
Vlad Rusu (Ed.)

 123

LN
CS

 1
11

52

12th International Workshop, WRLA 2018
Held as a Satellite Event of ETAPS
Thessaloniki, Greece, June 14–15, 2018
Proceedings

Rewriting Logic
and Its Applications

Lecture Notes in Computer Science 11152

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Vlad Rusu (Ed.)

Rewriting Logic
and Its Applications
12th International Workshop, WRLA 2018
Held as a Satellite Event of ETAPS
Thessaloniki, Greece, June 14–15, 2018
Proceedings

123

Editor
Vlad Rusu
Inria
Lille
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-99839-8 ISBN 978-3-319-99840-4 (eBook)
https://doi.org/10.1007/978-3-319-99840-4

Library of Congress Control Number: 2018952569

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at WRLA 2018: the 12th International
Workshop on Rewriting Logic and its Applications, held during June 14–15, 2018, in
Thessaloniki, Greece.

There were 21 submissions. Each submission received at least three reviews. The
Program Committee decided to accept 12 papers. The program also included three
invited talks.

Rewriting is a natural model of computation and an expressive semantic framework
for concurrency, parallelism, communication, and interaction. It can be used for
specifying a wide range of systems and languages in various application domains. It
also has good properties as a metalogical framework for representing logics. Several
successful languages based on rewriting (ASF+SDF, CafeOBJ, ELAN, Maude) have
been designed and implemented.

The aim of WRLA is to bring together researchers with a common interest in
rewriting and its applications, and to give them the opportunity to present recent work,
discuss future research directions, and exchange ideas.

The topics of the workshop include, but are not limited to:

A. Foundations

– Foundations and models of rewriting and rewriting logic, including termination,
confluence, coherence and complexity

– Unification, generalization, narrowing, and partial evaluation
– Constrained rewriting and symbolic algebra
– Graph rewriting
– Tree automata
– Rewriting strategies
– Rewriting-based calculi and explicit substitution

B. Rewriting as a logical and semantic framework

– Uses of rewriting and rewriting logic as a logical framework, including
deduction modulo

– Uses of rewriting as a semantic framework for programming language
semantics

– Rewriting semantics of concurrency models, distributed systems, and network
protocols

– Rewriting semantics of real-time, hybrid, and probabilistic systems
– Uses of rewriting for compilation and language transformation

C. Rewriting languages

– Rewriting-based declarative languages
– Type systems for rewriting

– Implementation techniques
– Tools supporting rewriting languages

D. Verification techniques

– Verification of confluence, termination, coherence, sufficient completeness, and
related properties

– Temporal, modal and reachability logics for verifying dynamic properties of
rewrite theories

– Explicit-state and symbolic model checking techniques for verification of
rewrite theories

– Rewriting-based theorem proving, including (co)inductive theorem proving
– Rewriting-based constraint solving and satisfiability
– Rewriting-semantics-based verification and analysis of programs

E. Applications

– Applications in logic, mathematics, physics, and biology
– Rewriting models of biology, chemistry, and membrane systems
– Security specification and verification
– Applications to distributed, network, mobile, and cloud computing
– Specification and verification of real-time, hybrid, probabilistic, and cyber-

physical systems
– Specification and verification of critical systems
– Applications to model-based software engineering
– Applications to engineering and planning

July 2018 Vlad Rusu

VI Preface

Organization

Program Committee

Kyungmin Bae Pohang University of Science and Technology
(POSTECH), South Korea

Roberto Bruni Università di Pisa, Italy
Stefan Ciobaca Alexandru Ioan Cuza University, Romania
Francisco Durán University of Màlaga, Spain
Steven Eker SRI International, USA
Santiago Escobar Universitat Politècnica de València, Spain
Maribel Fernandez KCL
Thomas Genet IRISA, Rennes, France
Jürgen Giesl RWTH Aachen University, Germany
Deepak Kapur University of New Mexico, USA
Helene Kirchner Inria, France
Alexander Knapp Universität Augsburg, Germany
Alberto Lluch Lafuente Technical University of Denmark
Dorel Lucanu Alexandru Ioan Cuza University, Romania
Salvador Lucas Universitat Politècnica de València, Spain
Narciso Marti-Oliet Universidad Complutense de Madrid, Spain
Ugo Montanari Università di Pisa, Italy
Pierre-Etienne Moreau Inria-LORIA Nancy, France
Vivek Nigam Universidade Federal da Paraíba, Brazil
Kazuhiro Ogata JAIST, Japan
Christophe Ringeissen Inria, France
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Vlad Rusu Inria, France
Ralf Sasse ETH Zurich, Switzerland
Traian Florin Serbanuta University of Bucharest, Romania
Mark-Oliver Stehr SRI International, USA
Carolyn Talcott SRI International, USA
Martin Wirsing Ludwig Maximilian University of Munich, Germany
Peter Ölveczky University of Oslo, Norway

Additional Reviewers

Arusoaie, Andrei
de Carvalho Segundo, Washington
Fuhs, Carsten
Heam, Pierre-Cyrille
Marshall, Andrew M.

Milazzo, Paolo
Pena, Lucas
Sobocinski, Pawel
Vandin, Andrea

Automata and Equations Based
Approximations for Reachability Analysis

(Invited Talk)

Thomas Genet

Univ Rennes/Inria/CNRS/IRISA, Campus Beaulieu,
35042 Rennes Cedex, France

Term Rewriting Systems (TRSs for short) are a convenient formal model for software
systems. This formalism is expressive enough to model in a simple and accurate way
many aspects of computation such as: recursivity, non-determinism, parallelism, dis-
tribution, communication. On such models, verification is facilitated by the large
collection of proof techniques of rewriting: termination, non-termination, confluence,
non-confluence, reachability, unreachability, inductive properties, etc. This talk focuses
on unreachability properties of a TRS, which entails safety properties on the modeled
software system.

Starting from a single term s, proving that t is unreachable, i.e., s 6!�
R t is

straightforward if R is terminating. This problem is undecidable if R is not terminating
or if we consider infinite sets of initial terms s and infinite sets of “Bad” terms t. There
exists TRSs classes for which those problems are decidable. For those classes,
decidability comes from the fact that the set of reachable terms is regular, i.e., it can be
recognized by a tree automaton [5]. Those classes are surveyed in [7].

However, TRSs modeling software systems do not belong to those “decidable
classes”, in general. The rewriting and tree automata community have proposed dif-
ferent techniques to over-approximate the set of reachable terms. Over-approximating
reachable terms provide a criterion for unreachability on TRSs and, thus, a criterion for
safety of the modeled systems. Those approximation techniques range from TRSs
transformation [11], ad hoc automata transformations [3, 6, 10], CounterExample-
Guided Abstraction Refinement (CEGAR) [1, 2, 4], and abstraction by equational
theories [9, 12]. I will present the principles underlying those techniques, discuss their
pros and cons, and recall some of their applications. Then, I will present a recent
attempt to combine abstraction by equational theories and CEGAR to infer accurate
over-approximations for TRSs modeling higher-order functional programs [8].

References

1. Boichut, Y., Boyer, B., Genet, T., Legay, A.: equational abstraction refinement for certified
tree regular model checking. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635.
Springer, Heidelberg (2012)

2. Boichut, Y., Courbis, R., Héam, P.C., Kouchnarenko, O.: Finer is better: abstraction
refinement for rewriting approximations. In: Voronkov, A. (eds.) RTA 2008. LNCS, vol.
5117, pp. 48–62. Springer, Heidelberg (2008)

3. Boichut, Y., Héam, P.-C., Kouchnarenko, O.: Automatic approximation for the verification
of cryptographic protocols. In: Proceedings of AVIS 2004. Joint to ETAPS 2004, Barcelona,
Spain (2004)

4. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree model
checking. ENTCS, 149(1), 37–48 (2006)

5. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C., Tison, S.,
Tommasi, M.: Tree automata techniques and applications (2008). http://tata.gforge.inria.fr

6. Genet, T.: Decidable approximations of sets of descendants and sets of normal forms. In:
Nipkow, T. (eds.) RTA 1998. LNCS, vol 1379, pp. 151–165. Springer, Heidelberg (1998)

7. Genet, T.: Reachability analysis of rewriting for software verification. Habilitation docu-
ment, Université de Rennes 1 (2009). http://people.irisa.fr/Thomas.Genet/publications.html

8. Genet, T., Haudebourg, T., Jensen, T.: Verifying higher-order functions with tree automata.
In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, Springer, Cham (2018,
to be published)

9. Genet, T., Rusu, R.: Equational tree automata completion. J. Symb. Comput. 45, 574–597
(2010)

10. Genet, T., Tong, V.V.T.: Reachability analysis of term rewriting systems with timbuk. In:
Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNAI, vol. 2250, pp. 691–702,
Springer-Verlag (2001)

11. Jacquemard, F.: Decidable approximations of term rewriting systems. In: Ganzinger, H.
(eds.) RTA 1996. LNCS, Vol. 1103, pp. 362–376, Springer, Heidelberg (1996)

12. Meseguer, J., Palomino, M., Martí-Oliet, N.: Equational abstractions. TCS, 403(2–3), 239–
264 (2008)

X T. Genet

http://tata.gforge.inria.fr
http://people.irisa.fr/Thomas.Genet/publications.html

Contents

Benchmarking Implementations of Term Rewriting and Pattern Matching
in Algebraic, Functional, and Object-Oriented Languages:
The 4th Rewrite Engines Competition . 1

Hubert Garavel, Mohammad-Ali Tabikh, and Imad-Seddik Arrada

Multi-paradigm Programming in Maude . 26
Santiago Escobar

MUnit: A Unit Framework for Maude . 45
Adrián Riesco

Parameterized Programming for Compositional System Specification 59
Óscar Martín, Alberto Verdejo, and Narciso Martí-Oliet

Symbolic Specification and Verification of Data-Aware BPMN
Processes Using Rewriting Modulo SMT . 76

Francisco Durán, Camilo Rocha, and Gwen Salaün

Associative Unification and Symbolic Reasoning Modulo Associativity
in Maude . 98

Francisco Durán, Steven Eker, Santiago Escobar, Narciso Martí-Oliet,
José Meseguer, and Carolyn Talcott

Proving Structural Properties of Sequent Systems in Rewriting Logic 115
Carlos Olarte, Elaine Pimentel, and Camilo Rocha

Formal Modeling and Analysis of the Walter Transactional Data Store 136
Si Liu, Peter Csaba Ölveczky, Qi Wang, and José Meseguer

Extending Timbuk to Verify Functional Programs. 153
Thomas Genet, Tristan Gillard, Timothée Haudebourg,
and Sébastien Lê Cong

Generalized Rewrite Theories and Coherence Completion 164
José Meseguer

Proving Ground Confluence of Equational Specifications Modulo Axioms . . . 184
Francisco Durán, José Meseguer, and Camilo Rocha

Uniform Strong Normalization for Multi-discipline Calculi 205
Paul Downen, Philip Johnson-Freyd, and Zena M. Ariola

Real-Time Rewriting Logic Semantics for Spatial Concurrent
Constraint Programming . 226

Sergio Ramírez, Miguel Romero, Camilo Rocha, and Frank Valencia

Approximating Any Logic Program by a CS-Program 245
Yohan Boichut, Vivien Pelletier, and Pierre Réty

Author Index . 261

XII Contents

Benchmarking Implementations of Term
Rewriting and Pattern Matching

in Algebraic, Functional,
and Object-Oriented Languages
The 4th Rewrite Engines Competition

Hubert Garavel(B), Mohammad-Ali Tabikh, and Imad-Seddik Arrada

Univ. Grenoble Alpes, INRIA, CNRS, LIG, 38000 Grenoble, France
hubert.garavel@inria.fr

Abstract. Many specification and programming languages have
adopted term rewriting and pattern matching as a key feature. How-
ever, implementation techniques and observed performance greatly vary
across languages and tools. To provide for an objective comparison, we
developed an open, experimental platform based upon the ideas of the
three Rewrite Engines Competitions (2006, 2008, and 2010), which we
significantly enhanced, extended, and automated. We used this platform
to benchmark interpreters and compilers for a number of algebraic, func-
tional, and object-oriented languages, and we report about the results
obtained for CafeOBJ, Clean, Haskell, LNT, LOTOS, Maude, mCRL2,
OCaml, Opal, Rascal, Scala, SML (MLton and SML-NJ), Stratego/XT,
and Tom.

Keywords: Abstract data type · Algebraic specification · Compiler
Functional programming · Interpreter · Object-oriented programming
Programming language · Specification language · Term rewrite engine
Term rewrite system

1 Introduction

There is a large corpus of scientific work on term rewriting. Beyond theoretical
results, one main practical result is the introduction of algebraic terms and
rewrite rules into many specification and programming languages, some of which
are no longer available or maintained, some of which remain confidential, but a
few others are widespread or increasingly popular.

In some of these languages, one directly finds the familiar concepts of
abstract sorts, algebraic operations, and equations or rewrite rules to define
the semantics of operations. In other languages based on functional, impera-
tive, or object-oriented paradigms, one finds the term rewriting concepts under
derived/restricted forms: types inductively defined using free constructors, and
pattern matching.
c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 1–25, 2018.
https://doi.org/10.1007/978-3-319-99840-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_1&domain=pdf

2 H. Garavel et al.

In the presence of many different languages, which one(s) should be preferred
for concrete applications? The present study addresses this question by assessing
the performance of languages implementations on a set of rewriting-oriented
benchmarks. A decade ago, this question was already dealt with by the three
Rewrite Engines Competitions (REC, for short), organized in 2006 [8], 2008 [12],
and 2010 [11]. Our work builds upon these three competitions.

A more personal motivation for undertaking the present study was related
to CÆSAR.ADT [14,20], a compiler developed at INRIA Grenoble since the
late 80s. Based on Schnoebelen’s pattern-matching compiling algorithm [41],
CÆSAR.ADT translates LOTOS abstract data types (seen as many-sorted con-
ditional term rewrite systems with free constructors and priorities between equa-
tions) into C code. In 1992, CÆSAR.ADT, initially written in C, was rewritten
to a large extent in LOTOS abstract data types — it might have been the first
rewriting engine to bootstrap itself, slightly before Opal [10] and long before
ASF+SDF [4]. Since then, CÆSAR.ADT has been routinely used as part of the
CADP toolbox [17] for model checking specifications of concurrent systems. For
this purpose, it has been specifically optimized to reduce memory consumption
by implementing data structures very compactly. It has also been used to build
two large compilers: itself (using bootstrapping) and the XTL compiler [31].

In 2007, a comparative study [44] reported average performance results
for CÆSAR.ADT, but only on a small number of benchmarks. This triggered
our desire to assess CÆSAR.ADT against widespread implementations of term
rewriting and pattern matching, to learn if this compiler is still state of the art.

Another personal motivation behind the present study concerns LNT [18],
which has been designed as a user-friendly replacement language for LOTOS,
more suitable for use in industry. These two languages are quite different:
LOTOS relies upon ACT-ONE’s [13] abstract data types, whereas LNT is a clean
combination of imperative-programming constructs with first-order functional-
programming discipline: mutable variables, assignments, if-then-else condi-
tionals, pattern-matching case, while and for loops with break, functions hav-
ing return statements and in, out, and in-out parameters, etc.

At the moment, definitions of LNT types and functions are implemented in
two successive steps: first, by translation [18] to LOTOS abstract data types,
using a generalization of the ideas proposed in [40], then to C code, by reusing
the aforementioned CÆSAR.ADT compiler. This is a quite challenging app-
roach, since a language with an imperative syntax (LNT) is first translated to
term rewrite systems, then back to another imperative language (C). One may
thus wonder whether such a two-step translation, dictated by software-reuse
considerations, is efficient enough in practice, especially for model-checking ver-
ification [17], which is highly demanding in terms of memory and computing
time.

Assessing the performance of implementations of term rewriting and pattern
matching (including the case of LOTOS and LNT) raises a number of difficult
questions. Is it possible to compare very different languages on an equal footing?
Which are the right tools to be involved in the comparison? Where can one

Benchmarking Implementations of Term Rewriting and Pattern Matching 3

find the term rewriting specifications to be used as benchmarks? What is the
experimental setting suitable for a proper assessment?

The present article addresses these questions. It is organized as follows.
Section 2 lists the various tools implementing term rewriting and pattern match-
ing we considered for this study. Section 3 describes the common language
REC-2017 in which benchmarks (i.e., conditional term rewrite systems) can be
encoded. Section 4 presents the translators we developed for converting this com-
mon language to the input languages of the tools. Section 5 reports about the
collection of 85 benchmarks prepared for our study. Taking advantage of this
collection, Sect. 6 provides quantified insight about the verbosity of the input
languages. Section 7 describes the execution platform used to run the tools on the
benchmarks. Section 8 gives experimental results and draws the Top-5 podium of
the most efficient tools. Section 9 discusses potential threats to validity. Finally,
Sect. 10 provides concluding remarks.

2 Selected Tools

Table 1 lists all the languages assessed by the present study. For each language,
column 2 gives bibliographic references; column 3 indicates whether the language
is algebraic, functional, or obj ect-oriented1; column 4 gives the name of the tool
(interpreter or compiler) used to execute programs written in this language and
the version number of this tool2; column 5 gives the URL of the reference web
site.

The present study assesses numerous languages/tools that were neither
considered in [44] nor in the three Rewrite Engines Competitions [8,11,12]:
CafeOBJ, LNT, LOTOS, OCaml, Opal, Rascal, Scala, and SML. Conversely, a
few languages/tools assessed during these former studies have not been retained
for the present study: ASF+SDF (superseded by Rascal and Stratego/XT), Elan
(superseded by Tom), μCRL (superseded by mCRL2), Termware (its last version
2.3.3 was issued in May 2009 and the tool did not participate in the 3rd Com-
petition), and TXL (the developer informed us that the tool was not designed
for the REC benchmarks and that there was no point in trying it). Concerning
the languages/tools listed in Table 1, the following remarks can be made:

– Certain languages (namely, OCaml and Rascal) possess both an interpreter
and a compiler; we evaluated each of them.

– The mCRL2 tool set provides two different rewriting engines: jitty (just-in-
time [38,39]) and jittyc (just-in-time compiled), which we both evaluated.
The innermost rewriter mentioned in [44] is no longer available.

1 This classification is subjective, since some languages belong to multiple paradigms:
LNT claims to be functional and imperative, Maude algebraic and object-oriented,
Opal algebraic and functional, OCaml and Scala functional and object-oriented,
etc.; due to lack of space, we only indicate the paradigm that we consider to be the
principal one, within the scope of this study.

2 The tool name is only mentioned if it is different from the language name.

4 H. Garavel et al.

Table 1. List of tools considered for the 4th Rewrite Engines Competition

Language Bib. ref. Kind Tool version Web site

CafeOBJ [9] alg. 1.5.5 http://cafeobj.org

Clean [37] fun. 2.4 (May 2017) http://clean.cs.ru.nl

Haskell [30] fun. GHC 8.0.1 http://www.haskell.org

LNT [6,17] fun. CADP 2017-b http://cadp.inria.fr

LOTOS [17,24] alg. CADP 2017-b http://cadp.inria.fr

Maude [7] alg. 2.7.1 http://maude.cs.illinois.edu

mCRL2 [22] alg. 201409.0 http://www.mcrl2.org

OCaml [28] fun. 4.04.1 http://www.ocaml.org

Opal [36] alg. OCS 2.4b http://projects.uebb.tu-berlin.de/opal

Rascal [3] obj. 0.8.0 http://www.rascal-mpl.org

Scala [35] obj. 2.11.8 http://www.scala-lang.org

SML [34] fun. MLton 20130715 http://www.mlton.org

SML [34] fun. SML/NJ 110.80 http://www.smlnj.org

Strategoa [5] alg. 2.1.0 http://www.metaborg.org

Tom [1] obj. 2.10 http://tom.loria.fr
aThe full name is “Stratego/XT”, which we often abbreviate to “Stratego” so as to
save space in tables

– SML (i.e., Standard ML) is the only language in Table 1 that does not allow
conditional patterns. To overcome this limitation, we chose to use SML jointly
with the Nowhere preprocessor [29] that adds support for Boolean guards in
pattern matching.

– Among the many SML implementations available, we selected two compilers:
SML/NJ and MLton.

– We evaluated the Clean compiler in two different ways: (i) by invoking the
compiler clm in the standard way; (ii) by designing a custom script clm-hack
that invokes cocl and clm with special options. The latter approach was
suggested by the developers of Clean to address performance issues.

3 The REC-2017 Language

For benchmarking implementations of term rewriting, a crucial difficulty is that
almost all the tools listed in Sect. 2 have a different input language — the only
exception being SML/NJ and MLton, which both operate on SML programs.
To address this issue, the organizers of the 2nd and 3rd Rewrite Engines Com-
petition designed a common language [12, Sect. 3] [11, Sect. 3.1], which they
named REC and to which we will refer as REC-2008. It is a human-readable,
tool-independent format for describing many-sorted conditional term rewrite sys-
tems, as well as property queries (namely, confluence checks and computation

http://cafeobj.org
http://clean.cs.ru.nl
http://www.haskell.org
http://cadp.inria.fr
http://cadp.inria.fr
http://maude.cs.illinois.edu
http://www.mcrl2.org
http://www.ocaml.org
http://projects.uebb.tu-berlin.de/opal
http://www.rascal-mpl.org
http://www.scala-lang.org
http://www.mlton.org
http://www.smlnj.org
http://www.metaborg.org
http://tom.loria.fr

Benchmarking Implementations of Term Rewriting and Pattern Matching 5

of normal forms) on such systems. The main limitation of REC-2008 was its
exclusive focus on algebraic specification languages.

We adopted REC-2008 as a starting point, but gradually evolved it to make it
compatible with the characteristics of functional and object-oriented languages.
Such evolution led to a new language REC-20173, which is defined by the EBNF
grammar of Table 2, in which 〈rec-spec 〉 is the axiom and where 〈e 〉∗[c] (respec-
tively, 〈e 〉+[c]) denotes the concatenation of n ≥ 0 (resp. n > 0) non-terminals
〈e 〉 separated by the character c, which can be a space, a comma, or a newline
(noted “\n”). Semicolons can be used wherever commas can be used, which is
sometimes convenient for structuring long lists of parameters (see, e.g., [19]). A
simple example of a REC-2017 specification is given in Table 3.

Contrary to REC-2008, REC-2017 is strictly line-based, meaning that new-
line characters may only occur where they are specified in the grammar. Com-
ments start with % and extend to the end of the line. Inclusion of external files is
possible using #include directives similar to those that exist in the C language.

Identifiers (i.e., non-terminals 〈spec-id 〉, 〈sort-id 〉, 〈cons-id 〉, 〈opn-id 〉,
and 〈var-id 〉) always start with a letter, followed by any number of letters, digits,

(underscores), ’ (primes), or " (seconds); thus, fancy notations for numbers
and infix functions (e.g., 123, +, &, ==, etc.) are not supported. Identifiers must
be different from the grammar keywords (i.e., SORTS, CONS, if, etc.) and must

Table 2. EBNF grammar defining the syntax of the REC-2017 language

rec-spec ::= REC-SPEC spec-id \n
SORTS \n

sort-id ∗[] \n
CONS \n

cons-decl ∗[\n] \n
OPNS \n

opn-decl ∗[\n] \n
VARS \n

var-decl ∗[\n] \n
RULES \n

rule ∗[\n] \n
EVAL \n

term ∗[\n] \n
END-SPEC \n

rule ::= left -> term
| left -> term if cond

left ::= opn-id
| opn-id (pattern +[,])

pattern ::= var-id
| cons-id
| cons-id (pattern +[,])

term ::= var-id
| cons-id
| cons-id (term +[,])

| opn-id
| opn-id (term +[,])

cond ::= term -><- term
| term ->/<- term
| cond and-if cond

cons-decl ::= cons-id : sort-id ∗[,] -> sort-id
opn-decl ::= opn-id : sort-id ∗[,] -> sort-id

var-decl ::= var-id ∗[] : sort-id

3 See also http://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/doc.

http://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/doc

6 H. Garavel et al.

Table 3. Simple REC-2017 specification defining Booleans and natural numbers

REC-SPEC simple

SORTS % abstract data domains
Bool Nat

CONS % primitive operations
true : -> Bool

false : -> Bool

zero : -> Nat

succ : Nat -> Nat

OPNS % defined functions
and : Bool Bool -> Bool

plus : Nat Nat -> Nat

VARS % free variables
A B : Bool

M N : Nat

RULES % function definitions
and (A, B) -> B if A -><- true

and (A, B) -> false if A -><- false

plus (zero, N) -> N

plus (succ (M), N) -> succ (plus (M, N))

EVAL % terms to be evaluated
and (true, false)

plus (succ (zero), succ (zero))

END-SPEC

not be prefixed with REC , rec , Rec , or any case-sensitive variation of these.
There is a unique name space for all identifiers, meaning, for instance, that it
is not possible to have a sort and a variable sharing the same identifier. As in
REC-2008, operation overloading is not permitted. Also, two identifiers must
not differ only by their case (e.g., defining x0 and X0 simultaneously is invalid).

A REC-2017 specification is divided into six sections. The SORTS section
declares a set of sorts. The CONS and OPNS sections respectively declare two
sets of constructor and non-constructor operations; each operation is given by
its identifier, the (possibly empty) list of sorts of its arguments and the sort of
its result. The VARS section declares a set of free variables. The RULES section
contains a list of rewrite rules; the left-hand side of each rule defines a non-
constructor on arguments specified by a pattern (i.e., a term containing only
constructors and free variables), whereas the right-hand side may be an arbitrary
term; rewrite rules may be conditional or not; conditions, if present, are the
logical conjunction (noted and-if) of one or many elementary conditions of the
form “t1-><-t2” (meaning that both terms t1 and t2, which have the same sort,

Benchmarking Implementations of Term Rewriting and Pattern Matching 7

can be rewritten to some common term t) or “t1->/<-t2” (which is the negation
of “t1-><-t2”). The EVAL section gives a list of closed terms (i.e., terms that
do not contain free variables), the ground normal forms of which have to be
computed.

There are additional static semantic constraints: in the CONS section, con-
structors having the same result sort must be gathered and declared in sequence;
in the OPNS section, non-constructors with arity zero (i.e., constants) must be
declared before being used4; each pattern and each term present in a REC-2017
specification must be well-typed; implicit type conversions between different sorts
are not allowed; in the RULES section, all variables used in rewrite rules must
have been declared in the VARS section; each variable occurring on the right-hand
side of a rewrite rule (including in conditions) must be present in the left-hand
side pattern of this rule, i.e., the REC-2017 specification is a 1-CTRS according
to the classification proposed in [33, Definition 6.1]; each left-hand side of a rule
must be linear, i.e., must not contain multiple occurrences of the same variable5;
the set of rules defining the same non-constructor (i.e., all rules whose left-hand
sides have the same 〈opn-id 〉) must be gathered and appear in sequence; these
rules must be deterministic, meaning that either their left-hand side patterns
are disjoint6 or their conditions (if any) are mutually exclusive, thus implying
confluence; these rules do not have to be complete, meaning that partial func-
tions are allowed, provided they are invoked only on arguments for which they
are defined; finally, termination is also required, even if it is not always decid-
able. Hence, because the specification is convergent, all tools, whichever rewrite
strategy they implement, should terminate and produce the same results when
evaluating the terms listed in the EVAL section.

Compared to REC-2008, the main change brought by REC-2017 is the dis-
tinction between constructors and non-constructors: in REC-2008, all opera-
tions were declared in one single section OPS, whereas REC-2017 introduces
two separate sections CONS and OPNS, as well as the free-constructor discipline,
i.e., the prohibition of equations between constructors implied by the syntac-
tic definitions of 〈left 〉 and 〈pattern 〉 in Table 2. The “get normal form for”
directives of REC-2008 have been replaced by the EVAL section of REC-2017.
Also, some features of REC-2008 that were only used in some algebraic lan-
guages and have no counterpart in functional and object-oriented languages
have also been removed, namely, the “check the confluence of” query and
the OBJ/Maude-like assoc (associativity), comm (commutativity), id (identity,
i.e., neutral element), and strat (strategy) attributes.

4 The REC-2017 Translators

Following the introduction of the REC-2008 language, various approaches were
adopted during the 2nd and 3rd Rewrite Engines Competitions, to process
4 This constraint arises from OCaml and SML; it eases the translation from REC-2017

to these languages.
5 Non-linear patterns can be replaced by linear patterns by adding extra conditions.
6 Consequently, there is no notion of priority between rewrite rules.

8 H. Garavel et al.

specifications written in this language: (i) Maude was enriched with an environ-
ment to parse REC-2008 specifications; (ii) translators were developed to convert
REC-2008 into the input languages accepted by ASF+SDF, Stratego/XT, and
Tom; unfortunately, these translators are no longer available today or their tar-
get languages have evolved; (iii) in other cases, the translation from REC-2008 to
the input languages of the remaining tools (e.g., TXL) had to be done manually.

Our study is significantly broader in scope, as we are considering many more
input languages, and we also plan to have more benchmarks written in REC-
2017. Manually translating these benchmarks into each input language, detect-
ing and correcting the unavoidable mistakes introduced during translation, and
maintaining consistency between hundreds or thousands of files on the long run
would not have been feasible.

It would not have been realistic either to ask tool developers to modify their
tools to directly parse REC-2017 specifications. We therefore undertook the
development of automated translators from REC-2017 to the 13 input languages.
Actually, we developed 17 translators in total, since we experimented two dif-
ferent translations for both CafeOBJ (noted “CafeOBJ-A” and “CafeOBJ-B”)7

and Tom (noted “Tom-A” and “Tom-B”)8, and we also built a translator that
produces files in the TRS input format of the AProVE termination checker9 [21].

To keep these translators as simple as possible, we made a few radical deci-
sions concerning their design and implementation.

The REC-2017 language has many static semantics constraints (listed in
Sect. 3), which need to be checked automatically, since term rewrite systems
are an error-prone formalism. Ideally, each benchmark should be checked at
the REC-2017 source-code level, before being translated to the various target
languages. Instead, we took the reverse approach: no checks are done before
translation, all checks being done after translation. Concretely, each benchmark
is translated first and the results of the translators are checked afterwards, thus
deferring the verification of static semantics constraints to the target compilers
and interpreters. In this approach, a REC-2017 benchmark is deemed to be cor-
rect if all its translations are accepted by the corresponding tools. The confluence
property is checked by the Opal compiler, which enforces a sufficient condition
of determinism, and the termination property is checked by the AProVE tool,
which often succeeds in proving quasi-decreasingness, but sometimes loops for-
ever on certain benchmarks.

We chose to perform translation at a mostly syntactic level, excluding all
sophisticated semantic optimizations that could advantage or disadvantage cer-
tain target tools. This way, all the tools receive semantically-equivalent input
files that only differ by syntax. In particular, we decided that the translators
should not try to exploit the predefined types (Booleans, integers, polymorphic

7 CafeOBJ-A uses equations (eq, ceq, and red clauses), whereas CafeOBJ-B uses
rewrite rules (trans, ctrans, and exec clauses).

8 Tom-A makes no difference between constructors and non-constructors, whereas
Tom-B defines non-constructors by pattern-matching (%match clause).

9 http://aprove.informatik.rwth-aachen.de.

http://aprove.informatik.rwth-aachen.de

Benchmarking Implementations of Term Rewriting and Pattern Matching 9

lists, etc.) and predefined functions (arithmetic operators, etc.) that may exist
in the target languages. Concretely, all the target tools receive the constructors
attached to each sort and the rewrite rules attached to each non-constructor,
such information being unchanged from the source REC-2017 benchmarks. This
was dictated by three reasons: (i) keeping translations simple; (ii) avoiding dif-
ficult choices between bounded-precision and arbitrary-precision integers; (iii)
focusing assessment on the implementation of algebraic terms and rewrite rules.

Rather than using sophisticated compiler-construction tools (such as Rascal,
Stratego/XT, or even LNT [16]) to build our translators, we adopted an agile,
lightweight approach based on scripting. Taking advantage of the simple syntax
of REC-2017 (based upon lines and code sections), we wrote our translators
using a combination of awk (3070 lines, excluding blank lines and comments)
and Bourne shell (1080 lines), with intensive use of Unix commands such as
cpp, grep, and sed, all interconnected by pipes in data-flow programming style.
Although this approach is not the most commendable nor the most optimal
(for instance, the translator to Clean requires four passes), it has the merits of
flexibility and conciseness (244 lines per translator on average).

Although all our translators are different, many of them share common traits,
which can be summarized by the following list of questions concerning the target
languages and the corresponding answers gathered in Table 4:

– Column (a): Are constructors and non-constructors handled differently (noted
“D”) or identically (noted “I”)?

– Column (b): Are constructors declared together with their result type (noted
“T”) or separately (noted “S”)?

– Column (c): Does the target language provide predefined equality/inequality
functions (noted “E”) or must these functions be defined explicitly (noted
“–”)?

– Column (d): Does the target language provide a predefined printing function
for algebraic terms (noted “P”) or must such a function be defined explicitly,
e.g., as a monad (noted “–”)?

– Column (e): Are rewrite rules encapsulated inside the non-constructor func-
tion they define (noted “F”) or can they occur separately (noted “S”)?

– Columns (f), (g), (h), and (i): Should type (resp. constructor, non-constructor,
free-variable) identifiers start with a lower-case letter (noted “L”), an upper-
case letter (noted “U”), or any of these (noted “–”)?

– Columns (j) and (k): Should a constructor (resp. non-constructor) f with
arity zero be invoked as “f ()” (noted “()”) or simply as “f” (noted “–”)?

– Columns (l) and (m): Should a constructor (resp. non-constructor) f with
arity n > 0 be invoked as “f (e1, ..., en)” (noted “A” for application) or
“f e1 ... en” (noted “J” for juxtaposition)?

Our translators do not build abstract syntax trees when parsing REC-2017
specifications. Instead, they exploit the line-based structure of REC-2017, so
that most of the translation is done using substitutions specified by regular
expressions. Although some parts of REC-2017 are not regular (namely, the

10 H. Garavel et al.

Table 4. Overview of the idiosyncrasies of all target languages

Language (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

CafeOBJ-(A,B) Da S E P S – – – – – – A A

Clean D T –b – S U U L L – – J J

Haskell D T E P S U U L L – – J J

LNT D T E P F – – – – –c –c A A

LOTOS Dd S – P S – – – – – – A A

Maude Ie S E P S – – – – – – A A

mCRL2 D T E P S – – – – – – A A

OCaml D T E – F L U L L – – J A

Opal D T E – S L U L L – – A A

Rascal D T E P S U U L L () () A A

Scala D T E P F U U L L () () A A

SML D T E – F L U L L – () A A

Stratego I S – P S – – – – () () A A

Tom-A I Tf E P S – – – – () () A A

Tom-B D T E P F – – – – () () A A
aCafeOBJ has annotations “{constr}” for constructors.
bIn Clean, the library module GenEq provides generic comparison functions ===

and =!=, but we decided not to use them, as we were informed that they could
be less efficient than user-defined comparison functions.
cIn LNT, empty parentheses are optional after constructors and non-
constructors with arity zero.
dStandard LOTOS does not have the notion of constructor, but the
CÆSAR.ADT compiler introduces a distinction between constructors and non-
constructors by means of comments “(*! constructor *)”.
eMaude has annotations “[ctor]” that play no role when interpreting rewrite
rules, but are understood and used by complementary tools (such as the Maude
sufficient completeness checker).
f In abstract-syntax definitions for Tom-A, no distinction is made between con-
structors and non-constructors; they are all declared together with their result
type.

sub-languages described by the 〈pattern 〉 and 〈term 〉 non-terminals, which are
obviously context-free), regular expressions are sufficient to translate these parts,
as the target languages are syntactically close to REC-2017.

The trickiest point is probably the translation of REC-2017 expressions (resp.
patterns) written in application form, i.e., “f (e1, ..., en)”, into equivalent expres-
sions (resp. patterns) written in juxtaposition form, i.e., “f e1 ... en”. In most
cases, this translation can be done using the Unix command sed, by applying
two successive substitutions based on regular expressions: first, all commas are
removed using the substitution [,→ ε]; then, each function symbol f followed
by an opening parenthesis is moved after this parenthesis, using the substitution

Benchmarking Implementations of Term Rewriting and Pattern Matching 11

[f(→ (f]. For instance, the term “f (a, g (b, c), h (d))” is first translated
to “f (a g (b c) h (d))” and then to “(f a (g b c) (h d))”.

The only exception is OCaml, which has different syntaxes for calling con-
structors and non-constructors, as shown in Table 5. To address this problem,
we equipped our translator to OCaml with a small C program that distin-
guishes between constructors and non-constructors, and counts the nesting level
of parentheses to decide whether commas between arguments must be preserved
or removed. More generally, our most involved translators are those for ML-based
languages (namely, OCaml and SML) because these languages have many partic-
ular syntactic cases (e.g., for constructors and non-constructors with arity zero
or one), as well as static-semantics rules that forbid forward declarations (e.g.,
a constant function has to be declared before it is used) to promote readability.

Table 5. Regularity and irregularity in OCaml syntax

5 Selected Benchmarks

To assess the tools listed in Sect. 2, a collection of conditional term rewrite sys-
tems is necessary. Despite the abundant literature on term rewriting, very few
benchmarks are available on the Web. We therefore considered with great care
the benchmarks developed during the 2006, 2008, and 2010 Rewrite Engines
Competitions [8,11,12]. We completed these benchmarks with alternative ver-
sions kindly sent to us by F. Durán and P.-E. Moreau. We also added the bench-
marks used in [44].10

Because these benchmarks have not been written by us, our initial intent was
to keep them unchanged as much as possible when translating them into the
REC-2017 language, so as to avoid introducing bias in subsequent experiments.
However, we progressively realized that most benchmarks could not be reused
directly, and that a number of changes were required to make them usable:

– Many benchmarks existed in several variants: we removed duplicated bench-
marks, trying to follow differences between original and derived versions, to
retain only the best variant.

10 All these benchmarks are available from http://gforge.inria.fr/scm/viewvc.php/rec/
2006-REC1, http://gforge.inria.fr/scm/viewvc.php/rec/2008-REC2, http://gforge.
inria.fr/scm/viewvc.php/rec/2010-REC3, and http://gforge.inria.fr/scm/viewvc.
php/rec/2007-Weerdenburg.

http://gforge.inria.fr/scm/viewvc.php/rec/2006-REC1
http://gforge.inria.fr/scm/viewvc.php/rec/2006-REC1
http://gforge.inria.fr/scm/viewvc.php/rec/2008-REC2
http://gforge.inria.fr/scm/viewvc.php/rec/2010-REC3
http://gforge.inria.fr/scm/viewvc.php/rec/2010-REC3
http://gforge.inria.fr/scm/viewvc.php/rec/2007-Weerdenburg
http://gforge.inria.fr/scm/viewvc.php/rec/2007-Weerdenburg

12 H. Garavel et al.

– A few benchmarks were incorrect. For instance, the Fibonacci suite was
improperly defined for n = 1. In some other benchmarks, a few operations
had been lost during manual translations between different input languages.
Specific actions were taken to repair such benchmarks.

– In many benchmarks, deep changes were made to enforce the separation
(introduced in the REC-2017 language) between constructors and non-
constructors. Constructors were identified and all equations between con-
structors were removed by splitting each problematic operation into a free
constructor and a non-constructor [43]. Similar changes were done to also
eliminate the implicit equations between constructors added by the three
REC-2008 attributes assoc (associativity), comm (commutativity), and id
(neutral element).

– A few benchmarks designed to perform rewriting on open terms (i.e., terms
containing free variables) have been modified to rewrite only closed terms in
their EVAL section.

– Some benchmarks had been specifically written for tools that assume dif-
ferent priority levels among rewrite rules (e.g., certain “default” rules are
only applied if all other rules have failed). Such benchmarks were modi-
fied by adding extra conditions to these “default” rules, so as to avoid non-
termination issues with tools not implementing priorities.

– Similarly, some benchmarks had been written for tools that apply partic-
ular rewrite strategies such as lazy evaluation, just-in-time rewriting, etc.
Other benchmarks relied on the REC-2008 attribute strat that specifies
in which order the arguments of an operation must be evaluated. A typ-
ical example was the ifthenelse(c, x, y) operation defined by two rules:
ifthenelse(true, x, y) → x and ifthenelse(false, x, y) → y, which often
caused performance or non-termination issues with rewriting engines based on
functional application, as x and y are both evaluated whatever the value of c.
Such benchmarks were modified, e.g., by replacing ifthenelse operations
with conditional rules.

– Confluence was checked by translation to Opal, which requires deter-
ministic rules. A few benchmarks were purposely non confluent, since
they intended to compute all solutions to a problem. Two of them
(confluence and soundness-of-parallel-engines) even used an undoc-
umented “get all normal forms of” query. Because the REC-2017 lan-
guage requires rewrite rules to be deterministic, thus confluent, such bench-
marks had to be severely restricted; in some cases, their original intent was
entirely lost, but this is a price to pay for having benchmarks that can be
processed by a majority of tools.

– Termination was checked, whenever possible, by translation to AProVE,
which produced proofs of quasi-decreasingness for many benchmarks.

– Certain benchmarks are intrinsically parametric: for instance, computing
the factorial n! depends on the value of n; solving the Hanoi tower prob-
lem depends on the number of disks; etc. Existing benchmarks would often
test several parameter values in the same REC file, with the drawback that
one could not distinguish between tools that quickly fail on small parameter

Benchmarking Implementations of Term Rewriting and Pattern Matching 13

values and tools that succeed on small values, but later fail on larger ones. To
better measure the scalability of tools, we split each of these benchmarks into
several new instances, each instance testing a single parameter value. Code
duplication between various instances of the same benchmark was avoided by
means of the #include directive introduced in the REC-2017 language.

– When introducing parameterized instances, we eliminated a few parameter
values that were so large that no tool could feasibly handle them.

– Conversely, some parameter values were too small, and we tried to increase
them, still making sure that one tool at least could handle them.

– Similarly, certain benchmarks (such as langton*) did non-trivial calculations,
but were still too easy for most tools. We made these benchmarks more com-
plex by iterating their calculations over a domain of values.

In addition to this work on existing benchmarks, we introduced new benchmarks
that had never been used for the Rewrite Engines Competitions:

– We added two instances tak18 and tak38 of the Takeuchi function, which
was one of the Kranz-Stansifer benchmarks [42] not already included in the
set of REC benchmarks.

– We added a new benchmark intnat that defines signed integers and their
related operations according to the axiomatization F2

2 proposed in [15]. This
benchmark contains 1900+ tests to check that multiply, divide, and modulo
operations are correctly defined.

– We added eight new benchmarks (add*, mul*, and omul*) that define binary
adders and multipliers operating on 8-bit, 16-bit, and 32-bit machine words.
Each of these benchmarks contains 4000+ tests to make sure that results are
correctly computed.

– We added a large benchmark maa, which features a cryptographic algorithm
formerly used to authenticate financial transactions [19]; this algorithm is
described as a large term rewrite system (13 sorts, 18 constructors, 644 non-
constructors, and 684 rewrite rules). The corresponding REC-2017 specifica-
tion is 1575-line long; in comparison, the largest benchmarks inherited from
the three former Rewrite Engines Competitions have less than 300 lines.

Doing so, we obtained a collection11 of 85 benchmarks totalling more than 40,000
lines of code written in the REC-2017 language. We organized this collection into
two parts: 15 “simple” benchmarks, which (almost) all the tools listed in Sect. 2
can handle successfully, and 70 “non-trivial” benchmarks, some of which are
likely to be significantly more challenging for the tools.

6 Language Conciseness

As a by-product of our study, we can compute, for each language L, a verbosity
estimation metric. This metric is not based on the number of code lines, a

11 http://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS.

http://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS

14 H. Garavel et al.

traditional measure that is much too subjective, as it depends on how often the
translator targeting language L inserts line breaks.

Instead, our metric is defined as follows: we concatenate the source files of all
the 85 benchmarks encoded in language L, and count the number of lexical tokens
(i.e., keywords, identifiers, punctuations, mathematical symbols, etc.) present in
these files. Compound symbols, such as “->”, “==”, or “()”, count only for one.

This metric based on the number of tokens is quite objective, as it quantifies
how many symbols a human should insert to get a working program. Moreover,
counting tokens avoids the subjective debate of keywords, e.g., “begin” and
“end” versus “{” and “}”. Such quantitative feedback can be useful to language
developers: if a language L′ requires twice as many tokens as another language
L to encode the same problem, then language L′ is likely to be more difficult to
learn and use by humans.

Table 6 summarizes our measurements. One can thus classify the languages
in four categories: the “concise” ones (Clean and Haskell), the “normal” ones
(CafeOBJ, LNT, LOTOS, Maude, mCRL2, Opal, and SML), a “slightly verbose”
one (OCaml), and the “verbose” ones (Rascal, Scala, Stratego, and Tom).

Such results deserve a few comments: (i) The well-known conciseness of Clean
and Haskell is confirmed; (ii) OCaml and SML suffer from the lack of prede-
fined printers for values of constructor types, so that a printing function must
be explicitly defined for each type; (iii) Opal lacks predefined printers too, but
also lacks predefined structural equality to compare values of constructor types;
(iv) Rascal, Scala, Stratego/XT, and Tom have large numbers of tokens partly
because every call to a operation with arity zero must, according to Java con-
ventions, be followed by a “()” token; notice that such large numbers probably

Table 6. Verbosity estimation of all languages, measured on the 85 REC benchmarks

language # tokens

CafeOBJa 9,294,297
Clean 6,037,299
Haskell 5,754,474
LNT 9,395,563

LOTOS 9,334,063
Maude 9,313,456
mCRL2 9,354,987
OCaml 10,565,289
Opal 9,701,085
Rascal 12,845,312

REC-2017 9,173,664
Scala 12,825,710
SML 9,517,116

Stratego 13,020,691
Tom-A 13,065,023
Tom-B 13,106,915

aCafeOBJ-A and CafeOBJ-B have the same number of tokens

Benchmarking Implementations of Term Rewriting and Pattern Matching 15

arise from constructors with arity zero, since SML, which requires “()” only
after non-constructors with arity zero, has a much lower number of tokens.

7 Execution Platform

To assess the tools listed in Sect. 2 in a reproducible manner, we installed them on
two separate machines, each working with a single user, local file systems only (no
NAS, NFS, Samba, etc.), and in stand-alone mode (no remote administration by
computer staff, no automatic download of patches, etc.). Such constraints forced
us to reuse retired servers.

As for the processors, we selected the widespread x86 (32-bit) and x64 (64-bit)
architectures. We used a Sun Ultra 20 M2 server (2007) powered by one AMD
Opteron 1210 (x86, dual core, 1.8 GHz) with 2 GB RAM, and a Transtec 2500 L
server (2004) powered by two AMD Opteron 246 (x64, single core, 2.0 GHz)
with 16 GB RAM.

As for the operating system, we selected Linux because it is commonplace
in software competitions and because several of the tools listed on Sect. 2 are
not available on Windows. We chose the stable Debian release (Debian Linux 8
“Jessie”). For the Java-based tools (Rascal, Scala, and Tom) we installed Open-
JDK (version 1.8.0-91).

Because some REC-2017 benchmarks manipulate large algebraic terms and
certain tools make heavy use of recursion, the maximal stack size had to be
increased; we set it to 32 MB on x86 and 512 MB on x64. For the Java-based
tools, we set the JVM stack size to the same value and increased the overall
JVM memory size to the maximum.

Because some tools seem to run forever or, at least, take much longer than
others (we sometimes observed differences in two orders of magnitude), we used
the Linux timeout command to allocate each tool a maximum amount of time.
We set the timeout value to 360 s (i.e., six minutes) at most per benchmark
— the choice of this value is justified hereafter. For the few tools that protect
themselves against interrupts by catching signals, the uncatchable POSIX signal
sigkill is used to force termination.

To collect execution statistics, we use the memtime utility originally developed
by the Uppaal team in 2002 and later enhanced at INRIA Grenoble12. Among
the six values returned by memtime after each execution, we only retain the exit
status (zero if ok, non-zero otherwise) and wall-clock time. The four remaining
values (CPU time, memory usage, etc.) are not relevant in our context. For
instance, memory usage is not meaningful, as it only concerns the main process:
if a tool is provided as a shell script that launches child processes in sequence or
in parallel, then memtime will only report the memory consumption of that shell
script itself, ignoring all its child processes.

Thus, tools are launched as follows: “memtime timeout 360 tool options. . . ”
and their execution can terminate in four different ways: success (normal comple-
tion, exit code is zero), failure (failed execution, exit code is non-zero, meaning
12 http://cadp.inria.fr/resources/#memtime (version 1.4).

http://cadp.inria.fr/resources/#memtime

16 H. Garavel et al.

that the tool properly halted, declaring it cannot tackle the problem), crash
(abnormal interrupt by a signal, usually sigsev or sigbus, meaning that the
tool terminated abruptly, often due to a programming error, such as derefer-
encing a null pointer, or to a stack overflow not handled properly), or timeout
(interrupt when the wall-clock time exceeds the specified duration).

Because tools can fail, crash, or time out on different benchmarks, determin-
ing a performance ranking between tools is a non-trivial problem, since dilemmas
arise from conflicting criteria. For instance, how to compare a tool that computes
for a long time until it is halted by timeout with another tool that quickly stops
and declares that it cannot solve the problem? Both tools have failed, and the
former has even taken more time than the latter! Such issues have been studied,
e.g., in [23] in the particular case of planning algorithms for robotics and artificial
intelligence. “Any comparison, competitions especially, has the unenviable task of
determining how to trade-off or combine the three metrics (number solved, time,
and number of steps).” Based on this remark, we adopted two complementary
metrics:

– Our first metric is the score, which counts how many benchmarks have been
successfully tackled by a given tool within the specified timeout duration.
This is the standard solution advocated in [23]: “Because no planner has been
shown to solve all possible problems, the basic metric for performance is the
number or percentage of problems actually solved within the allowed time.
This metric is commonly reported in the competitions.”

– Our second metric is the user time, defined as the total wall-clock time spent
by a given tool on a given benchmark, from the moment a tool is invoked
until the tool terminates or is halted. The user time is always less or equal
to the specified timeout duration. It is a somewhat heterogeneous metric
that covers all steps used in problem solving, and not only the time spent in
“pure” rewriting. For an interpreter, the user time measures the time spent
in processing the benchmark. For a compiler, the user time is the sum of
the time spent in compiling the benchmark source file to binary code and
the time spent in executing this binary code. The user time also includes the
time needed to parse input files, the time taken by the C compiler for tools
that generate C code, the time taken by the Lisp interpreter for tools that
generate Lisp code, the time taken to launch, warm up, and halt the JVM
for tools generating Java code, etc.

To determine a performance ranking between tools, we combine these two
metrics (score, user time) using a lexicographic order, considering score first,
and then user time only to distinguish between tools having the same score.

We developed a highly automated execution platform, with two families of
shell scripts: the run* scripts to launch tools on benchmarks and collect execution
results, and the tab* scripts to analyze these data and build spreadsheet files
containing global statistics in CSV format.

Benchmarking Implementations of Term Rewriting and Pattern Matching 17

8 Experimental Results

Table 7 summarizes the results obtained when running all the tools on the
70 “non-trivial” REC-2017 benchmarks, with a timeout set to 360 s. In each
table cell of the form “X / Y ”, both values X and Y are sums computed over
all the 70 benchmarks; X refers to the x86 platform (2 GB RAM)13 and Y to
the x64 platform (16 GB RAM)14. The last two columns of Table 7 give our two
chosen metrics: score and user time.

Many useful findings can be drawn from Table 7. First, the score values should
not be understood as absolute numbers; especially, the 50% score value should
not be seen as a threshold separating “good” tools from “bad” ones. Indeed, if

Table 7. Execution results for the 70 REC benchmarks on 32-bit/64-bit platforms

Tool Successes Failures Crashes Timeouts Score Time (seconds)

CafeOBJ-A 31/31 8/4 0/4 31/31 44.3%/44.3% 12490/13946

CafeOBJ-B 38/38 15/8 0/3 17/21 54.3%/54.3% 8561/10170

Clean 30/40 30/22 8/1 2/7 42.9%/57.1% 805/2632

Clean hack 54/54 10/10 0/0 6/6 77.1%/77.1% 2623/2697

Haskell 70/68 0/0 0/0 0/2 100%/97.1% 1867/2091

LNT 62/63 8/7 0/0 0/0 88.6%/90.0% 1135/3028

LOTOS 62/63 8/7 0/0 0/0 88.6%/90.0% 990/2884

Maude 64/67 2/0 1/0 3/3 91.4%/95.7% 2095/2122

mCRL2 jitty 44/46 0/0 6/2 20/22 62.9%/65.7% 9586/9914

mCRL2 jittyc 48/52 0/0 4/0 18/18 68.6%/74.3% 8148/8101

OCaml compiler 64/64 0/0 0/0 6/6 91.4%/91.4% 2772/2718

OCaml interpreter 60/61 2/2 0/0 8/7 85.7%/87.1% 3937/3855

Opal 57/59 1/0 2/1 10/10 81.4%/84.3% 4759/4817

Rascal compiler 34/37 4/2 0/0 32/31 48.6%/52.9% 14486/14286

Rascal interpreter 37/40 2/0 0/0 31/30 52.9%/57.1% 12274/12322

Scala 49/49 10/7 0/0 11/14 70.0%/70.0% 6092/7147

SML: MLton 58/58 5/5 0/0 7/7 82.9%/82.9% 4622/4997

SML: SML/NJ 52/52 5/5 0/0 13/13 74.3%/74.3% 5672/5628

Stratego 48/49 3/0 0/0 19/21 68.6%/70.0% 8260/9062

Tom-A 51/52 3/1 0/0 16/17 72.9%/74.3% 7578/8064

Tom-B 60/60 3/1 0/0 7/9 85.7%/85.7% 5438/5887

13 The detailed 32-bit results are available from https://gforge.inria.fr/scm/viewvc.
php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
and https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-
v2/2018-04-07-rec360-32.csv?view=log.

14 The detailed 64-bit results are available from https://gforge.inria.fr/scm/viewvc.
php/rec/2015-CONVECS/results-rec/2018-04-05-overview-360-64.csv?view=log
and https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-
v2/2018-04-05-rec360-64.csv?view=log.

https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-07-overview-360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-07-rec360-32.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-05-overview-360-64.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/2018-04-05-overview-360-64.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-05-rec360-64.csv?view=log
https://gforge.inria.fr/scm/viewvc.php/rec/2015-CONVECS/results-rec/raw-v2/2018-04-05-rec360-64.csv?view=log

18 H. Garavel et al.

the 15 “simple” benchmarks mentioned in Sect. 5 were also taken into account in
Table 7, then all scores would be above 52%, as each tool can tackle each simple
benchmark in two minutes at most.

Also, it appears that most of the 70 benchmarks are “difficult”. Precisely, only
21% (on 32 bits) and 27% (on 64 bits) of these benchmarks can be successfully
tackled by all the tools within six minutes, meaning that all the other benchmarks
make at least one tool fail, crash, or time out.

It is expected from a software competition to rank tools according to their
performance and merits. As discussed above, we rank the tools according to
a lexicographic ordering that first compares the scores and, if the scores are
identical, compares the total time spent. For conciseness, we only discuss the
tools present on the Top-5 podium, i.e., those 5 (or 7) tools (out of 21) that
can solve at least 85% of the 70 REC benchmarks, using at most 360 s per
benchmark:

1. Haskell ranks first and, in particular, performs clearly better than any other
functional language. This result seems in contradiction with prior studies, e.g.,
[25], which concluded that Clean was faster than Haskell, and the Computer
Language Benchmarks Game15, which reports that OCaml is often faster
than Haskell. This could be explained by improvements brought to the GHC
compiler over the last ten years (i.e., since the publication of [25]) and by
the fact that our study strictly focuses on constructor types and pattern
matching, whereas many examples of the Computer Language Benchmarks
Game deal with numbers or arrays and rely on programmer’s skills, which
may strongly affect performance results for a particular tool.

2. Maude ranks second, very close to Haskell on the 64-bit platform. This
good score is remarkable for at least three reasons: (i) Maude works as an
interpreter, not a compiler; (ii) its interpreter does not seem to exploit the
“[ctor]” annotation used to distinguish constructors from non-constructors;
(iii) although Maude has many sophisticated features (subsorts, associativ-
ity/commutativity/identity properties, reflection, strategies, modules, object-
orientation, etc.), it does not neglect to do basic things (i.e., plain rewriting)
efficiently.

3. OCaml ranks third. More precisely, the compiled version of OCaml (based
on the native-code generator “ocamlopt.opt”) takes the 3rd position, while
the interpreted version (based on the bytecode generator “ocamlc.opt” and
the bytecode interpreter “ocamlrun”) takes the 6th position.

4. CADP ranks fourth. More precisely, its LOTOS compiler CÆSAR.ADT
takes the 4th position and its LNT translator LNT2LOTOS takes the 5th
position, reflecting the fact that LNT is first translated to LOTOS before
being compiled using CÆSAR.ADT. The implementations of these languages
are fast, but sometimes fail due to memory exhaustion, which might be solved
by enabling the garbage collector and/or the hash-consing optimization, none
of which is activated by default. Also, the present study contradicts the results
of [44] claiming that mCRL2 performs better than LOTOS — notice that

15 http://benchmarksgame.alioth.debian.org/u64q/ocaml.html.

http://benchmarksgame.alioth.debian.org/u64q/ocaml.html

Benchmarking Implementations of Term Rewriting and Pattern Matching 19

another study on the benchmarking of model checking tools [32] further dis-
confirms the claims of [44].

5. Tom ranks fifth, as the Tom-B translation variant takes the 7th position,
with a score of 85.7%.

Interestingly, the Top 5 podium is the same on 32-bit and 64-bit platforms,
although the numerical score of each tool might slightly differ on both platforms.

One may also question the influence of timeouts — see the related discussion
(Are Time Cut-offs Unfair?) in [23, pp. 18 and 28]. Our timeout value was set
to 360 s, so that the full cycle of experiments on all benchmarks takes roughly
24 h, thus allowing daily progress on the study. Retrospectively, this value is
appropriate, as it does not prevent the best tool (i.e., Haskell) from reaching
a score of 100%, meaning that each of our benchmarks can feasibly be solved
within 360 s.

Short timeout values give a significant advantage to tools that compute fast;
larger timeout values might deeply modify the scores displayed in the Table 7 if
the failure numbers of the “timeouts” column are transferred to the “successes”
column. To investigate this possibility, we increased our timeout value to 1800 s
(i.e., at most 30 min per benchmark) and redid our experiments, which took
many days this time. Such a larger timeout value especially benefits Rascal,
CafeOBJ, Scala, and Stratego/XT, whose scores increase by (up to) +18.6%,
+11.6%, +7.1%, and +5.7% respectively. However, the Top 5 podium remains
unchanged. It is worth noticing that on the 64-bit platform, Maude now reaches
a 100% score, like Haskell, but still remains in second position, as it appears to
be 30% slower than Haskell on average.

9 Threats to Validity

Our results might be affected by various limitations, which we discuss hereafter:

– Missing languages/tools. Even though our study takes into account a much
larger number of languages and tools than the former Rewrite Engines Com-
petitions, we might have, due to lack of time and knowledge, omitted some
prominent languages and tools. This does not affect the validity of our results,
but calls for new, broader studies in the future.

– Missing benchmarks. We took great care to have a collection of benchmarks
as large and as diverse as possible, both by reusing classical benchmarks
from prior competitions and by developing new original benchmarks. Similar
collections of term rewrite systems perhaps exist, although we did not find
them by searching the Web nor by asking senior researchers in the field. As
they are, the results of our study provide nevertheless valuable information
that tool developers can exploit without the need for additional benchmarks.

– Platform specifics. The execution platform used for this study perhaps lacks
diversity: the 32-bit and 64-bit machines both use old AMD Opteron proces-
sors and the same operating system. Conducting experiments with other pro-
cessors and operating systems would be worthwhile; yet, x86/x64 and Linux

20 H. Garavel et al.

are massively present in software competitions and research labs. Also, the
Java-based tools have only been assessed using OpenJDK; their performance
might be slightly improved using Oracle JDK, the proprietary implementation
of Java.

– Undetected errors. Our execution platform does not check whether tool results
(i.e., the ground terms obtained after evaluating the terms listed in each
EVAL section) are correct, because each tool displays these results in a custom
format. We checked most results visually, but not automatically.

– Imprecise measurements. In our study, each tool is considered as a “black
box”, from the point of view of an ordinary user more interested in tool per-
formance than in internal algorithmics. Obtaining finer information, such as
the time specifically spent in “pure” rewriting, and properly estimating the
resources consumed by third-party software (C compiler, Lisp interpreter,
Java runtime, etc.) would require the active participation of all tool develop-
ers to make such data available.
Also, enforcing limitations on resource usage and accurately measuring the
time and memory consumed by software tools is a difficult task [2]. In
this respect, the memtime and timeout commands only deliver approximate
results; in particular, wall-clock time does not distinguish between sequential
and multithreaded executions (although our outdated machines partly avoid
this issue, as both can run at most two processes or two threads in parallel).
More precise measurements of memory footprint and multi-core usage could
be obtained using the BenchKit [27] or BenchExec [2] platforms intended for
software competitions.

– Misbehaving tools. In our experiments, all tools are run in sequence on all
benchmarks. There is always a possibility that a tool misbehaves and per-
turbs, either inadvertently or on purpose, the subsequent runs of other tools
on the benchmarks, e.g., by leaving huge files that decrease available disk size
or swap space, by forking processes that survive after the tool’s termination
and steal computing resources, or even by modifying the user’s crontab file
to launch periodic tasks. In our study, such issues are quite unlikely because
experiments were conducted with already existing tools, but software com-
petitions in general should address security issues and properly isolate tools
using, e.g., virtual machines, as in BenchKit [27], or the cgroups feature of
the Linux kernel, as in BenchExec [2].

– Translation biases. We observed that the main factor influencing the score
of certain tools was (together with the amount of memory allocated to
Java virtual machines) the quality of the translation from REC-2017 to the
input languages of these tools. Depending on the translation, results can
indeed greatly vary, as can be seen with Tom-A and Tom-B. We believe that
our REC translators behave fairly: (i) they do not implement ad hoc opti-
mizations to favour certain tools; (ii) they have not been designed to work
against particular tools either: when performance issues were observed, trans-
lation outputs were sent to tool developers, whose feedback often helped to
improve the translators; (iii) the generated files are available online for cross
inspection by all stakeholders. In this respect, our fully-automated approach

Benchmarking Implementations of Term Rewriting and Pattern Matching 21

significantly improves over the former Rewrite Engines Competitions, in
which some translations were done manually, thus allowing custom optimiza-
tions to be introduced for specific tools.
Actually, we made two minor exceptions to this neutrality principle: (i)
because the Opal compiler does not tolerate very long lines, our transla-
tor to Opal inserts a newline every twenty commas; this solved problems for
three benchmarks; (ii) because the Java Virtual Machine has a limitation that
methods cannot be larger than 64 kbytes, our translators to Rascal, Scala,
and Tom (all based on Java) split each large main method into several smaller
methods containing no more than 90 or 100 instructions each.

– Misinterpretation of results. Our study would not have been possible without
the impressive work done by language designers and tool developers. Keeping
this in mind, the results of Sect. 8 should not be construed as an absolute
ranking of languages and tools, for at least two reasons: (i) our study focuses
on certain specific language features, and (ii) our two metrics, score and user
time, encompass diverse algorithmic activities, many of which are performed
by third-party software (C compiler, Lisp interpreter, Java runtime, etc.).

10 Conclusion

The present study builds upon the Rewrite Engines Competitions (2006, 2008,
and 2010), but significantly extends them by bringing more languages/tools,
more benchmarks, and full automation. These three former competitions led
to somewhat inconclusive results, namely that tools were difficult to compare
because they had different application domains, different strengths, and dif-
ferent weaknesses. Our study avoids this drawback by focusing on the most
widely used fragment of term rewriting, keeping only those language features
understood by all the tools (i.e., types defined by free constructors, conditional
term rewrite systems that are deterministic and terminating, and evaluation of
closed terms), excluding advanced features (e.g., predefined types, array types,
higher-order functions, rewriting modulo associativity/commutativity/identity,
context-sensitive rewriting, strategies, etc.) that are not implemented or not
identically implemented across all the tools. Within these restrictions, our study
highlights a large body of common traits shared by algebraic, functional, and
object-oriented languages.

There have been recent efforts to define, for a large class of conditional term
rewrite systems, a notion of complexity that approximates the maximal num-
ber of rewrite steps performed when reducing a term to its normal form [26].
Our compared evaluation of actual implementations can be seen as a practical
complement to these theoretical results, possibly with a triple impact:

– Our experimental results refute the common beliefs that “speed performance
is not an issue” and that “all tools are more or less linear in performance”.
The global success score measured on all 70 benchmarks varies between 50%
and 100% across tools. The time required to process a large benchmark such
as the MAA [19] varies by more than two orders of magnitude between the

22 H. Garavel et al.

fastest tool and the slowest tool. Clearly, not all implementations are alike:
performance and scalability definitely matter. In some cases (see Sect. 8), our
results contradict conclusions from earlier studies or, at least, bring comple-
mentary information.

– Numerous scientific articles have been published about term rewriting engines
and pattern-matching compiling algorithms, but it is unclear which ones are
the most efficient in practice. Our software platform provides a basis for
undertaking such a study. Should a systematic comparison be too demanding,
it might be sufficient to learn from the tools (e.g., Haskell or Maude) that
score high on the REC-2017 benchmarks.

– Our results may provide an incentive for tool developers to reconsider, and
possibly improve, the way in which constructor types, term rewriting, and/or
pattern-matching are implemented in their tools. Radical decisions could
even be taken, for instance, generating code in a higher-level language (e.g.,
Haskell) than C or Java, in order to defer the implementation of constructor
types and pattern matching to a compiler shown to handle them efficiently.

Besides our evaluation results, our main contribution is a software platform16

for benchmarking implementations of term rewriting and pattern matching. This
platform has five components: (i) the REC-2017 language, which is a revised
version of REC-2008 [12, Sect. 3] [11, Sect. 3.1]; (ii) a set of translators that
automatically convert REC-2017 into 17 different languages; (iii) a collection of
85 benchmarks, consisting of (deterministic, free-constructor, left-linear, many-
sorted, and terminating) conditional term rewrite systems expressed in the REC-
2017 language, including closed terms to be evaluated; (iv) the output files gen-
erated by applying the translators to these benchmarks, thus providing test cases
of possible interest to tool developers; and (v) a set of scripts for automatically
running all the tools on all the benchmarks, recording execution results, and
computing statistics.

This software platform already served in two recent case studies: a specifica-
tion of the MAA cryptographic function [19] and an elegant definition of signed
integers using term rewrite systems [15]. It could also be the starting point for
re-launching the Rewrite Engines Competitions, which would progress the state
of the art and address some of the limitations mentioned in Sect. 9.

Acknowledgements. We are grateful to Marc Brockschmidt (Cambridge/AProVE),
Francisco Durán (Malaga/Maude), Steven Eker (Stanford/Maude), Florian Frohn
(Aachen/AProVE), Carsten Fuhs (London/AProVE), John van Groningen (Nijmegen/
Clean), Jan Friso Groote (Eindhoven/mCRL2), Paul Klint (Amsterdam/Rascal),
Pieter Koopman (Nijmegen/Clean), Davy Langman (Amsterdam/Rascal), Xavier
Leroy (Paris/OCaml), Florian Lorenzen (Berlin/Opal), Pierre-Etienne Moreau
(Nancy/Tom), Jeff Smits (Delft/Stratego), Jurriën Stutterheim (Nijmegen/Clean), and

16 It is available on the SVN server of INRIA and can be obtained using the com-
mand “svn checkout svn://scm.gforge.inria.fr/svnroot/rec/2015-CONVECS”,
or “svn checkout svn://scm.gforge.inria.fr/svnroot/rec” to obtain also all
the benchmarks used in the three former REC competitions.

Benchmarking Implementations of Term Rewriting and Pattern Matching 23

Eelco Visser (Delft/Stratego) for their patient explanations and help concerning their
respective tools. The present paper also benefited from discussions with Bertrand Jean-
net (Grenoble), Fabrice Kordon (Paris), and Jose Meseguer (Urbana-Champaign).

References

1. Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., Reilles, A.: Tom: piggybacking
rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-9 5

2. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement – Appli-
cation to automatic verification. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015.
LNCS, vol. 9232, pp. 160–178. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23404-5 12

3. van den Bos, J., Hills, M., Klint, P., van der Storm, T., Vinju, J.J.: Rascal: from
algebraic specification to meta-programming. In: Durán, F., Rusu, V. (eds.) Pro-
ceedings of the 2nd International Workshop on Algebraic Methods in Model-based
Software Engineering (AMMSE 2011), Zurich, Switzerland. Electronic Proceedings
in Theoretical Computer Science, vol. 56, pp. 15–32, June 2011

4. van den Brand, M., Klint, P., Olivier, P.: Compilation and memory management
for ASF+SDF. In: Jähnichen, S. (ed.) CC 1999. LNCS, vol. 1575, pp. 198–213.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-49051-7 14

5. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17 - a
language and toolset for program transformation. Sci. Comput. Program. 72(1–2),
52–70 (2008)

6. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,
Lang, F., Serwe, W., Smeding, G.: Reference Manual of the LNT to LOTOS Trans-
lator (Version 6.6), INRIA, Grenoble, France, February 2017

7. Clavel, M., et al.: Maude Manual (Version 2.7.1), July 2016
8. Denker, G., Talcott, C.L., Rosu, G., van den Brand, M., Eker, S., Serbanuta, T.:

Rewriting logic systems. Electronic Notes Theor. Comput. Sci. 176(4), 233–247
(2007)

9. Diaconescu, R., Futatsugi, K.: CafeOBJ Report - The Language, Proof Techniques,
and Methodologies for Object-Oriented Algebraic Specification. AMAST Series in
Computing, vol. 6. World Scientific (1998)

10. Didrich, K., Fett, A., Gerke, C., Grieskamp, W., Pepper, P.: OPAL: Design and
implementation of an algebraic programming language. In: Gutknecht, J. (ed.)
Programming Languages and System Architectures. LNCS, vol. 782, pp. 228–244.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57840-4 34

11. Durán, F., et al.: The third rewrite engines competition. In: Ölveczky, P.C. (ed.)
WRLA 2010. LNCS, vol. 6381, pp. 243–261. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-16310-4 16

12. Durán, F., et al.: The second rewrite engines competition. Electron. Notes Theor.
Comput. Sci. 238(3), 281–291 (2009)

13. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1 - Equations and
Initial Semantics, EATCS Monographs on Theoretical Computer Science, vol. 6.
Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-69962-7

14. Garavel, H.: Compilation of LOTOS Abstract Data Types. In: Vuong, S.T. (ed.)
Proceedings of the 2nd International Conference on Formal Description Techniques
FORTE 1989, Vancouver B.C., Canada, pp. 147–162. North-Holland, December
1989

https://doi.org/10.1007/978-3-540-73449-9_5
https://doi.org/10.1007/978-3-319-23404-5_12
https://doi.org/10.1007/978-3-319-23404-5_12
https://doi.org/10.1007/978-3-540-49051-7_14
https://doi.org/10.1007/3-540-57840-4_34
https://doi.org/10.1007/978-3-642-16310-4_16
https://doi.org/10.1007/978-3-642-16310-4_16
https://doi.org/10.1007/978-3-642-69962-7

24 H. Garavel et al.

15. Garavel, H.: On the most suitable axiomatization of signed integers. In: James,
P., Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp. 120–134. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-72044-9 9

16. Garavel, H., Lang, F., Mateescu, R.: Compiler construction using LOTOS NT. In:
Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 9–13. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45937-5 3

17. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transfer (STTT) 15(2), 89–107 (2013)

18. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.-P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500,
pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 1

19. Garavel, H., Marsso, L.: A large term rewrite system modelling a pioneering cryp-
tographic algorithm. In: Hermanns, H., Höfner, P. (eds.) Proceedings of the 2nd
Workshop on Models for Formal Analysis of Real Systems (MARS 2017), Upp-
sala, Sweden. Electronic Proceedings in Theoretical Computer Science, vol. 244,
pp. 129–183, April 2017

20. Garavel, H., Turlier, P.: CÆSAR.ADT : un compilateur pour les types abstraits
algébriques du langage LOTOS. In: Dssouli, R., von Bochmann, G. (eds.) Actes
du Colloque Francophone pour l’Ingénierie des Protocoles (CFIP 1993), Montréal,
Canada. pp. 325–339. Hermès, Paris, September 1993

21. Giesl, J., et al.: Proving termination of programs automatically with AProVE. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562,
pp. 184–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-
6 13

22. Groote, J., Mousavi, M.: Modeling and Analysis of Communicating Systems. The
MIT Press, Cambridge (2014)

23. Howe, A.E., Dahlman, E.: A critical assessment of benchmark comparison in plan-
ning. J. Artif. Intell. Res. 17, 1–33 (2002)

24. ISO/IEC: LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization - Information Processing Systems - Open Sys-
tems Interconnection, Geneva, September 1989

25. Jansen, J.M., Koopman, P., Plasmeijer, R.: From interpretation to compilation.
In: Horváth, Z., Plasmeijer, R., Soós, A., Zsók, V. (eds.) CEFP 2007. LNCS, vol.
5161, pp. 286–301. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-88059-2 8

26. Kop, C., Middeldorp, A., Sternagel, T.: Complexity of Conditional Term Rewriting.
Logical Methods Comput. Sci. 13(1) (2017)

27. Kordon, F., Hulin-Hubard, F.: BenchKit, a tool for massive concurrent bench-
marking. In: Proceedings of the 4th International Conference on Application of
Concurrency to System Design (ACSD 2014), Tunis La Marsa, Tunisia, pp. 159–
165. IEEE Computer Society, June 2014

28. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
System Release 4.04 - Documentation and User’s Manual. INRIA, Paris, France,
March 2016

29. Leung, A.: Nowhere: A Pattern Matching Tool for Standard ML - Version 1.1
Manual. New York University, NY (2000)

30. Marlow, S. (ed.): Haskell 2010 Language Report, April 2010

https://doi.org/10.1007/978-3-319-72044-9_9
https://doi.org/10.1007/3-540-45937-5_3
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-540-88059-2_8
https://doi.org/10.1007/978-3-540-88059-2_8

Benchmarking Implementations of Term Rewriting and Pattern Matching 25

31. Mateescu, R., Garavel, H.: XTL: a meta-language and tool for temporal logic
model-checking. In: Margaria, T. (ed.) Proceedings of the International Workshop
on Software Tools for Technology Transfer (STTT 1998), Aalborg, Denmark, pp.
33–42. BRICS, July 1998

32. Mazzanti, F., Ferrari, A.: Ten diverse formal models for a CBTC automatic train
supervision system. In: Gallagher, J.P., van Glabbeek, R., Serwe, W. (eds.) Pro-
ceedings of the 3rd Workshop on Models for Formal Analysis of Real Systems
and the 6th International Workshop on Verification and Program Transformation
(MARS/VPT 2018), Thessaloniki, Greece. Electronic Proceedings in Theoretical
Computer Science, vol. 268, pp. 104–149, April 2018

33. Middeldorp, A., Hamoen, E.: Completeness results for basic narrowing. Appl. Alge-
bra Eng. Commun. Comput. 5, 213–253 (1994)

34. Milner, R., Tofte, M., Harper, R., MacQueen, D.: Definition of Standard ML
(Revised). MIT Press, May 1997

35. Odersky, M., et al.: The Scala Language Specification - Version 2.11. Programming
Methods Laboratory. EPFL, Switzerland, March 2016

36. Pepper, P., Lorenzen, F. (eds.): The Programming Language Opal - 6th Corrected
Edition. Department of Software Engineering and Theoretical Computer Science,
Technische Universität Berlin, Germany, October 2012

37. Plasmeijer, R., van Eekelen, M., van Groningen, J.: Clean Version 2.2 Language
Report. Department of Software Technology, University of Nijmegen, The Nether-
lands, December 2011

38. van de Pol, J.: Just-in-time: on strategy annotations. Electron. Notes Theor. Com-
put. Sci. 57, 41–63 (2001)

39. Pol, J.: JITty: a rewriter with strategy annotations. In: Tison, S. (ed.) RTA 2002.
LNCS, vol. 2378, pp. 367–370. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45610-4 26

40. Ponsini, O., Fédèle, C., Kounalis, E.: Rewriting of imperative programs into logical
equations. Sci. Comput. Program. 56(3), 363–401 (2005)

41. Schnoebelen, P.: Refined compilation of pattern-matching for functional languages.
Sci. Comput. Program. 11, 133–159 (1988)

42. Stansifer, R.: Imperative versus functional. SIGPLAN Not. 25(4), 69–72 (1990)
43. Thompson, S.J.: Laws in Miranda. In: Scherlis, W.L., Williams, J.H., Gabriel, R.P.

(eds.) Proceedings of the ACM Conference on LISP and Functional Programming
(LFP 1986), Cambridge, Massachusetts, USA, pp. 1–12 (1986)

44. van Weerdenburg, M.: An account of implementing applicative term rewriting.
Electron. Notes Theor. Comput. Sci. 174(10), 139–155 (2007)

https://doi.org/10.1007/3-540-45610-4_26
https://doi.org/10.1007/3-540-45610-4_26

Multi-paradigm Programming in Maude

Santiago Escobar(B)

DSIC-ELP, Universitat Politècnica de València, Valencia, Spain
sescobar@dsic.upv.es

Abstract. Modern multi-paradigm programming languages combine
the most important features of functional programming, logic program-
ming, concurrent programming, and constraint programming. Multi-
paradigm programming applied to the Maude specification language
would replace the functional viewpoint by an equational viewpoint while
retaining and extending the other features. A former paper illustrated
how many features available in modern functional logic languages are
easily definable and simulated in Maude, and showed how Maude goes
beyond standard practices in the functional logic area by using, e.g. equa-
tional properties such as associativity and commutativity or order-sorted
information. As a practical application the paper used the Missionaries
and Cannibals equational logic program given by Goguen and Meseguer
for Eqlog in the eighties. However, no relevant execution results were
included due to the preliminary implementation of narrowing in Maude.
In this paper we provide more relevant execution results by changing the
focus from narrowing with rules (i.e., symbolic reachability) into narrow-
ing with variant equations (i.e., equational unification), the latter now
implemented in Maude 2.7.1 with very good performance.

1 Introduction

Functional logic programming [23–25] combines the most important features of
functional programming such as Haskell and logic programming such as Prolog.
From the functional paradigm it borrows algebraic data types, advanced typ-
ing, evaluation strategies, and high-order functions among other features; and
from the logic paradigm it borrows logical variables, computing with partial
information, constraint solving, and nondeterministic search for solutions. Func-
tional logic programming in the Maude specification language combines logical
variables, computing with partial information, and constraint solving with rea-
soning modulo equational properties, advanced data types, order-sorted typing,
efficient equational evaluation, distinction between concurrent and functional
parts, and parameterised modules.

This work was partially supported by the EU (FEDER) and the Spanish MINECO
under grant TIN 2015-69175-C4-1-R, by the Spanish Generalitat Valenciana under
grant PROMETEOII/2015/013, and by the US Air Force Office of Scientific
Research under award number FA9550-17-1-0286.

c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 26–44, 2018.
https://doi.org/10.1007/978-3-319-99840-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_2&domain=pdf

Multi-paradigm Programming in Maude 27

Modern multi-paradigm programming languages [26] currently involve differ-
ent paradigms in a seamless way: (i) functional programming, (ii) logic program-
ming, (iii) concurrent programming, and (iv) constraint programming. Modern
multi-paradigm programming languages use an evaluation mechanism called nar-
rowing. Narrowing is a generalization of term rewriting that allows free variables
in terms (as in logic programming) and replaces pattern matching by unifi-
cation in order to (non-deterministically) reduce these terms. Narrowing was
originally introduced for automated theorem proving [42], then used as a mech-
anism for solving equational unification problems [19], it became the “de facto”
evaluation mechanism for functional logic programming languages [4], and it was
generalized from equational unification problems to solve the more general prob-
lem of symbolic reachability [38] and, in a more modern perspective, of logical
model checking in [6,17]. The narrowing mechanism has a number of important
applications including automated proofs of termination [5], execution of func-
tional logic programming languages [4], program transformation [1], verification
of cryptographic protocols [38], equational unification [28], and SMT [37,45],
just to mention just a few.

The Eqlog programming language [21] developed by Goguen and Meseguer
in the eighties was a first attempt to combine both equational programming
with logic programming. Eqlog unified equational programming and Horn-logic
programming into one paradigm. Its logic design task was to embed order-sorted
equational logic and Horn logic without equality into a suitable Horn logic with
equality [22]. Since the eighties, Jose Meseguer has been interested in includ-
ing logical features into Maude (see his paper [34] dedicated to Goguen’s 65th
birthday) but most of the appropriate technology was missing. Many researchers
in the functional logic programming area (see [11,20,23,32,40]) have also tried,
since the eighties, to combine the best features of both paradigms and many
possibilities have been explored (see [23,24] for a survey). Nowadays there is
a remarkable body of programming languages and tools in the functional logic
area. Many people strongly believe that Maude with logical features (as a mod-
ern successor of Eqlog) would be an excellent choice in the near future for multi-
paradigm programming: (i) equational programming, (ii) object-oriented pro-
gramming, (iii) concurrent programming, (iv) logic programming, and (v) con-
straint solving. For instance, Jose Meseguer recently recalled many of the sym-
bolic capabilities currently available in Maude in [36].

Order-sorted unification and narrowing modulo axioms became first available
in 2009 as part of the Maude 2.4 release [8]. Unification became available as a
built-in feature in Maude while narrowing was available in Full Maude, an exten-
sion of Maude written in Maude itself. Unification worked for any combination of
symbols being either free or associative-commutative (AC). Narrowing worked
for modules having only rules and axioms and relied on the built-in unification
algorithm. It supported the concept of symbolic reachability analysis of terms
with logical variables, computing suitable substitutions for the variables in both
the origin and the destination terms [17].

28 S. Escobar

Unification and narrowing were updated in 2011 as part of the Maude 2.6
release [14]. First, built-in unification was extended to allow any combination
of symbols being either free, commutative (C), associative-commutative (AC),
or associative-commutative with an identity symbol (ACU). The performance
was dramatically improved, allowing further development of other techniques in
Maude. Second, the concept of variant [10] was added to Maude. The introduction
of variants led to a significant improvement in Maude’s reasoning capabilities:
variant generation, variant-based unification, and symbolic reachability based
on variant-based unification became all available for the first time. However,
all the variant-based features and the narrowing-based reachability were only
available in Full Maude, and for a restricted class of theories called strongly right
irreducible.

Unification and narrowing were extended again as part of the Maude 2.7
release [13]. First, the built-in unification algorithm allows any combination of
symbols being free, C, AC, ACU, CU (commutativity and identity), U (identity),
Ul (left identity), and Ur (right identity). Second, variant generation and variant-
based unification are implemented as built-in features in Maude. This built-in
implementation works for any convergent theory modulo the axioms described
above, both allowing very general equational theories (beyond the strongly right
irreducible ones) and boosting the performance not only of these features but of
their applications. Third, narrowing-based reachability is still only available in
Full Maude, but uses the built-in variant-based unification.

Recently, unification and narrowing were extended once more as part of the
Maude 2.7.1 release [12]. The last addition has been associative unification. The
range of the following additional symbolic reasoning features were substantially
extended with reasoning modulo associativity: (i) variant generation; (ii) variant
unification; and (iii) narrowing-based symbolic reachability analysis.

In [16] I showed how many modern programming features in programming
languages such as Curry [25] can be implemented using Maude 2.6. I recalled
the existing implementation of narrowing as symbolic reachability in Maude 2.6,
illustrated how many features available in Curry are easily definable and simu-
lated in Maude, and showed how Maude goes beyond standard practices in the
functional logic area by using, e.g. equational properties such as associativity
and commutativity or order-sorted information. As a practical application the
paper used the Missionaries and Cannibals equational logic program given by
Goguen and Meseguer for Eqlog in the eighties. However, no relevant execution
results were included due to the preliminary implementation of narrowing in
Maude 2.6. In this paper I provide more relevant execution results by changing
the focus from narrowing with rules (i.e., symbolic reachability) into narrowing
with variant equations (i.e., equational unification), the latter now implemented
in Maude 2.7.1 with very good performance. Furthermore, since Maude now sup-
ports associative unification, the Missionaries and Cannibals specification has
been updated.

