
Chapter 5
Anti-cover

5.1 Introduction

The anti-covering location problem (ACLP) is a well-recognized coverage-based
dispersion model. Admittedly, reaching this conclusion requires a little work, but in
fact this problem is related to the node packing, vertex packing, stable/independent
set and r-separation problems, with considerable attention being devoted to each of
these related problems (see Padberg 1973; Erkut 1990; Nemhauser and Sigismondi
1992; Murray 1995; Erkut et al. 1996; Murray and Kim 2008; Niblett 2014; Niblett
and Church 2015). The name anti-cover can be attributed to Moon and Chaudhry
(1984) who attempted to distinguish it from other well-known coverage problems.
The name, therefore, reflects a sort of opposing goal compared to the set covering
problem. The anti-covering location problem seeks to maximize the total weighted
benefit of facilities sited in a region, doing so in a manner that ensures at least a
minimum pre-specified distance or travel time between facilities and demand is
maintained. If the benefit is the same for each potential facility location, then this
is equivalent to maximizing the number of facilities that can be sited while
maintaining minimum separation restrictions between all facilities and demand or
between a sited facility and all other sited facilities. Of course, the goal of the
location set covering problem detailed in Chap. 2 is to minimize the number of
facilities needed for complete coverage of all demand, assuming the costs for
selecting facilities is the same for every potential site. In this sense, then, the two
problems have contrasting intents.

A host of practical planning contexts are recognized where the ACLP reflects
goals and planning needs, including community impact assessment, service and
trade area delineation, safety and security, environmental protection, military
defense, forestry, water well design, habitat carrying capacity, etc. Few would
argue the importance of siting nuclear facilities away from people and recreational
spaces. A retail outlet would certainly not want another franchisee nearby that
impinges on their consumer market area, possibly driving them out of business.
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Positioning two munitions depots next to each other would not be strategically sound
as an accident, fire or attack at one would likely ignite the other. Excessive distur-
bance of a woodlands, forested area or watershed that harms flora and fauna is likely
unsustainable. There are many other examples as well, all highlighting the signifi-
cance of the ACLP across a range of application domains.

The literature associated with anti-covering location can be traced back to at least
Berge (1957) who provides an early description of the stable set problem. Edmonds
(1962) details the internally stable set or a packing problem, seeking the largest
subset of vertices on a graph of vertices where no two vertices are joined by an edge.
In this sense, the anti-covering location problem is nothing other than a node/vertex
packing problem, or a stable/independent set problem, applied in a highly geo-
graphic context. This geographic context is highlighted in Moon and Chaudhry
(1984), Murray (1995), Murray and Church (1996), Erkut et al. (1996) and Church
and Murray (2009). The significance of the geographic context is that subsequent
evaluation is necessary to transform place and distance into a network of nodes and
arcs. With this, the node packing problem (or any other naming convention) arises.
For convenience these inter-related problems are simply referred to as the anti-
covering location problem.

5.2 Separation Context

The general problem of interest in this chapter involves the need to simultaneously
site multiple facilities of the same type that provide some sort of service. Such a
facility might be a power generation plant, like a nuclear reactor or coal fired
operation. In this case the facility is often viewed as noxious, with many people
and activities preferring not to be too close by. Moreover, if a facility is nearby, it is
clearly undesirable to have other facilities nearby as well since such a possible
concentration of facilities increases exposure and risk. Another example of a facility
fitting the context here is one involving waste processing, like a dump, recycling
center or transfer station. Some view these facilities, too, as being noxious or
obnoxious. Alternatively, the facility might be a restaurant or outlet, one that is
part of a regional or national chain. Of course, any outlet of the chain would not want
their other restaurants too near as it would erode market share. The facility may also
be part of military or defense services, such as a missile silo, fuel/munitions depot,
etc. Siting these too close together could prove fatal, increasing system vulnerability
to an attack or accident. As noted above, there are many, many more types of
facilities possible where the common underlying goal is to locate many of these
facilities to enhance service provision or access, but recognition that spatial separa-
tion is necessary for various reasons. Based on this, the anti-covering location
problem can be stated as follows:
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Select multiple facilities so as to maximize the total benefit of the facilities sited in a
region while ensuring that there is a pre-specified minimum distance or travel
time between facilities or between facilities and demand

Note that this problem definition includes two possibilities for enforcing separa-
tion: (1) keep each sited facility at least a minimum distance or travel time from all
other facilities, or (2) keep each sited facility at least a minimum distance or travel
time away from demands. It is also possible to consider the case where both types of
separation standards must be met, that is maintain separations between facilities and
between facilities and demand. Such a distinction has been highlighted in Francis
et al. (1978) and Moon and Chaudhry (1984).

