Chapter 4 )
Probabilistic Coverage s

4.1 Introduction

Much of the book is focused on facilities of various types, represented as points,
nodes, lines, arcs, paths, tours, areas, etc., providing a wide range of services. The
underlying assumption has generally been that facilities, or personnel at/from the
facility, are available to serve when needed. This is not too surprising because a
sizable number of location covering models are firmly rooted in the initial work
Toregas et al. (1971) on the location set covering problem (LSCP), where they were
specifically interested in public sector issues involving equity of access to service. In
the LSCP facilities were viewed as available for service when needed. In particular,
the application of the LSCP to site emergency services, like fire, ambulance and
police response, helped to design and relocate such services so that they provide
coverage to all. Little has changed, in fact, over the intervening years as emergency
service contexts remain of great interest and coverage models have time and again
been instrumental in helping to both understand existing service systems as well as
develop management plans for emergency response while promoting fairness and
equity in service access. Of course, there are many other areas of application for
coverage models as well, but the emergency response context has continued to be
both challenging and interesting as we better understand such systems and have
better supporting data. The focus of this chapter involves the fact that facilities
(or personnel) may not always be available when needed. That is, there is a non-zero
probability that facility service coverage may not be provided even when every
demand is within a desired maximal service standard of a facility. There are clearly
many ways in which a facility would be unavailable for service. One situation is that
personnel are already busy serving another demand. This is depicted in Fig. 4.1,
where the fire engine has traveled from the fire station in response to a fire. However,
while busy fighting this fire, another incident (vehicle crash and fire) has occurred
across town. It is therefore not possible for a fire crew to respond immediately.
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Fig. 4.1 Depiction of a facility busy serving demand

Another situation is that a facility may be unavailable due to a failure of some sort,
such as equipment being broken, a power outage, a flood, or even an accident.

If one considers emergency services such as fire, ambulance/paramedic or police,
as an example, then what is desired is speedy response to a call for service. As noted
previously in this book, such response should be within a maximum service stan-
dard, S, in order to ensure safety, survivability, etc. As a result, the LSCP and MCLP
detailed in Chap. 2 have been important modeling approaches in this area. However,
there is an assumption that each facility is always available to provide service
coverage. Such an assumption seems reasonable when considering fire stations
and associated equipment, since they are usually idle and awaiting a call. Therefore,
the probability of having two simultaneous nearby service calls is very small.
Nevertheless, the time to serve calls can be substantial. Not taking this into account
might result in the inability of a system of facilities to suitably respond to demand
within the desired standard because nearby personnel are occupied with a previous
service request. Accordingly, it might be critically important to take into account the
probability or likelihood of facility unavailability, particularly given that the associ-
ated impacts on system service coverage may be significant.

Similar implications arise in the case of facility failure. Consider the case of
cellular phone service. For a cell phone to work and be useful, it must be within the
communication standard, S, of a service tower. However, proximity alone is not
sufficient. The equipment at the service tower must be operable. While this
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equipment seems fairly reliable, it does fail, as power may be interrupted, infrastruc-
ture deteriorates, etc. As a result, system coverage is likely to be impacted at some
point in time.

Several methods have been developed to take into account facility availability in
deriving effective service coverage planning. These include the Probabilistic Loca-
tion Set Covering Problem, the Maximal Expected Coverage Location Problem, the
Maximum Availability Location Problem, and others. All of these models represent
an attempt to address the availability of facilities in providing coverage. Simply put,
response or service within the standard S may not always be possible, even though it
is an underlying fundamental goal. Thus, from a probabilistic perspective one might
expect that service of demand would most often be accomplished within the desired
maximum service standard. Taking this a step further, we can establish a threshold
under which “most often” can be stipulated. For example, we may want demand to
be served within the § standard 85% of the time. Required standards along these
lines are often codified in laws, regulations and guidelines. One example is that of
the National Fire Protection Association in recommending that suppression
resources be capable of arrival within 4 min travel time to 90% of the incidents
(see Murray 2015). Many cities, counties and other local agencies have standards
along these lines as well. Further, such standards are not limited to fire response. The
California State Emergency Medical Service Authority, for example, promotes
related standards for a range of EMS response categories, including Basic Life
Support/CPR, defibrillation, Advanced Life Support, ambulance transport, etc.
Irrespective of context, the stipulated threshold becomes another operational param-
eter. The literature often refers to this using the symbol a. In the above example, a
would equal 85%.

4.2 Reliable Coverage

The first approach to take into account facility availability in coverage modeling was
the Probabilistic Location Set Covering Problem (PLSCP) developed by Chapman
and White (1974). The PLSCP essentially extends the LSCP by defining suitable
coverage in terms of temporal availability as well as geographical proximity. That is,
whether a demand location receives effective service is not solely dependent upon a
site being within the service standard S of a facility, but also that this facility is
available to serve. A critical question then is what is the likelihood of a facility being
busy or otherwise unavailable? Suppose that we know this probability from histor-
ical records, quality guarantees associated with equipment, etc. If the likelihood of a
facility being unavailable is g, then we can characterize the probability that at least
one facility is within S and is not busy serving another demand. Further, ensuring
that at least one facility is available for service to a given demand most of the time
will likely require that that demand will have to be suitably covered by multiple
facilities.
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The notion that effective service should be at least some minimum threshold, «, in
a probabilistic sense has been termed “a-reliable coverage”. The reason for this is
because the probability of effective coverage (facility availability within the service
standard) must be at least o, where « is a fraction between zero and one. The PLSCP
specifically seeks the minimum number and locations of facilities such that every
demand receives o-reliable coverage.

