
MUnit: A Unit Framework for Maude

Adrián Riesco(B)

Facultad de Informática, Universidad Complutense de Madrid,
Madrid, Spain

ariesco@fdi.ucm.es

Abstract. Unit testing is a widely-used methodology for checking
whether the units of a given program work as expected. Maude is a
high performance rewriting engine based on rewriting logic. Although
Maude has been used to implement complex specifications and tools, it
lacks the testing tools usually supported by other languages. In this work
we present MUnit, a unit testing framework for Maude that takes into
account its main features to define meaningful unit tests. MUnit extends
Full Maude and supports functional and system modules, as well as spec-
ifications using the Loop Mode and, in particular, Full Maude.

Keywords: Unit testing · Maude · Loop Mode · Full Maude

1 Introduction

Debugging and testing conform one of the most important stages of the soft-
ware developing cycle, requiring up to the 50% of the time [5]. Among the best
known testing methodologies we find property-based testing [8], conformance
testing [23], and unit testing [22]. In particular, unit testing is a well-known test-
ing method for checking whether a unit behaves as expected. In general, unit
tests consist of the unit applied to ground arguments and an expected value;
the test passes if both values are equal, although equality can be substituted
by a more general notion in particular cases. In imperative languages units usu-
ally refer to methods/calls, although other units can be considered depending
of the target language. Finally, note also that in unit testing fulfilling the target
coverage [3] is in charge of the user.

Maude [10] is a logical framework and high-performance rewriting engine.
Maude modules correspond to specifications in rewriting logic [15], a logic that
allows specifiers to represent many models of concurrent and distributed sys-
tems. This logic is an extension of membership equational logic [4], an equational
logic that, in addition to equations, allows the statement of membership axioms
characterizing the elements of a sort.

Research partially supported by MINECO Spanish project TRACES (TIN2015-
67522-C3-3-R) and Comunidad de Madrid project N-Greens Software-CM
(S2013/ICE-2731).

c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 45–58, 2018.
https://doi.org/10.1007/978-3-319-99840-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_3&domain=pdf

46 A. Riesco

Maude modules are executable rewriting logic specifications. Maude func-
tional modules [10, Chap. 4] are executable membership equational specifications
that allow the definition of sorts, subsort relations between sorts, operators for
building values of these sorts, giving the sorts of their arguments and result,
and which may have attributes such as being associative or commutative, for
example; memberships asserting that a term has a sort; and equations assert-
ing that terms are equal. Both memberships and equations can be conditional.
Maude system modules [10, Chap. 6] are executable rewrite theories. A system
module can contain all the declarations of a functional module and, in addition,
declarations for rules and conditional rules. Finally, Full Maude [10, Part II] is
an extension of Maude written in Maude itself. Full Maude is built on top of the
LOOP-MODE module [10, Chapter 17]. This module allows input/output interac-
tion by means of the [, ,] operator, which builds terms of sort System and
where the first argument corresponds to the input introduced by the user, which
must be enclosed in parentheses to be recognized; the second one is a term of
sort State that can be defined by the user for each application; and the third
one the output shown to the user.

Maude has been used to implement tools such as termination and confluence
checkers, theorem provers, real-time extensions, etc. and to specify a wide range
of systems, including bio informatics, network protocols, and mobile languages,
among many others.1 However, Maude only provides a limited property-based
testing tool [19], which supports functional and system modules. This tool is
implemented using narrowing [9], which does not support some theories, in par-
ticular those using conditional equations/rules. The transformation to overcome
this problem makes the process slower, so the tool lacks the efficiency required to
work with large specifications. Since the implementation of MUnit directly uses
Maude (meta)commands, the time required to test any Maude specification will
be similar to the time required to execute it. More generally, a unit framework
is also useful (i) to test functions that do not have associated properties, (ii)
to test particular inputs that the user knows might lead to errors, and (iii) to
quickly check whether changes in the implementation are correct with respect
to a test suite.

