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Abstract. Walter is a distributed partially replicated data store provid-
ing Parallel Snapshot Isolation (PSI), an important consistency property
that offers attractive performance while ensuring adequate guarantees for
certain kinds of applications. In this work we formally model Walter’s
design in Maude and formally specify and verify PSI by model checking.
To also analyze Walter’s performance we extend the Maude specifica-
tion of Walter to a probabilistic rewrite theory and perform statistical
model checking analysis to evaluate Walter’s throughput for a wide range
of workloads. Our performance results are consistent with a previous
experimental evaluation and throw new light on Walter’s performance
for different workloads not evaluated before.

1 Introduction

Cloud-based transaction systems provide both a challenge and an opportunity
for the use of formal methods. The challenge has to do with the fact that the
very raison d’être for such system is the need for a carefully chosen compromise
between consistency guarantees and performance. Their massive use requires
them to ensure scalability to large numbers of users with acceptable latency
and throughput, while also guaranteeing the promised consistency properties.
This is a challenge for formally-based design, because many formal methods
tend to solely focus on correctness. Yet, correctness without due performance
is useless for these systems. The opportunities are plentiful, including the fol-
lowing: (1) Many of these systems have never been formally specified, either at
the system specification level or at the property specification level. (2) There
is a need for modularity and conceptual unification in the design of these, cur-
rently quite ad-hoc and monolithic, systems. (3) There is also the prospect of
using formal executable specifications for code generation purposes, achieving
correct-by-construction systems that, by having been thoroughly analyzed in
their correctness and performance aspects, can achieve very high quality.

This work is part of a long-term research effort in which we have been
using Maude to meet the challenges and exploit the opportunities described
above for cloud-based transaction systems (see [4] for a survey). Specifically,
we exploit the type-(1) opportunity offered by Walter [21], a well-known cloud-
based transaction system that provides an important intermediate consistency
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guarantee, Parallel Snapshot Isolation (PSI). Walter is a very good type-(1)
opportunity because no formal system specification exists at all; and there is
no formal (or even informal) verification that it guarantees PSI. Walter is also
a good stepping stone towards placing the design of cloud-based transaction
systems in a formally-based modular framework. The way we are advancing
this type-(2) goal is by first systematically studying system designs that cover
the whole spectrum between lower-guarantees/higher-performance and higher-
guarantees/lower-performance systems. We have already studied several sys-
tems in this spectrum, including RAMP [11,15], our own ROLA design [12],
P-Store [18], and Megastore [9]. Walter has been a key missing design in the
spectrum. The essential point is that case studies spanning the entire correct-
ness/performance spectrum are crucial for identifying optimal decompositions
of such systems into modular, reusable components. Finally, the fact that our
Maude specification of Walter and of the other above-mention systems are exe-
cutable, also helps us advance towards exploiting the type-(3) opportunity of
achieving high-quality code generation for formal specifications. In this paper
we focus on the type-(1) goal for Walter, but our sights are aimed at the type-
(2)–(3) goals just as much.

Main Contributions and Outline. In Section 2 we give an overview of Wal-
ter, the PSI property and the stronger Snapshot Isolation (SI) property, and
summarize the main features of Maude used in this paper. Section 3 provides a
formal executable specification of Walter in Maude. This is a key contribution
since, to the best of our knowledge, it is the first formal specification of Walter.
Section 4 formalizes the SI and PSI properties and formally analyzes for the first
time whether the Walter design satisfies either of these properties. This analysis
is achieved by: (i) providing a parametric method to generate all initial states
for given parameters; and (ii) performing model checking analysis to verify the
SI and PSI properties for all initial states for various parameter choices. To ana-
lyze complex properties such as SI and PSI we propose a new general method for
model checking such properties by adding a “monitor” to the state which records
the global order of transaction starts and commits/aborts. In this way we can
easily specify and model check SI and PSI; furthermore, this technique should
also be applicable to analyze other consistency properties. Our analysis shows
that the Walter design does indeed satisfy the PSI property for all our initial
states but fails to satisfy the SI property. Section 5 makes four contributions.
First, it extends the Maude model of Walter from a rewrite theory to a proba-
bilistic rewrite theory by adding time and probability distributions for message
delays to the original specification. Second, it carries out a systematic statistical
model checking analysis of the key performance metric, transaction throughput,
under a wide range of workloads. Third, it confirms that the performance esti-
mates thus obtained are consistent with those obtained experimentally for the
Walter implementation in [21]. Fourth, it provides new insights about Walter’s
performance beyond the limited ranges for which such information was available
by experimental evaluation in [21]. Finally, related work is discussed in Section 6,
and concluding remarks are given in Section 7.
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2 Preliminaries