Consider the following notation:
i = index representing demand for service
Jj = index representing potential facility sites
q = probability of a facility being unavailable or busy
d;; = shortest distance or travel time from demand i to potential facility site j
S = the desired service standard (e.g. distance or travel time)
a = pre-specified level of reliability in service coverage

N, = {jld; < 5}

. 1, if afacility is located at site j
77710, otherwise

The PLSCP is based upon the assumption that all facilities are independent and
that a facility being unavailable is independent of the availability of any other facility
in the system. As before, suppose that we are able to derive or that we know from
experience the probability that any given facility is unavailable, g. With this prob-
ability, we can estimate for any given demand location the probability that a suitable
or timely response within the standard S is possible, based upon the number of
facilities capable of serving this demand within the standard. For example, if there is
only one facility that can cover a given demand i then that demand would be served
with a probability of 1 — ¢. Suppose that there are three sited facilities, each within
the service standard S for a specific demand i. The probability that all three facilities
are unavailable (or busy) is ¢ X ¢ X ¢, or ¢°. This would imply that the probability of
coverage would therefore be 1 — ¢°. If this probability is greater than the establish
reliability threshold, @, then we could consider demand i sufficiently served, taking
into account the possibility that one or more facilities may be unavailable for service.
It is worth noting that ¢ may be viewed as a system-wide average unavailability
measure, applying equally to each facility or potential facility location.

For any configuration of facilities, > x; represents the number of facilities that
JEN;

have been located within the coverage standard of demand i. One can then derive the
probability that demand i will receive service coverage when needed as:

| — 2 4.1
q



4.2 Reliable Coverage 85

Therefore, equation (4.1) would reflect the probability of suitable coverage within
the service standard S. The stipulation then is that this should be greater than or equal
to o

} :x‘,'
— ’=Ni > Q; .
I —g > (4.2)

Note that a is defined here for each demand i, using a;. This was the original
mathematical specification in Chapman and White (1974). In application, however,
they simply utilized a. This may have been for convenience, or perhaps due to the
fact that justification for varying levels of reliability among demand may be prob-
lematic in public sector siting contexts.

Given that the probability of each facility being unavailable is the same, ¢,
equation (4.2) can be rewritten in a linear form. Through algebraic manipulation
we have:

Zx.f
1—a; > g% (4.3)

Taking the log of each side of the inequality in equation (4.3) yields:

Xj

log(1 — ;) > logg™™"i (4.4)
This then simplifies to:
log(1l —a;) > ijlogq (4.5)
JEN;

Finally, recognizing that log ¢ is less than zero because ¢ is assumed to be less
than one, then simplification reverses the inequality in equation (4.5) to give:

logll_—a) oy~ (4.6)

logg - o

Therefore, equation (4.6) denotes that the number of facilities that serve a demand
area i (right hand side of inequality) must be greater than or equal to the quantity on
the left hand side of the inequality in order to satisfy the stipulated level of reliability,
a;, given the probability of each facility being unavailable, g. Empirical evaluation
may be useful in better clarifying what is happening here. Consider a reliability
standard of @; = 0.85 and a probability of unavailability of g = 0.25. The interpre-
tation of this is that demand i is expected to see response for service within the
standard S at least 85% of the time. However, facilities may be busy some 25% of the
time, serving other calls for service. Equation (4.6) in this case gives a left hand side
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value of 1.368. Thus, two or more facilities would clearly be necessary to provide
reliable coverage of 85% or better.

Chapman and White (1974) structured the following model, incorporating this
condition:

PLSCP : Minimize »_ x; (4.7)
J

Subject to:

> x> [MW Vi (4.8)

f= logg
x;=1{0,1} Vj (4.9)

The objective, (4.7), seeks the smallest number of facilities. This is precisely the
same objective as the LSCP. Constraints (4.8) specify that suitable coverage must be
provided to each demand at the indicated level «;, where the operator function [ ]
represents the smallest integer greater than or equal to the enclosed value. Con-
straints (4.9) impose binary integer requirements on the decision variables.

The main constraint of the PLSCP is to ensure that the probability of an available
facility being within the S standard for each demand i is greater than or equal to a;.
The right hand side quantity is nothing other than a coefficient, derived as a function
of @; (or @) and ¢, inputs that are known in advance. Assuming that each facility has
the same unavailability probability (or busyness level) yields a problem where each
demand location needs to be covered at least some number of times. Specifically,
one can view constraints (4.8) as follows:

ij >y Vi (4.10)
JEN;
where y; = [%1 That is, y; is the minimum number of facilities necessary to

ensure coverage at the reliability level of a;. Constraints (4.10) represent processed
right hand side values of constraints (4.8), something that would be necessary to
compute prior to solving a problem instance. One should recognize that the value of
v;, strictly speaking, does not need to be the smallest integer value that exceeds the
right hand side of constraint (4.8). Since the left hand side of equations (4.8) and
(4.10) are sums of decision variable values, all required to be integer, the values of
the left hand sides of conditions (4.8) and (4.10) will be integer in value. Thus, there
is no additional requirement being imposed when we define each y; as being an
integer-valued parameter. Additionally, there may be some benefit to integer valued
model coefficients when applying solution techniques like branch and bound.
Chapman and White (1974) also discussed a version of the PLSCP where the
unavailability of each facility varies. They did not, however, specify any technique
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to be used for the derivation of ¢ or for the unavailability of specific facilities.
Formalizing this is possible, but requires some modified notation:

q; = probability of a facility being unavailable or busy in demand area i
y; = minimum number of facilities necessary to ensure coverage at o; given local
busyness ¢;

Based on our previous derivation, the minimum number of necessary facilities for
each demand area is then calculated as:

y = [—logl(igqi “ﬂ (4.11)

Constraints (4.8) therefore become the following when a local busyness proba-
bility is utilized:

> xjzyl Vi (4.12)

JEN;

Ball and Lin (1993) suggest this basic constraint form as well based on assump-
tions of a Poisson distribution for facility unavailability. At any rate, constraints
(4.12) suggest two forms of the PLSCP. One is reflected in (4.7)—(4.9) where a
system-wide facility unavailability probability is assumed. The other version we can
refer to as PLSCP’ and consists of objective (4.7) and constraints (4.9) and (4.12).
PLSCP' incorporates a local probability of a facility being unavailable. Irrespective
of the model formulation, important issues are input parameters, namely «, a;, ¢ and/
or g;.