5.2.1 Separation to Avoid Concentration Around Demand

One interpretation of separation is that there is demand for a facility to provide
service as long as there is no concentration in any one area (see Grubesic and Murray
2008; Church and Cohon 1976). To this end, one facility in or near a neighborhood is
(reluctantly) deemed useful and needed in order to ensure access to the goods and
services provided, but more than this would be considered excessive or even
dangerous. There are many examples, many of which are NIMBY (not in my
backyard) like. Perhaps most prominent are waste processing and recycling stations.
Everyone producing waste needs the facility, implicitly and explicitly, but would
prefer they be located in another nearby community. Certainly more than one would
be considered unacceptable. Similar situations can be observed for rehabilitative and
other social services. We need them, but only sparingly due to their localized impacts
and/or negative externalities.

To illustrate this particular form of separation, consider Fig. 5.1. A neighborhood
area is shown around one location, demand i. Of interest then in this situation is
ensuring that no more than one facility be sited in the neighborhood. Imposing this in
a model seeking to identify the best locations for facilities therefore requires
stipulating conditions that prohibit multiple sited facilities in an area. This is
generally done with constraints. The important point is that the constraints would
be associated with each demand area, relating facility siting to the impacts on or in
neighborhoods.

5.2.2 Separation Between Sited Facilities

In contrast to attention on demand, a second interpretation of separation is to focus
solely on the facilities being located (see Zeller et al. 1980; Mealey et al. 1982;
Downs et al. 2008; Ratick et al. 2008). Specifically, the intent is to ensure physical
separation between sited facilities. This orientation too can be driven by the need to
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minimize local area impacts. For example, environmental impacts associated with
forest harvesting should be dispersed, with no two neighboring areas simultaneously
scheduled for harvest (Thompson et al. 1973; Mealey et al. 1982; Murray 2007).
Alternatively, for safety and security facilities may be prohibited from being too
close to each other. Moon and Chaudhry (1984) discuss military installations
separated in order to guard against simultaneous enemy/terrorist attack. Ratick
et al. (2008) site backup facilities housing critical documents, data, emergency
supplies, etc., providing protection in the event of a disaster at the main facility.

To illustrate this second situation, consider Fig. 5.2. An area is depicted around
one of the sites, facility j, within which no other facility may be sited. In contrast with
Fig. 5.1, the area of emphasis is now around the facility, not the demand. What is
challenging in this case is that we do not know in advance which locations will be
selected for facility placement. This means that restrictions must be structured on a
conditional basis. That is, if a site is selected for facility placement, then no other
facility may be sited that would be too close. Conditional restrictions are typically
structured and imposed using constraints in the model. The important distinction in
Fig. 5.2 is that the constraints are associated with potential facility sites, in contrast to
constraints associated with demand sites in Fig. 5.1.

Fig. 5.1 Separation to avoid concentration around demand
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5.3 Model Construct

An integer programming based formulation of the anti-covering location problem
(as well as vertex packing, the r-separation problem, and other equivalent problems)
is possible once spatial processing, analysis and evaluation is carried out. Without
loss of generality, we limit the discussion to the case where separation between sited
facilities is of concern (Fig. 5.2). Consider the following notation:

j (and k) ¼ index of potential facility sites (entire set J )
αj ¼ benefit associated with locating a facility or allocating an activity at site j
djk ¼ distance or travel time between potential facility sites j and k
M ¼ large number
r ¼ minimum required separation
Ωj ¼ {k|djk � r}

X j ¼ 1 if facility located at site j
0 otherwise

�

This notation reflects geographic processing that is necessary, typically accom-
plished using GIS, in order to structure the ACLP. First, one must identify all
potential facility sites that would be too close to a facility at site j, and they would
be members of the setΩj. This is based on the separation requirement imposed, r, but
also on the evaluation of proximity between potential facility sites, djk. Second, one
must also derive the benefit associated with siting a facility at a potential site j, αj.

Fig. 5.2 Separation between facilities
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This might be expected income or return on investment, but also could be safety,
security, diversity, etc.

With this information and the above notation, a classic ACLP formulation can be
specified (Moon and Chaudhry 1984, Erkut 1990):

ACLP1 : Maximize
X
j

α jX j ð5:1Þ

Subject to:

MX j þ
X
k2Ω j

Xk � M 8j ð5:2Þ

X j ¼ 0; 1f g 8j ð5:3Þ

The objective, (5.1), is to maximize the total weighted benefit of facilities located.
Spatial limitations on facility configuration are imposed in constraints (5.2), as
locating a facility at site j implies that no nearby or conflicting locations may be
selected. The core of this model is the set of restriction constraints (5.2). Note that if a
given Xj ¼ 1 then the value MXj ¼ M, which means that for all members k of set Ωj,
their associated Xk must equal zero in value. Constraints (5.3) impose binary integer
restrictions on decision variables.

