the DSP (cf. Chapter 9).

16.4.9 A Comparison of Disjunctive Consistency Tests

Let us summarize the results derived so far. In Figure 16.4.10, the dominance
relations between different levels of bound-consistency and classes of consisten-
cy tests are shown6. A strict dominance is represented by an arc �, while X
stands for an equivalence relation. An encircled "+'' means that the correspond-
ing classes of consistency tests taken together imply a dominance relation. Since
the dominance relation is transitive, we do not display all relations explicitly.

Let us start with the upper half of the figure. Obviously, n-b-consistency and
exact one-machine shave are equivalent and strictly dominate all other consisten-
cy tests. On the left side, n-b-consistency, of course, subsumes all levels of k-b-
consistency for k � n.

In the center of the figure, the consistency tests with an input/output compo-
nent in their names are shown. As has been proven in Section 16.4.7, the ener-
getic consistency tests are equivalent to the non-energetic ones. In Example
16.4.12, we have verified that the input/output consistency tests dominate the
modified input/output consistency tests. The same dominance relation holds for
the input-or-output tests when compared to the modified tests. In Section 16.4.3
we have shown that the input/output and input/output negation consistency tests
taken together establish strong 3-b-consistency if for the former the "sum bound''
(LB2) and for the latter the "simple earliest completion time bound'' (LB5) are
applied for adjusting the current domains. The input/output and input/output ne-
gation tests usually imply more than 3-b-consistency as can be seen in Example
16.4.15. However, if only pairs and triples of tasks are considered then the
equivalence relation holds. Further, it has been shown in Section 16.4.3 that ap-
plying the input/output consistency tests for pairs of tasks is equivalent to estab-
lishing 2-b-consistency if the "earliest completion time bound'' (LB1) is used as
time bound adjustment.

Let us now turn to the right side of the figure. It is not hard to show that
double shave strictly dominates C-P shave which in turn strictly dominates one-
machine shave. Apart from this, there exists no particular relationship between
double shave and C-P shave and the other consistency tests. However, double
shave and C-P shave usually lead to significantly stronger domain reductions as
has been verified empirically. Finally, Martin and Shmoys [MS96] have shown
that one-machine shave is equivalent to the modified input/output domain con-
sistency tests.

6 Although the dominance relation has only been defined for sets of consistency tests, it can be

extended in a straightforward manner to the levels of bound-consistency.

 16.4 Constraint Propagation and the DSP 661

n-
b-

C
on

si
st

en
cy

Ex
ac

t O
ne

-M
ac

hi
ne

Sh
av

e

D
ou

bl
e

Sh
av

e
En

er
ge

tic
 In

pu
t/O

ut
pu

t
N

eg
at

io
n

En
er

ge
tic

In
pu

t/O
ut

pu
t

En
er

ge
tic

In
pu

t-o
r-

O
ut

pu
t

C
-P

 S
ha

ve

In
pu

t/O
ut

pu
t N

eg
at

io
n

In
pu

t/O
ut

pu
t

In
pu

t-o
r-

O
ut

pu
t

M
od

ifi
ed

In
pu

t-o
r-

O
ut

pu
t

+

St
ro

ng
 3

-b
-C

on
si

st
en

cy

fo
r p

ai
rs

 a
nd

 tr
ip

le
s o

f
op

er
at

io
ns

 (L
B 2

 ,
LB

5)
M

od
ifi

ed
In

pu
t/O

ut
pu

t
O

ne
-M

ac
hi

ne
 S

ha
ve

2-
b-

C
on

si
st

en
cy

fo
r p

ai
rs

 o
f

op
er

at
io

ns
 (L

B 1
)

Figure 16.4.10 Dominance relations.

662 16 Constraint Programming and Disjunctive Scheduling

16.4.10 Precedence vs. Disjunctive Consistency Tests

The consistency tests which have been developed for the disjunctive constraints
can be applied to an instance of the DSP by decomposing this instance into
(preferably maximal) cliques. Since all consistency tests presented are monoto-
nous, they can be applied in an arbitrary order and always result in the same !-
fixed-point. However, the runtime behaviour differs extremely depending on the
order of application that has been chosen.

An ordering rule which has been proven to be quite effective is to perform
the sequence consistency tests that are likely to deduce more edge orientations
and have a lower time complexity in the beginning. A particular set of consisten-
cy tests is only triggered if all "preceding'' consistency tests do not imply any
deductions any more. This ensures that the more costly consistency tests are only
seldomly applied and contribute less in the overall computational costs.

Finally, Nuijten and Sourd [NS00] have recently described consistency
checking techniques for the DSP that are based on the simultaneous considera-
tion of precedence constraints and disjunctive constraints.

16.5 Conclusions

Constraint propagation is an elementary method which reduces the search space
of a search or optimization problem by analyzing the interdependencies between
the variables, domains and constraints that define the set of feasible solutions.
Instead of achieving full consistency with respect to some concept of consisten-
cy, we generally have to content ourselves with approximations due to reasons of
complexity. In this context, we have evaluated classical and new consistency
tests for the DSP which are simple rules that reduce the domains of variables
(domain consistency tests) or derive knowledge in a different form, e.g. by de-
termining the processing sequences of a set of tasks (sequence consistency tests).

The particular strength of this approach is based on the repeated application
of the consistency tests, so that the knowledge derived is propagated, i.e. reused
for acquiring additional knowledge. The deduction of this knowledge can be de-
scribed as the computation of a fixed point. Since this fixed point depends upon
the order of the application of the consistency tests, Dorndorf et al. [DPP00] at
first have derived a necessary condition for its uniqueness and have developed a
concept of dominance which enables to compare different consistency tests.
With respect to this dominance relation, they have examined the relationship
between several concepts of consistency (bound-consistency, energetic reasoning
and shaving) and the most powerful consistency tests known as the input/output,
input/output negation and input-or-output consistency tests. They have been able
to improve the well-known result that the input/output consistency tests for pairs
of tasks imply 2-b-consistency by deriving the tests which establish strong 3-b-
consistency. These consistency tests are slightly stronger than the famous ones

 16.6 Appendix: Bound Consistency Revisted 663

derived by Carlier and Pinson [CP89, CP90]. Dorndorf et al. [DPP00] have ana-
lyzed the input/output, input/output negation and input-or-output consistency
tests and have classified different lower bounds which are used for the reduction
of domains. They have shown that apparently weaker bounds still induce the
same fixed point. Finally, an open question regarding the concept of energetic
reasoning has been answered. In contrast to scheduling problems with discrete
resource supply, they have shown that the known consistency tests based on en-
ergetic reasoning are equivalent to the tests based on simple processing times.

16.6 Appendix: Bound Consistency Revisited

In this section, we derive the time bound adjustments for establishing 3-b-
consistency as has been announced in Section 16.4.3. Let us assume that the fol-
lowing condition

(max{lctj � esti , lctk � esti} � pi + pj + pk) W (i + ii)

(estj + pj � esti ^ esti + pi � lstk) W (iii)

(estk + pk � esti ^ esti + pi � lstj) W (iv)

(esti � max{min{estj , estk + pj + pk , estj + pj , estk + pk}) (v+ vi)
 (16.6.1)

is not satisfied given the current earliest and latest start times. As already men-
tioned, there exist two cases. In the first case, increasing esti will never satisfy
conditions (i + ii), (iii) and (iv). Therefore, we have to adjust esti so as to satisfy
condition (v+ vi). In the second case, condition (i + ii) is not satisfiable, but in-
creasing iest eventually satisfies (iii), (iv) or (v+ vi). Here, the minimal earliest
start time for which (iii) or (iv) holds is not greater than the minimal earliest start
time for which (v+ vi) holds. This will be proven in the remainder of this subsec-
tion.

We will first deal with the problem of how to distinguish between the two
cases. The corresponding time bound adjustments will then be derived at a later
time. In Lemma 16.6.1, a necessary and sufficient condition for the existence of
est i

 * � esti satisfying condition (iii) is described.

Lemma 16.6.1 (condition (iii)).

There exists est i
 * � esti such that condition (iii) is satisfied iff

max{estj + pj + pi , esti + pi}� lstk . (16.6.2)

The smallest start time which then satisfies (iii) is est i
 * = max{esti , estj + pj}.

664 16 Constraint Programming and Disjunctive Scheduling

Proof. If condition (iii) is satisfied for est i
 * � esti then estj + pj � est i

 * and est i
 * + pi

 � lstk , so that max{estj + pj + pi , esti + pi} � lstk . This proves the direction �. In
order to show j, let max{estj + pj + pi , esti + pi} � lstk . If esti < estj + pj then
est i

 * = estj + pj is the smallest value which satisfies (iii). Otherwise, if esti � estj
 + pj then est i

 * = esti is the smallest value which satisfies (iii).

Changing the roles of j and k in Lemma 16.6.1 leads to a similar result for condi-
tion (iv).

Corollary 16.6.2 (conditions (iii) and (iv)).

There exists est i
 * � esti which satisfies (iii) or (iv) iff

(max{estj + pj + pi , esti + pi} � lstk) W
(max{estk + pk + pi , esti + pi} � lstj)

(16.6.3)

If ! is 2-b-consistent then (16.6.3) is equivalent to

(estj + pj + pi � lstk W estk + pk + pi � lstj) ^
(esti + pi � lstk W esti + pi � lstj)

(16.6.4)

Proof. The first assertion follows directly from Lemma 16.6.1. Let us show the
second equivalence and assume that 2-b-consistency is established. Obviously,
(16.6.3) immediately implies (16.6.4). The other direction, however, is not ap-
parent at once.

Hence, let (16.6.4) be satisfied. It is sufficient to study the case estj + pj + pi
 � lstk , since estk + pk + pi � lstj leads to a similar conclusion. Given (16.6.4), we
can deduce that esti + pi � lstk or esti + pi � lstj (k).

Now, if esti + pi � lstk then the first condition max{estj + pj + pi , esti + pi}�
lstk of (16.6.3) is satisfied. If, however, esti + pi > lstk then 2-b-consistency im-
plies estk + pk � esti . Further, esti + pi � lstj due to (k). Therefore, estk + pk + pi
 � lstj , and the second condition max{estk + pk + pi , esti + pi} � lstj of (16.6.3) is
satisfied.

Given these results, it is now quite easy to describe the adjustments of the earli-
est start times.

Lemma 16.6.3 (adjusting earliest start times, part 1).

Let ! be 2-b-consistent. If

max
u�{j,k},v�{i,j,k},u�v

{lctv � estu} < pi + pj + pk (16.6.5)

or
 esti + pi > max{lstj , lstk} (16.6.6)

 16.6 Appendix: Bound Consistency Revisted 665

then (i+ii), (iii), (iv) are not satisfiable for any est i
 * � esti . The minimal earliest

start time est i
 * � esti satisfying (v+vi) is then defined by

est i
 * := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . (16.6.7)

Proof. We have shown in Lemma 16.4.5 that there exists no est i
 * � esti satisfying

condition (i + ii) iff

max
v�{j,k}

{lctv � esti} < pi + pj + pk . (16.6.8)

Likewise, we have shown in Lemma 16.6.1 that there exists no est i
 * � esti satisfy-

ing condition (iii) or (iv) iff (16.6.4) is not satisfied, i.e. iff

(estj + pj + pi > lstk ^ estk + pk + pi > lstj) W
(esti + pi > lstk ^ esti + pi > lstj)

(16.6.9)

which is equivalent to

(lctk � estj < pi + pj + pk ^ lctj � estk < pi + pj + pk) W
esti + pi > max{lstj , lstk}) . (16.6.10)

(16.6.8) and (16.6.10) together imply that (i + ii), (iii) and (iv) are not satisfiable,
so we have to choose the minimal earliest start time est i

 * satisfying condition
(v + vi) which leads to

est i
 * := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . (16.6.11)

It remains to combine (16.6.8) and (16.6.10) to one single condition. Making use
of the fact that esti + pi > max{lstj , lstk} already implies (16.6.8), we can deduce
that these two conditions are equivalent to:

(max
u�{j,k},v�{i,j,k},u�v

{lctv � estu} < pi + pj + pk) W (esti + pi > max{lstj , lstk}) .

This completes the proof.

Lemma 16.6.4 (adjusting earliest start times, part 2).

Let ! be 2-b-consistent. If (16.6.5) and (16.6.6) are not satisfied but

max
u�{j,k}

{lcti � estu} < pi + pj + pk (16.6.12)

then (i + ii) is not satisfiable for any est i
 * � esti . The minimal earliest start time

est i
 * � esti satisfying (iii), (iv) or (v + vi) is then defined through

est i
 * := max{esti , min{vj , vk}} , (16.6.13)

where

vj := { estj + pj if max{estj + pj + pi , esti + pi} � lstk ,
estk + pk otherwise,

666 16 Constraint Programming and Disjunctive Scheduling

vk := { estk + pk if max{estk + pk + pi , esti + pi} � lstj ,
estj + pj otherwise.

Proof. The assumptions imply that (i + ii) is not satisfiable. From Lemma 16.6.1,
we know that est i

 * := max{esti , min{v1 , v2}} is the minimal earliest start time
which satisfies (iii) or (iv). Further, Lemma 16.6.3 implies that there exists no
smaller est i

 * satisfying (v + vi), so indeed est i
 * is the correct adjustment.

Lemma 16.6.3 leads to the consistency tests

max
u�{i,j,k},v�{j,k},u�v

{lctv � estu} < pi + pj + pk �

esti := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} , (16.6.14)

esti + pi > max{lstj , lstk} �

esti := max{esti , min{estj , estk} + pj + pk , estj + pj , estk + pk} . (16.6.15)

which correspond with the two different versions of the output domain con-
sistency tests for triples of tasks (see Theorems 16.4.13 and 16.4.17). Observe
that

LB3({j , k}) = max{min{estj , estk} + pj + pk , estj + pj , estk + pk}

is the optimal makespan if the tasks Tj and Tk are scheduled with preemption
allowed. From Theorem 16.4.16, we know that the time bound adjustment
LB3({j , k}) can be replaced with LB2({j , k}) = min{estj , estk} + pj + pk , so that
instead of (16.6.14) the following consistency test can be applied:

max
u�{i,j,k},v�{j,k},u�v

{lctv � estu} < pi + pj + pk �

esti := max{esti , min{estj , estk} + pj + pk} . (16.6.16)

Likewise, we can replace (16.6.15) with the equivalent consistency test

esti + pi > max{lstj , lstk} �

esti := max{esti , min{estj , estk} + pj + pk} . (16.6.17)

This follows from the fact that the 2-b-consistency tests already ensure

esti � max{estj + pj , estk + pk} if esti + pi > max{lstj , lstk} .

Lemma 16.6.4 derives the consistency test

max
u�{j,k}

{lctv � esti} < pi + pj + pk � esti := max{esti , min{vj , vk}} (16.6.18)

which corresponds to the input negation domain consistency test for triples of
tasks (see Theorem 16.4.19). Again, we can replace the time bound adjustment

 References 667

LB6({j , k}) = min{vj , vk} with LB5({j , k}) = min{ectj , ectk} due to Lemma
16.4.21 which leads to the equivalent consistency test

max
u�{j,k}

{lctv � esti} < pi + pj + pk � esti := max{esti , min{ectj , ectk}} (16.6.19)

This proves the assertions made in Section 16.4.3.

References

AC91 D. Applegate, W. Cook, A computational study of the job shop scheduling
problem, ORSA Journal on Computing 3, 1991, 149-156.

Ama70 S. Amarel, On the representation of problems and goal-directed procedures for
computers, in: R. Banerji, M. Mesarovic (eds.), Theoretical Approaches to Non-
Numerical Problem Solving, Springer, Heidelberg, 1970, 179-244.

BDP96 J. Błażewicz, W. Domschke, E. Pesch, The job shop scheduling problem: con-
ventional and new solution techniques, Eur. J. Oper. Res. 93, 1996, 1-33.

Bee92 P. van Beek, Reasoning about qualitative temporal information, Artif. Intell. 58,
1992, 297-326.

Bes94 C. Bessiere, Arc-consistency and arc-consistency again, Artif. Intell. 65, 1994,
179-190.

BFR99 C. Bessiere, E. C. Freuder, J.-C. Regin, Using constraint metaknowledge to
reduce arc consistency computation, Artif. Intell. 107, 1999, 125-148.

Bib88 W. Bibel, Constraint satisfaction from a deductive viewpoint, Artif. Intell. 35,
1988, 401-413.

BJK94 P. Brucker, B. Jurisch, Z. Krämer, The job shop problem and immediate selec-
tion, Ann. Oper. Res. 50, 1994, 73-114.

BJS94 P. Brucker, B. Jurisch, B. Sievers, A fast branch and bound algorithm for the
job shop scheduling problem, Discret Appl. Math. 49, 1994, 107-127.

BL95 P. Baptiste, C. LePape, A theoretical and experimental comparison of constraint
propagation techniques for disjunctive scheduling, in: Proceedings of the 14th
International Joint Conference on Artificial Intelligence, Montreal, 1995,
136-140.

BL96 P. Baptiste, C. LePape. Edge-finding constraint propagation algorithms for
disjunctive and cumulative scheduling, in Proceedings of the 15th Workshop of
the U. K. Planning Special Interest Group, Liverpool, 1996.

Car82 J. Carlier, The one machine sequencing problem, Eur. J. Oper. Res. 11, 1982,
42-47.

Che99 Y. Chen, Arc consistency revisited, Inf. Process. Lett. 70, 1999, 175-184.

Chr75 N. Christofides, Graph Theory: An Algorithmic Approach, Academic Press,
London, 1975.

CL95 Y. Caseau, F. Laburthe, Disjunctive scheduling with task intervals, Technical
report 95-25, Laboratoire d'Informatique de l'Ecole Normale Superieure, Paris,
1995.

668 16 Constraint Programming and Disjunctive Scheduling

Clo71 M. B. Clowes, On seeing things, Artif. Intell. 2, 1971, 179-185.

Coh90 J. Cohen, Constraint logic programming languages, Commun. ACM 33, 1990,
52-68.

Coo89 M. C. Cooper, An optimal k -consistency algorithm, Artif. Intell. 41, 1989,
89-95.

CP89 J. Carlier, E. Pinson, An algorithm for solving the job shop problem, Manage.
Sci. 35, 1989, 164-176.

CP90 J. Carlier, E. Pinson, A practical use of Jackson's preemptive schedule for solv-
ing the job shop problem, Ann. Oper. Res. 26, 1990, 269-287.

CP94 J. Carlier, E. Pinson, Adjustments of heads and tails for the job shop problem,
Eur. J. Oper. Res. 78, 1994, 146-161.

Dav87 E. Davis, Constraint propagation with interval labels, Artif. Intell. 32, 1987,
281-331.

Dew92 G. Deweß, An existence theorem for packing problems with implications for
the computation of optimal machine schedules, Optimization 25, 1992,
261-269.

DP88 R. Dechter, J. Pearl, Network-based heuristics for constraint satisfaction prob-
lems, Artif. Intell. 34, 1988, 1-38.

DPP99 U. Dorndorf, T. Phan-Huy, E. Pesch, A survey of interval capacity consistency
tests for time and resource constrained scheduling, in: J. Weglarz (ed.), Project
Scheduling - Recent Models, Algorithms and Applications, Kluwer Academic
Publishers, Boston, 1999, 213-238.

DPP00 U. Dorndorf, E. Pesch, T. Phan-Huy, Constraint propagation techniques for
disjunctive scheduling problems, Artif. Intell. 122, 2000, 189-240.

DPP01 U. Dorndorf, E. Pesch, T. Phan-Huy, Solving the open shop scheduling prob-
lem, J. Sched. 4, 2001, 157-174.

ELT91 J. Erschler, P. Lopez, C. Thuriot, Raisonnement temporel sous contraintes de
ressource et problèmes d'ordonnancement, Revue d'Intelligence Artificielle 5,
1991, 7-32.

FN00 F. Focacci, W. Nuijten, A constraint propagation algorithm for scheduling with
sequence dependent setup times, in: U. Junker, S.E. Karisch, S. Tschöke (eds.),
Proceedings of the 2nd International Workshop on the Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems, Paderborn, March 8-10, 2000, 53-55.

Fre78 E. C. Freuder, Synthesizing constraint expressions, J. ACM 21, 1978, 958-966.

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, Freeman, San Francisco, 1979.

HDT92 P. van Hentenryck, Y. Deville, C.-M. Teng, A generic arc consistency algo-
rithm and its specializations, Artif. Intell. 57, 1992, 291-321.

Hen92 P. van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press,
Cambridge, 1992.

HL88 C.-C. Han, C.-H. Lee, Comments on Mohr and Henderson's path consistency
algorithm, Artif. Intell. 36, 1988, 125-130.

 References 669

HS79 R. M. Haralick, L. G. Shapiro, The consistent labelling problem: Part I, IEEE
Trans. Pattern Anal. Mach. Intell. 1, 1979,173-184.

HS80 R. M. Haralick, L. G. Shapiro, The consistent labelling problem: Part II, IEEE
Trans. Pattern Anal. Mach. Intell. 2, 1980, 193-203.

Huf71 D. Z. Huffman, Impossible objects as nonsense sentences, Machine Intelligence
6, 1971, 295-323.

JCC98 P. Jeavons, D. Cohen, M.C. Cooper, Constraints, consistency and closure, Artif.
Intell. 101, 1998, 251-265.

Kum92 V. Kumar, Algorithms for constraint satisfaction problems, AI Mag. 13, 1992,
32-44.

LEE92 P. Lopez, J. Erschler, P. Esquirol, Ordonnancement de tâches sous contraintes:
une approche énergétique, RAIRO Automatique, Productique, Informatique In-
dustrielle 26, 1992, 453-481.

Lho93 O. Lhomme, Consistency techniques for numeric CSPs, Proceedings of the 13th
International Joint Conference on Artificial Intelligence, Chambery, France,
1993, 232-238.

Mac77 Z. K. Mackworth, Consistency in networks of relations, Artif. Intell. 8, 1977,
99-118.

Mac92 Z. K. Mackworth, The logic of constraint satisfaction, Artif. Intell. 58, 1992,
3-20.

Mes89 P. Meseguer, Constraint satisfaction problems: an overview, AI Commun. 2,
1989, 3-17.

MF85 Z. K. Mackworth, E. C. Freuder, The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems, Artif. Intell. 25,
1985, 65-74.

MH86 R. Mohr, T. C. Henderson, Arc and path consistency revisited, Artif. Intell. 28,
1986, 225-233.

Mon74 U. Montanari, Networks of constraints: fundamental properties and applications
to picture processing, Inf. Sci. 7, 1974, 95-132.

Moo66 R. E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.

MS96 P. Martin, D. B. Shmoys, A new approach to computing optimal schedules for
the job shop scheduling problem, Proceedings of the 5th International IPCO
Conference, 1996.

MT63 J. F. Muth, G. L. Thompson (eds.), Industrial Scheduling, Prentice Hall, Eng-
lewood Cliffs, 1963.

NL98 W. P. M. Nuijten, C. Le Pape. Constraint-based job shop scheduling with ILOG
scheduler, J. Heuristics 3, 1998, 271-286.

NS00 W. Nuijten, F. Sourd, New time bound adjustment techniques for shop schedul-
ing, in: P. Brucker, S. Heitmann, J. Hurink, S. Knust (eds.), Proceedings of the
7th International Workshop on Project Management and Scheduling, 2000,
224-226.

Nui94 W. P. M. Nuijten, Time and Resource Constrained Scheduling: A Constraint
Satisfaction Approach, Ph.D. thesis, Eindhoven University of Technology, 1994.

670 16 Constraint Programming and Disjunctive Scheduling

Pha96 T. Phan-Huy, Wissensbasierte Methoden zur Optimierung von Produktions-
abläufen, Master's thesis, University of Bonn, 1996.

Pha00 T. Phan-Huy, Constraint Propagation in Flexible Manufacturing, Springer,
2000.

PT96 E. Pesch, U. Tetzlaff, Constraint propagation based scheduling of job shops,
INFORMS J. Comput. 8, 1996, 144-157.

RS64 B. Roy, B. Sussman, Les problèmes d`ordonnancement avec contraintes disjonc-
tives, Note D. S. 9, SEMA, Paris, 1964.

Sei81 R. Seidel, A new method for solving constraint satisfaction problems, Proceed-
ings of the 7th International Joint Conference on AI, 1981, 338-342.

TF90 E. P. K. Tsang, N. Foster, Solution synthesis in the constraint satisfaction prob-
lem, Technical report csm-142, Department of Computer Sciences, University of
Essex, Essex, 1990.

TL00 P. Torres, P. Lopez, Overview and possible extensions of shaving techniques for
job-shop problems, in: U. Junker, S. E. Karisch, S. Tschöke (eds), Proceedings
of the 2nd International Workshop on the Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, Pader-
born, March 8-10, 2000, 181-186.

Tsa93 E. Tsang, Foundations of Constraint Satisfaction, Academic Press, Essex, 1993.

Wal72 D. L. Waltz, Generating semantic descriptions from drawings of scenes with
shadows, Technical report AI-TR-271, M.I.T., 1972.

Wal75 D. L. Waltz. Understanding line drawings of scenes with shadows, in P. H. Win-
ston (ed.), The Psychology of Computer Vision, McGraw-Hill, 1975, 19-91.

17 Scheduling in Flexible
Manufacturing Systems

17.1 Introductory Remarks

An important application area for machine scheduling theory comes from Flexi-
ble Manufacturing Systems (FMSs). This relatively new technology was intro-
duced to improve the efficiency of a job shop while retaining its flexibility. An
FMS can be defined as an integrated manufacturing system consisting of flexible
machines equipped with tool magazines and linked by a material handling sys-
tem, where all system components are under computer control [BY86a]. Existing
FMSs mainly differ by the installed hardware concerning machine types, tool
changing devices and material handling systems. Instances of machine types are
dedicated machines or parallel multi-purpose ones. Tool changing devices can be
designed to render automatic online tool transportation and assignment to the
machines' magazines while the system is running. In other cases tool changes are
only possible if the operations of the system are stopped. Most of the existing
FMSs have automatic part transportation capabilities.

Different problems have to be solved in such an environment which com-
prise design, planning and scheduling. The vital factors influencing the solutions
for the latter two are the FMS-hardware and especially the existing machine
types and tool changing devices. In earlier (but still existing) FMSs NC-machines
are used with limited versatility; several different machines are needed to process
a part. Moreover the machines are not very reliable. For such systems shop
scheduling models are applicable; in classical, static formulations they have been
considered in Chapters 8 through 10. Recent developments in FMS-technology
show that the machines become more versatile and reliable. Some FMSs already
are implemented using mainly only one machine type. These general purpose
machine tools make it possible to process a part from the beginning to the end
using only one machine [Jai86]. A prerequisite to achieve this advantage without
or with negligible setup times is a tool changing system that can transfer tools
between the machines' tool magazines and the central tool storage area while all
machines of the system are in operation. Some FMSs already fulfill this assump-
tion and thus incorporate a high degree of flexibility. Results from queuing theo-
ry using closed queuing networks show that the expected production rate is max-
imized under a configuration which incorporates only general purpose machines
[BY86b, SS85, SM85].

With the notation of machine scheduling theory this kind of FMS design can
be represented by parallel machine models, and thus they were treated relatively

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_17

671

https://doi.org/10.1007/978-3-319-99849-7_17
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_17&domain=pdf

 17 Scheduling in Flexible Manufacturing Systems

672

broadly in Chapter 5. The most appropriate type of these models depends on the
particular scheduling situation. All the machines might be identical or they have
to be regarded as uniform or unrelated. Parts (i.e. jobs) might have due dates or
deadlines, release times, or weights indicating their relative importance. The pos-
sibilities of part processing might be restricted by certain precedence constraints,
or each operation (i.e. task) can be carried out independently of the others which
are necessary for part completion. Objectives might consist of minimizing
schedule length, mean flow time or due date involving criteria. All these problem
characteristics are well known from traditional machine scheduling theory, and
had been discussed earlier.

Most of the FMS-scheduling problems have to take into account these prob-
lem formulations in a quite general framework and hence are NP-hard. Thus,
with the view from today, they are computationally intractable for greater prob-
lem instances.

The difficulties in solving these problem types are sometimes overcome by
considering the possibility of preempting part processing. As shown in former
chapters, quite a lot of intractable problems are solvable in their preemptive ver-
sions in polynomial time. In the context of FMSs one has to differ between two
kinds of preemptions. One occurs if the operation of a part is preempted and later
resumed on the same machine (part-preemption). The other one appears if the
operation of a part is preempted and then resumed at the same point of time or at
a later time on another machine (part-machine-preemption). The consequences of
these two kinds of preemption are different. Part-preemption can be carried out
without inducing a change of machines and thus it does not need the use of the
FMS material handling system. Part-machine-preemption requires its usage for
part transportation from one machine to another. A second consequence comes
from the buffer requirements. In either case of preemption storage capacity is
needed for preempted and not yet finished parts. If it is possible to restrict the
number and kind of preemptions to a desirable level, this approach is appealing.
Some computationally intractable problem types are now efficiently solvable and
for most measures of performance the quality of an optimal preemptive schedule
is never worse than non-preemptive one. To consider certain inspection, repair or
maintenance requirements of the machine tools, processing availability re-
strictions have to be taken into account. The algorithmic background of these
formulations can be found in [Sch84, Sch88] and were already discussed in
Chapter 5. Some non-deterministic aspects of these issues will be studied in
Chapter 18.

In the context of FMSs another model of scheduling problems is also of con-
siderable importance. In many cases tools are a very expensive equipment and
under such an assumption it is unlikely that each tool type is available in an unre-
stricted amount. If the supply of tools of some type is restricted, this situation
leads to parallel machine models with resource constraints. In an FMS-
environment the number of resource types will correspond to the number of tool
types, the resource limits correspond to the number of available tools of each

 17.1 Introductory Remarks 673

type and the resource requirements correspond to the number of tools of each
type which are necessary to perform the operation under consideration. Models
of this kind are extensively treated in [BCSW86], and some recent results had
been given in Section 13.1.

There is another aspect which has to be considered in such an environment.
In many cases of FMS production scheduling it is desired to minimize part
movements inside the system to avoid congestion and unnecessary repositioning
of parts which would occur if a part is processed by more than one machine or if
it is preempted on the same machine. FMSs which consist mainly of general pur-
pose machine tools have the prerequisite to achieve good results according to the
above objectives. In the best case repositioning and machine changeovers can be
avoided by assigning each part to only one machine where it is processed from
the beginning to the end without preemption. A modeling approach to represent
this requirement would result in a formulation where all operations which have
to be performed at one part would be summed up resulting in one super-
operation having different resource requirements at discrete points of time. From
this treatment models for project scheduling would gain some importance
[SW89]. A relaxed version of this approach to avoid unnecessary part transporta-
tion and repositioning has to consider the minimization of the number of preemp-
tions in a given schedule.

Let us also mention that any FMS scheduling problem can be decomposed
into single machine problems, as it was suggested in [RRT89]. Then the ideas
and algorithms presented in Chapter 4 can be utilized.

From the above issues, we can conclude that traditional machine and project
scheduling theory has a great impact on advanced FMS-environments. Besides
this, different problems are raised by the new technology which require different
or modified models and corresponding solution approaches. There are already
many results from machine and project scheduling theory available which can
also be used to support the scheduling of operations of an FMS efficiently, while
some others still have to be developed (see [RS89] as a survey). Various model-
ing approaches are investigated in [Sch89], some more recent, selected models
are investigated in the following three sections. We stress the scheduling point of
view in making this selection, due to the character of this book, and, on the other
hand, the prospectivity of the subject. Each of the three models selected opens
some new directions for further investigations. The first one deals with dynamic
job shops (i.e. such in which some events, particularly job arrivals, occur at un-
known times) and with the approach solving a static scheduling problem at each
time of the occurrence of such an event, and then implementing the solution on a
rolling horizon basis. The second considers simultaneous task scheduling and
vehicle routing in a class of FMS, which was motivated by an application in a
factory producing helicopter parts. Last but not least, a practical implementation
of the FMS model in acrylic glass production will be presented.

 17 Scheduling in Flexible Manufacturing Systems

674

17.2 Scheduling Dynamic Job Shops

17.2.1 Introductory Remarks

In this section we consider dynamic job shops, i.e. such in which job arrival

times are unknown in advance, and we allow for the occurrence of other non-

deterministic events such as machine breakdowns. The scheduling objective will

be mean job tardiness which is important in many manufacturing systems, espe-

cially those that produce to specific customer orders. In low to medium volume

of discrete manufacturing, typified by traditional job shops and more recently by

flexible manufacturing systems, this objective was usually operationalized

through the use of priority rules. A number of such rules were proposed in the

literature, and a number of investigations were performed dealing with the rela-

tive effectiveness of various rules, e.g. in [Con65, BB82, KH82, BK83, VM87].

Some deeper tactical aspects of the interaction between priority rules and the

methods of assigning due-dates were studied in [Bak84].

Below we will present a different approach to the problem, proposed recent-

ly by Raman, Talbot and Rachamadugu [RTR89a], and Raman and Talbot

[RT92]. This approach decomposes the dynamic problem into a series of static

problems. A static problem is generated at each occurrence of a non-

deterministic event in the system, then solved entirely, and the solution is imple-

mented on a rolling horizon basis. In this procedure the entire system is consid-

ered at each instance of the static problem, in contrast to priority rules which

consider only one machine at a time. Of course, when compared with priority

rules, this approach requires greater computational effort, but also leads to signif-

icantly better system performance. Taking into account the computing power

available today, this cost seems to be worth to pay. Moreover, the idea of the

approach is pretty general and can be implemented for other dynamic scheduling

problems. Let us remind that the approach was originally used by Raman, Ra-

chamadugu and Talbot [RRT89] for a single machine.

The static problem mentioned above can be solved in an exact or a heuristic

way. An example of an exact method is a modification of the depth-first search

branch and bound algorithm developed by Talbot [Tal82] for minimizing sched-

ule length in a project scheduling problem. We will not describe this modifica-

tion which is presented in [RT92] and used for benchmarking a heuristic method

proposed in the same paper. This heuristic is especially interesting for practical

applications, and thus will be described in more detail. It is based on decompos-

ing the multiple machine problem, and constructing the schedule for the entire

system around the bottleneck machine. For this purpose relative job priorities are

established using task due dates (TDDs). However, in comparison with the tradi-

tional usage of task milestones, in this approach TDDs are derived by taking into

account other jobs in the system, and TDDs assignment is combined with task

 17.2 Scheduling Dynamic Job Shops 675

scheduling. In the next two sections the heuristic algorithm will be described and

results of computational experiments will be presented.

17.2.2 Heuristic Algorithm for the Static Problem

In papers dealing with priority rules applied to our scheduling problem it has

been shown the superiority of decomposing job due dates into task due dates, and

using TDDs for setting priorities. In particular, Baker [Bak84] found that the

Modified Task Due Date (MTD) rule performs well across a range of due date

tightness. It selects the task with the minimum MTD, where the MTD of task Tij

is calculated as

MTDij = max (7 + pij, dij) , (17.2.1)

and where 7 is the time when the scheduling decision needs to be made and dij is

the TDD of Tij . Raman, Talbot and Rachamadugu [RTR89b] proved that for a

given set of TDDs the total tardiness incurred by two adjacent tasks in a non-

delay schedule on any given machine does not increase if they are re-sequenced

according to the MTD rule. It means that if TDDs are set optimally, the MTD rule

guarantees local optimality between adjacent tasks at any machine for a non-

delay schedule. Most existing implementations of the MTD rule set TDDs by

decomposing the total flow dj � pj of job Jj where pj = �
i=1

nj

 pij , into individual task

flows in a heuristic way. Vepsalainen and Morton [VM87] proposed to estimate

each TDD by netting the lead time for the remaining tasks from the job due date.

In this way the interactions of all jobs in the system are taken into account. The

heuristic by Raman and Talbot also takes explicitly into account this interactions,

and, moreover, considers TDD assignment and task scheduling simultaneously.

Of course, the best set of TDDs is one which yields the best set of priorities, and

thus the goodness of a given set of TDDs can be determined only when the sys-

tem is scheduled simultaneously. In consequence, the heuristic is not a single

pass method, but it considers global impact of each TDD assignment within a

schedule improvement procedure. The initial solution is generated by the MTD

rule with TDDs at the maximum values that they can assume without delaying

the corresponding jobs. Machines are then considered one by one and an attempt

is made to revise the schedule of tasks on a particular machine by modifying their

TDDs. Jobs processed on all machines are ranked in the non-increasing order of

their tardiness. For any task in a given job with positive tardiness, first the inter-

val for searching for the TDD is determined and for each possible value in this

interval the entire system is rescheduled. The value which yields the minimum

total tardiness is taken as the TDD for that task. This step is repeated for all other

tasks of that job processed on the machine under consideration, for all other tardy

jobs on that machine following their rank order, and for all machines in the sys-

tem. The relative workload of a given machine is used to determine its criticality;

 17 Scheduling in Flexible Manufacturing Systems

676

the algorithm ranks all the machines from the most heavily loaded (number 1)

and considers them in this order. Since the relative ranking of machines does not

change, in the sequel they are numbered according to their rank.

In order to present the algorithm we need two additional denotations. The

ordered sequence of jobs processed on Pk , k = 1, 2,..., m will be denoted by Jk ,

the set of tasks of Jj � Jk on Pk by Tkj , and the number of tasks in Tkj by nkj .

Algorithm 17.2.1 Heuristic for the static job shop to minimize mean tardiness
[RT92].
begin -- initialization

for each task Tij do dij := dj � tij + pij;
 -- a set of new task due dates has been assigned, taking into account

 -- the cumulative processing time tij of Jj up to and including task Tij

call MTD rule;
 -- the initial sequence has been constructed

Order and number all the machines in non-increasing order of their total work-

loads �
Jj �J k

 �
Tij �T kj

 pij ;

r := 1; z(0) := #; z(1) := �
j=1

n
 Dj;

 -- initial values of counters are set up

while z(r) < z(r�1) do

begin
P1 := P;

 -- the set of unscanned machines P1 is initially equal to the set of all machines P

while P1 � � do

begin
Find k* := min{k | Pk � P1}; -- machine Pk* is selected (scanned)

while Jk* � � do

begin
Select Jj* as the job with the largest tardiness among jobs

belonging to Jk*;

for l = 1 to nk* j* do
begin -- schedule revision

Determine interval [al , bl] of possible values for the TDD value dlj*

of task Tlj*; -- this will be described separately

for x = al to bl do

begin
Generate the due dates of other tasks of Jj*;
 -- this will be described separately

call MTD rule;

 17.2 Scheduling Dynamic Job Shops 677

 -- all machines are rescheduled

Record total tardiness D(x) = �
j
 Dj;

end;
Find x such that D(x) is minimum;

dlj* := x;
Reassign due dates of other tasks of Jj* accordingly;

 -- task due dates are chosen so that the value of the

 -- total tardiness is minimized; this will be described separately
end;

for j = 1 to n do

Calculate Dj; -- new tardiness values are calculated

J k* := J k* � {Jj*};
 -- the list of unscanned jobs on Pk* is updated

end;
P 1 = P 1 � {Pk*}; -- the list of unscanned machines is updated

end;
r := r + 1;

z(r):= �
j
 Dj;

end;
end;
We now discuss in more details the schedule revision loop, the major part of the

algorithm, which is illustrated in Figure 17.2.1. As we see, the solution tree is

similar to a branch and bound search tree with the difference that each node rep-

resents a complete solution.

Given the initial solution, we start with machine P1 (which has the maxi-

mum workload), and job Jj (say) with the maximum tardiness among all jobs in

J 1 . Consider task T11 j whose initial TDD is d11 j . The algorithm changes now this

TDD to integer values in the interval [L1 , U1], where L1 = �
l=1

11

 plj , U1 = dj . It fol-

lows from (17.2.1) that for any d1j < L1 , the relative priority of T11 j remains un-

changed, since L1 is the earliest time by which T11 j can be completed.

 17 Scheduling in Flexible Manufacturing Systems

678

job

next
machine

task

nx*

x*
1

T j2

1j

n1j
T j1

T j11

1

machine

next
job

P 1

x*
2

Jj

Figure 17.2.1 Solution tree for the scheduling algorithm.

Now, a descendant node is generated for each integer x in this interval. For a giv-

en x, the TDDs of other tasks of Jj are generated as follows

dij = di�1 j + (x � p11 j)pij /t11�1 j , i = 1, 2,..., 11�1

and

dij = di�1 j + (dj � x)pij /(pj � t11 j) , i = 11
 + 1, 11

 + 2,..., nj ,

where tij = �
l=1

i
 plj . Thus, we split Jj into three "sub-jobs" Jj1 , Jj2 , Jj3 , where Jj1

consists of all tasks prior to T11 j , Jj2 contains only T11 j, and Jj3 comprises all tasks

following T11 j. Due dates of all tasks within a sub-job are set independently of

other sub-jobs. They are derived from the due date of the corresponding sub-job

by assigning them flows proportional to their processing times, due dates of Jj1 ,

Jj2 and Jj3 being x � p11 j , x, and dj , respectively. TDDs of tasks of other jobs re-

main unchanged. The solution value for the descendant is determined by re-

 17.2 Scheduling Dynamic Job Shops 679

scheduling all jobs at all machines for the revised set of TDDs using the MTD

rule. The branch corresponding to the node with the minimum total tardiness is

selected, and the TDD of T11 j is fixed at the corresponding value of x, say x*
1 .

TDDs of all tasks of Jj preceding T11 j are updated as follows

dij = di�1 j + (x*
1 � p11 j)tij /t11�1 j, i = 1, 2,..., 11

 � 1 .

Next, the due date of task T12
 is assigned. The interval scanned for d12 j is [L2 , U2]

where L2 = �
i=11+1

12

tij + x*
1 , U2 = dj . In the algorithm it is assumed al = 9L2; and bl =

�U2�. For a given value of x for the TDD of T12 j, the due dates of tasks of Jj1 ,

excluding T11 j , T12 j and those which precede T11 j , are generated as follows

dij = di�1 j + (x � x*
1 � p12 j)pij /(t12�1 j � t11 j), i = 11

 + 1, 11
 + 2,..., 12 � 1

and

dij = di�1 j + (dj � x)pij /(pj � t12 j), i = 12
+ 1, 12 + 2,..., nj .

TDDs of tasks preceding and including T11 j remain unchanged.

In the general step, assume we are considering TDD reassignment of task Tij

at Pk (we omit index k for simplicity). Assume further that after investigating P1

through Pk�1 and all tasks of Jj prior to Tij on Pk , we have fixed the due dates of

tasks T
1
~

 j , T2
~

 j ,..., Tz~ j Let Tij be processed between Tl~ j and Tl�1
~

 j with fixed due

dates of x*
l and x*

l+1 , respectively, i.e. the ordered sequence of tasks of Jj is (T1j ,

T2j ,..., T
1
~

 j ,..., T
2
~

 j ,..., Tl~ j ,..., Tij ,..., Tl�1
~

 j
,..., Tz~ j ,..., Tnj j). Then, for assign-

ing the TDD of Tij , we need to consider only the interval [5
r = l+1

~

i
 prj + x*

l , x*
l+1 �

 pl�1
~

 j] . Moreover, while reassigning the TDD of Tij , TDDs need to be generated

for only those tasks which are processed between Tl~ j and Tl�1
~

 j
.

Of course, as the algorithm runs, the search interval becomes smaller. How-

ever, near the top of the tree, it can be quite wide. Thus, Raman and Talbot pro-

pose the following improvement of the search procedure. In general, while

searching for the value x for a given task at any machine, we need theoretically

consider the appropriate interval [L, U] in unit steps. However, a task can only

occupy a given number of positions (in any sequence. For a permutation sched-

ule on a single machine we have (= n, whereas in a job shop (> n because of

the forced idle times on different machines. Nonetheless, it is usually much

smaller than the number of different values of x. In consequence, TDDs, and thus

total tardiness remains unchanged for many subintervals within [L, U] .

The procedure is a modification of the binary search method. Assume that

we search in the interval [L0 , U0] (see Figure 17.2.2). First, we compute total

tardiness D(L0) and D(U0) of all jobs for x = L0 and x = U0 , respectively. Next,

 17 Scheduling in Flexible Manufacturing Systems

680

we divide the interval into two equal parts, compute the total tardiness in the

midpoint of each half-interval, and so on. Within any generated interval, scan-

ning for the next half-interval is initially done to the left, i.e. Ui =
L0 + Ui�1

2
 , i = 1,

2, 3, and terminates when a half-interval is fathomed, i.e. when the total tardiness

at end-points and the midpoint of this interval are the same (e.g. [L0 , U3] in Fig-

ure 17.2.2).

Notice that this search procedure may not always find the best value of x.

This is because it ignores (rather unlikely in real problems) changes in total tar-

diness within an interval, if the same tardiness is realized at both its end points

and its midpoint.

total
tardiness

x
U2U3L0 U1 U0

Figure 17.2.2 A modification binary search procedure.

After finishing of left-scanning, the procedure evaluates the most recently gener-

ated and unfathomed interval to its right. If the total tardiness at both end-points

and the midpoint of that interval are not the same, another half-interval is gener-

ated and left scanning is resumed. The procedure stops when all half-intervals are

fathomed.

Note that it is desirable to increase the upper limit of the search interval for

the initial tasks of J j from dj to some arbitrarily large value (for example, the

length of the initial solution). This follows from the fact that it can happen that

the position of any task of a given job which corresponds to the minimum total

tardiness results in that job itself being late. The presented search procedure re-

duces the computational complexity of each iteration from O(m2N 3�
j=1

n
 pj) to

O(m2N 4
) , where N = �

j=1

n
 nj .

 17.2 Scheduling Dynamic Job Shops 681

17.2.3 Computational Experiments

Raman and Talbot [RT92] conducted extensive computational experiments to

evaluate their algorithm (denoted GSP - Global Scheduling Procedure) for both

static and dynamic problems.

For the static problem two sets of experiments were performed. The first

compared GSP with the following priority rules known from literature: SPT
(Shortest Processing Time), EDD (Earliest Due Date), CRIT (Critical Ratio),

MDD (Modified Job Due Date), MTD, and HYB (Hybrid - see [RTR89a], uses

MTD for scheduling jobs on non-bottleneck machines, and MDD on bottleneck

machines), and with the exact algorithm running with a time trap of 14 sec. GSP

provided the best results yielding an average improvement of 12.7% over the

next best rule.

In the second set of experiments 100 problems (in four scenarios of 25 prob-

lems) were solved optimally as well as by the GSP algorithm. In majority of cas-

es in each scenario GSP found the optimal solution. The performance of GSP

relative to the optimum depends upon parameter � which determines the range of

job due dates. GSP solutions are quite close to the optimum for large �, and the

difference increases for smaller �.

Experiments for the dynamic problem were performed to study the effec-

tiveness of implementing GSP solutions of the static problem on a rolling hori-

zon basis. As we mentioned, in a dynamic environment a static problem is gener-

ated at each occurrence of a non-deterministic event in the system, such as an

arrival of a new job. At such point in time a tree shown in Figure 17.2.1 is gener-

ated taking into account the tasks already in process. Of course, at that time some

machines can be busy - they are blocked out for the period of commitment since

we deal with the non-preemptive scheduling. The solution found by GSP is im-

plemented until the next event occurs, as in the so-called reactive scheduling

which will be discussed in more details in Chapter 18.

In the experiment job arrivals followed a Poisson process. Each job has as-

signed a due date that provided it a flow proportional to its processing time. Each

job had a random routing through the system of 5 machines. Task processing

times on each machine were sampled from a uniform distribution which varied to

obtain two levels of relative machine workloads. The obtained machine utiliza-

tions ranged from 78% to 82% for the case of balanced workloads, and from

66% to 93% for unbalanced workloads. In both cases, the average shop utiliza-

tion was about 80%. GSP was implemented with a time trap of 1.0 sec. per static

problem, and compared with the same priority rules as in the case of the static

problem experiment. The computational results are shown in Table 17.2.1. Since

among the priority rules MTD performed the best for all scenarios, it has been

used as a benchmark. Also given in the table is the corresponding level of signif-

icance (for one-tailed tests concerning paired differences between MTD and

GSP. As we see, GSP retains its effectiveness for all flows, and for both levels of

workload balance, and this holds for (= 0.15 or less.

 17 Scheduling in Flexible Manufacturing Systems

682

Flow Balanced workloads Unbalanced workloads

 MTD GSP (MTD GSP (

2

3

4

5

268

151

84

39

252

139

68

28

0.15

0.04

0.09

0.11

396

252

154

111

357

231

143

81

0.01

0.07

0.06

0.09

Table 17.2.1 Experimental results for the dynamic problem.