In this paper we present MUnit, a unit test framework for Maude that sup-
ports functional and system modules, as well as applications on top of the
LOOP-MODE module (using both input/output facilities and in particular Full
Maude features, such as object-oriented modules). Supporting Full Maude appli-
cations is particularly interesting for a number of reasons: (i) they are difficult
to test, especially those commands producing “side effects” in the internal state
of the loop; (ii) in contrast to other Maude applications that are used to analyze
particular systems and produce a results, Full Maude applications are designed
for being used by other users so, in addition to be thoroughly tested, it is inter-
esting to add the errors reported by users in an easy way; (iii) most of them are
large, complex software systems, like Full Maude itself, Real-Time Maude [17],
the Maude Formal Environment [11], and the CafeOBJ environment [20], so

1 See http://maude.cs.illinois.edu/ for a comprehensive list of Maude projects.

http://maude.cs.illinois.edu/

MUnit: A Unit Framework for Maude 47

a well established testing methodology would help to maintain them; and (iv)
there are many applications of this kind; actually, any application requiring I/O
interaction or manipulating the database usually extends Full Maude.

The rest of the paper is organized as follows: Sect. 2 presents the main fea-
tures of MUnit, while Sect. 3 illustrates these features by means of an example.
Section 4 outlines the implementation of the tool. Section 5 discusses the related
work. Finally, Sect. 6 concludes and proposes some lines of future work to improve
the tool. The source code of MUnit, examples, and more information is available
at https://github.com/ariesco/MUnit.

2 MUnit

In this section we present the tests available in MUnit. We distinguish the dif-
ferent tests depending on the module under test in order to describe their par-
ticularities.

Given that functional modules are confluent and terminating, we can consider
that function calls are units that must be reduced to a particular value, and
hence equality is enough for checking correctness. Moreover, functional modules
support the definition of membership axioms stating the elements of a sort, so
we need units to test whether a term has a given sort:

– The test assertEqual(f(t1, ..., tn), t) passes if the function f, when
applied to the ground terms t1, ...,tn, is reduced to the same normal
form as t (modulo axioms). Similarly, the test assertDifferent(f(t1, ...,
tn), t) passes if the normal form of f(t1, ..., tn) is different from the
normal form of t (modulo axioms). Note that t might not be a normal form;
for example, it might be a constant defined to ease the testing process.2 Note
also that these tests are commutative, so users can define them according to
their preferences.

– MUnit provides shortcuts for Boolean tests. The test assertTrue(f(t1,
..., tn)) (respectively, assertFalse(f(t1, ..., tn))) passes if the term
is reduced to true (respectively, false).

– We can also test whether membership axioms are properly defined by check-
ing the sort of a given term by using assertSort(t,s), which passes if the
normal form of the term t has exactly sort s. MUnit also provides a test
assertLeqSort(t, s), which passes if the sort of the normal form of t is
less or equal to s.

When dealing with system modules we face specifications potentially non-
terminating and non-confluent. For this reason the units for these modules assert
reachability rather than equality. Note that object-oriented modules are consid-
ered as standard system modules by MUnit.
2 Likewise, if f is not a function but a constructor and we are interested in testing
how the terms t1, ..., tn behave the test would compute the normal form and
compare it with the normal form of t. However, this test would not follow completely
the philosophy of Maude unit tests as we have defined it.

https://github.com/ariesco/MUnit

48 A. Riesco

– The test assertReachable(t, t’) passes if the term t’ is reachable from
t within an unbounded number of steps. Similarly, assertReachableBnd(t,
t’, bnd) adds information about the bound (bnd) in the number of steps.

– Usually we are not interested on reaching a specific term but on a solu-
tion matching a pattern or just in the lack of solutions. Taking this consid-
eration into account, the test hasSolution(t, pat, mode, bound, cond)
passes when there exists at least one reachable term that, starting from t,
matches the pattern pat and fulfills the condition cond in at most bound
(either unbounded or a natural number) steps. The mode can be either *,
for 0 or more steps; +, for 1 or more steps; and !, for final states. Similarly,
the test noSolution(t, pat, mode, bound, cond) passes when no solution
was expected.

