
Kyriakos Kritikos
Pierluigi Plebani
Flavio de Paoli (Eds.)

 123

LN
CS

 1
11

16

7th IFIP WG 2.14 European Conference, ESOCC 2018
Como, Italy, September 12–14, 2018
Proceedings

Service-Oriented
and Cloud Computing

Lecture Notes in Computer Science 11116

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Kyriakos Kritikos • Pierluigi Plebani
Flavio de Paoli (Eds.)

Service-Oriented
and Cloud Computing
7th IFIP WG 2.14 European Conference, ESOCC 2018
Como, Italy, September 12–14, 2018
Proceedings

123

Editors
Kyriakos Kritikos
ICS_FORTH
Heraklion
Greece

Pierluigi Plebani
Dipartimento di Electronica
Fondazione Politecnico di Milano
Milan
Italy

Flavio de Paoli
Università di Milano-Bicocca
Milan
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-99818-3 ISBN 978-3-319-99819-0 (eBook)
https://doi.org/10.1007/978-3-319-99819-0

Library of Congress Control Number: 2018952649

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-9633-1610
http://orcid.org/0000-0001-8245-226X

Preface

Service-oriented and cloud computing have made a huge impact both on the software
industry and on the research community. Today, service and cloud technologies are
applied to build large-scale software landscapes as well as to provide single software
services to end users. Services today are independently developed and deployed as well
as freely composed while they can be implemented in a variety of technologies, a quite
important fact from a business perspective. Similarly, cloud computing aims at
enabling flexibility by offering a centralized sharing of resources. The industry’s need
for agile and flexible software and IT systems has made cloud computing the domi-
nating paradigm for provisioning computational resources in a scalable, on-demand
fashion. Nevertheless, service developers, providers, and integrators still need to create
methods, tools, and techniques to support cost-effective and secure development as
well as the use of dependable devices, platforms, services, and service-oriented
applications in the cloud.

The European Conference on Service-Oriented and Cloud Computing (ESOCC) is
the premier conference on advances in the state of the art and practice of
service-oriented computing and cloud computing in Europe. The main objectives of
this conference are to facilitate the exchange between researchers and practitioners in
the areas of service-oriented computing and cloud computing, as well as to explore the
new trends in those areas and foster future collaborations in Europe and beyond. The
seventh edition of ESOCC, ESOCC 2018, was held at the city of Como in Italy during
September 12–14, 2018, under the auspices of University of Milano-Bicocca. ESOCC
2018 was a multi-event conference aimed at both an academic and industrial audience.
The main research track represented the core event in the conference that focused on
the presentation of cutting-edge research in both the service-oriented and cloud com-
puting areas. In conjunction, an industrial track was also held attempting to bring
together academia and industry through showcasing the application of service-oriented
and cloud computing research, especially in the form of case studies, in industry.
Overall, 33 submissions were received out of which ten outstanding full and five short
papers were accepted.

Each submission was peer-reviewed by three main reviewers, either directly from
the Program Committee (PC) members or their colleagues. Owing to the high quality
of the manuscripts received, additional discussions were conducted, both between the
PC members as well as between the two PC chairs before the final selection was
performed. The PC chairs would like to thank all the reviewers who participated in the
reviewing process not only for helping to increase the quality of the received manu-
scripts but also for sharing particular ideas on how the respective work, even if rejected
in its current form for the ESOCC conference, could be substantially improved.
ESOCC 2018 included two special tracks devoted to “Business Process Management in
the Cloud” as well as “Service and Cloud Computing in the Era of Virtualisation.” The
former had the goal to bring forward the notion of business process as a service

(BPaaS), i.e., of a business process that is offered in the form of a service in the cloud,
as well as to explicate the various research directions that need to be followed in order
to not only realise but also properly support and improve this new cloud offering. The
second track aimed at examining how the design, development, and execution of
service-based applications is influenced by the different virtualisation levels that exist
today, which might also exhibit different levels of latency, scalability, manageability,
and customizability.

The attendees of ESOCC had the opportunity to follow two outstanding keynotes
that were part of the conference program. The first keynote was given by Omer Rana,
Full Professor and Head of Complex Systems Research Group in the School of
Computer Science and Informatics at Cardiff University. This keynote concerned the
presentation of a novel data-processing architecture across different infrastructure
layers that enables the migration of core functionality at the edges of the network to
support the more efficient use of datacentre and intra-network resources. The second
keynote was given by Valerie Issarny, Senior Research Scientist at Inria, who is also a
co-founder of the Ambientic start-up as well as a scientific manager of the
Inria@Sillicon Valley program. Dr. Issarny discussed in her keynote the new possi-
bilities of mobile distributed computing systems and explained the main breakthroughs
that her MIMOVE team has achieved at Inria with respect to urban participatory mobile
systems concerning the leverage of mobile collaborative sensing and computing to
enhance the effectiveness of these systems with respect to the delivery of quality of
service.

The additional events held at ESOCC 2018 included the PhD symposium, enabling
PhD students to present their work in front of real experts, as well as the EU projects
track, supplying the opportunity to researchers to present the main research results that
they have achieved in the context of currently operating EU projects. Further, ESOCC
2018 included the organization of three workshops, namely, the First International
Workshop on Optimization in Modern Operating Systems (OptiMoCS 2018), the 4th
International Workshop on Cloud Migration and Architecture (CloudWays 2018), and
the 14th International Workshop on Engineering Service-Oriented Applications and
Cloud Services (WESOACS 2018), for which the respective proceedings will be
published separately.

The PC chairs and the general chair would like to gratefully thank all the persons
involved in making ESOCC 2018 a success. This includes both the PC members and
their colleagues that assisted in the reviews as well as the organizers of the industry
track, the PhD symposium, the EU projects track, and the three workshops. A special
applause should also go to the members of the local Organizing Committee for their
devotion, willingness, and hospitality. Finally, we would cordially like to thank all the
authors of all the manuscripts submitted to ESOCC 2018, the presenters of the accepted
papers who made interesting and fascinating presentations of their work, as well as the
active attendees of the conference who initiated interesting discussions and gave
fruitful feedback to the presenters. All these persons not only enabled a very successful
organization and execution of ESOCC 2018 but also formulate an active and vibrant
community that continuously contributes to the research in service-oriented and cloud

VI Preface

computing. This also encourages ESOCC to continue contributing with new research
outcomes to further facilitate and enlarge its community as well as have a greater
impact and share in both service-oriented and cloud computing research.

September 2018 Kyriakos Kritikos
Pierluigi Plebani
Flavio de Paoli

Preface VII

Organization

ESOCC 2018 was organized by the University of Milano-Bicocca, Italy

Organizing Committee

General Chair

Flavio De Paoli University of Milano-Bicocca, Italy

Program Chairs

Kyriakos Kritikos ICS-FORTH, Greece
Pierluigi Plebani Politecnico di Milano, Italy

Industry Track Chairs

Marco Brambilla Politecnico di Milano, Italy
Erik Wilde CA Technologies API Academy, Switzerland

Workshop Chairs

Wolf Zimmermann Martin Luther University Halle-Wittenberg, Germany
Maria Fazio University of Messina, Italy

EU Project Space Chairs

Federico Facca Martel Innovate, Switzerland
Dumitru Roman SINTEF/University of Oslo, Norway

PhD Symposium Chairs

Vasilios Andrikopoulos University of Groningen, The Netherlands
Massimo Villari University of Messina, Italy

Website Chair

Marco Cremaschi University of Milano-Bicocca, Italy

Steering Committee

Antonio Brogi University of Pisa, Italy
Schahram Dustdar TU Wien, Austria
Paul Grefen Eindhoven University of Technology, The Netherlands
Kung Kiu Lau University of Manchester, UK
Winfried Lamersdorf University of Hamburg, Germany
Frank Leymann University of Stuttgart, Germany

Flavio de Paoli University of Milano-Bicocca, Italy
Cesare Pautasso University of Lugano, Switzerland
Ernesto Pimentel University of Malaga, Spain
Ulf Schreier Hochschule Furtwangen University, Germany
Stefan Schulte TU Wien, Austria
Massimo Villari University of Messina, Italy
John Erik Wittern IBM T.J. Watson Research Center, USA
Olaf Zimmermann HSR FHO Rapperswil, Switzerland
Wolf Zimmermann Martin Luther University Halle-Wittenberg, Germany

Program Committee

Marco Aiello University of Groningen, The Netherlands
Vasilios Andrikopoulos University of Groningen, The Netherlands
Farhad Arbab CWI, The Netherlands
Luciano Baresi Politecnico di Milano, Italy
Boualem Benatallah The University of New South Wales, Australia
Antonio Brogi University of Pisa, Italy
Giacomo Cabri University of Modena and Reggio Emilia, Italy
Marco Comuzzi Ulsan National Institute of Science and Technology,

South Korea
Frank de Boer CWI, The Netherlands
Schahram Dustdar TU Wien, Austria
Robert Engel IBM Almaden, USA
Rik Eshuis Eindhoven University of Technology, The Netherlands
George Feuerlicht Prague University of Economics, Czech Republic
Marisol Garca-Valls Universidad Carlos III de Madrid, Spain
Ilche Georgievski University of Groningen, The Netherlands
Claude Godart University of Lorraine, France
Paul Grefen Eindhoven University of Technology, The Netherlands
Heerko Groefsema University of Groningen, The Netherlands
Thomas Gschwind IBM Zurich Research Lab, Switzerland
Martin Henkel Stockholm University, Sweden
Knut Hinkelmann FHNW University of Applied Sciences and Arts,

Northwestern, Switzerland
Einar Broch Johnsen University of Oslo, Norway
Oliver Kopp University of Stuttgart, Germany
Ernoe Kovacs NEC Europe Network Labs, Germany
Patricia Lago VU University Amsterdam, The Netherlands
Winfried Lamersdorf University of Hamburg, Germany
Kung-Kiu Lau University of Manchester, UK
Frank Leymann University of Stuttgart, Germany
Zoltan Adam Mann University of Duisburg-Essen, Germany
Roy Oberhauser Aalen University, Germany
Guadalupe Ortiz University of Cadiz, Spain
Claus Pahl Free University of Bozen-Bolzano, Italy

X Organization

Cesare Pautasso University of Lugano, Switzerland
Ernesto Pimentel University of Malaga, Spain
Dimitris Plexousakis ICS-FORTH, Greece
Dumitru Roman SINTEF, Norway
Alessandro Rossini mytEVRY Cloud Services, Norway
Ulf Schreier University of Applied Sciences Furtwangen, Germany
Stefan Schulte TU Wien, Austria
Damian Andrew

Tamburri
Technical University of Eindhoven, The Netherlands

Maarten van Steen University of Twente, The Netherlands
Massimo Villari University of Messina, Italy
Stefan Wesner University of Ulm, Germany
Erik Wilde CA Technologies, Switzerland
John Erik Wittern IBM T.J. Watson Research Center, USA
Robert Woitsch BOC Asset Management, Germany
Gianluigi Zavattaro University of Bologna, Italy
Wolf Zimmermann Martin Luther University Halle-Wittenberg, Germany
Christian Zirpins University of Applied Sciences Karlsruhe, Germany

Organization XI

Contents

When Service-Oriented Computing Meets the IoT: A Use Case in the
Context of Urban Mobile Crowdsensing: Invited Paper 1

Valérie Issarny, Georgios Bouloukakis, Nikolaos Georgantas,
Françoise Sailhan, and Géraldine Texier

True Concurrent Management of Multi-component Applications 17
Antonio Brogi, Andrea Canciani, and Jacopo Soldani

Runtime Evolution of Multi-tenant Service Networks 33
Indika Kumara, Jun Han, Alan Colman, Willem-Jan van den Heuvel,
and Damian A. Tamburri

DevOps Service Observability By-Design: Experimenting
with Model-View-Controller . 49

Damian A. Tamburri, Marcello M. Bersani, Raffaela Mirandola,
and Giorgio Pea

Re-architecting OO Software into Microservices:
A Quality-Centred Approach . 65

Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane,
Christophe Dony, and Rahina Oumarou Mahamane

An Encoder-Decoder Architecture for the Prediction of Web Service QoS . . . 74
Mohammed Ismail Smahi, Fethellah Hadjila, Chouki Tibermacine,
Mohammed Merzoug, and Abdelkrim Benamar

Trustworthy Detection and Arbitration of SLA Violations in the Cloud 90
Christian Schubert, Michael Borkowski, and Stefan Schulte

Distributed Complex Event Processing in Multiclouds 105
Vassilis Stefanidis, Yiannis Verginadis, Ioannis Patiniotakis,
and Gregoris Mentzas

A Multi-level Policy Engine to Manage Identities and Control Accesses
in Cloud Computing Environment . 120

Faraz Fatemi Moghaddam, Süleyman Berk Çemberci, Philipp Wieder,
and Ramin Yahyapour

A Practical Approach to Services Composition Through Light
Semantic Descriptions . 130

Marco Cremaschi and Flavio De Paoli

Using a Microbenchmark to Compare Function as a Service Solutions. 146
Timon Back and Vasilios Andrikopoulos

APIComposer: Data-Driven Composition of REST APIs 161
Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot

IaaS Service Selection Revisited . 170
Kyriakos Kritikos and Geir Horn

An Innovative MapReduce-Based Approach of Dijkstra’s Algorithm for
SDN Routing in Hybrid Cloud, Edge and IoT Scenarios 185

Alina Buzachis, Antonino Galletta, Antonio Celesti, and Massimo Villari

Little Boxes: A Dynamic Optimization Approach for Enhanced
Cloud Infrastructures . 199

Ronny Hans, Björn Richerzhagen, Amr Rizk, Ulrich Lampe,
Ralf Steinmetz, Sabrina Klos (née Müller), and Anja Klein

Cloud Topology and Orchestration Using TOSCA: A Systematic
Literature Review . 207

Julian Bellendorf and Zoltán Ádám Mann

Author Index . 217

XIV Contents

When Service-Oriented Computing Meets
the IoT: A Use Case in the Context

of Urban Mobile Crowdsensing
Invited Paper

Valérie Issarny1(B), Georgios Bouloukakis1, Nikolaos Georgantas1,
Françoise Sailhan2, and Géraldine Texier3

1 Inria, Paris, France
{valerie.issarny,georgios.bouloukakis,nikolaos.georgantas}@inria.fr

2 CNAM, Paris, France
francoise.sailhan@cnam.fr

3 IMT Atlantique/IRISA/UBL, Rennes, France
geraldine.texier@imt-atlantique.fr

Abstract. The possibilities of new mobile distributed systems have
reached unprecedented levels. Such systems are dynamically composed of
networked resources in the environment, which may span from the imme-
diate neighborhood of the users - as advocated by pervasive computing -
up to the entire globe - as envisioned by the Future Internet and one of
its major constituents, the Internet of Things. This paper more specif-
ically concentrates on urban participatory mobile distributed systems
where people get involved in producing new knowledge about the urban
environment. Service-oriented and cloud computing are evident baseline
technologies for the target mobile distributed systems. Service orienta-
tion provides the abstraction to deal with the assembly of the relevant
heterogeneous component systems. The cloud provides the infrastructure
to deal with the gathering and analyses of the observations coming from
the sensing infrastructure, including from people. However, cloud-based
centralized solutions come at a price, regarding both resource consump-
tion and privacy risk. Further, the high heterogeneity of the participating
nodes results in diverse levels of sensing accuracy. This paper provides
an overview of our past and ongoing research to overcome the challenges
facing urban participatory mobile distributed systems, which leverages
mobile collaborative sensing, networking and computing. The experience
with the Ambiciti platform and associated mobile app for monitoring the
individual and collective exposure to environmental pollution serves as
an illustrative use case.

Keywords: IoT · Interoperability · Middleware
Mobile crowdsensing · Urban sensing systems · Multiparty calibration

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 1–16, 2018.
https://doi.org/10.1007/978-3-319-99819-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_1&domain=pdf

2 V. Issarny et al.

1 Introduction

The Service Oriented Computing –SOC– (or Service Oriented Architecture –
SOA) paradigm has proved particularly appropriate for ubiquitous and mobile
computing systems [14]. Through the abstraction of networked devices and their
hosted applications as services delivered and consumed on demand, the SOA
approach enables the assembly of systems whose component systems can be
retrieved and composed statically as much as dynamically, thanks to service dis-
covery and service interaction protocols. While mobile services incorporate and
apply the fundamental principles of SOA, they present a number of specifics
that push certain challenges related to service oriented systems to their extreme
and additionally introduce new unique research challenges. Such specifics relate
to: (i) dynamism – open mobile environments are much more volatile than typ-
ical service environments, with services emerging and disappearing in arbitrary
ways without prior notification; (ii) heterogeneity – a direct consequence of ad
hoc mobile environments is that no safe assumption can be made about the tech-
nological and business features of the services encountered; and (iii) the equation
among QoS expectations on services, scalability, and required resources is hard
to solve, due to the resource constraints of mobile environments. Dealing with
the identified specifics gets even more complex if we consider both traditional
computing services and services attached to the physical world by means of
sensors and actuators, i.e., Things [9].

This paper specifically focuses on the design of service-oriented systems sup-
porting the analysis of urban-scale phenomena through the composition of the
diverse relevant sensing services, from services supported by urban infrastruc-
ture networks to services gathering observations from end-users (Fig. 1). The
related research challenges are numerous, including the ones due to the afore-
mentioned specifics of mobile services. Here, we concentrate on the challenges
that we have been investigating in relation with the development and deploy-
ment of an urban service monitoring the individual and collective exposure of
the population to environmental pollution (Sect. 2). Thanks to the sensors that
people may increasingly “hold” and/or “wear” while moving, we are potentially

Fig. 1. Monitoring the urban environment using the fixed and mobile IoT.

When Service-Oriented Computing Meets the IoT 3

able to monitor urban phenomena at a very fine grain across time and space.
However, while the potential is high and examples in the area of traffic moni-
toring evidences it, the ability to monitor diverse urban phenomena at scale is
far from being straightforward. There are indeed many hurdles arising, among
which the following ones that we have been and are currently investigating:

– The monitoring of urban phenomena involves analyzing observations across
time and space, but also across application domains (e.g., BMS, traffic,
health). As a result, the thorough analysis of urban phenomena involves the
ability to compose services across horizontal (location dependent) and vertical
(application dependent) boundaries. In addition, the urban system architec-
ture must ease such a composition of services at scale. Toward that goal, we
investigate system architectures that build upon the pub/sub communication
paradigm, which has proven well suited for open, large-scale dynamic systems.
Further, we adopt the edge computing paradigm, which includes leveraging
the processing power of the mobile nodes. Moreover, the system architecture
must ease the integration of highly heterogeneous Things, which goes along
with supporting interaction across diverse protocols (Sect. 3).

– While the SOC paradigm together with semantic technologies allow expos-
ing the capabilities of the connected Things despite their high heterogeneity,
the large diversity of Things also manifests itself from the standpoint of the
accuracy of the delivered observations. It is then essential to assess the qual-
ity of the provided observations, which may result in either filtering out or
correcting part of the observations. Obviously, the ability to correct obser-
vations leads to gathering more knowledge, for which we study automated,
collaborative multi-party calibration (Sect. 4).

– The scale of the urban systems significantly challenges the networking and
computing infrastructures, especially when the system keeps monitoring phe-
nomena over time. The adoption of the pub-sub communication paradigm
together with edge computing in our architecture contributes to overcoming
the challenge by fostering communication and computing within the relevant
geographical area(s). In addition, the mobility of nodes is worth exploiting
to cross geographical regions and/or application domain boundaries. In that
direction, we explore the offloading of the urban WSN-based IoT infrastruc-
ture networks to “peer” mobile nodes that act as crowdsensors in the same
application domain. This allows saving the energy due to communication in
the WSN and thereby increasing the WSN lifetime (Sect. 5).

The above list is only a subset of the challenges that IoT-based systems
need to face to enable a thorough analysis of urban phenomena. This paper
then concludes with an overview of other challenges that we and/or others are
investigating and for which service-oriented and cloud computing are essential
baseline technologies but that need to be revisited to handle the specifics of
IoT-based systems.

4 V. Issarny et al.

2 Monitoring the Exposure to the Urban Environmental
Pollution: A Use Case

According to the EU 1996 Pollution Directive (www.eea.europa.eu/policy-
documents/council-directive-96-61-ec-ippc), “‘Pollution’ shall mean the direct
or indirect introduction as a result of human activity, of substances, vibrations,
heat or noise into the air, water or land which may be harmful to human health or
the quality of the environment, result in damage to materiel property, or impair
or interfere with amenities and other legitimate uses of the environment.” With
the majority of the population now living in cities, it is increasingly critical to
be able to monitor the exposure to environmental pollution in urban centers. In
particular, the research community suggests that the social cost of noise and air
pollution in EU -including death and disease- could be nearly EUR 1 trillion,
while the social cost of smoking in the EU has been estimated to be EUR 544
billion [17].

The development of the IoT, including the one of the sensing technologies
that smartphones now embed, together with advancements in machine learning,
allow for the deployment of cloud-based platforms that collect and aggregate
the many relevant urban data sources to produce street-level hourly maps about
the environmental pollution (e.g., [21]). Also, mobile apps that serve collecting
observations about the environmental pollution enable to inform users about
their individual exposure and related impact on their health [7]. As part of our
research, we have developed a cloud-based platform and related mobile app for
monitoring the individual and collective exposure to the environmental pollution
[6]. In particular, the app implements noise sensing using the phone’s microphone
while accounting for the relatively low accuracy of the resulting observations
[22]. In a nutshell, the mobile app implements a crowdsensing application that
periodically transfers the collected observations to the cloud server, which filters
out the observations that are not deemed accurate enough. The cloud server
implements data assimilation techniques to integrate observations from various
data sources with mathematical models to simulate the state of a system of an
urban phenomenon [20].

The research resulted in the Ambiciti solution (ambiciti.io) that enables mon-
itoring the individual exposure to noise and air pollution (Fig. 2-Left), while pro-
ducing street-level maps about environmental pollution (Fig. 2-Right). In sum-
mer 2015, we deployed the first version of Ambiciti, which initially supported
noise pollution monitoring only. Since autumn 2016, Ambiciti also monitors the
exposure to air quality. The urban-scale deployment of Ambiciti –especially in
Paris– has led us to identify a number of recommendations for the IoT-based
sensing system and supporting architecture [10,12], which we have been and are
still investigating. The major challenge to face is to enable and promote the
gathering of observations of sufficient quality at scale so as to enable the thor-
ough analysis of urban phenomena. The following reports on our complementary
studies toward that goal. All these studies focus on developing distributed col-
laborative protocols that contribute to increasing the accuracy of the knowledge

www.eea.europa.eu/policy-documents/council-directive-96-61-ec-ippc
www.eea.europa.eu/policy-documents/council-directive-96-61-ec-ippc
http://ambiciti.io

When Service-Oriented Computing Meets the IoT 5

Fig. 2. Monitoring the exposure to environmental pollution using Ambiciti.

produced at the edge, while reducing the overall resource consumption associated
with data processing and communication.

3 System Architecture for the Urban IoT

Ubiquitous computing devices featuring sensing capabilities are deployed in a
variety of application domains, such as smart cities, smart factories, resource
management, intelligent transportation and healthcare to name a few. This
enables analyzing observations of different domains across time and space in the
so called urban environment. However, enacting IoT urban systems is still rais-
ing tremendous challenges for the supporting infrastructure from the networking
up to the application layers. Key challenges [1,18] relate to deep heterogeneity,
high dynamicity, scale, and many others.

To support the deployment of large-scale, heterogeneous and dynamic IoT
urban systems we rely on the architecture depicted in Fig. 3. This comprises the
following layers:

– Device: This layer serves applications from multiple domains. Each appli-
cation involves heterogeneous devices and processing capabilities in mobile
nodes.

– Edge: At this layer, we adopt the Edge computing paradigm to collect multi-
domain data from end-users being in several regions. We define a region as a
bounded geographical area with common features (e.g., a university campus).
Additionally, to deal with the heterogeneity of IoT applications (exposed as
services), we deploy software interoperability artifacts at this layer.

6 V. Issarny et al.

– Cloud: Several domains of IoT applications require powerful processing capa-
bilities (e.g., for executing machine learning algorithms) and thus, at this layer
we enable the use of Cloud computing resources.

Fig. 3. System architecture for the urban IoT.

3.1 Supporting Wide-Scale IoT Apps

Mobile IoT applications are typically deployed on resource-constrained devices
with intermittent network connectivity. To support the deployment of such appli-
cations, the pub/sub interaction paradigm is often employed, as it decouples
mobile peers in both time and space. In a pub/sub system, multiple peers inter-
act via an intermediate broker entity – publishers produce events characterized
by a specific filter to the broker. Subscribers subscribe their interest for specific
filters to the broker, which maintains an up-to-date list of subscriptions.

To support distributed applications spanning a wide-area, the pub/sub sys-
tem has to be implemented as a set of independent, communicating brokers,
forming the broker overlay. Let B = {b : i ∈ [1..|B|]} be the set of pub/sub
brokers. As depicted in Fig. 4, in such architectures [3], peers can access the
system through any broker that becomes their home broker. Then, based on the
peers’ input, the pub/sub system ensures the delivery of the events produced
towards the interested subscribers. As still shown in Fig. 4, a message broker
can be assigned to support a specific region or one or more application domains
inside a region. This depends on the corresponding administration of the related
region’s vertical markets.

Building an IoT application over a pub/sub infrastructure, requires the selec-
tion of an appropriate protocol (e.g., MQTT). Such a protocol enables IoT
devices to access the broker overlay and push/receive events. Additionally, to
create the pub/sub broker overlay, the corresponding message broker implemen-
tation (e.g., VerneMQ, HiveMQ, etc.) must be selected. Each message broker

When Service-Oriented Computing Meets the IoT 7

Fig. 4. Multi-domain/region pub/sub system.

technology has different capabilities, such as: compatibility with different pro-
tocols, support for clustering (i.e., forming a broker network), provision of per-
formance features, etc. To enable the interconnection between message brokers
that employ different protocols for message routing (e.g., MQTT and AMQP in
Fig. 4), adapter software components can be utilized. Usually, such components
are supported by the corresponding message broker technology (e.g., VerneMQ).
An important design-time decision is the provision of resources for message bro-
ker deployment. In this work we assume the deployment of brokers at the Edge.
To enable the interconnection between a message broker (Edge) and the cloud,
we employ an intermediate edge-server which corresponds to a pub/sub sub-
scriber that collects data and forwards them to the cloud.

3.2 Supporting Heterogeneous IoT Apps

Mobile environments can be very heterogeneous, both locally but also when
reaching out to the whole IoT. Service heterogeneity concerns both business
semantics and communication middleware. The former issue has led to a wide use
of ontologies and related technologies in SOA. As for the latter issue, it is due to
the fact that mobile IoT devices may use different communication contexts. This
calls for support for heterogeneous interaction styles, namely message-driven,
event-driven, and data-driven styles. Different interaction styles apply to differ-
ent needs; for instance, asynchronous, event-based pub/sub is more appropri-
ate for highly dynamic environments with frequent disconnections of involved
entities. This fact makes the various service bindings supported by most ser-
vice technologies too stringent, since they comply with a single (client/server)
message-based interaction style. Service models should be able to abstract and
comprehensively specify the various service bindings of mobile IoT devices. This
further implies extending the notion of service and introducing adequate service

8 V. Issarny et al.

interaction modeling. Moreover, interoperability mechanisms are required
between heterogeneous interaction styles based on transformation mappings
between their models.

Our work in this context has focused on the problem of interconnecting sys-
tems that employ different interaction styles or paradigms [5]. We include in
particular the client/server, publish/subscribe, data streaming and tuple space
paradigms, which cover the majority of communication middleware protocols
enabling system interaction. Our overall approach generalizes the way to design
and implement service-oriented distributed applications, where the employed
interaction paradigms are explicitly represented and systematically integrated.

As a first step, we identified the semantics of the four principal interaction
paradigms and elicited a connector model for each paradigm. Our models repre-
sent the essential semantics of interaction paradigms, concerning space coupling,
time coupling, concurrency and synchronization coupling. These four categories
of semantics are of primary importance, because these are end-to-end seman-
tics: when interconnecting different interaction paradigms, we seek to map and
preserve these semantics. Inside each interaction paradigm, we identify further
one or more of four interaction types: one-way, two-way synchronous, two-way
asynchronous and two-way streaming interaction. These interaction types incor-
porate the above semantics of end-to-end interactions.

Following the previous step, we introduced a higher-level connector model
that comprehensively represents the semantics of various middleware protocols
that follow the four base connector models, hence it can represent the majority
of the existing and possibly of the future middleware protocols. In particular,
this connector models the four interaction types supported by the base connec-
tor models in an abstract way. Furthermore, we introduced a generic interface
description language for specifying interfaces in an abstract way. This language
enables the definition of operations provided or required by an application com-
ponent that follow the four interaction types.

By relying on the above abstractions, we have introduced a solution to seam-
lessly interconnect IoT devices that employ heterogeneous interaction protocols
at the middleware level [2]. Interconnection is performed via one or more message
brokers lying at the Edge as presented in the previous section. More specifically,
a dedicated software component called a Binding Component (BC) performs the
conversion between the middleware protocol of an IoT device and the message
broker protocol as depicted in Fig. 4.

Based on our modeling abstractions, we have developed a systematic app-
roach for the automated synthesis of BCs. The development of BCs is a tedious
and error-prone process, which can highly benefit from our automated system-
atic support. This can help application developers integrate heterogeneous IoT
devices inside complex applications. Furthermore, the automated BC synthe-
sis is essential for applications relying on the dynamic runtime composition
of heterogeneous devices, where there is no human intervention. Our solu-
tion was introduced as a core component of the H2020 CHOReVOLUTION
project (chorevolution.eu) to enable heterogeneous interactions in services &

http://chorevolution.eu

When Service-Oriented Computing Meets the IoT 9

Things choreographies. Currently, it supports the following middleware proto-
cols: REST, CoAP, MQTT, WebSockets, SemiSpace and DPWS. It is released
as open source software (gitlab.inria.fr/zefxis).

4 Overcoming the Low Accuracy of Mobile Crowdsensors

Current crowdsensing approaches are primarily focused on collecting data at a
large scale, as in particular supported by the pub/sub system architecture of the
previous section. However, without any suitable calibration mechanism, smart-
phones tend to disclose inaccurate readings. To tackle this issue, we propose to
collaboratively and automatically calibrate in the field, the sensors embedded
in and/or connected to the smartphones. Thus, when some mobile sensors are
in the same spatial vicinity, uncalibrated sensors get automatically calibrated
–without involving the end users. Compared to existing solutions that itera-
tively calibrate one by one a unique mobile sensor at a given time, our approach
supports the joint calibration of several uncalibrated sensors, thus reducing the
overall calibration delay. This leads to a multi-party, multi-hop calibration for
which the history of calibrated sensors is used to assess the best calibration
hyperpath, which is the one that minimizes the accumulated calibration error.
Our approach towards accurate urban sensing further distinguishes from the
traditional WSN setting by enabling mobile, consumer-centric smartphones to
interact with both stationary and mobile sensors in their proximity so as to cali-
brate the smartphones’ sensors. In particular, our solution leverages the presence
of two types of sensors:

– Reference sensors correspond to high fidelity sensors (e.g., a sound meter in
the case of noise sensing) that are regularly calibrated by experts. Reference
sensors are typically government-run (see Fig. 2 in [13] for an illustration of the
few reference sensors measuring noise in the city of Paris) and their measure-
ments are generally made publicly available. They are wirelessly networked
[16] as detailed in the next section.

– Mobile sensors correspond to low cost and less accurate sensors that are owned
by individuals (they typically include the sensors embedded in smartphones)
and that need to be remotely calibrated.

Then, the reference sensors that belong to the urban infrastructure support
the calibration of any mobile sensor that is within sensing range. And, in turn,
the newly calibrated sensors may be used to calibrate the uncalibrated sensors
they meet (as they move). The following outlines our solution whose detailed
presentation may be found in [15].

Multi-party Calibration. During a rendezvous, any uncalibrated sensor i
attempts to calibrate using the calibrated measurements provided by the m
nearby sensors, for which we leverage multivariate linear regression.

As illustrated in Fig. 5, there is a linear dependency between the measure-
ments produced by a non-calibrated sensor and the m surrounding calibrated

http://gitlab.inria.fr/zefxis

10 V. Issarny et al.

sensors. Thus, any reading yi(t) of the uncalibrated sensor i at time t can be
expressed as the following linear function:

yi(t) = β0 + β1x1(t) + β2x2(t) + · · · + βmxm(t) + ei(t) (1)

where: xj(t) (j ∈ [1, · · · ,m]) denotes the calibrated measurements of the m
sensors; β0, · · · , βm represent the unknown (and fixed) regression coefficients;
and ei(t) is the residual noise, with t ∈ [t1, · · · , tp]. The goal is to find the
regression coefficients β0, β1, · · ·+βm that minimizes the residual noise. For this,
we rely on the least square method, which minimizes the sum of the squared
distance of the data points from the line measured perpendicular to the x axis
(see Fig. 5).

 0

 10

 20

 30

 40

 50

 10 15 20 25 30 35 40 45 50

So
un

d
Le

ve
l (

dB
(A

))

Sound Level (dB(A))

regression line

Fig. 5. An uncalibrated smartphone calibrates using the calibrated measurement of
one calibrated smartphone. Regression lies in fitting a straight line to bivariate data
using least square regression. The regression minimizes the vertical residual (dashed
line on the right figure) by keeping to a minimum the squared vertical distance from
each data point to the line.

Multi hops, multi-party calibration. Thanks to the above multivariate linear
regression, the calibration coefficients of an uncalibrated smartphone sensor i
may be estimated based on the readings provided by the surrounding sensors
that are met during a multiparty rendezvous. However, sensor i should not sys-
tematically (re-)calibrate: it must do so only if the quality of the regression is
sufficient. In particular, a high residual error (i.e., ei in Eq. 1) reflects a poor
correlation between the readings provided by the surrounding sensors, and in
such a case, the conditions are not met for an effective calibration. This may
occur when some smartphones are in bags/pockets and others are handheld.

Another aspect to consider for assessing the relevance of a given multiparty
calibration relates to the history of past calibrations. We must compare the qual-
ity of the calibration parameters computed in the current rendezvous against
the quality of the previous calibrations (if any). We thus maintain the history of
multiparty calibrations using a weighted directed hypergraph: a multiparty ren-
dezvous between sensor i and K sensors is represented by an hyperedge between
sensor i and the K sensors. The quality of the regression established by i based on

When Service-Oriented Computing Meets the IoT 11

the readings provided by the K sensors is reflected by the weight of the directed
hyperedge between i and the K sensors. Ultimately, the preferred calibration is
the one that results in the lowest cumulated weight.

Summarizing the proposed multiparty calibration method, any smartphone
(embedding a sensor) i participating in the collaborative calibration periodically
performs the following process:

1. Smartphone i detects the presence of nearby sensing device(s), i.e., devices
in the shared sensing range.

2. If any eligible rendezvous, i exchanges its sensing measurements (i.e., time
series) in a synchronized manner so as to establish the linear relationship
between the measurements of the nearby sensors and the raw measurements
obtained locally.

3. The best calibration path is determined and the calibration function is set.

Overall, the key feature of the calibration system is to enhance the accuracy of
the raw data sensing provided by a self-selected and potentially unskillfulness or
distrustful crowd. As few anomalies or discordant observations may contaminate
the overall knowledge, it is critical to identify, detect and treat such anomalies.
To tackle this issue, we attempt to combine two complementary approaches: (i)
we harness the power of the crowd to collaboratively sense and calibrate, (ii)
we coordinate with city-owned sensors so as to support an initial bootstrapping
calibration.

5 When Crowdsensing Meets the Infrastructured IoT
Networks

The previous section shows how the participatory sensing benefits from an inter-
action with smart city sensing infrastructures to bootstrap the calibration of the
crowdsensors and deliver more accurate measurements. This cooperation can be
deepened to achieve a mutual benefit for crowdsensing and the urban IoT infras-
tructures. For this, we advocate the possibility of direct interactions between
crowd smartphones and the infrastructured sensors that surround them. First –
as illustrated in the previous section–, such interactions can benefit smartphones
by allowing them to quickly and directly retrieve (higher quality) measurements
taken around them. Second, smartphones can push their participatory engage-
ment further: in addition to making their smartphone’s sensors available, they
can also offer to share part of their network interconnection to offload the WSN
and relay part of its data (as shown in Fig. 7).

In general, urban measurement infrastructures are implemented by Wireless
Sensor Networks (WSN), which are more or less extensive and distributed in
the city. The sensors perform measurements and send them towards a gateway
(the WSN’s sink) in charge of publishing to the pub/sub system the collected
data through its Binding Component (BC) as shown in Fig. 6. To do this, the
WSN implements convergecast communication to allow the sink to collect data
generated by each sensor in the network. With the exception of the leafs, each

12 V. Issarny et al.

Fig. 6. Classical convergecast data col-
lection in the WSN.

Fig. 7. Smartphone offloading data
from the WSN.

sensor sends its parents both the data it generates and the data transmitted
to it by its children. The worst case is that of the nodes near the sink: the
emission of the measurements they generate represents only a small fraction of
their communications since they spend most of their time relaying their children’s
data.

But, due to high deployment constraints in urban environments, sensors in
the WSNs are often battery powered, which limits the lifetime of the whole urban
sensing infrastructure. However, the definition of the WSN lifetime depends on
the policy of the network operator. If it does not tolerate any failure, the lifetime
of the network is limited by the exhaustion of the energy of at least one sensor.
Another strategy is to tolerate a given number of sensors that no longer work,
in which case the lifetime of the network is determined by the number of sensors
that remain connected to the sink despite the death of a subset of sensors.
Whatever lifetime definition is chosen, a smartphone can help the infrastructure
survive longer by giving it the ability to relay some of its data. Note that this
requires that smartphones can connect to infrastructured sensors, for example
via protocols such as Zigbee, 802.15.4 or Bluetooth Low Energy (BLE). The
fact is that sensors are increasingly able to communicate and we believe that
lack of compatibility is less a technical problem than a market problem. So,
although with the exception of BLE, most smartphones do not yet integrate the
main interfaces supported by the sensors, we think that this will evolve within
a reasonable time. Therefore, we consider that direct communication between
the infrastructure and smartphones is not an obstacle for our work and will be
available in the future.

Many studies have sought to optimize the lifetime of networks. They can
be classified according to the techniques they propose. Some solutions seek to

When Service-Oriented Computing Meets the IoT 13

maximize the network lifetime by enhancing RPL energy efficiency [11]. For
example with a RPL metric that integrates the available energy of the WSN
nodes [8] to ensure that the nodes solicited for relaying data are the ones with
the highest energy budget. However, using a routing protocol with such a very
dynamic metric implies great routing instability. Other solutions are based on
Delay Tolerant Networks communication techniques. In particular, the optimiza-
tion of the data collection by a mobile node, usually through the optimiza-
tion of the mobile node’s trajectory based on variants of the traveling salesman
problem [4].

In [19], we have presented how the cooperation of the crowd smartphones
and the urban WSN can extend the measurement infrastructure’s lifetime based
on both optimization and traffic engineering techniques. We proposed a model
to integrate the crowd smartphones as mobile sinks able to offload a portion of
the WSN data transmissions. We optimize the routing to take advantage of the
path diversity offered by the WSN topology. With a simple energy model (each
sensor has an energy budget given by the capacity of its batteries), we determine
the number of communications a sensor is able to perform before exhausting its
energy. We can also compute the network lifetime, in our case the time before at
least one sensor runs out of energy. Our linear program determines the quantity
of data that a sensor should send to each of its neighbors (including mobile
nodes) to maximize the network lifetime. Although the efficiency of the solution
is strongly linked to the location of mobile nodes, we have shown on a realistic
example that when we allow a subset of network sensors to communicate with a
mobile node, we can increase the lifetime of the network in significant proportions
(in our example, we multiplied the lifetime of the network by 7). Our work opens
several research issues that we are exploring as part of our ongoing and future
work. One of these issues relates to our load balancing strategy that requires
the introduction of proportional routing into the WSN routing mechanism. This
modification also makes it possible to support temporary failures of the sensors
by offering next alternative jumps if a node having to relay the information is
not available at the time of emission.

