
Runtime Evolution of Multi-tenant
Service Networks

Indika Kumara1(B), Jun Han2, Alan Colman2,
Willem-Jan van den Heuvel1, and Damian A. Tamburri1

1 Tilburg University, Warandelaan 2, 5037 AB Tilburg, Netherlands
{I.P.K.WeerasinghaDewage,wjheuvel,d.a.tamburri}@uvt.nl

2 Swinburne University of Technology, PO Box 218,
Hawthorn, VIC 3122, Australia
{jhun,acolman}@swin.edu.au

Abstract. In a multi-tenant service network, services relate to each
other and collaborate to support the functional and performance require-
ments of multiple tenants. Such a service network evolves over time as its
services and tenants change. Consequentially, the composite application
that enacts the service network also needs to evolve at runtime, which
is problematic. For example, different types of changes to the applica-
tion, and their consequential impacts need to be realized and managed
at runtime. In this paper, we present an approach to evolving multi-
tenant service networks. We identify the types of runtime changes to a
service network composite application and their impacts, and present a
middleware support for realizing and managing the identified changes
and impacts. A software engineer can specify the desired changes to the
running application, and enact the change specification to modify it. We
show the feasibility of our approach with a detailed case study.

Keywords: Service network · Multi-tenancy
Change management · Evolution

1 Introduction

A business service network is a web of business services connected according
to the capabilities provided and consumed by them [1,2]. The business services
support business activities of enterprises or individuals (e.g., claim handling and
roadside assistance). To achieve economies of scale via runtime sharing of services
among tenants, a multi-tenant service network simultaneously hosts a set of
virtual service networks (VSNs), each for a separate tenant, on the same physical
service network [3,4]. The tenants generally have common and variable functional
and performance requirements, and thus their VSNs share some services in the
service network while also using different services as necessary.

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 33–48, 2018.
https://doi.org/10.1007/978-3-319-99819-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_3&domain=pdf

34 I. Kumara et al.

A composite service application (hosted in a middleware runtime) can gen-
erally enact a multi-tenant business service network. It needs to connect ser-
vices based on their relationships, to route and regulate the message exchanges
between them, and to form VSNs over the service network. As the service net-
work evolves, for instance, by adding a new service or tenant, or by changing
the capabilities of an existing service, this composite application also needs to
be evolved at runtime, which is a complex problem. Firstly, the different classes
of changes that can potentially occur to the application, and the potential con-
sequential impacts of each such change need to be identified. Secondly, a change
and its impacts need to be realized and managed at runtime by the middleware
without disturbing the operations of those tenants unaffected by the change.

Most existing works on service networks consider modeling and analysis of
service networks from specific aspects [2] such as value flows [5], business pro-
cesses [6], and service relationships [2,7]. The composite applications that enact
service networks need to use service composition approaches such as BPMN
(Business Process Management Notation) and BPEL (Business Process Execu-
tion Language) [1], which provide little or no direct support for the abstractions
in multi-tenant service networks such as services, their relationships, message
routing and regulation, and VSNs. Moreover, the existing works lack the support
for two key change management activities [8] for multi-tenant service networks:
identifying the impacts of a change, and realizing the change and its impacts.

In [3,4], we have proposed an approach called Software-Defined Service Net-
working (SDSN) that can deploy, enact, and manage multi-tenant service net-
works (composite applications). SDSN provides a programming model (a set of
architectural abstractions to naturally represent a multi-tenant service network),
a domain specific language (DSL), a middleware environment, and a set of tools.
A software engineer can design the multi-tenant service network with the DSL,
and enact and manage the designed network with the middleware at runtime.

This paper focuses on the above-mentioned two key activities of change man-
agement for a composite application that realizes a multi-tenant service network
using our SDSN approach. We first identify the types of runtime changes to the
application and their potential impacts. Second, we present the change manage-
ment system in our SDSN middleware, including its architecture and its support
for the controlled propagation of changes and impacts. The middleware also
provides an ECA (event-condition-action) rules based language to specify and
schedule the enactment of changes to the runtime models (models@runtime [9])
of the application. We present a set of guidelines that a software engineer can
use to create a change specification for an evolution scenario systematically. We
show the feasibility of our approach with a case study that implements common
evolution scenarios for variant-rich applications (e.g., product lines and multi-
tenant systems). We analyze the case study results to assess change impacts of
evolution scenarios, and quantify the time taken to realize changes at runtime.