One can depict this decision making problem graphically, using a network of
nodes and arcs. The nodes represent the potential facility sites and the arcs connect
those sites that are deemed too close. Figure 5.3 shows a hypothetical case of 29 land
parcels in an area, among which we seek to select as many parcels as possible as long
as they do not share an edge. Think of this as a land use problem found in the forest
industry where the parcels that we select will be harvested. Standards prevent us
from harvesting any two neighboring parcels. Figure 5.4 depicts the network inter-
pretation, where parcels are represented as nodes and arcs are between any two
nodes (parcels) that would violate intended spatial separation if simultaneously
selected for harvesting. In this case there are 29 nodes and 63 arcs. The intent is to
select the greatest total weighted collection of nodes (parcels in this case) without
any two selected nodes sharing an arc.

While the above proximity definition of separation is based on sharing an edge,
other forms are possible as well, such as a minimum distance of separation. But, a
prominent interpretation is adjacency, that two facility sites/units sharing a common
edge or point are considered too close and therefore cannot be simultaneously
selected like in the forestry example. Using the above model notation, we can
introduce the restriction of not being able to share a boundary between two selected
parcels as follows. Let djk ¼ 0 if sites j and k are adjacent and 1 if not. If r ¼ 0, then
proximity based on adjacency would be imposed given this definition. The practical
interpretation can be illustrated by considering Fig. 5.5 that depicts nine sites, and
the network that would result is shown in Fig. 5.6. In this case, there are 16 arcs that
reflect spatial separation restrictions in the interpreted network. Again, the intent is to
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select the maximum total weighted collection of nodes without selected nodes
sharing a common arc.

5.4 Mathematical Structure

There has been considerable interest in the structure of constraints (5.2) for imposing
spatial limitations. Murray and Church (1997) and Church and Murray (2009) refer
to (5.2) as a neighborhood adjacency constraint. The reason for this is somewhat
intuitive as the set Ωj represents those potential facilities in the spatial separation
neighborhood of potential facility site j. Considerable interest in the structure of
constraints (5.2) arises because the ACLP, (5.1–5.3), is recognized as being com-
putationally challenging to solve. Moon and Chaudhry (1984), Nelson and Brodie
(1990), Torres-Rojo and Brodie (1990), Yoshimoto and Brodie (1994), Murray
(1995), Murray and Church (1995a, b, 1997) and Erkut et al. (1996) all discuss the
difficulty of solving even small planning problem applications. This has everything

Fig. 5.3 Commercial parcels to select one or more facility sites
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to do with the inherent mathematical structure associated with constraints (5.2) that
impose spatial separation between sited facilities. Simply put, the structure of
constraints (5.2) tends to require significant computational effort to solve to opti-
mality, as this structure does not lend itself to natural integer-optimal solutions. The
remainder of this section demonstrates that alternative formulations of the ACLP are
possible. The significance is that such alternatives have very desirable mathematical
properties that enhance their use, especially using commercial integer programming
solvers. Thus, not only is it often possible to formulate a particular problem
differently, but there may be good reason for considering such alternative models.

5.4.1 Cliques

An important concept in mathematical programming is a facet inducing construct
known as a clique (Padberg 1973; Nemhauser and Trotter 1975; Nemhauser and
Wolsey 1988). For our purposes here, members of a clique are mutually in conflict
with each other. For our problem here, we want to ensure that selected facility sites

Fig. 5.4 Network representation of commercial parcels and separation restrictions
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are spatially separated based on an established criteria or standard. Within this
context, a clique is a set of two or more members, facility sites, where at most one
member may be selected without violating some required facility separation. Relat-
ing this to the ACLP formulation above, the implication is that it is possible to
identify groups or sets of potential facility sites that share mutual separation require-
ments. For example, suppose there are three potential facility sites, {1, 2, 3}, and
they are all too close to each other, where the selection of one of these sites precludes
the selection of any of the other two. More specifically, the decision variable for each
potential facility site, X1, X2 and X3, gives rise to the condition that at most one may
be selected. Since the decisions are binary, a clique constraint for this set follows:
X1 + X2 + X3 � 1.

Let us suppose then that it is possible to identify all necessary clique constraints to
impose all separation restrictions for a particular problem. This could be used to
change the mathematical structure in the ACLP. Consider the following additional
notation:

l ¼ index of set of cliques (entire set L )
Φl ¼ set of potential facility site members of clique l

Fig. 5.5 Sites for activity
selection
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All that remains is to replace constraints (5.2) in the above formulation of the
ACLP with clique constraints. The result is as follows:

ACLP2 : Maximize
X
j

α jX j ð5:4Þ

Subject to:

X
k2Φl

Xk � 1 8l ð5:5Þ

Fig. 5.6 Network resulting from adjacency separation
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X j ¼ 0; 1f g 8j ð5:6Þ

The objective, (5.4), remains to maximize the total weighted benefit of facilities
located. The spatial separation between sited facilities is imposed in constraints (5.5)
through the use of cliques. Constraints (5.6) impose binary integer restrictions on
decision variables.