6 Conclusion

The IoT holds the promise of blending the physical with the virtual world, while
the power of the crowd enables gathering knowledge at unprecedented scales
across both time and space. However, the vision raises tremendous challenges
for the supporting system architectures, among which keeping pace with the tar-
get scale and overcoming the heterogeneity of the IoT nodes. The literature has
shown that service-oriented and cloud computing are evident baseline technolo-
gies: service orientation brings abstraction to overcome heterogeneity and the
cloud brings the computing infrastructure to aggregate the knowledge sensed
within the IoT. However, this puts high demand on the networking infrastruc-
ture, while collaborative networking and computing at the edge allow for sig-
nificant resource saving. Our research focuses on such collaborative distributed

14 V. Issarny et al.

IoT-based system architectures at the edge, where we build upon our experience
on developing and deploying an urban-scale system for the monitoring of the
individual and collective exposure to environmental pollution.

This paper has outlined our most recent research in the area, spanning the
study of: (1) a publish-subscribe system architecture enriched with software
interoperability artifacts to support the interconnection of applications imple-
menting heterogeneous communication paradigms; (2) in-network multi-party,
multi-hop calibration so as to overcome the low accuracy of low cost sensors,
and especially of the sensors embedded in smartphones; and (3) collaboration
between the smartphones running crowdsensing apps and the urban WSN-based
IoT infrastructures toward increasing the lifetime of the WSN networks.

Crowdsensing- and IoT-based system architectures, from networking up to
the middleware and application layers, have been studied extensively over the
last ten years, while we have focused our presentation on our specific contri-
butions over the last couple of years. The interested reader is referred to the
bibliography provided in the cited references for an overview and analysis of
related work.

We have many research challenges ahead of us and some of them have been
mentioned along the sections. Among our ongoing research, we would like to
stress the study of privacy-aware crowdsensing systems due to the tension that
the topic creates: (1) On the one hand, we know that the more accurate and pre-
cise knowledge we get about the urban environment, the more we will be able to
develop effective solutions to enhance the people’s well-being and reduce urban
resource consumption; (2) On the other hand, gathering such a precise knowl-
edge also goes along with the ability to infer knowledge about people and even
individuals. Part of the solution lies in policy making as for instance illustrated
by the recent GDPR data protection policy by the EU. Further, crowdsensing
systems must be designed to enforce privacy preservation. Distributed collab-
orative crowdsensing systems where the individual knowledge remains at the
edge and ultimately on the user’s device contribute to it. Still, the systems must
support the appropriate tradeoffs so that relevant urban-scale knowledge may
be computed to inform the city development.

Acknowledgments. The authors would like to thank the support of: the
Inria@SiliconValley International Lab, CityLab@Inria Project lab, and the EIT Digital
innovation activity Env&You. They also gratefully acknowledge the major contribution
of their Inria colleagues, Vivien Mallet, Pierre-Guillaume Raverdy and Kinh Nguyen,
to the development of the Ambiciti system solution.

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet
of things: a survey on enabling technologies, protocols, and applications. IEEE
Commun. Surv. Tutorials 4(17), 2347–2376 (2015)

2. Bouloukakis, G.: Enabling emergent mobile systems in the IoT: from middleware-
layer communication interoperability to associated QoS analysis. Ph.D. thesis
(2017)

When Service-Oriented Computing Meets the IoT 15

3. Bouloukakis, G., Georgantas, N., Kattepur, A., Issarny, V.: Timeliness evaluation
of intermittent mobile connectivity over pub/sub systems. In: Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineering (2017)

4. Garraffa, M., Bekhti, M., Létocart, L., Achir, N., Boussetta, K.: Drones path plan-
ning for WSN data gathering: a column generation heuristic approach. In: IEEE
Wireless Communications and Networking Conference (WCNC) (2018)

5. Georgantas, N., Bouloukakis, G., Beauche, S., Issarny, V.: Service-oriented dis-
tributed applications in the future internet: the case for interaction paradigm
interoperability. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013.
LNCS, vol. 8135, pp. 134–148. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40651-5 11

6. Hachem, S., Mallet, V., Raphaël, V., Raverdy, P.G., Pathak, A., Issarny, V., Bhatia,
R.: Monitoring noise pollution using the urban civics middleware. In: IEEE Big
Data Service (2015)

7. Hachem, S., Mathioudakis, G., Pathak, A., Issarny, V., Bhatia, R.: Sense2Health:
a quantified self application for monitoring personal exposure to environmental
pollution. In: SENSORNETS (2015)

8. Iova, O., Theoleyre, F., Noel, T.: Using multiparent routing in RPL to increase
the stability and the lifetime of the network. Ad Hoc Netw. 29, 45–62 (2015)

9. Issarny, V., Bouloukakis, G., Georgantas, N., Billet, B.: Revisiting service-oriented
architecture for the IoT: a middleware perspective. In: 14th International Confer-
ence on Service Oriented Computing (ICSOC) (2016)

10. Issarny, V., Mallet, V., Nguyen, K., Raverdy, P.G., Rebhi, F., Ventura, R.: Dos and
Don’ts in mobile phone sensing middleware: learning from a large-scale experiment.
In: Proceedings of the 2016 International Middleware Conference (2016)

11. Kamgueu, P.O., Nataf, E., Ndie, T.D.: Survey on RPL enhancements: a focus on
topology, security and mobility. Comput. Commun. 120, 10–21 (2018)

12. Lefèvre, B., Issarny, V.: Matching technological & societal innovations: the social
design of a mobile collaborative app for urban noise monitoring. In: 4th IEEE
International Conference on Smart Computing (2018)

13. Maisonneuve, N., Stevens, M., Ochab, B.: Participatory noise pollution monitoring
using mobile phones. Inf. Polity - Gov. 2.0 Making Connections Between Citizens
Data Gov. 15(1,2), 51–71 (2010)

14. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: state of the art and research challenges. Computer 40(11), 38–45 (2007)

15. Sailhan, F., Issarny, V., Tavares Nascimento, O.: Opportunistic multiparty cali-
bration for robust participatory sensing. In: MASS 2017 - IEEE 14th International
Conference on Mobile Ad Hoc and Sensor Systems (2017)

16. Santini, S., Ostermaier, B., Vitaletti, A.: First experiences using wireless sensor
networks for noise pollution monitoring. In: Proceedings of the Workshop on Real-
world Wireless Sensor Networks (REALWSN) (2008)

17. SEP: Links between noise and air pollution and socioeconomic status - in-depth
report 13 produced for the European commission, DG environment by the science
communication unit, UWE, Bristol. Technical report, Science for Environment
Policy (2016). http://ec.europa.eu/science-environment-policy

18. Teixeira, T., Hachem, S., Issarny, V., Georgantas, N.: Service oriented middleware
for the internet of things: a perspective. In: ServiceWave - European Conference
on a Service-Based Internet (2011)

19. Texier, G., Issarny, V.: Leveraging the power of the crowd and offloading urban
IoT networks to extend their lifetime. In: LANMAN 2018: IEEE International
Symposium on Local and Metropolitan Area Networks (2018)

https://doi.org/10.1007/978-3-642-40651-5_11
https://doi.org/10.1007/978-3-642-40651-5_11
http://ec.europa.eu/science-environment-policy

16 V. Issarny et al.

20. Tilloy, A., Mallet, V., Poulet, D., Pesin, C., Brocheton, F.: BLUE-based NO2 data
assimilation at urban scale. J. Geophys. Res. 118(4), 2031–2040 (2013)

21. Ventura, R., Mallet, V., Issarny, V., Raverdy, P.G., Rebhi, F.: Estimation of urban
noise with the assimilation of observations crowdsensed by the mobile application
Ambiciti. In: INTER-NOISE 2017–46th International Congress and Exposition on
Noise Control Engineering Taming Noise and Moving Quiet (2017)

22. Ventura, R., Mallet, V., Issarny, V., Raverdy, P.G., Rebhi, F.: Evaluation and
calibration of mobile phones for noise monitoring application. J. Acoust. Soc. Am.
142(5), 3084 (2017)

True Concurrent Management
of Multi-component Applications

Antonio Brogi, Andrea Canciani, and Jacopo Soldani(B)

Department of Computer Science, University of Pisa, Pisa, Italy
soldani@di.unipi.it

Abstract. Complex applications orchestrate multiple components and
services, which are independently managed by different teams (e.g.,
DevOps squads). As a consequence, various services may happen to be
updated, reconfigured or redeployed concurrently, possibly yielding unex-
pected/undesired management effects. In this paper, we show how the
true concurrent management of multi-component applications can be
suitably modelled, analysed and automated, also in presence of faults.

1 Introduction

The efficient exploitation of cloud computing peculiarities depends on the degree
of management automation of the applications shipped to cloud platforms [20].
As cloud applications typically integrate various heterogeneous components, the
problem of automating the management of multi-component applications is cur-
rently one of the major concerns in enterprise IT [21].

To automate the management of a multi-component application, the concur-
rent deployment, configuration, enactment and termination of its components
must be properly coordinated. Even if this may be done by different indepen-
dent teams (e.g., DevOps squads), it must be done by considering all depen-
dencies occurring among the components of an application. As the number of
components grows, and the need to reconfigure them becomes more frequent,
application management becomes more time-consuming and error-prone [5].

The components forming a multi-component application, as well as the
dependencies occurring among such components, can be conveniently repre-
sented by means of topology graphs [3]. A component is represented as a node
in a topology graph, while a dependency between two components can be rep-
resented by an arc interconnecting the corresponding two nodes. More precisely,
each node models an application component by indicating the operations to man-
age it, its requirements, and the capabilities it offers to satisfy the requirements
of other nodes. Each oriented arc models the dependency of a component on
another, by connecting a requirement of the former to a capability of the latter.

Management protocols [6,7] enable the modelling and analysis of the manage-
ment of multi-component applications, faults included. Each node is equipped
with its own management protocol, i.e., a finite state machine whose transitions

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 17–32, 2018.
https://doi.org/10.1007/978-3-319-99819-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_2&domain=pdf

18 A. Brogi et al.

and states are associated with conditions on the requirements and capabilities
of such node. Conditions on transitions indicate which requirements must be
satisfied to perform a management operation. Conditions on states define state
consistency, by indicating which requirements of a node must be satisfied in a
state, as well as which capabilities the node is actually providing in such state.
Management protocols also allow indicating how a node reacts to faults, which
occur whenever the condition of consistency of a state is violated. The man-
agement behaviour of a multi-component application can then be derived by
composing the management protocols of its nodes (according to the intercon-
nections defined in its topology). The obtained behaviour can be exploited to
automate various useful analyses, from checking whether a management plan is
valid, to automatically determining management plans allowing to recover appli-
cations that are stuck because of mishandled faults or because of components
behaving differently than expected.

Management protocols (as per [6,7]) rely on an interleaving semantics. Tran-
sitions are considered as atomic, and consistency is only checked on states. This
means that management protocols do not support the analysis of the true concur-
rent execution of management operations. Consider for instance the concurrent
reconfiguration of two components, with one component requiring a capability
of the other to successfully complete its reconfiguration. The latter may however
stop providing the desired capability during the execution of its reconfiguration
operation, even if such capability is provided right before and after executing
such operation. While this may result in one of the two reconfiguration oper-
ations failing, an interleaving semantics (checking consistency only on states)
would not be able to detect such failure.

In other words, faults can happen both after and during the concurrent exe-
cution of management operations [9]. In this paper, we extend management
protocols to permit indicating how nodes react to faults happening while tran-
siting from one state to another. We then show how to derive the management
behaviour of a multi-component application by considering the true concurrent
execution of the management operations of its components, and how this enables
the analysis and automation of their concurrent management.

The rest of this paper is organised as follows. Section 2 illustrates an example
motivating the need for extending management protocols to support true concur-
rency. The extension is then presented in Sect. 3, and Sect. 4 shows how to use it
to analyse the true concurrent management behaviour of applications. Sections 5
and 6 discuss related work and draw some concluding remarks, respectively.

2 Motivating Example

Consider the web application in Fig. 1. The frontend of the application is imple-
mented in JavaScript, it is hosted on a node container, and it exploits a back-
end component to provide its functionalities. The backend component is instead
implemented in Java, it is hosted on a maven container, and it manages the
application data stored by a mongo container.

True Concurrent Management of Multi-component Applications 19

Fig. 1. Topology of the application in our motivating example. The topology is depicted
according to the TOSCA graphical notation [18].

Fig. 2. Three management plans for reconfiguring backend and frontend, depicted by
following the BPMN graphical notation [19].

Figure 1 explicitly represents the requirements and capabilities of the com-
ponents of the considered application, the management operations they offer, as
well as all inter-component dependencies. The latter are represented as relation-
ships connecting each requirement of each node with the capability satisfying
such requirement (e.g., the requirements host and conn of frontend are connected
with the homonym capabilities of node and backend, respectively).

Suppose now that we wish to orchestrate the re-configuration of the frontend
and backend of our application, by developing a dedicated management plan to
be executed when the application is up and running. It is easy to see that one
may end up in producing invalid management plans. For instance, while Fig. 2
illustrates three seemingly valid plans, only (b) and (c) are valid. Plan (a) is not
valid because the concurrent execution of the operations config of frontend and
backend may cause a failure in frontend. frontend indeed requires the endpoint
offered by backend to successfully complete its config operation. However, back-
end stops providing its endpoint during the execution of its config operation.
This means that the concurrent execution of both operations may result in a
failure of frontend, which may not successfully complete its config operation.

The above issue is not recognised even if application components are equipped
with the management protocols in [6,7] to describe their management behaviour.

20 A. Brogi et al.

Management protocols currently support an analysis of the management of appli-
cations based on an interleaving semantics, which prescribes to analyse plan (a)
by considering all its sequential traces (differently interleaving concurrently per-
formed operations). As such traces correspond to the valid management plans
(b) and (c), we would end up in considering also plan (a) as valid.

We however know that (a) is not valid, because of the fault that can occur
during the true concurrent execution of the operations to configure frontend and
backend. Such fault is due to a node stopping to provide its capabilities, while
another node is actually relying on such capabilities during the execution of one
of its management operations. Management protocols must hence be extended by
allowing to indicate how nodes react to the occurrence of a fault while executing
a management operation, as this would enable the modelling and analysis of the
true concurrent management of multi-component applications.

3 Modelling True Concurrent Management Protocols

Multi-component applications are typically represented by indicating the states,
requirements, capabilities and management operations of the nodes compos-
ing their topology [3]. Management protocols allow specifying the management
behaviour of the nodes composing an application, by indicating the behaviour
of the management operations of a node, their relations with its states, require-
ments and capabilities, and how a node reacts to a failure in a state.

We hereby present an extension of management protocols, geared towards
enabling the analysis of a true concurrent management of the components of an
application. Intuitively speaking, the essence of the extension is to consider the
execution of management operations as transient states, instead of as atomic
transitions. The extension indeed allows to indicate which capabilities are con-
cretely maintained during a transition, which requirements are needed to con-
tinue to perform a transition, and how a node reacts when a failure happens
while executing a transition.

Management protocols allow specifying the management behaviour of a node
N (modelling an application component), by indicating (i) whether/how each
management operation of N depends on other management operations of N ,
(ii) whether/how it depends on operations of the nodes that provide capabilities
satisfying the requirements of N , and (iii) how N reacts when a fault occurs.

Dependencies of type (i) are described by relating the management operations
of N with its states. A transition relation τN indeed describes the order of
execution of the operations of N , by indicating whether a given management
operation can be executed in a state of N , and which state is reached if its
execution is successfully completed.

Dependencies of type (ii) are instead described by associating (possibly
empty) sets of requirements with both states and transitions. The requirements
associated with a state/transition of N must continue to be satisfied in order
for N to continue to work properly (i.e., to continue to reside in a state/to
successfully complete the execution of a management transition). As a require-
ment is satisfied when the corresponding capability is provided, the requirements

True Concurrent Management of Multi-component Applications 21

associated with states and transitions actually indicate which capabilities must
continue to be provided in order for N to continue to work properly. The descrip-
tion of a node N is then completed by associating its states and transitions with
(possibly empty) sets of capabilities that indicate the capabilities that are actu-
ally provided by N while residing in a state and while executing a transition.

Finally, faults occur when N is in a state/transition assuming some require-
ments to be satisfied, and one or more of the capabilities satisfying such require-
ment stop being provided by the corresponding nodes. To describe (iii), i.e., how
N reacts to faults, a transition relation ϕN models the explicit fault handling of
N , by indicating the state it reaches when a fault occurs while it is residing in
a state or executing a transition.

Definition 1 (Management protocols). Let N = 〈SN , RN , CN , ON ,MN 〉
be a node, where SN , RN , CN , and ON are the finite sets of its states, require-
ments, capabilities, and management operations. MN = 〈sN , τN , ρN , χN , ϕN 〉
is a finite state machine defining the management protocol of N , where:

– sN ∈ SN is the initial state,
– τN ⊆ SN × ON × SN models the transition relation,
– ρN : (SN ∪ τN) → 2RN indicates which requirements must hold in each state

s ∈ SN and during each transition 〈s, o, s′〉 ∈ τN ,
– χN : (SN ∪ τN) → 2CN indicates which capabilities of N are offered in each

state s ∈ SN and during each transition 〈s, o, s′〉 ∈ τN , and
– ϕN ⊆ (SN ∪ τN) × SN models the fault handling for a node.

Example. The management protocols of the components of the application in
our motivating example are illustrated in Fig. 3.

Consider the management protocol (b), which describes the management
behaviour of backend. The states of backend are unavailable (initial), available,
running and damaged. No requirements and capabilities are associated with states
unavailable, available and damaged, which means that backend does not require
nor provide anything in such states. The same does not hold for the running state,
which is the only state where backend concretely provides its conn capability, and
where backend assumes its host requirement to continue to be satisfied. If host
is faulted while backend is running, backend goes back to its available state.

The transitions of the management protocol of backend indicate that all its
operations need the host requirement to be satisfied during their execution, and
that they do not feature any capability while being executed. If host is faulted
while executing start or stop, backend enters in its state available. If host is instead
faulted while executing install, uninstall or config, backend gets damaged. �	

It is worth noting that (as per Definition 1) management protocols allow
to introduce some inconsistencies and non-determinism while being defined.
To inhibit concerns due to such a kind of inconsistencies/non-determinism,

22 A. Brogi et al.

(a) frontend

(b) backend

(c) node and maven (d) mongo

Fig. 3. Management protocols of (a) frontend, (b) backend, (c) node and maven, and
(d) mongo. White circles represent states, solid arrows and black circles represent man-
agement transitions, and dashed arrows represent fault handling transitions. Labels in
bold indicate names of states/operations, while R and C indicate the sets of require-
ments and capabilities associated with states and transitions.

True Concurrent Management of Multi-component Applications 23

we assume management protocols to enjoy some basic properties, i.e., we assume
them to be well-formed, deterministic, race-free and complete1.

4 Analysing True Concurrent Application Management

In this section, we illustrate how the true concurrent management behaviour of
a multi-component application can be determined by composing the protocols
of its nodes according to the application topology (Sect. 4.1). We also describe
how to exploit such management to analyse and automate the concurrent man-
agement of multi-component applications, faults included (Sect. 4.2).

4.1 True Concurrent Management Behaviour of Applications

Consider a multi-component application A = 〈T, b〉, where T is the finite set of
nodes in the application topology, and where the (total) binding function

b :
⋃

N∈T

RN →
⋃

N∈T

CN

describes the connection among the nodes in T , by associating each requirement
of each node with the capability that satisfies such requirement2.

The true concurrent management behaviour of A is defined by a labelled
transition systems over configurations that denote the states of the nodes in T .
We first define the notion of global state for a multi-component application, which
denotes the current situation of each node N forming an application, where each
N is either residing in one of its states or executing a management operation.

Definition 2 (Global state). Let A = 〈T, b〉 be a multi-component applica-
tion, and let 〈SN , RN , CN , ON ,MN 〉 be the tuple corresponding to a node N ∈ T ,
with MN = 〈sN , τN , ρN , χN , ϕN 〉. A global state G of A is defined as:

G ⊆
⋃

N∈T

(SN ∪ τN) such that ∀N ∈ T . |G ∩ (SN ∪ τN)| = 1.

Remark 1. The right hand condition in Definition 2 ensures that a global state
G contains exactly one state/transition for each node in T . This is because a
node cannot be in two different situations at the same time, i.e., it cannot be
in two different states, nor it can simultaneously execute two different opera-
tions, nor it can be both residing in a state and simultaneously executing an
operation. �	
1 The notions of well-formedness, determinism and race-freedom of management pro-

tocols, as well as the techniques for automatically completing them, can be defined
as the natural extensions of those presented in [7].

2 We assume that the names of states, requirements, capabilities, and operations of a
node are all disjoint. We also assume that, given two different nodes in a topology,
the names of their states, requirements, capabilities, and operations are disjoint.

24 A. Brogi et al.

We also define a function F to denote the set of pending faults in a global
state G. The latter is the set of requirements that are assumed in G even if the
corresponding capabilities are not provided.

Notation. Let G be a global state of a multi-component application A = 〈T, b〉.
We denote with ρ(G) the set of requirements assumed to hold by the nodes in
T when A is in G, and with χ(G) the set of capabilities provided by such nodes
in G. Formally:

– ρ(G) =
⋃

N∈T {r ∈ ρN (e) | e ∈ G ∩ (SN ∪ τN)}, and
– χ(G) =

⋃
N∈T {c ∈ χN (e) | e ∈ G ∩ (SN ∪ τN)}.

Definition 3 (Pending faults). Let A = 〈T, b〉 be a multi-component appli-
cation, and let G be a global state of A. The set of pending faults in G, denoted
by F (G), is defined as:

F (G) = {r ∈ ρ(G) | b(r) �∈ χ(G)}.
The management behaviour of a multi-component application A = 〈T, b〉

can then be defined as a labelled transition system, whose configurations are the
global states of A. The transition system is characterised by three inference rules,
namely opstart and opend for operation execution and fault for fault propagation.
Rule opstart models the start of the execution of a management operation o on a
node N ∈ T , which can happen only when there are no pending faults and all the
requirements needed by N to perform o are satisfied (by the capabilities provided
by other nodes in T). Rule opend instead models the successful completion of the
execution of a management operation, also happening when there are no pending
faults. Finally, rule fault models the execution of fault handling transitions to
handle pending faults.

Definition 4 (True concurrent management behaviour). Let A = 〈T, b〉
be a multi-component application, and let 〈SN , RN , CN , ON ,MN 〉 be the tuple
corresponding to a node N ∈ T , with MN = 〈sN , τN , ρN , χN , ϕN 〉. The true
concurrent management behaviour of A is modelled by a labelled transition sys-
tem whose configurations are the global states of A, and whose transition relation
is defined by the following inference rules:

s ∈ G 〈s, o, s′〉 ∈ τN F (G) = ∅

G
ostart−−−→ (G − {s}) ∪ {〈s, o, s′〉}

(opstart)

〈s, o, s′〉 ∈ G F (G) = ∅

G
oend−−−→ (G − {〈s, o, s′〉}) ∪ {s′}

(opend)

e ∈ G 〈e, s′〉 ∈ ϕN ρN (e) ∩ F (G) �= ∅ ρN (s′) ⊆ (ρN (e) − F (G))
�〈e, s′′〉 ∈ ϕN . ρN (s′) � ρN (s′′) ∧ ρN (s′′) ⊆ (ρN (e) − F (G))

G
⊥e−−→ (G − {s}) ∪ {s′}

(fault)

True Concurrent Management of Multi-component Applications 25

Rules opstart and opend indicate how to update the global state of an appli-
cation A when a node N starts executing a transition 〈s, o, s′〉 ∈ τN and when
such transition terminates, respectively. Both rules can be applied in a global
state G only if there are no pending faults (i.e., F (G) = ∅). Rule opstart updates
the global state by changing current state of N from s to the transient state cor-
responding to 〈s, o, s′〉 (i.e., G′ = (G − {s}) ∪ {〈s, o, s′〉}). Rule opend instead
updates the global state by changing current state of N from the transient state
corresponding to 〈s, o, s′〉 to s′ (i.e., G′ = (G−{〈s, o, s′〉})∪{s′}). Both updates
may also result in triggering novel faults to be handled (if F (G′) �= ∅).

The fault rule instead models fault propagation, by indicating how to update
the global state of an application A when executing a fault handling transi-
tion 〈e, s′〉 of a node N . Such transition can be performed only if the following
conditions hold:

– ρN (e) ∩ F (G) �= ∅, which means that some of the requirements assumed by
N in e are faulted,

– ρN (s′) ⊆ (ρN (e)−F (G)), which ensures that 〈e, s′〉 handles all faults pending
in G and affecting N , and

– �〈e, s′′〉 ∈ ϕN . ρ(s′) � ρ(s′′)∧ρ(s′′) ⊆ ρ(e)−F (G), which ensures that, among
all executable fault handling transitions, 〈e, s′〉 is the transition whose target
state s′ assumes the biggest set of requirements3.

4.2 Analysing True Concurrent Management Plans

The modelling of the management behaviour of a multi-component application A
(Sect. 4.1) sets the foundation for analysing its true concurrent management. To
concretely perform such analysis, we introduce a “simple profile” of the labelled
transition system modelling the management behaviour of A. The objective of
the simple profile is to observe only the start and termination of management
operations, by hiding all transitions corresponding to fault reaction/propagation,
and by considering operations as terminated if they completed with success or
if their execution has faulted.

Definition 5 (Simple profile of management behaviour). Let A = 〈T, b〉
be a multi-component application, and let 〈SN , RN , CN , ON ,MN 〉 be the tuple
corresponding to a node N ∈ T , with MN = 〈sN , τN , ρN , χN , ϕN 〉. The sim-
ple profile of the true concurrent management behaviour of A is modelled by a

3 In this way, the fault handling transition is guaranteed to handle all the faults on
the node, while at same time minimising the amount of requirements that stop being
assumed (even though the corresponding capabilities continue to be provided).

26 A. Brogi et al.

labelled transition system whose configurations are global states of A, and whose
transition relation is defined by the following inference rules:

G
ostart−−−→ G′

G
•o�−→ G′ (opinit)

G
oend−−→ G′

G
o•�−→ G′ (opsuccess)

G
⊥〈s,o,s′〉−−−−−→ G′ 〈s, o, s′〉 ∈ τN

G
o•�−→ G′ (opfault)

G
α�−→ G′ G′ ⊥s−−→ G′′ s ∈ SN

G
α�−→ G′′ (absorption)

Rules opinit and opsuccess model the start and successful completion of a man-
agement operation o, respectively. Rules opfault and absorption differentiate the
observation of faults. Rule opfault allows to observe faults on management opera-
tions, to consider the execution of such operations as terminated. Rule absorption
instead hides all fault handling transitions executed to react to the faults on
states due to the execution of an action α (corresponding to the start •o or
termination o• of a management operation o).

The simple profile of the management behaviour of a multi-component appli-
cation A enables the analysis of plans orchestrating its management. A manage-
ment plan PA defines a partial ordering on the management operations of the
nodes in A (i.e., it indicates which operations must be completed before starting
the execution of another operation). The partial ordering can be visualised as a
DAG, whose nodes model the start/termination of an operation, and where each
arc indicates that the action corresponding to its source node must be executed
before that corresponding to its target node. The DAG also models the obvious
fact that •o always occurs before o•, for each operation o in the plan.

Example. Consider the management plan in Fig. 2(a). Such plan indicates that
stop frontend must be completed before executing config frontend and config back-
end, which can then be executed concurrently, and which must both be completed
before starting the execution of start frontend. The corresponding partial ordering
is displayed as a DAG in Fig. 4. �	

Fig. 4. DAG defined by the management plan in Fig. 2(a).

The validity of a management plan PA can be defined in terms of all possible
sequencing of •o and o• (for each operation o in PA), which respects the ordering
constraints defined in PA, as well as that •o must obviously always occur before
o•. Such sequences correspond to the topological sorts of the DAG modelling
the partial order defined by PA.

True Concurrent Management of Multi-component Applications 27

Definition 6 (Valid plan). Let A = 〈T, b〉 be a multi-component application.
The sequence α1α2...αn (with αi ∈ {•o, o• | o ∈ ON , N ∈ T}) is a valid man-
agement sequence in a global state G0 of A iff

∃G1, G2, ...Gn : G0
α1�−→ G1

α2�−→ G2
α3�−→ . . .

αn�−−→ Gn.

A management plan PA is valid in G0 iff all its sequential traces4 are valid
management sequences in G0.

Example. Consider again the management plans in our motivating scenario
(Fig. 2). While one can readily check that the sequential plans (b) and (c) are
valid, the same does not hold for plan (a).

The sequential traces of plan (a) correspond to all possible topological sorts
of the DAG in Fig. 4. One of such traces is hence the following:

•stop frontend · stop frontend• · •config frontend · •config backend ·
config frontend• · config backend• · •start frontend · start frontend•

If executed when all components of the application in our motivating scenario
are up and running, the above trace corresponds to the evolution of global states
in Fig. 5. From the figure we can observe that the execution of •config backend
causes a failure in the node frontend. The handling of such failure results in front-
end getting to its installed state, where it cannot perform •start frontend (i.e., it
cannot start executing the operation start—Fig. 3(a)). This means that the con-
sidered sequential trace is not valid, hence the management plan in Fig. 2(a) is
not valid either. �	

It is worth noting that the notion of validity for management plans (Defini-
tion 6) is the natural adaptation of the corresponding notion in [7] to consider
the true concurrent execution of management operations. A similar approach can
be used to naturally adapt all analyses presented in [7], from checking whether
management plans are deterministic or fault-free, to automatically planning the
management of applications (e.g., to recover applications that are stuck because
a fault was not handled properly, or because misbehaving components)5.

5 Related Work

The problem of automating the management of multi-component applications
is one of the major concerns in enterprise IT [21]. This is also witnessed by
the proliferation of so-called “configuration management systems”, such as Chef
(https://www.chef.io) or Puppet (https://puppet.com). Such systems provide

4 A sequential trace of PA is one of the sequencing of •o and o• (with o in PA) obtained
by topologically sorting the DAG modelling the partial ordering defined by PA.

5 Due to space limitations, we are not including the natural adaptation of all such
notions and techniques in this paper.

https://www.chef.io
https://puppet.com

28 A. Brogi et al.

Fig. 5. Evolution of the application in our motivating example, corresponding to the
execution of a sequential trace of the management plan in Fig. 2 (a) when the appli-
cation is up and running. Global states and pending faults are represented as tables
associating node names with their actual state, and with their faulted requirements,
respectively. Transitions are displayed as labelled arrows, and each update due to the
execution of a transition is highlighted in grey in the target global state.

domain-specific languages to model the desired configuration for an applica-
tion, and they employ a client-server model to ensure that such configuration is
met. However, the lack of a machine-readable representation of how to effectively
manage cloud application components inhibits the possibility of performing auto-
mated analyses on their configurations and dependencies.

A first solution for modelling the deployment of multi-component appli-
cations was the Aeolus component model [11]. Aeolus [11] shares our idea
of describing the management behaviour of the components of an applica-
tion through finite-state machines, whose states are associated with conditions
describing what is offered and required in a state. The management behaviour of
an application can then be derived by composing those of its components. Aeo-
lus however differs from our approach as it focuses on automating the deploy-
ment and configuration of a multi-component application. Management proto-
cols instead focus on allowing to model and analyse the true concurrent man-
agement of a multi-component application, including how its components react

True Concurrent Management of Multi-component Applications 29

to failures, as well as how to recover a multi-component application after one or
more of its components were faulted.

Engage [14] takes as input a partial installation specification, and it is capable
of determining a full installation plan, which coordinates the deployment and
configuration of the components of an application across multiple machines.
Engage however differs from our approach since it focuses on determining a
fault-free deployment of applications. We instead focus on the true concurrent
management of applications, by also allowing to explicitly model faults, analysing
their effects, and reacting to them to restore a desired application state.

[12] proposes a fault-resilient solution for deploying and reconfiguring multi-
component applications. [12] models a multi-component application as a set
of interconnected VMs, each provided with a module managing its lifecycle.
An orchestrator then coordinates the deployment and reconfiguration of an
application, by interacting with the configurators of the virtual machines of
its components. [12] is related to our approach as it focuses managing multi-
component applications by taking into account failures and by specifying the
management of each component separately. It however differs from our approach
since it only considers environmental faults, while we also deal with application-
specific faults. Similar considerations apply to the approach proposed in [13].

Other approaches worth mentioning are those related to the rigorous engi-
neering of fault tolerant systems. [4,22] provide facilities for fault-localisation in
complex applications, to support re-designing such applications by avoiding the
occurrence of identified faults. [16] illustrates a solution for designing applica-
tions by first considering fault-free applications, and by then iteratively refining
their design by identifying and handling the faults that may occur. [4,16,22]
however differ from our approach as their aim is to obtain applications that
“never fail”, because potential faults have already been identified and handled.
Our approach is instead more recovery-oriented [8], as we consider applications
where faults can (and probably will) occur, in order to enable the design of
applications that can be recovered.

Similar arguments apply to [2,15,17]. They however share with our approach
the basic ideas of indicating which faults can affect components, of specifying how
components react to faults, and of composing obtained models according to the
dependencies occurring among the components of an application (i.e., according
to the application topology).

In summary, to the best of our knowledge, ours is the first approach allowing
to analyse and automate the management of multi-component applications, by
considering that faults can occur during their concrete management. It does so
by allowing to customise the management behaviour of each component of an
application (including the specification of how it will react to the occurrence of
a fault), and by considering the true concurrent management of the components
forming an application.

It is finally worth noting that our work was inspired by [10], which illustrates
how to provide CCS with a true concurrent semantics. The baseline idea in
[10] is to define a partial ordering among the sequential parts of CCS agents,

30 A. Brogi et al.

and to exploit such ordering to infer a true concurrent semantics of CCS agents
(where concurrency is represented as the absence of ordering). This is closely
related to what we did to provide management protocols with a true concurrent
semantics, even if we consider additional constraints given by the conditions
on requirements and capabilities associated with the states and transitions of
management protocols.

It is also worth noting that we also investigated the possibility of employ-
ing composition-oriented automata (like interface automata [1]) to model the
valid management of an application as the language accepted by the automaton
obtained by composing the automata modelling the management protocols of
its components. The main drawbacks of such an approach are the size of the
obtained automaton (which in general grows exponentially with the number of
application components), and the need of recomputing the automaton when-
ever the management protocol of a component is modified or whenever a new
component is added to an application.

6 Conclusions

We presented a solution for modelling, analysing and automating the true con-
current management of multi-component applications. More precisely, we have
extended management protocols [7] to permit indicating how application com-
ponents react to faults occurring while they are executing management opera-
tions. We have also shown how to derive the management behaviour of a multi-
component application by considering the true concurrent execution of the man-
agement operations of its components, and how this enables the analysis and
automation of its concurrent management.

The presented extension is a fundamental milestone towards the exploita-
tion of management protocols for a fully asynchronous, distributed coordination
of the management of multi-component applications. As components can now
evolve asynchronously (with one component executing a management opera-
tion while another component is executing another operation), the management
of multi-component applications can be decentralised, e.g., by distributing its
orchestration over the components forming an application. The investigation of
such a kind of solutions is in the scope of our future work.

In the scope of our future work we also plan to follow two other interesting
directions. On the one hand, we plan to validate our approach by implementing
a prototype supporting the modelling and analysis of true concurrent manage-
ment protocols, and by assessing our approach with case studies and controlled
experiments, similarly to what we did in [7]. On the other hand, we plan to
further extend management protocols to account for QoS attributes, including
cost, so as to enable determining the best plan to achieve a management goal.

True Concurrent Management of Multi-component Applications 31

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the 8th
European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ESEC/FSE-9,
pp. 109–120. ACM (2001)

2. Alhosban, A., Hashmi, K., Malik, Z., Medjahed, B., Benbernou, S.: Bottom-up
fault management in service-based systems. ACM Trans. Internet Technol. 15(2),
7:1–7:40 (2015)

3. Bergmayr, A., et al.: A systematic review of cloud modeling languages. ACM Com-
put. Surv. 51(1), 22:1–22:38 (2018)

4. Betin Can, A., Bultan, T., Lindvall, M., Lux, B., Topp, S.: Eliminating synchroniza-
tion faults in air traffic control software via design for verification with concurrency
controllers. Autom. Softw. Eng. 14(2), 129–178 (2007)

5. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014). https://doi.org/10.1007/978-1-4614-7535-4 22

6. Brogi, A., Canciani, A., Soldani, J.: Fault-aware application management protocols.
In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC 2016.
LNCS, vol. 9846, pp. 219–234. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44482-6 14

7. Brogi, A., Canciani, A., Soldani, J.: Fault-aware management protocols for multi-
component applications. J. Syst. Softw. 139, 189–210 (2018)

8. Candea, G., Brown, A.B., Fox, A., Patterson, D.: Recovery-oriented computing:
building multitier dependability. Computer 37(11), 60–67 (2004)

9. Cook, R.I.: How complex systems fail. Cognitive Technologies Laboratory, Univer-
sity of Chicago. Chicago IL (1998)

10. Degano, P., Nicola, R.D., Montanari, U.: A partial ordering semantics for CCS.
Theoret. Comput. Sci. 75(3), 223–262 (1990)

11. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus. Inf. Comput.
239(C), 100–121 (2014)

12. Durán, F., Salaün, G.: Robust and reliable reconfiguration of cloud applications.
J. Syst. Softw. 122(C), 524–537 (2016)

13. Etchevers, X., Salaün, G., Boyer, F., Coupaye, T., DePalma, N.: Reliable self-
deployment of distributed cloud applications. Softw. Pract. Experience 47(1), 3–20
(2017)

14. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: a deployment management
system. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2012, pp. 263–274. ACM (2012)

15. Grunske, L., Kaiser, B., Papadopoulos, Y.: Model-driven safety evaluation with
state-event-based component failure annotations. In: Heineman, G.T., Crnkovic,
I., Schmidt, H.W., Stafford, J.A., Szyperski, C., Wallnau, K. (eds.) CBSE 2005.
LNCS, vol. 3489, pp. 33–48. Springer, Heidelberg (2005). https://doi.org/10.1007/
11424529 3

16. Johnsen, E., Owe, O., Munthe-Kaas, E., Vain, J.: Incremental fault-tolerant design
in an object-oriented setting. In: Proceedings of the Second Asia-Pacific Conference
on Quality Software, APAQS, p. 223. IEEE Computer Society (2001)

17. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
In: Proceedings of the 8th Australian Workshop on Safety Critical Systems and
Software, SCS, vol. 33, pp. 37–46. Australian Computer Society, Inc. (2003)

https://doi.org/10.1007/978-1-4614-7535-4_22
https://doi.org/10.1007/978-3-319-44482-6_14
https://doi.org/10.1007/978-3-319-44482-6_14
https://doi.org/10.1007/11424529_3
https://doi.org/10.1007/11424529_3

32 A. Brogi et al.

18. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45005-1 64

19. OMG: Business process model and notation (bpmn), version 2.0. https://www.
omg.org/spec/BPMN/2.0/ (2011)

20. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-
of-the-art review. IEEE Trans. Cloud Comput. (2017, in press) https://doi.org/10.
1109/TCC.2017.2702586

21. Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud soft-
ware. ACM Trans. Internet Technol. 18(2), 17:1–17:23 (2018)

22. Qiang, W., Yan, L., Bliudze, S., Xiaoguang, M.: Automatic fault localization for
BIP. In: Li, X., Liu, Z., Yi, W. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 277–283.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25942-0 18

https://doi.org/10.1007/978-3-642-45005-1_64
https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1007/978-3-319-25942-0_18

Runtime Evolution of Multi-tenant
Service Networks

Indika Kumara1(B), Jun Han2, Alan Colman2,
Willem-Jan van den Heuvel1, and Damian A. Tamburri1

1 Tilburg University, Warandelaan 2, 5037 AB Tilburg, Netherlands
{I.P.K.WeerasinghaDewage,wjheuvel,d.a.tamburri}@uvt.nl

2 Swinburne University of Technology, PO Box 218,
Hawthorn, VIC 3122, Australia
{jhun,acolman}@swin.edu.au

Abstract. In a multi-tenant service network, services relate to each
other and collaborate to support the functional and performance require-
ments of multiple tenants. Such a service network evolves over time as its
services and tenants change. Consequentially, the composite application
that enacts the service network also needs to evolve at runtime, which
is problematic. For example, different types of changes to the applica-
tion, and their consequential impacts need to be realized and managed
at runtime. In this paper, we present an approach to evolving multi-
tenant service networks. We identify the types of runtime changes to a
service network composite application and their impacts, and present a
middleware support for realizing and managing the identified changes
and impacts. A software engineer can specify the desired changes to the
running application, and enact the change specification to modify it. We
show the feasibility of our approach with a detailed case study.