In this paper, we motivate our research and present the key requirements for
a change and impact management support for multi-tenant service networks in
Sect. 2. Section 3 provides an overview of our SDSN approach to realizing multi-
tenant service networks. Section 4 discusses our change and impact management

Runtime Evolution of Multi-tenant Service Networks 35

support in detail. Section 5 presents the prototype and evaluation of our app-
roach. Section 6 presents related work, and Sect. 7 concludes the paper while
providing the directions for further research.

2 Motivating Scenarios and General Requirements

Consider RoSAS (Road-Side Assistance Service) service network that offers road-
side assistance to its tenants such as travel agencies and vehicle sellers by com-
posing business services such as repairers and towing providers (see Fig. 1). Due
to the benefits of the multi-tenancy, RoSAS shares the services among its ten-
ants. Each tenant has a virtual service network (VSN) in RoSAS service network
to coordinate roadside assistance for their users such as travelers and motorists.

The capabilities and capacities of services as well as the functional and perfor-
mance requirements of tenants can exhibit commonalities and variations, which
lead to the commonalities and variations in the VSNs of the tenants. For exam-
ple, HappyTours and EuroCars require rental vehicle, while AnyTrucks prefers
accommodation. Thus, the VSNs of the former tenants use the rental vehicle
provider SilverVehicles, and the VSN of the later tenant uses the accommoda-
tion provider AmayaHotel. HappyTours’ VSN uses the repairer MacRepair (for
3 days repair time) and the other two tenants’ VSNs use AutoRepair (for 6 days).
Compared with MacRepair, AutoRepair does not have parts internally. Thus,
the VSNs of AnyTrucks and EuroCars include the part supplier JackParts. The
towing provider TomTow has the limited capacity (the number of new tows per
day), and cannot support the capacity requirements of both tenants AnyTrucks
and EuroCars. Thus, the VSN of AnyTrucks also includes the towing provider
SwiftTow. Note that the capacities of business services (e.g., towing capacity)
cannot be changed by simply managing the computation resources used by them.

Let us consider two key requirements for the runtime management of the
roadside assistance multi-tenant service network.

1. Supporting Runtime Changes to Multi-tenant Service Networks. The services
and the requirements of the tenants and the service network provider can
change over time. For instance, after two months, EuroCars requests the taxi

Fig. 1. Roadside assistance multi-tenant service network

36 I. Kumara et al.

hiring capability instead of the rental vehicle, and HappyTours requests 25
additional assistance cases per day. After one year, RoSAS decides to provide
legal assistance for vehicle accidents. A new company starts to offer the repair
assessment for vehicles, and the RoSAS provider needs to use it. To respond
to or utilize these changes at the service network, a software engineer should
be able to modify the RoSAS composite application at runtime. Thus, the
middleware that hosts the application should support the classes of runtime
changes that can occur to the application during its lifetime.

2. Managing Consequential Change Impacts. A change to the RoSAS composite
application can further affect the application and its tenants. For example, a
change to the representation of the repairer AutoRepair in the application can
affect some other elements in the application and the VSNs of HappyTours
and EuroCars. The middleware that hosts the composite application needs to
enable a software engineer to identify such change impacts and then design
and perform the controlled propagation of each change and impact.

3 Realizing Multi-tenant Service Networks: An Overview

A multi-tenant service network simultaneously hosts a set of virtual service net-
works on the same physical service network at runtime. In [3,4], we have proposed
a novel approach, SDSN (Software-Defined Service Networking), to realize multi-
tenant service networks (or cloud applications). SDSN provides a programming
model, a domain specific language, and a middleware for designing and enacting
multi-tenant service networks. This section provides an overview of the runtime
abstractions of multi-tenant service networks in our SDSN approach.

The service network is an overlay network over the services. A node in the
service network is a proxy to a service, and acts as a router where the messages
from the other services are routed to the corresponding service via the node,
and vice versa. A link between two nodes models the relationship between the
corresponding two services, and acts as the messaging channel between the two
nodes. A node has a set of tasks to represent the capabilities of the service. A link
has a set of interaction terms to capture the interactions between the services.

