
Chapter 7
Capture, Capacities, and Thresholds

7.1 Introduction

There can be a number of different problem settings under which covering models
can be defined and applied. Many of the models that are discussed in this chapter
were originally inspired by issues associated with retail and competition. Although
one at first blush may think of retail siting and coverage models as having little in
common, except for something obvious like a pizza chain attempting to locate
facilities so that it can deliver pizzas everywhere in a city within 30 min, there are
surprisingly many retail elements that can be defined and addressed using coverage
constructs.

Christaller (1933) attempted to address the question of why retail centers were
arranged the way they were across a region. He reasoned that such centers needed a
sustainable level of customers, called the threshold. Without a retail establishment
attracting a threshold amount of customers, a business was not viable. Further, if a
retail center had a large number of customers, much larger than the threshold, it was
an invitation for other firms to enter that market area and establish their own
facilities. Each of these elements can also be modeled using covering concepts,
albeit with added components.

One of the first models to explicitly address a retail problem using a covering
framework was the list selection problem in direct mail advertising (Dwyer and
Evans 1981). Such a problem is characterized by a retail company wanting to rent
various magazine subscriber lists in order to launch a mail-order catalogue, often for
an upcoming holiday or event. The key issue is to determine which lists to rent in
order to cover/reach as many of the potential customers as possible. The mathemat-
ical program developed by Dwyer and Evans (1981) has the exact same structure as
the maximal covering location problem introduced and formulated in Chap. 2.

Another retail-based covering model is the maximum capture or sphere of
influence location problem (ReVelle 1986). This model was inspired by the early
work of Hotelling (1929) where two vendors compete for customers. The model
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developed by ReVelle (1986) was based upon taking the perspective of one of the
competitors in an attempt to capture as many of the other’s customers while locating
several retail facilities. Although this model is quite simple, it encompasses a key
element in retail location, that of serving a region better than a competitor.

Finally, many settings suggest that facilities can handle only so many customers
at the same time without being congested or losing service quality. That is, there is a
limit or capacity to reasonably handle customers. In many applications, it is assumed
that each facility can handle all of the customers it serves, but in other contexts this is
simply not true. Consequently, the use of a capacity on each facility may be
appropriate. This too, can be addressed in a covering model.

Collectively, the above examples have hopefully demonstrated that there are
many possible applications for covering models in retail and service location. In
the remainder of this chapter, we provide details on models that are designed to
capture customers or an audience, models that maintain viability through the use of
thresholds and capacity conditions, and models that carve up a region into franchise
areas. In the next section, we discuss the problem of capturing customers in retail
service provision.

7.2 Maximum Capture

Hotelling (1929) considered two competitors, each selling water from their own
artesian wells along a linear market. In his highly constrained model of a game
between the two competitors, he demonstrated that when each of the competitors
maximized their own profits, an equilibrium would eventually be reached at which
the linear market between the two water vendors would be equally divided with each
customer visiting their closest market.1 ReVelle (1986) envisioned a similar setting,
but defined it on a network of nodes and arcs instead of a linear market. It was
assumed that some of the nodes were places of potential retail location and other
nodes were points of demand. Consider the situation that there are already one or
more firms that offer the same product/service with the same price across this
network. Presumably, the competing facilities have already divided the market
with customers patronizing their closest facility.2 With respect to this network of

1Hotelling (1929) suggested that if the two vendors could change location, they would eventually
reach a price equilibrium while locating close together at the center of the linear market. Here they
would attract an equal share of the customers. However, d’Aspremont et al. (1979) has since shown
that a price equilibrium does not hold when the vendors are sufficiently close together.
2As in ReVelle (1986), we assume here that customers see no difference in price or offerings
between competitors, so they patronize their closest facility. This may not be the case when making
multi-purpose trips, like a person stopping off at a facility on their way to work, or on their
way home.
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demands, existing competing firms, and customer patronage patterns, ReVelle
(1986) posed the following problem:

If a retail operation plans to invest in one of more new facilities, where should the firm locate
those facilities in order to maximize new customer gains?

When any new facility opens, the patronage patterns change. ReVelle (1986)
suggested that, even if one lacks a reliable model of shopping behavior, a firm would
still need some metric to measure the impact of locating any new facilities. He
suggested the “maximum capture or maximum sphere of influence metric”. Essen-
tially, a demand node was considered to be captured from a competitor if a new
facility was located closer to that demand than any existing competitor’s facility.
That is, a site which captures a large number of customers from existing retailers
would be viewed as providing those customers with a closer, more accessible,
facility. ReVelle (1986) noted that if the firm already has some facilities, customers
at their existing facilities should not be counted as being captured if any of their
newer facilities are closer to these existing customers. That is, the number being
captured are customers from other firms because they are now provided with a closer
facility. It should be noted that this problem is related to the Condorcet location
problem, in which the objective is to locate a number of facilities in such a manner
that a majority of people are better off (Hansen and Thisse 1981). Given this criteria,
a solution to the maximum capture problem when 50% or more of the people
(in terms of closeness) are captured meets the Condorcet property.

Consider the following notation:
I ¼ set of demand nodes that are available for capture
J ¼ set of eligible facility sites
i ¼ index of demand nodes
j ¼ index of facility sites
JO ¼ set of currently occupied facility sites
JN ¼ set of sites not currently occupied, but are eligible to have a new facility
dij ¼ shortest distance or travel time between demand node i and facility site j
Si ¼ distance from node i to its closest existing facility

Ni ¼ j 2 JN j dij < Si
� �

~Ni ¼ j 2 JN j dij ¼ Si
� �

p ¼ number of facilities to be located
ai ¼ demand representing potential customers at node i

x j ¼ 1, if a facility is located at node j
0, otherwise

�
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yi ¼ 1, if demand i is now served by a new facility that is closer than Si
0, otherwise

�

zi ¼ 1, if demand i is now served by a new facility exactly at the distance Si
0, otherwise

�

The coverage sets Ni and ~Ni are worth a little more discussion given their
significance here. Ni is the set of available facility sites that are strictly closer to
demand i than its current closest facility. Differing from this, ~Ni is the set of sites
j (occupied or unoccupied) that are equally distant to the closest current facility to
demand i. Building on this discussion, two situations arise for capturing new
customers in a region. Siting a new facility represents a case where it is now closer
to demand than any existing facility of a competitor. The variables yi track this
situation. The second case occurs when a new facility is equally close to demand as
an existing facility of a competitor. The variables zi track this situation. We can now
define the maximum capture location problem (MAXCAP) as:

MAXCAP : Maximize
X
i2I

aiyi þ
X
i2I

0:5 aizi ð7:1Þ

Subject to:

