
Proving Structural Properties of Sequent
Systems in Rewriting Logic

Carlos Olarte1, Elaine Pimentel1, and Camilo Rocha2(B)

1 Universidade Federal do Rio Grande do Norte, Natal, Brazil
carlos.olarte@gmail.com, elaine.pimentel@gmail.com

2 Pontificia Universidad Javeriana, Cali, Colombia
camilo.rocha@javerianacali.edu.co

Abstract. General and effective methods are required for providing
good automation strategies to prove properties of sequent systems. Struc-
tural properties such as admissibility, invertibility, and permutability
of rules are crucial in proof theory, and they can be used for proving
other key properties such as cut-elimination. However, finding proofs for
these properties requires inductive reasoning over the provability rela-
tion, which is often quite elaborated, exponentially exhaustive, and error
prone. This paper aims at developing automatic techniques for proving
structural properties of sequent systems. The proposed techniques are
presented in the rewriting logic metalogical framework, and use rewrite-
and narrowing-based reasoning. They have been fully mechanized in
Maude and achieve a great degree of automation when used on several
sequent systems, including intuitionistic and classical logics, linear logic,
and normal modal logics.

1 Introduction

Contemporary proof theory started with Gentzen’s natural deduction and
sequent calculus in the 1930’s [7], and it has had a continuous development
with the proposal of several proof systems for many logics. Proof systems are
important tools for formalizing, reasoning, and analyzing structural properties
of proofs, as well as determining computational and metalogical consequences of
logical systems. As a matter of fact, proposing good calculi is one of the main
research topics in proof theory.

It is more or less consensus that a good proof system should support the
notion of analytic proof [5], where every formula that appears in a proof must
be a sub-formula of the formulas to be proved. This restriction can be exploited
to prove important metalogical properties of sequent systems such as consis-
tency. In sequent systems, analyticity is often guaranteed by the cut-elimination
property: if B follows from A and C follows from B, then C follows from A.
That is, intermediate lemmas (e.g., B) can be “cut” from the proof system. It
turns out that the proof of cut-elimination for a given system is often quite elab-
orated, exponentially exhaustive, and error prone. Hence the need for general

c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 115–135, 2018.
https://doi.org/10.1007/978-3-319-99840-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_7&domain=pdf

116 C. Olarte et al.

and effective methods for providing good automation strategies. In the case of
cut-elimination, some of such methods strongly depend on the ability of showing
permutability of rules that may depend on additional properties such as admis-
sibility and invertibility of rules, which – in turn – may require induction-based
reasoning.

Rewriting logic [6,15] is a metalogical framework that can be used to rep-
resent other logics and to reason about their metalogical properties [14]. When
compared to a logical framework, a metalogical framework is more powerful
because it includes the ability to reason about a logic’s entailment relation as
opposed to just being sound to simulate it. Moreover, important computational
aspects of the logical system under study need to be encoded in flexible ways,
so that such a system can become data, and be subject to transformations and
efficient execution in a computational engine. Thanks to its reflective capabili-
ties and initial reachability semantics, important inductive aspects of rewriting
logic theories can be encoded in its own metalanguage so that theories, proofs,
and provability can be mechanically analyzed with the help of rewriting logic
systems such as Maude [6].

This paper develops new techniques, using rewriting logic as a metalogi-
cal framework, for reasoning about properties of sequent systems. Relying on
rewrite- and narrowing-based reasoning, these techniques are introduced as pro-
cedures for proving admissibility, invertibility, and permutability of inference
rules. Such procedures have been fully implemented in Maude. The case study
analyses included in this paper comprise the following sequent systems: propo-
sitional intuitionistic logic (G3ip), multi-conclusion propositional intuitionistic
logic (mLJ), propositional classical logic (G3cp), propositional linear logic (LL),
and normal modal logics (K and S4). Beyond advocating for the use of rewriting
logic as a metalogical framework, the novel algorithms presented here are able
to automatically discharge many proof obligations and ultimately obtain the
expected results.

The approach can be summarized as follows. The inference rules of a sequent
system S are specified as (backward) rewrite rules modulo structural axioms
(e.g., associativity, commutativity, and identity) in RS , inducing a rewrite rela-
tion →S on multisets of sequents. From the rewriting logic viewpoint, the main
results presented here are metatheorems about inductive reachability proper-
ties of →S . These metatheorems entail sufficient conditions for proving inductive
properties that can be generated and checked with the help of term rewriting
and narrowing. More precisely, given an inductive property φ about S, sev-
eral subgoals φi are generated by unification modulo axioms. The system S is
extended to S ′ by adding inductive lemmas as axioms and, if each φi can be
→S′-rewritten to the empty multiset, then φ holds in the initial reachability
model of S. In such a process, the original rewrite theory RS is extended and
transformed in several ways: a painless task to implement thanks to the off-the-
shelf reflective capabilities of rewriting logic supported by Maude. Ultimately,
the resulting metatheorems can be seen as tactics for automating reasoning of
sequent systems in rewriting logic. This approach is generic in the sense that

Proving Structural Properties of Sequent Systems in Rewriting Logic 117

only mild restrictions are imposed on the formulas of the sequent system S and
modular since properties can be proved incrementally.

Outline. The rest of the paper is organized as follows. Section 2 introduces the
structural properties of sequent systems that are considered in this work and
Sect. 3 presents order-sorted rewriting logic and its main features as a logical
framework. Then, Sect. 4 establishes how to prove the structural properties based
on a rewriting approach and Sect. 5 shows how to automate the process of prov-
ing these properties. Section 6 presents different sequent systems and properties
that can be proved with the approach. Finally, Sect. 7 concludes the paper and
presents some future research directions.

2 Three Structural Properties of Sequent-Based Logics

This section presents and illustrates three structural properties of sequent sys-
tems, namely, permutability, admissibility, and invertibility of rules. Notation
and standard definitions are presented, which are illustrated with detailed
examples.

Definition 1 (Sequent). Let L be a formal language consisting of well-formed
formulas. A sequent is an expression of the form Γ ⊢Δ where Γ (the antecedent)
and Δ (the succedent) are finite multisets of formulas in L, and ⊢ is the meta-
level symbol of consequence. If the succedent of a sequent contains at most one
formula, it is called single-conclusion, and multiple-conclusion, otherwise.

Definition 2 (Sequent System). A sequent system S is a set of rules of the
form

S1 ⋯ Sn

S
r

where the sequent S is the conclusion inferred from the premise sequents
S1, . . . , Sn in the rule r. If the set of premises is empty, then r is an axiom.
In a rule introducing a connective, the formula with that connective in the con-
clusion sequent is the principal formula, and its sub-formulas in the premises
are the auxiliary formulas. Systems with empty antecedents are called one-sided;
otherwise they are called two-sided.