Keywords: Service network · Multi-tenancy
Change management · Evolution

1 Introduction

A business service network is a web of business services connected according
to the capabilities provided and consumed by them [1,2]. The business services
support business activities of enterprises or individuals (e.g., claim handling and
roadside assistance). To achieve economies of scale via runtime sharing of services
among tenants, a multi-tenant service network simultaneously hosts a set of
virtual service networks (VSNs), each for a separate tenant, on the same physical
service network [3,4]. The tenants generally have common and variable functional
and performance requirements, and thus their VSNs share some services in the
service network while also using different services as necessary.

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 33–48, 2018.
https://doi.org/10.1007/978-3-319-99819-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_3&domain=pdf

34 I. Kumara et al.

A composite service application (hosted in a middleware runtime) can gen-
erally enact a multi-tenant business service network. It needs to connect ser-
vices based on their relationships, to route and regulate the message exchanges
between them, and to form VSNs over the service network. As the service net-
work evolves, for instance, by adding a new service or tenant, or by changing
the capabilities of an existing service, this composite application also needs to
be evolved at runtime, which is a complex problem. Firstly, the different classes
of changes that can potentially occur to the application, and the potential con-
sequential impacts of each such change need to be identified. Secondly, a change
and its impacts need to be realized and managed at runtime by the middleware
without disturbing the operations of those tenants unaffected by the change.

Most existing works on service networks consider modeling and analysis of
service networks from specific aspects [2] such as value flows [5], business pro-
cesses [6], and service relationships [2,7]. The composite applications that enact
service networks need to use service composition approaches such as BPMN
(Business Process Management Notation) and BPEL (Business Process Execu-
tion Language) [1], which provide little or no direct support for the abstractions
in multi-tenant service networks such as services, their relationships, message
routing and regulation, and VSNs. Moreover, the existing works lack the support
for two key change management activities [8] for multi-tenant service networks:
identifying the impacts of a change, and realizing the change and its impacts.

In [3,4], we have proposed an approach called Software-Defined Service Net-
working (SDSN) that can deploy, enact, and manage multi-tenant service net-
works (composite applications). SDSN provides a programming model (a set of
architectural abstractions to naturally represent a multi-tenant service network),
a domain specific language (DSL), a middleware environment, and a set of tools.
A software engineer can design the multi-tenant service network with the DSL,
and enact and manage the designed network with the middleware at runtime.

This paper focuses on the above-mentioned two key activities of change man-
agement for a composite application that realizes a multi-tenant service network
using our SDSN approach. We first identify the types of runtime changes to the
application and their potential impacts. Second, we present the change manage-
ment system in our SDSN middleware, including its architecture and its support
for the controlled propagation of changes and impacts. The middleware also
provides an ECA (event-condition-action) rules based language to specify and
schedule the enactment of changes to the runtime models (models@runtime [9])
of the application. We present a set of guidelines that a software engineer can
use to create a change specification for an evolution scenario systematically. We
show the feasibility of our approach with a case study that implements common
evolution scenarios for variant-rich applications (e.g., product lines and multi-
tenant systems). We analyze the case study results to assess change impacts of
evolution scenarios, and quantify the time taken to realize changes at runtime.

In this paper, we motivate our research and present the key requirements for
a change and impact management support for multi-tenant service networks in
Sect. 2. Section 3 provides an overview of our SDSN approach to realizing multi-
tenant service networks. Section 4 discusses our change and impact management

Runtime Evolution of Multi-tenant Service Networks 35

support in detail. Section 5 presents the prototype and evaluation of our app-
roach. Section 6 presents related work, and Sect. 7 concludes the paper while
providing the directions for further research.

2 Motivating Scenarios and General Requirements

Consider RoSAS (Road-Side Assistance Service) service network that offers road-
side assistance to its tenants such as travel agencies and vehicle sellers by com-
posing business services such as repairers and towing providers (see Fig. 1). Due
to the benefits of the multi-tenancy, RoSAS shares the services among its ten-
ants. Each tenant has a virtual service network (VSN) in RoSAS service network
to coordinate roadside assistance for their users such as travelers and motorists.

The capabilities and capacities of services as well as the functional and perfor-
mance requirements of tenants can exhibit commonalities and variations, which
lead to the commonalities and variations in the VSNs of the tenants. For exam-
ple, HappyTours and EuroCars require rental vehicle, while AnyTrucks prefers
accommodation. Thus, the VSNs of the former tenants use the rental vehicle
provider SilverVehicles, and the VSN of the later tenant uses the accommoda-
tion provider AmayaHotel. HappyTours’ VSN uses the repairer MacRepair (for
3 days repair time) and the other two tenants’ VSNs use AutoRepair (for 6 days).
Compared with MacRepair, AutoRepair does not have parts internally. Thus,
the VSNs of AnyTrucks and EuroCars include the part supplier JackParts. The
towing provider TomTow has the limited capacity (the number of new tows per
day), and cannot support the capacity requirements of both tenants AnyTrucks
and EuroCars. Thus, the VSN of AnyTrucks also includes the towing provider
SwiftTow. Note that the capacities of business services (e.g., towing capacity)
cannot be changed by simply managing the computation resources used by them.

Let us consider two key requirements for the runtime management of the
roadside assistance multi-tenant service network.

1. Supporting Runtime Changes to Multi-tenant Service Networks. The services
and the requirements of the tenants and the service network provider can
change over time. For instance, after two months, EuroCars requests the taxi

Fig. 1. Roadside assistance multi-tenant service network

36 I. Kumara et al.

hiring capability instead of the rental vehicle, and HappyTours requests 25
additional assistance cases per day. After one year, RoSAS decides to provide
legal assistance for vehicle accidents. A new company starts to offer the repair
assessment for vehicles, and the RoSAS provider needs to use it. To respond
to or utilize these changes at the service network, a software engineer should
be able to modify the RoSAS composite application at runtime. Thus, the
middleware that hosts the application should support the classes of runtime
changes that can occur to the application during its lifetime.

2. Managing Consequential Change Impacts. A change to the RoSAS composite
application can further affect the application and its tenants. For example, a
change to the representation of the repairer AutoRepair in the application can
affect some other elements in the application and the VSNs of HappyTours
and EuroCars. The middleware that hosts the composite application needs to
enable a software engineer to identify such change impacts and then design
and perform the controlled propagation of each change and impact.

3 Realizing Multi-tenant Service Networks: An Overview

A multi-tenant service network simultaneously hosts a set of virtual service net-
works on the same physical service network at runtime. In [3,4], we have proposed
a novel approach, SDSN (Software-Defined Service Networking), to realize multi-
tenant service networks (or cloud applications). SDSN provides a programming
model, a domain specific language, and a middleware for designing and enacting
multi-tenant service networks. This section provides an overview of the runtime
abstractions of multi-tenant service networks in our SDSN approach.

The service network is an overlay network over the services. A node in the
service network is a proxy to a service, and acts as a router where the messages
from the other services are routed to the corresponding service via the node,
and vice versa. A link between two nodes models the relationship between the
corresponding two services, and acts as the messaging channel between the two
nodes. A node has a set of tasks to represent the capabilities of the service. A link
has a set of interaction terms to capture the interactions between the services.

The service network includes a set of regulation enforcement points (REPs) to
intercept and regulate the interaction messages between services, and to monitor
and enforce the performance constraints (response time and capacity) on service
capabilities. There are four types of REPs: synchronization (at each node), rout-
ing (at each node), pass-through (at each link), and coordinated-pass-through
(across links). The synchronization REP of a node synchronizes a subset of
incoming interactions from the adjacent nodes before executing a task (sending
a request to the node’s service). The routing REP of a node routes a received
response or request from the node’s service to a subset of the adjacent nodes.
The pass-through REP in a link can process the interaction messages between
two nodes, and generate events representing the states of the interactions. The
coordinated-pass-through is to regulate the interactions across different pairs of
nodes. Each REP has a knowledgebase and a regulation table. The former con-
tains event-condition-action (ECA) rules that implement regulation decisions

Runtime Evolution of Multi-tenant Service Networks 37

using a number of regulation mechanisms such as admission control and load
balance. The latter maps a message flow to a set of rules in the knowledgebase,
which decide what to do with the message flow.

Each tenant has a virtual service network (VSN), which is a specific ser-
vice composition in the service network that meets the functional and perfor-
mance requirements of the tenant. The VSNs of tenants simultaneously coexist
on the same service network. Multiple business processes can exist in a VSN.
Each process is a service network path, which is a subset of the service network
topology. A service network path is represented by the entries in the relevant
regulation tables. A table entry at a REP maps the messages belonging to a pro-
cess to a subset of the regulation rules in the knowledgebase of the REP. Each
such rule applies a set of regulation functions to the messages. The isolation of
VSNs/processes is achieved by keeping the messages associated with a process
instance isolated. Then, the isolated messages are routed and regulated on the
service network path of the process instance. As the message flow continues over
the network path, the business process is enacted as an event-driven business
process, where events trigger the execution of tasks.

VSNs of multiple tenants share some service network elements for their com-
mon requirements, and use some other service network elements for their distinc-
tive requirements. The elements include nodes, links, tasks, interaction terms,
regulation rules/mechanisms, and services. The interested reader is referred to [3]
for more details on the design and enactment of multi-tenant service networks.

Example. Figure 2 shows a part of the RoSAS service network. It consists of
a number of nodes (e.g., MO, SC, and TC1) connected by links (e.g., MO-
TC1, MO-SC, and SC-TC1), and supports the coordination of the interactions
between the services (e.g., motorist, 24by7Support, and SwiftTow) to meet the
roadside assistance requirements of the tenants. The nodes include the relevant
tasks, for example, tPickUp of the node TC1 (to pick up a broken down vehicle).
The links include the relevant interaction terms, for example, iPickUp of the link
MO-TC1 (to represent the motorist’s request for collecting the vehicle). Each

Fig. 2. Realization of the roadside assistance multi-tenant service network

38 I. Kumara et al.

Fig. 3. (a) a pass-through rule (link MO-TC1), (b) a synchronization rule (node TC1)

node and link also include the relevant REPs. The messages are routed and
regulated over the service network via these REPs. Figure 3 shows two regulation
rules. The pass-through rule generates the event ePickUpReqd, which triggers the
synchronization rule, which creates a service request from the relevant interaction
messages, and sends the request to SwiftTow to ask to collect the vehicle.

4 Change and Impact Management for Multi-tenant
Service Networks

This section considers two key (runtime) change management activities [8] for
multi-tenant service networks realized using our SDSN approach: (1) identifying
types of changes and their consequential impacts, and (2) designing and imple-
menting the identified changes and impacts. We discuss the types of changes and
their impacts, the change management middleware system, and the process of
designing a change management policy for realizing change scenarios.

4.1 Types of Changes and Impacts

A change can occur at any element of the multi-tenant service network. A given
change to an element can further cause changes to that element and/or other
elements as direct consequential impacts of the change (see Fig. 4).

Types of Changes. The addition, removal, and update are the three general
types of changes that can occur to a given service network element. The update
to an element can include the addition, removal, and update of its properties,
its children elements, and its relationships with other elements. For example, an
update to a node can include a change to its service endpoint reference, adding
a new task, and removing a reference to a link with another node.

Types of Impacts. A direct impact of a given change to an element on another
element generally depends on the type of the relationships that exist between the
two elements. In a multi-tenant service network, there are four common types
of relationships: (1) containment, (2) association, (3) usage, and (4) represen-
tation/realization. In the containment relationship, one element contains some
other elements. For example, a node has a set of tasks. In the association rela-
tionship, one element is connected to some other elements. For example, a node is

Runtime Evolution of Multi-tenant Service Networks 39

Fig. 4. Changeable elements and their potential direct impact relations

connected to another node via a link. The two nodes have references to the link.
In the usage relationship, one element depends on or use some other elements
for its behavior or existence. For example, an event may exist due the presence
of an interaction term, and the execution of a task depends on the occurrence
of some events. In the representation relationship, an element in the compos-
ite application represents a domain concept. For example, a node represents a
service, and a regulation rule realizes a regulation decision.

The containment relationships include service-service capability, service rela-
tionship -service interaction/regulatory control, service capability-capability per-
formance, service network-node/link, service network-coordinated pass-through
REP, node-task, link-interaction terms, node-(routing/synchronization)REP,
link-passthrough REP, REP-knowledgebase, REP-regulation table,
knowledgebase-rules, regulation table-table entry, and VSN-process. The addi-
tion of a new container element generally requires new contained elements. The
removal of the container element removes its contained elements. The removal of
the contained elements can make the container element obsolete. For example, a
new regulation knowledgebase requires new rules, the removal of a link removes
its interaction terms, and the removal of the tasks of a node makes the node
obsolete.

The association relationships include service-service relationship, service
capability -service interaction, regulatory control-service interaction/service
capability, node-link, task-interaction term, regulation rule-mechanism/event,
regulation table entry-rule, and service network path-table entry. Consider the
element type A and the element type B has a unidirectional association (from
A to B). A new element a1 (type A) may require an element b1 (type B). The
removal of a1 can make b1 obsolete if no other elements use it. The removal of

40 I. Kumara et al.

b1 makes the reference to it in a1 dangling. For example, a new task requires the
references to the interaction terms to be consumed/produced, and the removal
of a referred interaction term results in a dangling reference in the task.

The usage relationships include event-interaction term, task-event, interac-
tion term-passthrough rule, and task-routing/synchronization rule. In addition,
there are mutual usage dependencies between regulation rule types. A synchro-
nization rule requires a set of pass-through rules to analyze the interaction mes-
sages to be synchronized, and generate the events. It also requires a set of routing
rules at the source nodes to initiate the interactions to be synchronized. Similarly,
a routing rule has usage dependences with pass-through and synchronization
rules. The events generated by a pass-through rule are generally consumed by
some synchronization rules and coordinated pass-through rules. A pass-through
rule also needs a routing rule to create the interaction messages that it processes.

Consider the element type C uses the element type D. A new element c1
requires an element d1. The removal of the element c1 can make the element
d1 obsolete. The removal or update of the element d1 can adversely affect the
behavior of the element c1. For example, the removal of a synchronization rule
can make the relevant pass-through and routing rules obsolete. The removal of a
pass-through rule requires the removal of or updating the conditions of the rules
that use the events generated by it as those rules will not be activated.

The representation relationships include service-node, service relationship-
link, service capability-task, service interaction-interaction term, regulatory con-
trol -regulation rule/mechanism, capability performance-regulation rule /mech-
anism (e.g., performance monitoring and admission control), and VSN/process-
service network path. Consider the element type E realizes the domain concept
F. The addition of the concept instance f1 requires that of the element e1. The
removal of f1 makes the element e1 invalid it represents a nonexistent concept
instance. The update to f1 may require the same to the element e1. For example,
a new service requires a node, and the removal of an existing service makes the
related node invalid as it represents a nonexistent service.

Due to the limited space, we did not provide the examples for each depen-
dency, and each impact that the dependency creates. An interested reader may
refer to an accompanying technical report [10] for more details.

4.2 Change Management System

To support the runtime changes to a multi-tenant service network in a con-
trolled manner without compromising the consistency of the service network, we
adopted the change management scheme proposed by Kramer and Magee [11].
We introduce a management state for each runtime element of a service network,
which determines when an element can be removed, updated, or used. The mid-
dleware provides the capabilities to change management states, and generate the
events at each state change. A software engineer can design change management
policies in a way that a given change operation on an element is performed only
when the element is in its appropriate management state (see Sect. 4.3).

Runtime Evolution of Multi-tenant Service Networks 41

In general, an element in a service network can be in three management
states: Active, Passive, and Quiescence. The Passive state of an element enables
the system to complete the existing process instances, and to move the element to
its Quiescence state. If a runtime change to an element can adversely affect some
existing process instances, then the change must be delayed until the element
reaches its Quiescence state. A newly added element always in the Passive state,
and must be moved to the Active state so that the process instances can use it.
An element can be removed from the system when it is in Quiescence state.

VSNs, processes, and process instances can also have the above management
states. A process instance for an instantiation request from a user of a tenant is
created only if the VSN and its selected process is in Active state. Otherwise,
the request message is queued, and later served when the state of the process
becomes Active. A running instance is in the Active state. When it is paused,
the management state becomes Passive, and the messages (in transit) belong-
ing to the process instance are queued. When the management state becomes
Active, the routing of the queued messages resumes. When the process instance
is terminated, it is moved to the Quiescence state, and scheduled to be removed.

Fig. 5. Change management support in SDSN middleware

Figure 5 shows the high-level system architecture of the SDSN middleware,
highlighting its change management support. It has a service coordination plat-
form and a management platform. The former maintains multi-tenant service
networks at runtime using the models@runtime approach, and supports the
runtime changes to them (discussed in Sect. 4.1). Each change operation (e.g.,
addNode and removeLink) is included in the management interface, which is
exposed as a Web service. The management platform includes a service network
manager that uses the management Web service interface to monitor and change
the running service networks, a policy engine that can maintain and enact the
change management policies, and an event manager that stores the various events
including management state change events. The management policies are a set
of ECA rules. Generally, the conditions of a rule are events, and the actions are
the change operations/commands (exposed by the management interface).

42 I. Kumara et al.

4.3 Design and Enactment of Change Management Policies

A given change can have a desired impact or an undesired impact. A direct
change impact can be a consequential change or a solution (a set of inten-
tional/designed changes) developed to utilize a desired impact, and to mitigate
an undesired impact. In either case, if a change A triggers a change B as a direct
impact, then to realize this impact, the change operation for propagating the
change B needs to be used. A change can have a ripple effect. For example, the
removal of a node may need the removal of its links with other nodes. To propa-
gate this impact, the change operation removeLink() can be used. The removal
of these links can have further impacts. For example, some of the tasks may refer
to the interaction terms in the removed links, and the affected tasks need to be
updated using the operation updateTask().

A software engineer needs to identify each change and its impacts (see
Sect. 4.1), and then specify them in a change management policy in terms of
change operations/commands. We below provide some guidelines for a software
engineer to develop such policies so that the desired changes are ordered and
scheduled appropriately. We use the example of supporting the taxi hire feature
in the RoSAS service network. A collaboration among a set of services realizes
a feature.

1. Identify and design service network topology changes. The differences between
the expected service network topology and the current one are designed in
terms of (to be added or removed) nodes and links. Lines 12–14 in Fig. 6 show
the topology changes for our example (a node to represent the taxi service,
and two links to capture its relationships with other services).

2. Identify and design task changes. Next, the tasks to be added to or removed
are designed (see Lines 15–16 in Fig. 6).

3. Identify and design interaction term changes. Next, the interaction terms to
be added or removed are included (see Lines 18–19 in Fig. 6).

4. Identify and design task-interaction changes. The next step is to link or unlink
tasks and interaction terms to reflect the required changes to the provided-
required relationships in the service network. This is achieved by manipulating
the inputs and outputs of the relevant tasks (see Line 21).

5. Identify and design regulation rule and mechanism changes. Once the modi-
fications to the configuration design of the service network are designed, the
changes to its regulation design can be introduced. These changes include
regulation rule and mechanism changes at some REPs. The changes to the
regulation mechanisms imply the changes to their implementations, which are
Java modules in our prototype. The regulation rules can be defined as ECA
rules (as .drl files) using Drools rule language (drools.org). Lines 29–31 show
some of the relevant changes in our example, which add regulation rules at
the node TX and the link SC-TX. Figure 7 shows two regulation rules that
execute the task orderTaxi, and route the response from the service.

6. Identify and design VSN changes. The next step is to design the desired
VSN changes, which include the regulation table entries at some REPs

http://drools.org

Runtime Evolution of Multi-tenant Service Networks 43

(to be added, removed, and updated). Lines 45–47/33–35 show some rele-
vant changes. As EuroCars replaces the rental vehicle with the taxi hire, the
service network path of its VSN is modified by removing the path for the
rental vehicle collaboration, and by adding the path for the taxi hire collab-
oration.

7. Identify and design management state changes. The changes to a multi-tenant
service network can only be propagated when the relevant elements (to be
affected) are in appropriate management states (see Sect. 4.2). The software
engineer needs to initiate the appropriate state changes before and after mak-
ing changes. In our example, the management state of the VSN/process is
moved to the Passive state (see Line 5).

8. Capture the dependencies between the individual policy rules. As the changes
need to be made to the system orderly, the software engineer needs to orga-
nize the enactment of the management policy into stages. Each stage can be
represented as an ECA rule, whose conditions can use the enactment state
of the policy (e.g., the end of a stage) and the management state change
events. In general, we need to have stages for: (1) moving the elements to be
changed to their desired management states, (2) propagating configuration
design changes, (3) propagating regulation design changes, (4) removing the
elements in their Quiescence state, and (5) moving the elements changed to
their desired management states. The policy in Fig. 6 has these stages.

9. Deploy designed management policies. Finally, the software engineer can
deploy the designed policy at the management platform. As the individual
rules of the policy are executed (as their conditions are met), the changes
described in the rules are propagated to the relevant runtime elements.

5 Prototype Implementation and Evaluation

Prototype Implementation. In [3,4], we have presented the prototype imple-
mentation of the SDSN approach. It includes a design language, tools, and mid-
dleware. The coordination engine and the management platform of the middle-
ware are deployed on an Apache Tomcat web server as Apache Axis2 modules.
The executable design language is XML-based, and the change management
and regulation policy languages use Drools rule language. We use the Drools
rule engine to implement the policy engines at the management platform and
REPs. A software engineer can use the Drools IDE to define regulation rules and
management policies. The SDSN implementation is available at https://github.
com/road-framework/SDSN. The size of the project has 407356 lines of code
(Github GLOC on 3/11/2018).

Evaluation. We show the feasibility of our approach with a case study that
includes common change scenarios for multi-tenant service networks (adapted
from the change scenarios for variant-rich applications [12,13]) (Table 1). To
realize a scenario, we first identify the differences between the initial service

https://github.com/road-framework/SDSN
https://github.com/road-framework/SDSN

44 I. Kumara et al.

Fig. 6. A fragment of the change management policy for our example

Fig. 7. A synchronization rule and a routing rule at the node TX

Runtime Evolution of Multi-tenant Service Networks 45

network and the target one after the realization of the scenario. Then, we design
the management policy to capture the differences as change commands, and
apply the created policy at the running initial service network. We compared the
logs and response messages of VSN executions with those of the manually created
same service network to validate the changes to the initial service network. The
case study resources are at https://github.com/indikakumara/SDSN-ESOCC-
2018.

We assessed the effectiveness of our support for evolution by doing a change
and impact analysis. A detailed analysis of the changes and impacts for each
change scenario is included in the case study resources. The scenarios together
validated our support for each change type (and its impacts) to a multi-tenant
service network (see Sect. 4.1). Moreover, we observed that the units of change

Table 1. Change scenarios for the roadside assistance service network

No: Types of changes Sub-scenarios (One functional and one performance)

1 Add/remove a
mandatory feature

Reimbursement feature (to be used by each tenant)

Response time <30min and max-throughput = 150
for all assistance cases

2 Add/remove an optional
feature

Accident Tow feature (to be used HappyTours and
the new tenant AsiaBus)

Response time <2d and throughput = 10 for a
reimbursement

3 Add/remove feature to a
feature group

TaxiHire feature to/from the features RentalVehicle and
PublicTransport

4d repair duration in addition to the existing 2d
and 3d for Repair feature

4 Add/remove
feature dependency

The dependency Major Repair excludes
Accommodation

The dependency Repair time = 3d includes Tow
duration = 4 h

5 Make the optional feature Accident Tow a mandatory feature

Make Or repair durations 2d, 3d, and 4d
Alternative (XOR) options

6 Modify feature
implementation

Extend a Repair implementation to use external
parts if no parts available inhouse

Add an external assessor to a repairing
implementation, increasing repair time by 6 h

7 Add/remove multiple
feature implementations

One realization of Reimbursement to/from its
other realizations

One realization of Accident Tow for duration = 3h
to/from its other realizations

8 Add/Remove feature
implementation
dependency

Accident Tow with MarkTow excludes Repair with
MacRepair

Repair duration = 3d with AutoRepair includes
RentalVehicle duration = 3d with SLRCars

https://github.com/indikakumara/SDSN-ESOCC-2018
https://github.com/indikakumara/SDSN-ESOCC-2018

46 I. Kumara et al.

at the domain-level are generally confined to their explicit representations in the
composite application, i.e., representations of services, their collaborations, their
relationships, their capabilities, the routing and regulation of interactions, and
VSNs/processes. This is a key requirement to support effective evolution [14].

Fig. 8. Runtime change enactment time (RCET) for the change scenarios

We have also measured the run-time change enactment time (RCET) for each
scenario (see Fig. 8). RCET is the time difference between the manager of the
service network receiving a management policy and the service network being
ready for use after applying the policy. The experiment uses a machine with
an Intel i5-2400 CPU (3.10 GHz), 3.23 GB RAM, and Windows 7. The average
RCET values for the functional scenarios are 537.2 ms (addition) and 12.25 ms
(rollback). Those for the performance scenarios are 256.75 ms (addition) and
32.5 ms (rollback). We believe that this is reasonable.

6 Related Work

We consider the related work from variant-rich applications and service networks.
We focus on the changes to the runtime artifacts of composite applications (com-
pared with the works on design time artifacts [15] such as service specifications).

Two common types of variant rich applications are software product lines and
cloud applications. Among the works from the product lines, Morin et al. [9] and
Baresi et al. [12] supported modifying a business process at a set of predefined
points to create variants. Bosch and Capilla [16] supported, in a smart home
product line, feature-level changes by mapping a feature to a device that offers
a service. The works from cloud applications considered issues such as tenant-
specific variants [17,18], and tenant-specific upgrades [19]. Truyen et al. [17]
used the dependency injection to bind tenant-specific variants to the variation
points of a component-based cloud application. Moens et al. [18] proposed a
feature-model based development of cloud applications, where a service realizes
a feature. Van Landuyt et al. [19] presented a middleware support for modifying
a composite cloud application by activating tenant-specific upgrades at runtime
via the dynamic (re)binding of services.

In [13], we also addressed the runtime change and impact management of
multi-tenant cloud applications designed as dynamic software product lines. In

Runtime Evolution of Multi-tenant Service Networks 47

this paper, we considered the service network model, which is significantly differ-
ent from the product-line based model in terms of runtime abstractions/elements
in the composite application, and thus changes and their impacts.

Most existing works on service networks consider the modeling and analysis
of service networks from specific aspects [2] such as business value flow [5], busi-
ness processes [6], and service relationships [1]. Their realizations have relied on
process-centric models, which fail to represent service networks naturally. That
is, the domain concepts (e.g., services, service capabilities, service relationships,
service interactions, interaction routing and regulation, service network paths,
and virtualization) and their representations are mismatched, and the domain
concepts are not directly represented or managed in the realization, limiting
their utility. Regarding change and impact analysis, Kabzeva et al. [7] proposed
a modeling approach to represent the entities (services, actors, and processes)
in a service network, and their different relationships (e.g., consumption, com-
petition, and ownership) at design time. They also proposed a tool to assess the
impact of a change to an entity or a relationship.

Overall, there is a limited support to the runtime change and impact man-
agement for a composite service application that realizes a multi-tenant service
network. The existing approaches also lack architectural abstractions to rep-
resent a multi-tenant service network naturally at runtime. They also do not
provide a change and impact analysis for such runtime representations, and the
middleware support for the realization and management of each change and
impact. This paper addresses these limitations in the existing research.

7 Conclusions and Future Work

We have addressed the runtime evolution of a multi-tenant service network,
where a single service network simultaneously hosts a set of virtual service net-
works for multiple tenants. We have identified different types of runtime changes
to the service network and their potential impacts, and discussed our middle-
ware support for realizing and managing those changes and impacts. A software
engineer can design the controlled propagation of the desired changes. We have
evaluated our approach with a case study and a performance study. The results
have shown that our approach can support the runtime change and impact man-
agement of multi-tenant service networks, with little performance overhead.

In the future, we plan to develop a pattern-based formalization of the change
and impact management of multi-tenant service networks, and a tool that uses
the formalization to identify and assess change impacts. The generation of change
management policies from high-level visual models will also be investigated.

48 I. Kumara et al.

References

1. Danylevych, O., Karastoyanova, D., Leymann, F.: Service networks modelling: an
SOA & BPM standpoint. J. Univers. Comput. Sci. 16(13), 1668–21693 (2010)

2. Razo-Zapata, P., et al.: Service network approaches. In: Handbook of Service
Description: USDL and its Methods, pp. 45–274 (2012)

3. Kumara, I., et al.: Software-defined service networking: performance differentiation
in shared multi-tenant cloud applications. IEEE TSC 10(1), 9–22 (2017)

4. Kumara, I., et al.: Virtualisation and management of application service networks.
In: Network as a Service for Next Generation Internet, vol. 73, pp. 357–382 (2017)

5. Allee, V.: Reconfiguring the value network. J. Bus. Strat. 21(4), 1–6 (2000)
6. Comuzzi, M., Vonk, J., Grefen, P.: Measures and mechanisms for process monitor-

ing in evolving business networks. Data Knowl. Eng. 71(1), 1–28 (2012)
7. Kabzeva, A., Gtze, J., Mller, P.: Model-based relationship management for service

networks. IJSSOE 5(4), 104–132 (2015)
8. Bohner, S.A: Impact analysis in the software change process: a year 2000 perspec-

tive. In: International Conference on Software Maintenance, pp. 42–51 (1996)
9. Morin, B., et al.: Models@Runtime to support dynamic adaptation. Computer

42(10), 44–51 (2009)
10. Kumara, I., et al.: Change and impact analysis of multi-tenant service networks.

Technical report (2018). https://github.com/indikakumara/SDSN-ESOCC-2018/
blob/master/TR.pdf

11. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. IEEE TSE 16(11), 1293–1306 (1990)

12. Baresi, L., Guinea, S., Pasquale, L.: Service-oriented dynamic software product
lines. Computer 45(10), 42–48 (2012)

13. Kumara, I., Han, J., Colman, A., Kapuruge, M.: Runtime evolution of service-
based multi-tenant SaaS applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 192–206. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45005-1 14

14. Tarr, P., et al.: N degrees of separation: multi-dimensional separation of concerns.
In: International Conference on Software Engineering, pp. 107–119 (1999)

15. Andrikopoulos, V., Benbernou, S., Papazoglou, M.: On the evolution of services.
IEEE TSE 38(3), 609–628 (2012)

16. Bosch, J., Capilla, R.: Dynamic variability in software-intensive embedded system
families. Computer 45(10), 28–35 (2012)

17. Truyen, E., et al.: Context-oriented programming for customizable SaaS applica-
tions. In: ACM Symposium on Applied Computing, pp. 418–425 (2012)

18. Moens, H., Filip, T.: Feature-based application development and management of
multi-tenant applications in clouds. In: SPLC, pp. 72–81 (2014)

19. Van Landuyt, D., Gey, F., Truyen, E., Joosen, W.: Middleware for dynamic
upgrade activation and compensations in multi-tenant SaaS. In: Maximilien, M.,
Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 340–
348. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 24

https://github.com/indikakumara/SDSN-ESOCC-2018/blob/master/TR.pdf
https://github.com/indikakumara/SDSN-ESOCC-2018/blob/master/TR.pdf
https://doi.org/10.1007/978-3-642-45005-1_14
https://doi.org/10.1007/978-3-319-69035-3_24

DevOps Service Observability By-Design:
Experimenting with

Model-View-Controller

Damian A. Tamburri1, Marcello M. Bersani2, Raffaela Mirandola2,
and Giorgio Pea2,3(B)

1 TU/e JADS, s’Hertogenbosch, Netherlands
d.a.tamburri@tue.nl

2 DEIB, Politecnico di Milano, Milan, Italy
{marcellomaria.bersani,raffaela.mirandola}@polimi.it

3 Moviri S.p.A, Milan, Italy
giorgio.pea@polimi.it

Abstract. The speeding growth of the IT market and its disruptive
technologies, think of DevOps or Microservices, are leading towards using
typical design patterns in a completely novel fashion. We consider the
Model-View-Controller (MVC) as a target for a controlled refactoring
experiment aimed at making it more observable, that is, mutated to be
more easily monitorable in line with DevOps expectations. The article
illustrates and implements our proposed mutation of MVC with observ-
ability. Using a proof-of-concept application prototype, the article illus-
trates how the improved observability can impact on general application
maintainability — we use common software metrics from the state of
the art. We conclude that there are indeed forms for common design
patterns (e.g., MVC) which are more monitorable but they are more
expensive in terms of maintenance and hence require attention by the
research community at large and further experimentation.

1 Introduction

The birth and the evolution of the Internet, from 2 million users and 1 Ter-
abyte/month of traffic in 1990 to over 2 billion users and 10 Terabyte/second
of traffic in 2011 [21] has sparked the development of more and more com-
plex, large-scale, data-intensive software architectures that provide services to
millions, even billions of people. At these magnitudes, monitoring quality of ser-
vice [1,10,19] become even more critical. For this reason, a renewed attention
recently emerged on how services should be designed to increase a property
we call observability, that is, the ability to constantly and incrementally observe
individual components, their granular interactions, the atomic computations and
their intermediate and final results at runtime. Catering for observability allows
more specific and granular refactoring, thus enabling the continuous, incremen-
tal, and iterative improvement of their functionality in a DevOps fashion [3].
c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 49–64, 2018.
https://doi.org/10.1007/978-3-319-99819-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_4&domain=pdf

50 D. A. Tamburri et al.

Starting by discussing the suitability of a classical architectural patterns like
Model-View-Controller (MVC) [4] for observability, this article contributes an
attempt at offering a more observable version of the MVC software architec-
tural pattern that is more consistent with observability requirements for archi-
tectures in our modern DevOps contexts. We named our research solution as
oMVC, which stands for “observable Model-View-Controller”. To evaluate our
research solution, we operate a proof-of-concept experiment for oMVC imple-
menting the architectural pattern within a medium online multiplayer game of
our own design. Concerning this proof-of-concept, we discuss how the oMVC
abstractions and data-flow improve observability. Subsequently, we evaluate the
additional maintenance costs of adding-in observability. More specifically, we
use metrics from the state of the art in software maintenance [6] to measure the
maintainability of our proof-of-concept with and without oMVC — this evalua-
tion shows rather conflicting results.

On one hand, results indicate that the adoption of an improved architectural
pattern, such as oMVC, is a trade-off between the complexity of the pattern. On
the other hand, results imply that the effort required in the post-design phase
of the software development, operations, maintenance and refactoring, testing,
and long-term maintenance are also higher.

We conclude that observability can bring about many benefits but, like any
other architecture property, it needs careful trade-off analysis [12,22], e.g., espe-
cially in (micro)services design contexts where multiple instances of more observ-
able architectural patterns are used1.

Structure of the Paper. Section 2 describes the state of the art. Section 3
defines Service Observability and outlines the proposed solution: oMVC.
Section 4 evaluates our research solution in terms of software metrics. Section 6
concludes our paper.

2 State of the Art: MVC and Its Variants

MVC - Classic Approach. MVC is a software architectural pattern originally
introduced in the SmallTalk-80 programming language for the design and imple-
mentation of user interfaces [13]. Since its introduction in 1988 as a paradigm
for building user interfaces, MVC has progressively shifted towards being a gen-
eral architectural pattern for complex software architectures, especially used in
web-services, and service applications designs [16–18]. The pattern defines the
following three fundamental abstractions:

– Model groups together the “architecture’s domain state and behaviour” [13]
and “manages the behaviour and data of the architecture domain, respond to
requests for information about its state (usually from the view), and responds
to instructions to change state (usually from the controller)” [4]. In other
terms, Model provides an abstraction that puts together the state of an archi-
tecture and the procedures manipulating the architecture state, everything
in the context of each architecture’s domain.

1 https://tinyurl.com/yck9emou.

https://tinyurl.com/yck9emou

DevOps Service Observability By-Design 51

– View “deals with everything graphical; it requests data from their model,
and displays the data.” [4]. In other terms, View provides an abstraction to
represent to the external world the state of an architecture.

– Controller “takes over the user interaction with the model and the view”
and “contains the interface between their associated models and views and
the input devices (keyboard, pointing device, time)” [4]. In other terms, Con-
trollers coordinate Views and Models with the interactions produced by the
user with the architecture.

Figure 1 illustrates the relationships between the different abstractions of MVC:
the user interaction is managed by a Controller, which reacts to it by command-
ing the right Model to change the part of the state of the architecture it is
responsible for; the Model notifies the Controller and the View that “depends”
on it, so that they can either adapt their functionalities to the change occurred
in the Model (this happens in the case of the Controller), or they render a new
representation of the Model data to the external world (this happens in the case
of the View). To render such data, a View requires to query their Models.

Controller View

Model

View messages

Notification

Model
accessNotification

Fig. 1. Data-flow in MVC.

MVC Variants. The first variant we report for MVC is known as Model-
View-ViewModel (MVVM) and is a software architectural pattern developed at
Microsoft Inc. by Ken Cooper and Ted Peters for building event-driven user
interfaces [7]. MVVM defines one additional abstraction in addition to the clas-
sical Model and View abstractions from classical MVC.

ViewModel. A ViewModel represents an intermediary between the View and the
Model. It decouples Views from the Model by means of a local state, used by
the Views to render a proper UI, and by means of a set of commands used by
the Views to signal the occurrence of a user interaction. The execution of these
commands causes the ViewModel to coordinate the realisation of different parts
of the business logic of the architecture so that a new state for the architecture
is generated. Whenever the internal data of the Model change, the ViewModel
is notified and its local state is updated; in addition the Views associated to the
ViewModel are notified and re-render pieces of UI to be displayed to the user
(note that Views can be notified by the ViewModel not necessarily whenever
the ViewModel’s local state changes). The View interacts with the ViewModel

52 D. A. Tamburri et al.

by means of data-binding and commands to render a proper UI and to signal
user interactions. The ViewModel reacts to commands by coordinating pieces
of business logic executed by the Model. The ViewModel reacts to newly avail-
able Model data by updating its local state and by notifying associated Views
about the change. The notified Views automatically query the local state of the
ViewModel to display an updated UI.

Model-View-Presenter (MVP). MVP is a software architectural pattern devel-
oped by Taligent Inc. in 1996 that defines the following abstractions: Model,
Command, Selection, View, Interactor and Presenter. Model is defined as the
same abstraction offered by MVC but it is only focused the architecture domain
data or, equivalently, the state of the architecture; the architecture behaviour is
outsourced to the Command abstraction, which offers an interface for updating
slices of the Model. Selection represents elements of the architecture state, or of
the Model, that Commands are willing to change. View is defined as the same
abstraction offered by MVC but, in this case, it is also capable to capture user
interactions, by means of Interactors (in MVC user interaction is captured by
the Controller). Presenter is the coordinator of all the previous abstractions.

Summary. Observability of software artifacts seems considerable. More specifi-
cally, designing applications that are inherently observable has tangible benefits
in terms of product maintainability, both in the implementation phase and later
in the post-release phase. Indeed, a more observable application allows for a more
accurate code analizability throughout all the life-cycle of the application and,
hence, a reduction of the costs. Therefore, we aim at defining a precise set of fea-
tures that applications have to fulfill, in order to be observable. In addition, we
design an new architecture pattern that enforces these features by construction.
The baseline stems from the following principle: observability is a precursor for
the possibility of: (i) reading all the relevant information defining the applica-
tion state and (ii) keeping track of the changes applied to the application state
and of the order among the changes throughout the execution. In our analysis,
we focus on the so-called stateful applications, that are such that the applica-
tion functionality can only be obtained with the maintenance and manipulation
overtime of different pieces of internal information – i.e., the application state.

3 Redesigning MVC for Observability

The analysis of the architectural patterns and frameworks in the previous section
allowed us to elicit 5 common properties, three of them characterizing the new
architectural solutions emerging to make an architecture observable.

For design patterns to aid service observability, they should offer suitable
abstractions for:

P1: the representation (i.e., logging and reporting) of the architecture or service
state, intended as a human- and machine-readable representation of the set
of variable values (or simply, the observable variables) in which the system is

DevOps Service Observability By-Design 53

observed to be in any given instant during operation [2,14]. Note that, with
the concept of variable, we identify any entity that can change value in the
scope of the service’ own computation (e.g., an integer variable or even a
more complex object);

P2: the representation of the events that reflect data inputs from outside of
the service and the internal events representing the effects over that data,
including any of its computations – observability reflects an ordered set of
data transformations [8] affecting the application state;

P3: the manipulation of the architecture state in response to the events – observ-
ability reflects the value of architecture self-organization or other self-* prop-
erties [15] enacted in response to the context variations (e.g., inputs, specific
processing results, etc.);

P4: the provisioning of the architecture state to the outside environment in
machine-readable format - in this case, observability reflects the ordered set
of outputs that the system has produced against the inputs corresponding to
those outputs;

P5: the coordination of all the previous features - in this case, observability is
realized by appropriate business logic inside the architecture;

Stemming from the above, we offer the definition below:

Observability. An implementation of an architectural pattern becomes
observable when its behavior can be precisely monitored, logged, and rendered
for analysis through suitable components that are instrumented by its design
patterns and decisions. Hence, a software application offers observability (or
simply, it is observable) when it defines explicit abstractions implementing
P1, P2, and P4.