X
j2Ni

x j � yi 8i 2 I ð7:2Þ
X
j2~N i

x j � zi 8i 2 I ð7:3Þ

yi þ zi � 1 8i 2 I ð7:4ÞX
j2JN

x j ¼ p ð7:5Þ

x j 2 0; 1f g 8j 2 JN ð7:6Þ
yi 2 0; 1f g 8i 2 I ð7:7Þ
zi 2 0; 1f g 8i 2 I ð7:8Þ

MAXCAP is structured as originally formulated by ReVelle (1986). The objective,
(7.1), seeks to maximize the total capture of new customers. The objective
counts two types of customers as being captured. The first corresponds to capturing
all customers that are now closer to one of the newly located facilities than any
existing facilities. This is tracked in the first term of the objective. Whenever a
demand node i is counted as closer than any existing facility, then the variable yi ¼ 1
and its population, ai, is included in the amount being captured. The second type of
capture involves those demands that are now equidistant to an existing facility and a

152 7 Capture, Capacities, and Thresholds



newly sited facility. For those demands that now find their new closest facility at the
same distance as an existing facility, it is assumed that the existing facility and new
facility will share those customers equally. Thus, when a demand is equidistant
between their closest new facility and their closest existing facility, the amount
considered captured is one-half of the demand. This reduced level of capture is
accounted for in the second term of the objective, where zi ¼ 1 means a new facility
has been placed at the exact same distance from demand i as an existing facility.
Constraints (7.2) allow variable yi to equal one in value whenever one of more new
facilities have been located among the sites j that are closer to demand i (that is, sites
in the set Ni). Constraints (7.3) allow variable zi to be one in value whenever a facility
is located at the same distance to node i as an existing competitor’s facility (that is,
sites in the set ~Ni). To prevent any double counting, constraint (7.4) restricts capture
to be counted in at most one way, complete capture or shared capture. Obviously, if a
demand is provided both types of capture, the highest valued capture (i.e., complete)
will be selected. Constraints (7.5) indicate that p new facilities are to be sited.
Constraints (7.6), (7.7) and (7.8) specify binary restrictions on decision variables.

This formulation of MAXCAP does have two exceptions that require a more
nuanced structure. Anytime there is a new facility that is closer than an existing
facility, the above model considers that demand as being completely captured,
regardless of the locations of other new facilities. This fits the definition of capture
offered by ReVelle (1986). The above model also handles the case where each
demand has a unique closest existing facility and where at most one new facility is
located that is equidistant to that customer. In this case, the demand would be
considered to be equally shared between the new and existing facilities, unless, of
course, a different new facility is located even closer to capture all demand.

If a demand has two existing facilities the same distance away and the closest new
facility is also located at that same distance, then the market needs to be shared three
ways as the new facility would only capture a third of the demand not half. This is a
nuance that can easily be added into the model objective. Following this logic, in the
unlikely event that a demand has three existing closest facilities, and a new facility is
located at that exact same distance, then the amount captured would be a fourth of
the demand. This too, can easily be added to the objective by modifying captured
fractions as appropriate to the second term of (7.1).

The problem becomes a bit more complex, however, when two new facilities are
located equidistant from a demand that is the same distance away from its closest
existing facility. The above model would consider the capture to be a half, but really
the two new facilities and the existing facility would represent a split of demand into
thirds, yielding a capture of two-thirds and not a half. Such a circumstance requires
further model modification. Consider new variables:

wi ¼ 1, if demand i has a second new facility that is exactly at the distance Si
0, otherwise

�
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These new variables will be one only when two new facilities have been located
equidistant to demand i and where that distance equals Si, the closest distance of an
existing facility. We can modify the objective as follows:

Maximize
X
i2I

aiyi þ
X
i2I

0:5 aizi þ
X
i2I

0:166 aiwi ð7:9Þ

The basic idea is that a second, new, equidistant facility will add to the half
already captured, raising the total to two-thirds, or an additional one-sixth (0.166).
We also need to modify constraint (7.3) in the following manner:

X
j2 ~N i

x j � zi þ wi 8i 2 I ð7:10Þ

as well as introduce a new constraint:

yi þ wi � 1 8i 2 I ð7:11Þ

These additions would also require constraints for enforcing the binary restrictions
on new variables, wi. The idea is that if two new facilities are located equidistant to a
demand that is at that same distance to an existing facility, then the associated
variable wi would be equal to one. Constraints (7.10) will allow both wi and zi to
be one in value when two equal distant facilities to demand i are located at the same
distance as an existing facility serving this demand. If that is the case, the objective
will count two-thirds of the demand as having been captured. If one new facility is
located that is the same distance to demand i as the closest existing facility, then this
constraint will allow only one of the two variables, wi or zi, to be one in value. In that
case, the objective will force zi to be one as it represents an added share of a half, and
not a sixth. Finally, constraints (7.11) prevent wi from being one in value if some
other new facility is located even closer, where the demand is fully captured (i.e.,
yi ¼ 1).3

Chapter 6 introduced several models that were based upon expanding the defini-
tion of coverage. Rather than using a simple metric, say service within a maximal
standard S, to define if coverage has been provided or not, Chap. 6 presented the
GMCLP (general maximal covering location problem) that involved several service
standards and valued the coverage provided differently for each standard. Chapter 6
also demonstrated how these models could be formulated as equivalent p-median
problems, just as was done for the LSCP and MCLP in Chap. 2. ReVelle (1986)
made the same connection for MAXCAP, providing a mechanism for using a

3This nuance is formulated differently than in ReVelle’s original maximum capture paper, as the
constraints proposed by ReVelle (1986) actually force demand nodes where there could be multiple
shares of capture to have at least one new facility located at that distance, clearly an unintended
feature.
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transformed distance matrix in the p-median in order to structure MAXCAP.4 The
above model has been expanded to include the feature that some facilities may
already exist and the extended form of MAXCAP optimizes capture while some of
the existing facilities may be relocated, some may be kept, and others may be added
(ReVelle and Serra 1991). Serra et al. (1999) and Drezner et al. (2002) suggest that
each facility needs to have a minimum level of customers to be viable, a subject that
is discussed later in this chapter. Other extensions have included a hierarchical set of
facilities (Serra et al. 1992), uncertainty of demand (Serra et al. 1996), chance
constraints on capture (Colomé et al. 2003), a weighted network (Eiselt and Laporte
1989), and a form of the problem involving shrinking a facility chain and ceding as
few customers as possible in the process (ReVelle et al. 2007).