As an example, Fig. 1 presents the two-sided single-conclusion propositional
intuitionistic sequent system G3ip [21], with formulas built from the grammar:

F,G∶∶ = p ∣ ⊺ ∣ � ∣ F ∨G ∣ F ∧G ∣ F ⊃ G

where p is an atomic proposition. In this system, for instance, the conclusion
F ∨G of ∨L is the principal formula, while the formulas F and G are auxiliary
formulas.

118 C. Olarte et al.

Fig. 1. System G3ip for propositional intuitionistic logic. In the I rule, p is atomic.

Definition 3 (Derivation). A derivation in a sequent system S (called
S-derivation) is a finite labeled tree with nodes labeled by sequents and a sin-
gle root, axioms at the top nodes, and where each node is connected with the
(immediate) successor nodes (if any) according to the inference rules. A sequent
S is derivable in the sequent system S, denoted S � S, iff there is a derivation
of S in S. The system S is usually omitted when it can be inferred from the
context.

It is important to clearly distinguish the two different notions associated to
the symbols ⊢ and � namely: the former is used to build sequents, while the
latter (introduced in Definition 3) denotes derivability in a sequent system.

Definition 4 (Height of derivation). The height of a derivation is the great-
est number of successive applications of rules in it, where an axiom has height 0.

The structural property of rule permutability [17,19] is stated next.

Definition 5 (Permutability). Let r1 and r2 be inference rules in a sequent
system S. The rule r2 permutes down r1, notation r2 ↓ r1, if for every S-
derivation of a sequent S in which r1 operates on S and r2 operates on one or
more of r1’s premises (but not on auxiliary formulas of r1), there exists another
S-derivation of S in which r2 operates on S and r1 operates on zero or more of
r2’s premises (but not on auxiliary formulas of r2).

For instance, consider the left ∨L and right ∨Ri
rules for disjunction in G3ip.

First, it can be observed that ∨L ↓ ∨Ri
by using the following transformation:

Γ,F ⊢ Ci Γ,G ⊢ Ci

Γ,F ∨G ⊢ Ci
∨L

Γ,F ∨G ⊢ C1 ∨C2

∨Ri

↝

Γ,F ⊢ Ci

Γ,F ⊢ C1 ∨C2

∨Ri

Γ,G ⊢ Ci

Γ,G ⊢ C1 ∨C2

∨Ri

Γ,F ∨G ⊢ C1 ∨C2
∨L

The inverse permutation, however, does not hold, i.e., ∨Ri
/↓ ∨L. In fact, in

the following derivation,

Γ,F ⊢ Ci

Γ,F ⊢ C1 ∨C2

∨Ri
Γ,G ⊢ C1 ∨C2

Γ,F ∨G ⊢ C1 ∨C2
∨L

Proving Structural Properties of Sequent Systems in Rewriting Logic 119

derivability of Γ,G ⊢ C1 ∨ C2 does not imply derivability of Γ,G ⊢ Ci; hence,
such a derivation cannot start by applying the rule ∨Ri

.
Other two important structural properties are admissibility and invertibility.

Definition 6 (Admissibility and Invertibility). Let S be a sequent system.
An inference rule

S1 ⋯ Sn

S

is called:

i. admissible in S if S is derivable in S whenever S1, . . . , Sn are derivable in S.
ii. invertible in S if the rules S

S1
, . . . , S

Sn
are admissible in S.

Proving invertibility often requires induction on the height of derivations,
where all the possible rule applications have to be considered. For example, for
proving that ∨L is invertible in G3ip, the goal is to show that both Γ,F ⊢ C and
Γ,G ⊢ C are derivable whenever Γ,F ∨G ⊢ C is derivable. The result follows by
a case analysis on the shape of the derivation of Γ,F ∨G ⊢ C. Consider, e.g., the
case when C = A ⊃ B and the last rule applied is ⊃R, i.e., consider the following
derivation:

Γ,F ∨G,A ⊢ B

Γ,F ∨G ⊢ A ⊃ B
⊃R

Then, by the inductive hypothesis, Γ,F,A ⊢ B and Γ,G,A ⊢ B are derivable
and, by using ⊃R, the following holds:

Γ,F,A ⊢ B

Γ,F ⊢ A ⊃ B
⊃R and Γ,G,A ⊢ B

Γ,G ⊢ A ⊃ B
⊃R

as needed. On the other hand, ∨Ri
is not invertible: if p1, p2 are different atomic

propositions, then pi ⊢ p1 ∨ p2 is derivable for i = 1,2, but pi ⊢ pj is not for i /= j.
In general, proving invertibility may involve some subtle details, as it will

be seen in Sect. 6. A common one is the need for admissibility of the weak-
ening structural rule. A structural rule does not introduce logical connectives,
but instead changes the structure of the sequent. Since sequents are built from
multisets, such changes are related to the cardinality of a formula or its pres-
ence/absence in a context. For example, the structural rules for weakening and
contraction in the intuitionistic setting are:

Γ ⊢ C
Γ,Δ ⊢ C

W
Γ,Δ,Δ ⊢ C

Γ,Δ ⊢ C
C

These rules are admissible in G3ip. The proof of admissibility of weakening is
independent of any other results and it is also by induction on the height of
derivations (and considering all possible rule applications).

120 C. Olarte et al.

Admissibility of contraction is more involved and often it depends on invert-
ibility results. As an example, suppose that

Γ,F ∨G,F ⊢ C Γ,F ∨G,G ⊢ C

Γ,F ∨G,F ∨G ⊢ C
∨L

Observe that the inductive hypothesis cannot be applied since the premises do
not have duplicated copies of auxiliary formulas. In order to obtain a proof,
invertibility of ∨L is needed: the derivability of Γ,F ∨G,F ⊢ C and Γ,F ∨G,G ⊢
C implies the derivability of Γ,F,F ⊢ C and Γ,G,G ⊢ C; moreover, by the
inductive hypothesis, Γ,F ⊢ C and Γ,G ⊢ C are derivable, and the result follows.

3 Rewriting Logic Preliminaries

This section briefly explains order-sorted rewriting logic [15] and its main fea-
tures as a logical framework. Maude [6] is a language and tool supporting the
formal specification and analysis of rewrite theories.