Parallel Snapshot Isolation. To deal with huge amounts of data, cloud-based
applications need to partition their data across distributed sites, and to provide
high availability and disaster tolerance, data must be replicated at widely dis-
tributed sites. Such partially replicated data stores have to: (i) maintain some
consistency of replicated data, and (ii) provide some consistency for (multi-
partition) transactions that access data stored at different partitions. However,
ensuring high degrees of consistency for partially replicated data stores sup-
porting multi-partition transactions requires a lot of costly coordination, which
might lead to unacceptable delays and throughput for many kinds of applica-
tions. Designers of distributed data stores therefore face a trade-off between
providing good consistency properties and high performance. There are a num-
ber of consistency properties, ranging from strong ones like serializability all the
way to weak properties such as read atomicity and eventual consistency.

A popular intermediate consistency model provided by commercial database
systems such as Oracle and SQL Server is snapshot isolation (SI) [3]. The idea
is that a multi-partition transaction reads from a snapshot of a distributed data
store that reflects a single commit order of transactions across sites.

In [21], the authors argue that having the same commit order across all
sites is not necessary for social networks and similar applications: it does not
matter much that Vlad in Moscow sees Kim’s post before seeing Benny’s post,
whereas Don in Washington sees Benny’s post before Kim’s post. (Hence Benny
and Kim can commit their (independent) posts without waiting for each other.)
They propose a new consistency model, called parallel snapshot isolation, which
allows different commit orders at different sites, while still guaranteeing:

– recent and “consistent” views: all operations in a transaction read the most
recent version committed at the transaction execution site, as of the time
when the transaction begins;

– no write-write conflicts (the write sets of committed somewhere-concurrent
transactions must be disjoint); and

– preservation of causality across sites, which ensures that both Vlad and Benny
see Kim’s post before seeing Don’s reply to Kim’s post.

In [21] the authors specify PSI by giving an abstract pseudo-code “program” of
a centralized execution that a distributed implementation must emulate.

Walter. Walter [21] is a partially replicated geo-distributed data store that
supports multi-partition transactions and guarantees/implements PSI.

The key idea to ensure that all operations in a transaction read a consistent
“snapshot” of the distributed data store is that each site s maintains a (local)
vector timestamp {site1 �→ k1, . . . , siten �→ kn} representing a current snapshot
of the state, as seen by site s, where sitej �→ kj means that the snapshot includes
the first kj transactions executed at site sitei. Each time a transaction starts exe-
cuting at s, the transaction is assigned the current local snapshot/vector times-
tamp of site s. Remote reads can then be performed consistently according to
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this snapshot. Another key Walter feature is that each data item has a preferred
site, so that writes at preferred sites can be committed fast.

A transaction is executed as follows. When the “host” site s starts executing
the transaction t, t is assigned the current snapshot of s. The site s then executes
the read and write operations in t. For writes, Walter buffers the versions written
in the transaction’s write set. For reads, Walter fetches the latest appropriate
version according to t’s start snapshot, by checking any updates in the write set
and its history of previous updates. If the data item is not replicated locally,
Walter retrieves the right version remotely from the data item’s preferred site.

When the host site has executed all the operations in a transaction, it starts
committing the transaction. Read-only transactions and transactions that only
write data items whose preferred site is the host site can commit locally (fast
commit). Walter then checks whether all versions of each data item in the history
of the local site are unmodified since the start vector timestamp, and whether all
data items are unlocked (i.e., not being committed by another transaction). If
either check fails, Walter aborts the transaction; otherwise, it can be committed.
If a transaction t cannot commit locally (slow commit), the executing site s uses
the two-phase commit (2PC) protocol to check whether t can be committed, by
asking the preferred sites of data items written by t whether t can be committed.
If the data items written by t are unmodified and unlocked at such a site, the site
replies with a “yes” vote and locks the corresponding data items. Otherwise, the
site votes “no.” If the executing site receives a “no” vote, t is aborted and the
other preferred sites are notified and release the appropriate locks. If all votes
are “yes” votes, the transaction can be committed.