Upon close examination, one should recognize the equivalence of the PLSCP to
the multi-level covering problem discussed in Toregas (1970) and Church and
Gerrard (2003), and detailed in Chap. 3. The multi-level covering problem can be
structured for both the LSCP and the MCLP, where there is a desire to cover
demands with more than one facility. For the LSCP, the multi-level covering
problem entails minimizing the number of facilities needed to cover each demand
a desired number of times. What is important here is that there is a probabilistic
derivation for the values of y; and y;. Further, the resulting model is an equivalent
deterministic model. Although, this type of problem is often solved by the use of
integer linear programming software, it can be solved partially or even completely
by the method of reductions [see Toregas and ReVelle (1973) for single level and
Church and Gerrard (2003) for multi-level reduction algorithms].
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4.3 Expected Coverage

Based on the discussion and models detailed in previous chapters, a natural exten-
sion of the PLSCP is to address the basic premise of the MCLP, where there are
limited resources in siting facilities thereby preventing coverage of all demand
within the desired service standard. Daskin (1982, 1983) incorporated the probabil-
ity of a facility being unavailable, ¢, in creating a stochastic form of the MCLP. This
model has been referred to as the Maximal Expected Covering Problem (MEXCLP),
taking into account the probabilistic nature of facility availability.

Differing from the PLCSP, however, Daskin (1982, 1983) counted any level of
coverage as providing some benefit, rather than requiring a minimum coverage
reliability threshold. This was done by viewing availability as a binomial probability
function. Consider the following additional notation:

k = index corresponding to the number of facilities sites
a; = demand for service at location i
p = number of facilities to be sited

| 1,if demand i is covered by at least k facilities
Yik = 0, otherwise

What is unique is that the y; variables are introduced to track the number of
facilities capable of covering an individual demand i. Assume as before that each
facility is unavailable some portion of the time, g. Thus, a demand site that is covered
exactly once will be served 1 — ¢ fraction of the time. We can represent this level of
coverage by multiplying this fraction of coverage by the population at that site as the
term a;(1 — q)y;;, where y;; equals one in value if that demand is covered once.
Technically, this is also equivalent to a1 — ¢)g* ~ 'y as the term ¢* ~ ' equals
1 when k = 1. When two facilities cover demand i, then the probability of coverage is
1 — ¢*. The added fraction of coverage in increasing coverage from one facility to
two facilities is the difference between 1 — ¢* and 1 — g, which is (1 — ¢°
) — (1 — q) = g — ¢* Thus, the added coverage is equivalent to (1 — g)¢' or
(1 — g)g* ~ ' when k = 2. In general, the added probability of coverage for k facilities
is (1 — )¢ ~ . Thus, the total increase in coverage for demand i when adding a kth
facility that covers demand i is a;(1 — q)qk ~ ! Therefore, we can account for added
levels of expected coverage. Based upon this, we can formulate the Maximal
Expected Coverage Location Problem (MEXCLP) as follows:

P
MEXCLP : Maximize » > ai(1—q)q" 'y, (4.13)
i k=1
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Subject to:

Zx,-—f:yikzo Vi (4.14)
=1

JEN; k=
Zx‘,-: p (4.15)
J
xj=1{0,1} Vj (4.16)
v = {0,1} Vi k (4.17)

The objective (4.13) seeks to maximize expected coverage by taking into account the
probability that each facility may be unavailable to serve a certain portion of the
time. Constraints (4.14) account for the number of facilities that are capable of
providing coverage to a particular demand. If demand i is covered only once then

p
constraint (4.14) allows the sum of Z Vir to be one in value. But since the additions
k=1
to expected coverage in the objective function decrease as the number of units
covering a demand increase, y;; will then equal 1 in value. For this same reason, if

P

Z yirequals two in value, both y;; and y;; will be one in value. In general, y;. — | > yi.
k=1

Consequently, the objective function combined with constraints (4.14) will accu-
rately account for the expected coverage that is provided by the facilities that have
been located. Constraint (4.15) limits the number of facilities to be located to exactly
p facilities, which is a specific form of a budget constraint. Constraints (4.16) and
(4.17) impose binary integer restrictions on the decision variables. Technically
speaking, the integer restrictions on the y; variables are not necessary as long as
these variables are constrained to be no larger than 1 in value. When all of the x; are
integer in value, so too will the y;; variables be binary at optimality.

This formulation differs from the original version presented in Daskin (1982,
1983). It is quite possible in some circumstances that multiple facilities could be
located/allocated to a site (called co-location). This may be necessary to ensure
satisfactory response requirements. For example, one could house multiple ambu-
lances at an EMS facility, or multiple response teams at a fire station. Accordingly, it
may be necessary to allow the facility siting variable x; to take on general, positive
integer values in some situations. As the discussion in this chapter has focused on
simply a facility, a decision was made to limit variables to binary. Extension along
the lines originally presented in Daskin (1982, 1983) is a simple modification of the
MEXCLP formulation presented here.