An order-sorted signature Σ is a tuple Σ = (S,≤, F) with a finite poset of
sorts (S,≤) and a set of function symbols F typed with sorts in S, which can be
subsort-overloaded. For X = {Xs}s∈S an S-indexed family of disjoint variable sets
with each Xs countably infinite, the set of terms of sort s and the set of ground
terms of sort s are denoted, respectively, by TΣ(X)s and TΣ,s; similarly, TΣ(X)
and TΣ denote the set of terms and the set of ground terms. A substitution is an
S-indexed mapping θ ∶ X �→ TΣ(X) that is different from the identity only for
a finite subset of X and such that θ(x) ∈ TΣ(X)s if x ∈ Xs, for any x ∈ X and
s ∈ S. A substitution θ is called ground iff θ(x) ∈ TΣ or θ(x) = x for any x ∈ X.
The application of a substitution θ to a term t is denoted by tθ.

A rewrite theory is a tuple R = (Σ,E ⊎B,R) with: (i) (Σ,E ⊎B) an order-
sorted equational theory with signature Σ, E a set of (possibly conditional)
equations over TΣ , and B a set of structural axioms – disjoint from the set of
equations E – over TΣ for which there is a finitary matching algorithm (e.g.,
associativity, commutativity, and identity, or combinations of them); and (ii)
R a finite set of (possibly with equational conditions) rewrite rules over TΣ .
A rewrite theory R induces a rewrite relation →R on TΣ(X) defined for every
t, u ∈ TΣ(X) by t →R u if and only if there is a rule (l → r if φ) ∈ R and
a substitution θ ∶ X �→ TΣ(X) satisfying t =E⊎B lθ, u =E⊎B rθ, and φθ is
(equationally) provable from E ⊎B [2].

Appropriate requirements are needed to make an equational theory R exe-
cutable in Maude. It is assumed that the equations E can be oriented into a set of
(possibly conditional) sort-decreasing, operationally terminating, and confluent
rewrite rules

�→
E modulo B [6]. For a rewrite theory R, the rewrite relation →R

is undecidable in general, even if its underlying equational theory is executable,
unless conditions such as coherence [22] are given (i.e., rewriting with →R/E⊎B

can be decomposed into rewriting with →E/B and →R/B). The executability of a
rewrite theory R ultimately means that its mathematical and execution seman-
tics coincide.

Proving Structural Properties of Sequent Systems in Rewriting Logic 121

The rewriting logic specification of a sequent system S is a rewrite theory
RS = (ΣS ,ES ⊎BS ,RS) where: ΣS is an order-sorted signature describing the
syntax of the logic S; ES is a set of executable equations modulo BS correspond-
ing to those parts of the deduction process that, being deterministic, can be safely
automated as computation rules without any proof search; and RS is a set of
executable rewrite rules modulo BS capturing those non-deterministic aspects of
logical inference in S that require proof search. The point is that although both
the computation rules ES and the deduction rules RS are executed by rewriting
modulo the set of structural axioms BS , by the executability assumptions on
RS , the rewrite relation →ES/BS has a single outcome in the form of a canonical
form and thus can be executed blindly with “don’t care” non-determinism and
without any proof search. Furthermore, BS provides yet one more level of compu-
tational automation in the form of BS -matching and BS -unification algorithms.
This interplay between axioms, equations, and rewrite rules can ultimately make
the specification RS very efficient with modest memory requirements.

4 Checking Admissibility, Invertibility, and Permutability

This section presents rewrite- and narrowing-based techniques for proving admis-
sibility, invertibility, and permutability in sequent systems. They are presented
as metatheorems about sequent systems – with the help of rewrite-based scaf-
folding such as terms and substitutions – and provide sufficient conditions for
proving the desired properties.

The techniques introduced in this section assume that a sequent system S is
a set of inference rules with sequents in the set TΣS (X), where ΣS is an order-
sorted signature (see Section 3). The expression S1 ∪ S2 denotes the extension
of the sequent system S1 by adding the inference rules of S2 (and vice versa); in
this case, the sequents in the resulting sequent system S1 ∪ S2 are terms in the
signature ΣS1 ∪ ΣS2 . By an abuse of notation, for S a sequent system and S a
sequent, the expression S ∪ {S} denotes the sequent system obtained from S by
adding the sequent S as an axiom, understood as a zero-premise rule. This conven-
tion is extensively used in the main results of this section. Finally, given a term
t ∈ TΣS (X), with ΣS = (S,≤, F), t ∈ T(S,≤,F∪Ct)

(X) is the term obtained from
t by turning each variable x ∈ vars(t) of sort s ∈ S into the fresh constant x of sort
s and where Ct = {x ∣ x ∈ vars(t)}

It is assumed the existence of a unification algorithm for multisets (or sets)
of sequents. Given two sequent terms S and T built from a signature ΣS and
structural axioms BS , the expression CSUBS (S,T) denotes the complete set of
unifiers of S and T modulo BS . Recall that CSUBS (S,T) satisfies that, for each
substitution σ ∶ X �→ TΣ(X), there are substitutions θ ∈ CSUBS (S,T) and
γ ∶ X �→ TΣ(X) such that σ =BS θγ. Note that for a combination of free and
associative and/or commutative and/or identity axioms BS , except for symbols
that are associative but not commutative, such a finitary unification algorithm
exists. In the development of this section, the expression CSU is used as an
abbreviation for CSUBS , where BS are the structural axioms for sets/multisets
of sequents.

122 C. Olarte et al.

Definition 7 introduces a notion of admissibility of a rule relative to another
rule.

Definition 7 (Local admissibility). Let
S1

S
rs be a rule, S be a sequent sys-

tem and
T1 ⋯ Tn

T
rt be an inference rule in S. The rule rs is admissible relative

to rt in S iff for each θ ∈ CSU(S1, T):

S ∪ {Tjθ ∣ j ∈ 1..n} ∪ ⋃
j∈1..n

{Sγ ∣ γ ∈ CSU(S1, Tjθ)} � Sθ,

where the variables in S and T are assumed disjoint.