Finally, we present how to test applications extending the Loop Mode. The
basic idea for testing this kind of applications is essentially the same that we have
discussed above: testing those units that will be used during the input/output
process. However, the internal state of the loop makes some tests difficult to
define. For this reason, MUnit provides instructions to start an inner loop and
execute commands on it; the user can then perform tests on the intermediate
states with the tests above. The instructions for manipulating the inner loop
are:

– loop(initial-state). This instruction starts the MUnit inner loop by
rewriting initial-state, which must have sort System. For example, we
would use loop(init) to start a Full Maude session.

– command(comm). This instruction introduces the command comm into the first
element of the loop and rewrites the thus obtained term to evolve the system.
For example, once started Full Maude with the command above we would
use command(select NAT .) to change the default module to NAT.

Although it is possible to define tests while executing commands, right now
we have no means to access the attributes defined in the state (the second
argument of the loop). MUnit makes attributes available by using @ before the
attribute name. For example, given that the Full Maude explicit database is
identified by db we would use @db to access it. We can use it to ensure that the
database is well formed after introducing new modules, to analyze the modules
it contains, and to test functions that require it. In particular, we would check
that it is well formed by using assertSort(@db, Database), that indicates that
the database has sort Database (and hence it is not defined at the kind level,
which indicates an error occurred). We show a detailed example in the following
section.

3 Running Example

In this section we present how to use the tool by using a simple inventory speci-
fication. Note that the tests shown here are used for illustrating the tool; discus-
sions about coverages are beyond the scope of this section. The complete source
code of the example is available at https://github.com/ariesco/MUnit.

https://github.com/ariesco/MUnit

MUnit: A Unit Framework for Maude 49

We first define binary search trees in module BSTREE to store the information
about the stock. We will use the product name (a String) as key and a Pair of
the form < QTY, PR > as value, where QTY stands for the quantity of the product
and PR for its price. Then, we define the sort BSTree for binary search trees and
BST? for trees that do not fulfill the appropriate property. Hence, the empty tree
(mt) has sort BSTree, while the constructor for bigger trees builds terms of sort
BSTree?:

fmod BSTREE is

pr STRING .

sort BSTree BSTree? Pair .

subsort BSTree < BSTree? .

op <_,_> : Nat Nat -> Pair [ctor] .

op mt : -> BSTree [ctor] .

op _[_,_]_ : BSTree? String Pair BSTree? -> BSTree? [ctor] .

We define a membership axiom to assign the sort BSTree. Given that the left
and the right trees have the appropriate sort (i.e., the variables L and R have
sort BSTree), we check with the auxiliary function correctOrder that the key
in the root is appropriately sorted with respect to the children:

cmb L [S, P] R : BSTree

if correctOrder(L, S) /\ correctOrder(S, R) .

We also specify functions to check whether an item is in the tree (inStock);
to insert a new item (insert); to delete an item from the tree (delete); and to
update the tree by subtracting one unit of the given item (oneSold):

op inStock : BSTree String -> Bool .

op insert : BSTree String Pair -> BSTree .

op delete : BSTree String -> BSTree .

op oneSold : BSTree String -> BSTree .

However, we introduced an error in the definition of insert: we did not
define the case when the element being introduced is already in the tree:

eq insert(mt, S, P) = mt [S, P] mt .

ceq insert(L [S, P] R, S’, P’) = insert(L, S’, P’) [S, P] R

if S’ < S .

ceq insert(L [S, P] R, S’, P’) = L [S, P] insert(R, S’, P’)

if S < S’ .