Suggested in the previous section is that the facility unavailability measure ¢ may
be known or unknown. If it is unknown, which would generally be expected for most
service systems, then some sort of estimation is necessary. Daskin (1982) and
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ReVelle and Hogan (1988) suggested the following basic system-wide busyness
fraction estimate:

g="'Ya (4.18)

i T p

where 7 is the average time to complete service for a demand; and, T is the total
availability possible (e.g., 24 h in a day) for a facility. With this, or any potential
variation, it is possible to calculate the added amount of availability for the k™ added
facility using the derivation above as:

B=(1-q)4q"" (4.19)

With this term, we can re-write objective (4.13) as follows:

)4
Maximize » > aifyy (4.20)
i k=1

The added feature is that 5, may be defined in different ways, depending on the
probabilistic function deemed most suitable for a particular application context. In
this particular case, Daskin (1982, 1983) assumed a binomial function. Of course,
any changes in attribute coefficients in this model (or others) may impact results,
changing the configuration of facility sites and associated coverage in an optimal
solution.

While objective (4.20), and objective (4.13), specifies one form of criteria to be
optimized, other objectives may be possible. Perhaps there is a preference to move
away from a system wide measure of unavailability. If so, then one might view that
there could be a local area specific measure of busyness. ReVelle and Hogan (1988)
suggested a local busyness fraction, g;, defined as a function of the number of
facilities that could serve a particular demand. This local busyness measure is:

aw="Yu| (4.21)

i'eN;

With this local measure, facility availability becomes more location specific, and
can be summarized as follows:

B = (1 — gy )qy ' (4.22)
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This gives rise to an alternative objective, replacing objective (4.20) with:

P
MEXCLP' : Maximize Y > aifyyi (4.23)
i k=1

This objective combined with constraints (4.14)—(4.17) defines MEXCLP’, spe-
cifically accounting for and incorporating a local busyness measure. Such a model
variant was, in fact, detailed in Sorensen and Church (2010).

While it is possible to present a formulation of the MEXCLP in a number of ways,
there are two important distinctions to keep in mind. First, the unavailability or
busyness of a facility may be viewed (and modeled) from a system-wide perspective,
assuming that the probability of a facility being busy and unavailable for service is
the same across a region, or it may be conceived that facility service loads are
heterogeneous due to variations in demand across a region. Accordingly, there are
two different objective functions of the MEXCLP that have been adopted, one
generalized as (4.20) representing system-wide busyness and the other as (4.23)
that takes into account a local busyness estimate, MEXCLP'. Second, facility siting
may permit only one service entity at a location, or it may allow the co-location of
facilities. Again, the formulation of the MEXCLP presented here assumes that
co-location is not permitted. However, modification of this formulation is possible
to allow for such a situation.

4.4 Maximal Reliable Coverage

The PLSCP and MEXCLP have been important formulations in the progression of
developing capabilities that address issues of facilities being busy and unavailable
when attempting to provide coverage. The PLSCP represents an attempt to ensure
that a sufficient number of facilities provide coverage to each demand, doing so such
that the probability of having a facility available when needed is at least a (or a; if
more specific detail is needed). The MEXCLP attempts to maximize the total amount
of demand that is likely to receive service coverage without any delay. While a
distinction can be made that the PLSCP extends the LSCP and the MEXCLP extends
the MCLP, there are fundamental differences in the basic approaches taken. Accord-
ingly, there is potential for a more direct extension of the PLSCP that is perhaps
more consistent with the MCLP, but differs from the MEXCLP. Specifically, the
MEXCLP does not require coverage of each demand be at least a (or ;) as is the
case with the PLSCP. Rather, the MEXCLP seeks to maximize the expected
coverage provided.

To incorporate such a modeling feature ReVelle and Hogan (1989) introduced the
Maximal Availability Location Problem (MALP). This model is characterized by an
intent to maximize demand that is provided a-reliable coverage. Accomplishing this
requires the use of y;, introduced in the discussion of the PLSCP. Recall that y; was
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defined as the minimum number of facilities that is necessary for demand i to have
coverage reliability of at least a. Rather than require that all demand must be covered
with this level of reliability, we can seek to maximize the demand that is provided o
reliable coverage while locating p facilities. This of course could be considered to be
an extension to the original maximal covering location problem. We can formulate
the model of ReVelle and Hogan (1989) as follows:

MALP : Maximize Zaiym (4.24)
i

Subject to:

Vi

S xi=d v =0 Vi (4.25)

JEN; k=1
ij =p (4.26)

J
Yier —Yu =20 Vi k (4.27)
xj={0,1} Vj (4.28)
yie =1{0,1} Vi k (4.29)

The objective, (4.24), maximizes the amount of demand that is reliably covered.
Constraints (4.25) operate in a similar fashion as constraints (4.14) and help to define
the level of coverage that is provided to a given demand i. What is different here is
that constraints (4.14) in conjunction with the objective function (4.13) ensure that in
the MEXCLP the variable y;; was always less than or equal to the value of y;; _ 1,
without expressly forcing such a condition. Since the objective (4.24) counts only
those demands that have received a-reliable coverage (i.e., when y;, = 1), without
expressly forcing y;. — 1 > yu, constraints (4.25) would allow Viy, = 1 when there is
only one facility that has been located that covers demand i. Therefore, constraints
(4.27) are included to enforce this condition. That is, coverage at a higher level
k cannot be counted unless it is provided at the preceding lower level, k — 1. Also
note that coverage is counted up to and including the level y; with the use of y;
variables and where the value of k is limited to be less than or equal to y; for each i.
Constraint (4.26) limits the number of facilities sited and constraints (4.28) and
(4.29) impose binary integer restrictions on the decision variables. Worth noting is
the fact that constraints (4.27) can be added to the PLSCP model as well without any
loss of generality. It is possible that these constraints may help to tighten the
formulation and reduce solution times.

An important distinction with MALP, similar to MEXCLP, is that it can accom-
modate either system-wide or local busyness measures. Thus, there is a variant of
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MALP using a system-wide busyness but also a version with a local busyness
measure, which we can refer to as MALP'.!