A special case of the clique is a pair of potential facilities that are too close to each
other. Consider clique l consisting of potential sites 1 and 2, which means that
Φl ¼ {1, 2}. The associated constraint is X1 + X2 � 1, a subset of the above clique
involving potential facility sites 1, 2 and 3.

An entire set of pair based cliques can readily be specified using existing notation:

X j þ Xk � 1 8j, k 2 Ω j ð5:7Þ

This pairwise form is appealing because it is simple, and accounts for all separation
conditions originally imposed using constraints (5.2). A potential negative is that the
use of this constraint structure, pairs, will result in a relatively large number of
constraints, which too has proven to increase computational difficulty when actual
planning problems are solved. For superior mathematical structure, it is far more
beneficial to have individual cliques with the largest possible number of members
(Murray and Church 1997). That is, we would like |Φl| to be a big number, but
ultimately the size of cliques is predicated on spatial separation requirements and
associated structure that results.

Approaches to identify cliques can be found in Bron and Kerbosch (1973) and
more recently Tomita et al. (2006) and Cazals and Karande (2008), among others.
For use in the ACLP, the work of Jones et al. (1991), Murray and Church (1997),
Goycoolea et al. (2005) and Murray and Kim (2008) offer practical approaches that
have proven to be effective. The use of cliques in the ACLP or model extensions has
proven to be beneficial in a number of ways, enabling problems to be solved faster as
well as larger problem instances to be considered. A potential issue is that identifying
a complete set of needed cliques may be computationally expensive. Theoretically,
identifying a complete set of cliques involves enumerating all possible cliques.
Given this, alternative constraint structures continue to be sought, offering the
potential to provide good mathematical structure without excessive computational
overhead to identify all cliques.

5.4.2 Hybrid

Recognizing that cliques, (5.5), may result in too many constraints or require too
much time to identify, and that the structure of the neighborhood constraint, (5.2),
has poor mathematical properties for successful solution using a commercial solver,
Murray and Church (1997) explored an alternative constraint structure for imposing
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spatial separation (see also Erkut et al. 1996). They proposed a hybrid form that
combined a maximal clique constraint associated with each potential facility site
along with a modified neighborhood constraint structure. Consider the following
additional notation:

bL ¼ reduced set of cliques
�bL � L

�
bΦl ¼ set of potential facility site members in clique lbΩj ¼ reduced set of neighbors, k 2 Ω j k&j=2bΦl for any l 2 bL���n o
bλj ¼ smallest coefficient necessary to impose restriction associated with bΩj

Effectively, this reflects an attempt to avoid an excessive number and/or exces-
sive search times in clique identification. This approach also adds important math-
ematical structure to the model formulation and improves the success in solving a
problem using standard techniques. Structure is added by adding the best cliques
(largest in size) to the original model (5.1)–(5.3). Then, whatever spatial separation
conditions are not imposed in the identified sub-set of clique constraints will be
imposed using neighborhood like constraints. The tradeoff here is that mathematical
structure is being sacrificed somewhat in order to reduce pre-processing effort, while
at the same time producing a tighter formulation. The ACLP model formulation with
hybrid constraints, a combination of clique and neighborhood, is as follows:

ACLP3 : Maximize
X
j

α jX j ð5:8Þ

Subject to:

X
k2bΦ l

Xk � 1 8l ð5:9Þ

bλjX j þ
X
k2bΩ j

Xk � bλj 8j�bΩj ¼ ∅
� ð5:10Þ

X j ¼ 0; 1f g 8j ð5:11Þ

The objective, (5.8), remains as before, to maximize the total weighted benefit of
facilities located. The spatial separation between sited facilities is now imposed
using two sets of constraints, (5.9) and (5.10). Constraints (5.9) are based on cliques,
but do not likely constitute a complete set of cliques. To supplement constraints
(5.9), whatever conditions that are not imposed by the subset of all clique constraints
are enforced by the neighborhood constraints (5.10). Finally, constraints (5.11)
impose binary integer restrictions on decision variables.

Murray and Church (1997) offered an approach for identifying hybrid constraints
in forest planning. In the forestry context, the size of the largest cliques tends to be
quite small. Murray and Kim (2008) developed a more general hybrid constraint set
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identification approach based on the use of GIS. Thus, a complete set of hybrid
constraints is computationally efficient to identify, and their associated mathematical
structure in the ACLP has proven to be effective for problem solution.