3.1 Observability Limitations for MVC and Its Variants

Based on the previous terms and definitions, we classify the architectural pat-
terns discussed in Sect. 2 in terms of the properties P1–P5. MVC partially sup-
ports P1 and P3 as it does not define two distinct abstractions for the architec-
ture state and for the procedures manipulating the state: Model actually groups
both together. Moreover, in MVC there is no abstraction to represent external
events as the state transition is enabled by generic messages, exchanged by Con-
troller and Model. Hence, P2 is not fulfilled. Other variants of MVC, e.g., Model-
View-View-Model2 (MVVM), offer the same features as MVC with respect to
the properties P1 and P3. In addition, however, MVVM defines the abstraction
Command for the event exchanges between ViewModel and View but without
a specific notion of event. Finally, the Model-View-Presenter (MVP) variant
partially supports P2 as the pattern does not provide an abstraction represent-
ing input data availability but rather it provides an abstraction –Interactor– to
signal them to the Presenter abstraction.
2 The definition of MVVM can be found at https://tinyurl.com/y7qwtqkr.

https://tinyurl.com/y7qwtqkr

54 D. A. Tamburri et al.

3.2 Improving MVC for Observability: oMVC

We refactor MVC to provide for the following observability-improving behaviors
according to the definition of Observability of Sect. 3.

1. Store captures the application state [P1];
2. Action represents a generic application event [P2];
3. View/Normal components intercept an architecture-relevant event and con-

struct a proper Action [P2]; they also render the application state to the
environment [P4];

4. Store propagate the Actions into the architecture [P3, P5]; it retrieves the
correct Resolver and use it to obtain the Policies to be executed in response
to the event described by the Action; Store executes such Policies and updates
State. Store also notifies interested View/Normal components about changes
in the State; all the notified View/Normal components compute a new state
representation to be outputted to the rest of the application or to the external
environment.

Figure 2 shows the oMVC pattern with its main abstractions and Fig. 3 shows
the class diagram of the overall oMVC architecture.

Store

State

Logger

View/Normal Resolver

Environment

Action

Action

Policy
Apply

Notifications

LogNotifications

Fig. 2. Event and data-flow in oMVC.

The baseline component in oMVC pattern is implemented through the State
abstraction whereby the isolation of the application state is realized. All the
components that foster the improved application observability depend on it.

State Abstraction. oMVC State, or simply State, represents the state of an
architecture, hence the set of pieces of information whose maintenance over time
defines completely the characteristics and the behavior of the software architec-
ture itself, given the problem at hand.

An atomic information is a pair datum/meaning with an associated under-
standing or semantic interpretation [9]. A meaning of a datum can be expressed
by “appending” to it a label. For instance, (registeredUsers, 10).

DevOps Service Observability By-Design 55

A piece of information can be decomposed in other pieces of information, thus
forming a complex information hierarchy. As State groups pieces of information
we propose to structure State as a set of key-value pairs in which keys represent
labels and values represent either a datum or another set of key-value pairs. Such
structural model grasps the complexity of a piece of information and can be easily
mapped to many efficient data structures and constructs in the world of computer
science and engineering (C structures, Object oriented classes, Relational tables,
Dictionaries, Hash tables, etc..).

Action Abstraction. oMVC Action is a complete description of an internal
or external event that is of interest for a software architecture. In other terms,
an Action groups all the necessary pieces of information capable of describing
completely an architecture-relevant event, so that the architecture can put in
motion proper processing procedures.

It is possible to characterise an architecture-relevant event by means of three
distinct objects: the identifier and the category of the event in addition to some
data that convey the content of the event itself. This characterisation has been
proposed because of a simple reasoning concerning how human beings manage
events: whenever an event occurs, we want to know what is the category of the
event (e.g., good event, bad event, an event that concerns the family, etc.), what
is the event (e.g., the door broke), and we want to know the details of the event
(e.g., what part of the door is broken, in which way, etc.). This definition fosters
an effective characterization of actions: for instance, an event “MouseClickLeft”,
that might belongs to category “ItemClick”, can be referred to the a specific item,
say “registeredUserField”, that is described by the third field of the Action. Such
a general description of the events allow us to propose a structural model for
Actions: similarly to State, as they both group pieces of information, Actions
can be shaped as a set of key-value pairs in which two pairs are fixed: the pair
that expresses an event identifier, and the pair that expresses an event group
identifier. The specification we provide for a oMVC Action underlines the fact
that two different events generate two different Actions, and that two Actions are
different if they refer to two different events. Therefore, a one-to-one relationship
exists between Actions and architecture-relevant events: an identifier for an event
is also an identifier for an Action and an identifier for the group of an event is
also an identifier for the group of an Action.

View/Normal Components Abstraction. oMVC View/Normal compo-
nent is responsible for intercepting relevant internal or external events, making
them available to the rest of the architecture as Actions, and producing a rep-
resentation of the State of the architecture to be exposed to other components
or to the external world, whenever the State changes. More precisely, a View
component intercepts events coming only from the external world and produces
a representation of the State of the architecture to be communicated only to
the external world, while a Normal component intercepts only events internal to
the architecture and produces a representation of the State of the architecture
to be communicated only to other architecture’s components. This specification
does not suggest a particular structural model for View/Normal components.

56 D. A. Tamburri et al.

Nonetheless, it constraints View/Normal components to construct Actions for
describing events and to observe the State of the architecture for changes through
a suitable subscription mechanism.

Policy Abstraction. oMVC Policy is a rule or a behavior that defines part
of the business logic of a software architecture and that is put in motion after
some event makes available some data of interest to the architecture. Policies can
be distinguished into state Policies and side Policies. The formers implements
the business logic manipulating the architecture state whereas the latter consist
of a non State related data manipulation. Policies are implemented through
procedures, that are triggered by the occurrence of some event. State Policies
accept two arguments: the current State of the architecture, as a state Policy is
asked to manipulate it, and an Action. Every state Policy returns the new State.

Resolver Abstraction. oMVC Resolver maps a given Action to the correct
(state and side) Policies that should be executed upon it. The specification of
Resolver does not impose any specific implementation yet it only requires that,
for every Action, at most one State Policy and at most one Side Policy are
returned by means of a proper Resolver. Many Resolvers can be defined, each
one mapping the Actions belonging to a given group to their proper Policies.

Store Abstraction. oMVC Store coordinates the interaction between State,
Actions, Resolvers, Policies and View/Normal components to make a software
architecture work correctly. The coordination process can be split into three
functionalities: (i) a look-up mechanism allowing components to access State for
the architecture state retrieval. (ii) The Action propagation mechanism allowing
the architecture state evolve upon the occurrence of an event. (iii) A subscription
mechanism allowing View/Normal components to subscribe to changes in State,
and so be notified whenever they happen.

The Action propagation mechanism is the mechanism that View/Normal
components are forced to use to make available constructed Actions to the rest
of the architecture so that proper Policies can be executed to handle the event
encapsulated within the Action: whenever a View/Normal component propa-
gates an Action using Store, the latter performs the following actions: (i) maps
the Action to a proper Resolver and use the retrieved Resolver to obtain the
(state and side) Policies associated with the Action; (ii) executes the Policies
and changes the application state with the one produced by running the state
Policy; (iii) notifies all the (subscribed) View/Normal components that have sub-
scribed to State changes; Akin to View/Normal components, the Store abstrac-
tion specification does not suggest a particular structural model, but the chosen
one should offer the above functionalities.

Logger Abstraction. oMVC Logger maintains the application log that
stores the application behavior through a sequence of tuples (Action, State before
manipulation, State after manipulation). The Logger is activated whenever a
View/Normal component propagates an Action, as the Action propagation
mechanism allows for the manipulation of the State.

DevOps Service Observability By-Design 57

3.3 Relationship with MVC

State, Policies and Model. The MVC Model groups the state of an appli-
cation and the procedures to manipulate it, while in oMVC there is a clear
separation between State and Policies. The MVC pattern does not impose any
restriction on the application’s state implementation, and, in general, a MVC
application may have more than one Model; conversely, State is a unique and
centralized shared container of key-value pairs. Moreover, while MVC prescribes
that Model knows the Views that depend on it, State is not aware of other
abstractions nor implements a notification mechanism (a task outsourced to
Store).

Resolvers, View Components, Store and Controller. The functionali-
ties of the MVC Controller (that intercepts and interprets application-relevant
events and causes the Model to change) are expressed through various oMVC
abstractions. The Action propagation mechanism, implemented by Store, has
the role of enforcing the modification of the application state, similarly to the
MVC Controller. Differently from MVC, Store notifies the View components
about the state change and Store commands the State to change by executing
Policies, that are provided by the Resolvers. Moreover, oMVC assigns to View
components both the functionalities of providing a representation of the appli-
cation to the external world and of intercepting events, which is not the case for
MVC that assigns the former to the View and the latter to the Controller.

Logger, Actions, and Side Policies, are not mapped to any MVC abstraction.

4 Evaluating Software Quality Metrics for oMVC

To evaluate the modifications illustrated in the previous section, we conduct an
empirical evaluation of the effects of the oMVC pattern with software metrics
that are specifically related to the source code of the architecture and that can
be automatically evaluated through static analysis.

We designed a medium-sized online game. The player is assigned the mis-
sion to make users play an online software version, with some modifications, of
the board game Escape From Aliens in Outer Space [20]. In this game, players
assume either the role of humans or aliens, and, in any case, find themselves on a
spaceship. The humans have the mission of escaping from the spaceship by reach-
ing certain escape or rescuing points; the aliens have the mission of devouring
as many humans as possible, possibly denying them to leave the spaceship.

The architecture is based on three patterns typically used for web-services
[16], namely: (1) client-server, (2) publisher-subscriber, and, subsequently, (3)
oMVC. The client-server pattern is used to implement the most of the online
multiplayer functionality of the game. All the requests and responses involved in
the synchronous communication strategy adopted by architecture can be mod-
leled as messages that carry an identifier of the action to be performed on the
server, and that carry additional data relevant for the execution of the action.

58 D. A. Tamburri et al.

F
ig
.
3
.
C
la
ss

d
ia
g
ra
m

o
f
oM

V
C

a
rc
h
it
ec
tu
re
.

DevOps Service Observability By-Design 59

The publisher-subscriber pattern is used to implement those functionalities of
the software system that require asynchronous communication between the client
and the server such as, for instance, the start of a game or the display of chat
messages. The oMVC pattern is used to implement the business logic of the
entire architecture, both in the client and in the server.

Evaluation Objective. We compare key software metrics computed for
the oMVC proof-of-concept and for an equivalent MVC architecture — metrics
results are outlined in the remainder of this section.3

Chidamber and Kemerer (CK) metrics [6].

– LCOM (Lack of cohesion in methods) measures how tightly bound or related
the internal elements of a software module are with each other.

– NOR (Number of root classes) measures how many class hierarchies are in
the program.

– DIT (Depth of the inheritance tree) measures the length of a class hierarchy.
– RFC (Response for a Class) measures the number of methods and construc-

tors invoked by objects of a class.
– CBO (Coupling between Objects) measures how many methods and instance

variables of a class B the methods of a class A uses (bidirectional uses are
considered only once, inheritance related connections are not considered).

– WMC (Weighted Methods per class) measures the sum of the cyclomatic
complexity of the methods in a class. More complex methods usually require
more tests for reasons of decision coverage.

Class dependency (CD) metrics.

– Cyclic (Number of cyclic class dependencies) measures, for each class c, the
number of classes c directly depends on, and that in turn depend on c.

– Dcy (Number of dependencies) measures, for each class c, the number of
classes c directly depends on.

– Dcy* (Number of transitive dependencies) measures, for each class c, the
number of classes c directly or indirectly depends on.

– Dpt (Number of dependants) measures, for each class c, the number of classes
that directly depend on c.

– Dpt* (Number of transitive dependants) measures, for each class c, the num-
ber of classes that directly or indirectly depend on c.

The software metrics described above have been computed using the IntelliJ
MetricsReloaded plugin4, and the complete metrics results are available in the
context of the same Github organisation used for the oMVC proof-of-concept.

The figures in Table 1 show the values of the Chidamber and Kemerer metrics,
and of the Class dependency metrics, for the server component whereas those in
Table 2 show the same metrics for the client component, comparing the oMVC
proof-of-concept (red bars) with its equivalent MVC architecture (blue bars).
3 See https://github.com/StateStrategyproof-of-concept/Server and https://github.
com/StateStrategyproof-of-concept/Client.

4 https://plugins.jetbrains.com/plugin/93-metricsreloaded.

https://github.com/StateStrategyproof-of-concept/Server
https://github.com/StateStrategyproof-of-concept/Client
https://github.com/StateStrategyproof-of-concept/Client
https://plugins.jetbrains.com/plugin/93-metricsreloaded

60 D. A. Tamburri et al.

Table 1. CK metric (left) and CD metrics (right) for the server: oMVC-based in red
and MVC-based in blue (lower metric values are better).

Table 2. CK metric (left) and CD metrics (right) for the client: oMVC-based in red
and MVC-based in blue (lower metric values are better).

Server Side. CK metrics have similar values for both the architectures,
with a slight advantage for the MVC architecture, and with the only excep-
tion of the RFC metric, which considerably favors the MVC architecture. RFC
metric, unlike the others, does directly depend on the number of classes and
methods defined in an architecture, hence, since oMVC introduces many classes
for implementing its abstractions, the value of the metric is reasonably expected
to be higher. The Class dependency metrics assume similar values, with a slight
advantage for oMVC when Dcy and Dpt are considered, that becomes relevant
for Cyclic metric. This trend ensues from the isolation and the reduced inter-
components dependency that oMVC promotes.

Client Side. CK metrics show varied trends: the RFC metric is higher for
the oMVC-based architecture. The CBO metric favors the MVC architecture —
this circumstance is explained by two reasons: (a) the propagation of different
Actions by the GUI components increases the CBO value of the Action class
and, (b) the client of the oMVC-based architecture introduces more Actions
than the server. Conversely, the remaining metrics favor oMVC since (a) the
data-flow and the introduced abstractions reduce the complexity of classes by
offloading the architectural business logic to the Action propagation mechanism,
and (b) the LCOM, DIT, NOC, and WMC metrics are measures of class com-
plexity and methods relatedness. Class dependency metrics always favors the
MVC-based architecture. The Side Policies and the classes used for the View
component introduce many transitive dependencies that considerably influence
the values of Dcy and Dpt*. The oMVC-based architecture exploits a unique

DevOps Service Observability By-Design 61

View component (i.e., GUIManager), rather than different small ones, that
observes the oMVC State and orchestrates many different other components.
Furthermore, the oMVC client propagates Actions inside Side Policies - that is
rare in the context of the server architecture. Hence, the additional degree of
recursion for the Action propagation mechanism produces more transitive and
cyclic dependencies, with the consequent and perceivable metric variations.

The effect of the oMVC pattern on the implementation mainly affects
CBO and RFC, whose values are degrading by 40% and 29%, respectively.
These values indicates, in general, that the unit-testing on the classes can
be at most 40% more demanding than the same testing on the MVC imple-
mentation. Conversely, the cyclomatic complexity of the server is lessened
by 17%, hence yielding to smaller test cases for the coverage analysis.

5 Threats to Validity

Lack of Quantitative Metrics. The definition of Architecture Observability
in Sect. 3 is declarative. It only outlines how an architectural pattern should be
designed so that the implementing applications are observable. Observability is
actually obtained because certain structural criteria (enforced through the prop-
erties P1-P5) are met. However, the observability delineated in Sect. 3 cannot be
evaluated numerically as there is no a quantitative metrics that allows designers
to estimate the observability of an implementation and, hence, to compare differ-
ent implementations with each other. Its effect can only be measured indirectly
(for instance, one can refer to the standard ISO 9126 [11] for the evaluation
of some software qualities that are affected by the implementation of a specific
architecture).

Implementation Complexity. The conclusions and the graphs provided
in the previous section point out a generalized negative impact of oMVC for
the majority of the Chidamber and Kemerer metrics in contrast to only few
that are improved. This is not surprising, as the use of a structured pattern,
which is implemented by means of various distinct entities, commonly introduces
more “structural complexity” – i.e., more classes, methods and dependencies
– than an unstructured design, realizing the same functionalities. On the one
hand, a software entity implementing complex functionalities can benefit from
a more structured implementation (consider the cyclomatic complexity of the
server). The overhead introduced by the pattern can be less than, or at least
comparable with, the complexity entailed by its functionality; and the greater
maintainability of the final product compensates the use of the pattern. However,
on the other hand, simple software implementations (e.g., the client side in our
proof-of-concept) might suffer from the use of a pattern as it might introduce
more “structural complexity” than the one actually needed, hence yielding a less
concise software whose modification complexity can degrade.

62 D. A. Tamburri et al.

Proof-of-Concept Evaluation. The evaluation of the observability of
oMVC has been carried out through a proof-of-concept application of limited
size. A deeper analysis is needed with the aim of comparing different implemen-
tations of oMVC when it is applied to small, medium and large applications.
Indeed, the evaluation of the impact of a pattern in small applications can be
strongly affected by the overhead that the pattern itself introduces.

oMVC in the Zoo of Patterns. As outlined in Sect. 2, MVC has already
been elaborated and extended various times and many versions of MVC were
tailored to specific contexts. The use of the specific classes such as Policy and
Resolver might actually resemble as an application of the State Machine pat-
tern. However, the purpose of oMVC is different from the one of State pattern.
The State pattern promotes decoupling of state-dependent functionalities from
the state object itself. A state class delegates state-specific behavior to its cur-
rent state object and does not care of implementing state-specific functionali-
ties directly. oMVC exploits a State-like mechanism to manage the state of an
application but it implements policies, actions and resolvers to enrich the State
pattern with event-based features that can be used in many contexts for defining
the transformation of the application state upon the occurrence of events.

Discovering Patterns vs. Creating New Ones. One of the core principle
of designing patterns claims that patterns are discovered but not invented [5].
oMVC is designed and its structure is not elicited from the analysis of imple-
mented solutions. However, oMVC ensues by construction from the MVC vari-
ants in the state-of-the-art. The five properties P1-P5, enlisted in Sect. 3 to
define observability, are obtained by the analysis of the known patterns and
their baseline tenets. oMVC, which explicitly provides abstractions that allow
designers to satisfy the requirements captured by the properties, is therefore a
by-construction consequence of the known solutions that improves observability.

6 Conclusions

We have re-designed the MVC software architecture pattern to be more observ-
able, i.e., to be able to solve the problem of state management by providing
abstractions that separate how the application state is structured, how it is
manipulated, how it is represented to the external world, and how the previous
activities are put together and made available constantly in an analysable log.

A valuable research path reflects further re-designs of patterns for a system-
atic comparison against oMVC over a more significant collection of diverse soft-
ware architectures, and using more extensive quality assessment. Finally, some
effort should be spent in defining a quantitative metrics for observability to be
measured on actual implementation of oMVC and that can be automatically
evaluated through static code analysis5.

5 The authors’ work is partially supported by EU H2020-TWINN-2015 “DOSSIER-
Cloud” no. 692251.

DevOps Service Observability By-Design 63

References

1. Aagedal, J.Ø.: Quality of service support in development of distributed systems.
Ph.D. thesis, University of Oslo (2001)

2. Atlee, J.M., Gannon, J.D.: State-based model checking of event-driven system
requirements. IEEE Trans. Softw. Eng. 19(1), 24–40 (1993). http://dblp.uni-trier.
de/db/journals/tse/tse19.html#AtleeG93

3. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. SEI
Series in Software Engineering. Addison-Wesley, New York (2015). http://my.
safaribooksonline.com/9780134049847

4. Burbeck, S.: Applications programming in smalltalk-80(tm): How to use
Model-View-Controller (MVC) (1987). http://st-www.cs.uiuc.edu/users/smarch/
st-docs/mvc.html

5. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architec-
ture: On Patterns and Pattern Languages, vol. 5. Wiley, Chichester (2007)

6. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

7. Cooper, K., Peters, T.: The MVVM pattern. https://msdn.microsoft.com/en-us/
library/hh848246.aspx

8. Doerr, M.: Data transformations (2001). http://cidoc.ics.forth.gr/data
transformations.html

9. Floridi, L.: Information: A Very Short Introduction. Very Short Introductions.
OUP, Oxford (2010)

10. Horvat, G., Zagar, D., Vlaovic, J.: Evaluation of quality of service provisioning in
large-scale pervasive and smart collaborative wireless sensor and actor networks.
Adv. Eng. Inf. 33, 258–273 (2017). http://dblp.uni-trier.de/db/journals/aei/aei33.
html#HorvatZV17

11. Software engineering - product quality - part 1: Quality model. Standard, Interna-
tional Organization for Standardization, Geneva (2001)

12. Kazman, R., Klein, M., Clements, P.: ATAM: method for architecture evalua-
tion. Technical report CMU/SEI-2000-TR-004, Carnegie Mellon Uiversity, Soft-
ware Engineering Institute (2000)

13. Krasner, G.E., Pope, S.T.: A cookbook for using the model-view controller user
interface paradigm in smalltalk-80. J. Object Oriented Program 1(3), 26–49 (1988)

14. Mateescu, R.: Model checking for software architectures. In: Oquendo, F., Warboys,
B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 219–224. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24769-2 18

15. Pilpre, A.: Self-* properties of multi sensing entities in smart environments. Mas-
ter’s thesis, MIT (2005)

16. Prazeres, C.V.S., da Graça Campos Pimentel, M., Munson, E.V., Teixeira, C.A.C.:
Toward semantic web services as mvc applications: from owl-s via uml. J. Web
Eng. 9(3), 243–265 (2010). http://dblp.uni-trier.de/db/journals/jwe/jwe9.html#
PrazeresPMT10

17. Prazeres, C.V.S., Teixeira, C.A.C., Munson, E.V., da Graça Campos Pimentel,
M.: Semantic web services: from owl-s via uml to mvc applications. In: Shin, S.Y.,
Ossowski, S. (eds.) SAC, pp. 675–680. ACM (2009). http://dblp.uni-trier.de/db/
conf/sac/sac2009.html#PrazeresTMP09

18. Qiu, X.: Building desktop applications with web services in a message-based MVC
paradigm. In: ICWS, p. 765. IEEE Computer Society (2004). http://dblp.uni-trier.
de/db/conf/icws/icws2004.html#Qiu04

http://dblp.uni-trier.de/db/journals/tse/tse19.html#AtleeG93
http://dblp.uni-trier.de/db/journals/tse/tse19.html#AtleeG93
http://my.safaribooksonline.com/9780134049847
http://my.safaribooksonline.com/9780134049847
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
https://msdn.microsoft.com/en-us/library/hh848246.aspx
https://msdn.microsoft.com/en-us/library/hh848246.aspx
http://cidoc.ics.forth.gr/data_transformations.html
http://cidoc.ics.forth.gr/data_transformations.html
http://dblp.uni-trier.de/db/journals/aei/aei33.html#HorvatZV17
http://dblp.uni-trier.de/db/journals/aei/aei33.html#HorvatZV17
https://doi.org/10.1007/978-3-540-24769-2_18
http://dblp.uni-trier.de/db/journals/jwe/jwe9.html#PrazeresPMT10
http://dblp.uni-trier.de/db/journals/jwe/jwe9.html#PrazeresPMT10
http://dblp.uni-trier.de/db/conf/sac/sac2009.html#PrazeresTMP09
http://dblp.uni-trier.de/db/conf/sac/sac2009.html#PrazeresTMP09
http://dblp.uni-trier.de/db/conf/icws/icws2004.html#Qiu04
http://dblp.uni-trier.de/db/conf/icws/icws2004.html#Qiu04

64 D. A. Tamburri et al.

19. Reale, A.: Quality of service in distributed stream processing for large scale smart
pervasive environments. Ph.D. thesis, University of Bologna, Italy (2014). Base-
search.net (ftunivbologntesi:oai:amsdottorato.cib.unibo.it:6390)

20. Santa Ragione S.r.l.: Escape from the aliens in outer space. http://www.eftaios.
com/

21. Google Chrome Team: The evolution of the web. http://www.evolutionoftheweb.
com/

22. Zalewski, A.: Beyond ATAM: architecture analysis in the development of large scale
software systems. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 92–105.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75132-8 8. http://
dblp.uni-trier.de/db/conf/ecsa/ecsa2007.html#Zalewski07

http://www.eftaios.com/
http://www.eftaios.com/
http://www.evolutionoftheweb.com/
http://www.evolutionoftheweb.com/
https://doi.org/10.1007/978-3-540-75132-8_8
http://dblp.uni-trier.de/db/conf/ecsa/ecsa2007.html#Zalewski07
http://dblp.uni-trier.de/db/conf/ecsa/ecsa2007.html#Zalewski07

Re-architecting OO Software
into Microservices

A Quality-Centred Approach

Anfel Selmadji(B), Abdelhak-Djamel Seriai, Hinde Lilia Bouziane,
Christophe Dony, and Rahina Oumarou Mahamane

LIRMM, CNRS and University of Montpellier, Montpellier, France
{selmadji,seriai,bouziane,dony}@lirmm.fr,

rahina.oumarou-mahamane@etu.umontpellier.fr

Abstract. Due to its tremendous advantages, microservice architectural
style has become an essential element for the development of applications
deployed on the cloud and for those adopting the DevOps practices.
Migrating existing applications to microservices allow them to benefit
from these advantages. Thus, in this paper, we propose an approach
to automatically identify microservices from OO source code. The app-
roach is based on a quality function that measures both the structural
and behavioral validity of microservices and their data autonomy. Unlike
existing works, ours is based on a well-defined function measuring the
quality of microservices and use the source code as the main source of
information.

Keywords: Object-Oriented · Microservices
Migration · Identification

1 Introduction

Recently, microservice architectural style has become an essential element for
the development of applications deployed on the cloud or for those adopting the
DevOps practices [5,10]. In this style, an application consists of a set of small
services which are independently deployable. Usually, each microservice can only
manage its own data [10,12]. These services communicate through lightweight
mechanisms and they are deployed using containers such as Docker [12–14].

For the cloud, microservices facilitate the reconfiguration of an application
according to the changes that may occur at runtime [3]. These changes can be
related to cloud resources (e.g. resource allocation, etc.), quality of service (e.g.
scalability guarantees, etc.) or any other event (e.g. failure, etc.). For DevOps,
microservices facilitate a continuous integration, delivery and deployment
tasks [5].

Besides the adoption of microservice architectural style for the development
of new applications, the migration of existing monolithic ones to this style allows
c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 65–73, 2018.
https://doi.org/10.1007/978-3-319-99819-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_5&domain=pdf

66 A. Selmadji et al.

them to benefit from all the above-mentioned advantages. The migration process
consists of three steps: (1) comprehension of the existing system (i.e. reverse
engineering), (2) identification of microservices and (3) packaging them.

Different works have proposed strategies to achieve this migration [4,8,9,11].
Some of these approaches propose limited and ad-hoc heuristics for identifying
microservices. Indeed, they do not consider the data autonomy of microservices
[4,8] or they focus on measuring internal coupling and cohesion of microservices
and not their external coupling [4,11]. Finally, some others require, in addition
to the source code, the use of other artifacts [8,11] that can be unavailable.

In this paper, we tackle these limitations by proposing an automatic approach
to identify microservices from OO source code. Unlike existing approaches, ours
considers the specificity of microservices. It is based on a quality function that
measures the functional validity of a microservice and its data autonomy.

The remainder of this paper is organized as follows. Section 2 outlines related
works. Section 3 presents the proposed approach for identifying microservices.
Section 4 evaluates our proposal. Finally, Sect. 5 concludes the paper.

2 Related Works

An attempt at providing a structured approach to identify microservices from
monolith is Service Cutter [8]. Service Cutter uses artifacts and documents
related to the software engineering process to build a graph representation which
is decomposed through graph cutting. The limitation of Service Cutter is that
the used artifacts and documents can be unavailable or not up to date.

Levcovitz et al. [9] proposed an approach to identify microservices from mono-
lithic enterprise applications. The approach consists of grouping each user inter-
face with the business functionality it calls and the database tables used by this
functionality in a microservice. Therefore, the main limitation of this approach is
that it is based on a restrictive hypothesis about the architecture of the monolith
to be decomposed (i.e. MVC architecture).

Mazlami et al. [11] proposed a formal model to extract microservices from
monoliths. More precisely, the authors used three formal coupling strategies
and embed those in a graph-based clustering algorithm. In this approach, some
coupling strategies depend on the change history of the code. Thus, if it is
unavailable or consists of a limited number of commits, the approach is unusable.

Baresi et al. [4] proposed an approach to identify microservices from an Ope-
nAPI specification. The identification process consists of matching the terms in
the specifications against a reference vocabulary to suggest possible decomposi-
tions. The limitation of this approach is relying on well-defined interfaces that
provide meaningful names. Moreover, database partitioning was not handled.

In conclusion, the existing works suffer from considerable limitations in terms
of the restrictions associated with the used artifacts, the exploited information,
and the partitioning measures on which they are based.

Re-architecting OO Software into Microservices 67

3 Microservices Identification from OO Source Code

Our microservices identification approach is based on four principles: (1) It con-
siders OO software, (2) It exploits, mainly, the source code to identify microser-
vices, (3) It defines a function that measures the quality of a microservice. (4) It
exploits the information concerning the relations between the entities of the code
and the information related to the persistent data manipulated in this code.

3.1 From Microservices Characteristics Description
to Characteristics Evaluation

Characteristics of Microservices: Lewis and Fowler [10] define microservices
as small services, communicating with lightweight mechanisms. These services
are independently deployable by fully automated deployment machinery. They
may be written in different programming languages and use different data storage
technologies. Newman [12] considers microservices as small, autonomous services
that work together. Pujals [13] defines microservices as autonomous lightweight
processes, created and deployed with relatively small effort and ceremony.

Based on these definitions and others [14], we identified microservice’s main
characteristics: (1) Small and focused on one function: a microservice is typi-
cally responsible for a simple business functionality. (2) Autonomous: microser-
vices are separate entities. They communicate via network calls and each one
manages its own database. (3) Technology neutral: with a system composed of
a set of microservices, each one can use different technologies. (4) Automati-
cally deployed: if the number of microservices increases, automatic deployment
is required.

The above characteristics can be classified into two categories: (1) those
related to the structure and behavior of microservices and (2) others related to
the microservice development platform. Therefore, to measure the quality of can-
didate microservices, only the characteristics that define microservice structure
and behavior are selected: small and focused on one function and autonomous.

Evaluation of the “Focused on One Function” Characteristic: In our
approach, a microservice M is viewed as a set of classes collaborating to provide
one function. This collaboration can be determined from source code through the
internal coupling, that represents the degree of direct and indirect dependencies
between classes. Moreover, it can be determined by the number of volatile data1

whose use is shared by these classes. It reflects the internal cohesion. Thus, FOne
(Eq. 1) evaluates the characteristic Focused on One Function.

FOne(M) =
1
2

(InternalCoupling(M) + InternalCohesion(M)) (1)

1 Attributes are an example of volatile data.

68 A. Selmadji et al.

Evaluation of the Structural and Behavioral Autonomy of a Microser-
vice: Microservices are separate entities. Thus, in order that a set of classes
represents a microservices their dependencies on external classes should be min-
imal. This can be measured using external coupling (see Eq. 2).

FAutonomy(M) = ExternalCoupling(M) (2)

Evaluation of the Data Autonomy of a Microservice: A microservice
can be completely data autonomous if it does not require any data from other
microservices. In order that a microservice require less external data, its classes
need to manipulate the same data. Thus, FData (Eq. 3) is based on measuring
data dependencies between the classes of the microservice (FIntra), and their
data dependencies with classes not belonging to the microservice (FInter).

FData(M) =
1
2

(FIntra(M) − FInter(M)) (3)

The FIntra (resp. FInter) function applied on a microservice M represents
the ratio between the number of data shared between its classes (resp. with other
classes) and the total number of data manipulated in the microservice.

Global Evaluation of a Microservice: The global evaluation (Eq. 4) of a
microservices depends on the evaluation of its characteristics.

FMicro(M) =
1
n

(αFOne(M) − βFAutonomy(M) + γFData(M)) (4)

Where M is a microservice, α, β and γ are coefficient weights determined by
software architect and n = α + β + γ. By default, the value of each term is 1.

3.2 Evaluation of Microservice Characteristics Based on Metrics

Internal Coupling: Internal coupling evaluates the degree of direct and indi-
rect dependencies between classes. The more two classes use each other’s meth-
ods the more they are coupled. Hence, the internal coupling is measured as
follows:

InternalCoupling(M) =
∑

CouplingPair(P)
NbPossiblePairs

(5)

Where P = (Cl1,Cl2) is a pair of classes of the microservice M, NbPossi-
blePairs is the number of possible pairs of classes in M, whereas CouplingPair
is:

CouplingPair(Cl1, Cl2) =
NbCalls(Cl1, Cl2) + NbCalls(Cl2, Cl1)

TotalNbCalls
(6)

Where NbCalls(Cl1,Cl2) is the number of calls of the methods of Cl1 by
those of Cl2 and TotalNbCalls is the number of method calls in the application.

Re-architecting OO Software into Microservices 69

Indeed, measuring internal coupling using Eq. 5 takes into account the frequency
of calls. However, it does not promote clusters in which all the classes are coupled.
For this reason, we introduced the sum of the standard deviations between the
coupling values in the evaluation of the internal coupling (Eq. 7).

InternalCoupling(M) =
∑

CouplingPair(P) − SumStandardDev

NbPossiblePairs
(7)

External Coupling: External coupling evaluates the degree of direct and indi-
rect dependencies of the classes belonging to a candidate microservices on exter-
nal classes. It is measured similarly to internal coupling, with only one difference
which is the set of used pairs. To measure external coupling, each pair consists
of two classes such that exactly one of them belong to the microservice.

Internal Cohesion: Internal cohesion evaluates the strength of interactions
between classes. Usually, two classes are more interactive if their methods work
on the same attributes. Thus, internal cohesion is measured as follows:

InternalCohesion(M) =
NbDirectConnect

NbPossibleConnect
(8)

Where NbPossibleConnect is the possible number of connections between the
methods of the classes belonging to the microservice M, whereas NbDirectCon-
nect is the number of connections between these methods. Two methods m1
and m2 are directly connected if they both access the same attribute or the call
trees starting at m1 and m2 access the same attributes. Because our aim is to
measure the cohesion between the classes of the microservices, the connections
between the methods of the same class are not considered. Note that, this inter-
nal cohesion measurement metric is a variation of the metric TCC (Tight Class
Cohesion) proposed by Bieman and Kang [7].

3.3 Clustering Process

To identify microservices from OO code, classes are grouped based on their
dependencies. Hence, a hierarchical agglomerative clustering algorithm [1] is
used. We consider our function to measure the quality of a microservice as the
similarity function used in the algorithm. Thus, the classes that maximize the
value of the quality function are grouped together. More details can be found
in [1].

4 Experimentation and Validation

4.1 Research Questions and Data Collection

To validate our approach we conducted an experiment to answer the follow-
ing research questions: RQ1: does the proposed approach produce an adequate

70 A. Selmadji et al.

decomposition of an OO application into microservices? RQ2: is the definition
of the quality function, without considering data autonomy, adequate? RQ3:
does the evaluation of data autonomy enhance the quality of microservices?

To answer these questions, we have experimented on three OO applications
of different sizes: small (FindSportMates2), average (SpringBlog3) and relatively
large (InventoryManagementSystem4). Table 1 provides some metrics on them.

Table 1. Applications metrics

Application No of classes No of classes
representing
database tables

Code size (LOC)

InventoryManagementSystem 104 19 13447

FindSportMates 17 5 785

SpringBlog 42 5 1615

4.2 Experimental Protocol

The answers to the research questions are based on a tool developed in Java.
To answer RQ1 , we used our tool to identify microservices. Then, we compared
them to those identified manually. The protocol for answering RQ2 is simi-
lar to the one used for RQ1 with one difference: we set our tool to identify
microservices based on a function related to the characteristics “focused on one
function” and “structural and behavioral autonomy”. To answer RQ3 , we com-
pare the precision and recall values related to the answers of RQ1 and RQ2 .

4.3 Direct Results

The source code of each of the previous applications was partitioned into a set of
clusters. Table 2 shows the results obtained based on the entire quality function
(FMicro) and on a quality function without the data autonomy part (FSem).

Table 2. Microservice extraction results

Application No of microservices Average no of classes
per microservice

FMicro FSem FMicro FSem

InventoryManagementSystem 10 9 8.5 9.44

FindSportMates 2 2 6 6

SpringBlog 4 4 9.25 9.25

2 github.com/chihweil5/FindSportMates.
3 github.com/Raysmond/SpringBlog.
4 github.com/gtiwari333/java-inventory-management-system-swing-hibernate-nepal.

http://github.com/chihweil5/FindSportMates
http://github.com/Raysmond/SpringBlog
http://github.com/gtiwari333/java-inventory-management-system-swing-hibernate-nepal

Re-architecting OO Software into Microservices 71

To evaluate the microservices obtained by our approach, we compare them
with those identified manually. Thus, we classify the microservices obtained man-
ually in three categories: (1) Those that exactly match the ones identified by our
approach. The microservices identified by our approach and are classified in this
category are considered excellent. (2) Those that can be obtained by a simple
composition/decomposition of the microservices identified by our approach. The
microservices identified by our approach of this category are considered good. (3)
Those that are neither in the first nor in the second categories. The microservices
identified by our approach that are classified in this category are considered bad.

The classification results are described in Table 3 and expressed in term of
precision and recall in Table 4. Precision (resp. recall) assesses the ratio between
the number of good and excellent microservices to the total number of the clas-
sified ones (resp. the number of the manually identified ones).

4.4 Answers to Research Questions

The precision values obtained based on FMicro are greater than 83%. This shows
that a large part of the manually identified microservices are identified by our
approach. The recall values obtained based on FMicro are also greater than 75%.
This means that a large part of the microservices identified by our approach are
those identified manually. Thus, we answer RQ1 as follows: our approach allows
obtaining an adequate decomposition of an OO application into microservices.

In addition, similarly to FMicro, the precision values obtained based on the
partial quality function FSem, are between 80% and 100%.

The interpretation of the recall values for FSem is the same as FMicro while
considering that the recall values are either equal to or lower than those obtained

Table 3. Microservice classification results

Application No of excellent
microservices

No of good
microservices

No of bad
microser-
vices

FMicro FSem FMicro FSem FMicro FSem

InventoryManagementSystem 1 1 17 15 3 5

FindSportMates 0 0 3 3 1 1

SpringBlog 3 2 7 8 3 3

Table 4. Precision and recall measurement

Application Precision Recall

FMicro FSem FMicro FSem

InventoryManagementSystem 90% 80% 85,71% 76,19%

FindSportMates 100% 100% 75% 75%

SpringBlog 83,33% 83,33% 76,92% 76,92%

72 A. Selmadji et al.

by relying on FMicro. Based on these values, the answer to RQ2 is the definition
of the quality function, without considering data autonomy, is adequate.

The precision and recall values obtained based on FSem are equal to or less
than those obtained based on FMicro. The values that are equal are related to
applications that do not manipulate many persistent data. Thus, the answer to
RQ3 is the evaluation of data autonomy enhance the quality of microservices.

4.5 Threats to Validity

Threats to Internal Validity: Our approach may be affected by two internal
threats. Firstly, each class belongs to only one microservice. However, in some
applications, some classes may participate in several functionalities. Neverthe-
less, this generally concerns only certain classes that the architect can duplicate.
Secondly, we rely on a hierarchical clustering algorithm. This algorithm allows
obtaining values of the quality function close to optimal ones.

Threats to External Validity: There are two external threats. Firstly, the
quality of the OO source code can impact the identification. Secondly, the match-
ing between the microservices obtained by our approach and those obtained
manually can vary according to the granularity of the manually identified ones.