If the transaction t can be (fast or slow) committed, the site s marks t as
committed, assigns it a version (s, seqNo) (where seqNo is a local sequence num-
ber), updates the local history with the updates, and propagates t to other sites,
which update their histories and their vector timestamps. To allow f site fail-
ures, a transaction is marked disaster-safe durable if its writes have been logged
at f +1 sites. The propagation protocol first checks whether the transaction can
be marked as disaster-safe durable by collecting acknowledgments from f + 1
sites for each data item. Upon receiving the propagation of a transaction, a site
acknowledges it only after it receives all transactions that causally precede the
propagated transaction, and all transactions at the same executing site with a
smaller sequence number. The protocol then checks whether the transaction can
be marked as globally visible. This is done by committing the transaction at all
sites. A transaction can be committed at a remote site when it learns that the
transaction is disaster-safe durable, all transactions causally preceding the trans-
action have been committed locally, and all transactions at the same executing
site with a smaller sequence number have been committed locally.

The paper [21] briefly discusses failure handling, but does not give much detail.
The authors have implemented Walter in about 30K lines of code, and have imple-
mented Facebook- and Twitter-like applications on top of Walter using the Ama-
zon EC2 cloud platform to evaluate Walter’s performance in a distributed setting
(with nodes in US, Ireland, and Singapore). They use their distributed deployment
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to estimate the transaction latency and throughput (committed transactions per
second) for read-only, write-only, and 90% read workloads.

The authors to do not prove or justify that Walter actually guarantees PSI.

Rewriting Logic and Maude. In rewriting logic a concurrent system is speci-
fied a as rewrite theory (Σ, E∪A,R), where (Σ, E∪A) is a membership equational
logic theory [6], with Σ an algebraic signature declaring sorts, subsorts, and func-
tion symbols, E a set of conditional equations, and A a set of equational axioms.
It specifies the system’s state space as an algebraic data type. R is a set of labeled
conditional rewrite rules, specifying the system’s local transitions, of the form
[l] : t −→ t′ if cond , where cond is a condition and l is a label. Such a rule
specifies a transition from an instance of t to the corresponding instance of t′,
provided the condition holds.

Maude [6] is a language and tool for specifying, simulating, and model check-
ing rewrite theories. The distributed state of an object-oriented system is formal-
ized as a multiset of objects and messages. A class C with attributes att1 to attn

of sorts s1 to sn is declared class C | att1 : s1, ..., attn : sn. An object of
class C is modeled as a term < o : C | att1 : v1, ..., attn : vn >, with o its
object identifier, and where the attributes att1 to attn have the current values
v1 to vn, respectively. Upon receiving a message, an object can change its state
and/or send messages to other objects. For example, the rewrite rule

rl [l] : m(O,z) < O : C | a1 : x, a2 : O’ >

=> < O : C | a1 : x + z, a2 : O’ > m’(O’,x + z) .

defines a transition where an incoming message m, with parameters O and z, is
consumed by the target object O of class C, the attribute a1 is updated to x +
z, and an outgoing message m’(O’,x + z) is generated.

Statistical Model Checking and PVeStA. Probabilistic distributed systems
can be modeled as probabilistic rewrite theories [1] with rules of the form

[l] : t(−→x ) −→ t′(−→x ,−→y ) if cond(−→x ) with probability −→y := π(−→x )

where the term t′ has new variables −→y disjoint from the variables −→x in the
term t. The concrete values of the new variables −→y in t′(−→x ,−→y ) are chosen
probabilistically according to the probability distribution π(−→x ).

Statistical model checking [19,22] is an attractive formal approach to ana-
lyzing (purely) probabilistic systems. Instead of offering a yes/no answer, it can
verify a property up to a user-specified level of confidence by running Monte-
Carlo simulations of the system model. We then use PVeStA [2], a paralleliza-
tion of the tool VeStA [20], to statistically model check purely probabilistic
systems against properties expressed as QuaTEx expressions [1]. The expected
value of a QuaTEx expression is iteratively evaluated w.r.t. two parameters α
and δ by sampling, until we obtain a value v so that with (1−α)100% statistical
confidence, the expected value is in the interval [v − δ

2 , v + δ
2 ].
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3 A Formal Model of Walter in Maude

This section explains how we have formalized Walter in Maude. Due to space
limitations, we only show parts of our model (e.g., 4 out of 26 rewrite rules) and
refer to the accompanying longer report [13] and the executable model available
at https://sites.google.com/site/siliunobi/walter for more details.