The service network includes a set of regulation enforcement points (REPs) to
intercept and regulate the interaction messages between services, and to monitor
and enforce the performance constraints (response time and capacity) on service
capabilities. There are four types of REPs: synchronization (at each node), rout-
ing (at each node), pass-through (at each link), and coordinated-pass-through
(across links). The synchronization REP of a node synchronizes a subset of
incoming interactions from the adjacent nodes before executing a task (sending
a request to the node’s service). The routing REP of a node routes a received
response or request from the node’s service to a subset of the adjacent nodes.
The pass-through REP in a link can process the interaction messages between
two nodes, and generate events representing the states of the interactions. The
coordinated-pass-through is to regulate the interactions across different pairs of
nodes. Each REP has a knowledgebase and a regulation table. The former con-
tains event-condition-action (ECA) rules that implement regulation decisions

Runtime Evolution of Multi-tenant Service Networks 37

using a number of regulation mechanisms such as admission control and load
balance. The latter maps a message flow to a set of rules in the knowledgebase,
which decide what to do with the message flow.

Each tenant has a virtual service network (VSN), which is a specific ser-
vice composition in the service network that meets the functional and perfor-
mance requirements of the tenant. The VSNs of tenants simultaneously coexist
on the same service network. Multiple business processes can exist in a VSN.
Each process is a service network path, which is a subset of the service network
topology. A service network path is represented by the entries in the relevant
regulation tables. A table entry at a REP maps the messages belonging to a pro-
cess to a subset of the regulation rules in the knowledgebase of the REP. Each
such rule applies a set of regulation functions to the messages. The isolation of
VSNs/processes is achieved by keeping the messages associated with a process
instance isolated. Then, the isolated messages are routed and regulated on the
service network path of the process instance. As the message flow continues over
the network path, the business process is enacted as an event-driven business
process, where events trigger the execution of tasks.

VSNs of multiple tenants share some service network elements for their com-
mon requirements, and use some other service network elements for their distinc-
tive requirements. The elements include nodes, links, tasks, interaction terms,
regulation rules/mechanisms, and services. The interested reader is referred to [3]
for more details on the design and enactment of multi-tenant service networks.

Example. Figure 2 shows a part of the RoSAS service network. It consists of
a number of nodes (e.g., MO, SC, and TC1) connected by links (e.g., MO-
TC1, MO-SC, and SC-TC1), and supports the coordination of the interactions
between the services (e.g., motorist, 24by7Support, and SwiftTow) to meet the
roadside assistance requirements of the tenants. The nodes include the relevant
tasks, for example, tPickUp of the node TC1 (to pick up a broken down vehicle).
The links include the relevant interaction terms, for example, iPickUp of the link
MO-TC1 (to represent the motorist’s request for collecting the vehicle). Each

Fig. 2. Realization of the roadside assistance multi-tenant service network

38 I. Kumara et al.

Fig. 3. (a) a pass-through rule (link MO-TC1), (b) a synchronization rule (node TC1)

node and link also include the relevant REPs. The messages are routed and
regulated over the service network via these REPs. Figure 3 shows two regulation
rules. The pass-through rule generates the event ePickUpReqd, which triggers the
synchronization rule, which creates a service request from the relevant interaction
messages, and sends the request to SwiftTow to ask to collect the vehicle.

4 Change and Impact Management for Multi-tenant
Service Networks

This section considers two key (runtime) change management activities [8] for
multi-tenant service networks realized using our SDSN approach: (1) identifying
types of changes and their consequential impacts, and (2) designing and imple-
menting the identified changes and impacts. We discuss the types of changes and
their impacts, the change management middleware system, and the process of
designing a change management policy for realizing change scenarios.

4.1 Types of Changes and Impacts

A change can occur at any element of the multi-tenant service network. A given
change to an element can further cause changes to that element and/or other
elements as direct consequential impacts of the change (see Fig. 4).

Types of Changes. The addition, removal, and update are the three general
types of changes that can occur to a given service network element. The update
to an element can include the addition, removal, and update of its properties,
its children elements, and its relationships with other elements. For example, an
update to a node can include a change to its service endpoint reference, adding
a new task, and removing a reference to a link with another node.