Given that we have formulated a model that involves a firm entering a market
with an established competitor, a logical question might be: what if there were two
firms, a leading firm (A) and a follower firm (B), where the leader firm moves into
the market first and the follower firm makes site choices after the leader firm has
made theirs? This is exactly the problem posed by Serra and ReVelle (1994).
Although they recognized that this problem was a Stackelberg game, their model
was that of the leader alone, which is a version of MAXCAP given above. They
recognized shortcomings in their model, however, and proposed two heuristics that
simulated the course of two firms making decisions and where firm A would site in
response to the choices of firm B, providing a mechanism to examine resulting
market share. The idea is that after firm A makes site choices of where to locate,
Serra and ReVelle (1994) would then apply MAXCAP to see what firm B will do in
response. Then, given firm B’s selection, they would test possible moves by firm A
one at a time associated with each facility in order to assess the likely response of
firm B. The idea is to keep those moves that firm Amakes where the move represents
an improvement in the market share for firm A over the previous locational choice as
evaluated after firm B has made their choices. The interest, of course, is to uncover
the best strategy for firm A. This type of heuristic (moving facilities one at a time to
seek out better locations) has proven relatively robust, but has not been tested in any
complete way involving a game between two competitors. It is important to recog-
nize that competitive games, like the above description involving two firms, is a
complex problem that cannot be formulated as a single level optimization problem.
Rather, it has been approached as a bi-level problem. Further discussion is beyond
the scope of this chapter, and remains a promising area for future research, although
several bi-level models are described in Chap. 9 for a different type of covering
problem.

4Note that this equivalent form of the p-median problem cannot handle the case when more than one
new facility is placed at the same distance of a competitors involving a given customer.
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7.3 Capturing/Intercepting Flow

Most of this book involves cases where demand for service coverage is represented
by a set of discrete points or encompassed by a continuous bounded area. However,
these two situations do not necessarily address all types of demand, like that for a
quick service restaurant, a gas station or a commercial vehicle enforcement facility
(truck scale). Much of the potential demand for a restaurant may be reflected by
discrete points, but there is another type of demand or target audience that cannot be
represented by points or areas. This type of demand has been called “flow” or
“traffic” based. Retail location experts are always interested in the amount of traffic,
or flow, that streets experience when making site selection choices. Even though
many firms might make location decisions based upon the population within a
primary shopping zone of 5–7 miles, as an example, firms are also interested in
those sites that experience high traffic volumes. That is, the quality of a potential
facility site can be a function of both nearby demand and volume of traffic that
happens to pass by. Traffic volume is not only of interest for retail site location but is
also of value to transportation planners.

Traffic along a road segment over a day or a week can be can viewed as the sum
of a number of trips being made that traverse that segment. In order to forecast those
areas that will experience traffic congestion, and the need for road investment, better
traffic flow control, etc., transportation planners estimate the travel demand that will
occur between two locations. It is not uncommon for these locations to be transpor-
tation analysis zones, an official reporting unit by the US Census. The interest is in
the traffic that originates in one area that is destined for another area. Given a
network of nodes and arcs representing major streets/roads that connect two loca-
tions, daily traffic volumes indicate some level of interaction between an origin and a
destination. Such interaction follows particular paths through the network. It is
precisely this interaction that may be of value in facility siting.

Consider the following notation:
i ¼ index of network nodes representing origins (entire set denoted I )
k ¼ index of network nodes representing destinations (entire set denoted K )

Q ¼ i; kð Þji 2 I; k 2 Kf g

q ¼ index of origin-destination pairs
tq ¼ volume of traffic that occurs between origin-destination pair q
j ¼ index of potential facility location (entire set denoted J )
p ¼ number of facilities to be sited
Nq ¼ set of locations j that can intercept or capture flow of origin-destination pair q

δqj ¼ 1, if j 2 Nq

0, otherwise

�
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The set Q represents all origin-destination pairs, and through analysis we can
determine which potential facility sites j are capable of capturing/intercepting a
given origin-destination q pair. We call the set of sites that can capture origin-
destination pair q set Nq. This information can then be used to specify an indicator
coefficient, δqj, summarizing whether or not a potential facility j captures/intercepts
the flow of origin-destination q pair.

Let’s say that we wish to locate a quick service restaurant specializing in
hamburgers and we want a site that has the largest number of people traveling
passed it during the week. To do this we would have to identify the site j that has
the largest traffic volume. This can be calculated as follows for each potential site j:

X
q2Q

δqjtq ð7:12Þ

The best site j would be the one with the highest traffic flow, determined by
evaluating (7.12) in each case. But, if we wish to locate two or more hamburger
joints having the highest number of people that pass by at least one of the restaurants
each day, then the problem becomes a bit more complicated. For example, picking
the site that experiences the second highest volume of traffic, using equation (7.12),
may well identify a site with considerable flow in common with the highest volume
site. In this case, the second joint will actually cannibalize sales from the first chosen
site. As the goal is to find a site with the most total traffic flow, we want to keep
cannibalization to a minimum. Consider the following additional notation:

x j ¼ 1, if a facility located at site j
0, otherwise

�

yq ¼ 1, if a flow volume generated by origin-destinationn pair q is captured
0, otherwise

�

Hodgson (1990) structured a model to identify the best locations for capturing
origin-destination flow along the lines described above. This problem is called the
Flow Capture Location Model (FCLM) and formulated as follows:

FCLM : Maximize
X
q2Q

tqyq ð7:13Þ

Subject to:

X
j2Nq

x j � yq 8q ð7:14Þ
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X
j2J

x j ¼ p ð7:15Þ

x j 2 0; 1f g 8j 2 J ð7:16Þ
yq 2 0; 1f g q 2 Q ð7:17Þ

The variable yq is used to identify whether a given flow volume for origin-destination
pair q passes by one or more of the selected facility sites. Even if a volume of flow
generated by a given origin-destination pair passes by more than one of the selected
facility locations, flow capture is counted only once. This means that the objective
(7.13) represents the total traffic volume captured one or more times, so there will be
no double counting of any flows. Thus, once captured there is no incentive to locate
any facilities to intercept that same origin-destination flow again. Constraints (7.14)
specify that flow q can be captured when at least one facility is located at a site
capable of capture. When this occurs yqwill equal one in value. Otherwise the
constraint will force yq to be zero in value, indicating that flow q has not been
captured. Constraint (7.15) specifies that exactly p facilities will be located. Con-
straints (7.16) and (7.17) impose binary restrictions on decision variables.

As discussed in previous chapters, only the location siting variables xj technically
need to be formally specified as binary when a general integer programming solver is
used as the yq variables will take only zero–one values as long as these variables are
bounded to be no larger than 1 in value. One should also recognize the similarity of
this model to that of the maximal covering location problem detailed in Chap. 2. In
fact, it is exactly the same except the form has been defined so that it represents the
problem of capture/intercepting flows instead of covering demand.

The FCLM can be used for a number of different applications, including the
selection of billboards in an advertising campaign and the location of truck weighing
stations as well as siting (or expanding or contracting) a chain of retail establish-
ments. In each of these cases, the problem is to capture or intercept the maximum
amount of flow. Interesting forms of this problem that have been developed and
includes the capture of people who might evade a system of intercepting facilities
like inspection stations (Marković et al. 2015), paths (Gutiérrez-Jarpa et al. 2010),
alternative fuel stations (Hong and Kuby 2016), and a generalized form that
addresses many possible nuances (Zeng et al. 2010).