For proving admissibility of the rule rs, the goal is to prove that if S1 is
derivable, then S is derivable. The proof follows by induction on the height of
a derivation π of S1 (see Sect. 2). Suppose that the last rule applied in π is rt.
This is only possible if S1 and T “are the same”, up to substitutions. Hence, the
idea is that each unifier θ of S1 and T covers the cases where the rule rt can
be applied on the sequent S1; different proof obligations are generated for each
unifier. Consider, for instance, the proof obligation of the ground sequent Sθ for
a given θ ∈ CSU(S1, T). Namely, assume as hypothesis that the derivation below
is valid in order to show that the sequent Sθ is provable:

T1θ ⋯ Tnθ

S1θ
rt (1)

This means that all the premises in (1) should be assumed derivable. This is
the purpose of extending the sequent system with the set of ground sequents
{Tjθ ∣ j ∈ 1..n}, interpreted here as axioms, in Definition 7. Moreover, by induc-
tion, it can be assumed that the theorem (i.e., S1 implies S) is valid for the
premises of (1) (note that such premises have a shorter derivation compared
to the derivation of S1θ). Therefore, the following set of sequents can also be
assumed as derivable and, thus, are added as axioms:

⋃
j∈1..n

{Sγ ∣ γ ∈ CSU(S1, Tjθ)}

If, from the extended sequent system it is possible to show that the ground
sequent Sθ is derivable, then the theorem will work for the particular case when
rt is the last applied rule in the derivation π of S1. Since a complete set of
unifiers is finite for sequents (as assumed in this section for any sequent system
S), then there are finitely many proof obligations to discharge in order to check
if a rule is admissible relative to a rule in a sequent system. Observe that the
set CSU(S,T) may be empty. In this case, the set of proof obligations is empty
and the property vacuously holds.

Theorem 1 presents sufficient conditions for the admissibility of a rule in a
sequent system based on the notion of admissibility relative to a rule.

Proving Structural Properties of Sequent Systems in Rewriting Logic 123

Theorem 1. Let S be a sequent system and
S1

S
rs be an inference rule. If rs is

admissible relative to each rt in S, then rs is admissible in S.

Proof. Assume that S1 is derivable in the system S. The proof proceeds by induc-
tion on the height of such a derivation with case analysis on the last rule applied.
Assume that the last applied rule is rt. By hypothesis (using Definition 7), it
can be concluded that S is derivable and the result follows.

The following definition introduces a notion of invertibility of a rule relative
to another rule.

Definition 8 (Local invertibility). Let S be a sequent system, and let
S1 ⋯ Sm

S
rs and

T1 ⋯ Tn

T
rt be inference rules in S. The rule rs is invertible

relative to rt iff for each θ ∈ CSU(S,T) and 1 ≤ l ≤m:

S ∪ {Tjθ ∣ j ∈ 1..n} ∪ ⋃
i∈1..m

⋃
j∈1..n

{Siγ ∣ γ ∈ CSU(S,Tjθ)} � Slθ,

where the variables in S and T are assumed disjoint.

For checking invertibility of a rule rs, the goal is to check that derivability
is not lost when moving from the conclusion S to the premises Sl. The proof
is by induction on the derivation π of S. Suppose that the last rule applied in
π is rt. For this to happen at the first place, S and T must unify. Then, for
each θ ∈ CSU(S,T), the premise sequents Tjθ of rt are assumed to be derivable
(and used to extend S with new axioms). Moreover, each ground term Siγ can
also be used as an inductive hypothesis since any application of rs on Tjθ has
a shorter derivation than that of Tθ. If, from all this in addition to the rules in
S, it is possible to prove derivable the premises Sl for all 1 ≤ l ≤ m, then the
theorem will work for the particular case where rt was the last applied rule in
the derivation π of S.

If the set CSU(S,T) is empty, this means that the rules rt and rs cannot
be applied on the same sequent and the property vacuously holds. For instance,
consider the system G3ip in Fig. 1: the proof of invertibility of ∧R does not
need to consider the case of invertibility relative to ∨R since it is not possible
to have, at the same time, a conjunction and a disjunction on the succedent of
the sequent. In other logics as, e.g., G3cp (see Sect. 6.3), this proof obligation is
certainly not vacuously discarded.

Theorem 2 presents sufficient conditions for checking the invertibility of a
rule in a sequent system. The proof is similar to the one given for Theorem 1.

Theorem 2. Let S be a sequent system and rs an inference rule in S. If rs is
invertible relative to each rt in S, then rs is invertible in S.

This section is concluded by establishing conditions to prove permutability
of rules.

124 C. Olarte et al.

Theorem 3. Let S be a sequent system and
S1 ⋯ Sm

S
rs,

T1 ⋯ Tn

T
rt be

inference rules in S. Then rs ↓ rt iff for each θ ∈ CSU(S,T), 1 ≤ i ≤ m,
γ ∈ CSU(T,Siθ), and 1 ≤ l ≤ n:

S ∪ {Tjγ ∣ j ∈ 1..n} ∪ {Skθ ∣ k ∈ 1..m ∧ k ≠ i} � Tlθ,

where the variables in S and T are assumed disjoint.

Proof. Checking permutability does not require induction but a proof transfor-
mation. First of all, rs, rt should be applied to the conclusion sequent, hence all
unifiers between the conclusions S and T are considered. Second, different cases
need to be considered when rt can be applied to one of the premises of rs. Thus
there is a proof obligation for each premise Siθ where rt can be applied. In each
of such proof obligations the goal is to show that the premises of rt are derivable
(Tlθ on the right). For that, it can be assumed that the premises of rt applied to
the given premise of rs are derivable (Tjγ expression). Moreover, all the other
premises of rs are also assumed as derivable (Skθ expression). If, from all these
ground sequents and the rules in S it can be proved that Tl is derivable, for each
l = 1..n, then rs ↓ rt.

5 Reflective Implementation

The design and implementation of a prototype that offers support for the nar-
rowing procedures introduced in Sect. 4 is discussed. The reader is referred to
http://subsell.logic.at/theorem-maude for the implementation and the experi-
ments summarized in Sect. 6.

5.1 Sequent System Specification

The reflective implementation relies on the following functional module that
needs to be realized by the object-logic (i.e., the system to be analyzed):

fmod OBJ-LOGIC is
--- Sequents and multisets of sequents
sorts Sequent SSequent .
subsort Sequent < SSequent .
--- Building sequents
op proved : -> Sequent [ctor] .
op _,_ : SSequent SSequent -> SSequent [ctor assoc comm id: proved] .

endfm

The sort Sequent is used to represent sequent terms and the sort SSequent
for representing multisets of sequent terms separated by comma. The constant
proved is the identity of the multiset constructor and represents the empty
sequent (i.e., no goals need to be discharged).

When formalizing a sequent system S as a rewrite theory RS there are two
options (backwards or forwards) for expressing an inference rule as rewrite rule.
In this paper, the backwards reasoning option is adopted, which rewrites the

http://subsell.logic.at/theorem-maude

Proving Structural Properties of Sequent Systems in Rewriting Logic 125

target goal of an inference system to its premises. Hence, for instance, the rule ∧L

in G3ip will be expressed as a rewrite rule of the form Γ,F ∧G ⊢ C → Γ,F,G ⊢ C.
The implementation assumes also a specific encoding for the inference rules as
follows.