Types of Impacts. A direct impact of a given change to an element on another
element generally depends on the type of the relationships that exist between the
two elements. In a multi-tenant service network, there are four common types
of relationships: (1) containment, (2) association, (3) usage, and (4) represen-
tation/realization. In the containment relationship, one element contains some
other elements. For example, a node has a set of tasks. In the association rela-
tionship, one element is connected to some other elements. For example, a node is

Runtime Evolution of Multi-tenant Service Networks 39

Fig. 4. Changeable elements and their potential direct impact relations

connected to another node via a link. The two nodes have references to the link.
In the usage relationship, one element depends on or use some other elements
for its behavior or existence. For example, an event may exist due the presence
of an interaction term, and the execution of a task depends on the occurrence
of some events. In the representation relationship, an element in the compos-
ite application represents a domain concept. For example, a node represents a
service, and a regulation rule realizes a regulation decision.

The containment relationships include service-service capability, service rela-
tionship -service interaction/regulatory control, service capability-capability per-
formance, service network-node/link, service network-coordinated pass-through
REP, node-task, link-interaction terms, node-(routing/synchronization)REP,
link-passthrough REP, REP-knowledgebase, REP-regulation table,
knowledgebase-rules, regulation table-table entry, and VSN-process. The addi-
tion of a new container element generally requires new contained elements. The
removal of the container element removes its contained elements. The removal of
the contained elements can make the container element obsolete. For example, a
new regulation knowledgebase requires new rules, the removal of a link removes
its interaction terms, and the removal of the tasks of a node makes the node
obsolete.

The association relationships include service-service relationship, service
capability -service interaction, regulatory control-service interaction/service
capability, node-link, task-interaction term, regulation rule-mechanism/event,
regulation table entry-rule, and service network path-table entry. Consider the
element type A and the element type B has a unidirectional association (from
A to B). A new element a1 (type A) may require an element b1 (type B). The
removal of a1 can make b1 obsolete if no other elements use it. The removal of

40 I. Kumara et al.

b1 makes the reference to it in a1 dangling. For example, a new task requires the
references to the interaction terms to be consumed/produced, and the removal
of a referred interaction term results in a dangling reference in the task.

The usage relationships include event-interaction term, task-event, interac-
tion term-passthrough rule, and task-routing/synchronization rule. In addition,
there are mutual usage dependencies between regulation rule types. A synchro-
nization rule requires a set of pass-through rules to analyze the interaction mes-
sages to be synchronized, and generate the events. It also requires a set of routing
rules at the source nodes to initiate the interactions to be synchronized. Similarly,
a routing rule has usage dependences with pass-through and synchronization
rules. The events generated by a pass-through rule are generally consumed by
some synchronization rules and coordinated pass-through rules. A pass-through
rule also needs a routing rule to create the interaction messages that it processes.

Consider the element type C uses the element type D. A new element c1
requires an element d1. The removal of the element c1 can make the element
d1 obsolete. The removal or update of the element d1 can adversely affect the
behavior of the element c1. For example, the removal of a synchronization rule
can make the relevant pass-through and routing rules obsolete. The removal of a
pass-through rule requires the removal of or updating the conditions of the rules
that use the events generated by it as those rules will not be activated.

The representation relationships include service-node, service relationship-
link, service capability-task, service interaction-interaction term, regulatory con-
trol -regulation rule/mechanism, capability performance-regulation rule /mech-
anism (e.g., performance monitoring and admission control), and VSN/process-
service network path. Consider the element type E realizes the domain concept
F. The addition of the concept instance f1 requires that of the element e1. The
removal of f1 makes the element e1 invalid it represents a nonexistent concept
instance. The update to f1 may require the same to the element e1. For example,
a new service requires a node, and the removal of an existing service makes the
related node invalid as it represents a nonexistent service.

Due to the limited space, we did not provide the examples for each depen-
dency, and each impact that the dependency creates. An interested reader may
refer to an accompanying technical report [10] for more details.

4.2 Change Management System

To support the runtime changes to a multi-tenant service network in a con-
trolled manner without compromising the consistency of the service network, we
adopted the change management scheme proposed by Kramer and Magee [11].
We introduce a management state for each runtime element of a service network,
which determines when an element can be removed, updated, or used. The mid-
dleware provides the capabilities to change management states, and generate the
events at each state change. A software engineer can design change management
policies in a way that a given change operation on an element is performed only
when the element is in its appropriate management state (see Sect. 4.3).