We formalize Walter in an object-oriented style, where the state consists of
a number of replica (or site) objects, each modeling a local database, and a
number of messages traveling between the objects. A transaction is formalized
as an object which resides inside the replica object that executes the transaction.

Some Data Types. A version is a pair version(oid,sqn) consisting of a site
oid where the transaction is executed, and a sequence number sqn local to that
site. A vector timestamp is a map from site identifiers to sequence numbers.
The sort OperationList represents lists of read and write operations as terms
such as (x := read k1) (y := read k2) write(k1, x + y), where x and y are
“local variables.” An “operation” waitRemote(k, x) means that the transaction
execution is awaiting the value of the key/data item k from a remote site to be
assigned to the local variable x (see [13] for the definition of these data types).

Classes. A transaction is modeled as an object of the following class Txn:

class Txn | operations : OperationList, readSet : ReadSet,

writeSet : WriteSet, localVars : LocalVars,

startVTS : VectorTimestamp, txnSQN : Nat .

The operations attribute denotes the transaction’s remaining operations. The
readSet attribute denotes the versions of data items read by the transaction as
a ‘,’-separated set of pairs versionRead(k, version). writeSet denotes the write
set of the transaction as a map (k1 |-> val1), ..., (kn |-> valn). localVars
maps the transaction’s local variables to their values. startVTS is the vector
timestamp assigned to the transaction when it starts to execute, and txnSQN is
the transaction’s sequence number given upon commit.

A replica, or site, stores parts of the database and executes the transactions
for which it is the host, and is formalized as an object of the following class:

class Replica | history : Datastore, sqn : Nat, gotTxns : ObjectList,

executing : ObjectList, committed : ObjectList,

aborted : ObjectList, committedVTS : VectorTimestamp,

gotVTS : VectorTimestamp, locked : Locks,

votes : Vote, voteSites : TxnSites, abortSites : TxnSites,

dsSites : PropagateSites, vsbSites : TxnSites,

dsTxns : OidSet, gvTxns : OidSet,

recPropTxns : PropagatedTxns, recDurableTxns : DurableTxns .

The history attribute represents the site’s local database, as well as propagated
updates also on data items not stored at the replica, as a map from keys to lists
of updates < value, version >. The sqn attribute denotes the replica’s current

https://sites.google.com/site/siliunobi/walter
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local sequence number. The attributes gotTxns, executing, committed and
aborted denote the transaction (objects) which are, respectively, waiting to
be executed, executing, committed, and aborted. The attributes committedVTS
and gotVTS indicate for each site how many transactions of that site have been
committed at, respectively, received by, this site. locked denotes the locked
keys and their associated transactions at this site. The attributes recPropTxns
and recDurableTxns buffer the received propagation and disaster-safe durable
messages from the coordinator. See [13] for an explanation of the other attributes.

The state also contains an object mapping each key to the sites storing the
key (these sites are also called the replicas of the key):

class Table | table : ReplicaTable .

Messages between sites have the form msg content from sender to receiver . We
only introduce the messages appearing in the rewrite rules shown in this paper.
The message content (or simply message) request(key , txn, vts) sends a read
request for transaction txn to key ’s preferred site to retrieve its state from the
snapshot determined by vector timestamp vts. The preferred site replies with
a message reply(txn, key , value version), where value version is chosen based
on the incoming vector timestamp. The message ds-durable(txn) is sent to
all sites once the transaction txn has been marked as disaster-safe durable. The
sites then reply with a message visible(txn) to acknowledge the notification.

Formalizing Walter’s Behavior. The following three rules show how the host
site RID executes a read operation X :=read K in the currently executing
transaction TID when the transaction has not already written data item
K (not $hasMapping(WS,K)) and the site RID does not replicate data item K (not
localReplica(K,RID,REPLICA-TABLE)). In this case, the site sends a request
message (with the transaction’s start vector timestamp VTS) to K’s preferred
site (preferredSite(...)) to fetch the version. The “next operation” of the
transaction changes to waitRemote(K,X):1

crl [execute-read-remote] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Replica | executing :

< TID : Txn | operations : ((X :=read K) OPS), writeSet : WS,

startVTS : VTS > >

=>

< TABLE : Table | >

< RID : Replica | executing :

< TID : Txn | operations : (waitRemote(K,X) OPS) > >

(msg request(K,TID,VTS) from RID to preferredSite(K,REPLICA-TABLE))

if (not $hasMapping(WS,K)) /\ (not localReplica(K,RID,REPLICA-TABLE)) .