*** eq insert(L [S, P] R, S, P’) = L [S, combine(P, P’)] R .

...

endfm

50 A. Riesco

Finally, we define a module FTEST with constants for testing. Tree treeOK1
is a binary search tree with three elements, a, c, and e; treeOK2 consists of
treeOK2 after introducing the item b; treeOK3 is treeOK1 after removing the
item in the root, c; treeOK4 has one unit of c less than treeOK1; and treeError
is a tree with unordered keys:

fmod FTEST is

pr BSTREE .

ops treeOK1 treeOK2 treeOK3 treeOK4 treeError : ~> BSTree .

eq treeOK1 = (mt ["a", < 1, 3 >] mt) ["c", < 2, 7 >]

(mt ["e", < 3, 5 >] mt) .

eq treeOK2 = (mt ["a", < 1, 3 >] (mt ["b", < 1, 1 >] mt))

["c", < 2, 7 >] (mt ["e", < 3, 5 >] mt) .

eq treeOK3 = (mt ["a", < 1, 3 >] mt)["e", < 3, 5 >] mt .

eq treeOK4 = (mt ["a", < 1, 3 >] mt) ["c", < 1, 7 >]

(mt ["e", < 3, 5 >] mt) .

eq treeError = (mt ["a", < 1, 3 >] mt) ["d", < 1, 1 >]

(mt ["c", < 2, 7 >] mt) .

endfm

We test the specification as follows:

– We first check types by using assertLeqSort and assertSort. We can check
both the type of particular terms and the sort of the term obtained after
applying a function. In our example we check that treeOK1 has sort BSTree?
and least sort BSTree. On the other hand, the least sort of treeError is
BSTree?, while inserting in a BSTree should return another BSTree. Note that
we test how insert behaves with a tree that does not contain the element
being inserted (treeOK1) and a tree that contains it (treeOK2).

– Then, we check the obtained results. We use assertTrue and assertFalse
to test the Boolean function inStock, while we use assertEqual to indicate
how insert, delete, and oneSold should work when applied to treeOK1.

(munit FTEST is

assertLeqSort(treeOK1, BSTree?)

assertSort(treeOK1, BSTree)

assertSort(treeError, BSTree?)

assertSort(insert(treeOK1, "b", < 1, 1 >), BSTree)

assertSort(insert(treeOK2, "b", < 1, 1 >), BSTree)

assertTrue(inStock(treeOK1, "a"))

assertFalse(inStock(treeOK1, "f"))

assertEqual(insert(treeOK1, "b", < 1, 1 >), treeOK2)

assertEqual(delete(treeOK1, "c"), treeOK3)

assertEqual(oneSold(treeOK1, "c"), treeOK4)

endu)

MUnit: A Unit Framework for Maude 51

When executed, the tool indicates one of the test cases failed. In this case
the insertion is not typed as expected because the insert function was not
completely reduced, since we did not define one of the equations. The output
shows how the reduction stopped when facing the missing case:

12 test cases were executed.

1 failures.

assertSort(treeOK1,BSTree) passed.

assertLeqSort(treeOK1,BSTree?) passed.

assertSort(treeError,BSTree?) passed.

assertSort(insert(treeOK1,"b",< 1,1 >),BSTree) passed.

assertSort(insert(treeOK2,"b",< 1,1 >),BSTree) failed.

The normal form is (mt["a",< 1,3 >] insert(mt["b",< 1,1 >]mt,"b",< 1,1 >))

["c",< 2,7 >](mt["e",< 3,5 >]mt)

Its sort is BSTree?

...

We assume we fix the trees and continue with the example. We use the
module above to simulate a shop where buyers try to purchase items and sellers
provide new products to the shop. The module SHOP defines the sort People as
a set of Person:

mod SHOP is

pr BSTREE .

sorts Person People Shop .

subsort Person < People .

op nobody : -> People [ctor] .

op __ : People People -> People [ctor assoc comm id: nobody] .

Then, we define sellers and buyers. Buyers only take as argument the identi-
fier of the product they want to buy (we assume they buy one unit), while sellers
have the identifier of the item, the number of units, and the price they ask for
the product. The shop consists of a set of people, the binary search tree storing
the available products, and the current money:

*** Product Quantity Price

op seller : String Nat Nat -> Person [ctor] .

op buyer : String -> Person [ctor] .

op [_|_,_] : People BSTree Nat -> Shop [ctor] .