Runtime Evolution of Multi-tenant Service Networks 41

In general, an element in a service network can be in three management
states: Active, Passive, and Quiescence. The Passive state of an element enables
the system to complete the existing process instances, and to move the element to
its Quiescence state. If a runtime change to an element can adversely affect some
existing process instances, then the change must be delayed until the element
reaches its Quiescence state. A newly added element always in the Passive state,
and must be moved to the Active state so that the process instances can use it.
An element can be removed from the system when it is in Quiescence state.

VSNs, processes, and process instances can also have the above management
states. A process instance for an instantiation request from a user of a tenant is
created only if the VSN and its selected process is in Active state. Otherwise,
the request message is queued, and later served when the state of the process
becomes Active. A running instance is in the Active state. When it is paused,
the management state becomes Passive, and the messages (in transit) belong-
ing to the process instance are queued. When the management state becomes
Active, the routing of the queued messages resumes. When the process instance
is terminated, it is moved to the Quiescence state, and scheduled to be removed.

Fig. 5. Change management support in SDSN middleware

Figure 5 shows the high-level system architecture of the SDSN middleware,
highlighting its change management support. It has a service coordination plat-
form and a management platform. The former maintains multi-tenant service
networks at runtime using the models@runtime approach, and supports the
runtime changes to them (discussed in Sect. 4.1). Each change operation (e.g.,
addNode and removeLink) is included in the management interface, which is
exposed as a Web service. The management platform includes a service network
manager that uses the management Web service interface to monitor and change
the running service networks, a policy engine that can maintain and enact the
change management policies, and an event manager that stores the various events
including management state change events. The management policies are a set
of ECA rules. Generally, the conditions of a rule are events, and the actions are
the change operations/commands (exposed by the management interface).

42 I. Kumara et al.

4.3 Design and Enactment of Change Management Policies

A given change can have a desired impact or an undesired impact. A direct
change impact can be a consequential change or a solution (a set of inten-
tional/designed changes) developed to utilize a desired impact, and to mitigate
an undesired impact. In either case, if a change A triggers a change B as a direct
impact, then to realize this impact, the change operation for propagating the
change B needs to be used. A change can have a ripple effect. For example, the
removal of a node may need the removal of its links with other nodes. To propa-
gate this impact, the change operation removeLink() can be used. The removal
of these links can have further impacts. For example, some of the tasks may refer
to the interaction terms in the removed links, and the affected tasks need to be
updated using the operation updateTask().

A software engineer needs to identify each change and its impacts (see
Sect. 4.1), and then specify them in a change management policy in terms of
change operations/commands. We below provide some guidelines for a software
engineer to develop such policies so that the desired changes are ordered and
scheduled appropriately. We use the example of supporting the taxi hire feature
in the RoSAS service network. A collaboration among a set of services realizes
a feature.

1. Identify and design service network topology changes. The differences between
the expected service network topology and the current one are designed in
terms of (to be added or removed) nodes and links. Lines 12–14 in Fig. 6 show
the topology changes for our example (a node to represent the taxi service,
and two links to capture its relationships with other services).

2. Identify and design task changes. Next, the tasks to be added to or removed
are designed (see Lines 15–16 in Fig. 6).

3. Identify and design interaction term changes. Next, the interaction terms to
be added or removed are included (see Lines 18–19 in Fig. 6).

4. Identify and design task-interaction changes. The next step is to link or unlink
tasks and interaction terms to reflect the required changes to the provided-
required relationships in the service network. This is achieved by manipulating
the inputs and outputs of the relevant tasks (see Line 21).

5. Identify and design regulation rule and mechanism changes. Once the modi-
fications to the configuration design of the service network are designed, the
changes to its regulation design can be introduced. These changes include
regulation rule and mechanism changes at some REPs. The changes to the
regulation mechanisms imply the changes to their implementations, which are
Java modules in our prototype. The regulation rules can be defined as ECA
rules (as .drl files) using Drools rule language (drools.org). Lines 29–31 show
some of the relevant changes in our example, which add regulation rules at
the node TX and the link SC-TX. Figure 7 shows two regulation rules that
execute the task orderTaxi, and route the response from the service.