The remote (preferred) site responds to this request by sending the snapshot-
consistent value and version (choose(VTS, DS[K])) of the requested key:
1 We do not give variable declarations, but follow the convention that variables are

written in (all) capital letters.
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rl [receive-remote-request] :

(msg request(K, TID, VTS) from RID’ to RID)

< RID : Replica | history : DS >

=>

< RID : Replica | >

(msg reply(TID, K, choose(VTS, DS[K])) from RID to RID’) .

The executing site then merges the fetched value and version in the local
history, and updates the read set and local variables:

rl [receive-remote-reply] :

(msg reply(TID, K, < V,VERSION >) from RID’ to RID)

< RID : Replica | history : DS, executing :

< TID : Txn | operations : (waitRemote(K, X) OPS), readSet : RS,

localVars : VARS > >

=>

< RID : Replica | executing :

< TID : Txn | operations : OPS,

readSet : (versionRead(K, VERSION), RS),

localVars : insert(X, V, VARS) >,

history : merge(K, < V,VERSION >, DS) > .

The last rule we show concerns the propagation of committed transactions. If
a transaction TID can be committed, it is propagated to the other sites. When
a receiving site has received all transactions that causally precede TID and all
transactions from TID’s host site with smaller sequence numbers, the transaction
TID is propagated successfully and this is acknowledged to the host site. When
the host has received f + 1 such acknowledgments it marks TID as disaster-
safe durable and sends a ds-durable message to each site. When a remote site
receives this decision, the site tries to commit the transaction locally:

crl [receive-ds-durable-visible] :

(msg ds-durable(TID) from RID’ to RID)

< RID : Replica | recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

recDurableTxns : DTXNS, committedVTS : VTS’,

locked : LOCKS >

=>

< RID : Replica | recDurableTxns : (durableTxns(TID) ; DTXNS),

committedVTS : insert(RID’,SQN,VTS’),

locked : release(TID,LOCKS) >

(msg visible(TID) from RID to RID’)

if VTS’ gt VTS /\ s(VTS’[RID’]) == SQN .

To commit transaction TID, the remote site must check that: (i) the propagation
message has been received and acknowledged (propagatedTxns(TID,SQN,VTS)
shown in recPropTxns); (ii) VTS’ is greater than VTS; and (iii) all transac-
tions from TID’s host site with a smaller sequence number have been received
(s(VTS’[RID’]) == SQN). A visible message is then sent back, all correspond-
ing locks are released, and the transaction is committed at the remote site.
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4 Correctness Analysis

In this section we use reachability analysis—from all initial system configura-
tions up to given bounds on the number of transactions, sites, etc.—to analyze
whether Walter satisfies PSI and SI. To analyze these complex properties, we
use a novel technique which adds a global “logical clock” to record the global
order of transaction starts and commits/aborts.

4.1 Parametric Generation of Initial States

To analyze all possible initial configurations we introduce a new operator init
so there is a one-step rewrite init(parameters) −→ c0 for each possible initial
configuration c0. We declare a sort ConfigSet for sets of configurations, define a
function op initAux : s1 ... sn -> ConfigSet (see our report [13] for details)
such that initAux(params,params ′) generates all possible initial states for such
parameters, and add the following rewrite rule to our model:

var C : Configuration . var CS : ConfigSet .

crl [init] : init(params) => C if C ; CS := initAux(params,params’) .

init’s parameters are the number of read-only transactions, the number of write-
only transactions, the number of read-write transactions, the number of sites, the
number of keys, and the replication factor. Each transaction has two operations.

One of 768 initial states generated by init(1,1,1,2,2,2) is

< 0 : Table | table : [replicatingSites(k1,1 2) ;; replicatingSites(k2,2 1)] >

< 1 : Replica |

gotTxns : < 3 : Txn | operations : (k2l :=read k2) (k1l :=read k1),

readSet : empty, writeSet : empty,

localVars : (k1l |-> [0] , k2l |-> [0]),

startVTS : empty, txnSQN : 0>,

history : (k1 |-> < [0], version(0,0) >, k2 |-> < [0], version(0,0) >),

sqn : 0, ... >

< 2 : Replica |

gotTxns : < 2 : Txn | operations : write(k2,1) write(k1,2), ... > ;;

< 1 : Txn | operations : (k2l :=read k2) write(k2,1), ... >,

history : k1 |-> < [0], version(0,0) > , k2 |-> <[0], version(0,0)>), ... >

where data items k1 and k2 are replicated at sites 1 and 2, and have pre-
ferred sites 1 and 2, respectively. Site 1 has one read-only transaction ‘3’—with
operations (k2l :=read k2) (k1l :=read k1)—to execute, and site 2 has one
write-only transaction ‘2’ and one read-write transaction ‘1’ to execute.