Rule buyer removes a buyer from the people once he/she buys the item indi-
cated by its argument, given it is available; the shop uses the function oneSold

52 A. Riesco

to decrease the quantity of the product and the money of the shop is updated.
In turn, the shop obtains more products from sellers with the rule seller. This
rule indicates that, if the shop has enough money, it adds the products to the
inventory, asking buyers to get it for twice the price it paid to the seller:

crl [buyer] : [buyer(S) P | T, M]

=> [P | oneSold(T, S), M + PR]

if inStock(T, S) /\

PR := getPrice(T, S) .

crl [seller] : [seller(S, Q, PR) P | T, M]

=> [P | insert(T, S, < Q, 2 * PR >), sd(M, PR * Q)]

if M >= PR * Q .

endm

The module STEST defines an initial shop with two sellers, offering items a
and b, a buyer who wants an item a, and 10 as initial money. Note that two
different final states are possible: if the shop takes a first it will be able to sell
it and then it will have money to obtain b, while buying b first would prevent
further rewrites:

mod STEST is

pr FTEST .

pr SHOP .

op init-shop : -> Shop .

eq init-shop = [seller("a", 1, 5) seller("b", 1, 5) buyer("a") | mt, 10] .

endm

The tests for this module check that it is possible to reach a final state where
nobody remains in the shop and it has 5 as money and "b" in stock, but it is
not possible to reach a state where the money is 20:

(munit STEST is

hasSolution(init-shop, ([nobody | T:BSTree, 5]), !, unbounded,

inStock(T:BSTree, "b"))

noSolution(init-shop, ([P:People | T:BSTree, 20]), +, unbounded, nil)

endu)

Instead of simulating the shop we can implement an input/output application
extending the Loop Mode for managing it. We would define two commands for
buying and adding products:

op sold_ : @Token@ -> @ShopCommand@ [ctor] .

op add_,_,_ : @Token@ @Token@ @Token@ -> @ShopCommand@ [ctor] .

as well as two attributes for storing the current tree and money:

op tree :_ : BSTree -> Attribute [ctor] .

op money :_ : Nat -> Attribute [ctor] .

MUnit: A Unit Framework for Maude 53

The rules dealing with these commands check whether the conditions hold
(e.g. there is enough money or the item required is available, respectively) and
update the tree and the money accordingly, showing the corresponding message.
We show the rule for add, which contains a bug and updates the money erro-
neously (it is decreased when no units are available and unchanged otherwise);
we refer to the webpage above for details about the rest of rules and the correct
implementation.

crl [add] :

< O : SDC | input : (’add_‘,_‘,_[’token[T], ’token[T’],

’token[T’’]]), output : nil, tree : BST, money : M, AtS >

=> < O : SDC | input : nilTermList, output : QIL, tree : BST’,

money : M’, AtS >

if Q := downQid(T) /\

S := string(Q) /\

QTY := rat(string(downQid(T’)), 10) /\

PR := rat(string(downQid(T’’)), 10) /\

B := M >= QTY * PR /\

BST’ := if B

then insert(BST, S, < QTY, 2 * PR >)

else BST

fi /\

M’ := if B

then M *** Should be sd(M, QTY * PR)

else sd(M, QTY * PR) *** Should be M

fi /\

QIL := if B

then ’\n ’\! ’Database ’updated. qid(QTY) ’units ’of qid(S)

’added. ’\n

’It ’was ’bought ’at qid(PR) ’euros. ’\n

’It ’will ’be ’sold ’at qid(2 * PR) ’euros. ’\o ’\n

else ’\n ’\! ’\r ’Error: ’\o ’Not ’enough ’money. ’\n

fi .

In this case we test the specification by starting the loop and first checking
that we do not have a cake in the inventory and the value of money is 10. Then,
we add one cake and pay 5 for it (it will be sold at 10 later). Once the cake
has been introduced, we check that in fact the inventory has a cake and only 5
as money. Then, we indicate that we have sold the cake, hence checking that it
disappears from the inventory and we have a final amount of 15 in money:

(munit SHOP-INIT is

loop(init-shop)

assertFalse(inStock(@tree, "cake"))

assertEqual(@money, 10)

command(add cake, 1, 5)

assertTrue(inStock(@tree, "cake"))

54 A. Riesco

assertEqual(@money, 5)

command(sold cake)

assertFalse(inStock(@tree, "cake"))

assertEqual(@money, 15)

endu)

When executed, the tool indicates that the tests for @money fail. The first
one states that, after adding a cake, the money is 10 although the user expects
it to be 5. In the second case the money is 20, which was unexpected but makes
sense if we consider the money after introducing the cake was 10, so the user
would check the rule for add:

6 test cases were executed.