17.3 Simultaneous Scheduling and Routing in some
FMS

17.3.1 Problem Formulation

In FMS scheduling literature majority of papers deal with either part and machine

scheduling or with Automated Guided Vehicle (AGV) routing separately. In this

section both issues are considered together, and the objective is to construct a

schedule of minimum length [BEF+91].

The FMS under consideration has been implemented by one of the manufac-

turers producing parts for helicopters. A schematic view of the system is present-

ed in Figure 17.3.1 and its description is as follows.

Pieces of raw material from which the parts are machined are stored in the

automated storage area AS (1). Whenever necessary, an appropriate piece of ma-

terial is taken from the storage and loaded onto the pallet and vehicle at the stand

(2). This task is performed automatically by computer controlled robots. Then,

the piece is transported by an AGV (7) to the desired machine (6) where it is au-

tomatically unloaded at (8). Every machine in the system is capable of processing

any machining task. This versatility is achieved by a large number of tools and

fixtures that may be used by the machines. The tool magazines (4) of every ma-

chine have a capacity of up to 130 tools which are used for the various machining

operations. The tools of the magazines are arranged in two layers so that the

longer tools can occupy two vertical positions. The tools are changed automati-

cally. Fixtures are changed manually. It should be noted that a large variety of

almost 100 quite different parts can be produced by each of these machines in

this particular FMS. Simpler part types require about 30 operations (and tools)

and the most complicated parts need about 80 operations. Therefore, the tool

magazines have sufficient capacity to stock the tools for one to several consecu-

tive parts in a production schedule. In addition, the tools are loaded from a large

 17.3 Simultaneous Scheduling and Routing in some FMS 683

automated central tool storage area (3) which is located closely to the machines.

No tool competition is observed, since the storage area contains more than 2000

tools (including many multiple tools) and there are 4 NC-machines. The deliv-

ered raw material is mounted onto the appropriate fixture and processed by the

tools which are changed according to a desired plan. The tool technology of this

particular system allows the changing of the tools during execution of the jobs.

This is used to eliminate the setup times of the tools required for the next job and

occasionally a transfer of a tool to another machine (to validate completely the

no-resource competition). The only (negligible) transition time in the FMS that

could be observed was in fact the adjustment in size of the spindle that holds the

tool whenever the next tool is exchanged with the previous one. After the com-

pletion the finished part exchanges its position with the raw material of the next

job that is waiting for its processing. It is then automatically transported by an

AGV to the inspection section (9). Parts which passed the inspection are trans-

ported and unloaded at the storage area (10).

1

2
3

4 4 4

5 5 5 5

6

4

7
8

9
10

8 8 8

6 6 6

P3P2P1 P4

Figure 17.3.1 An example FMS.

We see that the above system is very versatile and this feature is gained by the

usage of many tools and large tool magazines. As it was pointed out in Section

17.1, it is a common tendency of modern flexible manufacturing systems to be-

come so versatile that most of the processes on a part can be accomplished by

just one or at most two machine types. As a result many systems consist of iden-

tical parallel machines. On the other hand, the existence of a large number of

tools in the system allows one not to consider resource (tool) competition. Hence,

our problem here reduces in fact to that of simultaneous scheduling and routing

of parts among parallel machines. The inspection stage can be postponed in that

analysis, since it is performed separately on the first-come-first-served basis.

 17 Scheduling in Flexible Manufacturing Systems

684

Following the above observations, we can model the considered FMS using

elements described below. Given a set of n independent single-task jobs (parts)

J1 , J2 ,..., Jn with processing times pj , j = 1, 2,..., n, that are to be processed

without preemptions on a set of m parallel identical machines P1 , P2 ,..., Pm , m

not being a very large number. Here parallelism means that every machine is

capable of processing any task. Setup times connected with changing tools are

assumed to be zero since the latter can be changed on-line during the execution

of tasks. Setup times resulting from changing part fixtures are included in the

processing times.

As mentioned above, machines are identical except for their locations and

thus they require different delivery times. Hence, we may assume that k (k < m)

AGVs V1 , V2 ,..., Vk , are to deliver pieces of raw material from the storage area

to specified machines and the time associated with the delivery is equal to 7i , i =

1, 2,..., m. The delivery time includes loading time at the storage area and un-

loading time at the required machine, their sum being equal to a. During each trip

exactly one piece of raw material is delivered; this is due to the dimension of

parts to be machined. After delivery of a piece of raw material the vehicle takes a

pallet with a processed part (maybe from another machine), delivers it to the in-

spection stage and returns to the storage area (1). The round trip takes A units of

time, including two loading and two unloading times. It is apparent that the most

efficient usage of vehicles in the sense of a throughput rate for pieces delivered is

achieved when the vehicles are operating at a cyclic mode with cycle time equal

to A. In order to avoid traffic congestion we assume that starting moments of

consecutive vehicles at the storage area are delayed by a time units.

The problem is now to construct a schedule for machines and vehicles such

that the whole job set is processed in a minimum time.

It is obvious that the general problem stated above is NP-hard, as it is al-

ready NP-hard for the non-preemptive scheduling of two machines (see Section

5.1). In the following we will consider two variants of the problem. In the first,

the production schedule (i.e. the assignment of jobs to machines) is assumed to

be known, and the objective is to find a feasible schedule for vehicles. This prob-

lem can be solved in polynomial time. The second consists of finding a compo-

site schedule, i.e. one taking into account simultaneous assignment of vehicles

and machines to jobs.

17.3.2 Vehicle Scheduling for a Fixed Production Schedule

In this section we consider the problem of vehicle scheduling given a production

schedule. Suppose an (optimal) non-preemptive assignment of jobs to machines

is given (cf. Figure 17.3.2). This assignment imposes certain deadlines d i
j on de-

livery of pieces of raw material to particular machines, where d i
j denotes the lat-

est moment by which raw material for part Jj should be delivered to machine Pi .

 17.3 Simultaneous Scheduling and Routing in some FMS 685

The lateness in delivery could result in exceeding the planned schedule length C.

Below we describe an approach that allows us to check whether it is possible to

deliver all the required pieces of raw material to their destinations (given some

production schedule), and if so, a vehicle schedule will be constructed. Without

loss of generality we may assume that at time 0 at every machine there is already

a piece of material to produce the first part; otherwise one should appropriately

delay starting times on consecutive machines (cf. Figure 17.3.3).

3d2
4d 1

l+1d m d
m
n

C t0
n-1d 2

1P

2P

mP

J1 J4

J2 J3 n-1J

Jl l+1J Jn

Figure 17.3.2 An example production schedule.

Our vehicle scheduling problem may now be formulated as follows. Given a set

of deadlines d i
j , j = 1, 2,..., n, and delivery times from the storage area to particu-

lar machines 7i , i = 1, 2,..., m, is that possible to deliver all the required pieces of

raw material on time, i.e. before the respective deadlines. If the answer is posi-

tive, a feasible vehicle schedule should be constructed. In general, this is equiva-

lent to determining a feasible solution to a Vehicle Routing with Time Windows

(see e.g., [DLSS88]). Let J0 and Jn+1 be two dummy jobs representing the first

departure and the last arrival of every vehicle, respectively. Also define two

dummy machines P0 and Pm+1 on which J0 and Jn+1 are executed, respectively,

and let 70 = 0, 7m+1 = M where M is an arbitrary large number. Denote by i(j) the

index of the machine on which Jj is executed. For any two jobs Jj , Jj' , let cjj' be

the travel time taken by a vehicle to make its delivery for job Jj' immediately af-

ter its delivery for Jj

cjj' = {
7i(j') � 7i(j) if 7i(j') � 7i(j)
A � 7i(j') � 7i(j) if 7i(j') < 7i(j)

j, j' = 0,..., n+1, j � j'.

 17 Scheduling in Flexible Manufacturing Systems

686

a (k�1)a A A+a A+(k�1)a 2A 2A+a C t0

1V

2V

kV

a+7k7 i

Figure 17.3.3 An example vehicle schedule.

If 7j + cjj' � 7j' , define a binary variable xjj' equal to 1 if and only if a vehicle

makes its delivery for Jj' immediately after its delivery for Jj . Also, let uj be a

non-negative variable denoting the latest possible delivery time of raw material

for job Jj , j = 1,..., n. The problem then consists of determining whether there

exist values of the variables satisfying

�
j'=1

n
x0j' = �

j=1

n
xj n+1 = k , (17.3.1)

�
j = 0, j � l

n+1

 xjl = �
j' = 0, j' � l

n+1

 xj' l = 1 , l = 1,..., n , (17.3.2)

uj � uj' + Mxjj' � M � cjj' , j, j' = 1,..., n, j � j' , (17.3.3)

0 � uj � d i
j . (17.3.4)

In this formulation, constraint (17.3.1) specifies that k vehicles are used,

while constraints (17.3.2) associate every operation with exactly one vehicle.

Constraints (17.3.3) and (17.3.4) guarantee that the vehicle schedule will satisfy

time feasibility constraints. They are imposed only if xjj' is defined. This feasibil-

ity problem is in general NP-complete [Sav85]. However, for our particular prob-

lem, it can be solved in polynomial time because we can use the cyclic property

of the schedule for relatively easily checking of the feasibility condition of the

vehicle schedule for a given production schedule. The first schedule does not

need to be constructed. When checking this feasibility condition one uses the job

latest transportation starting times (using the assumption given at the beginning

of this section) defined as follows

sj = d i
j � 7i, j = m+1, m+2,..., n .

The feasibility checking is given in Lemma 17.3.1.

 17.3 Simultaneous Scheduling and Routing in some FMS 687

Lemma 17.3.1 For a given ordered set of latest transportation starting times sj ,

sj � sj+1 , j = m+1, m+2,..., n, one can construct a feasible transportation sched-
ule for k vehicles if and only if

sj � (9�j�m
k ; � 1)A + [j � m � (9�j�m

k ; � 1)k � 1]a

for all j = m+1, m+2,..., n, where 9� jk ; denotes the smallest integer not smaller

than j/k .

Proof. It is not hard to prove the correctness of the above formula taking into

account that its two components reflect, respectively, the time necessary for an

integer number of cycles and the delay of an appropriate vehicle in a cycle need-

ed for a transportation of the j
th job in order.

The conditions given in Lemma 17.3.1 can be checked in O(nlogn) time in the

worst case. If one wants to construct a feasible schedule, the following polyno-

mial time algorithm will find it, whenever one exists. The basic idea behind the

algorithm is to choose for transportation a job whose deadline, less correspond-

ing delivery time, is minimum - i.e., the most urgent delivery at this moment.

This approach is summarized by the following algorithm.

Algorithm 17.3.2 for finding a feasible vehicle schedule given a production
schedule with m machines [BEF+91].
begin
t := 0; l := 0;

for j = m+1 to n do

Calculate job's Jj latest transportation starting time; -- initial values are set up

Sort all the jobs in non-decreasing values of their latest transportation starting

times and renumber them in this order;

for j = m+1 to n do

begin
Calculate slack time of the remaining jobs; slj := sj � t;

If any slack time is negative then stop; -- no feasible vehicle schedule exists

Load job Jj onto an available vehicle;

l := l + 1;

if l � k � 1 then t := t + a

else
begin
t := t � (k � 1)a + A;

l := 0;
end;

end; -- all jobs are loaded onto the vehicles

end;

 17 Scheduling in Flexible Manufacturing Systems

688

A basic property of Algorithm 17.3.2 is proved in the following theorem.

Theorem 17.3.3 Algorithm 17.3.2 finds a feasible transportation schedule
whenever one exists.

Proof. Suppose that Algorithm 17.3.2 fails to find a feasible transportation

schedule while such a schedule S exists. In this case there must exist in S two

jobs Ji and Jj such that sli < slj and Jj has been transported first. It is not hard to

see that exchanging these two jobs, i.e., Ji being transported first, we do not

cause the unfeasibility of the schedule. Now we can repeat the above pattern as

long as such a pair of jobs violating the earliest slack time rule exists. After a

finite number of such changes one gets a feasible schedule constructed according

to the algorithm, which is a contradiction.

Let us now calculate the complexity of Algorithm 17.3.2 considering the off-line

performance of the algorithm. Then its most complex function is the ordering of

jobs in non-decreasing order of their slack times. Thus, the overall complexity

would be O(nlogn). However, if one performs the algorithm in the on-line mode,

then the selection of a job to be transported next requires only linear time, pro-

vided that an unordered sequence is used. In both cases a low order polynomial

time algorithm is obtained. We see that the easiness of the problem depends

mainly on its regular structure following the cyclic property of the vehicle sched-

ule.

Example 17.3.4 To illustrate the use of the algorithm, consider the following

example. Let m the number of machines, n the number of jobs, and k the number

of vehicles be equal to 3, 9 and 2, respectively. Transportation times for respec-

tive machines are 71 = 1, 72 = 1.5, 73 = 2, and cycle and loading and unloading

times are A = 3, a = 0.5, respectively. A production schedule is given in Figure

17.3.4(a). Thus the deadlines are d 1
5 = 3, d 1

7 = 7, d 2
6 = 6, d 2

8 = 7, d 3
4 = 2, d 3

9 = 8.

They result in the latest transportation starting times s4 = 0, s5 = 2, s6 = 4.5, s7 =

6, s8 = 5.5, s9 = 6. The corresponding vehicle schedule generated by Algorithm

17.3.2 is shown in Figure 17.3.4(b). Job J9 is delivered too late and no feasible

transportation schedule for the given production plan can be constructed.

The obvious question is now what to do if there is no feasible transportation

schedule. The first approach consists of finding jobs in the transportation sched-

ule that can be delayed without lengthening the schedule. If such an operation is

found, other jobs that cannot be delayed are transported first. In our example

(Figure 17.3.4(a)) job J7 can be started later and instead J9 can be assigned first

to vehicle V1 . Such an exchange will not lengthen the schedule. However, it may

also be the case that the production schedule reflects deadlines which cannot be

exceeded, and therefore the jobs cannot be shifted. In such a situation, one may

use an alternative production schedule, if one exists. As pointed out in [Sch89], it

 17.3 Simultaneous Scheduling and Routing in some FMS 689

is often the case at the FMS planning stage that several such plans may be con-

structed, and the operator chooses one of them. If none can be realized because

of a non-feasible transportation schedule, the operator may decide to construct

optimal production and vehicle schedules at the same time. One such approach

based on dynamic programming is described in the next section.

(a)

J9

J8

J7

J6

J5

0 1 2 3 4 5 6 7 8 9 10 11 12 t

1P

2P

3P

J1

J2

J3 J4

(b)

t0 0.5 3 3.5 6 6.5 9 9.5

1V

2V

J4 J6

J5 J8

J7

J9

Figure 17.3.4 Production and non-feasible vehicle schedules
 (a) production schedule,
 (b) vehicle schedule: J9 is delivered too late.

17.3.3 Simultaneous Job and Vehicle Scheduling

In this section, the problem of simultaneous construction of production and vehi-

cle schedules is discussed. As mentioned above, this problem is NP-hard, alt-

hough not strongly NP-hard. Thus, a pseudopolynomial time algorithm based on

dynamic programming can be constructed for its solution.

Assume that jobs are ordered in non-increasing order of their processing times,

i.e. p1 �...� pn�1 � pn . Such an ordering implies that longer jobs will be processed

first and processing can take place on machines further from the storage area,

which is a convenient fact from the viewpoint of vehicle scheduling.

Now let us formulate a dynamic programming algorithm using the ideas present-

ed in [GLL+79]. Define

 17 Scheduling in Flexible Manufacturing Systems

690

xj(t1, t2,..., tm) =

�
.
�
.

true if jobs J1 , J2 ,..., Jj can be scheduled on

machines P1 , P2 ,..., Pm in such a way that

Pi is busy in time interval [0, ti], i = 1,

2,..., m (excluding possible idle time fol-

lowing from vehicle scheduling), and the

vehicle schedule is feasible

false otherwise

where

x0(t1, t2,..., tm) = {

true if ti = 0, i = 1, 2,..., m

false otherwise.

Using these variables, the recursive equation can be written in the following form

xj(t1, t2,..., tm) =

V
i=1

m
[xj�1(t1 , t2 ,..., ti�1 , ti � pi , ti+1 ,..., tm) ^ Zij(t1 , t2 ,..., ti�1, ti , ti+1 ,..., tm)]

where

Zij(t1, t2,..., ti�1, ti, ti+1,..., tm) =

�.
�
.

true if ti � pj � 7i �

(9�j�m
k ; � 1)A + [j � m � (9�j�m

k ; � 1)k � 1]a

or j � m

false otherwise

is the condition of vehicle schedule feasibility, given in Lemma 17.3.1.

Values of xj(&) are computed for ti = 0, 1,..., C, i = 1, 2,..., m, where C is an

upper bound on the minimum schedule length C *
max . Finally, C *

max is determined

as

C *
max = min{max{t1, t2,..., tm} | xn(t1, t2,..., tm) = true} .

The above algorithm solves our problem in O(nCm
) time. Thus, for fixed m,

it is a pseudopolynomial time algorithm, and can be used in practice, taking into

account that m is rather small. To complete our discussion, let us consider once

more the example from Section 17.3.2. The above dynamic programming ap-

proach yields schedules presented in Figure 17.3.5. We see that it is possible to

complete all the jobs in 11 units and deliver them to machines in 8 units.

To end this section let us notice that various extensions of the model are

possible and worth considering. Among them are those including different routes

for particular vehicles, an inspection phase as the second stage machine, resource

 17.4 Batch Scheduling in Flexible Flow Shops 691

competition, and different criteria (e.g., maximum lateness). These issues are

currently under investigation.

Further extensions of the described FMS model have been presented in

[BBFW94] and [KL95].

(a)

 0 1 2 3 4 5 6 7 8 9 10 11 t

1P

2P

3P

J8

J2

J4

J9

J1

J5

J7

J3

J6

(b)

t0 0.5 3 3.5 6 6.5 9 9.5

1V

2V

J9 J1

J7

J6

J3J5

Figure 17.3.5 Optimal production and vehicle schedule
(a) production schedule,
(b) vehicle schedule.

17.4 Batch Scheduling in Flexible Flow Shops
under Resource Constraints

The cast-plate-method of manufacturing acrylic-glass gives raise to a batch

scheduling problem on parallel processing units under resource constraints. This

chapter introduces the real world problem as well as an appropriate mathematical

programming formulation. The problem finally is solved heuristically.

17.4.1 Introduction - Statement of the Problem

The cast-plate-method for manufacturing acrylic-glass essentially consists of the

preparation of a viscous chemical solution, pouring it in a mould i.e. between

two plates of mineral glass (like a sandwich) and polymerizing the syrup to solid

sheets. Sandwiches of the same product are collected on storage racks. Figure

17.4.1 shows a manufacturing plant and its production facilities.

692 17 Scheduling in Flexible Manufacturing Systems

sandwich filling

solution

rack loading rack unloading

prepolymerisation

endpolymerisation

KILNSWATER BASINS

LOADES RACK EMPTY RACK

CONVEYOR BELT

KETTLE

Figure 17.4.1 Procedure of manufacturing acrylic-glass.

Depending on the included product, each rack has to be successively put into one

to four water basins holding particular temperatures for pre-polymerization. Sub-

sequently, every rack has to be designed to a kiln where end-polymerization takes

place, using a particular kiln temperature (temper cycle). As soon as polymeriza-

tion is concluded the racks are unloaded, i.e. the mineral glass plates are removed

and the hardened acrylic-glass plates may be taken to the quality control section.

The production cycle for the empty rack starts again, using a "new" solution, i.e.

loading the rack with next sheets, see [FKPS91].

The goal of the optimization process was to find optimal (at least "good")

production schedules for the weekly varying manufacturing program in order to

improve the plant’s polymerization capacity utilization.

17.4.2 Mathematical Formulation

For a given manufacturing program (say: product mix) and a fixed time horizon

we examine the polymerization area:

T Pre-polymerization in (water-)basins:

There is the choice between a given number of basins different in size and

with different temperatures. Every basin can be heated to any temperature.

Racks may be put into or taken out of the basins at any time.

T End-polymerisation in kilns:

 17.4 Batch Scheduling in Flexible Flow Shops 693

The present kilns solely differ in size. Every kiln can handle any temper cycle

(i.e. heating up, processing, and cooling down). Kilns must not be opened

while such a cycle is still in progress.

The production units before and after the above mentioned polymerization

area such as conveyer belts, kettles and quality control are linked through buffers

and hence remain uncritical. Thus, we do not need to include those areas in our

considerations about optimal schedules and consequently define the polymeriza-

tion area to be the optimization field. However, we have to consider the fact, that

the number of storage racks for every type of rack is limited at any time (cf.

global rack restrictions).

The interval [0, H] is the given planning period (H = 10080 in minutes, i.e. a

week); t � [0, H] denotes entry times, H is the planning horizon. For technical

reasons we allow t to be an integer, but only decision variables with t � [0,..., H]

in a feasible solution are of importance.

The customers’ orders, as part of a given product mix, can be divided ac-

cording to their characteristic attributes such as type, size, and diameter. A job
(product) Ji, i = 1,..., n, denotes all orders of the same type, size, and diameter.

Size and diameter determine the type of rack to be used for job Ji, whereas

the number 7i of racks needed can be figured out according to the racks’ holding

capacity and the total requirement of sheets for that job.

Each basin and each kiln is large enough in order to hold at least one rack

regardless of its type. Furthermore the breadth of all basins and kilns is almost

the same. They only differ in their length. Racks may only placed one after an-

other into basins or kilns. Even putting racks of the smallest breadth next to each

other is impossible. Hence to satisfy capacity constraints we only need to consid-

er the production units’ length. So, a real number ?i according to the particular

rack’s size is assigned to every job, where ?i equals the rack’s breadth if the

(rack’s breadth �) rack’s length is smaller or equal the unit’s breadth, and where

?i equals the rack’s length if the (rack’s breadth �) unit’s breadth is smaller than

the rack’s length. The ?i should be chosen such that shunter distances are taken

into consideration.

A 1-basin job is a job that needs to pre-polymerize in one basin only. A 2-
basin job (3-basin, 4-basin) job is a job the sandwiches of which need to pass

through two (three, four) basins with different temperatures. J is the set of all

jobs and I = {1,..., n} is the set of indices for all jobs Ji � J. Il, l = 1,..., 4, is

the set of indices for all l-basin jobs. Thus, I = I1 � I2 � I3 � I4; Ik � Ij = � for

all k, j � {1,..., 4} and k � j.
Each job has its unique work schedule to be applied to each rack of that job.

Different jobs require different work schedules. A work schedule is a table of the

following non-negative real numbers (considering multiple-basin jobs):

T Maximum allowed waiting time in front of the basin area;

T Basin 1: temperature and duration of stay,

694 17 Scheduling in Flexible Manufacturing Systems

T Basin 2: temperature and duration of stay,

T Basin 3: temperature and duration of stay,

T Basin 4: temperature and duration of stay;

T Maximum allowed waiting time between basin- and kiln area;

T Kiln: temperature and duration of stay.

A rack, holding filled sandwiches, is the smallest unit to be scheduled. For

racks holding sandwiches of the same job Ji we use the index l, l = 1,..., 7i.

There are K different types of (empty) racks; ak gives the number of present

racks for every type k, k = 1,..., K.

A basin q, q = 1,..., Z, is characterized by its temperature uq and its length

vqZ� (� = 1,..., 4) gives the number of basins of size � and Z = Z1 + Z2 + Z3

 + Z4 is the total number of basins in the considered plant. Besides the four dis-

tinct basin sizes we consider two distinct kiln sizes.

A kiln r, r = 1,..., N, is characterized by its length vr . N1 (N2) gives the

number of large (small) kilns in the plant, N = N1 + N2 is the total number of

kilns.

The Model

The following definitions and parameters are used to describe a mathematical

model of the problem.

Definitions and parameters:

A fictitious kiln r, r = 1,..., m, is one of the kilns supposed to run with a par-

ticular temperature ur .

m total number of fictitious kilns (m = Nrt, where rt is the

number of different temperatures required)

r1 (r2) number of fictitious large (small) kilns (r1 = N1rt, r2 = N2rt)
{1,..., r1} set of indices concerning fictitious large kilns

{r1 + 1,..., m} set of indices concerning fictitious small kilns

A fictitious basin q, q = 1,..., Q, is one of the basins heated to a particular

temperature.

Q total number of fictitious basins (Q = Zqt, where

qt is the number of different temperatures need-

ed)

q1 (q2, q3, q4) number of fictitious small (medium-size, large,

extra-large) basins (ql = Zlqt)
{1,..., q1} set of indices concerning small basins

{q1 + 1,..., q1 + q2} set of indices concerning medium-size basins

{q1 + q2 + 1,..., q1 + q2 + q3} set of indices concerning large basins

{q1 + q2 + q3 + 1,..., Q } set of indices concerning extra-large basins

 17.4 Batch Scheduling in Flexible Flow Shops 695

Each rack l of job Ji with l = 7i is called a fictitious rack of job Ji. Fictitious

racks are auxiliary tools. Let us illustrate their purpose:

Consider rack l, where 1 � l � 7i, containing a 3-basin job. This rack has to

pre-polymerize in three successive basins. We define fictitious racks as copies of

the present rack in accordance to the steps of pre-polymerisation. A fictitious

rack l + 7i is created to describe the original rack l in its second basin. Another

fictitious rack l + 27i arises in accordance to its third step of pre-polymerisation.

Thus, the rack index corresponds with the sequence of basins the existing rack

passes through. Obviously, fictitious racks occur for multiple-basin jobs only, i.e.

for i � I2 � I3 � I4.

Let 7
_

i be the number of (real and fictitious) racks for job Ji, then 7
_

i := l7i if i
� Il (l = 1,..., 4).

We call jobs Ji and Jj compatible if their work schedules contain identical

temperatures and durations for end-polymerization, meaning that racks holding

sandwiches of those jobs may be assigned to the same kiln at one time (regard, a

kiln cannot be opened during polymerization). Hence we define A = (aij), i, j =

1,..., n, as the job-compatibility matrix, that characterizes the jobs’ compatibility

with respect to its mere chemical features (they determine the temperatures re-

quired in a kiln), its temper-time, and possible preferences. The matrix is defined

as

aij := { 1 if jobs Ji and Jj must not join the same kiln

0 else.

Finally we introduce some time parameters:

(il time, when the l th rack of job Ji leaves the basin area

2ilr (duration of) stay of the l th rack of job Ji in kiln r

2ilq (duration of) stay of the l th rack of job Ji in basin q

mi maximum allowed waiting time for a rack of job Ji between basin-

and kiln area

Hmax maximum allowed waiting time before entering the basin area

Zmax maximum allowed waiting time for a rack of a multiple-basin job be-

tween two basins

where 1 � i � n; 1 � l � 7i , 7
_

i, respectively; 1 � r � m; 1 � q � Q.

Infeasible or undesirable assignments of job Ji to basin q (or kiln r) can be pre-

vented by fixing 2ilq = # (or 2ilr = #) for all l = 1,..., 7i . We may assume that 2ilq

includes any kind of necessary setup times. Analogously, 2ilr includes setup

times as well as heating up and cooling down times that occur in the temper cy-

cle.

Remark: We assumed, that at time t = 0 every rack of the given production plan

potentially stands by at the beginning of the basin area. (Of course, later on we

696 17 Scheduling in Flexible Manufacturing Systems

have to make sure, that the global rack restrictions are satisfied.) Granting excep-

tion to this assumption, the program can easily be remodeled by introducing

times when rack l of job Ji enters and leaves the basin area.

Our decision variables are

xilrt � {0, 1} for i = 1,..., n, l = 1,..., 7i, r = 1,..., m, t = 0,..., H,

xilqt � {0, 1} for i = 1,..., n, l = 1,..., 7
_

i, q = 1,..., Q, t = 0,..., H,

where

xilrt := { 1 if the l th rack of job Ji enters kiln r at time t,
0 else.

xilqt := { 1 if the lth rack of job Ji enters basin q at time t,
0 else.

For technical reasons we define auxiliary variables xilqt � {0, 1} for t < 0; i =

1,..., n; l = 1,..., 7
_

i; q = 1,..., Q analogously.

An entire allocation scheme for the basin area is denoted by x
_

 whereas x^ de-

notes an entire allocation scheme for the kiln area. According to the definition of

xilqt and xilrt, both x
_

 and x^ represent a binary four-dimensional matrix. An alloca-

tion scheme for the entire polymerization area is denoted by (x
_

, x^).

A mathematical programming model for the basin area is given below.

Objective function:

Minimize b1(x
_

) = �
i�I1

 �
l=1

7i

 �
q=1

Q
 �
t=0

H
) (t + 2ilq)xilqt +

 �
i�I2

 �
l=1

7i

 �
q=1

Q
 �
t=0

H
 (t + 2i(7i+l)q)xi(7i+l)qt +

 �
i�I3

 �
l=1

7i

 �
q=1

Q
 �
t=0

H
 (t + 2i(27i+l)q)xi(27i+l)qt +

 �
i�I4

 �
l=1

7i

 �
q=1

Q
 �
t=0

H
 (t + 2i(37i+l)q)xi(37i+l)qt

Minimize b2(x
_

) = max
i�I

l=1,...,7
_

i
q=1,...,Q
t=0,...,H

{(t + 2ilq)xilqt}

subject to

"waiting time constraints": (17.4.1)

 17.4 Batch Scheduling in Flexible Flow Shops 697

txilqt � Hmax for i � I; l = 1,..., 7i ;

 q = 1,..., Q; t = 0,..., H (17.4.1a)

txi(l+7i)�t � (7 + 2ilq)xilq7 � Zmax

 i � I2 � I3 � I4; l = 1,..., 7i ;

 �, q = 1,..., Q; 7, t = 0,..., H (17.4.1b)

t&xi(l+27i)�t � (7 + 2i(l+7i)q)&xi(l+7i)q7 � Zmax

 i � I3 � I4; l = 1,..., 7i ;

 �, q = 1,..., Q; 7, t = 0,..., H (17.4.1c)

t&xi(l+37i)�t � (7 + 2i(l+27i)q)xi(l+27i)q7 � Zmax

 i � I4; l = 1,..., 7i ;

 �, q = 1,..., Q; 7, t = 0,..., H (17.4.1d)

"basin capacity constraints": (17.4.2)

�
i=1

n
 �
l=1

7
_

i

?i [xilqt + xilq(t�1) + ... + xilq(t�2ilq�1)] � lq

 for q = 1,..., Q; t = 0,..., H

"basin coordination constraints": (17.4.3)

Using +1 := q1 + 1, +2 := q1 + q2, +3 := q1 + q2 + 1, +4 := q1 + q2 + q3 and +5 :=

q1 + q2 + q3 + 1 and the signum function sign: IR � IR>0 defined as

sign(x) = {
1 if x > 0

0 if x = 0

�1 if x < 0

we have the following constraints:

�
q=1

q1

 sign[�
i=1

n
 �
l=1

7
_

i

(xilqt + xilq(t�1) + ... + xilq(t�2ilq�1))] � Z1 for t = 0,..., H;

�
q=+1

+2

 sign[�
i=1

n
 �
l=1

7
_

i

(xilqt + xilq(t�1) + ... + xilq(t�2ilq�1))] � Z2 for t = 0,..., H;

�
q=+3

+4

 sign[�
i=1

n
 �
l=1

7
_

i

(xilqt + xilq(t�1) + ... + xilq(t�2ilq�1))] � Z3 for t = 0,..., H;

698 17 Scheduling in Flexible Manufacturing Systems

�
q=+5

Q

 sign[�
i=1

n
 �
l=1

7
_

i

(xilqt + xilq(t�1) + ... + xilq(t�2ilq�1))] � Z4 for t = 0,..., H;

"throughput constraints": (17.4.4)

�
q=1

Q

 �
t=0

H
 xilqt = 1 for i = 1,..., n; l = 1,..., 7

_
i

"basin-sequence constraints": (17.4.5)

xilqt + xi(l+7i)�7 � 1

 for i � I2; l = 1,..., 7i; �, q = 1,..., Q;

 t = 0,..., H; 7 = 0,..., t + 2ilq (17.4.5a)

xilqt + xi(l+7i)�7 � 1

 for i � I3; l = 1,..., 27i; �, q = 1,..., Q;

 t = 0,..., H; 7 = 0,..., t + 2ilq (17.4.5b)

xilqt + xi(l+7i)�7 � 1

 for i � I4; l = 1,..., 37i; �, q = 1,..., Q;

 t = 0,..., H; 7 = 0,..., t + 2ilq (17.4.5c)

"binary constraints": (17.4.6)

xilqt � {0, 1} for i = 1,..., n; l = 1,..., 7
_

i; q = 1,..., Q; t = 0,..., H

"prohibiting infeasible assignments": (17.4.7)

xilqt = 0 for l = 1,..., 7
_

i; t = 0,..., H

 and for all (i, q) � I � {1,..., Q}

 such that job Ji is not to be designed to basin q

"technical constraints": (17.4.8)

xilqt = 0 for t < 0; i = 1,..., n; l = 1,..., 7
_

i; q = 1,..., Q .

The objective function b1(x
_

) minimizes the sum of flow times of the racks in the

basins area in order to gain an optimal throughput with respect to the given prod-

uct mix. The objective function b2(x
_

) gives the instant when the very last rack (as

part of the given product mix) leaves the basin area. Minimizing b2(x
_

) corre-

 17.4 Batch Scheduling in Flexible Flow Shops 699

sponds to finishing processing of the given product mix in the basin area as soon

as possible (i.e. minimizing the makespan).

The waiting time constraints (17.4.1) assure that the maximum allowed wait-

ing time is observed by every rack before entering the first basin for all i � I

(17.4.1a), between the first and the second basin for all i � I2 � I3 � I4 (17.4.1b),

between the second and third basin for all i � I3 � I4 (17.4.1c), and before enter-

ing the fourth basin for all i � I4 (17.4.1d). The basin capacity constraints

(17.4.2) guarantee that each basin’s capacity is never exceeded. The basin coor-

dination constraints (17.4.3) state that the number of fictitious basins to be cho-

sen at any time is limited by the number of physically present basins. This holds

for basins of all different sizes. Throughput constraints (17.4.4) require that every

fictitious rack is assigned to exactly one basin during the regarded planning peri-

od. The basin-sequence constraints (17.4.5) assure, that pre-polymerization for

racks of multiple-basin jobs proceeds in due succession with respect to the par-

ticular work schedule. Inequalities (17.4.5a) guarantee that, considering 2-basin

jobs, pre polymerization in the first basin has to be finished before continuing in

a second basin. (17.4.5b) enforce the appropriate order of basins 1, 2, 3 for all 3-

basin jobs, for 4-basin jobs (17.4.5c) perform analogously. For every fictitious

rack l of a job Ji a binary constraint (17.4.6) characterizes whether the rack is

assigned to basin q at time t or not. The set of equations (17.4.7) are tools for

precluding infeasible or objectionable assignments. Negative time subscripts t
may occur in constraints (17.4.3). Thus, in (17.4.8) we also define decision vari-

ables xilqt for t < 0, though they are of no importance for the problem in practice.

A mathematical programming model for the kiln area is formulated as follows:

Objective function:

Minimize _1(x^) = �
i=1

n
 �
l=1

7i

 �
r=1

m
 �
t=0

H
 [(t � (il) + 2ilr]xilrt

Minimize _2(x^) = max
i=1,...,n
l=1,...,7
r=1,...,m
t=0,...,H

{(t + 2ilr)xilrt}

subject to

"availability constraints": (17.4.9)

txilrt � (il for i = 1,..., n ; l = 1,..., 7i ; r = 1,..., m ; t = 0,..., H

"waiting time constraints": (17.4.10)

(t � (il)xilrt � mi for i = 1,..., n ; l = 1,..., 7i ; r = 1,..., m ; t = 0,..., H

"kiln capacity constraints": (17.4.11)

700 17 Scheduling in Flexible Manufacturing Systems

�
i=1

n
 �
l=1

7i

 xilrt?i � vr for r = 1, .., m ; t = 0,..., H

"kiln coordination constraints": (17.4.12)

�
r=1

r1

 sign[�
i=1

n
 �
l=1

7i

 (xilrt + xilr(t�1) + ... + xilr(t�2ilr+1))] � N1

 for t = 0,..., H (17.4.12a)

�
r=r1+1

m
 sign[�

i=1

n
 �
l=1

7i

 (xilrt + xilr(t�1) + ... + xilr(t�2ilr+1))] � N2

 for t = 0,..., H (17.4.12b)

"product compatibility constraints": (17.4.13)

aij(xilrt + xjkrt) � 1

 for i, j = 1,..., n ; l = 1,..., 7i ; k = 1,..., 7j ; r = 1,..., m; t = 0,..., H;

"kiln closed constraints": (17.4.14)

(xilr7 + xjkrt) � 1 for i, j = 1,..., n ; l = 1,..., 7i ; k = 1,..., 7j ;

 r = 1,..., m ; 7 = 0,..., H ; t = 7 + 1,..., 7 + 2ilr

"throughput constraints": (17.4.15)

�
r=1

m
 �
t=0

H
 xilrt = 1 for i = 1,..., n; l = 1,..., 7i

"binary constraints": (17.4.16)

xilrt � {0, 1} for i = 1,..., n ; l = 1,..., 7i ; r = 1,..., m ; t = 0,..., H

"job completion constraints": (17.4.17)

(t + 2ilr)xilrt � H for i = 1,..., n ; l = 1,..., 7i ; r = 1,..., m ; t = 0,..., H

"prohibiting infeasible assignments": (17.4.18)

xilrt = 0 for l = 1,..., 7i ; t = 0,..., H

 for all (i, r) � I � {1,..., m} such that job Ji is not to

be assigned to a fictitious kiln r

The objective function _1(x^) sums up the times that the racks of the given prod-

uct mix spend in the kiln area in accordance to the basin exit times (il given as a

 17.4 Batch Scheduling in Flexible Flow Shops 701

function of a basin schedule x
_

. We minimize _1(x^) in order to gain an optimal

throughput with respect to the kiln area. The objective function _2(x^) determines

the time, when the very last rack of the given product mix leaves the kiln area.

Minimizing _2(x^) corresponds with finishing polymerisation of all given racks in

the kiln area as soon as possible, i.e. minimizing makespan.

The availability constraints (17.4.9) assure, that no rack is assigned to a kiln

prior to termination of its pre-polymerization in the basin area. Constraints

(17.4.10) prevent that the maximum waiting time between release in the basin

area and assignment to a kiln is exceeded for any rack. Constraints (17.4.11)

make sure, that the capacity of each kiln is observed at any time. Constraints

(17.4.12) state, that the number of fictitious kilns chosen at any time is limited by

the number of physically present kilns. Constraints (17.4.13) require, that racks

which are assigned to the same kiln at a time need to hold compatible jobs. The

kiln closed constraints (17.4.14) state, that there is neither recharging nor untime-

ly removal of racks while polymerization is still in progress. Throughput con-

straints (17.4.15) require that every fictitious rack is assigned to exactly one kiln

during the planning period. For every fictitious rack a binary constraint of

(17.4.16) characterizes whether the rack is assigned to a kiln r at time t. The job

completion constraints (17.4.17) state that all racks have to leave the kiln area

during the planning period, i.e. until the planning horizon H. Constraints

(17.4.18) exclude infeasible or objectionable assignments like priorities of par-

ticular customer orders.

The holding time of each rack consists of the period of time spent in the op-

timization area and the time needed for filling (mounting) and dismounting. As-

sume that til is an empirical upper bound for this period of time for rack l of job

Ji . Let 2
_

i be an upper bound for the flow time of job Ji in the basin area. It con-

sists of waiting times before and between the basins as well as of the pre-

polymerization times spent in the basins. Hence we obtain 2
_

i � max
q

{2ilq} + Hmax

for all l = 1,..., 7i and all 1-basin jobs Ji, i � I1. The flow time for multiple-basin

jobs is given by the sum of flow time in the respective basins and the waiting

times spent between them. For a rack l of a 3-basin job Ji, i � I3, for instance, we

get

2
_

i � max
q

{2ilq} + max
q

{2i(7i+l)q} + max
q

{2i(27i+l)q} + Hmax + 2Zmax.

Furthermore, we define Jk := {i � I | job Ji requires racks of type k} for every k �

{1,..., K}. Of course, I = �
k=1

K
 Jk .

Using these notations, the global rack constraints can be formulated as fol-

lows:

"global rack constraints": (17.4.19)

702 17 Scheduling in Flexible Manufacturing Systems

�
i�Jk

 �
l=1

7i

 �
q=1

Q
 (xilqt +...+ xilq(t-til+1)) � ak for k = 1,..., K; t = 0,..., H

�
i�Jk

 �
l=1

7i

 �
r=1

m
 (xilr(t+mi+2

_
i) +

...+ xilr(t+mi+2
_

i�til+1)) � ak

 for k = 1,..., K; t = 0,..., H.

The number of empty racks of any size is limited. Therefore the set of above

constraints guarantees, that, with respect to each particular type of rack, no racks

are scheduled unless/until a previously used (empty) storage rack falls vacant.

Remark: The til are functions of (x
_

, x^). Thus, it is impossible to determine the

values of til exactly a priori. The actual choice of til determines whether the glob-

al rack constraints are too restrictive with respect to the real world problem or

whether they give a relaxation for the problem of short rack capacities. Efficient

algorithms should dynamically adapt the til. The 2
_

i depend upon the quality of a

presupposed basin schedule x
_

. The above remarks on til apply to 2
_

i analogously.

17.4.3 Heuristic Solution Approach

Several exact solution methods for 0-1 programming problems are proposed in

literature (cf. [Bal67, Sch86, NW88]), however all of these are applicable for

small problem sizes only. Hence, as our problem may include up to about 108

binary variables the only suitable solution methods are heuristics.

On the first glance it seems to be appropriate to develop solution methods

for the basin area and for the kiln area independently. However a final combina-

tion of two independently derived schedules could be impossible without exceed-

ing the feasible buffers between the two areas, so that the waiting time con-

straints might be violated. Thus, the only reasonable line of attack is an integrat-

ed optimization. During a forward computation feasible schedules for the basin

area yield also feasible schedules for the kiln area, while a backward computa-
tion derives feasible schedules for the basin area from ones of the kiln area.

In our practical problem we decided to use backward computation. This de-

cision was based on the observation that the kilns' capacity already has been no-

ticed to be a bottleneck for particular product mixes while the basins’ capacity

appears to be less critical. Hence forward computation more often results in in-

feasible solutions.

One kind of backward computation, called simple backward computation,

first generates a feasible schedule for the kiln area and tries to adapt this schedule

to the basin area such that none of the constraints becomes violated. The other

kind, called simultaneous backward computation works rack after rack. First, one

rack is assigned to some kiln and to some basin. In step i the i th rack is tried to fit

 17.4 Batch Scheduling in Flexible Flow Shops 703

into the partial schedule such that none of the constraints will be violated. The

procedure terminates when all racks have been considered. Before we are going

into details, we provide a short description of the heuristics used for generation

of feasible kiln schedules.

Generation of Feasible Kiln Schedules

We are going to introduce three greedy heuristics as well as two regret heuristics

capable to generate feasible solutions for the kiln area. Both kinds of heuristics

are based on priority rules.

In order to get good feasible solutions intuition tells us that it seems to be

reasonable to consider compatibility properties of the jobs. In order to avoid a

waste of the kiln’s length racks of less compatible jobs should more likely be put

into small kilns than racks of jobs of high compatibility. Hence we first need a

measure for the job incompatibility. A useful measure will be the percentage of

racks to which a job is incompatible, i.e. the values

ui
1
 :=

1
7 M
N
O

P
Q
R�

j=1

n
 7i aij where 7 := �

j=1

n
 7i .

Value 7 is the sum of all racks in use and aij are coefficients of our compatibility

matrix A as defined in the previous section.

Similarly, we consider the rack size required for job Ji, and also the kiln size.

Thus, let ui
2
 :=

?i
max

i
{?i}

 for all Ji � I, and ur
3
 :=

?r
max

r
{?r}

 for all r = 1,..., N. If we

use u
_

i
j
 := 1 � ui

j
 for j := 1, 2 and u

_
r
3
 := 1 � ur

3
 then we are able to define a character-

istic (job � kiln)-matrix S((,*,") = (s((,*,")ir) where (, *, " � [0, 1] and

s((,*,")ir := [(1 � ()ui
1
 + (u

_
i
1
][(1 � *)ui

2
 + *u

_
i
2
][(1 � ")ur

3
 + "u

_
r
3
] .

The triple ((,*,") is called a strategy and determines the "measure of quality" of

assignment "rack of job Ji to kiln r". Among all possible matrices especially the

entries of S(0,0,1) and S(1,1,0) correspond to our intuition.

First we determine a feasible schedule for the kilns and then calculate a fea-

sible schedule for the basins. Hence it might be better to prefer multiple-basin

jobs while filling the kilns. According to our strategy this implies that almost all

basins are available for multiple-basin jobs, so that unfeasibilities are prevented.

Thus delays of the product mix completion time are reduced. Furthermore, the

number of racks to be produced of a particular job and their processing times in a

kiln as well as in the basin area should be considered. This is motivated by the

observation that jobs that will be in process for a long time probably determine

the completion time of the schedule. Thus let

704 17 Scheduling in Flexible Manufacturing Systems

ui := �
l=1

7
_

i

max
q

{2ilq} + �
l=1

7i

max
r

{2ilr}, ui
4
 :=

ui
maxi {ui}

 , and u
_

i
4
 := 1 � ui

4
 .

Moreover the basin size is included by uq
5
 :=

lq
max

q
{lq}

 and u
_

q
5
 := 1 � uq

5
, for q =

1,..., Z. Taking these values into account for the matrix entries of S yields an-

other characteristic matrix S((,*,",,,%) = (s((,*,",,,%)ir) where ,, % � [0, 1] and

s((,*,",,,%)ir := s((,*,")ir[(1 � ,)ui
4
 + ,u

_
i
4
][(1 � %)uq

5
 + %u

 _
q
5
]. The tuple ((,*,",,,%)

will also be called a strategy.

All subsequent heuristics should be applied several times in order to create

good schedules. To increase the variety of solutions we finally add some random

elements to the above mentioned strategies. Let z be a random variable uniformly

distributed in [0,1]. Then S'((,*,") = (s'((,*,")ir) and S((,*,",,,%) = (s'((,*,",,,%)ir)

are defined as s'((,*,")ir := s((,*,")ir z and s'((,*,",,,%)ir := s((,*,",,,%)ir z, respec-

tively. For convenience we only speak of matrix S = (sir), however, always keep-

ing in mind that any of the four above mentioned matrices might be used.

Now we provide three greedy procedures GREEDY1, GREEDY2, and

GREEDY3. GREEDY1 first chooses a kiln and then its jobs with respect to matrix

S. GREEDY2 proceeds just the other way round whereas GREEDY3 searches for

the maximum entry in S among all remaining feasible "job to kiln" assignments.

Algorithm 17.4.1 GREEDY1
begin
repeat

J := set of all jobs of which still racks have to be polymerized;

if there are empty kilns

then
begin
Choose an empty kiln r;
repeat

Choose a job Ji � J such that sir is maximum;

if aij = 0 for a rack of job Jj already in kiln r

then fill kiln r as far as possible with racks of job Ji;

J := J � {Ji};

until J = � or r is full; -- run kiln r

end

else wait for the next time when a kiln will be unloaded;

until all racks have been in polymerization;
end;

 17.4 Batch Scheduling in Flexible Flow Shops 705

Algorithm 17.4.2 GREEDY2
begin

J := set of all jobs;

repeat
K := set of all kilns not in process; -- i.e. those not completely loaded

if K � �

then
begin

Choose a job Ji � J of which the most racks are not polymerized;

repeat

Choose a kiln r � K such that sir is maximum;

if aij = 0 for a rack of job Jj already in kiln r

then fill kiln r as far as possible with racks of job Ji;

K := K � {r};

until K = � or there are no more racks of job Ji;

J := J � {Ji}; -- if J is empty then run all newly loaded kilns

end
else
begin

Wait for the next time when a kiln will be unloaded;

J := set of all jobs of which still racks have to be polymerized;

end;

until all racks have been in polymerization;
end;

Algorithm 17.4.3 GREEDY3
begin
repeat

K := set of all kilns not in process; -- i.e. those not completely loaded

J := set of all jobs of which still racks have to polymerize;

SS := S; -- SS = (ssir)

if K � � and J � �

then
repeat
for all r � K do

for all Ji � J do choose (i, r) such that ssir is maximum;

if aij = 0 for racks of a job Jj already in kiln r

then fill kiln r as far as possible with racks of job Ji;

ssir := 0;

until SS = 0;

else

706 17 Scheduling in Flexible Manufacturing Systems

if K = �

then wait for the next time when a kiln will be unloaded;

until all racks have been in polymerization;
end;

The regret heuristics (as special greedy heuristics) are also based upon some

matrix S. They are not only greedily grasping for the highest value in rows or

columns of S but consider the differences of the entries. So assume that for each i
= 1,..., n we have a descending ordering of the values sir1

 �...� sirN
. Let also si1 r

�...� sim r be descending orderings for all r = 1,..., N. We define regrets ni := sir1

� sir2
, i = 1,..., n, and or := si1 r � si2 r , r = 1,..., N, and first try assignments

where the above differences are largest. Heuristics REGRET1 and REGRET2 cor-

respond almost completely to GREEDY1 and GREEDY2, respectively; it is suffi-

cient to point to the slight distinction. In REGRET1 the empty kilns are chosen

according to the descending list of or, i.e. kiln r where or is maximum comes

first. Similarly, REGRET2 chooses the jobs Ji according to the descending order-

ing of ni, i.e. job Ji where ni is maximum comes first. Especially for the regret

heuristics, variety of solutions increases if random elements influence the matrix

entries. Otherwise many of the regrets ni and or will become zero.