Definition 9. (Encoding logical rules). A sequent rule
S1 ⋯ Sm

S
rs is

encoded in the reflective implementation as:
rl [rs] : S => proved . if m = 0; and
rl [rs] : S => S1, ..., Sm . if m > 0.

The first case in the encoding of logical rules corresponds to the case of an
axiom, i.e., an inference rule without premises. The constant proved denotes
the fact that an instance of an axiom is derivable by definition. The second case
corresponds to those rules that have premises that need to be proved derivable.

The implementation requires a module with any (reasonable) concrete syntax
for formulas and sequents, and adhering to the encoding of inference rules above.
For instance, the following snippet of code specifies the syntax for the system
G3ip:

fmod FORMULA-PROP is
--- Atomic propositions, Formulas and sets of formulas
sorts Prop Formula SFormula .
subsort Prop < Formula < SFormula .
op p : Nat -> Prop [ctor] . --- atomic Propositions
ops False True : -> Formula [ctor] . --- False and True
ops _-->_ _/_ _\/_ : Formula Formula -> Formula [ctor] . --- connectives
--- Building sets of formulas
op * : -> SFormula . --- empty set of formulas
op _;_ : SFormula SFormula -> SFormula [prec 40 ctor assoc comm id: *] .
eq F:Formula ; F:Formula = F:Formula . --- idempotency

endfm

The following module extends the module OBJ-LOGIC and specifies the inference
rules of G3ip.

mod G3ip is
pr FORMULA-PROP .
inc OBJ-LOGIC .
--- Constructor for sequents .
op _|--_ : SFormula SFormula -> Sequent [ctor prec 50 format(b o r o)] .
--- Rules
rl [I] : P ; C |-- P => proved .
rl [AndL] : F /\ G ; C |-- H => F ; G ; C |-- H .
rl [AndR] : C |-- F /\ G => (C |-- F) , (C |-- G) .
rl [ImpL] : C ; F --> G |-- H => (C ; F --> G |-- F) , (C ; G |-- H) .
...
op ANY : -> SFormula [ctor].

endm

The constant ANY is used to deal with extra-variables on the right-hand side of
the rules, as it will be shown in an example below.

126 C. Olarte et al.

5.2 Property Specification

The reflective implementation uses the following theory to specify the input to
the analysis task, i.e., the sequents to be proved derivable:

th TH-INPUT is
pr META-LEVEL .
--- Name of the module with the object-logic description
op modName : -> Qid .
--- List of theorems (hypotheses for the analyses)
op knownTheorems : -> RuleSet .
--- List of invertible rules
op knownInvRules : -> QidList .

endth

Such a theory specifies the name of the module to be analyzed, the already
proved theorems (e.g., admissibility of a given structural rule) and the rules that
have been already proved to be invertible. As an example, the following snippet
of code shows the implementation of the theory TH-INPUT for the module G3ip:

mod G3ip-TEST is
ops modName seqType : -> Qid . --- Name of the module to be analyzed
eq modName = ’G3ip .
op knownTheorems : -> RuleSet . --- Previously proved lemmas
eq knownTheorems = none .
op knownInvRules : -> QidList . --- Known invertible rules
eq knownInvRules = nil .
--- Theorems to be proved
op Th-Weakening : -> Rule . --- Admissibility of weakening
eq Th-Weakening = (rl ’_|-_[’C:SFormula,’F:Formula] => ’

|-[’_;_[’C:SFormula,’ANY.SFormula],’F:Formula]
[label(’Th-Weakening)].) .

[...]
endm

As noted in Sect. 4, the properties of interest are specified by a sequent system S
and an inference rule r. Given a rewrite theory RS representing S, the inference
rule r to be checked admissible, invertible, or permutable in S is represented by
a rewrite rule, expressed as a meta-term, in the syntax of S. For instance, the
statement of the theorem for invertibility of ∧R is generated with the aid of the
auxiliary definition

op buildInvTheorem : Qid -> Rule .

that given the identifier of the rule (’AndR’, in this case) returns the following
rule:

rl ’_|-_[’C:SFormula,’_/_[’F:Formula,’G:Formula]] =>
’_‘,_[’_|-_[’C:SFormula,’F:Formula],’_|-_[’C:SFormula, ’G:Formula]]
[label(’Th-AndR)] .

Th-AndR is the meta-representation of the rule

rl [And] : C |-- F /\ G => (C |-- F , C |-- G) .

This is a very flexible way of encoding the theorems to be proved. For instance,
in order to use the inductive hypothesis on a sequent Tj , it suffices to rewrite
Th-AndR on Tj , thus resulting in the needed (derivable) sequents/axioms (see e.g.,
the term {Siγ ∣ γ ∈ CSU(S,Tjθ)} in Definition 8).

Proving Structural Properties of Sequent Systems in Rewriting Logic 127

Special care needs to be taken when the inference rule to check has extra vari-
ables in the premises. In general, the rewrite rule associated to such an inference
rule would have extra variables in the right-hand side and could not be used for
execution (unless a strategy is provided). Nevertheless, these extra variables can
be encoded as fresh constants, yielding a rewrite rule that is executable. This is
exemplified in the theorem for admissibility of Weakening in module G3ip-TEST

that uses the constant ANY defined in the module G3ip. Note that Th-Weakening

is just the meta-representation of

rl [Th-Weakening] : C |-- F => C ; ANY |-- F .

It is worth noticing that this rewriting rule is written from the premise to the
conclusion (see rule W in Sect. 2). The reason is that the proof of admissibility
requires to show that assuming the premise of the rule, the conclusion is valid
(see Definition 7).

5.3 The Algorithms

The reflective implementation follows closely the definitions of the previous
section. It offers functions that implement algorithms for each one of the theo-
rems in Sect. 4; for sequent system RS and rule r:

admissible? checks if r is admissible in S by validating the conditions in The-
orem 1.

invertible? checks if r is invertible in S by validating the conditions in Theo-
rem 2.

permutes? checks if r permutes in S by validating the conditions in Theorem 3.

The output of each one of these algorithms is a list of tests, one per rule in
S. The test for a rule rt indicates whether r has the desired property relative to
rt. Take for instance the procedure:

op invertible? : Qid -> Bool .
eq invertible?(Q) = resultTrue(analyze(buildInvTheorem(Q))) .