6. Identify and design VSN changes. The next step is to design the desired
VSN changes, which include the regulation table entries at some REPs

http://drools.org

Runtime Evolution of Multi-tenant Service Networks 43

(to be added, removed, and updated). Lines 45–47/33–35 show some rele-
vant changes. As EuroCars replaces the rental vehicle with the taxi hire, the
service network path of its VSN is modified by removing the path for the
rental vehicle collaboration, and by adding the path for the taxi hire collab-
oration.

7. Identify and design management state changes. The changes to a multi-tenant
service network can only be propagated when the relevant elements (to be
affected) are in appropriate management states (see Sect. 4.2). The software
engineer needs to initiate the appropriate state changes before and after mak-
ing changes. In our example, the management state of the VSN/process is
moved to the Passive state (see Line 5).

8. Capture the dependencies between the individual policy rules. As the changes
need to be made to the system orderly, the software engineer needs to orga-
nize the enactment of the management policy into stages. Each stage can be
represented as an ECA rule, whose conditions can use the enactment state
of the policy (e.g., the end of a stage) and the management state change
events. In general, we need to have stages for: (1) moving the elements to be
changed to their desired management states, (2) propagating configuration
design changes, (3) propagating regulation design changes, (4) removing the
elements in their Quiescence state, and (5) moving the elements changed to
their desired management states. The policy in Fig. 6 has these stages.

9. Deploy designed management policies. Finally, the software engineer can
deploy the designed policy at the management platform. As the individual
rules of the policy are executed (as their conditions are met), the changes
described in the rules are propagated to the relevant runtime elements.

5 Prototype Implementation and Evaluation

Prototype Implementation. In [3,4], we have presented the prototype imple-
mentation of the SDSN approach. It includes a design language, tools, and mid-
dleware. The coordination engine and the management platform of the middle-
ware are deployed on an Apache Tomcat web server as Apache Axis2 modules.
The executable design language is XML-based, and the change management
and regulation policy languages use Drools rule language. We use the Drools
rule engine to implement the policy engines at the management platform and
REPs. A software engineer can use the Drools IDE to define regulation rules and
management policies. The SDSN implementation is available at https://github.
com/road-framework/SDSN. The size of the project has 407356 lines of code
(Github GLOC on 3/11/2018).

Evaluation. We show the feasibility of our approach with a case study that
includes common change scenarios for multi-tenant service networks (adapted
from the change scenarios for variant-rich applications [12,13]) (Table 1). To
realize a scenario, we first identify the differences between the initial service

https://github.com/road-framework/SDSN
https://github.com/road-framework/SDSN

44 I. Kumara et al.

Fig. 6. A fragment of the change management policy for our example

Fig. 7. A synchronization rule and a routing rule at the node TX

Runtime Evolution of Multi-tenant Service Networks 45

network and the target one after the realization of the scenario. Then, we design
the management policy to capture the differences as change commands, and
apply the created policy at the running initial service network. We compared the
logs and response messages of VSN executions with those of the manually created
same service network to validate the changes to the initial service network. The
case study resources are at https://github.com/indikakumara/SDSN-ESOCC-
2018.

We assessed the effectiveness of our support for evolution by doing a change
and impact analysis. A detailed analysis of the changes and impacts for each
change scenario is included in the case study resources. The scenarios together
validated our support for each change type (and its impacts) to a multi-tenant
service network (see Sect. 4.1). Moreover, we observed that the units of change

Table 1. Change scenarios for the roadside assistance service network

No: Types of changes Sub-scenarios (One functional and one performance)

1 Add/remove a
mandatory feature

Reimbursement feature (to be used by each tenant)

Response time <30min and max-throughput = 150
for all assistance cases

2 Add/remove an optional
feature

Accident Tow feature (to be used HappyTours and
the new tenant AsiaBus)

Response time <2d and throughput = 10 for a
reimbursement

3 Add/remove feature to a
feature group

TaxiHire feature to/from the features RentalVehicle and
PublicTransport

4d repair duration in addition to the existing 2d
and 3d for Repair feature

4 Add/remove
feature dependency

The dependency Major Repair excludes
Accommodation

The dependency Repair time = 3d includes Tow
duration = 4 h

5 Make the optional feature Accident Tow a mandatory feature

Make Or repair durations 2d, 3d, and 4d
Alternative (XOR) options

6 Modify feature
implementation

Extend a Repair implementation to use external
parts if no parts available inhouse