7.4 Capacities

When solving for a configuration of facilities to cover an area (represented by points
or other spatial objects), the workload of individual facilities is often overlooked. In
many cases, this is a realistic approach. Consider, for example, a system of sirens
designed to warn residents of potential danger (e.g., severe storms, wildfires, torna-
dos, etc.). When locating such a system to cover an area, the main issue is to ensure
spatial coverage so that all can hear a siren. Covering everything spatially as efficient
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as possible is the primary concern. The number of people served by an individual
siren is not limited. The same can be true for other coverage based service systems,
like sensors, cameras, beacons, etc. But, there are systems where the major concern
is to seek high levels of coverage, where service at individual facilities can be
congested; that is, there may be some limit on how many people can be served by
an individual facility. This means that facilities may experience capacity limitations,
and those capacities should not be exceeded at each located facility. To ensure that
capacities will not be exceeded, explicit tracking of demand service by each facility
is necessary. Further, ensuring that the total demand assigned to a given facility does
not exceed its capacity is also required. The fact that we need to track or assign
individual demands to facilities means that any adopted approach must rest on an
allocation process. Accordingly, a covering location-allocation approach is neces-
sary for addressing capacity issues, in contrast to many of the models in this book
that account for coverage in a manner that is not explicit in terms demand service
assignment. For example, the LSCP involves finding the smallest number of facil-
ities needed to cover every demand, but there is no accounting for which facility is
providing service, just that all demand is covered. In fact, some demand will be
covered by many facilities while others will be uniquely covered by only one
facility. Although we know that every demand is covered, it is not possible to
know the amount of demand that is to be served at a facility without adding
allocation variables. This is also true for the MCLP. To illustrate the complications
that can arise, consider Fig. 7.1 showing a solution derived using the MCLP
( p ¼ 13). The facilities in this case serve households, and summarized in Fig. 7.1
is the total demand allocated to each sited facility. Of the 9116 households served by
this solution, the workload for each facility varies considerably. This ranges from a
low of 245 to a high of 1152. There is much variability from the average of 701, and
as a result significant inequities across facilities may be experienced along with the
potential to exceed facility capabilities (e.g., workload of 1152) as well as

Fig. 7.1 Facility sites identified using MCLP with closest assignment workloads indicated
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unreasonably low demand for service (e.g., workload of 245) in some cases.
Variability can be addressed through the imposition of capacities for each facility.
The early efforts to address capacity issues in coverage modeling include the works
of Chung et al. (1983), Smogy and Church (1985), Chung (1986), Current and
Storbeck (1988), and Pirkul and Schilling (1989, 1991).

When introducing capacities into a coverage problem, an allocation process must
be conceived. The way in which we might allocate demand is dependent upon our
assumptions about the service being located as well as the amount of information
concerning demand behavior. There are three classical ways to define how demand
might be allocated amongst facilities: closest assignment (user optimal), equal assign-
ment probability (based upon the principle of insufficient reason), and system conve-
nience (system optimal). These three demand allocation/assignment approaches hinge
on the definition of a system’s operational characteristics. Let’s say that a system
attempts to provide service to a demand by responding to a call for service, like “I want
a pizza in 30 minutes”. If a system of pizza restaurants covers potential demand across
a city within 30 min, and there are overlapping facility service areas, then a central call
center can coordinate the response for service, allocating the order to a particular pizza
restaurant for preparation, baking and delivery. Assuming that several outlets can
satisfy the 30 min standard, then the call center can make the choice as to which of
those outlets will do the task, likely picking the facility that has idle capacity. That is,
the system makes the choice and not the individual customer with the intent of making
the system operate as efficiently as possible. This is a system optimal assignment. If
users, on the other hand, make the choice to call a particular facility for their pizza, or
decide to travel to the facility to order and eat their pizza, then each individual user
makes their choice based upon what maximizes their utility best, not the system. This
represents a user optimal approach. A user optimal approach requires some type of
choice formula, or utility function, which can be used to allocate demand to individual
facilities. Finally, what if we do not know what each individual will do or how they
will make their choice regarding facility assignment coverage. If we have no prior
knowledge about allocation, then any choice set of alternatives for a customer will be
probabilistic. That is, for three facilities covering a given individual demand, as an
example, then the individual is assumed to patronize each facility one third of the time.
This approach is based upon the work of Bernouli and Laplace (Dupont 1977/78) and
is called the principle of insufficient reason. Bernouli, and later Laplace, suggested that
if there was no reason to think that one alternative/event was preferred over another,
then each choice or event will occur equally likely, hence the equal probabilities of
choice in assigning demand to individual facilities in their coverage set. The remainder
of this section discusses coverage models for each of these three approaches.

7.4.1 System Optimal Perspective

We begin with the system optimal approach, where the system decides which facility
will serve a given demand and where all demands must be covered. Most of the

160 7 Capture, Capacities, and Thresholds



literature has adopted this form of allocation when adding capacity restrictions to
covering facilities. Consider the following notation:
i ¼ index of demand points/areas/objects (entire set denoted I )
j ¼ index of potential facility sites (entire set denoted J )
S ¼ desired maximal service standard (travel distance or time)
dij ¼ shortest distance or travel time between demand i and potential facility j

Ni ¼ j dij � S
��� �

Ψ j ¼ i dij � S
��� �

p ¼ number of facilities to be located
ai ¼ amount of demand at i

x j ¼ 1, if a facility is located at j
0, otherwise

�

Cj ¼ capacity of potential facility j
zij ¼ fraction of demand i that is assigned to facility j

The introduction of the zij variables now enable allocation and tracking of service.
Accordingly, a capacitated version of the LSCP is possible, as done in Current and
Storbeck (1988). Here we formulate the system-optimal perspective of the capaci-
tated location set covering problem—system optimal (CLSCP-SO) as:

CLSCP-SO : Minimize
X
j2J

x j ð7:18Þ

Subject to:

X
j2Ni

zij ¼ 1 8i 2 I ð7:19Þ
X
i2I

aizij � C jx j 8j 2 J ð7:20Þ

x j 2 0; 1f g 8j 2 J ð7:21Þ
zij � 0 8i 2 I, j 2 Ni ð7:22Þ

The CLSCP-SO involves locating just enough facilities and associated capacity such
that all demand is served within the capacity limits of each facility, given the
coverage capabilities of each facility. Demand allocation is done using variables
zij, indicating the fraction of demand i served by facility j. The objective, (7.18), is
equivalent to the original LSCP detailed in Chap. 2. Constraints (7.19) require that
the sum of the fractional assignments of demand i add up to one, which means that
100% of that demand will be allocated within the coverage standard (to one or
perhaps several facilities). Of course, all assignments must be within a maximal
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service standard of demand i as well. Constraints (7.20) require that the assigned
demand to each facility j cannot exceed its established capacity, Cj. Observe that if a
site j is not chosen for a facility, then xj ¼ 0 and the effective capacity on the right
hand side of constraint (7.20) will equal zero (the product of zero times Cj). This will
restrict the sum of assignments to that site to zero, effectively ensuring that alloca-
tions are made only to those sites that are selected for facilities. This model assigns
demand at the convenience of the system, such that allocations all fit within the
capacity, even though demand may be served by facilities that are not their closest or
their preferred choice. Constraints (7.21) impose binary integer restrictions on
facility siting variables. Constraints (7.22) indicate non-negativity conditions on
assignment variables, which means that demand can be split and portions may be
assigned to different facilities.