We resigned new computation of the regrets, whenever a "waiting" job or a

"waiting" kiln "disappears", because of the insignificant solution improvement

compared to the raise of computational complexity.

Generation of Feasible Schedules

Each time a kiln is in process it runs according to a special temper cycle. It is

heated up to a particular temperature and later on cooled down. While the kiln is

in process it must not be opened. This restriction does not apply to the basins.

The basin temperatures are much lower than the kiln temperatures and racks may

be put into or removed from basins at any time. Hence the basin temperature

should be kept constant or temperature changes should be reduced to a minimum.

The initial assignment of a particular temperature to each basin is done according

to the number and size of the racks which have to pre-polymerize in this particu-

lar temperature as well as to the basin size. Procedures as used for job to kiln

assignments should somewhat be adjusted.

When the initial basin heating is completed backward computation may

start. We first give an outline of the simple backward computation algorithm. Let

tilq and tilr be the time when rack l (l = 1,..., 7
_

i or 7i) of job Ji (i = 1,..., n) enters

basin q (q = 1,..., Z), and kiln r (r = 1,..., N), respectively. Furthermore, let

random(z) be a random number generator that initializes z with a random number

from interval [0, 1]. Consider the sums of (at most 4) subsequent pre-

 17.4 Batch Scheduling in Flexible Flow Shops 707

polymerization times in basins of a rack of job Ji. Let 2i be sums’ mean value,

 i = 1,..., n.

Algorithm 17.4.4 Simple Backward Computation
Input: The algorithm starts with a feasible solution for the kiln area

begin
for all i � I do

for l := 1 to 7i do

begin -- compute possible starting times for prepolymerization
random(z);

tilq := tilr � 2i � zmi;

if i � I2 � I3 � I4 then ti(7i+l)q := tilq + 2ilq;

if i � I3 � I4 then ti(27i+l)q := ti(7i+l)q + 2i(7i+l)q;

if i � I4 then ti(37i+l)q := ti(27i+l)q + 2i(27i+l)q;

end
repeat

Take the earliest possible starting time tilq;

if rack l of job Ji may be put into some basin q

then pre-polymerize in q

else

if there is no basin for rack l available

then

if there is an empty basin

then adapt its temperature for job Ji

else pre-polymerization is impossible;

until all racks have been considered or pre-polymerization is impossible;
end;

If pre-polymerization is impossible for some rack we can start the above proce-

dure once again and compute new starting times for pre-polymerization of all or

some racks. Another possibility would be to generate a new schedule x^ for the

kilns.

The simultaneous backward computation is a simple extension of the heuris-

tics mentioned above for the kiln area. Whenever a rack is chosen (in any of

these heuristics) to be assigned to some kiln at time t try to assign this rack to

some basin at its possible pre-polymerization starting time (that is computed as

in simple backward computation). If this assignment is possible it will also be

realized and the next rack will be considered according to the heuristic in use. If

this assignment is not possible the possible pre-polymerization starting time may

be changed randomly or the procedure starts again with the next time step t + 1

for a kiln assignment of the considered rack.

708 17 Scheduling in Flexible Manufacturing Systems

Several advises should be given in order to achieve some acceleration. Very

long basin processing times that may occur, only for jobs Ji, i 	 I4, should be

split into two processing times. Hence 1-basin jobs become 2-basin jobs and so

on. During pre-polymerization basin changes are allowed and provide more flex-

ibility. Gaps of time during which a basin is not completely filled may be split

when a new rack is put into. It should be observed that splittings of small gaps

are preferred to avoid unnecessary splittings of long basin processing times.

The Main Algorithm

Up to now we only described the way a feasible schedule is computed. Accord-

ing to this schedule and its fitness (= value of its objective function) efforts were

done for improvement. Slight changes of the parameters (, *, ", ,, % according to

the objective function values lead to new solutions. A brief outline will describe

the main idea. Five strategies ((,*,",,,%) and related schedules (see the preceding

section) are randomly generated. Later on take the last five schedules and subdi-

vide the interval [0, 1] with respect to the fitness, i.e. the best schedule gets the

largest part and the worst schedule the smallest one. Generate five random num-

bers in [0, 1]. Sum up the values of (whereby the random numbers belong to the

subparts in [0, 1] corresponding to the schedules with matrix parameters (. The

new value (is this sum divided by 5. Do the same procedure for the remaining

parameters and generate the new schedule. This kind of search may be consid-

ered as a variant of tabu search.

For convenience we use in our algorithmic description below (1
j
, (2

j
, (3

j
, (4

j
,

(5
j
 instead of (, *, ", ,, %, respectively, in the j th solution.

Algorithm 17.4.5 Schedule Improvement
begin
for j := 1 to 5 do

Generate tuple nj := ((1
j
, (2

j
, (3

j
, (4

j
, (5

j
) at random and generate a

schedule (x
_

, x^) and its fitness fj := b1(x
_

) + _1(x^);

j := 5;
repeat

j := j + 1;

nj := 0;

for s := j � 5 to j � 1 do zs :=
1

fs

M
O

P
R1

fj�5
 +

1

fj�4
 +

1

fj�3
 +

1

fj�2
 +

1

fj�1

 ;

Subdivide the interval [0, 1] in 5 parts, each of lengths zj�5, zj�4, zj�3, zj�2, zj�1;
for r := 1 to 5 do

for i := 1 to 5 do
begin

 References 709

random(z);

if z belongs to the subinterval of [0, 1] corresponding to the s th solu-

tion (j � 5 � s � j � 1)

then (r
j
 := (r

j
 + (r

s;

end;
nj :=

1
5 ((1

j
, (2

j
, (3

j
, (4

j
, (5

j
);

Generate a new schedule (x
_
, x^) according to nj and its fitness

 fj := b1(x
_
) + _1(x^);

until j is sufficiently large or some other stopping criteria are satisfied;
end;

This algorithm always looks for a better parameter constellation incorporating

some random elements. The algorithm may also be applied to the alternative ob-

jective functions.

References

Bak75 K. R. Baker, A comparative study of flow shop algorithms, Oper. Res. 23,

1975, 62-73.

Bak84 K. R. Baker, Sequencing rules and due date assignments in a job shop, Man-
age. Sci. 30, 1984, 1093-1104.

Bal67 E. Balas, Discrete programming by the filter method, Oper. Res. 15, 1967,

915-957.

BB82 K. R. Baker, J. M. W. Bertrand, A dynamic priority rule for sequencing against

due dates, J. Oper. Manag. 3, 1982, 37-42.

BBFW94 J. Błażewicz, R. E. Burkard, G. Finke, G. J. Woeginger, Vehicle scheduling in

two-cycle flexible manufacturing system, Math. Comput. Model. 20, 1994,

19-31.

BCSW86 J. Błażewicz, W. Cellary, R. S)�lowiński, J. W,eglarz, Scheduling Under Re-
source Constraints - Deterministic Models, J. C. Baltzer, Basel, 1986.

BEF+91 J. Błażewicz, H. Eiselt, G. Finke, G. Laporte, J. W,eglarz, Scheduling tasks and

vehicles in a flexible manufacturing system, Int. J. Flexible Manuf. Syst. 4,

1991, 5-16.

BFR75 P. Bratley, M. Florian, P. Robillard, Scheduling with earliest start and due date

constraints on multiple machines, Nav. Res. Logist. Quart. 22, 1975, 165-173.

BH91 S. A. Brah, J. L. Hunsucker, Branch and bound algorithm for the flow shop

with multiple processors, Eur. J. Oper. Res. 51, 1991, 88-99.

BK83 K. R. Baker, J. J. Kanet, Job shop scheduling with modified due dates, J. Oper.
Manag. 4, 1983, 11-22.

Bra88 S. A. Brah, Scheduling in a Flow Shop with Multiple Processors, Ph.D. thesis,

University of Houston, Houston, TX., 1988.

710 17 Scheduling in Flexible Manufacturing Systems

BY86a J. A. Buzacott, D. D. Yao, Flexible manufacturing systems: a review of analyt-

ical models, Manage. Sci. 32, 1986, 890-905.

BY86b J. A. Buzacott, D. D. Yao, On queuing network models for flexible manufac-

turing systems, Queuing Syst. 1, 1986, 5-27.

Con65 R. W. Conway, Priority dispatching and job lateness in a job shop, Journal of
Industrial Engineering 16, 1965, 123-130.

DLSS89 M. Desrochers, J. K. Lenstra, M. W. P. Savelsbergh, F. Soumis, Vehicle rout-

ing with time windows, in: B. L. Golden, A. A. Assad (eds.), Vehicle Routing:
Methods and Studies, North-Holland, Amsterdam, 1988, 65-84.

Fre82 S. French, Sequencing and Scheduling: An Introduction to the Mathematics of
Job-Shop, J. Wiley, New York, 1982.

FKPS91 H. Friedrich, J. Keßler, E. Pesch, B. Schildt, Batch scheduling on parallel units

in acrylic-glass production, Zeitschrift für Operations Research 35, 1991,

321-345.

GLL+79 R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimiza-

tion and approximation in deterministic sequencing and scheduling theory: a

survey, Annals of Discrete Mathematics 5, 1979, 287-326.

Gra66 R. L. Graham, Bounds for certain multiprocessing anomalies, Bell Labs Tech.
J. 54, 1966, 1563-1581.

Gup70 J. N. D. Gupta, M-stage flowshop scheduling by branch and bound, Opsearch

7, 1970, 37-43.

Jai86 R. Jaikumar, Postindustrial manufacturing, Harv. Bus. Rev. Nov./Dec., 1986,

69-76.

KH82 J. J. Kanet, J. C. Hayya, Priority dispatching with operation due dates in a job

shop, J. Oper. Manag. 2, 1982, 155-163.

KL95 V. Kats, E. Levner, The constrained cyclic robotic flowshop problem: a solva-

ble case, Proceedings of the International Workshop on Intelligent Scheduling
of Robots and FMS, Jerusalem, 1995.

KM87 S. Kochbar, R. J. T. Morris, Heuristic methods for flexible flow line schedul-

ing, J. Manuf. Syst. 6, 1987, 299-314.

Lan87 M. A. Langston, Improved LPT scheduling identical processor systems,

RAIRO Technique et Science Informatiques 1, 1982, 69-75.

MB67 G. B. McMahon, P. G. Burton, Flow shop scheduling with the branch and

bound method, Oper. Res. 15, 1967, 473-481.

NW88 G. L. Nemhauser, L. A. Wolsey, Integer and combinatorial optimization,

Wiley, New York, 1988.

RRT89 N. Raman, R. V. Rachamadugu, F. B. Talbot, Real time scheduling of an au-

tomated manufacturing center, Eur. J. Oper. Res. 40, 1989, 222-242.

RS89 R. Rachamadugu, K. Stecke, Classification and review of FMS scheduling

procedures, Working paper no. 481C, The University of Michigan, School of

Business Administration, Ann Arbor MI, 1989.

 References 711

RT92 N. Raman, F. B. Talbot, The job shop tardiness problem: a decomposition

approach, Eur. J. Oper. Res., 1992.

RTR89a N. Raman, F. B. Talbot, R. V. Rachamadugu, Due date based scheduling in a

general flexible manufacturing system, J. Oper. Manag. 8, 1989, 115-132.

RTR89b N. Raman, F. B. Talbot, R. V. Rachamadugu, Scheduling a general flexible

manufacturing system to minimize tardiness related costs, Working paper # 89-

1548, Bureau of Economic and Business Research, University of Illinois at

Urbana - Champaign, Champaign, IL, 1989.

Sal73 M. S. Salvador, A solution of a special class of flowshop scheduling problems,

Proceedings of the Symposium on the theory of Scheduling and its Applica-
tions, Springer, Berlin, 1975, 83-91.

Sav85 M. W. P. Savelsbergh, Local search for routing problems with time windows,

Ann. Oper. Res. 4, 1985, 285-305.

Sch84 G. Schmidt, Scheduling on semi-identical processors, Zeitschrift für Opera-
tions Research 28, 1984, 153-162.

Sch86 A. Schrijver, Theory of Linear and Integer Programming, J. Wiley, New York,

1986.

Sch88 G. Schmidt, Scheduling independent tasks on semi-identical processors with

deadlines, J. Oper. Res. Soc. 39, 1988, 271-277.

Sch89 G. Schmidt, CAM: Algorithmen und Decision Support für die Fertigungssteue-
rung, Springer, Berlin, 1989.

SM85 K. E. Stecke, T. L. Morin, The optimality of balancing workloads in certain

types of flexible manufacturing systems, Eur. J. Oper. Res. 20, 1985, 68-82.

SS85 K. E. Stecke, J. J. Solberg, The optimality of unbalancing both workloads and

machine group sizes in closed queuing networks for multiserver queues, Oper.
Res. 33, 1985, 882-910.

SS89 C. Sriskandarajah, S. P. Sethi, Scheduling algorithms for flexible flowshops:

worst and average case performance, Eur. J. Oper. Res. 43, 1989, 143-160.

SW89 R. Słowiński, J. Węglarz (eds.), Advances in Project Scheduling, Elsevier,

Amsterdam, 1989.

Tal82 F. B. Talbot, Resource constrained project scheduling with time resource

tradeoffs: the nonpreemptive case, Manage. Sci. 28, 1982, 1197-1210.

VM87 A. P. J. Vepsalainen, T. E. Morton, Priority rules for job shops with weighted

tardiness costs, Manage. Sci. 33, 1987, 1035-1047.

Wit85 R. J. Wittrock, Scheduling algorithms for flexible flow lines, IBM J. Res. Dev.
29, 1985, 401-412.

Wit88 R. J. Wittrock, An adaptable scheduling algorithms for flexible flow lines,

Oper. Res. 33, 1988, 445-453.

18 Computer Integrated
Production Scheduling

Within all activities of production management, production scheduling is a major
part covering planning and control functions. By production management we
mean all activities which are necessary to carry out production. The two main
decisions to be taken in this field are production planning and production con-
trol. Production scheduling is a common activity of these two areas because
scheduling is needed not only on the planning level as mainly treated in the pre-
ceding chapters but also on the control level. From the different aspects of pro-
duction scheduling problems we can distinguish predictive production schedul-
ing or offline-planning (OFP) and reactive production scheduling or online-
control (ONC). Predictive production scheduling serves to provide guidance in
achieving global coherence in the process of local decision making. Reactive
production scheduling is concerned with revising predictive schedules when un-
expected events force changes. OFP generates the requirements for ONC, and
ONC creates feedback to OFP.

Problems of production scheduling can be modeled on the basis of distribut-
ed planning and control loops, where data from the actual manufacturing process
are used. A further analysis of the problem shows that job release to, job travers-
ing inside the manufacturing system and sequencing in front of the machines are
the main issues, not only for production control but also for short term produc-
tion planning.

In practice, scheduling problems arising in manufacturing systems are of
discrete, distributed, dynamic and stochastic nature and turn out to be very com-
plex. So, for the majority of practical scheduling purposes simple and rigid algo-
rithms are not applicable, and the manufacturing staff has to play the role of the
flexible problem solver. On the other hand, some kind of Decision Support Sys-
tems (DSS) has been developed to support solving these scheduling problems.
There are different names for such systems among which "Graphical Gantt Chart
System" and "Leitstand" are the most popular. Such a DSS is considered to be a
shop floor scheduling system which can be regarded as a control post mainly
designed for short term production scheduling. Many support systems of this type
are commercially available today. A framework for this type of systems can be
found in [EGS97].

Most of the existing shop floor production scheduling systems, however,
have two major drawbacks. First, they do not have an integrated architecture for
the solution process covering planning and control decisions, and second, they do
not take sufficient advantage from the results of manufacturing scheduling theo-
ry. In the following, we concentrate on designing a system that tries to avoid

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_18

713

https://doi.org/10.1007/978-3-319-99849-7_18
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_18&domain=pdf

 18 Computer Integrated Production Scheduling 714

these drawbacks, i.e. we will introduce intelligence to the modeling and to the
solution process of practical scheduling problems.

Later in this chapter we suggest a special DSS designed for short term pro-
duction scheduling that works on the planning and on the control level. It makes
appropriate use of scheduling theory, knowledge-based and simulation tech-
niques. The DSS introduced will also be called "Intelligent Production Schedul-
ing System" or IPS later.

This chapter is organized as follows. First we give a short idea about the en-
vironment of production scheduling from the perspective of problem solving in
computer integrated manufacturing (Section 18.1). Based on this we suggest a
reference model of production scheduling for enterprises (Section 18.2). Consid-
ering the requirements of a DSS for production scheduling we introduce an archi-
tecture for scheduling manufacturing processes (Section 18.3). It can be used
either for an open interactive (Section 18.3.1) or a closed loop solution approach
(Section 18.3.2). Based on all this we use an example of a flexible manufacturing
cell to show how knowledge-based approaches and ideas relying on traditional
scheduling theory can be integrated within an interactive approach (Section
18.3.3). Note that, in analogy, the discussion of all these issues can be applied to
other scheduling areas than manufacturing.

18.1 Scheduling in Computer Integrated Manu-
facturing

The concept of Computer Integrated Manufacturing (CIM) is based on the idea
of combining information flow from technical and business areas of a production
company [Har73]. All steps of activities, ranging from customer orders to prod-
uct and process design, master production planning, detailed capacity planning,
predictive and reactive scheduling, manufacturing and, finally, delivery and ser-
vice contribute to the overall information flow. Hence a sophisticated common
database support is essential for the effectiveness of the CIM system. Usually, the
database will be distributed among the components of CIM. To integrate all
functions and data a powerful communication network is required. Examples of
network architectures are hierarchical, client server, and loosely connected com-
puter systems. Concepts of CIM are discussed in detail by e.g. Ranky [Ran86]
and Scheer [Sch91].

We repeat briefly the main structure of CIM systems. The more technically
oriented components are Computer Aided Design (CAD) and Computer Aided
Process Planning (CAP), often comprised within Computer Aided Engineering
(CAE), Computer Aided Manufacturing (CAM), and Computer Aided Quality
Control(CAQ). More businesslike components are the Production Planning Sys-
tem (PPS) and the already mentioned IPS. The concept of CIM is depicted in
Figure 18.1.1 where edges represent data flows in either directions. In CAD, de-

 18.1 Scheduling in Computer Integrated Manufacturing 715

velopment and design of products is supported. This includes technical or physi-
cal calculations and drafting. CAP supports the preparation for manufacturing
through process planning and the generation of programs for numeric controlled
machines. Manufacturing and assembly of products are supported by CAM
which is responsible for material and part transport, control of machines and
transport systems, and for supervising the manufacturing process. Requirements
for product quality and generation of quality review plans are delivered by CAQ.
The objective of PPS is to take over all planning steps for customer orders in the
sense of material requirements and resource planning. Within CIM, the IPS or-
ganizes the execution of all job- or task-oriented activities derived from customer
orders.

PRODUCTION PLANNING

PRODUCTION CONTROL

CAEBasic data
for planning

Quality
requirements

Basic data for
manufacturingJobs, tasks

Quality
assuranceCAM

C
A
Q

PPS

Orders

IPS

Figure 18.1.1 The concept of CIM.

Problems in production planning and control could theoretically be represented
in a single model and then solved simultaneously. But even if all input data
would be available and reliable this approach would not be applicable in general
because of prohibitive computing times for finding a solution. Therefore a practi-
cal approach is to solve the problems of production planning and control sequen-
tially using a hierarchical scheme. The closer the investigated problems are to the
bottom of the hierarchy the shorter will be the time scale under consideration and
the more detailed the needed information. Problems on the top of the hierarchy
incorporate more aggregated data in connection with longer time scales. Deci-
sions on higher levels serve as constraints on lower levels. Solutions for prob-
lems on lower levels give feedback to problem solutions on higher levels. The
relationship between PPS, IPS and CAM can serve as an example for a hierarchy

 18 Computer Integrated Production Scheduling 716

which incorporates three levels of problem solving. It is of course obvious that a
hierarchical solution approach cannot guarantee optimality. The number of levels
to be introduced in the hierarchy depends on the problem under consideration,
but for the type of applications discussed here a model with separated tactical
(PPS), operational (IPS), and physical level (CAM) seems appropriate.

In production planning the material and resource requirements of the cus-
tomer orders are analyzed, and production data such as ready times, due dates or
deadlines, and resource assignments are determined. In this way, a midterm or
tactical production plan based on a list of customer orders to be released for the
next manufacturing period is generated. This list also shows the actual produc-
tion requirements. The production plan for short term scheduling is the output of
the production scheduling system IPS on an operational level. IPS is responsible
for the assignment of jobs or tasks to machines, to transport facilities, and for the
provision of additional resources needed in manufacturing, and thus organizes
job and task release for execution. On a physical level CAM is responsible for
the real time execution of the output of IPS. In that way, IPS represents an inter-
face between PPS and CAM as shown in the survey presented in Figure 18.1.2.
In detail, there are four major areas the IPS is responsible for [Sch89a].

Computer aided production planning
Administration of basic data
Material requirements planning
Time and capacity requirements planning

Order release for scheduling

Computer aided production scheduling

Job and task release for execution

Computer aided execution
Manufacturing
Assembly
Handling
Transport
Storage

Preprocessing
Initialization
Operation
Supervision

PPS

IPS

CAM

Figure 18.1.2 Production planning, scheduling and execution.

(1) Preprocessing: Examination of production prerequisites; the customer orders
will only be released for manufacturing if all needed resources such as materials,
tools, machines, pallets, and NC-programs are available.
(2) System Initialization: The manufacturing system or parts thereof have to be
set up such that processing of released orders can be started. Depending on the

 18.1 Scheduling in Computer Integrated Manufacturing 717

type of job, NC-programs have to be loaded, tools have to be mounted, and mate-
rials and equipment have to be made available at specific locations.
(3) System Operation: The main function of short term production scheduling is
to decide about releasing jobs for entering the manufacturing system, how to
traverse jobs inside the system, and how to sequence them in front of the ma-
chines in accordance with business objectives and production requirements.
(4) System Supervision and Monitoring: The current process data allow to check
the progress of work continuously. The actual state of the system should always
be observed, in order to be able to react quickly if deviations from a planned state
are diagnosed.

Offline planning (OFP) is concerned with preprocessing, system initializa-
tion and system operation on a predictive level, while online control (ONC) is
focused mainly on system operation on a reactive level and on system supervi-
sion and monitoring. Despite the fact that all these functions have to be per-
formed by the IPS, following the purpose of this chapter we mainly concentrate
on short term production scheduling on the predictive and the reactive level.

One of the basic necessities of CIM is an integrated database system. Alt-
hough data are distributed among the various components of a CIM system, they
should be logically centralized so that the whole system is virtually based on a
single database. The advantage of such a concept would be redundancy avoid-
ance which allows for easier maintenance of data and hence provides ways to
assure consistency of data. This is a major requirement of the database manage-
ment system (DBMS). The idea of an integrated data management within CIM is
shown in Figure 18.1.3.

SALES PPS CAE

DBMS

CAM CAQ

Inquiry
Offer
Order

Delivery

IPS

ACCOUNTING

C
U
S
T
O
M
E
R

CIM
DB

Figure 18.1.3 CIM and the database.

 18 Computer Integrated Production Scheduling 718

The computer architecture for CIM follows the hierarchical approach of problem
solving which has already been discussed earlier in this section. The hierarchy
can be represented as a tree structure that covers the following decision oriented
levels of an enterprise: strategic planning, tactical planning, operational schedul-
ing, and physical manufacturing. At each level a host computer is coordinating
one or more computers on the next lower level; actions at each level are carried
out independently, as long as the requirements coming from the supervising level
are not violated. The output of each subordinated level meets the requirements
for correspondingly higher levels and provides feedback to the host. The deeper
the level of the tree is, the more detailed are the processed data and the shorter
has to be the computing time; in higher levels, on the other hand, the data are
more aggregated. Figure 18.1.4 shows a distributed computer architecture, where
the boxes assigned to the three levels PPS, IPS and CAM represent computers or
computer networks. The leaves of the tree represent physical manufacturing and
are not further investigated.

Enterprise

PPS

CAM

Planning Computer

Scheduling
Computer

OFP-
Computer

ONC-
Computer

IPS

Strategic requirements

Storage Handling Machines Tools Transport Quality

Figure 18.1.4 Computer system in manufacturing.

Apart from a vertical information flow, a horizontal exchange of data on the
same level between different computers must be provided, especially in case of a
distributed and global environment for production scheduling. Generally, differ-
ent network architectures to meet these requirements may be thought of. Stand-
ard protocols and interfaces should be utilized to allow for the communication
between computers from different vendors.

 18.2 A Reference Model for Production Scheduling 719

18.2 A Reference Model for Production
Scheduling

In order to implement the solution approaches presented in the previous chapters
within a framework of an IPS we need a basic description of the scheduling sys-
tem. Here we introduce a modeling approach integrating declarative representa-
tion and algorithmic solution [Sch96]. Problem representation and problem solu-
tion are strongly interconnected, i.e. data structures and solution methods have to
be designed interdependently [Wir76]. We will suggest a reference model for
production scheduling and show how problem description and problem solution
can be integrated. To achieve this we follow the object-oriented modeling para-
digm.

Object-oriented modeling attempts to overcome the disadvantage of model-
ing data, functions, and communication, separately. The different phases of the
modeling process are analysis, design, and programming. Analysis serves as the
main representation formalism to characterize the requirements from the view-
point of the application domain; design uses the results of analysis to obtain an
implementation-oriented representation, and programming means translating this
representation using some programming language into code. Comparing object-
oriented modeling with traditional techniques its advantages lie in data abstrac-
tion, reusability and extensibility of the model, better software maintenance, and
direct compatibility of the models of different phases of the software develop-
ment process. Often it is also claimed that this approach is harmonizing the de-
centralization of organizations and their support by information systems. We will
now develop an open object-oriented analysis model for production scheduling.
In comparison to other models of this kind (see e.g. [RM93]) the model present-
ed here is a one to one mapping of the classification scheme of deterministic
scheduling theory introduced in Chapter 3 to models of information systems for
production scheduling. Following this approach we hope to achieve a better
transformation of theoretical results to practical applications.

A model built by object-oriented analysis consists of a set of objects com-
municating via messages which represent dynamic relations of pairs of them.
Each object consists of attributes and methods here also called algorithms. Meth-
ods are invoked by messages and methods can also create messages themselves.
Objects of the same type are classified using the concept of classes; with this
concept inheritance of objects can be represented. The main static relations be-
tween pairs of objects are generalization/specialization and aggregation/decom-
position.

Different methods for generating object-oriented models exist [DTLZ93],
[WBJ90]. From a practical point of view the method should make it easy to de-
velop and maintain a system; it should assist project management by defining
deliverables and effective tool support should be available. Without loss of gen-

 18 Computer Integrated Production Scheduling 720

erality the object model for production scheduling which will be introduced here
is based on the modeling approach called Object-Oriented Analysis or OOA sug-
gested by [CY91]. It is easy to use, easy to understand, and fulfils most of the
above mentioned criteria.

In Figure 18.2.1 the main classes and objects for production scheduling are
represented using OOA notation. Relationships between classes or objects are
represented by arcs and edges; edges with a semi-circle represent generaliza-
tion/specialization relations, edges with triangles represent aggregation/decompo-
sition, and arcs between objects represent communications by message passing.
The arc direction indicates a transmitter/receiver relationship. The introduced
classes, objects, attributes, methods, and relations are complete in the sense that
applying the proposed model a production schedule can be generated; neverthe-
less it is easy to enlarge the model to represent additional business requirements.

Each customer order is translated into a manufacturing order, also called job,
using process plans and bill of materials. Without loss of generality we want to
assume that a job refers always to the manufacturing of one part where different
tasks have to be carried out using different resources.

While in Figure 18.2.1 a graphical notation related to OOA is used, we will
apply in the following a textual notation. We will denote the names of classes
and objects by capital letters, the names of attributes by dashes, and the names of
methods by brackets. In OOA notation relationships between classes or objects
will be represented by arcs and edges; edges with a semi-circle represent general-
ization/specialization relations, edges with triangles represent aggregation, and
arcs represent communications between objects by message passing. The direc-
tion of the arc indicates a transmitter-receiver relationship. The introduced clas-
ses, objects, attributes, methods, and relations are complete in the sense that ap-
plying the proposed model a production schedule can be generated; nevertheless
it is easy to enlarge the model to represent additional business requirements.

The main classes of production scheduling are JOB, BOM (BILL_OF_MA-
TERIALS), PP (PROCESS_PLAN), TASK, RESOURCE, and SCHEDULE.
Additional classes are ORDER specialized to PURCHASING_ORDER and
DISPATCH_ORDER and PLANNING specialized to STRATEGIC_P, TACTI-
CAL_P, and OPERATIONAL_P. The class RESOURCE is a generalization of
MACHINE, TOOL, and STAFF. Without loss of generality we concentrate the
investigation here only on one type of resources which is MACHINE; all other
types of resources could be modeled in the same manner. In order to find the at-
tributes of the different classes and objects we use the classification scheme in-
troduced in Chapter 3.

The objects of class BOM generate all components or parts to be produced
for a customer order. With this the objects of class JOB will be generated. Each
object of this class communicates with the corresponding objects of class PP
which includes a list of the technological requirements to carry out some job.
According to these requirements all objects of class TASK will be generated,
which are necessary to process all jobs.

 18.2 A Reference Model for Production Scheduling 721

P L A N N IN G

TACTICAL_P OPERATIONAL_P

PP BOM

SCHEDULE RESOURCE

ORDER TOOL MACHINE STAFF

PURCHASING_ORDER

JOB

DISPATCH_ORDER

TASK

create_task create_job

objectives
constraints
resources
tasks
Gantt_chart
analyze_situation
generate_schedule

machine_number
availability
speed
capacity
qualification
job_list
calculate_availability
calculate_capacityjob_number

machine_list
ready_time
deadline
priority
status
check_job_processing

task_number
resources
processing time
preemption
earliest_start_time
latest_finish_time
predecessor
successor
status
determine_dates

STRATEGIC_P

Figure 18.2.1 Object-oriented analysis model for production scheduling.

An object of class JOB is characterized by the attributes "job_number", "ma-
chines", "machine_list", "ready_time", "deadline", "completion_time", "flow_
time", "priority", and "status". Some values of the attributes concerning time and
priority considerations are determined by the earlier mentioned Production Plan-
ning System (PPS). The value of the attribute "machines" refers to these ma-

 18 Computer Integrated Production Scheduling 722

chines which have the qualification to carry out the corresponding job; after gen-
erating the final production schedule the value of "machine_list" refers to the
ordered number of these machines to which the job is assigned. The value of the
attribute "status" gives an answer to the question if the job is open, scheduled, or
finished. The method used by JOB is here <check_job_processing> which has
the objective to supervise the progress of processing the job. Communication
between JOB and SCHEDULE results in determining the values of "ma-
chine_list", "completion_time", "flow_time" and "status".

Each object of class TASK contains structural attributes like "task_number",
"resources", "processing_time", "completion_time", "finish_time", "preemption",
"earliest_start_time", "latest_finish_time" and additional attributes like "prede-
cessor", "successor", and "status". The values of the two attributes referring to
earliest start and latest finish time are determined by the object-owned method
<determine_dates>. The parameters for this method are acquired by communica-
tion with objects of the class JOB. Again the attribute "status" is required for
analyzing the current state of processing of the task under consideration.

Objects of class MACHINE are described by the attributes "ma-
chine_number", "availability", "speed", "capacity", "qualification", and
"job_list". The value of "qualification" is the set of tasks which can be carried out
by the machine. The value of "job_list" is unknown at the beginning; after gener-
ating the schedule the value refers to the set of jobs and corresponding tasks to be
processed by this machine. In the same sense the values of "availability" and "ca-
pacity" will be altered using the methods <calculate_availability> and <calcu-
late_capacity>.

The task of the object SCHEDULE is to generate the final production sched-
ule. In order to do this the actual manufacturing situation has to be analyzed in
terms of objective function and constraints to be considered. This leads to the
determination of the values for the attributes "objectives" and "constraints" using
the method <analyze_situation>. The method <generate_schedule> is construct-
ing the desired schedule. Calling this method the communication links to the
objects of classes RESOURCE, JOB, and TASK respectively, are activated. To
the attributes "resources" and "tasks" the input values for <generate_schedule>
are assigned. The result of the method is a depiction of the production schedule
which is assigned to the attribute "Gantt_chart". The required data concerning
tasks and resources like machines, availability, speed, processing times etc. are
available through the communication links to the objects of classes TASK and
RESOURCE.

Example 18.2.1 The following example shows how an object-oriented model for
production scheduling can be generated. When we refer to the objects of a par-
ticular class the first time we declare the name of the corresponding object, its
attributes, and the value of the attributes. Later, we only declare the name of the
object and the value of the attributes. All entries are abbreviated.

 18.2 A Reference Model for Production Scheduling 723

JOB1 "j_no" J1;

 "machines" P1, P2;
 "mach_list" open;
 "ready" 0;
 "deadline" open;
 "prio" none;
 "stat" open;
JOB2 (J2; P2; open; 0; open; none; open)

JOB3 (J3; P1; open; 2; open; none; open)

There are three jobs which have to be processed. No given sequence for J1 exists
but J2 can only be processed on P2 and J3 can only be processed on P1. The jobs
can start to be processed at times 0 and 2; there is no deadline which has to be
obeyed, all jobs have the same priority. The machine list and status of the jobs
are open at the beginning; later they will assume the values of the permutation of
the machines and scheduled, in_process, or finished, respectively.

TASK11 "t_no" T11;

 "res" P1, P2;
 "p_time" 3;
 "preempt" no;
 "e_s_t" 0;
 "l_f_t" open;
 "pre" �;
 "suc" T12, T13;
 "stat" open;
TASK12 (T12; P1, P2; 13; no; 3; open; T11; �; open)

TASK13 (T13; P1, P2; 2; no; 3; open; T11; �; open)

TASK20 (T20; P2; 4; no; 0; open; �; �; open)

TASK31 (T31; P1; 2; no; 2; open; �; T32, T33, T34; open)

TASK32 (T32; P1; 4; no; 4; open; T31; �; open)

TASK33 (T33; P1; 4; no; 4; open; T31; �; open)

TASK34 (T34; P1; 2; no; 4; open; T31; �; open)

The three jobs consist of eight tasks; all tasks of job J1 can processed on all ma-
chines, all other tasks are only allowed to be processed on machine P2 or only on
machine P1. Processing times, precedence constraints and ready times are
known, preemption is not allowed, and again deadlines do not exist. The status of
the tasks is open at the beginning; later it will also assume the values scheduled,
in_process, or finished.

MACHINE1 "m_no" P1;

 "avail" [0,#);
 "speed" 1;

 18 Computer Integrated Production Scheduling 724

 "capac" PC1;

 "qualif" T11, T12, T13, T31, T32, T33, T34;
 "j_list" open;
MACHINE2 (P2; [0, #); 1; PC2; T11, T12, T13, T20; open)

There are two machines available for processing. Both machines have the same
speed. They are available throughout the planning horizon, capacity and qualifi-
cation are known. The job list, i.e. the sequence the jobs are processed by the
machines is not yet determined.

SCHEDULE "object" makespan;
 "constr" open;
 "res" P1, P2;

 "tasks" T11, T12, T13, T31, T32, T33, T34;
 "Gantt_chart" open;

The objective here is to minimize the makespan, i.e. to find a schedule where
max{Ci} is minimized. Besides task and machine related constraints no other
constraints have to be taken into account. All input data to generate the desired
production schedule is given, the schedule itself is not yet known. Calling the
method <generate_schedule> will result in a time oriented assignment of tasks to
machines. Doing this the attributes will assume the following values.

JOB1 (J1; P1, P2; 0; 17; none; scheduled)

JOB2 (J2; P2; 0; 4; none; scheduled)

JOB3 (J3; P1; 3; 15; none; scheduled)

TASK11 (T11; P1; 3; no; 0; 3; �; T12, T13; scheduled)

TASK12 (T12; P2; 13; no; 4; 17; T11; �; scheduled)

TASK13 (T13; P1; 2; no; 15; 17; T11; �; scheduled)

TASK20 (T20; P2; 4; no; 0; 4; �; �; scheduled)

TASK31 (T31; P1; 2; no; 3; 5; �; T32, T33, T34; scheduled)

TASK32 (T32; P1; 4; no; 5; 9; T31; �; scheduled)

TASK33 (T33; P1; 4; no; 9; 13; T31; �; scheduled)

TASK34 (T34; P1; 2; no; 13; 15; T31; �; scheduled)

All jobs and the corresponding tasks are now scheduled; job J1 will be processed
on machines P1 and P2 within the time interval [0,17], job J2 on machine P2 in
the interval [0,4] and job J3 on machine P1 in the interval [3,15].

 18.2 A Reference Model for Production Scheduling 725

MACHINE1 (P1; [17,#); 1; PC1; T11, T12, T13, T31, T32, T33, T34;

 T11, T31, T32, T33, T34, T13)

MACHINE2 (P2; [17,#); 1; PC2; T11, T12, T13, T20; T20, T12)

The availability of machines P1 and P2 has now been changed. Machine P1 is
processing tasks T11, T13, and all tasks of job J3, machine P2 is processing tasks
T20 and T12. The processing sequence is also given.

SCHEDULE "object" makespan;
 "constr" open;
 "res" P1, P2;

 "tasks" T11, T12, T13, T31, T32, T33, T34;
 "Gantt_chart" generated;

The schedule has now been generated and is depicted by a Gantt chart shown in
Figure 18.2.2. adaptation

P1

P2

T11

T20

T31 T32 T33 T34

T12

T13

t3 4 5 9 13 15 170
Figure 18.2.2 Gantt chart for the example problem.

Example 18.2.2 We now want to use the classical job shop scheduling problem
as an example to show how the approach can be applied to dedicated models.
Here we will concentrate especially on the interaction between problem represen-
tation and problem solution. The general job shop problem is treated in Chapter
8. The object model is characterized by the classes JOB, TASK, MACHINE and
SCHEDULE. Investigating attributes of the objects we only concentrate on some
selection of them. The class JOB can be described as follows.

JOB "j_no" Jj;

 "machines " Permutation over Pi;
 "mach_list" open;
 "ready" 0;
 "deadline" open;
 "prio" none;
 "stat" open;

As we are investigating a simple job shop problem each job is assigned to all
machines following some pre-specified sequence, ready times for all jobs are
zero; deadlines and priorities have not to be considered.

Each job consists of different tasks which are characterized by the machine
where the task has to be processed and the corresponding processing time;

 18 Computer Integrated Production Scheduling 726

preemption is not allowed. Each task can be described by its predecessor or suc-
cessor task. Input data for the algorithm are the values of the attributes "res",
"p_time", "pre" and "suc". The values of "e_s_t" are not obligatory because they
can be derived from the values of the attributes "pre" and "suc". With this the
class TASK can be described as follows.

TASK "t_no" Tij;

 "res" Pi;

 "p_time" pij;
 "preempt" no;
 "e_s_t" rij;
 "l_f_t" open;
 "pre" Tkj;

 "suc" Tlj;
 "stat" open;

MACHINE "m_no" Pi;

 "avail" [0,#);
 "speed" 1;
 "capac" PCi;

 "qualif" Tij;
 "j_list" open;

All machines are continuously available in the planning period under considera-
tion. The value of the attribute "capac" is not necessary to apply the algorithm, it
is only introduced for completeness reasons.
SCHEDULE "object" makespan;
 "constr" open;
 "res" P1,..., Pm;

 "tasks" Tij;
 "Gantt_chart" open;
 <generate_schedule> simulated annealing;

The objective is again to find a production schedule which minimizes the maxi-
mum completion time. Additional information for describing the scheduling situ-
ation is not available. The input data for the algorithm are the available ma-
chines, the processing times of all jobs on all machines and the corresponding
sequence of task assignment. After the application of an appropriate algorithm
(compare to Chapter 8) the corresponding values describing the solution of the
scheduling problem are assigned to the attributes and the Gantt chart will be gen-
erated.

We have shown using some examples that the object-oriented model can be
used for representing scheduling problems which correspond to those investigat-
ed in the theory of scheduling. It is quite obvious that the model can be specified

 18.3 IPS: An Intelligent Production Scheduling System 727

to various individual problem settings. Thus we can use it as some reference for
developing production scheduling systems.

18.3 IPS: An Intelligent Production Scheduling
System

The problems of short term production scheduling are highly complex. This is
not only caused by the inherent combinatorial complexity of the scheduling prob-
lem but also by the fact that input data are dynamic and rapidly changing. For
example, new customer orders arrive, others are cancelled, or the availability of
resources may change suddenly. This lack of stability requires permanent revi-
sions, and previous solutions are due to continuous adaptations. Scheduling
models for manufacturing processes must have the ability to partially predict the
behavior of the entire shop, and, if necessary, to react quickly by revising the
current schedule. Solution approaches to be applied in such an environment must
have especially short computing times, i.e. time- and resource-consuming models
and methods are not appropriate on an operational level of production schedul-
ing.

All models and methods for these purposes so far developed and partially
reviewed in the preceding chapters are either of descriptive or of constructive
nature. Descriptive models give an answer to the question "what happens if ...?",
whereas constructive models try to answer the question "what has to happen so
that ...?". Constructive models are used to find best possible or at least feasible
solutions; descriptive models are used to evaluate decision alternatives or solu-
tion proposals, and thus help to get a deeper insight into the problem characteris-
tics. Examples of descriptive models for production scheduling are queuing net-
works on an analytical and discrete simulation on an empirical basis; construc-
tive models might use combinatorial optimization techniques or knowledge of
human domain experts.

For production scheduling problems one advantage of descriptive models is
the possibility to understand more about the dynamics of the manufacturing sys-
tem and its processes, whereas constructive models can be used to find solutions
directly. Coupling both model types the advantages of each would be combined.
The quality of a solution generated by constructive models could then be evaluat-
ed by descriptive ones. Using the results, the constructive models could be re-
vised until an acceptable schedule is found. In many cases there is not enough
knowledge available about the manufacturing system to build a constructive
model from the scratch. In such situations descriptive models can be used to get a
better understanding of the relevant problem parameters.

From another perspective there also exist approaches trying to change the
system in order to fit into the scheduling model, others simplify the model in
order to permit the use of a particular solution method. In the meantime more

 18 Computer Integrated Production Scheduling

728

model realism is postulated. Information technology should be used to model the
problem without distortion and destruction. In particular it can be assumed that in
practical settings there exists not only one scheduling problem all the time and
there is not only one solution approach to each problem, but there are different
problems at different points in time. On the other hand the analysis of the compu-
tational complexity of scheduling problems gives also hints how to simplify a
manufacturing process if alternatives for processing exist.

Short term production scheduling is supported by shop floor information
systems. Using data from an aggregated production plan a detailed decision is
made in which sequence the jobs are released to the manufacturing system, how
they traverse inside the system, and how they are sequenced in front of the ma-
chines. The level of shop floor scheduling is the last step in which action can be
taken on business needs for manufacturing on a predictive and a reactive level.

One main difference between these two scheduling levels is the liability of
the input data. For predictive scheduling input data are mainly based on expecta-
tions and assumptions. Unforeseen circumstances like rush orders, machine
breakdowns, or absence of employees can only be considered statistically, if at
all. This situation is different in reactive scheduling where actual data are availa-
ble. If they are not in coincidence with the estimated data, situation-based revi-
sions of previous decisions have to be made. Predictive scheduling has to go
hand in hand with reactive scheduling.

Shop floor information systems available commercially today are predomi-
nately data administration systems. Moreover, they collect and monitor data
available from machines and the shop floor. Mainly routine operations are car-
ried out by the shop floor system; the production manager is supported by offer-
ing the preliminary tools necessary for the development of a paperless planning
and control process. Additionally, some systems are also offering various sched-
uling strategies but with limited performance and without advice when to apply
them. It can be concluded that the current shop floor information systems are
good at data administration, but for the effective solution of production schedul-
ing problems they are of very little help [MS92a, MS92b].

An intuitive job processing schedule, based solely upon the experience of
skilled production managers, does not take advantage of the potential strengths of
an integrated IPS. Thus, the development of an intelligent system which inte-
grates planning and control within scheduling for the entire operation and sup-
ports effectively the shop floor management, becomes necessary. Such a system
could perform all of the functions of the current shop floor scheduling systems
and would also be able to generate good proposals for production schedules,
which also take deviations from the normal routine into consideration. With the
help of such concepts the problems involved in initializing and operating a man-
ufacturing system should be resolved.

Practical approaches to production scheduling on the planning and control
level must take also into account the dynamic and unpredictable environment of
the shop floor. Due to business and technical considerations, most decisions must

 18.3 IPS: An Intelligent Production Scheduling System 729

be made before all the necessary information has been gathered. Production
scheduling must be organized in advance. Predictive scheduling is the task of
production planning and the basis for production control; where reactive schedul-
ing has to be able to handle unexpected events. In such a situation, one attempt is
to adapt to future developments using a chronological and functional hierarchy
within the decision making steps of production scheduling. This helps to create a
representation of the problem that considers all available information [Sch89a].

The chronological hierarchy leads to the separation of offline planning
(OFP) and online control (ONC). Problems involved in production scheduling
are further separated on a conceptual and a specific level in order to produce a
functional hierarchy, too. The purpose of the chronological approach to prioriti-
zation is to be able to come to a decision through aggregated and detailed model-
ing, even if future information is unspecific or unavailable. Aside from fulfilling
the functional needs of the organization, the basic concept behind the functional
hierarchy is to get a better handle on the combinatorial difficulties that emerge
from the attempt of simultaneously solving all problems arising in a manufactur-
ing environment. The IPS should follow hierarchical concepts in both, the chron-
ological and the functional aspect. The advantage of such a procedure consists
not only in getting a problem-specific approach for investigation of the actual
decision problem, but also in the representation of the decision making process
within the manufacturing organization.

Models and methods for the hierarchically structured scheduling of produc-
tion with its planning and control parts have been developed over the years and
are highly advanced; see e.g. [KSW86, Kus86, Ste85, LGW86]. However, they
lack integration in the sense of providing a concept, which encompasses the en-
tire planning and control process of scheduling. With our proposal for an IPS we
try to bring these methods and models one step closer to practical application.
The rudimentary techniques of solving predictive scheduling problems presented
here work on a closed Analysis-Construction-Evaluation loop (ACE loop). This
loop has a feedback mechanism creating an IPS on the levels of OFP and ONC
[Sch92]. An overview over the system is shown in Figure 18.3.1.

The OFP module consists of an analysis, a construction and an evaluation
component. First, the problem instance is analyzed (A) in terms of objectives,
constraints and further characteristics. In order to do this the first step for (A) is
to describe the manufacturing environment with the scheduling situation as de-
tailed as necessary. In a second step from this description a specific model has to
be chosen from a set of scheduling models in the library of the system. The anal-
ysis component (A) can be based upon knowledge-based approaches, such as
those used for problems like classification.

The problem analysis defines the parameters for the construction (C) phase.
From the basic model obtained in (A), a solution for the scheduling problem is
generated by (C) using some generic or specific algorithms. The result is a com-
plete schedule that has then to be evaluated by (E). Here the question has to be
answered if the solution can be implemented in the sense that manufacturing ac-

 18 Computer Integrated Production Scheduling

730

cording to the proposed solution meets business objectives and fulfils all con-
straints coming from the application. If the evaluation is satisfactory to the user,
the proposed solution will be implemented. If not, the process will repeat itself
until the proposed solution delivers a desirable outcome or no more improve-
ments appear to be possible in reasonable time.