One thing we have attempted to do in this book is highlight coverage model
formulation nuances. In doing this, there have been many instances were alternative
mathematical specifications are possible. Associated with MALP, the use of system-
wide or local busyness is but one aspect of specification differences. It turns out that
an alternative formulation is also possible, and there may be benefits to rely on such
an alternative.

Consider the following additional notation:

| 1,if demand i covered at or above the reliability standard
Yi =Y 0, otherwise

Given this variable, an alternative MALP formulation is the following:

Maximize Za,-y,- (4.30)
Subject to:
> xj—ry; =0 Vi (4.31)
JEN;

ij =p (4.32)

x;=1{0,1} Vj (4.33)
v, ={0,1} Vi (4.34)

The objective, (4.30), maximizes the total amount of demand that is covered with a
reliable coverage. Constraints (4.31) specify that the number of facilities that cover
demand i must equal or exceed the value of y; in order for a reliable coverage to be
counted for demand i. Constraint (4.32) limits the number of facilities to equal p.
Constraints (4.33) and (4.34) impose binary integer restrictions on the decision
variables.

Marianov and ReVelle (1996) as well as Sorensen and Church (2010) relied on
this alternative formulation of MALP. There are a number of differences from (4.24)
to (4.29). One of the benefits of this alternative is that it requires fewer variables and
fewer constraints. This may be appealing for a number of reasons. It is more concise,
and depending on the solver may actually lead to faster solution times. However,
doing so likely reduces the “integer friendly” properties characteristic of the original

The literature has often called these variants MALP I and MALP 11, as introduced in ReVelle and
Hogan (1989). Such a distinction is avoided in this chapter because the only difference is a change
in model coefficients, with most of the variables and constraint structure remaining the same.
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MALP formulation. More traditional approaches for solving integer programs, such
as branch and bound without cuts as well as other modern advances for improving
performance, may still encounter substantially more computational difficulty.

4.5 Queuing

An obvious concern in addressing a facility being unavailable or busy is a mean-
ingful and accurate characterization of the associated probability of busyness. The
models presented in this chapter up to this point are based on simple definitions of ¢,
q; and g;;. These probabilities are either assumed to be known or are estimated in
some fashion. Of course, many have questioned whether assumed or estimated
probabilities are accurate, and the very existence of alternative measures and models
suggests that enhancements have and continue to be necessary. Murray and Church
(1992) examined system-wide and local busyness estimates, comparing measures
relied upon in MALP to simulated busyness estimates associated with identified
service system configurations. Their findings suggested that reliability estimates are
not particularly accurate, and can negatively impact optimal facility configuration
identification. Ultimately, the implications are that system performance may not
conform to steady state expectations, which means that the reliability conditions
within the model may not be achieved in actual application. As a result, these models
may inadvertently identify a suboptimal solution, thinking it performs better.

One way that probability estimates have been improved is through the use of
queuing models. For example, Batta et al. (1989) examined the MEXCLP and
proposed an extension for adjusting expected coverage based on viewing service
as a queuing system. Their intent was to address facility independence, varying
busyness probabilities, and location influence on busyness probabilities. Goldberg
et al. (1990), too, were interested in expected coverage, and relied on queuing and
simulation to derive and update probabilities of facility response and service.
Improved estimates of g; values based on a queuing model were also used to enhance
the derivation of the y; coefficients, the minimum number of needed facilities capable
of covering demand i at or above the level «;, in Marianov and ReVelle (1994) for
improving the PLSCP and in Marianov and ReVelle (1996) for improving MALP.

The basic idea is that viewing the facility response process as a queuing system
enables performance characteristics in steady state to be derived. In particular,
assume that a system with k facilities observes a service arrival that is Poisson
distributed at rate A. Further, assume that service by a facility is exponentially
distributed at rate u. The rate diagram for this associated system is shown in
Fig. 4.2 for this associated M/M/k queuing system. Such a system can be viewed
as an M/M/k queuing system (k servers serving a system where arrival rates follow a
Poisson process and where service times follow an exponential distribution). It is
also often assumed that service calls are lost (no queue) when no facilities are
available. For example, when a call for an EMS occurs and all ambulances are
busy, then a rescue vehicle or some non-emergency patient transport company is
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Fig. 4.2 Rate diagram for an assumed M/M/k/k queuing system

called to assist. Marianov and ReVelle (1996) used this queuing model to estimate
within each local neighborhood of a demand how many servers would be necessary
to satisfy the reliability constraint for that neighborhood. To do this, one needs to
assume that the queue of one neighborhood is independent of the servers of other
neighborhoods or vice versa. Unfortunately, this assumption has not been fully
tested although questions have been raised as to the validity of this assumption
(see for example Baron et al. 2009). This is essentially the same assumption made by
ReVelle and Hogan (1989).

One of the underlying issues in locating facilities that can be congested is to
ensure that each facility is not over committed in providing service. Marianov and
Serra (1998) suggested a queuing based-form of the maximal covering problem,
which explicitly addressed the capacity of individual servers. To formulate their
approach we need to define additional notation:

A; = service (arrival) rate for demand area i
u; = service completion rate for facility j
¢; = coefficient adjusting for service capacity of facility j given reliability level @

~_ J 1,if demand i is covered and served by facility j
4= 0, otherwise

With this notation, Marianov and Serra (1998) formulated a model that accounts
for associated facility capacities. Doing this requires the use of allocation variables,
z;> that tracks which demand is served by which facilities in order to ensure that,
under steady state conditions, service to local areas of demand can be accomplished
within desired a standards. This discrete model (maximal covering location problem
with queuing, MCLP-Q) is as follows:

MCLP-Q : Maximize » > aiz; (4.35)

i JjeN;
Subject to:

D<oV (4.36)

JEN;
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ij =p (4.37)

zj <xj VijeN; (4.38)
D iz <emppg Vi (4.39)
ieN’/.

xj={0,1} V) (4.40)
5 ={0,1} VijeN; (4.41)

The objective, (4.35), seeks to maximize the demand suitably covered. Constraints
(4.36) indicate that each demand is allocated to at most one facility. Constraint (4.37)
specifies the number of facilities to be sited. Constraints (4.38) restrict allocations to
only those sites that are selected for a facility. Constraints (4.39) limit the arrival
rates that are allocated from demands to a given site to be less than the capacity of the
server at that site, based upon the service completion rate. The individual facility
service capacities are based on a given reliability standard assuming queuing based
steady state probabilities. Constraints (4.40) and (4.41) impose binary integer
restrictions on decision variables.