It should come as little surprise that the CLSCP-SO can be cast in a form that
maximizes coverage. The system optimal form of the CMCLP (capacitated maximal
covering location problem—system optimal, CMCLP-SO) was first detailed in
Chung et al. (1983) and Smogy and Church (1985). The formulation is as follows:

CMCLP-SO : Maximize
X
i2I

X
j2Ni

aizij ð7:23Þ

Subject to:

X
j2J

zij ¼ 1 8i 2 I ð7:24Þ
X
i2I

aizij � C jx j 8j 2 J ð7:25Þ
X
j2J

x j ¼ p ð7:26Þ

x j 2 0; 1f g 8j 2 J ð7:27Þ
zij � 0 8i 2 I, j 2 Ni ð7:28Þ

The objective, (7.23), is to maximize total demand covered within the desired
maximum service standard. Constraints (7.24) ensure that each demand fully assigns
for service. Note that allocation of demand to a facility may be beyond the stipulated
service standard. The rationale is that demand beyond the standard may still seek out
service, and as a result needs to be served. Constraints (7.25) impose capacities on
facilities serving demand. Constraint (7.26) stipulates that p facilities are to be sited.
Finally, binary restrictions are indicated for facility variables, constraints (7.27), and
non-negativity is required on allocation variables, constraints (7.28).

An interesting distinction in the CMCLP-SO formulation is that there is no
service standard limit in the assignment of demand. Demand may well be served
beyond the maximum desired service standard, but the goal is in fact to maximize
demand served within the standard. This goal is reflected in the objective, (7.23).
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One may well be tempted to restrict service capacity to only those within the service
standard. Such a constraint form would be as follows:

X
i2Ψ j

aizij � C jx j 8j 2 J ð7:29Þ

Unfortunately, the use of constraints (7.29) would ignore actual service demand
within the system for those beyond the service standard, yet still obtaining service
from the system. Such individuals remain likely and able to be served, just not within
the desired standard.

The CMCLP-SO here is a restricted form of that developed by Smogy and
Church (1985), but is equivalent to that of Chung et al. (1983) (see also Chung
1986). In Chung (1986) there is a suggestion to add the following Balinski type
constraints:

zij � x j 8i 2 I, j 2 Ni ð7:30Þ

The addition of constraints (7.30) in the CMCLP-SO helps to encourage integer
solutions in linear programming based techniques, such as branch and bound. This
would be considered a tighter LP form for this problem. The literature on the use of
Balinski constraints in location-allocation models is quite extensive. Such con-
straints can improve the performance of general purpose software in solving many
types of location-allocation models, especially those with similar structure to that of
the p-median problem (mentioned in Chap. 2).

The extended model formulated in Smogy and Church (1985) was designed to
allocate health personnel, but also ensure service was limited to a manageable
number of patients. The approach made it possible to locate more than one facility
(heath professional) at a given site through the use of an xj variable that was allowed
to be any positive integer in value.

7.4.2 User Optimal Perspective

When operating a set of facilities, like retail or many public services, people will
decide exactly which facility they will visit. That is, rather than the system
dispatching service to the customer/demand, like pizza delivery and or EMS
response, the customer goes to the facility. In the former case, the system can decide
which facility will respond to serve each demand, but in the latter case the user
makes the decision as to which facility they will attend. In many cases that will boil
down to the demand going to their closest facility. This is often observed for
facilities like public libraries, post offices, etc. If we assume a closest assignment
paradigm, we need to ensure that the system has enough capacity at each facility to
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serve all demand while assuming each demand will go to their closest facility. This is
an allocation process called closest assignment.

For any facility j, all sites j
0
that are as close of closer to demand i can be

identified. Formally, we define:

Ωij ¼ j0 dij0 � dij
��� �

This then is the set of potential facility sites as close or closer to demand i, and
includes facility j. Using this notation, we can define the capacitated LSCP with
closest assignment (CLSCP-CA) as follows:

CLSCP-CA : Minimize
X
j2J

x j ð7:31Þ

Subject to:

X
j2Ni

zij ¼ 1 8i 2 I ð7:32Þ
X
i2I

aizij � C jx j 8j 2 J ð7:33Þ

zij � x j 8i 2 I, j 2 Ni ð7:34ÞX
j02Ωij

zij0 � x j 8i 2 I, j 2 Ni ð7:35Þ

x j 2 0; 1f g 8j 2 J ð7:36Þ
zij � 0 8i 2 I, j 2 Ni ð7:37Þ

The CLSCP-CA differs from the CLSCP-SO because of the use of closest
assignment constraints (7.34) and (7.35). These constraints require that demand be
allocated/served by its closest sited facility. Constraints (7.35) ensure that each
demand wholly assigns to their closest facility, or in the case where a demand has
two or more equidistant closest facilities, the sum of that demand’s assignment
across the set of equally close facilities must be one. This may not handle all of
the issues of closest assignment raised in Gerrard and Church (1996) as they
demonstrate how demand can be forced to equally share their assignment across a
set of equally close facilities, in addition to forcing closest assignment.

As before, we can also formulate a closest assignment form of the user optimality
perspective in addressing capacitated maximal coverage. Here the problem involves
maximizing coverage (that is, service within some desired standard of service) while
locating p facilities. An expectation is that demand would go to their closest facility,
even when they are not covered. That is, just because a demand is not covered does
not mean that the demand would not go to their closest facility when they needed
service. Because of this, sufficient capacity must exist within the system to serve all
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demand, however some demand are served within the maximum coverage standard
and some are not.