Problem

Analysis Construction

Evaluation

Strategy

Adaptation

Ad-hoc-
decisions

OFP

ONC

(A) (C)

(E)

System
status

Figure 18.3.1 Intelligent problem solving in manufacturing.

The construction component (C) of the ACE loop generates solutions for OFP. It
bases its solution upon exact and heuristic problem solving methods. Unfortu-
nately, with this approach we only can solve static representations of quite gen-
eral problems. The dynamics of the production process can at best be only ap-
proximately represented. In order to obtain the necessary answers for a dynamic
process, the evaluation component (E) builds up descriptive models in the form
of queuing networks at aggregated levels [BY86] or simulation on a specific lev-
el [Bul82, Ca86]. With these models one can evaluate the various outcomes and
from this if necessary new requirements for problem solution are set up.

Having generated a feasible and satisfactory predictive schedule the ONC
module will be called. This module takes the OFP schedule and translates its
requirements to an ONC strategy, which will be followed as long as the schedul-
ing problem on the shop floor remains within the setting investigated in the anal-
ysis phase of OFP. If temporary disturbances occur, a time dependent strategy in
the form of an ad-hoc decision must be devised. If the interruption continues for
such a long time that a new schedule needs to be generated, the system will re-
turn to the OFP module and seek for an alternative strategy on the basis of a new
problem instance with new requirements and possibly different objectives within

 18.3 IPS: An Intelligent Production Scheduling System 731

the ACE loop. Again a new ONC strategy has to be found which will then be
followed until again major disturbances occur.

As already mentioned, production scheduling problems are changing over
time; a major activity of the problem analysis is to characterize the problem set-
ting such that one or more scheduling problems can be modeled and the right
method or a combination of methods for constructing a solution can be chosen
from a library of scheduling methods or from knowledge sources coming from
different disciplines. With this there are three things to be done; first the manu-
facturing situation has to be described, second the underlying problem has to be
modeled and third an appropriate solution approach has to be chosen. From this
point of view one approach is using expert knowledge to formulate and model
the problem using the reference model presented in the preceding section, and
then using "deep"-knowledge from the library to solve it.

The function of OFP is providing flexibility in the development and imple-
mentation of desirable production schedules. OFP applies algorithms which can
either be selected from the library or may also be developed interactively on the
basis of simulation runs using all components of the ACE loop. The main activi-
ty of the interaction of the three components of the loop is the resolution of con-
flicts between the suggested solution and the requirements coming from the deci-
sion maker. Whenever the evaluation of some schedule generated by (C) is not
satisfactory then there exists at least some conflict between the requirements or
business objectives of a problem solution and the schedule generated so far.
Methods to detect and resolve these conflicts are discussed in the next section.

The search for a suitable strategy within ONC should not be limited to rou-
tine situations, rather it should also consider e.g. breakdowns and their predicta-
ble consequences. ONC takes into consideration the scheduling requirements
coming from OFP and the current state of the manufacturing system. To that end,
it makes the short term adjustments, which are necessary to handle failures in
elements of the system, the introduction of new requirements for manufacturing
like rush orders or the cancellation of jobs. An algorithmic reaction on this level
of problem solving based on sophisticated combinatorial considerations is gener-
ally not possible because of prohibitive computing times of such an approach.
Therefore, the competence of human problem solvers in reaching quality, real-
time decisions is extremely important.

OFP and ONC require suitable diagnostic experience for high quality deci-
sion making. Schedules generated in the past should be recorded and evaluated,
for the purpose of using this experience to find solutions for actual problems to
be solved. Knowledge-based systems, which could be able to achieve the quality
of "self-learning" in the sense of case-based reasoning [Sch98], can make a sig-
nificant contribution along these lines.

Solution approaches for scheduling problems mainly come from the fields of

Operations Research (OR) and Artificial Intelligence (AI). In contrast to OR-

approaches to scheduling, which are focused on optimization and which were

mainly covered in the preceding chapters, AI relies on satisfaction, i.e. it is suffi-

 18 Computer Integrated Production Scheduling

732

cient to generate solutions which are accepted by the decision maker. Disregard-

ing the different paradigm of either disciplines the complexity status of the

scheduling problems remains the same, as it can be shown that the decision vari-

ant of a problem is not easier than the corresponding optimization problem (see

Section 2.2). Although the OR- and AI-based solution approaches are different,

many efforts of either disciplines for investigating scheduling problems are simi-

lar; examples are the development of priority rules, the investigation of bottle-

neck resources and constraint-based scheduling. With priority scheduling as a

job- or task-oriented approach, and with bottleneck scheduling as a resource-

oriented one, two extremes for rule-based schedule generation exist.

Most of the solution techniques can be applied not only for predictive but al-

so for reactive scheduling. Especially for the latter case priority rules concerning

job release to the system and job traversing inside the system are very often used

[BPH82, PI77]. Unfortunately, for most problem instances these rules do not

deliver best possible solutions because they belong to the wide field of heuristics.

Heuristics are trying to take advantage from special knowledge about the charac-

teristics of the domain environment or problem description respectively and

sometimes from analyzing the structure of known good solutions. Many AI-

based approaches exist which use domain knowledge to solve predictive and

reactive scheduling problems, especially when modeled as constraint-based

scheduling.

OR approaches are built on numerical constraints, the AI approach is con-

sidering also non-numerical constraints distinguishing between soft and hard
constraints. In this sense scheduling problems also can be considered as con-
straint satisfaction problems with respect to hard and soft constraints. Speaking

of hard constraints we mean constraints which represent necessary conditions

that must be obeyed. Among hard constraints are given precedence relations,

routing conditions, resource availability, ready times, and setup times. In contrast

to these, soft constraints such as desirable precedence constraints, due dates,

work-in-process inventory, resource utilization, and the number of tool changes,

represent rather preferences the decision maker wants to be considered. From an

OR point of view they represent the aspect of optimization with respect to an

objective function. Formulating these preferences as constraints too, will convert

the optimization problem under consideration into a feasibility or a decision

problem. In practical cases it turns out very often that it is less time consuming to

decide on the feasibility of a solution than to give an answer to an optimization

problem.

The constraint satisfaction problem (CSP) deals with the question of finding

values for the variables of a set X = {x1 ,..., xn} such that a given collection C of

constraints c1 ,..., cm is satisfied. Each variable xi is assigned a domain zi which

defines the set of values xi may assume. Each constraint is a subset of the Carte-

sian product z1 � z2 �...� zn that specifies conditions on the values of the varia-

 18.3 IPS: An Intelligent Production Scheduling System 733

bles x1 ,..., xn . A subset Y � z1 � z2 �...� zn is called a feasible solution of the

constraint satisfaction problem if Y meets all constraints of C , i.e. if Y � �
j=1

n
 cj .

The analysis of a constraint satisfaction problem either leads to feasible solu-

tions or to the result that for a given constraint set no such solution exists. In the

latter case conflict resolution techniques have to be applied. The question in-

duced by a constraint satisfaction problem is an NP-complete problem [GJ79]

and one of the traditional approaches to solve it is backtracking. In order to detect

unfeasibility it is sometimes possible to avoid this computationally expensive

approach by carrying out some preprocessing steps where conflicts between con-

straints are detected in advance.

Example 18.3.1 For illustration purposes consider the following example prob-

lem with X = {x1 , x2 , x3}, z1 = z2 = z3 = {0, 1}, and C = {c1 , c2 , c3} represent-

ing the constraints

x1 + x2 = 1 (18.3.1)

x2 + x3 = 1 (18.3.2)

x1 + x3 = y for y � {0, 2} . (18.3.3)

Feasible solutions for this example constraint satisfaction problem are given by

Y11 = {(0, 1, 0)} and Y12 = {(1, 0, 1)}. If a fourth constraint represented by

x2 + x3 = 0 (18.3.4)

is added to C , conflicts arise between (18.3.2) and (18.3.4) and between (18.3.1),

(18.3.3), and (18.3.4). From these we see that no feasible solution exists. Notice

that no backtracking approach was needed to arrive at this result.

To solve constraint satisfaction problems most AI scheduling systems construct a

search tree and apply some search technique to find a feasible solution. A com-

mon technique to find feasible solutions quickly is constraint directed search.

The fundamental philosophy uses a priori consistency checking techniques

[DP88, Fre78, Mac77, Mon74]. The basic concept is to prune the search space

before unfeasible combinations of variable values are generated. This technique

is also known as constraint propagation.

Apart from the discussed focus on constraints, AI emphasizes the role of

domain specific knowledge in decomposing the initial problem according to sev-

eral perspectives like bottleneck resources, hierarchies of constraints, conflicting

subsets of constraints, while ignoring less important details. Existing AI-based

scheduling systems differentiate between knowledge representation (models) and

scheduling methodology (algorithms). They focus rather on a particular applica-

tion than on general problems. The scheduling knowledge refers to the manufac-

turing system itself, to constraints and to objectives or preferences. Possible rep-

 18 Computer Integrated Production Scheduling

734

resentation techniques are semantic networks (declarative knowledge), predicate

logic (especially for constraints), production rules (procedural knowledge) and

frames (all of it). Scheduling methodology used in AI is mainly based on produc-

tion rules (operators), heuristic search (guides the application of operators), op-

portunistic reasoning (different views of problem solving, e.g. resource-based or

job-based), hierarchical decomposition (sub-problem solution, abstraction and

distributed problem solving), pattern matching (e.g. using the status of the manu-

facturing system and given objectives for the application of priority rules), con-

straint propagation, reinforcement or relaxation techniques.

In the next three sections we describe two approaches which use AI-based
solution techniques to give answers to production scheduling problems. In Sec-
tion 18.3.1 we demonstrate open loop interactive scheduling and in Section
18.3.2 we discuss some closed loop approaches using expert knowledge in the
solution process of scheduling problems. In Section 18.3.3 we present an exam-
ple for integrated problem solving combining OR- and AI-based solution ap-
proaches.

18.3.1 Interactive Scheduling

We now want to describe how a constraint-based approach can be used within
the ACE-loop to solve predictive scheduling problems interactively. Following
Schmidt [Sch89b], decomposable problems can be solved via a heuristic solution
procedure based on a hierarchical "relax and enrich" strategy (REST) with look
ahead capabilities. Using REST we start with a solution of some relaxed feasibil-
ity problem considering hard constraints only. Then we enrich the problem for-
mulation step by step by introducing preferences from the decision maker. These
preferences can be regarded as soft constraints. We can, however, not expect in
general that these additional constraints can be met simultaneously, due to possi-
ble conflicts with hard constraints or with other preferences. In this case we have
to analyze all the preferences by some conflict detection procedure. Having dis-
covered conflicting preferences we must decide which of them should be omitted
in order to resolve contradictions. This way a feasible and acceptable solution
can be generated.

REST appears to be appealing in a production scheduling environment for
several reasons. The separation of hard constraints from preferences increases
scheduling flexibility. Especially, preferences very often change over time so that
plan revisions are necessary. If relaxation and enrichment techniques are applied,
only some preferences have to be altered locally while very often major parts of
the present schedule satisfying hard constraints can be kept unchanged. A similar
argument applies for acceptable partial schedules which may be conserved and
the solution procedure can concentrate on the unsatisfactory parts of the schedule
only.

 18.3 IPS: An Intelligent Production Scheduling System 735

This problem treatment can be incorporated into the earlier mentioned DSS
framework for production scheduling which then includes an algorithmic module
to solve the problem under the set of hard constraints, and a knowledge-based
module to take over the part of conflict detection and implementation of con-
sistent preferences. Without loss of generality and for demonstration purposes
only we want to assume in the following that the acceptability of a solution is the
greater the more preferences are incorporated into the final schedule. For sim-
plicity reasons it is assumed that all preferences are of equal importance.

In this section we describe the basic ideas of REST quite generally and
demonstrate its application using an example from precedence constrained
scheduling. We start with a short discussion of the types of constraints we want
to consider. Then we give an overview on how to detect conflicts between con-
straints and how to resolve them. Finally, we give a simple example and present
the working features of the scheduling system based on REST.

Analyzing Conflicts

Given a set of tasks T = {T1 ,..., Tn}, let us assume that preferences concern the
order in which tasks are processed. Hence the set of preferences PR is defined as
a subset of the Cartesian product, T � T . Conflicts occur among contradictory
constraints. We assume that the given hard constraints are not contradictory
among themselves, and hence that and thus a feasible schedule that obeys all the
hard constraints always exists. Obviously, conflicts can only be induced by the
preferences. Then, two kinds of contradictions have to be taken into account:
conflicts between the preferences and the hard constraints, and conflicts among
preferences themselves. Following the strategy of REST we will not extract all of
these conflicts in advance. We rather start with a feasible schedule and aim to
add as many preferences as possible to the system.

The conflicting preferences are mainly originated from desired task order-
ings, time restrictions and limited resource availabilities. Consequently, we dis-
tinguish between logically conflicting preferences, time conflicting preferences,
and resource conflicting preferences.

Logical conflicts between preferences occur if a set of preferred task order-
ings contains incompatible preferences. Logical conflicts can easily be detected
by investigating the directed graph G = (T , P R). This analysis can be carried out
by representing the set of preferences as a directed graph G = (T , LC) where T is
the set of tasks and LC � T � T represents the preferred processing orders
among them.

Example 18.3.2 To illustrate the approach we investigate an example problem
where a set T = {T1 , T2 , T3 , T4} of four tasks has to be scheduled. Let the pre-

 18 Computer Integrated Production Scheduling

736

ferred task orderings be given by PR = {PR1 , PR2 , PR3 , PR4 , PR5} with PR1 =

(T1 , T2), PR2 = (T2 , T3), PR3 = (T3 , T2), PR4 = (T3 , T4), and PR5 = (T4 , T1).

T1 T2

T3 T4

PR5

PR1

PR3

PR2

PR4
Figure 18.3.2 G = (T , PR) representing preferences in Example 18.3.2.

Logical conflicts in G = (T , PR) can be detected by finding all cycles of G (see
Figure 18.3.2). From this we get two sets of conflicts, LC1 = {PR2 , PR3} and

LC2 = {PR1 , PR2 , PR4 , PR5}.

Time conflicts occur if a set of preferences is not consistent with time restrictions
following from the initial solution obtained on the basis of the hard constraints.
To detect time conflicts we must explicitly check all time conditions between the
tasks. Hard constraints implying earliest beginning times EBj , latest beginning
times LBj and processing times pj restrict the preferences that can be realized. So,
if

EBu + pu > LBv (18.3.5)

for tasks Tu and Tv , the preference (Tu , Tv) , would violate the time restrictions.
More generally, suppose that for some k � IN and for tasks Tu1

 ,..., Tuk
 and Tu

there are preferences (Tu1
 , Tu2

), (Tu2
 , Tu3

) ,..., (Tuk�1
 , Tuk

) and (Tuk
 , Tv). These

preferences imply that the tasks should be processed in order (Tu1
 ,..., Tuk

 , Tv).
However, if this task sequence has the property

Zuk
 + puk

 > LBv (18.3.6)

where

Zuk
 = max {EBuk

, max
l

{EBul
 + �

j=l

k�1

 pj}}

then obviously the given set of preferences is conflicting. If (18.3.6) is true the
time constraint coming from the last task of the chain will be violated.

 18.3 IPS: An Intelligent Production Scheduling System 737

Example 18.3.2 - continued - To determine time conflicts, assume that each task
Tj has a given earliest beginning time EBj and a latest beginning time LBj as spec-
ified together with processing times pj in the following Table 18.3.1.

Tj EBj LBj pj

T1 7 7 5
T2 3 12 4
T3 13 15 2
T4 12 15 0

Table 18.3.1 Time parameters for Example 18.3.2.

To check time conflicts we have to investigate time compatibility of the prefer-
ences PRi , i = 1,..., 5. Following (18.3.5), a first consistency investigation shows
that each of the preferences, PR3 and PR5 , is in conflict with the time constraints.
The remaining preferences, PR1 , PR2 , and PR4 would suggest execution of the
tasks in order (T1 , T2 , T3 , T4). To verify feasibility of this sequence we have to
check all its subsequences against (18.3.6). The subsequences of length 2 are
time compatible because the only time conflicting sequences would be (T3 , T2)
and (T4 , T1). For the total sequence (T1 , T2 , T3 , T4) we get Z3 = max {EB3 , EB1 +

p1 + p2 , EB2 + p2} = 15 and Z3 + p3 > LB4 , thus the subset {PR1 , PR2 , PR4 } of
preferences creates a time conflict. Similarly the two subsequences of length 3
are tested: the result is that sequence (T1 , T2 , T3) realized by preferences PR1 and
PR2 establishes a time conflict, whereas (T2 , T3 , T4) does not. So we end up with
four time conflicting sets of preferences, TC1 = {PR3}, TC2 = {PR5}, TC3 =
{PR1 , PR2}, and TC4 = {PR1 , PR2 , PR4}.

If the implementation of some preference causes a resource demand at some time
t such that it exceeds resource limits at this time, i.e.

�
Ti �Tt

 Rk(Tj) > mk, k = 1,..., s , (18.3.7)

then a resource conflict occurs. Here T t denotes the set of tasks being processed
at time t, Rk(Tj) the requirement of resource of type Rk of task Tj , and mk the cor-
responding resource maximum supply.

Example 18.3.2 - continued - As to the resource conflicts, assume that s = 1, m1
 = 1, and R1(Tj) = 1 for all j = 1,..., 4. Taking the given time constraints into ac-
count, we detect a conflict for PR1 from (18.3.7) since T2 cannot be processed in
parallel with tasks T3 and T4 . Thus an additional conflicting set RC1 = {PR1} has
to be introduced.

 18 Computer Integrated Production Scheduling

738

Coping with Conflicts

Let there be given a set T of tasks, and a set PR of preferences concerning the
processing order of tasks. Assume that logical conflicting sets LC1 ,..., LC0 ,
time conflicting sets TC1 ,...,TC7 , and resource conflicting sets RC1 ,..., RC�

have been detected. We then want to find out if there is a solution schedule that
meets all the restrictions coming from these conflicting sets. This means that we
need to find a subset PR ' of PR of maximal cardinality such that none of the
conflicting sets LCi , TCj , RCk contradicts PR ', i.e. is contained in PR '.

Let LC := {LC1 ,..., LC0} be the set of all logically conflicting sets; the set
TC of time conflicting sets and the set RC of resource conflicting sets are defined
analogously. Define C := LC � TC � RC , i.e. C contains all the conflicting sets
of the system. The pair IH := (PR , C) represents a hypergraph with vertices PR
and hyperedges C . Since IH describes all conflicts arising in the system we refer
to IH as the conflict hypergraph.

Our aim is to find a suitable subset PR ', i.e. one that does not contain any of
the hyperedges. We notice that if H1 � H2 for hyperedges H1 and H2, we need
not to consider H2 since H1 represents the more restrictive conflicting set. Ob-
serving this we can simplify the hypergraph by eliminating all hyperedges that
are supersets of other hyperedges. The hypergraph then obtained is referred to as
the reduced conflict hypergraph.

According to our measure of acceptability we are interested in the maximum
number of preferences that can be accepted without loosing feasibility. This is
justified if all preferences are of equal importance. If the preferences have differ-
ent weights we might be interested in a subset of preferences of maximum total
weight. All these practical questions result in NP-hard problems [GJ79].

To summarize the discussion we have to perform three steps to solve the
problem.
Step 1: Detect all the logically, time, and resource conflicting sets.
Step 2: Build the reduced conflict hypergraph.
Step 3: Apply some conflict resolution algorithm.

Algorithm 18.3.3 frame (IH = (PR , C));

begin
S := �; -- initialization of the solution set
while PR � � do
begin
Reduce hypergraph (PR , C);
Following some underlying heuristic, choose preference PR � PR ; (18.3.8)

 18.3 IPS: An Intelligent Production Scheduling System 739

PR := PR � {PR};
if C �/ S � {PR} for all C � C then S := S � {PR};

-- P R is accepted if the temporal solution set does not contain any conflicting preferences

for all C � C do C := C � (PR � PR);

-- the hypergraph is restricted to the new (i.e. smaller) set of vertices
end;

end;

The algorithm is called frame because it has to be put in concrete form by intro-
ducing some specific heuristics in line (18.3.8). Based on the conflict hypergraph
IH = (PR , C) heuristic strategies can easily be defined. We also mention that if
preferences are of different importance their weight should be considered in the
definition of the heuristics in (18.3.8).

In the following we give a simple example of how priority driven heuristics
can be defined. Each time (18.3.8) is performed, the algorithm chooses a prefer-
ence of highest priority. In order to gain better adaptability we allow that priori-
ties are re-computed before the next choice is taken. This kind of dynamics is
important in cases where the priority values are computed from the hypergraph
structure, because as the hypergraph gets smaller step by step its structure chang-
es during the execution of the algorithm, too.

Heuristic DELTA-decreasing (,dec): Let ,: PR � IN
0 be the degree that as-

signs - in analogy to the notion of degree in graphs - each vertex PR � PR the
number of incident hyperedges, i.e. the number of hyperedges containing vertex
PR. The heuristic ,dec then arranges the preferences in order of non-increasing
degree. This strategy follows the observation that the larger the degree of a pref-
erence is, the more subsets of conflicting preferences exist; thus such a prefer-
ence has less chance to occur in the solution set. To increase this chance we give
such preference a higher priority.

Heuristic DELTA-increasing (,inc): Define ,inc := � ,dec . This way preferences
of lower degree get higher priority. This heuristic was chosen for comparison
against the ,dec strategy.

Heuristic GAMMA-increasing ("inc): Define ": PR � IN 0 as follows: For PR
� PR , let "(PR) be the number of vertices that do not have any common hy-
peredge with PR. The heuristic "inc then arranges the preferences in order of non-
decreasing cardinalities. The idea behind this strategy is that a preference with
small "-value has less chance to be selected to the solution set. To increase this
chance we give such preference a higher priority.

Heuristic GAMMA-decreasing ("dec): Define "dec := � "inc . This heuristic was
chosen for comparison against the "inc strategy.

 18 Computer Integrated Production Scheduling

740

The above heuristics have been compared by empirical evaluation [ES93].
There it turned out that DELTA-decreasing, GAMMA-increasing behave consid-
erably better than DELTA-increasing and GAMMA-decreasing.

Example 18.3.2 - continued - Summarizing all conflicts we get the conflict hy-
pergraph IH := (PR , C) where the set C contains the hyperedges

{PR2 , PR3}
{PR1 , PR2 , PR4 , PR5}

(logically conflicting sets)

{PR3}
{PR5}
{PR1 , PR2}
{PR1 , PR2 , PR4}

(time conflicting sets)

{PR1} (resource conflicting set).

Figure 18.3.3 shows the hypergraph where encircled vertices are hyperedges.

PR2

PR5

PR4

PR3

PR1

Figure 18.3.3 IH = (PR , C) representing conflicts of the example problem.

PR1 PR2

PR4

PR5 PR3

Figure 18.3.4 Reduced hypergraph representing conflicts of the example prob-
lem.

 18.3 IPS: An Intelligent Production Scheduling System 741

Since each of the hyperedges of cardinality > 1 contains a conflicting set of car-
dinality one, the reduced hypergraph has only the three hyperedges {PR1}, {PR3}
and {PR5}, see Figure 18.3.4. A subset of maximal cardinality that is not in con-
flict with any of the conflicting sets is {PR2 , PR4}. Each of the above algorithms
finds this solution as can easily be verified.

Below we present a more complex example where not only the heuristics can be
nontrivially applied; the example also demonstrates the main idea behind an in-
teractive schedule generation.

Working Features of an Interactive Scheduling System

The above described approach of REST with conflict detection mechanisms can
be integrated into a DSS [EGS97]. Its general outline is shown in Figure 18.3.5.

CONSTRUCTIONANALYSIS

EVALUATION

conflict
detection

provisional
final schedule

basic
schedule

hard
constraints

soft
constraints

1

3 4

2

5

6

predictive
schedule

Figure 18.3.5 A DSS for the REST-approach.

The DSS consists of four major modules: problem analysis, schedule generation,
conflict detection and evaluation. Their working features can be organized by
incorporating six phases. The first phase starts with some problem analysis inves-
tigating the hard constraints which have to be taken into account for any problem
solution. Then, in the second phase a first feasible solution (basic schedule) is
generated by applying some scheduling algorithm. The third phase takes over the
part of analyzing the set of preferences of task constraints. In the fourth phase
their interaction with the results of the basic schedule is clarified via the conflict
detection module. In the fifth phase a compatible subset of soft constraints ac-
cording to the objectives of the decision maker is determined, from which a re-
vised schedule is generated. In the last phase the revised evaluated. If the evalua-

 18 Computer Integrated Production Scheduling

742

tion is satisfactory a solution for the predictive scheduling problem is found; if
not, the schedule has to be revised by considering new constraints from the deci-
sion maker. The loop stops as soon as a satisfactory solution has been found.

The DSS can be extended to handle a dynamic environment. Whenever hard
constraints have to be revised or the set of preferences is changing we can apply
this approach on a rolling basis.

Example 18.3.4 To demonstrate the working feature of the scheduling system
consider an extended example. Let there be given a set of tasks T = {T1 , T2 , T3 ,
T4 , T5 , T6 , T7 , T8}, and hard constraints as shown in Figure 18.3.6(a). Processing
times and earliest and latest beginning times are given as triples (pj , EBj , LBj)
next to the task nodes. In addition, concurrent task execution is restricted by two
types of resources and resource requirements of the tasks are R(T1) = [2, 0],
R(T2) = [2, 4], R(T3) = [0, 1], R(T4) = [4, 2], R(T5) = [1, 0], R(T6) = [2, 5],
R(T7) = [3, 0], R(T8) = [0, 1]. The total resource supply is m = [5, 5].

(a)

T6

T8

T7

T4

T2

T5

T3

T1

(2;0,0)

(3;2,5)

(4;1,8)

(3;2,7)

(2;4,5)

(2;6,11)

(4;7,9)

(1;8,12)

(b)

T1 T4T3

T5

T6

T7

T8

t0 5 11 12

T2

1 2 7 9
Figure 18.3.6 Illustration of Example 18.3.4 :
 (a) hard constraints,
 (b) a basic schedule.

Having analyzed the hard constraints we generate a feasible basic schedule by
applying some scheduling algorithm. The result is shown in Figure 18.3.6(b).

 18.3 IPS: An Intelligent Production Scheduling System 743

Feasibility of the schedule is gained by assigning a starting time sj to each task
such that EBj � sj � LBj and the resource constraints are met.

Describing the problem in terms of the constraint satisfaction problem, the
variables refer to the starting times of the tasks, their domains to the intervals of
corresponding earliest and latest beginning times and the constraints to the set of
preferences. Let the set of preferences be given by PR = {PR1 ,..., PR7} with
PR1 = (T3 , T4) , PR2 = (T2 , T3) , PR3 = (T4 , T3) , PR4 = (T7 , T5) , PR5 = (T5 , T2) ,
PR6 = (T5 , T6) , and PR7 = (T4 , T5) (see Figure 18.3.7). Notice that the basic
schedule of Figure 18.3.6(b) realizes just two of the preferences.

Analyzing conflicts we start with the detection of logical conflicts. From the
cycles of the graph in Figure 18.3.7 we get the logically conflicting sets LC1 =
{PR1 , PR3} and LC2 = {PR1 , PR2 , PR5 , PR7}.

T4

T1 T2

T3T8

T7

T6 T5

PR3

PR4
PR1

PR2

PR7

PR8

PR6
PR5

PR9

PR10

Figure 18.3.7 G = (T , PR) representing preferences in Example 18.3.4.

Task sequence Time conflicting set of preferences

(T4 , T3) TC1 = {PR3}

(T2 , T3 , T4) TC2 = {PR1 , PR2}

(T7 , T5 , T6) TC3 = {PR4 , PR6}

(T2 , T3 , T4, T5) TC4 = {PR1 , PR2 , PR7}

(T3 , T4 , T5, T2) TC5 = {PR1 , PR5 , PR7}

(T4 , T5 , T2, T3) TC6 = {PR2 , PR5 , PR7}

(T5, T2 , T3 , T4) TC7 = {PR1 , PR2 , PR5}

Table 18.3.2 Subsets of preferences being in time conflict.

 18 Computer Integrated Production Scheduling

744

For the analysis of time constraints we start with task sequences of length 2. We
see that there is only one such conflict, TC1 . Next, task sequences of length
greater than 2 are checked. Table 18.3.2 summarizes non-feasible task sequences
and their corresponding time conflicting subsets of preferences.

So far we found 2 logically conflicting sets and 7 time conflicting sets of prefer-
ences. In order to get the reduced hypergraph, all sets that already contain a con-
flicting set must be eliminated. Hence there remain 5 conflicting sets of prefer-
ences, {PR3} {PR1 , PR2}, {PR4 , PR6}, {PR1 , PR5 , PR7} and {PR2 , PR5 , PR7}.
The corresponing hypergraph is sketched in Figure 18.3.8.

PR1 PR3PR2

PR7

PR4 PR5 PR6

Figure 18.3.8 Gc = (PR, E) representing logical and time conflicts of Example

18.3.4.

We did, however, not consider the resource constraints so far. To detect resource
conflicts we had to find all combinations of tasks which cannot be scheduled
simultaneously because of resource conflicts. Since in general the number of
these sets increases exponentially with the number of tasks, we follow another
strategy: First create a schedule without considering resource conflicts, then
check for resource conflicts and introduce additional precedence constraints be-
tween tasks being in resource conflict. In this manner we proceed until a feasible
solution is found.

t0 5 10 121 2 7 8 9

T 5 T 6T 2

T 1 T 4T 3 T 7 T 8

Figure 18.3.9 Schedule for Example 18.3.4 without considering resource con-

flicts.

To construct a first schedule, we aim to find a set of non-conflicting preferences
of maximum cardinality, i.e. a maximum set that does not contain any of the hy-

 18.3 IPS: An Intelligent Production Scheduling System 745

peredges of the above hypergraph. For complexity reasons we content ourselves
with an approximate solution and apply algorithm frame. Heuristics GAMMA-
increasing, for example, selects the subset {PR1 , PR5 , PR6} and we result in the
schedule presented in Figure 18.3.9. Remember that we assumed for simplicity
reasons that all preferences are equally weighted.

The schedule of Figure 18.3.9 shows two resource conflicts, for T2 , T4 and
for T6 , T8 . Hence T2 and T4 (and analogously T6 and T8) cannot be processed
simultaneously, and we have to choose an order for these tasks. This way we end
up with two additional hard constraints in the precedence graph shown in figure
18.3.10(a). Continuing the analysis of constraints we result in a schedule that
realizes the preferences PR5 and PR6 (Figure 18.3.10(b)).

(a)

T6

T8

T7

T4

T2

T5

T3

T1

(2;0,0)

(3;2,5)

(4;1,8)

(3;2,7)

(2;4,5)

(2;6,11)

(4;7,9)

(1;8,12)

(b)

T1 T3 T6T7 T8

t0 5

T2T4

1 2 4 6 8 9 13

T5

Figure 18.3.10 Final schedule for Example 18.3.4 :
 (a) precedence graph of Figure 18.3.6(a) with additional hard

constraints (T4, T2) and (T8, T6),
 (b) a corresponding schedule.

We can now summarize our approach by the following algorithm:

Algorithm 18.3.5 for interactive scheduling.
begin
Initialize 'Basic Schedule';

Collect preferences;

 18 Computer Integrated Production Scheduling

746

Detect conflicts;
while conflicts exist do Apply frame;
Generate final schedule;
end;

Reactive Scheduling

Now assume that the predictive schedule has been implemented and some un-
foreseen disturbance occurs. In this case within the ACE loop (compare Figure
18.3.1) reactive scheduling is concerned with revising predictive schedules as
unexpected events force changes. Now we want to present some ideas how to
interactively model parts of the reactive scheduling process using fuzzy logic.
The idea is to apply this approach for monitoring and diagnosing purposes only.
Based on the corresponding observations detailed reactive scheduling actions can
be taken by the decision maker [Sch94].

An algorithmic reaction on the reactive level of problem solving based on
sophisticated combinatorial considerations is generally not possible because of
prohibitive computing times; therefore, the competence of human problem solv-
ers in reaching quality, real-time decisions is extremely important. The human
problem solver should be supported by advanced modeling techniques. In order
to achieve this we suggest the application of fuzzy logic because it allows to rep-
resent the vague, qualitative view of the human scheduler most conveniently. The
underlying theory of fuzzy sets [Zad65] concentrates on modeling vagueness due
to common sense interpretation, data aggregation and vague relations. Examples
for common sense interpretation in terms of a human production scheduler are
e.g. 'long queues of jobs' or 'high machine processing speed'. Data aggregation is
used in expressions like 'skilled worker' or 'difficult situation' and vague relations
are represented by terms like 'not much more urgent than' or 'rather equal'.

Reactive scheduling requires suitable diagnostic support for quick decision
making. This is intended with our approach modeling reactive scheduling by
fuzzy logic. The two main components of the model we use are (1) linguistic
variables [Zad73] and (2) fuzzy rules or better decision tables [Kan86]. A lin-
guistic variable L can be represented by the tuple L = (X, U, f) where set X repre-
sents the feasible values of L, set U represents the domain of L, and f is the mem-
bership function of L which assigns to each element x � X a fuzzy set
A(x)={u, fx(u)} where fx(u) � [0, 1].

A decision table (DT) consists of a set of conditions (if-part) and a set of ac-
tions (then-part). In case of multi conditions or multi actions conditions or ac-
tions respectively have to be connected by operators. If all conditions have only
one precise value we speak of deterministic DT. In case we use fuzzy variables
for representing conditions or actions we also can build non-deterministic DT.
These tables are very much alike of how humans think. In order to represent the
interaction of linguistic variables in DT we have to introduce set-theoretic opera-

 18.3 IPS: An Intelligent Production Scheduling System 747

tions to find the resulting membership function. The most common operations
are union, intersection and complement. In case of an union we have fC(u) =
max{fA(u), fB(u)}, in case of an intersection fD(u) = min{fA(u), fB(u)}, and in case
of the complement A° of A we have fA°(u) = 1 � fA(u). To understand the approach
of modeling reactive scheduling by fuzzy logic better consider the following sce-
nario.

There are queues of jobs in front of machines on the shop floor. For each job
Jj the number of jobs Nj waiting ahead in the queue, its due date dj and its slack
time sj = dj � t are known where t is the current time. Processing times of the jobs
are subject to disturbances. Due date and machine assignment of the jobs are
determined by predictive scheduling. The objective is to diagnose critical jobs,
i.e. jobs which are about to miss their due dates in order to reschedule them. Nj
and sj are the linguistic input variables and "becomes critical" is the output varia-
ble of the DT. Membership functions for the individual values of the variables
are determined by a knowledge acquisition procedure which will not be de-
scribed here. The following DT shown in Table 18.3.3 represents the fuzzy rule
system.

AND Small Medium Great
Few soon later not to see

Some now later not to see
Many now soon not to see
Very now soon later

Table 18.3.3 Decision table for fuzzy rule system.

The rows represent the values of the variable Nj and the columns represent the
values of the variable sj. Both variables are connected by an AND-operator in any
rule. With the above Table 18.3.3 twelve rules are represented. Each element of
the table gives one value of the output variable "becomes critical" depending on
the rule. To find these results the membership functions of the input variables are
merged by intersection operations to a new membership function describing the
output variable of each rule. The resulting fuzzy sets of all rules are then com-
bined by operations which are applied for the union of sets. This procedure was
tested to be most favorable from an empirical point of view.

As a result the decision maker on the shop floor gets the information which
jobs have to be rescheduled now, soon, later, or probably not at all. From this
two possibilities arise; either a complete new predictive schedule has to be gen-
erated or local ad-hoc decisions can be taken on the reactive scheduling level.
Control decisions based on this fuzzy modeling approach and their consequences
should be recorded and evaluated, for the purpose of using these past decisions to
find better solutions to current problems. Fuzzy case-based reasoning systems,

 18 Computer Integrated Production Scheduling

748

which should be able to achieve the quality of a self-learning system, could make
a significant contribution along these lines.

We have implemented our approach of modeling reactive scheduling by
fuzzy logic as a demonstration prototype. Two screens serve as the user interface.
On the first screen the jobs waiting in a machine queue and the slack time of the
job under investigation are shown. An example problem is shown in Figure
18.3.11.

0 120 240 360 [Min]

few some many very small medium great

Figure 18.3.11 Interface of fuzzy scheduler.

There are ten jobs waiting in a queue to be processed by some machine Pi, the
job under consideration Jj is shown by a white rectangle. Above the queue the
different fuzzy sets concerning the linguistic variable Nj and the values of the
corresponding membership functions are represented. The slack time sj of job Jj
is currently 130 minutes; again fuzzy sets and membership functions of this lin-
guistic variable are represented above the scale.

Applying the rules of the DT results in a representation which is shown in
Figure 18.3.12. The result of the first part of inference shows that for job Jj the
output variable "becomes critical" is related to some positive values for "soon"
and for "later" shown by white segments. From this it is concluded by the second
part of inference that this job has to be checked again before it is about to be re-
scheduled.

soon now

not to seelater

Figure 18.3.12 Result of inference.

 18.3 IPS: An Intelligent Production Scheduling System 749

18.3.2 Knowledge-based Scheduling

Expert Systems are special kinds of knowledge-based systems. Expert systems
are designed to support problem modeling and solving with the intention to
simulate the capabilities of domain experts, e.g. problem understanding, problem
solving, explaining the solution, knowledge acquisition, and knowledge restruc-
turing. Most expert systems use two types of knowledge: descriptive knowledge
or facts, and procedural knowledge or knowledge about the semantics behind
facts. The architecture of expert systems is mainly based on a closed loop solu-
tion approach. This consists of the four components storing knowledge,
knowledge acquisition, explanation of results, and problem solution. In the fol-
lowing we will concentrate on such a closed loop problem solution processes.
There is an important difference between expert systems and conventional prob-
lem solving systems. In most expert systems the model of the problem descrip-
tion and basic elements of problem solving are stored in a knowledge base. The
complete solution process is carried out by some inference module interacting
with the knowledge base. Conventional systems do not have this kind of separat-
ed structure; they are rather a mixture of both parts in one program.

In order to implement an expert system one needs three types of models: a
model of the domain, a model of the elementary steps to be taken, and a model of
inference that defines the sequence of elementary steps in the process of problem
solution. The domain is represented using descriptive knowledge about objects,
their attributes and their relations as introduced in Section 18.2. In production
scheduling for example, objects are machines, jobs, tasks or tools, attributes are
machine states, job and task characteristics or tool setup times, and relations
could be the subsumption of machines to machine types or tasks to jobs. The
model of elementary steps uses production rules or other representations of pro-
cedural knowledge. For if-then rules there exists a unique input-output descrip-
tion. The model of inference uses combinations or sets of elementary steps to
represent the solution process where a given start state is transformed to a desired
goal state. This latter type of knowledge can also be knowledge of domain ex-
perts or domain independent knowledge. The goal of the expert system approach
is mainly to improve the modeling part of the solution process to get closer to
reality.

To give a better understanding of this view we refer to an example given by
Kanet and Adelsberger [KA87]: "... consider a simple scheduling situation in
which there is a single machine to process jobs that arrive at different points in
time within the planning period. The objective might be to find a schedule which
minimizes mean tardiness. An algorithmic approach might entertain simplifying
the formulation by first assuming all jobs to be immediately available for pro-
cessing. This simplified problem would then be solved and perhaps some heuris-
tic used to alter the solution so that the original assumption of dynamic arrivals is
back in tack. The approach looks at reformulation as a means to 'divide et im-
pera'. On the other hand a reformulative approach may ... seek to find a 'richer'

 18 Computer Integrated Production Scheduling

750

problem formulation. For example the question might be asked 'is working over-
time a viable alternative?', or 'does there exist another machine that can accom-
plish this task?', or 'is there a subset of orders that are less critical than others?',
and so on."

On the other hand systems for production scheduling should not only repli-
cate the expert's schedule but extend the capabilities by doing more problem
solving. In order to achieve this AI systems separate the scheduling model from a
general solution procedure. In [Fox90] the shop floor scheduling model de-
scribed uses terms from AI. It is considered to be time based planning where
tasks or jobs must be selected, sequenced, and assigned to resources and time
intervals for execution. Another view is that of a multi agent planning problem,
where each task or job represents a separate agent for which a schedule is to be
created; the agents are uncooperative, i.e. each is attempting to maximize its own
goals. It is also claimed that expert systems appear inappropriate for the purpose
of problem solution especially for two reasons: (1) problems like production
scheduling tend to be so complex that they are beyond the cognitive capabilities
of the human scheduler, and (2) even if the problem is relatively easy, factory
environments change often enough so that any expertise built up over time be-
comes obsolete very quickly.

We believe that it is nevertheless possible to apply an expert system ap-
proach for the solution of production scheduling problems but with a different
perspective on problem solving. Though, as already stated, expert systems are not
appropriate for solving combinatorial search problems, they are quite reasonable
for the analysis of models and their solutions. In this way expert systems can be
used for building or selecting models for scheduling problems. An appropriate
solution procedure can be selected for the model, and then the expert system can
again support the evaluation of the solution.

The scheduling systems reviewed next are not expert systems in their purest
sense and thus we will use the more general term knowledge-based system. ISIS
[SFO86, Fox87, FS84], OPIS [SPP+90] and CORTES [FS90] are a family of
systems with the goal of modeling knowledge of the manufacturing environment
using mainly constraints to support constraint guided search; knowledge about
constraints is used in the attempt to decrease the underlying search space. The
systems are designed for both, predictive and reactive scheduling.

ISIS-1 uses pure constraint guided search, but was not very successful in
solving practical scheduling problems. ISIS-2 uses a more sophisticated search
technique. Search is divided into the four phases job selection, time analysis,
resource analysis, and resource assignment. Each phase consists in turn of the
three sub-phases pre-search analysis (model construction), search (construction
of the solution), and post-search analysis (evaluation of the solution). In the job
selection phase a priority rule is applied to select the next job from the given set
of available jobs. This job is passed to the second phase. Here earliest start and
latest finish times for each task of the job are calculated without taking the re-
source requirements into account. In phases three and four the assignment of re-

 18.3 IPS: An Intelligent Production Scheduling System 751

sources and the calculation of the final start and finish times of all tasks of the
job under consideration is carried out. The search is organized by some beam
search method. Each solution is evaluated within a rule-based post-search analy-
sis. ISIS-3 tries to schedule each job using more information from the shop floor,
especially about bottleneck-resources. With this information the job-centered
scheduling approach as it is realized in ISIS-2 was complemented by a resource-
centered scheduler.

As the architecture of ISIS is inflexible as far as modifications of given
schedules are concerned, a new scheduling system called OPIS-1 was developed.
It uses a blackboard approach for the communication of the two knowledge
sources analysis and decision. These use the blackboard as shared memory to
post messages, partial results and any further information needed for the problem
solution. The blackboard is the exclusive medium of communication. Within
OPIS-1 the "analyzer" constructs a rough schedule using some balancing heuris-
tic and then determines the bottlenecks. Decision is then taken by the resource
and the job scheduler already implemented in ISIS-3. Search is centrally con-
trolled. OPIS-1 is also capable to deal with reactive scheduling problems, be-
cause all events can be communicated through the blackboard. In OPIS-2 this
event management is supported by two additional knowledge sources which are a
"right shifter" and a "demand swapper". The first one is responsible for pushing
jobs forward in the schedule, and the second for exchanging jobs. Within the
OPIS systems it seems that the most difficult operation is to decide which
knowledge source has to be activated.

The third system of the family we want to introduce briefly is CORTES.
Whereas the ISIS systems are primarily job-based and OPIS switches between
job-based and resource-based considerations, CORTES takes a task-oriented
point of view, which provides more flexibility at the cost of greater search effort.
Within a five step heuristic procedure a task is assigned to some resource over
some time interval.

Knowledge-based systems using an expert system approach should concen-
trate on finding good models for the problem domain and the description of ele-
mentary steps to be taken during the solution process. The solution process itself
may be implemented by a different approach. One example for model develop-
ment considering knowledge about the domain and elementary steps to be taken
can be found in [SS90]. Here a reactive scheduling problem is solved along the
same line as OPIS works using the following problem categorization: (1) ma-
chine breakdown, (2) rush jobs, (3) new batch of jobs, (4) material shortage, (5)
labor absenteeism, (6) job completion at a machine, and (7) change in shift.
Knowledge is modularized into independent knowledge sources, each of them
designed to solve a specific problem. If a new event occurs it is passed to some
meta-analyzer and then to the appropriate knowledge source to give a solution to
the analyzed scheduling problem. For instance, the shortage of some specific raw
material may result in the requirement of rearranging the jobs assigned to a par-

 18 Computer Integrated Production Scheduling

752

ticular machine. This could be achieved by using the human scheduler's heuristic
or by an appropriate algorithm to determine some action to be taken.

As a representative for many other knowledge-based scheduling systems -
see [Ata91] for a survey - we want to describe SONIA which integrates both pre-
dictive and reactive scheduling on the basis of hard and soft constraints [CPP88].
The scheduling system is designed to detect and react to inconsistencies (con-
flicts) between a predictive schedule and the actual events on the shop floor.
SONIA consists of two analyzing components, a capacity analyzer and an ana-
lyzer of conflicts, and further more a predictive and a reactive component, each
containing a set of heuristics, and a component for managing schedule descrip-
tions.

For representing a schedule in SONIA the resources needed for processing
jobs are described at various levels of detail. Individual resources like machines
are elements of resource groups called work areas. Resource reservation con-
straints are associated with resources. To give an example for such a constraint,
(res; t1, t2, n; list-of-motives) means that n resources from resource group res are
not available during the time interval (t1, t2) for the reasons given in the list-of-
motives.

Each job is characterized by a ready time, a due date, precedence constraints,
and by a set of tasks, each having resource requirements. To describe the pro-
gress of work the notions of an actual status and a schedule status are introduced.
The actual status is of either kind "completed", "in-process", "not started", and
the schedule status can be "scheduled", "selected" or (deliberately) "ignored".
There may also be temporal constraints for tasks. For example, such a constraint
can be described by the expression (time � t1t2 , k) where t1 and t2 are points in
time which respectively correspond to the start and the finish time of processing
a task, and k represents the number of time units; if there have to be at least t
time units between processing of tasks Tj and Tj+1 , the corresponding expression
would be (time � (end Tj)(start Tj+1), t). To represent actual time values, the
origin of time and the current time have to be known.

SONIA uses constraint propagation which enables the detection of incon-
sistencies or conflicts between predictive decisions and events happening on the
shop floor. Let us assume that as a result of the predictive schedule it is known
that task Tj could precede task Tj+1 while the actual situation in the workshop is
such that Tj is in schedule status "ignored" and Tj+1 is in actual status "in pro-
cess". From this we get an inconsistency between these temporal constraints de-
scribing the predictive schedule and the ones which come from the actual situa-
tion. The detection of conflicts through constraint propagation is carried out us-
ing propagation axioms which indicate how constraints and logic expressions can
be combined and new constraints or conflicts can be derived. The axioms are
utilized by an interpreter.

SONIA distinguishes between the three major kinds of conflicts: delays, ca-
pacity conflicts and breakdowns. The class of delays contains all conflicts which

 18.3 IPS: An Intelligent Production Scheduling System 753

result from unexpected delays. There are four subclasses to be considered, "Task
Delay" if the expected finish time of a task cannot be respected, "Due-Date De-
lay" if the due date of a manufacturing job cannot be met, "Interruption Delay" if
some task cannot be performed in a work shift determined by the predictive
schedule, and "Global Tardiness Conflict" if it is not possible to process all of the
selected tasks by the end of the current shift. The class of capacity conflicts refers
to all conflicts that come from reservation constraints. There are three subclasses
to be considered. If reservations for tasks have to be cancelled because of break-
downs we speak of "Breakdown Capacity Conflicts". In case a resource is as-
signed to a task during a work shift where this resource is not available, an "Out-
Of-Shift Conflict" occurs. A capacity conflict is an "Overload" if the number of
tasks assigned to a resource during a given interval of time is greater than the
available capacity. The third class consists of breakdowns which contains all
subclasses from delays and capacity conflicts caused only by machine break-
downs. In the following we give a short overview of the main components of the
SONIA system and its control architecture.

(i) Predictive Components The predictive components are responsible for gener-
ating an off-line schedule and consist of a selection and an ordering component.
First a set of tasks is selected and resources are assigned to them. The selection
depends on other already selected tasks, shop status, open work shifts and jobs to
be completed. Whenever a task is selected its schedule status is "selected" and
the resulting constraints are created by the schedule management system. The
ordering component then uses an iterative constraint satisfaction process utilizing
heuristic rules. If conflicts arise during schedule generation, backtracking is car-
ried out, i.e. actions coming from certain rules are withdrawn. If no feasible
schedule can be found for all the selected tasks a choice is made for the tasks that
have to be rejected. Their schedule status is set to "ignored" and the correspond-
ing constraints are deleted.