Given the identifier of a rule Q, it first builds the invertibility theorem, generates
and executes all the needed proof obligations (analyze(.)) and returns true only
if all the proof obligations succeed (resultTrue).

The procedure analyze tests the given rule Q against all the rules defined in
the module. It uses the auxiliary function:

op holds? : Rule Qid -> Bool .

that computes the set of unifiers by using the Maude function metaDisjointUnify

and checks the conditions described in Sect. 4. For that, operations on the
META-LEVEL are used to, e.g., extend the module with the needed axioms (rewrit-
ing rules when m = 0 in Definition 9) and transform variables into constants.
Moreover, the metaSearch procedure is used to check the entailment in, e.g.,
Definition 7.

128 C. Olarte et al.

Since the entailment relation is, in general, undecidable, all the tests are
performed up to a given search depth and, when it is reached, the procedure
returns false. Hence the procedures are sound (in the sense of the theorems in
Sect. 4) but not complete (due to the undecidability of the logic and the fact
that the goals are inductive properties).

Finally, the implementation also includes macros based on these algorithms,
e.g., analyzePermutation for checking the permutation status of all rules.

6 Case Studies

This section presents properties of several sequent systems that can be auto-
matically checked with the algorithms presented in Sect. 5. The general idea is
that, given a sequent system S and a sequent S representing an admissibility,
invertibility, or permutability problem instance, the experiments in this section
use the encoding for S and S (Sect. 5) – and the rewriting logic framework – to
check if S is derivable in S, as follows:

S � S if enc(S)
∗
→enc(S) proved,

where enc(S) and enc(S) denote, respectively, the encoding of S and S.
For each calculi, the results about invertibility and admissibility of the struc-

tural rules W (weakening) and C (contraction), and permutability are summa-
rized in a table using the following conventions:

✓T means that the property holds for the given system and the tool is able to
prove it (thus returning true).

✓F means that the property does not hold for the given system and the tool
returns false.

∼DN means that the property holds but the tool was not able to prove it (then
returning false).

6.1 System G3ip

An important remark is that propositional intuitionistic logic is decidable. How-
ever, since the rule ⊃L replicates the principal formula in the left premise,
a careless specification of this rule can result in infinite computations. For
instance, the sequent p ⊃ q ⊢ q is not provable. However, a proof search try-
ing to rewrite that sequent into proved will generate the infinite chain of goals
(p ⊃ q ⊢ p), (p ⊃ q ⊢ p), (p ⊃ q ⊢ p),⋯.

One solution for this problem is to consider sets instead of multisets of
sequents (i.e., by adding an equation for idempotency in the module SEQUENT).
This solution is akin to the procedure of detecting whether a sequent in a deriva-
tion tree is equal to one of its predecessors. In this way a complete decision
procedure for propositional intuitionistic logic can be obtained.

The results for invertibility of rules and admissibility of structural rules for
G3ip are summarized below.

Proving Structural Properties of Sequent Systems in Rewriting Logic 129

Invertibilities Structural G3ipW G3ip+inv

I ∨L ∨Ri
∧L ∧R ⊺R ⊺L �L ⊃L ⊃R ⊃

pR
L W C ⊃R C

✓T ✓T ✓F ✓T ✓T ✓T ✓T ✓T ✓F ∼DN ✓T ✓T ∼DN ✓T ✓T

The non-invertible rules in this system are ∨Ri
and ⊃L. Note that ⊃R is

invertible but the implementation failed to prove it. The reason is that the proof
for this case requires admissibility of W. More precisely, consider a derivation of
the sequent Γ,A ⊃ B ⊢ F ⊃ G and suppose that the last applied rule was

Γ,A ⊃ B ⊢ A Γ,B ⊢ F ⊃ G

Γ,A ⊃ B ⊢ F ⊃ G
⊃L

By inductive hypothesis on the right premise, Γ,B,F ⊢ G is derivable. Consid-
ering the left premise, since Γ,A ⊃ B ⊢ A is derivable, admissibility of weakening
implies that Γ,A ⊃ B,F ⊢ A is also derivable, hence Γ,A ⊃ B,F ⊢ G is derivable
and the result follows. It turns out that the admissibility of W is automatically
proved by the algorithms. Let G3ipW denote the system G3ip with the admissible
rule W added: in this system, the invertibility of ⊃R can be automatically proved.

Although the rule ⊃L is not invertible, it is invertible in its right premise.
That is, if Γ,F ⊃ G ⊢ C is derivable, then so is Γ,G ⊢ C. This result can also
be proved by induction on the height of the derivation and the implementation
returns a positive answer (this corresponds to the entry ⊃pR

L in the table above).
Finally, as mentioned in Sect. 2, the proof of admissibility of contraction often

requires the invertibility of rules. As an example, consider the derivation

Γ,F ⊃ G,F ⊃ G ⊢ F Γ,G,F ⊃ G ⊢ C

Γ,F ⊃ G,F ⊃ G ⊢ C
⊃L

By inductive hypothesis on the left premise, Γ,F ⊃ G ⊢ F is derivable and by
invertibility of ⊃L on the right premise, Γ,G,G ⊢ C is derivable and the result
follows. Hence, by adding all the invertibilities already proved (system G3ip+inv

in the table), the tool was able to prove admissibility of the rule C.
As shown in Sect. 2, the proof of permutability of rules requires the invertibil-

ity lemmas and admissibility of weakening (already proved). Using the system
G3ip+inv, the tool was able to prove all the permutability lemmas for proposi-
tional intuitionistic logic. The following table summarizes some of these results.

∧R ↓ ∧L ∧L ↓ ∧R ∨i ↓ ∧L ∧L ↓ ∨i ∨Ri
↓ ∨L ∨L ↓ ∨Ri

∨Ri
↓⊃L ⊃L↓ ∨Ri

⊃L↓⊃L ∧L ↓⊃R ⊃R↓ ∧L

✓T ✓T ✓T ✓T ✓F ✓T ✓T ✓T ✓T ✓T ✓T

Note that the approach followed for G3ip, G3ipW and G3ip+inv in this section
provides an example of a modular proof, where theorems are added as hypothesis
to the system. In this way, more involved properties can be discarded.

130 C. Olarte et al.

6.2 Multi-conclusion Propositional Intuitionistic Logic (mLJ)

Maehara’s mLJ [13] is a multiple conclusion system for intuitionistic logic. The
rules are exactly the same as in G3ip, except for the ∨R and implication (see
Fig. 2). While the left rule copies the implication in the left premise, the right
implication forces all formulas in the succedent of the conclusion sequent to
be weakened (when viewed bottom-up). This guarantees that, when the ⊃R

rule is applied on A ⊃ B, the formula B should be proved assuming only the
pre-existent antecedent context extended with the formula A. This creates an
interdependency between A and B.