The closest assignment form of the capacitated MCLP (capacitated maximal
covering location problem with closest assignment, CMCLP-CA) is as follows:

CMCLP-CA : Maximize
X
i2I

X
j2Ni

aizij ð7:38Þ

Subject to:

X
j2J

zij ¼ 1 8i 2 I ð7:39Þ
X
i2I

aizij � C jx j 8j 2 J ð7:40Þ
X
j2J

x j ¼ p ð7:41Þ

zij � x j 8i 2 I, j 2 J ð7:42ÞX
j02Ωij

zij0 � x j 8i 2 I, j 2 J ð7:43Þ

x j 2 0; 1f g 8j 2 J ð7:44Þ
zij � 0 8i 2 I, j 2 Ni ð7:45Þ

The objective, (7.38), is to maximize total demand covered within the desired
maximum service standard. Constraints (7.39) require demand to be completely
allocated to facilities. As was the case for the CMCLP-SO, allocation of demand to a
facility may be beyond the stipulated service standard. Constraints (7.40) impose
capacities on facilities serving demand. Constraint (7.41) stipulate that p facilities are
to be sited. The major distinction of the CMCLP-CA is the inclusion of closest
assignment constraints (7.42) and (7.43). Constraints (7.43) in particular require that
each demand assign to their closest facility, or facilities in situations where they may
be equidistant. Again, one caveat is that particular cases may arise where (7.42) and
(7.43) insufficient (see Gerrard and Church 1996). Binary restrictions are indicated
for facility variable, constraints (7.27), and non-negativity is required on allocation
variables, constraints (7.28).

Little research has actually focused on user optimal situations in coverage
modeling. A notable exception is the work of Gerrard (1996), with the CLSCP-
CA and CMCLP-CA inspired by his research. It should also be pointed out that there
are other forms of user assignment that can be used as well when crafting a user
optimal location covering problem. Potential examples include the incorporation of
assignments through the gravity model and utility based multinomial logit models.
Such models, for all practical purposes, have yet to be developed.
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7.4.3 Equal Fraction Perspective

The third perspective noted for allocation of demand is that of equal probability
when there is insufficient information on demand preferences. The is referred to here
as an equal assignment fraction approach because without additional information,
one must assume that probabilistically there is an equal chance among potential
choices. The idea is that if there are several facilities that can serve a given demand
(within some market range), and if we lack information regarding preferences to
make allocations to these facilities, then we are left with a situation where assign-
ments are equally probable. That is, if a demand location is served within the range
of three facilities, then assuming that one-third will go to one of the facilities, a third
to the next and a final third to the last of the three facilities is the only reasonable
conclusion. As mentioned above, the fractions of assignment will be equal based
upon the principle of insufficient reason first raised by Bernoulli in the 1600s. It has
also been called the principle of indifference and the equal distribution of ignorance
(Dembski and Marks 2009). The model that we present below is inspired by the
work of Balakrishnan and Storbeck (1991), although their work will be discussed
later in the chapter.

The nature of capacitated location models, in general, requires a set of allocation
variables, in addition to variables that represent the selection of specific sites for
facilities. These two components represent the very heart of facility location-
allocation modeling. The models in the previous two sections used allocation vari-
ables, zij, representing each possible assignment of a demand i to a potential facility j.
Somewhat unique in the equal assignment case is that specific allocations of demand
to specific facilities are not necessary. For instance, say demand i is served within the
service standard range S by three different facilities. If we assume that demand i will
be equally split between the three “covering” facilities, then we can determine and
calculate the portions of demand i assigning to each individual facility by just
knowing how many times demand i is covered. Thus, consider the following type
of decision variable:

yki ¼ 1, if demand i is served or coveredð Þ by exactly k facilities
0, otherwise

�

In the case of location set covering, we know each demand would be served at
least once, but it is possible to be served by all sited facilities. Thus, the number of
options is the set K, where K ¼ {1, 2, 3, . . ., kmax}. Given this, the contribution of
demand i for a given facility j providing service coverage is:

X
k2K

1
k

� �
aiy

k
i ð7:46Þ

where the fraction of 1=k represents the portion of demand ai that will be assigned to
facility j given that there are exactly k facilities providing service to demand i. From
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this basis, we can now formulate an equal assignment form of the capacitated LSCP
(capacitated location set covering problem with equal assignment, CLSCP-EA) as:

CLSCP-EA : Minimize
X
j2J

x j ð7:47Þ

Subject to:

X
j2Ni

x j �
X
k2K

k yki ¼ 0 8i 2 I ð7:48Þ
X
k2K

yki ¼ 1 8i 2 I ð7:49Þ

X
i2Ψ j

X
k2K

1
k

� �
aiy

k
i � C jx j 8j 2 J ð7:50Þ

x j 2 0; 1f g 8j 2 J ð7:51Þ
yki 2 0; 1f g 8i 2 I, k 2 K ð7:52Þ

Objective (7.47) is the same as the classic form of the LSCP, where the number of
facilities providing service is minimized. Constraints (7.48) and (7.49) together
define feasible values of yki . Constraints (7.49) indicate that exactly one yki variable
will be equal to 1 for each demand i. Given this, constraints (7.48) account for the
number of facilities that cover demand i exactly k times. With the definition of the set
K involving only positive integers greater than zero, constraints (7.48) do not
allow a given demand to be left uncovered. That is, at the bare minimum, demand
imust be covered at least once. Constraints (7.50) ensure that the assigned demand to
each facility does not exceed its capacity. Constraints (7.51) and (7.52) impose
binary integer requirements.

An extension to address the option of equal assignment for the capacitated form
of the MCLP (capacitated maximal covering location problem with equal assign-
ment, CMCLP-EA) is as follows:

CMCLP-EA : Minimize
X
i2I

aiy
0
i ð7:53Þ

Subject to:

X
j2Ni

x j �
Xp
k¼1

k yki þ y0i ¼ 0 8i 2 I ð7:54Þ
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Xp
k¼0

yki ¼ 1 8i 2 I ð7:55Þ
X
j2J

x j ¼ p ð7:56Þ

X
i2I

Xp
k¼1

1
k

� �
aiy

k
i � C jx j 8j 2 J ð7:57Þ

x j 2 0; 1f g 8j 2 J ð7:58Þ
yki 2 0; 1f g 8i 2 I, k 2 0; 1; 2; . . . ; pf g ð7:59Þ

The CMCLP-EA differs in subtle but important ways than the CLSCP-EA, but
also the other CMCLP formulations. First, objective (7.47) now minimizes the total
amount of demand not covered or served. This is equivalent to maximizing demand
covered, a distinction highlighted in Chap. 2 for the MCLP. Second, constraints
(7.54) have been extended to account for the case where no coverage is provided
within the desired service standard. In particular, either one or more facilities are
located so that a given demand i is covered or the associated y0i variable is forced to
equal 1. This option is also included in constraints (7.55). Third, there is constraint
(7.56) specifying that exactly p facilities are to be sited. Constraints (7.57) establish
capacity limits on sited facilities. In this case, however, only demand that is covered
is allocated to the located facilities. This is in contrast to the assignment of all
demand in the cases of CMCLP-SO and CMCLP-CA. Extension to account for the
allocation of all demand in terms of capacity considerations is possible, but will
require the use of assignment variables. We leave such a variant of the CMCLP-EA
as a topic for future research. Binary integer requirements are imposed in constraints
(7.58) and (7.59) for all decision variables.