2 failures.

...

command (add cake,1,5) executed.

assertEqual(@money,5) failed.

First term reduced to 10

Second term reduced to 5

...

command (sold cake) executed.

assertEqual(@money,15) failed.

First term reduced to 20

Second term reduced to 15

...

4 Implementation

In this section, we present some details of the implementation of MUnit. The
source code of the tool is available at https://github.com/ariesco/MUnit.

MUnit extends Full Maude by defining a new type module and its correspond-
ing commands. Following the ideas in [13], the module MUNIT-SIGNATURE defines
the syntax of MUnit, which will be used later to parse the commands introduced
by the user (via its meta-representation in module META-MUNIT-SIGN). The mod-
ule MUNIT defines the rule for parsing the only available input in MUnit, MUnit
modules:

crl [munit] :

< O : MUDC | db : DB, input : (’munit_is_endu[T, T’]),

output : nil, AtS >

=> < O : MUDC | db : DB, input : nilTermList, output : printUR(UR),

AtS >

if UR := procMUnit(T, T’, DB) .

https://github.com/ariesco/MUnit

MUnit: A Unit Framework for Maude 55

This rule uses the auxiliary function procMUnit to parse the tests and returns
a UnitResult, which consists of a tuple indicating the number of tests that
passed and failed, a QidList with the information for the user, and the inner
loop:

op [_,_,_,_] : Nat Nat QidList Term -> UnitResult [ctor] .

The function procMUnit computes the module from the module expression,
initializes the loop, and uses the function procProps to traverse the tests in the
module and execute them:

op procProps : Module Term OpDeclSet Bool Database Term -> UnitResult .

ceq procProps(M, ’__[T, T’], VDS, B, DB, SYS) =

[N + N’, N1 + N1’, QIL QIL’, SYS’’]

if [N, N1, QIL, SYS’] := procProps(M, T, VDS, B, DB, SYS) /\

[N’, N1’, QIL’, SYS’’] := procProps(M, T’, VDS, B, DB, SYS’) .

Among all possible tests, we briefly present below how the inner loop is
updated. This inner loop consists of a meta-represented loop that is initialized
by the loop instruction and is later manipulated when a command instruction is
found. The equation below shows (a simplification of) how procProps evaluates
the command instruction given the current module, the instruction, and the cur-
rent loop. It first transforms, in the first two conditions, the command the user
wants to introduce into the loop from a list of quoted identifiers into a term.
Then, it uses the auxiliary function sysInput to introduce that term as the first
argument of the loop. Then, we use metaRewrite to execute the thus obtained
loop and generate the information that will be shown to the user. Finally, the
result is a tuple containing the tests that passed and failed (0 in both cases,
since this instruction is not a test), the message, and the updated loop. Note
that other rules are in charge of handling errors in this process.

ceq procProps(M, ’command[’bubble[T]], SYS) = [0, 0, QIL’, SYS’’]

if QIL := downQidList(T) /\

T’ := upTerm(QIL) /\

SYS’ := sysInput(SYS, T’) /\

SYS’’ := getTerm(metaRewrite(M, SYS’)) /\

QIL’ := ’\! ’command ’\b ’ ’‘(QIL ’‘) ’ ’\o ’\! ’executed. ’\o ’\n .

5 Related Work

The maturity of a programming language is, to an extent, related to its tool
support. In this way, mainstream languages (mostly imperative) have integrated
development environments where debuggers, test tools, integration tools, etc.
are integrated, while other languages have limited support of these tools. In fact,
as argued in [25], the application of declarative languages out of the academic
world is inhibited by the lack of convenient auxiliary tools. However, during
the last decades the distance in this subject between declarative and imperative

56 A. Riesco

languages has been reduced thanks to the implementation, among other tools, of
debuggers and testing tools adapted to the particular features of these languages.
We focus in this section in property-based testing and unit testing, widely used
in many declarative languages.