In Sect. 2 we present the Missionaries and Cannibals equational logic pro-
gram of [21]. In Sect. 3 we introduce some basic concepts on rewriting logic.

Multi-paradigm Programming in Maude 29

In Sect. 4 we recall the built-in variant-based equational unification and how it
is made available in Maude. In Sect. 5 we show how the Missionaries and Canni-
bals equational logic program of [21] can be written using the narrowing features
described in [16]. In Sect. 6 we demonstrate how queries on the motivating exam-
ple are effectively executed using built-in variant-based equational unification.
Finally, we conclude in Sect. 7.

2 Example: Missionaries and Cannibals

As a motivating example for the reader, we present the Missionaries and Canni-
bals equational logic program of [21]. The equational logic program1 of [21] used
a syntax proposed for Eqlog where a functional syntax very close to Maude was
combined with some syntax for Horn-clauses using the symbol “:-”.

module MAC[T :: MACTH] using NAT, TRIPLIST = LIST[trip] is

preds

boatok : trip

solve, good : triplist

fns

boat : pred -> trip

lb,rb : triplist -> pset

mset,cset : pset -> pset

vars

PS:pset, L:triplist, P:person, T:trip

axioms

boatok(boat(PS)) :- # PS = 1.

boatok(boat(PS)) :- # PS = 2.

mset(PS) = PS /\ m0.

cset(PS) = PS /\ c0.

lb(nil) = m0 + c0.

rb(nil) = empty.

lb(L * boat(PS)) = lb(L) - PS :- even # L.

rb(L * boat(PS)) = rb(L) + PS :- even # L.

rb(L * boat(PS)) = rbQ - PS :- odd # L.

lb(L * boat(PS)) = lb(L) + PS :- odd # L.

good(L * T)

:- # cset(lb(L * T)) =< # mset(lb(L * T)) or mset(lb(L * T)) = 0,

cset(rb(L * T)) =< # mset(rb(L * T)) or mset(rb(L * T)) = 0,

good(L), boatok(T).

good(nil).

solve(L) :- good(L), lb(L) = empty.

endmod MAC

1 The original program in [21] had an error because the number of cannibals has to
be lower than or equal to the number of missionaries in both sides unless there
is no missionary. We discovered this error thanks to the new automated reasoning
capabilities in Maude.

30 S. Escobar

This module is parametric on a theory T : : MACTH for the names of the mission-
aries and cannibals, which are instantiated to m0 = taylor, helen, william
and c0 = umugu, nzwave, amoc. Also a module for lists is imported, where *
is the constructor symbol for lists and # is the length operation for lists. The
system is configured as a list of trips (sort triplist) where each trip is a term
rooted by a predicate boat with a set of names of missionaries and cannibals.
Each trip in the list is considered good if it satisfies some properties. Odd posi-
tions in the list represent moving from left to right and even positions from
right to left. There are some extra symbols for set manipulation: + for union,
- for removal, and _/_ for intersection. Note that lists and (multi-)sets are
the data structures in this example with associativity, commutativity and/or
identity axioms. There are also some symbols for lists: even indicates whether
a list has an even number of elements and odd indicates whether a list has an
odd number of elements. Finally, the predicate boatok checks whether a trip
is ok and solve is the general predicate for checking/generating the triplist
solution.

This is an example requiring some constraint solving features, logical vari-
ables, order-sorted types, associativity for lists, and associativity, commutativity,
and identity for multisets. For instance, it requires constraint solving features
because of the numerical conditions for length of lists in the conditions of pred-
icate good; this would be solved by using a generator function and using these
length functions by residuation. Also, the program considers equational proper-
ties, since the problem is represented by a list of trips and each element is the
boat with a multiset of missionaries and cannibals; this would be easily han-
dled by narrowing modulo these properties. And it clearly includes order-sorted
information in the sense of having people which are specialized into missionaries
and cannibals.

Note that some inherently functional logic features [23–25] are necessary here:
(i) a semantics of values instead of all reachable terms, (ii) predicates are just
conditional rules evaluated into a special sort, different from Bool, that only
contains positive (or successful) cases, and (iii) conditions in conditional rules
are indeed strict equalities instead of syntactic equality.

3 Background on Rewriting Logic and Term Rewriting

We follow the classical notation and terminology from [43] for term rewriting,
and from [31] for rewriting logic and order-sorted notions. We assume an order-
sorted signature Σ = (S,≤, Σ) with poset of sorts (S,≤) and such that for each
sort s ∈ S the connected component of s in (S,≤) has a top sort, denoted [s], and
all f : s1 · · · sn → s with n ≥ 1 have a top sort overloading f : [s1] · · · [sn] → [s].
We also assume an S-sorted family X = {Xs}s∈S of disjoint variable sets with
each Xs countably infinite. TΣ(X)s is the set of terms of sort s, and TΣ,s is the
set of ground terms of sort s. We write TΣ(X) and TΣ for the corresponding
order-sorted term algebras. For a term t, Var(t) denotes the set of variables in t.

Multi-paradigm Programming in Maude 31

Positions are represented by sequences of natural numbers denoting an access
path in the term when viewed as a tree. The top or root position is denoted by
the empty sequence Λ. We define the relation p ≤ q between positions as p ≤ p
for any p; and p ≤ p.q for any p and q. Given U ⊆ Σ ∪ X , PosU (t) denotes the
set of positions of a term t that are rooted by symbols or variables in U . The set
of positions of a term t is written Pos(t), and the set of non-variable positions
PosΣ(t). The subterm of t at position p is t|p and t[u]p is the term t where t|p
is replaced by u.

A substitution σ ∈ Subst(Σ,X) is a sorted mapping from a finite subset of X
to TΣ(X). Substitutions are written as σ = {X1 �→ t1, . . . , Xn �→ tn} where the
domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by
terms t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions
are homomorphically extended to TΣ(X). The application of a substitution σ
to a term t is denoted by tσ. For simplicity, we assume that every substitution
is idempotent, i.e., σ satisfies Dom(σ) ∩ Ran(σ) = ∅. Substitution idempotency
ensures tσ = (tσ)σ. The restriction of σ to a set of variables V is σ|V ; sometimes
we write σ|t1,...,tn to denote σ|V where V = Var(t1)∪· · ·∪Var(tn). Composition
of two substitutions σ and σ′ is denoted by σσ′.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X)s for some
sort s ∈ S. Given an order-sorted signature Σ and a set E of Σ-equations,
order-sorted equational logic induces a congruence relation =E on terms t, t′ ∈
TΣ(X) (see [33]). The E-equivalence class of a term t is denoted by [t]E and
TΣ/E(X) and TΣ/E denote the corresponding order-sorted term algebras modulo
E . Throughout this paper we assume that TΣ,s �= ∅ for every sort s, because this
affords a simpler deduction system.

An equational theory (Σ, E) is a pair with Σ an order-sorted signature and E
a set of Σ-equations. The E-subsumption preorder �E (or just � if E is under-
stood) holds between t, t′ ∈ TΣ(X), denoted t �E t′ (meaning that t is more
general than t′ modulo E), if there is a substitution σ such that tσ =E t′; such
a substitution σ is said to be an E-match from t to t′.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSUW

E (t = t′) is said to be a
complete set of unifiers for the equality t = t′ modulo E away from W iff: (i) each
σ ∈ CSUW

E (t = t′) is an E-unifier of t = t′; (ii) for any E-unifier ρ of t = t′ there
is a σ ∈ CSUW

E (t = t′) such that σ|W �E ρ|W ; (iii) for all σ ∈ CSUW
E (t = t′),

Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩ W = ∅. If the set of variables W
is irrelevant or is understood from the context, we write CSUE(t = t′) instead
of CSUW

E (t = t′). An E-unification algorithm is complete if for any equation
t = t′ it generates a complete set of E-unifiers. A unification algorithm is said
to be finitary and complete if it always terminates after generating a finite and
complete set of solutions.

32 S. Escobar

A rewrite rule is an oriented pair l → r, where2 l �∈ X and l, r ∈ TΣ(X)s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ, E , R) with Σ an order-sorted signature, E a set of Σ-equations, and R a set
of rewrite rules.

The rewriting relation on TΣ(X), written t →R t′ or t →p,R t′ holds between
t and t′ iff there exist p ∈ PosΣ(t), l → r ∈ R and a substitution σ, such
that t|p = lσ, and t′ = t[rσ]p. The relation →R/E on TΣ(X) is =E ;→R; =E , i.e.,
t →R/E t′ iff there exists u, u′ s.t. t =E u →R u′ =E t′. Note that →R/E on TΣ(X)
induces a relation →R/E on the free (Σ, E)-algebra TΣ/E(X) by [t]E →R/E [t′]E
iff t →R/E t′. The transitive (resp. transitive and reflexive) closure of →R/E is
denoted →+

R/E (resp. →∗
R/E).

The application of one →R/E step is undecidable in general since E-
congruence classes can be arbitrarily large. Therefore, R/E-rewriting is usually
implemented [29] by R,E-rewriting. A relation →R,E on TΣ(X) is defined as:
t →p,R,E t′ (or just t →R,E t′) iff there exist p ∈ PosΣ(t), a rule l → r in R, and
a substitution σ such that t|p =E lσ and t′ = t[rσ]p.

We assume that the relation →R,E is locally E-coherent [29], i.e., ∀t1, t2, t3 we
have t1 →R,E t2 and t1 =E t3 implies ∃t4, t5 such that t2 →∗

R,E t4, t3 →+
R,E t5, and

t4 =E t5. Let us recall how coherence works at least for the common associative-
commutative (AC) case. The best way to illustrate it is by its absence. Consider
a symbol + declared as AC. Now consider the rule b+ b → c, where b and c are
constants. This rule, if not completed by another, is not coherent modulo AC.
What this means is that there will be term contexts in which the rule should be
applied, but it cannot be applied. Consider, for example, the term b + (a + b),
where a is also a constant. Intuitively, we should be able to apply to it the above
rule to simplify it to the term a + c in one step. However, since we are using
the weaker rewrite relation →R,AC instead of the stronger but much harder to
implement relation →R/AC , we cannot! The problem is that the rule cannot be
applied (even if we match modulo AC) to either the top term b + (a + b) or the
subterm a + b. We can however make our rule coherent modulo AC by adding
the extra rule b + b + Y → c + Y . This extended version of our rule will now
apply to the term b+(a+ b), giving the simplification b+(a+ b) −→R,AC a+ c.
Technically, what coherence means is that the weaker relation →R,E becomes
semantically equivalent to the stronger relation →R/E .

Coherence can be handled implicitly or explicitly, i.e., either the match-
ing mechanism is modified to take care of this issue or the rules are explicitly
extended, which is the option shown above; see [46] for a comparison between
implicit and explicit extensions. For rewriting, implicit extensions are sufficient
in many cases, as the implicit E-coherence completion provided by the Maude

2 Note that we do not impose here the standard condition Var(r) ⊆ Var(l), necessary
for executability of rewriting in practice. Rewriting with extra variables in right-
hand sides is handled at a theoretical level by allowing the matching substitution
to instantiate these extra variables in any possible way. Extra variables do no pose
any problem to narrowing and are part of the nondeterministic search of solutions
typical of logic programming.

Multi-paradigm Programming in Maude 33

tool [9] for any combination of associativity (A), commutativity (C), and iden-
tity (U) axioms. For narrowing, implicit extension is more complicated and it is
sufficient to consider explicit single-variable extensions in common cases such as
combinations of C, AC, and ACU axioms, i.e., given a rule s → t one considers
s + x → t + x where x is a new variable. The method is as follows for AC. For
any symbol f which is AC, and for any rule of the form f(u, v) → w in E , we
add also the equation f(f(u, v),X) → f(w,X), where X is a new variable not
appearing in u, v, w. In an order-sorted setting, we should give to X the biggest
sort possible, so that it will apply in all generality. As an additional optimization,
note that some rules may already be coherent modulo AC, so that we need not
add the extra equation. See [15,35] for further information.

We also assume that the equational theory is split into E = E ∪Ax such that
E is a set of equations oriented into rules and Ax is a set of equational axioms
satisfying:

1. Ax is regular, i.e., for each t = t′ in Ax, we have Var(t) = Var(t′), and sort-
preserving, i.e., for each substitution σ, we have tσ ∈ TΣ(X)s iff t′σ ∈ TΣ(X)s;
furthermore, for each equation t = t′ in Ax, all variables in Var(t) have a top
sort.

2. Ax has a finitary and complete unification algorithm, which implies that Ax-
matching is finitary and complete.

3. For each t → t′ in E we have Var(t′) ⊆ Var(t).
4. E is sort-decreasing, i.e., for each t → t′ in E, each s ∈ S, and each substitution

σ, t′σ ∈ TΣ(X)s implies tσ ∈ TΣ(X)s.
5. The relation →E,Ax is confluent, terminating, and locally Ax-coherent, i.e.,

for each term t, the relation terminates and produces a unique irreducible
term (up to Ax-equivalence) denoted by t↓E,Ax.

Given an order-sorted equational theory (Σ,E ∪ Ax), (t′, θ) is an
E,Ax-variant [18] (or just a variant) of term t if tθ↓E,Ax =Ax t′ and
θ↓E,Ax =Ax θ. Given two term variants (t1, θ1), (t2, θ2) of a term t, we write
(t1, θ1) �E,Ax (t2, θ2), meaning (t1, θ1) is a more general variant of t than
(t2, θ2), iff there is a substitution ρ such that (θ1ρ)|Var(t) =Ax θ2|Var(t) and
t1ρ =Ax t2↓E,Ax. An order-sorted equational theory (Σ,E ∪ Ax) has the finite
variant property [18] iff for each Σ-term t, a complete set of its most general
variants is finite. A finitary and complete unification algorithm is defined for
order-sorted equational theories with the finite variant property [18].

4 Narrowing in Maude

Logic programming languages are well suited for goal solving. Functional pro-
gramming languages are equipped with equational definition of operations. Sev-
eral approaches have been considered in the literature for combining the func-
tional and logic paradigms, see [23]. On the one hand, it is a natural idea to add
an equality predicate to logic programs, leading to equational logic program-
ming [27]. On the other hand, it is also a natural idea to add logical variables

34 S. Escobar

to functional programs, leading to narrowing-based equational reasoning [19].
Logic variables are also valuable at the level of model checking rather than func-
tional programming, as proposed for symbolic reachability in [38] and extended
to logical model checking in [6,17].

At each rewriting step one must choose which subterm of the subject term
and which rule of the specification are going to be considered. Similarly, at each
narrowing step one must choose which subterm of the subject term, which rule
of the specification, and which instantiation3 on the variables of the subject term
and the rule’s left-hand side are going to be considered. The difference between
a rewriting step and a narrowing step is that, in both cases we use a rewrite rule
l → r to rewrite t at a position p in t, but narrowing unifies the left-hand side
l and the chosen subject term t|p before actually performing the rewriting step.
Narrowing is restricted4 to non-variable positions of t, whereas rewriting does
not require such a restriction.

Let R = (Σ,E ∪ Ax,R) be an order-sorted rewrite theory where R is a
set of unconditional rewrite rules, specified with the rl keyword, E is a set
of unconditional equations specified with the eq and variant keywords, and
Ax is a set of commonly occurring axioms—declared in Maude as equational
attributes—such that an E ∪ Ax-unification procedure is available in Maude.
Unification algorithms already available in Maude are divided in two groups:
(i) Ax-unification for order-sorted signatures with any combination of free, C,
AC, or ACU function symbols [8], and (ii) E ∪ Ax-unification for order-sorted
equational theories with the finite variant property [14].

Let CSUE∪Ax(u = u′) provide5 a finitary and complete set of unifiers for any
pair of terms u, u′ with the same top sort. The R,(E∪Ax)-narrowing relation on
TΣ(X) is defined as t �σ,p,R,E∪Ax t′ (or �σ when p,R,E,Ax are understood)
if there is a non-variable position p ∈ PosΣ(t), a (possibly renamed) rule l → r
in R, and a unifier σ ∈ CSUE∪Ax(t|p = l) such that t′ = (t[r]p)σ. We denote by
t �+

σ,R,E∪Ax t′ (resp. t �∗
σ,R,E∪Ax t′) the transitive (resp. reflexive-transitive)

closure of the narrowing relation, where σ is obtained as the composition of the
substitutions for each narrowing step in the sequence.

Consider the following system module defining the addition function + on
natural numbers built from 0 and s:

mod NAT-NARROWING is

sort Nat .

op 0 : -> Nat [ctor] .

3 Demand-driven narrowing strategies may require instantiations of a term that do
not correspond to a most general unifier of a subterm and a left-hand side, see [2,3].

4 The paramodulation inference rule used in paramodulation-based theorem prov-
ing [39] is similar to narrowing and does not require non-variable positions.

5 In the present implementation of Maude, we are not interested in a minimal set
of unifiers, but only in a finite and complete set. Minimality is easily achieved in
syntactic unification (see [30]) but it is very costly in Ax-unification or E ∪ Ax-
unification, e.g., the ACU -unification available in Maude does not always provide a
minimal set of unifiers.

Multi-paradigm Programming in Maude 35

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> [Nat] .

vars X Y : Nat .

rl [base] : 0 + Y => Y .

rl [ind] : s(X) + Y => s(X + Y) .

endm

Consider the term X + s(0) and the two rules base and ind. Narrowing
will instantiate6 variable X with 0 and s(X’), respectively. The following two
narrowing steps are generated:

X + s(0) �{X �→0},base s(0)
X + s(0) �{X �→s(#1:Nat)},ind s(#1:Nat + s(0))

Note that, for simplicity, we show only the bindings of the unifier that affect
the input term. There are infinitely many narrowing derivations starting at the
input expression X + s(0) (at each step the reduced subterm is underlined):

1. X + s(0) �{X �→0},base s(0)
2. X + s(0) �{X �→s(#1:Nat)},ind s(#1:Nat + s(0)) �{#1:Nat�→0},base s(s(0))
3. X + s(0) �{X �→s(#1:Nat)},ind s(#1:Nat+ s(0))

�{#1:Nat�→s(#2:Nat)},ind s(s(#2:Nat+ s(0))) �{#2:Nat�→0},base s(s(s(0)))

And some of those infinitely many narrowing derivations are infinite in length,
e.g. by applying rule ind infinitely many times:

X + s(0) �{X �→s(#1:Nat)},ind s(#1:Nat + s(0))
�{#1:Nat�→s(#2:Nat)},ind s(s(#2:Nat + s(0)))
�{#2:Nat�→s(#3:Nat)},ind s(s(s(#3:Nat + s(0))))
. . .

The narrowing relation currently available in Maude is slightly different than
the standard one formally defined above. Let R = (Σ,G∪E∪Ax,R) be an order-
sorted rewrite theory where R, E, and Ax are defined as above and G are the
remaining equations. Note that equations in G do not have the variant attribute
and have no restriction, i.e., they can be conditional equations, with the owise
attribute, etc. Each narrowing step of the form t �σ,p,R,E∪Ax t′ is followed by
simplification t′↓G,Ax, i.e., the combined relation is defined as t �σ,p,R,E,G,Ax t′′

iff t �σ,p,R,E∪Ax t′ and t′′ = t′↓G,Ax. Note that this combined relation may be
incomplete because equations G are not considered for unification, i.e., given
a reachability problem of the form ∃x : t(x) →∗ t′(x) and a solution σ (i.e.,
tσ →∗

R,G∪E∪Ax t′σ), the relation �σ,p,R,E,G,Ax may not be able to find a more
general solution.

6 New variables in Maude are introduced as #1:Nat or %1:Nat instead of X’.

36 S. Escobar

4.1 The Variant Narrowing Strategy

Applying narrowing without any restriction is very wasteful when you have an
equational theory (Σ,E ∪Ax). First, for computing variants in a decomposition
we are only interested in normalized substitutions, so we can restrict our interest
to narrowing derivations that provide only normalized substitutions. Our sec-
ond idea is to give priority to rewrite steps w.r.t. unrestricted narrowing steps.
Thanks to convergence modulo Ax, as soon as a general rewrite (or narrowing)
step is enabled in a term that has also narrowing steps such a more general step
is always taken before any further narrowing steps are applied.

For example, consider a different version of the NAT module using variant
equations that includes an extra redundant equation:

fmod NAT-VARIANT-1 is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> [Nat] .

vars X Y Z : Nat .

eq [base] : 0 + Y = Y [variant] .

eq [ind] : s(X) + Y = s(X + Y) [variant] .

eq [red] : X + s(0) = s(X) [variant] .

endfm

As explained before, there are infinitely many narrowing derivations starting at
the input expression X + s(0) but there is a most general narrowing derivation:
X + s(0) �id,red s(X). Variant narrowing will discard all the other narrowing
steps and keep just the most general one. See [18] for details.

4.2 The Folding Variant Narrowing Strategy

The variant narrowing strategy defined above is a strategy in the sense that
always returns a subset of the narrowing steps available for each term. Note
that it has no memory of previous steps, just the input term to be narrowed,
hence it incurs no memory overhead. However, more sophisticated strategies can
be developed by introducing some sort of memory that can avoid the repeated
generation of useless or unnecessary computation steps. This is the case of the
folding narrowing strategy of [18], which, when combined with the variant nar-
rowing strategy, provides the folding variant narrowing strategy which is com-
plete for variant generation of a term and it terminates when the term has a
finite set of most general variants.

For example, consider a different version of the NAT module using variant
equations that includes several extra equations:

fmod NAT-VARIANT-2 is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

Multi-paradigm Programming in Maude 37

op _+_ : Nat Nat -> [Nat] .

vars X Y Z : Nat .

eq [base-left] : 0 + Y = Y [variant] .

eq [ind-left] : s(X) + Y = s(X + Y) [variant] .

eq [base-right] : X + 0 = X [variant] .

eq [ind-right] : X + s(Y) = s(X + Y) [variant] .

endfm

Given the input expression X + s(0) there is a most general folding variant
narrowing derivation: X + s(0) �id,ind−right s(X + 0) �id,base−right s(X).
Folding variant narrowing will discard all the other narrowing derivations and
keep just the most general one. Note that the input expression X + Y still gives
infinitely many narrowing derivations and some of them are infinite in length.

4.3 Variant-Based Unification in Maude 2.7.1

The most recent Maude 2.7.1 version [7] provides a command for E ∪ Ax-
equational unification based on the folding variant narrowing strategy above.
Consider the NAT-VARIANT-2 module above, where one can obtain an incremen-
tal number of unifiers for a given unification problem. On the one hand, it is
possible to have a finite number of most general unifiers for a unification problem
although the theory does not have the finite variant property. For instance, the
unification problem between X + s(0) and s(s(s(0))) returns just one unifier.

Maude> variant unify in NAT-VARIANT-2 : X + s(0) =? s(s(s(0))) .

Unifier #1

X --> s(s(0))

On the other hand, we can approximate the number of unifiers of a unification
problem that we suspect does not have a finite number of most general unifiers.
For instance, the unification problem between terms X + Y and Z has many solu-
tions and variant-based unification does not stop, since folding variant narrowing
keeps generating variants for X + Y. However, we can obtain some solutions by
including a bound in the command.

Maude> variant unify [4] in NAT-VARIANT-2 : X + Y =? Z .

Unifier #1 Unifier #2 Unifier #3 Unifier #4

X --> 0 X --> #1:Nat X --> s(0) X --> %1:Nat

Y --> #1:Nat Y --> 0 Y --> %1:Nat Y --> s(0)

Z --> #1:Nat Z --> #1:Nat Z --> s(%1:Nat) Z --> s(%1:Nat)

5 Missionaries and Cannibals Using Symbolic
Reachability

In [16], we gave a specification of the original equational logic program by using
features and functionalities of Maude.

38 S. Escobar

mod MAC is

pr SUCCESS . pr TRIPLIST . pr PSET .

ops taylor helen william : -> Elem [ctor] .

ops umugu nzwawe amoc : -> Elem [ctor] .

var L : TripList . var T : Trip . var PS : PSet .

op gen : Elem -> [Success] .

rl gen(taylor) => success . eq gen(taylor) = success .

rl gen(helen) => success . eq gen(helen) = success .

rl gen(william) => success . eq gen(william) = success .

rl gen(umugu) => success . eq gen(umugu) = success .

rl gen(nzwawe) => success . eq gen(nzwawe) = success .

rl gen(amoc) => success . eq gen(amoc) = success .

op m0 : -> [PSet] . op c0 : -> [PSet] .

eq m0 = taylor helen william . eq c0 = umugu nzwawe amoc .

op mset : PSet -> [PSet] . op cset : PSet -> [PSet] .

eq mset(PS) = PS /\ m0 . eq cset(PS) = PS /\ c0 .

op boatok : Trip -> [Success] . op boat : PSet -> Trip [ctor] .

eq boatok(boat(X:Elem)) = gen(X:Elem) .

eq boatok(boat(X1:Elem X2:Elem))

= gen(X1:Elem) >> gen(X2:Elem) >> ((X1:Elem =/= X2:Elem) =:= true) .

ops lb rb : TripList -> [PSet] .

eq lb(nil) = m0 c0 .

eq lb(L * boat(PS))= if (even # L) then (lb(L) - PS) else (lb(L) PS) fi .

eq rb(nil) = empty .

eq rb(L * boat(PS)) = if (even # L) then (rb(L)PS) else (rb(L) - PS) fi .

op good : TripList -> [Success] .

eq good(nil) = success .

eq good(L * T)

= boatok(T) >> good(L) >>

((# cset(lb(L * T)) =< # mset(lb(L * T))

or (# mset(lb(L * T)) == 0))

and

(# cset(rb(L * T)) =< # mset(rb(L * T))

or (# mset(rb(L * T)) == 0))) =:= true .

op solve : TripList -> [Success] .

eq solve(L) = good(L) >> (lb(L) == empty) =:= true .

endm

We used kinds for defined operations and regular sorts for constructor symbols,
following the semantics of values. One of the features of functional logic program-
ming languages called residuation is obtained by including rules and equations

Multi-paradigm Programming in Maude 39

for most operations, i.e., terms are simplified using the equations before any rule
is tried by narrowing.

We used the sort Success for predicates and the constant success as a
remanent of true, avoiding problems of negation in logic programming.

sort Success .

op success : -> Success [ctor] .

We used the symbol >> for conditional evaluation of constraints, such that
the left side is evaluated before the right side. Note that this order of evaluation
requires the use of frozenness arguments and evaluation strategies.

op _>>_ : [Success] [Success] -> [Success]

[frozen (2) strat (1 0) gather (e E)] .

rl success >> X:[Success] => X:[Success] .

eq success >> X:[Success] = X:[Success] .

Functional logic programming languages use strict equality instead of syntactic
equality and we have defined the symbol =:= for strict equality. The only sort
used for strict equality in the example is Bool, and we defined =:= for Bool only
in the positive case returning success:

op _=:=_ : Bool Bool -> [Success] [comm] .

rl X:Bool =:= X:Bool => success .

eq X:Bool =:= X:Bool = success .

And again as described in [16], functional logic programming languages usually
allow the user to have some control on constraint solving capabilities thanks to
the use of >> and also data generators, so that the search is more controlled
and follows a generate-and-test approach. We use a specific generator function
gen. Operators gen, >> and =:= are the only ones defined using both rules
and equations. Finally, logic predicates are defined on the sort Success and are
considered as conditional equations but using the >> operator instead of being
standard conditional equations in Maude.

In [16], the auxiliary module TRIPLIST for list of trips was defined using just
a head-tail approach for lists (no associativity axiom) whereas the auxiliary mod-
ule PSET for sets of missionaries and cannibals were defined using associativity,
commutativity, and identity axioms.

The experiments were performed in [16] using the narrowing-based search
command available in Full Maude 2.6, but were very preliminary and could con-
sidered only problems with very few variables. For example, having two variables
E:Elem and E1:Elem for two places in a specific solution to the problem:
search solve(nil * boat(taylor umugu) * boat(taylor) * boat(nzwawe amoc) * boat(umugu) *

boat(william helen) * boat(helen nzwawe) * boat(taylor helen) *
boat(E1) * boat(umuguE1) * boat(E) * boat(E nzwawe)) ~>! success .

Solution 1 Solution 2
E1:Elem --> amoc ; E:Elem --> amoc E1:Elem --> amoc ; E:Elem --> helen
Solution 3 Solution 4
E1:Elem --> amoc ; E:Elem --> taylor E1:Elem --> amoc ; E:Elem --> umugu
Solution 5 Solution 6
E1:Elem --> amoc ; E:Elem --> william E1:Elem --> nzwawe ; E:Elem --> amoc
Solution 7
E1:Elem --> nzwawe ; E:Elem --> umugu

40 S. Escobar

6 Missionaries and Cannibals Using Variant Equations

The new specification using variant equations is similar to the previous section
but we have replaced all rules by equations labeled with the variant flag.

op gen : Elem -> [Success] .

eq gen(taylor) = success [variant] .

eq gen(helen) = success [variant] .

eq gen(william) = success [variant] .

eq gen(umugu) = success [variant] .

eq gen(nzwawe) = success [variant] .

eq gen(amoc) = success [variant] .

We have also replaced the rule for symbol =:= by a variant equation. That
is, for each sort, the strict equality is always defined only in the positive case
returning success, e.g. for the sort Nat is defined as follows:

op _=:=_ : Nat Nat -> [Success] [comm] .

eq X:Bool =:= X:Bool = success [variant] .

Since Maude 2.7.1 allows associative unification, we added associativity to the
auxiliary module for list of trips.

sorts TripList Trip .

subsort Trip < TripList .

op nil : -> TripList [ctor] .

op _*_ : TripList TripList -> TripList [ctor assoc] .

The new experiments simply used the variant-based equational unification to
find all thirty six solutions to the problem.

Maude> variant unify solve(nil * boat(E1:Elem E2:Elem) * boat(E1:Elem) * boat(E3:Elem E4:Elem)
* boat(E2:Elem) * boat(E5:Elem E6:Elem) * boat(E6:Elem E3:Elem) * boat(E1:Elem E6:Elem)
* boat(E4:Elem) * boat(E2:Elem E4:Elem) * boat(E6:Elem) * boat(E6:Elem E3:Elem)) =? success .

Unifier #1
E1:Elem --> helen E2:Elem --> amoc E3:Elem --> umugu E4:Elem --> nzwawe E5:Elem --> william E6:Elem --> taylor
Unifier #2
E1:Elem --> william E2:Elem --> amoc E3:Elem --> umugu E4:Elem --> nzwawe E5:Elem --> helen E6:Elem --> taylor
Unifier #3
E1:Elem --> helen E2:Elem --> nzwawe E3:Elem --> umugu E4:Elem --> amoc E5:Elem --> william E6:Elem --> taylor
Unifier #4
E1:Elem --> william E2:Elem --> nzwawe E3:Elem --> umugu E4:Elem --> amoc E5:Elem --> helen E6:Elem --> taylor
Unifier #5
E1:Elem --> taylor E2:Elem --> amoc E3:Elem --> umugu E4:Elem --> nzwawe E5:Elem --> william E6:Elem --> helen
Unifier #6
E1:Elem --> william E2:Elem --> amoc E3:Elem --> umugu E4:Elem --> nzwawe E5:Elem --> taylor E6:Elem --> helen
Unifier #7
E1:Elem --> taylor E2:Elem --> nzwawe E3:Elem --> umugu E4:Elem --> amoc E5:Elem --> william E6:Elem --> helen
Unifier #8
E1:Elem --> william E2:Elem --> nzwawe E3:Elem --> umugu E4:Elem --> amoc E5:Elem --> taylor E6:Elem --> helen
Unifier #9
E1:Elem --> taylor E2:Elem --> amoc E3:Elem --> umugu E4:Elem --> nzwawe E5:Elem --> helen E6:Elem --> william
Unifier #10
E1:Elem --> helen E2:Elem --> amoc E3:Elem --> umugu E4:Elem --> nzwawe E5:Elem --> taylor E6:Elem --> william
Unifier #11
E1:Elem --> taylor E2:Elem --> nzwawe E3:Elem --> umugu E4:Elem --> amoc E5:Elem --> helen E6:Elem --> william
Unifier #12
E1:Elem --> helen E2:Elem --> nzwawe E3:Elem --> umugu E4:Elem --> amoc E5:Elem --> taylor E6:Elem --> william
Unifier #13
E1:Elem --> helen E2:Elem --> amoc E3:Elem --> nzwawe E4:Elem --> umugu E5:Elem --> william E6:Elem --> taylor
Unifier #14
E1:Elem --> william E2:Elem --> amoc E3:Elem --> nzwawe E4:Elem --> umugu E5:Elem --> helen E6:Elem --> taylor
Unifier #15

Multi-paradigm Programming in Maude 41

E1:Elem --> helen E2:Elem --> umugu E3:Elem --> nzwawe E4:Elem --> amoc E5:Elem --> william E6:Elem --> taylor
Unifier #16
E1:Elem --> william E2:Elem --> umugu E3:Elem --> nzwawe E4:Elem --> amoc E5:Elem --> helen E6:Elem --> taylor
Unifier #17
E1:Elem --> taylor E2:Elem --> amoc E3:Elem --> nzwawe E4:Elem --> umugu E5:Elem --> william E6:Elem --> helen
Unifier #18
E1:Elem --> william E2:Elem --> amoc E3:Elem --> nzwawe E4:Elem --> umugu E5:Elem --> taylor E6:Elem --> helen
Unifier #19
E1:Elem --> taylor E2:Elem --> umugu E3:Elem --> nzwawe E4:Elem --> amoc E5:Elem --> william E6:Elem --> helen
Unifier #20
E1:Elem --> william E2:Elem --> umugu E3:Elem --> nzwawe E4:Elem --> amoc E5:Elem --> taylor E6:Elem --> helen
Unifier #21
E1:Elem --> taylor E2:Elem --> amoc E3:Elem --> nzwawe E4:Elem --> umugu E5:Elem --> helen E6:Elem --> william
Unifier #22
E1:Elem --> helen E2:Elem --> amoc E3:Elem --> nzwawe E4:Elem --> umugu E5:Elem --> taylor E6:Elem --> william
Unifier #23
E1:Elem --> taylor E2:Elem --> umugu E3:Elem --> nzwawe E4:Elem --> amoc E5:Elem --> helen E6:Elem --> william
Unifier #24
E1:Elem --> helen E2:Elem --> umugu E3:Elem --> nzwawe E4:Elem --> amoc E5:Elem --> taylor E6:Elem --> william
Unifier #25
E1:Elem --> helen E2:Elem --> nzwawe E3:Elem --> amoc E4:Elem --> umugu E5:Elem --> william E6:Elem --> taylor
Unifier #26
E1:Elem --> william E2:Elem --> nzwawe E3:Elem --> amoc E4:Elem --> umugu E5:Elem --> helen E6:Elem --> taylor
Unifier #27
E1:Elem --> helen E2:Elem --> umugu E3:Elem --> amoc E4:Elem --> nzwawe E5:Elem --> william E6:Elem --> taylor
Unifier #28
E1:Elem --> william E2:Elem --> umugu E3:Elem --> amoc E4:Elem --> nzwawe E5:Elem --> helen E6:Elem --> taylor
Unifier #29
E1:Elem --> taylor E2:Elem --> nzwawe E3:Elem --> amoc E4:Elem --> umugu E5:Elem --> william E6:Elem --> helen
Unifier #30
E1:Elem --> william E2:Elem --> nzwawe E3:Elem --> amoc E4:Elem --> umugu E5:Elem --> taylor E6:Elem --> helen
Unifier #31
E1:Elem --> taylor E2:Elem --> umugu E3:Elem --> amoc E4:Elem --> nzwawe E5:Elem --> william E6:Elem --> helen
Unifier #32
E1:Elem --> william E2:Elem --> umugu E3:Elem --> amoc E4:Elem --> nzwawe E5:Elem --> taylor E6:Elem --> helen
Unifier #33
E1:Elem --> taylor E2:Elem --> nzwawe E3:Elem --> amoc E4:Elem --> umugu E5:Elem --> helen E6:Elem --> william
Unifier #34
E1:Elem --> helen E2:Elem --> nzwawe E3:Elem --> amoc E4:Elem --> umugu E5:Elem --> taylor E6:Elem --> william
Unifier #35
E1:Elem --> taylor E2:Elem --> umugu E3:Elem --> amoc E4:Elem --> nzwawe E5:Elem --> helen E6:Elem --> william
Unifier #36
E1:Elem --> helen E2:Elem --> umugu E3:Elem --> amoc E4:Elem --> nzwawe E5:Elem --> taylor E6:Elem --> william

Note that this result is quite impressive, since it cannot be obtained using
modern multi-paradigm languages such as Curry [25] and could not be obtained
using the search command of Full Maude 2.6 with the encoding of [16]. This
example requires many relevant features: (i) constraint solving, (ii) logical vari-
ables, (iii) order-sorted types, (iv) conditional equations, (v) semantics of values,
(vi) strict equality, (vii) associativity for lists, and (viii) associativity, commuta-
tivity, and identity for multisets.

7 Conclusions

We have tried to illustrate how the new implementation of variant-based uni-
fication available in the most recent Maude 2.7.1 version is paving the way for
multi-paradigm programming in Maude. In [16], we considered the Missionaries
and Cannibals equational logic program of [21] as an example that could not
be specified in modern multi-paradigm languages such as Curry [25] but no rel-
evant execution results were included due to the preliminary implementation of
narrowing in Maude 2.6. In this paper we have updated the specification and
provided more relevant execution results by changing the focus from narrow-
ing with rules (i.e., symbolic reachability) into narrowing with variant equations
(i.e., equational unification).

42 S. Escobar

References

1. Alpuente, M., Ballis, D., Falaschi, M.: Transformation and debugging of functional
logic programs. In: Dovier, A., Pontelli, E. (eds.) A 25-Year Perspective on Logic
Programming. LNCS, vol. 6125, pp. 271–299. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14309-0 13

2. Antoy, S.: Evaluation strategies for functional logic programming. J. Symb. Com-
put. 40, 875–903 (2005)

3. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47(4),
776–822 (2000)

4. Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53(4), 74–85
(2010)

5. Arts, T., Zantema, H.: Termination of logic programs using semantic unification.
In: Proietti, M. (ed.) LOPSTR 1995. LNCS, vol. 1048, pp. 219–233. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60939-3 17

6. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-
state systems using narrowing. In: van Raamsdonk, F. (ed.) 24th International
Conference on Rewriting Techniques and Applications, RTA 2013. LIPIcs, Eind-
hoven, The Netherlands, 24–26 June 2013, vol. 21, pp. 81–96. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2013)

7. Clavel, M., et al.: Maude Manual (Version 2.7.1) (2016). http://maude.cs.illinois.
edu

8. Clavel, M., et al.: Unification and narrowing in Maude 2.4. In: Treinen [44], pp.
380–390

9. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

10. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some
algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3 22

11. Dershowitz, N.: Goal solving as operational semantics. In: International Logic Pro-
gramming Symposium, Portland, OR, pp. 3–17. MIT Press, December 1995

12. Durán, F., Eker, S., Escobar, S., Mart́ı-Oliet, N., Meseguer, J., Talcott, C.: Associa-
tive unification and symbolic reasoning modulo associativity in Maude. In: Rusu,
V. (ed.) WRLA 2018. LNCS, vol. 11152, pp. 98–114. Springer, Heidelberg (2018)

13. Durán, F., Eker, S., Escobar, S., Mart́ı-Oliet, N., Meseguer, J., Talcott, C.: Built-
in variant generation and unification, and their applications in Maude 2.7. In:
Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 183–192.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1 13

14. Durán, F., Eker, S., Escobar, S., Meseguer, J., Talcott, C.L.: Variants, unification,
narrowing, and symbolic reachability in Maude 2.6. In: Schmidt-Schauß [41], pp.
31–40

15. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of con-
ditional order-sorted rewrite theories. J. Log. Algebr. Program. 81(7–8), 816–850
(2012)

16. Escobar, S.: Functional logic programming in Maude. In: Iida, S., Meseguer, J.,
Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 315–
336. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54624-2 16

17. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using
narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-9 13

https://doi.org/10.1007/978-3-642-14309-0_13
https://doi.org/10.1007/978-3-642-14309-0_13
https://doi.org/10.1007/3-540-60939-3_17
http://maude.cs.illinois.edu
http://maude.cs.illinois.edu
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-32033-3_22
https://doi.org/10.1007/978-3-319-40229-1_13
https://doi.org/10.1007/978-3-642-54624-2_16
https://doi.org/10.1007/978-3-540-73449-9_13

Multi-paradigm Programming in Maude 43

18. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Log. Algebr. Program. 81(7–8), 898–928 (2012)

19. Fay, M.: First-order unification in an equational theory. In: Joyner, W.H. (ed.)
Proceedings of the 4th Workshop on Automated Deduction, Austin, Texas, USA,
pp. 161–167. Academic Press (1979)

20. Goguen, J., Meseguer, J.: Eqlog: equality, types and generic modules for logic pro-
gramming. In: DeGroot, D., Lindstrom, G. (eds.) Logic Programming, Functions,
Relations and Equations, pp. 295–363. Prentice-Hall, Englewood Cliffs (1986)

21. Goguen, J.A., Meseguer, J.: Equality, types, modules, and (why not?) generics for
logic programming. J. Log. Program. 1(2), 179–210 (1984)

22. Goguen, J.A., Meseguer, J.: Models and equality for logical programming. In:
Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987. LNCS, vol.
250, pp. 1–22. Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0014969

23. Hanus, M.: The integration of functions into logic programming: from theory to
practice. J. Log. Program. 19&20, 583–628 (1994)

24. Hanus, M.: Multi-paradigm declarative languages. In: Dahl, V., Niemelä, I. (eds.)
ICLP 2007. LNCS, vol. 4670, pp. 45–75. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-74610-2 5

25. Hanus, M.: Functional logic programming: from theory to Curry. In: Voronkov,
A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 123–168.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-1 6

26. Hanus, M.: Multi-paradigm languages. In: Gonzalez, T.F., Diaz-Herrera, J., Tucker,
A. (eds.) Computing Handbook, Third Edition: Computer Science and Software
Engineering, pp. 66:1–66:17. CRC Press (2014)

27. Hölldobler, S. (ed.): Foundations of Equational Logic Programming. LNCS, vol.
353. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0015791

28. Hullot, J.-M.: Canonical forms and unification. In: Bibel, W., Kowalski, R. (eds.)
CADE 1980. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980). https://doi.
org/10.1007/3-540-10009-1 25

29. Jouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM J. Comput. 15(4), 1155–1194 (1986)

30. Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Trans. Pro-
gram. Lang. Syst. 4(2), 258–282 (1982)

31. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

32. Meseguer, J.: Multiparadigm logic programming. In: Kirchner, H., Levi, G. (eds.)
ALP 1992. LNCS, vol. 632, pp. 158–200. Springer, Heidelberg (1992). https://doi.
org/10.1007/BFb0013826

33. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4 26

34. Meseguer, J.: From OBJ to Maude and beyond. In: Futatsugi, K., Jouannaud, J.-
P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060, pp.
252–280. Springer, Heidelberg (2006). https://doi.org/10.1007/11780274 14

35. Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. Theor.
Comput. Sci. 672, 1–35 (2017)

36. Meseguer, J.: Symbolic reasoning methods in rewriting logic and Maude. In: Moss,
L.S., de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018. LNCS, vol. 10944, pp.
25–60. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57669-4 2

37. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program.
154, 3–41 (2018)

https://doi.org/10.1007/BFb0014969
https://doi.org/10.1007/978-3-540-74610-2_5
https://doi.org/10.1007/978-3-540-74610-2_5
https://doi.org/10.1007/978-3-642-37651-1_6
https://doi.org/10.1007/BFb0015791
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1007/BFb0013826
https://doi.org/10.1007/BFb0013826
https://doi.org/10.1007/3-540-64299-4_26
https://doi.org/10.1007/11780274_14
https://doi.org/10.1007/978-3-662-57669-4_2

44 S. Escobar

38. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its
application to verification of cryptographic protocols. High.-Order Symb. Comput.
20(1–2), 123–160 (2007)

39. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robin-
son, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 371–443.
Elsevier and MIT Press (2001)

40. Reddy, U.S.: Narrowing as the operational semantics of functional languages. In:
Proceedings of the 1985 Second Symposium on Logic Programming, Boston, Mas-
sachusetts, 15–18 July 1985, pp. 138–151. IEEE Computer Society Press (1985)

41. Schmidt-Schauß, M. (ed.): Proceedings of the 22nd International Conference on
Rewriting Techniques and Applications, RTA 2011. LIPIcs, Novi Sad, Serbia, 30
May–1 June 2011, vol. 10. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2011)

42. Slagle, J.R.: Automated theorem-proving for theories with simplifiers commutativ-
ity, and associativity. J. ACM 21(4), 622–642 (1974)

43. TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge
(2003)

44. Treinen, R. (ed.): RTA 2009. LNCS, vol. 5595. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02348-4

45. Tushkanova, E., Giorgetti, A., Ringeissen, C., Kouchnarenko, O.: A rule-based
system for automatic decidability and combinability. Sci. Comput. Program. 99,
3–23 (2015)

46. Vigneron, L.: Automated deduction techniques for studying rough algebras. Fun-
damenta Informaticae 33(1), 85–103 (1998)

https://doi.org/10.1007/978-3-642-02348-4
https://doi.org/10.1007/978-3-642-02348-4

MUnit: A Unit Framework for Maude

Adrián Riesco(B)

Facultad de Informática, Universidad Complutense de Madrid,
Madrid, Spain

ariesco@fdi.ucm.es

Abstract. Unit testing is a widely-used methodology for checking
whether the units of a given program work as expected. Maude is a
high performance rewriting engine based on rewriting logic. Although
Maude has been used to implement complex specifications and tools, it
lacks the testing tools usually supported by other languages. In this work
we present MUnit, a unit testing framework for Maude that takes into
account its main features to define meaningful unit tests. MUnit extends
Full Maude and supports functional and system modules, as well as spec-
ifications using the Loop Mode and, in particular, Full Maude.

Keywords: Unit testing · Maude · Loop Mode · Full Maude

1 Introduction

Debugging and testing conform one of the most important stages of the soft-
ware developing cycle, requiring up to the 50% of the time [5]. Among the best
known testing methodologies we find property-based testing [8], conformance
testing [23], and unit testing [22]. In particular, unit testing is a well-known test-
ing method for checking whether a unit behaves as expected. In general, unit
tests consist of the unit applied to ground arguments and an expected value;
the test passes if both values are equal, although equality can be substituted
by a more general notion in particular cases. In imperative languages units usu-
ally refer to methods/calls, although other units can be considered depending
of the target language. Finally, note also that in unit testing fulfilling the target
coverage [3] is in charge of the user.

Maude [10] is a logical framework and high-performance rewriting engine.
Maude modules correspond to specifications in rewriting logic [15], a logic that
allows specifiers to represent many models of concurrent and distributed sys-
tems. This logic is an extension of membership equational logic [4], an equational
logic that, in addition to equations, allows the statement of membership axioms
characterizing the elements of a sort.

Research partially supported by MINECO Spanish project TRACES (TIN2015-
67522-C3-3-R) and Comunidad de Madrid project N-Greens Software-CM
(S2013/ICE-2731).

c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 45–58, 2018.
https://doi.org/10.1007/978-3-319-99840-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_3&domain=pdf

46 A. Riesco

Maude modules are executable rewriting logic specifications. Maude func-
tional modules [10, Chap. 4] are executable membership equational specifications
that allow the definition of sorts, subsort relations between sorts, operators for
building values of these sorts, giving the sorts of their arguments and result,
and which may have attributes such as being associative or commutative, for
example; memberships asserting that a term has a sort; and equations assert-
ing that terms are equal. Both memberships and equations can be conditional.
Maude system modules [10, Chap. 6] are executable rewrite theories. A system
module can contain all the declarations of a functional module and, in addition,
declarations for rules and conditional rules. Finally, Full Maude [10, Part II] is
an extension of Maude written in Maude itself. Full Maude is built on top of the
LOOP-MODE module [10, Chapter 17]. This module allows input/output interac-
tion by means of the [, ,] operator, which builds terms of sort System and
where the first argument corresponds to the input introduced by the user, which
must be enclosed in parentheses to be recognized; the second one is a term of
sort State that can be defined by the user for each application; and the third
one the output shown to the user.

Maude has been used to implement tools such as termination and confluence
checkers, theorem provers, real-time extensions, etc. and to specify a wide range
of systems, including bio informatics, network protocols, and mobile languages,
among many others.1 However, Maude only provides a limited property-based
testing tool [19], which supports functional and system modules. This tool is
implemented using narrowing [9], which does not support some theories, in par-
ticular those using conditional equations/rules. The transformation to overcome
this problem makes the process slower, so the tool lacks the efficiency required to
work with large specifications. Since the implementation of MUnit directly uses
Maude (meta)commands, the time required to test any Maude specification will
be similar to the time required to execute it. More generally, a unit framework
is also useful (i) to test functions that do not have associated properties, (ii)
to test particular inputs that the user knows might lead to errors, and (iii) to
quickly check whether changes in the implementation are correct with respect
to a test suite.

In this paper we present MUnit, a unit test framework for Maude that sup-
ports functional and system modules, as well as applications on top of the
LOOP-MODE module (using both input/output facilities and in particular Full
Maude features, such as object-oriented modules). Supporting Full Maude appli-
cations is particularly interesting for a number of reasons: (i) they are difficult
to test, especially those commands producing “side effects” in the internal state
of the loop; (ii) in contrast to other Maude applications that are used to analyze
particular systems and produce a results, Full Maude applications are designed
for being used by other users so, in addition to be thoroughly tested, it is inter-
esting to add the errors reported by users in an easy way; (iii) most of them are
large, complex software systems, like Full Maude itself, Real-Time Maude [17],
the Maude Formal Environment [11], and the CafeOBJ environment [20], so

1 See http://maude.cs.illinois.edu/ for a comprehensive list of Maude projects.

http://maude.cs.illinois.edu/

MUnit: A Unit Framework for Maude 47

a well established testing methodology would help to maintain them; and (iv)
there are many applications of this kind; actually, any application requiring I/O
interaction or manipulating the database usually extends Full Maude.

The rest of the paper is organized as follows: Sect. 2 presents the main fea-
tures of MUnit, while Sect. 3 illustrates these features by means of an example.
Section 4 outlines the implementation of the tool. Section 5 discusses the related
work. Finally, Sect. 6 concludes and proposes some lines of future work to improve
the tool. The source code of MUnit, examples, and more information is available
at https://github.com/ariesco/MUnit.

2 MUnit

In this section we present the tests available in MUnit. We distinguish the dif-
ferent tests depending on the module under test in order to describe their par-
ticularities.

Given that functional modules are confluent and terminating, we can consider
that function calls are units that must be reduced to a particular value, and
hence equality is enough for checking correctness. Moreover, functional modules
support the definition of membership axioms stating the elements of a sort, so
we need units to test whether a term has a given sort:

– The test assertEqual(f(t1, ..., tn), t) passes if the function f, when
applied to the ground terms t1, ...,tn, is reduced to the same normal
form as t (modulo axioms). Similarly, the test assertDifferent(f(t1, ...,
tn), t) passes if the normal form of f(t1, ..., tn) is different from the
normal form of t (modulo axioms). Note that t might not be a normal form;
for example, it might be a constant defined to ease the testing process.2 Note
also that these tests are commutative, so users can define them according to
their preferences.

– MUnit provides shortcuts for Boolean tests. The test assertTrue(f(t1,
..., tn)) (respectively, assertFalse(f(t1, ..., tn))) passes if the term
is reduced to true (respectively, false).

– We can also test whether membership axioms are properly defined by check-
ing the sort of a given term by using assertSort(t,s), which passes if the
normal form of the term t has exactly sort s. MUnit also provides a test
assertLeqSort(t, s), which passes if the sort of the normal form of t is
less or equal to s.

When dealing with system modules we face specifications potentially non-
terminating and non-confluent. For this reason the units for these modules assert
reachability rather than equality. Note that object-oriented modules are consid-
ered as standard system modules by MUnit.
2 Likewise, if f is not a function but a constructor and we are interested in testing
how the terms t1, ..., tn behave the test would compute the normal form and
compare it with the normal form of t. However, this test would not follow completely
the philosophy of Maude unit tests as we have defined it.

https://github.com/ariesco/MUnit

48 A. Riesco

– The test assertReachable(t, t’) passes if the term t’ is reachable from
t within an unbounded number of steps. Similarly, assertReachableBnd(t,
t’, bnd) adds information about the bound (bnd) in the number of steps.

– Usually we are not interested on reaching a specific term but on a solu-
tion matching a pattern or just in the lack of solutions. Taking this consid-
eration into account, the test hasSolution(t, pat, mode, bound, cond)
passes when there exists at least one reachable term that, starting from t,
matches the pattern pat and fulfills the condition cond in at most bound
(either unbounded or a natural number) steps. The mode can be either *,
for 0 or more steps; +, for 1 or more steps; and !, for final states. Similarly,
the test noSolution(t, pat, mode, bound, cond) passes when no solution
was expected.

Finally, we present how to test applications extending the Loop Mode. The
basic idea for testing this kind of applications is essentially the same that we have
discussed above: testing those units that will be used during the input/output
process. However, the internal state of the loop makes some tests difficult to
define. For this reason, MUnit provides instructions to start an inner loop and
execute commands on it; the user can then perform tests on the intermediate
states with the tests above. The instructions for manipulating the inner loop
are:

– loop(initial-state). This instruction starts the MUnit inner loop by
rewriting initial-state, which must have sort System. For example, we
would use loop(init) to start a Full Maude session.

– command(comm). This instruction introduces the command comm into the first
element of the loop and rewrites the thus obtained term to evolve the system.
For example, once started Full Maude with the command above we would
use command(select NAT .) to change the default module to NAT.

Although it is possible to define tests while executing commands, right now
we have no means to access the attributes defined in the state (the second
argument of the loop). MUnit makes attributes available by using @ before the
attribute name. For example, given that the Full Maude explicit database is
identified by db we would use @db to access it. We can use it to ensure that the
database is well formed after introducing new modules, to analyze the modules
it contains, and to test functions that require it. In particular, we would check
that it is well formed by using assertSort(@db, Database), that indicates that
the database has sort Database (and hence it is not defined at the kind level,
which indicates an error occurred). We show a detailed example in the following
section.

3 Running Example

In this section we present how to use the tool by using a simple inventory speci-
fication. Note that the tests shown here are used for illustrating the tool; discus-
sions about coverages are beyond the scope of this section. The complete source
code of the example is available at https://github.com/ariesco/MUnit.

https://github.com/ariesco/MUnit

MUnit: A Unit Framework for Maude 49

We first define binary search trees in module BSTREE to store the information
about the stock. We will use the product name (a String) as key and a Pair of
the form < QTY, PR > as value, where QTY stands for the quantity of the product
and PR for its price. Then, we define the sort BSTree for binary search trees and
BST? for trees that do not fulfill the appropriate property. Hence, the empty tree
(mt) has sort BSTree, while the constructor for bigger trees builds terms of sort
BSTree?:

fmod BSTREE is

pr STRING .

sort BSTree BSTree? Pair .

subsort BSTree < BSTree? .

op <_,_> : Nat Nat -> Pair [ctor] .

op mt : -> BSTree [ctor] .

op _[_,_]_ : BSTree? String Pair BSTree? -> BSTree? [ctor] .

We define a membership axiom to assign the sort BSTree. Given that the left
and the right trees have the appropriate sort (i.e., the variables L and R have
sort BSTree), we check with the auxiliary function correctOrder that the key
in the root is appropriately sorted with respect to the children:

cmb L [S, P] R : BSTree

if correctOrder(L, S) /\ correctOrder(S, R) .

We also specify functions to check whether an item is in the tree (inStock);
to insert a new item (insert); to delete an item from the tree (delete); and to
update the tree by subtracting one unit of the given item (oneSold):

op inStock : BSTree String -> Bool .

op insert : BSTree String Pair -> BSTree .

op delete : BSTree String -> BSTree .

op oneSold : BSTree String -> BSTree .

However, we introduced an error in the definition of insert: we did not
define the case when the element being introduced is already in the tree:

eq insert(mt, S, P) = mt [S, P] mt .

ceq insert(L [S, P] R, S’, P’) = insert(L, S’, P’) [S, P] R

if S’ < S .

ceq insert(L [S, P] R, S’, P’) = L [S, P] insert(R, S’, P’)

if S < S’ .

*** eq insert(L [S, P] R, S, P’) = L [S, combine(P, P’)] R .

...

endfm

50 A. Riesco

Finally, we define a module FTEST with constants for testing. Tree treeOK1
is a binary search tree with three elements, a, c, and e; treeOK2 consists of
treeOK2 after introducing the item b; treeOK3 is treeOK1 after removing the
item in the root, c; treeOK4 has one unit of c less than treeOK1; and treeError
is a tree with unordered keys:

fmod FTEST is

pr BSTREE .

ops treeOK1 treeOK2 treeOK3 treeOK4 treeError : ~> BSTree .

eq treeOK1 = (mt ["a", < 1, 3 >] mt) ["c", < 2, 7 >]

(mt ["e", < 3, 5 >] mt) .

eq treeOK2 = (mt ["a", < 1, 3 >] (mt ["b", < 1, 1 >] mt))

["c", < 2, 7 >] (mt ["e", < 3, 5 >] mt) .

eq treeOK3 = (mt ["a", < 1, 3 >] mt)["e", < 3, 5 >] mt .

eq treeOK4 = (mt ["a", < 1, 3 >] mt) ["c", < 1, 7 >]

(mt ["e", < 3, 5 >] mt) .

eq treeError = (mt ["a", < 1, 3 >] mt) ["d", < 1, 1 >]

(mt ["c", < 2, 7 >] mt) .

endfm

We test the specification as follows:

– We first check types by using assertLeqSort and assertSort. We can check
both the type of particular terms and the sort of the term obtained after
applying a function. In our example we check that treeOK1 has sort BSTree?
and least sort BSTree. On the other hand, the least sort of treeError is
BSTree?, while inserting in a BSTree should return another BSTree. Note that
we test how insert behaves with a tree that does not contain the element
being inserted (treeOK1) and a tree that contains it (treeOK2).

– Then, we check the obtained results. We use assertTrue and assertFalse
to test the Boolean function inStock, while we use assertEqual to indicate
how insert, delete, and oneSold should work when applied to treeOK1.

(munit FTEST is

assertLeqSort(treeOK1, BSTree?)

assertSort(treeOK1, BSTree)

assertSort(treeError, BSTree?)

assertSort(insert(treeOK1, "b", < 1, 1 >), BSTree)

assertSort(insert(treeOK2, "b", < 1, 1 >), BSTree)

assertTrue(inStock(treeOK1, "a"))

assertFalse(inStock(treeOK1, "f"))

assertEqual(insert(treeOK1, "b", < 1, 1 >), treeOK2)

assertEqual(delete(treeOK1, "c"), treeOK3)

assertEqual(oneSold(treeOK1, "c"), treeOK4)

endu)

MUnit: A Unit Framework for Maude 51

When executed, the tool indicates one of the test cases failed. In this case
the insertion is not typed as expected because the insert function was not
completely reduced, since we did not define one of the equations. The output
shows how the reduction stopped when facing the missing case:

12 test cases were executed.

1 failures.

assertSort(treeOK1,BSTree) passed.

assertLeqSort(treeOK1,BSTree?) passed.

assertSort(treeError,BSTree?) passed.

assertSort(insert(treeOK1,"b",< 1,1 >),BSTree) passed.

assertSort(insert(treeOK2,"b",< 1,1 >),BSTree) failed.

The normal form is (mt["a",< 1,3 >] insert(mt["b",< 1,1 >]mt,"b",< 1,1 >))

["c",< 2,7 >](mt["e",< 3,5 >]mt)

Its sort is BSTree?

...

We assume we fix the trees and continue with the example. We use the
module above to simulate a shop where buyers try to purchase items and sellers
provide new products to the shop. The module SHOP defines the sort People as
a set of Person:

mod SHOP is

pr BSTREE .

sorts Person People Shop .

subsort Person < People .

op nobody : -> People [ctor] .

op __ : People People -> People [ctor assoc comm id: nobody] .

Then, we define sellers and buyers. Buyers only take as argument the identi-
fier of the product they want to buy (we assume they buy one unit), while sellers
have the identifier of the item, the number of units, and the price they ask for
the product. The shop consists of a set of people, the binary search tree storing
the available products, and the current money:

*** Product Quantity Price

op seller : String Nat Nat -> Person [ctor] .

op buyer : String -> Person [ctor] .

op [_|_,_] : People BSTree Nat -> Shop [ctor] .

Rule buyer removes a buyer from the people once he/she buys the item indi-
cated by its argument, given it is available; the shop uses the function oneSold

52 A. Riesco

to decrease the quantity of the product and the money of the shop is updated.
In turn, the shop obtains more products from sellers with the rule seller. This
rule indicates that, if the shop has enough money, it adds the products to the
inventory, asking buyers to get it for twice the price it paid to the seller:

crl [buyer] : [buyer(S) P | T, M]

=> [P | oneSold(T, S), M + PR]

if inStock(T, S) /\

PR := getPrice(T, S) .

crl [seller] : [seller(S, Q, PR) P | T, M]

=> [P | insert(T, S, < Q, 2 * PR >), sd(M, PR * Q)]

if M >= PR * Q .

endm

The module STEST defines an initial shop with two sellers, offering items a
and b, a buyer who wants an item a, and 10 as initial money. Note that two
different final states are possible: if the shop takes a first it will be able to sell
it and then it will have money to obtain b, while buying b first would prevent
further rewrites:

mod STEST is

pr FTEST .

pr SHOP .

op init-shop : -> Shop .

eq init-shop = [seller("a", 1, 5) seller("b", 1, 5) buyer("a") | mt, 10] .

endm

The tests for this module check that it is possible to reach a final state where
nobody remains in the shop and it has 5 as money and "b" in stock, but it is
not possible to reach a state where the money is 20:

(munit STEST is

hasSolution(init-shop, ([nobody | T:BSTree, 5]), !, unbounded,

inStock(T:BSTree, "b"))

noSolution(init-shop, ([P:People | T:BSTree, 20]), +, unbounded, nil)

endu)

Instead of simulating the shop we can implement an input/output application
extending the Loop Mode for managing it. We would define two commands for
buying and adding products:

op sold_ : @Token@ -> @ShopCommand@ [ctor] .

op add_,_,_ : @Token@ @Token@ @Token@ -> @ShopCommand@ [ctor] .

as well as two attributes for storing the current tree and money:

op tree :_ : BSTree -> Attribute [ctor] .

op money :_ : Nat -> Attribute [ctor] .

MUnit: A Unit Framework for Maude 53

The rules dealing with these commands check whether the conditions hold
(e.g. there is enough money or the item required is available, respectively) and
update the tree and the money accordingly, showing the corresponding message.
We show the rule for add, which contains a bug and updates the money erro-
neously (it is decreased when no units are available and unchanged otherwise);
we refer to the webpage above for details about the rest of rules and the correct
implementation.

crl [add] :

< O : SDC | input : (’add_‘,_‘,_[’token[T], ’token[T’],

’token[T’’]]), output : nil, tree : BST, money : M, AtS >

=> < O : SDC | input : nilTermList, output : QIL, tree : BST’,

money : M’, AtS >

if Q := downQid(T) /\

S := string(Q) /\

QTY := rat(string(downQid(T’)), 10) /\

PR := rat(string(downQid(T’’)), 10) /\

B := M >= QTY * PR /\

BST’ := if B

then insert(BST, S, < QTY, 2 * PR >)

else BST

fi /\

M’ := if B

then M *** Should be sd(M, QTY * PR)

else sd(M, QTY * PR) *** Should be M

fi /\

QIL := if B

then ’\n ’\! ’Database ’updated. qid(QTY) ’units ’of qid(S)

’added. ’\n

’It ’was ’bought ’at qid(PR) ’euros. ’\n

’It ’will ’be ’sold ’at qid(2 * PR) ’euros. ’\o ’\n

else ’\n ’\! ’\r ’Error: ’\o ’Not ’enough ’money. ’\n

fi .

In this case we test the specification by starting the loop and first checking
that we do not have a cake in the inventory and the value of money is 10. Then,
we add one cake and pay 5 for it (it will be sold at 10 later). Once the cake
has been introduced, we check that in fact the inventory has a cake and only 5
as money. Then, we indicate that we have sold the cake, hence checking that it
disappears from the inventory and we have a final amount of 15 in money:

(munit SHOP-INIT is

loop(init-shop)

assertFalse(inStock(@tree, "cake"))

assertEqual(@money, 10)

command(add cake, 1, 5)

assertTrue(inStock(@tree, "cake"))

54 A. Riesco

assertEqual(@money, 5)

command(sold cake)

assertFalse(inStock(@tree, "cake"))

assertEqual(@money, 15)

endu)

When executed, the tool indicates that the tests for @money fail. The first
one states that, after adding a cake, the money is 10 although the user expects
it to be 5. In the second case the money is 20, which was unexpected but makes
sense if we consider the money after introducing the cake was 10, so the user
would check the rule for add:

6 test cases were executed.

2 failures.

...

command (add cake,1,5) executed.

assertEqual(@money,5) failed.

First term reduced to 10

Second term reduced to 5

...

command (sold cake) executed.

assertEqual(@money,15) failed.

First term reduced to 20

Second term reduced to 15

...

4 Implementation

In this section, we present some details of the implementation of MUnit. The
source code of the tool is available at https://github.com/ariesco/MUnit.

MUnit extends Full Maude by defining a new type module and its correspond-
ing commands. Following the ideas in [13], the module MUNIT-SIGNATURE defines
the syntax of MUnit, which will be used later to parse the commands introduced
by the user (via its meta-representation in module META-MUNIT-SIGN). The mod-
ule MUNIT defines the rule for parsing the only available input in MUnit, MUnit
modules:

crl [munit] :

< O : MUDC | db : DB, input : (’munit_is_endu[T, T’]),

output : nil, AtS >

=> < O : MUDC | db : DB, input : nilTermList, output : printUR(UR),

AtS >

if UR := procMUnit(T, T’, DB) .

https://github.com/ariesco/MUnit

MUnit: A Unit Framework for Maude 55

This rule uses the auxiliary function procMUnit to parse the tests and returns
a UnitResult, which consists of a tuple indicating the number of tests that
passed and failed, a QidList with the information for the user, and the inner
loop:

op [_,_,_,_] : Nat Nat QidList Term -> UnitResult [ctor] .

The function procMUnit computes the module from the module expression,
initializes the loop, and uses the function procProps to traverse the tests in the
module and execute them:

op procProps : Module Term OpDeclSet Bool Database Term -> UnitResult .

ceq procProps(M, ’__[T, T’], VDS, B, DB, SYS) =

[N + N’, N1 + N1’, QIL QIL’, SYS’’]

if [N, N1, QIL, SYS’] := procProps(M, T, VDS, B, DB, SYS) /\

[N’, N1’, QIL’, SYS’’] := procProps(M, T’, VDS, B, DB, SYS’) .

Among all possible tests, we briefly present below how the inner loop is
updated. This inner loop consists of a meta-represented loop that is initialized
by the loop instruction and is later manipulated when a command instruction is
found. The equation below shows (a simplification of) how procProps evaluates
the command instruction given the current module, the instruction, and the cur-
rent loop. It first transforms, in the first two conditions, the command the user
wants to introduce into the loop from a list of quoted identifiers into a term.
Then, it uses the auxiliary function sysInput to introduce that term as the first
argument of the loop. Then, we use metaRewrite to execute the thus obtained
loop and generate the information that will be shown to the user. Finally, the
result is a tuple containing the tests that passed and failed (0 in both cases,
since this instruction is not a test), the message, and the updated loop. Note
that other rules are in charge of handling errors in this process.

ceq procProps(M, ’command[’bubble[T]], SYS) = [0, 0, QIL’, SYS’’]

if QIL := downQidList(T) /\

T’ := upTerm(QIL) /\

SYS’ := sysInput(SYS, T’) /\

SYS’’ := getTerm(metaRewrite(M, SYS’)) /\

QIL’ := ’\! ’command ’\b ’ ’‘(QIL ’‘) ’ ’\o ’\! ’executed. ’\o ’\n .

5 Related Work

The maturity of a programming language is, to an extent, related to its tool
support. In this way, mainstream languages (mostly imperative) have integrated
development environments where debuggers, test tools, integration tools, etc.
are integrated, while other languages have limited support of these tools. In fact,
as argued in [25], the application of declarative languages out of the academic
world is inhibited by the lack of convenient auxiliary tools. However, during
the last decades the distance in this subject between declarative and imperative

56 A. Riesco

languages has been reduced thanks to the implementation, among other tools, of
debuggers and testing tools adapted to the particular features of these languages.
We focus in this section in property-based testing and unit testing, widely used
in many declarative languages.

An important step in the field of testing was the development of
QuickCheck [14], a property-based testing tool for Haskell. Property-based test-
ing is a two-step technique: first, the user states some properties that the func-
tions under test must fulfill and where some of the inputs have been replaced
by so called generators for the corresponding data structures. These genera-
tors are used during the second step to build several inputs (usually several
hundreds) to check whether the property holds. Generators for un-structured
datatypes such as natural numbers usually just require to build random ele-
ments in a given range, while generators for structured datatypes such as lists
are built on top of the generators for their elements, including options for the
size of the data structure and the relation between elements.3 This simple phi-
losophy allows property-based testing tools to check properties on hundreds of
inputs in a short time, and experiments have shown that property-based testing
is in general as good as more complex testing techniques, so the QuickCheck
approach has been implemented in other declaratives languages such as Erlang
(PropEr [18] and QuviQ [2]), Scala (ScalaCheck [16]), Curry (EasyCheck [7]),
and Prolog (PrologCheck [1]), among many others. In contrast to these tools, the
Maude property-based generator tries to falsify the property using narrowing,
which allows the tool to find corner cases that can be missed by the tools above
but results in a less efficient implementation for big specifications.

Besides property-based testing, several languages support some kind of unit
testing. In particular, languages like Erlang (EUnit [6]), Scala (ScalaTest [24]),
Prolog (Plunit [26]), and Curry (CurryTest [12]) support this kind of tests. In
general, unit tests are used in these languages to state equality between terms.
However, the case of Prolog and Curry is interesting in our case because they
support non-determinism, just like Maude system modules. In their case they
require the user to indicate the set of possible solutions, so each of the solutions
are contained in the set.

It is also important to note that property-based testing and unit tests are
complementary, as illustrated by the number of languages supporting both
approaches. In general, while property-based testing is used to test the main
functions, which have associated properties, unit tests are (ideally) defined for
checking all functions, so changes in the implementation can be easily checked
when integrated.

6 Conclusions and Ongoing Work

We have presented a unit testing framework for Maude. It supports functional
and system modules, as well as extensions of the Loop Mode, in particular Full

3 Most of the tools also include specific strategies for corner cases, such as empty lists.

MUnit: A Unit Framework for Maude 57

Maude object-oriented modules and interactive tools. Since Full Maude exten-
sions are in general difficult to test and maintain, one of the main features of
MUnit is the support for this kind of applications.

We are currently working to extend MUnit modules with standard Maude
declarations. In this way users will be able to define constants and functions to
ease the testing process. It would be also interesting to identify tests and support
messages in them, so tests would carry information about its intended coverage.
It is also interesting to allow users to name tests, so complex tests can be easily
identified.

Finally, we are also interested on integrating unit testing and the Maude
declarative debugging [21]. Since declarative debugging asks questions about the
computation to the user to find the bug, it would generate unit tests that can
be later used. Likewise, some answers would be answered by unit tests, saving
time and effort to the user.

References

1. Amaral, C., Florido, M., Santos Costa, V.: PrologCheck – property-based testing
in prolog. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 1–17.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07151-0 1

2. Arts, T., Castro, L.M., Hughes, J.: Testing Erlang data types with QuviQ
QuickCheck. In: Teoh, S.T., Horváth, Z. (eds.) Proceedings of the 7th ACM SIG-
PLAN Workshop on ERLANG, pp. 1–8. ACM (2008)

3. Beizer, B.: Software Testing Techniques. Dreamtech, India (2002)
4. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in member-

ship equational logic. Theor. Comput. Sci. 236, 35–132 (2000)
5. Britton, T., Jeng, L., Carver, G., Cheak, P., Katzenellenbogen, T.: Reversible

debugging software. University of Cambridge-Judge Business School, Technical
report (2013)

6. Carlsson, R., Rémond, M.: EUnit: a lightweight unit testing framework for Erlang.
In: Proceedings of the 2006 ACM SIGPLAN Workshop on Erlang, p. 1. ACM
(2006)

7. Christiansen, J., Fischer, S.: EasyCheck — test data for free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78969-7 23

8. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
Haskell programs. In: ACM SIGPLAN Notices, pp. 268–279. ACM Press (2000)

9. Clavel, M., et al.: Maude Manual (Version 2.7), March 2015. http://maude.cs.
illinois.edu/w/images/1/1a/Maude-manual.pdf

10. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

11. Clavel, M., Durán, F., Hendrix, J., Lucas, S., Meseguer, J., Ölveczky, P.: The
maude formal tool environment. In: Mossakowski, T., Montanari, U., Haveraaen,
M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 173–178. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73859-6 12

12. CurryTest. https://www-ps.informatik.uni-kiel.de/currywiki/tools/currytest

https://doi.org/10.1007/978-3-319-07151-0_1
https://doi.org/10.1007/978-3-540-78969-7_23
http://maude.cs.illinois.edu/w/images/1/1a/Maude-manual.pdf
http://maude.cs.illinois.edu/w/images/1/1a/Maude-manual.pdf
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-73859-6_12
https://www-ps.informatik.uni-kiel.de/currywiki/tools/currytest

58 A. Riesco

13. Durán, F., Ölveczky, P.C.: A guide to extending Full Maude illustrated with the
implementation of Real-Time Maude. In: Roşu, G. (ed.) Proceedings of the 7th
International Workshop on Rewriting Logic and its Applications, WRLA 2008,
Electronic Notes in Theoretical Computer Science, vol. 238(3), pp. 83–102. Elsevier
(2009)

14. Hughes, J.: Software testing with QuickCheck. In: Horváth, Z., Plasmeijer, R.,
Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 183–223. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17685-2 6

15. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

16. Nilsson, R.: Scalacheck: The Definitive Guide. IT Pro, Artima Incorporated (2014)
17. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.

Higher-Order Symb. Comput. 20, 161–196 (2007)
18. Papadakis, M., Sagonas, K.: A PropEr integration of types and function specifi-

cations with property-based testing. In: Proceedings of the 2011 ACM SIGPLAN
Erlang Workshop, pp. 39–50. ACM Press (2011)

19. Riesco, A.: Using narrowing to test maude specifications. In: Durán, F. (ed.) WRLA
2012. LNCS, vol. 7571, pp. 201–220. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34005-5 11

20. Riesco, A., Ogata, K., Futatsugi, K.: A Maude environment for CafeOBJ. Formal
Aspects Comput. 29(2), 309–334 (2016)

21. Riesco, A., Verdejo, A., Mart́ı-Oliet, N., Caballero, R.: Declarative debugging of
rewriting logic specifications. J. Logic Algebraic Program. 81(7–8), 851–897 (2012)

22. Runeson, P.: A survey of unit testing practices. IEEE Softw. 23(4), 22–29 (2006)
23. Tretmans, J.: Conformance testing with labelled transition systems: implemen-

tation relations and test generation. Computer Netw. ISDN Syst. 29(1), 49–79
(1996)

24. Venners, B.: Scalatest 3.0.5 (2018). http://www.scalatest.org/
25. Wadler, P.: Why no one uses functional languages. SIGPLAN Not. 33(8), 23–27

(1998)
26. Wielemaker, J.: Prolog unit tests. http://www.swi-prolog.org/pldoc/doc for?

object=section(%27packages/plunit.html%27)

https://doi.org/10.1007/978-3-642-17685-2_6
https://doi.org/10.1007/978-3-642-34005-5_11
https://doi.org/10.1007/978-3-642-34005-5_11
http://www.scalatest.org/
http://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/plunit.html%27)
http://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/plunit.html%27)

Parameterized Programming
for Compositional System Specification

Óscar Mart́ın(B), Alberto Verdejo, and Narciso Mart́ı-Oliet

Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
{omartins,jalberto,narciso}@ucm.es

Abstract. Our overall goal is compositional specification and verifica-
tion in rewriting logic. In previous work, we described a way to compose
system specifications using the operation we call synchronous composi-
tion. In this paper, we propose the use of parameterized programming
to encapsulate and handle specifications: theories represent interfaces;
modules parameterized by such theories instruct on how to assemble the
parameter systems using the synchronous composition operation; the
implementation of the whole system is then obtained by instantiating
the parameters with implementations for the components. We show, and
illustrate with examples, how this setting facilitates compositionality.

1 Introduction

Our goal is to provide means for the compositional specification of systems in
rewriting logic [12]. In due time, also compositional verification will be addressed.
Compositional here is in the sense that, first, the design of a complex system is
split into simpler components; then, independent specifications are written for
each component; and, finally, they are assembled back to form a specification
of the whole complex system. In particular, we use Maude [4], a language and
system based on rewriting logic.

In our previous paper [10], we defined and studied an operation of syn-
chronous composition for rewriting logic specifications, and showed how it can be
used for assembling component specifications. In the present paper, we show how
parameterized programming fits in this setting, and provides convenient tools to
encapsulate and handle specifications.

To get a taste of what we have already accomplished in [10] and what is com-
ing ahead, let us begin with a very simple example. We want to model two clocks
that emit ticks. In principle, each is modeled as an autonomous process, but we
are interested in composing them so that their ticks are made simultaneous. The
simplest model of such a clock would contain just one rewrite rule:

rl [tick] : o => o .

Partially supported by Spanish MINECO project TRACES (TIN2015–67522–C3–3–
R), and Comunidad de Madrid program N-GREENS Software (S2013/ICE-2731).

c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 59–75, 2018.
https://doi.org/10.1007/978-3-319-99840-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_4&domain=pdf

60 Ó. Mart́ın et al.

We are using the syntax of Maude. The rule represents one transition, called
tick, looping on one state, called o. Given two clocks modeled in this way, say
Clock1 and Clock2, their synchronization can be given by a statement like this:

sync Clock1 || Clock2 on tick .

However, one of the clocks may be quite different:
rl [ticking] : a => b .
rl [doingNothingImportantRightNow] : b => a .

The transition of interest has now a different label, ticking, so that syncing
on tick is not valid any more. The sync on instruction can be adapted to the
new situation, but compositionality demands that a module can be internally
modified, or even replaced, with no changes needed in the rest of the system. A
way to achieve this is that each clock conforms to an interface on which the rest
of the system can rely. In our case, the interface needs only include a Boolean
property :

op isTicking : -> Ppty{Bool} .

This syntax is explained later. The point is that we require that each imple-
mentation of a clock provides a definition for the property isTicking with an
appropriate value for it at each state and transition. To that aim, the first clock
specification above needs to be extended with this:

eq isTicking @ tick = true .
eq isTicking @ o = false .

That is, the property is true while the transition tick is being run, false at the
state o. For the second clock, the definition is:

eq isTicking @ ticking = true .
eq isTicking @ G = false [owise] .

The keyword owise is short for otherwise, with the expected semantics; G is here
a variable ranging over states and transitions. Thus, the property is false at all
states and transitions except while the rule ticking is being run.

The remaining task is to specify a recipe, or blueprint, that, given two clock
implementations that conform to the interface, instructs on how to produce their
composition:

sync Clock1 || Clock2
on Clock1$isTicking = Clock2$isTicking .

The symbol $ is syntax to qualify a name with the system it belongs to. The
criterion for syncing (the on clause) involves properties, but no details from the
internals of the implementations. Compositionality is preserved in this way.

Our previous work showed the convenience and feasibility of compositional-
ity in rewriting logic. The present one shows how the constructs of parameter-
ized programming, described below, are well-suited to implement interfaces and
blueprints and, thus, to support the compositional specification of systems. We
begin by giving the needed background on parameterized programming and on
the synchronous composition in Sects. 2 and 3. Then, we describe their use for
compositional specification in Sect. 4. An example on the alternating bit protocol
follows in Sect. 5. Then, we discuss how modular verification fits in this setting
in Sect. 6. We finish with related work in Sect. 7 and conclusions in Sect. 8.

Parameterized Programming for Compositional System Specification 61

2 A Primer on Parameterized Programming and Maude

Parameterized programming is a way to support modularity in programs and
specifications. It was introduced in [2] as a feature in the design of the language
CLEAR and, then, in the family of OBJ languages, from which Maude took
it. Related concepts exist in other languages, bearing names such as generic
programming, parametric polymorphism, or type classes. Further information
can be found in [4, Sect. 8.3] and [6]. A quick overview follows, using an example
from [4].

(A note of warning is necessary. We have chosen to make intensive use of
parameterized programming, specially in the example in Sect. 5. It is theoreti-
cally plausible, and sticks to the developments in [6]. But not all of it is available
in Maude at present. Particularly, parameterized theories and views are only
partially implemented in Full Maude, and not at all in Core Maude. See [4] for
a description of the features actually available).

There are four kinds of code components in parameterized programming:
theories, parameterized modules, implementation modules, and views. A theory
contains syntactic and semantic requirements. The following describes a theory
of strict total orders, called STOSET:

th STOSET is
pr BOOL .
sort Elt .
op _<_ : Elt Elt -> Bool .
vars X Y Z : Elt .
eq X < X = false [nonexec] . --- irreflexive
ceq X < Z = true if X < Y /\ Y < Z [nonexec] . --- transitive
ceq X = Y if X < Y = false /\ Y < X = false [nonexec] . --- total

endth

The keywords th and endth enclose the definition of a theory. The keyword pr

is short for protecting: it is a way of importing a module into another. The
instruction pr BOOL imports the standard Maude module containing the specifi-
cation for the Booleans, that includes the sort Bool and the constants true and
false, all of which are used in the theory.

The two next lines of code contain the syntactic requirements for any module
that wants to be an STOSET: a sort Elt (for element) and an infix operator <. A
module that implements this theory needs not keep these exact names, Elt and
<, because name maps can be defined in views (see below).

The last part of the theory consists of three equations stating the semantic
requirements needed so that a module can be considered a strict total order.
(Text following three dashes are comments.) Each equation has, attached to it,
the nonexec attribute, which needs explanation. In Maude modules, equations
are used for functional-style programming. Terms are evaluated or reduced by
using equations from left to right. In contrast, equations in a theory are not
meant to be executed. They represent requirements and, thus, each entails a
proof obligation for the programmer who dares to claim that a certain module
implements the theory. The nonexec attribute prevents Maude from treating
them as usual equations.

62 Ó. Mart́ın et al.

Natural numbers, with their usual order, are a strict total order. They are
implemented in Maude in the standard module NAT that includes, in particular,
the sort Nat and the relation <. A view is the means to specify in which way an
implementation module conforms to a theory:

view NatAsStoset from STOSET to NAT is
sort Elt to Nat .
op _<_ to _<_ .

endv

Views are enclosed between the keywords view and endv. Here, NatAsStoset is
the name we have chosen for our view. The two lines in the body of the view
are name mappings. The expected sort Elt in STOSET is the one defined with the
name Nat in the module NAT. The operator’s name, <, is the same in the theory
and in the implementation. In cases like this, Maude allows to omit the mapping,
but we prefer to make it explicit for clarity. Remember that, after having written
the view, the obligation is still on us to show that the three equations in STOSET

are satisfied in module NAT. We go on considering it proved.
Complex data types, like search trees or lexicographically ordered pairs, can

be defined parametric on the underlying strict total order. For our illustrative
purposes, we code a parameterized module that includes just a function to return
the maximum of two given values:

fmod MAX{S :: STOSET} is
op max : S$Elt S$Elt -> S$Elt .
vars X Y : S$Elt .
eq max(X, Y) = if X < Y then Y else X fi .

endfm

The module is enclosed between the keywords fmod and endfm. It is called MAX and
requires a parameter that conforms to the theory STOSET; this formal parameter
is called S. The qualified name S$Elt is the way to refer to the sort Elt from
the theory S. This qualification is not needed (nor allowed) for operators (like
<), because the sorts of the arguments are enough for Maude to know which
operator is meant in each case.