(ii) Reactive Components. For reactive scheduling three approaches to resolve
conflicts between the predictive schedule and the current situation on the shop
floor are possible: Predictive components can generate a complete new schedule,
the current schedule is modified globally forward from the current date, or local
changes are made. The first approach is the case of predictive scheduling which
already been described above. The easiest reaction to modify the current schedule
is to reject tasks, setting their scheduling status to "ignored" and deleting all re-
lated constraints. Of course, the rejected task should be that one causing the con-
flicts. If several rejections are possible the problem gets far more difficult and
applicable strategies have still to be developed. Re-scheduling forward from the
current date is the third possibility of reaction considered here. In this case very
often due dates or ends of work shifts have to be modified. An easy reaction
would simply by a right shift of all tasks without modifying their ordering and
the resource assignments. In a more sophisticated approach some heuristics are
applied to change the order of tasks.

 18 Computer Integrated Production Scheduling

754

(iii) Analysis Components. The purpose of the analyzers is to determine which of
the available predictive and reactive components should be applied for schedule
generation and how they should be used. Currently, there are two analysis com-
ponents implemented, a capacity analyzer and a conflict analyzer. The capacity
analyzer has to detect bottleneck and under-loaded resources. These detections
lead to the application of scheduling heuristics, e.g. of the kind that the most crit-
ical resources have to be scheduled first; in the same sense, under-loaded re-
sources lead to the selection of additional tasks which can exploit the resources.
The conflict analyzer chooses those available reactive components which are
most efficient in terms of conflict resolution.

(iv) Control Architecture. Problem solving and evaluating knowledge have to be
integrated and adjusted to the problem solving context. A blackboard architecture
is used for these purposes. Each component can be considered as an independent
knowledge source which offers its services as soon as predetermined conditions
are satisfied. The blackboard architecture makes it possible to have a flexible
system when new strategies and new components have to be added and integrat-
ed. The domain blackboard contains capacity of the resources determined by the
capacity analyzer, conflicts which are updated by the schedule management, and
results given by predictive and reactive components. The control blackboard con-
tains the scheduling problem, the sub-problems to be solved, strategies like heu-
ristic rules or meta-rules, an agenda where all the pending actions are listed, poli-
cies to choose the next pending action and a survey of actions which are currently
processed.

SONIA is a knowledge-based scheduling system which relies on constraint satis-
faction where the constraints come from the problem description and are then
further propagated. It has a very flexible architecture, generates predictive and
reactive schedules and integrates both solution approaches. A deficiency is that
nothing can be said from an ex-ante point of view about the quality of the solu-
tions generated by the conflict resolution techniques. Unfortunately also a
judgement from an ex-post point of view is not possible because there is no em-
pirical data available up to now which gives reference to some quality measure of
the schedule. Also nothing is known about computing times. As far as we know,
this lack of evaluation holds for many knowledge-based scheduling systems de-
veloped until today.

18.3.3 Integrated Problem Solving

In this last section we first want to give an example to demonstrate the approach
of integrating algorithms and knowledge within an interactive approach for OFP
and ONC relying on the ACE loop. For clarity purposes, the example is very
simple. Let us assume, we have to operate a flexible manufacturing cell that con-
sists of identically tooled machines all processing with the same speed. These

 18.3 IPS: An Intelligent Production Scheduling System 755

kinds of cells are also called pools of machines. From the production planning
system we know the set of jobs that have to be processed during the next period
of time e.g. in the next shift. As we have identical machines we will now speak
of tasks instead of jobs which have to be processed. The business need is that all
tasks have to be finished at the end of the next eight hour shift. With this the
problem is roughly stated.

Using further expert knowledge from scheduling theory for the analysis of
the problem we get some insights using the following knowledge sources (see
Chapter 5 for details):

(1) The schedule length is influenced mainly by the sequence the tasks enter
the system, by the decision to which machine an entering task is assigned next,
and by the position an assigned task is then given in the corresponding machine
queue.

(2) As all machines are identically tooled each task can be processed by all
machines and with this also preemption of tasks between machines might be pos-
sible.

(3) The business need of processing all tasks within the next eight hour shift
can be translated in some objective which says that we want to minimize sched-
ule length or makespan.

(4) It is well known that for identical machines, independent tasks and the
objective of minimizing makespan, schedules with preemptions of tasks exist
which are never worse than schedules where task preemption is not allowed.

From the above knowledge sources (1)-(4) we conclude within the problem
analysis phase to choose McNaughton's rule [McN59] to construct a first basic
schedule. From an evaluation of the generated schedule it turns out that all tasks
could be processed within the next shift. Another observation is that there is still
enough idle time to process additional tasks in the same shift. To evaluate the
dynamics of the above manufacturing environment we simulate the schedule
taking also transportation times of the preempted tasks to the different machines
into account. From the results of simulation runs we now get a better understand-
ing of the problem. It turns out that considering transportation of tasks the sched-
ule constructed by McNaughton's rule is not feasible, i.e. in conflict according to
the restriction to finish all tasks within the coming shift. The transport times
which were neglected during static schedule generation have a major impact on
the schedule length.

From this we must analyze the problem again and with the results from the
evaluation process we derive the fact that the implemented schedule should not
have machine change-overs of any task, to avoid transport times between ma-
chines.

Based on this new constraint and further knowledge from scheduling theory
we decide now to use the longest processing time heuristic to schedule all tasks.
It is shown in Chapter 5 that LPT gives good performance guarantees concerning
schedule length and problem settings with identical machines. Transport times

 18 Computer Integrated Production Scheduling

756

between machines do not have to be considered any more as each task is only
assigned to one machine. Let us assume the evaluation of the LPT-schedule is
satisfactory.

Now, we use earliest start and latest finish times for each task as constraints
for ONC. These time intervals can be determined using the generated OFP-
schedule. Moreover we translate the LPT rule into a more operational scheduling
rule which says: release all the tasks in a non-increasing order of processing
times to the flexible manufacturing cell and always assign a task to the queue of a
machine which has least actual total work to process. The machine itself selects
tasks from its own queue according to a first-come-first-served (FCFS) strategy.

As long as the flexible manufacturing cell has no disturbances ONC can
stick to the given translation of the LPT-strategy. Now, assume a machine breaks
down and that the tasks waiting in the queue have to be assigned to queues of the
remaining machines. Let us further assume that under the new constraints not all
the tasks can be finished in the current shift. From this a new objective occurs for
reactive scheduling which says that as many tasks as possible should be finished.
Now, FCFS would not be the appropriate scheduling strategy any longer; a suita-
ble ad-hoc decision for local repair of the schedule has to be made. Finding this
decision on the ONC-level means again to apply some problem analysis also in
the sense of diagnosis and therapy, i.e. also ad-hoc decisions follow some analy-
sis-construction sequence. If there is enough time available also some simulation
runs could be applied, but in general this is not possible. To show a way how the
problem can be resolved similar rules as these from Table 18.3.4 could be used.

For the changed situation, the shortest processing time (SPT) rule would
now be applied. The SPT rule is proposed due to the expectation that this rule
helps to finish as many tasks as possible within the current shift. In case of fur-
ther disturbances that cause major deviations from the current system status, OFP
has to be reactivated for a global repair of the schedule.

At the end of this section we want to discuss shortly the relationship of our
approach to solve production scheduling problems and the requirements of inte-
grated problem solving within computer integrated manufacturing. The IPS has
to be connected to existing information systems of an enterprise. It has interfaces
to the production planning systems on a tactical level of decision making and the
real-time oriented CAM-systems. It represents this part of the production sched-
uling system which carries out the feedback loop between planning and execu-
tion. The vertical decision flow is supplemented by a horizontal information flow
from CAE and CAQ. The position of the IPS within CIM is shown in Figure
18.3.13.

We gave a short introduction to an IPS which uses an interactive scheduling
approach based on the ACE loop. Analysis and evaluation are carried out mainly
by the decision maker, construction is mainly supported by the system. To that
end a number of models and methods for analysis and construction have been
devised, from which an appropriate selection should be possible. The modular

 18.3 IPS: An Intelligent Production Scheduling System 757

and open architecture of the system offers the possibility of a step by step imple-
mentation which can be continuously adapted to changing requirements.

/* Goal rule

Rule 0100

IF Machine.Sequence = known
THEN Machine.Schedule = completed
END

/* Determine the scheduling strategy

/* SPT-rule to reduce system overload

Rule 1000

IF Machine.Status = overloaded
AND Queue.Orders = not_late
AND System.Status = overloaded
THEN Machine.Sequence =
 proc(SPT_Processing, Machine.Duration)

/* FCFS-default strategy

Rule 1500 SELFREF

IF Machine.Sequence = notknown
THEN Machine.Sequence =
 proc(FCFS_Processing, Machine.Arrival)
END

/* Determine the status of the machine

Rule 2000

IF Machine.Backlog > 40
THEN Machine.Status = overloaded
END

/* Determine the status of the queue

Rule 3000

IF Queue.Minbuffer > 20
THEN Queue.Jobs = not_late
END

/* Determine the status of the system

Rule 4000

IF System.Jobs > 30
AND Machine.Number_overloaded > 4
THEN System.Status = overloaded
END

Table 18.3.4 Example problem for reactive scheduling.

PPS CAE

CAM CAQ

ONC

IPS

OFP

Figure 18.3.13 IPS within CIM.

758 18 Computer Integrated Production Scheduling

A further application of the system lies in a distributed production scheduling
environment. The considered manufacturing system has to be modeled and ap-
propriately decomposed into subsystems. For the manufacturing system and each
of its subsystems corresponding IPS apply, which are implemented on different
computers connected by an appropriate communication network. The IPS on the
top level of the production system serves as a coordinator of the subsystem IPS.
Each IPS on the subsystem level works independently fulfilling the requirements
from the master level and communicating also with the other IPS on this level.
Only if major decisions which requires central coordination the master IPS is
also involved.

References

Ata91 H. Atabakhsh, A survey for constraint based scheduling systems using an arti-
ficial intelligence approach, Artif. Intell. Eng. 6, 1991, 58-73.

BPH82 J. H. Blackstone, D. T. Phillips, G. L. Hogg, A state-of-the-art survey of dis-
patching rules for manufacturing job shop operations, Int. J. Prod. Res. 20,
1982, 27-45.

Bul82 W. Bulgren, Discrete System Simulation, Prentice-Hall, Englewood Cliffs,
N.J., 1982.

BY86 J. A. Buzacott, D. D. Yao, FMS: a review of analytical models, Manage. Sci.
32, 1986, 890-905.

Car86 A. S. Carrie, The role of simulation in FMS, in: A. Kusiak (ed.), Flexible Man-
ufacturing Systems: Methods and Studies, Elsevier, 1986, 191-208.

CPP88 A. Collinot, C. Le Pape, G. Pinoteau, SONIA: a knowledge-based scheduling
system, Artif. Intell. Eng. 3, 1988, 86-94.

CY91 P. Coad, E. Yourdon, Object-Oriented Analysis, Prentice-Hall, Englewood
Cliffs, N.J., 1991.

DP88 R. Dechter, J. Pearl, Network-based heuristics for constraint-satisfaction prob-
lems, Artif. Intell. 34, 1988, 1-38.

DTLZ93 J. Drake, W. T. Tsai, H. J. Lee, Object-oriented analysis: criteria and case
study, Int. J. Softw. Eng. Knowl. Eng. 3, 1993, 319-350.

EGS97 K. Ecker, J. N. D. Gupta, G. Schmidt, A framework for decision support sys-
tems for scheduling problems, Eur. J. Oper. Res. 101, 1997, 452-462.

ES93 K. Ecker, G. Schmidt, Conflict resolution algorithms for scheduling problems,
in: K. Ecker, R. Hirschberg (eds.), Workshop on Parallel Processing, Clausthal
University of Technology, 1993, 81-90.

Fox87 M. S. Fox, Constraint Directed Search: A Case Study of Job-Shop Scheduling,
Morgan Kaufmann, 1987.

Fox90 M. S. Fox, Constraint-guided scheduling - a short history of research at CMU,
Comput. Ind. 14, 1990, 79-88

 References 759

Fre78 E. C. Freuder, Synthesizing constraint expressions, Commun. ACM 11, 1978,
958-966.

FS84 M. S. Fox, S. F. Smith, ISIS - a knowledge-based system for factory schedul-
ing, Expert Syst. 1, 1984, 25-49.

FS90 M. S. Fox, K. Sycara, Overview of CORTES: a constraint based approach to
production planning, scheduling and control, Proceedings of the 4th Interna-
tional Conference on Expert Systems in Production and Operations Manage-
ment, 1990, 1-15.

GJ79 M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.

Har73 J. Harrington, Computer Integrated Manufacturing, Industrial Press, 1973.

KA87 J. J. Kanet, H. H. Adelsberger, Expert systems in production scheduling, Eur.
J. Oper. Res. 29, 1987, 51-59.

Kan86 Kandel, A., Fuzzy Mathematical Techniques with Applications, Addison-
Wesley, Boston, Mass., 1986.

Kus86 A. Kusiak, Application of operational research models and techniques in flexi-
ble manufacturing systems, Eur. J. Oper. Res. 24, 1986, 336-345.

KSW86 M. V. Kalkunte, S. C. Sarin, W. E. Wilhelm, Flexible Manufacturing Systems:
A review of modelling approaches for design, justification and operation, in:
A. Kusiak (ed.), Flexible Manufacturing Systems: Methods and Studies, Else-
vier, 1986, 3-28.

LGW86 A. J. Van Looveren, L. F. Gelders, N. L. Van Wassenhove, A review of FMS
planning models, in: A. Kusiak (ed.), Modelling and Design of Flexible Manu-
facturing Systems, Elsevier, 1986, 3-32.

Mac77 A. K. Mackworth, Consistency in networks of relations, Artif. Intell. 8, 1977,
99-118.

McN59 R. McNaughton, Scheduling with deadlines and loss functions, Manage. Sci.
12, 1959, 1-12.

Mon74 U. Montanari, Networks of constraints: Fundamental properties and applica-
tions to picture processing, Inf. Sci. 7, 1974, 95-132.

MS92a K. Mertins, G. Schmidt (Hrsg.), Fertigungsleitsysteme 92, IPK Eigenverlag,
1992

MS92b W. Mai, G. Schmidt, Was Leitstandsysteme heute leisten, CIM Management 3,
1992, 26-32.

NS91 S. Noronha, V. Sarma, Knowledge-based approaches for scheduling problems,
IEEE Trans. Knowl. Data Eng. 3, 1991, 160-171.

PI77 S. S. Panwalkar, W. Iskander, A survey of scheduling rules, Oper. Res. 25,
1977, 45-61.

RM93 A. Ramudhin, P. Marrier, An object-oriented logistic tool-kit for schedule
modeling and representation, Proceedings of the International Conference on
Industrial Engineering and Production Management, Mons, 1993, 707-714.

 18 Computer Integrated Production Scheduling

760

Ran86 P. G. Ranky, Computer Integrated Manufacturing: An Introduction with Case
Studies, Prentice-Hall, Englewood Cliffs, N.J., 1986.

Sch89a G. Schmidt, CAM: Algorithmen und Decision Support für die Fertigungssteue-
rung, Springer, Berlin, 1989.

Sch89b G. Schmidt, Constraint satisfaction problems in project scheduling, in:
R. S) lowiński, J. W,eglarz (eds.), Advances in Project Scheduling, Elsevier,
1989, 135-150.

Sch91 A.-W. Scheer, CIM - Towards the Factory of the Future, Springer, 1991.

Sch92 G. Schmidt, A decision support system for production scheduling, Journal of
Decision Systems 1, 1992, 243-260.

Sch94 G. Schmidt, How to apply fuzzy logic to reactive scheduling, in: E. Szelke,
R. Kerr (eds.), Knowledge Based Reactive Scheduling, North-Holland, 1994,
57-57.

Sch96 G. Schmidt, Modelling Production Scheduling Systems, Int. J. Prod. Econ.
46-47, 1996, 106-118.

Sch98 G. Schmidt, Case-based reasoning for production scheduling, Int. J. Prod.
Econ. 56-57, 1998, 537-546.

SFO86 S. F. Smith, M. S. Fox, P. S. Ow, Constructing and maintaining detailed pro-
duction plans: investigations into the development of knowledge-based factory
scheduling systems, AI Mag. 7, 1986, 45-61.

Smi92 S. F. Smith, Knowledge-based production management: approaches, results
and prospects, Prod. Plan. Control 3, 1992, 350-380.

SPP+90 S. F. Smith, S. O. Peng, J.-Y. Potvin, N. Muscettola, D. C. Matthys, An inte-
grated framework for generating and revising factory schedules, J. Oper. Res.
Soc. 41, 1990, 539-552

SS90 S. C. Sarin, R. R. Salgame, Development of a knowledge-based system for
dynamic scheduling, Int. J. Prod. Res. 28, 1990, 1499-1512.

Ste85 K. E. Stecke, Design, planning, scheduling and control problems of flexible
manufacturing systems, Ann. Oper. Res. 3, 1985, 3-121.

WBJ90 J. R. Wilfs-Brock, R. E. Johnson, Surveying current research in object oriented
design, Commun. ACM 33, 1990, 104-124.

Wir76 N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, Eng-
lewood Cliffs, N.J., 1976.

Zad65 L. A. Zadeh, Fuzzy sets, Information and Control 8, 1965, 338-353.

Zad73 L. A. Zadeh, The concept of linguistic variables and its application to approx-
imate reasoning, Memorandum ERL-M411, UC Berkeley, 1973.

19 Scheduling in Logistics

Logistic and transportation related problems are crucial for various human activi-
ties, since moving people, items, goods, etc., between different locations is a part
of nearly all processes met in industry, agriculture, or generally speaking in busi-
ness, as well as in healthcare, social care and other aspects of human life. Coping
with these types of problems in managing military actions during World War II
initiated the area of operations research and are still a focus of attention of scien-
tists and practitioners (cf. e.g. [BL07, MSH14]). The definition of logistics has
been developing over the years. Nowadays logistics might be considered as a part
of supply chain management, as is recommended by one of recognized trade or-
ganizations: the Council of Supply Chain Management Professionals (CSCMP,
former Council of Logistics Management). CSCMP sees logistics as
[CSCMP13]: “the process of planning, implementing, and controlling procedures
for the efficient and effective transportation and storage of goods including ser-
vices, and related information from the point of origin to the point of consump-
tion for the purpose of conforming to customer requirements; this definition in-
cludes inbound, outbound, internal, and external movements.” Since transporta-
tion science is a separate scientific discipline, we do not intend even to scratch its
scope. Instead, in this chapter we want to show exemplary applications of sched-
uling theory for solving specific logistic problems, and illustrate interrelations
between various scientific fields.

19.1 Introduction

Logistics is often associated with transport processes, controlling the movements
of cars, trucks, ships, planes, etc., which can be formulated as vehicle routing
problems. Some aspects of vehicle routing are mentioned in Section 17.3 in con-
text of scheduling vehicles for a production schedule in an exemplary flexible
manufacturing system. Since the vehicle routing problem (VRP) cannot be omit-
ted when logistics is discussed, in Section 19.2 we provide a short overview of
VRPs in order to illustrate the wide range of issues studied within this field.
This section introduces and completes the later presentations of selected applica-
tions of scheduling theory to some logistic problems. Moreover, it is a source of
numerous references for the readers more interested in VRPs. In the following
sections we present three exemplary studies of logistic problems, which arise in
main modes of transport. Section 19.3 deals with the problem of delivering
ready-mixed concrete in overland transportation. In Section 19.4 we describe the
flight gate scheduling problem arising in air transportation, while in Section 19.5

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7_19

761

https://doi.org/10.1007/978-3-319-99849-7_19
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99849-7_19&domain=pdf

762 19 Scheduling in Logistics

the berth and quay crane allocation problem related to maritime transportation is
discussed. These three examples obviously do not exhaust the subject of applying
scheduling theory in logistics, but they show the variety of possible modeling and
solving methods.

19.2 Vehicle Routing Problem

The vehicle routing problem (VRP) belongs to the most widely studied problems

in operations research due to its practical importance. The general VRP concerns

designing routes for a fleet of vehicles to supply a set of customers. It has its

origin in the truck dispatching problem formulated by Dantzig and Ramser in

1959 [DR59], which concerned minimizing the travel distance of a fleet of ho-

mogenous trucks delivering oil from a central hub to a set of gas stations. Then

the problem was generalized by Clarke and Wright in 1964 [CW64], who con-

sidered the process of supplying a set of customers from a central depot with

trucks of various capacities, taking into account geographical locations. Since

that time a lot of models have been proposed, extending the basic already NP-

hard formulation [LRK81], by incorporating additional parameters and con-

straints motivated from real world conditions. Presenting details of the vehicle

routing problem is beyond the scope of this handbook, because the VRP itself is

a subject of numerous books (cf. e.g. [CLSV07, GRW08, TV14]) and surveys.

The number of papers devoted to this problem is increasing exponentially with

ca. 6.1% annual growth rate [EVR09]. For the sake of completeness, we shortly

present the main research streams for the vehicle routing problem based on clas-

sifications proposed by Eksioglu et al. [EVR09] and later extensions by Braekers

et al. [BRN16]. We sketch out variants of VRP and supply the deeply interested

reader with corresponding surveys.

The basic variant of the vehicle routing problem, called the capacitated VRP

(e.g. [Lap09]), can be formulated as follows. Let G = (V, E) be a directed graph,

with vertex set V = {0,..., n}, where vertex 0 represents a depot and vertices

{1,..., n} represent customers. Each customer i is described by a non-negative

demand qi , which has to be satisfied by a fleet of m identical vehicles, each with

capacity Q. The travel connections between the customers and depot are repre-

sented by the arc set E = {(i, j) | i, j � V, i � j}. Each arc (i, j) is assigned a

weight cij which corresponds to the travel cost between i and j. In the simplest

version travel costs, distances and travel times are considered as equivalent. Each

vehicle visits a subset of vertices along a route that starts and ends at the depot,

and the total demand of the customers along a route does not exceed the vehicle

capacity Q. The goal is to design a route for each vehicle, starting and ending at

the depot, such that each customer is visited exactly once, and the total cost of all

 19.2 Vehicle Routing Problem 763

vehicles is minimized. In this formulation of VRP it is often additionally required

that the length of each route does not exceed a given limit L. VRP is called sym-
metric if cij = cji for all (i, j) � E, otherwise asymmetric. This basic model has

been extended over the years with various additional components motivated by

real-world applications.

First, allowing a fleet of vehicles with varying capacities leads to the hetero-
geneous or mixed fleet VRP (e.g. [KBJL16]). The capacity of vehicles may be

described in terms of weight, volume, number of pallets, etc. The heterogeneity

of vehicles causes the need of fulfilling synchronization requirements between

them, concerning special, temporal and load aspects, which lead to the VRP with
multiple synchronization constraints (e.g. [Dre12a]).

Then, instead of a single depot providing goods to customers, a set of vari-

ous depots serving customers is considered in the VRP with multiple depots (e.g.

[MTLF+15]). Since depots may have various characteristics, customers may re-

quire specific subsets of depots for serving them. Moreover, in this case, vehicles

may have different starting and ending locations. In most VRPs, the vehicles

should finish their tour at a depot. In the open VRP a vehicle does not necessarily

return to a depot, instead it may, for example, stop at a car park or at the driver’s

home after having served all customers (e.g. [LGW07]).

The description of customers can be extended with additional parameters

such as time windows, which determine time intervals within which deliveries to

particular customers should or have to occur. In the case of soft time windows,
service delays are penalized. In the case of hard time windows, a vehicle must

not arrive late but can arrive before the given interval and wait until the customer

becomes available. The VRP with time windows (e.g. [BG05a, BG05b, GT10])

can be considered as a combination of two subproblems [GT10]. If the capacity

constraints are relaxed, it reduces to a multiprocessor scheduling problem with

sequence dependent setup times, where release times and deadlines represent

time windows. On the other hand, if the time windows constraints are relaxed, it

reduces to a bin packing problem. The time windows can be defined not only for

customers, but also for depots, for vehicles (or for drivers), or even for roads (e.g.

[IGP00]). The VRP with time windows, as other variants of VRP, is usually a

multi-objective optimization problem. The goal might be [GT10]: minimizing

the number of vehicle routes, minimizing the total travel time, the total travel

distance of vehicles, or minimizing the total time spent for deliveries including

vehicles waiting times, as well as maximizing the total number of served cus-

tomers, etc.

Due to the increasing attention paid to “green” logistics, which takes into ac-

count environmental, ecological and social effects of logistic polices, issues and

objectives related to them are also studied in the context of the vehicle routing

problem. In the green VRP (e.g. [LCH+14]) the balance between environmental

and economic cost is considered. In particular, in the green VRP attention is paid

to, e.g. fuel consumption or emission related to vehicles movements (e.g.

[MCL17]).

764 19 Scheduling in Logistics

Taking into account real world conditions, as for example environmental is-

sues considered in the green VRP, usually requires a more detailed description of

the vehicle routes. In the classical VRP the travel cost between locations is as-

sumed to be constant. In the real environments, where vehicles are moving on

real roads, the travel time (influencing the travel cost) depends not only on

the distance between two locations, but also on the time of day (e.g. considering

rush hours) or weather conditions. Such fluctuating travel times are considered in

the time-dependent VRP (e.g. [GGG15]).

Furthermore, in the most VRP models, the problem parameters are assumed

to be deterministic and known in advance. However, in many applications pa-

rameters such as customer demands, service times or travel times, are uncertain

and can be described with probability distributions, leading to the stochastic VRP

(e.g. [RPH16]).

As we have mentioned, the traditional VRP deals mostly with deterministic

environments in contrast to the dynamic VRP (e.g. [PGGM13]) where schedules

for vehicles designed at the beginning of the planning period may have to be

modified and adjusted to new circumstances, such as receiving additional infor-

mation on e.g. vehicle locations, occurrence of a new customer request, or vehi-

cle breakdowns.

Another variant of VRP, the vehicle routing problem with pickup and deliv-
ery (e.g. [BCGL07]) concerns rather dispatching goods than supplying customers

from a central depot. In this model, some objects or people (called just commodi-
ties) have to be picked up from one location and delivered to another one, i.e.

transported between origins and destinations. Depending on the number of ori-

gins and destinations various models have been studied [BCGL07]. In some situ-

ations any location may serve as a source or as a destination for any commodity

(many-to-many). In others, commodities initially located at one depot are deliv-

ered to different customers, who also have commodities destined to this depot

(one-to-many-to-one), or each commodity has given single origin and destination

(one-to-one) as in courier companies. Pickup and delivery operations can be per-

formed at customer places in various ways [BCGL07]. In some situations pickup

and delivery are combined during one vehicle visit. In others they may be com-

bined or separated, or only one operation - either pickup or delivery - is requested

by a single customer. According to a further extension, a single vehicle may per-

form a few pick-ups and drop-offs in one route (VRP with backhauls [POP13]).

In this case some customers require deliveries (called also linehauls) and others

wait for pick-ups (called also backhauls), so goods are transported from the de-

pot to linehaul customers and from backhaul customers to the depot. In the dial-
a-ride problem (DRP, e.g. [CL07, MLP14]) goods or persons have to be trans-

ported between pickup and delivery locations under certain service restrictions

(as in patient transportation).
Under real world conditions, the planning of vehicle movements is per-

formed in single or multiple planning horizons. In the latter case, considered in

the periodic VRP (e.g. [CW14a, CW14b]), the customers require deliveries on

 19.2 Vehicle Routing Problem 765

one or more days within a given planning period. In consequence the customers

can be visited more than once, but with limited frequency. Deliveries can be

planned, for example, at a predetermined set of alternatives, or they should ap-

pear every given number of days. In other periodic models, a minimum or

a maximum interval between deliveries is defined. Independently of the variant

of the periodic VRP, at each period the decision is taken, which orders should be

served in this period, and which orders are fulfilled in the next planning intervals.

As we have mentioned, the classical VRP assumes that each customer is

served by only one vehicle, which is too restrictive in many real world situations.

Multiple visits to the same customer are allowed in the VRP with split deliveries

(e.g. [AS12]). In other models multiple use of vehicles is possible, when the same

vehicle may perform several trips for pickups or deliveries within the same plan-

ning period.

The above listed variants of the vehicle routing problem are often combined

in order to reflect the complex nature of real world applications, resulting in the

rich VRP (e.g. [Dre12b, LKS15]. A further natural extension of the vehicle rout-

ing problem is a location-routing problem (LRP, e.g. [DS15, PP14]), which

combines two important logistic problems: facility location and vehicle routing.

In LRP the decision on the location of facilities serving customers (such as de-

pots, warehouses, plants) is taken simultaneously with the decision on the vehicle

routes rooted at those facilities.

In order to summarize the variety of the vehicle routing models studied in the

literature and mentioned above, we provide one of the VRP taxonomies proposed

by Eksioglu et al. [EVR09] and extended later by Braekers et al. [BRN16]. The

classification scheme allows grouping the rich literature on the vehicle routing

problems with taking into account various attributes.

Some of them concern the research methodology (type of study), which be-

sides theory, implementation documented and survey, review or meta-research

includes applied methods. Due to NP-hardness of vehicle routing problems, they

are solved by: exact methods, classical heuristics, metaheuristics, simulation and

real-time solution methods.

Since proposing methods solving VRPs is usually combined with computa-

tional experiments to validate their efficiency, the research can be further classi-

fied due to data characteristics. The studies can be based on real world data,

synthetic data, both types of data, or even no data. But taking into account the

formulation of the vehicle routing problem, especially important in the process of

reflecting the real-world problems in terms of the formal models, the following

three groups of attributes distinguished in [EVR09] and [BRN16] are essential.

They concern: scenario, physical features and information type.

The crucial components of the VRP definition are reflected in scenario
characteristics, which include:

T number of stops on route: known/deterministic, partially known and partially
probabilistic;

766 19 Scheduling in Logistics

T load splitting constraints: splitting deliveries allowed or not allowed;
T customer service demand quantity: deterministic, stochastic, unknown

(i.e. unknown in advance but provided in real-time);
T request times of new customers: deterministic, stochastic, unknown;
T onsite service/waiting time: deterministic, dependent (e.g. time or vehicle de-

pendent), stochastic, unknown;
T time window structure: soft, strict or mixed time windows;
T time horizon: single or multi-period;
T backhauls: nodes in the transportation network request simultaneous pickups

and deliveries, or nodes request either pickups or deliveries;
T node/arc covering constraints: precedence and coupling constraints, subset

covering constraints, recourse allowed (e.g. return to the depot in order to re-
fill).

The factors directly influencing the solution of VRP are included in problem
physical characteristics, which concern:

T transportation network design: directed network, undirected network;
T location of customers: customers on nodes, arc routing instances (in most

VRPs customers, i.e. nodes, should be supplied, but in some models the arcs
must be visited, e.g. in routing winter gritting vehicles);

T geographical location of customers: urban (i.e. scattered with a pattern), rural
(i.e. randomly scattered), mixed;

T number of points of origin: single origin, multiple origin;
T number of points of loading/unloading: single depot, multiple depots;
T time window type: restriction on customers, on depots/hubs, on driv-

ers/vehicles, on roads;
T number of vehicles: single vehicle, limited number of vehicles, unlimited

number of vehicles;
T capacity consideration: capacitated vehicles, uncapacitated vehicles;
T vehicle homogeneity/capacity: similar vehicles, load-specific vehicles, hetero-

geneous vehicles, customer-specific vehicles;
T travel time: deterministic, function dependent (i.e. a function of current time),

stochastic, unknown;
T objective: travel time dependent, distance dependent, vehicle dependent, oper-

ation dependent, function of lateness, implied hazard/risk related, other.
The uncertainty and the variability of data describing VRPs are reflected in

information characteristics, which focus on:
T evolution of information: static, partially dynamic;
T quality of information: known (i.e. deterministic), stochastic, forecast, un-

known (i.e. real time);
T availability of information: local, global;
T processing of information: centralized, decentralized.

The above presented taxonomy of the vehicle routing problems [EVR09,
BRN16] is only one of concepts for classifying the research on VRPs (cf. e.g.

 19.3 Concrete Delivery Problem 767

[BG81, Bod75, DJL+99, DLS90, MJS98, Psa95]). Nevertheless, it shows
the immensity and variety of models for the vehicle routing problem.

19.3 Concrete Delivery Problem

The concrete delivery problem, which deals with planning routes for ready-
mixed concrete trucks to deliver concrete from depots to customers, is an inter-
esting and challenging problem, combining vehicle routing with scheduling is-
sues, involving some specific parameters and constraints. Within this section, we
present the research by Asbach et al. [ADP09, Asb08] on one of several variants
of this problem.

19.3.1 Overview

Scheduling of concrete deliveries is particularly difficult due to the specificity of
the product being delivered. The ready-mixed concrete is a perishable product,
which cannot reside in vehicles too long. Exceeding allowed time not only de-
creases the quality of this product, but may even lead to its hardening and de-
stroying the barrel, causing high penalty and maintenance cost for the vehicle’s
owner. Moreover, vehicles should be fully loaded with concrete to prevent an
increased rate of concrete hardening. Since partial loads of vehicles are not ad-
visable, trucks deliver concrete to a single customer and return to the depot for
refilling. If the size of customer order exceeds the capacity of a vehicle, multiple
deliveries have to be done within a certain time limit to allow continuing con-

struction work before earlier received concrete hardens. The fleet of mixer vehi-
cles used for delivering concrete is usually heterogeneous. Vehicles differ in their
capacity and specialized equipment, such as pumps that might be required by
customers. Furthermore, concrete is a custom specified material. Since concrete
produced by various manufacturers may vary in its characteristics and quality,
customers may order concrete from specific producers meeting their require-
ments.

Besides the parameters and constraints resulting from the specificity of
the product, the concrete delivery problem involves parameters and constraints
met in other logistic problems. The delivery plan is usually constructed for
a certain planning period, such as a working day. Construction sites, called cus-
tomers, as well as producers, called depots, work in specific time intervals within
this planning period. Similarly, the vehicle fleet operates within a given time
period. The length of vehicle schedule results not only from the travel time nec-
essary to move between various locations, but also from the service time neces-
sary for loading or unloading the vehicles, parking them and maintaining. More-
over, consecutive deliveries to the same customer or shipments from the same

768 19 Scheduling in Logistics

depots usually cannot overlap and they have to be separated in time, due to lim-
ited capacity of construction sites and concrete plants, or due to some additional
preparations required. The quality of the delivery plan results from the total cost
of fulfilling customer orders, which includes delivery cost and vehicle usage cost,
as well as possible penalties paid to customers whose orders are not performed to
their full satisfaction.

The concrete delivery problem is an example of the vehicle routing problem,
combining various models sketched in the previous section. It can be considered
as the VRP with multiple depots, heterogeneous fleet, time windows, split deliv-
eries, multiple use of vehicles, and additional constraints resulting from real
world conditions, which altogether justify classifying the concrete delivery prob-
lem as a rich VRP.

19.3.2 Modeling the Concrete Delivery Problem

The concrete delivery problem can be more formally described by the following
set of parameters and constraints. Based on them a graph model is formulated,
and finally a mixed integer programming model is given [ADP09].

The problem definition contains three sets: the set of depots, the set of cus-
tomers and the set of vehicles, and some additional parameters such as:
7 = [τ1 , τ2] the planning period (e.g. a working day),
" the maximum time that concrete may stay within a vehicle before

hardening.
The set of depots D = {D1 ,..., Dm} contains depots d � D (in most places,

for the sake of simplicity, we write d instead of Dd) which are characterized by:

s(d) the service time for a vehicle necessary for e.g. parking, filling with

concrete and maintenance,

[a(d), b(d)] the time window restricting the time of releasing vehicles from

the depot,

mintl(d) the minimum time lag between two vehicles requiring fill-

ing/reloading at the depot.

The set of customers C = {C1 ,..., Cn} contains customers c � C (as in

the case of depots, we simply write c instead of Cc) described by the following

parameters:

q(c) the (positive) demand of concrete,

*(c) the penalty cost for not delivering the full concrete demand,

s(c) the service time for an arriving vehicle necessary for e.g. parking,

unloading and cleaning,

[a(c), b(c)] the hard time window for deliveries to the customer; within

this interval the optional first delivery deadline b′(c) might be de-

fined, denoting the requested time of the first delivery in the plan-

ning period,

 19.3 Concrete Delivery Problem 769

mintl(c) the minimum time lag between two consecutive deliveries, which

allows to prepare the construction site for accepting another deliv-

ery,

maxtl(c) the maximum time lag between two consecutive deliveries, which

prevents the concrete becoming solid on the construction site,

D(c) � D the optional subset of depots which can produce concrete meeting

the customer’s requirements; if all deliveries to customer c have to

come from the same depot, then c is called single-source-customer

(denoted with ssc(c) = 1),

K(c) � K the optional subset of vehicles from the fleet accepted by the cus-

tomer due to e.g. requested equipment such as pumps; the minimum

size of a vehicle belonging to this set is denoted by Kmin(c).

Finally, the set of vehicles K = {K1 ,..., Kp} contains vehicles k � K (as in

the previous cases we often write k instead of Kk) for which we define:

q(k) the capacity specifying the number of concrete units which the ve-

hicle can deliver,

O(k) the starting location for the vehicle at the beginning of the working

day,

F(k) the required ending location for the vehicle at the end of the work-

ing day,

((k) the vehicle usage cost denoting the accumulated cost of using
this vehicle during the planning period,

[a(k), b(k)] the time window within which the vehicle is available for operating.

Starting locations for all vehicles k � K form the set O = {O(1),..., O(p)}

and their ending locations constitute the set F = {F(1),..., F(p)}.

The travel time t̄ and travel cost z̄ between particular locations, including

depots and customers locations, are described by two functions respecting the

triangle inequality:
t̄ : (C � D � O � F) � (C � D � O � F) � IN0 ,

z̄ : (C � D � O � F) � (C � D � O � F) � IN0 .
Based on the above presented set of parameters, the concrete delivery prob-

lem can be formulated as a graph model, or more precisely as a network flow

model (cf. Section 2.3.3). The problem is represented as the weighted twofold

multigraph G = (V, E, t, z), shown in Figure 19.3.1, containing vertices from V

corresponding to each possible delivery to a customer, reload of a vehicle at a

depot, starting and ending locations for a vehicle, and arcs from E corresponding

to a part of a route which could appear in an optimal solution of this problem.

Arcs are described by a travel cost z and a travel time t determined based on the

corresponding functions z̄ and t̄ given above.

770 19 Scheduling in Logistics

Figure 19.3.1 Scheme of the graph for the concrete delivery problem [ADP09].

Each customer c � C is modeled by a set of customer nodes C c
G

 = {Cc1 ,...,

Cc ñ(c)}, where ñ(c) = 9q(c) / Kmin(c); is an upper bound of the number of deliver-

ies to this customer, resulting from its demand and the minimum capacity of ve-

hicles which can supply it.

Each depot d � D is modeled by a set of depot nodes D d
G

 ={Cd1 ,..., Cd ñ(d)},

where ñ(d) = �(b(d) � a(d)) / mintl(d)� + 1 is an upper bound of the number of

reloads of vehicles in this depot, resulting from the duration of its working period

and the minimum time span between consecutive reloads.

The set of vertices contains customer nodes, depot nodes and location nodes,

i.e. V = CG
 � DG

 � O � F, where CG
 = U

c=1

n
Cc

G
 , DG

 = U
d=1

m
Dd

G
 and O, F are the sets

of starting and ending locations for all vehicles k � K.

The set of arcs contains weighted arcs (u, v, k), where u, v � V and k � K is

a label corresponding to a trip of vehicle k from node u to v. There might be at

most p arcs between every two nodes, corresponding to the number of vehicles

C11 C1ñ(1)

C2ñ(2)

Cn ñ(n)

...

C21

Cn1

...

C12

C22

Cn2

...

...

...

...

...

D11 D1ñ(1)

D2ñ(2)

Dm ñ(m)

...

D21

Dm1

...

D12

D22

Dm2

...

...

...

...

...

DG CG

F O

1

2

p

1

 O(1)

 O(2)

 O(p)

...

... ...

...

...
1

p

p

 F(1)

 F(2)

 F(p)

...

1

2

...

1

2

p

p

 19.3 Concrete Delivery Problem 771

from the fleet, i.e. (u, v, 1),..., (u, v, p), but those arcs that cannot be a part of an

optimal route are excluded from the graph.

For each vehicle k � K there is an arc (O(k), F(k), k), which is selected to a

solution if this vehicle is not used within the analyzed planning horizon, and it

only moves from its starting location to the final location. The travel cost and

time defined for such arcs are respectively z(O(k), F(k), k) = z̄(O(k), F(k)) and

t(O(k), F(k), k) = t̄ (O(k), F(k)).

Then, for each vehicle we have arcs (O(k), Ddi , k) linking starting location

for a vehicle with every node Ddi � DG
 (where i = 1,..., ñ(d)), representing

the first trip of the vehicle to be filled up with concrete at depot d. The travel

cost, equal to z(O(k), Ddi , k) = z̄(O(k), d) + ((k), takes into account not only the
cost of traveling from O(k) to d, but also the accumulated cost ((k) of using this
vehicle in the given planning horizon. Travel times are set to t(O(k), Ddi , k) =

t̄ (O(k), d).

The trips of loaded vehicles are represented by arcs (Ddi , Ccj , k) correspond-

ing to the trip of vehicle k from depot d to customer c (i = 1,..., ñ(d);

j = 1,..., ñ(c)). Such arcs are created only if customer c accepts concrete from

producer d, d � D(c), if k is a feasible vehicle for a delivery to customer c, k �

K(c), and the travel time from d to c does not exceed the maximum time that

concrete may stay within the vehicle, t̄ (d, c) � ". As in previous cases the travel

cost and travel time for an arc are respectively defined as z(Ddi , Ccj , k) = z̄(d, c)

and t(Ddi , Ccj , k) = t̄ (d, c).

The trips of unloaded vehicles from customer c to depot d are modeled by

arcs (Cci , Ddj , k) for all k � K(c) and i = 1,..., ñ(c), j = 1,..., ñ(d)). The travel

cost and time are equal to z(Cci , Ddj , k) = z̄(c, d) and t(Cci , Ddj , k) = t̄ (c, d).

Finally, the last trips of vehicles from customers to their final locations are

modeled by arcs (Cci , F(k), k), if k � K(c) (i = 1,..., ñ(c)). They are described by

the travel cost and time defined respectively as z(Cci , F(k), k) = z̄(c, F(k)) and

t(Cci , F(k), k) = t̄ (c, F(k)).

Based on the presented graph model, the mixed integer programming model

is formulated, which is founded on four decision variables. The first one xuvk ,

related to the arc (u, v, k) � E, determines the route taken by vehicle k.

xuvk =

�.
�
.

1

if vehicle k � K

supplies customer c (u = Cci),
reloads at depot d (u = Ddi) or
starts its tour (u = O(k)) and
moves afterwards to v,

0 otherwise.

The second one wu , related to each node u � V, determines times of supplying
customers, reloading at depots and starting and ending tours.

772 19 Scheduling in Logistics

wu =

�.
�
.

time

at which vehicle k � K

supplies customer c (u = Cci),
reloads at depot d (u =Ddi),
starts its tour (u = O(k)) or
finishes its tour (u = F(k))

 if xuvk = 1 for some arcs (u, v, k) � E,
undefined if xuvk = 0 for all arcs (u, v, k) � E.

The third one yc , defined for customer c � C, indicates whether the demand of
this customers is satisfied in the current schedule.

yc =
�
�

1 if the total demand q(C) of customer c � C is satisfied,
0 otherwise.

The last variable 2cd , dedicated for the single-source-customers c � C (i.e.
ssc(c) = 1), determines depot d � D(c) producing concrete for customer c.

2cd =

�.
�
.

1 if there is at least one delivery from depot d � D
to customer c � C,

0 otherwise.

For the sake of simplicity, !k
�
(u) denotes the set of predecessors of node u � V

via vehicle k � K with respect to the graph G, i.e. !k
�
(u) = {v � (v, u, k) � E},

while !k
+
(u) denotes the set of its successors, i.e. !k

+
(u) = {v � (u, v, k) � E}.

The mixed integer programming formulation is now given by:

Minimize �
(u,v,k)�E

 z(u,v,k) xuvk + �
c�C

 (1�yc)*(c) (19.3.1)

subject to� �

�
v�!k

+(O(k))
 xO(k)vk = 1 for k�K (19.3.2)

�
u�!k

�(F(k))
 xuF(k)k = 1 for k�K (19.3.3)

�
u�!k

�(v)
 xuvk � �

u�!k
+(v)

 xvuk = 0 for k�K, v�CG
 � DG

 (19.3.4)

�
k�K

 �
v�!k

+(u)
 xuvk � 1 for u�CG

 (19.3.5)

�
k�K

 �
v�!k

+(u)
 xuvk � 1 for u�DG

 (19.3.6)

 19.3 Concrete Delivery Problem 773

�
k�K

 �
v�!k

+(Cc(i+1))
xCc(i+1)

vk � �
k�K

 �
v�!k

+(Cci)
xCci vk � 0 for c � C,

 i = {1,..., ñ(c)�1}

(19.3.7)

�
u�Cc

G
 �
k�K

 �
v�!k

+(u)
 xuvk q(k) � q(c) yc for c � C (19.3.8)

�M (1� xuvk) + s(u) + t(u, v, k) � wv � wu for (u, v, k) � E (19.3.9)

M (1� xuvk) + " + s(u) � wv � wu for (u, v, k) � E
 with u�DG

 , v�CG

(19.3.10)

wu � a(u) for u�V (19.3.11)

wu � b(u) for u�V (19.3.12)

wCc1
 � b′(c) for c � C (19.3.13)

wCc(i+1)
 � wCci

 � mintl(c) for c � C,

 i = {1,..., ñ(c)�1}

(19.3.14)

wCc(i+1)
 � wCci

 � maxtl(c) for c � C,

 i = {1,..., ñ(c)�1}

(19.3.15)

wDd(i+1)
 � wDdi

 � mintl(d) for d � D,

 i = {1,..., ñ(d)�1}

(19.3.16)

�
k�K

 �
u�Dd

G
 �
v�Cc

G
 xuvk � 2cd M for c�C with ssc(c)=1

 d�D(c)

(19.3.17)

�
d�D(c)

 2cd � 1 for c�C with ssc(c)=1 (19.3.18)

xuvk � {0, 1} for (u, v, k) � E (19.3.19)

wu � 7 for u�V (19.3.20)

yc � {0, 1} for c � C (19.3.21)

2cd � {0, 1} for c�C with ssc(c)=1

d�D(c)

(19.3.22)

The goal of scheduling vehicles is to minimize the total cost (19.3.1), which

consists of the sum of travel costs (i.e. z(u, v, k)) and the total penalty cost for

customers whose demand is not satisfied (i.e. *(c)). The vehicle usage cost is

774 19 Scheduling in Logistics

incorporated into the objective function by the travel costs of arcs linking O(k) to

depots from DG
 for particular vehicles (increased with ((k)).

Constraints (19.3.2) and (19.3.3) ensure that each vehicle k � K leaves its

starting location O(k) and arrives to its final location F(k) exactly once, respec-

tively. Formula (19.3.4) is a flow conservation constraint for nodes related to

customers and depots. Formulas (19.3.5) and (19.3.6) ensure that each customer

node and depot node is used at most once. Constraint (19.3.7), needed by

(19.3.13) and (19.3.16), makes sure that customers are supplied in consecutive

intervals only (i.e. no customer node Cci is supplied by a vehicle, if no vehicle

supplied this customer in the preceding intervals, represented by nodes Cci' for

i′ < i). Formula (19.3.8) ensures that the decision variable yc properly indicates

whether the demand of customer c is satisfied, while formula (19.3.9) connects

decision variables x to variables w taking into account travel times (t(u, v, k)) and

service times (s(u)). Constraint (19.3.10) prevents solutions in which concrete

stays too long in vehicles, exceeding the maximum time ", while constraints

(19.3.11) and (19.3.12) ensure that time windows are respected for all nodes, i.e.

customers, depots and vehicles (assuming that for each vehicle k � K, its time

window is reflected in the time windows related to its starting and ending loca-

tions, i.e. a(k) = a(O(k)) and b(k) = b(F(k))). Constraint (19.3.13) makes sure that

the first delivery to each customer c � C respects the required first delivery dead-

line (b′(c)), if it is defined. Formulas (19.3.14), (19.3.15) and (19.3.16) ensure
that the time lags for customers (minimum and maximum) and depots (mini-
mum) are respected. Constraints (19.3.17) and (19.3.18) are devoted to single-
source-customers c � C, allowing determining the proper value of variable 2cd

and ensuring that only one depot produces the concrete for these customers. Fi-

nally, constraints (19.3.19-22) define domains of decision variables.