4.2 Analyzing the Correctness Properties

This section analyzes whether Walter satisfies SI and PSI using a new technique
where we record relevant history during a run. The SI and PSI properties can
then be easily formalized as functions on the final state of an execution.
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In particular, we add to the state an object

< m : Monitor | clock : clock, log : log >

which stores crucial information about the execution. The clock is a kind of
“logical global clock” that totally orders transaction starts and commits/aborts.
This clock is incremented by one whenever a transaction starts executing or is
committed or aborted somewhere. The log maps each transaction to a record
record(rid , issueTime,finishTimes , committed , reads,writes), with rid its host
site, issueTime its issue “time” according to the logical clock, finishTimes its
commit/abort “time” at each site, committed a flag that is true if the transaction
is committed, reads its key/versions read, and writes its write set.

We modify our rewrite rules to update the Monitor whenever a transaction
starts or is committed/aborted somewhere. For example, when a site commits
a propagated transaction, the monitor records the commit time GT for that
transaction at site RID and increments the logical global time by one:

crl [receive-ds-durable-visible] :

(msg ds-durable(TID) from RID’ to RID)

< M : Monitor | clock : GT,

log : (TID |-> record(RID’,T1,VTS1,true,READS,WRITES)

, LOG) >

< RID : Replica | ... > --- as before

=>

< M : Monitor | clock : GT + 1 ,

log : (TID |-> record(RID’,T1,insert(RID,GT,VTS1) ,

true,READS,WRITES) , LOG) >

< RID : Replica | ... > --- as before

(msg visible(TID) from RID to RID’) if ... .

Since Walter is terminating if a finite number of transactions are issued, we
check the consistency properties by inspecting this monitor object in the final
states, when all transactions have finished.

Formalizing Parallel Snapshot Isolation. As mentioned in Section 2, PSI is given
by three properties [21]:

– PSI-1 (Site Snapshot Read): All operations read the most recent committed
version at the transaction’s site as of time when the transaction began.

– PSI-2 (No Write-Write Conflicts): The write sets of each pair of committed
somewhere-concurrent2 transactions must be disjoint.

– PSI-3 (Commit Causality Across Sites): If a transaction T1 commits at a site
A before a transaction T2 starts at site A, then T1 cannot commit after T2 at
any site.

2 Two transactions are somewhere-concurrent if, at either host site, one of them has
a commit timestamp between the start and the commit timestamp of the other.
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We analyze PSI-2 (and all other properties) by searching for a reachable final
state whose system log shows that the execution did not satisfy the property. The
following function p2-psi checks whether PSI-2 holds in the execution reflected
in the system log, by checking whether there is a write-write conflict between
any pair of committed somewhere-concurrent transactions in the system log:

ops p1-psi p2-psi p3-psi : Log -> Bool .

ceq p2-psi(TID1 |-> record(RID1, TS1, (RID1 |-> TC , VTS1), true, RS,

(v(X,V), WS)) ,

TID2 |-> record(RID2, TS2, (RID1 |-> TC’ , VTS2), true, RS’,

(v(X,V’) , WS’)) , LOG) = false

if TC’ > TS1 and TC’ < TC .

eq p2-psi(LOG) = true [owise] .

In the first equation there are two committed (their “commit” flags are true)
transactions TID1 and TID2—hosted, respectively, at sites RID1 and RID2—that
both wrote data item X (since v(X, V) and v(X, V’) are in their respective write
sets). TID1 and TID2 are somewhere-concurrent, since they are concurrent at
TID1’s host site RID1: TID2 committed at RID1 at time TC’, which is between
TID1’s start time TS1 and its commit time TC at RID1.

The function p3-psi that analyzes PSI-3 by checking whether there was
“bad situation” in which a transaction TID1 committed at site RID2 before a
transaction TID2 started at site RID2 (TC1 < TS2), while TID1 committed at site
RID after TID2 committed at site RID (TC1 > TC2):

ceq p3-psi((TID1 |-> record(RID1, TS1, (RID2 |-> TC , RID |-> TC1 , VTS1),

true, RS, WS),

TID2 |-> record(RID2, TS2, (RID1 |-> TC’ , RID |-> TC2 , VTS2),

true, RS’, WS’) , LOG)) = false

if TC < TS2 /\ TC1 > TC2 .

eq p3-psi(LOG) = true [owise] .