Now we can issue Maude commands such as
reduce in MAX{NatAsStoset} : max(1, 2) .

and expect it to produce a 2. The argument used to feed MAX is not the name of
the module NAT, but the view NatAsStoset, that exhibits in which way NAT is an
STOSET.

3 A Primer on Synchronous Composition and Egalitarian
Maude

In standard rewriting logic there is no way to achieve compositional specifi-
cation. We mean specifying independent systems and, afterwards, specifying
in which way they must be composed and synced. The operation called syn-
chronous composition of systems was proposed and formalized in [10] by the same
authors of the present paper to mend that weakness. The informal example in the

Parameterized Programming for Compositional System Specification 63

introduction already showed an instance of this. In this section we explain the
main ingredients of our proposal, namely: egalitarianism and properties.

The convenience of putting states and transitions (or actions, or events) at the
same level has been claimed many times. See, for instance, the explanations and
examples in [8,13]. The specifications of systems and of their temporal properties
get clearer or easier when we can refer to both, states and transitions, or to
propositions defined on them. We have shown in [10] that the same is true
for establishing syncing criteria. However, it is often the case that transitions
are treated as second-class citizens. In rewriting logic, in particular, a state is
represented by a term of arbitrary complexity, while a rule receives just an atomic
label. A state has independent substance, while a transition is given by its origin
and destination states (and maybe the label of the rule that produces it).

In [10], we proposed egalitarian systems and structures. In them, transi-
tions have meaning by themselves, and the same transition can have several
origin and destination states. For example, if modeling a memory storage,
the updating of a given memory address A to whatever new value V ′ does not
depend on the value previously stored:

Each run of this system would involve a different origin state, but the transition
is the same in all cases.

Being egalitarian is not fundamental to our approach, and our developments
make sense in a state-only setting as well. But we find it convenient, and we
stick to it in this paper.

Syntactically, egalitarian Maude modules differ from standard ones in that
rule labels are given by complex terms, in the same way as states are. The choice
of label term and, in particular, the variables in it, have semantic consequences.
See [10,11] for more on this.

When the time comes for specifying criteria to sync components, we do not
want them to depend on the internal details of the implementation of the compo-
nent modules. Instead, we require and assume that properties are defined as an
extension to the component specification. Properties work like functions defined
at states and at transitions. Their return data type can be whatever is appro-
priate in each case. In a way, properties can be seen as a generalization of the
propositions used in labeled transition systems, and in Maude for LTL model
checking purposes. In the example from the introduction, isTicking is a Boolean
property, equivalent to a proposition.

In egalitarian Maude, syncing criteria are written as equalities between prop-
erties from two systems, like Clock1$isTicking = Clock2$isTicking or, in gen-
eral, S1$P1 = S2$P2. We use the $-syntax to show which property is meant in each
case. More than one such criteria can be required to form a composed system.
We refer again the reader to the example in Sect. 5.

64 Ó. Mart́ın et al.

Properties get values at states and at transitions, and it can very well happen
that a state in a component system needs to be visited at the same time as a
transition at the other. In the clocks example in the introduction, the state o

in the first clock needs to sync with both states in the second clock, a and b,
and to the non-ticking transition between them. Thus, in a composed system
we can rarely talk about pure states or pure transitions. We use the name stage
to refer to any combination of individual states and transitions from different
components.

Syncing can be used to ensure simultaneity, as for the clocks in the example
in the introduction. But it also allows to emulate the passing of data from one
process to another. Consider again a memory that has values stored at addresses.
The specification of this memory must include a wild non-determinism from each
state, allowing it to update any address to any value. But suppose that there
is another component modeling a processor, and that it is in need to store in
the memory a particular result of some internal computation. The memory’s
updating has to be synced to the processor’s action, requiring agreement on the
updating value and address. This reduces the possible choices of the memory
to just one as commanded by the processor. The result is equivalent to the
processor passing address and value to the memory. We make intensive use of
this technique in the example in Sect. 5.

Our proposals entail a proper extension of Maude’s language, so the execution
engine and other tools in the Maude system cannot be used on specifications
containing synchronous composition or egalitarian features. In [10] we present
an operation that we call split that transforms one of our specifications into
an equivalent one in standard Maude. The precise sense of that equivalence is
described in the cited paper. We include next a glimpse of the workings of the
split operation.

First, each rewrite rule is split into two unlabeled half rules, for example:

rl [ticking] : a => b .
rl a => ticking .

rl ticking => b .

split

In this way, each transition is transformed into a new state. Then, rules from
different modules are composed, with syncing criteria put in place:

rl o => tick .

rl a => ticking .

crl < o, a > => < tick, ticking >

if Clock1$isTicking @ tick

= Clock2$isTicking @ ticking .

‖

The condition in the resulting rule is the syncing criterion Clock1$isTicking =

Clock2$isTicking applied to the destination stages. In some cases, like in the
example, the condition is always true, and the rule can be simplified to a non-
conditional one.

Parameterized Programming for Compositional System Specification 65

4 Parameterized Programming for System Specification

We propose here the use of theories (in the parameterized-programming sense)
to specify interfaces to which component implementations must conform. Such
theories, therefore, contain declarations of properties and their sorts. Concrete
implementations must contain, in addition to the internal workings of the system,
the actual definitions for such properties and sorts. Then, composed systems are
specified in parameterized modules that take the components as parameters
and contain a sync on instruction. In this section, we fully formalize the clock
example from the introduction, and use it to guide the explanations.

To begin with, this is a module containing some declarations useful to code
atomic systems:

fmod STAGES is
sorts State Trans Stage .
subsorts State Trans < Stage .
op init : -> Stage .

endfm

Terms of sorts State and Trans represent states and transitions. The sort Stage

includes both of them. We have chosen the name init for the initial stage, which
can be a state, but also a transition (as if we start analyzing the system when
it is already doing something).

Whenever we need a property sort, we create it with this parameterized
module:

fmod PPTY{X :: TRIV} is
pr MAYBE{X} .
sort Ppty{X} .
sort Stage .
op _@_ : Ppty{X} Stage -> Maybe{X} .

endfm

There are several points here that may need explanation. The theory TRIV used
in the argument is defined in Maude as:

th TRIV is
sort Elt .

endth

That is, to conform to TRIV a module just needs to provide a sort (to replace
Elt). It is a way to pass a sort to a module. In this way, we can create properties
of any given sort.

The parameterized module MAYBE is built-in in Maude, although we use our
own slightly different definition:

fmod MAYBE{X :: TRIV} is
sort Maybe{X} .
subsort X$Elt < Maybe{X} .
op none : -> Maybe{X} .

endfm

Thus, the parameterized sort Maybe{X} includes all the values in the parameter
sort X$Elt plus a new element called none. This none element is often needed as
a dummy or special value for properties, as shown in the example in Sect. 5.

66 Ó. Mart́ın et al.

In the body of the module PPTY, the parameterized sort Ppty{X} is declared
as well as the sort Stage, and the infix operator @, that evaluates a property
at a stage and returns either a value in X$Elt or none. For example, we can
instantiate to PPTY{Bool}, using the built-in view Bool that maps Elt to the sort
Bool of Booleans. This would produce declarations for the sort Ppty{Bool} and
the appropriately typed operator @.

The following is our first example of a theory to be used as system interface,
namely, for clocks:

th CLOCK-IF is
pr PPTY{Bool} .
op isTicking : -> Ppty{Bool} .

endth

Thus, isTicking is a property that, when evaluated at a stage, produces (maybe)
a Boolean. We include -IF as a suffix to all names for interfaces. Thus, a clock
is anything able to inform us on whether it is ticking or not at each stage.

We can now specify how two clocks conforming to CLOCK-IF are composed
and synced:

emod TWO-SYNCED-CLOCKS-BP{Cl1 :: CLOCK-IF, Cl2 :: CLOCK-IF} is
sync Cl1 || Cl2

on Cl1$isTicking = Cl2$isTicking .
endem

We call this kind of modules blueprints, and give them names ending in -BP. The
instruction sync on is not standard Maude, but part of the egalitarian Maude
extension we intend to implement soon. Its semantics should be clear by now.

The blueprint module is enclosed between the keywords emod and endem. The
e stands for egalitarian. Blueprint modules must contain a sync on instruction,
and are not allowed to contain new rules, nor to tinker with Stage terms (like
producing new ones or identifying existing ones). Only atomic rewrite systems
have rules; a composed system evolves according to the rules of its atomic com-
ponents (or subcomponents) and the syncing criteria provided. The only code
allowed in a blueprint module, in addition to the sync on instruction, is what-
ever is needed to declare and define the properties of the composed system, in
case it is going to be used as a component in turn. Those properties must be
defined in terms of the properties of the components, and not relying on internal
implementation details. All these choices are meant to promote modularity in
specification and design.

It is time for concrete implementations. This is the simple clock from the
introduction, fully specified:

aemod CLOCK is
pr STAGES .
op o : -> State .
op tick : -> Trans .
rl [tick] : o => o .
eq init = o .

endaem

Terms of sort Trans are used as rule labels. Ground terms of sort Trans represent
transitions. Constructors for Trans need to be declared, as well as for State.

Parameterized Programming for Compositional System Specification 67

In this simple example rule labels are constants, but in general they can be
terms of any complexity, the same as for states.

The clock module is enclosed between the keywords aemod and endaem. The
a stands for atomic, that is, not composed, and the e stands for egalitarian.
These modules are very similar to standard system modules in Maude, the main
difference being, as already noted, that rule labels are terms of sort Trans.

That module models the inner workings of the clock, but does not conform
to the CLOCK_IF interface as yet. We fulfill this need by extending the module to
define the property:

aemod CLOCK-PPT is
pr CLOCK .
pr PPTY{Bool} .
op isTicking : -> Ppty{Bool} .
eq isTicking @ tick = true .
eq isTicking @ o = false .

endaem

We give property modules names ending in -PPT.
The needed view is now simple:

view Clock from CLOCK-IF to CLOCK-PPT is
op isTicking to isTicking .

endv

We have chosen the same name, isTicking, for the property defined in the imple-
mentation CLOCK-PPT and for the one declared in the interface CLOCK-IF, but it
certainly needs not be so, because name mappings are specified in the view.
Indeed, when two systems compose, it is common that the property on which
they must sync is seen in a different way from each side, and different names
are appropriate, like in, say, isMessageSent at one side and isMessageReceived

at the other.
The final implementation of the complete system is obtained by feeding

the blueprint with actual implementations of the components, that is, with the
expression TWO-SYNCED-CLOCKS-BP{Clock, Clock}.

Composed systems can also be used as implementations, conforming to an
interface. For instance, two clocks with simultaneous ticks can be considered and
used as a single clock. To that aim, the composed clock needs to inform about
its ticks:

emod TWO-SYNCED-CLOCKS-BP-PPT{Cl1 :: CLOCK-IF, Cl2 :: CLOCK-IF} is
pr TWO-SYNCED-CLOCKS-BP{Cl1, Cl2} .
pr PPTY{Bool} .
op areBothTicking : -> Ppty{Bool} .
var G : Stage .
eq areBothTicking @ G = isTicking @ Cl1(G) .

endem

A side effect of our synchronous composition operation is the definition of pro-
jection operators: Cl1(G) is the part of the stage G that belongs to the component
Cl1. Again, there is more on this in [10,11]. In this particular case, using Cl2

instead of Cl1 would do the same.

68 Ó. Mart́ın et al.

We claim that this can be used as a single clock:
view 2ClocksAsAClock{Cl1 :: CLOCK-IF, Cl2 :: CLOCK-IF}

from CLOCK-IF to TWO-SYNCED-CLOCKS-BP-PPT{Cl1, Cl2} is
op isTicking to areBothTicking .

endv

This is a parameterized view, valid for any pair of clock implementations Cl1

and Cl2. The following is a valid module expression for a system of 1+2 clocks:
TWO-SYNCED-CLOCKS-BP{Clock, 2ClocksAsAClock{Clock, Clock}}

5 Example: Alternating Bit Protocol

The alternating bit protocol, or ABP, is used to transmit messages on a lossy
channel, that is, a channel that can lose some of the messages it receives before
delivering them at the other side. According to ABP, a bit is attached to each
packet of information sent through the channel. The sender must keep on sending
the same packet with the same bit until it receives an acknowledgement from
the receiver with that same bit. Then, the sender starts sending the next packet
with the bit inverted. As also acknowledgements can be lost in the channel, the
receiver must keep on acknowledging until it receives a new message, with a
different bit, that suffices as proof that its acknowledgement was received and
processed by the sender.

We consider an ABP system as consisting of six components:

At the two ends there are a producer and a consumer, that do not care about
communication protocols. The sender and the receiver are the components that
implement the ABP. There are two channels: one for transmitting messages
originating in the producer; the other for transmitting acknowledgements. We
call message to whatever the producer wants to transmit to the consumer. The
pieces of information that are sent through a channel are called packets. It is the
sender’s task to transform each message into one or more packets; the receiver
has the inverse task. What precisely is a packet depends on the particular imple-
mentation of the protocol. In our implementation of ABP, we make the rather
unrealistic assumption that we can build channels capable of transmitting pack-
ets of whatever data type. Our implementation of channels is parametric on that
data type.

The six modules in our diagram are not all of the same nature. The producer,
the consumer, and the two channels can be seen as representing physical entities,
while the sender and the receiver may well be pieces of software running on some
of them. This difference, however, has no role in our specifications.

Parameterized Programming for Compositional System Specification 69

In the rest of this section we translate the diagram to interfaces and
blueprints, that is, to ths and emods. We are not interested here in the actual
implementations of the components (the aemods) but we include below the one
for the channels as an example. The complete code is described in detail in [11].

As explained in Sect. 3, properties can be used, in particular, to emulate value
passing through in and out ports. The direction of the arrows in the diagram
shows the use we intend to make of properties. But properties are not directional
in essence. Thus, it happens that the producer and the consumer conform to the
same interface:

th PROCESS-IF{Msg :: TRIV} is
pr PPTY{Msg} .
op msgMoving : -> Ppty{Msg} .

endth

We use the term moving to be agnostic about the direction followed by the
message, in or out. The expected value of msgMoving is the message being given
out by the producer, or taken in by the consumer. At any other moment, or
stage, when such movements are not taking place, the value of msgMoving has
to be none. The same behavior is expected from corresponding properties of the
sender and the receiver, to be discussed later. This fulfills the need of value
passing (message passing, in this case) and also achieves simultaneity of actions,
because only stages related to value passing have msgMoving different to none.

We have made this interface (and others) parametric on the sort of messages
(or packets), so that it is valid, no matter what the producer and the consumer
need to interchange. Thus, we are using parameterized programming in two ways:
the standard use, with theories like TRIV, and the interface use, like PROCESS-IF.

The two pieces that implement the ABP, sender and receiver, also share
interface:

th PROTOCOL-IF{Msg :: TRIV, Pck2Chnl :: TRIV, PckFChnl :: TRIV} is
pr PPTY{Msg} + PPTY{Pck2Chnl} + PPTY{PckFChnl} .
op procMsgMoving : -> Ppty{Msg} .
op pckLeaving2Chnl : -> Ppty{Pck2Chnl} .
op pckComingFChnl : -> Ppty{PckFChnl} .

endth

A protocol accepts three arguments: the sort of the messages it receives from the
producer or delivers to the consumer, the sort of the packets it sends through
the channel, and the sort of the packets it receives from the other channel. Also,
there are three properties needed in a protocol, that correspond to the three
arrows that arrive to or depart from the sender and the receiver in the diagram.
This interface does not presuppose any particular relation between messages and
packets, so that it is valid for different protocols. In our implementation of ABP,
there are two kinds of packets: message packets, that contain a message and the
alternating bit; and acknowledgement packets, whose only relevant information
is the alternating bit. Implementations of senders and receivers instantiate each
parameter appropriately.

70 Ó. Mart́ın et al.

Finally, the interface for the channels:
th CHANNEL-IF{Pck :: TRIV} is

pr PPTY{Pck} .
op pckComing pckLeaving : -> Ppty{Pck} .

endth

It is parametric on the sort of packets. The two properties have the meaning
that can be expected from their names. As always, interfaces are independent
of internal behavior: an implementation of channels that transmit a packet at a
time is as valid as one able to keep a queue of packets to be delivered in turn.

The implementation of a channel is rather straightforward. We include it
next, particularly to illustrate the way properties are defined. A channel can
just accept a packet, deliver it, or lose it:

aemod CHANNEL{Pck :: TRIV} is
pr STAGES .
pr MAYBE{Pck} .
subsort Maybe{Pck} < State .
ops acceptingPck deliveringPck : Pck$Elt -> Trans .
op losingPck : -> Trans .
var P : Pck$Elt .
crl [acceptingPck(P)] : none => P if “P is a possible packet” .
rl [deliveringPck(P)] : P => none .
rl [losingPck] : P => none .
eq init = none .

endaem

The condition for the first rule presents some subtleties that we prefer to avoid
here. Based on that implementation, we declare and define properties:

aemod CHANNEL-PPT{Pck :: TRIV} is
pr CHANNEL{Pck} .
pr STAGES .
pr PPTY{Pck} .
op pckComing pckLeaving : -> Ppty{Pck} .
var P : Pck$Elt .
var G : Stage .
eq pckComing @ acceptingPck(P) = P .
eq pckComing @ G = none .
eq pckLeaving @ deliveringPck(P) = P .
eq pckLeaving @ G = none .

endaem

We claim that our implementation is indeed a channel, that is, that it conforms
to CHANNEL-IF:

view Channel{Pck :: TRIV}
from CHANNEL-IF{Pck}
to CHANNEL-PPT{Pck} is
op pckComing to pckComing .
op pckLeaving to pckLeaving .

endv

Instead of composing all our six components at once, we prefer to encapsulate
the sender, the receiver, and the two channels, to produce a communication

Parameterized Programming for Compositional System Specification 71

system to which a producer and a consumer can be attached later. So this is the
blueprint for a communication system:

emod COMM-SYSTEM-BP
{ Sndr :: PROTOCOL-IF{Msg :: TRIV,

MsgPacket :: TRIV,
AckPacket :: TRIV},

MsgChnl :: CHANNEL-IF{MsgPacket :: TRIV},
AckChnl :: CHANNEL-IF{AckPacket :: TRIV},
Rcvr :: PROTOCOL-IF{Msg :: TRIV,

AckPacket :: TRIV,
MsgPacket :: TRIV}

} is
sync Sndr || MsgChnl || AckChnl || Rcvr

on Sndr$pckLeaving2Chnl = MsgChnl$pckComing
/\ MsgChnl$pckLeaving = Rcvr$pckComingFChnl
/\ Rcvr$pckLeaving2Chnl = AckChnl$pckComing
/\ AckChnl$pckLeaving = Sndr$pckComingFChnl .

endem

The list of arguments is long, but not difficult to grasp. There are four arguments,
one for each component system. Sender and receiver conform to the PROTOCOL-IF

interface; the two channels to CHANNEL-IF. Each of these interfaces is given by
a parameterized theory, and we need to give formal names to their parameters.
Coincidence of names is used to make explicit the sorts that are shared between
different components. For instance, the same Msg is a parameter of both the
sender Sndr and the receiver Rcvr. The four syncing criteria correspond closely
to the four arrows joining these components in the diagram at the beginning of
this section. Each criterion states that values that leave a component come to
another. As explained before, qualification with the $-syntax allows disambigua-
tion for property names.

This COMM-SYSTEM-BP is still a quite general recipe, probably useful to imple-
ment many acknowledgement-based communication protocols. In our final imple-
mentation of ABP, the only free choice left is the message sort given by the
parameter Msg; packets are built from it by adding the alternating bit. Thus, an
ABP communication system is obtained like this:

emod ABP-SYSTEM{Msg :: TRIV} is
pr COMM-SYSTEM-BP { AbpSender{Msg,

Packet{Msg, Bool},
Packet{Ack, Bool}},

Channel{Packet{Msg, Bool}},
Channel{Packet{Ack, Bool}},
AbpReceiver{Msg,

Packet{Ack, Bool},
Packet{Msg, Bool}} } .

endem

A few remarks are needed on the views used and the modules they refer to. The
sender and the receiver work differently and need independent implementations,
with views AbpSender and AbpReceiver. But the two channels work the same,
so that they can share a single implementation and view, with their parame-
ter instantiated to transmit either message packets or acknowledgement ones.

72 Ó. Mart́ın et al.

The view Packet refers to a module used to build a packet from two elements,
one from each of its argument sorts.

Interestingly, any such composed system can be viewed as a channel in itself—
a kind of trustworthy channel. Hiding some boring parts:

view CommSystemAsChannel{Msg :: TRIV} is
from CHANNEL-IF{Msg}
to COMM-SYSTEM-BP-PPT{Sndr..., MsgChnl..., AckChnl..., Rcvr...} is
op pckComing to msgMovingSndr .
op pckLeaving to msgMovingRcvr .

endv

This is assuming that two properties have being declared and defined in an
omitted module COMM-SYSTEM-BP-PPT extending COMM-SYSTEM-BP.

6 Guarantees, Assumptions, and Compositional
Verification

A lossy channel and a trustworthy channel are not the same thing. Syntactically,
they conform to the same interface, but their behaviors are different. In the
same way that we need to include nonexec equations in the theory STOSET to
make it actually represent strict total orders, we need a way to specify the
expected behavior of systems. And, while equations are appropriate for algebraic
requirements and static data structures, a good choice for the behavior of reactive
systems are formulas in some temporal logic. In this paper, we use LTL, for which
Maude has got a model checker.

For example, for a lossy channel, we need to require that at least some packets
keep getting through it:

th LOSSY-CHANNEL-IF{Pck :: TRIV} is
inc CHANNEL-IF{Pck} .
grt [] <> pckComing =/= none -> [] <> pckLeaving =/= none .

endth

The new keyword grt, short for guarantees, introduces an LTL formula whose
text can use properties and values already declared in the theory. The bare name
of a property is used to represent the different values this property takes in the
stages the system visits during its execution.

Each purported implementation of this theory gets thus a proof obligation.
In some cases, the proof can be obtained by using Maude’s model checker.

In addition to guarantees, we may need to specify assumptions, that is, behav-
iors from the environment that any implementation of the interface can take for
granted. For instance, if a non-ending provision of coming packets is appropriate,
this line can be added to the theory:

ass [] <> pckComing =/= none .

Those temporal formulas enrich the interfaces with semantic requirements.
But assume-guarantee is also a well-known paradigm for the compositional ver-
ification of reactive systems [9]. The idea is that we can draw conclusions on
the behavior of the whole system from the assumptions and guarantees of each

Parameterized Programming for Compositional System Specification 73

component, even if no implementation is available yet. We plan to go deeper into
this issue in a future paper.

7 Related Work

The idea of interfaces for encapsulation is well known in computer science, and
is present both in mainstream languages and in formal ones, in one flavor or
another. Compositionality is also a widespread concept, be it called synchronous
product or method invocation. In this sense, our proposals are related to theo-
retical developments such as Span(Graph), interface theories, and coordination,
among others (they are described, respectively, in [1,7,15]). These works put an
emphasis on separation of concerns between implementation and composition,
made possible by some kind of interfaces, often using algebraic language.

A discussion of these works belongs, however, elsewhere; namely, to the
paper [10] (and its eventual journal realization), where we describe in full detail
our concepts of composition and interface. The present paper is instead focused
on the use of parameterized programming and the possibility of compositional
verification. No system or theoretical development we know of includes all such
features. We quickly review next three that come close: nuXmv, PVS, and
CafeOBJ.

nuXmv is described in [3]. It is the latest version of the model checker that
started as SMV. It includes constructs for data interchange and syncing between
processes, but no concept of abstract interface. Temporal formulas representing
guarantees, either in LTL or CTL, are embedded as part of the specification of a
system, and the tool model checks the formulas against the implementation. No
place for assumptions, although this latest version seems to include commands
for modular verification.

PVS is mainly a theorem prover, but it includes facilities for reactive system
specification and model checking. Theories can be used as interfaces, the same
as in Maude, as shown in [14], but it is not possible to use them for system
composition, and compositional verification is not supported. All the information
is on the PVS website at http://pvs.csl.sri.com.

CafeOBJ is the tool that comes closer to our wishes. Information is available
on its website at https://cafeobj.org. It allows specifications based on hidden
algebra, that is, that some sorts and operations are hidden, representing the
internal state of the system, while others can be observed. These observables
correspond to our properties. Some kind of compositionality is possible based
on hidden algebra, as described, for example, in [5], although the components
are not really independent entities, but are specified all together, with no syn-
chronous composition operation. In our approach, we do not insist, as hidden
algebra does, that a state (or stage) be determined by its properties: we just
define the properties that are needed for syncing, or for writing LTL formulas.
CafeOBJ includes facilities for searching and for theorem proving.

http://pvs.csl.sri.com
https://cafeobj.org

74 Ó. Mart́ın et al.

8 Concluding Remarks

Parameterized programming is a well-known paradigm. The synchronous compo-
sition operation of rewrite systems was discussed in [10]. In the present paper, we
show how it all fits together to make compositional specification and verification
possible within rewriting logic. This includes the use of temporal-logic theories
as interfaces, and modules parameterized by such theories as blueprints for spec-
ifying composition. As future work, our to-do list includes the implementation
on Maude of the synchronous composition operation and the syntactic exten-
sions needed to allow for LTL formulas in theories. The missing piece that would
complete the jigsaw is a tool for deducing temporal properties for the composed
system based on the temporal properties of the components.

While the standard use of parameterized programming, described in [4] and
in Sect. 2 of this paper, is appropriate for functional modules and for the speci-
fication of static data structures, we dare to assert that our use of it for param-
eterized specification is the appropriate one for reactive systems.

Acknowledgments. We thank the anonymous referees for their careful and clever
remarks that helped us to improve this paper.

References

1. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Grünbauer,
J., Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems,
pp. 83–104. Springer, Dordrecht (2005). https://doi.org/10.1007/1-4020-3532-2 3

2. Burstall, R.M., Goguen, J.A.: The semantics of CLEAR, a specification language.
In: Bjøorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10007-5 41

3. Cavada, R.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9 22

4. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

5. Diaconescu, R., Futatsugi, K., Iida, S.: Component-based algebraic specification
and verification in CafeOBJ. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM
1999. LNCS, vol. 1709, pp. 1644–1663. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48118-4 37

6. Durán, F., Meseguer, J.: Parameterized theories and views in Full Maude 2.0.
In: Futatsugi, K. (ed.) WRLA 2000. Electronic Notes in Theoretical Computer
Science, pp. 316–338. Elsevier, Amsterdam (2000). https://doi.org/10.1016/S1571-
0661(05)80136-7

7. Gianola, A., Kasangian, S., Sabadini, N.: Cospan/Span(Graph): an algebra for
open, reconfigurable automata networks. In: CALCO. LIPIcs, vol. 72, pp. 2:1–
2:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://doi.org/
10.4230/LIPIcs.CALCO.2017.2

https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1007/3-540-10007-5_41
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/3-540-48118-4_37
https://doi.org/10.1007/3-540-48118-4_37
https://doi.org/10.1016/S1571-0661(05)80136-7
https://doi.org/10.1016/S1571-0661(05)80136-7
https://doi.org/10.4230/LIPIcs.CALCO.2017.2
https://doi.org/10.4230/LIPIcs.CALCO.2017.2

Parameterized Programming for Compositional System Specification 75

8. Kindler, E., Vesper, T.: ESTL: a temporal logic for events and states. In: Desel, J.,
Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 365–384. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-69108-1 20

9. Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to modular model
checking. ACM Trans. Program. Lang. Syst. 22(1), 87–128 (2000). https://doi.
org/10.1145/345099.345104

10. Mart́ın, Ó., Verdejo, A., Mart́ı-Oliet, N.: Modular specification in rewriting
logic (extended version). Technical report 04/17, Departamento de Sistemas
Informáticos y Computación, Facultad de Informática, Universidad Complutense
de Madrid (2017). http://eprints.ucm.es/45264/

11. Mart́ın, Ó., Verdejo, A., Mart́ı-Oliet, N.: Alternating bit protocol as an exam-
ple of compositional system specification. Technical report 01/18, Departamento
de Sistemas Informáticos y Computación, Facultad de Informática, Universidad
Complutense de Madrid (2018). http://eprints.ucm.es/46243/

12. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992). https://doi.org/10.1016/0304-3975(92)90182-
F

13. Meseguer, J.: The temporal logic of rewriting: a gentle introduction. In: Degano,
P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS,
vol. 5065, pp. 354–382. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68679-8 22

14. Owre, S., Shankar, N.: Theory Interpretations in PVS. Techical report, SRI Inter-
national, April 2001 (2001). http://pvs.csl.sri.com/doc/interpretations.pdf

15. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. Adv. Com-
put. 46, 329–400 (1998). https://doi.org/10.1016/S0065-2458(08)60208-9

https://doi.org/10.1007/3-540-69108-1_20
https://doi.org/10.1145/345099.345104
https://doi.org/10.1145/345099.345104
http://eprints.ucm.es/45264/
http://eprints.ucm.es/46243/
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1007/978-3-540-68679-8_22
https://doi.org/10.1007/978-3-540-68679-8_22
http://pvs.csl.sri.com/doc/interpretations.pdf
https://doi.org/10.1016/S0065-2458(08)60208-9

Symbolic Specification and Verification
of Data-Aware BPMN Processes
Using Rewriting Modulo SMT

Francisco Durán1(B), Camilo Rocha2, and Gwen Salaün3

1 Universidad de Málaga, Málaga, Spain
duran@lcc.uma.es

2 Pontificia Universidad Javeriana, Cali, Colombia
camilo.rocha@javerianacali.edu.co

3 Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG,
38000 Grenoble, France
gwen.salaun@inria.fr

Abstract. The Business Process Model and Notation (BPMN) is
the standard notation for modeling business processes. It relies on a
workflow-based language that allows for the modeling of the control-flow
graph of an entire process. In this paper, the main focus is on an exten-
sion of BPMN with data, which is convenient for describing real-world
processes involving complex behavior and data descriptions. By consid-
ering this level of expressiveness due to the new features, challenging
questions arise regarding the choice of the semantic framework for spec-
ifying such an extension of BPMN, as well as how to carry out the sym-
bolic simulation, validation, and correctness of the process models. These
issues are addressed first by providing a symbolic executable rewriting
logic semantics of BPMN using the rewriting modulo SMT framework,
where the execution is driven by rewriting modulo axioms and by query-
ing SMT decision procedures for data conditions. Second, reachability
properties, such as deadlock freedom and detection of unreachable states
with data exhibiting certain values, can be specified and automatically
checked with the help of Maude, thanks to its support for rewriting mod-
ulo SMT. The approach presented in this paper has been validated on
realistic processes and it is illustrated with a running example.

1 Introduction

Business processes are omnipresent in companies all around the world. A business
process is a collection of structured activities or tasks that produce a specific
product and fulfil a specific organizational goal for a customer or market. A
process aims at modeling activities, their causal and temporal relationships,
and specific business rules that process executions have to comply with. In this
context, business process modeling is of prime importance to analyze and control
business processes. With appropriate techniques, these models may help to the
improvement of such processes.
c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 76–97, 2018.
https://doi.org/10.1007/978-3-319-99840-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_5&domain=pdf

Specification and Verification of Data-Aware BPMN Processes 77

Business processes are usually described using workflow-based notations.
BPMN is one of these notations. It was normalized by ISO/IEC in 2013 [15]
and has become the de facto standard for modeling business processes. BPMN
is a quite expressive notation that describes the order in which a set of activ-
ities is executed. Beyond basic operators (e.g., beginning, end, sequence), the
notion of gateways allows designers to specify different evolutions of the pro-
cess control flow (e.g., choice, parallel, message-based). In this work, there is
the particular interest on data descriptions, which take two different forms in
BPMN processes, namely: (i) as variables that are initialized and modified dur-
ing the process execution, and (ii) as conditions that may be used in gateways
to decide the branches to be triggered at runtime. Representing data and con-
ditions in BPMN is crucial for enabling the modeling of real-world processes,
where data is pervasive and comes from different sources. BPMN tools such as
the Activiti or Bonita platforms provide support for the definition of data-aware
workflows. However, as it can be seen in the related work section of this paper,
just a few formal specification and verification approaches consider this level of
expressiveness.

The research presented in this paper takes a step farther by supporting the
symbolic specification, execution, and analysis of data-aware processes with an
external and nondeterministic environment (e.g., interaction with user input or
sensor probing). This basically means that process variables can be initialized
using assignments or by means of lookup operations, so that their values are non-
deterministically provided by the environment. The consideration of such open
systems, however, poses new challenges that include the potential infinitely-
branching nondeterminism due to the environment. Queries over such systems
are, in general, beyond the reach of ground rewriting and would require, for
instance, inductive techniques over the rewrite relation.

Given such a general and symbolic modeling language for BPMN processes,
there are several questions that arise from a correctness point of view. For exam-
ple, is it possible to verify that a given process is deadlock free for any possible
input and interaction with the environment? Are there parts of the workflow
that are never reached or cannot be reached during execution for certain ini-
tial conditions? Are there possible executions of the process leading to a state
where the variables have specific values? It is not easy to answer these ques-
tions when considering data ranging over possibly infinite domains. Indeed, most
approaches on the analysis and verification of workflows are based on process
over-approximation in which data is abstracted, either just by removing it or by
replacing it with stochastic information. Although these approaches are useful
in the formal analysis of workflows, they can miss important information hidden
in the data. E.g., they can miss deadlocks due to data-based conditions that are
removed or identify false livelocks since all loops in a process without data are
always nonterminating.

The main contributions of this paper are a formal rewriting-based symbolic
semantics for BPMN with data support and automated verification techniques
for checking properties of interest, such as the ones abovementioned. The encod-

78 F. Durán et al.

ing of BPMN is made using the rewriting logic framework and is fully executable
in the Maude system [4]. It comprises BPMN operators such as end/start events,
sequence flows, and gateways annotated with data constraints, and support for
looping behavior and unbalanced split/join composition (i.e., no systematic cor-
respondence between split and join gateway patterns). Although some important
BPMN features, such as events or exceptions, are not considered, the current
supported subset is quite expressive.

The symbolic analysis and verification techniques focus on the behavioral
aspect of the BPMN processes, which is described as a control-flow graph with
data annotations. Data variables and data-based conditions are supported with
the help of the recently developed rewriting modulo SMT approach [30], which
is well suited to model and analyze reachability properties of infinite-state open
systems, exhibiting both internal and external nondeterminism due to the envi-
ronment. In particular, data variables are logical variables under the control of
an SMT-solver and data conditions are constraints over these variables that can
be checked for satisfiability with SMT-based decision procedures. This approach
ultimately enables the automatic verification of existential reachability proper-
ties of BPMN processes with a potential infinite number of initial states. They
include deadlock freedom, detection of unreachable states, and reachability of
certain states based on data analysis relative to an initial constraint on the data
variables.

The Maude specification presented here and several examples are available
at http://maude.lcc.uma.es/BPMN-SMT.

The organization of the rest of this paper is as follows. Section 2 introduces
BPMN with data and the running example. The example was wrongly designed
on purpose, with the intention of identifying its problems through the analysis
performed on it later in the paper. Section 3 gives some background about rewrit-
ing logic and rewriting modulo SMT. Section 4 introduces the Maude encoding
of the considered subset of BPMN, with emphasis on the handling of data. In
Sect. 5, analysis techniques for automatically verifying properties on data-aware
BPMN processes are presented and illustrated with the help of the running exam-
ple; it ends with a proposal to correct the running example. Section 6 surveys
related work and Sect. 7 concludes the paper.

2 BPMN with Data

BPMN is a workflow-based notation for modeling business processes as collec-
tions of tasks that produce specific services or products for particular clients.
BPMN is an ISO/IEC standard [15], and can be executed by using different
process interpretation engines (e.g., Activiti, Bonita BPM, or jBPM).

In this paper, our goal is not to consider the whole expressiveness of the
BPMN language, but to concentrate on its main elements related to control-
flow modeling and on data aspects that can be represented in BPMN constructs
(variables and conditional flows). By focusing on these aspects, we show how
automated analysis is possible for them. Specifically, we consider the node types

http://maude.lcc.uma.es/BPMN-SMT

Specification and Verification of Data-Aware BPMN Processes 79

Fig. 1. BPMN syntax augmented with data variables and conditions

event, task, and gateway, and the edge type sequence flow. Figure 1 illustrates the
syntax of BPMN supported in this work, including examples of data assignments
and conditions at exclusive/inclusive split gateways.

Start and end events are used, respectively, to initialize and terminate pro-
cesses. A task represents an atomic activity that has exactly one incoming and
one outgoing flow. A gateway is used to control the divergence and convergence
of the execution flow. A sequence flow describes two nodes executed one after
the other, i.e., imposing the execution order.

In BPMN, variables are global to the process. Their initialization and mod-
ification is possible at the task level using assignment (:=). Values from the
environment can be read using a lookup operator. In this paper, we consider
basic datatypes (integer, real and Boolean) with usual functions on them. As
an example, integers can be manipulated using functions +, −, *, etc. These
variables are also used to define conditions in gateways.

Gateways are crucial since they are used to model control flow branching
and therefore influence the overall process execution. In this paper, we support
the three main types of gateways, namely, exclusive, inclusive and parallel gate-
ways. Gateways with one incoming branch and multiple outgoing branches are
called splits, e.g., inclusive split gateway. Gateways with one outgoing branch
and multiple incoming branches are called merges, e.g., parallel merge gateway.
An exclusive gateway chooses one out of a set of mutually exclusive alternative
incoming or outgoing branches depending on the evaluation of conditions on
their outgoing flows. For an inclusive gateway, any number of branches among
its incoming or outgoing branches may be taken depending on the evaluation
of flow conditions. A parallel gateway creates concurrent flows for its outgo-
ing branches or synchronizes concurrent flows for its incoming branches. In this
work, we support unbalanced workflows, meaning that each merge gateway does
not necessarily have a corresponding split gateway with a correspondence of the
branches among outgoing and incoming flows. We also support workflows with
looping behaviors.

80 F. Durán et al.

We assume that BPMN processes are syntactically correct. This can be
enforced using existing works, e.g., [11], or using a BPMN engine, as the Activiti
or Bonita platforms. Note that any well-typed expression may be used in assign-
ments, using variables, literal and operators, any valid Boolean expression may
be used in conditions, and split (resp. merge) gateways may have any positive
number of outgoing (resp. incoming) branches.

The semantics of BPMN is described informally in official documents [15,24],
and several attempts have been made for giving a formal semantics to subsets of
BPMN (see Sect. 6). The semantics of BPMN is usually described using tokens
representing the evolution of a process execution. A token can enter and leave a
task by following the incoming and outgoing flows associated to that task. Tokens
are created and consumed at gateways. When a token arrives at a parallel split
gateway, it is consumed and one token is generated for every outgoing flow of
the split gateway. When a token is consumed at an exclusive split gateway,
only one token is created and assigned to the outgoing flow whose condition
is evaluated to true. In the case of an inclusive split gateway, when a token is
consumed, some new tokens are generated and assigned to the outgoing flows
(one for each outgoing flow whose corresponding condition is evaluated to true).
We assume that a process starts its execution with exactly one token located at
its start event, and finishes its execution when all tokens are at end events. In
the following, we will say that a task or flow (or branch) is active if it has a token
associated with it. E.g., the branches a gateway follows during an execution will
be called the active branches.

Running Example. We use as running example an online e-visa service described
as a BPMN process shown in Fig. 2. The workflow models the on-line application
for a visa, in which the user has to fulfil several forms, provide an electronic
copy of her passport and pay the corresponding fees. The process starts with
the client initiating the application by filling some basic information. A scanned
version of the passport must then be provided. The calculation of the size and
quality of the uploaded file is modeled as reading from the environment its size
and quality using the lookup operator. If the size of the uploaded file does not
respect the size limit (2MB), the user may try again to submit another file. Once
the file size is within the size limit, the application checks for image quality. Here,
again, if the quality is not good enough, the user can upload another scanned
version of her passport. The user has up to three attempts to upload the scanned
copy of her passport with valid file size and quality. When both the size limit
and scan quality respect the imposed thresholds, the request is evaluated and
a result is notified to the user (accept or reject). The evaluation is performed
by a human agent, which provides her response as an input to the system. In
case of acceptance, the user has to pay for fees and the bureau in charge of
visa delivery prepares the requested document. Both activities are achieved in
parallel because they are independent. Finally, an electronic version of the visa
is delivered by email.

In addition to classic BPMN elements, data are used at different places of
the process, e.g., for keeping track of the number of attempts or for storing the

Specification and Verification of Data-Aware BPMN Processes 81

Fig. 2. Running example: e-visa application process

size and quality of the uploaded files. In those usages, the case study includes
several interesting data-related features: different variable types (integer, real
and Boolean), variable manipulation (assignments, arithmetic expressions and
predicates), data-based decisions (depending on input data file size and quality),
and external decisions (application evaluation by agent).

As the careful reader has already possibly noticed, and as we will see in
Sect. 5, the process in Fig. 2 has several design problems, e.g., the number of
attempts for uploading the passport is not correctly handled and checked. The
remaining sections of this paper will show how the proposed analysis techniques
can detect these issues.

3 Rewriting Logic and Rewriting Modulo SMT
in a Nutshell

This section briefly explains order-sorted rewriting logic and rewriting modulo
SMT, summarizing Sects. 2, 3, 4 and 5 in [30]. Rewriting logic [20] is a semantic
framework that unifies a wide range of models of concurrency. Maude [4] is a
language and tool to support the formal specification and analysis of concurrent
systems in rewriting logic. Notation on terms, term algebras, and equational
theories is used as in, e.g., [1,12].

An order-sorted signature Σ is a tuple Σ = (S,≤, F) with a finite poset
of sorts (S,≤) and a set of function symbols F typed with sorts in S. The
binary relation ≡≤ denotes the equivalence relation (≤ ∪ ≥)+ generated by ≤
on S and its point-wise extension to strings in S∗. For any sort s ∈ S, the
expression [s] denotes the connected component of s, that is, [s] = [s]≡≤ . A top
sort in Σ is a sort s ∈ S such that for all s′ ∈ [s], s′ ≤ s. Let X = {Xs}s∈S

82 F. Durán et al.

denote an S-indexed family of disjoint variable sets with each Xs countably
infinite. The set of terms of sort s and the set of ground terms of sort s are
denoted, respectively, by TΣ(X)s and TΣ,s; similarly, TΣ(X) and TΣ denote,
respectively, the set of terms and the set of ground terms. TΣ(X) and TΣ denote
the corresponding order-sorted Σ-term algebras. A substitution is an S-indexed
mapping θ : X −→ TΣ(X) that is different from the identity only for a finite
subset of X and such that θ(x) ∈ TΣ(X)s if x ∈ Xs, for any x ∈ X and
s ∈ S. Substitutions extend homomorphically to terms in the natural way. A
substitution θ is called ground if and only if ran(θ) = ∅. The application of a
substitution θ to a term t is denoted by tθ.

An equational theory is a tuple (Σ,E), with Σ an order-sorted signature
and E a finite collection of (possibly conditional) Σ-equations. An equational
theory E = (Σ,E) induces the congruence relation =E on TΣ(X) defined for
t, u ∈ TΣ(X) by t =E u if and only if E 	 t = u, where E 	 t = u denotes E-
provability by the deduction rules for order-sorted equational logic in [21]. The
expressions TE(X) and TE (also written TΣ/E(X) and TΣ/E) denote the quotient
algebras induced by =E on the term algebras TΣ(X) and TΣ , respectively. TΣ/E

is called the initial algebra of (Σ,E).
A rewrite theory is a tuple R = (Σ,E,R) with (Σ,E) an order-sorted equa-

tional theory and R a finite set of Σ-rules. R = (Σ,E,R) is called a topmost
rewrite theory if it has a top sort Conf such that no operator in Σ has Conf as
argument sort and each rule l → r if φ ∈ R satisfies l, r ∈ TΣ(X)Conf and l /∈ X.
A rewrite theory R induces a rewrite relation →R on TΣ(X) defined for every
t, u ∈ TΣ(X) by t →R u if and only if there is a rule (l → r if φ) ∈ R and a
substitution θ : X −→ TΣ(X) satisfying t =E lθ, u =E rθ, and E 	 φθ. The
tuple TR = (TΣ/E ,→∗

R) is called the initial reachability model of R [2].
Appropriate requirements are needed to make an equational theory E admis-

sible, i.e., executable in rewriting languages such as Maude [4]. In this paper,
it is assumed that the equations of E can be decomposed into a disjoint union
E
 B, with B a collection of regular and linear structural axioms (such as
associativity, and/or commutativity, and/or identity) for which there exists a
matching algorithm modulo B producing a finite number of B-matching solu-
tions, or failing otherwise. Furthermore, it is assumed that the equations E can
be oriented into a set of (possibly conditional) sort-decreasing, operationally ter-
minating, confluent rewrite rules

−→
E modulo B. The rewrite system

−→
E is sort

decreasing modulo B if and only if for each (t → u if γ) ∈ −→
E and substitution

θ, ls(tθ) ≥ ls(uθ) if (Σ,B,
−→
E) 	 γθ. The system

−→
E is operationally terminating

modulo B [9] if and only if there is no infinite well-formed proof tree in (Σ,B,
−→
E).

Furthermore,
−→
E is confluent modulo B if and only if for all t, t1, t2 ∈ TΣ(X), if

t →∗
E/B t1 and t →∗

E/B t2, then there is u ∈ TΣ(X) such that t1 →∗
E/B u and

t2 →∗
E/B u. The term t↓E/B∈ TΣ(X) denotes the E-canonical form of t modulo

B so that t →∗
E/B t↓E/B and t↓E/B cannot be further reduced by →E/B. Under

sort-decreasingness, operational termination, and confluence, the term t ↓E/B

is unique up to B-equality. For a rewrite theory R, the rewrite relation →R is
undecidable in general, even if its underlying equational theory is admissible,

Specification and Verification of Data-Aware BPMN Processes 83

unless conditions such as coherence [31] are given (i.e., whenever rewriting with
→R/E∪B can be decomposed into rewriting with →E/B and →R/B).

A rewrite theory R = (Σ,E
 B,R) modulo a built-in subtheory E0 =
(Σ0, E0
 B0) ⊆ (Σ,E
 B) is a topmost rewrite theory with a signature
of built-ins Σ0 = (S0,≤0, F0). The ground rewrite relation →R induced by a
rewrite theory with built-ins R is the topmost rewrite relation defined for any
t, u ∈ TΣ,Conf as follows: t →R u if and only if there is a rule l → r if φ in R
and a ground substitution σ : X −→ TΣ such that t =E	B lσ, u =E	B rσ, and
TE0 |= φσ.

The symbolic rewrite relation induced by a rewrite theory with built-ins
R operates over pairs (t ;ϕ), called constrained terms, where t ∈ TΣ(X0)Conf

is a term, ϕ ∈ QFΣ0
X0 is a constraint of built-ins, and X0 ⊆ X are the

variables with sorts in S0. Each formula in QFΣ0
X0 is a Boolean combina-

tion of atoms, where an atom is a Σ0-equation with variables in X0. For
any term t ∈ TΣ(X)Conf and constraint ϕ, the denotation �t�ϕ is defined as
�t�ϕ = {t′∈TΣ,Conf | (∃σ : X−→TΣ) t′=Etσ ∧ TE0 |= ϕσ}. Given a rewrite
rule ((l ;φl) → (r ;φr) if φ) ∈ R, with l, r ∈ TΣ(X)Conf and φ ∈ QFΣ0

X0, a
constrained term (t ;φt) ∈ TΣ(X0)Conf×QFΣ0

X0 symbolically rewrites to a con-
strained term (u ;φu) ∈ TΣ(X0)Conf ×QFΣ0

X0 (denoted by (t ;φt) �R (u ;φu))
if and only if there is a substitution θ such that: (a) lθ =E	B t and rθ =E	B u,
(b) TΣ/E	B |= (φl ∧ φtθ) ⇔ φu, and (c) φu is TΣ/E	B-satisfiable. Condition
(a) can be solved by matching as in the definition of →R above. Condition (b)
can be met by setting φu to be φl ∧ φtθ. Condition (c) is checked with the help
of decision procedures available from an SMT solver via the function check-sat.
Observe that, up to the choice of the semantically equivalent ϕu, the symbolic
relation �R is deterministic in the sense of being determined by the rule and the
substitution θ (here it is assumed that variables in the rules are disjoint from
the ones in the target terms). The reader is referred to [30] for details about
rewriting modulo SMT and the correspondence between →R and �R.

4 Symbolic Specification

The symbolic semantics of BPMN is defined as a rewrite theory R, with built-ins
E0 and topsort Conf. A symbolic state is a constrained term (t ;ϕ), where t is a
configuration of objects and ϕ a constraint. The objects in t represent the set of
nodes and flows of a process, and keep information of the execution of the process.
The constraint ϕ ranges over the built-in sorts Boolean, Integer, and Real, of
Booleans, integers, and reals, respectively, and it maintains the bookkeeping
of constraints accumulated during execution. For example, a constraint ϕ can
encode the possible values for an integer variable that are possible after the
process is executed.

Figure 3 includes a representation in Maude of the e-visa application process
as a Process object. This object represents the static part of the process, and
identifies its nodes (attribute nodes) and flows (attribute flows). The process
pid is parametric on 4 built-in variables, namely, OK (of sort Boolean), try and

84 F. Durán et al.

filesize (of sort Integer), and quality (of sort Real). Thus the constraints
accumulated during the execution of this process range over these 4 variables.

Fig. 3. Running example: representation in Maude of the e-visa application process

The initial node of the process is represented as
the term start(initial, sf1) specifying that the initial node has outgoing
flow sf1. Task nodes are specified by an identifier, a label, an input flow, an out-
put flow, and a list of assignments. An assignment has the form x := E, where
x is a variable, and E an expression over the variables with the same sort of x. In
this particular example, x is a variable in the set {OK, try, filesize, quality}
and E an expression over the same set of variables. For instance, the assignment
try := try + 1 in task t4 indicates that the value represented by the vari-
able try is to be incremented in one unit. For the reading of external variables
we use the lookup operator. E.g., variables filesize and quality are read in
tasks t3 and t5, respectively. Split nodes are specified by an identifier, a type
(exclusive, inclusive, or parallel), an incoming flow, and a nonempty list of
outgoing flows. Exclusive and inclusive gateways are equipped with constraints
associated to the outgoing flows: these represent conditions over the data of the
process. For instance, in the exclusive split gateway s2, the list

(sf10, quality < 9/10) (sf11, quality >= 9/10)

specifies that the flow sf10 is triggered when the quality of the picture is below
90% and that the flow sf11 is taken otherwise. Merge nodes are specified by an
identifier, a type (the same types of split gateways), a set of incoming flows, and

Specification and Verification of Data-Aware BPMN Processes 85

Fig. 4. Running example: simulation in Maude of the e-visa application process

an outgoing flow. End nodes are specified by an identifier and an incoming flow.
Flows are specified just by an identifier.

Figure 4 shows a representation in Maude of an execution state of the pro-
cess as the object sim. This object gathers the dynamic information used along
execution, and has attributes identifying the set of tokens (attribute tokens),
the constraint accumulated during execution (attribute constr), and a map (of
sort Map{SymbVar, Nat}) for indexing the built-in variables present in the state
(attribute varidx). In this example, the token to be processed next is at flow
sf1, the constraint is true (i.e., the empty one), and all variables in the process
are indexed at 0.

The index of a variable can increase during execution, which is key because an
expression over the built-ins is evaluated with respect to a given variable index-
ing. Since the variables in a process are “mathematical” variables, they need to
be treated with a predicate-transformer approach (opposed to the imperative
programming-like approach). For example, given the variable indexing v(try)
|-> 4, the expression try + 1 is interpreted as try#4 + 1, meaning that the
interpretation of the increment of try by one unit is to be done with respect to
the ‘latest’ version of the variable. When an assignment such as try := try + 1
is evaluated, it creates a constraint that is added to the global constraint and
depends on the given variable indexing. For example, with the variable index-
ing v(try) |-> 4, the evaluation of try := try + 1 results in the constraint
try#5 === try#4 + 1, meaning that the “new” value of try corresponds to
its previous value incremented by one. The lookup operator works similarly,
although in this case there is no restriction on the new value.

The concurrent transitions of R are specified by rewrite rules that update
the simulation object sim. Specifically, there are 12 rewrite rules that model the
different actions that may happen in the system, e.g., start or end the execution
of a process, handle the arrival of a token to split and merge gateways, tasks,
and flows. For illustration purposes, we explain in the rest of this section two of
these rules.

Figure 5 shows the rewrite rule that handles execution of a task. Intuitively,
executing a task results in a new symbolic state in which the constraint is
updated by accumulating the constraints that result from the list of assignments
associated to the task, if possible. Since handling an assignment changes the
variable indexing kept in the object sim, a new version of the variable indexing
term needs to be computed. Both the constraint resulting from a list of assign-
ments and the new variable indexing are computed with the help of the auxiliary

86 F. Durán et al.

Fig. 5. Execution of a task with a list of assignments

function prepare-update. For example, the evaluation of the term

prepare-update((X := X + 1) (Y := Y + X), (v(X) |-> 4, v(Y) |-> 0))

returns the pair

((v(X) |-> 5, v(Y) |-> 1), X#5 === X#4 + 1 and Y#1 === Y#0 + X#5)

where the index of both variables X and Y is incremented, and the constraint
chains the sequential assignment performed on these variables. Note that this
rule does not check the satisfiability of the constraint B1 resulting from the
assignment in conjunction with the constraint B from the state; this is because
if the latter is satisfiable, so is their conjunction since the newly constrained
variables in B1 are fresh with respect to B.

One interesting case for symbolic specification can be observed in the seman-
tics of inclusive gateways, axiomatized by the rule in Fig. 6. In a version without
data, when a token arrives at a split gateway, any number of outgoing flows
are selected and assigned newly created tokens that start executing right away.
However, in a symbolic version with data, the situation is more complex because
all possible flow selections need to be considered and checked for satisfiability
relative to the global constraint. E.g, if there are n outgoing flows, then there
are at most 2n −1 possible selections satisfiable relative to the global constraint.
Each one of these scenarios, computed by the auxiliary function gen, can be
identified by the set of the m constraints (0 < m ≤ n) associated to the selected
outgoing flows, say Γ , and the set of the n − m constraints associated to the
outgoing flows that are not selected, say Δ. Then, the constraint B1 associated to
such selection is logically equivalent to the following conjunction of constraints:

∧

γ∈Γ

γ ∧
∧

δ∈Δ

¬δ.

Specification and Verification of Data-Aware BPMN Processes 87

Such a constraint needs to be interpreted with respect to the current variable
indexing, resulting in a new constraint, say B2; this is done with the help of
the auxiliary function process-expression. Finally, a split is possible if the
constraint representing the symbolic split is compatible with the constraint B
accumulated in the state, i.e., if check-sat(B and B2) evaluates to true.

5 Symbolic Execution and Reachability Analysis

Symbolic execution and reachability analysis can be useful for exploring infinitely
many system executions at once. In the rewriting modulo SMT implementation
available from Maude, symbolic execution of the rewrite theory R presented in
Sect. 4 uses a combination of term rewriting, matching modulo axioms, and SMT
solving. This consists in applying equations and rewrite rules from an initial term
(e.g., from an initial state such as the one in Fig. 3) and querying the SMT solver
for checking satisfiability of constraints at each rewrite step, when necessary. The
full potential of rewriting modulo SMT can be exploited for solving existential
reachability queries in the initial model TR of a rewrite theory R modulo built-
ins E0. The type of existential reachability question that rewriting modulo SMT
can answer can be formulated as follows:

are there states in �t�φ that can reach a state in �u�ψ?

This question is especially useful for symbolically proving or disproving safety
properties, such as inductive invariants and deadlock freedom of TR: when �u�ψ

is a set of bad states, the goal is to check whether reaching a state in �u�ψ is
possible.

Fig. 6. Arrival of a token to an inclusive split gateway

88 F. Durán et al.

In the rest of this section, we show how to use symbolic rewriting and sym-
bolic reachability analysis for verifying properties of interest on data-aware pro-
cesses encoded into Maude’s rewriting logic. This is illustrated using the e-visa
application process introduced in Sect. 2. Note that, beyond toy examples and
the e-visa application process we use as running example in this paper, we have
also applied our approach to two other examples we found in the literature:
a drug store process [14] and a DMN process on application file handling [25,
Sect. 11.2].

5.1 Symbolic Rewriting

As for regular rewrite theories, rewriting may be useful for gathering a first
understanding of the whereabouts of our systems. Consider the running example
in Fig. 2. For the initial state corresponding to the terms in Figs. 3 and 4, the
following rewrite command in Maude symbolically executes the process for ten
consecutive rewrite steps:
rew [10] initSystem(v(OK:Boolean) v(TRY:Integer) v(FSIZE:Integer) v(QUAL:Real)) .

The initSystem operator generates the initial state depending on the specified
list of variables. Maude’s output to this command corresponds to one of the
possible states reached after ten rewrite steps; in this case, the output is the
following term:

< p : Process | nodes : ..., flows : ... >
< s : Simulation |

tokens : token(t2),
constr : (TRY#1: Integer === 0 and

FSIZE #1: Integer >= 2 and
TRY#2: Integer === TRY#1: Integer + 1,

varidx : (v(OK) |-> 0, v(TRY) |-> 2, v(FSIZE) |-> 1, v(QUAL) |-> 0) >

In this state, there is exactly one token, at task t2, the “Upload scanned pass-
port” task. The constraint indicates that the TRY variable has value 1 and that
FSIZE#1 is at least 2. After a first upload of an oversized file, task “Alert size
error” was executed, where the TRY variable got increased, and then moved to
the task t2. Note that the index of variable TRY is set to 2 because of the initial
assignment on this variable in the “Apply online” task, and its update in “Alert
size error”. The index for FSIZE is 1.

A constraint like the one in this final state can also be interpreted as the con-
ditions on the initial state and interactions to lead us to such state. Although a
symbolic state may represent an infinite number of concrete states, as a symbolic
path may represent an infinite number of concrete executions, in this case, we
can say that any execution in which we upload an oversized file will lead to this
state in ten rewriting steps.

5.2 Symbolic Reachability Analysis

Beyond symbolic rewriting, symbolic reachability is useful in order to answer a
number of interesting questions such as the following ones:

Specification and Verification of Data-Aware BPMN Processes 89

– What are the reachable states after execution of n rewrite steps? Notice that
each rewrite represent an infinite number of possible executions.

– Is it possible for an input variable to be assigned a certain value? As an
example, can we check whether our running example can reach a state in
which the TRY variable takes a value greater than 3?

– Are there deadlocks in the process?
– Does a process have unreachable flows or tasks?

In the rest of this section, we will see how reachability analysis can be used
to answer these questions. Consider the following existential query, where R is
the rewrite theory presented in Sect. 4 corresponding to the running example in
Fig. 2:

TR |= (∃OK:Boolean, TRY:Integer, FSIZE:Integer, QUAL:Real, St:Conf)
initSystem(v(OK) v(TRY) v(FSIZE) v(QUAL))

∗→R St

∧ “St is →R −irreducible” ∧ “TRY = 3 in St”.

This query asks whether we can reach from our initial state an irreducible state
(w.r.t. the rewrite relation) in which the value of the TRY variable can be 3.
Observe that infinitely many states need to be considered in the query because
some of the variables range over infinite domains (e.g., integer and real num-
bers). This means that such a query, in general, is beyond the reach of ground
rewriting and would require, for instance, inductive techniques over the rewrite
relation. However, the following search command can be issued in Maude to
find a proof (or a counterexample) of the reachability query for →R using the
symbolic rewrite relation �R:
search [1] initSystem(v(OK) v(TRY) v(FSIZE) v(QUAL)) =>! St

such that
check-sat(get-constr(St) and process-expression(get-varidx(St), try === 3)) .

Note the use of [1] and =>! to indicate, respectively, our interest in finding
exactly one witness to the existential reachability query and that such a wit-
ness needs to be irreducible (i.e., no rule can be applied to it). The function
calls get-constr(St) and get-varidx(St) return, respectively, the constraint
and the variable indexing from any execution state St. The satisfiability of the
constraint TRY === 3 needs to be checked against the variable indexing at each
corresponding execution state; this is achieved by invoking the auxiliary function
process-expression. The above search command generates the following output:
Solution 1 (state 155)

states: 171 rewrites: 2111 in 68ms cpu (70ms real) (30874 rewrites/second)
St --> < p : Process | nodes : ..., flows : ... >

< s : Simulation |

tokens : empty,
constr : (TRY#1:Integer === 0 and

FSIZE#1:Integer >= 2 and
TRY#2:Integer === TRY#1:Integer + 1 and
FSIZE#2:Integer >= 2 and
TRY#3:Integer === TRY#2:Integer + 1 and
FSIZE#3:Integer < 2 and
QUAL#1:Real < 9/10 and
TRY#4:Integer === TRY#3:Integer + 1 and

90 F. Durán et al.

TRY#4:Integer === 3),

varidx : (v(OK) |-> 0, v(TRY) |-> 4, v(FSIZE) |-> 3, v(QUAL) |-> 1) >

This means that there is at least one ground execution from an initial state that
reaches an irreducible state where the value of the TRY variable is 3. Indeed, the
constraint tells us how to reach such a state: three files must be uploaded, the
first two with size over 2 MB and the third with a quality under the thresh-
old. Observe that this solution is actually a final state because all tokens have
been processed. Note also the ellipses for brevity. The process does not change
along the execution. The indication of requesting only one solution is important.
Without it, Maude would have kept giving more and more solutions, in which
any number of oversized passport files are uploaded due to the unguarded loop.
This clearly points out a design error. A corrected version of the process is given
below.

As mentioned earlier, the symbolic specification R presented in Sect. 4 can be
used to automatically check for other safety properties such as deadlock freedom.
In general, a reachability query associated to having a deadlock in TR can be
cast as the following satisfaction relation:

TR |= (∃−→x , St:Conf) initSystem(−→x)
∗→R St ∧

“St is →R −irreducible” ∧
“St is not final”.

In this formula, −→x denotes the list of variables input to the process specified by
R. The condition on the irreducibility of the state St is the same one appearing in
the previous reachability goal. In the symbolic semantics R, a state is considered
final whenever all tokens in the state have been consumed. This is of practical
importance because checking for final states can be decided by checking the
contents of the token set, namely, by checking if the set is empty. The following
search command in Maude can be used to find deadlocks in the running example
process:
Maude > search [1] in RUN :

initSystem(v(OK) v(TRY) v(FSIZE) v(QUAL)) =>! St
such that get -tokens(St) =/= empty .

Solution 1 (state 249)
states: 265 rewrites: 2852 in 97ms cpu (99ms real) (29183 rewrites/second)
St --> < p : Process | nodes : ..., flows : ... >

< s : Simulation |
tokens : token(sf12 , 0),
constr : (TRY#1: Integer === 0 and

FSIZE #1: Integer >= 2 and
TRY#2: Integer === TRY#1: Integer + 1 and
FSIZE #2: Integer >= 2 and
TRY#3: Integer === TRY#2: Integer + 1 and
FSIZE #3: Integer >= 2 and
TRY#4: Integer === TRY#3: Integer + 1 and
FSIZE #4: Integer < 2 and
QUAL #1: Real < 9/10 and
TRY#5: Integer === TRY#4: Integer + 1),

varidx : (v(OK)|-> 0, v(TRY)|-> 5, v(FSIZE)|-> 4, v(QUAL)|-> 1) >

Specification and Verification of Data-Aware BPMN Processes 91

The witness provided shows that a deadlock can actually be reached. The con-
straint in the deadlock state tells us that by uploading a file with poor quality
after three oversized files, we reach a state in which there is a token at the flow
sf12, the outgoing flow of task “Alert quality error”. Note that in that state the
variable TRY has value 4, and none of the alternative branches of the following
exclusive split can be triggered.

Let us now illustrate the check of whether certain flows or tasks are reachable.
The following command proves that the task “Pay for fees” cannot be reached
with an oversized file.
search [1 ,500]

initSystem(v(OK) v(TRY) v(FSIZE) v(QUAL))
=>! St
such that token -at("Pay for fees", St)

and
check -sat(

get -constr(St)
and
process -expression(get -varidx(St), gen -intvar("FSIZE") > 2)) .

No solution.
states: 8846
rewrites: 117728 in 7818ms cpu (8151ms real) (15057 rewrites/second)

In this section we have included the results provided by Maude on the number
of executions and time obtained when executing all the rewrite and search com-
mands. If we look at the last search command above, we can see that the explo-
ration of 500 states took around 8 seconds. This number is rather low for Maude,
if compared to standard rewriting/search. Notice however that symbolic rewrit-
ing/search involves additional satisfiability checks during the rewriting process,
which are handled by invocation to back end SMT solvers.

Last but not least, let us give a corrected version of the running example
(Fig. 7) where the problem coming from an erroneous handling of the number of
attempts has been resolved. This was achieved using an exclusive split gateway
before the scanned passport upload, which checks for the number of attempts.
If this number is greater than three, the process terminates. Note that all the
properties mentioned beforehand in this section are satisfied by this new version
of the process as we will show in the final part of this section.

There are now only eight possible ways to reach a final state with the variable
TRY with value 3, showing the different combinations for uploading an invalid
file at most 3 times:
search initSystem(v(OK) v(TRY) v(FSIZE) v(QUAL))

=>! St
such that check-sat(get-constr(St) and

process-expression(get-varidx(St), gen-intvar("TRY") === 3)) .

Solution 1 (state 146)

states: 158 rewrites: 2042 in 62ms cpu (64ms real) (32520 rewrites/second)
St --> < p : Process | nodes : ..., flows : ... >

< s : Simulation |

tokens : empty,
gtime : 0,

constr : (TRY#1:Integer === 0 and
TRY#1:Integer < 3 and
FSIZE#1:Integer >= 2 and

92 F. Durán et al.

Fig. 7. Running example: e-visa application process (V2)

TRY#2:Integer === TRY#1:Integer + 1 and
TRY#2:Integer < 3 and
FSIZE#2:Integer >= 2 and
TRY#3:Integer === TRY#2:Integer + 1 and
TRY#3:Integer < 3 and
FSIZE#3:Integer >= 2 and
TRY#4:Integer === TRY#3:Integer + 1 and
TRY#4:Integer >= 3),

varidx : (v(OK) |-> 0, v(TRY) |-> 4, v(FSIZE) |-> 3, v(QUAL) |-> 0) >

...

Solution 8 (state 259)

states: 267 rewrites: 3457 in 134ms cpu (136ms real) (25739 rewrites/second)
St --> < p : Process | nodes : ..., flows : ... >

< s : Simulation |

tokens : empty,
gtime : 0,

constr : (TRY#1:Integer === 0 and
TRY#1:Integer < 3 and
FSIZE#1:Integer < 2 and
QUAL#1:Real < (9/10).Real and
TRY#2:Integer === TRY#1:Integer + 1 and
TRY#2:Integer < 3 and
FSIZE#2:Integer < 2 and
QUAL#2:Real < (9/10).Real and
TRY#3:Integer === TRY#2:Integer + 1 and
TRY#3:Integer < 3 and
FSIZE#3:Integer < 2 and
QUAL#3:Real < (9/10).Real and
TRY#4:Integer === TRY#3:Integer + 1 and
TRY#4:Integer >= 3),

varidx : (v(OK) |-> 0, v(TRY) |-> 4, v(FSIZE) |-> 3, v(QUAL) |-> 3) >

The new version of the process is deadlock free:
search [1 ,500]

initSystem(v(OK) v(TRY) v(FSIZE) v(QUAL))
=>! St
such that get-tokens(St) =/= empty .

Specification and Verification of Data-Aware BPMN Processes 93

No solution.
states: 293 rewrites: 3333 in 123ms cpu (126ms real) (26882 rewrites/second)

Finally, as for the previous version, there is no way to reach the "Pay for
fees" task (t9) with an oversized file:
search [1 ,500] initSystem(v(OK) v(TRY) v(FSIZE) v(QUAL))

=>! St
such that token-at("Pay for fees", St)

and
check-sat(

get-constr(St)
and
process-expression(get-varidx(St), gen-intvar("FSIZE") > 2)) .

No solution.
states: 293 rewrites: 3530 in 133ms cpu (135ms real) (26518 rewrites/second)

search [1 ,500] initSystem(v(OK) v(TRY) v(FSIZE) v(QUAL))
=>! St
such that token-at(t9, St)

and
check-sat(

get-constr(St)
and
process-expression(get-varidx(St), gen-intvar("FSIZE") > 2)) .

No solution.
states: 293 rewrites: 3490 in 132ms cpu (134ms real) (26390 rewrites/second)

6 Related Work

Several works have focused on providing rigorous definitions and formal seman-
tics for business processes using Petri nets, process algebras, or abstract
state machines, see, e.g., [6,7,13,17–19,25,28,32,33]. The main differences with
respect to these related works are our focus on data-aware workflow models and
the fact that our encoding gives a symbolic semantics to BPMN by translation
to Maude.

As far as data-based analysis is concerned, Decision Model and Notation
(DMN) is a recent OMG standard for modeling decisions in an interchangeable
format. DMN can be used into workflow-based notations for representing condi-
tions. [3] proposes a formal semantics of DMN decision tables, a notion of DMN
table correctness, and algorithms that check the detection of overlapping rules
and missing rules. These algorithms have been implemented in the DMN toolkit
and validated through empirical evaluation. Our modeling language provides the
same expressiveness as decision tables existing in DMN, but our analysis tech-
niques go further since they allow to verify properties of interest on the whole
flow of control taking data and conditions into account.

Herbert and Sharp [14] choose to simplify the modeling of exclusive/inclusive
split gateways by considering probabilities instead of conditions. They propose
an algorithm for translating a BPMN subset extended with probabilistic infor-
mation into the guarded command language used by PRISM. This enables model

94 F. Durán et al.

checking of quantitative properties of business processes such as transient proba-
bilities, occurrence of events, and best-/worst-case scenarios. [14] uses the notion
of rewards, from Markov Models [31], as annotated values that can be used to
keep track of quantities of interest (e.g., execution times, number of iterations,
etc.) in processes.

In [27], Prandi et al. propose a formalization for BPMN models which sup-
ports rewards and probabilistic elements. They propose a conversion of BPMN
models into a model expressed in the Calculus for Orchestration of Web Services
(COWS) [28], which can then be analyzed by using model checking.

[22] focuses on the analysis of choreography models. The main property of
interest in that context is called conformance and aims at checking whether
the distributed implementation and the choreography behave identically. The
authors mainly focus on data description. Their approach supports choreogra-
phies extended with conditions and relies on SMT solving for conformance
checking.

Several authors have used rewriting logic and Maude to model and analyze
BPMN processes. El-Saber and Boronat [11] propose a translation of BPMN into
rewriting logic with a special focus on data-based decision gateways. They pro-
vide mechanisms to avoid structural issues in workflows such as flow divergence
by introducing the notion of “well-formed” BPMN process. Their approach aims
at avoiding incorrect syntactic patterns whereas we propose automated analysis
at the semantic level. Kheldoun et al. [16] propose high-level Petri nets and to
use Maude’s LTL model checker for, respectively, specifying BPMN processes
and analyzing behavioral properties. They also focus on handling exceptions
and activity cancellation. Durán and Salaün used Maude to represent BPMN
processes enriched with time features in [10]. In this paper, they show how real-
time analysis of such BPMN processes could be performed. Specifically, they
used simulations, reachability analysis and model checking, and calculate certain
properties such as minimum and maximum expected response times, maximum
degree of parallelism, and synchronization times. Corradini et al. present in [5]
their tool BProVe, a friendly tool for the verification of business processes mod-
eled in BPMN. The tool accepts BPMN processes in standard notation and can
perform checks of soundness and safeness on them, as defined in [34] and [8],
respectively, using Maude’s LTL model checker.

7 Concluding Remarks

In this paper, we have focused on the BPMN modelling language enhanced with
some constructs for supporting the description of data (variables and conditions).
We have proposed a symbolic semantics for BPMN with data using Maude’s
rewriting logic framework. The transformation to Maude allows us to verify
properties on the process models such as deadlock freedom or reachability of
certain states based on data analysis. These verifications are automated relying
on rewriting modulo SMT techniques. We have applied our approach to several
use cases, such as an online e-visa application.

Specification and Verification of Data-Aware BPMN Processes 95

As far as future work is concerned, a first perspective is to enlarge the number
of properties we can verify. A first step would be to be able to also detect the
absence of livelocks, and in general to be able to use model checking on these
specifications. Using the techniques in [30] we could already use model checking,
however we need to work on mechanisms for dealing with infinite state spaces.
We are currently considering equational abstractions, but some formal issues
need to be solved. A second perspective aims at combining our recent work
on BPMN with time [10] and the data support presented in this paper. This
would result in a richer language for modelling processes as well as verification
techniques working on data and time aspects at the same time.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable comments on an earlier draft of this paper. F. Durán has been partially
supported by Spanish MINECO/FEDER project TIN2014-52034-R and Univ. Málaga,
Campus de Excelencia Internacional Andalućıa Tech. The work of C. Rocha was par-
tially supported by CAPES, Colciencias, and INRIA via the STIC AmSud project
“EPIC: EPistemic Interactive Concurrency” (Proc. No 88881.117603/2016-01), and
by Capital Semilla 2017, project “SCORES: Stochastic Concurrency in Rewrite-based
Probabilistic Models” (Proj. No. 020100610).

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1999)

2. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1–3), 386–414 (2006)

3. Calvanese, D., Dumas, M., Laurson, Ü., Maggi, F.M., Montali, M., Teinemaa,
I.: Semantics and analysis of DMN decision tables. In: La Rosa, M., Loos, P.,
Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 217–233. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45348-4 13

4. Lincoln, P., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

5. Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., Vandin, A.: BProVe: a
formal verification framework for business process models. In: Proceedings of ASE,
pp. 217–228. IEEE Computer Society (2017)

6. Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Inf.
Syst. 36(2), 292–312 (2011)

7. Dijkman, R., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

8. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

9. Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving operational ter-
mination of membership equational programs. High. Order Symb. Comput. 21(1–
2), 59–88 (2008)

10. Durán, F., Salaün, G.: Verifying timed BPMN processes using Maude. In: Jacquet,
J.-M., Massink, M. (eds.) COORDINATION 2017. LNCS, vol. 10319, pp. 219–236.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59746-1 12

https://doi.org/10.1007/978-3-319-45348-4_13
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-319-59746-1_12

96 F. Durán et al.

11. El-Saber, N., Boronat, A.: BPMN formalization and verification using Maude. In:
Proceedings of BM-FA, pp. 1–8. ACM (2014)

12. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Comput.
Sci. 105(2), 217–273 (1992)

13. Güdemann, M., Poizat, P., Salaün, G., Ye, L.: VerChor: a framework for the
design and verification of choreographies. IEEE Trans. Serv. Comput. 9(4), 647–
660 (2016)

14. Herbert, L., Sharp, R.: Using stochastic model checking to provision complex busi-
ness services. In: Proceedings of HASE, pp. 98–105. IEEE (2012)

15. ISO/IEC: International Standard 19510, Information Technology - Business Pro-
cess Model and Notation (2013)

16. Kheldoun, A., Barkaoui, K., Ioualalen, M.: Specification and verification of complex
business processes - a high-level petri net-based approach. In: Motahari-Nezhad,
H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 55–71.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4 4

17. Kossak, F.: A Rigorous Semantics for BPMN 2.0 Process Diagrams. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09931-6

18. Martens, A.: Analyzing web service based business processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005). https://doi.
org/10.1007/978-3-540-31984-9 3

19. Mateescu, R., Salaün, G., Ye, L.: Quantifying the parallelism in BPMN processes
using model checking. In: Proceedings of CBSE, pp. 159–168. ACM (2014)

20. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Compu. Sci. 96(1), 73–155 (1992)

21. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4 26

22. Nguyen, H.N., Poizat, P., Zäıdi, F.: A symbolic framework for the conformance
checking of value-passing choreographies. In: Liu, C., Ludwig, H., Toumani, F.,
Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 525–532. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34321-6 36

23. Object Management Group: Business Process Model and Notation (BPMN) - V.
2.0, January 2011

24. Object Management Group: Decision Model and Notation Specification (DMN) -
V. 1.1, May 2016

25. Poizat, P., Salaün, G.: Checking the realizability of BPMN 2.0 choreographies. In:
Proceedings of SAC, pp. 1927–1934. ACM (2012)

26. Prandi, D., Quaglia, P., Zannone, N.: Formal analysis of BPMN via a translation
into COWS. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS,
vol. 5052, pp. 249–263. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68265-3 16

27. Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. J. Appl. Logic
10(1), 2–31 (2012)

28. Raedts, I., Petkovic, M., Usenko, Y.S., van der Werf, J.M., Groote, J.F., Somers,
L.: Transformation of BPMN models for behaviour analysis. In: Proceedings of
MSVVEIS, pp. 126–137 (2007)

29. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system
analysis. J. Log. Algebr. Methods Program. 86(1), 269–297 (2017)

30. Viry, P.: Equational rules for rewriting logic. Theor. Comput. Sci. 285(2), 487–517
(2002)

https://doi.org/10.1007/978-3-319-23063-4_4
https://doi.org/10.1007/978-3-319-09931-6
https://doi.org/10.1007/978-3-540-31984-9_3
https://doi.org/10.1007/978-3-540-31984-9_3
https://doi.org/10.1007/3-540-64299-4_26
https://doi.org/10.1007/978-3-642-34321-6_36
https://doi.org/10.1007/978-3-540-68265-3_16
https://doi.org/10.1007/978-3-540-68265-3_16

Specification and Verification of Data-Aware BPMN Processes 97

31. White, D.J.: Markov Decision Processes. Wiley, Chichester (1993)
32. Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. In: Liu, S., Maibaum,

T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-88194-0 22

33. Wong, P., Gibbons, J.: Verifying business process compatibility. In: Proceedings of
QSIC, pp. 126–131. IEEE (2008)

34. Wynn, M.T., Verbeek, H.M.W., van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Edmond, D.: Business process verification - finally a reality! Bus. Process Manag.
J. 15(1), 74–92 (2009)

https://doi.org/10.1007/978-3-540-88194-0_22

Associative Unification and Symbolic
Reasoning Modulo Associativity

in Maude

Francisco Durán1, Steven Eker2, Santiago Escobar3(B),
Narciso Mart́ı-Oliet4, José Meseguer5, and Carolyn Talcott2

1 Universidad de Málaga, Málaga, Spain
duran@lcc.uma.es

2 SRI International, Menlo Park, CA, USA
eker@csl.sri.com, clt@cs.stanford.edu

3 Universitat Politècnica de València, València, Spain
sescobar@dsic.upv.es

4 Universidad Complutense de Madrid, Madrid, Spain
narciso@ucm.es

5 University of Illinois at Urbana-Champaign, Champaign, IL, USA
meseguer@illinois.edu

Abstract. We have added support for associative unification to
Maude 2.7.1. Associative unification is infinitary, i.e., there are unifica-
tion problems u =? v such that there is an infinite minimal set of unifiers,
whereas associative-commutative unification is finitary. A unique feature
of the associative unification algorithm implemented in Maude is that it
is guaranteed to terminate with a finite and complete set of associative
unifiers for a fairly large class of unification problems occurring in prac-
tice. For any problems outside this class, the algorithm returns a finite
set of unifiers together with a warning that such set may be incom-
plete. This paper describes this associative unification algorithm imple-
mented in Maude and also how other symbolic reasoning Maude features
such as (i) variant generation; (ii) variant unification; and (iii) narrow-
ing based symbolic reachability analysis have been extended to deal with
associativity.

1 Introduction

Maude1 is a language and a system based on rewriting logic [10]. Maude is a
mathematical modeling language thanks to its logical basis and its initial model
semantics, allowing it and its formal tool environment to be used in three, mutu-
ally reinforcing ways: as a declarative programming language, as an executable
formal specification language, and as a formal verification system.

Automated reasoning features were addressed by some Maude predecessors,
but never included in Maude until very recently: (i) Eqlog [22] envisioned an

1 Maude is publicly available at http://maude.cs.illinois.edu.

c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 98–114, 2018.
https://doi.org/10.1007/978-3-319-99840-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_6&domain=pdf
http://maude.cs.illinois.edu

Associative Unification and Symbolic Reasoning Modulo Associativity 99

integration of order-sorted equational logic with Horn logic, providing logical
variables, constraint solving, and automated reasoning capabilities on top of
order-sorted equational logic; and (ii) MaudeLog [30] envisioned an integration
of order-sorted rewriting logic with queries including logical variables. Among
the many automated reasoning features that could be integrated into Maude, we
have focused on order-sorted equational unification and order-sorted narrowing-
based reachability.

Order-sorted unification and narrowing modulo axioms became first available
in 2009 as part of the Maude 2.4 release [9]. Unification became available as a
built-in feature in Maude while narrowing was available in Full Maude, an exten-
sion of Maude written in Maude itself. Unification worked for any combination
of symbols being either free or associative-commutative (AC). Narrowing worked
for modules having only rules and axioms and relied on the built-in unification
algorithm. It supported the concept of symbolic reachability analysis of terms
with logical variables, computing suitable substitutions for the variables in both
the origin and the destination terms [19].

Unification and narrowing were updated in 2011 as part of the Maude 2.6
release [14]. First, built-in unification was extended to allow any combination
of symbols being either free, commutative (C), associative-commutative (AC),
or associative-commutative with an identity symbol (ACU). The performance
was dramatically improved, allowing further development of other techniques in
Maude. Second, the concept of variant [11] was added to Maude. The intro-
duction of variants led to a significant improvement in Maude’s reasoning capa-
bilities: variant generation, variant-based unification, and symbolic reachability
based on variant-based unification became all available for the first time. How-
ever, all the variant-based features and the narrowing-based reachability were
only available in Full Maude, and for a restricted class of theories called strongly
right irreducible.

Unification and narrowing were extended again in 2016 as part of the
Maude 2.7 release [13]. First, the built-in unification algorithm allows any com-
bination of symbols being free, C, AC, ACU, CU (commutativity and iden-
tity), U (identity), Ul (left identity), and Ur (right identity). Second, variant
generation and variant-based unification are implemented as built-in features
in Maude. This built-in implementation works for any convergent theory mod-
ulo the axioms described above, both allowing very general equational theories
(beyond the strongly right irreducible ones) and boosting the performance not
only of these features but of their applications. Third, narrowing-based reach-
ability is still only available in Full Maude, but uses the built-in variant-based
unification.

In this paper we present our last addition to the built-in unification algo-
rithms: associative unification. Furthermore, we explain how the range of the
following additional symbolic reasoning features has thus been substantially
extended with reasoning modulo associativity: (i) variant generation; (ii) variant
unification; and (iii) narrowing based symbolic reachability analysis. All these
newly extended features are now supported by Maude 2.7.1 [8].

100 F. Durán et al.

At first sight, adding symbolic reasoning modulo associativity might seem
to be an incremental contribution to Maude, but this is not at all the case.
As we explain in this paper, not only are important new applications made
now possible thanks to the above extended features (i)–(iii) but, more basically,
since associative unification is infinitary in general, the development of an effi-
cient and effective in practice associative unification algorithm that furthermore
supports order-sorted typing and combination with any other symbols either
free or themselves combining some A and/or C and/or U axioms, has been a
highly non-trivial challenge. A key concern in meeting this challenge has been the
identification of a fairly broad class of unification problems appearing in many
practical applications for which our algorithm is guaranteed to terminate with
a finite and complete set of unifiers. To deal with the unavoidable possibility
that the given unification problem may have an infinite set of unifiers, when the
problem is outside the class supported by the algorithm in a complete way, the
algorithm returns a finite set of unifiers with an explicit warning that such a set
may be incomplete. In a good number of applications where we have used these
new associative symbolic features of Maude—for example, in the symbolic analy-
sis of cryptographic protocols where some symbols are associative— unification
problems falling outside the class supported by our algorithm in a complete
way often do not even arise in practice. In other applications, for example, in
very large classes of narrowing problems and of critical pair computations, we
can determine a priori that they will fall within the complete class of problems
supported by our algorithm.