An important step in the field of testing was the development of
QuickCheck [14], a property-based testing tool for Haskell. Property-based test-
ing is a two-step technique: first, the user states some properties that the func-
tions under test must fulfill and where some of the inputs have been replaced
by so called generators for the corresponding data structures. These genera-
tors are used during the second step to build several inputs (usually several
hundreds) to check whether the property holds. Generators for un-structured
datatypes such as natural numbers usually just require to build random ele-
ments in a given range, while generators for structured datatypes such as lists
are built on top of the generators for their elements, including options for the
size of the data structure and the relation between elements.3 This simple phi-
losophy allows property-based testing tools to check properties on hundreds of
inputs in a short time, and experiments have shown that property-based testing
is in general as good as more complex testing techniques, so the QuickCheck
approach has been implemented in other declaratives languages such as Erlang
(PropEr [18] and QuviQ [2]), Scala (ScalaCheck [16]), Curry (EasyCheck [7]),
and Prolog (PrologCheck [1]), among many others. In contrast to these tools, the
Maude property-based generator tries to falsify the property using narrowing,
which allows the tool to find corner cases that can be missed by the tools above
but results in a less efficient implementation for big specifications.

Besides property-based testing, several languages support some kind of unit
testing. In particular, languages like Erlang (EUnit [6]), Scala (ScalaTest [24]),
Prolog (Plunit [26]), and Curry (CurryTest [12]) support this kind of tests. In
general, unit tests are used in these languages to state equality between terms.
However, the case of Prolog and Curry is interesting in our case because they
support non-determinism, just like Maude system modules. In their case they
require the user to indicate the set of possible solutions, so each of the solutions
are contained in the set.

It is also important to note that property-based testing and unit tests are
complementary, as illustrated by the number of languages supporting both
approaches. In general, while property-based testing is used to test the main
functions, which have associated properties, unit tests are (ideally) defined for
checking all functions, so changes in the implementation can be easily checked
when integrated.

6 Conclusions and Ongoing Work

We have presented a unit testing framework for Maude. It supports functional
and system modules, as well as extensions of the Loop Mode, in particular Full

3 Most of the tools also include specific strategies for corner cases, such as empty lists.

MUnit: A Unit Framework for Maude 57

Maude object-oriented modules and interactive tools. Since Full Maude exten-
sions are in general difficult to test and maintain, one of the main features of
MUnit is the support for this kind of applications.

We are currently working to extend MUnit modules with standard Maude
declarations. In this way users will be able to define constants and functions to
ease the testing process. It would be also interesting to identify tests and support
messages in them, so tests would carry information about its intended coverage.
It is also interesting to allow users to name tests, so complex tests can be easily
identified.

Finally, we are also interested on integrating unit testing and the Maude
declarative debugging [21]. Since declarative debugging asks questions about the
computation to the user to find the bug, it would generate unit tests that can
be later used. Likewise, some answers would be answered by unit tests, saving
time and effort to the user.

References

1. Amaral, C., Florido, M., Santos Costa, V.: PrologCheck – property-based testing
in prolog. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 1–17.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07151-0 1

2. Arts, T., Castro, L.M., Hughes, J.: Testing Erlang data types with QuviQ
QuickCheck. In: Teoh, S.T., Horváth, Z. (eds.) Proceedings of the 7th ACM SIG-
PLAN Workshop on ERLANG, pp. 1–8. ACM (2008)

3. Beizer, B.: Software Testing Techniques. Dreamtech, India (2002)
4. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in member-

ship equational logic. Theor. Comput. Sci. 236, 35–132 (2000)
5. Britton, T., Jeng, L., Carver, G., Cheak, P., Katzenellenbogen, T.: Reversible

debugging software. University of Cambridge-Judge Business School, Technical
report (2013)