5 Conclusion

We presented, in this paper, an approach for the identification of microservices by
an analysis of OO source code. This approach is based on both the evaluation
of microservice quality, using a quality function, and an algorithm for group-
ing classes according to the value of this quality. The conducted experimenta-
tion shows the relevance of the obtained microservices using our approach com-
pared to those identified manually. However, the results need to be consolidated
by experimentations on very large applications. Moreover, inspired by existing
works [2,6], we will propose an approach to package the identified microservices
and deploy them on the cloud while taking into account the dynamic reconfigu-
ration.

References

1. Adjoyan, S., Seriai, A.D., Shatnawi, A.: Service identification based on quality
metrics object-oriented legacy system migration towards SOA. In: SEKE (2014)

2. Alshara, Z., Seriai, A.D., Tibermacine, C., Bouziane, H.L., Dony, C., Shatnawi, A.:
Migrating large object-oriented applications into component-based ones: instantia-
tion and inheritance transformation. ACM SIGPLAN Not. 51, 55–64. ACM (2015)

3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures
using microservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC
Workshops 2015. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33313-7 15

https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15

Re-architecting OO Software into Microservices 73

4. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through inter-
face analysis. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 19–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5 2

5. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Reading (2015)

6. Bastide, G., Seriai, A., Oussalah, M.: Adapting software components by structure
fragmentation. In: Proceedings of the 2006 ACM Symposium on Applied Comput-
ing, pp. 1751–1758. ACM (2006)

7. Bieman, J.M., Kang, B.K.: Cohesion and reuse in an object-oriented system. ACM
SIGSOFT Softw. Eng. Notes 20, 259–262 (1995)

8. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6 12

9. Levcovitz, A., Terra, R., Valente, M.T.: Towards a technique for extracting
microservices from monolithic enterprise systems. arXiv preprint (2016)

10. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term.
MartinFowler.com 25 (2014)

11. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic
software architectures. In: 2017 IEEE International Conference on Web Services
(ICWS), pp. 524–531. IEEE (2017)

12. Newman, S.: Building Microservices: Designing Fine-grained Systems. O’Reilly
Media, Inc., Sebastopol (2015)

13. Sharma, S.: Mastering Microservices with Java. Migrating to Cloud-Native Archi-
tectures Using Microservices: An Experience ReportPackt Publishing Ltd. (2016)

14. Sharma, S., Gonzalez, D.: Microservices: Building scalable software (2017)

https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-319-44482-6_12

An Encoder-Decoder Architecture
for the Prediction of Web Service QoS

Mohammed Ismail Smahi1(B), Fethellah Hadjila1(B), Chouki Tibermacine2(B),
Mohammed Merzoug1(B), and Abdelkrim Benamar1(B)

1 LRIT, University of Tlemcen, Tlemcen, Algeria
{i smahi,f hadjila,mohamed.merzoug,a benamar}@mail.univ-tlemcen.dz

2 LIRMM, CNRS and University of Montpellier, Montpellier, France
Chouki.Tibermacine@lirmm.fr

Abstract. Quality of Service (QoS) prediction is an important task in
Web service selection and recommendation. Existing approaches to QoS
prediction are based on either Content Filtering or Collaborative Filter-
ing. In the two cases, these approaches use external data or past interac-
tions between users and services to predict missing or future QoS scores.
One of the most effective techniques for QoS prediction is Matrix Factor-
ization (MF), with Latent Factor Models. The key idea of MF consists
in learning a compact model for both users and services. Thereafter QoS
prediction is simply computed as a dot product between the user’s latent
model and the service’s latent model. Despite the successful results of
MF in the recommendation area, there are still a set of problems that
should be handled, like: (i) the sparsity of the input models, and (ii) the
learning of the latent factors which is prone to over-fitting. In this paper,
we propose an approach to solve these two problems by using a simple
neural network, an auto-encoder, and by exploiting cross-validation on a
well-known dataset, in order to select the ideal number of latent factors,
and thereby reduce the over-fitting phenomenon.

1 Introduction

Web service recommendation and selection have attracted much attention in the
service computing community these last years [1–5]. With the rapid increase of
the number of services over the Internet and Cloud computing platforms, the
task of recommendation became more important. One of the most important
criteria taken into consideration in recommending services is their Quality of
Service. Recommendation systems are based, among other artifacts, on large
collections of QoS scores related to different service users and invocations over
different time periods. However, these collections contain sometimes missing QoS
scores. In addition, QoS scores vary substantially in time. These two facts induce
an additional complexity in building recommendation systems [6,7].

To deal with the aforementioned complexity, recommendation systems lever-
age either Content Filtering or Collaborative Filtering (denoted CF) techniques
c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 74–89, 2018.
https://doi.org/10.1007/978-3-319-99819-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_6&domain=pdf

An Encoder-Decoder Architecture for the Prediction of Web Service QoS 75

to predict the QoS score of a given service [8]. The first technique (i.e. content fil-
tering) requires external data to build the profile of users or items (the services),
which is not always available. However the second one is mainly based on the
past interactions between the users and the items. Through these interactions
and transactions, recommendation systems can infer the missing values. Roughly
speaking, there are two types of CF techniques: Nearest Neighbors approaches
and Matrix Factorization approaches (also known as Latent Factor Models).
The key idea of matrix factorization consists in learning a compact model for
both users and services, thereafter the QoS prediction is simply computed as
a dot product between the user’s latent model and the service’s latent model.
According to [7,8] Matrix Factorization techniques are more effective (in terms of
accuracy) than the Nearest Neighbors schemes. Despite the successful results of
MF in the recommendation area, there are still a set of problems that should be
handled, as mentioned in [7,9]; there are two major issues: (i) the sparsity of the
service invocation matrix, which is the input of the recommendation system, can
largely affect the predicted QoS; (ii) the learning of the latent factors is prone to
over-fitting; as a result the consistency of the latent factors can be compromised.
To deal with this situation, MF techniques should adopt additional mechanisms
to reduce this side effect.

In this paper, we enhance MF techniques to alleviate the aforementioned
issues. The main contributions of our paper are summarized as follows:

– We leveraged auto-encoders [10,11] to build the latent models of both users
and services. This choice is mainly motivated by the consistent mathematical
foundation of this neural network (in fact, the auto-encoder can learn the
optimal decomposition of any real service invocation matrix). In addition, we
divide the input data set into a set of clusters in order to reduce the data
sparsity.

– To reduce the over-fitting phenomenon, we selected the ideal number of latent
factors (the size of the hidden layer) according to the cross-validation princi-
ple;

– To evaluate the proposed approach, we conducted a set of experiments on a
real-world Web service QoS performance (WS-DREAM) [12]. These experi-
ments are related to different sizes of the dataset and different levels of spar-
sity.

The remaining of the paper is organized as follows. Section 2 introduces some
background material on autoencoders. Section 3 details the proposed approach
for Web service QoS prediction. Section 4 exposes the conducted experiments
and discusses the obtained results. Before concluding and presenting some per-
spectives at the end of the paper, we present in Sect. 5 the related works.

2 Background on Autoencoders

Auto-encoder [10,11] is an unsupervised neural network that aims to learn a rep-
resentation of the inputs that produces the least deformation. In general, this

76 M. I. Smahi et al.

representation (or code) must be compact and meaningful. In terms of architec-
ture, the auto-encoder is designed as a feed-forward non recurrent neural network
(see Fig. 1), where the size of the input layer is equal to the size of the output
layer (which is denoted as n). Additionally, the auto-encoder can have one or
more hidden layers, among which the central hidden layer, representing the code
of the inputs (its size is denoted as code size).

In terms of dynamics, the auto-encoder can be viewed as a composition of two
functions: the encoding function F1 (which produces the code) and the decoding
function F2 (which produces the reconstruction), where F1 : Dn

1 → Dcode size
2

and F2 : Dcode size
2 → Dn

1 .
The class of functions having Dn

1 as domain and Dcode size
2 as range is termed

A. The class of functions having Dcode size
2 as domain and Dn

1 as range is termed
B. Thus, the output will be : x′ = F2(F1(x)), and the code is z = F1(x).

If the auto-encoder contains only one hidden layer, then the encoding/de-
coding functions will be defined as: z = f(Wx + b) and x′ = f ′(W ′z + b′), such
that: f and f ′ are transfer functions which can be linear or non-linear (sigmoid,
for instance). W and W ′ are two matrices having the dimensions (code size, n)
and (n, code size) respectively. b and b′ represent the bias vectors of dimension
code size and n respectively.

The auto-encoder is called linear if the transfer functions are linear, otherwise
it is non-linear.

In terms of learning, the auto-encoder has to produce the closest reconstruc-
tions with respect to the inputs. To do so, it minimizes a dissimilarity function
(referred to as error). The latter dissimilarity may leverage either the Lp norm,
the Hamming distance, or another elementary function. Formally, the aim is to
find F1 ∈ A, F2 ∈ B such that:

error(F1, F2) =
m∑

t=1

Δ(F2(F1(xt)), xt) (1)

where: Δ : is the Lp norm, the Hamming distance or another dissimilarity func-
tion. Xt: is an example that belongs to the learning data set. m: is the size of
the data set.

x0

x1

...
xn

x̂0

x̂1

...
x̂n

...

Fig. 1. Auto-encoder architecture (with one hidden layer)

An Encoder-Decoder Architecture for the Prediction of Web Service QoS 77

It can be proven that, in case where the decoder is linear and the loss function
uses the sum of the squared Euclidean distances, then the linear auto-encoder
has the same performance as the non-linear auto-encoder [13] (which means that
they reach the same optimum).

If we assume that the auto-encoder is linear and contains a unique hidden
layer, and the delta function is the squared Euclidean distance, then the optimal
encoding matrix W and the optimal decoding matrix W ′ will be given as follows:

W = Σ−1
≤p,≤p.(U.,≤p)t and W ′ = (U.,≤p).Σ≤ p,≤ p (2)

where U and Σ are derived from the singular value decomposition [14] of the
input matrix X (i.e. X = UΣV t). Equation 2 means that we keep the p largest
singular values, where X is a real matrix of size (m,n), U is an orthonormal
matrix of size (m,m), V is an orthonormal matrix of size (n, n).

3 Proposed Approach

Figure 2 depicts the global architecture of the proposed approach. First, we
assume that the QoS data is collected from various sources such as social net-
works, third party monitoring systems, or direct feed-backs. The collected QoS
data set is viewed as a matrix that contains n services on columns and m users
on lines, each cell is modeled as a vector of r realizations of the corresponding
QoS criterion with respect to a given user and service. We assume that these
QoS realizations contain missing values which need to be predicted. To do so,
the QoS data set will undergo a set of steps which are described as follows:

– Firstly (Step 1) we cluster the lines of the initial matrix according to the
service location, more specifically we will perform a clustering based on the
service country property and another clustering based on the service provider
property. According to the works in [7,15] the services on the same country
are likely to have the same infrastructure and thus similar QoS. Each cluster
contains a set of lines that have the same service provider or the same country.

QoS Dataset Users Dataset Services Dataset

Users services
times matrices

Data Cluster-
ing (Step 1)

Countries Clusters Providers Clusters

Learning latent
factors (Step 2)

Predict missing
values (Step 3)

Fig. 2. Overview of the prediction system architecture

78 M. I. Smahi et al.

We noticed that the sparsity of the entire WS-DREAM data set [12] is 26%.
However the sparsity of USA’s cluster is 24%. In addition the sparsity of other
clusters is less than 20% (like Australia, Argentina and others). The aim of
this step is to reduce the sparsity of the input matrix. The more the matrix
is dense the better the results are. In summary this step will produce a set of
clusters that have the same property (either the provider ID or the country
ID). Each cluster is represented with a reduced matrix that has less columns
and lines with respect to the initial dataset.

– Secondly (Step 2) we perform the learning of latent factors of each reduced
matrix (or cluster) by leveraging an auto-encoder. During the auto-encoder
training, we also perform a cross validation in order to infer the best size of
the hidden layer (the number of latent factors), we assume that all the clusters
are trained with the same number of latent factors. This step will provide the
hidden layer size that ensures the best validation error (the lowest error).

– At last (Step 3), the learned auto-encoder produces the missing QoS values
and stores them in the initial data set.

Algorithm 1. Data clustering according to countries and providers
Input : P, C (Providers and Countries from dataset)
Output: Cluster Set P ,� Countries clusters Cluster Set C � Providers clusters

1 foreach id ∈ Providers(P) do
2 Cluster Pid = ∅
3 end
4 foreach id ∈ Countries(C) do
5 Cluster Cid = ∅
6 end
7 Cluster Set P =< Cluster P1, Cluster P2, . . . , Cluster P|P | >
8 Cluster Set C =< Cluster C1, Cluster C2, . . . , Cluster C|C| >
9 foreach servicei ∈ Dataset do

10 provider id = get provider(servicei)
11 country id = get country(servicei)
12 Cluster Pp id = Cluster Pp id ∪ {servicei}
13 Cluster Cc id = Cluster Cc id ∪ {servicei}
14 update(Cluster Set P, Cluster Pp id)
15 update(Cluster Set C, Cluster Cc id)

16 end

Algorithm 1 allows the clustering of the services according to the country
ID or the provider ID. In line 7 we initialize the set of clusters according to the
provider criterion, the same thing is done for the country criterion in line 8. In
line 9 up to 16, we update each cluster with its corresponding service.

Algorithm 2 learns the latent variables as well as their optimal size (denoted
code size�). In line 4, we explore six possibilities for the code size (20, 40, 60,
80, 100 and 120), the first possibility is initialized in line 1. Thereafter, we

An Encoder-Decoder Architecture for the Prediction of Web Service QoS 79

extract the current cluster Clusteri (line 7) and we learn the optimal encod-
ing/decoding matrices (in the next line). This learning function is explained
later (Algorithm 3). Afterward, we average the previous validation error over
the clusters number available clusters (line 11). In line 12 up to 16, we update
the minimal validation error as well as the optimal encoding/decoding matrices
(W ∗

11 up to W ∗
p2), additionally the optimal code size is also updated. In line 17,

we increment the code size and we repeat the same process for the other values.

Algorithm 2. Learning latent factors
Input : Cluster Set j � j ∈ {P, C}
Output: Best Configuration: errormin, code size�, best weights

1 code size = 20
2 cs max = 6
3 errormin = ∞
4 for code size value : 1 → cs max do
5 error = 0
6 for i : 1 → |Cluster Set j| do
7 Clusteri = getCluster(i, Cluster Set j)
8 << W �

i1, W
�
i2 >, eri >= AeCV (Clusteri, code size)

9 error = error + eri

10 end
11 error = error/ |Cluster Set j|
12 if error < errormin then
13 errormin = error
14 best weights =<< W �

11, W
�
12 >, < W �

21, W
�
22 >, . . . < W �

p1, W
�
p2 >>

15 code size� = code size

16 end
17 code size = code size + 20

18 end

Algorithm 3, Autoencoder Cross Validation (AeCV), infers the best encod-
ing/decoding matrices W �

i 1/W �
i 2 for a given Clusteri and predefined code size.

The learned auto-encoder (AE) leverages a linear transfer function in the
output layer and a sigmoid transfer function in the hidden layer. In line 7, we
divide the current Clusteri into eight parts. After that we perform eight learnings
by training each part as a validation set (line 10) and the remaining parts as a
training set (line 9). In line 10, we learn the optimal encoding/decoding matrices
W �

k i 1 and W �
k i 2 (they represent the best encoding/decoding matrices related

to clusteri and folderk), which are related to the kth part of the Clusteri. The
cost function represents the squared error between the auto-encoder output and
the desired value. In line 12, we compute the auto-encoder error performed on the
validation set. In line 13 and 19 we sum the validation errors related to all folders
and we take the mean. The statements 14 up to 17 retain the minimal validation
error (i.e. v errormin) and its corresponding encoding/decoding matrices (i.e.

80 M. I. Smahi et al.

Algorithm 3. Autoencoder cross validation (AeCV)
Inputs : Clusteri, code size
Outputs: < W �

i 1,W
�
i 2 >, mve

1 v errormin = ∞ � the best validation error
2 errk = ∞
3 k fold = 8
4 mve = 0
5 T = Clusteri � training set
6 V = ∅ � validation set
7 < folder1, ..., folderk fold >= division(Clusteri)
8 for k : 1 → k fold do
9 T = T − folderk

10 V = folderk

11 < W �
k i 1, W

�
k i 2 >= argmin

all possible matrices
Wk i 1,Wk i 2

√
1

|T |
|T |∑

m=1

(AEWk i 1,Wk i 1(Sm) − Sm)2

� Sm ∈ T

12 errk =
1

|V |
|V |∑

m=1

(AEW �
k i 1,W �

k i 1
(Sm) − Sm)2

13 mve = mve + errk

14 if (errk < v errormin) then
15 v errormin = errk

16 best weight =< W �
k i 1, W

�
k i 2 >

17 end

18 end
19 mve = mve/k fold

W �
k i 1,W

�
k i 2) also termed best weights. Finally, we return the best weight as

well as the mean validation error (mve).

4 Experimental Evaluation

We conducted an experimental evaluation of the performance of the proposed
approach. In this section, we will show both the prediction accuracy and the
impact of the technical parameters on the prediction quality.

4.1 Experimental Setup

To evaluate the proposed approach, we conducted experiments on a real-world
Web service QoS performance repository1 [12]. This data set contains series of
QoS data (for both response time and throughput) which are collected from
142 users (distributed over 57 countries). These users invoke 4500 web services
that are located all over the world. Each sequence of QoS data contains at most
1 WS-DREAM: http://www.wsdream.net.

http://www.wsdream.net

An Encoder-Decoder Architecture for the Prediction of Web Service QoS 81

64 values which are measured once after a time interval in a time slot. The
time slot takes 15 minutes and the duration of the time interval between two
consecutive time slots is 15 min. In summary we have 142 × 4500 × 64 QoS
records for each criterion (response time or throughput). These QoS records
contain missing or invalid information that are about 26%. Table 1 summarizes
the properties of our dataset. All the learning algorithms are implemented in
Tensorflow Python2. The experiments run on 3 different machines: i3-380M 3
GHz with 4 GB RAM, i5-4200U 1.6 GHz with 4 GB RAM and i7-3840QM 2.8
GHz with 16 GB RAM. In what follows, we present some important elements
that are primordial to understand the rest of the section:

Table 1. Information of web service QoS values

Statistics Response time Throughput time

Scale 0–20 s 0–20 kbps

Mean all values 3.165 s 9.608 kbps

Num. of users 142 142

Num. of web services 4500 4500

Num. all values 30 287 611 30 287 611

Num. missing values 10 609 313 10 609 313

– To evaluate the approach performance, we employ two metrics: Mean Abso-
lute Error (MAE) (formula 3) and Root Mean Square Error (RMSE) (for-
mula 4). Since we used the cross-validation, we focus on the average of MAE
(formula 5) and the average of RMSE (formula 6). The score of the last
formula (6) is used as the output of Algorithm 3.
The standard MAE is specified as follows:

MAEV =
1

|V |
∑

(u,s)∈V

∣∣∣Xu,s − X̂u,s

∣∣∣ (3)

where V represents the validation set. Xu,s represents the real QoS score for
service s given by user u, and X̂u,s the predicted one.
The standard RMSE is specified as follows:

RMSEV =

√√√√ 1
|V |

∑

(u,s)∈V

(
Xu,s − X̂u,s

)2

(4)

The average MAE is specified as follows:

AverageMAE =
1∣∣∣∣∣
⋃

allVh

∣∣∣∣∣

∑

allVh

(MAEVh
.|Vh|) (5)

2 Source code: https://github.com/imsld/Auto-encoder-QoS-Prediction.

https://github.com/imsld/Auto-encoder-QoS-Prediction

82 M. I. Smahi et al.

Where Vh represents a validation set. The average RMSE (which is also
denoted as mve in line 19 of Algorithm 3) is specified as follows:

AverageRMSE =
1∣∣∣∣∣
⋃

allVh

∣∣∣∣∣

∑

allVh

(RMSEVh
.|Vh|) (6)

– Before launching the clustering and the learning steps of the framework, we
prepare our data set in order to improve its density. Initially the data set
contains around 26% of invalid values. After the execution of the two following
rules, the percentage of invalid values becomes 23%.

• R1: For each Qosi,u,s,t of the data set, such as i ∈ {response time,
throughput}, u is the user ID, s is the service ID, and t is the time slot of
the QoS realization (t ∈ {1, . . . , 64}). If Qosi,u,s,t is invalid (missing or zero)
then we replace it by the average of the valid QoS values of the previous

time slots: Qosi,u,s,t =
1

(
∑
t∈T

valid(i, u, s, t))
(
∑
t∈T

Qosi,u,s,t.valid(i, u, s, t))

where

valid(i, u, s, t) =
{

1 if Qosi,u,s,t is available
0 if Qosi,u,s,t is missing

• R2: For each Qosi,u,s,t of the data set, if Qosi,u,s,t is invalid and all its
previous values (regarding time slots) are invalid, then Qosi,u,s,t = 0.

In what follows, we assume that this prepared data set is the official input of
the proposed approach.

– We assume that the learning phase of each cluster lasts for 5000 iterations
(at most). Additionally the learning will be stopped if the auto-encoder error
is less than 0.01.

– We perform the clustering step by grouping the services having the same
country ID (the clustering based on provider ID will be handled in future
works), we obtain 70 clusters which can involved up to 1404 services per
group. By doing so, we divide the initial matrix into several sub-matrices
that have the same number of lines (142) and different columns. The number
of columns corresponds to the size of the cluster. This step aims to reduce
the number of invalid entries, and thus it improves the prediction accuracy.

– Concerning the cross validation, we divide each cluster of the data set into
eight parts (k fold = 8). Each part consists of eight consecutive QoS data
(i.e. Part =

{
Qosiust, Qosius(t+1), . . . , Qosius(t+7)

}
. In addition, we examine

6 code size values: code size ∈ {20, 40, 60, 80, 100, 120}. This means that we
perform eight trainings for each code size. Thereafter we retain the code size
that provides the best validation error. We also notice that the density factor
(Ds) of this scheme is Ds = 80% (density of 80% means that 80% of the
entries data set are retained as training set, while the other 20% are used to
test the performance of our model for each code size).

An Encoder-Decoder Architecture for the Prediction of Web Service QoS 83

4.2 Research Questions

Our experiments aim to answer the following questions:

– Q1: Does the proposed approach provide a prediction accuracy better than
well-known state of the art methods? The compared methods are the follow-
ing:

• User-based CF using PCC (UPCC) [16]: this model is a user-based pre-
diction model.

• Item-based CF using PCC (IPCC) [17]: this model uses similar services
for the QoS prediction.

• WSRec [18,19]: an approach which combines both UPCC and IPCC
• AVG: this approach takes the mean of the three valid QoS data at the

most recent time slots.
• IPCC* [18]: a linear aggregation of IPCC and AVG (we take equitable

weights for both sub models).
• UPCC* [18]: a linear aggregation of UPCC and AVG (we take equitable

weights for both sub models).
• WSRec* [18]: a linear aggregation of WSRec and AVG (we take equitable

weights for both sub models).
• ARIMA [20]: this is a well-known statistical method adapted to QoS web

service prediction.
• Lasso-K20 [9]: this approach optimizes the recommendation problem by

adapting the lasso penalty function.
– Q2: What is the impact of the code size on the prediction accuracy?
– Q3: What is the impact of the code size on the sensitivity to over-fitting?

4.3 Results and Discussion

Table 2 presents the MAE and the RMSE of different prediction algorithms for
the response time. We assume that the density of the state of the art methods
is Ds = 80%.

From these results, we derive the following findings:

– According to the MAE metric, UPCC, IPCC, WSRec are less effective than
the remaining approaches since they do not use the past QoS data.

– The Lasso-K20 out-performs ARIMA, AVG, UPCC*, IPCC*, and WSRec*
in terms of MAE and RMSE. In addition it presents less variation of RMSE
when we change the data set [9]. However ARIMA and AVG approaches
show larger RMSE variations when we change the data set. We notice that,
the more the variation of the model error is low the better the generalization.

– The models auto-encoder-100 and auto-encoder-120 present the highest scores
for both MAE and RMSE. For instance, the auto-encoder-100 achieves about
57% improvements in MAE accuracy compared to ARIMA. Likewise it
achieves about 51% improvements in MAE accuracy compared to the Lasso-
K20 method.

84 M. I. Smahi et al.

Table 2. Accuracy comparison of prediction methods on Response Time

Approaches MAE RMSE

AVG 1.159 3.206

IPCC 1.467 3.032

IPCC* 1.242 2.753

UPCC 1.372 2.925

UPCC* 1.200 2.714

WSRec 1.372 2.925

WSRec* 1.200 2.716

ARIMA 1.028 2.986

Lasso-K20 0.893 2.572

Autoencoder-100 0.704 1.422

Autoencoder-120 0.681 1.369

To explain the impact of the code size (denoted as code size in Algorithm 2)
we show in Fig. 3 the variation of RMSE (the output of Algorithm 3) according
to the code size and the cluster size. It can be clearly seen that the code sizes
100 and 120 out-perform the remaining values for all clusters. Furthermore,
we observe that the performance of code size 100 is greater or equal than the
performance of code size 120 for almost all clusters with less than 100 services.
(These clusters represent the majority of services). Therefore, according to the
Occam’s razor principle [21], we should use a code size equal to 100 for test sets
with less than 100 services. In addition, when the test set size is larger than
100 we should use 120 as code size. Broadly speaking, we can say that a model
is prone to over-fitting if the prediction error highly changes when we change
the data set (this model is qualified as a high variance model). Consequently,
if we aim to confirm that our approach (i.e. the auto-encoder with 100 hidden
neurons) is less sensitive to over-fitting, we should compute the prediction error
(RMSE) on a new test set and derive the deviation between the validation error
and the new test set error. The larger the deviation is, the higher the over-fitting

Fig. 3. The RMSE variation for response time metric

An Encoder-Decoder Architecture for the Prediction of Web Service QoS 85

sensitivity we obtain. In Table 3 we show the mean validation error (also termed
the average RMSE) as well as the RMSE related to the entire data set (i.e. 142
× 4500 × 64 entries) for some code sizes. It is clearly shown in this table that
the code sizes 100 and 120 are the least sensitive to over-fitting, compared to
the other possibilities. We also notice that the code sizes 20, 40 are less sensitive
to over-fitting but they also suffer from under-fitting, since their corresponding
auto-encoders have a large average RMSE.

Table 3. Over-fitting sensitivity

Code size 20 40 60 80 100 120

Average RMSE 1.939 1.684 1.564 1,487 1.422 1.369

RMSE Dataset 2.818 2.521 2.337 2.211 2.116 2.040

Deviation (absolute difference) 0.879 0.837 0.773 0.724 0.694 0.671

4.4 Threats to Validity

The way we measured RMSE may be a threat to construct validity. To some
extent, the measurement is biased by the fact that the data set that we consid-
ered is the one that we have slightly modified (by changing some of the invalid
values), instead of the original one from WS-DREAM. But since there is only
3% of values which have been changed, we are quite confident that the impact
of this threat on the validity of the results is really marginal. We have started
another measurement of this metric, but this takes several weeks of training and
prediction. The preliminary results (on all clusters by using the auto-encoder
with a code size of 20) showed that RMSE is higher, but with only 0.01 (1.79
instead of 1.78).

A potential threat to internal validity concerns the extent to which we may
be confident with the conclusions, on sensitivity to over-fitting, which have been
made from variance in prediction error when data sets are changed. We could
have taken one code size and then measure the deviation on several test data sets.
The comparison we have made is between the average RMSE and the RMSE of
the whole data set. The evaluation on this single test data set may influence the
results. But the fact that this was made on several code sizes (20, 40, 60, 80, 100
and 120) mitigates this risk.

A threat to the external validity may be the generalization of the presented
results to other contexts, and more precisely to other data sets. The presence of
such a large data set (WS-DREAM) enabled us to train correctly our predictor.
The use of another data set may give lower accuracy. However, the use in our
prediction of an auto-encoder together with a cross-validation to identify the best
code size, helps in reducing the impact of using another data set on prediction
error.

86 M. I. Smahi et al.

5 Related Works

In this section, we present some related works based on Collaborative Filtering
algorithms that were proposed recently.

Many existing CF works are based on neighborhood methods. This kind of
methods leverages the most similar neighbors of a service/a user to predict the
missed QoS. However, this category mainly suffers from the data sparsity, small
coverage and cold start problems [19,22].

The work presented in [9] assumes that QoS values depend on service invo-
cation time. In order to make an accurate service recommendation, a time-aware
prediction approach is brought forth. Specifically, the authors make a zero-mean
Laplace prior distribution assumption on the residuals of the QoS prediction,
which corresponds to a Lasso regression problem. To reduce the search range
while improving the prediction accuracy; the approach uses the geo-localization
of web services to handle the sparse representation of temporal QoS values.

The system proposed in [23] uses the linear regression to predict unknown
QoS data from known QoS values. The work in [24] constructs a recommendation
system by inferring the satisfaction probability of the user with respect to a given
service. This inference is based on a Bayesian network.

To alleviate the limits of the neighborhood methods, the community has
designed another type of approaches which is based on matrix factorization. In
fact, this category reduces the sparsity of the invocation matrix by inferring
a low dimension model for both services and users [6,25]. In [7] the authors
propose three contributions for solving the recommendation problem. The first
one combines the matrix factorization with the QoS data provided by the user’s
neighbors. This data is derived from the user’s context (like, the latitude and the
longitude of geographical position, and the IT infrastructure). The second one,
combines the matrix factorization with the QoS data provided by the service’s
neighbors. This data is derived from the service context (such as the country,
the autonomous system), we also notice that the matrix factorization is solved
as an optimization problem with a regularization term. The third contribution
combines both the matrix factorization, the user’s context and the service con-
text. The experimental results show that the third approach is more effective
than the first two.

The work presented in [26], leverages both matrix factorization and service
clustering, first of all, the authors build a set of service clusters through the use
of context information (like the country and service provider) and the Pearson
Correlation Similarity. This hybridization is mainly motivated by the fact that
the services which belong to the same geographical region tend to have correlated
ratings or QoS data. Therefore the authors add a neighborhood based term to
the service latent model.

In [15], the authors develop an enhanced matrix factorization approach by
identifying the users’ or the web services’ neighborhoods. The users’ neighbors
are selected by measuring the network map distance between them. It is empiri-
cally proven that the users with smaller distances are likely to have more similar
QoS values on a common set of web services.

An Encoder-Decoder Architecture for the Prediction of Web Service QoS 87

In the field of cloud services, the system presented in [3], considers all the
software/hardware characteristics of the Cloud Computing architecture. The
authors propose a cloud service QoS prediction approach based on Bayesian
Networks. The entire process is divided into three steps: data collection and
pretreatment, Bayesian model training and prediction of QoS values.

Compared to these works, our approach refines clustering approaches based
on service neighborhood by considering a training step that uses a neural net-
work. Thanks to cross-validation, this network, an auto-encoder, is customized
with the code size (number of hidden layers) that minimizes the prediction error.
The ultimate goal of our work is to solve problems that are complementary to
those addressed by the previous works, like data sparsity and over-fitting.

6 Conclusion and Perspectives

We have presented an auto-encoder for predicting unknown QoS scores of Web
services based on their history. To achieve the best scores of accuracy, we lever-
aged the country ID for dividing the whole data set of QoS scores into clusters.
Thereafter we have learned the latent factors by using the auto-encoder neu-
ral network. In addition we have derived the best code size through the use of
cross validation. The comparison results between this prediction system and the
state-of-the-art systems, showed the effectiveness of the proposed model.

As future works, we aim to enhance the prediction accuracy by addressing two
particular points. First, we plan to develop other clustering alternatives (such as
Expectation-Maximization) on user or provider properties. Second, our project
is to develop more elaborated learning models such as stacked auto-encoders or
denoising auto-encoders.

References

1. Chen, S., Fan, Y., Tan, W., Zhang, J., Bai, B., Gao, Z.: Service recommendation
based on separated time-aware collaborative poisson factorization. J. Web Eng.
16(7–8), 595–618 (2017)

2. Yueshen, X., Yin, J., Li, Y.: A collaborative framework of web service recommen-
dation with clustering-extended matrix factorisation. Int. J. Web Grid Serv. 12(1),
1–25 (2016)

3. Zhang, P., Han, Q., Li, W., Leung, H., Song, W.: A novel QOS prediction approach
for cloud service based on Bayesian networks model. In: 2016 IEEE International
Conference on Mobile Services (MS), pp. 111–118 (2016)

4. Rong, W., Peng, B., Ouyang, Y., Liu, K., Xiong, Z.: Collaborative personal profiling
for web service ranking and recommendation. Inf. Syst. Front. 17(6), 1265–1282
(2015)

5. Yin, J., Yueshen, X.: Personalised QOS-based web service recommendation with
service neighbourhood-enhanced matrix factorisation. Int. J. Web Grid Serv. 11(1),
39–56 (2015)

6. Lo, W., Yin, J., Li, Y., Zhaohui, W.: Efficient web service QOS prediction using
local neighborhood matrix factorization. Eng. Appl. Artif. Intell. 38, 14–23 (2015)

88 M. I. Smahi et al.

7. Yueshen, X., Yin, J., Deng, S., Xiong, N.N., Huang, J.: Context-aware QOS predic-
tion for web service recommendation and selection. Expert Syst. Appl. 53, 75–86
(2016)

8. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

9. Wang, X., Zhu, J., Zheng, Z., Song, W., Shen, Y., Lyu, M.R.: A spatial-temporal
QOS prediction approach for time-aware web service recommendation. ACM Trans.
Web 10(1), 7:1–7:25 (2016)

10. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representa-
tions by error propagation. In: Rumelhart, D.E., McClelland, J.L., Corporate
PDP Research Group (eds.): Parallel distributed processing: explorations in the
microstructure of cognition, vol. 1, pp. 318–362 (1986)

11. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

12. Zhang, Y., Zheng, Z., Lyu, M.R.: WSPred: a time-aware personalized QOS predic-
tion framework for web services. In: Proceedings of the IEEE 22nd International
Symposium on Software Reliability Engineering (ISSRE 2011), pp. 210–219 (2011)

13. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denois-
ing autoencoders: learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

14. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions.
In: Bauer, F.L., Householder, A.S., Olver, F.W.J., Rutishauser, H., Samelson, K.,
Stiefel, E. (eds.) Handbook for Automatic Computation, pp. 134–151. Springer,
Heidelberg (1971) https://doi.org/10.1007/978-3-642-86940-2 10

15. Tang, M., Zheng, Z., Kang, G., Liu, J., Yang, Y., Zhang, T.: Collaborative web
service quality prediction via exploiting matrix factorization and network map.
IEEE Trans. Netw. Serv. Manage. 13(1), 126–137 (2016)

16. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence, pp. 43–52 (1998)

17. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295. ACM (2001)

18. Zheng, Z., Ma, H., Lyu, M.R., King, I.: WSRec: a collaborative filtering based web
service recommendation system. In: Web Services, 2009, ICWS 2009. IEEE Inter-
national Conference on Web Services (ICWS 2009), pp. 437–444. IEEE Computer
Society (2009)

19. Zheng, Z., Ma, H., Lyu, M., King, I.: QOS-aware web service recommendation by
collaborative filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)

20. Godse, M., Bellur, U., Sonar, R.: Automating QOS based service selection. In:
IEEE International Conference on Web Services (ICWS), pp. 534–541. IEEE (2010)

21. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Inf.
Process. Lett. 24(6), 377–380 (1987)

22. Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H.: Personalized QOS pre-
diction for web services via collaborative filtering. In: Proceedings of the IEEE
International Conference on Web Services (ICWS 2007), pp. 439–446 (2007)

23. Ma, Y., Wang, S., Hung, P.C.K., Hsu, C.H., Sun, Q., Yang, F.: A highly accurate
prediction algorithm for unknown web service QOS values. IEEE Trans. Serv.
Comput. 9(4), 511–523 (2016)

https://doi.org/10.1007/978-3-642-86940-2_10

An Encoder-Decoder Architecture for the Prediction of Web Service QoS 89

24. Kuang, L., Xia, Y., Mao, Y.: Personalized services recommendation based on
context-aware QOS prediction. In: Proceedings of the IEEE 19th International
Conference on Web Services (ICWS 2012), pp. 400–406. IEEE Computer Society
(2012)

25. Deng, S., Huang, L., Guandong, X.: Social network-based service recommendation
with trust enhancement. Expert Syst. Appl. 41(18), 8075–8084 (2014)

26. Chen, Z., Shen, L., Li, F.: Exploiting web service geographical neighborhood for
collaborative QOS prediction. Future Gener. Comput. Syst. 68, 248–259 (2017)

Trustworthy Detection and Arbitration
of SLA Violations in the Cloud

Christian Schubert, Michael Borkowski(B), and Stefan Schulte

Distributed Systems Group, TU Wien, Vienna, Austria
{c.schubert,m.borkowski,s.schulte}@infosys.tuwien.ac.at

Abstract. In cloud computing, detecting violations of Service Level
Agreements (SLAs) is possible by measuring certain metrics, which can
be done by both the provider and the consumer of a service. However,
both parties have contradicting interests with regards to these measure-
ments, which makes it difficult to reach consensus about whether SLA
violations have occurred.

Within this paper, we present a solution for measuring and arbitrating
SLA violations in a way that can be trusted by both parties. Further-
more, we show that this solution is not intrusive to the service and does
not incur a significant overhead system load, but nevertheless provides
high accuracy in detecting SLA violations.

1 Introduction

Cloud computing offers a significant increase in flexibility and scalability for
businesses offering their services to customers [2]. While cloud computing enables
features like elasticity and paradigms like Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS) [18], all of which
have proven to be highly effective tools in both industry and research [2], it also
features a high level of distribution. This means that software components and
services created and operated by various providers need to inter-operate with
each other. As software development moves towards adopting Service-Oriented
Architectures (SOA) [25], quality and reliability of individual services become
important aspects [11], and parallel to agreeing on the service provided and
consumed, Service Level Agreements (SLAs) are negotiated [30].

SLAs play a major role in cloud computing [8], and find application in grid
computing, SOA, or generic Web services [24]. SLAs, negotiated between the
provider and the consumer of a service, specify the relationship between those
two signing parties regarding functional and non-functional requirements, such
as availability, response time or data throughput. A key aim of SLAs is to pro-
tect the service consumers, as penalties can be defined for non-compliance with
agreed constrains. For instance, the consumer can be awarded with credits by
the provider upon detection of SLA violations [4].

SLA violations can be detected by real-time monitoring of the provided ser-
vices and their runtime environment [25]. While this allows the consumer to

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 90–104, 2018.
https://doi.org/10.1007/978-3-319-99819-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_7&domain=pdf

Trustworthy Detection and Arbitration of SLA Violations in the Cloud 91

detect SLA violations and benefit from penalty payments, the provider can use
monitoring to avoid resource over-provisioning and unnecessary cost [6,15].

However, a fundamental problem with SLA monitoring is that both signing
parties have contradicting interests with regards to the outcome. For instance,
the provider might want to conceal an increase in response time, while the con-
sumer is interested in revealing this violation to benefit from a penalty charge.
Therefore, the trust of both parties in the measurements, and the arbitration
whether an SLA violation has occurred, must be preserved to reach consensus.

In this paper, we provide a solution to ensure trustworthy measurement and
arbitration of metrics to detect SLA violations in the cloud. Our solution does not
significantly impact the service performance for either party. It allows to monitor
detailed application-level details instead of only generic system-level metrics. We
propose a hybrid approach, combining dedicated measurement software (agents)
with Aspect-Oriented Programming (AOP). Furthermore, we propose a Trusted
Third Party (TTP) component which uses Complex Event Processing (CEP) to
efficiently handle high-volume data and automatically transforms SLA require-
ments into CEP expressions to utilize the high scalability of CEP engines. The
presented approach does not require modifications to underlying software or
protocols.

In summary, this paper provides the following contributions:

– We present a solution for using a TTP component for reliable and transpar-
ent SLA arbitration. Our solution is a hybrid approach, using AOP as well
as agent-based monitoring, and is transparent for the service as well as its
consumer.

– We propose the usage of CEP, together with an automated SLA-to-CEP
mapping, to detect SLA violations in an effective and scalable manner.

– We provide a reference implementation of our solution, and valuate its accu-
racy and performance impact in a testbed.

The remainder of this paper is structured as follows: In Sect. 2, we provide
background later used in Sect. 3 to describe our approach. We then evaluate the
approach and its implementation in Sect. 4. In Sect. 5, we discuss related work.
Finally, we conclude and give an overview of future work in Sect. 6.