In Sect. 2, we explain how the associative unification algorithm works. In
Sect. 3, we show the built-in order-sorted unification extended to the associative
case. In Sect. 4, we show how variant generation works with the associative case.
In Sect. 5, we show how variant-based unification works with the associative case.
In Sect. 6, we show how narrowing-based reachability works with the associative
case. In Sect. 7, we provide additional experimental evidence for the practical
effectiveness of the approach.

2 The Associative Unification Algorithm in Maude

The problem of elementary associative unification with free constants, otherwise
known as solving equations in free semigroups, has a long history. The problem
of deciding unifiability was finally solved in 1977 by Makanin [28]. This method
has subsequently been simplified [3,40], extended to enumerate a complete sets
of unifiers [26], and compute a finite encoding of a complete set of unifiers [24].
Efforts to improve the efficiency of Makanin’s algorithm have reduced the com-
plexity bound to expspace [23], and an alternative technique by Plandowski
that works with compressed representations of words has resulted in a decision
procedure that runs in pspace [33] and a solver that runs in dexptime [34].

Despite this theoretical progress, and some stand alone implementations of
Makanin’s algorithm [1,2], systems that support unification modulo equational
theories have eschewed associativity for several reasons: In order to be useful

Associative Unification and Symbolic Reasoning Modulo Associativity 101

in such a system, a unification algorithm must smoothly combine with unifica-
tion algorithms for other theories. While simultaneous unification (needed for
modern combination algorithms) can be reduced to single equation unification
in the associative case [25,27], performing combination with finite encodings of
infinite sets of unifiers rather than unifiers appears to be an open problem. Fur-
thermore, typical applications for unification such as completion and narrowing
normally only work with finite sets of unifiers. Finally Makanin’s algorithm and
its derivatives have high complexity, while Plandowski’s approach, giving the
best complexity bounds, is impractical since it essentially requires an encoding
of the answer to be guessed.

2.1 The pig-pug procedure

In developing Maude’s associative unification algorithm, we take a pragmatic
approach in that we will only be complete on some subset of those problems
which have a finite complete set of unifiers, and we will warn the user whenever
we cannot guarantee completeness. We base the algorithm on a procedure for ele-
mentary associative unification variously referred to as pig-pug [3] or Plotkin’s
algorithm [35] which is complete, but which in general does not terminate. Other
authors have extended this approach to handle special cases of associativity [17],
including those arising in modal logics [5,38].

The pig-pug procedure starts with an elementary associative unification
problem, i.e. a single equation, x =? y where x and y are words over a set of
variables and an associative symbol “ . ”. It constructs a search tree where each
state is an equation x1 . . . xn =? y1 . . . ym, with the original problem being the
root node. A state where both sides of the equation are the empty word corre-
sponds to a success, whereas a state where one side of the unification problem
is the empty word and the other side is some nonempty word corresponds to
failure.

A state x1 . . . xn =? y1 . . . ym where xi and yi are non-empty words gives
rise to one or more new states. If x1 and y1 are equal, then cancelation yields a
single new state x2 . . . xn =? y2 . . . ym. Otherwise three possibilities have to be
considered:

1. The substitution σ = {x1 �→ y1} is applied to both sides of the unification
problem, yielding y1.σ(x2) . . . σ(xn) =? y1.σ(y2) . . . σ(ym). The leftmost vari-
ables cancel yielding a new state σ(x2) . . . σ(xn) =? σ(y2) . . . σ(ym).

2. The substitution ψ = {x1 �→ y1.x
′
1} is applied to both sides of the unification

problem, yielding y1.x
′
1.ψ(x2) . . . ψ(xn) =? y1.ψ(y2) . . . ψ(ym). The leftmost

variables cancel yielding a new state x′
1.ψ(x2) . . . ψ(xn) =? ψ(y2) . . . ψ(ym).

3. The substitution ρ = {y1 �→ x1.y
′
1} is applied to both sides of the unification

problem, yielding x1.ρ(x2) . . . ρ(xn) =? x1.y
′
1.ρ(y2) . . . ρ(ym). The leftmost

variables cancel yielding a new state ρ(x2) . . . ρ(xn) =? y′
1.ρ(y2) . . . ρ(ym).

When a success state is found, a unifier can be computed by composing the
substitutions used along the path to the success state. In general the search tree

102 F. Durán et al.

is infinite because while step (1) always decreases the number of symbols in the
problem, steps (2) and (3) can increase the lengths of the words in nonlinear
problems.

It is well known that if no variable occurs more than twice in the starting
state, steps (2) and (3) cannot increase the number of symbols in the problem
since the substitution adds at most two symbols and the cancelation removes
two symbols. Because the number of variables is not increased in the new state
of steps (2) and (3), the number of possible equations that can appear in the tree
is finite, and a terminating algorithm can be obtained by cycle detection [39].
However the result is then a search graph which may contain cycles encoding
infinite sets of unifiers.

We also observe that if nonlinear variables only occur on one side (say the
right-hand side) of the initial equation pig-pug terminates. This is because none
of the three steps can increase the number of symbols on the left-hand side of
the equation, and while step (3) can increase the number of symbols on the
right-hand side of the equation, it consumes a left-hand side symbol (say x),
and so can be executed at most |x| times, after which no further increase in the
number of right-hand side symbols can occur. Steps (1) and (2) both consume
right-hand side symbols so the right-hand side of the equation must eventually
become exhausted if the left-hand side has not been exhausted first.

2.2 Forcing Termination

For a practical implementation, termination is required. However, the pig-pug
search can be safely pruned in a couple of ways, that can often guarantee ter-
mination and depend on both being in an order-sorted setting and combining
different unification algorithms.

Firstly, while we are computing unsorted unifiers, in practice, we are only
interested in those unsorted unifiers that have one or more corresponding order-
sorted unifiers. It often happens that a variable has a sort that is too low to
take a term with the associative symbol on top. We call such variables element
variables. An element variable X cannot be subject to a replacement X �→ Y.X ′

since any resulting unifier would result in X being assigned a term with the
associative symbol on top and such an unsorted unifier would not correspond to
any order-sorted unifier.

Secondly, when elementary associative unification is used to deal with asso-
ciative symbols occurring in a general unification problem, some of the variables
are actually introduced to abstract terms from alien theories. We call such vari-
ables abstraction variables. If a variable X is introduced to abstract a subterm
from a collapse-free alien theory F , then X cannot be subject to a replacement
X �→ Y.X ′ since that would produce an immediate theory clash between the
associative theory and F . Nor can such a variable be subject to an assignment
X �→ Y if Y is abstracting some subterm from a different collapse-free alien the-
ory G, since this would produce an immediate theory clash between F and G.

We refer to both element variables and abstraction variables for subterms
from collapse-free alien theories as constrained variables. For the purpose of

Associative Unification and Symbolic Reasoning Modulo Associativity 103

determining termination using either criteria, constrained variables can be
ignored. If termination cannot be guaranteed using these two criteria, we force
termination by only exploring the search tree up to a finite depth heuristically
determined from the input problem. In this case, we set a flag to acknowledge
possible incompleteness. Likewise, if due to cycle detection we end up with a
search graph that encodes an infinite set of unifiers, we return only some of
the infinite set of unifiers (the acyclic unifiers) and set the incompleteness flag.
That is, the incompleteness flag is set if we are forced to either prune unex-
plored branches or avoid traversing a cyclic graph encoding an infinite set of
unifiers. This incompleteness flag can be trivially percolated through unification
combination and other algorithms that use unification to warn the user.

2.3 Combining Unification Algorithms

Modern unification combination algorithms require simultaneous unification for
each theory to avoid termination issues. To solve simultaneous associative uni-
fication problems we solve one equation at a time and substitute the solution
into the current partial solution and the remaining equations. We simplify equa-
tions by canceling from the right and left ends of each unificand where possible,
making use of constrained variables. We heuristically attempt to avoid incom-
pleteness by careful choice of the next equation to solve; ideally we choose one for
which our pig-pug implementation is complete; otherwise we prefer equations
that do not share variables between the left- and right-hand sides.

At the top level, in the unification combination algorithm, we try to avoid
incompleteness by delaying the solution of the simultaneous unification subprob-
lems for associative symbols as long as possible, in the hope that bindings to
variables shared with other theories will constrain the search.

3 Built-In Order-Sorted Unification Modulo Axioms

Maude currently provides an order-sorted Ax-unification algorithm for all order-
sorted theories (Σ, Ax) such that the order-sorted signature Σ is preregular mod-
ulo Ax (see [16, Footnote 2]) and the axioms Ax associated to function symbols
can have any combination (even empty) of the following equational attributes:
the assoc attribute (A), the comm attribute (C), the assoc comm attributes
(AC), the assoc comm id attributes (ACU), the comm id attributes (CU),
the id attribute (U), the left id attribute (Ul), and the right id attribute
(Ur). The remaining cases: assoc id, assoc left id, and assoc right id are
excluded, but can be easily supported by using variant unification (see Sect. 6).
Maude 2.7.1 provides an Ax-unification command of the form

unify [n] in 〈ModId 〉 : 〈Term-1 〉 =? 〈Term’-1 〉 /\ ... /\ 〈Term-k 〉 =? 〈Term’-k 〉 .

where k ≥ 1, n is an optional argument providing a bound on the number of
unifiers requested, and ModId is the module where the command takes place.

104 F. Durán et al.

The unification infrastructure now supports the notion of incomplete unification
algorithms (e.g. for associative unification).

Let us show some examples of unification with an associative attribute. Con-
sider a very simple module where the symbol . is associative:

fmod UNIFICATION-A is protecting NAT .
sort NList .
subsort Nat < NList .
op _._ : NList NList -> NList [assoc] .

endfm

Even if associative unification is infinitary (we include concrete examples below)
there are many realistic unification problems that are still finitary. The following
unification problem returns five unifiers:

Maude> unify in UNIFICATION-A : X:NList . Y:NList . Z:NList =? P:NList . Q:NList .

Solution 1 Solution 2
X:NList --> #1:NList . #2:NList X:NList --> #1:NList
Y:NList --> #3:NList Y:NList --> #2:NList . #3:NList
Z:NList --> #4:NList Z:NList --> #4:NList
P:NList --> #1:NList P:NList --> #1:NList . #2:NList
Q:NList --> #2:NList . #3:NList . #4:NList Q:NList --> #3:NList . #4:NList

Solution 3 Solution 4
X:NList --> #1:NList X:NList --> #1:NList
Y:NList --> #2:NList Y:NList --> #2:NList
Z:NList --> #3:NList . #4:NList Z:NList --> #3:NList
P:NList --> #1:NList . #2:NList . #3:NList P:NList --> #1:NList . #2:NList
Q:NList --> #4:NList Q:NList --> #3:NList

Solution 5
X:NList --> #1:NList
Y:NList --> #2:NList
Z:NList --> #3:NList
P:NList --> #1:NList
Q:NList --> #2:NList . #3:NList

One possible condition for finitary associative unification (as explained in
Sect. 2) is having linear list variables, as in the example above. On the other
hand, the unification problem may not be linear, but it may be easy to detect
that there is no unifier, e.g. it is impossible to unify a list X concatenated with
itself with another list Y concatenated also with itself but with a natural number,
e.g. 1, in between.

Maude> unify in UNIFICATION-A : X:NList . X:NList =? Y:NList . 1 . Y:NList .
No unifier.

When nonlinear variables occur on both sides of an associative unification
problem, Maude will ensure termination (as explained in Sect. 2). Several cases
are possible:

1. One or more cycles are detected, but they do not give rise to unifiers.

Maude> unify in UNIFICATION-A : 0 . Q:NList =? Q:NList . 1 .
No unifier.

Associative Unification and Symbolic Reasoning Modulo Associativity 105

2. There is at least one cycle that produces an infinite family of most general
unifiers. In this case a warning will be issued and only the acyclic solutions
are returned.

Maude> unify in UNIFICATION-A : 0 . X:NList =? X:NList . 0 .
Warning: Unification modulo the theory of operator _._ has encountered
an instance for which it may not be complete.

Solution 1
X:NList --> 0
Warning: Some unifiers may have been missed due to incomplete unification algorithm(s).

Note that the unification problem 0 . X =? X . 0 has an infinite family of most
general unifiers {X �→ 0n} for 0n being a list of n consecutive 0 elements.

3. There is at least one nonlinear variable with more than two occurrences and
Maude will use a depth bound rather than cycle detection. If the search tree
grows beyond the depth bound, the offending branches will be pruned, and a
warning will be given.

Maude> unify in UNIFICATION-A :

X:NList . X:NList . X:NList =? Y:NList . Y:NList . Z:NList . Y:NList .

Warning: Unification modulo the theory of operator _._ has encountered

an instance for which it may not be complete.

Solution 1

X:NList --> #1:NList . #1:NList . #1:NList . #1:NList

Y:NList --> #1:NList . #1:NList . #1:NList

Z:NList --> #1:NList . #1:NList . #1:NList

Solution 2

X:NList --> #1:NList . #1:NList . #1:NList

Y:NList --> #1:NList . #1:NList

Z:NList --> #1:NList . #1:NList . #1:NList

Solution 3

X:NList --> #1:NList . #1:NList

Y:NList --> #1:NList

Z:NList --> #1:NList . #1:NList . #1:NList

Warning: Some unifiers may have been missed due to incomplete unification algorithm(s).

See [8] for details on the meta-level commands for unification, which are
extended with a new constant noUnifierIncomplete, and additional warnings
generated during associative unification.

4 Built-In Variant Generation

Given an equational theory (Σ, E ∪ Ax) where
−→
E is a set of convergent oriented

equations modulo the axioms Ax, the (E,Ax)-variants [11,21] of a term t are
the pairs (u, σ), where σ is a substitution and u is the (E,Ax)-canonical form of
tσ. A preorder relation of generalization that holds between such pairs provides a
notion of most general variants and also of completeness of a set of variants. An
equational theory has the finite variant property (or it is called a finite variant
theory) iff there is a finite and complete set of most general variants for each
term.

106 F. Durán et al.

The equational theories that are admissible for variant generation in Maude
2.7.1 are as follows (despite being a finite variant theory). Let fmod (Σ, E ∪ Ax)
endfm be an order-sorted functional module where E is a set of equations spec-
ified with the eq keyword and the attribute variant, and Ax is a set satisfying
the restrictions explained in Sect. 3 for order-sorted Ax-unification. Furthermore,
the equations E must be unconditional, not using the owise attribute, and con-
fluent, terminating, sort-decreasing, and coherent modulo Ax (we then call the
equational theory convergent).

Any system module mod (Σ, G ∪ E ∪ Ax,R) endm where G is an additional
set of equations and R is a set of rules, is also considered admissible for variant
generation if the equational part (Σ, E ∪ Ax) satisfies the conditions described
above. Note that Maude requires that the equations E used for variant generation
(and variant-based unification) should be clearly distinguished from the standard
equations G in Maude by using the attribute variant (both E and G are used
for term simplification).

Maude provides a variant generation command of the form:

get variants [n] in 〈ModId 〉 : 〈Term 〉 .

where n is an optional argument providing a bound on the number of variants
requested, so that if the cardinality of the set of variants is greater than the
specified bound, the variants beyond that bound are omitted; and ModId is the
module where the command takes place.

The variant generation infrastructure now supports the notion of incomplete
unification algorithms (see Sect. 3). The adaptation of the previous algorithm
in Maude 2.7 to incomplete unification algorithms was not very difficult, since
variants are computed using the folding variant narrowing strategy [21] and each
narrowing step calls the order-sorted equational unification algorithm of Sect. 3.
Thus, incompleteness may result in a folding variant narrowing tree with infinite
width being trimmed and losing some of the possible variants; see [8] for further
details.

Let us show some examples of variant generation with an associative operator.

fmod VARIANT-ASSOC is protecting NAT .
sort NList .
subsort Nat < NList .
op _._ : NList NList -> NList [assoc] .
var E : Nat . var L : NList .

ops tail prefix : NList -> NList .
eq tail(E . L) = L [variant] .
eq prefix(L . E) = L [variant] .

ops head last : NList -> Nat .
eq head(E . L) = E [variant] .
eq last(L . E) = E [variant] .

op duplicate : NList -> Bool .
eq duplicate(L . L) = true [variant] .

endfm

Some terms have a finite set of most general variants modulo associativity.

Associative Unification and Symbolic Reasoning Modulo Associativity 107

Maude> get variants in VARIANT-ASSOC : head(prefix(tail(L))) .

Variant #1 Variant #2
Nat: head(prefix(tail(#1:NList))) Nat: head(prefix(%2:NList))
L --> #1:NList L --> %1:Nat . %2:NList

Variant #3 Variant #4
Nat: head(#2:NList) Nat: %3:Nat
L --> #1:Nat . #2:NList . #3:Nat L --> %1:Nat . %3:Nat . %4:NList . %2:Nat

However, some terms may hit incomplete associative unification calls (see
Sect. 3), and an incompleteness warning for associative unification will be
printed.

Maude> get variants in VARIANT-ASSOC : duplicate(prefix(L) . tail(L)) .

Variant #1
[Bool]: duplicate(prefix(#1:NList) . tail(#1:NList))
L --> #1:NList

Variant #2
[Bool]: duplicate(%1:NList . tail(%1:NList . %2:Nat))
L --> %1:NList . %2:Nat

Variant #3
[Bool]: duplicate(prefix(%1:Nat . %2:NList) . %2:NList)
L --> %1:Nat . %2:NList

Variant #4
[Bool]: duplicate(#1:Nat . #2:NList . #2:NList . #3:Nat)
L --> #1:Nat . #2:NList . #3:Nat

Variant #5
[Bool]: duplicate(#1:Nat . #2:Nat)
L --> #1:Nat . #2:Nat

Warning: Unification modulo the theory of operator _._ has encountered
an instance for which it may not be complete.
Variant #6
Bool: true
L --> %1:Nat . %1:Nat . %1:Nat

Variant #7
Bool: true
L --> %1:Nat . %1:Nat

No more variants.
Warning: Some variants may have been missed due to incomplete unification algorithm(s).

Note that the term duplicate(prefix(L) . tail(L)) has an infinite set
of most general variants for the case of returning the variant term true, i.e., the
family of substitutions {L:NList �→ N:Nat . . . N:Nat}. This is due to the associa-
tive unification call (N:Nat . L:NList) =? (L:NList . N:Nat) invoked internally
by variant generation.

See [8] for details on the meta-level commands for variant generation, which
are extended with a new constant noVariantIncomplete.

5 Built-In Variant-Based Unification

The most natural application of variant generation is unification in an equational
theory (Σ, E ∪ Ax) where the equations E can be oriented into convergent rules

108 F. Durán et al.

−→
E modulo Ax. Intuitively, when we extend such an equational theory (Σ, E∪Ax)
with a new equation eq(x,x) = true, two terms t and t′ unify with substitution
α modulo the equational theory if and only if (true, α) is a variant of the term
eq(t, t′).

Given a module ModId satisfying the requirements of Sect. 4 and being a
finite variant theory, Maude provides a command for equational unification:

variant unify [n] in 〈ModId 〉 : 〈Term-1 〉 =? 〈Term’-1 〉 /\ ... /\ 〈Term-k 〉 =? 〈Term’-k 〉 .

where k ≥ 1 and n is an optional argument providing a bound on the number of
unifiers requested, so that if the cardinality of the set of unifiers is greater than
the specified bound, the unifiers beyond that bound are omitted.

The variant unification infrastructure now supports the notion of incomplete
Ax-unification algorithms (see Sect. 3). Since, given a unification problem u = v,
variant-based equational unification generates all the variants of u and v using
the variant generation of Sect. 4 and then calls the order-sorted Ax-unification
of Sect. 3 between each one of the variants of u and each one of the variants of
v, incompleteness may arise in two possible ways: during variant generation, as
illustrated in Sect. 4 with the generation of a warning, and during order-sorted
unifier generation, as illustrated in Sect. 3 with the generation of a warning. Note
that the warning is exactly the same in both contexts. We may print different
warnings in the future, depending on where the incompleteness arose. That is,
incompleteness may result in two folding variant narrowing trees with infinite
width being trimmed, losing some of the possible variants, and also some Ax-
unification calls returning a finite but incomplete set of unifiers.

Similarly to the incomplete variant generation in Sect. 4, we can have vari-
ant unification calls that cannot provide a finitary set of most general unifiers,
using the VARIANT-ASSOC theory of Sect. 4. The unification problem head(L)
=? last(L) ∧ prefix(L) =? tail(L) has the same solutions as the unification
problem N:Nat . L:NList =? L:NList . N:Nat with the family of solutions
{L:NList �→ N:Nat . . . N:Nat}, raising the incompleteness unification warning.

Maude> variant unify in VARIANT-ASSOC : head(L) =? last(L) /\ prefix(L) =? tail(L) .

Warning: Unification modulo the theory of operator _._ has encountered
an instance for which it may not be complete.

Unifier #1
L --> %1:Nat . %1:Nat . %1:Nat

Unifier #2
L --> %1:Nat . %1:Nat

No more unifiers.
Warning: Some unifiers may have been missed due to incomplete unification algorithm(s).

See [8] for details on the meta-level commands for variant unification, which
are extended with a new constant noUnifierIncomplete.

6 Narrowing-Based Symbolic Reachability Analysis

The modern application of narrowing, when the rules R are understood as transi-
tion rules, is that of symbolic reachability analysis [32]. Specifically, we consider

Associative Unification and Symbolic Reasoning Modulo Associativity 109

transition systems specified by order-sorted rewrite theories of the form mod
(Σ, E ∪ Ax,R) endm where: (i) E ∪ Ax satisfies the requirements of Sect. 4, and
(ii) the transition rules R are E ∪Ax-coherent and topmost (so that rewriting is
always done at the top of the term). Then, narrowing modulo E ∪ Ax is a com-
plete deductive method [32] for symbolic reachability analysis, i.e., for solving
existential queries of the form ∃x : t →∗ t′ where x are all the variables appear-
ing in t and t′, in the sense that the formula holds for (Σ, E ∪ Ax,R) iff there is
a narrowing sequence t �∗

R,E∪Ax u such that u and t′ have an (E ∪ Ax)-unifier.
The (R,E ∪ Ax)-narrowing relation is defined as t �σ,p,R,E∪Ax t′ iff there is a
non-variable position p of t, a (possibly renamed) rule l → r in R, and a unifier
σ ∈ Unif E∪Ax(t|p, l) such that t′ = (t[r]p)σ.

The symbolic reachability infrastructure now supports the notion of incom-
plete unification algorithms (see Sects. 3 and 5). Incompleteness may result in a
narrowing-based reachability tree with infinite width being trimmed and losing
some of the possible solutions; see [8] for further details.

This symbolic reachability is supported by Full Maude’s search command:

(search [n,m] in 〈ModId 〉 : 〈Term-1 〉 〈SearchArrow 〉 〈Term-2 〉 .)

where: n and m are optional arguments providing, respectively, a bound on
the number of solutions and the maximum depth of the search; ModId is the
module where the search takes place; Term-1 is the starting term, which cannot
be a variable, but may contain variables; Term-2 is the term specifying the
pattern that has to be reached (with some variables possibly shared with the
starting term); and SearchArrow is an arrow indicating the form of the narrowing
proof, where ~>1 indicates a narrowing proof consisting of exactly one step; ~>+
indicates a proof of one or more steps; ~>* indicates a proof of none, one, or more
steps; and ~>! indicates that the reached term cannot be further narrowed.

Let us illustrate the power of performing narrowing-based reachability anal-
ysis modulo variant equations and axioms, including associativity. Consider the
specification of a generic grammar interpreter in Maude, based on [4]. We define
a symbol @ to represent the interpreter configurations, where the first under-
score represents the current string (of terminal and non-terminal symbols), and
the second underscore stands for the considered grammar. For simplification,
we provide four non-terminal symbols S, A, B, and C for sort NSymbol and four
terminal symbols 0, 1, 2, and the finalizing mark eps (the empty string) for sort
TSymbol, but a parametric specification would have been more appropriate.

(mod GRAMMAR is
sorts Symbol NSymbol TSymbol String Production Grammar Conf .
subsorts TSymbol NSymbol < Symbol < String .
subsort Production < Grammar .
ops 0 1 2 eps : -> TSymbol .
ops S A B C : -> NSymbol .
op _@_ : String Grammar -> Conf .
op _->_ : String String -> Production .
op __ : String String -> String [assoc id: eps] .
op mt : -> Grammar .
op _;_ : Grammar Grammar -> Grammar [assoc comm id: mt] .
vars L1 L2 U V : String .
var G : Grammar .

110 F. Durán et al.

var N : NSymbol .
var T : TSymbol .
rl (L1 U L2 @ (U -> V) ; G) => (L1 V L2 @ (U -> V) ; G) .

endm)

Note the important fact that the string concatenation symbol is not only
assoc, but has also eps as its identity element. This means that in each nar-
rowing step with the interpreter’s rule equational unification must be performed
modulo AU and not just modulo A. This is not supported by the order-sorted
unification of Sect. 3. Therefore, the identity property is transformed into the
variant equations:

eq eps U = U [variant] . eq U eps V = U V [variant] . eq V eps = V [variant] .

The interpreter can be used in two ways thanks to narrowing: to generate
words of the given grammar, but also to parse a given string (see [7] for further
references on this topic). Generating the words of a given grammar is defined by
rewriting the configuration (S @ Γ) into (st @ Γ) where

st is a string of terminal symbols using the rules of the grammar Γ. For
example, we have the following search query associated to a context-free gram-
mar defining the language 0n1n:

Maude> (search [4] in GRAMMAR : S @ (S -> eps) ; (S -> 0 S 1)
~>! U @ (S -> eps) ; (S -> 0 S 1) .)

Solution 1 Solution 2 Solution 3 Solution 4
U --> eps U --> 0 1 U --> 0 0 1 1 U --> 0 0 0 1 1 1

Parsing a string st according to a given grammar Γ is defined by narrowing
the configuration (N @ Γ) into (st @ Γ) where N is a logical variable denoting
a non-terminal symbol. For example, we have the following search query:

Maude> (search [1] in GRAMMAR : N @ (S -> eps) ; (S -> 0 S 1)
~>* 0 0 1 1 @ (S -> eps) ; (S -> 0 S 1) .)

Solution 1
N --> S

Moreover, we can use narrowing to answer a more complex question: What is
the missing production so that the string “0 0 1” is parsed into the non-terminal
symbol S?

Maude> (search [1] in GRAMMAR : S @ (N -> T) ; (S -> eps) ; (S -> 0 S 1)
~>* 0 0 1 @ (N -> T) ; (S -> eps) ; (S -> 0 S 1) .)

Solution 1
N --> S ;
T --> 0

And we can use any grammar, e.g. a Type-0 grammar defining the language
0n1n2n.

Maude> (search [1] in GRAMMAR : N @ (S -> eps) ; (S -> 0 S B C) ; (C B -> B C) ;

(0 B -> 0 1) ; (1 B -> 1 1) ; (1 C -> 1 2) ; (2 C -> 2 2)

~>* 0 0 1 1 2 2 @ (S -> eps) ; (S -> 0 S B C) ; (C B -> B C) ;

(0 B -> 0 1) ; (1 B -> 1 1) ; (1 C -> 1 2) ; (2 C -> 2 2) .)

Solution 1

N --> S

Associative Unification and Symbolic Reasoning Modulo Associativity 111

Note that we must restrict the search in the previous narrowing-based search
commands, because narrowing does not terminate for these reachability prob-
lems. However, it is extremely important that no warning is shown, ensuring
that the symbolic analysis is complete (w.r.t. associativity properties), despite
associative unification being infinite for some uncommon cases. The key idea
here is that associative variables (L1, L2, and U) in the transition rule are linear
(L1 and L2) or under order-sorted restrictions (U).

7 Conclusions and Related Work

Unification and narrowing in Maude have opened up many applications. Variant-
based unification relies on the built-in unification algorithms in order to perform
unification modulo a convergent theory. Several formal reasoning tools either
rely on unification capabilities, such as termination proofs [15] and proofs of
local confluence and coherence [16], or rely on narrowing capabilities such as
narrowing-based theorem proving [37] or testing [36]. Also, narrowing-based
reachability analysis has evolved into logical model checking [6,19], where stan-
dard model checking cannot handle either infinite sets of initial states or infinite
sets of reachable states, but performing model checking from initial states with
logical variables can handle these broader possibilities symbolically. The area of
cryptographic protocol analysis has also benefited: the Maude-NPA tool [18] is
the most successful example of combining narrowing and unification features in
Maude; indeed Maude-NPA has already been tested with protocols using associa-
tive operators without any incomplete warning (see [20]). The Tamarin tool [29]
also uses a variant-generation algorithm, initially only for the Diffie-Hellman
theory, but recently extended to finite variant theories in Maude [12]. Finally,
several decision procedures for formula satisfiability modulo equational theories
have been provided based on narrowing [41] or by variant generation in finite
variant theories [31]. All these applications could be substantially extended to
the associative case, opening up new possibilities for symbolic reasoning.

Acknowledgements. Francisco Durán has been partially supported by Spanish
MINECO/FEDER project TIN2014-52034-R and Univ. Málaga, Campus de Excelen-
cia Internacional Andalućıa Tech. Steven Eker was partially supported by NRL grant
N00173-16-C-2005. Santiago Escobar was partially supported by the EU (FEDER) and
the Spanish MINECO under grant TIN2015-69175-C4-1-R, by the Spanish Generalitat
Valenciana under grant PROMETEOII/2015/013, and by the US Air Force Office of
Scientific Research under award number FA9550-17-1-0286. Narciso Mart́ı-Oliet has
been partially supported by MINECO Spanish project TRACES (TIN2015–67522–
C3–3R) and by Comunidad de Madrid program N-GREENS Software (S2013/ICE-
2731). Jose Meseguer was partially supported by NRL under contract number N00173-
17-1-G002. Carolyn Talcott was partially supported by ONR grants N0001415-1-2202,
N00173-17-1-G002 and NRL grant N00173-16-C-2005.

112 F. Durán et al.

References

1. Abdulrab, H.: Implementation of Makanin’s algorithm. In: Schulz, K.U. (ed.)
IWWERT 1990. LNCS, vol. 572, pp. 61–84. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-55124-7 3

2. Abdulrab, H.: LOP: toward a new implementation of Makanin’s algorithm. In:
Abdulrab, H., Pécuchet, J.-P. (eds.) IWWERT 1991. LNCS, vol. 677, pp. 133–149.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56730-5 35

3. Abdulrab, H., Pécuchet, J.-P.: Solving word equations. J. Symbolic Comput. 8(5),
499–521 (1989)

4. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Partial evaluation of
order-sorted equational programs modulo axioms. In: Hermenegildo, M.V., Lopez-
Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 3–20. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63139-4 1

5. Auffray, Y., Enjalbert, P.: Modal theorem proving: an equational viewpoint. J.
Logic Comput. 2(3), 247–295 (1992)

6. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-
state systems using narrowing. In: van Raamsdonk, F. (ed.) 24th International
Conference on Rewriting Techniques and Applications, RTA 2013, 24–26 June
2013, Eindhoven, The Netherlands, vol. 21. LIPIcs, pp. 81–96. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2013)

7. Caballero, R., López-Fraguas, F.J.: A functional-logic perspective of parsing. In:
Middeldorp, A., Sato, T. (eds.) FLOPS 1999. LNCS, vol. 1722, pp. 85–99. Springer,
Heidelberg (1999). https://doi.org/10.1007/10705424 6

8. Clavel, M., et al.: Maude Manual (Version 2.7.1) (2016). http://maude.cs.
illinois.edu

9. Clavel, M., et al.: Unification and narrowing in Maude 2.4. In: Treinen, R. (ed.)
RTA 2009. LNCS, vol. 5595, pp. 380–390. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02348-4 27

10. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

11. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some
algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3 22

12. Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond subterm-convergent equa-
tional theories in automated verification of stateful protocols. In: Maffei, M., Ryan,
M. (eds.) POST 2017. LNCS, vol. 10204, pp. 117–140. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54455-6 6

13. Durán, F., Eker, S., Escobar, S., Mart́ı-Oliet, N., Meseguer, J., Talcott, C.: Built-
in variant generation and unification, and their applications in Maude 2.7. In:
Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 183–192.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1 13

14. Durán, F., Eker, S., Escobar, S., Meseguer, J., Talcott, C.L.: Variants, unification,
narrowing, and symbolic reachability in Maude 2.6. In: Schmidt-Schauß, M. (ed.)
Proceedings of the 22nd International Conference on Rewriting Techniques and
Applications, RTA 2011, 30 May–1 June 2011, Novi Sad, Serbia, vol. 10. LIPIcs,
pp. 31–40. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

https://doi.org/10.1007/3-540-55124-7_3
https://doi.org/10.1007/3-540-55124-7_3
https://doi.org/10.1007/3-540-56730-5_35
https://doi.org/10.1007/978-3-319-63139-4_1
https://doi.org/10.1007/10705424_6
http://maude.cs.illinois.edu
http://maude.cs.illinois.edu
https://doi.org/10.1007/978-3-642-02348-4_27
https://doi.org/10.1007/978-3-642-02348-4_27
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-32033-3_22
https://doi.org/10.1007/978-3-662-54455-6_6
https://doi.org/10.1007/978-3-319-40229-1_13

Associative Unification and Symbolic Reasoning Modulo Associativity 113

15. Durán, F., Lucas, S., Meseguer, J.: Termination modulo combinations of equational
theories. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol.
5749, pp. 246–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04222-5 15

16. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of condi-
tional order-sorted rewrite theories. J. Logic Algebraic Program. 81(7–8), 816–850
(2012)

17. Enjalbcrt, P., Clerin-Debart, F.Ç.: A case of termination for associative unification.
In: Abdulrab, H., Pécuchet, J.-P. (eds.) IWWERT 1991. LNCS, vol. 677, pp. 79–89.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56730-5 32

18. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 1

19. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using
narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-9 13

20. Escobar, S., Meseguer, J., Meadows, C.: Maude-NPA manual v3.1 (2017). http://
maude.cs.illinois.edu/w/index.php?title=Maude Tools: Maude-NPA

21. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Logic Algebraic Program. 81(7–8), 898–928 (2012)

22. Goguen, J., Meseguer, J.: EQLOG: equality, types and generic modules for logic
programming. In: DeGroot, D., Lindstrom, G. (eds.) Logic Programming, Func-
tions, Relations and Equations, pp. 295–363. Prentice-Hall (1986)

23. Gutiérrez, C.: Satisfiability of word equations with constants is in exponential
space. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 1998), pp. 112–119. IEEE Computer Society Press (1998)

24. Gutiérrez, C.: Solving equations in strings: on Makanin’s algorithm. In: Lucchesi,
C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 358–373. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054336

25. Hmelevskii, J.I.: Equations in free semigroups. Number 107 in Proceedings of the
Steklov Institute of Mathematics, Moscow (1971)

26. Jaffa, J.: Minimal and complete word unification. J. ACM 37(1), 47–85 (1990)
27. Lothaire, M.: Algebraic Combinatorics on Words. Number 90 in Encyclopedia of

Mathematics and its Applications. Cambridge University Press (2002)
28. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Matem-

aticheskii USSR Sbornik 32(2), 129–198 (1977)
29. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the

symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

30. Meseguer, J.: Multiparadigm logic programming. In: Kirchner, H., Levi, G. (eds.)
ALP 1992. LNCS, vol. 632, pp. 158–200. Springer, Heidelberg (1992). https://doi.
org/10.1007/BFb0013826

31. Meseguer, J.: Variant-based satisfiability in initial algebras. In: Artho, C., Ölveczky,
P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 3–34. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29510-7 1

32. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its
application to verification of cryptographic protocols. Higher-Order Symbolic Com-
put. 20(1–2), 123–160 (2007)

https://doi.org/10.1007/978-3-642-04222-5_15
https://doi.org/10.1007/978-3-642-04222-5_15
https://doi.org/10.1007/3-540-56730-5_32
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1007/978-3-540-73449-9_13
http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:_Maude-NPA
http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:_Maude-NPA
https://doi.org/10.1007/BFb0054336
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/BFb0013826
https://doi.org/10.1007/BFb0013826
https://doi.org/10.1007/978-3-319-29510-7_1
https://doi.org/10.1007/978-3-319-29510-7_1

114 F. Durán et al.

33. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.
ACM 51(3), 483–496 (2004)

34. Plandowski, W.: An efficient algorithm for solving word equations. In: Proceedings
of the Thirty-eighth Annual ACM Symposium on Theory of Computing (STOC
2006), pp. 467–476. ACM, New York (2007)

35. Plotkin, G.D.: Building in equational theories. Mach. Intell. 7, 73–90 (1972)
36. Riesco, A.: Using big-step and small-step semantics in maude to perform declar-

ative debugging. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475,
pp. 52–68. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07151-0 4

37. Rusu, V.: Combining theorem proving and narrowing for rewriting-logic specifica-
tions. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp. 135–150.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13977-2 12

38. Schmidt, R.A.: E -unification for subsystems of S4. In: Nipkow, T. (ed.) RTA 1998.
LNCS, vol. 1379, pp. 106–120. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0052364

39. Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a
generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55124-7 4

40. Schulz, K.U.: Word unification and transformation of generalized equations. J.
Autom. Reasoning 11(2), 149–184 (1993)

41. Tushkanova, E., Giorgetti, A., Ringeissen, C., Kouchnarenko, O.: A rule-based
system for automatic decidability and combinability. Sci. Comput. Program. 99,
3–23 (2015)

https://doi.org/10.1007/978-3-319-07151-0_4
https://doi.org/10.1007/978-3-642-13977-2_12
https://doi.org/10.1007/BFb0052364
https://doi.org/10.1007/BFb0052364
https://doi.org/10.1007/3-540-55124-7_4

Proving Structural Properties of Sequent
Systems in Rewriting Logic

Carlos Olarte1, Elaine Pimentel1, and Camilo Rocha2(B)

1 Universidade Federal do Rio Grande do Norte, Natal, Brazil
carlos.olarte@gmail.com, elaine.pimentel@gmail.com

2 Pontificia Universidad Javeriana, Cali, Colombia
camilo.rocha@javerianacali.edu.co

Abstract. General and effective methods are required for providing
good automation strategies to prove properties of sequent systems. Struc-
tural properties such as admissibility, invertibility, and permutability
of rules are crucial in proof theory, and they can be used for proving
other key properties such as cut-elimination. However, finding proofs for
these properties requires inductive reasoning over the provability rela-
tion, which is often quite elaborated, exponentially exhaustive, and error
prone. This paper aims at developing automatic techniques for proving
structural properties of sequent systems. The proposed techniques are
presented in the rewriting logic metalogical framework, and use rewrite-
and narrowing-based reasoning. They have been fully mechanized in
Maude and achieve a great degree of automation when used on several
sequent systems, including intuitionistic and classical logics, linear logic,
and normal modal logics.

1 Introduction

Contemporary proof theory started with Gentzen’s natural deduction and
sequent calculus in the 1930’s [7], and it has had a continuous development
with the proposal of several proof systems for many logics. Proof systems are
important tools for formalizing, reasoning, and analyzing structural properties
of proofs, as well as determining computational and metalogical consequences of
logical systems. As a matter of fact, proposing good calculi is one of the main
research topics in proof theory.

It is more or less consensus that a good proof system should support the
notion of analytic proof [5], where every formula that appears in a proof must
be a sub-formula of the formulas to be proved. This restriction can be exploited
to prove important metalogical properties of sequent systems such as consis-
tency. In sequent systems, analyticity is often guaranteed by the cut-elimination
property: if B follows from A and C follows from B, then C follows from A.
That is, intermediate lemmas (e.g., B) can be “cut” from the proof system. It
turns out that the proof of cut-elimination for a given system is often quite elab-
orated, exponentially exhaustive, and error prone. Hence the need for general

c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 115–135, 2018.
https://doi.org/10.1007/978-3-319-99840-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_7&domain=pdf

116 C. Olarte et al.

and effective methods for providing good automation strategies. In the case of
cut-elimination, some of such methods strongly depend on the ability of showing
permutability of rules that may depend on additional properties such as admis-
sibility and invertibility of rules, which – in turn – may require induction-based
reasoning.

Rewriting logic [6,15] is a metalogical framework that can be used to rep-
resent other logics and to reason about their metalogical properties [14]. When
compared to a logical framework, a metalogical framework is more powerful
because it includes the ability to reason about a logic’s entailment relation as
opposed to just being sound to simulate it. Moreover, important computational
aspects of the logical system under study need to be encoded in flexible ways,
so that such a system can become data, and be subject to transformations and
efficient execution in a computational engine. Thanks to its reflective capabili-
ties and initial reachability semantics, important inductive aspects of rewriting
logic theories can be encoded in its own metalanguage so that theories, proofs,
and provability can be mechanically analyzed with the help of rewriting logic
systems such as Maude [6].

This paper develops new techniques, using rewriting logic as a metalogi-
cal framework, for reasoning about properties of sequent systems. Relying on
rewrite- and narrowing-based reasoning, these techniques are introduced as pro-
cedures for proving admissibility, invertibility, and permutability of inference
rules. Such procedures have been fully implemented in Maude. The case study
analyses included in this paper comprise the following sequent systems: propo-
sitional intuitionistic logic (G3ip), multi-conclusion propositional intuitionistic
logic (mLJ), propositional classical logic (G3cp), propositional linear logic (LL),
and normal modal logics (K and S4). Beyond advocating for the use of rewriting
logic as a metalogical framework, the novel algorithms presented here are able
to automatically discharge many proof obligations and ultimately obtain the
expected results.

The approach can be summarized as follows. The inference rules of a sequent
system S are specified as (backward) rewrite rules modulo structural axioms
(e.g., associativity, commutativity, and identity) in RS , inducing a rewrite rela-
tion →S on multisets of sequents. From the rewriting logic viewpoint, the main
results presented here are metatheorems about inductive reachability proper-
ties of →S . These metatheorems entail sufficient conditions for proving inductive
properties that can be generated and checked with the help of term rewriting
and narrowing. More precisely, given an inductive property φ about S, sev-
eral subgoals φi are generated by unification modulo axioms. The system S is
extended to S ′ by adding inductive lemmas as axioms and, if each φi can be
→S′-rewritten to the empty multiset, then φ holds in the initial reachability
model of S. In such a process, the original rewrite theory RS is extended and
transformed in several ways: a painless task to implement thanks to the off-the-
shelf reflective capabilities of rewriting logic supported by Maude. Ultimately,
the resulting metatheorems can be seen as tactics for automating reasoning of
sequent systems in rewriting logic. This approach is generic in the sense that

Proving Structural Properties of Sequent Systems in Rewriting Logic 117

only mild restrictions are imposed on the formulas of the sequent system S and
modular since properties can be proved incrementally.

Outline. The rest of the paper is organized as follows. Section 2 introduces the
structural properties of sequent systems that are considered in this work and
Sect. 3 presents order-sorted rewriting logic and its main features as a logical
framework. Then, Sect. 4 establishes how to prove the structural properties based
on a rewriting approach and Sect. 5 shows how to automate the process of prov-
ing these properties. Section 6 presents different sequent systems and properties
that can be proved with the approach. Finally, Sect. 7 concludes the paper and
presents some future research directions.

2 Three Structural Properties of Sequent-Based Logics

This section presents and illustrates three structural properties of sequent sys-
tems, namely, permutability, admissibility, and invertibility of rules. Notation
and standard definitions are presented, which are illustrated with detailed
examples.

Definition 1 (Sequent). Let L be a formal language consisting of well-formed
formulas. A sequent is an expression of the form Γ ⊢Δ where Γ (the antecedent)
and Δ (the succedent) are finite multisets of formulas in L, and ⊢ is the meta-
level symbol of consequence. If the succedent of a sequent contains at most one
formula, it is called single-conclusion, and multiple-conclusion, otherwise.

Definition 2 (Sequent System). A sequent system S is a set of rules of the
form

S1 ⋯ Sn

S
r

where the sequent S is the conclusion inferred from the premise sequents
S1, . . . , Sn in the rule r. If the set of premises is empty, then r is an axiom.
In a rule introducing a connective, the formula with that connective in the con-
clusion sequent is the principal formula, and its sub-formulas in the premises
are the auxiliary formulas. Systems with empty antecedents are called one-sided;
otherwise they are called two-sided.

As an example, Fig. 1 presents the two-sided single-conclusion propositional
intuitionistic sequent system G3ip [21], with formulas built from the grammar:

F,G∶∶ = p ∣ ⊺ ∣ � ∣ F ∨G ∣ F ∧G ∣ F ⊃ G

where p is an atomic proposition. In this system, for instance, the conclusion
F ∨G of ∨L is the principal formula, while the formulas F and G are auxiliary
formulas.

118 C. Olarte et al.

Fig. 1. System G3ip for propositional intuitionistic logic. In the I rule, p is atomic.

Definition 3 (Derivation). A derivation in a sequent system S (called
S-derivation) is a finite labeled tree with nodes labeled by sequents and a sin-
gle root, axioms at the top nodes, and where each node is connected with the
(immediate) successor nodes (if any) according to the inference rules. A sequent
S is derivable in the sequent system S, denoted S � S, iff there is a derivation
of S in S. The system S is usually omitted when it can be inferred from the
context.

It is important to clearly distinguish the two different notions associated to
the symbols ⊢ and � namely: the former is used to build sequents, while the
latter (introduced in Definition 3) denotes derivability in a sequent system.

Definition 4 (Height of derivation). The height of a derivation is the great-
est number of successive applications of rules in it, where an axiom has height 0.

The structural property of rule permutability [17,19] is stated next.

Definition 5 (Permutability). Let r1 and r2 be inference rules in a sequent
system S. The rule r2 permutes down r1, notation r2 ↓ r1, if for every S-
derivation of a sequent S in which r1 operates on S and r2 operates on one or
more of r1’s premises (but not on auxiliary formulas of r1), there exists another
S-derivation of S in which r2 operates on S and r1 operates on zero or more of
r2’s premises (but not on auxiliary formulas of r2).

For instance, consider the left ∨L and right ∨Ri
rules for disjunction in G3ip.

First, it can be observed that ∨L ↓ ∨Ri
by using the following transformation:

Γ,F ⊢ Ci Γ,G ⊢ Ci

Γ,F ∨G ⊢ Ci
∨L

Γ,F ∨G ⊢ C1 ∨C2

∨Ri

↝

Γ,F ⊢ Ci

Γ,F ⊢ C1 ∨C2

∨Ri

Γ,G ⊢ Ci

Γ,G ⊢ C1 ∨C2

∨Ri

Γ,F ∨G ⊢ C1 ∨C2
∨L

The inverse permutation, however, does not hold, i.e., ∨Ri
/↓ ∨L. In fact, in

the following derivation,

Γ,F ⊢ Ci

Γ,F ⊢ C1 ∨C2

∨Ri
Γ,G ⊢ C1 ∨C2

Γ,F ∨G ⊢ C1 ∨C2
∨L

Proving Structural Properties of Sequent Systems in Rewriting Logic 119

derivability of Γ,G ⊢ C1 ∨ C2 does not imply derivability of Γ,G ⊢ Ci; hence,
such a derivation cannot start by applying the rule ∨Ri

.
Other two important structural properties are admissibility and invertibility.

Definition 6 (Admissibility and Invertibility). Let S be a sequent system.
An inference rule

S1 ⋯ Sn

S

is called:

i. admissible in S if S is derivable in S whenever S1, . . . , Sn are derivable in S.
ii. invertible in S if the rules S

S1
, . . . , S

Sn
are admissible in S.

Proving invertibility often requires induction on the height of derivations,
where all the possible rule applications have to be considered. For example, for
proving that ∨L is invertible in G3ip, the goal is to show that both Γ,F ⊢ C and
Γ,G ⊢ C are derivable whenever Γ,F ∨G ⊢ C is derivable. The result follows by
a case analysis on the shape of the derivation of Γ,F ∨G ⊢ C. Consider, e.g., the
case when C = A ⊃ B and the last rule applied is ⊃R, i.e., consider the following
derivation:

Γ,F ∨G,A ⊢ B

Γ,F ∨G ⊢ A ⊃ B
⊃R

Then, by the inductive hypothesis, Γ,F,A ⊢ B and Γ,G,A ⊢ B are derivable
and, by using ⊃R, the following holds:

Γ,F,A ⊢ B

Γ,F ⊢ A ⊃ B
⊃R and Γ,G,A ⊢ B

Γ,G ⊢ A ⊃ B
⊃R

as needed. On the other hand, ∨Ri
is not invertible: if p1, p2 are different atomic

propositions, then pi ⊢ p1 ∨ p2 is derivable for i = 1,2, but pi ⊢ pj is not for i /= j.
In general, proving invertibility may involve some subtle details, as it will

be seen in Sect. 6. A common one is the need for admissibility of the weak-
ening structural rule. A structural rule does not introduce logical connectives,
but instead changes the structure of the sequent. Since sequents are built from
multisets, such changes are related to the cardinality of a formula or its pres-
ence/absence in a context. For example, the structural rules for weakening and
contraction in the intuitionistic setting are:

Γ ⊢ C
Γ,Δ ⊢ C

W
Γ,Δ,Δ ⊢ C

Γ,Δ ⊢ C
C

These rules are admissible in G3ip. The proof of admissibility of weakening is
independent of any other results and it is also by induction on the height of
derivations (and considering all possible rule applications).

120 C. Olarte et al.

Admissibility of contraction is more involved and often it depends on invert-
ibility results. As an example, suppose that

Γ,F ∨G,F ⊢ C Γ,F ∨G,G ⊢ C

Γ,F ∨G,F ∨G ⊢ C
∨L

Observe that the inductive hypothesis cannot be applied since the premises do
not have duplicated copies of auxiliary formulas. In order to obtain a proof,
invertibility of ∨L is needed: the derivability of Γ,F ∨G,F ⊢ C and Γ,F ∨G,G ⊢
C implies the derivability of Γ,F,F ⊢ C and Γ,G,G ⊢ C; moreover, by the
inductive hypothesis, Γ,F ⊢ C and Γ,G ⊢ C are derivable, and the result follows.

3 Rewriting Logic Preliminaries

This section briefly explains order-sorted rewriting logic [15] and its main fea-
tures as a logical framework. Maude [6] is a language and tool supporting the
formal specification and analysis of rewrite theories.

An order-sorted signature Σ is a tuple Σ = (S,≤, F) with a finite poset of
sorts (S,≤) and a set of function symbols F typed with sorts in S, which can be
subsort-overloaded. For X = {Xs}s∈S an S-indexed family of disjoint variable sets
with each Xs countably infinite, the set of terms of sort s and the set of ground
terms of sort s are denoted, respectively, by TΣ(X)s and TΣ,s; similarly, TΣ(X)
and TΣ denote the set of terms and the set of ground terms. A substitution is an
S-indexed mapping θ ∶ X �→ TΣ(X) that is different from the identity only for
a finite subset of X and such that θ(x) ∈ TΣ(X)s if x ∈ Xs, for any x ∈ X and
s ∈ S. A substitution θ is called ground iff θ(x) ∈ TΣ or θ(x) = x for any x ∈ X.
The application of a substitution θ to a term t is denoted by tθ.

A rewrite theory is a tuple R = (Σ,E ⊎B,R) with: (i) (Σ,E ⊎B) an order-
sorted equational theory with signature Σ, E a set of (possibly conditional)
equations over TΣ , and B a set of structural axioms – disjoint from the set of
equations E – over TΣ for which there is a finitary matching algorithm (e.g.,
associativity, commutativity, and identity, or combinations of them); and (ii)
R a finite set of (possibly with equational conditions) rewrite rules over TΣ .
A rewrite theory R induces a rewrite relation →R on TΣ(X) defined for every
t, u ∈ TΣ(X) by t →R u if and only if there is a rule (l → r if φ) ∈ R and
a substitution θ ∶ X �→ TΣ(X) satisfying t =E⊎B lθ, u =E⊎B rθ, and φθ is
(equationally) provable from E ⊎B [2].

Appropriate requirements are needed to make an equational theory R exe-
cutable in Maude. It is assumed that the equations E can be oriented into a set of
(possibly conditional) sort-decreasing, operationally terminating, and confluent
rewrite rules

�→
E modulo B [6]. For a rewrite theory R, the rewrite relation →R

is undecidable in general, even if its underlying equational theory is executable,
unless conditions such as coherence [22] are given (i.e., rewriting with →R/E⊎B

can be decomposed into rewriting with →E/B and →R/B). The executability of a
rewrite theory R ultimately means that its mathematical and execution seman-
tics coincide.

Proving Structural Properties of Sequent Systems in Rewriting Logic 121

The rewriting logic specification of a sequent system S is a rewrite theory
RS = (ΣS ,ES ⊎BS ,RS) where: ΣS is an order-sorted signature describing the
syntax of the logic S; ES is a set of executable equations modulo BS correspond-
ing to those parts of the deduction process that, being deterministic, can be safely
automated as computation rules without any proof search; and RS is a set of
executable rewrite rules modulo BS capturing those non-deterministic aspects of
logical inference in S that require proof search. The point is that although both
the computation rules ES and the deduction rules RS are executed by rewriting
modulo the set of structural axioms BS , by the executability assumptions on
RS , the rewrite relation →ES/BS has a single outcome in the form of a canonical
form and thus can be executed blindly with “don’t care” non-determinism and
without any proof search. Furthermore, BS provides yet one more level of compu-
tational automation in the form of BS -matching and BS -unification algorithms.
This interplay between axioms, equations, and rewrite rules can ultimately make
the specification RS very efficient with modest memory requirements.

4 Checking Admissibility, Invertibility, and Permutability

This section presents rewrite- and narrowing-based techniques for proving admis-
sibility, invertibility, and permutability in sequent systems. They are presented
as metatheorems about sequent systems – with the help of rewrite-based scaf-
folding such as terms and substitutions – and provide sufficient conditions for
proving the desired properties.

The techniques introduced in this section assume that a sequent system S is
a set of inference rules with sequents in the set TΣS (X), where ΣS is an order-
sorted signature (see Section 3). The expression S1 ∪ S2 denotes the extension
of the sequent system S1 by adding the inference rules of S2 (and vice versa); in
this case, the sequents in the resulting sequent system S1 ∪ S2 are terms in the
signature ΣS1 ∪ ΣS2 . By an abuse of notation, for S a sequent system and S a
sequent, the expression S ∪ {S} denotes the sequent system obtained from S by
adding the sequent S as an axiom, understood as a zero-premise rule. This conven-
tion is extensively used in the main results of this section. Finally, given a term
t ∈ TΣS (X), with ΣS = (S,≤, F), t ∈ T(S,≤,F∪Ct)

(X) is the term obtained from
t by turning each variable x ∈ vars(t) of sort s ∈ S into the fresh constant x of sort
s and where Ct = {x ∣ x ∈ vars(t)}

It is assumed the existence of a unification algorithm for multisets (or sets)
of sequents. Given two sequent terms S and T built from a signature ΣS and
structural axioms BS , the expression CSUBS (S,T) denotes the complete set of
unifiers of S and T modulo BS . Recall that CSUBS (S,T) satisfies that, for each
substitution σ ∶ X �→ TΣ(X), there are substitutions θ ∈ CSUBS (S,T) and
γ ∶ X �→ TΣ(X) such that σ =BS θγ. Note that for a combination of free and
associative and/or commutative and/or identity axioms BS , except for symbols
that are associative but not commutative, such a finitary unification algorithm
exists. In the development of this section, the expression CSU is used as an
abbreviation for CSUBS , where BS are the structural axioms for sets/multisets
of sequents.

122 C. Olarte et al.

Definition 7 introduces a notion of admissibility of a rule relative to another
rule.

Definition 7 (Local admissibility). Let
S1

S
rs be a rule, S be a sequent sys-

tem and
T1 ⋯ Tn

T
rt be an inference rule in S. The rule rs is admissible relative

to rt in S iff for each θ ∈ CSU(S1, T):

S ∪ {Tjθ ∣ j ∈ 1..n} ∪ ⋃
j∈1..n

{Sγ ∣ γ ∈ CSU(S1, Tjθ)} � Sθ,

where the variables in S and T are assumed disjoint.

For proving admissibility of the rule rs, the goal is to prove that if S1 is
derivable, then S is derivable. The proof follows by induction on the height of
a derivation π of S1 (see Sect. 2). Suppose that the last rule applied in π is rt.
This is only possible if S1 and T “are the same”, up to substitutions. Hence, the
idea is that each unifier θ of S1 and T covers the cases where the rule rt can
be applied on the sequent S1; different proof obligations are generated for each
unifier. Consider, for instance, the proof obligation of the ground sequent Sθ for
a given θ ∈ CSU(S1, T). Namely, assume as hypothesis that the derivation below
is valid in order to show that the sequent Sθ is provable:

T1θ ⋯ Tnθ

S1θ
rt (1)

This means that all the premises in (1) should be assumed derivable. This is
the purpose of extending the sequent system with the set of ground sequents
{Tjθ ∣ j ∈ 1..n}, interpreted here as axioms, in Definition 7. Moreover, by induc-
tion, it can be assumed that the theorem (i.e., S1 implies S) is valid for the
premises of (1) (note that such premises have a shorter derivation compared
to the derivation of S1θ). Therefore, the following set of sequents can also be
assumed as derivable and, thus, are added as axioms:

⋃
j∈1..n

{Sγ ∣ γ ∈ CSU(S1, Tjθ)}

If, from the extended sequent system it is possible to show that the ground
sequent Sθ is derivable, then the theorem will work for the particular case when
rt is the last applied rule in the derivation π of S1. Since a complete set of
unifiers is finite for sequents (as assumed in this section for any sequent system
S), then there are finitely many proof obligations to discharge in order to check
if a rule is admissible relative to a rule in a sequent system. Observe that the
set CSU(S,T) may be empty. In this case, the set of proof obligations is empty
and the property vacuously holds.

Theorem 1 presents sufficient conditions for the admissibility of a rule in a
sequent system based on the notion of admissibility relative to a rule.

Proving Structural Properties of Sequent Systems in Rewriting Logic 123

Theorem 1. Let S be a sequent system and
S1

S
rs be an inference rule. If rs is

admissible relative to each rt in S, then rs is admissible in S.

Proof. Assume that S1 is derivable in the system S. The proof proceeds by induc-
tion on the height of such a derivation with case analysis on the last rule applied.
Assume that the last applied rule is rt. By hypothesis (using Definition 7), it
can be concluded that S is derivable and the result follows.

The following definition introduces a notion of invertibility of a rule relative
to another rule.

Definition 8 (Local invertibility). Let S be a sequent system, and let
S1 ⋯ Sm

S
rs and

T1 ⋯ Tn

T
rt be inference rules in S. The rule rs is invertible

relative to rt iff for each θ ∈ CSU(S,T) and 1 ≤ l ≤m:

S ∪ {Tjθ ∣ j ∈ 1..n} ∪ ⋃
i∈1..m

⋃
j∈1..n

{Siγ ∣ γ ∈ CSU(S,Tjθ)} � Slθ,

where the variables in S and T are assumed disjoint.

For checking invertibility of a rule rs, the goal is to check that derivability
is not lost when moving from the conclusion S to the premises Sl. The proof
is by induction on the derivation π of S. Suppose that the last rule applied in
π is rt. For this to happen at the first place, S and T must unify. Then, for
each θ ∈ CSU(S,T), the premise sequents Tjθ of rt are assumed to be derivable
(and used to extend S with new axioms). Moreover, each ground term Siγ can
also be used as an inductive hypothesis since any application of rs on Tjθ has
a shorter derivation than that of Tθ. If, from all this in addition to the rules in
S, it is possible to prove derivable the premises Sl for all 1 ≤ l ≤ m, then the
theorem will work for the particular case where rt was the last applied rule in
the derivation π of S.

If the set CSU(S,T) is empty, this means that the rules rt and rs cannot
be applied on the same sequent and the property vacuously holds. For instance,
consider the system G3ip in Fig. 1: the proof of invertibility of ∧R does not
need to consider the case of invertibility relative to ∨R since it is not possible
to have, at the same time, a conjunction and a disjunction on the succedent of
the sequent. In other logics as, e.g., G3cp (see Sect. 6.3), this proof obligation is
certainly not vacuously discarded.

Theorem 2 presents sufficient conditions for checking the invertibility of a
rule in a sequent system. The proof is similar to the one given for Theorem 1.

Theorem 2. Let S be a sequent system and rs an inference rule in S. If rs is
invertible relative to each rt in S, then rs is invertible in S.

This section is concluded by establishing conditions to prove permutability
of rules.

124 C. Olarte et al.

Theorem 3. Let S be a sequent system and
S1 ⋯ Sm

S
rs,

T1 ⋯ Tn

T
rt be

inference rules in S. Then rs ↓ rt iff for each θ ∈ CSU(S,T), 1 ≤ i ≤ m,
γ ∈ CSU(T,Siθ), and 1 ≤ l ≤ n:

S ∪ {Tjγ ∣ j ∈ 1..n} ∪ {Skθ ∣ k ∈ 1..m ∧ k ≠ i} � Tlθ,

where the variables in S and T are assumed disjoint.

Proof. Checking permutability does not require induction but a proof transfor-
mation. First of all, rs, rt should be applied to the conclusion sequent, hence all
unifiers between the conclusions S and T are considered. Second, different cases
need to be considered when rt can be applied to one of the premises of rs. Thus
there is a proof obligation for each premise Siθ where rt can be applied. In each
of such proof obligations the goal is to show that the premises of rt are derivable
(Tlθ on the right). For that, it can be assumed that the premises of rt applied to
the given premise of rs are derivable (Tjγ expression). Moreover, all the other
premises of rs are also assumed as derivable (Skθ expression). If, from all these
ground sequents and the rules in S it can be proved that Tl is derivable, for each
l = 1..n, then rs ↓ rt.

5 Reflective Implementation

The design and implementation of a prototype that offers support for the nar-
rowing procedures introduced in Sect. 4 is discussed. The reader is referred to
http://subsell.logic.at/theorem-maude for the implementation and the experi-
ments summarized in Sect. 6.

5.1 Sequent System Specification

The reflective implementation relies on the following functional module that
needs to be realized by the object-logic (i.e., the system to be analyzed):

fmod OBJ-LOGIC is
--- Sequents and multisets of sequents
sorts Sequent SSequent .
subsort Sequent < SSequent .
--- Building sequents
op proved : -> Sequent [ctor] .
op _,_ : SSequent SSequent -> SSequent [ctor assoc comm id: proved] .

endfm

The sort Sequent is used to represent sequent terms and the sort SSequent
for representing multisets of sequent terms separated by comma. The constant
proved is the identity of the multiset constructor and represents the empty
sequent (i.e., no goals need to be discharged).

When formalizing a sequent system S as a rewrite theory RS there are two
options (backwards or forwards) for expressing an inference rule as rewrite rule.
In this paper, the backwards reasoning option is adopted, which rewrites the

http://subsell.logic.at/theorem-maude

Proving Structural Properties of Sequent Systems in Rewriting Logic 125

target goal of an inference system to its premises. Hence, for instance, the rule ∧L

in G3ip will be expressed as a rewrite rule of the form Γ,F ∧G ⊢ C → Γ,F,G ⊢ C.
The implementation assumes also a specific encoding for the inference rules as
follows.

Definition 9. (Encoding logical rules). A sequent rule
S1 ⋯ Sm

S
rs is

encoded in the reflective implementation as:
rl [rs] : S => proved . if m = 0; and
rl [rs] : S => S1, ..., Sm . if m > 0.

The first case in the encoding of logical rules corresponds to the case of an
axiom, i.e., an inference rule without premises. The constant proved denotes
the fact that an instance of an axiom is derivable by definition. The second case
corresponds to those rules that have premises that need to be proved derivable.

The implementation requires a module with any (reasonable) concrete syntax
for formulas and sequents, and adhering to the encoding of inference rules above.
For instance, the following snippet of code specifies the syntax for the system
G3ip:

fmod FORMULA-PROP is
--- Atomic propositions, Formulas and sets of formulas
sorts Prop Formula SFormula .
subsort Prop < Formula < SFormula .
op p : Nat -> Prop [ctor] . --- atomic Propositions
ops False True : -> Formula [ctor] . --- False and True
ops _-->_ _/_ _\/_ : Formula Formula -> Formula [ctor] . --- connectives
--- Building sets of formulas
op * : -> SFormula . --- empty set of formulas
op _;_ : SFormula SFormula -> SFormula [prec 40 ctor assoc comm id: *] .
eq F:Formula ; F:Formula = F:Formula . --- idempotency

endfm

The following module extends the module OBJ-LOGIC and specifies the inference
rules of G3ip.

mod G3ip is
pr FORMULA-PROP .
inc OBJ-LOGIC .
--- Constructor for sequents .
op _|--_ : SFormula SFormula -> Sequent [ctor prec 50 format(b o r o)] .
--- Rules
rl [I] : P ; C |-- P => proved .
rl [AndL] : F /\ G ; C |-- H => F ; G ; C |-- H .
rl [AndR] : C |-- F /\ G => (C |-- F) , (C |-- G) .
rl [ImpL] : C ; F --> G |-- H => (C ; F --> G |-- F) , (C ; G |-- H) .
...
op ANY : -> SFormula [ctor].

endm

The constant ANY is used to deal with extra-variables on the right-hand side of
the rules, as it will be shown in an example below.

126 C. Olarte et al.

5.2 Property Specification

The reflective implementation uses the following theory to specify the input to
the analysis task, i.e., the sequents to be proved derivable:

th TH-INPUT is
pr META-LEVEL .
--- Name of the module with the object-logic description
op modName : -> Qid .
--- List of theorems (hypotheses for the analyses)
op knownTheorems : -> RuleSet .
--- List of invertible rules
op knownInvRules : -> QidList .

endth

Such a theory specifies the name of the module to be analyzed, the already
proved theorems (e.g., admissibility of a given structural rule) and the rules that
have been already proved to be invertible. As an example, the following snippet
of code shows the implementation of the theory TH-INPUT for the module G3ip:

mod G3ip-TEST is
ops modName seqType : -> Qid . --- Name of the module to be analyzed
eq modName = ’G3ip .
op knownTheorems : -> RuleSet . --- Previously proved lemmas
eq knownTheorems = none .
op knownInvRules : -> QidList . --- Known invertible rules
eq knownInvRules = nil .
--- Theorems to be proved
op Th-Weakening : -> Rule . --- Admissibility of weakening
eq Th-Weakening = (rl ’_|-_[’C:SFormula,’F:Formula] => ’

|-[’_;_[’C:SFormula,’ANY.SFormula],’F:Formula]
[label(’Th-Weakening)].) .

[...]
endm

As noted in Sect. 4, the properties of interest are specified by a sequent system S
and an inference rule r. Given a rewrite theory RS representing S, the inference
rule r to be checked admissible, invertible, or permutable in S is represented by
a rewrite rule, expressed as a meta-term, in the syntax of S. For instance, the
statement of the theorem for invertibility of ∧R is generated with the aid of the
auxiliary definition

op buildInvTheorem : Qid -> Rule .

that given the identifier of the rule (’AndR’, in this case) returns the following
rule:

rl ’_|-_[’C:SFormula,’_/_[’F:Formula,’G:Formula]] =>
’_‘,_[’_|-_[’C:SFormula,’F:Formula],’_|-_[’C:SFormula, ’G:Formula]]
[label(’Th-AndR)] .

Th-AndR is the meta-representation of the rule

rl [And] : C |-- F /\ G => (C |-- F , C |-- G) .

This is a very flexible way of encoding the theorems to be proved. For instance,
in order to use the inductive hypothesis on a sequent Tj , it suffices to rewrite
Th-AndR on Tj , thus resulting in the needed (derivable) sequents/axioms (see e.g.,
the term {Siγ ∣ γ ∈ CSU(S,Tjθ)} in Definition 8).

Proving Structural Properties of Sequent Systems in Rewriting Logic 127

Special care needs to be taken when the inference rule to check has extra vari-
ables in the premises. In general, the rewrite rule associated to such an inference
rule would have extra variables in the right-hand side and could not be used for
execution (unless a strategy is provided). Nevertheless, these extra variables can
be encoded as fresh constants, yielding a rewrite rule that is executable. This is
exemplified in the theorem for admissibility of Weakening in module G3ip-TEST

that uses the constant ANY defined in the module G3ip. Note that Th-Weakening

is just the meta-representation of

rl [Th-Weakening] : C |-- F => C ; ANY |-- F .

It is worth noticing that this rewriting rule is written from the premise to the
conclusion (see rule W in Sect. 2). The reason is that the proof of admissibility
requires to show that assuming the premise of the rule, the conclusion is valid
(see Definition 7).

5.3 The Algorithms

The reflective implementation follows closely the definitions of the previous
section. It offers functions that implement algorithms for each one of the theo-
rems in Sect. 4; for sequent system RS and rule r:

admissible? checks if r is admissible in S by validating the conditions in The-
orem 1.

invertible? checks if r is invertible in S by validating the conditions in Theo-
rem 2.

permutes? checks if r permutes in S by validating the conditions in Theorem 3.

The output of each one of these algorithms is a list of tests, one per rule in
S. The test for a rule rt indicates whether r has the desired property relative to
rt. Take for instance the procedure:

op invertible? : Qid -> Bool .
eq invertible?(Q) = resultTrue(analyze(buildInvTheorem(Q))) .

Given the identifier of a rule Q, it first builds the invertibility theorem, generates
and executes all the needed proof obligations (analyze(.)) and returns true only
if all the proof obligations succeed (resultTrue).

The procedure analyze tests the given rule Q against all the rules defined in
the module. It uses the auxiliary function:

op holds? : Rule Qid -> Bool .

that computes the set of unifiers by using the Maude function metaDisjointUnify

and checks the conditions described in Sect. 4. For that, operations on the
META-LEVEL are used to, e.g., extend the module with the needed axioms (rewrit-
ing rules when m = 0 in Definition 9) and transform variables into constants.
Moreover, the metaSearch procedure is used to check the entailment in, e.g.,
Definition 7.

128 C. Olarte et al.

Since the entailment relation is, in general, undecidable, all the tests are
performed up to a given search depth and, when it is reached, the procedure
returns false. Hence the procedures are sound (in the sense of the theorems in
Sect. 4) but not complete (due to the undecidability of the logic and the fact
that the goals are inductive properties).

Finally, the implementation also includes macros based on these algorithms,
e.g., analyzePermutation for checking the permutation status of all rules.

6 Case Studies

This section presents properties of several sequent systems that can be auto-
matically checked with the algorithms presented in Sect. 5. The general idea is
that, given a sequent system S and a sequent S representing an admissibility,
invertibility, or permutability problem instance, the experiments in this section
use the encoding for S and S (Sect. 5) – and the rewriting logic framework – to
check if S is derivable in S, as follows:

S � S if enc(S)
∗
→enc(S) proved,

where enc(S) and enc(S) denote, respectively, the encoding of S and S.
For each calculi, the results about invertibility and admissibility of the struc-

tural rules W (weakening) and C (contraction), and permutability are summa-
rized in a table using the following conventions:

✓T means that the property holds for the given system and the tool is able to
prove it (thus returning true).

✓F means that the property does not hold for the given system and the tool
returns false.

∼DN means that the property holds but the tool was not able to prove it (then
returning false).

6.1 System G3ip

An important remark is that propositional intuitionistic logic is decidable. How-
ever, since the rule ⊃L replicates the principal formula in the left premise,
a careless specification of this rule can result in infinite computations. For
instance, the sequent p ⊃ q ⊢ q is not provable. However, a proof search try-
ing to rewrite that sequent into proved will generate the infinite chain of goals
(p ⊃ q ⊢ p), (p ⊃ q ⊢ p), (p ⊃ q ⊢ p),⋯.

One solution for this problem is to consider sets instead of multisets of
sequents (i.e., by adding an equation for idempotency in the module SEQUENT).
This solution is akin to the procedure of detecting whether a sequent in a deriva-
tion tree is equal to one of its predecessors. In this way a complete decision
procedure for propositional intuitionistic logic can be obtained.

The results for invertibility of rules and admissibility of structural rules for
G3ip are summarized below.

Proving Structural Properties of Sequent Systems in Rewriting Logic 129

Invertibilities Structural G3ipW G3ip+inv

I ∨L ∨Ri
∧L ∧R ⊺R ⊺L �L ⊃L ⊃R ⊃

pR
L W C ⊃R C

✓T ✓T ✓F ✓T ✓T ✓T ✓T ✓T ✓F ∼DN ✓T ✓T ∼DN ✓T ✓T

The non-invertible rules in this system are ∨Ri
and ⊃L. Note that ⊃R is

invertible but the implementation failed to prove it. The reason is that the proof
for this case requires admissibility of W. More precisely, consider a derivation of
the sequent Γ,A ⊃ B ⊢ F ⊃ G and suppose that the last applied rule was

Γ,A ⊃ B ⊢ A Γ,B ⊢ F ⊃ G

Γ,A ⊃ B ⊢ F ⊃ G
⊃L

By inductive hypothesis on the right premise, Γ,B,F ⊢ G is derivable. Consid-
ering the left premise, since Γ,A ⊃ B ⊢ A is derivable, admissibility of weakening
implies that Γ,A ⊃ B,F ⊢ A is also derivable, hence Γ,A ⊃ B,F ⊢ G is derivable
and the result follows. It turns out that the admissibility of W is automatically
proved by the algorithms. Let G3ipW denote the system G3ip with the admissible
rule W added: in this system, the invertibility of ⊃R can be automatically proved.

Although the rule ⊃L is not invertible, it is invertible in its right premise.
That is, if Γ,F ⊃ G ⊢ C is derivable, then so is Γ,G ⊢ C. This result can also
be proved by induction on the height of the derivation and the implementation
returns a positive answer (this corresponds to the entry ⊃pR

L in the table above).
Finally, as mentioned in Sect. 2, the proof of admissibility of contraction often

requires the invertibility of rules. As an example, consider the derivation

Γ,F ⊃ G,F ⊃ G ⊢ F Γ,G,F ⊃ G ⊢ C

Γ,F ⊃ G,F ⊃ G ⊢ C
⊃L

By inductive hypothesis on the left premise, Γ,F ⊃ G ⊢ F is derivable and by
invertibility of ⊃L on the right premise, Γ,G,G ⊢ C is derivable and the result
follows. Hence, by adding all the invertibilities already proved (system G3ip+inv

in the table), the tool was able to prove admissibility of the rule C.
As shown in Sect. 2, the proof of permutability of rules requires the invertibil-

ity lemmas and admissibility of weakening (already proved). Using the system
G3ip+inv, the tool was able to prove all the permutability lemmas for proposi-
tional intuitionistic logic. The following table summarizes some of these results.

∧R ↓ ∧L ∧L ↓ ∧R ∨i ↓ ∧L ∧L ↓ ∨i ∨Ri
↓ ∨L ∨L ↓ ∨Ri

∨Ri
↓⊃L ⊃L↓ ∨Ri

⊃L↓⊃L ∧L ↓⊃R ⊃R↓ ∧L

✓T ✓T ✓T ✓T ✓F ✓T ✓T ✓T ✓T ✓T ✓T

Note that the approach followed for G3ip, G3ipW and G3ip+inv in this section
provides an example of a modular proof, where theorems are added as hypothesis
to the system. In this way, more involved properties can be discarded.

130 C. Olarte et al.

6.2 Multi-conclusion Propositional Intuitionistic Logic (mLJ)

Maehara’s mLJ [13] is a multiple conclusion system for intuitionistic logic. The
rules are exactly the same as in G3ip, except for the ∨R and implication (see
Fig. 2). While the left rule copies the implication in the left premise, the right
implication forces all formulas in the succedent of the conclusion sequent to
be weakened (when viewed bottom-up). This guarantees that, when the ⊃R

rule is applied on A ⊃ B, the formula B should be proved assuming only the
pre-existent antecedent context extended with the formula A. This creates an
interdependency between A and B.

Fig. 2. The multi-conclusion intuitionistic sequent system mLJ.

The introduction rules in mLJ are invertible, with the exception of ⊃R. In
particular, two different applications of ⊃R (on the same sequent) do not permute.
For instance, from the premise of

Γ,A ⊢ B

Γ ⊢ A ⊃ B,C ⊃D,Δ
⊃R

the sequent Γ,C ⊢D is not derivable. The results for this system are summarized
in the table below:

Invertibilities Structural mLJ+inv

I ∨L ∨R ∧L ∧R ⊺R ⊺L �L ⊃L ⊃R W C C

✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓F ✓T ∼DN ✓T

6.3 Propositional Classical Logic (G3cp)

G3cp [21] is a well known two-sided sequent system for classical logic, where the
structural rules are implicit and all the rules are invertible. Differently from G3ip,
weakening is not needed for the proof of invertibility of ⊃R. However, contraction
still depends on invertibility results. The results are summarized below:

Assuming the already proved invertibility lemmas, the prover is able to show
that, for all pair of rules r1, r2 in the system, r1 ↓ r2.

Proving Structural Properties of Sequent Systems in Rewriting Logic 131

Invertibilities Structural G3cp+inv

I ∨L ∨R ∧L ∧R ⊺R ⊺L �L ⊃L ⊃R W C C

✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ∼DN ✓T

6.4 Linear Logic (LL)

Linear logic [8] is a resource-conscious logic, in the sense that formulas are con-
sumed when used during proofs, unless they are marked with the exponential ?
(whose dual is !), in which case, they behave classically. Propositional LL connec-
tives include the additive conjunction & and disjunction ⊕ and their multiplica-
tive versions ⊗ and �. The proof system for one-sided (classical) propositional
linear logic is depicted in Fig. 3.

Fig. 3. One-sided monadic system LL.

Fig. 4. Some rules of the dyadic system D−LL.

Since formulas of the form ?F can be contracted and weakened, such formulas
can be treated as in classical logic, while the remaining formulas are treated
linearly. This is reflected into the syntax of the so called dyadic sequents (Fig. 4)
which have two contexts: Θ is a set of formulas and Γ a multiset of formulas.
The sequent ⊢ Θ ∶ Γ is interpreted as the linear logic sequent ⊢ ?Θ,Γ where
?Θ = {?A ∣ A ∈ Θ}. It is then possible to define a proof system without explicit

132 C. Olarte et al.

weakening and contraction (system D−LL in Fig. 4). The complete dyadic proof
system can be found in [1].

Since propositional LL is undecidable [12], infinite computations are possible.
In this case study, a search bound is used to force termination of the implemen-
tation. Since all the theorems include a very controlled number of connectives
(usually the 2 connectives involved in the application of the rules), this seems
to be a fair solution.

For the monadic (LL) and the dyadic (D−LL) systems, the results of invert-
ibility of rules are summarized in the next table.

LL and D−LL LL D−LL D−LL+Wc

1 � ⊺ ⊗ & � ⊕i ! ? ?C ?W ? copy ?
✓T ✓T ✓T ✓F ✓T ✓T ✓F ✓F ✓F ✓T ✓F ∼DN ✓F ✓T

In LL, the rules ? (dereliction) and ?W (weakening) are not invertible, while
?C (contraction) is invertible. In D−LL, the rule ? is invertible. However, the
proof of this theorem fails for the case ⊗. To obtain a proof, first admissibility
of weakening for the classical context is proved: if ⊢ Θ ∶ Γ is derivable, then
⊢ Θ,Θ′ ∶ Γ is derivable (rule Wc). ? is proved invertible in D−LL+Wc

.
Finally, the prover was able to discharge the following theorems:

– (LL) If ⊢ Γ, !F is derivable then ⊢ Γ,F is derivable.
– (D−LL) If ⊢ Θ ∶ Γ, !F is derivable then ⊢ Θ ∶ Γ,F is derivable.

6.5 Normal Modal Logics: K and S4

A modal is an expression (like necessarily or possibly) that is used to qualify the
truth of a judgment, e.g., ◻A can be read as “the formula A is necessarily true”.
The most familiar modal logics are constructed from the modal logic K and its
extensions are called normal modal logics. The system S4 is an extension of K
where ◻◻A ≡ ◻A holds. Figure 5 presents the modal sequent rules for K and S4.

Fig. 5. The modal sequent rules for K (k) and S4 (k +T + 4)

All the propositional rules are invertible in both K and S4, k and 4 are not
invertible (due to the implicit weakening) while T is invertible. Similar to the
previous systems, the admissibility of W follows immediately and the proof of
admissibility of C requires as hypotheses the already proved invertibility lemmas:

Proving Structural Properties of Sequent Systems in Rewriting Logic 133

Invertibilities Structural Modal Rules K+inv S4+inv

I ∨L ∨R ∧L ∧R ⊺R ⊺L �L ⊃L ⊃R W C k 4 T C C

✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ✓T ∼DN ✓F ✓F ✓T ✓T ✓T

7 Related Work and Concluding Remarks

The proposal of many proof systems for many logics demanded trustful methods
for determining good properties. In general, the checking was normally done via
a case-by-case analysis, by trying exhaustively all the possible combinations of
application of rules in a system. The advent of automated reasoning changed
completely the scenery, since theorems started being proved automatically in
meta-level frameworks. This has brought a whole new perspective to the field of
proof theory: useless proof search steps, usually singular to a specific logic, have
been disregarded in favor of developing general and universal methods for pro-
viding good automation strategies. These developments have ultimately helped
in determining general conceptual characteristics of logical systems, as well as in
identifying effective meta-level frameworks that can capture (and reason about)
them in a natural way.

This work moves forward towards this direction: it proposes a general, nat-
ural, and uniform way of proving key properties of sequent systems using the
rewriting logic framework, enabling modular proofs of meta-level properties of
logical systems. Permutability of rules is a nice start case study since it is heavily
used in cut-elimination proofs. Moreover, permutability has a rewriting counter-
part: showing that applying a rule r1 followed by a rule r2 is the same as applying
r2 then r1 can be interpreted as having the diamond property on the applica-
tion of these two rules. The proof of permutability itself does not need inductive
methods explicitly: they are hidden in other needed results like admissibility of
weakening and invertibility of rules. The approach adopted in this work profits,
as much as possible, from modularity. First permutability is tested without any
other assumptions; then, if possible, prove admissibility of weakening and invert-
ibility theorems; finally, add the proven theorems modularly to the system and
re-run the permutability test: some cases for which the tool previously failed can
now be proved. The same core algorithm can be used for proving admissibility
of contraction, for example, which also depends on invertibility results.

The choice of rewriting logic as a meta-level framework brought advantages
over some other options in the literature. Indeed, while approaches using logi-
cal frameworks depend heavily on the specification method and/or the implicit
properties of the meta and object logics, rewriting logic enables the specification
of the rules as they are actually written in text and figures. Consider for exam-
ple the LF framework [20], based on intuitionistic logic, where the left context is
handled by the framework as a set. Specifying sequent systems based on multi-
sets requires elaborated mechanisms, which makes the encoding far from being
natural. Moving from intuitionistic to linear logic solves this problem [4,16], but
still several sequent systems cannot be naturally specified in the LL framework,
as it is the case of mLJ. This latter situation can be partially fixed by adding

134 C. Olarte et al.

subexponentials to linear logic (SELL) [18,19], but then the resulting encoding
although natural, is often non-trivial and it cannot be fully automated. More-
over, several logical systems cannot be naturally specified in SELL, such as K.
All in all, this paper is yet another proof that rewriting logic is an innova-
tive and elegant framework for reasoning about logical systems, since results
and systems themselves can be modularly extended. In fact, the approach here
can be extended to reason about a large class of systems, including normal
(multi)-modal [11] and paraconsistent [9] sequent systems. The authors con-
jecture that the same approach can be used for extensions of sequent systems
themselves, like nested [3] or linear nested [10] systems. This is an interesting
future research path worth pursuing.

Finally, a word about cut-elimination. The usual cut-elimination proof strat-
egy can be summarized by the following steps: (i) transforming a proof with
cuts into a proof with principal cuts; (ii) transforming a proof with principal
cuts into a proof with atomic cuts; (iii) transforming a proof with atomic cuts
into a cut-free proof. While step (ii) is not difficult to solve (see e.g., [16]), steps
(i) and (iii) strongly depend on the ability of showing permutability of rules.
With the results presented in this work, it seems reasonable to envisage the
use of the approach – both the techniques and their implementation – in order
to fully automate cut-elimination proofs for various proof systems. It is worth
noticing, though, that the aim of this paper is more general: proving results in
a modular way permits maximizing their subsequent use in other applications
as well. For example, it would be interesting to investigate further the role of
invertible rules as equational rules in rewriting systems. While this idea sounds
more than reasonable, it is necessary to check whether promoting invertible rules
to equations preserves completeness of the system (e.g., the resulting equational
theory needs to be, at least, ground confluent and terminating). If the answer to
this question is in the affirmative for a large class of systems, then the approach
presented here also opens the possibility, e.g., to automatically access focused
systems [1].