5.4.3 Theoretical Bounds

Up to this point, an argument has been made that constraint structure can impact the
solvability of a model when applied to address a particular planning problem/
situation. Why does this prove to be true? Taking as an example the ACLP, it is
an integer programming (IP) problem due to the integer requirements on decision
variables. In fact, it is a special case of an IP as it is has specific integer requirements
that values be binary (0 or 1). The ACLP can also be considered a linear program
(LP) with added restrictions on decision variables. The objective and major con-
straints are linear functions. It is of little surprise then that a common approach for
solving an IP, and the ACLP, is based on LP. Specifically, LP with branch and bound
is often used to solve an IP (Nemhauser and Wolsey 1988). Avoiding too much
detail, this approach solves a series of LP relaxations of the IP (integer requirements
temporarily ignored). The hope is that all decision variables in the LP turn out to
satisfy all integer requirements. If not, which is likely, then the process of branching
and bounding proceeds. At each branch linear constraints are added that serve as a
cut, attempting to resolve each fractional decision variable in the associated LP
relaxation. The process continues, branching off on a fractional decision variable
present in a solution to a LP relaxation, until the optimal IP solution can be inferred.

With this in mind, we can now establish the significance of alternative formula-
tions of the ACLP in a more formal manner. Assuming that the objective function of
the ACLP is denoted using Z, the total weighted benefit, we can understand the
relationships between the linear relaxations of the various ACLP formulations.
Empirical evidence based on Moon and Chaudhry (1984), Erkut et al. (1996),
Murray and Church (1997) and Murray and Kim (2008) suggests the following:

Z∗ � ZLP ACLP2ð Þ � ZLP ACLP3ð Þ � ZLP ACLP30ð Þ � ZLP ACLP1ð Þ ð5:12Þ

where Z∗ is the optimal IP objective value, ZLP(ACLP2) is the optimal LP solution to
the relaxed model using clique constraints, (5.5), ZLP(ACLP3) is the optimal LP
solution to the relaxed model using hybrid constraints, (5.9) and (5.10), ZLP(ACLP3

0
)

is the optimal LP solution to the relaxed model using pair based clique constraints,
(5.7), and ZLP(ACLP1) is the optimal LP solution to the relaxedmodel using neighbor
based constraints, (5.2).

An optimal solution to a relaxed LP provides a bound on the best possible
solution meeting the IP conditions (Nemhauser and Wolsey 1988). In this case,
the ACLP is a maximization problem, so the optimal IP solution, Z∗, will be less
than or equal to any LP relaxation of the model formulation. Generally speaking, the
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tighter the LP bound, the more likely an all (or nearly all) integer solution will result.
The implication in solving an IP using LP with branch and bound is that less
computational effort will be required for solving an IP when the best possible LP
relaxation is utilized. Thus, a facet inducing construct is one or more constraints that
enhance model solvability by making the feasible LP region closer to the feasible IP
region, thereby decreasing (or eliminating) branching and bounding.

Returning to relationships established in (5.12), it should be observed that ZLP

(ACLP1) provides the worst LP bound, explaining why in practice it has proven to
be more difficult to solve an ACLP with neighborhood based spatial separation
constraints. Similarly, the comparatively better ZLP(ACLP2) bound supports why in
practice the ACLP with clique based spatial separation constraints has proven very
good for successful solution with the least amount of computational effort.

5.5 Relaxations and Extensions

One of the things that has been noted throughout the book, and in this chapter in
particular, is that models can be formulated, reformulated, extended and modified in
various ways. This is most certainly true of the ACLP, where its underlying
mathematical structure is part of larger, more detailed planning model formulations.
An example is forest harvest scheduling models where the decisions involve not only
where but when as well (Thompson et al. 1973; Kirby et al. 1986; Vielma et al.
2007). This adds a temporal dimension to the ACLP as well as other supporting
considerations, like limits on associated outputs in any given time period. Recogni-
tion of the mathematical relationship to the ACLP (and node packing) has ultimately
resulted in improved methods for solving more detailed forest planning problems.
There are many other examples as well, with the general point being that making the
connection can be important in many ways, such as a more efficient formulation, a
model that is easier to solve, enabling larger planning problems to be considered, etc.

While a detailed and lengthy review will be not be provided here, it is worthwhile
to observe aspects of how the ACLP could be modified to support problem variants.
The remainder of this section reviews a basic relaxation as well as an extension.

5.5.1 Relaxation

The suggestion raised in Hochbaum and Pathria (1997) is of interest in weighing the
relative merits of spatial configuration against the economic returns associated with
harvest activity. That is, certain restrictions between neighboring sites might be
better to relax, or not imposed, if the overall economic return is significantly
enhanced. The question of course is which restrictions and how to assess relative
tradeoffs. To address this, Hochbaum and Pathria (1997) formulated what they
termed the generalized independent set problem. This can be conceived of as a
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relaxation of the ACLP, or independent set problem, because it explicitly structures a
way to allow sites in conflict to be selected simultaneously but accounting for
benefits gained by doing so. Consider the following additional notation:

βjk ¼ penalty for not imposing separation between facilities sited at j and k

Y jk ¼ 1, if restriction between potential facility sites j&k is relaxed
0, otherwise

�

A penalty, βjk, is introduced to quantify the significance or impact of relaxing the
spatial conflict that exists between two selected facility sites j and k. Further, the
variable Yjk is used to track if this restriction has been relaxed or not. Using this
notation, the generalized independent set problem (GISP) is formulated as follows:

GISP : Maximize Z1 ¼
X
j

α jX j ð5:13Þ

Minimize Z2 ¼
X
j

X
k2Ω j

β jkY jk ð5:14Þ

Subject to:

X j þ Xk � Y jk � 1 8j, k 2 Ω j ð5:15Þ
X j ¼ 0; 1f g 8j, Y jk ¼ 0; 1f g 8j, k 2 Ω j ð5:16Þ

The first objective, (5.13), remains the same as that of the ACLP, to maximize total
benefit of selected facility sites. A second objective, (5.14), is introduced to track the
total penalty incurred by relaxed spatial restrictions. Constraints (5.15) are similar to
the pair based clique given in (5.7), but with an additional variable added to enable
relaxing a specific separation restriction. Specifically, if Yjk ¼ 1, then both Xj and Xk

can equal one and still satisfy the right hand side. That is, both could simultaneously
be selected. Alternatively, if Yjk ¼ 0, then the original intention of the spatial
separation condition is imposed where only one or the other site could be selected.
Binary integer restrictions are imposed in constraints (5.16).

A visual interpretation of the GISP is offered in Fig. 5.7. The depicted network
arcs correspond to the relationships associated with site 6 in order to simply the
graphic. In contrast to the relationships Fig. 5.6, the dashed arcs shown in Fig. 5.7
may or may not be imposed. If not imposed, those dashed arcs would incur a penalty.
For example, if the condition between sites 6 and 7 is relaxed, that would mean that
Y67 ¼ 1, with a penalty cost of β67 added to objective (5.14).

It should be noted that the original formulation presented in Hochbaum and
Pathria (1997) integrated objectives (5.13) and (5.14) as a weighted combination
(equivalent to the weighting method in multi-objective optimization, see Cohon
1978), but is presented here in a more general form. Though not recognized as
related, the map labeling models detailed in Ribeiro and Lorena (2008), Cravo et al.
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(2008) and Mauri et al. (2010) are effectively generalized independent set problems
similar to that of Hochbaum and Pathria (1997).

The intent of the GISP is to expressly examine the impacts of restrictions on
attainable benefits associated with the selection of facility sites. Clearly more total
economic return is possible, larger objective (5.13) value, as more spatial restrictions
are relaxed. However, this is at the expense of a greater total penalty, higher
objective (5.14) value, associated with relaxing spatial restrictions. Thus the GISP
is a multi-objective model with competing objectives, where gains are possible in
objective (5.13) only by increasing objective (5.14). Conversely, decreases in
objective (5.14) are only possible by reducing objective (5.13). Through the use of
multi-objective solution techniques (see Cohon 1978), it is possible to generate and
examine the tradeoff solutions associated with a particular planning problem,

Fig. 5.7 Spatial conditions for site 6 in the generalized independent set problem
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providing insights on the relative impacts of emphasizing whether spatial restrictions
are to be imposed or not.

The significance of the GISP is that it is effectively a relaxation of the ACLP.
Such a relaxation is accomplished through the addition of a variable that allows a
constraint to not be imposed, but doing so incurs a penalty in the objective.

5.5.2 Extension

In addressing problems requiring the use of the ACLP, Wei and Murray (2012)
noted that the positional inaccuracy of site boundaries creates various challenges,
both in applying the ACLP and interpreting results. Effectively, there are limitations
in using the ACLP as it based on the assumption that spatial information is accurate.
To address this issue, Wei and Murray (2012) formulated what amounts to an
extension of the ACLP, where boundary uncertainty can be explicitly considered
in the model (see also Murray et al. 2014).

After detailed analysis of spatial information, Wei and Murray (2012) concluded
that it is possible to characterize some relationships as known and others as uncer-
tain. For example, even taking into account positional uncertainty of boundaries,
some sites are clearly beyond intended separation standards. That is, djk > r for sites
j and k, where djk is the distance between sites j and k and r is the established
separation standard (as defined previously). Additionally, some sites remain clearly
within the separation standard under conditions of positional uncertainty. That is,
djk < r for sites j and k. However, there is the in between case where some sites may
or may not be within the separation standard. In practice, all spatial information is
subject to at least some degree of error or uncertainty. To account for these different
cases, Wei and Murray (2012) introduced notation along these lines:

ρjk ¼ probability that sites j and k would violate spatial separation requirement if
both selected

Γj ¼ set of a sites that would violate separation requirement if selected along with
site j

Δj¼ set of sites that might violate separation requirement if selected along with site j