While the use of queuing is an improvement in some ways, especially when
considering the capacity of the servers as in MCLP-Q, many of the developed
models rely on system-wide or local busyness measures. Murray and Church
(1992) highlight the ways that this is problematic. Beyond this, there are a number
of limitations associated with queuing approaches for supporting coverage
modeling.

Often the demand/arrivals for an area i are based upon the assumption that service
is provided by the set of facilities covering a demand, ) x;. Unfortunately this set of

JEN;
facilities may also serve other demands outside the neighborhood N;. Thus, an M/

M/ Y x; queuing system can overestimate service potential in a given demand area

JEN;

i because on average not all of the sited facilities will be available for potential
service to demand i.

Further, questions have been raised about the degree to which a local estimate of
busyness meets the assumptions under which the actual busyness estimate was
made. For example, if you have a system that can cover all demand with one location
and multiple units can be located at that site, then estimating the probability of
busyness can be accurately accomplished either probabilistically, through the use of
simulation, or by the use of a queuing model that meets the conditions of the system.
But, when a system cannot be covered by one central location, then facilities will
need to be scattered in order to cover all demands, which is more problematic.
However, local busyness estimates can be somewhat accurate, if a local area does not
share its servers with other demands outside the local coverage area or when units
outside a local coverage neighborhood help to serve demands with that local
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neighborhood. But, the assumption that calls handled from outside servers to a local
neighborhood N; is balanced by servers within the neighborhood N; handling calls
that occur outside the neighborhood is likely to be violated. In fact, it is easy to
overcommit the capacity of servers when service across the boundary of a neigh-
borhood N; occurs. Consequently, one of the foundational assumptions of the simple
local busyness estimates is likely to be violated when call volumes are high and vary
over a region.

4.6 Facility Availability

Daskin (1983) suggested that facilities could be unavailable for reasons other than
service loads. For example, a facility may have reliability issues, needs regular
maintenance (which requires downtime), or be subject to disruption due to infra-
structure failure or flooding. Each of these examples involve aspects of a system that
are unrelated to the demands that are being served, but where there may be an easily
calculated probability of being unavailable for service. If all of the facilities have an
equal probability of being unavailable (e.g., ¢) and each event of a facility losing
service capabilities is independent of other service disruption events, then the models
like MEXCLP and PLSCP can be used. The key element in the formulation of the
MALP relies on the assumption that all facilities in the neighborhood of a demand
have an average busyness given this number (i.e., g;), rather than specific facility
availability estimates.

In general, busyness or unavailability of a facility to provide service may vary and
not be the same (Lei et al. 2014), or that a facility’s capability to provide service
degrades as one moves further from that facility (Altinel et al. 2008). Both factors are
issues in designing a wireless sensor network. Let’s suppose that we are designing a
wireless sensor network. There are two main choices in this design: (1) where to
place each sensor, and (2) which type of sensor do we use at each chosen location.
Let’s say that this network is designed to detect an intruder or threat. Each sensor
needs to be within communication of at least another sensor and altogether, the
network of sensors must be able to communicate with each other (thus, the design of
communication between sensors must represent a connected graph). For the purpose
here, we will assume that the area in question does not hinder communication
between neighboring sensors, given that enough sensors will be needed and are
close enough together in order to adequately surveil an area. Furthermore, sensors
are not perfect and there is a probability that they cannot detect an intruder. Also, the
capability of a given sensor detecting an intruder declines with distance. Consider
the following notation:

t = an index used to refer to sensor type, where t = 1,2, ..., T

pij» = the probability of sensing point i with sensor type ¢ located at point j
M; = the maximum acceptable probability of missing an intruder at point i
cj; = the cost of placing sensor type ¢ at location j
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= 1, if sensor type ¢ is placed at location j
J 0, otherwise

The probability of detection is commonly calculated as an exponential decay
function, e ¢, where the decay rate, /3, is associated with the sensor type and d is
the distance between the target point and the sensor. Using this function, we can
calculate:

py = e (4.42)
This means that the probability of missing an intruder at point i can be calculated as:
11 H — Py Xjt) (4.43)

jeJ t=

With this function, we can now formulate the Effective Covering Problem (ECP) of
Altinel et al. (2008) for multi-type sensor placement:

T
ECP: Minimize » > cix; (4.44)
jeJ =1
Subject to:
T
S xp <1 (4.45)
=
T
ITII = pyixie) <Mi Vi (4.46)
jel =1
xp=1{0,1} Vj,vt (4.47)

The objective, (4.44), involves minimizing the cost of the sensors that are used in the
network. Note that the costs of sensors varies by type. Constraint (4.45) limits the
location of only one sensor type at a given site j. Constraints (4.46) ensure that
probability of missing an intruder at a given point # is less than the maximum
acceptable probability of missing an intruder at point i. Constraints (4.47) restrict
the decision variables to be binary in value. Unfortunately, this formulation is highly
non-linear due to constraints (4.46), and not easily solvable by existing software. To
address this formulation directly, one would need to design a heuristic.
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There is, however, another approach to solving this problem and it involves a
transformation. If we take the natural log of expression (4.46) we obtain:

Z Z In (1 = pyxj) < In(M;) (4.48)

which is mathematically equivalent to constraint (4.46). Note that when x;, = 1, the
term associated with this variable in the summation on the left hand side of the
inequality equals In(1 — p;;). Thus, when x;, = 1 the term is equivalent to In(1 — p;;,)
x;r. Also note that when x;, = 0, the associated term in the left hand side of the
inequality equals In(1 — p;; x 0) = In (1). Since the In(1) equals zero, this term is
equivalent to In(1 — p;;)x;;; when x;, = 0. Thus, we can reformulate constraint (4.46)
by taking the natural log of each side and using the properties when x;, is binary in
value to form the following equivalent constraint:

sz = Py)Xj < In (M;) (4.49)

The beauty of this constraint is that it is linear. Note that the probabilities p;;, and M;
are less than one in value. The natural logs of these values will be negative. If we
define g, = — In (1 — p;;) and b; = — In (M;), we can write constraints (4.49) in
the following form:

t=1

T
> apxi > by (4.50)
J

Altogether, we can now formulate an equivalent form of the ECP as follows:

Minimize Z Z CitXjt (4.51)

jeJ 1=

Subject to:

T
dxp<1 Y (4.52)

T
SN agixy > bivi (4.53)
J

xp={0,1} Vjvi (4.54)
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This model is now in the form of a classical multi-level covering problem, except
that the contributions to covering a given area i are real values rather than integer
values and the demand for coverage, b;, is a real value rather than integer. Altogether,
this is a general form of multi-level location set covering problem presented in
Chap. 2. It can also be viewed as a generalization of PLSCP presented in Sect. 4.2.

We can also formulate a generalized form of MALP’, where facility availability
varies geographically rather than being the same across a region. To do this, first
recognize that we will consider only one type of facility being located, but where the
probability of being available is site specific, p;, or site and distance sensitive, p;;
(like in the sensor case). The site and distance sensitive form is appealing because
not only can we handle a site specific availability of a facility, but we can also
include the probability of reaching a given demand within a standard amount of time.
Thus, we can define a;; = — In(1 — py) ora; = — In (1 — p;). With this, we can
formulate a general form MALP' (MALP'-G) as:

MALP'-G : Maximize » _ ay, (4.55)

Subject to:

dxi=p Y (4.56)

jel

T
SN agx; > byvi (4.57)

JEN; =1
x;j={0,1} Vj (4.58)
v ={0,1} Vi (4.59)

where vehicle or facility availability varies geographically and where reaching a
given demand from a specific site may also be probabilistic. The objective, (4.55),
involves maximizing the demand that is provided a-reliable coverage. Constraint
(4.56) represents the constraint on the number of facilities that are being located.
Constraints (4.57) define whether a-reliable coverage has been provided to a specific
demand i or not. Note that the value of b; = — In (M;) where M; =1 — a;.

The problem becomes a bit more complicated if we want to develop a model to
maximize expected coverage of demand, like that of Daskin (1983), when probabil-
ities of facility unavailability vary geographically. MALP'-G is straight forward
when we have a standard for whether a demand is covered or not, like an
a-reliable covering standard, but if we wish to maximize expected coverage then
determining and accounting for the amount of expected coverage to a given demand
is considerably more difficult. The reason for this is that with the Daskin (1983)
construct we could easily calculate the level of expected coverage for a demand
based upon the number of facilities that covered that demand. But, if the probabilities
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of coverage vary in possibly covering a given demand, then the actual value of
expected coverage varies on which sites are selected as well and not just on the
number of selected site. This was the subject of recent work by Lei et al. (2014). To
calculate expected coverage of a given demand, they first identified all of the
different covering configurations of sites within the coverage area of that demand.
For each covering configuration for that demand, they then determined the expected
coverage that would be provided by that configuration given site independent
availabilities. Their overall model then was designed to maximize expected cover-
age, where each demand is represented by the coverage provided by the best
coverage configuration of that demand that exists among the selected facility
locations. It is a relatively ingenious approach, but fraught with a significant degree
of complexity, especially when there may exist many alternate covering configura-
tions among those sites that can cover a given demand.

Rather than present the details of the maximal expected coverage model of Lei
et al. (2014), we will present a far simpler, but approximate form of MEXCLP given
varying probabilities of facility availability (site specific, p;, or site and distance
sensitive, p;;). To do this, consider the following additional/modified notation:

o, = expected coverage level k where k =1, 2, . . ., K, for example @; = 0.50 or 50%.

| 1,if demand i is covered at an expected coverage level k
Yik 0,if otherwise

The basic idea is that we discretize expected coverage levels into a small number,
say 0.50, 0.60, 0.70, 0.80 and 0.90, or in this case K = 5. We can use the basic
structure of constraint (4.53) to determine if a given level of coverage, say 50%, has
been provided to a given demand. Using this discretized definition of expected
coverage, we can define an approximate or discretized-level form of MEXCLP
using site specific probabilities of availability:

K
MEXCLP-GD : Maximize » Y aay (4.60)
jeJ k=1

Subject to:

Y xj=p Y (4.61)

jel

K
dyu <1 Vi (4.62)
k=1



102 4  Probabilistic Coverage

T
>N ayx; > by Vivk (4.63)
JEN; t=1
x;=40,1} Vj (4.64)
y;=4{0,1} Vi (4.63)
where by = — In (1 — ;). The objective (4.60) maximizes the sum of expected

coverages based upon what probabilistic level of coverage is attained (e.g., 60%) for
each demand. Constraint (4.61) limits the number of facilities being located to equal
p. Constraints (4.62) limit the levels of accounted coverage for each demand to be at
most one. Constraints (4.63) are used to define whether a specific level k of expected
coverage has been met for demand i. If so, then the constraint allows y; to equal one,
denoting that expected coverage level k has been provided to demand i. Because
only one level of coverage can be counted for a given demand, only the highest
achieved level of expected coverage will be accounted for that demand in the
objective function. The remainder of the constraints list the binary restrictions on
the decision variables.