2 Background

SLAs, i.e., contracts between service providers and consumers [19], play a major
role in cloud computing [8], and are also found in the field of grid computing [19].
Conceptually, SLAs are applicable to any kind of service provided from one
stakeholder to another, where not only the functionality, but also non-functional
agreements must be negotiated. While we describe our approach in the context
of cloud services, the work presented in this paper is not limited to any specific
service paradigm.

The design of SLAs is usually tightly coupled with service selection, since
it is in the interest of the client to select the provider with the most favorable

92 C. Schubert et al.

SLAs while maintaining a moderate price, and at the same time, it is in the
interest of the provider to avoid defining overly strict SLAs. Several approaches
for SLA negotiation have been presented in literature [7,30]. Therefore, we do
not consider this negotiation phase. Instead, we assume that there is consensus
about the SLAs in effect between the two parties.

Furthermore, there is a gap between non-functional business requirements,
which are often high-level specifications, possibly provided by non-technical staff,
and low-level metrics, which can be directly monitored by software [10]. There
exist several approaches in present literature [28] for performing a mapping
between high-level specifications and low-level metrics. Again, we assume that
this mapping has already been performed, and that the automated measurement
of low-level metrics is sufficient to detect SLA violations.

There is a variety of concrete SLA metrics observed by various solutions.
We refer to the OASIS Open Standard for Web Services Quality Factors (WS-
Quality-Factors) [23], defining quality levels for Web services, e.g., business value
quality, service level measurement quality, manageability quality or security qual-
ity. The service level measurement quality comprises quantitative, dynamically
changing attributes which describe the Quality of Service (QoS) [20]. Conse-
quently, these attributes are highly suitable for real-time SLA monitoring. These
metrics are generally in line with metrics found in other literature [1,12]. Both
metrics experienced by the client as well as metrics observable on the server
are of interest. In detail, we monitor the response time, throughput, availability,
successability, CPU and memory usage of cloud services, since these metrics are
applied in many different cloud solutions in research and practice [17,21].

3 Trustworthy SLA Monitoring

As discussed in the previous sections, we aim to monitor and arbitrate SLAs in
a way that does not require the two signing parties (provider and consumer of a
service) to trust each other. In this section, we discuss the overall architecture
as well as the individual components of our approach.

3.1 Architecture Overview

We present the architecture of our solution in Fig. 1. The service provider is
responsible for providing a certain service to the service consumer running a
client to access the service. To simplify the figure, we depict only the com-
munication path between the service provider and one consumer. However, the
service is not restricted to only one consumer. We use a common message bro-
ker to exchange information between all components in a unified and scalable
way. We employ AOP advices on both sides, i.e., pieces of code injected into the
application, responsible for detecting service requests and responses and trans-
parently monitoring application-level metrics. Furthermore, an agent is used on
the provider side to monitor system-level metrics. Finally, the TTP component
is provided by an entity not associated with the signing parties, i.e., a neutral

Trustworthy Detection and Arbitration of SLA Violations in the Cloud 93

Service Consumer

Client

AOP Advices

Service Provider

Service

AOP Advices
Agent

Neutral Party

TTP Component

Communication Monitoring

Fig. 1. Architecture overview of the proposed approach

party having no stake in the service and its SLAs. We do not define the process
of determining such an entity, but assume that there is consensus between the
two signing parties about the usage of a neutral party as a mediator.

Therefore, our solution consists of three main components, in addition to
the pre-existing service and client: The agent, the AOP advices, and the TTP
component. We describe these components in the following sections.

3.2 Agent

The agent is a stand-alone application hosted by the provider, and is independent
of cloud services and other applications. It is responsible for the monitoring
of metrics which are either impossible or not feasible to measure from within
AOP advices, such as CPU or memory utilization during the execution. We
also allow to extend the agent in a modular way by so-called probes. Probes
act like additional monitoring services, running independently of the agent, but
reporting to it. Such probes can be used to measure values from proprietary data
sources, or to use other software already deployed. The interaction between the
monitored services, the probes, the agent and the TTP is shown in Fig. 2.

Agent

Service Monitor
1..n

Probe Server

Aggregator

Service
1..n

Probe
1..m

collects

collects

monitors

sends to

monitors to TTP

Fig. 2. Architecture of the agent component

The Agent uses Java bindings of the Sigar library1 to retrieve CPU and
memory metrics. Internally, it manages a list of Process Identifiers (PIDs) and
1 Sigar is a software library to access native operation system and hardware activity

information; cf. https://github.com/hyperic/sigar.

https://github.com/hyperic/sigar

94 C. Schubert et al.

monitors their resource usage using Sigar. Furthermore, the agent keeps track of
the tree of sub-processes possibly started by the monitored process. In contrast
to other work [16], where a list is passed between processes and their children,
we obtain the process tree by traversing the system process list, since this does
not require changes in application code. Since our agent is aware of the SLA, it
only monitors applications requiring the observation of CPU or memory usage,
which reduces unnecessary overhead.

Note that it is not the agent’s responsibility to interpret data or arbitrate SLA
violations. It merely forwards the measurements to the TTP using the message
broker. The messages consist of a timestamp, an identifier for the agent and the
monitored application, a metric descriptor, and the measured value itself, and is
signed using an SHA-256 Keyed-Hash Message Authentication Code (HMAC).

In order to prevent permanent network load and reduce the relative amount
of overhead, we consolidate measurements into a queue. At an interval of 5 s,
the agent sends the contents of the queue to the message broker. Furthermore,
we do not send messages where the measured values diverge less than a certain
level from the last transferred value. This is especially useful for processes having
long periods of zero or near-zero CPU usage and reduces network traffic as well
as computational load of both the agent and the TTP. In our experiments, we
have found a threshold of 1% to be sufficient to avoid most of the unnecessary
network load. This filtering and aggregation of messages is done in the Aggregator
sub-component depicted in Fig. 2.

3.3 AOP Advices

In addition to the agent component, we use AOP advices on both the service
and the client. AOP advices consist of code injected (weaved) into an applica-
tion, which is executed at well-defined points in the code (pointcuts) and allows
to transparently monitor software without modifying its source code, while still
gaining measurements which would not be possible by the means of agent-based
monitoring alone. As shown in Fig. 3, the AOP advices use pointcuts around the
request procedures on both sides. Whenever a client is about to send a request
to the service, the pointcut triggers the advice, which records the timestamp
and request. Similarly, at the service side, whenever a request is received and
the handling method is about to be called, the pointcut triggers and the service
advice records the timestamp. After the execution of the service, this proce-
dure is repeated for the response in reversed order. The response also contains
information about the success or failure of the service, which is recorded by
the advices. Finally, all advices independently report their measurements to the
TTP component, which then matches the reported measurements, checks them
for reasonability and decides whether an SLA violation has occurred.

The AOP advices only differ slightly for the provider and consumer sides.
Advices on the consumer side must communicate with the message broker
directly, while advices on the provider side are executed on the same machine as
the agent, and can therefore report to this agent using local communication.

Trustworthy Detection and Arbitration of SLA Violations in the Cloud 95

Client

Advice

Advice

Pointcut
Send

Receive
Pointcut

Service

Advice

Advice

Business
Logic

Receive
Pointcut

Pointcut
Send

Request

Response

Fig. 3. Operation of AOP advices within Service and Client

3.4 TTP Component

The TTP component is the main unit responsible for detection and arbitration
of SLA violations, and is hosted by a neutral party. Architecturally, the TTP
component consists of the components shown in Fig. 4. Messages from agents
and clients are received from the message broker using the message receiver
component. They are fed into the CEP engine as events. In our implementation,
we use the Esper2 engine, which is used to process these events in an efficient and
scalable way. For large-scale systems, this allows for easier outsourcing of this
workload onto a distributed CEP system on its own [5]. In our implementation,
we use the WSLA standard [12] to define SLAs. The negotiated SLA is read
by the WSLA reader component. We then map this WSLA instance to CEP
expressions in the SLA-to-CEP mapper. These CEP expressions are then fed
to the CEP engine, which, together with the events from the message receiver,
detects violations.

TTP Component

WSLA

WSLA Reader

WLSA Instance

SLA-to-CEP
Mapper

Expressions

Agents / Clients

Message Receiver

Events

CEP Engine Violations

Violation Retrieval

Retrieval
Endpoint

Query

Database

Fig. 4. Architecture of the TTP Component

We distinguish between simple SLA requirements, i.e., a direct mapping of
SLA parameters to measured values, and complex SLA requirements, composed
2 Esper is an open source event processing and correlation solution;

cf. http://www.espertech.com/products/esper.php.

http://www.espertech.com/products/esper.php

96 C. Schubert et al.

Listing 1.1. Extract of an Exemplary SLA Requirement

1 <Obligations>
2 <ServiceLevelObjective name="AverageResponseTimeSLO">
3 <Obliged>ServiceProvider</Obliged>
4 <Validity>
5 <Start>
6 2017-01-01T14:00:00.000-05:00
7 </Start>
8 <End>
9 2018-01-01T14:00:00.000-05:00

10 </End>
11 </Validity>
12 <Expression>
13 <Predicate xsi:type="LessEqual">
14 <SLAParameter>
15 AverageResponseTime
16 </SLAParameter>
17 <Value>2500</Value>
18 </Predicate>
19 </Expression>
20 <QualifiedAction>...</QualifiedAction>
21 </ServiceLevelObjective>
22 ...
23 </Obligations>

Listing 1.2. EPL Statement Generated by Mapper

1 SELECT AVG(responseTime) AS monitoredvalue,
2 'responseTime' AS metrictype,
3 'avg<=2500.0' AS requirementdesc, *
4 FROM ClientInfoMessage(responseTime >= 0)
5 GROUP BY serviceName
6 HAVING AVG(responseTime) > 2500.0 AND COUNT(*) >= MIN_QUANTITY

from several metrics, possibly applying additional aggregation functions. An
example of a simple SLA requirement is “response time lower than 5 s”. In con-
trast,“average response time lower than 5 s” is a complex SLA requirement.
The WSLA language defines certain aggregation functions. Our implementation
directly translates Average, Median, Sum and Max to equivalent expressions in
the Event Processing Language (EPL) used by Esper.

As an example, an SLA requirement is shown in Listing 1.1, where the average
response time is constrained to 2,500 ms. From this, the mapper creates the EPL
expression shown in Listing 1.2. Note that certain sanity checks are already com-
piled into EPL expressions. For instance, the requirement responseTime >= 0
filters out negative response durations.

Violations detected by the CEP engine, together with the proof, i.e., the
involved events, are then persisted in a database, which enables accountability
and traceability. Finally, the retrieval endpoint can be used to read violations
and their information from the database.

4 Evaluation

In our evaluation scenario, a user can request image manipulation (resizing,
rotating and flipping) of JPG, PNG and GIF images using a REST interface.
The image manipulation service is cloud-based, and the user and provider of the

Trustworthy Detection and Arbitration of SLA Violations in the Cloud 97

service have agreed on a WSLA. We use this scenario for our evaluation since
image manipulation requires a given computational complexity and is therefore a
good placeholder for other possible cloud-based service tasks. For the evaluation
experiments, the testbed environment, including the client, is controlled to allow
automated repeated experiments with given parameters.

We present the testbed environment together with the image manipulation
functionality in this section.

4.1 Testbed Environment

In our testbed, the configuration is provided as a pre-defined WSLA, and the
detected violations are output as CSV logs in order to process the experiment
results. In our experiment, the neutral party also fulfills the role of the component
orchestrating the experiments, i.e., it is responsible for configuring both the
provider and the consumer of the service while initiating the experiment.

The image manipulation service provided by the provider is capable of resiz-
ing, rotating and flipping JPG, PNG and GIF images using a REST interface.
We use this service since this operation represents a given, well-defined compu-
tational complexity, and can therefore represent other computational workloads.
We deploy the service on an Amazon Web Services (AWS) Elastic Compute
Cloud (EC2) instance. EC2 is an IaaS service, which means that we are in con-
trol of the operating system and software. Note that since our approach does
not require operating system-level operations on the client side, it can also be
implemented using an PaaS or SaaS instance for the image service, where the
latter requires that AOP advices are supported by the SaaS provider.

We use four image sizes in our experiments: small (640 × 426, 90 kB),
medium (1280 × 898, 239 kB), large (1920 × 1280, 692 kB) and huge (4896 ×
3264, 2,400 kB). Table 1 shows the employed infrastructure configuration.

Table 1. Testbed environment infrastructure configuration

Instance OS CPU (Core Count) RAM

Provider Ubuntu 16.04 Intel Xeon E5, 2.4 Ghz (1) 1 GB

Consumer Windows 10 Intel Core i5, 3.4 GHz (4) 8 GB

TTP Ubuntu 16.04 Intel Xeon E5, 2.4 Ghz (1) 1 GB

Figure 5 shows an example of an experiment execution by displaying the
measured service response time in a series of 500 executions, demonstrating the
general functionality of our testbed. We performed the experiment successfully
for all metrics, and only show the response time results due to space constraints.
The maximum response time is defined as 1,000 ms, and the observed average
execution time is slightly higher than 200 ms. We injected deliberate delays of
a random duration between 1,000 and 1,100 ms, all 12 of which were detected.

98 C. Schubert et al.

0 50 100 150 200 250 300 350 400 450 500

500

1,000

1,500

2,000

Request No.

R
es
po

ns
e
T
im

e
[m

s]

Response Time
Threshold
Detected Violations

Fig. 5. Example of an experiment execution

For the following experiments, we used 600 experiment runs. Preliminary
testing has shown that the system needs a certain amount of time to settle, i.e.,
to create reproducible results. This is most likely due to effects like the Java
VM start-up and initial memory allocation. In order to avoid biasing our results
with these implementation-dependent artifacts, in our statistical tests, we do not
include all observations, but skip a fixed number of observations at the beginning
of the experiment (7 for the experiments shown).

4.2 Accuracy: CPU and Memory Usage

We verify the accuracy of our measured CPU and memory usage. We perform
t-tests (with a significance level of α = 0.05) to verify significant equality of the
baseline (see below) and results for the approaches presented in the work at hand.
For both tests, the null hypothesis H0 states equal means of both measurements
(baseline and our result), while the alternative hypothesis H1 states significant
deviation between the data sets.

We use the Linux top tool in batch mode as a baseline. This tool displays
CPU and memory-related information of running processes, which we log and
compare to the measurements of our solution. We first measure the CPU usage
using an interval of 1,000 ms, since this is the lowest resolution reliably supported
by the baseline. We use a batch of 2,000 image resizing requests to create contin-
uous load on our system. Figure 6 shows the overlay of the baseline measurement
and the measurement provided by our solution. We also perform a paired t-test
for 593 observations, with means of 9.177 and 9.156, and variances of 76.548 and
75.823. The results of the t-test supports our H0 (p value 0.885 < 1.964).

From the same datasets, we verify our memory usage measurement. The
results are shown in Fig. 7. A paired t-test for 593 observations, with means of
17.162 and 17.161, and variances of 1.484 and 1.485, results again in the support
of H0 (p value 0.693 < 1.964).

4.3 Successability

For verifying the successability, we inject failures into the service and observe
the monitoring outcome. We use a likelihood of 3% of a failure injection, and

Trustworthy Detection and Arbitration of SLA Violations in the Cloud 99

0 50 100 150 200 250 300 350 400 450 500 550
0

20

40

60

80

100

Time [sec]

C
P
U

U
sa
ge

[%
]

Agent Measurement
top (Baseline)

Fig. 6. CPU Usage: Baseline (Red) and Measurement (Blue) (Color figure online)

0 50 100 150 200 250 300 350 400 450 500 550
0

10

20

30

Time [sec]

M
em

or
y
U
sa
ge

[%
] Agent Measurement

top (Baseline)

Fig. 7. Memory Usage: Baseline (Red) and Measurement (Blue) (Color figure online)

use 500 successive requests in this experiment. Figure 8 gives an overview of this
experiment. The requests, together with their response times (shown on the left
axis) are shown in red or green, depending on the outcome. The successabil-
ity (shown on the right axis) is shown in blue. The effect of each failed request
on the successability value can be observed. Also, the successability converges
to a value of roughly 97%, corresponding to the 3% failure injection likelihood.

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1,000

Request No.

R
es
po

ns
e
T
im

e
[m

s]

Response (Success)
Response (Fail)
Successability

92

94

96

98

100

Su
cc
es
sa
bi
lt
y
[%

]

Fig. 8. Successability experiment (Color figure online)

100 C. Schubert et al.

Note that if the first few invocations happen to fail, the measured successabil-
ity fluctuates subsequently due to the low number of measurements, and possibly
incorrect SLA violation are reported. For instance, after around 30 observations,
we measure a successability value of 95%, even though the actual baseline value
is 97%. We conclude from this experiment that in practice, a lower bound should
be set for the total number of observations. We therefore suggest the inclusion
of an additional condition to the SLA to restrict the total observation number.

4.4 Performance Impact

Another key aspect, apart from measurement accuracy, is the impact of our
monitoring solution on the performance of the service itself. We therefore perform
experiments to measure the difference in response time experienced on the client,
both with and without our monitoring approach enabled.

When performing the traditional t-tests used in the previous experiments, we
encounter the problem that the network between our instances has a significant
impact on the response time, seemingly much higher than the monitoring itself.
This is indicated by the fact that the executed t-test yield varying results, even
for experiment runs with the same configuration, and are therefore inconclusive.

For this experiment, we therefore use a purely local setup with all instances
running on a single machine. We use a batch of 1,000 requests per image size and
record response times. These results conclusively show that the impact of our
monitoring on the response time is negligible. An overview is shown in Table 2.
We see that the impact of our solution is well within the standard deviation σ,
and never exceeds 3%.

Table 2. Comparison of response times in ms (σ in Brackets)

Workload With Monitoring Without Monitoring

Small 27.054 (4.375) 26.524 (3.524)

Medium 53.537 (18.943) 53.383 (17.664)

Big 97.540 (32.987) 95.732 (25.026)

Huge 483.707 (36.481) 482.326 (36.443)

4.5 Maintaining Trustworthiness

Trust into the SLA arbitration approach of both signing parties is crucial in
situations where signing parties have contradicting interests. We consider how
to maintain trustworthiness on three levels:

Trust in Measurement: The first element of trust is built on the aspect of
the accuracy of the measurements. Our solution employs the software archi-
tecture described above, which provides reliable and accurate measurements

Trustworthy Detection and Arbitration of SLA Violations in the Cloud 101

according to the experiments shown in Sects. 4.1 through 4.4. Ensuring that
no measurement is knowingly manipulated on-site can be achieved by using
open-source software together with code signing (e.g., by the neutral party
hosting the TTP component).

Trust in Communication: Messages exchanged between the components pose
potential for deliberate or accidental manipulation. We use ActiveMQ, a well-
established open-source broker [27]. In order to further strengthen the trust,
we use HMACs to sign our measurement messages, which can be verified by
the TTP.

Trust in Arbitration: Finally, both parties must trust the TTP to perform
a neutral and fair arbitration. While this trust can be increased again by
making the TTP software open-source and by using code signing, in our
current implementation, we ultimately rely on the neutrality of the entity
hosting the TTP.

5 Related Work

The topic of SLAs has been discussed extensively in existing work. We there-
fore provide a short overview of the most relevant literature, some of which
presents concepts we have adapted in our solution, and conclude by discussing
the differences between our work and the two approaches which come closest. We
generally classify approaches by their measurement technique, and distinguish
between agent-based, middleware-based, and AOP-based monitoring techniques.

A large body of work is found for the mapping of high-level SLA objectives
to low-level system metrics. [16] provides an exhaustive overview of this topic,
without focusing on the detection of SLA violations, and only takes into account
provider-side metrics. Similarly, [22] proposes such a mapping, also taking into
account SLA violation detection. The authors evaluate their work in private and
public clouds. Again, they do not take into account measurements performed on
the client side. Both of these solutions use agent-based monitoring. [13] extends
this by using CEP for the detection of SLA violations, a concept we have adopted
for our approach.

Instead of using agents, [26] uses a middleware on both sides of the connec-
tion. While this enables monitoring of client-side metrics, the authors do not
discuss how to use these metrics to verify plausibility, leading to trust increase
on both sides, like the checks for reasonable measurements performed by our
TTP component. Also, their approach does not provide transparency (non-
intrusiveness) to the client and service software. This transparency is provided,
however, by works like [29], which provides agent-based monitoring on multiple
levels, is extensible and uses a rule language. The authors evaluate their approach
using public and private clouds and prove its scalability. [9] also uses agents for
measurement, but focuses on predicting SLA violations in the cloud before they
happen. [17] uses AOP instead of agents, and also provides transparency.

All of the mentioned approaches, however, do not take into account the trust-
worthiness of the resulting measurements. Adding a neutral party has been dis-
cussed by two approaches which, to the best of our knowledge, come closest to

102 C. Schubert et al.

our solution. [3] suggests a third party similar to our TTP component. How-
ever, neither an implementation nor an evaluation is presented. Their solution
is using a monitoring agent and is not transparent to the existing code. Fur-
thermore, the solution is limited to the monitoring of communication data, and
system resources are not taken into account. [14] also proposes an entity similar
to our TTP component, but merely discusses a conceptual framework without
providing an implementation or evaluation. Also, this approach is purely agent-
based and as such, not transparent to existing code.

6 Conclusion and Future Work

In this paper, we have presented a solution allowing the provider and the con-
sumer of a cloud service to detect violations of defined SLAs, and to allow mutual
agreement on the outcome of this detection, without any of the two parties hav-
ing to trust the other. For this, we have proposed the usage of a neutral third
party, which is in charge of the collection of measured values, and the subsequent
arbitration of SLA fulfillment.

The neutral third party is hosting the TTP component, which uses a hybrid
of agent-based, as well as AOP-based data collection. The TTP component uses
CEP to maintain scalability by evaluating the SLA fulfillment using CEP expres-
sions automatically generated from the SLA requirements. Using experiments
run in a testbed environment, we have shown that this solution does not only
provide accurate measurements, but also does not significantly impact the perfor-
mance of the service. We have also provided a discussion about various additional
aspects of maintaining trust in such a multi-stakeholder scenario.

We currently assume the two parties to trust the neutral third party. In
our future work, we plan an extension to our approach using signatures in the
verdict of the TTP component, which, coupled with code signing, could remote
this requirement and allow for completely trust-less operation. Instead of using
a centralized third party, we are currently also observing the possibility of using
decentralized consensus, e.g., a blockchain, to increase trust.

Acknowledgment. This work is partially funded by COMET K1, FFG – Austrian
Research Promotion Agency, within the Austrian Center for Digital Production.

References

1. Ameller, D., Franch, X.: Service Level Agreement Monitor (SALMon). In: 7th
International Conference on Composition-Based Software Systems (ICCBSS), pp.
224–227. IEEE (2008)

2. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

3. Balfagih, Z., Hassan, M.F.B.: Agent based monitoring framework for SOA appli-
cations quality. In: International Symposium on Information Technology (ITSim),
vol. 3, pp. 1124–1129. IEEE (2010)

Trustworthy Detection and Arbitration of SLA Violations in the Cloud 103

4. Baset, S.A.: Cloud SLAs: present and future. ACM SIGOPS Oper. Syst. Rev.
46(2), 57–66 (2012)

5. Borkowski, M., Fdhila, W., Nardelli, M., Rinderle-Ma, S., Schulte, S.: Event-based
failure prediction in distributed business processes. In: Information Systems (2018)

6. Borkowski, M., Hochreiner, C., Schulte, S.: Moderated resource elasticity for stream
processing applications. In: Heras, D.B., Bougé, L. (eds.) Euro-Par 2017. LNCS,
vol. 10659, pp. 5–16. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75178-8 1

7. Brandic, I., Music, D., Leitner, P., Dustdar, S.: VieSLAF framework: enabling
adaptive and versatile SLA-management. In: Altmann, J., Buyya, R., Rana, O.F.
(eds.) GECON 2009. LNCS, vol. 5745, pp. 60–73. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03864-8 5

8. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

9. Emeakaroha, V.C., Ferreto, T.C., Netto, M.A.S., Brandic, I., Rose, C.A.F.D.:
CASViD: application level monitoring for SLA violation detection in clouds. In:
IEEE 36th Annual Computer Software and Applications Conference (COMPSAC),
pp. 499–508. IEEE (2012)

10. Emeakaroha, V.C., Brandic, I., Maurer, M., Dustdar, S.: Low level metrics to
high level SLAs-LoM2HiS framework: Bridging the gap between monitored metrics
and SLA parameters in cloud environments. In: International Conference on High
Performance Computing and Simulation (HPCS), pp. 48–54. IEEE (2010)

11. Islam, S., Lee, K., Fekete, A., Liu, A.: How a consumer can measure elasticity
for cloud platforms. In: 3rd ACM/SPEC International Conference on Performance
Engineering, pp. 85–96. ACM (2012)

12. Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service
level agreements for web services. J. Netw. Syst. Manag. 11(1), 57–81 (2003)

13. Leitner, P., Inzinger, C., Hummer, W., Satzger, B., Dustdar, S.: Application-level
performance monitoring of cloud services based on the complex event processing
paradigm. In: International Conference on Service-Oriented Computing and Appli-
cations (SOCA), pp. 1–8. IEEE (2012)

14. Maarouf, A., Marzouk, A., Haqiq, A.: Towards a trusted third party based on
multi-agent systems for automatic control of the quality of service contract in
the cloud computing. In: International Conference on Electrical and Information
Technologies, pp. 311–315. IEEE (2015)

15. Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application dead-
lines in cloud workflows. In: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. Article number 49. ACM (2011)

16. Mastelic, T., Emeakaroha, V.C., Maurer, M., Brandic, I.: M4Cloud - generic appli-
cation level monitoring for resource-shared cloud environments. In: International
Conference on Cloud Computing and Services Science (CLOSER), pp. 522–532.
Springer (2012)

17. Mdhaffar, A., Halima, R.B., Juhnke, E., Jmaiel, M., Freisleben, B.: AOP4CSM:
an aspect-oriented programming approach for cloud service monitoring. In: IEEE
11th International Conference on Computer and Information Technology (ICCIT),
pp. 363–370. IEEE (2011)

18. Mell, P., Grance, T.: The NIST definition of cloud computing recommendations
of the national institute of standards and technology. In: National Institute of
Standards and Technology, Information Technology Laboratory 145 (2011)

https://doi.org/10.1007/978-3-319-75178-8_1
https://doi.org/10.1007/978-3-319-75178-8_1
https://doi.org/10.1007/978-3-642-03864-8_5

104 C. Schubert et al.

19. Menascé, D.A., Casalicchio, E.: QoS in grid computing. IEEE Internet Comput.
8(4), 85–87 (2004)

20. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Comprehensive QoS mon-
itoring of web services and event-based SLA violation detection. In: 4th Interna-
tional Workshop on Middleware for Service Oriented Computing, pp. 1–6. ACM
(2009)

21. Mirobi, G.J., Arockiam, L.: Service level agreement in cloud computing: an
overview. In: International Conference on Control, Instrumentation, Communi-
cation and Computational Technologies (ICCICCT), pp. 753–758 (2015)

22. Moustafa, S., Elgazzar, K., Martin, P., Elsayed, M.: SLAM: SLA monitoring frame-
work for federated cloud services. In: International Conference on Utility and Cloud
Computing (UCC), pp. 506–511. IEEE/ACM (2015)

23. OASIS Open. Web Services Quality Factors Version 1.0. Candidate OA- SIS Stan-
dard 01 (2012). http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/WS-
Quality-Factors-v1.0.html

24. Repp, N., Eckert, J., Schulte, S., Niemann, M., Berbner, R., Steinmetz, R.: Towards
automated monitoring and alignment of service-based workflows. In: IEEE Inter-
national Conference on Digital Ecosystems and Technologies (DEST), pp. 235–240.
IEEE Computer Society, Washington, DC (2008)

25. Rosen, M., Lublinsky, B., Smith, K.T., Balcer, M.J.: Applied SOA: service-oriented
architecture and design strategies. Wiley (2012)

26. Al-Shammari, S., Al-Yasiri, A.: MonSLAR: a middleware for monitoring SLA for
RESTFUL services in cloud computing. In: IEEE International Symposium on the
Maintenance and Evolution of Service-Oriented and Cloud-Based Environments
(MESOCA), pp. 46–50. IEEE (2015)

27. Souto, E., Guimarães, G., Vasconcelos, G., Vieira, M., Rosa, N., Ferraz, C.: A
message-oriented middleware for sensor networks. In: Workshop on Middleware
for Pervasive and Ad-Hoc Computing, pp. 127–134. ACM (2004)

28. Theilmann, W., Yahyapour, R., Butler, J.: Multi-level SLA management for
service-oriented infrastructures. In: Mähönen, P., Pohl, K., Priol, T. (eds.) Service-
Wave 2008. LNCS, vol. 5377, pp. 324–335. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89897-9 28

29. Trihinas, D., Pallis, G., Dikaiakos, M.D.: JCatascopia: monitoring elastically adap-
tive applications in the cloud. In: 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pp. 226–235. IEEE/ACM (2014)

30. Wu, L., Garg, S.K., Buyya, R., Chen, C., Versteeg, S.: Automated SLA negotiation
framework for cloud computing. In: 13th IEEE/ACMInternational Symposium on
Cluster, Cloud, and Grid Computing, pp. 235–244. IEEE/ACM, May 2013

http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/WS-Quality-Factors-v1.0.html
http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/WS-Quality-Factors-v1.0.html
https://doi.org/10.1007/978-3-540-89897-9_28
https://doi.org/10.1007/978-3-540-89897-9_28

Distributed Complex Event Processing
in Multiclouds

Vassilis Stefanidis(&), Yiannis Verginadis(&),
Ioannis Patiniotakis(&), and Gregoris Mentzas(&)

Institute of Communications and Computer Systems,
National Technical University of Athens, Zografou, Greece

{stefanidis,jverg,ipatini,gmentzas}@mail.ntua.gr

Abstract. The last few years, the generation of vast amounts of heterogeneous
data with different velocity and veracity and the requirement to process them,
has significantly challenged the computational capacity and efficiency of the
modern infrastructural resources. The propagation of Big Data among different
processing and storage architectures, has amplified the need for adequate and
cost-efficient infrastructures to host them. An overabundance of cloud service
offerings is currently available and is being rapidly adopted by small and
medium enterprises based on its many benefits to traditional computing models.
However, at the same time the Big Data computing requirements pose new
research challenges that question the adoption of single cloud provider resour-
ces. Nowadays, we discuss the emerging data-intensive applications that
necessitate the wide adoption of multicloud deployment models, in order to use
all the advantages of cloud computing. A key tool for managing such multicloud
applications and guarantying their quality of service, even in extreme scenarios
of workload fluctuations, are adequate distributed monitoring mechanisms. In
this work, we discuss a distributed complex event processing architecture that
follows automatically the big data application deployment in order to efficiently
monitor its health status and detect reconfiguration opportunities. This proposal
is examined against an illustrative scenario and is preliminary evaluated for
revealing its performance results.

Keywords: Distributed CEP � Cloud monitoring � Multiclouds
Big data

1 Introduction

Nowadays, we witness a constant increase of the connected devices and services that
continuously produce data and transmit health status events. The generation of vast
amounts of heterogeneous data and their propagation among different processing and
storage architectures, has amplified the need for adequate and cost-efficient infras-
tructures to host them. The recent uptake of Cloud computing adoption could be
considered as a remedy to this situation where the growing needs of the so-called Big-
Data applications, are met by the vastly improving offerings of the cloud providers [1].
Such applications require to efficiently deal with the volume, variety, velocity, and
veracity of the data, using any resources available in a cost-effective and efficient way.

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 105–119, 2018.
https://doi.org/10.1007/978-3-319-99819-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_8&domain=pdf

In recent years, Big-Data applications have been developed and used successfully over
cloud infrastructures [2]. Such an adoption of the Cloud computing, theoretically
satisfies unlimited hosting requirements, for storing and processing Big Data, in a
reliable, fault-tolerant and scalable way. Cloud’s ability comprises resources virtual-
ization that requires minimum interaction with cloud service providers and enables
users to access terabytes of storage, high processing power and high availability in a
pay-as-you-go model [3]. As more enterprises started to trust the Cloud computing
paradigm, they started outsourcing their workload to infrastructures, offered by single
cloud providers. This led to vendor lock-in situations that didn’t allow the use of the
most optimal infrastructure (with respect to the processing location, efficiency, cost
etc.) per each case and at each given time. Thus, the recent availability of a variety of
public IaaS providers (e.g. Amazon, Google, HP, IBM, RackSpace) as well as private
offerings (e.g. Openstack, VMware), still remains un-exploitable by the average cloud
user [4–9]. In the majority of cloud applications, the cloud users seek to commit their
entire processing stack over a single cloud provider, by considering only the planned or
expected behaviour of the application. As a result, they neglect to consider flexible
infrastructures able to mix and match platforms from multiple cloud providers, and
meet, in such way, the dynamically changing requirements of their Big Data appli-
cations [10]. In other words, these users miss exploiting the benefits of the multicloud
architectures.

Nevertheless, the use of multicloud offerings especially at the level of infrastructure
in order to cope with the needs of big data applications still involves several challenges
and open research questions. These mainly correspond to how data-intensive com-
puting can be hosted in highly distributed and federated cloud environments by keeping
the Quality of Service (QoS) guarantees. This generic challenge can be analysed into a
number of fine-grained challenges that refer to scalability, resiliency, and security
issues faced by big data and data-intensive applications on distributed platforms. The
purpose of this paper is to address the applications’ scalability and resiliency challenges
when attempting to exploit the benefits of multiclouds. Such benefits become even
more obvious, if the reader considers the new business and scientific needs for dis-
tributed data processing among various locations, for real time processing of data from
various heterogeneous sources. Nevertheless, multicloud computing environments
consist of many resources that are simultaneously accessed by several tenants, which
means that often suffer from unanticipated behaviour such as performance degradations
either for the infrastructure or the software parts, component failures and security
threats. For these reasons, it is very important to constantly monitor and analyse
multiclouds to detect situations that should lead to reconfigurations of the used pro-
cessing topology (e.g. scale up or scale down according to the current workload). In a
way, monitoring delivers the knowledge that is required to make appropriate decisions
with respect to the way applications are deployed and hosted over multiclouds, thus
answers the challenges mentioned above.

Monitoring and analysing Clouds correspond to challenging tasks that require
sophisticated tools and methods. Event processing is a method of tracking and ana-
lysing streams of data about application-related occurrences that happen (i.e. events),
and issuing some alerts based on them. Complex event processing (CEP), corresponds
to event processing that combines data for inferring patterns of events that may suggest

106 V. Stefanidis et al.

more complicated circumstances [11]. CEP systems [12] are valuable in digesting and
processing a multitude of event streams. Their big advantage is the ability to collect
information from various heterogeneous data sources and filter, aggregate or combine
them over defined periods of time (i.e. time windows). The idea of using CEP for
monitoring cloud applications has been applied with respect to two types of archi-
tectural approaches: centralized and distributed. The centralized CEP architecture is
based on a single CEP engine which processes all monitored data and detects patterns
by using rules. On the other hand, the distributed CEP architecture consists of a set of
cooperating CEP engines that exchange messages and are able to more efficiently
detect event patterns by considering rules that differ according to the proximity of the
processing engine to the event source. In existing centralised CEP approaches [13–15]
huge bandwidth and computational capabilities are required and usually they lack
robustness and scalability because of the single point of failure when processing vast
amounts of health status data. On the other hand, the distributed CEP architectures such
as the parallel CEP processing architecture of Hirzel’s [16] and the work of Ku et al.
[17], present better performance in terms of data processing throughput, due to
workload sharing across multiple CEP engines, and establish better scalability results
without any risk of single point of failure. Nevertheless, all these cases are bound to the
use of a single cloud vendor, a fact that limits, by default, the big data-intensive
applications capacities.

In this paper, a distributed CEP system is presented, appropriate for applications
deployed over multicloud resources, proposing a multi-level event processing archi-
tecture. The paper is organized as follows: Sect. 2 describes the related work, while in
Sect. 3, the proposed conceptual architecture is discussed along with the relevant
technological grounding details. In Sect. 4, an illustrative example is presented for
better demonstrating the benefits of the proposed approach. In Sect. 5, a preliminary
evaluation of the proposed system is given and in Sect. 6, we conclude by discussing
the next steps of this work.

2 Related Work

CEP signifies a very important role in detecting and integrating events through pattern
matching and using rules for issuing alerts, in cases where increasing amounts of data
streams are present. Concerning the distribution of CEP, a few recent works focus on
the technique of parallelization of pattern-matching processing in which pattern
matching is seen as a stateful operator in a general purpose streaming system.

More specifically, Hirzel [16] by using the keys to partition the incoming events,
proposes a pattern matching syntax and a way of translation based on the concept of
partitions. Therefore, events with different keys can be processed in parallel. Hirzel
exploits the partitioning constructs provided by the queries of the specific language he
uses. In a similar work, Ku et al. [17] propose a distributed CEP architecture which
splits various centralized CEP tasks load across multiple stations. The core of com-
munication architecture is achieved by using a distributed message broker based on
Apache River, a network of distributed systems in the form of modular co-operating
services. The authors use a distributed complex event detection algorithm with a

Distributed Complex Event Processing in Multiclouds 107

Masters/Workers pattern. The innovation of this proposal can be found in geographical
distribution of tasks for sub-detection using CEP engines in a Master/Slave flowchart
concept. In the first work [16], the presented approach is adequate to be used only when
the querying language’s built-in partitioning constructs (i.e. data-structures with
specific properties), satisfy the needs of specific processing scenarios that should be
supported. The parallelism technique that the authors use, is either centralized in one
machine or distributed in various machines from a single cloud vendor. In the second
work [17], the technique that is used, presents an important communication overhead
when the number of events to be processed is less than 500 events/sec. Both approa-
ches miss the multicloud benefits that we propose in this paper, since the parallelism
technique that the authors use, is distributed in various machines from a single cloud
vendor without considering cross-cloud level deployments. Moreover, in the second
work, the case of scaling-in or scaling-out the cluster of deployed CEP engines is not
supported and a static architecture of a pre-considered number of deployed CEP
engines is used.

Paraiso et al. [18] present a distributed CEP engine (DiCEPE) which is a platform
that focuses on the integration of CEP engines in critical-case distributed systems.
Appropriate communication protocols are used in order to integrate CEP engines easily
and interconnect them across vast geographical areas. In a similar architecture, Flouris
et al. [19] present the FERRARI which is a prototype that implements real-time CEP
for large volume event data streams over distributed architectures by sharing the load
over a set of streaming cloud platforms. In addition, an intra-cloud CEP is used where
appropriate. In the [18] approach, despite the communication heterogeneity, adapt-
ability and scalability of the proposed architecture, the introduction of Frascati [20]
open source platform layer, induces an overhead due to the increased number of
messages that should be exchanged. In the [19] approach the authors do not provide
any dynamic publish/subscribe model for communicating among various CEP engines
and they use instead push/pull techniques. Moreover, they do use only one CEP engine
in each Cloud environment with partitioning (parallelism) in contrast to our approach
that uses many CEP engines in each Cloud vendor. Neither of the two similar and
interesting approaches use any Event Processing Network (EPN) which can be auto-
matically deployed and configured on multiple cloud environments using various levels
of event processing complexity. Especially, in the case of Flouris et al. work [18] a
web-based authoring tool is used for manually building the EPN and performing the
query optimization across the Cloud environments. A third approach that uses a dis-
tributed approach for event detection, called Next CEP is that of Schultz-Moller et al.
[21]. As the previous both architectures, this approach uses an event query language for
expressing event patterns in a distributed way but by using the same rules in all CEP
engines without the option to provide dynamic rule adaptation. In our proposed
architecture, a domain specific rule (for each CEP instance) can be changed and
deployed at runtime as well as adapted according to the run-time monitoring needs.

Mdhaffar et al. [22] introduces a dynamic architecture for measuring cloud per-
formance and analysing various situations based on a complex event processing either
in a centralized or a distributed architecture. The specific paper demonstrates a system
that is designed to dynamically switch between different centralized and distributed
CEP engines, depending on the current machine load and network traffic conditions.

108 V. Stefanidis et al.

However, in this dynamic CEP system, no event processing takes place locally to each
Virtual Machine concerning aggregation functions or processing query rules. The local
processing is limited to outliers and anomaly detection. In our approach, local aggre-
gation function operations take place and the aggregated data results are published to
higher levels CEP processing nodes. Moreover, our approach does not face any latency
or delay set up issues, originated from the need to switch between various architectures.