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable comments on an earlier draft of this paper. The work of the three
authors was supported by CAPES, Colciencias, and INRIA via the STIC AmSud
project “EPIC: EPistemic Interactive Concurrency” (Proc. No 88881.117603/2016-01).
The work of Pimentel and Olarte was also supported by CNPq and the project FWF
START Y544-N23.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Logic
Comput. 2(3), 297–347 (1992)

2. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoret. Comput. Sci. 360(1–3), 386–414 (2006)

3. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Logic 48, 551–577
(2009)

Proving Structural Properties of Sequent Systems in Rewriting Logic 135

4. Cervesato, I., Pfenning, F.: A linear logical framework. Inf. Comput. 179(1), 19–75
(2002)

5. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical
logics. In: LICS, pp. 229–240. IEEE Computer Society Press (2008)

6. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

7. Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Col-
lected Papers of Gerhard Gentzen, North-Holland, pp. 68–131 (1969)

8. Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987)
9. Lahav, O., Marcos, J., Zohar, Y.: Sequent systems for negative modalities. Logica

Universalis 11(3), 345–382 (2017)
10. Lellmann, B.: Linear nested sequents, 2-sequents and hypersequents. In: De Nivelle,

H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 135–150. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24312-2 10

11. Lellmann, B., Pimentel, E.: Proof search in nested sequent calculi. In: Davis, M.,
Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp.
558–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-
7 39

12. Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for proposi-
tional linear logic. Ann. Pure Appl. Logic 56, 239–311 (1992)

13. Maehara, S.: Eine darstellung der intuitionistischen logik in der klassischen. Nagoya
Math. J. 7, 45–64 (1954)

14. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework.
In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, pp. 1–87.
Springer, Dordrecht (2002)

15. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oret. Comput. Sci. 96(1), 73–155 (1992)

16. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof
systems. Theoret. Comput. Sci. 474, 98–116 (2013)

17. Miller, D., Saurin, A.: From proofs to focused proofs: a modular proof of focal-
ization in linear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS,
vol. 4646, pp. 405–419. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74915-8 31

18. Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and
reasoning about proof systems. J. Logic Comput. 26(2), 539–576 (2016)

19. Nigam, V., Reis, G., Lima, L.: Quati: an automated tool for proving permuta-
tion lemmas. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS
(LNAI), vol. 8562, pp. 255–261. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08587-6 18

20. Pfenning, F.: Structural cut elimination I. Intuitionistic and classical logic. Inf.
Comput. 157(1/2), 84–141 (2000)

21. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University
Press, New York (1996)

22. Viry, P.: Equational rules for rewriting logic. Theoret. Comput. Sci. 285(2), 487–
517 (2002)

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-319-24312-2_10
https://doi.org/10.1007/978-3-662-48899-7_39
https://doi.org/10.1007/978-3-662-48899-7_39
https://doi.org/10.1007/978-3-540-74915-8_31
https://doi.org/10.1007/978-3-540-74915-8_31
https://doi.org/10.1007/978-3-319-08587-6_18
https://doi.org/10.1007/978-3-319-08587-6_18

Formal Modeling and Analysis
of the Walter Transactional Data Store

Si Liu1(B), Peter Csaba Ölveczky2, Qi Wang1, and José Meseguer1

1 University of Illinois, Urbana-Champaign, USA
siliu3@illinois.edu

2 University of Oslo, Oslo, Norway

Abstract. Walter is a distributed partially replicated data store provid-
ing Parallel Snapshot Isolation (PSI), an important consistency property
that offers attractive performance while ensuring adequate guarantees for
certain kinds of applications. In this work we formally model Walter’s
design in Maude and formally specify and verify PSI by model checking.
To also analyze Walter’s performance we extend the Maude specifica-
tion of Walter to a probabilistic rewrite theory and perform statistical
model checking analysis to evaluate Walter’s throughput for a wide range
of workloads. Our performance results are consistent with a previous
experimental evaluation and throw new light on Walter’s performance
for different workloads not evaluated before.

1 Introduction

Cloud-based transaction systems provide both a challenge and an opportunity
for the use of formal methods. The challenge has to do with the fact that the
very raison d’être for such system is the need for a carefully chosen compromise
between consistency guarantees and performance. Their massive use requires
them to ensure scalability to large numbers of users with acceptable latency
and throughput, while also guaranteeing the promised consistency properties.
This is a challenge for formally-based design, because many formal methods
tend to solely focus on correctness. Yet, correctness without due performance
is useless for these systems. The opportunities are plentiful, including the fol-
lowing: (1) Many of these systems have never been formally specified, either at
the system specification level or at the property specification level. (2) There
is a need for modularity and conceptual unification in the design of these, cur-
rently quite ad-hoc and monolithic, systems. (3) There is also the prospect of
using formal executable specifications for code generation purposes, achieving
correct-by-construction systems that, by having been thoroughly analyzed in
their correctness and performance aspects, can achieve very high quality.

This work is part of a long-term research effort in which we have been
using Maude to meet the challenges and exploit the opportunities described
above for cloud-based transaction systems (see [4] for a survey). Specifically,
we exploit the type-(1) opportunity offered by Walter [21], a well-known cloud-
based transaction system that provides an important intermediate consistency
c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 136–152, 2018.
https://doi.org/10.1007/978-3-319-99840-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_8&domain=pdf

Formal Modeling and Analysis of the Walter Transactional Data Store 137

guarantee, Parallel Snapshot Isolation (PSI). Walter is a very good type-(1)
opportunity because no formal system specification exists at all; and there is
no formal (or even informal) verification that it guarantees PSI. Walter is also
a good stepping stone towards placing the design of cloud-based transaction
systems in a formally-based modular framework. The way we are advancing
this type-(2) goal is by first systematically studying system designs that cover
the whole spectrum between lower-guarantees/higher-performance and higher-
guarantees/lower-performance systems. We have already studied several sys-
tems in this spectrum, including RAMP [11,15], our own ROLA design [12],
P-Store [18], and Megastore [9]. Walter has been a key missing design in the
spectrum. The essential point is that case studies spanning the entire correct-
ness/performance spectrum are crucial for identifying optimal decompositions
of such systems into modular, reusable components. Finally, the fact that our
Maude specification of Walter and of the other above-mention systems are exe-
cutable, also helps us advance towards exploiting the type-(3) opportunity of
achieving high-quality code generation for formal specifications. In this paper
we focus on the type-(1) goal for Walter, but our sights are aimed at the type-
(2)–(3) goals just as much.

Main Contributions and Outline. In Section 2 we give an overview of Wal-
ter, the PSI property and the stronger Snapshot Isolation (SI) property, and
summarize the main features of Maude used in this paper. Section 3 provides a
formal executable specification of Walter in Maude. This is a key contribution
since, to the best of our knowledge, it is the first formal specification of Walter.
Section 4 formalizes the SI and PSI properties and formally analyzes for the first
time whether the Walter design satisfies either of these properties. This analysis
is achieved by: (i) providing a parametric method to generate all initial states
for given parameters; and (ii) performing model checking analysis to verify the
SI and PSI properties for all initial states for various parameter choices. To ana-
lyze complex properties such as SI and PSI we propose a new general method for
model checking such properties by adding a “monitor” to the state which records
the global order of transaction starts and commits/aborts. In this way we can
easily specify and model check SI and PSI; furthermore, this technique should
also be applicable to analyze other consistency properties. Our analysis shows
that the Walter design does indeed satisfy the PSI property for all our initial
states but fails to satisfy the SI property. Section 5 makes four contributions.
First, it extends the Maude model of Walter from a rewrite theory to a proba-
bilistic rewrite theory by adding time and probability distributions for message
delays to the original specification. Second, it carries out a systematic statistical
model checking analysis of the key performance metric, transaction throughput,
under a wide range of workloads. Third, it confirms that the performance esti-
mates thus obtained are consistent with those obtained experimentally for the
Walter implementation in [21]. Fourth, it provides new insights about Walter’s
performance beyond the limited ranges for which such information was available
by experimental evaluation in [21]. Finally, related work is discussed in Section 6,
and concluding remarks are given in Section 7.

138 S. Liu et al.

2 Preliminaries

Parallel Snapshot Isolation. To deal with huge amounts of data, cloud-based
applications need to partition their data across distributed sites, and to provide
high availability and disaster tolerance, data must be replicated at widely dis-
tributed sites. Such partially replicated data stores have to: (i) maintain some
consistency of replicated data, and (ii) provide some consistency for (multi-
partition) transactions that access data stored at different partitions. However,
ensuring high degrees of consistency for partially replicated data stores sup-
porting multi-partition transactions requires a lot of costly coordination, which
might lead to unacceptable delays and throughput for many kinds of applica-
tions. Designers of distributed data stores therefore face a trade-off between
providing good consistency properties and high performance. There are a num-
ber of consistency properties, ranging from strong ones like serializability all the
way to weak properties such as read atomicity and eventual consistency.

A popular intermediate consistency model provided by commercial database
systems such as Oracle and SQL Server is snapshot isolation (SI) [3]. The idea
is that a multi-partition transaction reads from a snapshot of a distributed data
store that reflects a single commit order of transactions across sites.

In [21], the authors argue that having the same commit order across all
sites is not necessary for social networks and similar applications: it does not
matter much that Vlad in Moscow sees Kim’s post before seeing Benny’s post,
whereas Don in Washington sees Benny’s post before Kim’s post. (Hence Benny
and Kim can commit their (independent) posts without waiting for each other.)
They propose a new consistency model, called parallel snapshot isolation, which
allows different commit orders at different sites, while still guaranteeing:

– recent and “consistent” views: all operations in a transaction read the most
recent version committed at the transaction execution site, as of the time
when the transaction begins;

– no write-write conflicts (the write sets of committed somewhere-concurrent
transactions must be disjoint); and

– preservation of causality across sites, which ensures that both Vlad and Benny
see Kim’s post before seeing Don’s reply to Kim’s post.

In [21] the authors specify PSI by giving an abstract pseudo-code “program” of
a centralized execution that a distributed implementation must emulate.

Walter. Walter [21] is a partially replicated geo-distributed data store that
supports multi-partition transactions and guarantees/implements PSI.

The key idea to ensure that all operations in a transaction read a consistent
“snapshot” of the distributed data store is that each site s maintains a (local)
vector timestamp {site1 �→ k1, . . . , siten �→ kn} representing a current snapshot
of the state, as seen by site s, where sitej �→ kj means that the snapshot includes
the first kj transactions executed at site sitei. Each time a transaction starts exe-
cuting at s, the transaction is assigned the current local snapshot/vector times-
tamp of site s. Remote reads can then be performed consistently according to

Formal Modeling and Analysis of the Walter Transactional Data Store 139

this snapshot. Another key Walter feature is that each data item has a preferred
site, so that writes at preferred sites can be committed fast.

A transaction is executed as follows. When the “host” site s starts executing
the transaction t, t is assigned the current snapshot of s. The site s then executes
the read and write operations in t. For writes, Walter buffers the versions written
in the transaction’s write set. For reads, Walter fetches the latest appropriate
version according to t’s start snapshot, by checking any updates in the write set
and its history of previous updates. If the data item is not replicated locally,
Walter retrieves the right version remotely from the data item’s preferred site.

When the host site has executed all the operations in a transaction, it starts
committing the transaction. Read-only transactions and transactions that only
write data items whose preferred site is the host site can commit locally (fast
commit). Walter then checks whether all versions of each data item in the history
of the local site are unmodified since the start vector timestamp, and whether all
data items are unlocked (i.e., not being committed by another transaction). If
either check fails, Walter aborts the transaction; otherwise, it can be committed.
If a transaction t cannot commit locally (slow commit), the executing site s uses
the two-phase commit (2PC) protocol to check whether t can be committed, by
asking the preferred sites of data items written by t whether t can be committed.
If the data items written by t are unmodified and unlocked at such a site, the site
replies with a “yes” vote and locks the corresponding data items. Otherwise, the
site votes “no.” If the executing site receives a “no” vote, t is aborted and the
other preferred sites are notified and release the appropriate locks. If all votes
are “yes” votes, the transaction can be committed.

If the transaction t can be (fast or slow) committed, the site s marks t as
committed, assigns it a version (s, seqNo) (where seqNo is a local sequence num-
ber), updates the local history with the updates, and propagates t to other sites,
which update their histories and their vector timestamps. To allow f site fail-
ures, a transaction is marked disaster-safe durable if its writes have been logged
at f +1 sites. The propagation protocol first checks whether the transaction can
be marked as disaster-safe durable by collecting acknowledgments from f + 1
sites for each data item. Upon receiving the propagation of a transaction, a site
acknowledges it only after it receives all transactions that causally precede the
propagated transaction, and all transactions at the same executing site with a
smaller sequence number. The protocol then checks whether the transaction can
be marked as globally visible. This is done by committing the transaction at all
sites. A transaction can be committed at a remote site when it learns that the
transaction is disaster-safe durable, all transactions causally preceding the trans-
action have been committed locally, and all transactions at the same executing
site with a smaller sequence number have been committed locally.

The paper [21] briefly discusses failure handling, but does not give much detail.
The authors have implemented Walter in about 30K lines of code, and have imple-
mented Facebook- and Twitter-like applications on top of Walter using the Ama-
zon EC2 cloud platform to evaluate Walter’s performance in a distributed setting
(with nodes in US, Ireland, and Singapore). They use their distributed deployment

140 S. Liu et al.

to estimate the transaction latency and throughput (committed transactions per
second) for read-only, write-only, and 90% read workloads.

The authors to do not prove or justify that Walter actually guarantees PSI.

Rewriting Logic and Maude. In rewriting logic a concurrent system is speci-
fied a as rewrite theory (Σ, E∪A,R), where (Σ, E∪A) is a membership equational
logic theory [6], with Σ an algebraic signature declaring sorts, subsorts, and func-
tion symbols, E a set of conditional equations, and A a set of equational axioms.
It specifies the system’s state space as an algebraic data type. R is a set of labeled
conditional rewrite rules, specifying the system’s local transitions, of the form
[l] : t −→ t′ if cond , where cond is a condition and l is a label. Such a rule
specifies a transition from an instance of t to the corresponding instance of t′,
provided the condition holds.

Maude [6] is a language and tool for specifying, simulating, and model check-
ing rewrite theories. The distributed state of an object-oriented system is formal-
ized as a multiset of objects and messages. A class C with attributes att1 to attn

of sorts s1 to sn is declared class C | att1 : s1, ..., attn : sn. An object of
class C is modeled as a term < o : C | att1 : v1, ..., attn : vn >, with o its
object identifier, and where the attributes att1 to attn have the current values
v1 to vn, respectively. Upon receiving a message, an object can change its state
and/or send messages to other objects. For example, the rewrite rule

rl [l] : m(O,z) < O : C | a1 : x, a2 : O’ >

=> < O : C | a1 : x + z, a2 : O’ > m’(O’,x + z) .

defines a transition where an incoming message m, with parameters O and z, is
consumed by the target object O of class C, the attribute a1 is updated to x +
z, and an outgoing message m’(O’,x + z) is generated.

Statistical Model Checking and PVeStA. Probabilistic distributed systems
can be modeled as probabilistic rewrite theories [1] with rules of the form

[l] : t(−→x) −→ t′(−→x ,−→y) if cond(−→x) with probability −→y := π(−→x)

where the term t′ has new variables −→y disjoint from the variables −→x in the
term t. The concrete values of the new variables −→y in t′(−→x ,−→y) are chosen
probabilistically according to the probability distribution π(−→x).

Statistical model checking [19,22] is an attractive formal approach to ana-
lyzing (purely) probabilistic systems. Instead of offering a yes/no answer, it can
verify a property up to a user-specified level of confidence by running Monte-
Carlo simulations of the system model. We then use PVeStA [2], a paralleliza-
tion of the tool VeStA [20], to statistically model check purely probabilistic
systems against properties expressed as QuaTEx expressions [1]. The expected
value of a QuaTEx expression is iteratively evaluated w.r.t. two parameters α
and δ by sampling, until we obtain a value v so that with (1−α)100% statistical
confidence, the expected value is in the interval [v − δ

2 , v + δ
2].

Formal Modeling and Analysis of the Walter Transactional Data Store 141

3 A Formal Model of Walter in Maude

This section explains how we have formalized Walter in Maude. Due to space
limitations, we only show parts of our model (e.g., 4 out of 26 rewrite rules) and
refer to the accompanying longer report [13] and the executable model available
at https://sites.google.com/site/siliunobi/walter for more details.

We formalize Walter in an object-oriented style, where the state consists of
a number of replica (or site) objects, each modeling a local database, and a
number of messages traveling between the objects. A transaction is formalized
as an object which resides inside the replica object that executes the transaction.

Some Data Types. A version is a pair version(oid,sqn) consisting of a site
oid where the transaction is executed, and a sequence number sqn local to that
site. A vector timestamp is a map from site identifiers to sequence numbers.
The sort OperationList represents lists of read and write operations as terms
such as (x := read k1) (y := read k2) write(k1, x + y), where x and y are
“local variables.” An “operation” waitRemote(k, x) means that the transaction
execution is awaiting the value of the key/data item k from a remote site to be
assigned to the local variable x (see [13] for the definition of these data types).

Classes. A transaction is modeled as an object of the following class Txn:

class Txn | operations : OperationList, readSet : ReadSet,

writeSet : WriteSet, localVars : LocalVars,

startVTS : VectorTimestamp, txnSQN : Nat .

The operations attribute denotes the transaction’s remaining operations. The
readSet attribute denotes the versions of data items read by the transaction as
a ‘,’-separated set of pairs versionRead(k, version). writeSet denotes the write
set of the transaction as a map (k1 |-> val1), ..., (kn |-> valn). localVars
maps the transaction’s local variables to their values. startVTS is the vector
timestamp assigned to the transaction when it starts to execute, and txnSQN is
the transaction’s sequence number given upon commit.

A replica, or site, stores parts of the database and executes the transactions
for which it is the host, and is formalized as an object of the following class:

class Replica | history : Datastore, sqn : Nat, gotTxns : ObjectList,

executing : ObjectList, committed : ObjectList,

aborted : ObjectList, committedVTS : VectorTimestamp,

gotVTS : VectorTimestamp, locked : Locks,

votes : Vote, voteSites : TxnSites, abortSites : TxnSites,

dsSites : PropagateSites, vsbSites : TxnSites,

dsTxns : OidSet, gvTxns : OidSet,

recPropTxns : PropagatedTxns, recDurableTxns : DurableTxns .

The history attribute represents the site’s local database, as well as propagated
updates also on data items not stored at the replica, as a map from keys to lists
of updates < value, version >. The sqn attribute denotes the replica’s current

https://sites.google.com/site/siliunobi/walter

142 S. Liu et al.

local sequence number. The attributes gotTxns, executing, committed and
aborted denote the transaction (objects) which are, respectively, waiting to
be executed, executing, committed, and aborted. The attributes committedVTS
and gotVTS indicate for each site how many transactions of that site have been
committed at, respectively, received by, this site. locked denotes the locked
keys and their associated transactions at this site. The attributes recPropTxns
and recDurableTxns buffer the received propagation and disaster-safe durable
messages from the coordinator. See [13] for an explanation of the other attributes.

The state also contains an object mapping each key to the sites storing the
key (these sites are also called the replicas of the key):

class Table | table : ReplicaTable .

Messages between sites have the form msg content from sender to receiver . We
only introduce the messages appearing in the rewrite rules shown in this paper.
The message content (or simply message) request(key , txn, vts) sends a read
request for transaction txn to key ’s preferred site to retrieve its state from the
snapshot determined by vector timestamp vts. The preferred site replies with
a message reply(txn, key , value version), where value version is chosen based
on the incoming vector timestamp. The message ds-durable(txn) is sent to
all sites once the transaction txn has been marked as disaster-safe durable. The
sites then reply with a message visible(txn) to acknowledge the notification.

Formalizing Walter’s Behavior. The following three rules show how the host
site RID executes a read operation X :=read K in the currently executing
transaction TID when the transaction has not already written data item
K (not $hasMapping(WS,K)) and the site RID does not replicate data item K (not
localReplica(K,RID,REPLICA-TABLE)). In this case, the site sends a request
message (with the transaction’s start vector timestamp VTS) to K’s preferred
site (preferredSite(...)) to fetch the version. The “next operation” of the
transaction changes to waitRemote(K,X):1

crl [execute-read-remote] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Replica | executing :

< TID : Txn | operations : ((X :=read K) OPS), writeSet : WS,

startVTS : VTS > >

=>

< TABLE : Table | >

< RID : Replica | executing :

< TID : Txn | operations : (waitRemote(K,X) OPS) > >

(msg request(K,TID,VTS) from RID to preferredSite(K,REPLICA-TABLE))

if (not $hasMapping(WS,K)) /\ (not localReplica(K,RID,REPLICA-TABLE)) .

The remote (preferred) site responds to this request by sending the snapshot-
consistent value and version (choose(VTS, DS[K])) of the requested key:
1 We do not give variable declarations, but follow the convention that variables are

written in (all) capital letters.

Formal Modeling and Analysis of the Walter Transactional Data Store 143

rl [receive-remote-request] :

(msg request(K, TID, VTS) from RID’ to RID)

< RID : Replica | history : DS >

=>

< RID : Replica | >

(msg reply(TID, K, choose(VTS, DS[K])) from RID to RID’) .

The executing site then merges the fetched value and version in the local
history, and updates the read set and local variables:

rl [receive-remote-reply] :

(msg reply(TID, K, < V,VERSION >) from RID’ to RID)

< RID : Replica | history : DS, executing :

< TID : Txn | operations : (waitRemote(K, X) OPS), readSet : RS,

localVars : VARS > >

=>

< RID : Replica | executing :

< TID : Txn | operations : OPS,

readSet : (versionRead(K, VERSION), RS),

localVars : insert(X, V, VARS) >,

history : merge(K, < V,VERSION >, DS) > .

The last rule we show concerns the propagation of committed transactions. If
a transaction TID can be committed, it is propagated to the other sites. When
a receiving site has received all transactions that causally precede TID and all
transactions from TID’s host site with smaller sequence numbers, the transaction
TID is propagated successfully and this is acknowledged to the host site. When
the host has received f + 1 such acknowledgments it marks TID as disaster-
safe durable and sends a ds-durable message to each site. When a remote site
receives this decision, the site tries to commit the transaction locally:

crl [receive-ds-durable-visible] :

(msg ds-durable(TID) from RID’ to RID)

< RID : Replica | recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

recDurableTxns : DTXNS, committedVTS : VTS’,

locked : LOCKS >

=>

< RID : Replica | recDurableTxns : (durableTxns(TID) ; DTXNS),

committedVTS : insert(RID’,SQN,VTS’),

locked : release(TID,LOCKS) >

(msg visible(TID) from RID to RID’)

if VTS’ gt VTS /\ s(VTS’[RID’]) == SQN .

To commit transaction TID, the remote site must check that: (i) the propagation
message has been received and acknowledged (propagatedTxns(TID,SQN,VTS)
shown in recPropTxns); (ii) VTS’ is greater than VTS; and (iii) all transac-
tions from TID’s host site with a smaller sequence number have been received
(s(VTS’[RID’]) == SQN). A visible message is then sent back, all correspond-
ing locks are released, and the transaction is committed at the remote site.

144 S. Liu et al.

4 Correctness Analysis

In this section we use reachability analysis—from all initial system configura-
tions up to given bounds on the number of transactions, sites, etc.—to analyze
whether Walter satisfies PSI and SI. To analyze these complex properties, we
use a novel technique which adds a global “logical clock” to record the global
order of transaction starts and commits/aborts.

4.1 Parametric Generation of Initial States

To analyze all possible initial configurations we introduce a new operator init
so there is a one-step rewrite init(parameters) −→ c0 for each possible initial
configuration c0. We declare a sort ConfigSet for sets of configurations, define a
function op initAux : s1 ... sn -> ConfigSet (see our report [13] for details)
such that initAux(params,params ′) generates all possible initial states for such
parameters, and add the following rewrite rule to our model:

var C : Configuration . var CS : ConfigSet .

crl [init] : init(params) => C if C ; CS := initAux(params,params’) .

init’s parameters are the number of read-only transactions, the number of write-
only transactions, the number of read-write transactions, the number of sites, the
number of keys, and the replication factor. Each transaction has two operations.

One of 768 initial states generated by init(1,1,1,2,2,2) is

< 0 : Table | table : [replicatingSites(k1,1 2) ;; replicatingSites(k2,2 1)] >
< 1 : Replica |

gotTxns : < 3 : Txn | operations : (k2l :=read k2) (k1l :=read k1),
readSet : empty, writeSet : empty,
localVars : (k1l |-> [0] , k2l |-> [0]),
startVTS : empty, txnSQN : 0>,

history : (k1 |-> < [0], version(0,0) >, k2 |-> < [0], version(0,0) >),
sqn : 0, ... >

< 2 : Replica |
gotTxns : < 2 : Txn | operations : write(k2,1) write(k1,2), ... > ;;

< 1 : Txn | operations : (k2l :=read k2) write(k2,1), ... >,
history : k1 |-> < [0], version(0,0) > , k2 |-> <[0], version(0,0)>), ... >

where data items k1 and k2 are replicated at sites 1 and 2, and have pre-
ferred sites 1 and 2, respectively. Site 1 has one read-only transaction ‘3’—with
operations (k2l :=read k2) (k1l :=read k1)—to execute, and site 2 has one
write-only transaction ‘2’ and one read-write transaction ‘1’ to execute.

4.2 Analyzing the Correctness Properties

This section analyzes whether Walter satisfies SI and PSI using a new technique
where we record relevant history during a run. The SI and PSI properties can
then be easily formalized as functions on the final state of an execution.

Formal Modeling and Analysis of the Walter Transactional Data Store 145

In particular, we add to the state an object

< m : Monitor | clock : clock, log : log >

which stores crucial information about the execution. The clock is a kind of
“logical global clock” that totally orders transaction starts and commits/aborts.
This clock is incremented by one whenever a transaction starts executing or is
committed or aborted somewhere. The log maps each transaction to a record
record(rid , issueTime,finishTimes , committed , reads,writes), with rid its host
site, issueTime its issue “time” according to the logical clock, finishTimes its
commit/abort “time” at each site, committed a flag that is true if the transaction
is committed, reads its key/versions read, and writes its write set.

We modify our rewrite rules to update the Monitor whenever a transaction
starts or is committed/aborted somewhere. For example, when a site commits
a propagated transaction, the monitor records the commit time GT for that
transaction at site RID and increments the logical global time by one:

crl [receive-ds-durable-visible] :

(msg ds-durable(TID) from RID’ to RID)

< M : Monitor | clock : GT,

log : (TID |-> record(RID’,T1,VTS1,true,READS,WRITES)

, LOG) >

< RID : Replica | ... > --- as before

=>

< M : Monitor | clock : GT + 1 ,

log : (TID |-> record(RID’,T1,insert(RID,GT,VTS1) ,

true,READS,WRITES) , LOG) >

< RID : Replica | ... > --- as before

(msg visible(TID) from RID to RID’) if

Since Walter is terminating if a finite number of transactions are issued, we
check the consistency properties by inspecting this monitor object in the final
states, when all transactions have finished.

Formalizing Parallel Snapshot Isolation. As mentioned in Section 2, PSI is given
by three properties [21]:

– PSI-1 (Site Snapshot Read): All operations read the most recent committed
version at the transaction’s site as of time when the transaction began.

– PSI-2 (No Write-Write Conflicts): The write sets of each pair of committed
somewhere-concurrent2 transactions must be disjoint.

– PSI-3 (Commit Causality Across Sites): If a transaction T1 commits at a site
A before a transaction T2 starts at site A, then T1 cannot commit after T2 at
any site.

2 Two transactions are somewhere-concurrent if, at either host site, one of them has
a commit timestamp between the start and the commit timestamp of the other.

146 S. Liu et al.

We analyze PSI-2 (and all other properties) by searching for a reachable final
state whose system log shows that the execution did not satisfy the property. The
following function p2-psi checks whether PSI-2 holds in the execution reflected
in the system log, by checking whether there is a write-write conflict between
any pair of committed somewhere-concurrent transactions in the system log:

ops p1-psi p2-psi p3-psi : Log -> Bool .

ceq p2-psi(TID1 |-> record(RID1, TS1, (RID1 |-> TC , VTS1), true, RS,

(v(X,V), WS)) ,

TID2 |-> record(RID2, TS2, (RID1 |-> TC’ , VTS2), true, RS’,

(v(X,V’) , WS’)) , LOG) = false

if TC’ > TS1 and TC’ < TC .

eq p2-psi(LOG) = true [owise] .

In the first equation there are two committed (their “commit” flags are true)
transactions TID1 and TID2—hosted, respectively, at sites RID1 and RID2—that
both wrote data item X (since v(X, V) and v(X, V’) are in their respective write
sets). TID1 and TID2 are somewhere-concurrent, since they are concurrent at
TID1’s host site RID1: TID2 committed at RID1 at time TC’, which is between
TID1’s start time TS1 and its commit time TC at RID1.

The function p3-psi that analyzes PSI-3 by checking whether there was
“bad situation” in which a transaction TID1 committed at site RID2 before a
transaction TID2 started at site RID2 (TC1 < TS2), while TID1 committed at site
RID after TID2 committed at site RID (TC1 > TC2):

ceq p3-psi((TID1 |-> record(RID1, TS1, (RID2 |-> TC , RID |-> TC1 , VTS1),

true, RS, WS),

TID2 |-> record(RID2, TS2, (RID1 |-> TC’ , RID |-> TC2 , VTS2),

true, RS’, WS’) , LOG)) = false

if TC < TS2 /\ TC1 > TC2 .

eq p3-psi(LOG) = true [owise] .

We have equally easily defined a function p1-psi for property PSI-1, and
functions p1-si and p2-si characterizing the executions where the requirements
SI-1 and SI-2 for SI hold (see [13] for details).

We have analyzed Walter from all initial states with up to 3 transactions, 2
sites, 2 keys, and 2 replicas per key, as well as from a number of initial states
with 3 transactions. The following command searches for a reachable final state
where the log shows that PSI-2 is violated:

Maude> (search [1] init(1,0,2,2,2,2) =>!

< M:Oid : Monitor | log : LOG:Log > C:Configuration

such that not p2-psi(LOG:Log) .)

No solution

Formal Modeling and Analysis of the Walter Transactional Data Store 147

Our analysis found that Walter may violate both SI-1 and SI-2, but did not
uncover a violation of PSI. Each search command took about 2 h (worst-case)
to execute on a 3.4 GHz × 8 Intel Core i7-2600 CPU with 11.7 GB memory.

5 Performance Estimation by Statistical Model Checking

In this section we use PVeStA statistical model checking to estimate the per-
formance of Walter in a wider range of settings than in the experiments in [21],
thereby providing further insight about Walter. For example, the experiments
with fast commit in [21] assume full replication, whereas we also experiment
with a partially replicated setting (which necessitates remote reads, etc.), and
with workloads involving both slow and fast commits.

Probabilistic Modeling of Walter. For statistical model checking in PVeStA
we need to eliminate nondeterminism in the untimed model in Section 3, and
for performance estimation we need to add time and probabilities. All of this
can be achieved by following the techniques in [8] and probabilistically assign
to each message a delay. The idea is that if each rewrite rule is triggered by
the arrival of a message (either directly, or indirectly by becoming enabled as a
result of applying a rule that is triggered by the arrival of a message) and the
message delay is sampled probabilistically from a dense time interval, then the
probability that two messages have the same delay is 0, and hence no two actions
are enabled simultaneously, eliminating nondeterminism and introducing time.

In more detail, nodes send messages of the form [Δ,rcvr <- msg], where Δ
is the message delay, rcvr is the recipient, and msg is the message content. When
time Δ has elapsed, this message becomes a ripe message {T,rcvr <- msg},
where T is the “current global time” (used for analysis purposes only). Such a
ripe message must then be consumed by the receiver rcvr before time advances.

We exemplify with the rule receive-remote-request how we have trans-
formed the untimed non-probabilistic rewrite rules to the timed and probabilis-
tic setting. In the probabilistic rule below, the incoming message request is
equipped with the current global time T, and the outgoing message reply is
equipped with a delay D sampled from the probability distribution distr(...):

rl [receive-remote-request-prob] :

{T, RID <- request(K, TID, VTS, RID’)}

< RID : Replica | history : DS >

=>

< RID : Replica | >

[D , RID’ <- reply(TID, K, choose(VTS, DS[K]), RID)]

with probability D := distr(...) .

Extracting Performance Measures from Executions. This time we add to the
state a monitor object < m : Monitor | log: log >. The logical clock is no
longer needed, since now “real” time is given by the message arrival times. Fur-
thermore, since we now analyze transaction throughput, the log is simpler: a list

148 S. Liu et al.

of records record(tid , issueTime,finishTime, committed), with tid the transac-
tion identifier, issueTime its issue time, finishTime its commit/abort time, and
committed a flag that is true if tid is committed.

We define a number of functions on (states with) such a monitor that
extract different performance metrics from this “execution log.” The function
throughput computes the number of committed transactions per time unit:

op throughput : Config -> Float [frozen] .

eq throughput(< M : Monitor | log: LOG > REST)

= committedNumber(LOG) / totalRunTime(LOG) .

where committedNumber gives the number of committed transactions in LOG
and totalRunTime returns the time when all transactions are finished (i.e., the
largest finishTime in LOG) (see [13] for details).

Experimental Setup. We performed our experiments with 100 transactions, 1 or
5 operations per transaction, 100 keys, and up to 4 sites. The number of sites
and the transaction size are the same as in the experiments in [21]. We used
lognormal message delay distributions with parameters μ = 3 and σ = 1 for
local delays, and μ = 1 and σ = 2 for remote delays.

Generating Initial States. Statistical model checking verifies a property up to
a user-specified level of confidence by running Monte-Carlo simulations from a
given initial state. We use an operator probInit to probabilistically generate ini-
tial states: probInit(rtx ,wtx , rwtx , sites, keys, rf, rops,wops, rwops, distr) gen-
erates an initial state with rtx read-only transactions, wtx write-only trans-
actions, rwtx read-write transactions, sites sites, keys keys, rf replication level,
rops operations per read-only transaction, wops operations per write-only trans-
action, rwops operations per read-write transactions, and distr the key access
distribution (the probability that an operation accesses a certain key). To cap-
ture the fact that some keys may be accessed more frequently than others, we
also use Zipfian distributions in our experiments.

Each PVeStA simulation starts from probInit, which rewrites to a differ-
ent initial state in each simulation. The reason is that this expression involves
generating certain values—such as the transactions—probabilistically.

Statistical Model Checking Results. The plots in Fig. 1 show the throughput with
only fast commit as a function of the number of sites, with read-only, write-only
and 90% reads workload, and with uniform and Zipfian distributions. The plots
show that read throughput scales nearly linearly with the number of sites; write
throughput also grows with the number of sites, but not linearly. With a mixed
workload, throughput is mostly determined by the transaction size. Our results
are consistent with those in [21]. For uniform distribution we only plot the results
with a mixed workload; for the other two workloads, the results are consistent
with those using the Zipfian distribution.

The plots in Fig. 2 show the throughput with both fast and slow commit
under the same experimental settings as in Fig. 1. As shown in the left plot,

Formal Modeling and Analysis of the Walter Transactional Data Store 149

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4

T
hr

ou
gh

pu
t (

tx
n/

tim
e

un
it)

Number of Sites

Read−Only Workload with Zipf

read−tx size=1
read−tx size=5

 0

 50

 100

 150

 200

1 2 3 4

T
hr

ou
gh

pu
t (

tx
n/

tim
e

un
it)

Number of Sites

Write−Only Workload with Zipf

write−tx size=1
write−tx size=5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4

T
hr

ou
gh

pu
t (

tx
n/

tim
e

un
it)

Number of Sites

90% Read−Txns Workload with Zipf

read−tx size=1, write−tx size=1
read−tx size=1, write−tx size=5
read−tx size=5, write−tx size=1
read−tx size=5, write−tx size=5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4

T
hr

ou
gh

pu
t (

tx
n/

tim
e

un
it)

Number of Sites

90% Read−Txns Workload with Uniform

read−tx size=1, write−tx size=1
read−tx size=1, write−tx size=5
read−tx size=5, write−tx size=1
read−tx size=5, write−tx size=5

Fig. 1. Throughput with fast commit under different workloads.

 0

 50

 100

 150

 200

1 2 3 4

T
hr

ou
gh

pu
t (

tx
n/

tim
e

un
it)

Number of Sites

Write−Only Workload with Zipf

FC write−tx size=1
FC & SC write−tx size=1
FC write−tx size=5
FC & SC write−tx size=5

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4

T
hr

ou
gh

pu
t (

tx
n/

tim
e

un
it)

Number of Sites

90% Read−Txns Workload with Uniform

read−tx size=1, write−tx size=1
read−tx size=1, write−tx size=5
read−tx size=5, write−tx size=1
read−tx size=5, write−tx size=5

Fig. 2. Throughput with fast commit (FC) and slow commit (SC).

throughput is mostly determined by the transaction size in the mixed workload;
the differences among various transaction sizes are consistent with those in Fig. 1.

Our Maude model, including the infrastructure for statistical model checking,
is around 1.8K LOC. Computing the probabilities took a couple of minutes on
30 servers, each with a 64-bit Intel Quad Core Xeon E5530 CPU with 12 GB
memory. Each point in the plots represents the average of 3 statistical model
checking results. The confidence level for all our statistical experiments is 95%.

150 S. Liu et al.

6 Related Work

Maude and PVeStA have been used to model and analyze the correctness and
performance of a number of distributed data stores: the Cassandra key-value
store [14,16], RAMP [11,15], Google’s Megastore [9,10], and P-Store [18]. In
contrast to these papers, our paper formalizes a different state-of-the-art algo-
rithm, Walter, and, in particular, shows how the snapshot isolation and parallel
snapshot isolation consistency models can be formalized and analyzed in Maude.
In [12] we use PVeStA to compare the performance of our own new ROLA
design with that of Walter. However, that paper focused on ROLA, and did not
present the formalization of Walter or the SI and PSI properties.

In other applications of formal methods for distributed data stores, engi-
neers at Amazon have used TLA+ and its model checker TLC to model and
analyze the correctness of key parts of Amazon’s celebrated cloud computing
infrastructure [17]. In contrast to our work, they only use formal methods for
correctness analysis. The designers of the TAPIR transaction protocol for dis-
tributed storage systems have also specified and model checked correctness (but
not performance) properties of their design using TLA+ [23].

The papers [5,7] formalize a number of consistency models, including SI and
PSI, but do not show how to analyze these properties.

7 Conclusions

We have formally analyzed and verified in Maude the design of Walter [21], a
partially replicated distributed data store providing multi-partition transactions
and guaranteeing parallel snapshot isolation (PSI), an important consistency
property that offers attractive performance while providing adequate guarantees
for certain kinds of applications. No formal specification of Walter existed before
this work. Furthermore, PSI was only informally described by pseudo-code in [21]
and no formal (or informal) verification existed. Using a logical clock to record
the order of important events in an execution, we could use model checking and
systematic generation of initial states to verify that Walter satisfies PSI for all
such states. This technique should also make it easy to formalize and model check
other consistency properties. We have also extended the Maude specification of
Walter to model time and probabilistic communication delays as a probabilistic
rewrite theory, and have then used statistical model checking analysis to study
Walter’s performance for a wide range of workloads. The results of the statistical
model checking analysis are consistent with the experimental results in [21] but
offer also new insights about Walter’s performance for a wider range of workloads
than those evaluated in [21].

Acknowledgments. We thank the anonymous reviewers for helpful comments on a
previous version of this paper. This work has been partially supported by NSF Grant
CNS 14-09416 and NRL under contract number N00173-17-1-G002.

Formal Modeling and Analysis of the Walter Transactional Data Store 151

References

1. Agha, G.A., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language
for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213–239
(2006)

2. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22944-2 28

3. Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A
critique of ANSI SQL isolation levels. In: SIGMOD 1995. ACM (1995)

4. Bobba, R., et al.: Design, formal modeling, and validation of cloud storage systems
using Maude. Technical report, University of Illinois at Urbana-Champaign (2017).
http://hdl.handle.net/2142/96274

5. Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional consistency
models with atomic visibility. In: CONCUR 2015. LIPIcs, vol. 42 (2015)

6. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

7. Crooks, N., Pu, Y., Alvisi, L., Clement, A.: Seeing is believing: a client-centric
specification of database isolation. In: PODC 2017. ACM (2017)

8. Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Statistical model checking
for composite actor systems. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012.
LNCS, vol. 7841, pp. 143–160. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37635-1 9

9. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore
in Real-Time Maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification,
Algebra, and Software. LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54624-2 25

10. Grov, J., Ölveczky, P.C.: Increasing consistency in multi-site data stores:
Megastore-CGC and its formal analysis. In: Giannakopoulou, D., Salaün, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 159–174. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10431-7 12

11. Liu, S., Ölveczky, P.C., Ganhotra, J., Gupta, I., Meseguer, J.: Exploring design
alternatives for RAMP transactions through statistical model checking. In: Duan,
Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol. 10610, pp. 298–314. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68690-5 18

12. Liu, S., Ölveczky, P.C., Santhanam, K., Wang, Q., Gupta, I., Meseguer, J.: ROLA:
a new distributed transaction protocol and its formal analysis. In: Russo, A.,
Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp. 77–93. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89363-1 5

13. Liu, S., Ölveczky, P., Wang, Q., Meseguer, J.: Formal modeling and analysis of the
Walter transactional data store, report available at https://sites.google.com/site/
siliunobi/walter

14. Liu, S., Ganhotra, J., Rahman, M., Nguyen, S., Gupta, I., Meseguer, J.: Quanti-
tative analysis of consistency in NoSQL key-value stores. Leibniz Trans. Embed.
Syst. 4(1), 03:1–03:26 (2017)

15. Liu, S., Ölveczky, P.C., Rahman, M.R., Ganhotra, J., Gupta, I., Meseguer, J.:
Formal modeling and analysis of RAMP transaction systems. In: SAC 2016. ACM
(2016)

https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-642-22944-2_28
http://hdl.handle.net/2142/96274
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-37635-1_9
https://doi.org/10.1007/978-3-642-37635-1_9
https://doi.org/10.1007/978-3-642-54624-2_25
https://doi.org/10.1007/978-3-319-10431-7_12
https://doi.org/10.1007/978-3-319-10431-7_12
https://doi.org/10.1007/978-3-319-68690-5_18
https://doi.org/10.1007/978-3-319-89363-1_5
https://sites.google.com/site/siliunobi/walter
https://sites.google.com/site/siliunobi/walter

152 S. Liu et al.

16. Liu, S., Rahman, M.R., Skeirik, S., Gupta, I., Meseguer, J.: Formal modeling and
analysis of Cassandra in Maude. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS,
vol. 8829, pp. 332–347. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11737-9 22

17. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

18. Ölveczky, P.C.: Formalizing and validating the P-Store replicated data store in
Maude. In: James, P., Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp.
189–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72044-9 13

19. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 26

20. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: a statistical model-checker and
analyzer for probabilistic systems. In: QEST 2005. IEEE Computer Society (2005)

21. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: SOSP 2011. ACM (2011)

22. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

23. Zhang, I., Sharma, N.K., Szekeres, A., Krishnamurthy, A., Ports, D.R.K.: Building
consistent transactions with inconsistent replication. In: SOSP 2015. ACM (2015)

https://doi.org/10.1007/978-3-319-11737-9_22
https://doi.org/10.1007/978-3-319-11737-9_22
https://doi.org/10.1007/978-3-319-72044-9_13
https://doi.org/10.1007/11513988_26

Extending Timbuk to Verify
Functional Programs

Thomas Genet(B), Tristan Gillard, Timothée Haudebourg,
and Sébastien Lê Cong

Univ Rennes/Inria/CNRS/IRISA, Campus Beaulieu,
35042 Rennes Cedex, France
Thomas.genet@irisa.fr

Abstract. Timbuk implements the Tree Automata Completion algo-
rithm whose purpose is to over-approximate sets of terms reachable by
a term rewriting system. Completion is parameterized by a set of equa-
tions defining which terms are equated in the approximation. In this
paper we present two extensions of Timbuk which permit us to automat-
ically verify safety properties on functional programs. The first extension
is a language, based on regular tree expressions, which eases the speci-
fication of the property to prove on the program. The second extension
automatically generates a set of equations adapted to the property to
prove on the program.

1 Motivations

Term Rewriting Systems (TRS for short) are a well known model of functional
programs. This model has been used for different kind of analysis ranging from
model-checking [4], to static analysis [16] and from termination analysis [13]
to complexity analysis [1]. In this paper we focus on static analysis of safety
properties on functional programs. Let us illustrate this on a simple example.
Assume that we want to analyze the following delete OCaml function:

let rec delete x l= match l with

| [] -> []

| h::t -> if h=x then (delete x t) else h::(delete x t);;

In Timbuk [9], this program will be translated in the following TRS, where ite

encodes the if-then-else construction and eq encodes a simple equality on two
arbitrary constant symbols A and B. The Ops section defines the symbols with
their arity, the Const section defines the constructor symbols (symbols that are
not associated with a function), the Vars section defines variables and the TRS
section associates the name of the TRS with its rules. In the following, we denote
by F the set of symbols defined in the Ops section and T (F) the set of ground
terms built on F . We denote by C the set of constructor symbols defined by
Const, and T (C) the set of ground terms defined on C.
c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 153–163, 2018.
https://doi.org/10.1007/978-3-319-99840-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_9&domain=pdf

154 T. Genet et al.

Ops delete:2 cons:2 nil:0 A:0 B:0 ite:3 true:0 false:0 Eq:2

Const A B nil cons true false

Vars X Y Z

TRS R

delete(X,nil)->nil

delete(X,cons(Y,Z))->ite(eq(X,Y),delete(X,Z),cons(Y,delete(X,Z)))

ite(true,X,Y)->X

ite(false,X,Y)->Y

eq(A,A)->true eq(A,B)->false eq(B,A)->false eq(B,B)->true

Let us denote by L the set of all possible lists of A’s and B’s. On this program,
we are interested in proving that for all l ∈ L, delete(A,l) can only result into
a list where A does not occur. This is equivalent to proving that for all l ∈ L,
delete(A,l) never rewrites to a list containing an A. This can be done using
reachability analysis on rewriting with the above TRS R. We denote by I the
set of all initial terms, i.e., I = { delete(A,l) | l ∈ L} and let Bad be the set
of lists containing at least one A. We denote by R∗(I) the set of terms reachable
by rewriting terms of I with R, i.e., R∗(I) = {t | s ∈ I and s →R∗ t}, where

→R∗ is the reflexive and transitive closure of →R. If R∗(I) ∩ Bad = ∅ then
there is no way to rewrite a term of the form delete(A,l) with l ∈ L into a list
containing an A and the property is also true on the functional program. Note
that the property proved on the TRS is stronger than the property proved on the
functional program. In particular, it is independent of the evaluation strategy:
it can be call-by-value as well as call-by-name. Thus, the property is true for
OCaml as well as for Haskell programs.1 This paper presents two extensions of
Timbuk making the above analysis possible and automatic.

– The first extension are simplified regular tree expressions which let the user
easily and intuitively define the set of initial terms I.

– The second extension automatically generates abstraction equations, using
algorithms described in [8,10]. This makes it possible to automatically build
a regular over-approximation App of R∗(I) such that App ∩ Bad = ∅, if it
exists.

In Sect. 2, we define simplified regular expressions. In Sect. 3, we explain why
abstraction equations are necessary and we show how to generate them in Sect. 4.
In Sect. 5, we show how to interact with Timbuk in order to carry out a complete
analysis, as the one shown above. Finally, in Sect. 6, we conclude and give further
research directions.

2 Simplified Regular Tree Expressions

We defined the TRS but we still need to define the set of initial terms I in
Timbuk. Until now, it could only be defined using a tree automaton [5]. Defin-
ing I with this formalism is possible but it is error-prone and lacks readability.
1 When the analysis depends on the evaluation strategy, completion can be extended
to take it into account [12].

Extending Timbuk to Verify Functional Programs 155

As in the case of word languages, there exists an alternative representation for
regular tree languages: regular tree expressions [5]. However, unlike classical reg-
ular expressions for words, regular tree expressions are difficult to read and
to write. For instance, the regular tree expression defining terms of the form
f(gn(a), hm(b)) with n,m ∈ N is f(g(�1)∗,�1 .�1a, h(�2)∗,�2 .�2b), where �1

and �2 are new constants. In this expression, the sub-expression g(�1)∗,�1 .�1a
represents the language gn(a). The effect of ∗,�1 is to iteratively replace �1

by g(�1), and the effect of .�1a is to replace �1 by a. Regular tree expres-
sions are expressive enough to define any regular tree language. To be com-
plete w.r.t. regular tree languages, this formalism needs named placeholders
(like �1 and �2 above) because the effect of the iteration symbol ∗ depends on
the position where it occurs. However, named placeholders make regular tree
expressions difficult to read and to write, even if they define simple languages.
For instance, the set I = {delete(A,l) | l ∈ L} defined above can be written
delete(A, cons((A|B),�1)∗,�1 .�1nil) where �1 is a new constant.

In this paper, we propose a new formalism for defining regular tree
languages: simplified regular tree expression (SRegexp for short). Those
expressions are not complete w.r.t. regular languages but are easier to
read and to write. For instance, the set I is defined by the SRegexp
delete(A,[cons((A|B),*|nil)]). Those regular expressions are defined using only
3 operators: ‘|’ to build the union of two languages, ‘*’ to iterate a pattern
and the optional brackets ‘[...]’ to define the scope of the embedded *.
The SRegexp cons((A|B),*|nil) repeats the pattern cons(A,) or cons(B,)

as long as possible and terminates by nil. Thus, it defines the language
{nil, cons(A,nil), cons(B,nil), cons(A,cons(A,nil)), cons(A,cons(B,nil)),

. . .}. The brackets define the scope of the pattern to repeat with *. In the
SRegexp delete(A,[cons((A|B),*|nil)]), the iteration applies on cons(A,) or
cons(B,) but not on delete(A,). Thus, this expression represents the language
{delete(A, nil), delete(A,cons(A,nil)), delete(A,cons(B,nil)), . . .}.2

We implemented SRegexp in Timbuk together with a translation to standard
regular tree expressions. We also implemented the translation from regular tree
expressions to tree automata defined in [18]. Thus, from a SRegexp I, Timbuk
can automatically generate a tree automaton A whose recognized language L(A)
is equal to I. We also implemented the converse operations: tree automata to reg-
ular expression using the algorithm [15] and regular tree expressions to SRegexp.
Note that, since SRegexp are incomplete w.r.t. regular tree languages, conversion
from regular tree expression to SRegexp may fail. Thus, the over-approximation
of reachable terms computed by Timbuk is presented as a SRegexp if it is possi-
ble, or as a tree automaton otherwise.

2 See the page http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/
simplifiedRegexp.html for more examples.

http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/simplifiedRegexp.html
http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/simplifiedRegexp.html

156 T. Genet et al.

3 The Need for Abstraction Equations

Starting from R and I = L(A), computing R∗(I) is not possible in general [14].
Nevertheless, if R is a left-linear TRS then R∗(I) can be over-approximated
with tree automata completion [6]. From A and R, completion builds a tree
automaton A∗ such that L(A∗) ⊇ R∗(I). If Bad is regular, to prove R∗(I) ∩
Bad = ∅, it is enough to check that L(A∗) ∩ Bad = ∅, which can be done
efficiently [5]. For this technique to succeed, the precision of the approximation
A∗ is crucial. For instance, L(A∗) = T (F) is a valid regular over-approximation
but it cannot be used to prove any safety property since it also contains Bad. In
Timbuk, approximations are defined using sets of abstraction equations, following
[11,20].

Example 1. Let L be the set of terms defined with the symbol s of arity 1
and the constant symbol 0. Let X be a variable. The effect of the equation
s(s(X)) = s(X) is to merge in the same equivalence class terms s(s(0)) and
s(0), s(s(s(0))) and s(s(0)), etc. Thus, with this single equation, L/=E

consists
of only two equivalence classes: a class containing only 0 and the class containing
all the other natural numbers {s(0), s(s(0)), . . .}. An equation s(X) = X would
define a single equivalence class containing all natural numbers. It would thus
define a rougher abstraction. An equation s(s(X)) = X defines two equivalence
classes: the class of even numbers {0, s(s(0)), . . .} and the class of odd numbers
{s(0), s(s(s(0))), . . .}.

For completion to terminate, the set T (F)/=E
(E-equivalence classes of T (F))

has to be finite [8]. When dealing with functional programs, this restriction can
be relaxed as follows. Functional programs manipulate sorted terms and the asso-
ciated TRSs preserve sorts. Provided that equations also preserve sorts, having
a finite set T (F)S/=E

, where T (F)S is the set of well-sorted terms, is enough.
Besides, since well-sorted terms define a regular language, this information can
be provided to Timbuk using tree automata, regular expressions or SRegexp.

Example 2. Let us consider the set L of well-sorted lists of A and B. The set
L is the regular language associated with the SRegexp cons((A|B), ∗|nil). Let
X,Y,Z be variables. The set E = {cons(X, cons(Y,Z)) = cons(Y,Z)} defines a
set of E-equivalence classes L/=E

with three classes: one class only contains nil,
one class contains all lists ending with an A and the last class contains all lists
ending with a B.

Going back to the delete example that we want to analyze, with set E =
{cons(X, cons(Y,Z)) = cons(Y,Z)}, L/=E

is finite but T (F)S/=E
may not

be. For instance, terms delete(A,nil), delete(A, delete(A,nil)), etc. are all in
separate equivalence classes. Again, we can take advantage from the fact that
delete is a functional program and relax the termination condition of com-
pletion by focusing it on the data manipulated by the program. Instead of
asking for finiteness of T (F)S/=E

, we only require finiteness of T (C)S/=E
,

where T (C)S is the set of well-sorted constructor terms. Let us note Ec

Extending Timbuk to Verify Functional Programs 157

the above set of equations {cons(X, cons(Y,Z)) = cons(Y,Z)}. As shown in
Example 2, Ec defines a finite set of equivalence classes on T (C)S , i.e., lists of
A’s and B’s.3 Provided that delete is a terminating and complete functional
program, it is possible to extend Ec so that completion terminates. This has
been shown for first-order functional programs [7] and for higher-order func-
tional programs [10]. The extension of Ec consists in adding two sets of equations
ER = {l = r | l → r ∈ R} and Er = {f(X1, . . . , Xn) = f(X1, . . . , Xn) | f ∈
F , arity of f is n, and X1, . . . , Xn are variables}. Since ER and Er are fixed by
the program, the precision of the approximation only depends on the equivalence
classes defined by Ec. Thus, to explore approximations, it is enough to explore
all possible Ec.

4 Generating Abstraction Equations Ec

Additionally to the fact that (1) T (C)S/=Ec
has to be finite, the termination

theorems of [7,10] imposes additional constraints on Ec. Equations in Ec have
to be contracting, i.e., they are of the form u = u|p where (2) u|p is a strict
subterm of u and (3) u|p has the same sort as u.4 Conditions (2) and (3) makes
it possible to prune the search space of equations in Ec. For instance the following
equations do not need to be considered: cons(X,Y) = Z because of condition (2),
cons(X, cons(Y,Z)) = cons(X,Z) because of condition (2), cons(X,Y) = X
because of condition (3).

Timbuk implements two different algorithms to explore the space of possible
Ec. Those algorithms are parameterized by a natural number k ∈ N and, for a
given k, they generate a set EC(k) of possible Ec. By increasing k, we increase
the precision of equations sets Ec in EC(k). The first algorithm is based on
covering sets [17] and generates contracting equations with variables [10]. In this
algorithm k defines the depth of the covering set used to generate the equations.
From a covering set S, we generate all equations sets Ec = {u = u|p | u ∈ S}
satisfying conditions (1) to (3).

Example 3. Let X be a variable and T (C)S be the set of well-sorted constructor
terms defined with symbol s of arity 1 and the constant symbol 0. For k = 1, the
covering set is {s(X), 0} and EC(1) = {{s(X) = X}}. For k = 2, the covering set
is {s(s(X)), s(0), 0} and EC(2) = {{s(s(X)) = X}, {s(s(X)) = s(X)}, {s(0) =
0}, {s(0) = 0, s(s(X)) = X}, {s(0) = 0, s(s(X)) = s(X)}}.

The second algorithm generates ground contracting equations [8]. In this algo-
rithm k represents the number of equivalence classes expected in T (C)S/=Ec

.

3 In fact, in T (C)S there are also terms true and false but they cannot be embed-
ded in lists. Thus, each of them defines its own equivalence class. In the end, in
T (C)S/=Ec there are 5 equivalence classes.

4 Note that the sort information can be inferred from the tree automaton recognizing
well-sorted terms. For instance, the automaton associated to the SRegexp of Exam-
ple 2 recognizes A and B by into the same state, thus A and B will have the same
sort (see automaton TC in Sect. 5).

158 T. Genet et al.

Since equation sets have to be ground and meet conditions (2) and (3), we can
finitely enumerate all the possible equations sets Ec for a given k.

Example 4. Let T (C)S be the set of well-sorted constructor terms defined with
symbol s of arity 1 and the constant symbol 0. For k = 1 the set EC(1) =
{{s(0) = 0}}. For k = 2, the set EC(2) = {{s(s(0)) = 0}, {s(s(0)) = s(0)}.

A systematic way to build ground EC(k), based on tree automata enumeration,
is given in [8]. Using the first or second algorithm to generate EC(k), to prove
that there exists a tree automaton A∗ over-approximating R∗(L(A)) and such
that L(A∗) ∩ Bad = ∅, we run the following algorithm:

1. Start with k = 1
2. Build EC(k)
3. Pick one Ec in EC(k)
4. Complete A into A∗ using R and Ec ∪ ER ∪ Er

5. If L(A∗) ∩ Bad = ∅ then verification is successful Otherwise, if EC(k) not
empty, pick a new Ec in EC(k) and go to 4.

6. When EC(k) is empty, increment k and go to 2.

It has been shown in [8] that the ground enumeration of EC(k) is complete w.r.t.
tree automata that are closed by R-rewriting. Thus, if there exists such a A∗,
the above iterative algorithm will find it. However, on properties that cannot be
shown using a regular approximation, such as [2], this algorithm may diverge.

5 Interacting with Timbuk

Download http://people.irisa.fr/Thomas.Genet/timbuk/timbuk3.2.tar.gz and
compile and install Timbuk 3.2. The online version of Timbuk does not inte-
grate all the features presented here. In Timbuk’s archive, the full specification
of the delete example can be found in the file FunExperiments/deleteBasic.txt.

Ops delete:2 cons:2 nil:0 A:0 B:0 ite:3 true:0 false:0 Eq:2

Const A B nil cons true false

Vars X Y Z

TRS R

delete(X,nil)->nil

delete(X,cons(Y,Z))->ite(eq(X,Y),delete(X,Z),cons(Y,delete(X,Z)))

ite(true,X,Y)->X

ite(false,X,Y)->Y

eq(A,A)->true eq(A,B)->false eq(B,A)->false eq(B,B)->true

SRegexp A0

delete(A,[cons((A|B),*|nil)])

Automaton TC

States qe ql qb

Final States qe ql qb

Transitions
A->qe B->qe nil->ql cons(qe,ql)->ql true->qb false->qb

Patterns
cons(A,_)

http://people.irisa.fr/Thomas.Genet/timbuk/timbuk3.2.tar.gz

Extending Timbuk to Verify Functional Programs 159

This file contains the TRS, the SRegexp presented above and a tree automaton
named TC which defines well-sorted constructor terms as explained in Example 2.
This automaton is used to prune equation generation. Note that this automaton
could be inferred from the typing information of the functional program. Here,
the automaton TC states that lists are built with cons and nil, that elements
of the list are either A or B, and that true and false are of the same type but
cannot appear in a list. Thus, ill-typed terms of the form cons(nil, true) are
not considered for equation generation. Finally, the Patterns section defines the
set Bad of terms that should not be reachable. Currently, the pattern section
is limited to terms or patterns (terms with holes ‘ ’) and cannot handle SReg-
exp or automata. In the present example, we only consider a subset of bad
terms: terms of the form cons(A,), i.e., lists starting by A. Assuming that your
working directory is FunExperiments, you can run Timbuk on this example by
typing: timbuk --fung 30 deleteBasic.txt. Where --fung is the option trigger-
ing ground equation generation (the second algorithm for generating EC(k))
and 30 is a maximal number of completion steps. We get the following output:

Generated equations:

cons(A,cons(A,nil)) = cons(A,nil)
cons(B,cons(A,nil)) = cons(A,nil)
cons(B,nil) = nil
B = B
nil = nil
delete(X,Y) = delete(X,Y)
A = A
true = true
cons(X,Y) = cons(X,Y)
false = false
ite(X,Y,Z) = ite(X,Y,Z)
eq(X,Y) = eq(X,Y)
eq(A,A) = true

eq(A,B) = false
eq(B,A) = false
eq(B,B) = true
delete(X,nil) = nil
delete(X,cons(Y,Z)) =

ite(eq(X,Y),delete(X,Z),cons(Y,delete(X,Z)))
ite(true,X,Y) = X
ite(false,X,Y) = Y

Regular expression:

[cons(B, *|nil)]

Proof done!

Completion time: 0.006595 seconds

The three first generated equations belong to Ec, reflexive equations of the form
B = B, nil = nil, . . . belong to Er and the last eight equations belong to ER. The
set T (C)S/=Ec

has two equivalence classes: the class containing nil and all lists
containing only B’s and the class of lists containing at least one A. Thus, the
effect of Ec is to forget any B and preserve any A that appears in a list. Using the
--fun option instead of --fung while running Timbuk, triggers the first algorithm
for generating EC(k), i.e., Ec with variables. On this example, the generated
Ec part has two equations instead of three: cons(X,cons(A,Y)) = cons(A,Y) and
cons(B,X) = X. The effect of this set Ec is the same as the ground Ec above.
Indeed, this Ec splits lists into two equivalence classes: the class of lists without
A’s and the class of lists with at least one A.

Finally, in Timbuk’s output, Proof done! means that Timbuk manages to
build a regular approximation of R∗(I) that contains no term of the Patterns

section. Timbuk outputs the resulting simplified regular expression [cons(B,

160 T. Genet et al.

*|nil)]. This proves that results are lists without any occurrence of A’s.
Here, one can read the outputted SRegexp to check that the property is
true. However, this can be difficult when the outputted SRegexp is more com-
plex. Thus, on most examples, we use additional predicates to check proper-
ties like it is commonly done with proof assistants. On our previous exam-
ple, given a predicate member (testing membership on lists), we can check that
terms of the language member(A,delete(A,cons((A|B),*|nil))) never rewrite to
true. We can also check the dual property expected on delete: deleting A’s
should not delete all B’s. We hope to check this property using initial terms
member(B,delete(A, [cons((A|B),*|nil)])) and a patterns section set to false.
However, the property is not true and, during completion, Timbuk finds a coun-
terexample:

Found a counterexample:

Term member(B,delete(A,nil)) rewrites to a forbidden pattern

For the property to hold, lists in initial terms should contain at least one B:
member(B,delete(A,[cons((A|B),*|[cons(B,*|[cons((A|B),*|nil)])])]))

Using this initial set of terms, Timbuk succeeds to do the proof
and produces a slightly different Ec: cons(A,cons(B,nil)) = cons(B,nil),
cons(B,cons(B,nil)) = cons(B,nil), cons(A,nil) = nil. This time, Ec forgets
about A’s and preserves B’s. More than 20 other examples (with ground/non-
ground equations generation) can be found on the Timbuk page http://people.
irisa.fr/Thomas.Genet/timbuk/funExperiments/, including functions on lists,
trees, sorting functions, higher-order functions, etc.

6 Conclusion and Further Research

We know that completion is terminating on higher-order functional programs
thanks to the recent result of [10]. Besides, we also know that ground equation
generation of Ec is complete w.r.t. tree automata that are closed by R [8].
In other words, if there exists a tree automaton A∗, closed by R and over-
approximating the set of reachable terms, then it will eventually be found by
generating ground equations. With the first algorithm where equations of Ec may
contain variables, we do not have a similar completeness result, yet. However,
generating equations with variables remains an interesting option because the
set Ec can be smaller. This is the case in the previous example where Ec with
variables defines the same set of equivalence classes but with fewer equations.

From a theoretical perspective, Tree Automata Completion can be seen as
an alternative to well-established higher-order model-checking techniques like
PMRS [21] or HORS [19] to verify higher-order functional programs. Timbuk
implements Tree Automata Completion but was missing several features for
those theoretical results to be usable in practice. First, stating the property
to prove using a tree automaton was error-prone and lacked readability. Using
simplified regular expressions significantly improves this step and makes property

http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/
http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/

Extending Timbuk to Verify Functional Programs 161

definition closed to what is generally used in a proof assistant. Second, equations
which are necessary to define the approximation, had to be given by the user
[7]. Now, Timbuk can automatically generate a set of equations adapted to a
given verification objective. Combining those two extensions makes Timbuk a
competitive alternative to higher-order model checking tools like [21] and [19].

In those model-checking tools and in Timbuk, the properties under concern
are “regular properties”, i.e. properties proven on regular languages. Those reg-
ular properties are stronger than what offers tests (they prove a property on an
infinite set of values) but weaker than what can be proven using induction in
a proof assistant. However, unlike proof assistants, Timbuk does not require to
write lemmas or proof scripts to prove a regular property. An interesting research
direction is to explore how to lift those regular properties to general properties. In
other words, how to build a proof that ∀x l. not(member(x,delete(x,l))) from
the fact that all terms from member(A,delete(A,cons((A|B),*|nil))) rewrite to
false. We believe that this is possible by taking advantage of parametricity such
as in [22]. This is ongoing work.

In this paper, the verification is performed on a TRS representing the func-
tional program. To directly perform the verification on real functional programs
rather than on TRSs, we need a transformation. We could reuse the HOCA trans-
formation of [1]. However, it does not take the priorities of the pattern matching
rules of the functional program into account when producing the TRS. Further-
more, this translation needs to be certified, i.e., we need a formal proof that the
behavior of the outputted TRS R covers all the possible behaviors of the func-
tional program. With such a proof on R, if Timbuk can prove that no term of
member(A,delete(A,cons((A|B),*|nil))) can be rewritten to true with R, then
we have a similar property on the functional program.

The equation generation process does not cover all TRSs but only TRSs
encoding terminating, complete, higher-order, functional programs. We currently
investigate how to generate equations without the termination and completeness
restrictions on the program. Another research direction is to extend this veri-
fication principle to more general theorems. For the moment, theorems that
can be proved using Timbuk need to have a regular model. For instance, Tim-
buk is able to prove the theorem member(A,delete(A,l))
→R∗

true for all lists
l=cons((A|B),*|nil) because the language of terms reachable from the initial
language member(A,delete(A,cons((A|B),*|nil))) is, itself, regular. Assume that
we have a predicate eq encoding equality on lists. To prove a theorem of the
form eq(delete(A,l),l)
→R∗

false for all list l=cons(B,*|nil), the language
of reachable terms is no longer regular. However, recent advances in completion-
based techniques for non-regular languages [3] should make such verification
goals reachable.

Acknowledgments. Many thanks to the anonymous referees for their valuable com-
ments.

162 T. Genet et al.

References

1. Avanzini, M., Dal Lago, U., Moser, G.: Analysing the complexity of functional
programs: higher-order meets first-order. In: ICFP 2015, pp. 152–164. ACM (2015)

2. Boichut, Y., Héam, P.-C.: A theoretical limit for safety verification techniques with
regular fix-point computations. IPL 108(1), 1–2 (2008)

3. Boichut, Y., Chabin, J., Réty, P.: Towards more precise rewriting approximations.
In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015.
LNCS, vol. 8977, pp. 652–663. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15579-1 51

4. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

5. Comon, H., et al.: Tree Automata Techniques and Applications (2008). http://
tata.gforge.inria.fr

6. Genet, T.: Decidable approximations of sets of descendants and sets of normal
forms. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 151–165. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0052368

7. Genet, T.: Termination criteria for tree automata completion. J. Log. Algebraic
Methods Program. 85(1), 3–33 (2016). Part 1

8. Genet, T.: Automata Completion and Regularity Preservation. Technical report,
INRIA (2017). https://hal.inria.fr/hal-01501744

9. Genet, T., Boichut, Y., Boyer, B., Gillard, T., Haudebourg, T., Lê Cong, S.: Tim-
buk 3.2 - a Tree Automata Library. IRISA/Université de Rennes 1 (2017). http://
people.irisa.fr/Thomas.Genet/timbuk/

10. Genet, T., Haudebourg, T., Jensen, T.: Verifying higher-order functions with tree
automata. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp.
565–582. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2 31

11. Genet, T., Rusu, R.: Equational tree automata completion. J. Symb. Comput. 45,
574–597 (2010)

12. Genet, T., Salmon, Y.: Reachability analysis of innermost rewriting. In: RTA 2015,
volume 36 of LIPIcs, Warshaw. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2015)

13. Giesl, J.: Termination analysis for functional programs using term orderings. In:
Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983, pp. 154–171. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60360-3 38

14. Gilleron, R., Tison, S.: Regular tree languages and rewrite systems. Fundam.
Inform. 24, 157–175 (1995)

15. Guellouma, Y., Mignot, L., Cherroun, H., Ziadi, D.: Construction of rational
expression from tree automata using a generalization of Arden’s lemma. CoRR,
abs/1501.07686 (2015)

16. Jones, N.D., Andersen, N.: Flow analysis of lazy higher-order functional programs.
Theor. Comput. Sci. 375(1–3), 120–136 (2007)

17. Kounalis, E.: Testing for the ground (co-)reducibility property in term-rewriting
systems. TCS 106(1), 87–117 (1992)

18. Kuske, D., Meinecke, I.: Construction of tree automata from regular expressions.
RAIRO Theor. Inform. Appl. 45(3), 347–370 (2011)

19. Matsumoto, Y., Kobayashi, N., Unno, H.: Automata-Based abstraction for auto-
mated verification of higher-order tree-processing programs. In: Feng, X., Park,
S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 295–312. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26529-2 16

https://doi.org/10.1007/978-3-319-15579-1_51
https://doi.org/10.1007/978-3-319-15579-1_51
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
http://tata.gforge.inria.fr
http://tata.gforge.inria.fr
https://doi.org/10.1007/BFb0052368
https://hal.inria.fr/hal-01501744
http://people.irisa.fr/Thomas.Genet/timbuk/
http://people.irisa.fr/Thomas.Genet/timbuk/
https://doi.org/10.1007/978-3-319-89366-2_31
https://doi.org/10.1007/3-540-60360-3_38
https://doi.org/10.1007/978-3-319-26529-2_16

Extending Timbuk to Verify Functional Programs 163

20. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. TCS
403(2–3), 239–264 (2008)

21. Ong, L., Ramsay, S.: Verifying higher-order functional programs with pattern-
matching algebraic data types. In: POPL 2011. ACM (2011)

22. Wadler, P.: Theorems for free! In: Proceedings of FPCA 1989, pp. 347–359. ACM
(1989)

Generalized Rewrite Theories
and Coherence Completion

José Meseguer(B)

Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

meseguer@illinois.edu

Abstract. A new notion of generalized rewrite theory suitable for sym-
bolic reasoning and generalizing the standard notion in [3] is motivated
and defined. Also, new requirements for symbolic executability of general-
ized rewrite theories that extend those in [8] for standard rewrite theories,
including a generalized notion of coherence, are given. Finally, symbolic
executability, including coherence, is both ensured and made available
for a wide class of such theories by automatable theory transformations.

Keywords: Rewriting · Coherence · Variants · Symbolic execution

1 Introduction

Symbolic methods are used to reason about concurrent systems specified by
rewrite theories in many ways, including: (i) cryptographic protocol verification,
e.g., [10], (ii) logical LTL model checking, e.g., [2], (iii) rewriting modulo SMT
and related approaches, e.g., [1,23], (iv) inductive theorem proving and program
verification, e.g., [12,16], and (v) reachability logic theorem proving, e.g., [17,25,
26]. One key issue is that the rewrite theories used in several of these approaches
go beyond the standard notion of rewrite theory in, say [3], and also beyond
the executability requirements in, say, [8]. For example: (1) conditions in rules
are not just conjunctions of equations, but quantifier-free (QF) formulas in an,
often decidable, background theory T (e.g., Presburger arithmetic); and (2) the
rewrite rules may model open systems interacting with an environment, so that
they may have extra variables in their righthand sides [23]. Furthermore, each
of the approaches just mentioned uses different assumptions about the rewrite
theories they handle: no general notion has yet been proposed.

There are also unsolved issues about symbolic executability : even though sym-
bolic execution methods in some ways relax executability requirements, in other
ways they impose strong restrictions on the rewrite rules to be executed. For
example, in narrowing-based reachability analysis the presence of extra vari-
ables in righthand sides of rules is unproblematic. Nevertheless, unless both the
lefthand and righthand sides of a rewrite rule are terms in an equational theory
having a finitary unification algorithm, symbolic reachability analysis becomes
c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 164–183, 2018.
https://doi.org/10.1007/978-3-319-99840-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_10&domain=pdf

Generalized Rewrite Theories and Coherence Completion 165

extremely difficult and is usually outside the scope of current methods. There
is also plenty of terra incognita. For example, we all optimistically assume and
require that the rewrite theories we are going to symbolically execute are of
course coherent [8,28]. But no theory of coherence, or methods for guaranteeing
it, have yet been developed for these new kinds of theories.

The upshot of all this is that, as usual, the new wine of symbolic reasoning
requires new wineskins. This work is all about such new wineskins. It asks, and
provides answers for, two main questions: (1) How can the notion of rewrite
theory be generalized to support symbolic reasoning? and (2) What are the
appropriate symbolic executability requirements needed for such rewrite theories;
and how can they be ensured for, and made available to, a widest possible class
of theories?

Outline and Main Contributions. Section 2 gathers preliminaries. Section 3
motivates and presents a notion of generalized rewrite theory suitable for sym-
bolic reasoning and subsuming the standard notion as a special case. It also
defines an initial model semantics for such theories in an associated category of
algebraic transition systems. Finally, it uses such a semantics to identify sym-
bolic executability requirements, including a generalized notion of coherence and
an easier to check characterization of it. Section 4 then addresses and provides
solutions for two related problems: (i) how can (ground) coherence be ensured
automatically under reasonable requirements? and (ii) how can the class of gen-
eralized rewrite theories that can be symbolically executed be made as wide as
possible by means of adequate theory transformations? Note that the answer to
question (i) is new even for standard rewrite theories and can be quite useful
to semi-automate equational abstractions [22]. This automation method is an
interesting instance of what might be called theoretical dogfooding, where the
new symbolic methods of variant computation [11,21,24] are applied to com-
plete a rewrite theory into a ground coherent one. The answer to question (ii) is
very general: under mild conditions symbolic executability can be ensured for a
wide class of generalized theories by two theory transformations. Related work
and conclusions are discussed in Sect. 5. Proofs and full details about examples
can be found in the Technical Report [20].

2 Preliminaries on Order-Sorted Algebra and Variants

I present needed preliminaries on order-sorted algebra, logic, and variants. The
material is adapted from [19,21]. The presentation is self-contained: only the
notions of many-sorted signature and many-sorted algebra, e.g., [9], are assumed.

Definition 1. An order-sorted (OS) signature is a triple Σ = (S,�, Σ) with
(S,�) a poset and (S,Σ) a many-sorted signature. ̂S = S/≡�, the quotient of
S under the equivalence relation ≡� = (� ∪ �)+, is called the set of connected
components, or kinds of (S,�). The order � and equivalence ≡� are extended to
sequences of same length in the usual way, e.g., s′

1 . . . s′
n � s1 . . . sn iff s′

i � si,
1 � i � n. Σ is called sensible if for any two f : w → s, f : w′ → s′ ∈ Σ, with w

166 J. Meseguer

and w′ of same length, we have w ≡� w′ ⇒ s ≡� s′. A many-sorted signature
Σ is the special case where the poset (S,�) is discrete, i.e., s � s′ iff s = s′.

For connected components [s1], . . . , [sn], [s] ∈ ̂S

f
[s1]...[sn]
[s] = {f : s′

1 . . . s′
n → s′ ∈ Σ | s′

i ∈ [si], 1 � i � n, s′ ∈ [s]}

denotes the family of “subsort polymorphic” operators f . We can extend any
Σ = (S,�, Σ) to its kind completion ̂Σ = (S � ̂S, ̂�, ̂Σ) where: (i) ̂� is the
least partial order extending � such that s < [s] for each s ∈ S, and (ii) we
add to each family of subsort polymorphic operators f

[s1]...[sn]
[s] in Σ the operator

f : [s1] . . . [sn] → [s]. �

Definition 2. For Σ = (S,�, Σ) an OS signature, an order-sorted Σ-algebra
A is a many-sorted (S,Σ)-algebra A such that:

– whenever s � s′, then we have As ⊆ As′ , and
– whenever f : w → s, f : w′ → s′ ∈ f

[s1]...[sn]
[s] and a ∈ Aw ∩ Aw′

, then we have

fw,s
A (a) = fw′,s′

A (a), where As1...sn = As1 × . . . × Asn
.

A Σ-homomorphism h : A → B is a many-sorted (S,Σ)-homomorphism
such that ([s] = [s′] ∧ a ∈ As ∩ As′) ⇒ hs(a) = hs′(a). This defines a category
OSAlgΣ. Notation: h : A ∼= B denotes an isomorphism h : A → B. �

Theorem 1 [19]. The category OSAlgΣ has an initial algebra. Furthermore, if
Σ is sensible, then the term algebra TΣ with:

– if a : ε → s then a ∈ TΣ,s (ε denotes the empty string),
– if t ∈ TΣ,s and s � s′ then t ∈ TΣ,s′ ,
– if f : s1 . . . sn → s and ti ∈ TΣ,si

1 � i � n, then f(t1, . . . , tn) ∈ TΣ,s,

is initial, i.e., there is a unique Σ-homomorphism to each Σ-algebra.

For [s] ∈ ̂S, TΣ,[s] denotes the set TΣ,[s] =
⋃

s′∈[s] TΣ,s′ . TΣ will (ambiguously)
denote: (i) the term algebra; (ii) its underlying S-sorted set; and (iii) the set
TΣ =

⋃

s∈S TΣ,s. An OS signature Σ is said to have non-empty sorts iff for each
s ∈ S, TΣ,s �= ∅. An OS signature Σ is called preregular [14] iff for each t ∈ TΣ

the set {s ∈ S | t ∈ TΣ,s} has a least element, denoted ls(t). We will assume
throughout that Σ has non-empty sorts and is preregular.

An S-sorted set X = {Xs}s∈S of variables, satisfies s �= s′ ⇒ Xs ∩ Xs′ = ∅,
and the variables in X are always assumed disjoint from all constants in Σ. The
Σ-term algebra on variables X, TΣ(X), is the initial algebra for the signature
Σ(X) obtained by adding to Σ the variables X as extra constants. Since a Σ(X)-
algebra is just a pair (A,α), with A a Σ-algebra, and α an interpretation in A
of the constants in X, i.e., an S-sorted function α ∈ [X→A], the Σ(X)-initiality
of TΣ(X) can be expressed as the following theorem:

Theorem 2 (Freeness Theorem). If Σ is sensible, for each A ∈ OSAlgΣ and
α ∈ [X→A], there exists a unique Σ-homomorphism, α : TΣ(X) → A extending
α, i.e., such that for each s ∈ S and x ∈ Xs we have xαs = αs(x).

Generalized Rewrite Theories and Coherence Completion 167

In particular, when A = TΣ(Y), an interpretation of the constants in X, i.e.,
an S-sorted function σ ∈ [X→TΣ(Y)] is called a substitution, and its unique
homomorphic extension σ : TΣ(X) → TΣ(Y) is also called a substitution. Define
dom(σ) = {x ∈ X | x �= xσ}, and ran(σ) =

⋃

x∈dom(σ) vars(xσ). Given variables
Z, the substitution σ|Z agrees with σ on Z and is the identity elsewhere.

The first-order language of equational Σ-formulas is defined in the usual
way: its atoms are Σ-equations t = t′, where t, t′ ∈ TΣ(X)[s] for some [s] ∈
̂S and each Xs is assumed countably infinite. The set Form(Σ) of equational
Σ-formulas is then inductively built from atoms by: conjunction (∧), disjunction
(∨), negation (¬), and universal (∀x:s) and existential (∃x:s) quantification with
sorted variables x:s ∈ Xs for some s ∈ S. ϕ ∈ Form(Σ) is called quantifier-free
(QF) iff it does not contain any quantifiers. The literal ¬(t = t′) is denoted
t �= t′. Given a Σ-algebra A, a formula ϕ ∈ Form(Σ), and an assignment α ∈
[Y →A], with Y = fvars(ϕ) the free variables of ϕ, the satisfaction relation
A,α |= ϕ is defined inductively in the usual way. By definition, A |= ϕ holds iff
for each α ∈ [Y →A] A,α |= ϕ holds, where Y = fvars(ϕ) are the free variables
of ϕ. We say that ϕ is valid (or true) in A iff A |= ϕ. For a subsignature
Ω ⊆ Σ and A ∈ OSAlgΣ , the reduct A|Ω ∈ OSAlgΩ agrees with A in the
interpretation of all sorts and operations in Ω and discards everything in Σ \Ω.
If ϕ ∈ Form(Ω) we have the equivalence A |= ϕ ⇔ A|Ω |= ϕ. Given a set of
formulas Γ ⊆ Form(Σ) we say that A ∈ OSAlgΣ satisfies Γ , written A |= Γ iff
∀ϕ ∈ Γ A |= ϕ. An OS theory T is a pair T = (Σ,Γ) with Σ an OS signature
and Γ ⊆ Form(Σ). For T = (Σ,Γ), OSAlg(Σ,Γ) denotes the full subcategory of
OSAlgΣ with objects those A ∈ OSAlgΣ such that A |= Γ , called the (Σ,Γ)-
algebras. Given T = (Σ,Γ) we call ϕ ∈ Form(Ω) a logical consequence of T ,
or true in T , denoted T |= ϕ or Γ |= ϕ, iff ∀A ∈ OSAlg(Σ,Γ) A |= ϕ. Note
that the notion of satisfaction and the Freeness theorem yield the implication
T |= ϕ ⇒ T |= ϕθ for any substitution θ. Note also that any Σ-algebra A has
an associated theory th(A) = (Σ, {ϕ ∈ Form(Σ) | A |= ϕ}). A theory inclusion
T = (Σ,Γ) ⊆ (Σ′, Γ ′) = T ′ holds iff Σ ⊆ Σ′ and Γ ′ |= Γ , and is called a
conservative extension iff ∀ϕ ∈ Form(Σ) T |= ϕ ⇔ T ′ |= ϕ. Call T = (Σ,Γ)
and T ′ = (Σ,Γ ′) semantically equivalent (denoted T ≡ T ′) iff T ⊆ T ′ and
T ′ ⊆ T .

An OS equational theory (resp. conditional equational theory) is an OS theory
T = (Σ,E) with E a set of Σ-equations (resp. conditional Σ-equations of the
form

∧

i=1...n ui = vi ⇒ t = t′). OSAlg(Σ,E) always has an initial algebra
TΣ/E , and free algebras TΣ/E(X) [19]. The inference system in [19] is sound and
complete for OS equational deduction, i.e., for any OS equational theory (Σ,E),
and Σ-equation u = v we have an equivalence E � u = v ⇔ E |= u = v.
Deducibility E � u = v is abbreviated as u =E v, called E-equality.