4.7 Extensions

There are a number of pathways in which the models presented in this chapter have
been extended, often with the purpose of addressing issues experienced in applica-
tions. From the very beginnings of Location Science and the development of the
classic LSCP and MCLP approaches, refinements have been proposed to address
specific issues that arise in application. For example, Plane and Hendrick (1977)
relocated fire stations, where the objective was to improve coverage as much as
possible while keeping as many of the existing stations as possible. Often, there are
many issues when taking a system and improving it by making selected changes as
compared to designing something from scratch. That is, in application most prob-
lems are not “green field” in nature, but start with an existing system, which is either
expanded, contracted, or reconfigured. A good example in analyzing an existing fire
department and its fleet of rescue vehicles and fire trucks can be found in Pérez et al.
(2016). Their motivation was to improve reliable coverage of emergency response
taking into account different types of response as well as vehicle busyness in the city
of Santiago, Chile. Another interesting application of covering to improve fire
response can be found in the work of Aktas et al. (2013). They analyzed the services
of fire department locations in the City of Istanbul, Turkey to address many types of
demand, including historic structures built during the Roman and Ottoman empires
that have recently been the target of radical extremists.

Time is a major factor which has been virtually ignored in this chapter. The main
reason for this is to keep our presentation as simple as possible. Demand for EMS
can vary considerably over the hours of a week. Church et al. (2001) analyzed the
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temporal EMS demand for Kansas City (Missouri and Kansas) and presented a
scheduling model that optimizes crew shifts and ambulance deployment over a
week, so that periods of peak demand are well served while ensuring that periods
of low demand are not overcommitted with resources. Repede and Bernardo (1994)
have extended the MCLP to handle multiple time periods and Brotcorne et al. (2003)
have developed a dynamic relocation model that repositions ambulances each time a
call for service is made. Their model uses what they term the “double standard”
where cover is maximized within one distance and required within a range that is
more distant. The basic element is to reposition as few units as possible with the least
overall distance of repositioning so that the double standard of coverage is met. This
creates a system that is best positioned to answer the next call. Another example is
that of Rajagopalan et al. (2008) in which they develop a multiperiod set covering
model that they use to dynamically redeploy ambulances. Repositioning of emer-
gency vehicles when some are busy has been a subject of interest since the classic
work of Kolesar and Walker (1974) and has been found to help a system increase
response coverage in real time.

Another type of extension is where facilities are co-located at a given site.
Co-location helps to keep the number of stations or dispatching posts as small as
possible. The idea is that co-location should be pursued whenever it is possible to
accomplish without seriously reducing coverage or increasing response times. Sev-
eral of the models that are presented in the previous section have been formulated
with the option of allowing co-location whenever it is beneficial. Presumably,
co-location may reduce the need for repositioning. It should be recognized that in
less dense suburban areas, co-location may not be a viable option due to the fact that
demand is spread over a larger area and facilities may need to be spread far apart,
whereas in the dense urban cores co-location may be achieved without degrading
coverage values.

It is also important to note that may emergency services have a goal of maximiz-
ing coverage and minimizing average response times. This means that models such
as the p-median problem have also been used to deploy emergency resources. A
good example of how that can be accomplished can be found in Weaver and Church
(1985) where service is accounted for in terms of the closest vehicle as well as more
distant vehicles to a demand. Thus, average response is a function of vehicle average
availability. Because many coverage models are special cases of p-median equiva-
lents (see Church and Weaver 1986), there exist many avenues in which coverage
and average response can be handled together. There is also the possibility of using
the probability chain approach developed by O’Hanley et al. (2013) to handle
differing probabilities of availability in optimizing both coverage and average
response distance.
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4.8 Summary and Concluding Comments

The models described in this chapter represent a rather large literature devoted to
emergency services and safety planning, including fire, EMS, and police as well as
sensor network design. Many of these models feature covering as the primary
objective. It is only natural that such models have been extended and tested in
many ways. For example Borras and Pastor (2002) have analyzed several forms of
probabilistic covering models. They found that the model of Ball and Lin (1993)
almost always achieves the required reliability level. Their tests involved the use of a
simulation model. They used their analysis to suggest a further extension of the Ball
and Lin (1993) approach to achieve the same desired levels of reliability while using
fewer vehicles. Sorensen and Church (2010) also used simulation to confirm whether
local reliability is achieve within the context of a MALP' approach. They also
demonstrated that, in general, using local reliability estimates in an expected cover-
age model achieves higher levels of coverage than using local reliability estimates in
MALP'. They suggested that an expanded MEXCLP approach better meets the
operations standards of many ambulance systems. Altogether, simulation models
like that of Erkut and Polat (1992) and Heller et al. (1989) are important tools in
validating the results of optimization models in emergency management, but are
useful in their own right.

The constructs that are reviewed in this chapter all involve simplifications of a
highly complex system of congestion. The main reason for this is that the probabi-
listic nature of a complex design system is difficult to fully capture in a simpler
deterministic model. However, such deterministic equivalents represent the only
realistic approach to finding what are called “optimal” solutions. Unfortunately, few
if any comparisons have been made between a heuristic solution process to a more
realistic version of an actual system and the optimal solutions obtained from a
deterministic equivalent model. It is time to demonstrate which pathway has been
the most fruitful to date in addressing this important problem.
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