The above described concrete delivery problem is NP-hard, since, as many

problems involving vehicle routing, it incorporates the traveling salesman prob-

lem.

Theorem 19.3.1 [ADP09] The concrete delivery problem defined by (19.3.1)-
(19.3.22) is strongly NP-hard.

Proof. The concrete delivery problem obviously belongs to NP. Moreover, the
well-known traveling salesman problem (cf. Section 2.2.3 and see e.g.
[ABCC07]) with the triangle inequality (!-TSP) reduces to our problem. The
traveling salesman problem is defined as follows:

Instance: Finite set of n cities {1,..., n} and travel cost function
 zTSP

 : {1,..., n} � {1,..., n} � IN0 , and a constant b.

Answer: "Yes" if there exists a tour that goes through every city exactly
once with the total cost not exceeding b.

 Otherwise "No".

 19.3 Concrete Delivery Problem 775

For a given instance of the traveling salesman problem, the concrete delivery
problem is defined by constructing a set of customers C = {C1,..., Cn} with unit

demand (q(c) = 1) and the set of depots D = {D1,..., Dn} with the same cardinal-

ity. Customers, corresponding to cities, accept concrete from any depot (i.e.

D(c) = D for each c). Concrete has to be delivered by a single vehicle K = {K1}

with unit capacity (q(K1) = 1). Customers Ci and depots Di for particular

i = 1,..., n are located at the same place. The starting and ending locations for

a vehicle, O(K1) and F(K1), are at depot D1. Consequently, the travel cost is de-

fined as follows (assuming that zTSP
 (i, i) = 0 for i = 1,..., n):

T z̄(O(K1), F(K1)) = 0,
T z̄(O(K1), Di) = zTSP

 (1, i) for i = 1,..., n,
T z̄(Di , Cj) = zTSP

 (i, j) for i, j = 1,..., n,
T z̄(Ci , Dj) = zTSP

 (i, j) for i, j = 1,..., n,
T z̄(Ci , F(K1)) = zTSP

 (i, 1) for i = 1,..., n,
T z̄(u, v) = b + 1 for the remaining arcs (u, v).

The cost of using a vehicle is set to zero, ((K1) = 0, while the penalty cost of

not satisfying the customer demand is set to *(Ci) = b + 1 for all i = 1,..., n.

Travel times are set to zero and the remaining time parameters are set to the

values which ensure trivial fulfilling the constraints corresponding to them (they

are set to zero or to a very big value).

It is easy to show that there exists the solution to the concrete delivery prob-

lem with the total cost not exceeding b if and only if there exists a tour in the !-
TSP with the cost less than or equal b.

Due to NP-hardness of the concrete delivery problem and the large size of in-
stances of this problem which are met in practice, the problem cannot be solved
optimally within reasonable time. Asbach et al. [ADP09] proposed a method that
combines the usage of CPLEX solver with a local search approach. The algo-
rithm was initialized with a feasible solution, which was then improved by itera-
tively un-scheduling and re-scheduling one or two customers at the same time.
Firstly the unscheduled customers were inserted into the schedule by solving
(with CPLEX) the corresponding mixed integer programming model with unde-
termined decision variables corresponding to them. Then, because of the high
computational time consumption, solving mathematical models was replaced by
using a greedy constructive heuristic to incorporate unscheduled customers into a
solution again. The solution space was searched until a local optimum was
reached, or the assumed time limit or the number of iterations were exceeded.
The precise modeling of the concrete delivery problem, reflecting all factors im-
portant from the practical point of view, first as the graph and then in the terms
of the mathematical programing formulation gave the basis for proposing effi-
cient methods solving this logistic problem.

776 19 Scheduling in Logistics

19.3.3 Related Models

The network flow model for the concrete delivery problem presented in the pre-

vious section is only one of various models proposed to support solving logistic

problems arising in this branch of industry. Not intending to present the complete

survey of research on the concrete delivery problem, we would like to mention

other models and methods considered in this context. Most approaches presented

in the literature were inspired and often adjusted to the specificity of the real

world cases.

A somewhat simpler variant of the above problem was studied by Hertz et

al. [HUW12]. It allows, for example, overlapping of deliveries to a single cus-

tomer, and replaces time windows for vehicles with the total availability of each

truck. Moreover, it takes into account different objective functions such as mini-

mizing the total duration of deliveries and minimizing the total number of vehi-

cles used to satisfy the customer demands. Hertz et al. proposed two integer line-

ar programming models. The former is a two-phase approach: firstly a set of de-

liveries is assigned to a fleet of vehicles, second the route for vehicles is con-

structed. Both subproblems are formulated as integer linear programming mod-

els. The latter is a unique integer linear program combining both subproblems in

one model. The former model solved with CPLEX required shorter computation-

al time, while the latter generated the solutions of a higher quality.

Durbin [Dur03] as well as Durbin and Hoffman [DH08] investigated

the problem with a homogenous fleet of vehicles at Virginia Concrete company,

proposing mixed integer programing models based on time-space networks. They

designed the decision-support system for accepting or rejecting new customer

orders, scheduling accepted orders, timing truck drivers’ work, assigning drivers

to deliveries, dispatching drivers to customers and back to plants, and scheduling

the loading of trucks at the plants. The system uses the minimum-cost network

flow optimization technique and tabu-search metaheuristic algorithm.

Feng et al. [FCW04] proposed genetic algorithms and simulation techniques

for the single-depot problem to support the work of a ready-mixed concrete batch

plant in Taiwan. The company managers have to construct efficient schedules of

dispatching vehicles of the same capacity, taking into account both timeliness

and flexibility, and balancing operations at construction sites and the plant. From

the business point of view, to maximize production and profit of the plant, trucks

should be dispatched to as many as possible different customers. As queues of

concrete mixers waiting for unloading should be avoided, Feng et al. focused on

minimizing the total waiting time for vehicles at a customer site.

Tommelein and Li [TL99] discussed the concrete delivery as an example of

just-in-time production, since concrete is utilized immediately upon arrival at the

construction site. Following this idea Wu and Low [WL07] developed the just-

in-time purchasing model for ready-mixed concrete suppliers.

A more general variant of the concrete delivery problem was investigated by

Naso et al. [NSTK07], who designed a hybrid genetic algorithm combined with

 19.3 Concrete Delivery Problem 777

constructive heuristics. They focused on systematic modeling, with mathematical

programming methods, and solved the concrete delivery problem as the problem

of just-in-time production and supply of ready-mixed concrete, with special at-

tention to the real world situation in the Netherlands. In the hybrid algorithm, the

genetic algorithm optimizes scheduling of concrete production and loading at the

production plants, while the constructive heuristic optimizes routing vehicles to

customers. Then Silva et al. [SFA+05] continued the research and focused on the

second phase proposing a hybrid metaheuristic: the genetic algorithm combined

with ant colony optimization algorithm, to solve it.

Schmid et al. [SDH+09] proposed two hybrid solution methods: a metaheu-

ristic solving the network flow model and an exact algorithm based on the mixed

integer programming model, as well as a variable neighborhood search for an-

other integer multicommodity network flow model, similar to the general vehicle

routing problem formulation [SDH+10]. Their research was motivated by a me-

dium size concrete company in Alto Adige, Italy.

Matsatsinis [Mat04] studied the multi-depot vehicle routing problem with

time windows for modeling the problem of routing pumps. Pumps must arrive

and be set up at the customers site before concrete delivery is started. This prob-

lem, arising in a Greek company, involves scheduling two types of vehicles:

pumps and trucks. Matsatsinis designed a decision support system for this case

by iteratively improving an initial assignment proposed by the plant managers.

Yan and Lai [YL07] proposed a mixed integer network flow model combin-

ing concrete production schedules and truck dispatch. This was inspired by a real

world case arising in the northern Taiwan, and was validated with the usage of

CPLEX. Liu et al. [LZL14] also applied the network flow model and a genetic

algorithm, for testing on data obtained from a concrete company located in Wu-

han, China.

The complex scheduling problems, such as the concrete delivery problem,

are often solved by constructing mathematical programming models and apply-

ing optimization software packages and/or metaheuristics, but other approaches

also have been tried.

Misir et al. [MVV+11] applied a hyper-heuristic algorithm (see e.g.

[BGH+13]) to the concrete delivery problem, which is a high-level approach for

searching the space of heuristics instead of directly scanning solution space.

Graham et al. [GFS06] used the neural network methodology (see e.g.

[Gur97, Hay99]), particularly a feed-forward network and an Elman network, to

solve the concrete delivery problem in the United Kingdom.

Lin et al. [LWHW10] modeled the concrete delivery problem arising at

a company located in Pingtung in Taiwan as a job shop problem (cf. Chapter 10)

with recirculation, time windows, demand postponement and transportation

costs. In this model, the construction sites are represented as jobs, trucks are rep-

resented as processors, and particular deliveries are represented as tasks. Recircu-

lation means that some jobs may be processed more than once by the same pro-

cessor.

778 19 Scheduling in Logistics

As most other researchers, Kinable et al. [KWB14] proposed the mixed in-

teger programming model for maximizing the number of satisfied customers

weighted by their demand. Additionally, they constructed solutions using a con-

straint programming model (cf. Chapter 16). Moreover, they proposed a kind of

taxonomy for the concrete delivery problem, which we provide as a summary of

this section. The variants of the concrete delivery problem result mainly from the

following crucial components distinguished by Kinable et al. [KWB14]:

T time windows/time limits:
� hard delivery time windows impose deliveries within predefined time inter-

vals;
� hard delivery start time defines the requested start time for deliveries;
� soft delivery time windows allow violating predefined time intervals or pre-

ferred start times for deliveries;
� vehicle usage time results from a time window within which a vehicle op-

erates, or from a time interval within which it is non-available, e.g. due to
maintenance, or from a certain amount of vehicle usage time;

� concrete perish time represents the maximum amount of time which con-
crete may reside in the vehicle before losing its quality and hardening;

T start/end locations of vehicles: all vehicles may start and/or return to a central
depot or to a (specific) production center; in the mixed variant a truck may
start and/or end its tour at a depot or at the center;

T production depots:
� homogenous/heterogeneous: depots may be identical or they may differ in

e.g. the type of produced concrete or capability of serving customers;
� scheduling: vehicles reloads must be organized at depots, if vehicles cannot

be served simultaneously;
T loading/unloading: the time of loading/unloading vehicles may be constant

(fixed rate) or dependent on customer, vehicle, type of concrete, etc. (dynamic
rate);

T fleet: similarly as in the case of depots, vehicles can be identical (homoge-
nous) or they may differ in their capacity or special equipment (heterogene-
ous);

T instrumentations: some deliveries may require additional specialized equip-
ment (such as pumps), which can be a part of vehicle equipment or must be
transported separately to the customer;

T deliveries/restrictions:
� synchronization: synchronization of deliveries may be necessary in case

they cannot overlap, and/or minimum/maximum time lags have to be taken
into account;

� revisits: a single vehicle may perform multiple deliveries for a single cus-
tomer;

� vehicle requirements: some vehicles are not allowed for deliveries due to
the type of concrete to be delivered or the vehicle size expected at the con-

 19.4 Flight Gate Scheduling Problem 779

struction site;
� reload / shared deliveries: vehicles have either to reload after each delivery

(reload) or they can supply several customers without being reloaded at
the depots (shared deliveries);

� split delivery: customers may request multiple deliveries served by different
trucks;

� single source: customers may request concrete delivered from the same
production site;

T objectives:
� minimizing vehicle usage determined by the frequency of using a vehicle or

by the total time of using a vehicle, etc.;
� minimizing wastage which corresponds to the amount of concrete delivered

to customers and exceeding their demand (vehicles should be fully loaded
to prevent increasing rate of concrete hardening in case of their partial
load);

� minimizing delay determined based on the deviation from soft time re-
strictions;

� minimizing outsourcing needed in order to serve customers for which de-
liveries cannot be feasibly scheduled;

� minimizing operating costs of various types incurred at the depots or at
the construction sites;

� maximizing utilization balance which allows to balance the usage of partic-
ular vehicles;

� minimizing travel time or distance;
� minimizing number of vehicles used or used per customer;
� maximizing number of satisfied customers.

The presented collection of parameters, constraints and objective functions
shows that the concrete delivery problem, although it concerns a specific logistic
problem, covers the variety of research domains.

19.4 Flight Gate Scheduling Problem

Airport management is a complex logistic problem (cf. e.g. [BBO03]) which

covers e.g. managing aircraft arrival/departure sequences, the usage of the run-

way(s) and other fixed as well as mobile resources, managing staff and passenger

services. More formally speaking it includes: aircraft scheduling (i.e. assigning

aircrafts to flights operated by an airline), crew scheduling (i.e. assigning crew

members, pilots and flight attendants to particular flights), disruption manage-

ment (i.e. real-time irregular operation scheduling), aircraft landing scheduling

(cf. e.g. [BMP13, BMP17]), ground operation scheduling, etc.

780 19 Scheduling in Logistics

The flight gate scheduling problem (FGS, or the flight gate assignment prob-

lem, FGA) is one of crucial components of the airport management, which sig-

nificantly influences other aspects of airport operation. Generally speaking,

the flight gate scheduling problem concerns assigning the aircraft serving a flight

to the gate and determining the start and completion times of serving this aircraft.

Obviously, the gate assignment influences both the operational efficiency of

the airport and the convenience of passengers. Most of airline station operations

are performed at the gates, such as servicing aircrafts, embarking and disembark-

ing passengers, handling their baggage, or handling the cargo. Airport managers

are especially interested in maximizing the utilization of resources such as gates

and terminals, minimizing the number of gate conflicts, unassigned flights or

flight delays, while airline managers - concerned in increasing passenger satisfac-

tion - tend to minimize the passenger walking distance between gates or the air-

craft traveling distance from runway to the gate. Due to multiple criteria and

multiple constraints, solving FGS rarely leads to finding optimal schedules. The

goal of the research is rather constructing feasible schedules, assuring hard con-

straints and providing a compromise between various objectives.

Similarly, as in the case of the concrete delivery problem, we do not intend

to present the complete survey of results obtained for the flight gate scheduling

problem in the literature (see e.g. [QYY04, YY99]), which is much richer than

for the concrete delivery case due to the intensive growth of air transport traffic.

We present only selected approaches as examples of modeling logistic problems

in terms of scheduling theory. In particular, in Section 19.4.2, we present the
results obtained by Dorndorf et al. [DJP08, DJP12, DJP17].

19.4.1 Overview

The flight gate scheduling problem is a highly constrained problem, which solu-
tions may be evaluated taking into account various objectives. As we announced
in the previous section, the problem concerns assigning flights to gates within
time. Flights are understood as aircrafts serving those flights, while gates repre-

sent the aircraft stands directly at the terminal as well as off-pier stands on

the airport apron. Obviously one gate can serve only one aircraft at the same

time. Moreover, while assigning aircrafts to gates specific space restrictions and

service requirements must be fulfilled. For example, due to the large size of

some assigned aircrafts, the neighboring gates may serve aircrafts only of a cer-

tain size, or they are not available at all until the large aircraft leaves its stand.

Similarly some international flights must be assigned to gates having access to

governmental inspection facilities. In case of changing an aircraft location at

the airport, the aircraft must be towed, which causes additional costs and de-

creases the time available for ground service operations. On the other hand, such

relocations of aircrafts allow the airport managers temporarily move the planes

with long ground time from the gates, releasing them for serving other planes

 19.4 Flight Gate Scheduling Problem 781

meanwhile. From the time point of view, some minimum ground times and min-

imum time gaps between subsequent flights must be obeyed.

Depending on the planning horizon single or multiple time slot models may

be considered [DDNP07]. In a single time slot model (e.g. [BTT84]), a batch of

flights has to be assigned to gates within a single time period. Consequently only

one flight can be assigned to one gate. A multiple time slot model (e.g. [HC98])

requires dividing the given time interval into a fixed number of slots of properly

chosen duration.

Optimizing the gate assignment may be done with regard to various objec-

tives, passenger-oriented or airport-oriented [DDNP07], such as minimizing:

the number of un-gated aircrafts, the number of aircraft towing procedures,

the total walking distance for passengers or their total delay, the baggage trans-

portation distance, the deviation from a reference schedule, or maximizing ful-

filled preferences of certain flights to be assigned to particular gates.

As for all optimization problems, constructing solutions of a good quality,

preferably nearly optimal, is desired also for the flight gate scheduling problem.

But due to high input data uncertainty, which is related to the specificity of

the airport management, the flexibility and robustness of a schedule is nearly

important. In the real world situation various unexpected events may occur such

as: flight earliness or delay, flight or gate breakdowns, emergency flights, chang-

es in weather conditions, etc. Thus, the schedule should allow for quick updates

minimizing a negative impact on other airlines, airport activities and passenger

satisfaction.

The real process of flight gate scheduling is strictly related to the specificity

of the airport at which it is managed, and the objectives which are crucial for it.

For these reasons, in the literature the variety of models and approaches can be

found, taking into account various parameters and constraints. The basic concept

is based on the mathematical formulation of the flight gate scheduling problem,

such as integer or linear programing, as well as mixed integer linear or non-linear

programing. For example, Lim et al. [LRZ05] and Diepen et al. [DAHS12,

Die08] used integer linear programming to support Amsterdam Schiphol Airport.

They minimized the sum of the delay penalties and the total walking distance

[LRZ05], as well as the deviation of arrival and departure times of busses serving

gates [DAHS12, Die08]. The same type of the model was proposed by Babić et

al. [BTT84] for minimizing passenger walking distance. The binary integer pro-

gramming model was used by Bihr [Bih90], then by Mangoubi and Mathaisel

[MM85] as well as by Yan et al. [YSC02] in order to minimize passenger walk-

ing distances at Toronto International Airport and Chiang Kai-Shek Airport re-

spectively. Tang et al. [TYH10] developed a gate reassignment framework and

an application supporting Taiwan International Airport. Prem Kumar and Bier-

laire [PKB14] used a binary integer programming model for multiobjective

scheduling in order to maximize passenger connection revenues, minimize zone

usage costs, and maximize gate plan robustness. Bolat used mixed integer linear,

non-linear programming [Bol99, Bol01] and quadratic mixed binary program-

782 19 Scheduling in Logistics

ming [Bol00] models to support managing King Khaled International Airport in

Riyadh in order to minimize the range of slack times and the variance or the

range of gate idle times. The binary quadratic programming model appeared also

in the research by Ding et al. [DLRZ04a, DLRZ05].

Some cases of the flight gate scheduling problem can be formulated not only

as mathematical programming models, but they can be transformed to other op-

timization problems, for example, to the quadratic assignment problem

[DLRZ04a], or a multi-mode resource constrained project scheduling problem

[DDNP07, Dor02] (cf. Chapter 13). As an example of such a transformation, we

present in Section 19.4.2, the model proposed by Dorndorf et al. [DJP08] strictly

related to the clique partitioning problem [DP94]. This model can be easily ex-

tended by taking into account the difference to a reference flight gate schedule

[DJP12], and stochastic arrival and departure times [DJP17]. Dorndorf et al.

[DJL+07] discussed also the issues concerning robustness of the gate assignment,

i.e. disruption management.

19.4.2 Modeling the Flight Gate Scheduling Problem

The flight gate scheduling problem can be modeled [DJP08, DJP17] as a relation

f: N � M mapping a set of activities N = {1,..., n} to a set of available gates

M = {n + 1,..., n + m}. Gate n + m � M represents the dummy gate with unlim-

ited capacity. It does not model any real aircraft position, but is used for proper

problem solving. Dummy gate assignments are often used in practical applica-

tions, where it is hard to construct a feasible solution. Dummy assignments have

to be eliminated by a decision maker.

The model distinguishes three types of activities i � N related to aircrafts:

arrival, parking and departure. The activities associated with a particular aircraft,

representing its arrival, parking and departure, form a sequence i, j, k � N, within

which j and k are successors of i and j respectively. If no parking is needed for an

aircraft, then k is successor of i. Correspondingly each activity has only one suc-

cessor which can be determined by the following function U: N � N � {0}:

Assigning different activities, related to the same aircraft, to different gates

(i.e. f(i) � f(j) for U(i) = j) will require towing it.

For each activity i � N a set of feasible gates M(i) is defined, which excludes

gates for different reasons, e.g. size of the aircraft, lack of necessary equipment,

or legal restrictions (see constraints (19.4.2) in the model given in the reminder

of this section).

The time relations between activities are described by a symmetric matrix

T = [tij]n�n which contains the length of time interval tij between any two activi-

U(i) =
�
�

 j if j is successor of i,
0 otherwise.

 19.4 Flight Gate Scheduling Problem 783

ties i � N, j � N. Assuming that Si and Ci denote the starting time and completion

time of flight activity i � N, this time parameter for two activities i and j is calcu-

lated as max{Sj � Ci , Si � Cj}. With times tij we can model overlapping re-
strictions as well as reward gaining flexibility in assignments. If tij < 0, then ac-

tivities i and j overlap in |tij| time units, and they cannot be assigned to the same

gate (see (19.4.3) in the following model). This restriction does not concern as-

signments to the dummy gate n + m. Values tij � 0 represent buffer times. An

auxiliary value � � IN allows classifying buffer times tij � 0 as low, if and only if

tij < �. By definition, for a pair of succeeding activities i, j (U(i) = j), tij = �. Us-

ing threshold value � one can construct flexible schedules, avoiding assigning

activities with low buffer times to the same gate (see (19.4.7) in the model).

Shadow restrictions are introduced for prohibiting the assignment of two big

aircrafts to neighboring gates, in order to avoid wing tips overlapping. They are

modeled by a set S � N � M � N � M. Each element (i, k, j, l) � S forbids from

assigning i to k (i.e. f(i) = k) and j to l (i.e. f(j) = l). Obviously shadow restrictions

may be defined only for overlapping activities, and they do not concern the

dummy gate n + m.

The preference matrix P = [pik]n�m defines for every assignment of activity i
to gate k its preference score. The preference scores reflect the domain specific

knowledge and are determined by the aircraft managers. Since assignments to

a dummy gate should be avoided, the preference scores related to it are dominat-

ed by other scores, i.e.: pi(n+m) < pik for all i � N, k � M(i) � {n + m}. Based on

this value, an auxiliary preference score is determined as pik
* = pik � pi(n+m) for all

i � N, k � M(i).
For evaluating the gate assignment, Dorndorf et al. [DJP08] used a weighted

linear combination of three objectives. The first one, z1, represents the accumu-

lated preference score of the assignment, i.e.:

z1 = ��
i=1

n
 pi f(i) = ��

i=1

n
 pi(n+m) � �

i=1

n
 pi f(i)

* .

The second one, z2, determines the number of towing actions, required if two

successive activities for an aircraft are assigned to various gates:

z2 = | {i � N | U(i) � 0 � f(i) � f(U(i))} |.

The flexibility of the schedule is reflected with the third objective, z3, defined as:

z3 = �
{(i� j) | i < j� f(i) = f(j) � n+m}

 max{� � tij , 0}.

This objective takes into account only activities with small buffer time (tij < �)
assigned to the same gate. In the real world situation, such activities may cause

a trouble, if the first one is delayed.

784 19 Scheduling in Logistics

The objective function for the optimization problem is the sum of the three

objectives, z1 , z2 , z3 , respectively weighted with (1 , (2 , (3 . The above de-

scribed constraints are reflected in the restrictions imposed on the relation

f: N � M.

Minimize g(f) = (1z1(f) + (2z2(f) + (3z3(f) (19.4.1)

subject to� �

f(i) � M(i) � M for i � N, (19.4.2)

f(i) � f(j)

for tij < 0,

 f(i) � n + m,

 i � N, j � N,

(19.4.3)

f(i) � k W f(j) � l for (i, k, j, l) � S, (19.4.4)

z1 = � �
i=1

n
 pi f(i)

* , (19.4.5)

z2 = | {i � N | U(i) � 0 ^ f(i) � f(U(i))} |, (19.4.6)

z3 = �
{(i$ j) | i < j$ f(i) = f(j) � n+m}

 max{7 � tij , 0}. (19.4.7)

The above formulated model can be adjusted to the real world situations by tak-

ing into account more detailed information. For example, instead of minimizing

the total number of aircraft towing actions (calculated in (19.4.6)), it is possible

to take into account more precise information on towing times. If towing times

are provided, additional constraints can prohibit towing actions which durations

would exceed the available time for parking [DJP17]. Assuming that towij de-

notes the tow time necessary for towing an aircraft from gate i to gate j (where

towii = 0), the following additional constraint can be defined for an aircraft and

incorporated into the optimization model:

Si" � Ci � towf(i) f(i') + towf(i') f(i") for succeeding activities for

an aircraft i, i', i" � N.
(19.4.8)

Equation (19.4.8) ensures that total towing time from the gate of arrival f(i) to

the parking location f(i') and from this location to the departure gate f(i") does not

exceed the available time for parking.

Since the airport management is a multiobjective process, the function given

in (19.4.1) can be easily modified by taking into account objectives different

from z1 , z2 , z3 . Dorndorf et al. [DJP12] extended the linear combination by an

objective representing the deviation from a reference schedule. This is useful if

flight activities are managed on a daily basis and case to case alterations are re-

quired.

 19.4 Flight Gate Scheduling Problem 785

The presented model can be further adjusted [DJP17] to real world condi-

tions by replacing deterministic arrival and departure times Si , Ci of an aircraft

by stochastic times modeled with respective functions XSi
 : IN � IR and

XCi
 : IN � IR. Under these assumptions P(XSi

 = x) and P(XCi
 = y) respectively de-

scribe the probability that activity i starts at time x and completes at time y. In the

stochastic variant some of the exact parameters are replaced by distribution func-

tions estimated from historical data.

Sometimes relaxations of the presented model are also practically justified.

For example, for some airports the shadow restrictions given in (19.4.4) are not

defined (i.e. S = �). In this special case the flight gate scheduling problem can be

transformed to the clique partitioning problem. This interesting transformation is

presented in the following parts of this section for the basic model defined in

equations (19.4.1)-(19.4.7) with S = � [DJP08].

The clique partitioning problem (CPP) is an optimization problem defined for a

complete, undirected, edge-weighted graph G = (V, E, W) with vertex set

V = {1,..., a}, edge set E � V � V containing all two-element subsets {i, j} of
set V for i � j, and symmetric edge weights W = [wij]a�a , where wij = wji � IR �

{�#}. The goal is to find a partition of the set of vertices into cliques (vertex

subsets) so that the sum of all edge weights within all cliques is maximized. The

clique partitioning problem is NP-hard [DF85, GW89] unless the weights are all

positive or are all negative. Dorndorf and Pesch [DP94] presented the following

optimization model for CPP based on the binary variables xij defined for the

edges {i, j} � E:

The proposed constraints guarantee the transitivity of the above relation.

Maximize �
1�i<j�a

wij xij

subject to� �

xij + xjk � xik � 1 for 1 � i < j < k � a,

xij � xjk + xik � 1 for 1 � i < j < k � a, (19.4.9)

� xij + xjk + xik � 1 for 1 � i < j < k � a,

xij � {0, 1} for 1 � i < j � a.

Transforming the flight gate scheduling problem to the clique partitioning
problem given in equations (19.4.9), we construct the graph with a = n + m � 1
vertices representing, in order, n flight activities and m � 1 real gates. A matching

xij =
�
�

1 if vertices i and j belong to the same clique,
0 otherwise.

786 19 Scheduling in Logistics

of flight activities to gates is modeled with a correspondence relation. If vertex
i � n is in relation to vertex k > n, this means that flight activity i is assigned to
gate k. Flight activities assigned to a dummy gate n + m are represented by verti-
ces i being in relation to no vertex greater than n (such cliques are called dummy-
gate cliques). Relations joining two vertices modeling real gates, i.e. k, l > n, are
prohibited by properly chosen edge weights. Consequently, each vertex repre-
senting the flight activity i � n is related to at most one vertex k > n, i.e. each
flight activity is assigned to exactly one gate (including the dummy gate). The
idea of representing a solution of the flight gate scheduling problem in terms of
a correspondence relation in the clique is illustrated in Example 19.4.1 [DJP08].

Example 19.4.1 Let us consider five flight activities {1, 2, 3, 4, 5} and two
gates {6, 7} depicted in Figure 19.4.1 with circles and hexagons respectively.
Correspondence relations are presented with bold edges. Two flight activities 2
and 3 are assigned to gate 7, while flights activities 1, 4 and 5 are assigned to a
dummy gate, because they are not in relation with any particular (real) gate (i.e.
vertices 1, 4 and 5 are in relation neither to 6 nor to 7).

Figure 19.4.1 Correspondence relation for Example 19.4.1.

More formally speaking, the gate scheduling problem is modeled with the clique
G = (V, E, W), where V = {1,..., n + m � 1}, E = {{i, j} | i � V, j � V , i � j},
and edge weights W are defined for i, j � n as follows:

wij =

�
�

�# if tij < 0, (19.4.10)
(2 if tij � 0 ^ (U(i) = j W U(j) = i), (19.4.11)
�(3 max{7 � tij, 0} if tij � 0 ^ (U(i) � j ^ U(j) � i), (19.4.12)

for i � n and j > n as:

1

2

3

5

4

7 6

 19.4 Flight Gate Scheduling Problem 787

wij =
�
�

�# if j � M(i), (19.4.13)
(1 pij

* if j = M(i), (19.4.14)

and, finally, for i, j > n as:

 wij = �#. (19.4.15)

Weights determined in (19.4.10), (19.4.11) and (19.4.12) are defined for edges
linking vertices representing pairs of flight activities. Since overlapping activities
cannot be assigned to the same gate, such an assignment is avoided in (19.4.10)
by imposing negative infinite weights. The edge weight for two non-overlapping
activities of the same aircraft (i.e. succeeding activities) is set to (2 by (19.4.11).

If such two activities are assigned to the same gate, there is no need to tow an

aircraft, and the objective function value is increased by (2. In the clique parti-

tioning model avoiding tows is rewarded instead of punishing tows as in the ob-

viously equivalent original flight gate scheduling model. Finally, the remaining

pairs of non-overlapping activities are weighted with zero if there is enough

buffer time, or with the negated weighted difference between this buffer time and

the low buffer threshold value 7 (19.4.12). In the latter case assigning flights with

the low buffer time to the same gate is punished.

Equations (19.4.13) and (19.4.14) define the weights of edges which model

the assignment of flight activities to gates. If an assignment is infeasible because

the gate does not belong to the set of gates appropriate for a particular flight, the

weights are set to negative infinity in order to prohibit such a schedule. Other-

wise it is rewarded with the weighted preference score. The graph does not con-

tain any vertex representing the dummy gate present in the original flight gate

scheduling model. But the preference score for this gate is zero, so the objective

function value in both models is fully relevant. As we have mentioned, unsched-

uled flights, assigned to the dummy gate, are represented by cliques modeling

only flight activities.

The last equation (19.4.15) assigns negative infinite weights to edges linking

vertices representing two gates, which cannot belong to the same clique in any

feasible solution.

Modifications of the flight gate scheduling model, such as taking into ac-

count the before mentioned deviation from a reference schedule or stochastic

arrival and departure times, can be incorporated into the clique partitioning mod-

el by proper modifying the definition of edge weights (cf. [DJP12] and [DJP17]).

A solution of the clique partitioning problem defined in (19.4.9) and

(19.4.10) - (19.4.15) is feasible if and only if its objective function value is great-

er than �#. However, this allows more feasible solutions than the flight gate
scheduling problem defined in (19.4.1) - (19.4.7) with S = �. The graph model
distinguishes cliques not containing any gate vertex, while in the scheduling
model they correspond to the same assignment to the dummy gate (in Example
19.4.1, vertices 4 and 5 belong to the same clique and the activities correspond-

788 19 Scheduling in Logistics

ing to them are assigned to the dummy gate; the same schedule would be con-
structed if these vertices were not in the same clique). To assure the same num-
ber of solutions in both models, it suffices to ensure that succeeding flight activi-
ties (i.e. the flight activities for the same aircraft) are assigned to the same dum-
my-gate clique and non-succeeding flight activities are not assigned to the same
dummy-gate clique. The equivalence of both discussed models results from the
existence of a bijection from the set of feasible solutions of the flight scheduling
problem to the set of feasible solutions of the clique partitioning problem. This
relation between both models is expressed and proved in Theorem 19.4.2.

Theorem 19.4.2. [DJP08] There exists a bijection between the sets of feasible
solutions of CPP and FGS with S = �, so that every feasible solution f of FGS
corresponds to one and only one feasible solution x of CPP and vice versa.
The objective functions differ only by the sign and by a constant.

Proof. The solution of the clique partitioning problem corresponding to the solu-
tion of the flight gate scheduling problem is defined as follows:

 xij =

�.
�
.

1 if f(i) = f(j) � n + m, i, j � n or
 f(i) = f(j) = n + m ^

(U(i) = j W U(j) = i), i, j � n or
 f(i) = f(j) = n + m ^

((U(i) = h ^ U(h) = j) W (U(j) = h ^ U(h) = i)), i, h, j � n or
 f(i) = j, i � n, j > n,
0 otherwise.

The solution of FGS corresponding to the solution CPP is defined as follows:

f(i) =
�
�

 j if xij = 1, j > n,
n + m otherwise.

For the above transformation, we define:
� the set of vertices assigned to a dummy gate:

N1 = {i � N | f(i) = n + m} = {i � N | xij = 0 for each j > n},

� the set of vertices assigned to real gates:

N2 = N � N1,

� the set of succeeding pairs of vertices:

U1 = {(i, j) � N � N | i < j, U(i) = j W U(j) = i},

� the set of non-succeeding pairs of vertices assigned to the same gate:

U2 = {(i, j) � N � N | i < j, U(i) � j ^ U(j) � i, f(i) = f(j)} =

 {(i, j) � N � N | i < j, U(i) � j ^ U(j) � i, xij = 1}.

 19.4 Flight Gate Scheduling Problem 789

These sets and the fact that xij = 0 whenever wij = �#, are used in the following
transformation of the objective functions from CPP to FGS:

 �
1�i<j�n+m�1

wij xij = �
1�i<j�n

wij xij + �
1� i�n<j� n+m�1

wij xij + �
n<i<j� n+m�1

wij xij

 = �
1�i<j�n

wij xij + �
1� i�n<j� n+m�1

wij xij + 0

 = �
(i, j)�U

1

(2 xij + �
(i, j)�U

2

(�(3 max{7 � tij, 0}) + �
i�N

2

(1(pi f(i)� pi(n+m))

 = (2|{(i, j) � U1| xij =1}| � (3z3 + (1 �
i�N

1
� N

2

 pi f(i)
*

 = (2(|U1| � |{(i, j) � U1| xij = 0}|) � (3z3 + (1 �i�N
 pi f(i)

*

 = (2|U1| � (2z2 � (3z3 � (1z1

 = (2|U1| � g(f).

The objective functions for the clique partitioning problem and the flight gate

scheduling problem differ only by the sign and by the constant (2|U1|.

Due to Theorem 19.4.2 an optimal solution of the clique partitioning problem
corresponds to an optimal solution of the flight gate scheduling problem and any
method solving CPP can be applied to solve FGS. The clique partitioning prob-
lem is NP-hard, but it can be solved efficiently by heuristic algorithms. These
methods allow also for taking into account additional problem constraints, such
as the so far omitted shadow restrictions. For example, Dorndorf et al. [DJP08,
DJP12, DJP17] proposed ejection chain algorithms (see Section 2.5.2) for the
different variants discussed in this section. Hence transforming the logistic flight
gate scheduling problem to the clique partitioning problem allows utilizing
methods developed over the years for CPP to solve FGS.

19.4.3 Related Models

As in the case of the concrete delivery problem, we focus on one selected ap-

proach to flight gate scheduling based on its equivalence to the clique partition-

ing problem. It is an example of using a graph model to solve a scheduling mod-

el. Due to high diversity and complication of flight gate scheduling, as well as its

economic importance, this problem received, especially in recent years, a lot of

attention from the scientific community, and many other approaches have been

proposed to solve it. We do not intend to present a survey of results, which can

be found in the literature (cf. e.g. [DDNP07, QYY04, YY99]), but instead give a

flavor of the variety of other ideas proposed to solve this problem. A kind of tax-

onomy of approaches proposed for FGS in the literature is given by Dorndorf et

790 19 Scheduling in Logistics

al. [DDNP07], who paid attention to: type of models, type of objectives and sin-

gle/multiple time slot models, and by Bouras et al. [BGSS14], who take into ac-

count: type of models, type of objectives and type of the research (theoreti-
cal/real case study).

As we mentioned in Section 19.4.1 the flight gate scheduling problem is

usually formulated as a mathematical model due to the numerous parameters and

constraints describing it. Nevertheless, some researchers solve FGS by trans-

forming it to other combinatorial optimization problems. We presented in details

such a transformation to the clique partitioning problem proposed by Dorndorf et

al. [DJP08]. Other researchers based their approaches on the similarity of FGS to

the quadratic assignment problem (cf. e.g. Drexl and Nikulin [DN08], Haghani

and Chen [HC98]). Yan and Chang [YC98] developed another multi-commodity

network flow model, similarly as Bard et al. [BYA01], who proposed an integral

minimum cost network flow model. The extended example of mathematical

modeling of the real world problem can be found in Section 19.3 for the concrete

delivery problem. Now we will shortly present the transformation of the flight

gate scheduling to the quadratic assignment problem proposed by Ding et al.

[DLRZ04a], as another example of the usage of the equivalences between com-

binatorial problems in the process of solving them.

The quadratic assignment problem (QAP) (cf. [Oba79] and e.g. [LABN+07,

PRW94]) is a classical combinatorial optimization problem, used for example for

modeling facility location problems, where a set of facilities has to be assigned to

a set of locations in order to optimize the product flow between facilities. The

flight gate scheduling problem in a natural way fits this optimization framework,

since flights can be treated as facilities, while gates can be considered as loca-

tions. Ding et al. [DLRZ04a] define the FGS with the following parameters:

� N the set of flights arriving at and/or departing from the airport, n = | N |,
� M the set of gates available at the airport, m = | M |,
� ai the arrival time of flight i, 1 � i � n,
� di the departure time of flight i, 1 � i � n, di > ai ,
� wkl the passenger walking distance from gate k to l, 1 � k, l � m,
� fij the number of passengers transferring from flight i to j, 1 � i, j � n (more-

over fi0 , f0i denote the number of originating departure passengers and dis-

embarking arrival passengers of flight i respectively).
Additional dummy gates are used for modeling entrance/exit of the airport
(gate 0), and the airport apron accepting flights when no gate is available (gate
m + 1). For dummy gates wk0 represents the walking distance between gate k and
the entrance/exit of the airport, while w(m+1)k represents the walking distance

from the apron to gate k, which is usually much larger than distances inside ter-

minal(s). The mathematical formulation uses the following binary decision vari-

ables for 1 � i � n, 1 � k � m + 1:

 19.4 Flight Gate Scheduling Problem 791

and is formulated as follows [DDNP07]:

Minimize �
i=1

n
 yi(m+1) (19.4.16)

Minimize �
i=1

n
 �
j=1

n
 �
k=1

m+1

 �
l=1

m+1

 fij wkl yik yjl +

 �
i=1

n
 �
k=1

m+1

 f0i w0k yik + �
i=1

n
 �
k=1

m+1

 fi0 wk0 yik (19.4.17)

subject to� �

�
k=1

m+1

 yik = 1
1 � i � n, (19.4.18)

yik yjk (dj � ai)(di � aj) � 0 1 � i, j � n, 1 � k � m, (19.4.19)

yik � {0, 1} 1 � i � n, 1 � k � m +1. (19.4.20)

The first objective (19.4.16) minimizes the number of flights not assigned to any

gate, but served at the airport apron. The second formula (19.4.17) represents

the classical objective for the QAP problem, i.e. the total walking distance of

three groups of passengers: transfer, originating departure and disembarking arri-

val passengers. Constraint (19.4.18) assures that each flight is assigned to exactly

one gate, while (19.4.19) forbids overlapping of two flights assigned to the same

gate. (19.4.20) defines the domain of decision variables. This variant of the flight

gate scheduling problem was solved by Ding et al. [DLRZ04a] with greedy heu-

ristic, tabu search and variable neighborhood search metaheuristics.

Majority of research on the flight gate scheduling problem concern deterministic

models. Stochastic parameters were taken into account e.g. by Şeker and Noyan

[SN12], Yan and Tang [YT07], Genç et al. [GEE+12] or Dorndorf et al.
[DJP17]. Independently of the type of model, its proposal is obviously not suffi-
cient to solve the problem. Mathematical models can be solved with the usage of
optimization software, but usually dedicated approaches are more efficient.
Dorndorf et al. [DDNP07] pointed out that in case of the flight gate scheduling
problem two types of approaches are developed: founded on the mentioned
mathematical programming techniques, or on rule based expert systems.

Within the former group, Babić et al. [BTT84] for example designed
the branch and bound algorithm with some acceleration procedures. Mangoubi
and Mathaisel [MM85] used a linear programming relaxation and greedy heuris-
tics, while Wirasinghe and Bandara [WB90] proposed an approximation algo-
rithm. Xu and Bailey [XB01] designed a tabu search algorithm. This metaheuris-
tic framework improved by a new neighborhood search technique was used also

yik =
�
�

1 if flight i is assigned to gate k,
0 otherwise,

792 19 Scheduling in Logistics

by Ding et al. [DLRZ04a, DLRZ04b, DLRZ05], while Gu and Chung [GC99]
proposed a genetic algorithm.

The latter approaches, founded on simulation and rule based expert systems,
allow to some extent to overcome difficulties encountered by the classical opera-
tion research methods in coping with uncertain information, multiple objectives,
or real-time processing (cf. e.g. [BS88, Gos90, JJY97, SM91, SS93]).

Finally, approaches combining both above mentioned concepts are proposed,
which are especially important from a practical point of view. They integrate
expert systems with mathematical programming methods in order to increase the
quality of optimization and the flexibility of a solution at the same time.
For example, Cheng [Che97, Che98a, Che98b, Che98c] equipped a knowledge-
based gate assignment system with mathematical programming techniques, while
Baron [Bar69] and Hamzawi [Ham86] combined rule based methods with a sim-
ulation analysis.

19.5 Berth and Quay Crane Allocation Problem

As airports, seaports are complex systems whose efficient managing is related to

various optimization problems (cf. e.g. [CFNR07, SP12]). Within maritime cargo

transportation (cf. e.g. [CVR15, MLWL05]) two basic types of cargo can be dis-

tinguished: bulk shipping and container shipping. Goods such as coal, ore, grain

or cement are transported by the specialized bulk carriers, while variety of other

goods is transported within standard-size steel containers by container ships. We

focus on the latter type of maritime transportation, particularly on the process of

loading/unloading container ships, which require solving three main problems:

deciding on the berth at which a vessel is moored (the Berth Allocation Problem,

BAP), assigning cranes which are used for moving containers (the Quay Crane

Allocation Problem, QCAP) and scheduling these cranes (the Quay Crane

Scheduling Problem, QCSP). Obviously, loading/unloading a ship is only a part

of the whole process, which includes also transferring and storing containers in

the stack, and then their delivery/dispatching by various means of transport, such

as trains, trucks or other ships.

The berth and quay crane allocation problem and the flight gate scheduling

problem, discussed in Section 19.4, are similar but there are also significant dif-

ferences between them. In both cases resources have to be allocated to ships or

aircrafts, which are respectively moored at berths or served at airport gates. But,

in contrast to an aircraft which is located at a single gate at a time, a ship can be

loaded/unloaded by many cranes operating at the same time.

As in the previous two sections, the reader deeper interested in various mod-

els for the berth allocation and quay crane allocation as well as scheduling prob-

lems is referred to surveys (for example, [BBM17, BM10, BM15]). We discuss

in more details the problem of simultaneous allocation of berth and quay cranes

 19.5 Berth and Quay Crane Allocation Problem 793

to a vessel, not taking into account scheduling cranes. As an example, we present

the approach proposed by Błażewicz et al. [BCMO11].

19.5.1 Overview

The berth allocation problem requires assigning a set of vessels to available

berths within a given planning horizon. Vessels are described by numerous pa-

rameters [ISNP05] such as their length and draft, required water depth, expected

arrival, handling and departure times, etc. In case of static arrivals, the ship arri-

val times are given as soft constraints only, or they are not defined at all. Such a

situation appears when vessels waiting at the port can be managed immediately.

In case of dynamic arrivals, arrival times are fixed and they determine the earli-

est starting times for handling vessels. The handling times can be fixed and

known in advance, or depending on the berthing position, on the number of as-

signed cranes and on their schedule.

Depending on the real structure of seaports, berths are also subject of various

restrictions [ISNP05]. In discrete layout, the berth is a section of the quay, which

is distinguished due to its construction or for organizational reasons.

In continuous layout, ships can berth at arbitrary positions. In hybrid layout,
the quay is divided into specific berths, but some berths can serve a few small

ships at the same time, and large ships can be assigned to more than one berth at

the same time. In most cases, a vessel is handled at one berth only for the whole

process of its loading/unloading, but some seaports allow repositioning a ship.

Ships moored at berths are loaded/unloaded by cranes, which are lined up

alongside the quay. They have restricted ability to move. In particular, they usual-

ly cannot pass each other. Obviously the problems of assigning berths and cranes

are interrelated. Particularly, in the discrete berth layout cranes are usually dedi-

cated for berths, and hence the assignment of cranes is determined by the berth

allocation. In many cases, the number of cranes allocated to handle a ship is

a decision variable, which is often restricted by additional requirements [BM10].

The decisions taken during the crane assignment may concern the allocation of

a given number or a given set of specific cranes to vessels. For ships a minimum

number of required cranes can be defined. Moreover, due to spatial constraints

the number of cranes assigned to a vessel is bounded above. The number of allo-

cated cranes can be fixed (time-invariant assignment), or it can be modified dur-

ing the ship handling (variable-in-time assignment).
The quality of solutions is estimated in the view of various objective func-

tions [BM10], such as minimizing: the vessel waiting times, vessel handling

times or vessel completion times, the ship tardiness with regard to the due dates,

the workload of port resources, minimizing the deviation between the ship arrival

order and their service order, the number of not served vessels, or the number of

ships assigned apart from their desired berthing position, etc.

794 19 Scheduling in Logistics

The berth allocation (and in consequence berth and quay crane allocation)

problem is NP-hard. It can be related to the partition problem [Lim98], two di-

mensional cutting stock problem [ISNP05], and single machine scheduling prob-

lem with release times [HO03]. In the next section, the approach based on the

relation between the berth and quay crane allocation problem and a selected

scheduling problem is presented.

19.5.2 Modeling of the Berth and Quay Crane
Allocation Problem

The approach presented in this section was proposed by Błażewicz et al.

[BCMO11], inspired by the specificity of Hongkong International Terminals.

They considered the continuous layout, where the quay is treated as a berth and

the positions of ships have to be determined along this quay. The decision on

assigning cranes to ships is incorporated into the decision on their berthing posi-

tion in order to optimize the port resource utilization. The vessel handling time

depends on the number of cranes allocated to it. Moreover, since the time-

invariant assignment is studied, the number of cranes assigned to load/unload a

ship is fixed for the whole handling interval. The method was designed for ter-

minal managers to support making decisions on port resource utilization, during

constructing an initial solution a few weeks before the actual arrival of vessels.

The management of terminals [MLWL05] can be done at two levels: a prelimi-

nary allocation of berths and quay cranes based on the projected draft of ships

made in advance, and an actual allocation based on the real information on ves-

sels available just before their arrival. Determining the initial solution allows

proper positioning quay cranes at the berths, which allows for their further allo-

cation to incoming ships. Since after positioning quay cranes, changing their po-

sitions is costly or even impossible due to special restrictions, the number of

cranes assigned to a certain vessel should not be changed. The number of quay

cranes allocated to a ship influences berthing duration of it. In reality, the de-

crease of handling time with the number of crane is not a linear function.

Błażewicz et al. [BCMO11] model the berth and quay crane allocation prob-

lem directly as the problem of scheduling moldable tasks. As defined in Chap-

ter 6, a moldable task is a multiprocessor task that is executed in parallel on a

previously specified number of processors. The moldable task model, proposed

by Turek et al. [TWY92], and expanded by Ludwig [Lud95] and Mounié et al.