Given a set of equations B used for deduction modulo B, a preregular OS
signature Σ is called B-preregular1 iff for each u = v ∈ B and substitution

1 If B = B0 � U , with B0 associativity and/or commutativity axioms, and U identity
axioms, the B-preregularity notion can be broadened by requiring only that: (i) Σ
is B0-preregular in the standard sense, so that ls(uρ) = ls(vρ) for all u = v ∈ B0

168 J. Meseguer

ρ, ls(uρ) = ls(vρ). Recall the notation for term positions, subterms, and term
replacement from [6]: (i) positions in a term viewed as a tree are marked by
strings p ∈ N

∗ specifying a path from the root, (ii) t|p denotes the subterm
of term t at position p, and (iii) t[u]p denotes the result of replacing subterm
t|p at position p by u. Recall also from [18,21] that given an equational theory
(Σ,E � B) with Σ is B-preregular, =B decidable, and such that:

1. each equation u = v ∈ B is regular, i.e., vars(u) = vars(v), and linear, i.e.,
there are no repeated variables in u, and no repeated variables in v;

2. the equations E, when oriented as rewrite rules �E = {t → t′ | (t = t′) ∈
E}, are convergent modulo B, that is, sort-decreasing, strictly B-coherent,
confluent, and terminating as rewrite rules modulo B [18],

then we call the rewrite theory R = (Σ,B, �E) (in the sense of [3]) a decomposition
of the given equational theory (Σ,E � B). Given such a decomposition R =
(Σ,B, �E), the equality relation =E�B becomes then decidable thanks to the
rewrite relation →�E,B , where u →�E,B v holds2 between two Σ-terms u and v iff

there is a position p, a rule (t → t′) ∈ �E and a substitution θ such that u|p =B tθ
and v = u[t′θ]p. Such decidability follows from the following theorem:

Theorem 3 (Church-Rosser Theorem) [15]. Let R = (Σ,B, �E) be a decompo-
sition of (Σ,E � B). Then we have an equivalence:

E� � u = v ⇔ u!�E,B =B v!�E,B .

where t!�E,B denotes the canonical form of term t by rewriting with →�E,B, which
exists and is unique up to B-equality thanks to the convergence of →�E,B.

If R = (Σ,B, �E) is a decomposition of (Σ,E � B) and X an S-sorted set of
variables, the canonical term algebra CΣ/ �E,B(X) has CΣ/ �E,B(X)s = {[t!�E,B]B |
t ∈ TΣ(X)s}, and interprets each f : s1 . . . sn → s as the function fCΣ/ �E,B(X) :
([u1]B , . . . , [un]B) �→ [f(u1, . . . , un)!�E,B]B . By the Church-Rosser Theorem we
then have an isomorphism h : TΣ/E(X) ∼= CΣ/ �E,B(X), where h : [t]E �→ [t!�E,B]B .
In particular, when X is the empty family of variables, the canonical term algebra
CΣ/ �E,B is an initial algebra, and is the most intuitive model for TΣ/E�B as an

algebra of values computed by �E,B-simplification.
Quite often, the signature Σ on which TΣ/E�B is defined has a natural decom-

position as a disjoint union Σ = Ω � Δ, where the elements of CΣ/ �E,B are
Ω-terms, whereas the function symbols f ∈ Δ are viewed as defined func-
tions which are evaluated away by �E,B-simplification. Ω (with same poset of

and substitutions ρ; and (ii) the axioms U oriented as rules �U are sort-decreasing in
the sense that u = v ∈ U ⇒ ls(uρ) � ls(vρ) for each ρ. Maude automatically checks
B-preregularity of an OS signature Σ in this broader sense [4].

2 See [24] for the more general definition of both convergence and the relation →�E,B

when Σ is B-preregular in the broader sense of Footnote 1.

Generalized Rewrite Theories and Coherence Completion 169

sorts as Σ) is then called a constructor subsignature of Σ. Call a decomposition
R = (Σ,B, �E) of (Σ,E�B) sufficiently complete with respect to the constructor
subsignature Ω iff for each t ∈ TΣ we have t!�E,B ∈ TΩ. Sufficient completeness
is closely related to protecting inclusions of decompositions.

Definition 3 (Protecting, Constructor Decomposition). A decomposition R =
(Σ,B, �E) protects decomposition R0 = (Σ0, B0, �E0) iff Σ0 ⊆ Σ, B0 ⊆ B, and
�E0 ⊆ �E, and for all t, t′ ∈ TΣ0(X) we have: (i) t =B0 t′ ⇔ t =B t′, (ii)
t = t!�E0,B0

⇔ t = t!�E,B, and (iii) CΣ0/ �E0,B0
∼= CΣ/ �E,B |Σ0 .

RΩ = (Ω,BΩ , �EΩ) is a constructor decomposition of R = (Σ,B, �E) iff R
protects RΩ and Σ and Ω have the same poset of sorts, so that R is sufficiently
complete with respect to Ω. Finally, Ω is called a subsignature of free construc-
tors modulo BΩ iff �EΩ = ∅, so that CΩ/ �EΩ ,BΩ

= TΩ/BΩ
.

The notion of variant answers, in a sense, two questions: (i) how can we best
describe symbolically the elements of CΣ/ �E,B(X) that are reduced substitution
instances of a pattern term t? and (ii) given an original pattern t, how many
other patterns do we need to “cover” all reduced instances of t in CR(X)?

Definition 4. Given a decomposition R = (Σ,B, �E) and a Σ-term t, a variant
[5,11] of t is a pair (u, θ) such that: (i) u =B (tθ)!�E,B, (ii) dom(θ) = vars(t),
and (iii) θ = θ!�E,B, that is, xθ = (xθ)!�E,B for all variables x. (u, θ) is called a
ground variant iff, furthermore, u ∈ TΣ. Note that if (u, θ) is a ground variant of
some t, then [u]B ∈ CΣ/ �E,B. Given variants (u, θ) and (v, γ) of t, (u, θ) is called
more general than (v, γ), denoted (u, θ) �B (v, γ), iff there is a substitution ρ
such that: (i) (θρ)|vars(t) =B γ, and (ii) uρ =B v. Let �t��E,B = {(ui, θi) | i ∈ I}
denote a complete set of variants of t, that is, a set of variants such that for any
variant (v, γ) of t there is an i ∈ I, such that (ui, θi) �B (v, γ). A decomposition
R = (Σ,B, �E) of (Σ,E�B) has the finite variant property [5] (FVP) iff for each
Σ-term t there is a finite complete set of variants
�t��E,B = {(u1, θ1), . . . , (un, θn)}.

If B has a finitary unification algorithm and R = (Σ,B, �E) is FVP, then
for any term t the finite set �t��E,B of its variants can be computed by folding
variant narrowing [11]. Maude 2.7.1 supports the computation of �t��E,B for B

a combination of associative and/or commutative and/or identity axioms.
If a decomposition R = (Σ,B, �E) is FVP and protects a constructor decom-

position RΩ = (Ω,BΩ , �EΩ), the notion of constructor variant answers the fol-
lowing related question: given a pattern t what are the reduced instances of t
which “cover” all reduced ground instances of t?

Definition 5 (Constructor Variant) [21]. Let R = (Σ,B, �E) be a decomposition
of (Σ,E � B), and let RΩ = (Ω,BΩ , �EΩ) be a constructor decomposition of R.
Then an �E,B-variant (u, θ) of a Σ-term t is called a constructor �E,B-variant
of t iff u ∈ TΩ(X). Let �t�Ω

�E,B
denote a complete set of constructor variants of

170 J. Meseguer

a term t, i.e., for each constructor variant (v, β) of t there is a (w,α) ∈ �t�Ω
�E,B

such that (w,α) �B (v, β).

Under mild conditions on a constructor decomposition RΩ = (Ω,BΩ , �EΩ)
protected by an FVP R = (Σ,B, �E), if B has a finitary unification algorithm the
set �t�Ω

�E,B
is finite and can be effectively computed according to the algorithm

in [24], which has been implemented in Maude. Both the sets �t��E,B and �t�Ω
�E,B

will play a key role in the various notions of ground coherence completion of a
generalized rewrite theory presented in Sect. 4.

3 Generalized Rewrite Theories and Coherence

There are two main reasons for further generalizing the notion of rewrite theory
in [3], and for relaxing its executability conditions as specified in, e.g., [8]. The
first is that it has proved very useful to model open systems that interact with a
typically non-deterministic external environment by rewrite rules that have extra
variables in their righthand sides, so that a term t may be rewritten to a possibly
infinite number of righthand side instances by different instantiations of such
extra variables. The second reason is that for symbolic reasoning it is very useful
to allow conditional rewrite rules l → r if ϕ where ϕ is not just a conjunction of
equalities but a QF equational formula, which is viewed as a constraint imposed
by the rule and interpreted in a suitable background theory T . The key point is
that the notion of generalized rewrite theory thus obtained, although in general
not executable in the standard sense, can still be executed symbolically under
fairly reasonable assumptions. For example, the notion of rewriting modulo SMT
[23] (see also the related work [1]) shows how such generalized theories can be
symbolically executed under some typing restrictions and the requirement that
satisfiability of a rule’s condition ϕ is always decidable. Related, yet different,
notions of symbolic execution for rules of this kind are also given in [12,16].

The purpose of this section is fourfold: (1) to give a general definition of such
generalized rewrite theories with no executability or decidability assumptions at
all; (2) to define a category of transition system models for generalized rewrite
theories; (3) to first add executability assumptions to the equations in such
theories; and (4) to then extend the notion of coherence [8,28] to generalized
rewrite theories. This will have two important consequences: (i) it will provide
essential conditions for symbolic execution of such generalized rewrite theories;
and (ii) it will make the notion of ground coherence completion of a generalized
rewrite theory presented in Sect. 4 as widely applicable as possible.

Definition 6 (Generalized Rewrite Theory). A generalized rewrite theory is a
5-tuple R = (Σ,G,R, T, φ), where: (i) Σ is kind-complete, so that its set of sorts
is S � ̂S, (see Definition 1); (ii) (Σ,G) is a (possibly conditional) equational
theory; (iii) R is a set of (possibly conditional) Σ-rewrite rules, i.e., sequents
l → r if ϕ, with l, r ∈ TΣ(X)[s] for some [s] ∈ ̂S, and ϕ a QF Σ-formula;
(iv) T , called the background theory, satisfies (Σ,G) ⊆ T ⊆ th(TΣ/G); and (v)

Generalized Rewrite Theories and Coherence Completion 171

φ is a so-called frozenness function,3 mapping each subsort-polymorphic family
f
[s1]...[sn]
[s] in Σ to the subset φ(f [s1]...[sn]

[s]) ⊆ {1, . . . , n} of its frozen arguments.
Given a generalized rewrite theory R = (Σ,G,R, T, φ) and terms u, v ∈

TΣ,[s](X) for some [s] ∈ ̂S, the rewrite relation →R holds between them, denoted
u →R v, iff there exist a term u′, a φ-unfrozen4 position p in u′, a rule l → r if ϕ
in R and a substitution θ such that: (i) T |= ϕθ; (ii) u =G u′ = u′[lθ]p; and (iii)
u′[rθ]p =G v.

A generalized rewrite theory R = (Σ,G,R, T, φ) is called topmost iff there
is a kind [State] ∈ ̂S such that: (i) for each l → r if ϕ in R, l, r ∈ TΣ(X)[State];
and (ii) for each subsort-polymorphic family f

[s1]...[sn]
[s] in Σ and i ∈ {1, . . . , n}, if

[si] = [State], then i ∈ φ(f [s1]...[sn]
[s]). For R topmost u →R v ⇒ u, v ∈ TΣ,[State].

Call R = (Σ,G,R, T, φ) and R′ = (Σ,G′, R′, T ′, φ) semantically equivalent,
denoted R ≡ R′ (resp. ground semantically equivalent, denoted R ≡gr R′) iff:
(1) (Σ,G) ≡ (Σ,G′), (2) T ≡ T ′, and (3) →R=→R′ (resp. (1) TΣ/G = TΣ/G′ ,
(2) T ≡ T ′, and (3) →R |T 2

Σ
=→R′ |T 2

Σ
).

Note that the case of a standard rewrite theory is the special case where
R = (Σ,G,R, T, φ) is such that T = (Σ,G) and for each l → r if ϕ in R, ϕ is
a conjunction of equalities5 ϕ =

∧

i=1...n ui = vi. In such a special case we omit
the background theory and write R = (Σ,G,R, φ) as usual. Note also that the
QF formulas ϕ in the conditions of rules in R may not be arbitrary Σ-formulas,
but formulas in a theory T0 = (Σ0, Γ0) such that Σ0 ⊆ Σ. For example, T0 may
be the theory of Presburger arithmetic. In such a case, the background theory
T in R = (Σ,G,R, T, φ) is assumed to be a conservative extension of T0.

Example 1. This QLOCK protocol example is borrowed from [25], where it is
used to verify some of its properties in Reachability Logic by symbolic methods.
It illustrates the new features of generalized rewrite theories, including a back-
ground theory, negative constraints in conditions, and “open system” rules mod-
eling interaction with an outside environment. QLOCK can be formalized as a
generalized rewrite theory R = (̂Σ,E�B,R, th(T

̂Σ/E�B), φ), in the sense of Def-

inition 6, where φ maps each f ∈ ̂Σ to ∅ (no frozen positions), and ̂Σ is the kind
completion of signature Σ below. R models a dynamic version of the QLOCK

3 This is supported in Maude by the frozen operator attribute, which forbids rewrites
below the specified argument positions. For example, when giving a rewriting seman-
tics to a CCS-like process calculus, the process concatenation operator · , appearing
in process expressions like a · P , will typically be frozen in its second argument.

4 By definition this means that there is no function symbol f and position q such that:
(i) p = q · i · q′, (ii) u′|q = f(u1, . . . , un), and (iii) i ∈ φ(f

[s1]...[sn]

[s]). Intuitively this

means that the frozenness restrictions φ do not block rewriting at position p in u′.
5 Admittedly, it is possible to allow more general rules with additional “rewrite condi-
tions” of the form l → r if ϕ∧∧

i=1...n ui → vi in a generalized rewrite theory. Then,
generalized rewrite theories would specialize to standard rewrite theories whose rules
also allow rewrite conditions. I leave this further generalization as future work.

172 J. Meseguer

mutual exclusion protocol [13], where (Σ,B) defines the protocol’s states, involv-
ing natural numbers, lists, and multisets over natural numbers. Σ has sorts S =
{Nat ,List ,MSet ,Conf ,State,Pred} with subsorts Nat < List and Nat < MSet
and operators F = {0 : → Nat , s : Nat → Nat , ∅ : → MSet , nil : → List ,

: MSet MSet → MSet , ; : List List → List , dupl : MSet → Pred , tt :
→ Pred , | | | : MSet MSet MSet List → Conf , < > : Conf → State},
where underscores denote operator argument placement. The axioms B are the
associativity-commutativity of the multiset union with identity ∅, and the
associativity of list concatenation ; with identity nil . The only equation in E
is dupl(s i i) = tt . It defines the dupl predicate by detecting a duplicated ele-
ment i in the multiset s i i (where s could be empty). The states of QLOCK are
B-equivalence classes of ground terms of sort State.

QLOCK [13] is a mutual exclusion protocol where the number of processes is
unbounded. Furthermore, in the dynamic version of QLOCK presented below,
such a number can grow or shrink. Each process is identified by a number. The
system configuration has three sets of processes (normal, waiting, and critical)
plus a waiting queue. To ensure mutual exclusion, a normal process must first
register its name at the end of the waiting queue. When its name appears at
the front of the queue, it is allowed to enter the critical section. The first three
rewrite rules in R below specify how a normal process i first transitions to a
waiting process, then to a critical process, and back to normal. The last two
rules in R specify how a process can dynamically join or exit the system.

n2w : < n i | w | c | q > → < n | w i | c | q ; i >
w2c : < n | w i | c | i ; q > → < n | w | c i | i ; q >
c2n : < n | w | c i | i ; q > → < n i | w | c | q >
join : < n | w | c | q > → < n i | w | c | q > if ϕ
exit : < n i | w | c | q > → < n | w | c | q >

where ϕ ≡ dupl(n iw c) �= tt , i is a number, n, w , and c are, respectively, normal,
waiting, and critical process identifier sets, and q is a queue of process identifiers.
Note that join makes QLOCK an open system in the sense explained earlier in
this section. In the intended use of QLOCK, any state < n | w | c | q > will be
such that the multiset nw c is actually a set, so that dupl(nw c) �= tt holds.
Note that this is an invariant preserved by all the above rules.

Transition System Semantics of Generalized Rewrite Theories. Given
a generalized rewrite theory R = (Σ,G,R, T, φ) we can associate to it the tran-
sition system TR = (TΣ/G,→R), resp. TR(X) = (TΣ/G(X),→R), where, by
definition, given [u], [v] ∈ TΣ/G,[s] (resp. [u], [v] ∈ TΣ/G,[s](X)) for some [s] ∈ ̂S,
[u] →R [v] holds iff u →R v holds in the sense of Definition 6. Both TR and
TR(X) are Σ-transition system in the following sense:

Definition 7 (Σ-Transition System and Homomorphism). Given a kind-
complete OS signature Σ, a Σ-transition system is a pair (A,→A) where: (i) A

is a Σ-algebra; and (ii) →A is a ̂S-indexed family of relations →A= {→A[s]⊆
A2

[s]}[s]∈̂S.

Generalized Rewrite Theories and Coherence Completion 173

A homomorphism of Σ-transition systems h : (A,→A) → (B,→B) is a Σ-
homomorphism h : A → B such that for each [s] ∈ ̂S and a, a′ ∈ A[s], a →A[s] a′

implies h(a) →B[s] h(a′). This defines a category TransΣ.

Note that h : (A,→A) → (B,→B) is an isomorphism in this category iff:
(i) h is a Σ-isomorphism, and (ii) b →B[s] b′ implies h−1(b) →A[s] h−1(b′).
Intuitively, such an isomorphism could be called an “algebraic bisimulation,”
and a homomorphism an “algebraic simulation.”

Given a generalized rewrite theory R = (Σ,G,R, T, φ) we say that a
Σ-transition system (A,→A) satisfies the theory R, denoted (A,→A) |= R iff: (i)
A ∈ OSAlg(Σ,G), and (ii) for each α ∈ [Y →A] the unique Σ-homomorphism α :
TΣ/G(X) → A is a Σ-transition system homomorphism α : TR(X) → (A,→A).
This defines a full subcategory TransR ⊆ TransΣ whose initial object is TR.
When R = (Σ,G,R, φ) is a standard rewrite theory, the Σ-transition system
TR is closely related to the initial reachability model of R [3], whose associated
Σ-transition system is the transitive closure (TΣ/G,→∗

R) of TR. Roughly speak-
ing, TR is the “one step rewrite” fragment of the initial reachability model in [3].

Definition 6 is very general: in R = (Σ,G,R, T, φ), besides the generality of
the rules R, no assumptions are made about the (possibly conditional) equations
G which we are rewriting modulo in each transition u →R v. In such general-
ity, even symbolic execution of R may be hard to attain. We can substantially
improve the situation if we assume that G = E � B, with B regular and linear
unconditional axioms for which Σ is B-preregular and =B is decidable, and such
that (Σ,G) has a decomposition (Σ,B, �E). Strictly speaking, such decomposi-
tions have only been defined in Sect. 2 for G a set of unconditional equations.
However, as shown in, e.g., [8,18], the notion of decomposition of (Σ,E � B)
generalizes to conditional equations E by means of the notion of a convergent,
strongly deterministic rewrite theory (Σ,B, �E). Likewise, the Church-Rosser
Theorem, the notion of canonical term algebra CΣ/ �E,B , and the isomorphism
CΣ/E,B

∼= TΣ/E�B naturally extend to the conditional case for such decomposi-
tions [18]. Under such conditions, we can achieve a much simpler rewrite relation
→R/B with the rules R modulo B. Given two terms u, v ∈ TΣ,[s](X) for some
[s] ∈ ̂S, the rewrite relation u →R/B v holds iff there exists a u′ ∈ TΣ(X) with
u =B u′, a φ-unfrozen position p in u′, a rule l → r if ϕ in R and a substitution
θ such that: (i) T |= ϕθ; (ii) u′|p = lθ; and (iii) v = u′[rθ]p. Under these extra
assumptions on R, much simpler Σ-transition systems can be defined:

Definition 8 (Canonical Σ-Transition System). Let R = (Σ,E � B,R, T, φ)
be such that (Σ,E � B) has a decomposition (Σ,B, �E) in the above-mentioned
sense. Then the Σ-transition system CR(X) (resp. CR) is defined as the
pair (CΣ/ �E,B(X),→CR) (resp. (CΣ/ �E,B ,→CR |C2

Σ/ �E,B
)) where for [u], [v] ∈

CΣ/ �E,B(X) (resp. [u], [v] ∈ CΣ/ �E,B), [u] →CR [v] holds iff there exists w ∈
TΣ(X) such that: (i) u →R/B w, and (ii) [v] = [w!�E,B].

The Coherence Problem. Note that it follows from the above definition and
from Definition 6 that if [u]B →CR [v]B , then [u]E�B →R [v]E�B. And since

174 J. Meseguer

the isomorphism h : CΣ/ �E,B
∼= TΣ/E�B (resp. h : CΣ/ �E,B(X) ∼= TΣ/E�B(X))

is precisely the mapping h : [u]B �→ [u]E�B , this means that we have a homo-
morphism of Σ-transition systems h : CR → TR (resp. h : CR(X) → TR(X)).
However, although h is a Σ-isomorphism, it fails in general to be an isomorphism
of Σ-transition systems. This is well-known for even trivially simple rewrite the-
ories R = (Σ,E � B,R, φ) such as R with Σ unsorted and consisting of con-
stants a, b, c, E = {a = b}, B = ∅, and R = {a → c}, where →CR= ∅, but
→R= {({a, b}, {c})}. Since TR is initial in TransR, this of course means that
in general CR �∈ TransR, and likewise CR(X) �∈ TransR. Therefore, canoni-
cal transition systems, although simpler than TR or TR(X), cannot be used to
reason correctly about R-computations. This is the so-called coherence problem.

Call R = (Σ,E � B,R, T, φ) with decomposition (Σ,B, �E) coherent (resp.
ground coherent) iff the Σ-transition system homomorphism h : CR(X) →
TR(X) (resp. h : CR → TR) is an isomorphism. Coherence can be character-
ized by an easier to check condition that generalizes ideas in [8,28]:

Theorem 4. Let R = (Σ,E � B,R, T, φ) with (Σ,E � B) a decomposition of
(Σ,B, �E). Then R is coherent (resp. ground coherent) iff for each u, v ∈ TΣ(X)
(resp. u ∈ TΣ, v ∈ TΣ(X)) such that u →R/B v (resp. u →R/B v and v!�E,B ∈
TΣ) there is a term v′ ∈ TΣ(X) such that u!�E,B →R/B v′ and v!�E,B =B v′!�E,B.

The methods developed in [8] to check the coherence of a given R are based
on adequate critical pairs modulo B between conditional rules in R and (ori-
ented) conditional equations in �E. By generalizing the conditions in [8] from con-
junctions of equalities to QF equational formulas and dropping the executability
conditions in [8], general methods for coherence checking entirely similar to those
in [8] can be developed for generalized rewrite theories. This, however, is not the
focus of this paper. Instead, both for the special case of the rewrite theories in [8]
and for the generalized rewrite theories in Definition 6 above, a different ques-
tion is asked and answered for the first time: Can we, under suitable conditions,
transform a generalized rewrite theory R into a semantically equivalent theory
R, called its ground coherence completion, so that R is itself ground coherent?
This question is answered in Sect. 4 below.

4 Coherence Completion of Generalized Rewrite Theories

I present below several theory transformations making a given generalized
rewrite theory ground coherent. I also explain how these methods can be auto-
mated and how they can be applied to: (i) make rewrite theories symbolically
executable; (ii) reason about equational abstractions of rewrite theories [22], and
(iii) achieve symbolic execution of a widest possible class of such rewrite theories.
But first some assumptions on R need to be made.

Generalized Rewrite Theories and Coherence Completion 175

Assumptions on R. The generalized rewrite theory R has the form R = (Σ,

E � B,R, T, φ), with (Σ,E � B) a decomposition of (Σ,B, �E). Furthermore: (i)
R is topmost ; (ii) there are protecting inclusions of decompositions6

(Ω,BΩ , �EΩ) ⊆ (Σ1, B1, �E1) ⊆ (Σ,B, �E)

where: (a) Ω, Σ1 and Σ share the same poset of sorts; (b) EΩ and E1 are uncon-
ditional equations; (c) (Ω,BΩ , �EΩ) is a constructor decomposition of (Σ,B, �E)
and, a fortiori, of (Σ1, B1, �E1); and (d) (Σ1, B1, �E1) is an FVP decomposition;
and (iii) each rewrite rule l → r if ϕ in R is such that l is a Σ1-term.

Are these assumptions “reasonable”? Regarding assumption (i), many rewrite
theories of interest, including theories specifying distributed object-oriented sys-
tems and rewriting logic specifications of concurrent programming languages,
can be easily specified as topmost rewrite theories by simple theory transfor-
mations, e.g., [27]. Regarding assumption (ii)–(iii), some remarks are in order.
First, the specification of a constructor subsignature Ω is either explicit in most
applications or typically easy to carry out. Second, in virtually all practical spec-
ifications of rewrite theories the lefthand side l of a rule l → r if ϕ is almost
always a constructor term. The only case in which this may happen to fail in
practice is the case of an equational abstraction [22], where l typically was a
constructor term before the abstraction was defined, but after such abstraction
definition a smaller signature Ω of constructors can be defined. This means that
for some applications the decomposition (Σ1, B1, �E1) may specify an equational
abstraction.

However, R need not be an equational abstraction of another rewrite the-
ory. The FVP decomposition (Σ1, B1, �E1) may have other meanings, includ-
ing (Σ1, B1, �E1) = (Ω,BΩ , �EΩ), so that the general assumptions are not at all
restricted to equational abstractions. This will become clear in what follows.

The R �→ Rl Transformation. For R = (Σ,E�B,R, T, φ) satisfying the above
assumptions, the theory Rl has the form Rl = (Σ,E � B,Rl, T, φ), where

Rl = {l′ → (rγ)!�E,B if (ϕγ)!�E,B | (l′, γ) ∈ �l� �E1,B1
∧ l → r if ϕ ∈ R}.

As an optimization, we can remove from Rl those rules B-subsumed by other
rules in Rl, where the B subsumption relation (l → r if ϕ) �B (l′ → r′ if ϕ′)
holds between rules iff there is a substitution α such that lα =B l′, rα =B

r′ and ϕα =B ϕ′. That is, l → r if ϕ is more general than l′ → r′ if ϕ′

up to B-equality, making l′ → r′ if ϕ′ redundant. The transformation R �→
Rl can be easily automated as a meta-level function in Maude 2.7.1 using the
metaGetIrredundantVariant function.

Theorem 5. Under the above assumptions on R, Rl is semantically equivalent
to R. Furthermore, Rl is ground coherent.
6 Recall that the strongly deterministic and convergent rules �E may be conditional.
We are therefore using Definition 3 in its straightforward generalization to the con-
ditional case.

176 J. Meseguer

Example 2. The R �→ Rl transformation can be used to obtain a ground coher-
ent theory for an equational abstraction of an infinite-state, out-of-order and
fault-tolerant communication channel, which thus becomes finite-state and there-
fore analyzable by standard LTL model checking. Full details are given in [20].
Here I illustrate the transformation by focusing on one of the rules, namely, the
message reception rule:

rl [recv] : [L,N] {J,K} S [P,M] =>

[K ~ M, [L,N] S ack(K) [P ; J, M + 1],

[L,N] S ack(K) [P,M]] .

The rule’s lefthand side describes a state in which the sender’s state [L,N]
consists of a list L of items still to be sent, and a counter N, and the receiver’s
state [P,M] consists of a list P of items already received and a counter M. The
channel’s contents is a multiset of messages with multiset union denoted by
juxtaposion. In this case the contents of the channel is the multiset {J,K} S
where {J,K} is a message sending item J marked as message number number K
sent by the sender to ensure in-order communication. The rest of the messages in
the channel are described by the variable S of sort MsgSet. The rule’s righthand
side describes two alternative behaviors of the receiver by means of an if-then-else
operator

op [_,_,_] : Bool Channel Channel -> Channel [frozen] .

which is declared frozen so that no further rewrites below it are possible until
after the if-then-else has been evaluated away. Depending on the equality test
K ~ M between the message number K in the message and the receiver’s counter
M, the sender either appends the item at the end of its list and increases its
counter, or discards the message without changing its counter. But in either
case an ack(K) message signaling the receipt of message number K is sent to the
sender.

Besides the associativity axiom for the list concatenation operator _;_ and
the associativity-commutativity axioms for the multiset union operator _ _ plus
the usual equations for if-then-else and the number equality predicate, the key
equations in this module are:

eq L ; nil = L [variant] .

eq nil ; L = L [variant] .

eq L ; nil ; Q = L ; Q [variant] . *** B-coherence extension

eq S null = S [variant] .

eq S S = S [variant] .

eq S S S’ = S S’ [variant] . *** B-coherence extension

The first three equations make nil an identity element for list concatenation.
The fourth equation likewise makes null an identity element for multiset union.
With these equations alone the system is infinite-state due to the possibility of
message loss modeled by the conditional rule

crl [loss] : [L,N] S S’ [P,M] => [L,N] S’ [P,M] if S =/= null .

Generalized Rewrite Theories and Coherence Completion 177

which makes the specification into a generalized rewrite theory due to its QF
negative condition. Message loss forces the sender to keep resending each item by
means of a [send] rule not presented here. The system is made finite-state, and
therefore verifiable by standard LTL model checking, by means of the equational
abstraction [22] provided by the last two idempotency equations, because the
unbounded multiset of messages in the channel thus becomes a set of bounded
size. All equations involved are FVP so that the requirements in Theorem5 are
met. For R the generalized rewrite theory specifying this equationally-abstracted
channel, its ground coherence completion R �→ Rl is described in full detail in
[20]. Here we can just get a flavor for this theory transformation by focusing on
the “variants” of the above [recv] rule which are added, namely, the following
rules:

rl [recv] : [L,N] {J,K} [P,M] =>

[(K ~ M), [L,N] ack(K) [P ; J, M + 1],

[L,N] ack(K) [P,M]] .

rl [recv] : [L,N] {J,K} [P,M] =>

[K ~ M, [L,N] {J,K} ack(K) [P ; J, M + 1],

[L,N] {J,K} ack(K) [P,M]] .

rl [recv] : [L,N] {J,K} S [P,M] =>

[K ~ M, [L,N] {J,K} S ack(K) [P ; J, M + 1],

[L,N] {J,K} S ack(K) [P,M]] .

The R �→ RΣ1 Transformation. The transformation R �→ RΣ1 is not a coher-
ence completion, but a stepping stone towards a more powerful such comple-
tion discussed later. The problem solved by the transformation R �→ RΣ1 has
everything to do with symbolic execution and is the following. As already men-
tioned, a generalized rewrite theory R of practical interest will typically have
rules l → r if ϕ where the lefthand side l is either a constructor term, or at
least a Σ1-term with (Σ1, B1, �E1) FVP. But what about the rule’s righthand
side r? Nothing can be assumed in general about r. It can be an arbitrary Σ-
term because auxiliary functions in Σ may be needed to update the state. This
poses a serious challenge for symbolic reasoning about R, which typically will
use symbolic methods such as equational unification and reachability analysis
by narrowing modulo an equational theory. As long as r is an Ω-term or at least
a Σ1-term with (Σ1, B1, �E1) FVP, this can easily be done after each symbolic
transition step, because we can use variant-based unification to compute unifiers
in the FVP theories (Ω,BΩ , �EΩ) or (Σ1, B1, �E1), and likewise narrowing modulo
such theories to perform symbolic reachability analysis. Instead, if, as usual, r is
an arbitrary Σ-term, symbolic reasoning, while not impossible, becomes much
harder: if the decomposition (Σ,B, �E) is unconditional, we can still perform
variant E � B-unification by variant narrowing as supported in Maude 2.7.1
for convergent unconditional theories, and likewise narrowing-based reachabil-
ity analysis based on such E � B-unification; but the number of unifiers is in
general infinite, leading to impractical search spaces with potentially infinite
branching at each symbolic state. In Lenin’s words: what is to be done? Per-
form the R �→ RΣ1 transformation! This transformation generalizes to a general

178 J. Meseguer

FVP decomposition (Σ1, B1, �E1) between (Ω,BΩ , �EΩ) and a possibly condi-
tional (Σ,B, �E) the special case, described in [25], of a transformation R �→ RΩ

making all righthand sides constructor terms. The extra generality of R �→ RΣ1

is useful, because it has a better chance of becoming the identity transformation
for many rules in R. Note that, since righthand sides in RΣ1 are Σ1-terms, a
rule α : l → r if ϕ can be applied backwards, as the rule α−1 : r → l if ϕ, to
perform backwards symbolic reachability analysis, as done in Maude-NPA [10].

The transformation R �→ RΣ1 is defined as follows. By our assumptions on
R each rewrite rule has the form l → r if ϕ with l ∈ TΣ1(X). For symbolic
reasoning purposes it will be very useful to also achieve that r ∈ TΣ1(X). If
R = (Σ,E ∪ B,R, T, φ), RΣ1 has the form RΣ1 = (Σ,E ∪ B,RΣ1 , T, φ), where
the rules in RΣ1 are obtained from those in R by transforming each l → r if ϕ in
R into the rule l → r′ if ϕ ∧ θ̂, where: (i) r′ ∈ TΣ1(X) is the Σ1-abstraction of r
obtained by replacing each length-minimal position p of r where the top symbol
top(t|p) of t|p does not belong Σ1 by a fresh variable xp whose sort is the least
sort of t|p, and (ii) θ̂ =

∧

p∈P t|p = xp, where P is the set of all length-minimal
positions in r with top(t|p) �∈ Σ1. As an optimization, whenever p, p′ ∈ P are
such that tp =B t′p, we can use the same fresh variable for xp and xp′ .

Example 3. Since, by specifying order in the natural numbers with constructors
an ACU addition +, constants 0, 1 of sort Nat , and �,⊥ of sort Bool , Presburger
arithmetic with > and � predicates and extended also with an if-then-else oper-
ator [, ,] added to any desired sort has an FVP decomposition with signature
Σ1 with decidable th(TΣ1/E1�B1) [21], if we have a topmost system whose states
are pairs 〈n,m〉 of natural numbers, and where one of its rules has the form:

〈n,m〉 → [n > m, 〈n ∗ m,m〉, 〈n, n ∗ m〉]

then, since the multiplication operator ∗ is in Σ but outside Σ1, the set P of
length-minimal positions of the righthand side is P = {2.1, 3.2}. And since the
terms at such positions are both n ∗ m, we obtain the transformed rule:

〈n,m〉 → [n > m, 〈y,m〉, 〈n, y〉] if y := n ∗ m.

where y has sort Nat and I have used Maude’s “matching condition” notation
y := n∗m for the equation n∗m = y to emphasize its executability by matching,
which, operationally, corresponds to viewing it as an equational rewrite condition
of the form n ∗ m →∗

�E,B
y.

Although a generalized rewrite theory R need not be executable, the R �→
RΣ1 transformation preserves rule executability. To explain this, I need to explain
the general sense in which a rewrite rule l → r if ϕ in R with ϕ =

∧

i=1..n ui = vi

a conjunction of equalities becomes executable by evaluating its condition ϕ by
�E,B rewriting and B-matching. The sense, as explained in [8], is that we view
ϕ as a �E,B-rewrite condition

∧

i=1..n ui → vi and require the following strong
determinism conditions: (i) ∀j ∈ [1..n], vars(uj) ⊆ vars(l) ∪

⋃

k<j vars(vk), (ii)
vars(r) ⊆ vars(l) ∪

⋃

j�n vars(vj), and (iii) each vj is strongly �E,B-irreducible

Generalized Rewrite Theories and Coherence Completion 179

in the precise sense that vjσ is in �E,B-normal form for each �E,B-normalized
substitution σ. The point is that if properties (i)–(ii) hold for the original rule
l → r if ϕ in R, then they also hold for its transformed rule l → r′ if ϕ ∧ θ̂
in RΣ1 . This is clear for (i) and (ii) by construction, and follows also for (iii)
because in each rewrite condition t|p → xp obtained from θ̂ the variable xp is
trivially strongly �E,B-irreducible. In summary we have:

Theorem 6. Under the above assumptions on R (dropping the topmost assump-
tion), RΣ1 is semantically equivalent to R. Furthermore, if the rules in R are
executable in the above sense, then those is RΣ1 are also executable.

The R �→ RΩ

Σ1,l,r Transformation. We can now use the previous R �→ RΣ1

transformation to achieve simultaneously two important goals: (1) obtain a gen-
eralized rewrite theory RΩ

Σ1,l,r ground semantically equivalent to R and such
that the lefthand and righthand sides of each of its rules are constructor terms;
this can be very useful for symbolic executability purposes, since we only need
to perform EΩ � BΩ-unification steps, which in many examples may reduce to
just BΩ-unification steps; and (2) ensure that RΩ

Σ1,l,r is ground coherent.
As already mentioned, the transformation Q �→ QΣ1 will be used here as

a stepping stone. Therefore, we may assume without loss of generality that it
has already been applied, so that the input theory in this, second transformation
R �→ RΩ

Σ1,l,r is of the form R = QΣ1 . Therefore, R = (Σ,E ∪ B,R, T, φ) is such
that in each rule l → r if ϕ in R both l and r are Σ1-terms, where (Σ1, B1, �E1)
is an FVP decomposition protecting a constructor decomposition (Ω,BΩ , �EΩ)
and itself protected by (Σ,B, �E). The transformed theory RΩ

Σ1,l,r has then the

form RΩ

Σ1,l,r = (Σ,E ∪ B,RΩ
Σ1,l,r, T, φ), where

RΩ
Σ1,l,r = {l′ → r′ if (ϕγ)!�E,B | (l → r if ϕ) ∈ R ∧ (〈l′, r′〉, γ) ∈ �〈l, r〉�Ω

�E1,B1
}

where we assume without loss of generality that a pairing operator 〈 , 〉 has
been added as a free constructor to each kind in Σ1 and therefore also to Ω.
The key point, of course, is that now the lefthand and righthand sides of a rule
l′ → r′ if (ϕγ)!�E,B in RΩ

Σ1,l,r are constructor terms. This has two important
advantages: (1) such rules can be symbolically executed, for example for reacha-
bility analysis, by performing EΩ �BΩ-unification, which it typically much sim-
pler and efficient that E1 � B1-unification; and (2) a rule α : l′ → r′ if (ϕγ)!�E,B

can be executed backwards as the rule α−1 : r′ → l′ if (ϕγ)!�E,B , which can
be very useful for backwards symbolic reachability analysis. Here are the key
properties:

Theorem 7. Under the above assumptions on R, RΩ

Σ1,l,r is ground semantically

equivalent to R. Furthermore, RΩ

Σ1,l,r is ground coherent.

180 J. Meseguer

Example 4. The R �→ RΩ

Σ1,l,r transformation can be illustrated by a bank
account system which is an open system and uses various auxiliary functions
to update an account’s state after each transaction. Full details are given in
[20]. Here I illustrate the transformation by focusing on one of the rewrite rules,
namely, the rule [w] specifying how money can be withdrawn from an account:

rl [w] : < bal: n pend: x overdraft: false > # withdraw(m),msgs =>

[m > n , < bal: n pend: x overdraft: true > # msgs ,

< bal: (n - m) pend: (x - m) overdraft: false > # msgs] .

The rule’s lefthand side describes the state of the account, which is a #-separated
pair. The record < bal: n pend: x overdraft: false > is the first compo-
nent. The balance n is the amount of money currently in the account, x is the
amount of money pending to be withdrawn in the future, which can be thought of
as the amount corresponding to previously written but not yet cashed checks and
other withdrawals, and overdraft is a Boolean flag whose false value indicates
that the account is not in the red. Its second component is a multiset of messages
built up with an associative-commutative multiset union operator _,_ with iden-
tity element the empty multiset mt. It models the checks and other withdrawals
pending to be cashed. Here such a multiset has the form withdraw(m),msgs so
that there is an actual request withdraw(m) to withdraw the amount of money m
and the remaining messages described by the variable msgs. The rule’s righthand
side describes the account’s behavior in response to such a withdrawal request
by means of an if-then-else operator (exactly as in Example 2) and the predicate
m > n testing whether or not the requested money exceeds the account’s current
balance. If this is the case, the request is rejected and the account goes into
an overdraft state. Otherwise, the request is honored, the balance is updated,
and the pending debt is decreased accordingly. What this rewrite rule clearly
illustrates is that, although its lefthand side only involves constructors, its right-
hand side involves several defined functions needed to update the state, namely,
the if-then-else operator, the m > n predicate, and the “monus” operator on
natural numbers _-_ used to decrease both the balance and the pending debt.
Fortunately, the equations defining all these auxiliary functions are FVP, so
that this rule, as well as the other rules in the example only involve Σ1-terms.
This means that this example meets the requirements for the input theory in
the R �→ RΩ

Σ1,l,r transformation. To give a flavor for the transformation itself,
in which all the lefthand- and righthand-sides of the transformed rules become
constructor terms, I list below the transformed rules for the above [w] rule.
One feature of the terms below that might seem puzzling is the presence of
the natural number addition operator +. The point is that + is a free constructor
modulo associativity-commutativity axioms and the identity axiom for 0 (ACU),
because the additive natural numbers are the free commutative monoid gener-
ated by 1. As shown in [21], this yields a variant-based decision procedure for
QF-satisfiability, not just for Presburger arithmetic, but for all other auxiliary
functions, like monus and if-then-else, involved in this example.

Generalized Rewrite Theories and Coherence Completion 181

rl [w] : < bal: n + m + x pend: m overdraft: false >

msgs,withdraw(m + x)

=>

< bal: n pend: 0 overdraft: false > # msgs .

rl [w] : < bal: n + m pend: m + x overdraft: false >

msgs,withdraw(m)

=>

< bal: n pend: x overdraft: false > # msgs .

rl [w] : < bal: n pend: y overdraft: false >

msgs’,withdraw(1 + n + x)

=>

< bal: n pend: y overdraft: true > # msgs’ .

The relevant question about this example is: what is gained in translation?
And the relevant answer is: very much, particularly for narrowing-based reach-
ability analysis. The reason is that, before the transformation, each narrowing
step would take place by unifying a symbolic state with a rule’s lefthand side
modulo E � B. Instead, now, the unification of symbolic states with lefthand
sides of rules takes place modulo B = BΩ, that is, just modulo ACU, which
is much more efficient that E � B-unification by folding variant narrowing. In
some sense, what has been achieved could be called a process of total evalua-
tion, where the defined functions appearing in righthand sides of rules have been
completely evaluated away by means of their constructor variants. Such total
evaluation is what makes possible the reduction from E � B-unification to just
ACU -unification.

5 Related Work and Conclusions

Closely related work falls into three categories: (i) the already-mentioned sym-
bolic reasoning techniques for rewrite theories, e.g., [1,2,10,12,16,17,23,25,26];
(ii) executability techniques for standard rewrite theories, including [8,28]; and
(iii) variant-based symbolic computation, including [5,11,21,24], and also [7],
where a limited form of “equational coherence completion” was introduced. In
relation to all the work in (i)–(iii), the main contributions of this paper are: (1)
a new notion of generalized rewrite theory, of rewriting in a generalized rewrite
theory, and an initial model semantics for such theories; (2) new symbolic exe-
cutability requirements, including a new notion of coherence that is a substantial
generalization of the standard notions in [8,28]; and (3) new automatable theory
transformations both to ensure ground coherence of generalized rewrite theories
by coherence completion, and to make symbolic executability applicable to a
widest possible class of such theories. It is worth noting that the new coherence
completion transformations apply, in particular, to standard rewrite theories.

The most obvious next step is to implement all the theory transformations
presented in Sect. 4. This can easily be done by computing variants in Maude,

182 J. Meseguer

and constructor variants in the Maude implementation of [24]. This will enable
new applications, both in symbolic reasoning and in equational abstraction. It
could also be used to substantially extend the features of the current Maude
Coherence Checker [8].

Acknowledgments. I thank the referees for their constructive criticism and valuable
suggestions to improve the paper. This work has been partially supported by NRL
under contract number N00173-17-1-G002.

References

1. Arusoaie, A., Lucanu, D., Rusu, V.: Symbolic execution based on language trans-
formation. Comput. Lang. Syst. Struct. 44, 48–71 (2015)

2. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-
state systems using narrowing. In: Rewriting Techniques and Applications (RTA
2013). LIPIcs, vol. 21, pp. 81–96. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2013)

3. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1–3), 386–414 (2006)

4. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

5. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some
algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3 22

6. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science, vol. B, pp. 243–320. North-Holland,
Amsterdam (1990)

7. Durán, F., Lucas, S., Meseguer, J.: Termination modulo combinations of equational
theories. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol.
5749, pp. 246–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04222-5 15

8. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of condi-
tional order-sorted rewrite theories. J. Algebr. Logic Program. 81, 816–850 (2012)

9. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1. Springer, Heidel-
berg (1985). https://doi.org/10.1007/978-3-642-69962-7

10. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007–2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 1

11. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Algebr. Logic Program. 81, 898–928 (2012)

12. Falke, S., Kapur, D.: Rewriting induction + Linear arithmetic = Decision proce-
dure. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI),
vol. 7364, pp. 241–255. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31365-3 20

13. Futatsugi, K.: Fostering proof scores in CafeOBJ. In: Dong, J.S., Zhu, H. (eds.)
ICFEM 2010. LNCS, vol. 6447, pp. 1–20. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16901-4 1

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-32033-3_22
https://doi.org/10.1007/978-3-642-04222-5_15
https://doi.org/10.1007/978-3-642-04222-5_15
https://doi.org/10.1007/978-3-642-69962-7
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1007/978-3-642-31365-3_20
https://doi.org/10.1007/978-3-642-31365-3_20
https://doi.org/10.1007/978-3-642-16901-4_1
https://doi.org/10.1007/978-3-642-16901-4_1

Generalized Rewrite Theories and Coherence Completion 183

14. Goguen, J., Meseguer, J.: Order-sorted algebra I: Equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci.
105, 217–273 (1992)

15. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM J. Comput. 15, 1155–1194 (1986)

16. Kop, C., Nishida, N.: Automatic constrained rewriting induction towards verifying
procedural programs. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp.
334–353. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12736-1 18

17. Lucanu, D., Rusu, V., Arusoaie, A., Nowak, D.: Verifying reachability-logic prop-
erties on rewriting-logic specifications. In: Mart́ı-Oliet, N., Ölveczky, P.C., Talcott,
C. (eds.) Logic, Rewriting, and Concurrency - Essays Dedicated to José Meseguer
on the Occasion of His 65th Birthday. LNCS, vol. 9200, pp. 451–474. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23165-5 21

18. Lucas, S., Meseguer, J.: Normal forms and normal theories in conditional rewriting.
J. Log. Algebr. Methods Program. 85(1), 67–97 (2016)

19. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4 26

20. Meseguer, J.: Generalized rewrite theories and coherence completion. Technical
report, University of Illinois Computer Science Department, March 2018. http://
hdl.handle.net/2142/99546

21. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program.
154, 3–41 (2018)

22. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. Theor. Com-
put. Sci. 403(2–3), 239–264 (2008)

23. Rocha, C., Meseguer, J., Muñoz, C.A.: Rewriting modulo SMT and open system
analysis. J. Log. Algebr. Methods Program. 86, 269–297 (2017)

24. Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. J. Log.
Algebr. Methods Program. 96, 81–110 (2018)

25. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for
rewrite theories. In: Fioravanti, F., Gallagher, J. (eds.) LOPSTR 2017. LNCS, vol.
10855, pp. 207–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94460-9 12. Technical report, University of Illinois Computer Science Department,
March 2017. http://hdl.handle.net/2142/95770

26. Ştefănescu, A., Ciobâcă, Ş., Mereuta, R., Moore, B.M., Şerbănută, T.F., Roşu, G.:
All-path reachability logic. In: Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp.
425–440. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08918-8 29

27. Thati, P., Meseguer, J.: Symbolic reachability analysis using narrowing and its
application to the verification of cryptographic protocols. J. High. Order Symb.
Comput. 20(1–2), 123–160 (2007)

28. Viry, P.: Equational rules for rewriting logic. Theor. Comput. Sci. 285, 487–517
(2002)

https://doi.org/10.1007/978-3-319-12736-1_18
https://doi.org/10.1007/978-3-319-23165-5_21
https://doi.org/10.1007/3-540-64299-4_26
http://hdl.handle.net/2142/99546
http://hdl.handle.net/2142/99546
https://doi.org/10.1007/978-3-319-94460-9_12
https://doi.org/10.1007/978-3-319-94460-9_12
http://hdl.handle.net/2142/95770
https://doi.org/10.1007/978-3-319-08918-8_29

Proving Ground Confluence of Equational
Specifications Modulo Axioms

Francisco Durán1, José Meseguer2, and Camilo Rocha3(B)

1 Universidad de Málaga, Málaga, Spain
2 University of Illinois, Urbana-Champaign, Champaign, IL, USA

3 Pontificia Universidad Javeriana, Cali, Colombia
camilo.rocha@javerianacali.edu.co

Abstract. Terminating functional programs should be deterministic,
i.e., should evaluate to a unique result, regardless of the evaluation order.
For equational functional programs such determinism is exactly captured
by the ground confluence property. For terminating equations this is
equivalent to ground local confluence, which follows from local conflu-
ence. Checking local confluence by computing critical pairs is the stan-
dard way to check ground confluence. The problem is that some perfectly
reasonable equational programs are not locally confluent and it can be
very hard or even impossible to make them so by adding more equations.
We propose a three-step strategy to prove that an equational program
as is is ground confluent: First : apply the strategy proposed in [9] to use
non-joinable critical pairs as completion hints to either achieve local con-
fluence or reduce the number of critical pairs. Second : use the inductive
inference system proposed in this paper to prove the remaining critical
pairs ground joinable. Third : to show ground confluence of the origi-
nal specification, prove also ground joinable the equations added. These
methods apply to order-sorted and possibly conditional equational pro-
grams modulo axioms such as, e.g., Maude functional modules.

1 Introduction

Functional programs should be deterministic; that is, if they terminate for a
given input, they should return a unique value, regardless of the evaluation
order. Ground confluence is the precise characterization of such determinism
for functional equational programs associated to equational theories of the form
E = (Σ,E � B), were B are structural axioms and E are, possibly conditional,
equations that are executed as rewrite rules

−→
E modulo B. Therefore, for exe-

cution purposes, all the relevant information is contained in the rewrite theory
RE = (Σ,B,

−→
E). Since ground confluence is essential both for correct execution

and for almost any form of formal verification about properties of E and RE ,
methods to prove ground confluence are very important.

The standard method to do so for a terminating equational program RE =
(Σ,B,

−→
E) is to: (i) prove that it is indeed operationally terminating (and if Σ is

c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 184–204, 2018.
https://doi.org/10.1007/978-3-319-99840-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_11&domain=pdf

Proving Ground Confluence of Equational Specifications Modulo Axioms 185

order-sorted, also sort decreasing); and then (ii) since operational termination
plus local confluence imply confluence, prove the stronger property that RE
is locally confluent (modulo B). This tends to work well in many cases, but
not always. The thorny issue addressed in this paper is what to do when this
standard method does not work.

In [9], the wild goose chase for a convergent specification by attempting a
Knuth-Bendix completion of E was explicitly discouraged, since it can often
lead to an infinite loop and, even if it were to succeed, can result in a highly
bloated and hard to understand specification. Instead, the following incremental
strategy in the spirit of Knuth-Bendix was suggested: since failure of a proof
of local confluence will generate a set of unjoinable critical pairs characterizing
the most general cases in which rules cannot be shown confluent, such critical
pairs can be used as very useful hints for a user to try to either: (i) orient a
critical pair as a rule and add it to the specification; or (ii) if the critical pair
has the form C[u] = C[v] with C a common context, orient instead u = v and
add it to the specification; or (iii) generalize u = v in cases (i) and (ii) into
a more general u′ = v′ that has u = v as a substitution instance and add an
oriented version of u′ = v′ to the specification. In this way, we obtain a new
specification RE′ = (Σ,B,

−→
E � −→

G), where
−→
G are the new oriented equations

added by methods (i)–(iii). If RE′ is locally confluent, operationally terminating,
and sort-decreasing, we are done; otherwise, we can iterate the process with the
critical pairs obtained for RE′ .

In practice, this incremental strategy works reasonably well, but not always.
Furthermore, it raises the following unsolved questions:

1. Have we changed the initial algebra semantics? That is, do the original RE
and its extension RE′ have the same initial algebra when viewed as equa-
tional theories? If only additions of type (i) are made, this is always true; but
additions of type (ii)–(iii) are often needed in practice.

2. Was the original specification RE already ground confluent? That is, can we
use RE′ as the proverbial “Wittgenstein ladder” that we can kick away after
we have proved its local confluence?

3. What do we do when we run into a wall? Specifically, the “wall” of having an
equation u = v obtained by methods (i)–(iii) above that cannot be oriented
because it would lead to non-termination.

Our Contributions. This paper provides new methods that answer these three
questions and can greatly help in proving an original specification ground con-
fluent. In a nutshell, a more general and powerful strategy is proposed with three
steps: First : use the above-described strategy from [9] as far as it can go. Second :
if you hit the wall of non-orientability for some critical pairs (Question 3), prove
the ground joinability of such remaining pairs by the inductive methods presented
in this work. Third : to ensure preservation of the initial algebra semantics (Ques-
tion 1) and the ground confluence of the original specification (Question 2), use
the same inductive methods to prove ground joinability of all the equations
added along the first step. Of course, one could skip the first step altogether and

186 F. Durán et al.

merge the second and third steps into one; but this may require a considerably
bigger effort, since the whole point of taking the first step is to greatly reduce
the number of pairs to be proved ground joinable. Furthermore, the user may
have made an actual mistake in the original specification RE , so that the second
and third steps become meaningless. In such a case, the first step can be quite
helpful in identifying such mistakes and help the user restart the process with a
new specification.

Paper Organization. Preliminaries are gathered in Sect. 2. The strategy’s First
Step is illustrated in Sect. 3 by a hereditarily finite sets specification that does
indeed run into a non-orientability wall. The inductive inference system for
ground confluence is presented and proved sound in Sect. 4, and is illustrated by
proving the inductive joinability of the non-orientable critical pair from Sect. 3,
thus illustrating the Second Step. The Third Step is then illustrated in detail for
the running example in Sect. 5. Some related work and conclusions are discussed
in Sect. 6. Results for the mechanized proofs and proofs for auxiliary results
presented here can be found in [10].

2 Preliminaries

Notation on terms, term algebras, and equational theories is used as, e.g., in [12].
An order-sorted signature Σ is a tuple Σ = (S,≤, F) with a finite poset of
sorts (S,≤) and set of function symbols F typed with sorts in S. The binary
relation ≡≤ denotes the equivalence relation (≤ ∪ ≥)+ generated by ≤ on S
and its point-wise extension to strings in S∗. The function symbols in F can be
subsort-overloaded. For any sort s ∈ S, the expression [s] denotes the connected
component of s, that is, [s] = [s]≡≤ . A top sort in Σ is a sort s ∈ S such
that for all s′ ∈ [s], s′ ≤ s. Let X = {Xs}s∈S be an S-indexed family of
disjoint variable sets with each Xs countably infinite. For any s ∈ S, let X≤s =⋃

s′∈S∧s′≤s Xs′ . The set of terms of sort s and the set of ground terms of sort s
are denoted, respectively, by TΣ(X)s and TΣ,s; similarly, TΣ(X) and TΣ denote,
respectively, the set of terms and the set of ground terms. TΣ(X) and TΣ denote
the corresponding order-sorted Σ-term algebras. All order-sorted signatures are
assumed preregular [12], i.e., each Σ-term t has a unique least sort ls(t) ∈ S s.t.
t ∈ TΣ(X)ls(t). It is also assumed that Σ has nonempty sorts, i.e., TΣ,s 	= ∅ for
each s ∈ S. The set of variables of t is written vars(t) and for a list of terms
t1, . . . , tn, vars(t1, . . . , tn) = vars(t1) ∪ · · · ∪ vars(tn).

A substitution is an S-indexed mapping θ ∈ [X −→ TΣ(X)] that is different
from the identity only for a finite subset of X and such that θ(x) ∈ TΣ(X)s if
x ∈ Xs, for any x ∈ X and s ∈ S. The expression θ|Y denotes the restriction
of θ to a family of variables Y ⊆ X. The domain of θ, denoted dom(θ), is
the subfamily of X such that x ∈ dom(θ) iff θ(x) 	= x, for each x ∈ X. If
dom(θ) = {x1, . . . , xn} we write θ = {x1 �→ θ(x1), . . . , xn �→ θ(xn)}. The range
of θ is the set ran(θ) =

⋃
{vars(θ(x)) | x ∈ dom(θ)}. Substitutions extend

homomorphically to terms in the natural way. A substitution θ is called ground

Proving Ground Confluence of Equational Specifications Modulo Axioms 187

iff ran(θ) = ∅. The application of a substitution θ to a term t is denoted by tθ
and the composition (in diagrammatic order) of two substitutions θ1 and θ2 is
denoted by θ1θ2, so that tθ1θ2 denotes (tθ1)θ2. A context C is a λ-term of the
form C = λx1, . . . , xn.c with c ∈ TΣ(X) and {x1, . . . , xn} ⊆ vars(c); it can be
viewed as an n-ary function (t1, . . . , tn) �→ C(t1, . . . , tn) = cθ, where θ(xi) = ti
for 1 ≤ i ≤ n and θ(x) = x for x /∈ {x1, . . . , xn}.

An equational theory is a tuple (Σ,E), with Σ an order-sorted signature
and E a finite collection of (possibly conditional) Σ-equations. An equational
theory E = (Σ,E) induces the congruence relation =E on TΣ(X) defined for
t, u ∈ TΣ(X) by t =E u iff E t = u, where E t = u denotes E-provability
by the deduction rules for order-sorted equational logic in [14]. For the purpose
of this paper, such inference rules, which are analogous to those of many-sorted
equational logic, are even simpler thanks to the assumption that Σ has nonempty
sorts, which makes unnecessary the explicit treatment of universal quantifiers.
The expressions TE(X) and TE (also written TΣ/E(X) and TΣ/E) denote the quo-
tient algebras induced by =E on the term algebras TΣ(X) and TΣ , respectively.
TΣ/E is called the initial algebra of (Σ,E).

We assume acquaintance with the usual notions of position p in a term t,
subterm t|p at position p, and term replacement t[u]p at position p (see, e.g., [5]).
A rewrite theory is a tuple R = (Σ,E,R) with (Σ,E) an order-sorted equational
theory and R a finite set of possibly conditional Σ-rules, with conditions being a
conjunction of Σ-equalities. A rewrite theory R induces a rewrite relation →R on
TΣ(X) defined for every t, u ∈ TΣ(X) by t →R u iff there is a rule (l → r if φ) ∈
R, a term t′, a position p in t′, and a substitution θ : X −→ TΣ(X) satisfying
t =E t′ = t′[lθ]p, u =E t′[rθ]p, and (Σ,E) φθ. The tuple TR = (TΣ/E ,→�

R),
where, by definition, →�

R = →+
R ∪ =E , where →+

R denotes the transitive closure
of →R, is called the initial reachability model of R [3].

In this paper we will mostly focus on rewrite theories of the form RE =
(Σ,B,

−→
E) associated to an equational theory E = (Σ,E � B), were: (i) B are

decidable structural axioms whose equations u = v ∈ B are linear (no repeated
variables in either u or v) and regular (same variables in u and v), for which a
matching algorithm exists, and (ii) the possibly conditional rewrite rules

−→
E are

strictly B-coherent [15]. Under such assumptions, the rewrite relation t →RE u
holds iff there exists u′ such that u′ =B u, and t →−→

E ,B
u′, where, by definition,

t →−→
E ,B

u′ iff there exists a rule (l → r if φ) ∈ −→
E , a position p in t and a

substitution θ such that t|p =B lθ, u′ = t[rθ]p, and RE φθ. We will assume
throughout that the rules

−→
E are always strictly B-coherent. We finally assume

that the axioms B are: (i) sort-preserving, i.e., for each (u = v) ∈ B and substi-
tution σ we have ls(uσ) = ls(vσ); and (ii) term-size preserving1, i.e., if t =B t′,
then |t| = |t′|.

1 For combinations of associativity, commutativity, and identity axioms, this last con-
dition only rules out identity axioms. However, both for termination and confluence
analysis purposes, identity axioms can always be turned into convergent rewrite rules
modulo associativity and/or commutativity axioms, as explained in [8].

188 F. Durán et al.

Appropriate requirements are needed to make an equational theory E =
(Σ,E�B) admissible as an equational program, i.e., for making RE = (Σ,B,

−→
E)

executable in languages such as Maude [4]. In this paper, besides the above
assumptions about B and

−→
E , we assume that the rules in

−→
E are sort-decreasing,

operationally terminating, and ground confluent modulo B. The rewrite rules−→
E are sort decreasing modulo B iff for each (t → u if γ) ∈ −→

E and substitution
θ, ls(tθ) ≥ ls(uθ) if RE γθ. RE = (Σ,B,

−→
E) is operationally terminating

modulo B [6] iff there is no infinite well-formed proof tree in (Σ,B,
−→
E). Call

t, t′ ∈ TΣ(X) joinable in RE , denoted t ↓RE t′ iff there exist u, v such that
t →∗−→

E ,B
u, t′ →∗−→

E ,B
v, and u =B v. Call RE = (Σ,B,

−→
E) confluent (resp., ground

confluent) modulo B iff for all t, t1, t2 ∈ TΣ(X) (resp., for all t, t1, t2 ∈ TΣ),
if t →∗−→

E ,B
t1 and t →∗−→

E ,B
t2, then t1 ↓RE t2. For RE = (Σ,B,

−→
E) to have

good executability properties as a terminating equational program, the following
requirements are needed: (a) sort decreasingness, (b) operational termination,
and (c) ground confluence. If conditions (a)–(c) are met, we call RE ground
convergent. RE is called convergent if it satisfies the stronger requirements of
sort-decreasingness, operational termination, and confluence.

3 An Equational Specification for Hereditarily Finite Sets

When checking the confluence of an equational specification, the CRC tool [9,11]
provides as result a set of critical pairs that cannot be joined automatically by its
built-in heuristics. They are proof obligations that can either be proved joinable
or used as guidance for modifying the input specification. The methodology
proposed in [9] for using the CRC tool suggests that critical pairs can help in
identifying theorems of the original specification which, when added to it, may
lead to a confluent or ground confluent specification. However, as the example of
HF-SETS presented in this section shows, the analysis of critical pairs to modify
a specification, though a useful first strategy, may be insufficient to make the
specification ground confluent. Other techniques, such as the ones presented in
Sect. 4, may be needed.

Consider the specification of hereditarily finite sets in Fig. 1, namely, of finite
sets whose elements are all hereditarily finite sets (see, e.g., [13]). The recursive
definition of well-founded hereditary sets has the empty set as the base case and
if s1, . . . , sk are hereditarily finite, then so is {s1, . . . , sk}. These sets play a key
role in axiomatic set theory because they are a model of all the axioms of set
theory except for the axiom of infinity. Furthermore, as the methods developed
in this work will show, the initial model of the HF-SETS specification below is a
consistent model of set theory without the axiom of infinity.

The Church-Rosser check of the HF-SETS module using the CRC tool says
that the specification is sort-decreasing, but it cannot show that it is locally con-
fluent, returning eight critical pairs as proof obligations. At this point, there are
two alternatives: either (i) we try to prove the ground joinability of these critical

Proving Ground Confluence of Equational Specifications Modulo Axioms 189

Fig. 1. Equational specification of hereditarily finite sets in Maude

190 F. Durán et al.

pairs to conclude that the specification is locally ground confluent, or (ii) we fol-
low the iterative strategy proposed in [9] to get a locally confluent specification
or at least reduce the number of critical pairs for which a proof of joinability is
necessary. In the rest of this section, we explore the second alternative. The first
alternative will be revisited after the second one is exhausted (both are useful)
in Sect. 5.

The following one is one of the critical pairs returned by the check:

cp HF-SETS1123 for 11 and 15
true = M’:Magma in {M’:Magma} .

It comes from the overlap of equations 11 and 15. Although there are equa-
tions for all possible instances of the term M in {M}, Maude cannot reduce it as
magmas. We can attempt adding equations to reduce it as follows:

fmod HF-SETS-0 is
protecting HF-SETS .
vars M M’ : Magma .
eq [18]: M in {M} = true .
eq [19]: M in {M’, M} = true .

endfm

A check of the Church-Rosser property for HF-SETS-0 returns seven critical
pairs. Let us consider one of these critical pairs:

cp HF-SETS-095 for 01 and 63
augment({M’:Magma}, S:Set) = augment({M’:Magma}, S:Set) U augment({M’:Magma}, S:Set) .

This critical pair comes from the overlap of equations 01 and 63. Indeed, this
critical pair cannot be further reduced because there is no idempotency equation
for the union operator on sets. We can see the same problem in other four of
the critical pairs reported by the tool. Although S U S = S could be proven in
HF-SETS-0, there is the alternative option of extending the specification with an
idempotency equation for set union.

fmod HF-SETS-1 is
protecting HF-SETS-0 .
var S : Set .
eq [44]: S U S = S .

endfm

The Church-Rosser checker tool produces the following output for HF-SETS-1:

The following critical pairs must be proved joinable:
cp HF-SETS-118 for 53 and 53

P({#6:Magma}) U augment(P({#6:Magma}), S:Set) U augment(P({#6:Magma}) U
augment(P({#6:Magma}), S:Set), #1:Set)

= P({#6:Magma}) U augment(P({#6:Magma}), #1:Set) U augment(P({#6:Magma}) U
augment(P({#6:Magma}), #1:Set), S:Set).

cp HF-SETS-1355 for 01 and 53
P({#3:Magma}) U augment(P({#3:Magma}), S:Set)

= P({#3:Magma}) U augment(P({#3:Magma}), S:Set) U augment(P({#3:Magma}) U
augment(P({#3:Magma}), S:Set), S:Set).

The module is sort-decreasing.

Proving Ground Confluence of Equational Specifications Modulo Axioms 191

A careful study of these critical pairs suggests the need for an equation to apply
augment over the union operator.

fmod HF-SETS-2 is
protecting HF-SETS-1 .
vars S S’ T : Set .
eq [64]: augment(S U S’, T) = augment(S, T) U augment(S’, T) .

endfm

The number of critical pairs gets further decreased in HF-SETS-2, but two
remain:

The following critical pairs must be proved joinable:
cp HF-SETS-218 for 53 and 53

P({#6:Magma}) U augment(P({#6:Magma}), S:Set) U augment(P({#6:Magma}), #1:Set) U
augment(augment(P({#6:Magma}), S:Set), #1:Set)

= P({#6:Magma}) U augment(P({#6:Magma}), S:Set) U augment(P({#6:Magma}), #1:Set) U
augment(augment(P({#6:Magma}), #1:Set), S:Set).

cp HF-SETS-2411 for 01 and 53
P({#3:Magma}) U augment(P({#3:Magma}), S:Set)

= P({#3:Magma}) U augment(P({#3:Magma}), S:Set)
U augment(augment(P({#3:Magma}), S:Set), S:Set).

The module is sort-decreasing.

The second critical pair suggests the need for an equation handling the
repeated application of the augment operator.

fmod HF-SETS-3 is
protecting HF-SETS-2 .
vars S T : Set .
eq [65]: augment(augment(S, T), T) = augment(S, T) .

endfm

However, one critical pair remains in HF-SETS-3:

Church-Rosser check for HF-SETS-3
The following critical pairs must be proved joinable:

cp HF-SETS-318 for 53 and 53
P({#6:Magma})U augment(P({#6:Magma}),S:Set)U augment(P({#6:Magma}),#1:Set)U
augment(augment(P({#6:Magma}),S:Set),#1:Set)

= P({#6:Magma})U augment(P({#6:Magma}),S:Set)U augment(P({#6:Magma}),#1:Set)U
augment(augment(P({#6:Magma}),#1:Set),S:Set).

The module is sort-decreasing.

It is not obvious at all how to eliminate this critical pair, since adding the
equation

eq augment(augment(S, S’), T) = augment(augment(S, T), S’) .

would make the specification non-terminating. This suggests that the second
approach, i.e., the strategy of trying to complete the specification by analyz-
ing the unjoinable critical pairs has now been exhausted. However, the original
problem has now been reduced to a single critical pair. At this point, the best
approach is to prove the inductive joinability of the critical pair HF-SETS-318

obtained in the check of HF-SETS-3, and thus conclude that the specification
is ground locally confluent. Section 4 presents techniques for carrying out such
inductive proofs. Indeed, it will also present results showing that the original
specification was already ground confluent!, without the need for the extra equa-
tions added in the process. The specification is terminating. Indeed, the MTT
tool [7,11] is able to find termination proofs for all the versions of the HF-SETS

192 F. Durán et al.

module, and specifically for HF-SETS-3 (see [10, Appendix B]). A proof of the
sufficient completeness of the specification can be found in [10, Appendix C].

Finally, note that if an added equation comes from orienting a critical pair, it
is a logical consequence of the specification and therefore the new specification
has the same initial model of the old one. Although the additional equations
added during the process may not be those obtained from critical pairs as such,
proving that they are ground joinable is enough to show that they are actually
inductive lemmas, and therefore—as explained in more detail in Theorem 6 in
Sect. 4—that they both preserve the initial algebra semantics and can be removed
from the original specification.

4 Proving Ground Joinability

This section presents inductive techniques for proving ground joinability for
rewrite theories associated to equational specifications. These techniques are
presented as meta-theorems about the ground reachability relation induced by
a rewrite theory and are used to justify the inference system also presented in
this section.

Definition 1. Let R be a rewrite theory with signature Σ = (S,≤, F) and t, u ∈
TΣ(X)s for some s ∈ S. The terms t and u are called:

1. R-joinable, written R (∀X) t ↓ u, iff there is v ∈ TΣ(X)s such that R
(∀X) t →� v and R (∀X)u →� v.

2. ground R-joinable, written R � (∀X) t ↓ u, iff R tθ ↓ uθ for all ground
substitutions θ ∈ [X −→ TΣ].

The authors of [18] investigate constructor-based inductive techniques for
proving ground joinability. They distinguish two notions of constructors for a
rewrite theory R, namely, one for the equations and another one for the rules
in R.

Definition 2 (Definitions 5 and 6 [18]). Let R = (Σ,E,R) be a rewrite
theory with underlying equational theory E = (Σ,E). A constructor signature
pair for R is a pair (Υ,Ω) of order-sorted subsignatures Υ = (S,≤, FΥ) ⊆ Ω =
(S,≤, FΩ). The sets of terms TΥ = {TΥ,s}s∈S and TΩ = {TΩ,s}s∈S are called,
respectively, E-constructor terms and R-constructor terms. The rewrite theory
R is called:

1. E-sufficiently complete relative to Ω iff (∀s ∈ S)(∀t ∈ TΣ,s)(∃u ∈ TΩ,s) E
t = u.

2. R-sufficiently complete relative to Υ iff (∀s ∈ S)(∀t ∈ TΣ,s)(∃v ∈ TΥ,s) R
t →� v.

3. sufficiently complete relative to (Υ,Ω) iff (1) and (2) hold.

Proving Ground Confluence of Equational Specifications Modulo Axioms 193

The notion of sufficient completeness for a rewrite theory R relative to a con-
structor signature pair (Υ,Ω) is that Ω ⊆ Σ are the constructors for the equa-
tions and Υ ⊆ Ω the constructors for the rules, thus including the standard
concept of constructor for equational specifications as a special case. The intu-
ition behind equational constructor terms is that any ground Σ-term should be
provably equal to a term in TΩ and for rewrite constructors that any Σ-term
should be rewritable to a term in TΥ .

It is sufficient to consider all R-constructor terms in TΥ,s when inducting on
a variable x of sort s, for a proof on inductive joinability in R to be sound.

Theorem 1 (Theorem 6 [18]). Let R be a rewrite theory with signature
Σ = (S,≤, F) and t, u ∈ TΣ(X)s for some s ∈ S. If R is sufficiently com-
plete relative to the constructor signature pair (Υ,Ω), then R � (∀X) t ↓ u iff
(∀η ∈ [X −→ TΥ]) R tη ↓ uη.

Figure 2 presents the Join, Ctx and Gral inference rules for proving join-
ability for a rewrite theory R, respectively, by rewrite-based reasoning, inductive
reasoning under contexts, and generalization. The soundness of the Join rule is
straightforward to obtain, while Theorem 2 justifies the soundness of the Ctx
and Gral rules. This result can be used to simplify the complexity of terms to
be joinable if they share a common context.

Fig. 2. Inference rules for proving joinability for a rewrite theory R by rewrite-based
reasoning, and inductive reasoning for contexts and substitution instances.

Theorem 2. Let R be a rewrite theory with signature Σ = (S,≤, F) and
C[t], C[u] ∈ TΣ(X)s for some s ∈ S. If R � (∀X) t ↓ u, then:

1. R � (∀X)C[t] ↓ C[u];
2. R � (∀X) tθ ↓ uθ, for any substitution θ ∈ [X −→ TΣ(X)].

Proof. The two properties follow from the fact that the rewrite relation →R is
closed under contexts and substitutions. ��

Since the goal is to prove ground joinability of a rewrite theory of the form
RE = (Σ,B,

−→
E) associated to an equational theory E = (Σ,E �B), such as that

for hereditarily finite sets presented in Sect. 3, the most appropriate notion of
constructor is that of RE -constructors. More precisely, a constructor signature
pair for RE has always the form (Υ,Σ) because the only equations in RE are the
axioms B not associated to any rewriting. Hence, RE sufficient completeness is
always relative only to Υ . One more remark is important for what follows. As
pointed out in Sect. 2, we assume that RE = (Σ,B,

−→
E) is admissible (except for

194 F. Durán et al.

its ground confluence, which may remain to be proved). In particular this means
that RE is strictly B-coherent in the sense of [15]. Therefore, the two notions of
joinability (resp. ground joinability) involved, namely the one in Definition 1, and
that defined in terms of the rewrite relation →−→

E ,B
in Sect. 2 actually coincide

(see [15]). We will implicitly use this agreement between both notions in what
follows.

Reasoning about ground joinability requires inductive inference support, e.g.,
in the form of a constructor-based scheme using finite generating sets.

Definition 3. Let E = (Σ,E � B) be an equational theory, with Σ = (S,≤, F),
such that the rewrite theory RE is weakly terminating, ground sort-decreasing,
and has subsignature Υ of RE -constructors. Further, let s ∈ S. A set Gs ⊆
TΥ,s(X) is a (finite) generating set for s modulo B iff Gs is finite, Gs ∩ X = ∅,
and

TΥ/B,s =
⋃

w∈Gs

{[wσ]B | σ ∈ [vars(w) −→ TΥ]} .

The following induction scheme is sound for inferring ground joinability
in RE .

Theorem 3. Let RE be a weakly terminating and ground sort-decreasing rewrite
theory, with signature Σ = (S,≤, F) and subsignature Υ of RE -constructors.
Moreover, let t, u ∈ TΣ(X), x ∈ vars(t, u) ∩ Xs for some s ∈ S, and Gs a
generating set for s modulo B, such that (without loss of generality) vars(Gs) ∩
vars(t, u) = ∅. Then:

If RE � (∀X)
∧

w∈Gs

⎡

⎣
∧

y∈vars(w)∩X≤s

(t ↓ u){x �→ y}

⎤

⎦ ⇒ (t ↓ u){x �→ w},

then RE � (∀X) t ↓ u.

Proof. By contradiction. Suppose the antecedent holds, but there is a ground
substitution σ ∈ [vars(t, u) −→ TΣ] such that RE 	 (t ↓ u)σ. Note, however,
that by

−→
E being strict B-coherent and Gs being a generating set for s modulo

B, σ is always of the form σ =B {x �→ w}τ , for some w ∈ Gs and substitution
τ , and then we have

RE 	 (t ↓ u)σ iff RE 	 (t ↓ u){x �→ w}τ.

Consider now the non-empty set of ground terms

{wτ | w ∈ Gs ∧ τ ∈ [Yw −→ TΣ] ∧ RE 	 (t ↓ u){x �→ w}τ}

where Yw = (vars(t, u) \ {x}) ∪ vars(w). Pick wτ0 of smallest term size possi-
ble in the above set. By the strict B-coherence of

−→
E and the assumption that

the axioms B are size-preserving, this means that for any ground substitution

Proving Ground Confluence of Equational Specifications Modulo Axioms 195

σ ∈ [vars(t, u) −→ TΣ], such that RE 	 (t ↓ u)σ, we must have |σ(x)| ≥ |wτ0|.
In particular, since w ∩ X = ∅, this means that for each y ∈ vars(w) ∩ X≤s

we must have |τ0(y)| < |wτ0| and therefore RE (t ↓ u){x �→ y}τ0. But, by
hypothesis this implies RE (t ↓ u){x �→ w}τ0, a contradiction. ��

It is also sound to reason about ground joinability in RE using case analysis
based on the RE -constructor signature Υ (Fig. 3).

Fig. 3. Inference rules for proving ground joinability for a rewrite theory RE with RE -
constructors Υ by induction relative to the generating set Gs and by constructor-based
case analysis on a variable x ∈ vars(t, u) ∩ Xs.

Theorem 4. Let RE be a weakly terminating and ground sort-decreasing rewrite
theory, with signature Σ = (S,≤, F) and subsignature Υ of RE -constructors.
Moreover, let t, u ∈ TΣ(X), x ∈ vars(t, u) ∩ Xs for some s ∈ S, and Gs a
generating set for s modulo B, such that (without loss of generality) vars(Gs) ∩
vars(t, u) = ∅. Then:

RE � (∀X) t ↓ u iff RE � (∀X)
∧

w∈Gs

(t ↓ u){x �→ w}.

Proof. If RE � (∀X) t ↓ u, then clearly RE � (∀X)
∧

w∈Gs
(t ↓ u){x �→ w}.

For the proof in the opposite direction, let σ ∈ [X −→ TΣ] be such that RE 	
(t ↓ u)σ: the goal is to show that RE 	� (∀X)

∧
w∈Gs

(t ↓ u){x �→ w}, for some
w ∈ Gs. Since Gs is a generating set for the sort s and x ∈ Xs, then there is
w ∈ Gs and ρ ∈ [X −→ TΣ] such that σ(x) =B wρ. Let σ′ = σ|vars(t,u)\{x}�ρ and
observe that σ′ is well-defined because of the assumption vars(Gs)∩vars(t, u) =
∅. Furthermore, observe:

(t ↓ u)σ = (t ↓ u){x �→ σ(x)}σ|vars(t,u)\{x}
=B (t ↓ u){x �→ wρ}σ|vars(t,u)\{x}
= (t ↓ u){x �→ w}(σ|vars(t,u)\{x} � ρ)
= (t ↓ u){x �→ w}σ′.

Hence, by the strict B-coherence of
−→
E , we must have RE 	� (∀X)

∧
w∈Gs

(t ↓
u){x �→ w}. ��

196 F. Durán et al.

This concludes the inference system for proving ground joinability. However,
an important practical issue remains: how should the checking of R (∀X) t ↓ u
used in inference rule Join be best mechanized? After all, t ↓ u is a somewhat
complex relation, involving existential quantification. This issue can be satisfac-
torily addressed by means of a program transformation RE �→ R≈

E that extends
the possibly conditional and operationally terminating rewrite theory RE , asso-
ciated to an equational theory E = (Σ,E � B), to a theory R≈

E with: (i) a new
sort Prop with constant tt and (ii) a new operator ≈ with the rule x ≈ x → tt,
such that

RE (∀X) t ↓ u iff R≈
E (∀X) t ≈ u →� tt.

Since the right side of the equivalence is a reachability property and the trans-
formation RE �→ R≈

E preserves operational termination, the theory R≈
E and

Maude’s search command can be used to check that R (∀X) t ↓ u. This is used
in the Example 1 below, where the binary function symbol join implements the
operator ≈ . The precise description of the RE �→ R≈

E transformation is given
in [10, Appendix D].

Example 1. Recall from Sect. 3 the only critical pair output by the CRC tool for
the HF-SETS-3 specification; the goal is to prove:

HF-SETS-3 � (∀M :Magma;S, T :Set) t(M,S, T) ↓ u(M,S, T)
where

t(M,S, T) = P ({M}) ∪ augment(P ({M}), S) ∪ augment(P ({M}), T)
∪ augment(augment(P ({M}), S), T)

u(M,S, T) = P ({M}) ∪ augment(P ({M}), S) ∪ augment(P ({M}), T)
∪ augment(augment(P ({M}), T), S)

By the Ctx rule it suffices to prove:

HF-SETS-3 � (∀M :Magma; S, T :Set)

augment(augment(P ({M}), S), T) ↓ augment(augment(P ({M}), T), S)

Moreover, since P ({M}) has sort Set, this statement can be proved by consid-
ering a stronger property, namely, by using the Gral rule and proving:

HF-SETS-3 � (∀S, S′, T :Set) augment(augment(S′, S), T) ↓ augment(augment(S′, T), S)

Proving Ground Confluence of Equational Specifications Modulo Axioms 197

This proof obligation can be dealt with by using the CtorCases rule on
S′ ∈ XSet with generating set GSet = {{}, {M}} and M ∈ XMagma. This rule
application results in the following two proof obligations:

HF-SETS-3 � (∀S, T :Set) augment(augment({}, S), T) ↓ augment(augment({}, T), S)

HF-SETS-3 � (∀S, T :Set; M :Magma)

augment(augment({M}, S), T) ↓ augment(augment({M}, T), S)

The first proof obligation can be discharged by a search command in
R≈

HF-SETS-3:

search in HF-SETS-3-REACH :
join(augment(augment({{}}, S), T), augment(augment({{}}, T), S)) =>! tt .

Solution 1 (state 1)

The second proof obligation can be handled using the GSInd rule on M ∈
XMagma with generating set GMagma = {S′, (S′,M ′)}, S′ ∈ XSet, and M ′ ∈
XMagma:

HF-SETS-3 � (∀S, S′, T :Set)

augment(augment({S′}, S), T) ↓ augment(augment({S′}, T), S)

HF-SETS-3 � (∀S, S′, T :Set;M ′ :Magma)

ψ ⇒ augment(augment({S′, M ′}, S), T) ↓ augment(augment({S′, M ′}, T), S)

where ψ is the formula:

augment(augment({S′}, S), T) ↓ augment(augment({S′}, T), S) ∧
augment(augment({M ′}, S), T) ↓ augment(augment({M ′}, T), S).

For the first one of these two proof obligations, a proof can be found as follows:

search in HF-SETS-3-REACH :
join(augment(augment({S’}, S), T), augment(augment({S’}, T), S)) =>! tt .

Solution 1 (state 14)

For the second proof obligation, it suffices to rewrite both terms in the consequent
of the implication and use the second conjunct in ψ, together with the Join and
Ctx, to join the resulting terms:

search in HF-SETS-3-REACH : augment(augment({M’,S’}, S), T) =>! X:Set .
Solution 1 (state 6)
X:Set --> {S’ U {S,T}} U augment(augment({M’}, S), T)

search in HF-SETS-3-REACH : augment(augment({M’,S’}, T), S) =>! X:Set .
Solution 1 (state 6)
X:Set --> {S’ U {S,T}} U augment(augment({M’}, T), S)

Therefore, all critical pairs of HF-SETS-3 are ground joinable; hence, HF-SETS-3
is ground convergent, as desired.

But is the original specification HF-SETS itself ground convergent? That is,
can the extra equations in HF-SETS-3 just be used as scaffolding and then be

198 F. Durán et al.

removed as unnecessary? The following result shows that, if the successive addi-
tion of oriented equalities leads us to a ground convergent theory and such equal-
ities are ground joinable, then the added equations are indeed unnecessary. The
main idea is that, starting from an equational specification E0, if a sequence of
equational theories E0 ⊆ E1 ⊆ · · · ⊆ En can be built by incrementally adding new
equations (e.g., suggested by the analysis of critical pairs between the equations),
and if the new equations added at each step can be shown ground joinable, then
the ground confluence of En implies the ground confluence of each Ei, and in
particular of E0.