One additional interesting approach by Boubeta et al. [14], presented a centralized
CEP architecture that combines technologies such as Mule ESB and ESPER engine,
while using the Xively IoT platform. Data is gathered from various sources for Home
Automation operations. In addition to this work, Leitner et al. [15] propose a cen-
tralized event-based approach for monitoring cloud applications by using a multi-step
CEP-based event correlation schema which can be used for cloud applications with a
large number of virtual resources. By this way, the application elasticity is increased. In
another similar approach, CloudScale [23] framework uses the monitoring data to
dynamically acquire and release cloud hosts. Nevertheless, the specific approach does
not investigate the co-existence of low-level metrics such as CPU utilization, memory
consumption etc. along with the application specific metrics i.e. responsiveness of a
very critical application that controls i.e. a nuclear factory. The most important issue
though is that these three approaches, neglect the benefits of multi-cloud environments
and do not use any dynamic communication protocol suitable for event-driven archi-
tectures that dynamically may change their number of hosts.

Finally, a number of other approaches have been studied, which use data from
events coming from heterogeneous environments on a cloud level and are based on
service-oriented architectures (SOA). In [24] the authors introduce an architecture that
uses a meta-model to describe the components of the cloud service-based application
with a specific algorithm that discovers valid event patterns that signify specific SLO
violations (e.g., storage violations). In addition, the authors in [25, 26] propose an
event-driven SOA architecture that provides context awareness in the scope of Internet
of Things. It provides the means for context handling from the reception to delivery of
personalized context-aware services. The result is a scalable context-aware architecture
which can be applied in a wide spectrum of domains but it uses a CEP engine in a more
centralized and less distributed way to process the data. As can be seen, these three
approaches seem to neglect the benefits of multi-cloud environments as they do not
consider at all the option of two or more cloud vendors. Moreover, an approach with
just one level of CEP is adopted on these architectures. On the contrary, in our pro-
posed approach, a distributed multi-level cross-cloud CEP paradigm is used with a
pub/sub communication concept which offers more flexibility, modularity, extensibility
of the infrastructure and the option for adaptation to a dynamically changing envi-
ronment of resources. What is also noteworthy in our approach is the fact that multiple
events can be produced from different layers that can be correlated by using custom
made functions that extend the event algebra processing capabilities, which is some-
thing not presented in previous works.

Distributed Complex Event Processing in Multiclouds 109

3 Distributed Complex Event Processing (DCEP)
Architecture

3.1 Conceptual Architecture

In this section, we discuss our approach for a novel Event Processing Network
(EPN) that can be efficiently distributed over several virtualized resources that may
span multiple providers to monitor the deployment of multicloud applications. Such
advanced monitoring capabilities are valuable for detecting reconfiguration opportu-
nities that will safeguard the desired quality of service of the multicloud applications.
An EPN is a conceptual model that refers to a set of Event Processing Agents (EPA),
Event Producers and Event Consumers all connected by a set of Event Channels(EC)
[11]. The event producers are resources that generate events while the event consumers
are components that receive such events. In multiclouds, the event producers involve
VMs that host parts of a multicloud application and transmit monitoring events with
respect to the health status of the hosting resource and any application specific infor-
mation. The EPAs act both as event consumers (subscribe for monitoring events) and
as event producers since they are able to relay any detected complex event patterns to
other parts of the EPN. Each EPA filters, match and derivate complex events according
to specific rules, expressing patterns that reveal the multicloud application health status.
In our approach, we consider the implementation of these EPAs by using intercon-
nected Complex Event Processing (CEP) engines. The goal of CEP technique is to
identify events and patterns with great importance such as opportunities or threats for
the current multiclouds processing topology and respond to them as quickly as pos-
sible. The use of multiple EPAs in a distributed architecture brings about the advantage
of multi-level complex event processing. Specifically, three distinct layers of CEP are
considered (as seen in Fig. 1) for hierarchically detecting interesting complex events
(e.g. average CPU > 80% for an application server instance, average CPU > 80% for
all application server instances on Cloud X and average CPU > 80% for all application
server instances on all Clouds used for a certain multicloud application). Each of these
EPAs are integrated with an appropriate pub/sub system for message queueing and
event propagation across the three event processing layers, constituting the DCEP
agents. As depicted in Fig. 1, this network of DCEP agents is structured across three
main layers: (i) the VM instance layer (1st Level Event Patterns Detection), (ii) the
Cloud layer (2nd Level Event Patterns Detection) and (iii) the Global layer (3rd Level
Event Patterns Detection). The first one corresponds to the installation and configu-
ration of Event Processing Agents on each VM instance in order to focus on the
aggregation, filtering and propagation of raw health status events. The second layer
involves the use of one such agent per Cloud for extracting higher-level information on
the placed data and cloud application. This allows for a valuable consolidated view of
all the resources’ and applications’ statuses deployed per cloud provider based on the
aggregation and processing of the output of “local” DCEP Agents that report from each
VM. Consequently, the third layer involves the output aggregation of the “second
level” Agents in order to allow for a global overview of the status of the whole
processing topology.

110 V. Stefanidis et al.

Moreover, in a dynamic environment where the multicloud resources to be used for
hosting an application are not static and predefined, a dedicated mechanism for setting
up and maintaining the described EPN according to the requirements of the DevOps or
the application developers, is a necessity. Thus, we introduce the so-called Event
Processing Management (EPM) server and its EPM Clients which are responsible for
the deployment, synchronization and orchestration of the DCEP Agents, hosted in
various VMs and heterogeneous Cloud providers. Upon successful deployment of
these agents, the Event Processing Management also undertakes the configuration or
enhancement of all the appropriate complex event pattern rules that should be used by
each EPA.

3.2 Deploying and Managing DCEP Agents Over Multiclouds

The EPM subsystem is responsible for deploying and managing the monitoring net-
work of Event Processing Agents, and it uses a client-server architecture which
comprises two distinct architectural components types:

i. The EPM clients, which are the DCEP controlling agents. They accompany the
DCEP agents at each VM, on the first, second or third level of event pattern
detection. They do not undertake monitoring tasks (in contrast to EPAs) but they
are separate modules. These Clients contain configuration scripts for setting up and
launching first level or second level DCEPs according to the instructions of the
server (i.e. Event Processing Manager). They also contain information and cre-
dentials for connecting to server. EPM Clients are installed in a VM during VM
initialization. An alternative approach would be that the server connects to each

Fig. 1. Conceptual architecture of a DCEP for monitoring multicloud applications

Distributed Complex Event Processing in Multiclouds 111

VM and install clients after VM initialization. This approach requires that each VM
offer an interactive SSH shell and the VM network address and administrator
credentials are available to server.

ii. The server (i.e. Event Processing Manager) is the controller of clients. It is a part of
the EPM subsystem and resides at the third level of the DCEP architecture (see
Fig. 1). The server is responsible for installing clients to VMs (if they are not
installed during VM initialization) and afterwards for instructing them to configure
the respective DCEP Agents as first or second level event patterns detection.
Moreover the server periodically checks whether clients and VMs are active and if
one goes offline (e.g. if it crashes) it can reconfigure the EPN appropriately.

It is noteworthy to mention that before the multicloud application should start its
operation the EPN must be in place and ready to capture and process monitoring
events. Therefore, upon each VM boot, the installed EPM client attempts to connect to
EPM server using SSH protocol. If it succeeds it sends VM identification information
and the server assigns it a unique Id (which is stored for future sessions). The server
will decide (using a specific strategy) which VMs will act as first level EPAs and which
as second (or first and second level simultaneously). Subsequently the server signals
clients about its decision, passing any needed information, and clients execute pre-
configured setup scripts that prepare and launch the DCEP Agents. The EPM Client
monitors the DCEP Agent launching and when it is ready the client updates the server.
When the EPN is in place and operational, the server signals that the multicloud
application may be deployed and start operating.

It is also important to mention that second level DCEP Agents are configured and
launched before the first level DCEP Agents, since their network information must be
passed to the subordinate first level DCEP Agents. First level DCEP Agents are
configured and launched afterwards and forward their events to the designated second
level DCEP Agent, resulting in a hierarchical network structure. Second level DCEP
Agents are also configured to forward their events to the third level where EPM resides.
The process of bootstrapping the EPN is depicted in Fig. 2.

3.3 DCEP Implementation

In this section, we ground the conceptual architecture presented in Sect. 3.1 and discuss
the technologies used for each of the components of the proposed DCEP system. Based
on the presented architecture, two basic functionalities should be supported. The first is

Fig. 2. Multi-cloud DCEP application bootstrap

112 V. Stefanidis et al.

related to the queueing and propagation (to subscribers) of monitoring events coming
from multicloud resources, while the second corresponds to the complex event pro-
cessing of these events. For the first functionality, the use of an Enterprise Service Bus
(ESB) is in order while for the second basic functionality several instances of CEP
engines have been adopted. The event producers perceived in this approach, refer to:
(i) virtualized resources-related sensors that capture information related to infrastruc-
tural performance issues (e.g. VMs’ RAM usage, CPU load etc.); application-related
sensors which propagate the multicloud application’s performance (e.g. Response
Time) and (iii) the complex events produced by EPAs based on the previous two types
of events. The data obtained from these event producers are published through the use
of an ESB. An ESB instance is used in each VM employed for hosting the components
of the multicloud application (e.g. DBs, application servers etc.). In parallel, a CEP
engine instance is also installed per each VM used. This CEP engine uses event
patterns (rules) that specify the conditions under which reconfiguration events are
produced or specific aggregated events are propagated to a higher processing level.

In this work we have used and configured the MuleSoft open source software [27]
for the implementation of ESB functionalities. MuleSoft ESB was evaluated by the
Rademakers and Dirksentt [28] as the best-of-breed products currently available
according to the following criteria: ESB core functionality, quality of documentation,
market visibility, active development and support community, custom logic, transport
protocols and connectivity options, integration capabilities with open source frame-
works, and tool support. Due to the need for dynamic and adaptive deployments of
various Virtual Machines among various Cloud environments, it is obvious that a
flexible type of messaging protocol should be used to transfer the raw data coming
from the data sources (hardware and software sensors) to the EPAs. Therefore, we have
adopted the Advanced Message Queueing Protocol (AMQP) protocol to propagate
monitoring events over the MuleSoft ESB, according to the Publish/Subscribe para-
digm. Apache ActiveMQ [29] is one of the most popular and powerful open source
messaging and Integration Patterns server. It is an open source message broker written
in Java together with a full Java Message Service (JMS) client. Many features that it
provides, fits our Cross-Cloud distributed CEP Architecture:

• ActiveMQ is standards-based in that it is a JMS 1.1 compliant. The JMS specifi-
cation provides many benefits and guarantees including asynchronous message
delivery, message durability for subscribers which are very crucial for the dynamic
cross-cloud scaling architecture;

• ActiveMQ provides a wide range of connectivity options including support for
protocols such as HTTP/S, multicast, TCP, SSL, and others. This gives a substantial
flexibility for the implementation of communication among publishers and
subscribers;

• Due to the proposed distributed architecture, the use of tightly coupled architectures
for message brokering can be problematic. Loosely coupled architectures exhibit
fewer dependencies which are very useful in a dynamically changing (by scaling in
or out) event-driven architecture [29].

Distributed Complex Event Processing in Multiclouds 113

Moreover, ESPER [30] was used for the CEP capabilities required for this
approach. ESPER is an open source engine that combines Event Stream Processing
(ESP) and CEP capabilities. ESPER uses the Event Processing Language (EPL) and
provides a highly scalable, memory-efficient data stream processing tool to detect event
patterns and create alerts. EPL is used to express filtering, aggregation joins, and define
patterns over multiple events streams. In Fig. 3, we provide a UML component dia-
gram that conceptually depicts the detailed subcomponents of the proposed architecture
per each layer and EPA. We note that grey color was used to denote newly developed
subcomponents that augment the MuleSoft and Esper subcomponents that are offered
as open-source software. The subcomponents include the:

• Type of Events Configurator - This is a subcomponent that provides to the ESPER
engine the information about the type of events that the engine should process;

• Complex Event Processing Rules Configurator - This subcomponent injects to the
ESPER engine the appropriate event patterns expressed in EPL for detecting
complex event patterns at run-time.

• ESPER Engine - This corresponds to the core ESPER component re-used and
spawned in multiple instances over the proposed distributed architecture for
detecting complex event patterns;

• Dynamic Configurator of publishers & subscribers - This subcomponent can reg-
ister any consumer to needs to subscribe to events according to a specific event
topic that is defined via the JMS API of Active MQ service;

• JMS API Connector - This subcomponent is used as a software entity that propa-
gates events to other subscribers hosted in several VMs;

• Monitoring GUI Active MQ - This subcomponent is used as a monitoring tool
where valuable information is presented through a user interface concerning the

Fig. 3. Communication details between ESB and EPAs

114 V. Stefanidis et al.

way that various events are forwarded according to pub/sub model through the
Active MQ broker;

• Active MQ Connector & Broker - This subcomponent is an open source message
broker written in JAVA providing an efficient Java Message Service;

• Event Processing Manager - This subcomponent, as described in the previous
section, is responsible for the synchronization and orchestration of the deployment
and reconfiguration of EPAs and ESB instances to be hosted in all the VMs that will
accommodate aspects of a big data-intensive application.

4 An Illustrative Example

To illustrate the details of this approach, we use the case of a Vehicle Traffic Simulation
application, which is a big data processing application due to its dynamic and
demanding nature, requires deployment over a multi-cloud environment, thus contin-
uous and efficient monitoring for optimisation purposes. In this example, the traffic
system includes many heterogeneous agents (e.g., people, cars, public transport, and
traffic signals) and depends on several factors (e.g., weather, mass events, road works
etc.). Therefore, it involves big data-intensive scenarios, where the capability to detect
multiple complex events, is a necessity to recognise and react on situations that may
jeopardise the health of the deployment topology and eventually the quality of service
of the target application. This involves the real-time analysis of huge amount of data
coming from various sources that represented application fragments that undertake data
intensive traffic simulations. To be more specific, our proposed framework can be used
to run simulations with different input settings (e.g. traffic control settings) and produce
output, such as congestion, travel times, average speeds and total waiting times. So, it
may be used to evaluate a large number of traffic control settings, e.g. traffic signal
settings or make decisions on the construction of new roads, bridges etc.

In this illustrative example, the complex event patterns deployed, use raw moni-
toring events coming from the traffic simulating sensors (i.e. RawExecutionTime,
SimulationLeftNumber, RemainingSimulationTimeMetric and TotalCores events). The
complex events patterns required for monitoring the application and making recon-
figuration decision based on its current status, involve complex function such as the
percentile and the floor functions which use specific time windows and specific output
rates. To be more specific, time batch windows have been used, instead of simple
sliding windows in order to be more efficient in resources consumption and offer a
stable operation. These time batch windows buffer events and release them every
specified time interval in one update. The complex event processing rules which have
been used are the following:

• MinimumCores event expressed as: Ceil(SimulationLeftNumber/floor(Remaining
SimulationTimeMetric/ETPercentile))

• SimulationNotFinishOnTime scaling event expressed as: (ceil(SimulationLeft
Number/TotalCores) * ETPercentile) - RemainingSimulatioTimeMetric

Distributed Complex Event Processing in Multiclouds 115

5 Evaluation

The testbed used for the Vehicle Traffic Simulation scenario includes 3 VMs in a
private cloud infrastructure (using Openstack) and a Windows 10 PC. Each of the VMs
has 64-bit CPUs with 20 GB of disk and 4 GB of RAM and comes with Ubuntu 16
operating system. The following components were used for this evaluation: (1) an
events generator capable to publish events in a configurable rate; (2) the DCEP Agent
and (3) the evaluation monitoring tool. The event generator has been placed on the VM
hosted in the Windows machine and corresponds to a specific Mule Application,
developed based on the Quartz1 module, which supports the scheduling of program-
matic events.

For this evaluation scenario we have measured the RAM and CPU usage on the
machines that hosted the DCEP agents for a number of incoming event rates.
Specifically for our evaluation scenarios, we have used 500 events/sec and 1000
events/sec, corresponding to the RawExecutionTime events of the Vehicle Traffic
Simulation scenario. The other events i.e. SimulationLeftNumber, RemainingSimula-
tionTimeMetric and TotalCores generated by the Simulation Manager (the big data-
intensive application) have smaller rates i.e. 100 events/sec etc. The measurements for
the CPU and RAM usage are depicted in Fig. 4 for a period of 10 min.

Based on these results, we notice that our DCEP approach presents a stable memory
consumption of around 30% which abides with what was discussed in the previous
section for the use of time batch windows of rules, without any major fluctuations,
while the CPU usage doesn’t exceed 36%. The latter seems even more improved as the
number of events per second increase, a fact that denotes good queuing capabilities.
Peaks being observed during the first two minutes of operation, both in Memory usage
and CPU usage graphs, are expectable since the JVM (used in Mule application)
requires a (warm-up) period of execution to provide the best performance results. In our
tests, this performance is usually achieved after about 5 min of operation. An important
advantage of the implementation of the proposed DCEP system is the use of complex
event processing technologies that enable the transparent join of two or more streams
and the use of complex mathematical formulas that may result in (highly) complex
event pattern rules. In the Vehicle Traffic Simulation scenario, several events of various
topics were used and joined in order to detect and emit a final scaling event, called
SimulationNotFinishOnTime. This has been achieved by utilizing user defined func-
tions on the definition of patterns and calculation of complex formulas (e.g. percentile
function).

6 Conclusions

In this paper, we presented a three level distributed architecture for monitoring big data
intensive applications deployed over multicloud resources. The conceptual architectural
design was discussed along with the implementation details and technological

1 https://docs.mulesoft.com/mule-user-guide/v/3.6/quartz-connector.

116 V. Stefanidis et al.

https://docs.mulesoft.com/mule-user-guide/v/3.6/quartz-connector

decisions. Furthermore, we used an illustrative scenario in order to present and evaluate
the main benefits of this approach. The preliminary evaluation revealed adequate
processing and memory consumptions levels that will be further compared, in the
future, against other prominent complex event processing solutions. In addition, this
work will continue in terms of integrating such an approach with a holistic platform
that will be able to manage the complete lifecycle of multicloud applications and their
processed data. The role of this solution will be to adequately monitor the health status
of the application, in order to maintain a constantly optimised deployment of all the
application components, over heterogeneous VMs that span the boundaries of several
cloud providers.

Acknowledgements. The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agreement
No. 731664. The authors would like to thank the partners of the MELODIC project (http://www.
melodic.cloud/) for their valuable advices and comments.

References

1. Zanoon, N., Al-Haj, A., Khwaldeh, S.: Cloud computing and big data is there a relation
between the two: a study. Int. J. Appl. Eng. Res. 12(17), 6970–6982 (2017)

2. Hashema, I., Yaqoob, I., Anuar, N., Gani, A., Khan, S.: The rise of “big data” on cloud
computing: review and open research issues. J. Inf. Syst. 47, 98–115 (2015)

3. Martinez, G., Bote, M., Gómez-Sánchez, E., Cano-Parra, R.: Cloud computing and
education. J. Comput. Educ. 80(C), 132–151 (2015)

4. Amazon Web Services Homepage. https://aws.amazon.com/
5. Hewllet Packard Homepage. https://www.hpe.com/emea_europe/en/solutions/cloud.html

Fig. 4. Evaluation results

Distributed Complex Event Processing in Multiclouds 117

http://www.melodic.cloud/
http://www.melodic.cloud/
https://aws.amazon.com/
https://www.hpe.com/emea_europe/en/solutions/cloud.html

6. IBM Cloud Solutions Homepage. https://www.ibm.com/cloud/
7. Rackspace Homepage. https://www.rackspace.com/
8. Openstack Homepage. https://www.openstack.org/
9. VMware Homepage. https://cloud.vmware.com/
10. The Multi-Cloud Future: Challenges and Benefits Homepage. https://technodrone.blogspot.

com/2014/03/the-multi-cloud-future-challenges-and.html
11. Etzion, O., Niblett, P.: Event Processing in Action (20). Manning Publications Company,

Greenwich (2010)
12. Higashino, W.: Complex event processing as service in multi-clouds environments. Ph.D.

thesis. Univerity of Western Ontario, Department of ECE, Canada (2016)
13. Cugola, G., Margara, Al.: Processing flows of information: from data stream to complex

event processing. J. ACM Comput. Surv. (CSUR) 44(issue 3, article 15), 15:1–15:62 (2012)
14. Boubeta-Puig, J., Ortiz, G., Medina-Bulo, I.: Approaching the Internet of Things through

Integrating SOA and complex event processing. In: Sun, Z., Yearwood, J. (eds.) Handbook
of Research on Demand-Driven Web Services: Theory, Technologies, and Applications,
pp. 304–323. IGI Global, Hershey (2014). https://doi.org/10.4018/978-1-4666-5884-4.ch014

15. Leitner, P., Inzinger, C., Hummer, W., Satzger, B., Dustdar, S.: Application-level
performance monitoring of cloud services based on complex event processing paradigm.
In: 5th IEEE International Conference on Service-Oriented Computing and Applications
(SOCA) (2012)

16. Hirzel, M.: Partition and compose: parallel complex event processing. In: DEBS 2012 -
Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems,
Berlin, Germany, pp. 191–200. ACM (2012)

17. Ku, T., Long-Zhu, Y., Yuan-Hu, K.: A novel distributed complex event processing for RFID
application. In: 2008 Third International Conference on Convergence and Hybrid
Information Technology, Busan, South Korea (2008)

18. Paraiso, F., Hermosillo, G., Rouvoy, R., Seinturier, L.: A middleware platform to federate
complex event processing. In: 2012 IEEE 16th International Enterprise Distributed Object
Computing Conference (EDOC), Beijing, China, pp. 113–122 (2012)

19. Flouris, I., et al.: FERARI: a prototype for complex event processing over streaming multi-
cloud platforms. In: DEBS 2016 Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems, Irvine, CA, USA, pp. 348–349 (2016)

20. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.-B.: A
component-based middleware platform for reconfigurable service-oriented architectures.
J. Softw. Pract. Exp. (SPE) 42(5), 559–583 (2012)

21. Schultz-Møller, N., Migliavacca, M., Pietzuch, P.: Distributed complex event processing
with query rewriting. In: Proceedings of the Third ACM International Conference on
Distributed Event-Based Systems, DEBS 2009, Nashville, Tennessee, USA (2009)

22. Mdhaffar, A., Halima, R., Jmaiel, M., Freisleben, B.: A dynamic complex event processing
architecture for cloud monitoring and analysis. In: 2013 IEEE 5th International Conference
on Cloud Computing Technology and Science, Bristol, UK (2013)

23. Leitner, P., Hummer, W., Satzger, B., Inzinger, C., Dustdar, S.: CloudScale- a novel
middleware for building transparently scaling cloud applications. In: Proceedings of the 27th
Annual ACM Symposium on Applied Computing, Trento, Italy, pp. 434–440. ACM (2012)

24. Zeginis, C., Kritikos, K., Plexoudakis, D.: Event pattern discovery for cross-layer adaptation
of multi-cloud applications. Int. J. Syst. Serv.-Oriented Eng. 78–103 (2015)

25. Garcia de Prado, A., Ortiz, G., Boubeta-Puig, J.: CARED-SOA: a context-aware event-
driven service oriented architecture. IEEE Access J. 5, 4646–4663 (2017)

118 V. Stefanidis et al.

https://www.ibm.com/cloud/
https://www.rackspace.com/
https://www.openstack.org/
https://cloud.vmware.com/
https://technodrone.blogspot.com/2014/03/the-multi-cloud-future-challenges-and.html
https://technodrone.blogspot.com/2014/03/the-multi-cloud-future-challenges-and.html
http://dx.doi.org/10.4018/978-1-4666-5884-4.ch014

26. Garcia de Prado, A., Ortiz, G., Boubeta-Puig, J.: COLLECT: collaborative context-aware
service oriented architecture for intelligent decision-making in the Internet of Things.
J. Expert Syst. Appl. 85, 231–248 (2017)

27. Mule Soft Homepage. www.mulesoft.com
28. Rademakers, T., Dirksentt, J.: Open-Source ESBs in Action, 1st edn. Manning, Greenwich

(2009)
29. Apache Active MQ Homepage. http://activemq.apache.org/
30. Esper CEP engine Homepage. http://www.espertech.com/esper/

Distributed Complex Event Processing in Multiclouds 119

http://www.mulesoft.com
http://activemq.apache.org/
http://www.espertech.com/esper/

A Multi-level Policy Engine to Manage
Identities and Control Accesses in Cloud

Computing Environment

Faraz Fatemi Moghaddam1,2(&) , Süleyman Berk Çemberci3,
Philipp Wieder1, and Ramin Yahyapour1,2

1 Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen
(GWDG), Göttingen, Germany

{faraz.fatemi-moghaddam,philipp.wieder,ramin.

yahyapour}@gwdg.de
2 Institute of Informatics, Georg-August-Universität, Göttingen, Germany
3 Systeme, Anwendungen und Produkte in der Datenverarbeitung (SAP),

Walldorf, Germany
suleyman.berk.cemberci@sap.com

Abstract. Security challenges are the most important obstacles for the
advancement of IT-based on-demand services and cloud computing as an
emerging technology. Lack of coincidence in identity management models
based on defined policies and various security levels in different cloud servers is
one of the most challenging issues in clouds. In this paper, a policy-based user
authentication model has been presented to provide a reliable and scalable
identity management and to map cloud users’ access requests with defined
polices of cloud servers. In the proposed schema several components are pro-
vided to define access policies by cloud servers, to apply policies based on a
structural and reliable ontology, to manage user identities and to semantically
map access requests by cloud users with defined polices.

Keywords: Cloud computing � Security � Policy management
Identity management � Access control

1 Introduction

Cloud security issues are mainly classified to three major categories [1]: data protection
in cloud-based data centers, isolated and secure resource provisioning and reliable
access control by identity management and authentication procedures [2]. These con-
cerns are the most apparent reasons why most of individuals and businesses still have
doubt to delegate management of their sensitive data to cloud service providers as third
party collaborates [3]. One of the most challenging security issues in clouds that has led
to the appearance of several researches and solutions is to ensure reliable accesses to
different cloud servers based on various policies in each server. In fact, service pro-
viders needs to manage access requests and map them to resources according to defined
policies from cloud customers or service providers [4].

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 120–129, 2018.
https://doi.org/10.1007/978-3-319-99819-0_9

http://orcid.org/0000-0002-4531-8683
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_9&domain=pdf

Using a federated identity management schema is the most popular solution for
managing accesses to different cloud servers with single identity. In recent years most
cloud services have adopted OpenID [5] or Shibboleth [6] as the most independent and
flexible authentication and identity management models in cloud-based platforms. The
proliferation of these identity federations has allowed cloud users belonging to one
network (known as home organization) to access the services provided by other net-
works (known as remote organizations), all members of the same federation [7].
Therefore, there isn’t any necessity for cloud users to re-introduce their credentials for
each access in different cloud servers. The most important characteristic of identity
management models is to provide a framework with fast-authentication mechanisms
[8], low access time and reduced authentication data exchanges between different
service access requests [9]. Although the establishment of multiple security mecha-
nisms in each node enhance the security of resources and reduces considerable pro-
cessing power for manipulating sensitive and also non-sensitive data [10], the
authentication data exchange and access time for cloud users in identity management
models are also affected. In particular, two important concerns in cloud-based identity
management models are still challenging:

– Managing defined policies in different virtualized nodes according to capabilities of
service providers, requirements of resource owner and constraints.

– Mapping access requests to cloud-servers based on established security mechanisms
and defined policies of each node.

In this paper, a policy-based user authentication model is presented to provide a
reliable identity management mechanism for establishing multiple access policies in
different virtualized nodes and mapping access requests to defined policies accordingly
capabilities of cloud servers and requirements of resources.

2 Problem Description

As described in previous section, the main aim of proposed model is to manage
identities based on defined policies in cloud servers. Each virtualized node in cloud-
based data center is associated with set of policies. These polices are classified in
several protocols according to Protection Ontology [11]. The classification of security
policies are based on three main parts: Resource Protection (including cryptography
and key management policies), Confidential Transport (including signature and
transport policies) and Identity Management (including authentication and access
control policies). The latter, which is the focus of this work, refers to the capabilities
that are provided to ensure the reliable access mapping between requests and policies
by managing identities based on capabilities of service provider and requirements of
cloud users.

Assume that there are N virtualized node (server) in the cloud-based data center,
denoted as S1; S2; . . .; SNf g, and the current authentication policy set of node Sn with
s 2 1; 2; . . .;Nf g is P Snð Þ ¼ p1; p2; . . .; pMf g. Given I registered users’ access requests
waiting to be processed, denoted as U1;U2; . . .;UIf g, and each Ui is associated with
specific identity set (authentication and authorization set):

A Multi-level Policy Engine to Manage Identities and Control Accesses 121

AA Uið Þ ¼ IDi; h PWið Þ; h IDið Þ � h PWið Þð Þ; AP1; h AR1ð Þ; h AP1ð Þ � h AR1ð Þð Þð Þi; . . .;
APj; h ARj

� �
; h APj
� �� h ARj

� �� �� �
i

� �

where ID;PW ;AP and AR are user ID, user basic password, access policy and access
response respectively. There are several authentication and authorization (access)
policies that are defined for each node to enhance the security level of the node in
comparison between other nodes. The authentication policies are focus on confiden-
tiality and integrity of resources, while the authorization policies are based on privacy
and access management features of cloud resources. To provide a semantic mapping
between requests and policies, each of authentication and authorization policies of a
specific node need to be evaluated according to the characteristic of cloud user. The
objective of suggested model is to map elements of the policy set for each node to
appointed access responses for cloud users to provide decisive access permit. For
instance, consider a cloud provider with different services (e.g. storage, platform,
software, etc.) and each service has dedicated security policies (e.g. two factor
authentication for storage and one-time single pass for software). The main problem is
to address the process of mapping security requirements of these cloud services to
defined authentication and authorization capabilities of the cloud user in identity set.
Overall, the access request of specific node is granted if and only if the following
equation is applied to the request:

8pi 2 P Snð Þ : 9 APj;ARj
� �

i : pi ¼ APj
� �

i

� �^ ARj
� �

i¼ true
� �� �� � ð1Þ

In fact, cloud user needs to provide additional authorization and authentication
capabilities for nodes with higher security policies. The proposed model tries to
manage access requests and map between access policies and authentication capabil-
ities of cloud users.

3 Proposed Schema

Using an agent-based authentication model [12] to send access requests, to search on
policy queues and to match access requests to a specific defined policy may seem like a
plausible solution for achieving the goal. However, this agent-based authentication
process in not scalable and takes lots of processing power to map between requirements
and capabilities. Thus, the design of our proposed model is based on a different
manner. Our schema uses a framework with several components to define, store, check
and match policies with identity details. Figure 1 shows the overall architecture of our
model.

3.1 Policy Engine

The main duty of Policy Engine is to define and generate authentication and autho-
rization policies based on the structural Protection Ontology [10] for cloud customers
according to security requirements. Protection Ontology is a policy language based on

122 F. Fatemi Moghaddam et al.

WS-Policy [13] as a recommended W3C [23] language for defining various security
levels in cloud-based environments. Protection ontology classifies security algorithms
to three main levels: Protocol, Mechanism and Algorithm. In the proposed model
authentication and authorization capabilities of service provider are offered according
to this classification. This structural classification helps to apply different security
mechanisms to virtualized nodes and creates security levels based on requirements of
cloud users and sensitivity of resources. Each of the offered algorithms is associated to
a structural semantic resource for security level establishment according to the concepts
of WS-Policy and Protection Ontology. A security-based SLA is the output of security
ring (level) establishment and is defined as Security Level Certificate (SLC).

As described the main duty of policy engine is to define and generate authentication
and authorization policies for different virtualized nodes according to the sensitivity of
nodes and capabilities of service provider. The process of policy application is done by
policy engine based on generated SLC as follows:

Step 1. Policy engine sends SLC ID to node n to apply policies of SLC to the node.
Step 2. According to the associated SLC, node n calls semantic resources of SLC to

create P Snð Þ.

for i ¼ 0 to
XR
a¼0

ðrdf : AlgorithmÞa
 !

pi ¼ pi k add SPl
� �� �

X pið Þ ¼ h pið Þ
HP Snð Þ ¼ add X pið Þð Þ

8<
:

9=
;

Fig. 1. Architecture of policy-based identity management

A Multi-level Policy Engine to Manage Identities and Control Accesses 123

where R is the total of semantic algorithm resources and l ¼PCount HLSPð Þ
e¼0

rdf : HLSPð Þe are the defined sub-policies for each algorithm based on the
SLC. Also, the hashed value of each policy pi is stored in the set HP Snð Þ.

Step 3. X Snð Þ ¼ h xnð Þ � h p1ð Þ � h p2ð Þ. . .� h pnð Þ
where xn and X Snð Þ are the secret key and the secret value for node n
respectively.

Step 4. Send P Snð Þ;HP Snð Þð Þ;X Snð Þf g to Policy Database.
The SLC, policy set, hashed policy set and secret value of node n are sent to
policy database.

3.2 Policy Check-Point

The check point component creates, updates and manages identities for accessing to
different nodes. Identities are defined in registration phase, updated in checking phase
and managed in access control phase. In recent years, two types of registration pro-
gresses are performed in web-based models:

• Normal Registration: The creation of personal identity within cloud provider with
User ID, Password and other personal details.

• 3rd-Party Registration: Using identities in social media or other providers.

During the registration phase by each of these models, an Identity set (Authenti-
cation and Authorization) object AA Uið Þ is created from identity set class for user Ui.
The basic identity set with the lowest identity details is associated with the ID and
password:

I Uið Þ ¼ IDi; h PWið Þ; h IDið Þ � h PWið Þð Þf g

By the basic identity set, cloud users can access to the nodes with the lowest
security level in cloud environment. However, three types of authentication and
authorization access policies need to be defined and added to the identity set based on
polices and capabilities of service provider:

• User Access Policies (UAP): These types of policies are defined by cloud users
according to capabilities of cloud provider. For instance, cloud user can establish
second password with an authenticator application or email.

• Cloud Access Policies (CAP): These types of policies are awarded to cloud users by
the provider or admin after an identity validation (e.g. RBAC in a university).

• Temporary Access Policies (TAP): These types of policies are based on dynamic
parameters such as location, hardware and time.

An access policy is defined in identity set according to the characteristics of policy
by a triplex set as follows:

124 F. Fatemi Moghaddam et al.

APj; h ARj
� �

; h APj
� �� h ARj

� �� �� �
i

where APj and ARj refer to semantic resource access policy (e.g. two factor authenti-
cation by Email) and access responses (e.g. confirmed email address) respectively.
Therefore, the authentication set for Ui are updated based on defined UAP, CAP and
TAPs as:

AA Uið Þ ¼ IDi; h PWið Þ; h IDið Þ � h PWið Þð Þ; AP1; h AR1ð Þ; h AP1ð Þ � h AR1ð Þð Þð Þi; . . .;
APj; h ARj

� �
; h APj
� �� h ARj

� �� �� �
i

� �

3.3 Policy Match-Gate

The proposed identity management model for mapping accesses requests to defined
policies is based on the performance of policy match gate. Given I registered users’
access requests waiting to be processed, denoted as U1;U2; . . .;UIf g, and each Ui is
associated with a specific authentication set AA Uið Þ. The main aim of Match Gate is to
process access requests and to map between these requests and defined polices for each
node according to the identity set. To provide an efficient policy mapping algorithm, a
session class is defined by policy match gate for creation of access session objects
according to the capabilities of cloud users. The objects from this class
ðAccessSession class) use several security functions and parameters to ensure about the
reliable mapping between capabilities and security policies. After the registration phase
in the check point component, cloud users are able to sign in to cloud computing
environment by their basic internal or external login information. A successful basic
login lets the policy match gate to create a session object from the access session class
for basic or additional security checking. The process of using this object for identity
management is in number of steps as follows:

Step 1. An object is created from AccessSession class with basic parameters.

AccessSession ASUi ¼ newAccessSession IDi; h PWið Þ; TS; h IDið Þ � h PWið Þð Þ; TKi; eð Þ

where TKi is a basic token for Ui and is valid if login details are matched with
A Uið Þ and e is a Boolean property that shows the status of TKi whether is
enabled or disabled.

Step 2. The basic value of TKi after the first login lets the cloud user to access basic
nodes with lowest security level. In this level policy match gate checks if DTS
and e are still valid, the access of cloud user to the root nodes are granted. The
basic value of TKi is calculated as follows:

TKi ¼ h h IDi k TSð Þ � h PWið Þð Þð Þ

A Multi-level Policy Engine to Manage Identities and Control Accesses 125

Step 3. When the cloud user requests for accessing to basic nodes, the match gate
calculates Node Access Request (NAR) as follows:

if e ¼ trueð Þ ^ DTS ¼ Validð Þð Þ then NAR i;nð Þ ¼ TKi;Enc TKi; xnð Þð Þ� �
where Enc is AES-256 func. with the secret key for node n. The checking
phase confirms the user identity and the value of NAR is sent from match gate
to requested node.

Step 4. Server n receives the request from Match Gate and access is granted if the
difference between timestamps and the following equation is valid:

if DTS ¼ Validð Þ ^ TKi ¼ Dec TKi; xnð Þð Þð Þ then Access is Granted

This calculation helps to check if the secret key of node n is still valid or not.
In fact, the validated identity from match gate can access to request node if the
secret value of node is valid. If the validity of the equation is not confirmed,
Match Gate should update the secret key of server n in database.

Step 5. If the cloud user requests for accessing to nodes with the defined security
policies and higher privacy levels, further identity details are requested from
Match Gate based on the defined policies. Thus, Match Gate checks P Snð Þ
from policy database and asks Ui if UAP or TAP policies are needed for
authentication and authorization checking. Also, the user database is checked
by Match Gate for CAP policies for only authorization checking if needed.
Each of the requested access details should be provided by the cloud user (i.e.
UAP and TAP) or the user database (i.e. CAP) and ASUi is updated according
to the provided details:

ASUi:AddAccessCapability AP1; h AR1ð Þ; h AP1ð Þ � h AR1ð Þð Þ;AST1ð Þ;
ASUi:AddAccessCapability AP2; h AR2ð Þ; h AP2ð Þ � h AR2ð Þð Þ;AST2ð Þ;
..
.

ASUi:AddAccessCapability APj; h ARj
� �

; h APj
� �� h ARj

� �� �
;ASTj

� �
;

where AST is the Algorithm Session Time that shows the maximum validity of
confirmed access response. For instance, the valid time for confirmed second
password is longer that 1-time password. By each of the additional identity
details the value of TKi is updated as follows:

TKi ¼ TKi � h APj k TS
� �� h ARj

� �� �
Step 6. After updating the value of Tki and confirming the identity of cloud user by

additional identity request and according to the capabilities of user, the match
gate sends server access requests to the requested node as follows:

X 0 Snð Þ ¼ h xnð Þ � h AP1ð Þ � h AP2ð Þ. . .� h APj
� �� �

126 F. Fatemi Moghaddam et al.

if e ¼ trueð Þ ^ DTS ¼ Validð Þð Þ then NAR i;nð Þ ¼ TKi;Enc TKi; xnð Þ; h X 0 Snð Þð Þ;TS0ð Þ� �
Step 7. Server n receives the request from Match Gate and access is granted if the DTS

and the following equations are valid:

if DTS ¼ Validð Þð Þ ^ TKi ¼ Dec TKi; xnð Þð Þ^ h X Snð Þð Þð
¼ h X 0 Snð Þð ÞÞÞ then Access is Granted

This calculation checks the validity of timestamp, the validity of secret key
and finally the confirmed application and mapping process of defined policies
by checking the validity of secret value.

Step 8. If the user requests to access to a node with common policies that were
confirmed by match gate before and the Algorithm Session Time for the access
response is still valid for the policy, just un-checked policies are evaluated and
the is no necessity to re-check previous policies. In fact, every functions and
properties of ASUi are confirmed and stay reusable until the algorithm session
time for that authentication or authorization algorithm is still valid. For
instance, the session time for double authentication is less than single
authentication and Ui needs to be double-authenticated again after the session
time for double authentication is over while the session time for basic
authentication is still valid. Also, re-authentication for some authorization
access policies (e.g. Geographical or Software authenticators) or One-Time
passwords need to be checked periodically or continuously. These valid ses-
sion times are defined as sub-policies in the ring establishment stage based on
Protection Ontology [11].