Add an external assessor to a repairing
implementation, increasing repair time by 6 h

7 Add/remove multiple
feature implementations

One realization of Reimbursement to/from its
other realizations

One realization of Accident Tow for duration = 3h
to/from its other realizations

8 Add/Remove feature
implementation
dependency

Accident Tow with MarkTow excludes Repair with
MacRepair

Repair duration = 3d with AutoRepair includes
RentalVehicle duration = 3d with SLRCars

https://github.com/indikakumara/SDSN-ESOCC-2018
https://github.com/indikakumara/SDSN-ESOCC-2018

46 I. Kumara et al.

at the domain-level are generally confined to their explicit representations in the
composite application, i.e., representations of services, their collaborations, their
relationships, their capabilities, the routing and regulation of interactions, and
VSNs/processes. This is a key requirement to support effective evolution [14].

Fig. 8. Runtime change enactment time (RCET) for the change scenarios

We have also measured the run-time change enactment time (RCET) for each
scenario (see Fig. 8). RCET is the time difference between the manager of the
service network receiving a management policy and the service network being
ready for use after applying the policy. The experiment uses a machine with
an Intel i5-2400 CPU (3.10 GHz), 3.23 GB RAM, and Windows 7. The average
RCET values for the functional scenarios are 537.2 ms (addition) and 12.25 ms
(rollback). Those for the performance scenarios are 256.75 ms (addition) and
32.5 ms (rollback). We believe that this is reasonable.

6 Related Work

We consider the related work from variant-rich applications and service networks.
We focus on the changes to the runtime artifacts of composite applications (com-
pared with the works on design time artifacts [15] such as service specifications).

Two common types of variant rich applications are software product lines and
cloud applications. Among the works from the product lines, Morin et al. [9] and
Baresi et al. [12] supported modifying a business process at a set of predefined
points to create variants. Bosch and Capilla [16] supported, in a smart home
product line, feature-level changes by mapping a feature to a device that offers
a service. The works from cloud applications considered issues such as tenant-
specific variants [17,18], and tenant-specific upgrades [19]. Truyen et al. [17]
used the dependency injection to bind tenant-specific variants to the variation
points of a component-based cloud application. Moens et al. [18] proposed a
feature-model based development of cloud applications, where a service realizes
a feature. Van Landuyt et al. [19] presented a middleware support for modifying
a composite cloud application by activating tenant-specific upgrades at runtime
via the dynamic (re)binding of services.

In [13], we also addressed the runtime change and impact management of
multi-tenant cloud applications designed as dynamic software product lines. In

Runtime Evolution of Multi-tenant Service Networks 47

this paper, we considered the service network model, which is significantly differ-
ent from the product-line based model in terms of runtime abstractions/elements
in the composite application, and thus changes and their impacts.

Most existing works on service networks consider the modeling and analysis
of service networks from specific aspects [2] such as business value flow [5], busi-
ness processes [6], and service relationships [1]. Their realizations have relied on
process-centric models, which fail to represent service networks naturally. That
is, the domain concepts (e.g., services, service capabilities, service relationships,
service interactions, interaction routing and regulation, service network paths,
and virtualization) and their representations are mismatched, and the domain
concepts are not directly represented or managed in the realization, limiting
their utility. Regarding change and impact analysis, Kabzeva et al. [7] proposed
a modeling approach to represent the entities (services, actors, and processes)
in a service network, and their different relationships (e.g., consumption, com-
petition, and ownership) at design time. They also proposed a tool to assess the
impact of a change to an entity or a relationship.

Overall, there is a limited support to the runtime change and impact man-
agement for a composite service application that realizes a multi-tenant service
network. The existing approaches also lack architectural abstractions to rep-
resent a multi-tenant service network naturally at runtime. They also do not
provide a change and impact analysis for such runtime representations, and the
middleware support for the realization and management of each change and
impact. This paper addresses these limitations in the existing research.