Theorem 5. Let (Σ,E0�B) ⊆ (Σ,E1�B) where
−→
E0, B is sufficiently complete

with respect to a subsignature Ω, (Σ,E1 � B) is ground convergent, →−→
E0,B

|Ω =
→−→

E1,B
|Ω, and all equations in E1 − E0 are ground E0, B-joinable. Then,

(
→!−→

E0,B
; =B

)
|TΣ

=
(
→!−→

E1,B
; =B

)
|TΣ

.

That is, the normal forms of the rewriting relation modulo B restricted to the
initial term algebra TΣ coincide.

Proof. First of all note that, since
−→
E0 ⊆ −→

E1, (Σ,B,
−→
E0) is operationally termi-

nating. Consider some t ∈ TΣ and rewrite t →!−→
E1,B

u. Since
−→
E0, B is sufficiently

complete and →−→
E0,B

|Ω = →−→
E1,B

|Ω , u ∈ TΩ . If all rules applied in the chain

are in
−→
E0, then the chains obviously coincide. Otherwise, let us consider the first

rewrite step using a rule in
−→
E1 − −→

E0:

t −→
E0,B

∗�� −→
E1−−→

E0,B

��

−→
E0,B

!���
��

��
��

�� −→
E1,B

! ��

−→
E0,B

!����
��
��
��
� u

v
B
w

First, we have v =B w by ground joinability of equations in E1 − E0. Then,
by the assumption that →−→

E0,B
|Ω =→−→

E1,B
|Ω , u and w are in E1, B-canonical

form, and by the ground confluence of
−→
E1, B we must have u =B w. Therefore,

we can conclude that →!−→
E0,B

; =B |TΣ
=→!−→

E1,B
; =B |TΣ

, as desired. ��

Theorem 6. Suppose (Σ,E0 � B) ⊆ . . . ⊆ (Σ,En � B), with n ≥ 0, such
that

−→
E0 � B is sufficiently complete with respect to a subsignature Ω,

−→
En � B is

ground convergent, (→−→
E0,B

)|Ω = (→−→
En,B

)|Ω, and all Ei+1 − Ei are ground Ei-
joinable modulo B. Then, each (Σ,Ei � B) is ground convergent, for 0 ≤ i ≤ n.
Furthermore, all theories in the chain have the same initial algebra.

Proof. By induction on n. It is trivial for n = 0. Suppose it true for n, and let us
prove it true for n+1. Given a chain (Σ,E0�B) ⊆ (Σ,E1�B) ⊆ . . . ⊆ (Σ,En �
B), by the induction hypothesis—plus the fact that (Σ,E0 � B) sufficiently

Proving Ground Confluence of Equational Specifications Modulo Axioms 199

complete makes (Σ,E1 � B) so as well—we get that (Σ,E1 � B) is ground
convergent. The proof that (Σ,E0 � B) is ground convergent is as follows. Since
(Σ,E1 � B) is ground convergent, (Σ,E0 � B) is a fortiori sort-decreasing and
operationally terminating, so all we need to prove is its ground confluence. But
since, by Theorem 5, →!−→

E0,B
; =B |TΣ

=→!−→
E1,B

; =B |TΣ
, the following diagram

proves ground confluence of →−→
E0,B

:

t

−→
E0,B

∗���
��
��
��
��
�

−→
E1,B

!
����
��
��
��
��
��
�

−→
E1,B

!
���
��
��
��
��
��
��

−→
E0,B

∗ ���
��

��
��

��
�

u

−→
E0,B

!		�
��
��
� = = v

−→
E0,B

!

		
		
		

u′
B

v′

Note that u′ =B v′ by ground confluence of →−→
E1,B

.
Finally, we already know by the Induction Hypothesis that all the theories

(Σ,E1 � B) ⊆ · · · ⊆ (Σ,En � B)

have the same initial algebra, and, by ground-joinability of E1 − E0, that

TΣ/E0�B |= E1 − E0.

Therefore, we also get TΣ/E0�B = TΣ/E1�B, as desired. ��

Theorem 6 justifies the view of the new equations suggested by critical pairs
obtained, say, from the CRC tool, as hints for extending our original specifi-
cation as “scaffolding” that can be abandoned after we have reached a ground
convergent extension (Σ,En �B). Going back to the example in Sect. 3, once the
HF-SETS-3 module has been proven ground convergent, we can conclude that the
original HF-SETS specification is also ground convergent, provided we can show
that the equations added at stage i + 1 were ground joinable relative to stage i.
This is shown to be the case in Sect. 5 by providing proofs of ground joinability
for the five equations added in HF-SETS-0, HF-SETS-1, HF-SETS-2, and HF-SETS-3

in Sect. 3.

5 Ground Convergence of HF-SETS

The goal of this section is to conclude that the equational specification HF-

SETS presented in Sect. 3 is ground convergent, and therefore that its initial
model is a model of set theory without the axiom of infinity. The key tools
for achieving this goal are the inference system for inductive joinability and
Theorem 6, both presented in Sect. 4. By knowing that RHF-SETS-3 is terminating
(see [10, Appendix B]), sort decreasing (Sect. 3), and that HF-SETS is sufficiently

200 F. Durán et al.

complete (see [10, Appendix C]), the conditions in Theorem 6 apply and we just
need to show the ground joinability of the added equations.

That is, since HF-SETS-3 is ground convergent and the theory inclusions

HF-SETS ⊆ HF-SETS-0 ⊆ HF-SETS-1 ⊆ HF-SETS-2 ⊆ HF-SETS-3

satisfy the requirements of Theorem 6, it suffices to prove

HF-SETS � (∀M :Magma)M ∈ {M} ↓ true

HF-SETS � (∀M, M ′ :Magma)M ∈ {M, M ′} ↓ true

HF-SETS-0 � (∀S :Set)S ∪ S ↓ S

HF-SETS-1 � (∀S, S′, T :Set) augment(S ∪ S′, T) ↓ augment(S, T) ∪ augment(S′, T)

HF-SETS-2 � (∀S, T :Set) augment(augment(S, T), T) ↓ augment(S, T)

in order to conclude that HF-SETS is ground convergent. In what follows, detailed
proofs are provided for the last three proof obligations. The first two properties
can be proved by following a similar approach.

The third proof obligation is dealt with by using the CtorCases rule on
S ∈ XSet with generating set GSet = {{}, {M}} and M ∈ XMagma:

HF-SETS-0 � {} ∪ {} ↓ {}
HF-SETS-0 � (∀M :Magma) {M} ∪ {M} ↓ {M}

These two proof obligations can be automatically discharged by Maude in
R≈

HF-SETS-0:

search in HF-SETS-0-REACH : join({} U {}, {}) =>! tt .
Solution 1 (state 2)

search in HF-SETS-0-REACH : join({M} U {M}, {M}) =>! tt .
Solution 1 (state 3)

Next, for the fourth proof obligation, several inference steps are needed. First,
the CtorCases rule is used on SSet with generating set GSet = {{}, {M}} and
M ∈ XMagma, resulting in the following proof obligations:

HF-SETS-1 � (∀S′, T :Set) augment({} ∪ S′, T) ↓ augment({}, T) ∪ augment(S′, T)

HF-SETS-1 � (∀S′, T :Set;M :Magma)

augment({M} ∪ S′, T) ↓ augment({M}, T) ∪ augment(S′, T)

For the second one of these two proof obligations, the CtorCases rule on
S′ ∈ XSet with generating set H ′

Set = {{}, {M ′}} and M ′ ∈ XMagma is used; this
transforms the second proof obligation in the following two proof obligations:

HF-SETS-1 � (∀T :Set;M :Magma)

augment({M} ∪ {}, T) ↓ augment({M}, T) ∪ augment({}, T)

HF-SETS-1 � (∀T :Set;M, M ′ :Magma)

augment({M} ∪ {M ′}, T) ↓ augment({M}, T) ∪ augment({M ′}, T)

Proving Ground Confluence of Equational Specifications Modulo Axioms 201

The remaining three proof obligations can be automatically discharged by
Maude in R≈

HF-SETS-1 as follows:

search in HF-SETS-1-REACH : join(augment({} U S’, T),
augment({}, T) U augment(S’, T)) =>! tt .

Solution 1 (state 6)

search in HF-SETS-1-REACH :
join(augment({} U {M}, T), augment({}, T) U augment({M}, T)) =>! tt .

Solution 1 (state 6)

search in HF-SETS-1-REACH :
join(augment({M} U {M’}, T), augment({M}, T) U augment({M’}, T)) =>! tt .

Solution 1 (state 3)

The fifth, and last proof obligation, is dealt with by using the CtorCases
rule on S ∈ XSet with generating set GSet = {{}, {M}} and M ∈ XMagma. This
rule application results in the following two proof obligations:

HF-SETS-2 � (∀T :Set) augment(augment({}, T), T) ↓ augment({}, T)
HF-SETS-2 � (∀T :Set;M :Magma)

augment(augment({M}, T), T) ↓ augment({M}, T)

The first proof obligation can be discharged automatically:

search in HF-SETS-2-REACH : join(augment(augment({}, T), T), augment({}, T)) =>! tt .
Solution 1 (state 4)

The remaining proof obligation can be handled with the help of the GSInd
rule with generating set GMagma = {S′, (S′,M ′)}, S′ ∈ XSet and M ′ ∈ XMagma:

HF-SETS-2 � (∀S′, T :Set) augment(augment({S′}, T), T) ↓ augment({S′}, T)
HF-SETS-2 � (∀ S′, T :Set;M ′ :Magma)

ψ ⇒ augment(augment({S′,M ′}, T), T) ↓ augment({S′,M ′}, T)

where ψ is the formula:

augment(augment({S′}, T), T) ↓ augment({S′}, T)
∧ augment(augment({M ′}, T), T) ↓ augment({M ′}, T).

These two proof obligations can be solved with the help of Maude:

search in HF-SETS-2-REACH : join(augment(augment({S’}, T), T), augment({S’}, T)) =>! tt .
Solution 1 (state 10)

search in HF-SETS-2-REACH : augment(augment({M’,S’}, T), T) =>! X:Set .
Solution 1 (state 7)
X:Set --> {S’ U {T}} U augment(augment({M’}, T), T)

search in HF-SETS-2-REACH : augment({M’,S’}, T) =>! X:Set .
Solution 1 (state 2)
X:Set --> {S’ U {T}} U augment({M’}, T)

202 F. Durán et al.

Note that the terms obtained by the last two search commands can be joined
by assuming ψ.

The initial goal has now been reached. Namely, since all the equations added
in the process of building the tower of theory inclusions

HF-SETS ⊆ HF-SETS-0 ⊆ HF-SETS-1 ⊆ HF-SETS-2 ⊆ HF-SETS-3

have been shown ground joinable, Theorem 6 guarantees that the equational
specification HF-SETS for hereditarily finite sets is ground convergent.

6 Related Work and Conclusion

In [2], Bouhoula proposes an inference system for simultaneously checking the
sufficient completeness and ground confluence of constructor-based equational
specifications. His approach computes a pattern tree for every defined sym-
bol and identifies a set of proof obligations whose inductive validity has to be
checked: if they all are inductive theorems, then the specification is both suffi-
ciently complete and ground confluent; otherwise, it outputs a counterexample.
The main difference between the two approaches is that the one presented in this
paper can handle both conditional specifications and reasoning modulo axioms,
while [2] does not support reasoning modulo axioms. More recently, Nakamura
et al. [17] propose incremental techniques for proving termination, confluence,
and sufficient completeness of OBJ specifications. Their inference system is also
based on the notion of constructor subsignatures, handles conditional equations,
and provides sufficient conditions for ensuring such an incremental extension in
a modular way. However, for ground confluence, their method has been devel-
oped for extensions that preserve the set of critical pairs relative to the extended
specification.

Different tools and techniques have been proposed for proving and disproving
confluence. Tools such as CSI [16] or ACP [1] are automatic confluence provers for
first-order rewrite systems. These tools implement different criteria for proving
both confluence and non-confluence.

This work has addressed a thorny and important problem in reasoning about
equational programs and algebraic specifications with an initial algebra seman-
tics: the fact that in practice a substantial number of such programs and specifi-
cations are perfectly reasonable and there is nothing wrong with them, yet they
are not locally confluent and therefore fall outside the scope of the standard
methods to prove them ground convergent. As the HF-SETS example has shown,
it is quite mistaken to assume that, since our program is perfectly reasonable, we
should be able to complete it in some Knuth-Bendix-like fashion, because we can
easily hit a non-orientability “wall.” We have proposed a general methodology
to help verify the ground convergence of a given equational program in such a
way that: (i) the heuristic value of using unjoinable critical pairs as hints is pre-
served; (ii) we can break through the wall of non-orientable equations by means
of inductive joinability proof methods; and (iii) we can prove that our original
specification is ground convergent and that its initial algebra semantics has been

Proving Ground Confluence of Equational Specifications Modulo Axioms 203

preserved by its subsequent extensions using the same inductive joinability proof
techniques.

Future work suggested by this work includes: (i) full mechanization of the
inductive joinability inference system and its integration within the Maude For-
mal Environment; (ii) further experimentation with these methods on a rich
collection of examples; and (iii) development of new proof techniques comple-
menting those presented here.

Acknowledgments. The authors would like to thank the anonymous referees for
their helpful comments that helped us improve the paper. The first author was partially
supported by Spanish MINECO/FEDER project TIN2014-52034-R and Univ. Málaga,
Campus de Excelencia Internacional Andalućıa Tech. The second author was partially
supported by NRL under contract number N00173-17-1-G002. The third author was
partially supported by CAPES, Colciencias, and INRIA via the STIC AmSud project
“EPIC: EPistemic Interactive Concurrency” (Proc. No 88881.117603/2016-01).

References

1. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting sys-
tems automatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02348-4 7

2. Bouhoula, A.: Simultaneous checking of completeness and ground confluence for
algebraic specifications. ACM Trans. Comput. Log. 10(3), 1–33 (2009)

3. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1–3), 386–414 (2006)

4. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

5. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 243–320. North-Holland, Ams-
terdam (1990)

6. Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving operational ter-
mination of membership equational programs. High.-Order Symb. Comput. 21(1–
2), 59–88 (2008)

7. Durán, F., Lucas, S., Meseguer, J.: MTT: the Maude termination tool (system
description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 313–319. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-71070-7 27

8. Durán, F., Lucas, S., Meseguer, J.: Termination modulo combinations of equational
theories. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol.
5749, pp. 246–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04222-5 15

9. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of con-
ditional order-sorted rewrite theories. J. Log. Algebr. Program. 81(7–8), 816–850
(2012)

10. Durán, F., Meseguer, J., Rocha, C.: Proving ground confluence of equational
specifications modulo axioms. Technical report 2142/99548, University of Illinois,
Urbana, USA, March 2018

https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71070-7_27
https://doi.org/10.1007/978-3-540-71070-7_27
https://doi.org/10.1007/978-3-642-04222-5_15
https://doi.org/10.1007/978-3-642-04222-5_15

204 F. Durán et al.

11. Durán, F., Rocha, C., Álvarez, J.M.: Towards a Maude formal environment. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 329–351. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24933-4 17

12. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Comput.
Sci. 105(2), 217–273 (1992)

13. Hrbacek, K., Jech, T.J.: Introduction to Set Theory. Monographs and Textbooks
in Pure and Applied Mathematics, vol. 45, 3rd edn. M. Dekker, New York (1999)

14. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4 26

15. Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. Theor.
Comput. Sci. 672, 1–35 (2017)

16. Nagele, J., Felgenhauer, B., Middeldorp, A.: CSI: new evidence – a progress report.
In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 385–397.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 24

17. Nakamura, M., Ogata, K., Futatsugi, K.: Incremental proofs of termination, con-
fluence and sufficient completeness of OBJ specifications. In: Iida, S., Meseguer, J.,
Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 92–109.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54624-2 5

18. Rocha, C., Meseguer, J.: Constructors, sufficient completeness, and deadlock free-
dom of rewrite theories. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010.
LNCS, vol. 6397, pp. 594–609. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16242-8 42

https://doi.org/10.1007/978-3-642-24933-4_17
https://doi.org/10.1007/3-540-64299-4_26
https://doi.org/10.1007/978-3-319-63046-5_24
https://doi.org/10.1007/978-3-642-54624-2_5
https://doi.org/10.1007/978-3-642-16242-8_42
https://doi.org/10.1007/978-3-642-16242-8_42

Uniform Strong Normalization
for Multi-discipline Calculi

Paul Downen(B), Philip Johnson-Freyd, and Zena M. Ariola

University of Oregon, Eugene, USA
{pdownen,philipjf,ariola}@cs.uoregon.edu

Abstract. Modern programming languages have effects and mix multi-
ple calling conventions, and their core calculi should too. We character-
ize calling conventions by their “substitution discipline” that says what
variables stand for, and design calculi for mixing disciplines in a single
program. Building on variations of the reducibility candidates method,
including biorthogonality and symmetric candidates which are both spe-
cialized for one discipline, we develop a single uniform framework for
strong normalization encompassing call-by-name, call-by-value, call-by-
need, call-by-push-value, non-deterministic disciplines, and any others
satisfying some simple criteria. We explicate commonalities of previous
methods and show they are special cases of the uniform framework and
they extend to multi-discipline programs.

1 Introduction

Picking a programming language means choosing not just a concrete syntax and
set of features, but also a calling convention. As Simon Peyton Jones [19] says:

These days, the strict/lazy decision isn’t a straight either/or choice. For
example, a lazy language has ways of stating “use call-by-value here,” and
even if you were to say “Oh, the language should be call by value,” you
would want ways to achieve laziness anyway. Any successor language to
Haskell will have support for both strict and lazy functions. So the question
then is: “How do you mix them together?”

This question is as important in language theory as it is in practice: different
programming languages merit different calculi. For example, just βη axioms
are enough for equality of call-by-name functions, but more axioms are needed
to complete the theory of call-by-value [10,24]. More drastically, call-by-need
requires some extra rules even for computing answers. If we then want to reflect
the reality of programming languages that mix calling conventions, we need a
theory that mixes them, too. Again, the question is: “How?”

Polarized logic [18,30] and call-by-push-value [15] partially answers the ques-
tion of how to mix calling conventions by dividing types into two groups: pos-
itive and negative. The positive types, like sums, follow the call-by-value disci-
pline whereas the negative types, like functions, follow the call-by-name regime.
c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 205–225, 2018.
https://doi.org/10.1007/978-3-319-99840-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_12&domain=pdf

206 P. Downen et al.

Here, by contrast, we do connect calling conventions with types, but allow each
type constructor to build a type of any convention; for example we can have
both a call-by-value or a call-by-need function type. This more closely reflects
practice where OCaml has call-by-value functions.

Even though each calculus for each convention is different, they can be all be
seen as variations on the same idea. As pioneered by Ronchi Della Rocca et al.
[23], calculi for different calling conventions can be summarized as instances of a
common calculus parameterized by a substitution discipline [4] specifying what
might be substituted for identifiers. Call-by-name and -value can then share the
same βη axioms, (λx.M)V = M{V/x} and λx.V x = V ; what changes is the
notion of value V . Call-by-name says that V can be any term, and call-by-value
is more restrictive. Each of the above mentioned three calling conventions can be
uniformly represented, as well as more exotic ones like the dual to call-by-need
[1] and the non-deterministic evaluation of the symmetric λ-calculus [2].

Abstracting away the differences across languages enables us to study prop-
erties of those languages in a uniform way. In this paper, we focus on strong
normalization. Currently, there are separate proofs of strong normalization for
calculi of different disciplines. Here, we show one common proof for all of them
by articulating the essential properties of the substitution discipline that guaran-
tees strong normalization. We build on a technique previously used for studying
a language of mixed induction and co-induction [5], which is based on both
biorthogonal [7,13,21] and symmetric candidate [2] models, and extend it to
accommodate multi-discipline languages. Furthermore, the more refined version
of the technique presented here lets us formally understand the relationship
between orthogonality and symmetric candidates: biorthogonality models are
subsumed as a special case of our uniform model.

The orthogonality-based family of methods require that we not only think
of how to create values of a type, but also how to use them. This inevitably
leads to the invention of abstract-machine-like constructs to represent a reified
environment or context of a program fragment [13,21]. Instead of going about
an ad hoc reification, we base our proof on a classical sequent calculus which
is already an abstract machine language (Sect. 2) that is well-suited to mixing
disciplines (Sect. 3).

This work uses a sequent calculus with impredicative polymorphism based
on [5] and extended with multiple disciplines—which are given as a parameter to
the system and not fixed a priori—in the sense that different calling conventions
can be used in the same program (Sect. 4). Our contributions are:

– A uniform proof of strong normalization based on orthogonality and symmet-
ric candidates that parametrically accounts for multiple disciplines (Sect. 5).

– A more precise model than [5] which subsumes biorthogonality models for
call-by-name, -value, and -push-value as special instances, and the first proof
of strong normalization for multi-discipline call-by-need and its dual (Sect. 6).

The proofs for Sects. 4 to 6 together with a strongly normalizing and polymor-
phic λμ-calculus that mixes call-by-value, -name, and -need are given in the

Uniform Strong Normalization for Multi-discipline Calculi 207

extended version of this paper which can be accessed at http://ix.cs.uoregon.
edu/∼pdownen/publications/wrla18.pdf.

2 A Language Approach to Abstract Machines

One of the most basic ways of evaluating a λ-calculus term is by repeated β
reduction. For instance, if we have the term (λx.λy.x + y) 1 2 we can compute
a value in three steps:

(λx.λy.x + y) 1 2 → (λy.1 + y) 2 → 1 + 2 → 3

However, even in this simple example we can observe one frustration with the
β-reduction model from the perspective of implementation: reductions might not
always occur at the “top” of the term, but can be buried somewhere within it.
In the very first reduction step above, the redex (λx.λy.x + y) 1 subjected to
β reduction happens inside of the outermost application context � 2, where �
stands for the position of the sub-term within the context. As such, performing
evaluation by β reduction requires a search for the next redex within a term,
which must be specified as part of an implementation of the evaluator.

An abstract machine gives a lower-level description of evaluation by inter-
weaving search and reduction together. To keep track of its position within the
term, a machine does not evaluate terms directly but rather larger configura-
tions. Here, the configurations we use are called commands (denoted by the
metavariable c) which consist of a term (denoted by v) together with a syn-
tactic representation of its context called co-term (denoted by e). One abstract
machine in this style is the Krivine machine [12], which requires only two rules:

〈v v′ ‖ e〉 → 〈v ‖ v′ · e〉 〈λx.v ‖ v′ · e〉 → 〈v{v′/x} ‖ e〉
The first rule pushes the argument of a function call onto the call-stack. In other
words, evaluating an application of the form v v′ in a surrounding context e
consists of pushing the argument v′ on top of e and then evaluating v in the
larger context. The second rule implements β reduction by popping the top
argument off of a call-stack and plugging it into the formal parameter of a λ-
abstraction. In the Krivine machine style, our previous example can be computed
as follows, where we assume the term is evaluated in a context named α:

〈(λx.λy.x + y) 1 2 ‖ α〉 → 〈(λx.λy.x + y) 1 ‖ 2 · α〉
→ 〈λx.λy.x + y ‖ 1 · 2 · α〉
→ 〈λy.1 + y ‖ 2 · α〉 → 〈1 + 2 ‖ α〉 → 〈3 ‖ α〉

So the machine returns same result, 3, to the surrounding context as was achieved
by β reduction. The Krivine machine thus seems to represent a lower level imple-
mentation, one closer to actual computation on a physical machine using call-
stacks. Moreover, exploring the laws of the Krivine machine suggests additional
possibilities. We see in the Krivine machine that there are actually two different

http://ix.cs.uoregon.edu/~pdownen/publications/wrla18.pdf
http://ix.cs.uoregon.edu/~pdownen/publications/wrla18.pdf

208 P. Downen et al.

syntactic constructs for invoking a function: both configurations 〈� ‖ v · e〉 and
〈� v ‖ e〉 do exactly the same thing as the second is rewritten into the first. That
is, both call-stack formation and ordinary λ calculus application are two ways
of getting at the same concept. It is thus natural to wonder if the redundancy
can be eliminated by unifying the two.

We are accustomed to having variables stand for an unknown value and then
having the possibility to bind these variables to known terms later. The same can
be done with respect to contexts, now that they are embodied with a syntactic
representation in the form of co-terms. Already in the example above we refer
to α (called a co-variable) as a generic placeholder for the surrounding context
of evaluation. The next is to abstract over co-variables like α. That is the role
of the μ-abstraction, written as μα.c, which is reduced like so:

〈μα.c ‖ e〉 → c{e/α}
The above says that when the term μα.c is evaluated in a context e, then the next
step is to execute the command c with α bound to e. μ-abstractions unify the
two forms of function calls by representing function application in terms of call-
stack formation. For example, the above λ-calculus term (λx.λy.x+y)1 2 can be
rewritten to avoid function application altogether as μβ.〈λx.λy.x + y ‖ 1 · 2 · β〉.
Note that this term behaves the same as the original one:

〈μβ.〈λx.λy.x + y ‖ 1 · 2 · β〉 ‖ α〉 → 〈λx.λy.x + y ‖ 1 · 2 · α〉
As such, the application term v v′ becomes syntactic sugar for μα.〈v ‖ v′ · α〉.

However, the presence of μ-abstraction makes the language more expres-
sive than λ-calculus because a μ has the ability to erase its context when the
abstracted co-variable is never used:

〈μβ.〈λx.λy.x + y ‖ α〉 ‖ 1 · 2 · α〉 → 〈λx.λy.x + y ‖ α〉
A μ-abstraction can also duplicate its context by using the abstracted co-variable
more than once. Indeed, terms such as μα.c create a control effect much like those
found in many programming languages. In particular, μ-abstractions are similar
to the callcc operator from Scheme.

So far, this analysis gives rise to a language for representing abstract machines
implementing call-by-name evaluation. But what about call-by-value evaluation,
where arguments are evaluated before resolving a function application, giving rise
to evaluation contexts of the form V � (where V denotes a value: a variable or a
λ-abstraction) in addition to � v. The call-by-value version of the above Krivine
machine would use an extra co-term V ◦ e corresponding to the additional form
of evaluation context (first apply V to the input and return the result to e), as
well as the following three reduction rules:

〈v v′ ‖ e〉 → 〈v ‖ v′ · e〉 〈V ‖ v′ · e〉 → 〈v′ ‖ V ◦ e〉 〈V ′ ‖ (λx.v) ◦ e〉 → 〈v{V ′/x} ‖ e〉

The first rule pushes an argument onto the call-stack as before. The second
rule switches the attention of the machine from the function, represented by V ,

Uniform Strong Normalization for Multi-discipline Calculi 209

to the argument v′ beginning evaluation of the argument by placing it on the
left-hand side of the command. The third rule implements β reduction slightly
differently from before, since the function is now found in the co-term after
evaluation due to the second rule. The call-by-value evaluation of our example
above becomes:

〈(λx.λy.x + y) 1 2 ‖ α〉 � 〈λx.λy.x + y ‖ 1 · 2 · α〉
→ 〈1 ‖ (λx.λy.x + y) ◦ (2 · α)〉
→ 〈λy.1 + y ‖ 2 · α〉
→ 〈2 ‖ (λy.1 + y) ◦ α〉 → 〈1 + 2 ‖ α〉 → 〈3 ‖ α〉

Besides changing the language of co-terms to account for a different evaluation
strategy, this presentation of call-by-value machines suffers even worse redun-
dancy: there are three different syntactic representations of function invocation—
〈(λx.v) v′ ‖ e〉, 〈λx.v ‖ v′ · e〉, and 〈v′ ‖ λx.v ◦ e〉—all of which are equivalent to
one another. In the interest of eliminating redundancy, we should again wonder
if all notions of function invocation can be distilled down to a single primitive
operation with the help of some other generic binding constructs, like μ. Indeed,
call-by-value can employ the dual of μ-abstractions, known as μ̃-abstractions [3],
to write everything with call-stacks. Symmetric to a μ, the μ̃-abstraction μ̃x.c is
a co-term that binds its input to the variable x and then runs the command c:

〈v ‖ μ̃x.c〉 → c{v/x}

Just like μ-abstractions can be used to write a λ-calculus application with a
call-stack, so too can μ̃-abstractions be used to write the extra call-by-value
evaluation context with the primitive form of call-stack: v ◦ e becomes syntactic
sugar for μ̃x.〈v ‖ x · e〉. Expanding this notational definition, the second rule is:

〈V ‖ v′ · e〉 → 〈v′ ‖ μ̃x.〈V ‖ x ◦ e〉〉

which names the argument for evaluation, and the call-by-value implementation
of β reduction simplifies to the call-by-name one:

〈V ′ ‖ (λx.v) ◦ e〉 = 〈V ′ ‖ μ̃y.〈λx.v ‖ y · e〉〉 → 〈λx.v ‖ V ′ · e〉 → 〈v{V ′/x} ‖ e〉

A Calculus for Abstract Machines. These basic constructs—functions and
call-stacks, variables and co-variables, μ- and μ̃-abstractions—define a general
calculus for reasoning about abstract machines (both call-by-value and call-
by-name) known as system L [17]. System L is a lower-level machine-like cal-
culus, in that no search is needed for evaluation: reduction can always take
place at the “top” of a command. But system L also supports high-level rea-
soning like the λ-calculus, in that it is still sound to perform reductions any-
where within a command, which correspond to out-of-order simplifications and
optimizations. Also like the λ-calculus, system L can be seen as either an

210 P. Downen et al.

untyped or typed language. Since there are two different forms of variables—
both ordinary variables and co-variables—there are two typing environments:
Γ = x1 : A1, x2 : A2, . . . , xn : An for tracking the types of free variables and
Δ = α1 : A1, α2 : A2, . . . , αn : An for tracking the types of free co-variables. Since
there are three different forms of expressions—commands, terms, and co-terms—
there are three different typing judgements. Terms returning a result of type A
in environments Γ and Δ are typed as Γ � v : A | Δ. Co-terms expecting an
input of type A in environments Γ and Δ are typed as Γ | e : A � Δ. And
commands that are capable of running in environments Γ and Δ are typed as
c : (Γ � Δ). With this notation in mind, the typing rules for the L-style language
of abstract machines are:

Γ, x:A � v : B | Δ

Γ � λx.v : A → B | Δ

Γ � v : A | Δ Γ | e : B � Δ

Γ | v · e : A → B � Δ

Γ, x:A � x : A | Δ

c : (Γ � α:A,Δ)
Γ � μα.c : A | Δ

c : (Γ, x:A � Δ)
Γ | μ̃x.c : A � Δ Γ | α:A � α : A,Δ

Γ � v : A | Δ Γ | e : A � Δ

〈v ‖ e〉 : (Γ � Δ)

Amazingly, in the same way that the typing rules for λ-calculus correspond to
the rules of natural deduction, the above typing rules correspond to the sequent
calculus [3]! The typing rules for call-stacks and commands correspond to the
logical rules for implication (on the left) and cut. λ-abstractions are typed as
usual, the two axioms correspond to (co-)variables, and the μμ̃ abstractions allow
one to focus on an assumption or conclusion.

3 Substitution Disciplines

But there is a problem that rears its head when we try to compute; the funda-
mental critical pair of classical logic between the μ- and μ̃-abstractions [3]:

c1{μ̃x.c2/α} ← 〈μα.c1 ‖ μ̃x.c2〉 → c2{μα.c1/x}.

The choice between these two reductions takes us down two separate paths. In the
worst case, x and α are never used and c1 and c2 are unrelated to one another,
which means that a single command can reduce to two completely unrelated
results. This critical pair can be resolved by always preferring one reduction or
the other, giving two different calculi. Favoring μ by always taking the left path
gives the call-by-value calculus, whereas favoring μ̃ by always taking the right
path gives the call-by-name calculus.

As observed by Plotkin [22], different calling conventions require different
calculi: the traditional λ-calculus is suitable for reasoning about Haskell pro-
grams, as the call-by-value λ-calculus is for OCaml programs. But denotational
semantics seems to capture the essential difference between call-by-name and
call-by-value more generally: the difference is reflected in the Denotable domain

Uniform Strong Normalization for Multi-discipline Calculi 211

[26]. A call-by-name variable can denote any expressible value, including errors
or divergence, whereas a call-by-value variable can only denotes “regular” values.

This idea can be represented syntactically by characterizing the calculus in
two parts [4,23]; one part is common to different parameter passing techniques
and the other only differs in one aspect: what can be substituted for a vari-
able and co-variable. We refer to what variables and co-variables stand for as a
substitution discipline. We call a term that can be substituted for a variable a
value, and call a co-term that can be substituted for a co-variable a co-value.
Thus, the call-by-name calculus is defined by saying that every term is a sub-
stitutable value, while the set of co-values is restricted to the bare minimum
necessary to not get stuck. Symmetrically, the call-by-value calculus is formed
by saying that every co-term is a co-value, and restricting values down to the
bare minimum to avoid getting stuck. Moreover, call-by-name and -value are not
the only disciplines expressible in this framework. For instance, call-by-need can
be characterized by the notion of substitution discipline as well [1].

Mixing Disciplines. This framework allows for a characterization of the dif-
ferences between calling conventions as a resolution to the above fundamental
critical pair, which can be further distilled into a discipline on substitution. Why,
then, should only choose one discipline globally for the entire program? Often
times such a restriction can be quite limiting. As observed in [20], some func-
tions like λx.x + x will always evaluate their argument eagerly even in a lazy
language, and as such the extra costs associated with lazy evaluation should be
avoided when laziness is irrelevant. Thus, it would be more practical to let the
programmer, or at least the compiler during code generation and optimization,
choose which discipline is appropriate for each juncture. In other words, we want
a multi-discipline language that incorporates many calling conventions.

The obvious way to signal the intended discipline is to just annotate each
command with symbols such as v (for call-by-value) and n (for call-by-name),
which resolves the fundamental critical pair on a per-command basis. So in the
above example, we could write the call-by-value choice as 〈μα.c1|v|μ̃x.c2〉 →
c1{μ̃x.c2/α} and the call-by-name choice as 〈μα.c1|n|μ̃x.c2〉 → c2{μα.c1/x}.
Unfortunately, just marking commands is not en ough, as it only pushes the
issue of the critical pair one step away. The problem is that we could lie about
what a variable or co-variable denotes by using it in a context that violates
the contract of its binding. For example, the same critical pair is simulated as
follows:

〈μα.c1|v|μ̃y.c2〉 ← 〈μα.c1|n|μ̃x. 〈x|v|μ̃y.c2〉〉 → 〈μα.c1|n|μ̃x.c2{x/y}〉 .

By reducing the top redex and plugging in the computation μα.c1 for the n
variable x, on the left we end up with a v command that will prioritize the
term. But by instead performing the inner redex, we end up with the equivalent
n command that will prioritize the co-term.

So a multi-discipline sequent calculus cannot just annotate commands, but
must ensure that the chosen discipline of variables and co-variables remains
consistent throughout their lifetime. To make this choice apparent in the syntax,

212 P. Downen et al.

variables and co-variables must have a statically-inferable discipline which we
accomplish with annotations, e.g., xv and αn. Furthermore, terms and co-terms
in general also much have a statically-inferable discipline, since it is sometimes
necessary to introduce a new binding during reduction. For example, recall the
second rule of the call-by-value abstract machine in Sect. 2, which corresponds
to naming the argument of a function with a μ̃-abstraction. This naming step
is necessary to avoid getting stuck during a call-by-value function call: call-
by-value β reduction does not apply to 〈λx.v ‖ v′ · e〉 when v′ is not a value.
This is done by lifting v′ out of the call-stack [4]: 〈λxv.v ‖ v′ · e〉 → 〈λxv.v ‖
μ̃x.〈v′ ‖ μ̃y.〈x ‖ y · e〉〉〉. However, to annotate α and y above, we would need to
know what the intended disciplines of λxv.v and e are.

4 A Parametric, Multi-discipline Sequent Calculus

We now formalize the core calculus for studying multi-discipline reduction in the
presence of control. For simplicity we limit to a few key type formers: functions
and parametric polymorphism. These features are found in most real functional
programming languages, are enough both to write a variety of interesting pro-
grams, and expose the main challenges faced in strong normalization proofs.

Fig. 1. Syntax of a multi-discipline, polymorphic sequent calculus.

Syntax. As in the abstract machine language of Sect. 2, the syntax of our cal-
culus is comprised of terms (“producers” v), co-terms (“consumers” e), and
commands (“executables” c) as shown in Fig. 1. The first thing to notice is a
change of syntax for functions. Instead of λ-abstractions, functions are written
by pattern-matching on their context: a call-stack of the form x·α. This change of
notation is syntactic in nature—note that λx.v is equivalent to μ(x ·α).〈v ‖ α〉—
which helps to emphasize the role of functions as responders to call-stacks. As
in system F, polymorphism is expressed in terms of type abstraction and spe-
cialization. Note that these constructs are analogous to functions, except that
the parameter is a type, not a value.

The second thing to notice about the syntax is that terms and co-terms
are divided by their discipline as discussed in Sect. 3, a finite collection of sym-
bols denoted by the metavariable s, so that vs produces an s value and es con-
sumes an s value. This aligns with the annotations on variables and co-variables,

Uniform Strong Normalization for Multi-discipline Calculi 213

where xs is a member of (only) Terms and similarly αs is in Co-Terms. A bold
(co-)variable denotes an annotated (co-)variable, respectively, where the annota-
tion could be any discipline. Commands, in contrast, do not have an outwardly-
visible discipline because they do not produce or consume anything, but instead
are only well-formed if they have an internally-consistent discipline shared by
a producer and consumer cooperating together. To ensure that every term and
co-term belong to exactly one syntactic category Terms and Co-Terms, the call-
stack dot is also annotated with a discipline symbol. That way, it is immediately
apparent that v s e is an s co-term and μ(x s α).c is an s term. For example,
a wholly call-by-value function can be written as μ(xv v αv).c that matches
a call-stack of the form vv v ev. The v in the v tells us the discipline used
for computing the function itself, whereas the annotations on the abstracted
(co-)variables tell us the discipline of the argument and result. Replacing v with
n gives instead wholly call-by-name functions, but other more interesting com-
binations are also possible. The functions found in call-by-push-value [15] and
polarized languages [30] would have the form μ(xv n αn).c and vv n en, with
a call-by-value argument and call-by-name function and result.

Fig. 2. Rewriting theory for multi-discipline, polymorphic sequent calculus.

Parameterized Reduction Theory. The reduction theory, denoted by →
shown in Fig. 2, is the compatible closure of the top-level reduction relation 	.
Here the metavariable C ranges over any context such that filling the whole
with an object of the appropriate sort is well formed. Whereas 	 only applies
to the top of some expression, → can apply anywhere inside of it. Further, we
use � for the reflexive, transitive closure of →. The reduction rules in 	 are
given names which we write in subscript. We also use subscripts on the → rule
to denote the restriction to the rules of the same name, for instance →β→ refers
to the compatible closure of the relation 	β→ . At times we will use multiple
subscripts to denote collections of reductions, as in 	β→,β∀ for the union of 	β→

and 	β∀ . When a relation such as 	 or → is used without a subscript it refers
to the union over all of the rules.

The reduction theory is parameterized by a set of specific discipline symbols
equipped with an associated subset of terms called values and co-terms called

214 P. Downen et al.

co-values (denoted by Vs and Es, respectively, for each discipline symbol s). As
with (co-)terms, we use the plain metavariables V and E to refer to the union of
values and co-values for every s. For example, we write 〈μα.c ‖ E〉 →μ c{E/α}
and by the syntactic requirement that the two sides of a command agree on
a discipline, it must be that the disciplines of E and α match. Disciplines are
not just restrictive but also enabling in the case of the ς rules (originally due to
Wadler [28]) that lift unevaluated components out of call-stacks to be computed,
so there is no “largest” reduction theory that subsumes all others.

Fig. 3. (Co-)values in by-name (n), -value (v), -need (lv), -co-need (ln) and u.

Values and Co-values. We can now give interpretations of some specific dis-
cipline symbols: the call-by-value (v), -name (n), -need (lv for “lazy value” [1]),
-co-need (ln for “lazy name”) and non-deterministic (u) disciplines are defined
by the values and co-values in Fig. 3.

Fig. 4. Type system for the multi-discipline, polymorphic sequent calculus.

Typing. As a generalization of polarity, types belong to one of several kinds,
each associated with a discipline. The kind of a type is specified by its top

Uniform Strong Normalization for Multi-discipline Calculi 215

constructor, for example A
v→ B and A

lv→ B are types of call-by-value and
call-by-need, respectively. Type variables range over a specific kind denoting the
discipline of (co-)terms they specify, and the polymorphic quantifier ∀s must
choose a specific kind of type to abstract over.

The typing rules for the calculus are given in Fig. 4. There are some criteria
for when sequents are well formed: (1) identifiers (a, x, α) in Θ, Γ , and Δ
are all unique, (2) the disciplines of (co-)variables must match that of their
type, as in xs : As and αs : As, and (3) in the sequent Γ �Θ v : A | Δ, all
the free type variables of Γ , Δ, v, and A are included in Θ, and similarly for
Γ | e : A �Θ Δ and c : (Γ �Θ Δ). Only derivations where all sequents are well
formed are considered proofs. Note that this imposes the standard criteria on
the right ∀ rule that the abstracted type variable in the premise is not free in
the conclusion. Well-formedness also ensures that in the cut and the left rule for
∀, the free variables of the cut and instantiated type are contained in Θ.

Admissible Disciplines. Our proof of strong normalization is parameterized
by a collection of discipline symbols and their interpretation. However, there are
two important properties on disciplines needed for our proof.

Definition 1. A discipline is stable exactly when (co-)values are closed under
reduction and substitution, focalizing exactly when at least all (1) variables,
μ(x s α).c, and μ(a s α).c are values, and (2) co-variables, V s E, and
A s E, are co-values, and admissible exactly when it is stable and focalizing.

Property 1. The n, v, lv, ln, and u disciplines are collectively admissible.

Our proof of strong normalization works uniformly for any collection of admis-
sible disciplines. As we present the proof in the next section we assume some
admissible disciplines have been chosen, which could include any combination
of the five disciplines presented above, or some other admissible disciplines of
interest.

5 Strong Normalization

While some properties, like type safety, are straightforward enough to prove
directly [29], other properties, like strong normalization, resist a direct app-
roach. The problem with proving strong normalization is that just inducting
over syntax or typing derivations is far too weak. Instead, the standard practice
uses a more indirect approach based on the idea behind Tait’s method [25] and
reducibility candidates [8]: set up an interpretation for types that serves as a way-
point between syntax and safety. The interpretation for a type should encompass
all programs of that type (adequacy) and also fit inside the intended candidate
property (safety). When interpreting types, the definition is usually designed
with safety in mind: interpretations contain only safe programs by construction,
but their adequacy needs to be justified. Instead, we will orient ourselves the
other way in the style of symmetric candidates [2], where the interpretations
for types are designed with adequacy in mind: interpretations contain all the

216 P. Downen et al.

necessary well-typed programs by construction, but their safety needs to be jus-
tified. But that means we need to consider things which are not yet known to be
safe, and so are not a candidate interpretation for any type. Therefore, we work
in the larger and more lax domain of pre-types which encompasses all possible
candidates but does not impose the necessary safety conditions.

Pre-types. In the biorthogonality family of methods [7,13,21], a type has a
two-sided interpretation described by both a set of terms and a set of co-terms.
Intuitively, a model of a type describes some desired behavior of programs (like
an algorithm, or specification), where the term side can be seen as a collection of
implementations and the co-term side can be seen as set of test operations. By
analogy, orthogonality is an operation that evaluates implementations (terms)
with operations (co-terms). On the one hand, orthogonality selects only those
implementations that pass a comprehensive set of tests, and on the other hand,
orthogonality also selects only those test that pass the reference implementa-
tion(s). The biorthogonal interpretation of types then is safe by construction,
where the co-terms (tests) of a type are exactly everything orthogonal to (here,
forming a strongly normalizing command with) any term (implementation) of
the type, and vice versa. Since orthogonality can always complete one half from
the other, only one side is necessary.

However, the method we use here cannot rely on such luxuries. While con-
structing the interpretation of types, we will have to consider incremental steps
which may include extra (co-)terms that create unsafe interactions and exclude
necessary (co-)terms that would be safe. Therefore, the new insight is to work in
a domain where terms and co-terms are grouped together as a single unit, and
which includes many pre-types that are not candidate interpretations for types.

Definition 2. A pre-type A (of discipline r) is a pair (Av, Ae) where Av is
a set of strongly normalizing r-terms and Ae is a set of strongly normalizing
r-co-terms.

We use ordinary set membership to refer to the underlying sets: given A =
(Av, Ae), we write v ∈ A for v ∈ Av and e ∈ A for e ∈ Ae. We write SN r for
the pre-type containing all strongly normalizing (co-)terms of discipline r and
‚ for the set of all strongly normalizing commands.

We can compare pre-types like we do with sets. But because they are built
with two opposite sets, there are two different methods of comparison. The first
comparison is containment which just checks that the (co-)terms of one pre-
type also belong to the other. The second comparison corresponds instead to
behavioral sub-typing [16]: A is a sub-type of B if every program fragment of A
can be used in every context of B. Intuitively, the subsumption of sub-typing
sends every producer of As (i.e., terms) to B and dually sends every consumer
of Bs (i.e., co-terms) to A. We can also combine pre-types with unions and
intersections that go along with these two comparisons: for containment this
just means the union and intersection, respectively, of the sets underlying pre-
types, but for sub-typing this corresponds to the intuition behind union and
intersection types in programming languages.

Uniform Strong Normalization for Multi-discipline Calculi 217

Definition 3. Let A = (Av, Ae) and B = (Bv, Be) be pre-types. A is contained
in B, written A � B, and A is a sub-type of B, written A ≤ B, as follows:

A � B iff Av ⊆ Bv and Ae ⊆ Be A ≤ B iff Av ⊆ Bv and Ae ⊇ Be

The union and intersection for containment (�,�) and sub-typing (∨,∧) are:

A � B = (Av ∪ Bv, Ae ∪ Be) A ∨ B = (Av ∪ Bv, Ae ∩ Be)
A � B = (Av ∩ Bv, Ae ∩ Be) A ∧ B = (Av ∩ Bv, Ae ∪ Be)

Orthogonality. The orthogonality operation on pre-types, A⊥, uses one pre-
type to generate another one containing everything it can safely interact with
and nothing more. Together, orthogonality and containment capture the notion
of safety in terms of pre-types: A � A⊥ means 〈v ‖ e〉 ∈ ‚ for all v, e ∈ A.

Definition 4. The orthogonal of any pre-type A of r, written A⊥, is:

vr ∈ A⊥ ⇐⇒ ∀er ∈ A.〈vr ‖ er〉 ∈ ‚ er ∈ A⊥ ⇐⇒ ∀vr ∈ A.〈vr ‖ er〉 ∈ ‚
A pre-type A of r is safe exactly when A � A⊥.

Although we have generalized the notion of orthogonality to pre-types, it still
exhibits the properties which mimic negation in intuitionistic logic.

Property 2. Contrapositive: If A � B then B⊥ � A⊥. Double orthogonal intro-
duction: A � A⊥⊥. Triple orthogonal elimination: A⊥⊥⊥ = A⊥.

However, because pre-types also come with another notion of comparison, we
get an additional new property of orthogonality that follows from sub-typing.

Property 3. Monotonicity : If A ≤ B then A⊥ ≤ B⊥.

This fact is key to our entire endeavor: the monotonicity of orthogonality (and
similar operations) with respect to sub-typing guarantees that there are always
fixed points of orthogonality. This is the fact that powers the fixed-point con-
struction of symmetric candidates [2] that we generalize by rephrasing the con-
struction in terms of a two-sided model of sub-typing.

Top Reduction. Another standard part of a strong normalization proof is to
identify a subset of reductions that are important to check for the purpose of
normalization. Usually in the λ-calculus, these important reductions are the
standard reductions that make up an operational semantics. But since we are
working in the sequent calculus, we already have a notion of “main” reduction
that is immediately apparent in the syntax: the reductions that occur at the
“top” of a command. We define top reduction � on commands as:

c 	β→,β∀ c′

c �0 c′
c 	μ c′

c �+ c′
c 	μ̃ c′

c �− c′
er 	ς→,ς∀ e′

r

〈Vr ‖ er〉 �− 〈Vr ‖ e′
r〉

c �+,0,− c′

c � c′

218 P. Downen et al.

Note that top reductions are distinguished based on a “charge:” the positive �+

let the term of a command take control of computation, the negative �− let
the co-term take control, and the neutral �0 require that both the term and
co-term cooperate to proceed. The purpose of this distinction is to help tame the
potential for non-determinism: notice that both �+,0 and �−,0 are deterministic
for all disciplines, but �+,− may not be depending on the discipline. We need
to pay attention to non-determinism because it breaks the expected expansion
property used in strong normalization proofs [9]. Normally, top expansion says
that if 〈v ‖ e〉 � c and v, e, and c are all strongly normalizing then so is 〈v ‖ e〉.
However, this might not work if there is another top reduction 〈v ‖ e〉 � c′ where
c′ loops forever. So generalizing top expansion to accommodate non-determinism
must quantify over all possible top reductions; even after some other internal
reductions have happened. Within a pre-type A, non-deterministic top expansion
assumes A is closed under reduction—if v, e ∈ A and v � v′ and e � e′ then
v′, e′ ∈ A—and that every possible top reduction of A commands leads to a
strongly normalizing command. If so, every A command is strongly normalizing.

Lemma 1 (Nondeterministic Top Expansion). If A is closed under reduc-
tion and for all v, e ∈ A and c, 〈v ‖ e〉 � c implies c ∈ ‚, then A is safe.

So we have a top expansion property for the general non-deterministic case,
but what about when we are dealing with (co-)terms from a deterministic dis-
cipline like v or n? We can identify a pre-type of deterministically-normalizing
(co-)terms of r (DN r) where all their possible top reductions either land in ‚
or not after any number of other reductions have occurred, which is defined as:

vr ∈ DN r ⇐⇒ ∀er∈ SN r.(vr�v′
r ∧ 〈v′

r ‖ er〉�c ∧ 〈v′
r ‖ er〉�c′)⇒(c ∈‚ ⇔ c′∈‚)

er ∈ DN r ⇐⇒ ∀vr∈ SN r.(er�e′
r ∧ 〈vr ‖ e′

r〉�c ∧ 〈vr ‖ e′
r〉�c′)⇒(c ∈‚ ⇔ c′∈‚)

As shorthand, we write Ad to mean A � DN r for a pre-type A of r. Now,
we get an improved top expansion property for deterministically-normalizing
(co-)terms.

Lemma 2 (Deterministic top expansion). If r is stable, v, e ∈ SN r, either
v ∈ DN r or e ∈ DN r, and 〈v ‖ e〉 � c ∈ ‚ then 〈v ‖ e〉 ∈ ‚.

Deterministic top expansion relies on commutation between top and non-top
reductions based on the stability of r. Note that for any discipline r where
top reduction is deterministic, it follows that SN r = DN r, and so the above
deterministic top expansion property holds for any term and co-term of r. Since
the n, v, lv, and ln disciplines all meet this criteria, they all enjoy the usual
expansion property unlike u.

Reducibility Candidates. The interpretation of a type should be both ade-
quate and safe. Safety, which tells us a type’s interpretation contains only good
interactions, was already captured by orthogonality (A is safe when A � A⊥).
Adequacy, which tells us a type’s interpretation contains all programs dictated

Uniform Strong Normalization for Multi-discipline Calculi 219

by the typing rules, is a little more involved, however. Certainly, interpreta-
tions should include everything that interacts well with the type (A⊥ � A), but
this is not enough. We need to be able to show type membership looking at a
single top reduction, but reduction isn’t in general deterministic, so we must
explicitly require that a (co-)term that interacts well with A after it causes one
top reduction is also in A. This extra condition only tests the (co-)values of A:
〈vr ‖ er〉 �+ c only when er is a co-value of r and 〈vr ‖ er〉 �− c only when vr
is a value of r.

Definition 5. The saturation of a pre-type A of r is defined as:

vr ∈ As⇐⇒ ∀Er ∈ A.〈vr ‖ Er〉�=
+,0 c ∈‚ er ∈ As⇐⇒ ∀Vr ∈ A.〈Vr ‖ er〉�=

−,0 c ∈‚

where �=
+,0 and �=

−,0 are the reflexive closures of �+,0 and �−,0, respectively.
A pre-type A of r is adequate exactly when As � A.

Now that we know how to phrase safety in terms of orthogonality and ade-
quacy in terms of saturation, we can say that reducibility candidates, which are
the potential interpretations of types, are pre-types that lie between their own
saturation and orthogonal.

Definition 6. A reducibility candidate A (of r) is a safe and adequate pre-
type A of r (i.e., As � A � A⊥). CRr is the set of all reducibility candidates
of r.

In practice, the A⊥ upper-bound is used to justify the cut rule for forming com-
mands, and the As lower-bound is used to justify the left and right rules for
activation, implication, and universal quantification. Also, the As lower-bound
serves a second purpose by ensuring that reducibility candidates are all inhab-
ited by (co-)variables, which will be needed to show that typing implies strong
normalization even for open commands and (co-)terms.

As it turns out, there is an equivalent way of identifying reducibility candi-
dates of admissible disciplines: they are all fixed points of saturation.

Lemma 3 (Reducibility fixed-point). For any pre-type A of an admissible
discipline r, A is a reducibility candidate of r if and only if A = As.

Reducibility candidates are fixed points of saturation because A⊥ � As for any
A, and the reverse follows from the focalization of r because the participants
in neutral β-reductions—abstractions and call stacks—are (co-)values that can
be tested by saturation. The equivalence between candidates and fixed points
gives us a general-purpose construction method for candidates of any admissible
discipline by solving recursive pre-type equations.

Fixed-Point Solutions. The fixed-point construction of types is powered by
the pervasive monotonicity properties of sub-typing between pre-types. Mono-
tonicity isn’t limited to just orthogonality; other operations, like saturation and
containment-union with a constant pre-type, are also monotonic: for any A, B,
C of r, if A ≤ B then As ≤ Bs and A � C ≤ A � C. Therefore, if we describe the

220 P. Downen et al.

essence of a type with some pre-type C, we can build a fully-saturated pre-type
around it by finding a solution to the equation A = C � As. Combined with
the fact that sub-typing (and containment) forms a lattice on pre-types, the
Knaster-Tarksi fixed point theorem ensures that this equation has a fixed point,
giving us the basis of a function for generating saturated pre-types.

Lemma 4 (Fixed-point construction). For every discipline r, there is a
function Fr(−) such that for any pre-type C of r, Fr(C) = C � Fr(C)s.

The Knaster-Tarski fixed point theorem, however, does not ensure that there
is a unique fixed point satisfying the equation. Therefore, the Fr(−) operations
must somehow pick which among the possible solutions is the result. Two readily
available options are the largest or smallest such fixed points with respect to
sub-typing, but note that neither one is “more principled” than the other: the
largest one has the most terms but fewest co-terms, and the smallest one has the
fewest terms but most co-terms. Either one will work for demonstrating strong
normalization, however, as long as we are consistent. Moreover, we will prove in
the next section (Lemma 7) that for deterministic r the solutions will be unique.

So now we know how to build a saturated extension of any pre-type C
of r that satisfies one of the conditions for being a reducibility candidate by
definition: Fr(C)s � Fr(C). But we still need to make sure that this exten-
sion is safe: we must show that Fr(C) � Fr(C)⊥. It turns out that the
safety condition of reducibility candidates follows when C is a pre-type con-
sisting of only deterministically-normalizing (co-)values that only form strongly-
normalizing commands, because then the result of Fr(C) is itself a fixed point of
saturation.

Lemma 5 (Fixed-point validity). If C � C⊥dv then Fr(C) = Fr(C)s.

Where we write Vr for the pre-type of strongly normalizing (co-)values of disci-
pline r, and use the shorthand Av = A � Vr for pre-types A in r.

Interpretations of Types. With a uniform method for generating reducibility
candidates in hand, we can now construct the candidates for particular types.
Both implication and universal quantification are negative types defined by their
observations—call stacks—so their interpretation starts with the negative con-
struction of a pre-type that selects terms compatible with some co-terms: for a
set of strongly-normalizing r-co-terms O, Neg(O) is the following pre-type of r:

vr ∈ Neg(O) ⇐⇒ ∀Er ∈ O.〈vr ‖ Er〉 ∈ ‚ er ∈ Neg(O) ⇐⇒ er ∈ O

The above negative construction satisfies the validity criteria for the fixed-
point reducibility candidates from Lemma 5 (C � C⊥dv) by keeping only its
deterministically-normalizing (co-)values and closing it under orthogonality.

Lemma 6. For any set O of deterministically-normalizing r-co-values,
Neg(O)dv � Neg(O)dv⊥dv = Neg(O)dv⊥dv⊥dv

We now have a negative interpretation for the specific type constructors:

Uniform Strong Normalization for Multi-discipline Calculi 221

– For all A and B, A r→ B � Fr(Neg({V r E | V ∈ A, E ∈ B})dv⊥dv) ∈ CRr.
– For all K ⊆ CRt, ∀rt.K � Fr(Neg({At r E | B ∈ K,E ∈ B})dv⊥dv) ∈ CRr.

Adequacy. The final step is to give an interpretation for syntactic types, envi-
ronments, and sequents as reducibility candidates, substitutions, and proposi-
tions, respectively, where we write CR for

⋃
r CRr:

�ar�φ � φ(a) �A
r→ B�φ � �A�φ

r→ �B�φ �∀rat.B�φ � ∀rt.{�B�(φ, A/at) | A ∈CRt}
�Θ� � {φ | ∀ar ∈ Θ.φ(a) ∈ CRr}

�ΓΘΔ�φ � {ρ | ∀ar∈ Θ.a{ρ}∈Typer ∧ ∀x:A ∈ Γ.x{ρ}∈�A�φ ∧ ∀α:A ∈ Δ.α{ρ}∈�A�φ}
c : (Γ �Θ Δ) � ∀φ ∈ �Θ�, ρ ∈ �Γ Θ Δ�φ.c{ρ} ∈ ‚

Γ �Θ v : A | Δ � ∀φ ∈ �Θ�, ρ ∈ �Γ Θ Δ�φ.�A�φ ∈ CR ∧ v{ρ} ∈ �A�φ

Γ | e : A �Θ Δ � ∀φ ∈ �Θ�, ρ ∈ �Γ Θ Δ�φ.�A�φ ∈ CR ∧ e{ρ} ∈ �A�φ

Typing derivations are adequate with respect to the interpretation of their
conclusion for any admissible disciplines, which in turn gives us strong normal-
ization.

Theorem 1 (Adequacy). (1) c : (Γ �Θ Δ) implies c : (Γ �Θ Δ), (2) Γ �Θ

v : A | Δ implies Γ �Θ v : A | Δ, and (3) Γ | e : A �Θ Δ implies Γ | e : A �Θ Δ.

Adequacy follows by induction on the typing derivation. Note that the
requirement that disciplines are focalizing is used to justify the left and right rules
of functions and polymorphism so that abstractions and call stacks end up in
the meaning of those types. This also ensures that (co-)variables are (co-)values
(resp.) that inhabit every reducibility candidate, so that every environment has a
suitable substitution used to extract strong normalization for reduction of open
commands, terms, and co-terms.

Corollary 1 (Strong normalization). Typed commands, terms, and co-terms
are strongly normalizing.

6 Biorthogonals are Fixed Points

The candidate-based approach to strong normalization—tracing back to Tait
[25] and Girard [6] and fitting in the general area of logical relations [27] and
realizability [11]—easily accommodates impredicative polymorphism by outlin-
ing the candidate meanings of types before defining any particular type. Tait’s
original method doesn’t work for us because we need types to classify co-terms
in addition to terms. The use of orthogonality for modeling types appears in
multiple places, including Girard’s [7] linear logic, Krivine’s [13] classical realiz-
ability, and Pitts’ [21] ��-closed relations, and can prove strong normalization
for certain disciplines. For call-by-name we could start by defining types via their
observations (so for functions, valid call stacks), the set of terms of that type
as anything orthogonal to these observations, and, finally, the set of co-terms
of that type as the double orthogonal of the defining observations. The dual
approach, starting with the constructions of values, works for call-by-value.

222 P. Downen et al.

Munch-Maccagnoni [17] identified a key feature of the orthogonal construc-
tion of types: all call-by-value and -name types are generated by their values
and co-values, respectively. That is, the meaning of a type is the orthogonal of
its (co-)values; in our notation, A = Av⊥. As it turns out, these are exactly the
reducibility candidates produced by our fixed-point framework for well-behaved
disciplines that induce enough determinism. In the general case, the inherent
non-determinism of disciplines like u allows for many different and incompatible
candidate meanings for a particular type [14], but for disciplines like v, n, lv,
and ln that eliminate the fundamental non-deterministic choice, there can only
be one meaning for each type and it must be the fixed point of −v⊥.

Lemma 7. For any admissible discipline r where SN r = DN r and pre-type A
of r, A is the unique reducibility candidate containing Av if and only if A = Av⊥.

This extra uniqueness property of candidates provided by determinism gives
us a more direct method of building them in a finite number of steps, as opposed
to using the existence of solutions to recursive equations. In particular, note that
there is a positive construction of pre-types, dual to Neg(−) from Sect. 5, which
uses some set of terms C to generate all compatible co-terms:

v ∈ Pos(C) ⇐⇒ v ∈ C e ∈ Pos(C) ⇐⇒ ∀v ∈ C.〈v ‖ e〉 ∈ ‚
Both the positive and negative construction of pre-types can be used to directly
construct reducibility candidates of any deterministic discipline (as in Lemma
7). In the special cases of call-by-value and call-by-name there is an even simpler
construction because they trivialize the co-value- and value-restriction, respec-
tively.

Theorem 2. Let r be any admissible discipline with deterministic top reduction
(including v, n, lv, and ln, among others), C be a set of r-values, and O be a set
of r-co-values. Both Pos(C)v⊥v⊥ and Neg(O)v⊥v⊥ are reducibility candidates of
r. Furthermore, Pos(C)⊥ ∈ CRv if r = v and Neg(O)⊥ ∈ CRn if r = n.

The finitely-constructed candidates Neg(O)⊥ ∈ CRn and Pos(C)⊥ ∈ CRv

are exactly the usual biorthogonal meanings of types in call-by-name and call-
by-value languages: both Neg(O) and Pos(C) include a built-in orthogonal
on one side of the pre-type to get started, and the second orthogonal is a
closure operation since any more are redundant (Neg(O)⊥⊥ = Neg(O)⊥ and
Pos(C)⊥⊥ = Pos(C)⊥). For example, let the set of call-stacks for two pre-types
A and B be A r B = {V r E | V ∈ A, E ∈ B}, so that the interpretation of
call-by-name and -value function types must be

A n→ B = ((A n B)⊥, (A n B)⊥⊥) A v→ B = ((A v B)⊥v⊥⊥, (A v B)⊥v⊥)

Theorem 2 also gives the first finite construction of reducibility candidates for
call-by-need and its dual, which only differs from the simple biorthogonal mean-

Uniform Strong Normalization for Multi-discipline Calculi 223

ings by being careful about (co-)values and using one more level of orthogonality
to reach a fixed point. For example, lazy function types, where l is lv or ln,
must be

A l→ B = ((A l B)⊥v⊥v⊥, (A l B)⊥v⊥)

The uniqueness condition of Lemma 7 removes any other possibilities for call-
by-name and -value specifically—Neg(O)⊥ ∈ CRn and Pos(C)⊥ ∈ CRv are
the only candidates containing Neg(O)⊥v and Pos(C)⊥v—and similarly for the
general-purpose positive and negative candidates. That means the candidates
of n, v, lv, and ln, and any other deterministic, admissible discipline produced
by our general-purpose fixed-point construction must be exactly these, so our
framework subsumes the existing discipline-specific biorthogonal methods for
(any combinations of) call-by-name and -value.

In comparison with Barbanera and Berardi’s symmetric candidates method
[2] for the symmetric λ-calculus—a calculus corresponding to u since all
(co-)terms are substitutable and there are no ς-reductions—there are more dif-
ferences. The main underlying idea to generate candidates as the fixed point of
some saturation operation is the same, as is the definition of candidates as some-
thing in between saturation and orthogonality, but the meaning of “saturation”
used here is more general. In particular, symmetric candidates defines saturation
in terms of the syntax of programs, requiring that (co-)variables and certain μ-
and μ̃-abstractions satisfying some conditions are present. We instead define sat-
uration in terms of the behavior of programs, requiring that they work—either
now or in one step—with all relevant (co-)values. When considering only the u
discipline, the approaches produce identical candidates. However, basing satura-
tion on dynamic structure instead of syntactic structure has two benefits. First,
it is straightforward to extend the basic method to accommodate additional lan-
guage features, like multiple disciplines and focusing via ς-reductions as we have
done here, since the meaning of saturation does not have to change: run-time
behavior is enough to uniformly describe new features. Second, our definition
of saturation is strictly more inclusive than the one of symmetric candidates:
everything that works must be included. The larger saturation is key for Lemma
7, and Theorem 2 and for subsuming the biorthogonal methods in the more
general multi-discipline setting: since we know that candidates include all the
sensible (co-)terms, there is less room for spurious variations making the final
result more precise.

7 Conclusion

We have explored multi-discipline calculi with polymorphism and control, based
on the sequent calculus. The sequent calculus setting is good for exploring multi-
discipline programming since it provides a clean separation between the different
disciplines and allows us to treat them abstractly as an object of study. As our
main objective, we established strong normalization by using a model of types

224 P. Downen et al.

based on both orthogonality and fixed points. Our model is uniform over multi-
ple disciplines, with a generic characterization of which ones are admissible, and
strictly generalizes several previous models. This study illustrates the benefits of
both the sequent calculus and discipline-agnostic reasoning: we can give a sin-
gle explanation for several calculi in one fell swoop and without losing anything
from the discipline-specific models. Our setting of pre-types already comes with
a built-in notion of sub-typing along with the union and intersection of types,
it would be interesting to relate these ideas to filter models and the character-
ization of strong normalization in terms of intersection types. More practically,
we would like to relate our formal study of mixing disciplines to the way current
languages combine strict and lazy features, with an ultimate aim of improving
multi-disciplined programming and compilation.

Acknowledgments. This work is supported by the National Science Foundation
under grants CCF-1719158 and CCF-1423617.

References

1. Ariola, Z.M., Herbelin, H., Saurin, A.: Classical call-by-need and duality. In: TLCA
2011 (2011)

2. Barbanera, F., Berardi, S.: A symmetric lambda calculus for “classical” program
extraction. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp.
495–515. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57887-0 112

3. Curien, P.L., Herbelin, H.: The duality of computation. In: ICFP 2000 (2000)
4. Downen, P., Ariola, Z.M.: The duality of construction. In: Shao, Z. (ed.) ESOP

2014. LNCS, vol. 8410, pp. 249–269. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54833-8 14

5. Downen, P., Johnson-Freyd, P., Ariola, Z.M.: Structures for structural recursion.
In: ICFP 2015 (2015)

6. Girard, J.Y.: Interprétation fonctionnelle et elimination des coupures de
l’arithmétique d’ordre supérieur. These d’état, Université de Paris 7 (1972)

7. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987)
8. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press,

New York (1989)
9. Graham-Lengrand, S.: Polarities & Focussing: a journey from Realisability to Auto-

mated Reasoning. Habilitation thesis, Université Paris-Sud (2014)
10. Herbelin, H., Zimmermann, S.: An operational account of call-by-value minimal

and classical λ-calculus in “natural deduction” form. In: TLCA 2009 (2009)
11. Kleene, S.C.: On the interpretation of intuitionistic number theory. J. Symbolic

Logic 10(4), 109–124 (1945)
12. Krivine, J.L.: A call-by-name lambda-calculus machine. High. Order Symbolic

Comput. 20(3), 199–207 (2007)
13. Krivine, J.L.: Realizability in classical logic. In: Interactive models of computation

and program behaviour, vol. 27. Société Mathématique de France (2009)
14. Lengrand, S., Miquel, A.: Classical Fω, orthogonality and symmetric candidates.

Ann. Pure Appl. Logic 153(1), 3–20 (2008)
15. Levy, P.B.: Call-By-Push-Value. Ph.D. thesis, University of London, August 2001

https://doi.org/10.1007/3-540-57887-0_112
https://doi.org/10.1007/978-3-642-54833-8_14
https://doi.org/10.1007/978-3-642-54833-8_14

Uniform Strong Normalization for Multi-discipline Calculi 225

16. Liskov, B.: Keynote address-data abstraction and hierarchy. In: OOPSLA 1987
(1987)

17. Munch-Maccagnoni, G.: Focalisation and classical realisability. In: CSL 2009 (2009)
18. Munch-Maccagnoni, G.: Syntax and Models of a non-Associative Composition of

Programs and Proofs. Ph.D. thesis, Université Paris Diderot (2013)
19. Peyton Jones, S.: https://www.red-gate.com/simple-talk/opinion/geek-of-the-

week/simon-peyton-jones-geek-of-the-week/
20. Peyton Jones, S.L., Launchbury, J.: Unboxed values as first class citizens in a

non-strict functional language. In: FPCA, pp. 636–666 (1991)
21. Pitts, A.M.: Parametric polymorphism and operational equivalence. Math. Struct.

Comput. Sci. 10(3), 321–359 (2000)
22. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theoret. Com-

put. Sci. 1, 125–159 (1975)
23. Ronchi Della Rocca, S., Paolini, L.: The Parametric λ-Calculus: A Metamodel for

Computation. Texts in Theoretical Computer Science. An EATCS Series. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-662-10394-4

24. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.
In: LFP 1992, pp. 288–298 (1992)

25. Tait, W.W.: Intensional interpretations of functionals of finite type I. J. Symbolic
Logic 32, 198–212 (1967)

26. Turbak, F., Gifford, D., Sheldon, M.A.: Design Concepts in Programming Lan-
guages. The MIT Press (2008)

27. Wadler, P.: Theorems for free! In: FPCA 1989 (1989)
28. Wadler, P.: Call-by-value is dual to call-by-name. In: ICFP 2003 (2003)
29. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.

115(1), 38–94 (1994)
30. Zeilberger, N.: The logical basis of evaluation order and pattern-matching. Ph.D.

thesis, Carnegie Mellon University (2009)

https://www.red-gate.com/simple-talk/opinion/geek-of-the-week/simon-peyton-jones-geek-of-the-week/
https://www.red-gate.com/simple-talk/opinion/geek-of-the-week/simon-peyton-jones-geek-of-the-week/
https://doi.org/10.1007/978-3-662-10394-4

Real-Time Rewriting Logic Semantics
for Spatial Concurrent Constraint

Programming

Sergio Ramı́rez1(B), Miguel Romero1(B), Camilo Rocha1(B),
and Frank Valencia1,2(B)

1 Department of Electronics and Computer Science,
Pontificia Universidad Javeriana, Cali, Colombia

{sergio,miguel.romero,camilo.rocha,fdvalencia}@javerianacali.edu.co
2 CNRS, LIX École Polytechnique de Paris, Paris, France

Abstract. Process calculi provide a language in which the structure of
terms represents the structure of processes together with an operational
semantics to represent computational steps. This paper uses rewriting
logic for specifying and analyzing a process calculus for concurrent con-
straint programming (ccp), combining spatial and real-time behavior.
In these systems, agents can run processes in different computational
spaces (e.g., containers) while subject to real-time requirements (e.g.,
upper bounds in the execution time of a given operation), which can be
specified with both discrete and dense linear time. The real-time rewrit-
ing logic semantics is fully executable in Maude with the help of rewriting
modulo SMT: partial information (i.e., constraints) in the specification
is represented by quantifier-free formulas on the shared variables of the
system that are under the control of SMT decision procedures. The app-
roach is used to symbolically analyze existential real-time reachability
properties of process calculi in the presence of spatial hierarchies for
sharing information and knowledge.

1 Introduction

Concurrent constraint programming (ccp). [26] is a well-established process
model for concurrency based upon the shared-variables communication model.
Its basic intuitions arise mostly from logic; in fact, ccp processes can be inter-
preted both as concurrent computational entities and logic specifications (e.g.,
process composition can be seen as parallel execution and as conjunction). In
ccp, agents can interact by posting (or telling) partial information in a medium
such as a centralized store. Partial information is represented by constraints
(e.g., x > 42) on the shared variables of the system. The other way in which
agents can interact is by querying (or asking) about partial information entailed
by the store. This provides the synchronization mechanism of the model: asking
agents are suspended until there is enough information in the store to answer
their query. As other mature models of concurrency, ccp has been extended to
c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 226–244, 2018.
https://doi.org/10.1007/978-3-319-99840-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_13&domain=pdf

Real-Time Rewriting Logic Semantics 227

capture aspects such as mobility [4,9,12], stochastic behavior [10], and —most
prominently— temporal behavior [6,11,16,23,25] for timed and reactive com-
putations, where processes can be constrained also by unit delays and time-out
conditions.

However, due to their centralised notion of store, all the previously-mentioned
extensions are unsuitable for today’s systems where information and processes
can be spatially distributed among certain groups of agents. Examples of these
systems include agents posting and querying information in the presence of
spatial hierarchies for sharing information and knowledge, such as friend cir-
cles and shared albums in social networks, or shared folders in cloud storage.
Recently, the authors of [13] enhanced and generalized the theory of ccp for
systems with spatial distribution of information in the novel spatial concurrent
constraint programming (sccp), where computational hierarchical spaces can be
assigned to belong to agents. In sccp, each space may have ccp processes and
other (sub) spaces, processes can post and query information in their given space
(i.e., locally), and may as well move from one space to another.

As an example, consider the tree-like structures depicted in Fig. 1. They cor-
respond to hierarchical computational spaces of, e.g., virtual containerization
(i.e., virtual machines inside other virtual machines). Each one of these spaces is
endowed with an agent identifier (either root or a natural number) and a local
store (i.e., a constraint), and the processes can be executed and spawned con-
currently inside any space, with the potential to traverse the structure, querying
and posting information locally, and even creating new spaces. The sccp calculus
enables the formal modeling of such scenarios and of transitions that can lead
from an initial system state (e.g., Fig. 1a) to a final state (e.g., Fig. 1b) by means
of an operational semantics [13].

Fig. 1. A containerization example.

This paper presents the real-time sccp calculus (rtsccp), a generalization
of sccp with timing constraints. The intended models of rtsccp are spatially-
distributed multi-agent reactive systems that may have different computing

228 S. Ramı́rez et al.

capabilities (e.g., virtual containers with heterogeneous bandwidth and main
memory configurations) and be subject to real-time requirements (e.g., upper
bounds in the execution time of a given operation). The formal semantics of
rtsccp is given in the form of a real-time rewriting logic semantics that is exe-
cutable in the Maude system [5]. As such, the real-time rewriting logic specifica-
tion can be subject to automatic reachability analysis and LTL model-checking,
and thus enables the formal analysis of timing behavior for agents distributed
in hierarchical spaces, such as fault-tolerance and consistency.

In the rtsccp real-time rewriting logic semantics, flat configurations of object-
like terms encode the hierarchical structure of spaces, and equational and rewrite
rules both axiomatize the concurrent computational steps of processes. Time
attributes are associated to process-store interaction, as well as to process mobil-
ity in the space structure, by means of maps from agents to non-negative real
quantities; these choices can be interpreted to denote, as previously mentioned,
upper bounds in the execution time of the given operations. The underlying
constraint system of sccp is materialized with the help of the rewriting modulo
SMT [21] approach, with constraints being quantifier-free formulas over Boolean
and integer shared variables, and information entailment queried as semantic
inference and automatically delivered by the SMT-based decision procedures.
The main contribution of this work can also be seen as yet another interesting
use of rewriting logic as a semantic framework: the support in rewriting logic
for real-time systems [18] and open systems [21], make of the rtsccp real-time
rewriting logic semantics a symbolic and fully executable specification in Maude,
that is both sound and complete (relative to initial semantics) for reachability
analysis in spatial constraint systems with discrete and dense linear timing con-
straints.

Outline. Section 2 summarizes some preliminaries on constraint systems and
rewriting logic. The real-time rewriting logic semantics for rtsccp is presented
in Sect. 3. The use of the semantics for symbolic reachability analysis is illus-
trated with some examples in Sect. 4. Additional related work and concluding
remarks are included in Sect. 5. The rewriting logic specification for rtsccp and
the examples are available at

http://escher.javerianacali.edu.co/rtsccpe/index.html

2 Preliminaries

This section briefly explains the basics of constraint and spatial constraint
systems with extrusion. It also presents a summary of order-sorted rewrit-
ing logic [14], a semantic framework that unifies a wide range of models of
concurrency.

A constraint system (cs) C is a complete algebraic lattice C = (Con ,�),
where the elements in Con are called constraints and the order � entailment
of information: d � c (or, c � d) asserts that the constraint c contains at least
as much information as the constraint d. The symbols �, true, and false denote

http://escher.javerianacali.edu.co/rtsccpe/index.html

Real-Time Rewriting Logic Semantics 229

the least upper bound (lub) operation, the bottom, and the top element of C,
respectively. An n-agent spatial constraint system (n−scs) [13] C is a cs (Con ,�)
equipped with n self-maps [·]1, . . . , [·]n over its set of constraints Con satisfying,
for each function [·]i : Con → Con: [true]i = true and [c � d]i = [c]i � [d]i,
for each c, d ∈ Con. An n-agent spatial constraint system with extrusion (n-
scse) [12] is an n-scs C equipped with n self-maps ↑1, . . . , ↑n over Con, written
(C, ↑1, . . . , ↑n), such that each ↑i is the right inverse of [·]i.

A rewrite theory is a tuple R = (Σ, E�B,R) with: (i) (Σ, E�B) an order-sorted
equational theory with signature Σ, E a set of equations over TΣ , and B a set
of structural axioms – disjoint from the set of equations E – over TΣ for which
there is a finitary matching algorithm (e.g., associativity, commutativity, and
identity, or combinations of them); and (ii) R a finite set of (possibly conditional)
rewrite rules over TΣ(X). Intuitively, R specifies a concurrent system whose states
are elements of the set TΣ/E�B of Σ-terms modulo E � B and whose concurrent
transitions are axiomatized by the rules R according to the inference rules of
rewriting logic [3]. In particular, for t, u ∈ TΣ representing states of the concurrent
system described by R, a transition from t to u is captured by a formula of the
form t →R u; the symbol →R denotes the binary rewrite relation induced by R
over TΣ/E�B and TR = (TΣ/E�B,→R) denotes the initial reachability model of R.

The rewriting logic semantics of a language L is a rewrite theory RL =
(ΣL, EL � BL,RL) where →RL provides a step-by-step formal description of L’s
observable run-to-completion mechanisms. The conceptual distinction between
equations and rules in RL has important consequences that are captured by
rewriting logic’s abstraction dial [15]. Setting the level of abstraction in which
all the interleaving behavior of evaluations in L is observable, corresponds to the
special case in which the dial is turned down to its minimum position by having
EL �BL = ∅. The abstraction dial can also be turned up to its maximal position
as the special case in which RL = ∅, thus obtaining an equational semantics of L
without observable transitions. The rewriting logic semantics presented in this
paper is faithful in the sense that such an abstraction dial is set at a position
that exactly captures the interleaving behavior of the concurrency model.

The real-time rewrite theory presented in this work is time-robust, namely: (i)
in any given state, time can advance either any amount up to a specific instant
in time or not at all; and (ii) instantaneous rules (i.e., those that are not tick
rules and are supposed to take zero time) can only be applied when the system
has advanced the maximal possible amount of time before any timed action can
become enabled. Under these two assumptions and by using the maximal time
sampling strategy, unbounded and time-bounded search and model checking are
sound and complete with respect to timed fair paths [19]. They exclude paths
with an infinite sequence of tick steps where, at each step, time could have
advanced to time r (the duration of the first step in a path) or beyond, but
with a total path duration less than r. Also are excluded those ‘unfair’ paths
containing an infinite and consecutive sequence of 0-time ticks over a state on
which an instantaneous rule can be applied. Note that a time-robust system may
have Zeno paths, where the sum of the durations of an infinite number of tick

230 S. Ramı́rez et al.

steps is bounded. By restricting the computations to time-bounded prefixes only
a finite set of states can be reached from an initial state, so that the target real-
time specification does not exhibit any Zeno behavior and temporal properties
can be model checked.

Satisfiability Modulo Theories (SMT) studies methods for checking satisfia-
bility of first-order formulas in specific models. In this work, the representation
of the constraint system is based on SMT solving technology. Given an many-
sorted equational theory E0 = (Σ0, E0) and a set of variables X0 ⊆ X over the sorts
in Σ0, the formulas under consideration are in the set QFΣ0(X0) of quantifier-
free Σ0-formulas: each formula being a Boolean combination of Σ0-equation with
variables in X0 (i.e., atoms). The terms in TΣ0/E0(X) are called built-ins and rep-
resent the portion of the specification that will be handled by the SMT solver
(i.e., they are semantic data types). In this setting, an SMT instance is a formula
φ ∈ QFΣ0(X0) and the initial algebra TE+

0
, where E+

0 is a decidable extension of
E0 such that φ is satisfiable in TE+

0
iff there exists σ : X0 −→ TΣ0 such that

TE0 |= φσ.
Maude [5] is a language and tool supporting the formal specification, execu-

tion, and analysis of concurrent systems specified as rewrite theories, including
those with real-time semantics (see [19]) and those with built-ins as proposed in
the rewriting modulo SMT approach (see [21]).

3 Rewriting Logic Semantics

This section introduces the rtsccp real-time rewriting logic semantics in the form
of a real-time rewrite theory R, detailing some aspects of to its syntax and
transitions.

Figure 2 depicts the module structure of R, where a triple-line arrow (�)
represents module importation by protecting and a single-line arrow (→) module
importation by inclusion. The difference between these two importing modes is
that the former allows surjectivity (junk) and injectivity (confusion) [5].

3.1 System States

The tree-like structure of the hierarchical spaces is represented as a flat con-
figuration of object-like terms encoding the state of execution of the agents.
The hierarchical relationships among spaces are specified by common prefixes
as part of an agent’s name. In an observable state, each agent’s space is rep-
resented by a set of object-like terms: some encoding the state of execution of
all its processes and exactly one object representing its local store. The object-
based system is represented using Maude’s predefined module CONFIGURATION
imported in SCCP-STATE. The object and class identifiers are:

subsorts Nat Aid < Oid .

ops agent process Simulation : -> Cid .

op {_} : Configuration -> Sys .

Real-Time Rewriting Logic Semantics 231

Fig. 2. Module hierarchy of rtsccp

The system states are represented by the topsort Sys with argument a con-
figuration of objects containing the setup of each one of the agents in the system.
A Configuration is a multiset of objects with set union denoted by juxtaposi-
tion and identity none. There are two types of object identifiers: agent identifiers
(Aid) for identifying agents and their hierarchical structure, and natural num-
bers (Nat) for some additional identification used internally in R. There are three
types of class identifiers, namely, for agents, processes, and a simulation object.
A simulation object specifies the attributes required for the real-time simulation
of the system, such as the global time and the scheduler.

Each agent has one attribute, namely, its a store, and each process has two
attributes: an universal identifier (used internally for execution purposes) and
the command (i.e., process) it is executing:

op store :_ : Boolean -> Attribute [ctor] .

op Uid :_ : Nat -> Attribute [ctor] .

op command :_ : SCCPCmd -> Attribute [ctor] .

The syntax of commands is presented in Sect. 3.2. Section 3.3 explains how
quantifier free formulas are used to represent constraints (as Boolean) and the
entailment relation is encoded with the help of SMT-based decisions procedures.