Given the probability measures, ρjk, it is possible to characterize the relationship
between two sites j and k. If ρjk ¼ 1 (or some other threshold value that is interpreted
to be equivalent to one), then the two sites are deemed too close, even taking into
account positional uncertainty. This means that they should not be allowed to
simultaneously be selected as they would clearly be in violation of separation
standards. Thus, site k would be in the set Γj as they are too close irrespective of
spatial uncertainty issues. If ρjk ¼ 0 (or some other threshold value that is interpreted
to be equivalent to zero), then no separation constraints are needed as sites j and
k have no chance of ever being in violation if both are simultaneously selected. The
final case is when 0< ρjk < 1, where there is a chance that the two sites could be too
close when positional uncertainty is considered. Of course, there is also a chance that
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the two sites would not be too close. In this case, site k would be in the set Δj,
reflecting that possibility that the two sites may or may not be too close. With these
sets and notation, the extension proposed in Wei and Murray (2012) referred to as
the error ACLP (EACLP) can be formulated as follows:

EACLP : Maximize Z1 ¼
X
j

α jX j ð5:17Þ

Minimize Z2 ¼
X
j

X
k2Δ j

ρ jkY jk ð5:18Þ

Subject to:

X j þ Xk � 1 8j, k 2 Γ j ð5:19Þ
X j þ Xk � Y jk � 1 8j, k 2 Δ j ð5:20Þ

X j ¼ 0; 1f g 8j, Y jk ¼ 0; 1f g 8j, k 2 Δ j ð5:21Þ

The first objective, (5.17), is the same as that of the ACLP, to maximize total benefit
of selected facility sites. A second objective, (5.18), is introduced to track the total
probability of conditions that are considered uncertain. Constraints (5.19) impose
certain spatial separation restrictions using the pair based clique in constraint (5.7).
Constraints (5.20) represent the uncertain conditions where it may or may not be
necessary to impose separation restrictions. An additional variable is added to enable
relaxation of the restriction. Specifically, if Yjk ¼ 1, then the condition is not
imposed. This means that both Xj and Xk can equal one. Alternatively, if Yjk ¼ 0,
then the spatial separation condition is imposed. Binary integer restrictions are
imposed in constraints (5.21).

To illustrate the uniqueness of the EACLP, consider the network shown in
Fig. 5.8 for site 6. This may be contrasted with Figs. 5.6 and 5.7. The solid arcs
represent those spatial separation conditions that must be imposed because they are
certain, constraints (5.19). Alternatively, the dashed arcs represent those spatial
separation conditions that may or may not exist when boundary uncertainty is
taken into account, constraints (5.20). Unlike what is possible between sites 6 and
7 in Figs. 5.7 and 5.8 highlights that the EACLP requires separation between sites
6 and 7. However, other relationships may be viewed as uncertain, e.g., sites 6 and
2, sites 6 and 3 and sites 6 and 9, and if not imposed would incur the probability of
violation, ρ62, ρ63, and ρ69, respectively, in objective (5.18).

There is clearly a relationship between the ACLP, the GISP, and the EACLP to
account for spatial error. Further, the EACLP is similar to the GISP. In fact, the two
are equivalent if Γj ¼ ∅ for all sites j and spatial separation restrictions are
considered uncertain. Worth mentioning as well is that alternative types of extension
are possible, such as the site based approach detailed in Wei and Murray (2015).
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5.6 Inefficiency

The underlying premise of the ACLP is to site facilities in a manner that the greatest
total benefit is derived, but in doing so ensure that service/separation ranges do not
overlap. That is, the separation requirement between facilities and/or demand should
not be violated. When the benefit for each site is the same (e.g., α j ¼ αj0 j 6¼ j0), this
is equivalent to simply maximizing the total number of facilities sited in a region.
Under these conditions then, the objective can be structured as:

Maximize Z ¼
X
j

X j ð5:22Þ

The difference from the more general ACLP is that αj ¼ 1 for each potential
facility site in objective (5.22), reflecting the indistinguishability in benefits between
potential facility sites. We can refer to the optimal solution to this ACLP special case
as Zmax. What can we say about a feasible, but sub-optimal solution? Well, the
associated objective value will be less, or more precisely Z < Zmax. But what if we
were interested in knowing or identifying a feasible solution to the ACLP that is the
most sub-optimal, yet there is no possibility of adding an additional facility to the
region without violating spatial separation requirements. This is the problem exam-
ined in Niblett (2014) and Niblett and Church (2015). Identifying the worst case
spatial configuration of facilities with respect to spatial restrictions provides impor-
tant and meaningful context for an ACLP solution. This is particularly true when the

Fig. 5.8 Spatial conditions for site 6 in the uncertainty model of Wei and Murray (2012)
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use of the ACLP is oriented towards description and understanding of the spatial
distribution of a good or service, something discussed in detail in Grubesic and
Murray (2008), as an example.