6. Carlsson, R., Rémond, M.: EUnit: a lightweight unit testing framework for Erlang.
In: Proceedings of the 2006 ACM SIGPLAN Workshop on Erlang, p. 1. ACM
(2006)

7. Christiansen, J., Fischer, S.: EasyCheck — test data for free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78969-7 23

8. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
Haskell programs. In: ACM SIGPLAN Notices, pp. 268–279. ACM Press (2000)

9. Clavel, M., et al.: Maude Manual (Version 2.7), March 2015. http://maude.cs.
illinois.edu/w/images/1/1a/Maude-manual.pdf

10. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

11. Clavel, M., Durán, F., Hendrix, J., Lucas, S., Meseguer, J., Ölveczky, P.: The
maude formal tool environment. In: Mossakowski, T., Montanari, U., Haveraaen,
M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 173–178. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73859-6 12

12. CurryTest. https://www-ps.informatik.uni-kiel.de/currywiki/tools/currytest

https://doi.org/10.1007/978-3-319-07151-0_1
https://doi.org/10.1007/978-3-540-78969-7_23
http://maude.cs.illinois.edu/w/images/1/1a/Maude-manual.pdf
http://maude.cs.illinois.edu/w/images/1/1a/Maude-manual.pdf
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-73859-6_12
https://www-ps.informatik.uni-kiel.de/currywiki/tools/currytest

58 A. Riesco

13. Durán, F., Ölveczky, P.C.: A guide to extending Full Maude illustrated with the
implementation of Real-Time Maude. In: Roşu, G. (ed.) Proceedings of the 7th
International Workshop on Rewriting Logic and its Applications, WRLA 2008,
Electronic Notes in Theoretical Computer Science, vol. 238(3), pp. 83–102. Elsevier
(2009)

14. Hughes, J.: Software testing with QuickCheck. In: Horváth, Z., Plasmeijer, R.,
Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 183–223. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17685-2 6

15. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

16. Nilsson, R.: Scalacheck: The Definitive Guide. IT Pro, Artima Incorporated (2014)
17. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.

Higher-Order Symb. Comput. 20, 161–196 (2007)
18. Papadakis, M., Sagonas, K.: A PropEr integration of types and function specifi-

cations with property-based testing. In: Proceedings of the 2011 ACM SIGPLAN
Erlang Workshop, pp. 39–50. ACM Press (2011)

19. Riesco, A.: Using narrowing to test maude specifications. In: Durán, F. (ed.) WRLA
2012. LNCS, vol. 7571, pp. 201–220. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34005-5 11

20. Riesco, A., Ogata, K., Futatsugi, K.: A Maude environment for CafeOBJ. Formal
Aspects Comput. 29(2), 309–334 (2016)

21. Riesco, A., Verdejo, A., Mart́ı-Oliet, N., Caballero, R.: Declarative debugging of
rewriting logic specifications. J. Logic Algebraic Program. 81(7–8), 851–897 (2012)

22. Runeson, P.: A survey of unit testing practices. IEEE Softw. 23(4), 22–29 (2006)
23. Tretmans, J.: Conformance testing with labelled transition systems: implemen-

tation relations and test generation. Computer Netw. ISDN Syst. 29(1), 49–79
(1996)

24. Venners, B.: Scalatest 3.0.5 (2018). http://www.scalatest.org/
25. Wadler, P.: Why no one uses functional languages. SIGPLAN Not. 33(8), 23–27

(1998)
26. Wielemaker, J.: Prolog unit tests. http://www.swi-prolog.org/pldoc/doc for?

object=section(%27packages/plunit.html%27)

https://doi.org/10.1007/978-3-642-17685-2_6
https://doi.org/10.1007/978-3-642-34005-5_11
https://doi.org/10.1007/978-3-642-34005-5_11
http://www.scalatest.org/
http://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/plunit.html%27)
http://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/plunit.html%27)

	MUnit: A Unit Framework for Maude
	1 Introduction
	2 MUnit
	3 Running Example
	4 Implementation
	5 Related Work
	6 Conclusions and Ongoing Work
	References