Finally, the attributes of the simulation object include the global time
(attribute gtime); the priority queue of the system commands to be processed,
ordered by time-to-execution (attribute pqueue); the collection of pending com-
mands, i.e., ask commands that are waiting for its guarding constraint to become
activate (attribute pend); the counter for assigning the next internal identifier
when spawning a new process (attribute nextID); a flag that is on whenever a

232 S. Ramı́rez et al.

tick rule needs to be applied (attribute flg); and a collection of maps containing
the time it takes to process certain commands relative to the space where they
are executed (attributes MAsk, MTell, MSp, and MExt). The sort Time, as it is
often the case in Real-time Maude [18], can be used to represent either discrete
or dense linear time, while Ttime is the name of the Maude view that is used to
instantiate parameterized sorts with time:

op gtime :_ : Time -> Attribute [ctor] .

op pqueue :_ : Heap{Tuple} -> Attribute [ctor] .

op pend :_ : Heap{Tuple} -> Attribute [ctor] .

op nextID :_ : Nat -> Attribute [ctor] .

op flg :_ : Bool -> Attribute [ctor] .

op MAsk :_ : Map{Aid, Ttime} -> Attribute [ctor] .

op MTell :_ : Map{Aid, Ttime} -> Attribute [ctor] .

op MSP :_ : Map{Aid, Ttime} -> Attribute [ctor] .

op MExt :_ : Map{Aid, Ttime} -> Attribute [ctor] .

As mentioned before, the qualified identifiers of agents are used to encode
the hierarchical structure of spaces (sort Aid). The root of any tree is denoted
by constant root and any other qualified name corresponds to a dot-separated
list natural numbers (sort Nat), organized from left to right:

op root : -> Aid .

op _._ : Nat Aid -> Aid .

Example 1. In this syntax, the container system depicted in Fig. 1a can be spec-
ified as follows:

< root : agent | store : (W:Integer === (9).Integer) >

< 0 . root : agent | store : (X:Integer >= 11) >

< 0 . 1 . root : agent | store : (Y:Integer > 5) >

< 1 . root : agent | store : true >

< 2 . root : agent | store : true >

3.2 Commands

The following EBNF-like notation defines the process-like syntax of commands:

P ::= 0 | tell(c) | ask(c) → P | P ‖ P | [P]i | ↑i (P)

where c is a constraint and i an agent identifier. The tell(c) command posts the
constraint c to the local store (once a constraint is added, it cannot be removed
from the store so that the store grows monotonically). The command ask(c) → P
queries if c can be deduced from the information in the local store; if so, the agent
behaves like P, otherwise, it remains blocked until more information is added to
the store. A basic ccp process like-language usually adds parallel composition
(P ‖ Q) combining processes P and Q concurrently. The command [P]i indicates
that command P must be executed inside the agent i’s space: any information

Real-Time Rewriting Logic Semantics 233

that P produces is available to other commands that execute within the same
space. The command ↑i (P) denotes that P is to be run outside the space of
agent i and the information posted by P is going to be stored in the parent of
agent i. The SCCP-SYNTAX module includes the syntax of commands in rtsccp:

op 0 : -> SCCPCmd .

op tell : Boolean -> SCCPCmd .

op ask_->_ : Boolean SCCPCmd -> SCCPCmd .

op _||_ : SCCPCmd SCCPCmd -> SCCPCmd [assoc comm gather (e E)] .

op _in_ : SCCPCmd Nat -> SCCPCmd .

op _out_ : SCCPCmd Nat -> SCCPCmd .

3.3 Time Scaffolding

The real-time behavior in R associates timing behavior to those commands that
interact with stores (i.e., tell and ask commands) and to commands that involve
mobility among the space structure of the system (i.e., [] and ↑ ()). More
precisely, tell and ask commands can take time when posting and querying,
respectively, from a store. Moving the execution of a command inside an agent
and extruding from a space can also take up time. Such times are given by the
time maps MTell (for tell), MAsk (for ask), MSp (for []), and MExt (for ↑ ()),
and can be consulted using the getTimeCmd function. For example, MTell(i)
denotes the time it takes to execute a tell command inside the agent’s i space.

op fTime : Map{Aid, Ttime} Aid -> Time .

eq fTime(M:Map{Aid, Ttime}, L1)

= if $hasMapping(M, L1) then M[L1] else 0 fi .

op getTimeCmd : Attribute Attribute Attribute Attribute

SCCPCmd Aid -> Time .

eq getTimeCmd(MTell: MT, MAsk: MA, MIn: MI, MOut: MO, tell(B1), L1)

= fTime(MT, L1) .

eq getTimeCmd(MTell: MT, MAsk: MA, MIn: MI, MOut: MO, C1 in I1, L1)

= fTime(MI, L1) .

eq getTimeCmd(MTell: MT, MAsk: MA, MIn: MI, MOut: MO, C1 out I1, L1)

= fTime(MO, L1) .

eq getTimeCmd(MTell: MT, MAsk: MA, MIn: MI, MOut: MO, C1, L1)

= 0 [owise] .

The run-to-completion time of commands is simulated with the help of a
leftist heap that keeps track of all the active commands that are waiting for the
global timer to advance. One motivation to use leftist heaps is that insertion,
removal, and querying are defined without the need of structural axioms, which
may result in performance gains during execution. A leftist heap [17] is a heap-
ordered binary tree that satisfies the leftist property : the rank (i.e., the length
of its rightmost path to a leaf) of any left child is at least as large as the rank
of its right sibling. Each entry in the heap is a pair (i, t) where i is an unique
identifier of a process and t the time it needs to start executing. At the beginning,

234 S. Ramı́rez et al.

all the processes belong to the heap and they are ordered with respect to their
execution time. A process is executed when its execution time is the minimum
time of all the processes that are pending to complete their transitions. The
leftist heap is implemented as a parameterized container in the functional module
LEFTIST-HEAP{X :: STRICT-TOTAL-ORDER}, with admissible parameters only
being strict total orders:

sort Heap{X} NeHeap{X} .

subsort NeHeap{X} < Heap{X} .

op empty : -> Heap{X} [ctor] .

op T(_,_,_,_) : Nat X$Elt Heap{X} Heap{X} -> NeHeap{X} [ctor] .

op isEmpty : Heap{X} -> Bool .

eq isEmpty(empty) = true .

eq isEmpty(T(Ra,E,L,R)) = false .

op rank : Heap{X} -> Nat .

eq rank(empty) = 0 .

eq rank(T(Ra,E,L,R)) = Ra .

op makeT : X$Elt Heap{X} Heap{X} -> NeHeap{X} .

eq makeT(E,L,R)

= if rank(L) >= rank(R)

then T(rank(R) + 1,E,L,R)

else T(rank(L) + 1,E,R,L)

fi .

Heaps are constructed from the constant empty and the T(, , ,) function sym-
bol: the first argument is the rank of the tree (sort Nat), the second one the label
(sort X$Elt), and the third and fourth ones the left and right children (sort
Heap{X}), respectively. In the semantics of rtsccp, the sort X$Elt is instantiated
with the sort of pairs of the form (I,T), where I is an internal process identi-
fier and T is the run-completion time of such a process. Auxiliary operations
include isEmpty, rank, and makeT, which are used to verify whether a heap is
empty, compute the rank of a given heap, and create a heap out of two heaps,
respectively. Other key operations on leftist heaps are the merging of two heaps
(function merge), inserting an element in a heap (function insert), removing
an element from a heap (function deleteMin), and finding the element at the
top of a non-empty heap (function findMin).

op merge : Heap{X} Heap{X} -> Heap{X} .

eq merge(empty, L) = L .

eq merge(L, empty) = L .

eq merge(T(Ra,E,L,R),T(Ra’,E’,L’,R’))

= if (E < E’ or E == E’)

then makeT(E,L,merge(R,T(Ra’,E’,L’,R’)))

else makeT(E’,L’,merge(T(Ra,E,L,R),R’))

fi .

op insert : X$Elt Heap{X} -> NeHeap{X} .

eq insert(E,L) = merge(T(1,E,empty,empty),L) .

op deleteMin : NeHeap{X} -> Heap{X} .

eq deleteMin(T(Ra,E,L,R)) = merge(L,R) .

Real-Time Rewriting Logic Semantics 235

op findMin : NeHeap{X} -> X$Elt .

eq findMin(T(Ra,E,L,R)) = E .

3.4 The Constraint System

In this rewriting logic semantics, the sort Boolean (available in the current ver-
sion of Maude from the INTEGER module) defines the data type used to represent
rtsccp’s constraints. Terms of sort Boolean are quantifier-free formulas built from
variables ranging over the Booleans and integers, and the usual function symbols.
The current version of Maude is integrated with the CVC4 [2] and Yices2 [8]
SMT solvers, which can be queried via the meta-level. In this semantics, queries
to the SMT solvers are encapsulated by functions check-sat and check-unsat:

op check-sat : Boolean -> Bool .

eq check-sat(B) = metaCheck([’INTEGER], upTerm(B)) .

op check-unsat : Boolean -> Bool .

eq check-unsat(B) = not(check-sat(B)) .

The function invocation check-sat(B) returns true only if B is satisfiable. Oth-
erwise, it returns false if it is unsatisfiable or undefined if the SMT solver cannot
decide. Note that function invocation check-unsat(B) returns true only if B is
unsatisfiable. Therefore, the rewriting logic semantics of rtsccp instantiates the
constraint system C = (Con,�) by having quantifier-free formulas, modulo the
semantic equivalence in TE+

0
(i.e., the model implemented in the SMT solver

extending the initial model TE0), as the constraints Con and semantic validity
relative to TE+

0
as the entailment relation �. More precisely, if Γ is a finite set

of terms of sort Boolean and φ is term of sort Boolean, the following equiva-
lence holds: Γ � φ iff check-unsat

((∧
γ∈Γ γ

)
∧ ¬φ

)
. In order to make a direct

relation between the entailment relation � and the Maude syntax, the operator
entails is defined as follows:

op entails : Boolean Boolean -> Bool .

eq entails(C1:Boolean, C2:Boolean)

= check-unsat(C1:Boolean and not(C2:Boolean)) .

3.5 System Transitions

The tick rule models time elapse in the system [18]:

crl [tick] :

{ X < I : Simulation | pqueue : P, gtime : T, flg : true,

pend : P0, Atts > }

=> { X < I : Simulation | pqueue : merge(delta(deleteMin(P),T0),P0),

gtime : (T plus T0), flg : false, pend : empty, Atts > }

if T0 := p2(findMin(P)) .

236 S. Ramı́rez et al.

where the the auxiliary operation delta reduce T0 units the execution time of
every command in the heap P:

op delta : Heap{Tuple} Time -> Heap{Tuple} .

eq delta(empty,T’) = empty .

eq delta(T(N,((I,T)),P,P0),T’)

= T(N,((I,T monus T’)),delta(P,T’),delta(P0,T’)) .

When the [tick] rule is fired, the global time is incremented in T0 units, where
T0 is the minimum time present in the priority queue P, which is modified by
removing the process with the minimum execution time. It also adds the pending
commands to the priority queue. The pending commands are ask commands
that, although they have been activated already for execution, have not been able
to execute because their guard has not been met by the state of the corresponding
local stores. The tick rule puts all these pending process back in the main queue,
so that their guards can be checked again and be executed or put back in the
pending queue. Figure 3 depicts the possible transitions an ask command can
take between being in the priority queue, in the pending queue, and finally
executing. The rules [ask] and [delay] are introduced below.

Fig. 3. Possible transitions for ask commands.

The invisible transitions of the semantics are specified with the help of equa-
tional rules. Namely, one for removing a 0 command from a configuration and
another one to join the contents of two stores of the same space (i.e., two stores
with the same Aid). The latter type of transition is important because when a
new process is spawned in a agent’s space, a store with the empty constraint
(i.e., true) is created for that space. If such a space existed before, then the
idea is that the newly created store is subsumed by the existing one. Note that
neither of the invisible transitions takes time, i.e., they are really instantaneous,
and they axiomatize structural properties of commands.

eq { < L0: process | command: 0, Atts > X }

= { none X } .

eq < L0: agent | store: B0 > < L0: agent | store: B1 >

= < L0: agent | store: (B0 and B1) > .

The following six rules capture the concurrent observable behavior in R:

crl [tell]:

{ < L0: agent | store: B0 >

Real-Time Rewriting Logic Semantics 237

< L0: process | UID: I0, command: tell (B1) >

< I: Simulation | pqueue: H, flg: false, pend: P, Atts > X }

=> { < L0: agent | store: (B0 and B1) >

< I: Simulation | pqueue: H, flg: true, pend: P, Atts > X }

if I0 == p1(findMin(H)) .

crl [parallel]:

{ < L0: process | UID: I0, command: (C0 || C1) >

< I: Simulation | pqueue: H, nextID: N, flg: false, pend: P,

MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

=> { < L0: process | UID: N, command: C0 >

< L0: process | UID: (N + 1), command: C1 >

< I: Simulation | pqueue: H, nextID: (N + 2), flg: true,

pend: H0, MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

if I0 == p1(findMin(H))

/\ H0 := insert(((N, getTimeCmd(MTell: MT, MAsk: MA, MIn: MI,

MOut: MO, C0, L0))),

insert(((N + 1, getTimeCmd(MTell: MT, MAsk: MA, MIn: MI,

MOut: MO, C1, L0))), P)) .

crl [space]:

{ < L0: process | UID: I0, command: (C0 in N0) >

< I: Simulation | pqueue: H, nextID: N, flg: false, pend: P,

MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

=> { < N0 . L0: agent | store: true >

< N0 . L0: process | UID: N, command: C0 >

< I: Simulation | pqueue: H, flg: true, pend: H0, nextID: (N+1),

MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

if I0 == p1(findMin(H))

/\ H0:= insert(((N, getTimeCmd(MTell: MT,

MAsk: MA, MIn: MI, MOut: MO, C0, L0))), P) .

crl [extrussion]:

{ < N0 . L0: process | UID: I0, command: (C0 out N0) >

< I: Simulation | pqueue: H, nextID: N, flg: false, pend: P,

MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

=> { < L0: process | UID: N, command: C0 >

< I: Simulation | pqueue: H, flg: true, pend: H0, nextID: (N+1),

MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

if I0 == p1(findMin(H))

/\ H0:= insert(((N, getTimeCmd(MTell: MT,

MAsk: MA, MIn: MI, MOut: MO, C0, N0 . L0))), P) .

crl [ask]:

{ < L0: agent | store: B0 >

< L0: process | UID: I0, command: (ask B1 -> C1) >

< I: Simulation | pqueue: H, flg: false, pend: P, nextID: N,

MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

=> { < L0: agent | store: B0 >

< L0: process | UID: N, command: C1 >

238 S. Ramı́rez et al.

< I: Simulation | pqueue: H, flg: true, pend: H0, nextID: (N+1),

MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

if I0 == p1(findMin(H))

/\ entails(B0,B1)

/\ H0:= insert(((N,getTimeCmd(MTell: MT, MAsk: MA, MIn: MI,

MOut: MO, C1, L0) plus alpha(MA, L0))), P) .

crl [delay]:

{ < L0: agent | store: B0 >

< L0: process | UID: I0, command: (ask B1 -> C1) >

< I: Simulation | pqueue: H, pend: P, Atts > X }

=> { < L0: agent | store: B0 >

< L0: process | UID: I0, command: (ask B1 -> C1) >

< I: Simulation | pqueue: deleteMin(H),

pend: insert(((I0,T1)),P),Atts > X }

if I0 == p1(findMin(H))

/\ not(entails(B0,B1))

/\ T1:= (p2(findMin(H))) .

The [tell] rule implements the execution semantics of a tell command by
posting the given constraint in the local store and by removing such a command
from the configuration. The [parallel] rule implements the semantics for par-
allel composition of process by spawning the two process in the current space.
Rule [space] creates a new agent’s space denoted by N0.L0, with an empty
store (i.e., true), beside the execution of program C0 within the new agent’s
space. The [extrusion] rule executes C0 in the parent’s space L0. The [ask]
rule executes a command C1 when the guard B1 in ask B1 -> C1 holds: that is,
when B1 is a semantic consequence of the contents B0 of the local store. Note
that the semantic consequence relation of the constraint system is queried by
asking the SMT solver. The [delay] rule represents the negative answer for the
ask rule: whenever B0 does not entail B1 or B1 is not a semantic consequence of
the contents B0 of the store. The [delay] rule moves an ask command into the
pending heap, where it will remain until the tick rule executes again.

4 Reachability Analysis

The goal of this section is to explain how the rewriting logic semantics R of
rtsccp and rewriting modulo SMT can be used as an automatic mechanism for
solving existential reachability goals in the initial model TR. This approach can
be useful for symbolically proving or disproving real-time safety properties of
TR. The approach presented in this section mainly relies on Maude’s search
command, but it can be easily extended to be useful in the more general setting
of Maude’s LTL Model Checker.

The examples presented in this section use the following time functions for
the processes:

MAsk : root |-> 1/20, (0 . root) |-> 1/10, (0 . 1 . root) |-> 3/20,

(1 . root) |-> 1/10, (2 . root) |-> 1/10

Real-Time Rewriting Logic Semantics 239

MTell : root |-> 1/10, (0 . root) |-> 3/20, (0 . 1 . root) |-> 1/5,

(1 . root) |-> 3/20, (2 . root) |-> 3/20

MSP : root |-> 1/2, (0 . root) |-> 7/10, (0 . 1 . root) |-> 4/5,

(1 . root) |-> 13/20, (2 . root) |-> 3/5

MExt : root |-> 1/2, (0 . root) |-> 13/20, (0 . 1 . root) |-> 1,

(1 . root) |-> 1/2, (2 . root) |-> 3/5

For example, querying the store at the root agent takes 1/20 time units.
Fault tolerance is the property that ensures a system to continue operating

properly in the event of the failure; consistency means that a local failure does
not propagate to the entire system. In R, this means that if a store becomes
inconsistent, it is not the case that such an inconsistency spreads to the entire
system. Of course, inconsistencies can appear in other stores due to some unre-
lated reasons.

Searching an inconsistent store can be easily implemented with the help of
R and Maude’s search command. The answer of this command in the positive
would mean that from some initial state, there is a state in which a store becomes
inconsistent at some point of execution within a given time interval. Taking
advantage of R and the rewriting modulo SMT approach, also is possible to
know when a store is inconsistent. As an example, consider the container system
in Fig. 1a and the following search command with a the time interval [0, 1.5):

search in SCCP :

{ < root : agent | store : (W:Integer === (9).Integer) >

< 0 . root : agent | store : (X:Integer >= 11) >

< 0 . 1 . root : agent | store : (Y:Integer > 5) >

< 1 . root: agent | store: true > < 2 . root: agent | store: true >

< root : process | UID : 1, command : ((((ask X:Integer > 2 ->

(tell(Y:Integer < 10) in 0 in 1 out 0)) in 0)

|| ((tell(Z:Integer =/== (10).Integer)

|| (tell(T:Integer === 1) in 3)) in 2))

|| (tell(X:Integer <= 10) in 0)) >

< 1 : Simulation | gtime : 0,pqueue : T(1,((1,0)),empty,empty),

pend : empty,nextID : 19, flg : false, ... (time maps)}

=>* { < 1 : Simulation | gtime : T:Time, Atts:AttributeSet >

< A:Aid : agent | store : B0:Boolean > C:Configuration }

such that check-unsat(B0:Boolean) and T < 3/2 .

Note that a store is inconsistent if it is unsatisfiable, thereby checking whether a
store is inconsistent is accomplished with the function check-unsat. The afore-
mentioned command searches for an inconsistent store during the first 1.5 units
of time of the system’s execution. This command does not find an inconsis-
tent store between the first 1.5 units of time in any of the 56 reachable states.
However, it is possible to make a store inconsistent by adding inconsistent infor-
mation, for example by adding the process tell(X <= 10) in 0. The output
for the search command is:

Solution 1 (state 159)

states: 160 rewrites: 16666 in 876ms cpu (875ms real)

240 S. Ramı́rez et al.

(19025 rewrites/second)

C:Configuration --> < root:agent | store:(W:Integer === (9).Integer) >

< 0 . 1 . root : agent | store : (Y:Integer > 5) >

< 1 . root:agent | store:true > < 2 . root:agent | store:true >

< 2 . root:process | UID: 28,

command: tell(Z:Integer =/== (10).Integer) >

< 2 . root:process | UID: 27,

command: (tell(T:Integer === (1).Integer) in 3) >

< 0 . root:process | UID : 24,

command: (tell(Y:Integer < 10) in 0 in 1 out 0) >

A:Aid --> 0 . root

B0 --> X:Integer >= (11).Integer and X:Integer <= (10).Integer

Atts --> pqueue : T(2,(25,1/20),T(1,(24,4/5),empty,empty),T(1,(28,1/10),

T(1,(27,3/5),empty,empty),empty)),pend : empty,nextID : 29,

flg : true, ... (time maps)

T --> 1/2

There are 238 reachable states (from the initial state) and 74 of them have an
inconsistent store between the first 1.5 units of time. The first inconsistency
appears in 0.5 time units, and the last one in 1.3 times units. Note that, the
system continues evolving even though there is an inconsistency. It is possible to
verify that there are states with consistent and inconsistent stores at the same
time by slightly modifying the above search command.

Knowledge inference refers to acquiring new knowledge from existing facts.
In the setting of R, this means that from a given initial state an agent, at
some point, has gained enough information to infer new facts. A positive answer
to such a query, means that from some initial state, at some moment during
execution, there is at least one agent that has gained enough information to
infer the given facts. As an example, consider the container system in Fig. 1a
and the following search command:

search in SCCP :

{ < root : agent | store : (W:Integer === (9).Integer) >

< 0 . root : agent | store : (X:Integer >= 11) >

< 0 . 1 . root : agent | store : (Y:Integer > 5) >

< 1 . root : agent | store : true >

< 2 . root : agent | store : true >

< root : process | UID : 1, command : (((ask X:Integer > 2 ->

(tell(Y:Integer < 10) in 0 in 1 out 0)) in 0)

|| ((tell(Z:Integer =/== (10).Integer)

|| (tell(T:Integer === 1) in 3)) in 2)) >

< 1 : Simulation | gtime : 0,pqueue : T(1,((1,0)),empty,empty),

pend : empty, nextID : 19, flg : false, ... (time maps) > }

=>* { < 1 : Simulation | gtime : T:Time, Atts:AttributeSet >

< A:Aid : agent | store : B0:Boolean > C:Configuration }

such that entails(B0:Boolean, Y:Integer < 15) and T:Time > 0

and T:Time < 2 .

It checks if there is a state, reachable from the given initial state, in which some
store logically implies Y < 15 in the time interval (0, 2). This command does not

Real-Time Rewriting Logic Semantics 241

find a container with enough information in such time interval in any of the 56
reachable states. However, if the time interval in the command is changed to
(2, 3) the query finds two solutions:

Solution 1 (state 54)

states: 55 rewrites: 7466 in 360ms cpu (358ms real)

(20738 rewrites/second)

C:Configuration --> < root:agent | store:(W:Integer === (9).Integer) >

< 0 . root : agent | store : (X:Integer >= 11) >

< 1 . root : agent | store : true >

< 2 . root : agent | store : (Z:Integer =/== (10).Integer) >

< 3 . 2 . root : agent | store : (T:Integer === (1).Integer) >

A:Aid --> 0 . 1 . root

B0:Boolean --> Y:Integer > (5).Integer and Y:Integer < (10).Integer

Atts:AttributeSet --> pqueue : T(1,(29,1/10),empty,empty),pend : empty,

nextID : 30,flg : true, ... (time maps)

T:Time --> 5/2

Solution 2 (state 55)

states: 56 rewrites: 7601 in 368ms cpu (366ms real)

(20654 rewrites/second)

C:Configuration --> < root:agent | store:(W:Integer === (9).Integer) >

< 0 . root : agent | store : (X:Integer >= 11) >

< 1 . root : agent | store : true >

< 2 . root : agent | store : (Z:Integer =/== (10).Integer) >

< 3 . 2 . root : agent | store : (T:Integer === (1).Integer) >

A:Aid --> 0 . 1 . root

B0:Boolean --> Y:Integer > (5).Integer and Y:Integer < (10).Integer

Atts:AttributeSet --> pqueue : empty,pend : empty,nextID : 30,

flg : false, ... (time maps)

T:Time --> 13/5

...

The webpage at

http://escher.javerianacali.edu.co/rtsccpe/index.html

contains more details about this example and other examples about reachability
analysis with R, including knowledge inference and equivalence of knowledge.

5 Related Work and Concluding Remarks

In addition to the related work included in Sect. 1, it is important to men-
tion other related research in the area of timing semantics for concurrent con-
straint programming. An extension of concurrent constraint programming in [24]
presents a timed asynchronous computation model and propose an implementa-
tion using loop-free deterministic finite automata, a declarative framework for
reactive systems where time is represented as discrete time units. More recently,
Pérez and Rueda [20] propose an operational semantics based on probabilistic

http://escher.javerianacali.edu.co/rtsccpe/index.html

242 S. Ramı́rez et al.

automaton, extending the work in [24], with probabilistic and non-deterministic
choices for processes. The inclusion of stochastic information for processes pro-
posed by Aranda et al. in [1] associates to each computation a random vari-
able determining its time duration: given a set of competing actions, the fastest
action is executed, that is, the one with the shortest duration. Finally, Sarria
and Rueda [27] present a real-time extension of ccp with application to music
interaction.

In the realm of rewriting logic, Degano et al. [7] provide a rewriting logic
semantics for Milner’s CCS with interleaving behavior. Additionally, a set of
axioms is defined for a logical characterization of the concurrency of CCS pro-
cesses. In [28], the authors use rewriting logic to represent the semantics of CCS
and a modal logic for describing local capabilities of CCS processes. In particular,
they study how to make executable the SOS semantics of CSS and present a fully
executable specification of the semantics. More recently, Romero and Rocha [22]
have proposed a symbolic rewriting logic semantics of the spatial modality of
ccp with extrusion.

This paper has presented a real-time rewriting logic semantics for spatial con-
current constraint programming (rtsccp) that is fully executable in the Maude
system. The intended models of rtsccp are spatially-distributed multi-agent reac-
tive systems that may have different computing capabilities and be subject to
real-time requirements. In this setting, time attributes are associated to process-
store interaction, as well as to process mobility in the space structure, by means
of maps from agents to non-negative real quantities. Details about the underly-
ing constraint system have been given as materialized with the help of rewriting
modulo SMT. Furthermore, examples of reachability analysis performed on this
semantics have been given to illustrate certain aspects of the timing behav-
ior of agents distributed across hierarchical spaces, such as fault-tolerance and
consistency.

Future work can span in two directions. One interesting direction to follow
is to pursue challenging case studies in which, with the help of the real-time
rewriting logic semantics for rtsccp presented in this work, other key aspects
of spatially distributed concurrent processes such as privacy can be analyzed.
The other direction, is to pursue a more general and fully symbolic rewriting
logic semantics for rtsccp where time information can also be modeled as shared
variables under the control of the SMT decision procedures. In such a setting,
interesting properties of real-time systems such as missed deadlines and dead-
locks could be fully analyzed, e.g., for infinitely many initial states in a system.

Acknowledgments. The authors would like to thank the anonymous referees for
their helpful comments. The first author was partially supported by Colciencias via
the project CLASSIC (Proj. No. 125171250031). The second author was partially sup-
ported by Colciencias’ Convocatoria 761 Jóvenes Investigadores e Innovadores 2016
and Pontificia Universidad Javeriana Cali (Contract No. 416-2017). The third author
was partially supported by Capital Semilla 2017, project “SCORES: Stochastic Con-
currency in Rewrite-based Probabilistic Models” (Proj. No. 020100610). The third
and fourth authors were partially supported by CAPES, Colciencias, and INRIA

Real-Time Rewriting Logic Semantics 243

via the STIC AmSud project “EPIC: EPistemic Interactive Concurrency” (Proj. No.
88881.117603/2016-01).

References

1. Aranda, J., Pérez, J.A., Rueda, C., Valencia, F.D.: Stochastic behavior and explicit
discrete time in concurrent constraint programming. In: Garcia de la Banda, M.,
Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 682–686. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89982-2 57

2. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

3. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1–3), 386–414 (2006)

4. Chiarugi, D., Falaschi, M., Hermith, D., Marangoni, R., Olarte, C.: Stochastic mod-
elling of non markovian dynamics in biochemical reactions. In: Rojas, I., Guzman,
F.M.O. (eds.) International Work-Conference on Bioinformatics and Biomedical
Engineering, IWBBIO 2013, Granada, Spain, 18–20 March 2013. Proceedings, pp.
537–544. Copicentro Editorial (2013)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

6. de Boer, F., Gabbrielli, M., Meo, M.C.: A timed concurrent constraint language.
Inf. Comput. 161, 45–83 (2000)

7. Degano, P., Gadducci, F., Priami, C.: A causal semantics for CCS via rewriting
logic. Theor. Comput. Sci. 275(1–2), 259–282 (2002)

8. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

9. Gilbert, D., Palamidessi, C.: Concurrent constraint programming with process
mobility. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 463–477.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44957-4 31

10. Gupta, V., Jagadeesan, R., Panangaden, P.: Stochastic processes as concurrent
constraint programs. In: Symposium on Principles of Programming Languages,
pp. 189–202 (1999)

11. Gupta, V., Jagadeesan, R., Saraswat, V.A.: Computing with continuous change.
Sci. Comput. Program. 30(1–2), 3–49 (1998)

12. Guzmán, M., Haar, S., Perchy, S., Rueda, C., Valencia, F.D.: Belief, knowledge,
lies and other utterances in an algebra for space and extrusion. J. Log. Algebr.
Methods Program. 86(1), 107–133 (2017)

13. Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epis-
temic modalities in constraint-based process calculi. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 317–332. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32940-1 23

14. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

15. Meseguer, J., Roşu, G.: The rewriting logic semantics project: a progress report.
Inf. Comput. 231, 38–69 (2013)

https://doi.org/10.1007/978-3-540-89982-2_57
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/3-540-44957-4_31
https://doi.org/10.1007/978-3-642-32940-1_23

244 S. Ramı́rez et al.

16. Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint pro-
gramming: denotation, logic and applications. Nordic J. Comput. 9(1), 145–188
(2002)

17. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press,
Cambridge (1. paperback ed., transf. to digital printing edition) (2003). OCLC:
552279078

18. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theor. Comput. Sci. 285(2), 359–405 (2002)

19. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude.
Electron. Notes Theor. Comput. Sci. 176(4), 5–27 (2007)

20. Pérez, J.A., Rueda, C.: Non-determinism and probabilities in timed concurrent
constraint programming. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP
2008. LNCS, vol. 5366, pp. 677–681. Springer, Berlin, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89982-2 56

21. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system
analysis. J. Log. Algebr Methods Program. 86(1), 269–297 (2017)

22. Romero, M., Rocha, C.: Symbolic execution and reachability analysis using rewrit-
ing modulo SMT for spatial concurrent constraint systems with extrusion. In:
Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp.
435–451. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5 29

23. Saraswat, V., Jagadeesan, R., Gupta, V.: Foundations of timed concurrent con-
straint programming. In: Proceedings of the Ninth Annual IEEE Symposium on
Logic in Computer Science, pp. 71–80, 4–7 July 1994

24. Saraswat, V., Jagadeesan, R., Gupta, V.: Foundations of timed concurrent con-
straint programming, pp. 71–80. In: IEEE Computer Society Press (1994)

25. Saraswat, V., Jagadeesan, R., Gupta, V.: Default timed concurrent constraint pro-
gramming. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 272–285, Jan 1995

26. Saraswat, V.A., Rinard, M., Panangaden, P.: Semantic foundations of concurrent
constraint programming. In: POPL 1991, pp. 333–352. ACM (1991)

27. Sarria, G., Rueda, C.: Real-time concurrent constraint programming. In: 34th Latin
American Conference on Informatics (CLEI 2008), pp. 379–391. CLEI (2008)

28. Verdejo, A., Mart́ı-Oliet, N.: Two case studies of semantics execution in Maude:
CCS and LOTOS. Form. Methods Syst. Design 27(1–2), 113–172 (2005)

https://doi.org/10.1007/978-3-540-89982-2_56
https://doi.org/10.1007/978-3-540-89982-2_56
https://doi.org/10.1007/978-3-319-77935-5_29

Approximating Any Logic Program
by a CS-Program

Yohan Boichut(B), Vivien Pelletier, and Pierre Réty

LIFO - Université d’Orléans, B.P. 6759, 45067 Orléans Cedex 2, France
{yohan.boichut,vivien.pelletier,pierre.rety}@univ-orleans.fr

Abstract. In this paper, we propose an extension of a technique trans-
forming logic programs into a particular class of logic programs called
CS-programs. Up to now, this technique is a semi-algorithm preserving
the least Herbrand model. We integrate in this technique a process of
generalization. Thanks to it, we are able to make the computation (the
transformation) terminate and if we force the computation to terminate
then we obtain a CS-program whose least Herbrand model contains the
initial one. In this way, we can tackle successfully reachability problems
that are out of the scope of techniques using regular approximations and
also of the initial transformation technique (for which computations do
not terminate).

Keywords: Logic program transformation · Reachability problem
Approximation · CS-program

1 Introduction

Some authors have introduced synchronized tree languages, initially expressed
by grammar-like formalisms [4,6], and more recently expressed by some logic pro-
grams called CS-programs [7]. This class of languages is closed under intersection
with a regular language and moreover, emptiness is decidable. A CS-program is
a set of Horn clauses satisfying some constraints (bodies should be linear and
without function symbols). In [8], the authors have proposed a semi-algorithm
transforming any set of Horn clauses into a CS-program (recalled in Sect. 2).
When the algorithm ends, one obtains a CS-program that recognizes exactly
the same language, i.e. the same least Herbrand model, as the initial set of Horn
clauses. However, the algorithm may not terminate, even if the initial set of Horn
clauses could have been specified by a CS-program without loss of precision i.e.
with the same Herbrand model.

In this paper, we propose an improvement of this technique, called general-
ization. Using generalization, we are able to make the initial technique always
terminate. However the price to pay is that the obtained CS-program may have
a language larger than the initial one (Sect. 3). Two examples are presented in
Sect. 4. The former deals with a reachability problem that cannot be achieved

c© Springer Nature Switzerland AG 2018
V. Rusu (Ed.): WRLA 2018, LNCS 11152, pp. 245–260, 2018.
https://doi.org/10.1007/978-3-319-99840-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99840-4_14&domain=pdf

246 Y. Boichut et al.

using a regular approximation [1]. The original semi-algorithm does not termi-
nate whereas the language to construct is empty. We show that by using the
generalization process, the procedure terminates and computes the empty lan-
guage. The latter shows that we can perform program verification using the
technique detailed in this paper. Moreover, the detailed example is out of the
scope of techniques computing regular approximations (using tree automata in
[3] or tree transducers in [2]). Before concluding, we discuss in Sect. 5 about the
possibilities for improving this technique.

2 Preliminaries

Consider two disjoint sets, Σ a finite ranked alphabet and Var a set of variables.
Each symbol f ∈ Σ has a unique arity, denoted by ar(f). The notions of first-
order term, position and substitution are defined as usual. TΣ∪Var denotes the set
of terms built over Σ and Var. TΣ is the set of ground terms (without variables)
over Σ. For a term t, Var(t) is the set of variables of t, Pos(t) is the set of
positions of t.

Example 1. Let Σ be a set of functional symbols such that Σ = {f, g, a, b} where
ar(f) = 2, ar(g) = 1 and ar(a) = ar(b) = 0. Let Var be a set of variables such
that Var = {x, y}. Let t and t′ be two terms defined such that t = f(g(a), x)
and t′ = f(g(a), b). Thus, t ∈ TΣ∪Var and t′ ∈ TΣ . Moreover, Var(t) = {x} and
Pos(t) = Pos(t′) = {ε, 1, 11, 2}.

In the following, we consider the framework of pure logic programming, and
the class of synchronized tree-tuple languages defined by CS-clauses [7,8].

Let us recall some usual definitions. We consider a set of predicate sym-
bols Pred. P \n ∈ Pred means that P is a predicate symbol and its arity is n.
Given the set of predicate symbols Pred, P \n ∈ Pred and t1, . . . , tn ∈ TΣ∪Var,
P (t1, . . . , tn) forms an atom. A Horn clause H ← B is composed of a head H
and a body B. The head of a clause is an atom and the body is a sequence of
atoms that can be empty.

Example 2. Let Pred be a set of predicate symbols such that Pred = {P
\3
0 , P

\1
1 ,

P
\2
2 }. Let Σ be a set of functional symbols such that Σ = {f, g, a, b} where

ar(f) = 2, ar(g) = 1 and ar(a) = ar(b) = 0. Let Var be a set of variables such
that Var = {x, y}. Thus,

– P0(f(x, g(y)), a, g(x)) ← P1(x), P2(b, y) is a Horn clause;
– P0(f(x, g(y)), a, g(x)) ← is also a Horn clause.

We will use letters G or B for sequences of atoms, and A or H for atoms. We
denote by A ∈ G that the atom A occurs in the sequence G. We also denote by
B ⊆ G that B is a sequence of atoms whose each atom is an atom of G. G \ B
represents a sequence of atoms such that each atom of G \ B occurs in G but
not in B. An empty sequence of atoms is denoted by ∅. Let G be a sequence of
atoms. We denote by G[A ← B] the substitution of the atom A occurring in G
by the sequence of atoms B.

Any set of Horn clauses is considered as a logic program.

Approximating Any Logic Program by a CS-Program 247

2.1 Resolution

Definition 1. Given a logic program Prog and a sequence of atoms G, G
derives into G′ by a resolution step if there exist a clause1 H ← B in Prog
and an atom A ∈ G such that A and H are unifiable by the most general unifier
σ (then σ(A) = σ(H)) and G′ = σ(G)[σ(A) ← σ(B)]. It is written G �σ G′.

Sometimes, we will write G �[H←B,σ] G′ to indicate the clause used by the
resolution step.

Example 3. Let Prog = {P (x1, g(x2)) ← Q(x1, x2).} be a logic program, and
consider G = P (f(x), y). Thus, P (f(x), y) �σ1 Q(f(x), x2) with σ1 = [x1/f(x),
y/g(x2)].

We consider the transitive closure �+ and the reflexive-transitive closure �∗

of �. G1 �∗
Prog G2 means that G2 can be derived from G1 using the clauses of

Prog.
Let Mod(Prog) denote the least Herbrand model of Prog. It is well known

that resolution is complete.

Theorem 1. Let A be a ground atom. A ∈ Mod(Prog) iff A �∗
Prog ∅.

We also define the notion of language.

Definition 2. Let Prog be a set of Horn clauses and P a predicate symbol.
Let LProg(P) be the language of ground term-tuples recognized by P , defined by
LProg(P) = {〈t1, . . . , tn〉 | P (t1, . . . , tn) ∈ Mod(Prog)}.
Example 4. Let Prog be a set of Horn clauses such that Prog = {P0(s(x), s(y)) ←
P0(x, y) P0(0, 0) ←}. Thus, LProg(P0) = {〈sn(0), sn(0)〉 | n ≥ 0}.

Note that LProg(P) = {〈〉} means that P has no parameter and moreover
P �∗

Prog ∅. Thus, {〈〉} 	= ∅.

2.2 CS-Program

CS-programs2 are a particular syntactical class of logic programs [7,8] recogniz-
ing synchronized tree-(tuple) languages.

This class of language is closed under union and intersection with a regu-
lar language (in quadratic time) and has decidable membership and emptiness
problems (in linear time). Synchronized tree-(tuple) languages include regular
languages. Let B be a sequence of atoms. B is flat if for each atom P (t1, . . . , tn)
of B, all terms t1, . . . , tn are variables. B is linear if each variable occurring in
B (possibly at sub-term position) occurs only once in B. Note that the empty
sequence of atoms (denoted by ∅) is flat and linear.

1 We assume that the clause and G are renamed apart in order to have distinct vari-
ables.

2 In former papers, synchronized tree-tuple languages were defined thanks to sorts of
grammars, called constraint systems. Thus “CS” stands for Constraint System.

248 Y. Boichut et al.

Definition 3. A CS-clause is a Horn clause H ← B s.t. B is flat and linear.
A CS-program Prog is a logic program composed of CS-clauses. Pred(Prog)
denotes the set of predicate symbols of Prog.

For a CS-program Prog and a predicate symbol P , LProg(P) is called a
synchronized language.

2.3 Transforming Any Logic Program into a CS-Program

In [7,8], the authors have proposed a technique allowing to transform any logic
program into an equivalent CS-program. However, their technique is a semi-
algorithm in the sense that it may not terminate. In this section, we succinctly
recall their technique, which is composed of two inference rules called Unfolding
and Definition introduction.

Definition 4. A definition is a pair of the form P (x1, . . . , xn) � B, where P is
a predicate symbol, B is a sequence of atoms, and {x1, . . . , xn} ⊆ Var(B).

Semantically speaking, P (x1, . . . , xn) � B is considered as an equivalence. How-
ever, � is not considered as symmetric, and B is called the body of the definition.

In their approach, given a logic program Prog, the authors initially define a
set of new definitions in such a way that they associate a flat atom P ′(x1, . . . , xn),
where P ′ is new predicate symbol not occurring in Prog, with a flat atom
P (x1, . . . , xn) where P \n is a predicate symbol occurring in Prog. This is an
initial configuration of Dnew in the following. In such a way, considering that
Prog′ is the result of the transformation of Prog by their technique, the authors
specify that they expect: LProg′(P ′) = LProg(P).

In [7,8], a state is tuple 〈Prog,Dnew,Ddone, Cnew, Cout〉 where Prog is a set
of Horn clauses, Dnew and Ddone are two sets of definitions, Cnew is a set of
clauses and Cout is a set of CS-clauses. Let S and S′ be two states. We write
S ⇒U S′ if S′ can be deduced from S using the Unfolding rule (see Definition 5).
We also write S ⇒I S′ if S′ can be deduced from S using the Definition introduc-
tion rule (see Definition 8). We also write S ⇒ S′ that S ⇒I S′ or S ⇒U S′. The
reflexive and transitive closure of ⇒ is denoted by ⇒∗. An initial state is of the
form 〈Prog,Dnew, ∅, ∅, ∅〉. A final state is of the form 〈Prog, ∅,Ddone, ∅, Cout〉.
In the following, � denotes disjoint union.

In a final state, Cout is the final CS-program resulting from the transforma-
tion of Prog according to the initial set of definitions Dnew.

Definition 5 (Unfolding [8]). Pick a definition in Dnew, select one or more
of its body atoms according to some selection rules, and unfold them with all
matching clauses of Prog. Formally:

〈Prog,Dnew � {L � R � {A1, . . . , An}},Ddone, Cnew, Cout〉
〈Prog,Dnew,Ddone ∪ {L � R � {A1, . . . , An}}, Cnew ∪ C,Cout〉

where C is the set of all clauses μ(L ← R∪B1∪. . .∪Bn) such that each Hi ← Bi

is a clause in Prog for i = 1, . . . , n and such that the simultaneous most general
unifier μ of (A1, . . . , An) and (H1, . . . , Hn) exists.

Approximating Any Logic Program by a CS-Program 249

Example 5. 〈{Q(s(x), s(y)) ← Q(x, y)}, {P (z) � Q(z, z)}, ∅, ∅, ∅〉
⇒U 〈{Q(s(x), s(y)) ← Q(x, y)}, ∅, {P (z) � Q(z, z)}, {P (s(y)) ← Q(y, y)}, ∅〉.
Basically, the Unfolding rule generates new clauses. These new clauses are then
handled by the Definition introduction rule in order to enrich the output program
Cout.

The Definition introduction rule either introduces a new predicate symbol,
or reuses a predicate symbol being the head of an existing definition.

Let us explain the aim of the Definition introduction rule. Its role is to trans-
form a non-CS-clause of Cnew into a CS-one, by replacing its body by a flat and
linear body, using a new or an existing definition. Some preliminary definitions
are needed.

Definition 6 ([8]). Let H ← B be a clause, and let B′ be a subset of B such
that Var(B′) ∩ Var(B \ B′) = ∅ (i.e. B′ shares no variables with the rest of the
body). A definition L � R matches B′ if there exists a variable renaming ρ for
R such that ρR = B′ and Var(B′) \ Var(H) = Var(ρR) \ Var(ρL). And we say
that the definition matches the body atoms via ρ.

From a given sequence of atom B, we need to extract some sub-sequences
of atoms sharing variables. More precisely, if an atom is in such a sub-sequence,
either it is the only one within or it contains at least one variable such that
there is another atom in the same sub-sequence sharing this variable. But, for
any extracted sub-sequences B′ and B′′, one has Var(B′) ∩ Var(B′′) = ∅. The
following definition explains how we build such sub-sequences.

Definition 7. We define � as being the smallest equivalence relation between
atoms such that for all atoms A, A′, V ar(A) ∩ V ar(A′) 	= ∅ =⇒ A � A′.
An equivalence class under � is called a chain.

For an atom set or a clause or a definition t, Chains(t) denotes the set
of chains contained in the atom set t or in the body of the clause or of the
definition t.

Example 6. Chains(P (x, y, v) ← P (x, z), Q(y), P (x, v), Q(z)) = {{P (x, z),
Q(z), P (x, v)}, {Q(y)}}.
Definition 8 (Definition introduction [8])

〈Prog,Dnew,Ddone, Cnew � {H ← B1 � . . . � Bn}, Cout〉
〈Prog,Dnew ∪ D,Ddone, Cnew, Cout ∪ {H ← L1, . . . , Ln}〉

such that Chains(B1 � . . . � Bn) = {B1, . . . , Bn}, and for each i ∈ {1, . . . , n}

Li =

⎧
⎪⎪⎨

⎪⎪⎩

ρL if Ddone contains a definition L � R matching Bi via ρ

Pi(x1, . . . , xk) otherwise, where Pi is a new predicate symbol and
{x1, . . . , xk} = Var(Bi) ∩ Var(H).

and D is the set of all new definitions Pi(x1, . . . , xk) � Bi.

250 Y. Boichut et al.

Example 7. Let us consider Example 5 again. Using Unfolding and Definition
introduction rules, we get:

〈{Q(s(x), s(y)) ← Q(x, y)}, {P (z) � Q(z, z)}, ∅, ∅, ∅〉
⇒U 〈{Q(s(x), s(y)) ← Q(x, y)}, ∅, {P (z) � Q(z, z)}, {P (s(y)) ← Q(y, y)}, ∅〉
⇒I 〈{Q(s(x), s(y)) ← Q(x, y)}, ∅, {P (z) � Q(z, z)}, ∅, {P (s(y)) ← P (y)}〉. Note
that Cout = {P (s(y)) ← P (y)} is a CS-program.

A complete example can be found in [8], Example 10.

3 Making the Limet-Salzer Technique [8] Terminate

We propose a full example in order to show that this technique may not terminate
even on simple inputs.

Example 8. We want to transform the following logic program Prog according
to an initial set of definitions Dnew defined such that Dnew = {G � P0}.

Prog =

⎧
⎨

⎩

P (s(x), s(y), z) ← P (x, y, z); P (x, y, z) ← P (s(x), s(y), z);
P (0, s(x), 0) ←; P (s(x), 0, 0) ←;
P0 ← P (0, 0, 0)

⎫
⎬

⎭

An expert reader may note that Prog is not a CS-program and LProg(P0) =
∅. Consequently, if the transformation of Prog results in a CS-program Prog′

then LProg′(G) will be empty as well.
So, let us define D0

new such that D0
new = {G � P0}. We start from the initial

state S0 = 〈Prog, {G � P0}, ∅, ∅, ∅〉. In the following, we use semi-column to
separate clauses and definitions in their respective sets.

〈Prog, {G � P0}, ∅, ∅, ∅〉
⇒U 〈Prog, ∅,D0

done, {G ← P (0, 0, 0)}, ∅〉
where D0

done = {G � P0}
⇒I 〈Prog, {Pnew0 � P (0, 0, 0)},D0

done, ∅, {G ← Pnew0}〉
⇒U 〈Prog, ∅,D1

done, {Pnew0 ← P (s(0), s(0), 0)}, {G ← Pnew0}〉
where D1

done = D0
done ∪ {Pnew0 � P (0, 0, 0)}

⇒I 〈Prog, {Pnew1 � P (s(0), s(0), 0)},D1
done, ∅, {G ← Pnew0 ; Pnew0 ← Pnew1}〉

⇒U 〈Prog, ∅,D2
done, {Pnew1 ← P (s2(0), s2(0), 0); Pnew1 ← P (0, 0, 0)}, C2

out〉
where D2

done = D1
done ∪ {Pnew1 � P (s(0), s(0), 0)}

and C2
out = {G ← Pnew0 ; Pnew0 ← Pnew1}

⇒I 〈Prog, {Pnew2 � P (s2(0), s2(0), 0)},D2
done, ∅, C3

out〉
where C3

out = {G ← Pnew1 ; Pnew1 ← Pnew2}
⇒∗ . . .

So the technique does not terminate because each new step ⇒I introduces a new
definition of the form Pnewi

� P (si(0), si(0), 0).

Now, we show in Sects. 3.2 and 3.3 how one can make the technique proposed
in [8] terminate using the generalization process introduced in Sect. 3.1.

Approximating Any Logic Program by a CS-Program 251

3.1 Generalization

In Definition 9, we introduce the process of Generalization inspired from [9]. In
a few words, generalization transforms a clause into another one, whose least
Herbrand model includes the original one.

Definition 9. A mapping from the set of clauses to itself is called generalization
strategy (and denoted Gen), if for each clause H ← B, there exists a substitution
σ s.t. σ(Gen(H ← B)) = (H ← B).

For example, P (f(x)) ← Q(g(x)) can be generalized into P (f(x)) ← Q(y).
Lemma 1 shows that for each clause that could be generalized, a resolution

step involving it before transformation still able to be performed after general-
ization process.

Lemma 1. Let Prog be a logic program, H ← B be a clause, and G be a
sequence of atoms. Let us write Prog1 = Prog ∪{H ← B} and Prog2 = Prog ∪
{Gen(H ← B)}.
If G �∗

Prog1
∅, then G �∗

Prog2
∅.

Proof. By induction on the length n of the derivation G �∗
Prog1

∅.

– n = 0. Then G = ∅, therefore G �∗
Prog2

∅.
– n ≥ 1.

If G �∗
Prog1

∅ does not use the clause H ← B, then G �∗
Prog ∅, consequently

G �∗
Prog2

∅.
Otherwise, the derivation writes G �∗

Prog G1 �H←B G2 �∗
Prog1

∅. Note
that the length of G2 �∗

Prog1
∅ is strictly less than n. By induction hypothesis,

we get G2 �∗
Prog2

∅.
On the other hand, since G1 �H←B G2, we get G1 �Gen(H←B) G′

2 and there
exists a substitution σ s.t. σ(G′

2) = G2. Moreover, since G2 �∗
Prog2

∅, we get
G′

2 �∗
Prog2

∅. Finally, G �∗
Prog G1 �Gen(H←B) G′

2 �∗
Prog2

∅, i.e. G �∗
Prog2

∅.

Note that using the same notations than in Lemma 1, G �∗
Prog2

∅ =⇒
G �∗

Prog1
∅ does not hold. Let us illustrate it by a short example.

Example 9. Let Prog be a logic program such that Prog = {P0(f(x), y) ←
Q(g(x), y); Q(g(a), b) ←; Q(c, d) ←}. Let Gen be a generalization strategy
defined such that Gen(P0(f(x), y) ← Q(g(x), y)) = P0(f(x), y) ← Q(z, y). Let
us compare Prog and Prog′ where Prog′ is the logic program obtained from
Prog by replacing the clause P0(f(x), y) ← Q(g(x), y) by Gen(P0(f(x), y) ←
Q(g(x), y)). Note that P0(f(a), c) �∗

Prog′ ∅ when P0(f(a), c) 	�∗
Prog ∅. However,

note also that P0(f(a), b) �∗
Prog ∅ and P0(f(a), b) �∗

Prog′ ∅ as well.

252 Y. Boichut et al.

Corollary 1. Mod(Prog ∪ {H ← B}) ⊆ Mod(Prog ∪ {Gen(H ← B)}).

In our context, we just expect that the least Herbrand model of the generated
program contains (and does not necessarily preserve) the least Herbrand model
of the initial logic program. So, we may replace a clause by a more general one.

In [9], the authors want to preserve the least Herbrand model in an exact
way. For a clause of the form H ← A1, . . . , An, A′′

1 , . . . , A′′
m, they define an atom

sequence A′
1, . . . , A

′
n that generalizes A1, . . . , An, i.e. there exists a substitu-

tion σ such that σ(A′
1, . . . , A

′
n) = A1, . . . , An. Then they define a new clause

GenP (x1, . . . , xk) ← A′
1, . . . , A

′
n where V ar(A′

1, . . . , A
′
n) = {x1, . . . , xk}, and

replace the initial clause by: H ← σ(GenP (x1, . . . , xk)), A′′
1 , . . . , A′′

m Thus, the
least Herbrand model is preserved, but this does not help the technique proposed
in [8] to terminate.

3.2 Integration of Generalization in [8]

Let Gen be a generalization strategy. Let us introduce a new inference rule called
Generalization. Given a state S = 〈Prog,Dnew,Ddone, Cnew, Cout〉, the idea is
to transform a clause of Cnew into a more general one.

Definition 10 (Generalization)

〈Prog,Dnew,Ddone, Cnew � {H ← B}, Cout〉
〈Prog,Dnew,Ddone, Cnew � {Gen(H ← B)}, Cout〉

S ⇒G S′ means that S′ is computed from S using the generalization rule.
Consequently, we extend the notation ⇒ in such a way: S ⇒ S′ iff S ⇒I S′ or
S ⇒U S′ or S ⇒G S′.

3.3 Results

In this section, we show in Theorem 2 that, using the generalization process,
we are able to compute a CS-program whose least Herbrand model includes
the one of the original set of Horn clauses. We also show in Theorem 3 that
the generalization process helps in making the technique proposed in [8] always
terminate. As usual, Prog and Σ are assumed to be finite sets.

To prove Theorem 2, we first need to formalize the semantics of an arbitrary
state, which will be preserved when applying an inference rule.

Notations: Consider a logic program Prog, a set of clauses C, and a set of
definitions D. Let Body(C) = {B | (H ← B) ∈ C}, Head(D) = {H | H � B ∈
D}, D̂ = {(H ← B) | H � B ∈ D}. Note that D̂ is a set of clauses.

Given a state S = 〈Prog,Dnew,Ddone, Cnew, Cout〉, let Ŝ = Prog ∪ D̂new ∪
Cnew ∪ Cout. Note that Ŝ does not include Ddone.

Approximating Any Logic Program by a CS-Program 253

Definition 11. The state S = 〈Prog,Dnew,Ddone, Cnew, Cout〉 is said coherent
if

– Pred(Cout) ∩ Pred(Prog) = ∅,
– Pred(Body(Dnew)) ⊆ Pred(Prog) and Pred(Body(Cnew)) ⊆ Pred(Prog),
– and for all predicate symbol P occurring in Head(Ddone), LD̂done∪Prog(P) ⊆

LŜ(P) (i.e. Ddone is redundant),
– and every predicate symbol occurring in Head(Dnew∪Ddone) occurs only once

in D̂new ∪ D̂done and never in Prog nor in Body(Cnew).

Example 10. Let Prog be the set of clauses as defined in Example 8. Let S be a
state such that S = 〈Prog,Dnew,Ddone, Cnew, Cout〉 where Dnew = ∅, Ddone =
{G � P0; Pnew0 � P (0, 0, 0); Pnew1 � P (s(0), s(0), 0)}, Cnew = {Pnew1 ←
P (s2(0), s2(0), 0); Pnew1 ← P (0, 0, 0)} and Cout = {G ← Pnew0 ; Pnew0 ←
Pnew1}. Thus, Pred(Cout) = {G; Pnew0 ; Pnew1} and Pred(Prog) = {P0; P}.
One has also:

– Head(Ddone) = {G; Pnew0 ; Pnew1};
– D̂done ∪ Prog = {G ← P0; Pnew0 ← P (0, 0, 0); Pnew1 ← P (s(0), s(0), 0);

P (s(x), s(y), z) ← P (x, y, z); P (x, y, z) ← P (s(x), s(y), z); P (0, s(x), 0) ←;
P (s(x), 0, 0) ←; P0 ← P (0, 0, 0)};

– Ŝ = {P (s(x), s(y), z) ← P (x, y, z); P (x, y, z) ← P (s(x), s(y), z); P (0, s(x),
0) ←; P (s(x), 0, 0) ←; P0 ← P (0, 0, 0); Pnew1 ← P (s2(0), s2(0), 0); Pnew1 ←
P (0, 0, 0); G ← Pnew0 ; Pnew0 ← Pnew1};

– Head(Dnew ∪ Ddone) = {G; Pnew0 ; Pnew1};
– D̂new ∪ D̂done = {G ← P0; Pnew0 ← P (0, 0, 0); Pnew1 ← P (s(0), s(0), 0)};
– Body(Cnew) = {P (s2(0), s2(0), 0); P (0, 0, 0)}.

Thus, one can check that

– Pred(Cout) ∩ Pred(Prog) = ∅;
– Pred(Body(Dnew)) ⊆ Pred(Prog) and Pred(Body(Cnew)) ⊆ Pred(Prog);
– For any P ∈ Head(Ddone), LD̂done∪Prog(P) = ∅ and LŜ(P) = ∅. Conse-

quently, LD̂done∪Prog(P) ⊆ LŜ(P);
– For any P ∈ Head(Dnew ∪ Ddone) = {G; Pnew0 ; Pnew1}, P occurs only once

in D̂done ∪ D̂new and moreover, P /∈ Pred(Prog) ∪ Pred(Body(Cnew)).

Consequently, S is coherent.

Lemma 2. If S is coherent and S ⇒ S′, then S′ is coherent.

Proof. We proceed by case analysis.

– Let us study the application of the Unfolding rule. Suppose that S′ = 〈Prog,
D′

new,D′
done, C

′
new, C ′

out〉 and that S ⇒U S′. Suppose also that S is coherent.
• By Definition 5, C ′

out = Cout. Since S is coherent, Pred(C ′
out) ∩

Pred(Prog) = ∅.

254 Y. Boichut et al.

• By Definition 5, D′
new ⊂ Dnew. Since S is coherent, one

has Pred(Body(Dnew)) ⊆ Pred(Prog). Consequently, one has
Pred(Body(D′

new)) ⊆ Pred(Prog). On the other hand, according to Def-
inition 5, C ′

new = Cnew ∪ C. Since S is coherent, Pred(Body(Cnew))
⊆ Pred(Prog). Let us prove that Pred(Body(C)) ⊆ Pred(Prog). C is
composed of clauses of the form μ(L ← R∪B1∪ . . .∪Bn). R is a sequence
of atoms from Body(Dnew) and Pred(Body(Dnew)) ⊆ Pred(Prog)
since S is coherent. B1, . . . , Bn are sequences of atoms that come from
Body(Prog). Consequently, Pred(B1 ∪ . . . ∪ Bn) ⊆ Pred(Prog). So,
Pred(Body(C ′

new)) ⊆ Pred(Prog)(a).
• By definition Ŝ′ = Prog ∪ D̂′

new ∪C ′
new ∪C ′

out. According to Definition 5,
D̂′

new = D̂new \{L ← R�{A1, . . . , An}}. C ′
new is built from the unfolding

of the clause L ← R � {A1, . . . , An} according to Prog. So, one can
deduce that the substitution of a clause by a set of clauses resulting of an
unfolding step on this clause preserves the Herbrand model. Consequently,
for all predicate symbol P occurring in Head(D′

done), LD̂′
done∪Prog(P) ⊆

LŜ′(P).
• According to Definition 5, Dnew ∪ Ddone = D′

new ∪ D′
done and then

Head(D′
new ∪ D′

done) = Head(Dnew ∪ Ddone). Consequently, every pred-
icate symbol P occurring in Head(D′

new ∪ D′
done) occurs only once in

D̂′
new ∪ D̂′

done. Thus, if S is coherent then for all predicate symbol P
occurring in Head(D′

new ∪ D′
done), P does not occur in Prog. Finally,

from (a) every predicate symbol occurring in Body(C ′
new) is a predicate

symbol of Pred(Prog). Consequently, every predicate symbol occurring
in Body(C ′

new) cannot be a symbol of Head(D′
new ∪ D′

done).
Thus, if S ⇒U S′ and S is coherent then so is S′.

– Let us now study the application of the Definition-introduction rule. Suppose
that S′ = 〈Prog, D′

new,D′
done, C

′
new, C ′

out〉 and that S ⇒I S′. Suppose also
that S is coherent. According to Definition 8, Ddone = D′

done, C ′
out = Cout ∪

{H ← L1, . . . , Ln}, C ′
new = Cnew\{H ← B1�. . .�Bn} and D′

new = Dnew∪D.
• Since S is coherent, one has Pred(Cout)∩Pred(Prog) = ∅. Consequently,

one has to check Pred({H ← L1, . . . , Ln}) ∩ Pred(Prog) ?= ∅. According
to Definition 8, one can deduce that each Li has either a new predicate
symbol or a predicate symbol occurring in Head(Ddone). So, if Li has a
new predicate symbol then this symbol does not occur in Pred(Prog).
Otherwise, Li has a predicate symbol occurring in Head(Ddone). Since
S is coherent, from fourth item of Definition 11, every predicate symbol
P occurring in Head(Dnew ∪ Ddone) never occurs in Prog. Consequently
one can deduce that Pred(C ′

out) ∩ Pred(Prog) = ∅.
• According to Definition 8, D′

new = Dnew ∪ D. Since S is coherent,
Pred(Body(Dnew)) ⊆ Pred(Prog). Let us prove Pred(Body(D)) ⊆
Pred(Prog). Body(D) is composed of atoms that come from
Body(Cnew). Since S is coherent, Pred(Body(Cnew)) ⊆ Pred(Prog). So,
Pred(Body(D′

new)) ⊆ Pred(Prog). On the other hand, from Definition 8,
C ′

new ⊂ Cnew and since S is coherent, one has Pred(Body(Cnew)) ⊆
Pred(Prog). Consequently, Pred(Body(C ′

new)) ⊆ Pred(Prog).

Approximating Any Logic Program by a CS-Program 255

• According to [9], one can deduce that the definition introduction transfor-
mation does not change the Herbrand model from Ŝ to Ŝ′. Consequently,
one can deduce that for all predicate symbol P occurring in Head(D′

done),
LD̂′

done∪Prog(P) ⊆ LŜ′(P).
• Let us study Head(D′

new ∪D′
done). By construction, one can deduce that

Head(D′
new ∪ D′

done) = Head(Dnew) ∪ Head(D) ∪ Head(Ddone). Let us
now focus on D̂′

new∪D̂′
done. Once again, by construction, one can deduce

that D̂′
new ∪ D̂′

done = D̂new ∪ D̂ ∪ ˆDdone. According Definition 8, the
definitions occurring in D are all of the form Pi(x1, . . . , xk) � Bi and Pi

is a new predicate symbol. Moreover, Bi is composed only of predicate
symbols occurring in Pred(Prog). For any predicate symbol P occurring
in Head(Dnew)∪Head(Ddone), P does not occur in D̂. Since S is coherent,
P occurs only once in D̂new ∪ D̂done. It is also true that for any predicate
symbol Pi in Head(D), Pi is a new predicate symbol. So, Pi cannot occur
anywhere else than within its current definition. Consequently, for any
predicate symbol P occurring in D′

new ∪ D′
done, P occurs only once in

D̂′
new ∪ D̂′

done. Trivially, one can deduce that P does not occur neither in
Prog nor in Body(C ′

new).
Thus, if S ⇒I S′ and S is coherent then so is S′.

– Suppose that S is coherent and S ⇒G S′. The Generalization rule only
replaces a clause H ← B of Cnew by Gen(H ← B), which does not
change the predicate symbols. So, one can deduce that the first, second and
fourth items of Definition 11. Trivially, if Now, let S′ be defined such that
S′ = 〈Prog,Dnew,Ddone, C

′
new, Cout〉, and let P be a predicate symbol occur-

ring in Head(Ddone). Then LD̂done∪Prog(P) ⊆ LŜ(P) because S is coherent,
and LŜ(P) ⊆ LŜ′(P) thanks to Corollary 1. Thus LD̂done∪Prog(P) ⊆ LŜ′(P).

Lemma 3. Let S = 〈Prog,Dnew,Ddone, Cnew, Cout〉 be a coherent state. Sup-
pose S ⇒ S′ and let us write S′ = 〈Prog,D′

new,D′
done, C

′
new, C ′

out〉. Then
every predicate symbol P occurring in Head(Dnew ∪ Ddone) also occurs in
Head(D′

new ∪ D′
done), and LŜ(P) ⊆ LŜ′(P).

Proof. It comes from [9] for Unfolding and Definition-introduction rules, and
from Corollary 1 for the Generalization rule.

Theorem 2 (Extension of [8]). Consider a strategy of generalization Gen and
an initial state S0 = 〈Prog,D0

new, ∅, ∅, ∅〉 s.t. each predicate symbol occurring
in Head(D0

new) occurs only once in D0
new ∪ Prog. If there exists a state Sn

such that S0 ⇒∗ Sn and Sn = 〈Prog, ∅,Dn
done, ∅, Cn

out〉, then for any definition
P (x1, . . . , xn) � B ∈ D0

new, LProg∪D̂0
new

(P) ⊆ LCn
out

(P).

Proof. Note that S0 is coherent. From Lemma 2, Sn is also coherent. From
Lemma 3, LProg∪D̂0

new
(P) = LS0(P) ⊆ LSn(P). However, since Sn is coherent,

LSn(P) = LCn
out

(P). Consequently LProg∪D̂0
new

(P) ⊆ LCn
out

(P).

Let us show how generalization helps for the termination of [8].

256 Y. Boichut et al.

Theorem 3 (Termination). For any program Prog and any coherent initial
state S0 = 〈Prog,D0

new, ∅, ∅, ∅〉, there always exists a strategy of generalization
Gen and a state S such that S0 ⇒∗ Sn and Sn = 〈Prog, ∅,Dn

done, ∅, Cn
out〉.

Proof. Consider an arbitrary coherent state S = 〈Prog,Dnew,Ddone, Cnew,
Cout〉. Applying once the unfolding rule on S strictly decreases the size of Dnew.
Then applying many times this rule on S necessarily terminates. Applying once
the definition-introduction rule on S strictly decreases the size of Cnew. Then
applying many times this rule on S necessarily terminates. Therefore an infi-
nite derivation using those rules necessarily includes infinitely many steps with
the unfolding rule (and also with the definition-introduction rule), which makes
Ddone bigger and bigger (the heads of definitions are pairwise different since the
states are coherent). Thus an infinite derivation makes Ddone infinite.

Let Gen be the generalization strategy such that for every clause H ←
A1 (t11, . . . , t

1
n1

), . . . , Am(tm1 , . . . , tmnm
), we have Gen(H ← A1(t11, . . . , t

1
n1

),
. . . , Am(tm1 , . . . , tmnm

)) = (H ← A1(x1
1, . . . , x

1
n1

), . . . , Am(xm
1 , . . . , xm

nm
))

where x1
1, . . . , xm

nm
are new fresh variables not occurring in H ∪ ⋃

i=1,...,m

V ar(Ai(ti1, . . . , t
i
ni

)).
Assume that a generalization step is applied as soon as a clause is added

into Cnew. Then every clause of Cnew is of the form H ← A1(x1
1, . . . , x

1
n1

),
. . . , Am(xm

1 , . . . , xm
nm

), and note that Chains(A1(x1
1, . . . , x

1
n1

), . . . , Am(xm
1 ,

. . . , xm
nm

)) = {{A1(x1
1, . . . , x

1
n1

)}, . . . , {Am(xm
1 , . . . , xm

nm
)}}.

Indeed, the freshness of variables ensures that each variable introduced by
Gen occurs only once.

Consequently, in a derivation starting from S0, every definition added in
Dnew, and then in Ddone, is of the form P i

new � Ai(x1
i , . . . , x

i
ni

) and Ai ∈
Pred(Prog). So, one can deduce that using such a strategy, the size of Ddone

is bounded by |D0
new| + |Pred(Prog)|. Therefore, the derivation issued from

S0 terminates and there exists a state Sn = 〈Prog, ∅,Dn
done, ∅, Cn

out〉 such that
S0 ⇒∗ Sn.

4 Example

In this section, we tackle a reachability problem described in [1], which cannot be
handled successfully using regular approximations (using tree automata in [3] or
tree transducers in [2]). This problem can be reduced to the problem P0

?
�Prog ∅

in Example 8. As we have shown in Example 8, the original technique does not
terminate.

Now, consider the generalization strategy Gen defined by: for any clause
H ← P (s(0), s(0), 0), one has Gen(H ← P (s(0), s(0), 0)) = H ← P (x, x, z).
We also define Gen for any clause of the form H ← P (s(x), s(x), z) in such a

Approximating Any Logic Program by a CS-Program 257

way: Gen(H ← P (s(x), s(x), z)) = H ← P (y, y, z). If we apply a generalization
step after each unfolding step when it is possible, we get:

〈Prog, {G � P0}, ∅, ∅, ∅〉
⇒U 〈Prog, ∅,D0

done, {G ← P (0, 0, 0)}, ∅〉
where D0

done = {G � P0}
⇒G 〈Prog, ∅,D0

done, {G ← P (x, x, 0)}, ∅〉
⇒I 〈Prog, {Pnew0 � P (x, x, 0)},D0

done, ∅, {G ← Pnew0}〉
⇒U 〈Prog, ∅,D1

done, {Pnew0 ← P (s(x), s(x), 0)}, {G ← Pnew0}〉
where D1

done = D0
done ∪ {Pnew0 � P (x, x, 0)}

⇒G 〈Prog, ∅,D1
done, {Pnew0 ← P (x, x, 0)}, {G ← Pnew0}〉

⇒I 〈Prog, ∅,D1
done, ∅, {G ← Pnew0 ; Pnew0 ← Pnew0}〉

The derivation stops with Cout = {G ← Pnew0 ; Pnew0 ← Pnew0}. Note that
G 	�Cout

∅ and consequently, LCout
(G) = ∅. So, thanks to Theorem 2, one can

deduce that LProg(P0) = ∅.
We propose also a toy example but more practical in the sense that we want

to check a safety property on a simple program.

Example 11. Suppose there is the following sequence of instructions in program-
ming.

int x,y,xold,yold,z;
0. x <- readInt();
1. y <- readInt();
2. xold <- x
3. yold <- y
4. z <- x
5. x <- y
6. y <- z

The variables xold and yold store the initial values of x and y. We swap the
values of x and y thanks to the variable z. Then we want to check that the last
value of the variable y (resp. x) is actually the initial value of x (resp. y). It can
be reformulated in the following way: there do not exist two integers such that,
at the end of the execution, xold != y (resp. yold != x) i.e. the values haven’t
been switched since y (resp. x) should store the old value of x (resp. y).

We can specify the above program by a logic program Prog composed of the
following clauses:

1. PreadInt(s(x)) ← PreadInt(x)
2. PreadInt(0) ←
3. P �=(s(x), s(y)) ← P �=(x, y)
4. P �=(s(x), O) ←
5. P �=(0, s(y)) ←
6. P0(xold, x, yold, y, z) ← PreadInt(x)
7. P1(xold, x, yold, ynew, z) ← P0(xold, x, yold, y, z), PreadInt(ynew)
8. P2(x, x, yold, y, z) ← P1(xold, x, yold, y, z)

258 Y. Boichut et al.

9. P3(xold, x, y, y, z) ← P2(xold, x, yold, y, z)
10. P4(xold, x, yold, y, x) ← P3(xold, x, yold, y, z)
11. P5(xold, y, yold, y, z) ← P4(xold, x, yold, y, z)
12. P6(xold, x, yold, z, z) ← P5(xold, x, yold, y, z)
13. Pcheck(xold, y) ← P6(xold, x, yold, y, z), P �=(xold, y)

The clauses 1 and 2 specify the instruction readInt() in such a way that it
allows the construction of any peano integer. The clauses 3, 4 and 5 specify the
inequality test between two peano integers. Note that P �=(x, x) 	�∗ ∅. The clauses
6 to 12 encode the execution of the sequence of instructions from the program
point 0 to the program point 6. For i = 0, . . . , 6, Pi specifies the program state
by storing the values of the five variables at the program point i. Finally, Clause
13 specifies the property we want to check: do there exist two different integers
specifying that, at the end of the execution, y does not store the old value of x.

Note that Prog is not a CS-program. Indeed, Clause 13 has a non linear
body, consequently, it is not a CS-clause.

Consider the initial set of definitions Dnew = {G(x, y) � Pcheck(x, y)}. We
have developed a prototype requiring human interactions for unfolding or gen-
eralization. This prototype has been developed in Java and takes as input an
XML file specifying: the program to transform, a set of new definitions (Dnew)
and a set of generalization rules. Note that for this example, the generalization
is not needed for ensuring termination. But the motivation of this example is to
show that the nature of CS-program can be useful for program verification.

The output program of our prototype is the following:

**

No more new definition to unfold !

The CS-program obtained is:

[G(x#43,x#46)<-Pnew0(x#43,x#46),

Pnew0(x#89,x#93)<-Pnew1(x#89,x#93),

Pnew1(x#135,x#139)<-Pnew2(x#135,x#139),

Pnew2(x#181,x#182)<-Pnew3(x#181,x#182),

Pnew3(x#227,x#228)<-Pnew4(x#227,x#228),

Pnew4(x#274,x#274)<-Pnew5(x#274),

Pnew5(x#319)<-Pnew6(x#319),Pnew7,

Pnew6(x#364)<-Pnew8(x#364),

Pnew7<-Pnew7, Pnew7<-,

Pnew8(s(x#453))<-Pnew9(x#453),

Pnew8(0)<-Pnew10,

Pnew9(x#501)<-Pnew8(x#501)

Pnew10 <- fail

]

The language of the obtained CS-program is empty. Consequently, the prop-
erty is satisfied. Note that this example cannot be handled with regular approx-
imations (tree automata or tree transducers for instance). Note that, in the
output, we have obtain the clause Pnew10 ← fail. After analysing the output
trace of our prototype, we observe that in Pnew10 � P �=(0, 0) ∈ Ddone. Since

Approximating Any Logic Program by a CS-Program 259

P �=(0, 0) cannot be unfolded with Prog, we associate the fail value meaning
that the resolution does not succeed.

5 Discussion

The main difficulty is to define good generalization strategies, which ensure
termination while computing a good approximation of the least Herbrand model.
Even if some heuristics may generate some generalization rules, i.e. detecting
equalities of sub-terms and then representing those sub-terms by a same variable,
it remains difficult to control the computation without loosing the non-regularity
of the language.

In [5], the authors have combined tree automata, abstract interpretation
and Horn clauses. More precisely, they transform a set of Horn clauses into
tree automata. Then, they apply some refinement techniques on those automata
by eliminating some unfeasible traces detected after abstract interpretation of
clauses. Those new automata produce a new set of clauses and so on. . . An
interesting point in their approach is the way they use abstract interpretation.
We focus on the quality of the approximation in terms of language, but we may
have to reason in terms of quality of the analysis. Basically, Example 8 may be
more easier to solve if we consider that the clauses P (s(x), s(y), z) ← P (x, y, z)
and P (x, y, z) ← P (s(x), s(y), z) preserve the equality or inequality between the
two first parameters. Then, starting from P0 ← P (0, 0, 0), abstract interpretation
may help in order to show that clauses P (0, s(x), 0) ← and P (s(x), 0, 0) ← are
never concerned by the unfolding process. Another point of view is that an
analysis of the starting program may provide some clues in order to decide
where the generalization, in our approach, can be used for preserving relations
between terms.

6 Conclusion

CS-programs are particular logic programs that recognize synchronized tree lan-
guages (which include regular tree languages). This class of languages is closed
under intersection with a regular language and emptiness is decidable. The tech-
nique described in [8] attempts to transform any logic program into an equivalent
CS-program. This technique being a semi-algorithm, the computation may not
terminate. We propose an extension using generalization strategies, to make the
computation always terminate. However, the obtained CS-program may have
a least Herbrand model larger than the initial one. In this way, we can deal
with reachability problems and show that some terms are not reachable, as in
Sect. 4, whereas it cannot be proved using the initial technique or with regular
approximations [1].

However, the main difficulty is to define good generalization strategies, which
ensure termination while computing a good approximation of the least Herbrand
model. We intend to develop some heuristics to do it.

260 Y. Boichut et al.

References

1. Boichut, Y., Héam, P.-C.: A theoretical limit for safety verification techniques with
regular fix-point computations. Inf. Process. Lett. 108(1), 1–2 (2008)

2. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree)
model checking. J. Softw. Tools Technol. Transf. 14(2), 167–191 (2012)

3. Genet, T.: Decidable approximations of sets of descendants and sets of normal forms.
In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 151–165. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0052368

4. Gouranton, V., Réty, P., Seidl, H.: Synchronized tree languages revisited and new
applications. In: Honsell, F., Miculan, M. (eds.) FoSSaCS 2001. LNCS, vol. 2030, pp.
214–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45315-6 14

5. Kafle, B., Gallagher, J.P.: Tree automata-based refinement with application to horn
clause verification. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015.
LNCS, vol. 8931, pp. 209–226. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46081-8 12

6. Limet, S., Réty, P.: E-unification by means of tree tuple synchronized grammars.
Discrete Math. Theor. Comput. Sci. 1(1), 69–98 (1997)

7. Limet, S., Salzer, G.: Proving properties of term rewrite systems via logic programs.
In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 170–184. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-25979-4 12

8. Limet, S., Salzer, G.: Tree tuple languages from the logic programming point of
view. J. Autom. Reason. 37(4), 323–349 (2006)

9. Pettorossi, A., Proietti, M.: Transformation of logic programs. In: Gabbay, D.M.,
Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and
Logic Programming, vol. 5, pp. 697–787. Oxford University Press, Oxford (1998)

https://doi.org/10.1007/BFb0052368
https://doi.org/10.1007/3-540-45315-6_14
https://doi.org/10.1007/978-3-662-46081-8_12
https://doi.org/10.1007/978-3-662-46081-8_12
https://doi.org/10.1007/978-3-540-25979-4_12

Author Index

Ariola, Zena M. 205
Arrada, Imad-Seddik 1

Boichut, Yohan 245

Downen, Paul 205
Durán, Francisco 76, 98, 184

Eker, Steven 98
Escobar, Santiago 26, 98

Garavel, Hubert 1
Genet, Thomas 153
Gillard, Tristan 153

Haudebourg, Timothée 153

Johnson-Freyd, Philip 205

Lê Cong, Sébastien 153
Liu, Si 136

Martín, Óscar 59
Martí-Oliet, Narciso 59, 98
Meseguer, José 98, 136, 164, 184

Olarte, Carlos 115
Ölveczky, Peter Csaba 136

Pelletier, Vivien 245
Pimentel, Elaine 115

Ramírez, Sergio 226
Réty, Pierre 245
Riesco, Adrián 45
Rocha, Camilo 76, 115, 184, 226
Romero, Miguel 226

Salaün, Gwen 76

Tabikh, Mohammad-Ali 1
Talcott, Carolyn 98

Valencia, Frank 226
Verdejo, Alberto 59

Wang, Qi 136

	Preface
	Organization
	Automata and Equations Based Approximations for Reachability Analysis (Invited Talk)
	Contents
	Benchmarking Implementations of Term Rewriting and Pattern Matching in Algebraic, Functional, and Object-Oriented Languages
	1 Introduction
	2 Selected Tools
	3 The REC-2017 Language
	4 The REC-2017 Translators
	5 Selected Benchmarks
	6 Language Conciseness
	7 Execution Platform
	8 Experimental Results
	9 Threats to Validity
	10 Conclusion
	References

	Multi-paradigm Programming in Maude
	1 Introduction
	2 Example: Missionaries and Cannibals
	3 Background on Rewriting Logic and Term Rewriting
	4 Narrowing in Maude
	4.1 The Variant Narrowing Strategy
	4.2 The Folding Variant Narrowing Strategy
	4.3 Variant-Based Unification in Maude 2.7.1

	5 Missionaries and Cannibals Using Symbolic Reachability
	6 Missionaries and Cannibals Using Variant Equations
	7 Conclusions
	References

	MUnit: A Unit Framework for Maude
	1 Introduction
	2 MUnit
	3 Running Example
	4 Implementation
	5 Related Work
	6 Conclusions and Ongoing Work
	References

	Parameterized Programming for Compositional System Specification
	1 Introduction
	2 A Primer on Parameterized Programming and Maude
	3 A Primer on Synchronous Composition and Egalitarian Maude
	4 Parameterized Programming for System Specification
	5 Example: Alternating Bit Protocol
	6 Guarantees, Assumptions, and Compositional Verification
	7 Related Work
	8 Concluding Remarks
	References

	Symbolic Specification and Verification of Data-Aware BPMN Processes Using Rewriting Modulo SMT
	1 Introduction
	2 BPMN with Data
	3 Rewriting Logic and Rewriting Modulo SMT in a Nutshell
	4 Symbolic Specification
	5 Symbolic Execution and Reachability Analysis
	5.1 Symbolic Rewriting
	5.2 Symbolic Reachability Analysis

	6 Related Work
	7 Concluding Remarks
	References

	Associative Unification and Symbolic Reasoning Modulo Associativity in Maude
	1 Introduction
	2 The Associative Unification Algorithm in Maude
	2.1 The pig-pug procedure
	2.2 Forcing Termination
	2.3 Combining Unification Algorithms

	3 Built-In Order-Sorted Unification Modulo Axioms
	4 Built-In Variant Generation
	5 Built-In Variant-Based Unification
	6 Narrowing-Based Symbolic Reachability Analysis
	7 Conclusions and Related Work
	References

	Proving Structural Properties of Sequent Systems in Rewriting Logic
	1 Introduction
	2 Three Structural Properties of Sequent-Based Logics
	3 Rewriting Logic Preliminaries
	4 Checking Admissibility, Invertibility, and Permutability
	5 Reflective Implementation
	5.1 Sequent System Specification
	5.2 Property Specification
	5.3 The Algorithms

	6 Case Studies
	6.1 System G3ip
	6.2 Multi-conclusion Propositional Intuitionistic Logic (mLJ)
	6.3 Propositional Classical Logic (G3cp)
	6.4 Linear Logic (LL)
	6.5 Normal Modal Logics: K and S4

	7 Related Work and Concluding Remarks
	References

	Formal Modeling and Analysis of the Walter Transactional Data Store
	1 Introduction
	2 Preliminaries
	3 A Formal Model of Walter in Maude
	4 Correctness Analysis
	4.1 Parametric Generation of Initial States
	4.2 Analyzing the Correctness Properties

	5 Performance Estimation by Statistical Model Checking
	6 Related Work
	7 Conclusions
	References

	Extending Timbuk to Verify Functional Programs
	1 Motivations
	2 Simplified Regular Tree Expressions
	3 The Need for Abstraction Equations
	4 Generating Abstraction Equations Ec
	5 Interacting with Timbuk
	6 Conclusion and Further Research
	References

	Generalized Rewrite Theories and Coherence Completion
	1 Introduction
	2 Preliminaries on Order-Sorted Algebra and Variants
	3 Generalized Rewrite Theories and Coherence
	4 Coherence Completion of Generalized Rewrite Theories
	5 Related Work and Conclusions
	References

	Proving Ground Confluence of Equational Specifications Modulo Axioms
	1 Introduction
	2 Preliminaries
	3 An Equational Specification for Hereditarily Finite Sets
	4 Proving Ground Joinability
	5 Ground Convergence of HF-SETS
	6 Related Work and Conclusion
	References

	Uniform Strong Normalization for Multi-discipline Calculi
	1 Introduction
	2 A Language Approach to Abstract Machines
	3 Substitution Disciplines
	4 A Parametric, Multi-discipline Sequent Calculus
	5 Strong Normalization
	6 Biorthogonals are Fixed Points
	7 Conclusion
	References

	Real-Time Rewriting Logic Semantics for Spatial Concurrent Constraint Programming
	1 Introduction
	2 Preliminaries
	3 Rewriting Logic Semantics
	3.1 System States
	3.2 Commands
	3.3 Time Scaffolding
	3.4 The Constraint System
	3.5 System Transitions

	4 Reachability Analysis
	5 Related Work and Concluding Remarks
	References

	Approximating Any Logic Program by a CS-Program
	1 Introduction
	2 Preliminaries
	2.1 Resolution
	2.2 CS-Program
	2.3 Transforming Any Logic Program into a CS-Program

	3 Making the Limet-Salzer Technique LSspsJAR06 Terminate
	3.1 Generalization
	3.2 Integration of Generalization in LSspsJAR06
	3.3 Results

	4 Example
	5 Discussion
	6 Conclusion
	References

	Author Index