Fig. 2. The multi-conclusion intuitionistic sequent system mLJ.

The introduction rules in mLJ are invertible, with the exception of ⊃R. In
particular, two different applications of ⊃R (on the same sequent) do not permute.
For instance, from the premise of

Γ,A ⊢ B

Γ ⊢ A ⊃ B,C ⊃D,Δ
⊃R

the sequent Γ,C ⊢D is not derivable. The results for this system are summarized
in the table below:

Invertibilities Structural mLJ+inv

I ∨L ∨R ∧L ∧R ⊺R ⊺L �L ⊃L ⊃R W C C

✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓F ✓T ∼DN ✓T

6.3 Propositional Classical Logic (G3cp)

G3cp [21] is a well known two-sided sequent system for classical logic, where the
structural rules are implicit and all the rules are invertible. Differently from G3ip,
weakening is not needed for the proof of invertibility of ⊃R. However, contraction
still depends on invertibility results. The results are summarized below:

Assuming the already proved invertibility lemmas, the prover is able to show
that, for all pair of rules r1, r2 in the system, r1 ↓ r2.

Proving Structural Properties of Sequent Systems in Rewriting Logic 131

Invertibilities Structural G3cp+inv

I ∨L ∨R ∧L ∧R ⊺R ⊺L �L ⊃L ⊃R W C C

✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ∼DN ✓T

6.4 Linear Logic (LL)

Linear logic [8] is a resource-conscious logic, in the sense that formulas are con-
sumed when used during proofs, unless they are marked with the exponential ?
(whose dual is !), in which case, they behave classically. Propositional LL connec-
tives include the additive conjunction & and disjunction ⊕ and their multiplica-
tive versions ⊗ and �. The proof system for one-sided (classical) propositional
linear logic is depicted in Fig. 3.

Fig. 3. One-sided monadic system LL.

Fig. 4. Some rules of the dyadic system D−LL.

Since formulas of the form ?F can be contracted and weakened, such formulas
can be treated as in classical logic, while the remaining formulas are treated
linearly. This is reflected into the syntax of the so called dyadic sequents (Fig. 4)
which have two contexts: Θ is a set of formulas and Γ a multiset of formulas.
The sequent ⊢ Θ ∶ Γ is interpreted as the linear logic sequent ⊢ ?Θ,Γ where
?Θ = {?A ∣ A ∈ Θ}. It is then possible to define a proof system without explicit

132 C. Olarte et al.

weakening and contraction (system D−LL in Fig. 4). The complete dyadic proof
system can be found in [1].

Since propositional LL is undecidable [12], infinite computations are possible.
In this case study, a search bound is used to force termination of the implemen-
tation. Since all the theorems include a very controlled number of connectives
(usually the 2 connectives involved in the application of the rules), this seems
to be a fair solution.

For the monadic (LL) and the dyadic (D−LL) systems, the results of invert-
ibility of rules are summarized in the next table.

LL and D−LL LL D−LL D−LL+Wc

1 � ⊺ ⊗ & � ⊕i ! ? ?C ?W ? copy ?
✓T ✓T ✓T ✓F ✓T ✓T ✓F ✓F ✓F ✓T ✓F ∼DN ✓F ✓T

In LL, the rules ? (dereliction) and ?W (weakening) are not invertible, while
?C (contraction) is invertible. In D−LL, the rule ? is invertible. However, the
proof of this theorem fails for the case ⊗. To obtain a proof, first admissibility
of weakening for the classical context is proved: if ⊢ Θ ∶ Γ is derivable, then
⊢ Θ,Θ′ ∶ Γ is derivable (rule Wc). ? is proved invertible in D−LL+Wc

.
Finally, the prover was able to discharge the following theorems:

– (LL) If ⊢ Γ, !F is derivable then ⊢ Γ,F is derivable.
– (D−LL) If ⊢ Θ ∶ Γ, !F is derivable then ⊢ Θ ∶ Γ,F is derivable.

6.5 Normal Modal Logics: K and S4

A modal is an expression (like necessarily or possibly) that is used to qualify the
truth of a judgment, e.g., ◻A can be read as “the formula A is necessarily true”.
The most familiar modal logics are constructed from the modal logic K and its
extensions are called normal modal logics. The system S4 is an extension of K
where ◻◻A ≡ ◻A holds. Figure 5 presents the modal sequent rules for K and S4.

Fig. 5. The modal sequent rules for K (k) and S4 (k +T + 4)

All the propositional rules are invertible in both K and S4, k and 4 are not
invertible (due to the implicit weakening) while T is invertible. Similar to the
previous systems, the admissibility of W follows immediately and the proof of
admissibility of C requires as hypotheses the already proved invertibility lemmas:

Proving Structural Properties of Sequent Systems in Rewriting Logic 133

Invertibilities Structural Modal Rules K+inv S4+inv

I ∨L ∨R ∧L ∧R ⊺R ⊺L �L ⊃L ⊃R W C k 4 T C C

✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ∼DN ✓F ✓F ✓T ✓T ✓T

7 Related Work and Concluding Remarks

The proposal of many proof systems for many logics demanded trustful methods
for determining good properties. In general, the checking was normally done via
a case-by-case analysis, by trying exhaustively all the possible combinations of
application of rules in a system. The advent of automated reasoning changed
completely the scenery, since theorems started being proved automatically in
meta-level frameworks. This has brought a whole new perspective to the field of
proof theory: useless proof search steps, usually singular to a specific logic, have
been disregarded in favor of developing general and universal methods for pro-
viding good automation strategies. These developments have ultimately helped
in determining general conceptual characteristics of logical systems, as well as in
identifying effective meta-level frameworks that can capture (and reason about)
them in a natural way.

This work moves forward towards this direction: it proposes a general, nat-
ural, and uniform way of proving key properties of sequent systems using the
rewriting logic framework, enabling modular proofs of meta-level properties of
logical systems. Permutability of rules is a nice start case study since it is heavily
used in cut-elimination proofs. Moreover, permutability has a rewriting counter-
part: showing that applying a rule r1 followed by a rule r2 is the same as applying
r2 then r1 can be interpreted as having the diamond property on the applica-
tion of these two rules. The proof of permutability itself does not need inductive
methods explicitly: they are hidden in other needed results like admissibility of
weakening and invertibility of rules. The approach adopted in this work profits,
as much as possible, from modularity. First permutability is tested without any
other assumptions; then, if possible, prove admissibility of weakening and invert-
ibility theorems; finally, add the proven theorems modularly to the system and
re-run the permutability test: some cases for which the tool previously failed can
now be proved. The same core algorithm can be used for proving admissibility
of contraction, for example, which also depends on invertibility results.