We have equally easily defined a function p1-psi for property PSI-1, and
functions p1-si and p2-si characterizing the executions where the requirements
SI-1 and SI-2 for SI hold (see [13] for details).

We have analyzed Walter from all initial states with up to 3 transactions, 2
sites, 2 keys, and 2 replicas per key, as well as from a number of initial states
with 3 transactions. The following command searches for a reachable final state
where the log shows that PSI-2 is violated:

Maude> (search [1] init(1,0,2,2,2,2) =>!

< M:Oid : Monitor | log : LOG:Log > C:Configuration

such that not p2-psi(LOG:Log) .)

No solution



Formal Modeling and Analysis of the Walter Transactional Data Store 147

Our analysis found that Walter may violate both SI-1 and SI-2, but did not
uncover a violation of PSI. Each search command took about 2 h (worst-case)
to execute on a 3.4 GHz × 8 Intel Core i7-2600 CPU with 11.7 GB memory.

5 Performance Estimation by Statistical Model Checking

In this section we use PVeStA statistical model checking to estimate the per-
formance of Walter in a wider range of settings than in the experiments in [21],
thereby providing further insight about Walter. For example, the experiments
with fast commit in [21] assume full replication, whereas we also experiment
with a partially replicated setting (which necessitates remote reads, etc.), and
with workloads involving both slow and fast commits.

Probabilistic Modeling of Walter. For statistical model checking in PVeStA
we need to eliminate nondeterminism in the untimed model in Section 3, and
for performance estimation we need to add time and probabilities. All of this
can be achieved by following the techniques in [8] and probabilistically assign
to each message a delay. The idea is that if each rewrite rule is triggered by
the arrival of a message (either directly, or indirectly by becoming enabled as a
result of applying a rule that is triggered by the arrival of a message) and the
message delay is sampled probabilistically from a dense time interval, then the
probability that two messages have the same delay is 0, and hence no two actions
are enabled simultaneously, eliminating nondeterminism and introducing time.

In more detail, nodes send messages of the form [Δ,rcvr <- msg], where Δ
is the message delay, rcvr is the recipient, and msg is the message content. When
time Δ has elapsed, this message becomes a ripe message {T,rcvr <- msg},
where T is the “current global time” (used for analysis purposes only). Such a
ripe message must then be consumed by the receiver rcvr before time advances.

We exemplify with the rule receive-remote-request how we have trans-
formed the untimed non-probabilistic rewrite rules to the timed and probabilis-
tic setting. In the probabilistic rule below, the incoming message request is
equipped with the current global time T, and the outgoing message reply is
equipped with a delay D sampled from the probability distribution distr(...):

rl [receive-remote-request-prob] :

{T, RID <- request(K, TID, VTS, RID’)}

< RID : Replica | history : DS >

=>

< RID : Replica | >

[D , RID’ <- reply(TID, K, choose(VTS, DS[K]), RID)]

with probability D := distr(...) .

Extracting Performance Measures from Executions. This time we add to the
state a monitor object < m : Monitor | log: log >. The logical clock is no
longer needed, since now “real” time is given by the message arrival times. Fur-
thermore, since we now analyze transaction throughput, the log is simpler: a list
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of records record(tid , issueTime,finishTime, committed), with tid the transac-
tion identifier, issueTime its issue time, finishTime its commit/abort time, and
committed a flag that is true if tid is committed.

We define a number of functions on (states with) such a monitor that
extract different performance metrics from this “execution log.” The function
throughput computes the number of committed transactions per time unit:

op throughput : Config -> Float [frozen] .

eq throughput(< M : Monitor | log: LOG > REST)

= committedNumber(LOG) / totalRunTime(LOG) .

where committedNumber gives the number of committed transactions in LOG
and totalRunTime returns the time when all transactions are finished (i.e., the
largest finishTime in LOG) (see [13] for details).

Experimental Setup. We performed our experiments with 100 transactions, 1 or
5 operations per transaction, 100 keys, and up to 4 sites. The number of sites
and the transaction size are the same as in the experiments in [21]. We used
lognormal message delay distributions with parameters μ = 3 and σ = 1 for
local delays, and μ = 1 and σ = 2 for remote delays.