7 Conclusions and Future Work

We have addressed the runtime evolution of a multi-tenant service network,
where a single service network simultaneously hosts a set of virtual service net-
works for multiple tenants. We have identified different types of runtime changes
to the service network and their potential impacts, and discussed our middle-
ware support for realizing and managing those changes and impacts. A software
engineer can design the controlled propagation of the desired changes. We have
evaluated our approach with a case study and a performance study. The results
have shown that our approach can support the runtime change and impact man-
agement of multi-tenant service networks, with little performance overhead.

In the future, we plan to develop a pattern-based formalization of the change
and impact management of multi-tenant service networks, and a tool that uses
the formalization to identify and assess change impacts. The generation of change
management policies from high-level visual models will also be investigated.

48 I. Kumara et al.

References

1. Danylevych, O., Karastoyanova, D., Leymann, F.: Service networks modelling: an
SOA & BPM standpoint. J. Univers. Comput. Sci. 16(13), 1668–21693 (2010)

2. Razo-Zapata, P., et al.: Service network approaches. In: Handbook of Service
Description: USDL and its Methods, pp. 45–274 (2012)

3. Kumara, I., et al.: Software-defined service networking: performance differentiation
in shared multi-tenant cloud applications. IEEE TSC 10(1), 9–22 (2017)

4. Kumara, I., et al.: Virtualisation and management of application service networks.
In: Network as a Service for Next Generation Internet, vol. 73, pp. 357–382 (2017)

5. Allee, V.: Reconfiguring the value network. J. Bus. Strat. 21(4), 1–6 (2000)
6. Comuzzi, M., Vonk, J., Grefen, P.: Measures and mechanisms for process monitor-

ing in evolving business networks. Data Knowl. Eng. 71(1), 1–28 (2012)
7. Kabzeva, A., Gtze, J., Mller, P.: Model-based relationship management for service

networks. IJSSOE 5(4), 104–132 (2015)
8. Bohner, S.A: Impact analysis in the software change process: a year 2000 perspec-

tive. In: International Conference on Software Maintenance, pp. 42–51 (1996)
9. Morin, B., et al.: Models@Runtime to support dynamic adaptation. Computer

42(10), 44–51 (2009)
10. Kumara, I., et al.: Change and impact analysis of multi-tenant service networks.

Technical report (2018). https://github.com/indikakumara/SDSN-ESOCC-2018/
blob/master/TR.pdf

11. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. IEEE TSE 16(11), 1293–1306 (1990)

12. Baresi, L., Guinea, S., Pasquale, L.: Service-oriented dynamic software product
lines. Computer 45(10), 42–48 (2012)

13. Kumara, I., Han, J., Colman, A., Kapuruge, M.: Runtime evolution of service-
based multi-tenant SaaS applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 192–206. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45005-1 14

14. Tarr, P., et al.: N degrees of separation: multi-dimensional separation of concerns.
In: International Conference on Software Engineering, pp. 107–119 (1999)

15. Andrikopoulos, V., Benbernou, S., Papazoglou, M.: On the evolution of services.
IEEE TSE 38(3), 609–628 (2012)

16. Bosch, J., Capilla, R.: Dynamic variability in software-intensive embedded system
families. Computer 45(10), 28–35 (2012)

17. Truyen, E., et al.: Context-oriented programming for customizable SaaS applica-
tions. In: ACM Symposium on Applied Computing, pp. 418–425 (2012)

18. Moens, H., Filip, T.: Feature-based application development and management of
multi-tenant applications in clouds. In: SPLC, pp. 72–81 (2014)

19. Van Landuyt, D., Gey, F., Truyen, E., Joosen, W.: Middleware for dynamic
upgrade activation and compensations in multi-tenant SaaS. In: Maximilien, M.,
Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 340–
348. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 24

https://github.com/indikakumara/SDSN-ESOCC-2018/blob/master/TR.pdf
https://github.com/indikakumara/SDSN-ESOCC-2018/blob/master/TR.pdf
https://doi.org/10.1007/978-3-642-45005-1_14
https://doi.org/10.1007/978-3-319-69035-3_24

	Runtime Evolution of Multi-tenant Service Networks
	1 Introduction
	2 Motivating Scenarios and General Requirements
	3 Realizing Multi-tenant Service Networks: An Overview
	4 Change and Impact Management for Multi-tenant Service Networks
	4.1 Types of Changes and Impacts
	4.2 Change Management System
	4.3 Design and Enactment of Change Management Policies

	5 Prototype Implementation and Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