[MRT99], perfectly fits the considered variant of the berth and quay crane alloca-

tion problem. In the general moldable task scheduling model, n non-preemptive

tasks have to be executed on m processors, where the task processing time de-

pends on the number of assigned processors. The processing time ti(ri) for task Ti

(1 � i � n) to which ri processors are assigned (1 � ri � m) is equal to ti(ri) =

pi / fi(ri), where pi denotes the amount of work associated to Ti , i.e. its processing

 19.5 Berth and Quay Crane Allocation Problem 795

time on a single processor pi = ti(1), and fi(ri) denotes the processing speed func-

tion. The processing speed function is a non-decreasing discrete function, which

defines the relation between the task processing time and the number of proces-

sors assigned to it.

In the berth and quay crane allocation model proposed by Błażewicz et al.

[BCMO11], moldable tasks represent ships and processors represent quay cranes

located along the berths. The ship turn-around time, equivalent to the task pro-

cessing time, depends on the number of cranes assigned for serving it, i.e. to

the number of assigned processors. Minimizing the turn-around time for all

ships, important especially for the port manager but also for ships owners, corre-

sponds to minimizing the schedule makespan. The concept of moldable tasks

allows relating the ship handling time to the number of dedicated cranes. The

possibility of defining various processing speed functions increases the flexibility

of the model. Moreover, due to physical restrictions, the number of cranes which

can handle ships is limited by the ship length and the number of available cranes.

These limits are reflected by bounds, ri
l and ri

u
 , imposed on tasks. Each task Ti

can be executed by ri processors, where 1 � ri
l � ri � ri

u � m for 1 � i � n.

The problem of scheduling moldable tasks is NP-hard [DL89]. Due to its

similarity to the bin-packing problem, it can be solved, for example, by 2-

approximation [TWY92] and 3-approximation [MRT99] algorithms. Błaże-

wicz et al. [BCMO11] proposed another approach to this problem, based on the

continuous model, in which the processors are considered as a continuously di-

visible renewable resource bounded from above (cf. Chapter 13). Under this as-

sumption an approximate solution is constructed by using the continuous model

developed by Węglarz [Weg82] for the resource constrained scheduling problem.

This approximate and possibly infeasible solution is then converted to a discrete

approximate solution of the original moldable tasks scheduling problem. The

approximate infeasible schedule is discretized by properly rounding non-integer

allocations of processors to tasks.

In order to relax the discrete model to the continuous model, the discrete

task processing speed function is interpolated with piecewise linear functions

between the integer points. Such moldable task scheduling problem is in general

intractable, but with concave functions it can be solved optimally in polynomial

time O(n max{m, nlog
2m}) [BKM+04], and with convex functions in linear

time [BMW+00, BKM+06]. It is also possible to approximate the points of the

processing speed functions by more general continuous functions, and relax the

discrete problem to another continuous problem, but this approach appeared to

be less attractive from the practical point of view [BMMT01].

To solve the berth and quay crane allocation problem we next follow the ap-

proach proposed by Węglarz [Weg82] for the continuous resource constrained

scheduling problem. As in Section 13.3.2, let us denote the set of feasible re-

source allocations r = (r1 ,..., rn) with

796 19 Scheduling in Logistics

R = {r = (r1 ,..., rn) | ri � 0 ^ �
i=1

n
ri � m},

and the set of feasibly transformed resource allocations u = (u1,..., un) with

U = {(u1 ,..., un) | ui = fi(ri), 1 � i � n, r � R}.

Vector p = (p1 ,..., pn) is constructed by the amount of work associated to par-

ticular tasks. We know that the minimum makespan Ccont
* is determined by the

intersection point u* of line u = p / C (C > 0) and the boundary of set Uconv being

the convex hull of set U in the n-dimensional space of transformed resource allo-

cation (cf. Section 13.3.2 and Figure 13.3.1).

In the continuous problem used to solve the berth and quay crane allocation

problem, functions fi(ri) are assumed to be piecewise linear and concave. Hence

set U is a convex polytope in the n-dimensional space of transformed allocations

u = (u1 ,..., un) and U = Uconv. In consequence, the crucial intersection point u*

can be found by bisection search. Based on its coordinates ui
* = fi(ri

*), i = 1,..., n,

the optimal resource allocation r * = (r1
* ,..., rn

*) can be determined such that:

ri
* � 0, i = 1,..., n,

�
i=1

n
 ri

* = m,

Ccont
* = pi / fi(ri

*), i = 1,..., n.

In the optimal solution for the continuous problem all tasks are executed within

the same time interval [0, Ccont
*] with the amount of resources given in vector

r * = (r1
* ,..., rn

*).
Finally the continuous solution has to be transformed to a feasible solution

for the discrete problem. This is done by rounding the resource values ri
* .

Błażewicz et al. [BCMO11] proposed a specialized suboptimal algorithm which

replaces fractional quantities of ri
* by discrete numbers of processors r̄ i on which

particular tasks are executed, and then constructs a feasible schedule for this as-

signment. This algorithm, which is sketched below, runs in O(nlogn) time and

guarantees good performance in the average case.

The rounding scheme proposed in [BCMO11] corrects the processor alloca-

tions ri
* that do not fit the feasible range [ri

l, ri
u] by rounding them up or down,

depending whether the lower or upper bound is violated. Allocations not exceed-

ing 1.5 or greater than 2 are rounded down, while allocations from range

[1.5, 2] are rounded up. Rounding the processors allocations up for some tasks

leads to an infeasible allocation if the total number of assigned processors ex-

ceeds m. Such cases are properly treated by a correction procedure following the

rounding step. Błażewicz et al. [BCMO11] noticed that an alternative simple

 19.5 Berth and Quay Crane Allocation Problem 797

rounding scheme which rounds processor allocations for tasks down, r̄ i = �ri
*� ,

except from r̄ i < 1, which are replaced by 1, may increase task processing times
not more than by factor 2. Such a rounding scheme automatically guarantees fea-
sibility of the schedule, because the number of processors assigned to all tasks
does not exceed the total number of processors m, but the makespan of the dis-
crete schedule may be at most twice as large as the makespan of the continuous
schedule.

After determining by the above presented rounding scheme the number of

processors assigned to particular tasks (r̄ i), they are scheduled by an iterative

approach. Roughly speaking, tasks are scheduled in non-increasing order of their

processing times up to time C = Ccont
* , starting with the currently longest task on

some processor, followed by other tasks whose execution do not exceed time C
on this processor. If the number of processors m̄ used is equal to the real number

of processors m, the algorithm terminates. If m̄ < m, then the idle processors are

assigned consecutively to a currently longest task in order to decrease its pro-

cessing time. If tasks are scheduled on too many processors, m̄ > m, then

the tasks executed on the excess processors (m̄ � m) are rescheduled, starting

from time C, in the next scheduling interval, by applying the same procedure.

The whole heuristic method proposed by Błażewicz et al. [BCMO11] for

scheduling moldable tasks on parallel processors is outlined in Algorithm 19.5.1.

Algorithm 19.5.1 Heuristic for scheduling moldable tasks [BCMO11].
begin

determine optimal continuous processor allocation ri
* for tasks Ti ;

calculate Ccont
* := pi / fi(ri

*) for tasks Ti ;
for i = � to n do

 if ((ri
* � ri

l) or (ri
* � ri

u)) then
 begin
 if (ri

* � ri
 l) then r̄ i := ri

l;
 if (ri

* � ri
 u) then r̄ i := ri

u;
 end;
 else
 begin
 if ((ri

* > 2) or (ri
* < 1.5))

 then r̄ i := �ri
*�

 else r̄ i := 2;
 end;
estimate the completion time of tasks with C := max

1 � i � n
{pi};

determine the number of used processors m̄ := �
i=1

n
 r̄ i ;

798 19 Scheduling in Logistics

construct schedule S by assigning tasks to processors in parallel in non-
decreasing order of their processing times ti(r̄ i) = pi / fi(r̄ i), starting with
time zero, then starting with the longest task check if it is possible to fit
this task next to another task (on the same processor) without exceeding
time C, and update the schedule and the number of used processors m̄ ac-
cordingly;

if m̄ = m then return;
while m̄ < m do assign an idle processor to the longest task;
if m̄ > m then reschedule tasks scheduled on the excess processors
 starting from time C using the same algorithm;

end;
To briefly illustrate the use of Algorithm 19.5.1 let us consider the following
example [BCMO11].

Example 19.5.2 Consider n = 8 tasks with processing times p = [1, 8, 4, 2, 7, 5,
25, 60] and a processing speed function given as fi(ri) = ri

0.5. Tasks have to be

scheduled on at most m = 6 processors. Moreover, the following bounds are giv-
en: ri

l = 2 for i = 1,...,7 and r8
u = 3. The optimal solution of the continuous prob-

lem has the makespan Ccont
* = 34.64, which results from the continuous processor

allocation: r* = [0.04, 0.33, 0.16, 0.08, 0.29, 0.20, 1.02, 3.88]. The first discrete

processor allocation obtained as a result of rounding is r̄ = [2, 2, 2, 2, 2, 2, 2, 3].

The initial schedule obtained for this allocation is given in Figure 19.5.1(a). Its
makespan C is equal to Ccont

* and the number of required processors (m̄ = 17)

exceeds the number of available processors (the tasks whose allocation is infea-

sible are marked in gray). Schedule S constructed by Algorithm 19.5.1 is shown

in Figure 19.5.1(b). It has the same makespan C = Ccont
* = 34.64. Since the num-

ber of required processors (m̄ = 7) still exceeds the real number of processors

(m = 6) task T1 becomes a new instance for the same algorithm. Algorithm 19.5.1
reschedules this task, assigning it to 6 processors. The final schedule with the
makespan C = 35.05 is depicted in Figure 19.5.1(c).

The efficiency of Algorithm 19.5.1 was studied by Błażewicz et al. [BCMO11]
both from the theoretical and experimental points of view. They mainly analyzed
the average behavior in computational experiments, which confirmed the ap-
plicability of this approach for solving the berth and quay crane allocation prob-
lem. The computational experiments showed that on average the heuristic solu-
tions do not exceed 1.5 of the optimal schedule length.

 19.5 Berth and Quay Crane Allocation Problem 799

(a)

(b)

(c)

Figure 19.5.1 Schedules constructed by Algorithm 19.5.1 in Example 19.5.2.

t
T8

T7

T6

T5

T4

T3

T2

P1

P5

P10

P2

P3

P4

P7
P6

P8
P9

P11

P12
P13

P14
P15

P16

P17

Ccont
* = 34.64

T1

t
T8

T7

Ccont
* = 34.64

T2 T5

P1

P5

P2

P3

P4

P7
P6

T6 T3 T4

T1

Ccont
* = 34.64 C = 35.05

t
T8

T7 T2 T5

P1

P5

P2

P3

P4

P6 T1
T6 T3 T4

800 19 Scheduling in Logistics

19.5.3 Related Models

The berth allocation problem, the quay crane allocation problem and the quay

crane scheduling problem received high interest from researchers and resulted in

hundreds of papers presenting various models and algorithms. Bierwirth and

Meisel [BM15] collected more than 120 papers in years 2010-2014 only, com-

pleting their first extensive survey on these subjects [BM10]. The most popular

approaches are based on heuristics and metaheuristics (e.g. [GPK+14], such as

genetic and evolutionary algorithms, tabu search, simulated annealing, greedy

randomized adaptive search, variable neighborhood search, greedy rules) from

one hand, and on the mixed integer linear programming models solved with op-

timization solvers and branching based algorithms, on the other hand. Bierwirth

and Meisel [BM10, BM15] also proposed classification schemes for the berth

and quay crane allocation problems and the quay crane scheduling problems,

which show the wide range of issues related to this branch of maritime logistics.

We sketch out this taxonomy to summarize the section.

For the berth and quay crane allocation problems, the following crucial

components of the models are distinguished:

T spatial attribute which concerns the berth layout (discrete, continuous, hy-
brid) and the possible relation between a vessel draft and a set of feasible
berthing positions (e.g. due to required water depth);

T temporal attribute which characterizes the ship arrival process; in case of:
� static arrivals vessels wait for being served at the port;
� dynamic arrivals particular ships reach the port at individual deterministic

arrival times;
� stochastic arrivals particular ships reach the port at individual stochastic ar-

rival times defined by continuous random distributions or discrete probabil-
ity of occurrence;

� cyclic arrivals vessels arrive at the port cyclically in a given time interval
following the liner schedules;

Additional temporal attributes can be defined such as due date for the vessel
departure, or maximum waiting time before unloading/loading has to start;

T handling time attribute indicates the way in which vessel handling times are
determined, they can be:
� fixed, i.e. deterministic and constant;
� position dependent, i.e. related to the berth allocation;
� quay crane assignment dependent;
� quay crane schedule dependent;
� stochastic, i.e. defined by continuous random distributions or discrete prob-

ability of occurrence;
T performance measure:

� minimizing vessel waiting time before berthing, handling time, or comple-
tion time;

 19.5 Berth and Quay Crane Allocation Problem 801

� minimizing tardy vessel departures, or vessel speedup;
� optimizing resource utilization (berths, cranes, vehicles, manpower, ener-

gy);
� optimizing vessel positioning by assigning berthing positions close to

the yard in order to save horizontal transport capacity.
The quay crane scheduling problem mentioned at the beginning of this sec-

tion concerns loading/unloading the containers of a single ship with a set of as-
signed quay cranes. Bierwirth and Meisel [BM10, BM15] distinguished for this
problem the following attributes:
T task attribute defines the granularity in which the vessel containers are aggre-

gated into crane tasks; the following aggregation levels can be considered in
which tasks correspond to loading and unloading of all containers : (1) within
a certain bay area, (2) within a single bay, (3) belonging to a single containers
group of a bay, or (4) belonging to given containers stacks of a bay; in the
most detailed model (5) a crane task may correspond to a single container;

T crane attributes characterize the cranes, mainly their time availability (ready
times or time windows) as well as initial and/or final positions; moreover,
travel times can be given if the time required to move cranes between bays or
alongside vessels is not negligible;

T interference attributes impose restrictions on crane movements, since rail-
mounted quay cranes cannot pass each other (non-crossing) in contrast to
most rubber-tired cranes; additionally with regard to operational rules, some
safety margins have to be kept between cranes during operation;

T performance measure can be calculated with regard to:
� task completion times or quay crane finish times;
as well as to:
� the ratio between the crane operating time and the vessel handling time

(crane utilization rate);
� the number of container moves per hour (crane throughput);
� the total crane movement time along the quay.

It is worth to be mentioned, that the quay crane allocation and scheduling

problems arise not only at seaside transshipment ports but in any container ter-

minals (e.g. [HHY15, VK03]). In particular, the problem of optimizing container

movements can be met at any transshipment yard, where containers are shifted

between various means of transport, not only ships, but also trains or trucks (see

e.g. [Ali02, BFJP13, BG02, BJP11, BJP12, LTMO14, WMW17]. Due to the

practical importance, different operation research methods have been applied to

support various aspects of managing container terminals. The interested readers

are referred to the rich literature devoted to this subject, particularly to survey

papers such as [SV08, SVS04, VK03, VBS07].

802 19 Scheduling in Logistics

19.6 Conclusions

In this chapter, we presented exemplary applications of scheduling theory in lo-

gistics, arising in overland, air and maritime transportation. Each of these exam-

ples allowed us to emphasize various aspects of handling real world problems.

Most of real world cases are complex problems which have to be described

with numerous parameters and constraints. The process of constructing the math-

ematical model, reflecting the specificity of a practical situation, was presented in

the example of the concrete delivery problem. The concrete delivery problem can

be studied as a vehicle routing problem with multiple depots, heterogonous fleet

and time windows. From this point of view, its description completed the short

survey of VRP models provided at the beginning of the chapter. However, we

focused on the graph based model for the concrete delivery problem, which gave

the basis for the mixed integer programming model. Such a mathematical model

can be used directly in optimization solvers, or it can be solved by dedicated

methods. Proposing mathematical programming models for complex real-world

cases is a commonly used research strategy.

In case of the flight gate scheduling problem the opposite scenario was pre-

sented: the mathematical formulation of the problem was transformed to a graph

problem. This transformation allowed for using algorithms proposed for clique

partitioning for solving the related scheduling problem. Studying interrelations

between various combinatorial problems may give an opportunity to adopt

known approaches to solve new cases.

Finally, for the berth and quay crane allocation problem we sketched out an

approach based on the interrelations between various scheduling models. This

logistic case can be formulated as the problem of scheduling moldable tasks, and

solved heuristically using the approach proposed for the continuous resource-

constrained scheduling problem.

References

ABCC07 D. L. Applegate, R. E. Bixby, V. Chvátal, W. J. Cook, The Traveling Salesman
Problem: A Computational Study, Princeton University Press, Princeton, 2007.

ADP09 L. Asbach, U. Dorndorf, E. Pesch, Analysis, modeling and solution of the con-
crete delivery problem, Eur. J. Oper. Res.193, 2009, 820-835.

Ali02 K. Alicke, Modeling and optimization of the intermodal terminal Mega Hub,
OR Spectrum 24, 2002, 1-17.

AS12 C. Archetti, M. G. Speranza, Vehicle routing problems with split deliveries,
Int. Trans. Oper. Res. 19, 2012, 3-22.

Asb08 L. Asbach, The Concrete Delivery Problem, Ph.D. thesis, University of Siegen,
Siegen, 2008.

 References 803

Bar69 P. Baron, A simulation analysis of airport terminal operations, Transp. Res. 3,
1969, 481-491.

BBM17 N. Boysen, D. Briskorn, F. Meisel, A generalized classification scheme for
crane scheduling with interference, Eur. J. Oper. Res. 258, 2017, 343-357.

BBO03 C. Barnhart, P. Belobaba, A. R. Odoni, Applications of operations research in
the air transport industry, Transp. Sci. 37, 2003, 368-391.

BCGL07 G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, G. Laporte, Static pickup and
delivery problems: a classification scheme and survey, Top 15, 2007, 1-31.

BCMO11 J. Błażewicz, T. C. E. Cheng, M. Machowiak, C. Oǧuz, Berth and quay crane
allocation: a moldable task scheduling model, J. Oper. Res. Soc. 62, 2011,
1189-1197.

BFJP13 N. Boysen, M. Fliedner, F. Jaehn, E. Pesch, A survey on container processing
in railway yards, Transp. Sci. 47, 2013, 312-329.

BG81 L. Bodin, B. Golden, Classification in vehicle routing and scheduling, Net-
works 11, 1981, 97-108.

BG02 A. Ballis, J. Golias, Comparative evaluation of existing and innovative rail-
road freight transport terminals, Transp. Res. Pt. A-Policy Pract. 36, 2002,
593-611.

BG05a O. Bräysy, M. Gendreau, Vehicle routing problem with time windows, Part I:
Route construction and local search algorithms, Transp. Sci. 39, 2005,
104-118.

BG05b O. Bräysy, M. Gendreau, Vehicle routing problem with time windows, Part II:
Metaheuristics, Transp. Sci. 39, 2005, 119-139.

BGH+13 E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, R. Qu,
Hyper-heuristics: a survey of the state of the art, J. Oper. Res. Soc. 64, 2013,
1695-1724.

BGSS14 A. Bouras, M. A. Ghaleb, U. S. Suryahatmaja, A. M. Salem, The airport gate
assignment problem: a survey, The Scientific World Journal, 2014, article ID
923859.

Bih90 R. A. Bihr, A conceptual solution to the aircraft gate assignment problem using
0-1 linear programming, Comput. Ind. Eng. 19, 1990, 280-284.

BJP11 N. Boysen, F. Jaehn, E. Pesch, Scheduling freight trains in rail-rail transship-
ment yards, Transp. Sci. 45, 2011, 199-211.

BJP12 N. Boysen, F. Jaehn, E. Pesch, New bounds and algorithms for the transship-
ment yard scheduling problem, J. Sched. 15, 2012, 499-511.

BKM+04 J. Błażewicz, M. Y. Kovalyov, M. Machowiak, D. Trystram, J. Węglarz,
Scheduling malleable tasks on parallel processors to minimize the makespan,
Ann. Oper. Res. 129, 2004, 65-80.

BKM+06 J. Błażewicz, M. Y. Kovalyov, M. Machowiak, D. Trystram, J. Węglarz,
Preemptable malleable task scheduling problem, IEEE Trans. Comput. 55,
2006, 486-490.

804 19 Scheduling in Logistics

BL07 C. Barnhart, G. Laporte (eds.), Handbooks in Operations Research and Man-
agement Science: Transportation, Vol. 14, North-Holland, 2007.

BM10 C. Bierwirth, F. Meisel, A survey of berth allocation and quay crane schedul-
ing problems in container terminals, Eur. J. Oper. Res. 202, 2010, 615-627.

BM15 C. Bierwirth, F. Meisel, A follow-up survey of berth allocation and quay crane
scheduling problems in container terminals, Eur. J. Oper. Res. 244, 2015,
675-689.

BMMT01 J. Błażewicz, M. Machowiak, G. Mounié, D. Trystram, Approximation algo-
rithms for scheduling independent malleable tasks, Lect. Notes Comput. Sc.
2150, 2001, 191-197.

BMP13 J. A. Bennell, M. Mesgarpour, C. N. Potts, Airport runway scheduling, Ann.
Oper. Res. 204, 2013, 249-270 .

BMP17 J. A. Bennell, M. Mesgarpour, C. N. Potts, Dynamic scheduling of aircraft
landings, Eur. J. Oper. Res. 258, 2017, 315-327.

BMW+00 J. Błażewicz, M. Machowiak, J. Węglarz, G. Mounié, D. Trystram, Scheduling
malleable task with convex processing speed functions, Computación y Siste-
mas 4, 2000, 158-165.

Bod75 L. D. Bodin, A taxonomic structure for vehicle routing and scheduling prob-
lems, Computers and Urban Society 1, 1975, 11-29.

Bol99 A. Bolat, Assigning arriving flights at an airport to the available gates, J. Oper.
Res. Soc. 50, 1999, 23-34.

Bol00 A. Bolat, Procedures for providing robust gate assignments for arriving air-
crafts, Eur. J. Oper. Res. 120, 2000, 63-80.

Bol01 A. Bolat, Models and a genetic algorithm for static aircraft-gate assignment
problem, J. Oper. Res. Soc. 52, 2001, 1107-1120.

BRN16 K. Braekers, K. Ramaekers, I. van Nieuwenhuyse, The vehicle routing prob-
lem: state of the art classification and review, Comput. Ind. Eng. 99, 2016,
300-313.

BS88 R. P. Brazile, K. M. Swigger, GATES: an airline gate assignment and tracking
expert system, IEEE Expert 3, 1988, 33-39.

BTT84 O. Babić, D. Teodorović, V.Tosić, Aircraft stand assignment to minimize
walking, J. Transp. Eng.-ASCE 110, 1984, 55-66.

BYA01 J. F. Bard, G. Yu, M. F. Argüello, Optimizing aircraft routings in response to
groundings and delays, IIE Trans. 33, 2001, 931-947.

CFNR07 M. Christiansen, K. Fagerholt, B. Nygreen, D. Ronen, Maritime transportation,
in: C. Barnhart, G. Laporte (eds.), Handbooks in Operations Research and
Management Science, Vol. 14, North-Holland, 2007, 189-284.

Che97 Y. Cheng, A knowledge-based airport gate assignment system integrated with
mathematical programming, Comput. Ind. Eng. 32, 1997, 837-852.

Che98a Y. Cheng, Network-based simulation of aircraft at gates in airport terminals,
J. Transp. Eng.-ASCE 124, 1998, 188-196.

 References 805

Che98b Y. Cheng, A rule-based reactive model for the simulation of aircraft on airport
gates, Knowledge-Based Syst. 10, 1998, 225-236.

Che98c Y. Cheng, Solving push-out conflicts in apron taxiways of airports by a net-
work-based simulation, Comput. Ind. Eng. 34, 1998, 351-369.

CL07 J.-F. Cordeau, G. Laporte, The dial-a-ride problem: models and algorithms,
Ann. Oper. Res. 153, 2007, 29-46.

CLSV07 J.-F. Cordeau, G. Laporte, M. W. P. Savelsbergh, D. Vigo, Vehicle routing, in:
C. Barnhart, G. Laporte (eds.), Handbooks in Operations Research and Man-
agement Science, Vol. 14, North-Holland, 2007, 367-428.

CSCMP13 Council of Supply Chain Management Professionals, Supply chain manage-
ment terms and glossary, 2013, http://cscmp.org (accessed 2018.05.01).

CVR15 H. J. Carlo, I. F. A. Vis, K. J. Roodbergen, Seaside operations in container
terminals: literature overview, trends, and research directions, Flex. Serv.
Manuf. J. 27, 2015, 224-262.

CW64 G. Clarke, J. W. Wright, Scheduling of vehicles from a central depot to a num-
ber of delivery points, Oper. Res. 12, 1964, 568-581.

CW14a A. M. Campbell, J. H. Wilson, Forty years of periodic vehicle routing, Net-
works 63, 2014, 2-15.

CW14b A. M. Campbell, J. H. Wilson, Erratum: Forty years of periodic vehicle rout-
ing, Networks 63, 2014, 276.

DAHS12 G. Diepen, J. M. van den Akker, J. A. Hoogeveen, J. W. Smeltink, Finding
a robust assignment of flights to gates at Amsterdam Airport Schiphol,
J. Sched. 15, 2012, 703-715.

DDNP07 U. Dorndorf, A. Drexl, Y. Nikulin, E. Pesch, Flight gate scheduling: state-of-
the-art and recent developments, Omega-Int. J. Manage. Sci. 35, 2007,
326-334.

DF85 M. E. Dyer, A. M. Frieze, On the complexity of partitioning graphs into con-
nected subgraphs, Discret Appl. Math. 10, 1985, 139-153.

DH08 M. Durbin, K. Hoffman, The dance of the thirty ton trucks: dispatching and
scheduling in a dynamic environment, Oper. Res. 56, 2008, 3-19.

Die08 G. Diepen, Column Generation Algorithms for Machine Scheduling and Inte-
grated Airport Planning, Ph.D. thesis, Department of Information and Compu-
ting Sciences, Utrecht University, 2008.

DJL+99 M. Desrochers, C. V. Jones, J. K. Lenstra, M. W. P. Savelsbergh, L. Stougie,
Towards a model algorithm management system for vehicle routing and
scheduling problems, Decis. Support Syst. 25, 1999, 109-133.

DJL+07 U. Dorndorf, F. Jaehn, C. Lin, H. Ma, E. Pesch, Disruption management in
flight gate scheduling, Stat. Neerl. 61, 2007, 92-114.

DJP08 U. Dorndorf, F. Jaehn, E. Pesch, Modelling robust flight-gate scheduling as
a clique partitioning problem, Transp. Sci. 42, 2008, 292-301.

DJP12 U. Dorndorf, F. Jaehn, E. Pesch, Flight gate scheduling with respect to a refer-
ence schedule, Ann. Oper. Res. 194, 2012, 177-187.

http://cscmp.org

806 19 Scheduling in Logistics

DJP17 U. Dorndorf, F. Jaehn, E. Pesch, Flight gate assignment and recovery strategies
with stochastic arrival and departure times, OR Spectrum 39, 2017, 65-93.

DL89 J. Du, J.Y.-T. Leung, Complexity of scheduling parallel task systems, SIAM
Discret. Math. 2, 1989, 473-487.

DLS90 M. Desrochers, J. K. Lenstra, M. W. P. Savelsbergh, A classification scheme
for vehicle routing and scheduling problems, Eur. J. Oper. Res. 46, 1990,
322-332.

DLRZ04a H. Ding, A. Lim, B. Rodrigues, Y. Zhu, New heuristics for over-constrained
flight to gate assignments, J. Oper. Res. Soc. 55, 2004, 760-768.

DLRZ04b H. Ding, A. Lim, B. Rodrigues, Y. Zhu, Aircraft and gate scheduling optimiza-
tion at airports, Proceedings of the 37th Annual Hawaii IEEE International
Conference on System Sciences, 2004, 74-81.

DLRZ05 H. Ding, A. Lim, B. Rodrigues, Y. Zhu, The over-constrained airport gate
assignment problem, Comput. Oper. Res. 32, 2005, 1867-1880.

DN08 A. Drexl, Y. Nikulin, Multicriteria airport gate assignment and Pareto simulat-
ed annealing, IIE Trans. 40, 2008, 385-397.

Dor02 U. Dorndorf, Project Scheduling with Time Windows: From Theory to Appli-
cation, Physica, Heidelberg, 2002.

DP94 U. Dorndorf, E. Pesch, Fast clustering algorithms, ORSA J. Comput. 6, 1994,
141-153.

DR59 G. B. Dantzig, J. H. Ramser, The truck dispatching problem, Manage. Sci. 6,
1959, 80-91.

Dre12a M. Drexl, Synchronization in vehicle routing - a survey of VRPs with multiple
synchronization constraints, Transp. Sci. 46, 2012, 297-316.

Dre12b M. Drexl, Rich vehicle routing in theory and practice, Logistics Research 5,
2012, 47-63.

DS15 M. Drexl, M. Schneider, A survey of variants and extensions of the location-
routing problem, Eur. J. Oper. Res. 241, 2015, 283-308.

Dur03 M. T. Durbin, The Dance of the Thirty-Ton Trucks: Demand Dispatching in a
Dynamic Environment, Ph.D. thesis, George Mason University, Fairfax VA,
2003.

EVR09 B. Eksioglu, A. V. Vural, A. Reisman, The vehicle routing problem: a taxo-
nomic review, Comput. Ind. Eng. 57, 2009, 1472-1483.

FCW04 C.-W. Feng, T.-M. Cheng, H.-T. Wu, Optimizing the schedule of dispatching
RMC trucks through genetic algorithms, Autom. Constr. 13, 2004, 327-340.

GC99 Y. Gu, C. Chung, Genetic algorithm approach to aircraft gate reassignment
problem, J. Transp. Eng.-ASCE 125, 1999, 384-389.

GEE+12 H. M. Genç, O. K. Erol, Í. Eksin, M. F. Berber, B. O. Güleryüz, A stochastic
neighborhood search approach for airport gate assignment problem, Expert
Syst. Appl. 39, 2012, 316-327.

 References 807

GFS06 L. D. Graham, D. R. Forbes, S. D. Smith, Modeling the ready mixed concrete
delivery system with neural networks, Autom. Constr. 15, 2006, 656-663.

GGG15 M. Gendreau, G. Ghiani, E. Guerriero, Time-dependent routing problems:
a review, Comput. Oper. Res. 64, 2015, 189-197.

Gos90 G. A. Gosling, Design of an expert system for aircraft gate assignment, Trans-
portation Research Part A: General 24, 1990, 59-69.

GPK+14 M. Golias, I. Portal, D. Konur, E. Kaisar, G. Kolomvos, Robust berth schedul-
ing at marine container terminals via hierarchical optimization, Comput. Oper.
Res. 41, 2014, 412-422.

GRW08 B. Golden, S. Raghavan, E. Wasil, The Vehicle Routing Problem: Latest Ad-
vances and New Challenges, Springer, New York, 2008.

GT10 M. Gendreau, C. D. Tarantilis, Solving large-scale vehicle routing problems
with time windows: the state-of-the-art, CIRRELT-2010-4, Interuniversity Re-
search Centre on Enterprise Networks, Logistics and Transportation, Montreal,
2010.

Gur97 K. Gurney, An Introduction to Neural Networks, CRC Press, Boca Raton,
1997.

GW89 M. Grötschel, Y. Wakabayashi, A cutting plane algorithm for a clustering
problem, Math. Program. 45, 1989, 59-96.

Ham86 S. G. Hamzawi, Management and planning of airport gate capacity: a micro-
computer-based gate assignment simulation model, Transp. Plan. Technol. 11,
1986, 189-202.

Hay99 S. Haykin, Neural Networks: A Comprehensive Foundation, Pearson Prentice
Hall, Singapore, 1999.

HC98 A. Haghani, M.-C. Chen, Optimizing gate assignments at airport terminals,
Transp. Res. Pt. A-Policy Pract. 32, 1998, 437-454.

HHY15 J. He, Y. Huang, W. Yan, Yard crane scheduling in a container terminal for the
trade-off between efficiency and energy consumption, Adv. Eng. Inform. 29,
2015, 59-75.

HO03 P. Hansen, C. Oǧuz, A note on formulations of static and dynamic berth allo-
cation problems, Les Cahiers du GERAD 30, 2003, 1-17.

HUW12 A. Hertz, M. Uldry, M. Widmer, Integer linear programming models for
a cement delivery problem, Eur. J. Oper. Res. 222, 2012, 623-631.

IGP00 S. Ichoua, M. Gendreau, J.-Y. Potvin, Diversion issues in real-time vehicle
dispatching, Transp. Sci. 34, 2000, 426-438.

ISNP05 A. Imai, X. Sun, E. Nishimura, S. Papadimitriou, Berth allocation in a contain-
er port: using a continuous location space approach, Transp. Res. Pt. B-
Methodol. 39, 2005, 199-221.

JJY97 G.-S. Jo, J.-J. Jung, C.-Y. Yang, Expert system for scheduling in an airline
gate allocation, Expert Syst. Appl. 13, 1997, 275-282.

KBJL16 C. Koç, T. Bektaş, O. Jabali, G. Laporte, Thirty years of heterogeneous vehicle
routing, Eur. J. Oper. Res. 249, 2016, 1-21.

808 19 Scheduling in Logistics

KWB14 J. Kinable, T. Wauters, G. V. Berghe, The concrete delivery problem, Comput.
Oper. Res. 48, 2014, 53-68.

LABN+07 E. M. Loiola, N. M. de Abreu, P. O. Boaventura-Netto, P. Hahn, T. Querido,
A survey for the quadratic assignment problem, Eur. J. Oper. Res. 176, 2007,
657-690.

Lap09 G. Laporte, Fifty years of vehicle routing, Transp. Sci. 43, 2009, 408-416.

LCH+14 C. Lin, K. L. Choy, G. T. S. Ho, S. H. Chung, H. Y. Lam, Survey of green
vehicle routing problem: past and future trends, Expert Syst. Appl. 41, 2014,
1118-1138.

LGW07 F. Li, B. Golden, E. Wasil, The open vehicle routing problem: algorithms,
large-scale test problems, and computational results, Comput. Oper. Res. 34,
2007, 2918-2930.

Lim98 A. Lim, The berth planning problem, Oper. Res. Lett. 22, 1998, 105-110.

LKS15 R. Lahyani, M. Khemakhem, F. Semet, Rich vehicle routing problems: from
a taxonomy to a definition, Eur. J. Oper. Res. 241, 2015, 1-14.

LRK81 J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity of vehicle routing and
scheduling problems, Networks 11, 1981, 221-227.

LRZ05 A. Lim, B. Rodrigues, Y. Zhu, Airport gate scheduling with time windows,
Artif. Intell. Rev. 24, 2005, 5-31.

LTMO14 G. Li, K. Tamura, M. Muto, D. Okuda, Fundamental analyses for constructing
road-rail intermodal freight transport system, Journal of Transportation Sys-
tems Engineering and Information Technology 14, 2014, 1-7.

Lud95 W. T. Ludwig, Algorithms for Scheduling Malleable and Nonmalleable Paral-
lel Tasks, Ph.D. thesis, Department of Computer Sciences, University of Wis-
consin, Madison, USA, 1995.

LWHW10 P.-C. Lin, J. Wang, S.-H. Huang, Y.-T. Wang, Dispatching ready mixed con-
crete trucks under demand postponement and weight limit regulation, Autom.
Constr. 19, 2010, 798-807.

LZL14 Z. Liu, Y. Zhang, M. Li, Integrated scheduling of ready-mixed concrete pro-
duction and delivery, Autom. Constr. 48, 2014, 31-43.

Mat04 N. F. Matsatsinis, Towards a decision support system for the ready concrete
distribution system: a case of a Greek company, Eur. J. Oper. Res. 152, 2004,
487-499.

MCL17 M. Mostert, A. Caris, S. Limbourg, Road and intermodal transport perfor-
mance: the impact of operational costs and air pollution external costs, Re-
search in Transportation Business & Management 23, 2017, 75-85.

MJS98 H. Min, V. Jayaraman, R. Srivastava, Combined location-routing problems:
a synthesis and future research directions, Eur. J. Oper. Res. 108, 1998, 1-15.

MLP14 R. Masson, F. Lehuédé, O. Péton, A dial-a-ride problem with transfers, Com-
put. Oper. Res. 41, 2014, 12-23.

MLWL05 K. G. Murty, J. Liu, Y.-W. Wan, R. Linn, A decision support system for opera-
tions in a container terminal, Decis. Support Syst. 39, 2005, 309-332.

 References 809

MM85 R. S. Mangoubi, D. F. X. Mathaisel, Optimizing gate assignments at airport
terminals, Transp. Sci. 19, 1985, 173-188.

MRT99 G. Mounié, C. Rapine, D. Trystram, Efficient approximation algorithms for
scheduling malleable tasks, in: G. Miller, V. Ramachandran (eds.), Proceed-
ings of the 11th ACM Symposium on Parallel Algorithms and Architectures,
USA, 1999, 23-32.

MSH14 T. A. Mathisen, T.-E. Sandberg Hanssen, The academic literature on intermod-
al freight transport, Transportation Research Procedia 3, 2014, 611-620.

MTLF+15 J. R. Montoya-Torres, J. Lopez France, S. Nieto Isaza, H. Felizzola Jiménez,
N. Herazo-Padilla, A literature review on the vehicle routing problem with
multiple depots, Comput. Ind. Eng. 79, 2015, 115-129.

MVV+11 M. Misir, W. Vancroonenburg, K. Verbeeck, G. Vanden Berghe, A selection
hyper-heuristic for scheduling deliveries of ready-mixed concrete, Proceedings
of the 9th Metaheuristics International Conference, Udine, Italy, 2011,
289-298.

NSTK07 D. Naso, M. Surico, B. Turchiano, U. Kaymak, Genetic algorithms for supply-
chain scheduling: a case study in the distribution of ready-mixed concrete, Eur.
J. Oper. Res. 177, 2007, 2069-2099.

Oba79 T. Obata, The quadratic assignment problem: evaluation of exact and heuristic
algorithms, Technical Report TRS-7901, Rensselaer Polytechnic Institute,
Troy, New York, 1979.

PGGM13 V. Pillac, M. Gendreau, C. Guéret, A. L. Medaglia, A review of dynamic vehi-
cle routing problems, Eur. J. Oper. Res. 225, 2013, 1-11.

PKB14 V. Prem Kumar, M. Bierlaire, Multi-objective airport gate assignment problem
in planning and operations, Journal of Advanced Transportation 48, 2014,
902-926.

POP13 L. Pradenas, B. Oportus, V. Parada, Mitigation of greenhouse gas emissions in
vehicle routing problems with backhauling, Expert Syst. Appl. 40, 2013,
2985-2991.

PP14 C. Prodhon, C. Prins, A survey of recent research on location-routing prob-
lems, Eur. J. Oper. Res. 238, 2014, 1-17.

PRW94 P. M. Pardalos, F. Rendl, H. Wolkowicz, The quadratic assignment problem: a
survey of recent developments, in: P. M. Pardalos, H. Wolkowicz (eds.), Quad-
ratic assignment and related problems, DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science 16, 1994, 1-42.

Psa95 H. N. Psaraftis, Dynamic vehicle routing: status and prospects, Ann. Oper. Res.
61, 1995, 143-164.

QYY04 X. Qi, J. Yang, G. Yu, Scheduling problems in the airline industry, in: J. Y.-T.
Leung (ed.) Handbook of Scheduling: Algorithms, Models, and Performance
Analysis, Chapman & Hall/CRC, Boca Raton, 2004, 50.1-50.21.

RPH16 U. Ritzinger, J. Puchinger, R. F. Hartl, A survey on dynamic and stochastic
vehicle routing problems, Int. J. Prod. Res. 54, 2016, 215-231.

810 19 Scheduling in Logistics

SDH+09 V. Schimd, K. F. Doerner, R. F. Hartl, M. W. P. Savelsbergh, W. Stoecher,
A hybrid solution approach for ready-mixed concrete delivery, INFORMS
Transportation Science 43, 2009, 70-85.

SDH+10 V. Schimd, K. F. Doerner, R. F. Hartl, J.-J. Salazar-González, Hybridization of
very large neighborhood search for ready-mixed concrete delivery problems,
Comput. Oper. Res. 37, 2010, 559-574.

SFA+05 C. A. Silva, J. M. Faria, P. Abrantes, J. M. C. Sousa, M. Surico, D. Naso, Con-
crete delivery using a combination of GA and ACO, Proceedings of the 44th
IEEE Conference on Decision and Control and European Control Conference
CDC-ECC'05, Seville, Spain, 2005, 7633-7638.

SM91 K. Srihari, R. Muthukrishnan, An expert system methodology for aircraft-gate-
assignment, Comput. Ind. Eng. 21, 1991, 101-105.

SN12 M. Şeker, N. Noyan, Stochastic optimization models for the airport gate as-
signment problem, Transp. Res. Pt. e-Logist. Transp. Rev. 48, 2012, 438-459.

SP12 D.-W. Song, P. M. Panayides (eds.), Maritime Logistics: Contemporary Issues,
Emerald Group Publishing Limited, Bingley, 2012.

SS93 Y. Y. Su, K. Srihari, A knowledge based aircraft-gate assignment advisor,
Comput. Ind. Eng. 25, 1993, 123-126.

SV08 R. Stahlbock, S. Voß, Operations research at container terminals: a literature
update, OR Spectrum 30, 2008, 1-52.

SVS04 D. Steenken, S. Voß, R. Stahlbock, Container terminal operation and opera-
tions research - a classification and literature review, OR Spectrum 26, 2004,
3-49.

TL99 I. D. Tommelein, A. E. Y. Li, Just-in-time concrete delivery: mapping alterna-
tives for vertical supply chain integration, Proceedings of the 7th Annual Con-
ference of the International Group for Lean Construction, Berkeley, USA,
1999, 97-108.

TV14 P. Toth, D. Vigo (eds.), Vehicle Routing: Problems, Methods, and Applica-
tions, SIAM Monographs on Discrete Mathematics and Applications, Phila-
delphia, 2014.

TWY92 J. Turek, J. L. Wolf, P. S. Yu, Approximate algorithms for scheduling paral-
lelizable tasks, Proceedings of the 4th Annual ACM Symposium on Parallel Al-
gorithms and Architectures, USA, 1992, 323-332.

TYH10 C.-H. Tang, S. Yan, Y.-Z. Hou, A gate reassignment framework for real time
flight delays, 4OR-Q. J. Oper. Res. 8, 2010, 299-318.

VBS07 I. Vacca, M. Bierlaire, M. Salani, Optimization at container terminals: status,
trends and perspectives, Proceedings of the Swiss Transport Research Confer-
ence, Monte Veritá/Ascona, 2007, 1-21.

VK03 I. F. A. Vis, R. de Koster, Transshipment of containers at a container terminal:
an overview. Eur. J. Oper. Res.147, 2003, 1-16.

WB90 S. C. Wirasinghe, S. Bandara, Airport gate position estimation for minimum
total costs - approximate closed form solution, Transp. Res. Pt. B-Methodol.
24, 1990, 287-297.

 References 811

Weg82 J. Węglarz, Modelling and control of dynamic resource allocation project
scheduling systems, In: S. G. Tzafestas (ed.), Optimization and Control of Dy-
namic Operational Research Models, North-Holland, Amsterdam, 1982,
105-140.

WL07 M. Wu, S. P. Low, Modeling just-in-time purchasing in the ready mixed con-
crete industry, Int. J. Prod. Econ. 107, 2007, 190-201.

WMW17 J. Woxenius, C. Macharis, A. Woodburn (eds.), Intermodal freight transport
management, Research in Transportation Business & Management 23, 2017.

XB01 J. Xu, G. Bailey, The airport gate assignment problem: mathematical model
and a tabu search algorithm, Proceedings of the 34th Annual Hawaii IEEE In-
ternational Conference on System Sciences, 2001, 3032.

YC98 S. Yan, C.-M. Chang, A network model for gate assignment, Journal of Ad-
vanced Transportation 32, 1998, 176-189.

YL07 S. Yan, W. Lai, An optimal scheduling model for ready mixed concrete supply
with overtime considerations, Autom. Constr. 16, 2007, 734-744.

YSC02 S. Yan, C.-Y. Shieh, M. Chen, A simulation framework for evaluating airport
gate assignments, Transp. Res. Pt. A-Policy Pract. 36, 2002, 885-898.

YT07 S. Yan, C.-H. Tang, A heuristic approach for airport gate assignments for sto-
chastic flight delays, Eur. J. Oper. Res. 180, 2007, 547-567.

YY99 G. Yu, J. Yang, Optimization applications in the airline industry, in: D.-Z. Du,
P. M. Pardalos (eds.) Handbook of Combinatorial Optimization, Springer,
Boston, 1999.