7.5 Thresholds

The previous section was devoted to ensuring that located facilities would not be
overwhelmed with demand when there are limits to what each facility can handle.
We addressed three different methods of allocating demand to facilities and formu-
lated coverage models, extensions of the LSCP and MCLP. Collectively, these
capacitated models provide ways for helping to identify facility siting configurations
that address a major issue in planning: functional capacity limits. But there is another
issue that is important in planning a system, dealing with minimum service demand
thresholds at each facility. As discussed in Chap. 1, Christaller (1933) developed
a theory of central places, involving spatial patterns of service/retail centers across a
region. He reasoned that the market area of each central place was limited
to some distance that he called the “range”, a distance beyond which people
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were unwilling to travel for shopping and services. The demand that was enclosed
within the range distance represented the highest potential for a market center, or
even an individual facility. He further suggested that each center needed some
minimum amount of demand or customers in order to be profitable and stay in
business. He called this the “threshold”. Simply put, if the demand within the range
of a site is not as large as the threshold for a given type of facility or service, then that
site is not viable for that type of service. For all practical purposes, many activities
require some threshold of service demand in order to be viable. This includes a
restaurant, a dry cleaning business, a grocery store, etc. Location models, beyond
those developed in central place theory, often ignore the need to address threshold
issues. That does not mean that some approaches have not included constraints on
facility thresholds. For example, the classic warehouse location model of Geoffrion
and Bride (1978) includes capacity constraints as well as threshold constraints.

Perhaps the first covering model developed using threshold constraints was the
regional solid waste planning model of Church (1980). This model was developed
for the Tennessee Valley Authority (TVA), a federal agency. They wanted to carve
up the region into solid waste planning areas or districts. Each district was to have a
designated center, a place where solid waste recycling would be economically
viable. The model that TVA employed divided the region of 201 counties into
districts, by assigning counties to those locations selected as district centers. The
location model sited centers and assigned counties to these centers based on opti-
mizing three different objectives: minimize the weighted distances of possible waste
haulage (to each designated center from the other counties in each district), maxi-
mize the amount of waste that could be economically transported to centers, and
minimize the number of centers that would have an expected volume of waste that
was less than 1000 tons per week. The first objective represents that of the p-median
problem, the second objective reflects a maximal covering goal, and the third
objective amounted to a desired threshold. Specifically, the TVA wanted as many
viable recycling centers as possible, recognizing that a base level of activity (tonnage
per week) was important. The threshold objective was a means for seeking this out
within a multi-objective model. Solutions could be generated on the Pareto frontier
based on all three objectives. The basic idea was twofold: one, covering models can
often be paired with other location objectives resulting in a multi-objective location
model; and two, it is possible to either require that all facilities in a solution meet a
minimum threshold of business or service demand or the number of facilities can be
minimized that do not have an expected demand that equals or exceeds a
minimum threshold. For the remainder of this section, we will assume that thresh-
olds should be enforced everywhere, rather than minimizing the number of facilities
that do not meet a minimum threshold.

Three different approaches for demand assignment were explored in the previous
section. They included system optimal, user optimal, and equal assignment. The
former two approaches utilized capacity constraints (7.20) and (7.33) for the LSCP,

7.5 Thresholds 169



and similarly imposed in the MCLP using constraints (7.25) and (7.40). Given this, it
is easy to structure constraints that enforce minimum thresholds as:

X
i2I

aizij � T jx j 8j 2 J ð7:60Þ

where Tj represents the minimum required threshold of service demand at facility
j. One could readily add constraint (7.60) to the CLSCP-SO, CMCLP-SO, CLSCP-
CA or CMCLP-CA models in order to address threshold requirements.

Capacity constraints (7.50) and (7.57) for the equal fraction approaches also
suggest a straightforward structure for imposing thresholds:

X
i2I

Xp
k¼1

1
k

� �
aiy

k
i � T jx j 8j 2 J ð7:61Þ

Accordingly, the CLSCP-EA and CMCLP-EA could be extended by adding
constraints (7.61) in order to address threshold requirements.

A variant of the CMCLP-EA involves substituting threshold constraints (7.61) for
capacity constraints (7.57), yielding a form of the McTHRESH model of
Balakrishnan and Storbeck (1991) developed for market location. Other covering
based models that have involved threshold constraints include the works of Carreras
and Serra (1999), Hong and Kuby (2016) and Drezner et al. (2002). Another
interesting approach involving covering models and thresholds is that of Storbeck
(1988, 1990) where theoretical central place patterns were analyzed. Storbeck (1988,
1990) was able to demonstrate that the central place patterns of Christaller (1933)
could be generated using a protected threshold covering model applied to a uniform
triangular lattice of demand and facility points.

When developing covering models for specific applications, both capacity and
threshold constraints may be necessary. The issue at hand is that when such
conditions are added to a covering problem, additional allocation variables or
coverage service level variables are likely needed in order to track the exact demand
loading on each sited facility. This often requires additional constraints as well.
Altogether, the models are generally more difficult to solve using general purpose
mixed integer programming software, possibly to the extent that exact solution is not
possible. One of the reasons for this is that capacity and threshold constraints are a
form of knapsack constraints. Knapsack-type constraints usually encourage frac-
tional values among the allocation variables in a linear programming relaxation. This
usually results in much larger branch and bound trees in the search for an optimal
solution, and concomitantly longer solution times. As a result, development of
specialized solution approaches has been necessary (see for example Carnes and
Shmoys 2008).
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7.6 Franchise Territory Design

Problems that deal with locating retail and service facilities, like a franchise opera-
tion (e.g., 7-Eleven, Carl’s Jr., Dairy Queen, Subway, etc.), share a lot in common
with Christaller’s central place theory. In fact, several covering models have been
developed to analyze central place patterns as well as locate franchise facilities.
Although Christaller (1933) was principally interested in the location of villages,
towns, and cities, where each of them had a variety of services and types of retail
establishments, the same issues apply whether it is an individual facility being
located or the emergence of a town or city.5 We concentrate here on the issues of
locating a set of facilities across an area, and in particular franchisee facilities. It is
important to remember the concepts of threshold and range as they apply to a given
type of business. The range represents the furthest extent to which a facility might
capture or attract demand/customers and threshold represents the minimum amount
of demand (or number of customers) such that an individual facility is viable/
profitable. One can think of the types of allocation (system optimal, user optimal,
and equal assignment) as approaches to estimate the amount of demand that will be
served by a facility. This will need to be as much or larger than the threshold for that
type of business. In fact, we can structure models for multiple retail facility location
using the constraints and variables already used. For example, the CMCLP-CA
could be modified such that the capacity constraints, (7.40), are removed and
threshold constraints (7.61) appended, giving us a retail chain facility location
model. This would be an alternative to the McTHRESH model discussed above.