The choice of rewriting logic as a meta-level framework brought advantages
over some other options in the literature. Indeed, while approaches using logi-
cal frameworks depend heavily on the specification method and/or the implicit
properties of the meta and object logics, rewriting logic enables the specification
of the rules as they are actually written in text and figures. Consider for exam-
ple the LF framework [20], based on intuitionistic logic, where the left context is
handled by the framework as a set. Specifying sequent systems based on multi-
sets requires elaborated mechanisms, which makes the encoding far from being
natural. Moving from intuitionistic to linear logic solves this problem [4,16], but
still several sequent systems cannot be naturally specified in the LL framework,
as it is the case of mLJ. This latter situation can be partially fixed by adding

134 C. Olarte et al.

subexponentials to linear logic (SELL) [18,19], but then the resulting encoding
although natural, is often non-trivial and it cannot be fully automated. More-
over, several logical systems cannot be naturally specified in SELL, such as K.
All in all, this paper is yet another proof that rewriting logic is an innova-
tive and elegant framework for reasoning about logical systems, since results
and systems themselves can be modularly extended. In fact, the approach here
can be extended to reason about a large class of systems, including normal
(multi)-modal [11] and paraconsistent [9] sequent systems. The authors con-
jecture that the same approach can be used for extensions of sequent systems
themselves, like nested [3] or linear nested [10] systems. This is an interesting
future research path worth pursuing.

Finally, a word about cut-elimination. The usual cut-elimination proof strat-
egy can be summarized by the following steps: (i) transforming a proof with
cuts into a proof with principal cuts; (ii) transforming a proof with principal
cuts into a proof with atomic cuts; (iii) transforming a proof with atomic cuts
into a cut-free proof. While step (ii) is not difficult to solve (see e.g., [16]), steps
(i) and (iii) strongly depend on the ability of showing permutability of rules.
With the results presented in this work, it seems reasonable to envisage the
use of the approach – both the techniques and their implementation – in order
to fully automate cut-elimination proofs for various proof systems. It is worth
noticing, though, that the aim of this paper is more general: proving results in
a modular way permits maximizing their subsequent use in other applications
as well. For example, it would be interesting to investigate further the role of
invertible rules as equational rules in rewriting systems. While this idea sounds
more than reasonable, it is necessary to check whether promoting invertible rules
to equations preserves completeness of the system (e.g., the resulting equational
theory needs to be, at least, ground confluent and terminating). If the answer to
this question is in the affirmative for a large class of systems, then the approach
presented here also opens the possibility, e.g., to automatically access focused
systems [1].

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable comments on an earlier draft of this paper. The work of the three
authors was supported by CAPES, Colciencias, and INRIA via the STIC AmSud
project “EPIC: EPistemic Interactive Concurrency” (Proc. No 88881.117603/2016-01).
The work of Pimentel and Olarte was also supported by CNPq and the project FWF
START Y544-N23.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Logic
Comput. 2(3), 297–347 (1992)

2. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoret. Comput. Sci. 360(1–3), 386–414 (2006)

3. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Logic 48, 551–577
(2009)

Proving Structural Properties of Sequent Systems in Rewriting Logic 135

4. Cervesato, I., Pfenning, F.: A linear logical framework. Inf. Comput. 179(1), 19–75
(2002)

5. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical
logics. In: LICS, pp. 229–240. IEEE Computer Society Press (2008)

6. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

7. Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Col-
lected Papers of Gerhard Gentzen, North-Holland, pp. 68–131 (1969)

8. Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987)
9. Lahav, O., Marcos, J., Zohar, Y.: Sequent systems for negative modalities. Logica

Universalis 11(3), 345–382 (2017)
10. Lellmann, B.: Linear nested sequents, 2-sequents and hypersequents. In: De Nivelle,

H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 135–150. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24312-2 10

11. Lellmann, B., Pimentel, E.: Proof search in nested sequent calculi. In: Davis, M.,
Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp.
558–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-
7 39

12. Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for proposi-
tional linear logic. Ann. Pure Appl. Logic 56, 239–311 (1992)

13. Maehara, S.: Eine darstellung der intuitionistischen logik in der klassischen. Nagoya
Math. J. 7, 45–64 (1954)

14. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework.
In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, pp. 1–87.
Springer, Dordrecht (2002)

15. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oret. Comput. Sci. 96(1), 73–155 (1992)

16. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof
systems. Theoret. Comput. Sci. 474, 98–116 (2013)

17. Miller, D., Saurin, A.: From proofs to focused proofs: a modular proof of focal-
ization in linear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS,
vol. 4646, pp. 405–419. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74915-8 31

18. Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and
reasoning about proof systems. J. Logic Comput. 26(2), 539–576 (2016)

19. Nigam, V., Reis, G., Lima, L.: Quati: an automated tool for proving permuta-
tion lemmas. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS
(LNAI), vol. 8562, pp. 255–261. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08587-6 18

20. Pfenning, F.: Structural cut elimination I. Intuitionistic and classical logic. Inf.
Comput. 157(1/2), 84–141 (2000)

21. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University
Press, New York (1996)

22. Viry, P.: Equational rules for rewriting logic. Theoret. Comput. Sci. 285(2), 487–
517 (2002)

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-319-24312-2_10
https://doi.org/10.1007/978-3-662-48899-7_39
https://doi.org/10.1007/978-3-662-48899-7_39
https://doi.org/10.1007/978-3-540-74915-8_31
https://doi.org/10.1007/978-3-540-74915-8_31
https://doi.org/10.1007/978-3-319-08587-6_18
https://doi.org/10.1007/978-3-319-08587-6_18

	Proving Structural Properties of Sequent Systems in Rewriting Logic
	1 Introduction
	2 Three Structural Properties of Sequent-Based Logics
	3 Rewriting Logic Preliminaries
	4 Checking Admissibility, Invertibility, and Permutability
	5 Reflective Implementation
	5.1 Sequent System Specification
	5.2 Property Specification
	5.3 The Algorithms

	6 Case Studies
	6.1 System G3ip
	6.2 Multi-conclusion Propositional Intuitionistic Logic (mLJ)
	6.3 Propositional Classical Logic (G3cp)
	6.4 Linear Logic (LL)
	6.5 Normal Modal Logics: K and S4

	7 Related Work and Concluding Remarks
	References