Index

!-fixed-point 624
(",`)-reducibility 456
�-approximation algorithm 38
�-competitive algorithm 582

strictly 582
s-speed 601
v-processor 602

1-b-consistency 633
2-b-consistency 634
3-b-consistency 633, 634, 635
3-PARTITION 22, 78, 113, 441, 446,

462, 483, 549
4-PRODUCT 458, 461, 463, 464

�� A �

Active schedule 354, 366
Abortions 579
Absolute

error 39, 68
performance ratio 38, 153, 582

Acceptable
schedule 727

ACE loop 729, 754
Activity network 63, 159, 172, 506

uniconnected 63, 160
Acyclic graph 23
Additional resource 61, 70
Additive optimality criterion 35
Adjacency matrix 24, 348
Adjacent pairwise interchange property

88
Adversary

adaptive
offline 588
online 588

diffuse 589
method 586
oblivious 588
sequence 586
statistical 589

Advice
bit 600
complexity 600

in answerer mode 600
in helper mode 600

online model 600

tape 600
Aggregation heuristic 286
Agreeable

processing times and due dates 542
weights 110, 114

AGV routing 682
AI 731
Akers method 276
Algebraic equation 505
Algorithm 15

absolute
error 68
performance ratio 38, 153, 582

answer 16
approximation 37, 67, 144, 156, 452,

453, 458, 460, 462, 464, 509
asymptotic performance ratio 38, 322
asymptotically optimal 40
backscheduling 81
backward scheduling 91, 534
branch and bound 34, 35, 78, 89, 92,

101, 107, 133, 306, 454, 464, 513
Check_Schedulability 261
Coffman and Graham 155
competitive ratio 438, 439, 453, 459,

582
critical

path 153
ratio 681

deterministic online 580
Dinic 30
dynamic programming 34, 110, 113,

123, 134, 145, 452, 480, 509, 537,
543, 549, 553, 556, 558, 689

earliest
completion time (ECT) 89
deadline 77, 83
due date (EDD) 100, 534, 539, 541,

681
start time (EST) 89

efficient optimization 66
ETF 226
evolutionary 454
exact 18

enumerative 68
exponential time 19
first come first served (FCFS) 756

© Springer Nature Switzerland AG 2019
J. Blazewicz et al., Handbook on Scheduling, International Handbooks
on Information Systems, https://doi.org/10.1007/978-3-319-99849-7

813

https://doi.org/10.1007/978-3-319-99849-7

 Index

814

Algorithm (continued)
first fit (FF) 483, 583

decreasing (FFD) 483
extended (EFF) 583

Garey and Johnson 182, 477
genetic 41, 44, 52
Giffler and Thompson 361, 365
Gilmore-Gomory 295
Gonzalez-Sahni 321, 465, 548, 551,

555
head 16
heuristic 18, 37, 41, 102
Hodgson 109, 110, 437, 439
Horvath, Lam and Sethi 165
Hu 154
hyper-heuristic 777
input 16
instance 16
iterated lowest fit decreasing (ILFD)

483
Jackson 100, 534, 566
Johnson 294, 273, 274, 463, 557
Karmarkar 500
Khachiyan 172
largest processing time (LPT) 142,

143, 295
Lawler 129, 437, 439, 451, 512
LDR 453, 458, 459, 460
level 153, 156
linear

programming 160, 167, 168, 172,
184, 210, 322, 485, 499, 551
integer 480

list scheduling 68, 153, 164, 294, 322,
453, 580

longest processing time (LPT) 458,
755

LS 453, 458, 459, 460, 461
mathematical programming 501, 768,

771, 784, 790
McNaughton 148, 415, 484, 509, 547,

755
mean performance 39, 68
merge 16, 17
minimum slack time (MST) 105
modified

due date (MDD) 681
task due date (MTD) 675

msort 17
non-periodic 293
offline 453
online 438, 439, 453, 459, 580

deterministic 580
optimal 586
randomized 580
scalable 602
semi-online 459, 590
with advice 600
with resource augmentation 601

optimization 18
output 16
periodic 292
polynomial time 19
preemptive 167
pseudopolynomial 22, 110, 114

optimization 68, 145
time 536, 549, 553, 556, 558, 689

randomized online 580
Rate Monotonic First Fit 265
relative error 40, 68
RMFF 265
scheduling 66
Schrage 85
SDR 461, 462
semi-online 459, 590
shortest processing time (SPT) 87,

173, 322, 542, 681, 756
Sidney's decomposition 95
sort 17
strictly �-competitive 582
suboptimal 18, 37
time-independent scheduling 457
weighted shortest processing time

(WSPT) 87, 90
worst-case

performance 461
ratio 38, 452, 453, 458, 460, 462,

464
�-competitive 582

Allocation
resource 503

Almost sure convergence 40, 144
Alphabet 14
Analysis

average-case 581
object-oriented 720
worst-case 38, 581

Anomalies list scheduling 149
Antichain 26
Antisymmetric relation 12
Aperiodic task 249
Approximate

approach 167
solution 18

 Index

815

Approximation
algorithm 37, 67, 144, 156, 452, 453,

458, 460, 462, 464, 509
scheme 38, 110

polynomial time 38, 568
fully 38, 438

Arc consistency 617
Architecture 713, 757
Arrival time 62
Artificial intelligence 731
Aspiration level 48
Asymptotic performance ratio 38, 322
Asymptotically optimal 40
Augmenting path 28, 32
Automated

guided vehicle routing 682
storage area 682

Available task 63

�� B �

Backscheduling 81
Backtracking 36
Backward scheduling rule 91, 534
Balancing heuristic 751
Basic cuts 364
Batch model

p-batch 540
s-batch 540

Batching 539
Beam search method 751
Bellman's principle 35
Benes network 200
Berth allocation problem 792
Bi-criteria time-dependent

problem 448
scheduling 454

Bi-criterion problem 515
Bijective function 12
Bill_of_materials 720
Bin packing problem 583
Binary

constraint satisfaction problem 382
relation 11
search 180, 209

Bipartite graph 24
Blackboard approach 751
Block 361
Body of a task 101
Bottleneck

problem 292
processor 100

Bound (in a branch and bound)
upper 36

Bound consistency 620
lower-level 632

Bounding procedure 36
Branch

and bound 34, 35, 78, 89, 92, 101,
107, 133, 306, 454, 464, 513

fathomed 36
Branching 36

tree 36
Buffer 62, 294

� C �

CAD 714
CAE 714, 756
CAM 714, 756
Canonical schedule 212
CAP 714
Capacity

constraints 122
edge 27
of a cut 28

CAQ 714, 756
Cardinality 11
Cartesian product 11
Categories of resources 475
Chain 25, 62, 156, 173
Change-over 755

cost 118
Chronological hierarchy 729
CIM 717, 756
Circuit switching 201
Clairvoyant scheduling 578
Class

APX 39
FP 20
NP 21
of search problems 20
P 20

Classification scheme 72
Clique partitioning problem 785
Cliques 327
Closed

interval 11
queuing network 671

Closure
transitive 12

Coarse grain parallelism 221
Coarse-grained instance 224
Coffman and Graham algorithm 155

 Index

816

Combinatorial
optimization 66, 727
search problem 13

Communication coprocessor 201
network 714

Competitive
analysis 581
ratio 438, 439, 453, 459, 582

Complete selection 628
Completion time 64, 502
Complexity 18

function 15
Composite

interval 415
processor 412, 415

Computation
model of 18

Computational
complexity 18
experiments 40

Computer
aided

design 714
engineering 714
manufacturing 714
process planning 714
quality control 714

architecture 718
integrated manufacturing 714, 756
model

realistic 18
Concave function 448
Concrete delivery problem 767
Conflict 735

detection 734
graph 579
resolution 733, 754

Conjugacy formula 455, 456
Conjunctive critical arc 348
Connected

graph 23
vertices 23

Consistency
arc 617
checking 733
node 617
test 326, 621, 650

Constrained
resource project scheduling 510
weighted completion time 94

Constraint
based scheduling 732

disjunctive 610
graph 612
guided search 750
hard 732
optimization problem 611
precedence 63, 71
propagation 382, 613, 733

based genetic algorithm 383
satisfaction problem 610, 732
soft 732

Constructive model 727
Contention 226
Continuous resource 431, 457, 500, 502,

795
Controllable processing times 531
Convergence

almost sure 40
in expectation 40
in probability 40
rate of 40

Convex
combination 449, 504
function 448, 507
hull 504, 796
programming problem 507

Cooling schedule 45
Coordination mechanism 461
COP 611
CORTES 750
Cost

change-over 118
minimum total flow 34

Cost flow
minimum 485

Cost function
overtime 416

CRIT rule 681
Criterion

additive optimality 35
aspiration level 48
dominance 278
due date 99

involving 71, 177, 532
earliness-tardiness 99, 532
elimination 37
maximum lateness 71, 99
mean

earliness 117
flow time 71
weighted tardiness 99, 113

minimizing
change-over cost 118

 Index

817

maximum cost 126
mean flow time 172
schedule length 77, 141
total cost 131

minimum
mean weighted flow time 87
total overtime cost 416

non-regular 533
optimality 64, 71
regular 533
total

early work 553, 556, 559, 566
late work 527, 532

weighted number of tardy tasks 99,
108, 110

Critical
arc 348
instant 253
path 348

algorithm 153
ratio rule 681
task 170
time 83
zone 253

Crossover 52
CSP 610, 732
Cube connected cycles network 200
Current density 502
Cut 28

of minimum capacity 28
CWCT problem 94
Cycle 23

directed 23
undirected 23

�� D �

Dannenbring heuristic 282
Database

management system 717
support 714

DBMS 717
Deadline 77, 416, 249
Decision

problem 13, 20, 732
process multistage 35
support system 713
table 746

deterministic 746
Decomposition 382

algorithm 95
tree 26

Dedicated
machines 72
processor 61, 72, 200, 516, 550

requirement 202
Degree

in- 24
out- 24

Delivery time 85, 100, 101, 684
Delta network 200
Density

current 502
Dependability 248
Dependent tasks 63, 149, 157, 167, 172,

173, 180, 506
Depth first

search 32, 36
strategy 306

Descriptive
knowledge 749
models 727

Desirability
relative 111

Desirable precedence constraints 732
Deteriorating

job 432
task 432

Deterioration
linear 434
mixed 450
proportional 434
proportional-linear 434
rate 434

Determinacy problem 71
Deterministic

decision table 746
scheduling problem 66, 69
Turing machine 20

Digraph 23
acyclic 23
isomorphic 23
series-parallel 26
task-on-arc 506

Dinic 30, 34
Directed

cycle 23
graph 23
path 23

Disconnected graph 23
Discrete

resource 431, 457, 501
simulation 727

 Index

818

Discrete-continuous
resource 503
scheduling 457

Discretely-divisible resource 501
Disjoint sum 26
Disjunctive

arc pair 346
constraints 610, 626
critical arc 348
edge 346
graph 324, 346, 627
scheduling problem 610

Dispatch_order 720
Divisible task 200
Domain 11, 12

consistency 326, 618
test 622, 629, 643, 649, 654

knowledge 732
Dominance

criterion 278
relation 643, 650

Dominant machines 464
Dominating machines 464
Doubly constrained resource 475
DSP 610
DSS 713
DTM 20
Due date 62, 418, 732

involving criterion 71, 99, 177, 532
modified 180, 541

Dynamic
binding strategy 264
job shop 673, 674
multistage decision process 35
priority 251
problem 681
programming 34, 110, 113, 123, 134,

145, 452, 480, 509, 537, 543, 549,
553, 556, 558, 689

�� E �

Earliest
completion time rule (ECT) 89
deadline rule 77, 83, 243, 252, 262,
due date 177, 534, 539, 541, 681
task first 227
start time rule (EST) 89

Earliness-tardiness criterion 99, 532
Early work 553, 556, 559, 566
ECT rule 89

EDD
algorithm 681
order 108, 109
rule 100, 102, 103, 177

EDF rule 252, 262
Edge 23

capacity 27
disjunctive 346
finding 326, 630
guessing 382, 383

Efficient optimization 66
Ejection chain 42, 49
Elementary

instance 479
vector 479

Elimination criteria 37
ELS method 226
Embedded system 245
Encoding scheme 14

reasonable 15
End-to-end scheduling 267
Energetic

consistency test 659
input consistency test 656

Enrichment technique 734
Enterprise resource planning 403
Enumeration

implicit 35
Enumerative

approach 146
method 34, 123

Environment
hard real time 70

Equivalence relation 12
ERP 403
Error

absolute 39, 68
relative 40, 68

EST rule 89
ETF algorithm 227
Exact

algorithm 18
enumerative 68

Excess 495
Experiments

computational 40
Expert system 749, 791
Explicit schedule 250
Exponential time algorithm 19
Extended list scheduling 226
Extreme task set 257

 Index

819

�� F �

Facts 749
Fast insertion method 284
Fathomed branch 36
FCFS rule 756
Feasibility

problem 732
test 178

Feasible
permutation 98
resource set 500
schedule 124, 412, 415, 530
solution 18, 530

FF algorithm 483
FFD algorithm 483
FFS 291
Final vertex 25
Fine grain parallelism 221
First come first served rule (FCFS) 756
First fit

algorithm (FF) 483, 583
decreasing algorithm (FFD) 483

Fixed
priority 251
production schedule 684

Fixture 682
Flexible

flow shop 291
manufacturing

cell 714, 754
system 671, 683

Flight gate scheduling problem 779
Flow 27

maximum 27, 33
minimum

cost 485
total cost 34

shop 62, 271, 292, 555
flexible 291
permutation 271
problems 420, 555
two-machine 463, 464, 465, 516,

555
time 64 (check these three)
total 27
value of 27

FMS 671
Forbidden region 81, 324
Forest 153

in- 25
opposing 25, 155, 156

out- 25
FP class 20
FPTAS 438, 445, 452, 460, 462
Frame superimposition 267
Frontier search 36
Function 12

bijective 12
complexity 15
concave 448
convex 448
differentiable 447, 466
injective, one-one 12
non-regular 533
order of 13
regular 533
surjective, on to 12

Functional hierarchy 729
Fuzzy

logic 746
rule 747
set 746
variables 746

� G �

Game theory 586
Gantt chart 64
Gap minimization heuristic 284
Garey and Johnson algorithm 182, 477
General

precedence constraint 94
purpose machine 671

Genetic algorithm 41, 44, 52
constraint propagation based 383
enumeration 53
local search 53

Guided local search 378
Giffler and Thompson algorithm 361, 365
Gilmore-Gomory algorithm 295
Global scheduling procedure 681
Gonzalez-Sahni algorithm 321, 465, 548,

551, 555
Grain 224
Granularity 224
Graph 23

acyclic 23
bipartite 24
connected 23
directed 23
disconnected 23
disjunctive 346
intersection 23

 Index

820

Graph (continued)
isomorphic 23
matrix 348
order 97
representations 24, 348
task-on-arc 63
undirected 23
union 23

Greedy linear extension 119
GSP rule 681

�� H �

Half
cuts 364
open interval 11

HAMILTONIAN CIRCUIT 21
Hard

constraints 732
real time environment 70

Harmonic task set 252
Head 358

of a task 101
of an algorithm 16

Heuristic 37, 41, 71, 102, 164, 293, 447,
462, 509, 732
algorithm 18
balancing 751
Dannenbring 282
gap minimization 284
genetic local search 53
machine aggregation 286
Palmer 282
shifting bottleneck 356, 367

Heuristics
regret 706

Hierarchical solution 716
Hill climbing 42
Hodgson's algorithm 109, 110, 437, 439
Horn's approach 178
Horvath, Lam and Sethi algorithm 165
Hu's algorithm 154
HYB rule 681
Hybrid rule 681
Hypercube 200
Hyperedge 24
Hypergraph 24

reduced 738
Hyper-heuristic 777

� I �

Identical
parallel machines 545, 683
processors 61, 141, 172, 177

ILFD algorithm 483
Immediate

predecessor 24
selection 326, 630
successor 24

Implicit
enumeration 35
schedule 250

Imprecise computations 527, 530
In-

degree 24
forest 25
process

inventory 121
time 71

tree 25, 153, 180
Incoming edge 27
Inconsistent variable assignment 610
Independent tasks 63, 162, 503, 508
Information loss 528
Ingot preheating process 517
Initial vertex 25
Injective function 12
Input 16

length 14
size 14

Input/output
conditions 328, 642
negation domain consistency test 650
sequence consistency test 642

Instance 13, 16, 66
coarse-grained 224
elementary 479

Integer programming 21
linear 480, 551
mixed 464, 771, 790

Intelligent production scheduling 714
Interactive scheduling 734
Interchange

property 88
relation 88
string relation 98

Intersection graph 23
Interval

closed 11
composite 415
half open 11
of availability 415
open 11

 Index

821

order 12, 25
scheduling 579

Inverse relation 12
ipred 24
IPS 714, 719, 729, 756
Irreflexive relation 12
ISIS 750
Isomorphic

graphs 23
scheduling problems 437, 439, 456,

460, 463, 465
isucc 24
Iterated lowest fit decreasing algorithm

(ILFD) 483

�� J �

Jackson's algorithm 100, 534, 566
Job 62, 431, 720

deterioration 432
module property 99, 134
release 713
shop 62, 345

dynamic 674
problem 516, 558, 725

shortening 432
traversing 713
type 122

Johnson's algorithm 273, 274, 294, 463,
557

j-optimal task set 111
Jump 119

number 119
optimal 119

Jumptracking 36
search strategy 101

� K �

Karmarkar's algorithm 500
k-ary relation 11
k-consistency 617
k-consistent 382
k-d-consistency 618
k-d-consistent 619
k-feasibility 617
k-feasible 617
k-restricted preemption 149
k-weakly V-shaped schedule 445, 446
Khachiyan's algorithm 172
KNAPSACK 20, 22

problem 13, 110

Knowledge
based

approach 714
system 749, 791

descriptive 749
procedural 749
representation 733

� L �

Labeling procedure 32
Lagrangian relaxation technique 96
Largest processing time (LPT) 142, 143,

295
Late work 527, 532

modified 566
Lateness 64

maximum 64
Lawler's algorithm 129, 437, 439, 451,

512
Layered network 30
Learning

algorithm 41
effect 432, 541

Level 157
algorithm 153, 156

Lexicographic
order 155
sum 26

Lexicographically smaller 12
Lifetime curve 502
Limited processor availability 403, 538
Linear

assignment problem 441
extension 118, 119

greedy 119, 120
integer programming 480
order 25
programming 160, 167, 168, 172, 184,

210, 322, 485, 499, 500, 551
sum 26

Linked list 24, 348
List

scheduling 142, 322
algorithm 68, 153, 164, 294, 453
anomalies 149
extended 226

Local
balancing and mapping 199
memory 200
search 41, 354, 357, 372

Logically conflicting preferences 735

 Index

822

Logistics 761
Longest

path 158
processing time (LPT) 458, 755

Lot scheduling 121, 186
multi-product 122

Lower bound 36, 586
Lower-level bound-consistency 632
LPT

algorithm 142, 143, 295, 458
mean performance 145
rate of convergence 144
relative error 144
rule 755
simulation study 144
worst-case behavior 143

LS algorithm 453, 458, 459, 460, 461

�� M �

Machine 61, 720
aggregation heuristic 286
augmentation 601
dedicated 70
dominating 464
identical 755
no-idle dominant 464
non-availability period 451
scheduling 682
state 289

Main sets 160
Maintenance activity 441
Makespan 64, 410, 755
Malleable task model 202, 212
Mandatory subtask 530
Manufacturing system 69, 713
Master-slave network 201
Material 70

handling system 671
Mathematical

induction 433, 437, 439, 440
programming 122, 501, 768, 771, 784,

790
Matrix

adjacency 24, 348
approach 433, 445, 455
graph 348

Maximizing total
early work 553, 556, 559, 566, 569
late work 569

Maximum
allowable tardiness 94

cost 126
flow 27, 28, 81
in-process time 71
lateness 64, 71, 99
value

flow 33
McNaughton's rule 148, 415, 484, 509,

547, 755
MDD rule 681
Mean

earliness 117
flow time 64, 71, 172
in-process time 71
performance 39, 68

of LPT 145
tardiness 65, 116, 676
weighted

flow time 64, 87
tardiness 65, 99, 113

Measure of
acceptability 738
performance 64

Mechatronic system 245
Merge 16, 17
Merging 13
Mesh 200
Meta-heuristics 41
Method 16

adversary 586
enumerative 34

Minimizing
change-over cost 118
Lmax 177
maximum

cost 126
lateness 99

mean
flow time 172
weighted flow time 87

schedule length 77, 141
total

cost 131
early work 566, 569
late work 527, 532

weighted
number of tardy tasks 99, 108, 110
tardiness 99, 113

Minimum
cost flow 485
slack time rule (MST) 105
total

cost flow 34

 Index

823

overtime cost 416
Min-max transportation problem 163
Mirror scheduling problems 569
Mixed

deterioration 450
resource 503

Model
analysis 719
constructive 727
descriptive 727
object-oriented 719
of computation 18
online-over-list 578
online-over-time 578
reference 719

Modified
due date 180, 541
job due date rule (MDD) 681
late work 566
task due date (MTD) 675

Module of tasks 99
Moldable task model 202, 794
Monotonous consistency test 623
msort 17
MST rule 105
MTD

algorithm 675
rule 675, 681

Multi-agent
planning 750
scheduling 453, 454, 457, 540

MULTIFIT 144
Multi-frame model 267
Multi-objective resource allocation

problem 510
Multiplicative problems 433
Multiprocessor task 200, 201, 486

scheduling 486
Multi-product lot scheduling 122
Multistage

decision process 35
interconnection network 200

Mutation 52
Mutual exclusion 265
Mutually related scheduling problems

433, 454, 455, 456

�� N �

Nash equilibrium 461
NC-machine 671
NDTM 20

Negation domain consistency test 650
Neighborhood 42
Network 27

activity 63, 159, 172, 506
 communication 714

flow 169, 178, 184, 546
layered 30
queuing 727, 730
transportation 163
uniconnected activity 63, 485

N-free precedence graph 25
Node 23

consistency 617
final 25
initial 25
predecessor 24
successor 24

Non-availability periods 451
Non-clairvoyant scheduling 578
Non-cooperative game 460
Non-delay schedule 306, 434, 435, 437
Non-deterministic Turing machine 20
Non-linear programming problem 507
Non-periodic algorithm 293
Non-preemptable tasks 511, 579
Non-preemptive 477, 482, 507, 509, 579

schedule 63, 64, 172, 174
scheduling 149, 162, 177, 510

Non-regular criterion 105, 533
Non-renewable resource 475
Norm

lp 445, 446
vector 445

Normal schedule 84
Normalized schedule 206, 487
Notation
 three-field 72, 451, 454
No-wait

constraint 289
flow shop 290
property 62
schedule 292

NP class 21
NP-complete 21, 67

in the strong sense 22
strongly 22

NP-hard 67
problem 21, 37, 438, 439, 440, 446,

447, 451, 452, 458, 461, 462, 463,
464, 465, 466

unary 23

 Index

824

N-structure 25
Number

of tardy tasks 65
problem 22

�� O �

Off-line
planning 713, 729
scheduling 250, 251, 577

OFP 713, 729, 754
ONC 713, 729, 754
One machine problems 407, 533
One-one function 12
One state-variable machine problem 289
Oneblock procedure 128
Online

algorithm 438, 439, 453, 459, 580,
586
deterministic 580
optimal 586
randomized 580
scalable 602

control 713, 729
scheduling model 250, 251

list 578
over-list 578
over-time 578
semi-online advice 600
sequence 578
time 578
time-stamp 578
with advice 600

per request 600
with rejections 579
with resource augmentation 601
with withdrawal 591

On-time set 112
OOA 720
Open

interval 11
shop 62, 423, 465, 550

scheduling 321
Operation 431
Operations research 731, 761
OPIS 750
Opportunistic scheduling 370
Opposing forest 25, 155, 156
Optimal

asymptotically 40
online algorithm 586
schedule 66, 486

solution 13, 18, 37
Optimality

condition
necessary 450
sufficient 449, 450

criterion 64, 71
additive 35
makespan 64
maximum

cost 126
lateness 64

mean
flow time 64
tardiness 65
weighted

flow time 64
tardiness 65

number of tardy tasks 65
performance measure 64, 532
schedule length 64
total

early work 566
late work 527, 532
resource utilization 514

weighted number of tardy tasks 65
Optimization

algorithm 18
combinatorial 727
efficient 66
problem 13, 20

constraint 611
pseudopolynomial 68, 145, 536, 549,

553, 556, 558,
Optional subtask 530
OR 731, 761
Order

graph 97
interval 12
lexicographic 155
of a function 13
partial 12

Ordered set
partially 12

Ordering of nodes 507
Out-

degree 24
forest 25
tree 25, 153, 173, 180

Outgoing edge 27
Output 16

consistency test 656
domain consistency test 643

 Index

825

Overtime cost function 416

�� P �

P class 20
Packet length coefficient 227
Pairwise task interchange argument 433,

437, 439, 440, 447
Pallet 682
Palmer heuristic 282
Parallel

machine problems 409, 545
processor 61, 69, 200

scheduling 141, 545
requirement 202

Parallelism
coarse grain 221
fine grain 221

Pareto
curve 515
optimal

schedule 449
solution 515, 521

Part
machine-preemption 672
preemption 672
scheduling 682

Partial order 12
properties 440
selection 628

Partially ordered set 12
PARTITION 142, 440, 446, 537, 548,

552, 555
Path 23

augmenting 28, 32
consistency 617
consistent 382
critical 153
directed 23
longest 158
shortest 30
undirected 23

Patterns of availability 405
p-batch model 540
Perfect shuffle network 200
Performance

average case 581
measure 64, 532
ratio

absolute 38, 153, 582
asymptotic 38

worst-case 38, 286, 288, 581

Periodic
algorithm 292
task 249

Permutation 12
feasible 98
flow shop 271
schedule 271

Planning 720
offline 729

P-node 26
Polymerization process 292
Polynomial

time
algorithm 19
approximation scheme 38, 568

transformation 21
Poset 12
Power set 11
PPS 714
Precedence

and disjunctive constraints 610
consistency test 632
constraint 63, 71, 129, 156, 438, 441,

447, 451, 463, 625
general constraint 94
graph 24

N-free 25
task-on-arc 159

in-tree 180
out-tree 180
relation 24, 732
series-parallel 26, 98, 441, 447
strong chain 438
weak chain 438

pred 24
Predecessor

immediate 24
vertex 23

Predictability 247
Predictable operation 247
Predictive

level 717
production scheduling 713
scheduling 69, 714, 750

Preemption 63, 157, 165, 322, 415, 579
granularity 149
part 672
part-machine 672
task 506

Preemptive 103, 508, 579
algorithm 167
processing 178

 Index

826

Preemptive (continued)
schedule 63, 64, 146
scheduling 168, 174, 182, 206

Preferences
logically conflicting 735
resource conflicting 735
time conflicting 735

Preprocessing 716
Pre-runtime scheduling 250
Price of anarchy 461
Prime module 99, 134
Principle of optimality 35
Priority 62

driven scheduling 251
dynamic 251
fixed 251
function 441
inversion 266
rule 307, 361, 365, 580, 675, 681, 732,

734, 750
static 251

Priority-generating function 433, 440, 441
Problem

3-PARTITION 22, 78, 113, 441, 446,
447, 462, 483, 549

4-PRODUCT 458, 461, 463, 464
berth allocation 792
bin packing 583
clique partitioning 785
combinatorial

optimization 66
search 13

concrete delivery 767
conjugate 456
constrained weighted completion time

94
constraint satisfaction 732
convex programming 507
CWCT 94
decision 13, 20, 732
determinacy 71
deterministic scheduling 66
DP-benevolent 452, 538, 540, 544
EQUAL PRODUCTS 454, 458, 464,

465
EVEN-ODD PARTITION 448
feasibility 530, 732
flight gate scheduling 779
generic 456
HAMILTONIAN CIRCUIT 21
initial 455
instance 13

INTEGER PROGRAMMING 21
job shop 465, 516, 558
KNAPSACK 13, 20, 110
linear

assignment 441
integer programming 480
programming 160

mathematical programming 122
maximum flow 28, 81
min-max transportation 163
multiobjective resource allocation 510
mutually related scheduling 433, 454,

455, 456
non-linear programming 507
NP-complete 67
NP-hard 21, 37, 67, 440, 448, 461,

464, 465, 466
number 22
optimization 13, 20
PARTITION 142, 440, 446, 537, 548,

552, 555
project scheduling 500
quadratic assignment 790
quay crane allocation 792
SATISFIABILITY 21
scheduling 61, 66, 67
SUBSET

PRODUCT 438, 440, 452, 453,
458, 461, 465

SUM 536
tardiness 113
TDBS 448, 449, 450
TDPS 448, 449, 450
time-dependent scheduling

bi-criteria 448, 453
conjugate 455
equivalent 455
transformed 455

transportation 34, 175, 484, 535
TRAVELING SALESMAN 21, 290,

774
two-machine

flow shop 463, 464, 465, 516, 555
job shop 558
open shop 464, 465, 552

vehicle routing 762
Procedural knowledge 749
Procedure

labeling 32
oneblock 128

Process
plan 720

 Index

827

planning 714
Processing

capacity 165
speed 502

factor 62
vs. resource amount model 502

time 62, 70
basic 434, 435
linear 435, 436
non-linear 435, 436
polynomial 447
proportional 435
proportional-linear 435, 436
quadratic 447
standard 62
time-dependent 431
variable 431
vector of 62
vs. resource amount model 501,

511
Processor 61

augmentation 601
composite 412, 415
dedicated 61, 70, 516, 550
feasible sets 160
identical 61, 141, 172, 177, 545
parallel 61, 69, 545
shared schedule 158
sharing 165
speed 61
uniform 62, 69, 162, 173, 183, 547
unrelated 62, 160, 162, 168, 173, 183
utilization 252

Production
control 713
management 713
planning 713

system 714
schedule 684
scheduling 713

intelligent 714
predictive 713
reactive 713
shop floor 713
short term 714

Programming
convex 507
dynamic 34, 110, 113, 123, 134, 145,

452, 480, 509, 537, 543, 549, 553,
556, 558, 689

integer 768, 771
linear 485, 499, 500, 551

mathematical 501, 768, 771, 784, 790
non-linear 507
zero-one 96

Progress rate function 502
Project scheduling 500, 510, 673, 674
Property

no-wait 62
symmetry 445
V-shape 441

Pseudopolynomial
algorithm 22, 110, 114, 145, 536, 549,

553, 556, 558, 689
optimization algorithm 68

Purchasing-order 720

�� Q �

Quadratic assignment problem 790
Quay crane allocation problem 792
Queuing network 727

closed 671

� R �

Range 11, 12
Rate-modifying activity 438, 457
Rate monotonic

First Fit algorithm 265
rule 252
strategy 243

Rate of convergence 40, 144
Ratio

asymptotic performance 322
competitive 453, 582
rule 87
worst-case performance 286, 581

Reactive
level 717
production scheduling 713
scheduling 69, 681, 714, 746, 750

Ready time 62, 70, 77, 249, 417, 512,
732
vs. resource amount model 517

Realistic computer model 18
Real-time

environment 70
hard 70
scheduling 249
system 243, 244

Reasonable encoding scheme 15
Reduced hypergraph 738
Reflexive relation 12

 Index

828

Regret heuristics 706
Regular

performance criterion 105, 533
sequence 444

Relation 11
antisymmetric 12
binary 11
equivalence 12
inverse 12
irreflexive 12
k-ary 11
precedence 732
reflexive 12
symmetric 12
transitive 12

Relative
desirability 111
error 40, 68
timing constraints 266

Relax and enrich strategy 734
Relaxation 67

technique 734
Release time 77, 85

property 80
Reliable operation 247
Renewable resource 250, 475, 501, 502
Reproduction 52
Resource 61, 70, 475, 720

additional 70
allocation 503
augmentation 601

machine 601
processor 601
speed 601

availability 732
categories 475
conflicting preferences 735
constrained scheduling 475
constraint 475
continuous 431, 457, 475, 500, 502,

795
discrete 431, 457, 475, 501
discrete-continuous 503
discretely-divisible 501
doubly constrained 475
feasible set 485, 500
limit 476, 479
mixed 503
non-renewable 475
project scheduling 510
renewable 250, 475, 501, 502
request 62

requirement 476, 672
type 475, 476, 479

fixed number 479
utilization 514, 732

Response time 253
Request 578
REST 734
Ring 200
RM rule 252
RMFF algorithm 265
Rolling horizon 673, 674, 681
Rotational speed 502
Routing conditions 732
Rule

backward scheduling 91
critical ratio 681
earliest

completion time (ECT) 89
deadline 77, 83
due date (EDD) 100, 177, 534, 539,

541, 681
start time (EST) 89

EDD 102, 103, 177, 534, 539, 541
first come first served (FCFS) 756
GSP 681
hybrid (HYB) 681
largest processing time (LPT) 142,

143, 295
McNaughton 148, 415, 484, 510, 547,

755
minimum slack time (MST) 105
modified

due date (MDD) 681
task due date (MTD) 675, 681

MTD 681
priority 580, 732, 734, 750
shortest processing time (SPT) 87,

173, 322, 681, 756
Smith's

backward scheduling 91, 534
ratio 87
weighted shortest processing time

(WSPT) 87, 90
UVW 124
weighted shortest processing time

(WSPT) 87

�� S �

Safety-critical system 247
SATISFIABILITY 21
s-batch model 540

 Index

829

Scatter search 54
Scenario

event-triggered 578
time-triggered 578

Schedule 63, 720
acceptable 727
feasible 124, 412, 415
k-weakly V-shaped 445, 446
length 64, 71, 141, 294, 755
non-delay 306, 434, 435, 437
non-preemptive 63, 64, 172, 174, 579
normal 84
normalized 206, 487
no-wait 292
optimal 66, 486
Pareto optimal 449
partial V-shaped 443
performance measure 64, 532
preemptive 63, 64, 146, 579
production 684
scalar optimal 449
status 752
to meet deadlines 77
vehicle 686
V-shaped 441, 442
weakly V-shaped 445

Scheduling
agent 453
algorithm 66
anomalies 149
clairvoyant 578
constraint based 732
deterministic 69
discrete-continuous 457
dynamic job shop 674
early/tardy tasks 462
flexible job shop 291
game 461
imprecise computations 527, 530
in flexible manufacturing systems 671
interactive 734
interval 579
list 142, 322, 580
lot size 121, 186
mirror 569
multiprocessor tasks 486
multi-agent 453, 454, 457, 540
non-clairvoyant 578
non-preemptive 149, 162, 177, 510,

579
off-line 250, 251, 578
online 250, 251, 578

open shop 321, 550
parallel processor 141, 545
policy 461

LDR 461
MS 461
SDR 461

predictive 69, 750
production 713

preemptive 168, 174, 206
preemptive-restart 579
preemptive-resume 579
pre-runtime 250
priority-driven 251, 580
problem 61, 66, 67

bi-criteria 448
conjugate 455
deterministic 69
equivalent 455
generic 456
isomorphic 437, 439, 456, 460,

463, 465
project 673, 674
reactive 69, 681, 746, 750

production 713
release times and

deadlines 78
delivery times 85

semi-clairvoyant 578
strong 578
weak 578

semi-online 590
with bounded migration 591
with combined information 591

setup 118
shop floor 713
short term 713

production 714
single

machine 77, 533
processor 77, 533

theory
classical 431
modern 431

time-dependent 431, 541
on a machine with limited
availability 451

to meet deadlines 66
two-agent 453, 454
with abortions 579
with continuous resources 500
with learning effect 541
with rejections 579

 Index

830

Scheme
encoding 14

Schrage's algorithm 85
Search

backtracking 36
beam 751
binary 180, 209
constraint guided 750
depth first 32, 36, 306
frontier 36
local 41
problem 20
strategy 36, 306

jumptracking 101
tree 36, 80

Selection
complete 628
partial 628

Semi-clairvoyant scheduling 578
strong 578
weak 578

Semi-online scheduling 590
Sequence

consistency test 630, 641, 642, 648,
654

regular 444
Series-parallel

digraph 26
precedence 98

Set 11
partially ordered 12

Set of
machines 61
processors 61

Setup 119, 122
optimal 119
scheduling 118
time 293, 671, 732

Shaving 332, 659
Shifting bottleneck heuristic 356, 367
Shop floor

information systems 728
problems 403
production scheduling 713
scheduling 713

Short term
production scheduling 714
scheduling 716

Shortening
job 432
linear 436
proportional-linear 435

rate 435, 436
task 432

Shortest
path 30
processing time rule (SPT) 87, 173,

322, 681, 756
Sidney's decomposition algorithm 95
Signatures 433, 443
Simple genetic algorithm 53
Simulated annealing 42, 44
Simulation 730

discrete 727
study 144

Simultaneous
job and vehicle scheduling 689
scheduling and routing 683

Single
machine scheduling 77, 533
processor scheduling 77, 533

Sink 27
Smith's

backward scheduling rule 91, 534
ratio rule 87
weighted shortest processing time rule

(WSPT) 87, 90
SMS problem 77
S-node 26
Soft constraints 732
Solution 13

approximate 18
feasible 18, 530
optimal 13, 18
suboptimal 18
trial 36

SONIA 752
Sort 17
Source 27
Speed 61

augmentation 601
factor 62
rotational 502

Sporadic task 249
SPT rule 87, 173, 322, 681, 756
Staff 720
Staircase pattern 174
Stairlike schedule 211
Standard processing time 62
Static

binding strategy 264
priority 251

schedule 253
Store-and-forward routing 201

 Index

831

String 14
interchange relation 98
structured 14

Strong k-d-consistent 619
Strongly NP-complete 22
Structured string 14
Subgraph 23
Suboptimal

algorithm 18, 37
solution 18

Subtask
mandatory 530
optional 530

succ 24
Successor

immediate 24
vertex 24

Sum
disjoint 26
lexicographic 26
linear 26
of completion times 409

Surjective function 12
Symmetric relation 12
Symmetry property 445
System

information 756
manufacturing 69
operation 717
supervision 717

�� T �

Tabu list 46
 length 47
 search 42, 44, 46
Tactical production plan 716
Tail of a task 101, 358
Tardiness 64

maximum allowable 94
mean 65

weighted 65
problem 113

Tardy
set 112
task 65

number of 65
weighted number of 65

Task 431, 720
available 63
dependent 63, 149, 157, 167, 172,

173, 180, 506

deterioration 432
duplication 221
grain 224
imprecise 530
independent 63, 162, 503, 508
interchange relation 88
jitter 266
label 155
level 153, 157, 165
linear 435, 436
lot 118
malleable 212
moldable 794
non-linear 435, 436
non-preemptable 511, 579
non-resumable 451
offset 250
on-arc graph 63, 159, 506
on-node graph 63
pairwise interchange argument 433,

437, 439, 440, 447
phase 250
preemption 63, 322, 506, 579, 755
preemptive-restart 579
preemptive-resume 579
priority 62, 250
processing speed 502
proportional 435
proportional-linear 435, 436
rejection 460
resumable 451
shortening 432
state 502
weight 62

Temporal constraints 625
Three-field notation 72, 451, 454
Threshold accepting 46
Time

arrival 62
completion 502
complexity 18, 415
conflicting preferences 735
delivery 684
parameter 457
ready 62, 732
setup 293, 671, 732

Time-dependent scheduling 431, 541
Timely operation 247
Tool 70, 682, 720

change 732
changing

device 671

 Index

832

Tool (continued)
changing

system 671
magazine 671, 682
storage area 671

Total
discrepancy time 448
early work criterion 553, 556, 559,

566
flow 27
late work criterion 527, 532
rejection cost 460
resource utilization 514

Transfer line 121
Transformation

polynomial 21
Transformed resource allocation 503
Transitive

closure 12
relation 11

Transport facilities 70
Transportation

network 163
problem 34, 163, 175, 484, 535

TRAVELING SALESMAN 21, 290, 774
Tree

branching 36
decomposition 26
in- 25
network 200
out- 25
search 36, 80

Trial solution 36
Turing machine

deterministic 20
nondeterministic 20

Two-job cuts 364
Two-machine

aggregation approach 167
flow shop problem 463, 464, 465, 516,

555
job shop problem 558
open shop problem 465, 552

Two-phase method 168
Types of

jobs 122
resources 475

�� U �

uan 63, 160, 172, 485, 507
Unary

NP-hard 23
Undirected

cycle 23
graph 23
path 23

Uniconnected activity network 63, 160,
172, 485

Uniform
delay scheduling 221
processors 62, 69, 162, 173, 183, 547

Union graph 23
Uniprocessor tasks 200
Unit

change-over cost 118
processing time 84, 90, 94, 99, 114,

122, 131
time interval 122
weight 91, 114

Unrelated processors 62, 160, 162, 168,
173, 183

Upper bound 36
Useful edge 30
UVW-rule 124

� V �

Value of flow 27
Variable

depth methods 49
processing times 431

Vector
elementary 479
of processing times 62

Vehicle routing
problem 762

asymmetric 763
capacitated 762
dynamic 764
green 763
heterogeneous 763
open 763
periodic 764
rich 765
stochastic 764
symmetric 763
taxonomy 765
time-dependent 764
with backhauls 764
with multiple depots 763
with pickup and delivery 764
with split deliveries 765
with time windows 763

 Index

833

schedule 686
with time window 685

Vertex 23
connected 23
final 25
initial 25
predecessor 24
successor 24

Virtual-cut-through 201
V-shape property 441
V-shaped schedule 441, 442

k-weakly 445, 446
weakly 445

�� W �

Weight 62
agreeable 110, 114

Weighted
information loss 528
late work 528
number of tardy tasks 65, 99, 108, 110
shortest processing time rule (WSPT)

87
Work

area 752
load 334

Work-in-process inventory 732
Wormhole routing 201
Worst-case

analysis 38, 581
behavior of LPT 143
execution time 249
performance 286, 581

ratio 38, 288, 452, 453, 458, 462,
464

WSPT rule 87, 90

� Y �

Yao's principle 586

� Z �

Zero-one programming 96

	FOREWORD
	References

	Contents
	1 Introduction
	References

	2 Basics
	2.1 Sets and Relations
	2.2 Problems, Algorithms, Complexity
	2.2.1 Problems and Their Encoding
	2.2.2 Algorithms
	2.2.3 Complexity

	2.3 Graphs and Networks
	2.3.1 Basic Notions
	2.3.2 Special Classes of Digraphs
	2.3.3 Networks

	2.4 Enumerative Methods
	2.4.1 Dynamic Programming
	2.4.2 Branch and Bound

	2.5 Heuristic and Approximation Algorithms
	2.5.1 Approximation Algorithms
	2.5.2 Local Search Heuristics

	References

	3 Definition, Analysis and Classification of Scheduling Problems
	3.1 Definition of Scheduling Problems
	3.2 Analysis of Scheduling Problems and Algorithms
	3.3 Motivations for Deterministic Scheduling Problems
	3.4 Classification of Deterministic Scheduling Problems
	References

	4 Scheduling on One Processor
	4.1 Minimizing Schedule Length
	4.1.1 Scheduling with Release Times and Deadlines
	4.1.2 Scheduling with Release Times and Delivery Times

	4.2 Minimizing Mean Weighted Flow Time
	4.3 Minimizing Due Date Involving Criteria
	4.3.1 Maximum Lateness
	4.3.2 Number of Tardy Tasks
	4.3.3 Mean Tardiness
	4.3.4 Mean Earliness

	4.4 Minimizing Change-Over Cost
	4.4.1 Setup Scheduling
	4.4.2 Lot Size Scheduling

	4.5 Other Criteria
	4.5.1 Maximum Cost
	4.5.2 Total Cost

	References

	5 Scheduling on Parallel Processors
	5.1 Minimizing Schedule Length
	5.1.1 Identical Processors
	5.1.2 Uniform and Unrelated Processors

	5.2 Minimizing Mean Flow Time
	5.2.1 Identical Processors
	5.2.2 Uniform and Unrelated Processors

	5.3 Minimizing Due Date Involving Criteria
	5.3.1 Identical Processors
	5.3.2 Uniform and Unrelated Processors

	5.4 Lot Size Scheduling
	References

	6 Communication Delays and Multiprocessor Tasks
	6.1 Introductory Remarks
	6.2 Scheduling Multiprocessor Tasks
	6.2.1 Parallel Processors
	6.2.2 Dedicated Processors
	6.2.3 Refinement Scheduling

	6.3 Scheduling Uniprocessor Tasks with Communication Delays
	6.3.1 Scheduling without Task Duplication
	6.3.2 Scheduling with Task Duplication
	6.3.3 Scheduling in Processor Networks

	6.4 Scheduling Divisible Tasks
	References

	7 Scheduling in Hard Real-Time Systems
	7.1 Introduction
	7.1.1 What is a Real-Time System?
	7.1.2 Examples of Real-Time Systems
	7.1.3 Characteristics of Real-Time Systems
	7.1.4 Functional Requirements for Real-Time Systems

	7.2 Basic Notions
	7.2.1 Structure of a Real-Time System
	7.2.2 The Task Model
	7.2.3 Schedules

	7.3 Single Processor Scheduling
	7.3.1 Static Priority Scheduling
	7.3.2 Dynamic Priority Scheduling

	7.4 Scheduling Periodic Tasks on Parallel Processors
	7.5 Resources
	7.6 Variations of the Periodic Task Model
	References

	8 Flow Shop Scheduling
	8.1 Introduction
	8.1.1 The Flow Shop Scheduling Problem
	8.1.2 Complexity

	8.2 Exact Methods
	8.2.1 The Algorithms of Johnson and Akers
	8.2.2 Dominance and Branching Rules
	8.2.3 Lower Bounds

	8.3 Approximation Algorithms
	8.3.1 Priority Rule and Local Search Based Heuristics
	8.3.2 Worst-Case Analysis
	8.3.3 No Wait in Process

	8.4 Scheduling Flexible Flow Shops
	8.4.1 Problem Formulation
	8.4.2 Heuristics and Their Performance
	8.4.3 A Model
	8.4.4 The Makespan Minimization Problem
	8.4.5 The Mean Flow Time Problem

	References

	9 Open Shop Scheduling
	9.1 Complexity Results
	9.2 A Branch and Bound Algorithm for Open Shop Scheduling
	9.2.1 The Disjunctive Model of the OSP
	9.2.2 Constraint Propagation and the OSP
	9.2.3 The Algorithm and Its Performance

	References

	10 Scheduling in Job Shops
	10.1 Introduction
	10.1.1 The Problem
	10.1.2 Modeling
	10.1.3 Complexity
	10.1.4 The History

	10.2 Exact Methods
	10.2.1 Branch and Bound
	10.2.2 Lower Bounds
	10.2.3 Branching
	10.2.4 Valid Inequalities

	10.3 Approximation Algorithms
	10.3.1 Priority Rules
	10.3.2 The Shifting Bottleneck Heuristic
	10.3.3 Opportunistic Scheduling
	10.3.4 Local Search

	10.4 Conclusions
	References

	11 Scheduling with Limited Processor Availability
	11.1 Problem Definition
	11.2 One Machine Problems
	11.3 Parallel Machine Problems
	11.3.1 Minimizing the Sum of Completion Times
	11.3.2 Minimizing the Makespan
	11.3.3 Dealing with Due Date Involving Criteria

	11.4 Shop Problems
	11.4.1 Flow Shop Problems
	11.4.2 Open Shop Problems

	11.5 Conclusions
	References

	12 Time-Dependent Scheduling
	12.1 Introduction
	12.2 Forms of Time-Dependent Processing Times
	12.2.1 General Forms
	12.2.2 Special Forms

	12.3 One Machine Problems
	12.3.1 Proportionally Deteriorating Processing Times
	12.3.2 Proportional-Linearly Deteriorating Processing Times
	12.3.3 Proportional-Linearly Shortening Processing Times
	12.3.4 Linearly Deteriorating Processing Times
	12.3.5 Linearly Shortening Processing Times
	12.3.6 Non-Linearly Deteriorating Processing Times
	12.3.7 Other One Machine Problems

	12.4 Parallel Machine Problems
	12.4.1 Proportionally Deteriorating Processing Times
	12.4.2 Linearly Deteriorating Processing Times
	12.4.3 Non-Linearly Deteriorating Processing Times

	12.5 Dedicated Machine Problems
	12.5.1 Proportionally Deteriorating Processing Times
	12.5.2 Proportional-Linearly Deteriorating Processing Times
	12.5.3 Linearly Deteriorating Processing Times
	12.5.4 Non-Linearly Deteriorating Processing Times

	References

	13 Scheduling under Resource Constraints
	13.1 Classical Model
	13.2 Scheduling Multiprocessor Tasks
	13.3 Scheduling with Continuous Resources
	13.3.1 Introductory Remarks
	13.3.2 Processing Speed vs. Resource Amount Model
	13.3.3 Processing Time vs. Resource Amount Model
	13.3.4 Ready Time vs. Resource Amount Model

	References

	14 Scheduling Imprecise Computations
	14.1 Introduction
	14.2 Imprecise Computation Model
	14.3 Late Work Model
	14.3.1 Single Processor Problems
	14.3.2 Parallel Processor Problems
	14.3.3 Dedicated Processor Problems

	14.4 Related Problems
	14.5 Conclusions
	References

	15 Online Scheduling
	15.1 Online Scheduling Models
	15.2 Online Scheduling Algorithms
	15.3 Competitive Analysis
	15.3.1 Competitive Ratio
	15.3.2 Lower Bound
	15.3.3 Adversary Method

	15.4 Other Online Scheduling Models
	15.4.1 Semi-Online Scheduling
	15.4.2 Online Scheduling with Advice
	15.4.3 Resource Augmentation

	15.5 Conclusions
	References

	16 Constraint Programming and Disjunctive Scheduling
	16.1 Introduction
	16.2 Constraint Satisfaction
	16.2.1 The Constraint Satisfaction and Optimization Problem
	16.2.2 Constraint Propagation

	16.3 The Disjunctive Scheduling Problem
	16.3.1 The Disjunctive Model
	16.3.2 Solution Methods for the DSP

	16.4 Constraint Propagation and the DSP
	16.4.1 Some Basic Definitions
	16.4.2 Precedence Consistency Tests
	16.4.3 Lower-Level Bound-Consistency
	16.4.4 Input/Output Consistency Tests
	16.4.5 Input/Output Negation Consistency Tests
	16.4.6 Input-or-Output Consistency Tests
	16.4.7 Energetic Reasoning
	16.4.8 Shaving
	16.4.9 A Comparison of Disjunctive Consistency Tests
	16.4.10 Precedence vs. Disjunctive Consistency Tests

	16.5 Conclusions
	16.6 Appendix: Bound Consistency Revisited
	References

	17 Scheduling in Flexible Manufacturing Systems
	17.1 Introductory Remarks
	17.2 Scheduling Dynamic Job Shops
	17.2.1 Introductory Remarks
	17.2.2 Heuristic Algorithm for the Static Problem
	17.2.3 Computational Experiments

	17.3 Simultaneous Scheduling and Routing in some FMS
	17.3.1 Problem Formulation
	17.3.2 Vehicle Scheduling for a Fixed Production Schedule
	17.3.3 Simultaneous Job and Vehicle Scheduling

	17.4 Batch Scheduling in Flexible Flow Shop sunder Resource Constraints
	17.4.1 Introduction - Statement of the Problem
	17.4.2 Mathematical Formulation
	17.4.3 Heuristic Solution Approach

	References

	18 Computer Integrated Production Scheduling
	18.1 Scheduling in Computer Integrated Manufacturing
	18.2 A Reference Model for Production Scheduling
	18.3 IPS: An Intelligent Production Scheduling System
	18.3.1 Interactive Scheduling
	18.3.2 Knowledge-based Scheduling
	18.3.3 Integrated Problem Solving

	References

	19 Scheduling in Logistics
	19.1 Introduction
	19.2 Vehicle Routing Problem
	19.3 Concrete Delivery Problem
	19.3.1 Overview
	19.3.2 Modeling the Concrete Delivery Problem
	19.3.3 Related Models

	19.4 Flight Gate Scheduling Problem
	19.4.1 Overview
	19.4.2 Modeling the Flight Gate Scheduling Problem
	19.4.3 Related Models

	19.5 Berth and Quay Crane Allocation Problem
	19.5.1 Overview
	19.5.2 Modeling of the Berth and Quay Crane Allocation Problem
	19.5.3 Related Models

	19.6 Conclusions
	References

	Index