Generating Initial States. Statistical model checking verifies a property up to
a user-specified level of confidence by running Monte-Carlo simulations from a
given initial state. We use an operator probInit to probabilistically generate ini-
tial states: probInit(rtx ,wtx , rwtx , sites, keys, rf, rops,wops, rwops, distr) gen-
erates an initial state with rtx read-only transactions, wtx write-only trans-
actions, rwtx read-write transactions, sites sites, keys keys, rf replication level,
rops operations per read-only transaction, wops operations per write-only trans-
action, rwops operations per read-write transactions, and distr the key access
distribution (the probability that an operation accesses a certain key). To cap-
ture the fact that some keys may be accessed more frequently than others, we
also use Zipfian distributions in our experiments.

Each PVeStA simulation starts from probInit, which rewrites to a differ-
ent initial state in each simulation. The reason is that this expression involves
generating certain values—such as the transactions—probabilistically.

Statistical Model Checking Results. The plots in Fig. 1 show the throughput with
only fast commit as a function of the number of sites, with read-only, write-only
and 90% reads workload, and with uniform and Zipfian distributions. The plots
show that read throughput scales nearly linearly with the number of sites; write
throughput also grows with the number of sites, but not linearly. With a mixed
workload, throughput is mostly determined by the transaction size. Our results
are consistent with those in [21]. For uniform distribution we only plot the results
with a mixed workload; for the other two workloads, the results are consistent
with those using the Zipfian distribution.

The plots in Fig. 2 show the throughput with both fast and slow commit
under the same experimental settings as in Fig. 1. As shown in the left plot,
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Fig. 1. Throughput with fast commit under different workloads.
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Fig. 2. Throughput with fast commit (FC) and slow commit (SC).

throughput is mostly determined by the transaction size in the mixed workload;
the differences among various transaction sizes are consistent with those in Fig. 1.

Our Maude model, including the infrastructure for statistical model checking,
is around 1.8K LOC. Computing the probabilities took a couple of minutes on
30 servers, each with a 64-bit Intel Quad Core Xeon E5530 CPU with 12 GB
memory. Each point in the plots represents the average of 3 statistical model
checking results. The confidence level for all our statistical experiments is 95%.
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6 Related Work

Maude and PVeStA have been used to model and analyze the correctness and
performance of a number of distributed data stores: the Cassandra key-value
store [14,16], RAMP [11,15], Google’s Megastore [9,10], and P-Store [18]. In
contrast to these papers, our paper formalizes a different state-of-the-art algo-
rithm, Walter, and, in particular, shows how the snapshot isolation and parallel
snapshot isolation consistency models can be formalized and analyzed in Maude.
In [12] we use PVeStA to compare the performance of our own new ROLA
design with that of Walter. However, that paper focused on ROLA, and did not
present the formalization of Walter or the SI and PSI properties.

In other applications of formal methods for distributed data stores, engi-
neers at Amazon have used TLA+ and its model checker TLC to model and
analyze the correctness of key parts of Amazon’s celebrated cloud computing
infrastructure [17]. In contrast to our work, they only use formal methods for
correctness analysis. The designers of the TAPIR transaction protocol for dis-
tributed storage systems have also specified and model checked correctness (but
not performance) properties of their design using TLA+ [23].

The papers [5,7] formalize a number of consistency models, including SI and
PSI, but do not show how to analyze these properties.

7 Conclusions

We have formally analyzed and verified in Maude the design of Walter [21], a
partially replicated distributed data store providing multi-partition transactions
and guaranteeing parallel snapshot isolation (PSI), an important consistency
property that offers attractive performance while providing adequate guarantees
for certain kinds of applications. No formal specification of Walter existed before
this work. Furthermore, PSI was only informally described by pseudo-code in [21]
and no formal (or informal) verification existed. Using a logical clock to record
the order of important events in an execution, we could use model checking and
systematic generation of initial states to verify that Walter satisfies PSI for all
such states. This technique should also make it easy to formalize and model check
other consistency properties. We have also extended the Maude specification of
Walter to model time and probabilistic communication delays as a probabilistic
rewrite theory, and have then used statistical model checking analysis to study
Walter’s performance for a wide range of workloads. The results of the statistical
model checking analysis are consistent with the experimental results in [21] but
offer also new insights about Walter’s performance for a wider range of workloads
than those evaluated in [21].
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Formal Modeling and Analysis of the Walter Transactional Data Store 151

References

1. Agha, G.A., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language
for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213–239
(2006)

2. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
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