Niblett (2014) and Niblett and Church (2015) refer to the worst case objective
orientation as the disruptive ACLP (DACLP), because of the intent to configure
facilities in such a manner as to disrupt the maximum potential that would be
identified using the ACLP. The formulation is:

DACLP : Minimize
X
j

α jX j ð5:23Þ

Subject to:

MX j þ
X
k2Ω j

Xk � M 8j ð5:24Þ

X j þ
X
k2Ω j

Xk � 1 8j ð5:25Þ

X j ¼ 0; 1f g 8j ð5:26Þ

The objective, (5.23), now minimizes the total weighted benefit of facilities located.
This is in contrast to that of the ACLP, where the objective is maximized. Spatial
limitations on facility configurations are imposed in constraints (5.24). Constraints
(5.25) require that the resulting solution cannot leave some site unselected, if the
configuration allows that site to be selected while maintaining all separation restric-
tions. That is, the solution must eliminate all possibility of adding an additional
facility without violating a separation constraint. Either a site j has a facility or one or
more sites within the spatial restriction area of site j must be selected as a facility.
Accordingly, as many facilities are sited as needed, ensuring what Niblett and
Church (2015) refer to as a proper solution, while minimizing the benefits generated
by the selected facilities. Constraints (5.3) impose binary integer restrictions on
decision variables.

An optimal solution for the DACLP would produce a minimal objective value for
the ACLP. For the unitary αj values discussed above, then we can think of this
objective as Zmin for a particular problem application. Accordingly, the solutions
would maintain the relationship that Zmin � Zmax. Further, the difference would be
very telling and informative in evaluating laws or restrictions that can be reflected in
the use of the ACLP, or in the assessment of a franchise system as discussed in
Chap. 7.
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5.7 Facets and More

Throughout the chapter we have indicated that solving the ACLP has been of great
interest because it remains a challenging problem to solve. As a result, there have
been a wide range of exact and heuristic solution approaches proposed to solve the
ACLP, and extensions of the ACLP.

On the exact side, Nemhauser and Trotter (1975) were among the first to report
computational experience using cliques (5.5), along with other facet inducing
constraints. This was done within a branch and bound process. Moon and Chaudhry
(1984) examined solution using linear programming based on formulation ACLP1,
(5.1–5.3), where neighborhood constraints are relied upon. Nemhauser and
Sigismondi (1992) build upon the work of Nemhauser and Trotter (1975), detailing
results based on a cutting plane approach. Erkut et al. (1996) and Murray and Church
(1997) explored a number of different formulations, similar to those detailed above,
reporting computational experience. A Lagrangian relaxation approach within
branch and bound was detailed in Murray and Church (1996). More recently, the
use of column generation is discussed in Warrier et al. (2005). Murray and Kim
(2008) detailed an approach to identify effective hybrid constraints and examine
their performance in solving the ACLP. Finally, a branch and cut scheme is
presented in Giandomenico et al. (2013). Clearly there has been continued interest
and improvement in solving the ACLP using exact methods that guarantee an
optimal solution.

Similar interest and improved capabilities can be seen in heuristic solution
development for the ACLP as well. Early work included greedy approaches by
Chaudhry et al. (1986), but also more recently by Gamarnik and Goldberg (2010).
Lagrangian relaxation was applied in Zoraster (1990). A genetic algorithm was
proposed by Chaudhry (2006) and a greedy randomized adaptive search procedure
(GRASP) was applied in Cravo et al. (2008). Recent work by Wei and Murray
(2017) reports a multi-objective genetic algorithm for solving the EACLP, devel-
oped to provide an approximation of the non-inferior tradeoff curve in order to
support planning and decision making.

5.8 Summary and Concluding Comments

The anti-covering location problem (ACLP), also referred to and/or related to the
r-separation, node packing, vertex pack, maximum independent set and stable set
problems, is an interesting and important planning problem in location coverage
modeling. It has been considered and applied to a number of practical planning
situations, including harvest scheduling, military defense, water well drilling,
urban services, map labeling and others. Because of the broad application and
appeal of this problem, there continues to be interest in the formulation, solution
and use of this model as it has proven to be challenging to solve.
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It should be of little surprise that the ACLP has been extended in various ways.
For example, Zeller et al. (1980) structure a retail franchise design model that seeks
to impose territorial exclusivity through the use of spatial separation constraints.
Murray and Church (1999) developed a formulation based on integrating the MCLP
with separation requirements (such an approach is also detailed in Berman and
Huang 2008), discussing monitoring station and water well contexts. Williams
(2008) presented a reserve design model with distance separation requirements
where the intent is to ensure species survivability. Ratick et al. (2008) report a
backup storage facility location model where facilities must be spaced apart for
security reasons, accomplished using separation restrictions.
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