There is, however, an interesting problem that arises when retail establishments
are franchisee owned and franchisor licensed. Wherever they are located, the
franchisor would like to ensure that each facility maintains a threshold of demand.
What is particularly interesting and important is that there are two perspectives, one
of the franchisor who wants to locate and license as many viable franchisee facilities
as possible, and the other perspective of the franchisee who hopes for a large market
area and customer base with as few other facilities (or none) of the same franchisor in
the region as possible. That is, the franchisor wants a lot of facilities in order to
saturate a market area and the franchisee wants to see as few as possible. This
problem was first raised by Current and Storbeck (1994), which they termed FVF
(franchisor vs. franchisee).

5To be complete, Christaller (1933) suggests a hierarchy of centers and types of goods. For instance
a village may have a grocery store, a hardware store, and a gas station, whereas a town will offer all
of those goods as well as many other facilities, like clothing stores, automobile dealerships, and a
hospital. Cities have an even larger set of services, including all of those offered in villages and
towns, but in addition even “higher-ordered” goods and services. These include such businesses as
medical specialists and high-end jewelry stores. It is important to note that Church and Bell (1990)
have demonstrated that co-location of competitors can exist in stable market central place config-
urations, so that, depending on the nature of the business, competing firms will locate in the
same area.

7.6 Franchise Territory Design 171



The FVF problem recognizes the tradeoff between the perspective of the franchisor
wanting many facilities and the franchisee wanting as few as possible. Consider the
following additional or modified notation:

δij ¼ 1, if demand i is within the range of potential outlet location j
0, otherwise

�

θij ¼ 1, if demand i is within the threshold of potential outlet location j
0, otherwise

�

x j ¼ 1, if facility location j is chosen for a franchisee outlet
0, otherwise

�

ri ¼ 1, if demand i is not within the range of a facility
0, otherwise

�

ti ¼ 1, if demand i is not within the threshold of a facility
0, otherwise

�

ei ¼ number of additional facilities for which demand i is within the range
w1, w2, w3 ¼ importance weights for three different objective terms.

The Franchisor versus Franchisee (FVF) model can be structured as:

FVF : Minimize � w1

X
j2J

x j þ w2

X
i2I

aiti þ w3

X
i2I

aiei ð7:62Þ

Subject to:

X
j2J

δij x j � ei þ ri ¼ 1 8i 2 I ð7:63Þ
X
j2J

θij x j þ ti ¼ 1 8i 2 I ð7:64Þ

x j 2 0; 1f g 8j 2 J ð7:65Þ
ti 2 0; 1f g 8i 2 I ð7:66Þ
ri 2 0; 1f g 8i 2 I ð7:67Þ

The objective, (7.62), of the FVF contains three terms, each weighted by an
importance weight reflecting the relationship of one to the others. The first term is
the franchisor’s main goal of maximizing the number of outlets being located. The
second term attempts to minimize the number of people who are not in the threshold
of a facility. This, too, is an objective of the franchisor, who would like nothing
better than having all demand served within the threshold of a facility. The third term
of the objective minimizes the total demand that experiences multiple facilities
outside the threshold distance but inside the range distance. This represents the
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objective of the franchisee, who wishes to keep competition within the market range
to be at a minimum and potentially increase profits beyond the threshold of viability.
Constraints (7.63) and (7.64) make use of coverage matrices, δij and θij, indicating
demand within the range and threshold standards. They are derived in advance and
represent spatial information and relationships structured in the model. Constraints
(7.63) effectively track how many facilities are in the range of a demand. Similarly,
constraints (7.64) account for whether a demand is part of the threshold demand of a
facility. Notice that constraint (7.64) also ensures that demand iwill not be within the
threshold of two or more facilities, thus making the facility viable in terms of a
minimum threshold of customers. But, if all customers are within a threshold of a
facility, then the market will be saturated with viable facilities (the goal of
a franchisor). One might consider the first two objectives as being complementary,
with potential to omit the second objective. But, Current and Storbeck (1994) argue
that the second term can be used to tease out alternate optima when trading off the
first and third objectives, conceivably an important issue.

7.7 Summary and Concluding Comments

Many models have been applied in facility location by retail chains, and they are
often considered proprietary. Although books such as Location, Location, Location:
how to select the best site for your business by Salvaneschi (1996) provide many
details on the issues of site choice, the overall approach that is suggested could be
classified as a guided seat-of-the pants process, once potential trade or market
demand has been determined within 10 or 15 min of travel time form a potential
location. Guides such as this book and others often neglect to state exactly how to
address the multiple facility location problem, where sales at one facility might be
cannibalized by another. Such guides also often lack good methods to estimate
facility revenue, given a potential customer base within certain travel times to a site.

Large companies today may have a GIS department where volumes of data on
customer purchases can be analyzed within a spatial context. The type of data that is
collected by a retail chain includes a wealth of customer information, even knowing
who comes to a facility and uses a coupon cut from a newspaper or printed from an
online website. This data can and is being used in sophisticated ways to develop
better patronage models that earlier works such as those in Salvaneschi (1996) did
not anticipate. These companies are using models to select multiple facility locations
simultaneously, as compared to the one at a time approach discussed by Salvaneschi
(1996). Hodgson et al. (1996) apply the FCLP in such an extended manner, utilizing
a road network and associated origin-destination travel in Edmonton, Canada.
Spaulding and Cromley (2007) detail application of MAXCAP integrated into a
GIS framework.

Estimating how many customers will be attracted to a new facility as compared to
existing competitor facilities has been a problem that many researchers have
attempted to tackle with varying degrees of success. Reilly (1929) was one of the
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first to delineate market areas using a gravity model. Market boundaries were
assumed to be those points at which half of all customers travel to one competitor
and half travel to the other competitor. The gravity model, and other models like a
multinomial logit model, can take into account the differences in facility size as well
as travel costs and other amenities. The sophistication of modeling customer demand
has advanced considerably in the last 10 years in the era of big data. Customer
demand models are now based upon first dividing the population into different
lifestyle profiles, e.g., young married couples. Each type of facility attracts different
proportions of people based upon their profiles, e.g., affluent-retired. Thus, the
capture of demand can be modeled with a more refined approach (Benati 1999).
But, one can still view this as a customer capture problem, and the model structures
reviewed here can include more refined estimates of what is being captured. It is also
possible to extend the capture process from complete capture and exact sharing of
customers with portioning schemes a company experiences with their competitors.
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