4 Discussion and Conclusion

In order to incarnate the superiorities of this schema in cloud-based environments, we
give a performance analysis of the proposed model in this section. In this experiment
the performance of match gate in different types of workloads was evaluated.
Accordingly, the total process time for processing 500 access requests to VMs with
high secure VMs with more authentication and authorization policies was examined in
the first step. The aim of this case study is to examine the effects of static, continuously
changing, dramatic increase and predictable increase workloads on the performance of
match gate task management. The experiment was in 6 rounds based on different types
of workloads. Figure 2 shows the results in details. In the static workload, the number
of user accesses was same in all rounds. However, the total processing time was
decreased slightly due to the common policies in different VMs. Thus, there was not
any necessity to re-check common policies. As expected, in the dramatic increase of
users requests, the total processing time was risen dramatically and in the respective
rounds the total processing time was reduced considerably to the normal range. This
change was less in predictable change due to the predictable scheduling in associated
task processing. Finally, the rate of change in continuously increase of requests is

A Multi-level Policy Engine to Manage Identities and Control Accesses 127

significantly slight. That was because two different effects: increase due to the number
of requests and decrease due to the common policies in different VMs. Overall, the
results show the performance of match gate task management for semantic mapping of
access polices to request was scalable enough in different types of workloads.

Acknowledgement. This research has been supported by CleanSky project (No. 607584)
funded by the Marie-Curie-Actions within the 7th Framework Program of the European Union
(EU FP7).

References

1. Fatemi Moghaddam, F., Ahmadi, M., Sarvari, S., Eslami, M., Golkar, A.: Cloud computing
challenges and opportunities: a survey. In: 1st International Conference on Telematics and
Future Generation Networks (TAFGEN), pp. 34–38 (2015)

2. Sadiku, M.N.O., Musa, S.M., Momoh, O.D.: Cloud computing: opportunities and
challenges. IEEE Potentials 33(1), 34–36 (2014)

3. Wang, C., Ren, K., Lou, W., Li, J.: Toward publicly auditable secure cloud data storage
services. IEEE Netw. 24(4), 19–24 (2010)

4. Coppolino, L., D’Antonio, S., Mazzeo, G., Romano, L.: Cloud security: emerging threats
and current solutions. Comput. Electr. Eng. 59, 126–140 (2017)

5. Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric identity management. In:
Proceedings of the Second ACM Workshop on Digital Identity Management - DIM 2006,
p. 11 (2006)

6. Morgan, R.L., Cantor, S., Carmody, S., Hoehn, W., Klingenstein, K.: Federated security: the
Shibboleth approach. Educ. Q. 27(4), 12–17 (2004)

7. Pérez Méndez, A., Marín López, R., López Millán, G.: Providing efficient SSO to cloud
service access in AAA-based identity federations. Futur. Gener. Comput. Syst. 58, 13–28
(2016)

8. de Carvalho, C.A.B., de Castro Andrade, R.M., de Castro, M.F., Coutinho, E.F., Agoulmine,
N.: State of the art and challenges of security SLA for cloud computing. Comput. Electr.
Eng. 59, 141–152 (2017)

9. Liu, Z., Yan, H., Li, Z.: Server-aided anonymous attribute-based authentication in cloud
computing. Futur. Gener. Comput. Syst. 52, 61–66 (2015)

0

2000

4000

6000

Ruond 1 Ronud 2 Ronud 3 Round 4 Round 5 Round 6
Static Continuously Change

Dramatic Change Predictable Change

ms

0

1000

2000

3000

4000

5000

6000

Ruond 1 Ronud 2 Ronud 3 Round 4 Round 5 Round 6

Static Continuously Change

Dramatic Change Predictable Change

ms

Fig. 2. Effects of different workload on the performance of match gate task management

128 F. Fatemi Moghaddam et al.

10. Fatemi Moghaddam, F., Wieder, P., Yahyapour, R.: Policy Engine as a Service (PEaaS): an
approach to a reliable policy management framework in cloud computing environments. In:
IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud),
pp. 137–144 (2016)

11. Fatemi Moghaddam, F.: Multi-layered policy generation and management in clouds.
University of Göttingen (2018)

12. Hajivali, M., Fatemi Moghaddam, F., Alrashdan, M.T., Alothmani, A.Z.M.: Applying an
agent-based user authentication and access control model for cloud servers. In: International
Conference on ICT Convergence (ICTC), pp. 807–812 (2013)

13. Bajaj, S., Box, D., Chappell, D., Curbera, F., Daniels, G., Hallam-Baker, P., Hondo, M.,
Kaler, C., Langworthy, D., Malhotra, A.: Web Services Policy Framework (WS-Policy).
Specif. IBM, BEA, Microsoft, SAP AG, Sonic Software, VeriSign (2004)

A Multi-level Policy Engine to Manage Identities and Control Accesses 129

A Practical Approach to Services
Composition Through Light

Semantic Descriptions

Marco Cremaschi(B) and Flavio De Paoli

Department of Informatics, Systems and Communication,
University of Milan - Bicocca, Viale Sarca 336/14, Milan, Italy

{cremaschi,depaoli}@disco.unimib.it

Abstract. Services composition has been much investigated over the
last decade without reaching shared and consolidated results mainly for
the lack of interoperable descriptions of services and the consequent need
of extensive user intervention. In this paper, we propose a light and prac-
tical approach to create machine-readable descriptions of output data
that can be merged or used (as-is or adapted) as input data to other ser-
vices. The solution relies on the popular and standard OpenAPI descrip-
tions augmented with annotations based on JSON-LD format. Services
descriptions are created by table annotations techniques applied on sets
of given or retrieved output values. The approach has been implemented
in a tool and validated with a set of real services.

1 Introduction

In the last decade, we have witnessed the evolution of web services models from
the WSDL/SOAP to the REST. This change is tangibly visible, for example,
by searching ProgrammableWeb1, perhaps the largest repository of web descrip-
tions. One of the reasons for this evolution is the need to simplify the service
reference model to enhance comprehensibility and standardisation, and therefore
provide the bases for automatic management of descriptions and composition.
A similar evolution is needed in the realm of semantic web services. As a matter
of facts, well-defined proposals that deliver machine-readable descriptions, such
as OWL-S: Semantic Markup for Web Services [10], Semantic Annotation for
WSDL and XML Schema (SA-WSDL) [7], Micro Web Service Model Ontology
(MicroWSMO) [6] and Semantic Annotations for REST (SA-REST) [5], failed
to become widely used mainly for their complexity that requires the involvement
of experts.

The work presented in this paper has been partially supported by the EU H2020
project EW-Shopp - Supporting Event and Weather-based Data Analytics and Mar-
keting along the Shopper Journey - Grant n. 732590.

1 https://www.programmableweb.com/apis/directory.

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 130–145, 2018.
https://doi.org/10.1007/978-3-319-99819-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_10&domain=pdf
https://www.programmableweb.com/apis/directory

A Practical Approach to Services Composition 131

Current description models address services accessible through API REST,
and provide meta-languages to describe services as documents based on property-
value pairs. OpenAPI Specification2, also known as Swagger3, API Blueprint4

and RAML5 are the most representative. However, these models do not support
semantic annotations to make property-value pairs interoperable. In this paper,
we discuss an extension of the popular OpenAPI model to add semantic anno-
tations on input parameters and output properties of services. Such annotations
are compliant with the JSON-LD6 format to follow the REST philosophy in
order to minimise the user involvement in many practical situations.

The availability of semantic descriptions of APIs enables the development of
automatic techniques and tools to support services composition [13]. A general
definition states that a process of composition is defined as the aggregation of
different Web services into a single compound service to perform more complex
functions [14]. In this context, we refer to information services and the mash-
up of results got from independent services to deliver comprehensive answers to
users’ requests, or to prepare data coming from a set of services to invoke another
service. We call the former merge composition and the latter sequence composi-
tion. Merge composition involves more services that are invoked in parallel with
the same input data, whose answers are then composed. Sequence composition
involves a service which is invoked with input data coming from the composi-
tion of answers from one (adaptation) or more (mash-up) services. This work
roots and extends the one presented in [3,8] by proposing a formalised model to
create semantic descriptions for Web APIs, and a set of composition rules based
on semantic annotations inside the descriptions. Moreover, we implemented the
AutomAPIc tool to support users in the creation and composition of semantic
descriptions.

Services composition may occur at design time or at runtime. At design
time, the ability of automatic processing of descriptions enables actors (users
or machines) to discover, select and compose services. If semantic descriptions
are not available, actors can rely on techniques, such as table interpretation and
NLP techniques, to build such missing descriptions. At runtime, composition
supports adaptation and substitution of services to ensure contextualization and
accomplishment of tasks.

In the next section, we discuss services description and composition to moti-
vate the work. Then, Sect. 3 describes the proposed extension of the OpenAPI
model to include semantic annotations. Section 4 discusses the composition tech-
niques in the split and sequence cases. Section 5 presents the tool that provides
full support to users to manage the process of building descriptions and compos-
ing services. Section 6 validates the approach by addressing a set of real services.
Finally, Sect. 7 draws some conclusions.

2 https://www.openapis.org.
3 http://swagger.io.
4 https://apiblueprint.org.
5 http://raml.org.
6 https://json-ld.org.

https://www.openapis.org
http://swagger.io
https://apiblueprint.org
http://raml.org
https://json-ld.org

132 M. Cremaschi and F. De Paoli

2 Services Description and Composition

In the last decade, the composition of services has been widely investigated
without getting to effective results for many reasons. Among others, the most
relevant are the use of different architectural styles, the unexpected evolution of
services, and the use of different description languages and different conceptual
models [12]. Moreover, composition may occur at the design stage, leading to
static compositions, or at runtime, leading to dynamic composition. The latter is
best suited to address the issues in real environments that change continuously
and requires automatic tools to search for, select and compose Web services
automatically. The main issue affecting automatic composition is the limited
number of available machine-readable descriptions associated with services.

A traditional way to compose services is the use of orchestration languages,
such as BPEL (Business Process Execution Language) [16] or OWL-S (Ontol-
ogy Web Language for Services) [10], which support the manual definition of
abstract processes that can be implemented by actual services. On the other
side, dynamic composition in automatic way can be achieved by exploiting the
semantic Web and the planning techniques. However, the realisation of a com-
pletely automatic composition process is complex and presents several issues
[14]. The main problems are the missing of semantics associated with services,
and the capability of understanding the semantics even when present.

The most popular syntactic description model is WSDL 2.0 (Web Services
Description Language) [1], which defines an XML format for describing Web
services by separating the abstract functionality offered by a service from con-
crete details such as how and where that functionality is offered. Although it
supports descriptions of both SOAP-based services, and REST/API services, it
is the de-facto standard for the former but is rarely adopted for the latter. The
Web Application Description Language (WADL) is a machine-readable XML
format that was explicitly proposed for API services. WADL was also proposed
for standardisation, but there was no follow-up.

Recently, user-friendly and easy-to-use metadata formats have been intro-
duced, along with editors to support developers in the creation of descriptions
for REST APIs. Among others, popular description formats are the Open API
Specification, which provides human-readable API descriptions based on YAML
and JSON. RAML is a YAML-based language for describing RESTful APIs.
API Blueprint is a documentation-oriented web API description language, which
provides a set of semantic assumptions laid on top of the Markdown syntax.
The Hydra specification, which is currently under massive development, aims to
enrich current web APIs with tools and techniques from the semantic web area.

Table 1 is an extension of the one presented in [15] to compare the number of
questions posed in Stack Overflow and the number of Git stars (showing appre-
ciation to a project) received by the four description models under study. The
increasing number of available descriptions highlights the growing popularity
of descriptions, and the relevance of tools that support the creation, publica-
tion, use and maintenance of service descriptions. The common limitation of
such models is the lack of semantic descriptions, which motivated our previous

A Practical Approach to Services Composition 133

Table 1. Comparison of API description models (at May 27, 2018).

Detail/Model API Blueprint RAML WADL OpenAPI Spec

Format Markdown YAML XML YAML, JSON

Licence MIT ASL2.0 Sun ASL 2.0

Version Format 1A revision 9 1.0.1 31 August 2009 3.0.1

Initial commit Apr 2013 Sep 2013 Nov 2006 Jul 2011

Pricing plan Yes Yes No No

StackOverflow Questions 2015 88 153 86 13

2016 61 168 84 166

2017 40 174 74 319

2018 15 56 33 218

Github Starsub Stars 2015 1,819 1,058 N/A 2,459

2016 X X X

2017 5,390 2,735 6,360

2018 6566 3060 9836

Google Search 985K 1M 486K 8M

paper [3]. In order to be effective, we extended the most popular model, Ope-
nAPI, to support semantic-enabled tools for describing, discovering, and then
compose APIs.

3 A Light Semantic Web API Description Model

The OpenAPI is the most promising description model since it defines a simple
format to specify descriptions supported by a broad set of vendor-neutral API
tools, whose development involves a massive community of active users. Such
tools provide significant support to almost every modern programming languages
to create and test APIs. Moreover, the OpenAPI Initiative is an open source
project sustained by relevant stakeholders, including Google, IBM, Microsoft
and PayPal. There are several repositories collecting API REST described using
OpenAPI, such as SmartAPI 7 and APIs.guru8.

An OpenAPI description is a YAML or JSON document that contains a list
of resources and a list of operations that can be applied to those resources. An
example is provided in Listing 1.1, which describes the Google Books API. Notice
that the API is described by name:value pairs of strings without any semantics.

We propose to extend such descriptions by inserting annotations (i.e., links
to ontology classes and ontology properties) through the use of the JSON-LD9

format. JSON-LD provides (i) a universal identification mechanism for JSON
objects through the use of Internationalized Resource Identifiers (IRIs); (ii) a way
to disambiguate shared keys between different JSON documents through IRIs
mapping and context; (iii) the possibility to annotate the strings with indications

7 http://smart-api.info/registry.
8 https://apis.guru/openapi-directory/.
9 https://json-ld.org/spec/latest/json-ld/#basic-concepts.

http://smart-api.info/registry
https://apis.guru/openapi-directory/
https://json-ld.org/spec/latest/json-ld/#basic-concepts

134 M. Cremaschi and F. De Paoli

on the used language; and (iv) a way to associate data types with values (e.g.,
dates, times, etc.).

Listing 1.1. OpenAPI description of the Google Books API.

1 "paths": {
2 "/volumes": {
3 "get": {
4 "parameters": [{
5 "name": "title", [...]
6 }],
7 },
8 "responses": {
9 "200": {

10 "schema": {
11 "title": "result",
12 "type": "object",
13 "properties": {
14 "isbn": { "type": "string"},
15 "author": { "type": "string" },
16 "title": { "type": "string" }, [...]

The marriage between JSON-LD and OpenAPI descriptions occurs through
the introduction of the semanticAnnotations property (e.g., Listing 1.2, line 8
and 27), which is composed of two parts: the definition of a context, by the
keyword @context (e.g., line 9 and 28), to set short names for the reference
ontologies used throughout the description; and a list of annotations for param-
eters (input values) and responses (output values). Each annotation is a pair to
annotate the name, introduced by the keyword @id (e.g., line 14 and 33), and
the value, introduced by the keyword @type (e.g., line 15 and 34). Annotations
are IRIs that uniquely identify elements.

Listing 1.2. Semantic OpenAPI description of the Google Books API.

1 "basePath": "/books/v1",
2 "paths": {
3 "/volumes": {
4 "get": {
5 "parameters": [{
6 "name": "title", [...]
7 }],
8 "semanticAnnotations": { /** Input semantics **/
9 "@context": {{

10 "dbp": "http :// dbpedia.org/property/",
11 "xsd": "http ://www.w3.org /2001/ XMLSchema #"
12 },
13 "title": {
14 "@id": "dbp:title",
15 "@type": "xsd:string"
16 }
17 },
18 "responses": {
19 "200": {
20 "schema": {
21 "type": "object",
22 "properties": {
23 "isbn": { "type": "string" },
24 "author": { "type": "string" },
25 "title": { "type": "string" }
26 },
27 "semanticAnnotations":{ /** Output semantics **/
28 "@context": {
29 "dbp": "http :// dbpedia.org/property/",
30 "xsd": "http ://www.w3.org /2001/ XMLSchema #"
31 },
32 "isbn": {
33 "@id": "dbp:isbn",
34 "@type": "xsd:integer"
35 },
36 "author": {
37 "@id": "dbp:author",
38 "@type": "xsd:string"

A Practical Approach to Services Composition 135

39 },
40 "title": {
41 "@id": "dbp:title",
42 "@type": "xsd:string"
43 }, [...]

4 Composition Types and Rules

In this context, we consider the composition of information services and inter-
ested in mashing up results from independent services to deliver a comprehen-
sive answer to users’ requests, or to prepare data coming from a set of services
to invoke another service. We call the former merge composition and the latter
sequence composition. Merge composition involves more services that are invoked
in parallel with the same input data, and the results are composed [11]; while
sequence composition involves a service which is invoked with input data that
are coming from one (data adaptation) or more (data mash-up) services.

Dealing with automatic sequence composition, semantic compatibility needs
to be verified. In this context, semantic compatibility occurs when a semantic
relationship holds between the semantic classes10 of output properties of an API
and input parameters of another API. In such cases, output properties can be
used as input parameters, possibly after some transformations (Fig. 1).

Fig. 1. Schema of sequence composition.

To evaluate semantic compatibility, we can define four rules:

Rule 1: single ontology, same concepts. If annotations refer to the same
ontology, and name/value pairs refer to the same concept, or two concepts in
relation owl:sameAs, then the composition is straightforward since they are
compatible (see Fig. 2(1)).

Rule 2: different ontologies, same concepts. If annotations refer to differ-
ent ontologies (see Fig. 2(2)), we need to verify if the annotations of involved
name/value pairs are equivalent (i.e., they refer to the same ontology concepts
or property). For example, some ontologies such as DBPedia11 and Wiki-
data12 provide the properties owl:equivalentProperty and owl:equivalentClass
to address the issue. These properties, however, are not supported by all
ontologies, therefore some Ontology matching [4] techniques may need to be
exploited to check for compatibility.

10 https://www.w3.org/TR/owl2-syntax/#Classes.
11 https://dbpedia.org.
12 https://www.wikidata.org.

https://www.w3.org/TR/owl2-syntax/#Classes
https://dbpedia.org
https://www.wikidata.org

136 M. Cremaschi and F. De Paoli

Rule 3: single ontology, different concepts in relation to each other.
If annotations refer to the same ontology, and name/value pairs refer to dif-
ferent ontology concepts or properties, then values’ compatibility need to be
checked. If between the involved concepts relations such as subclass and sub-
property hold, then they may be compatible and the composition may occur.
An example is shown in Figure see Fig. 2(3), where the annotation @type:
dbp:zipCode refers to a subproperty of dbp:postalCode. Therefore, API 1 and
API 2 are compatible.

Rule 4: different concepts not related to each other. If annotations of
the name/value pairs refer to different ontology concepts or properties in the
same ontology or different ontologies, and among these elements none of the
above rules apply, compatibility may occur after a transformation (e.g., by
invoking a third-party service). For example (see Fig. 2(4)), if API 1 returns
a mail address, and API 2 requires latitude and longitude values as input
parameters, then a third API is needed to perform the conversion.

Fig. 2. Sequence composition: examples of the four compatibility cases.

Let’s consider a use case to discuss the composition rules described above.
Assume we seek an application that helps students to retrieve information to
access textbooks. The application should provide information about different
options: bookshops or e-commerce purchase, library consultation, or free down-
load. The composition related to this use case is shown in Fig. 3: we consider
a process that starts with Google Books API, which gets a title in input and
delivers a full report about accessing the requested book in output.

A Practical Approach to Services Composition 137

Fig. 3. Example of a process of composition of the use case.

A first example of sequence composition type, is the service that collects
information about a book from Google Books API13 and calls Amazon Market
API14 to check if it is available. The Semantic OpenAPI Description of Amazon
Market API is in Listing 1.3. The semantic annotation in line 6 finds a corre-
spondence in the description of the Google Books API, in line 33 of Listing 1.2;
in both descriptions the concept of ISBN is described with the same semantic
annotation. Therefore, the services can be composed (rule 1).

Listing 1.3. The input part of the description of the Amazon Market API.

1 "get": {
2 "parameters": [{
3 "name": "IsbnItem", [...]
4 }],
5 "semanticAnnotations": {
6 "IsbnItem": {
7 "@id": "dbp:isbn",
8 "@type": "xsd:integer"
9 }, [...]

A second example is the sequence composition of the Google Books API, the
Library API, and the Google Transit API: first the Library API is invoked to
check the presence and availability of the book, and then the Google Transit
API is invoked to check the existence of public transport to reach the library.

The composition of Google Books API and the Library API can be performed
according to rule 1, and rule 3. The annotations on line 8 and line 16 of Listing 1.4
are compatible with the annotations in line 8 and 16 of Listing 1.2 (rule 1). The
parameter on line 12 of Listing 1.4 is compatible with the property present in
line 36 of Listing 1.2 since the relation rdfs:SubPropertyOf holds between them
(rule 3).

Listing 1.4. Extract from the description of the Library API.

1 "get": {
2 "parameters": [
3 { "name": "Isbn" },
4 { "name": "author" },
5 { "name": "title" }
6],
7 "semanticAnnotations": {
8 "Isbn": {
9 "@id": "dbp:isbn",

10 "@type": "xsd:integer"
11 },
12 "author": {
13 "@id": "dbp:writen",
14 "@type": "xsd:string"
15 },

13 https://developers.google.com/books/.
14 https://developer.amazonservices.it/gp/mws/docs.html.

https://developers.google.com/books/
https://developer.amazonservices.it/gp/mws/docs.html

138 M. Cremaschi and F. De Paoli

16 "title": {
17 "@id": "dbp:title",
18 "@type": "xsd:string"
19 }, [...]

The composition between the Library API and the Google Transit API can-
not be performed directly because the first API returns the mail address of
a library in text format, while the Google Transit API gets geographic coor-
dinates as input. For this reason, between the two compositions a third API
(Google Maps geocoding API) is used to perform geocoding (rule 4). Listing 1.5
shows the annotations of the Google geocoding API.

Listing 1.5. Extract from the description of Google geocoding API.

1 "get": {
2 "parameters": [
3 { "name": "address" }
4],
5 "semanticAnnotations": {
6 "address": {
7 "@id": "dbp:address",
8 "@type": "xsd:string"
9 },

10 }
11 },
12 "responses": {
13 "200": {
14 "location": {
15 "properties": {
16 "lat": { "type": "number" },
17 "long": { "type": "number" }
18 },
19 "semanticAnnotations": {
20 "lat": {
21 "@id": "dbp:latitude",
22 "@type": "xsd:float"
23 },
24 "long": {
25 "@id": "dbp:longitude",
26 "@type": "xsd:float"
27 }, [...]

Now that all the information on the different ways to get access to the text-
book have been collected, we can compose the results to deliver the requested
report to the user.

Dealing with merge composition, we need to verify the semantic compatibility
of at least two different outputs (Fig. 4).

Fig. 4. Schema of merge composition.

To evaluate semantic compatibility in the merge composition, we can define
an additional rule:

A Practical Approach to Services Composition 139

Rule 5: concepts as unique identifiers. If two or more descriptions share
compatible concepts (i.e., they are linked by properties like owl:sameAs,
owl:equivalentClass, rdfs:subClassOf, or rdfs:subPropertyOf), and these con-
cepts uniquely identify the represented resources (e.g., ISBN for a book, VAT
ID for a company, BARCODE for a products), then the outputs of the APIs
can be merged.

The Listing 1.6 is a fragment of the Archive.org API15 description; as shown
in line 10, 14, 18, respectively the annotation of the output properties, ISBN,
title, author; it is possible to observe how these properties are compatible with
the response of Google Books API (Listing 1.1). According to rule 5, the merge
composition can occur if compatible properties allow us to conclude that out-
puts refer to the same resources. In the use case, the ISBN can be adopted as
unique identifier for books, thus allowing composition of outputs into the final
comprehensive report.

Listing 1.6. Extract from the output part of the description of the Archive API.

1 "200": {
2 "Book": {
3 "type": "object",
4 "properties": {
5 "ISBN": { "type": "string" },
6 "title": { "type": "string" },
7 "author": { "type": "string" }, [...]
8 },
9 "semanticAnnotations": {

10 "ISBN": {
11 "@id": "dbp:isbn",
12 "@type": "xsd:integer"
13 },
14 "title": {
15 "@id": "dbp:title",
16 "@type": "xsd:string"
17 },
18 "author": {
19 "@id": "dbp:author",
20 "@type": "xsd:string"
21 }, [...]

5 AutomAPIc: Composition of REST APIs

AutomAPIc is a comprehensive tool to manage semantic descriptions and
input/output composition of services. In this paper, we concentrate on the
the description editor, which supports semi-automatic creation of semantic
descriptions, and automatic composer, which supports compatibility matching.
AutomAPIc is available via Git repository16. The Fig. 5 shows the architecture
of the tool.

It is possible to identify 6 main components: (i) Description Editor, for the
definition and management of API descriptions in OpenAPI format; (ii) Descrip-
tion Annotator, for adding semantic annotations; (iii) Composition Editor, which
allows for the selection of a set of composable APIs by the user; (iv) API Connec-
tor, component for automatic identification of the composable APIs in relation
15 http://blog.archive.org/developers/.
16 https://bitbucket.org/disco unimib/automapic-tool/.

http://blog.archive.org/developers/
https://bitbucket.org/disco_unimib/automapic-tool/

140 M. Cremaschi and F. De Paoli

Fig. 5. Architecture of AutomAPIc tool.

to the composition rules described above; (v) Ontology Connector, component to
extract semantic relations by queries to the LOD Cloud17 with SPARQL query;
(vi) Composer API, for the execution of the composition previously defined by
the user.

5.1 Getting OpenAPI Descriptions

The description process is semi-automatically managed by augmenting exist-
ing API descriptions, which can be retrieved from existing repositories (e.g.,
ApisGuru, SmartAPI), or created manually using the Description Editor. These
descriptions are represented in JSON or YAML format, and include all relevant
information such as available HTTP operations, the list of input parameters
and output responses for each operation. The process of creating a description
is detailed in Algorithm 1.

Algorithm 1. Retrieve or create API description.
Result: API description

1 if description is available then
2 retrieve description from existing repositories and registries of services;
3 else
4 create it manually using the Description Editor;

5.2 Adding Semantic Annotation

If semantic annotations are missing, we need to annotate input and output data.
To annotate output data, AutomAPIc provides users with a service that collects
a set of output values of GET calls into a table and applie Semantic Table Inter-
pretation [17] techniques to understand such values and identify the annotations
to be added.

Table interpretation consists of associating data with semantic concepts in an
ontological structure, within the LOD Cloud, which aims to represent the knowl-
edge of a certain domain through the connections that exist between these same
elements. The GET method is mainly considered since it is the most frequent.
17 http://lod-cloud.net.

http://lod-cloud.net

A Practical Approach to Services Composition 141

In this way API’s parameters and properties can be managed by a computer.
The code related to the Table Interpretation technique used in this proposal is
available through a Git repository18.

The input parameters are annotated differently because it is not possible to
transform the parameters into a table. AutomAPIc provides a service based on
Natural Language Processing [2] techniques. In particular the Stanford CoreNLP
tools19 [9] has been adopted. These tools provide several libraries that allow for
the extraction of entities from API descriptions, which will then be associated
with concepts. The application of these techniques on hundred descriptions from
the repository APIs.guru led to the correct identification of entities and prop-
erties for 93% of the cases. Algorithm 2 defines the process to insert semantic
annotations in API descriptions. This algorithm revises and extends the one
presented in [3].

Algorithm 2. Create and add semantic annotation to API descriptions.
Data: API description
Result: API description with semantic annotations

1 Detect all resources’ end-point;
2 foreach end-point do

// collect data
3 repeat
4 generate input parameters following the API description;
5 generate semantic annotation of the input parameters using NLP technique;
6 insert semantic annotation of the input parameters in API description;
7 if input parameters cannot be generated then
8 take input parameters from the user

9 invoke API with input parameters;
10 collect results;

11 until at least N results are collected; /* default N=10 */
// create tables

12 foreach results do
13 create a header row with API properties;
14 fill content-cells with values from inputs and responses;

// add semantic annotations
15 foreach tables do
16 apply table interpretation technique;
17 show table to the user;
18 if table annotation is not complete then
19 show related vocabularies and/or alternatives to the user;
20 ask the user to manually add links;

21 if the user wants to review the annotations then
22 show related vocabularies to the user;
23 let the user confirm or modify the links;

24 insert semantic annotation of properties in API description;

5.3 Performing Automatic Composition

The presence of semantic annotations allows the automatic identification of the
composable APIs given a starting API. The API composer component auto-
matically shows the compatible APIs. The possible combinations have been

18 https://bitbucket.org/disco unimib/mantistable-tool/.
19 https://stanfordnlp.github.io/CoreNLP/index.html.

https://bitbucket.org/disco_unimib/mantistable-tool/
https://stanfordnlp.github.io/CoreNLP/index.html

142 M. Cremaschi and F. De Paoli

previously calculated by the API connector, through the use of SPARQL queries,
in order to apply the compatibility rules (Algorithm3).

Algorithm 3. Identification of compatibility between the APIs.
Result: Composed APIs

1 inserting a new API into the system;
2 parsing of the description;
3 extraction of semantic annotations;
4 foreach APIs do
5 creation and execution of SPARQL queries to identify the relationships between the

annotations of the APIs;
6 update the graph of possible compositions;

6 Validation

To verify the validity of the proposed composition approach, we collected a set of
APIs (Table 2) for the creation of a benchmark with characteristics that cover all
possible cases. The chosen APIs comes from various domains, including public
transport, films, books, music and events.

In a second phase the descriptions and their annotations were analyzed, to
identify the possible compositions. Through the combinatorial calculation it is
possible to calculate the maximum number of combinations. In particular, given
20 APIS, using provisions without repetitions (since an API cannot be composed
with itself), the maximum number of compositions is 380.

Fig. 6. List of the possible compositions.

As shown in Fig. 6, depending on parameters and annotations, the actual
combinations are twenty four. AutomAPIc was able to identify the 85% of them.
Table 3 reports the confusion matrix of the results, where attributes are: (i) TP:
number of correctly composed APIs, (ii) FP: number of APIs that were com-
posed but which should not be composed, (iii) FN: number of APIs that were
not composed but that had to be composed, (iv) TN: number of APIs that
were not to be composed and were not composed. The accuracy of the system is
(TP+TN)/Total = 0.99. Going into detail, the combinations that led to compo-
sition failures are mainly three: weak support to manage concepts connected by
the owl:subProperty relation, incomplete relationships between ontologies (e.g.,
DBpedia and KBpedia), and inaccurate semantic annotations of parameters
returned by table interpretation techniques. A discussion on the quality of results
of table interpretation techniques is out of scope of this paper, however interested
readers can refer to [17] for details.

A Practical Approach to Services Composition 143

Table 2. Validation dataset.

API Description Source

GEOCODING Converts an address into
latitude and longitude

Google Maps

MARINE CONDITION Forecast of marine
conditions

World Weather Online

WEATHER FORECAST Weather forecasts Weather Underground

PHOTOS Photos geolocated in a
specific position

Flickr

NEWS List of news NewsAPI

BOOK List of information about
a book

Google

MOVIE List of information about
a film

OMDb API

POI Points of interest of a city Sygic API

LIBRARY List of information about
the availability of a book

Opac Unimib

E-COMMERCE Information regarding the
price of a product

Amazon Market

FREE EBOOK Information on the
presence of a free eBook

Archive.org

PLAYLIST List of songs contained in
a playlist

Spotify

LYRICS Text of a song Musixmatch API

FLIGHTS Airport information Ryanair API

BIKE SHARING List of bicycles available City Bike

EVENTS List of events in a city EventiFul

HOTEL BOOKING List of hotels available on
a specific date on a certain
day

HotelsCombined API

REVIEWS List of reviews of places
and events

TripAdvisor Content API

PUBLIC TRANSPORT List of information about
public transport in a
particular place

Google Transit

RESTAURANTS List of restaurants in a
specific city

Zomato API

Table 3. Confusion matrix.

Tot.= 380 Composed Not - Composed

Composed TP=17 FP=0

Not - Composed FN=3 TN=360

144 M. Cremaschi and F. De Paoli

7 Conclusions and Future Work

The work presented in this paper aims to propose an extension of the OpenAPI
specification to support the semantic annotations of services descriptions and the
automatic composition of services. The goal is to support users without specific
skills to manage semantics annotations, thus encouraging the delivery of seman-
tically annotated descriptions. For this reason, two solutions have been proposed.
For the annotation of input parameters, the use of Natural Language Process-
ing (NLP) techniques has been proposed, while for the annotation of output
properties, a reviewed Table Interpretation approach has been developed. The
validation of the proposal through a subset of real APIs has underlined how the
use of semantic annotations and the definition of a set of composition rules lead
to an effective support to the composition of APIs, even if further development
is necessary to improve both precision and recall. Future work will go in that
direction to consolidate the AutomAPIC tool, along with fully integration with
the Swagger interface. Moreover, further investigations will be conducted to ver-
ify the quality of the table interpretation outputs, which play an important role
in our composition approach. In addition, a user-centric evaluation is planned in
order to verify the ability of users to manage this new type of descriptions with
semantic annotations. Finally, to enhance the automation of the entire process,
we will study how to capture and model the user requirements.

References

1. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web services description
language (WSDL) version 2.0 Part 1: Core language. W3C Recommendation 26,
19 (2007)

2. Chowdhury, G.G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37(1),
51–89 (2003)

3. Cremaschi, M., De Paoli, F.: Toward automatic semantic API descriptions to sup-
port services composition. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.)
ESOCC 2017. LNCS, vol. 10465, pp. 159–167. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67262-5 12

4. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-49612-0

5. Gomadam, K., Ranabahu, A., Sheth, A.: SA-REST: semantic annotation of web
resources. W3C Member Submission 5, 52 (2010)

6. Kopeckỳ, J., Vitvar, T., Fensel, D., Gomadam, K.: hRESTS & MicroWSMO. Tech-
nical report, STI International (2009)

7. Lausen, H., Farrell, J.: Semantic annotations for WSDL and XML schema. W3C
Recommendation, W3C 69 (2007)

8. Lucky, M.N., Cremaschi, M., Lodigiani, B., Menolascina, A., De Paoli, F.: Enrich-
ing API descriptions by adding API profiles through semantic annotation. In:
Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936,
pp. 780–794. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46295-
0 55

https://doi.org/10.1007/978-3-319-67262-5_12
https://doi.org/10.1007/978-3-319-67262-5_12
https://doi.org/10.1007/978-3-540-49612-0
https://doi.org/10.1007/978-3-540-49612-0
https://doi.org/10.1007/978-3-319-46295-0_55
https://doi.org/10.1007/978-3-319-46295-0_55

A Practical Approach to Services Composition 145

9. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The
Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd
Annual Meeting of the Association for Computational Linguistics: System Demon-
strations, pp. 55–60. Association for Computational Linguistics (2014)

10. Martin, D., et al.: OWL-S: semantic markup for web services. W3C Member Sub-
mission 22, 2007–04 (2004)

11. Paulraj, D., Swamynathan, S., Madhaiyan, M.: Process model-based atomic service
discovery and composition of composite semantic web services using web ontology
language for services (OWL-S). Enterp. Inf. Syst. 6(4), 445–471 (2012)

12. Rao, J., Su, X.: A survey of automated web service composition methods. In:
Cardoso, J., Sheth, A. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30581-1 5

13. Roman, D., Kopeck, J., Vitvar, T., Domingue, J., Fensel, D.: WSMO-lite and
hRESTS: lightweight semantic annotations for web services and restful APIs. Web
Semant. Sci. Serv. Agents World Wide Web 31, 39–58 (2015)

14. Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web services
composition: a decades overview. Inf. Sci. 280, 218–238 (2014)

15. Tsouroplis, R., Petychakis, M., Alvertis, I., Biliri, E., Lampathaki, F., Askounis,
D.: Community-based API builder to manage APIs and their connections with
cloud-based services. In: CAiSE Forum (2015)

16. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River
(2005)

17. Zhang, Z.: Effective and efficient semantic table interpretation using TableMiner+.
Semant. Web 8(6), 921–957 (2017)

https://doi.org/10.1007/978-3-540-30581-1_5

Using a Microbenchmark to Compare
Function as a Service Solutions

Timon Back and Vasilios Andrikopoulos(B)

University of Groningen, Groningen, The Netherlands
t.back@student.rug.nl, v.andrikopoulos@rug.nl

Abstract. The Function as a Service (FaaS) subtype of serverless com-
puting provides the means for abstracting away from servers on which
developed software is meant to be executed. It essentially offers an event-
driven and scalable environment in which billing is based on the invoca-
tion of functions and not on the provisioning of resources. This makes
it very attractive for many classes of applications with bursty workload.
However, the terms under which FaaS services are structured and offered
to consumers uses mechanisms like GB–seconds (that is, X GigaBytes
of memory used for Y seconds of execution) that differ from the usual
models for compute resources in cloud computing. Aiming to clarify these
terms, in this work we develop a microbenchmark that we use to evalu-
ate the performance and cost model of popular FaaS solutions using well
known algorithmic tasks. The results of this process show a field still
very much under development, and justify the need for further extensive
benchmarking of these services.

Keywords: Function as a Service (FaaS) · Microbenchmark
Performance evaluation · Cost evaluation

1 Introduction

The wide adoption of cloud-native enabling technologies and architectural con-
cepts like containers and microservices in the recent years has created an increas-
ing interest in serverless computing as a programming model and architecture.
In this model, code is executed in the cloud without any control of the resources
on which the code runs [1]. Serverless encompasses a wide range of technologies,
that following the discussion in [13] can be grouped into two areas: Back-end as
a Service (BaaS) and Function as a Service (FaaS). BaaS is especially relevant
for mobile application development and is closely related to the SaaS delivery
model, allowing the replacement of server-side components with third party ser-
vices. Google’s Firebase1 is an example of such a service. FaaS, on the other
hand is closer to the PaaS model, allowing individual business operations to be
built and deployed on a FaaS platform. The key difference between FaaS and
1 Firebase https://firebase.google.com/.

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 146–160, 2018.
https://doi.org/10.1007/978-3-319-99819-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_11&domain=pdf
http://orcid.org/0000-0001-7937-0247
https://firebase.google.com/

Using a Microbenchmark to Compare Function as a Service Solutions 147

PaaS is the scaling scope as discussed by Mike Roberts2: in PaaS the developer
is still concerned with scaling an application up and down as a whole, while FaaS
provides complete transparency to the scaling of functions, since this is handled
by the platform itself.

There are a number of claimed benefits of serverless computing, and by
extension also of FaaS, identified for example by [13]. More importantly, scaling
becomes the responsibility of the platform provider and the application owner
is charged only for how long a function is running as a response to its invo-
cation (within a billable time unit—BTU). This is a big departure from the
“traditional” model of cloud computing so far, at least when compared to other
compute–oriented solutions like VM– and Container as a Service, where the
owner is charged for provisioning these resources irrespective of their utilization.
As a result, FaaS is perceived as the means to achieve significant cost savings,
especially in the case of bursty, compute-intensive workloads [1] such as the ones
generated by IoT applications.

At the same time, however, the pricing model of FaaS solutions can be diffi-
cult to decipher and surprisingly complex to model [2]. FaaS users are typically
charged based on two components: number of function invocations across all
functions belonging to the user, and function execution duration measured, con-
fusingly enough, in GB–seconds per billing cycle. The first metric is relatively
straightforward but potentially extremely dangerous in the case of decomposing
application functionality into too many fine–grained functions that result into
ever expanding cumulative costs. The second one is based on the practice of
most FaaS providers, as discussed in the following section, of requiring the user
to define a fixed memory amount to be allocated for each function execution.
Users are then charged for the BTUs (in seconds) for which a function executed,
multiplied by the allocated (or peak in the case of one provider) amount of mem-
ory in GB, times the per GB–seconds cost defined by the provider. FaaS adoption
essentially also means loss of control over the performance of the functions them-
selves, since their execution is hidden under multiple layers of virtualization and
abstraction by the platform providers, resulting into inconsistent performance
results even for the same service and configuration [13].

With the aim of investigating and clarifying these two phenomena and their
impact on FaaS adopters, this paper discusses the use of a microbenchmark in
order to study how different FaaS solutions, and especially ones in the public
cloud deployment model, behave in terms of performance and cost. More specifi-
cally, Sect. 2 presents the FaaS solutions that we will consider for the rest of this
work and discusses related work. Section 3 incorporates a small set of algorithmic
tasks with known computational and memory requirements in a microbenchmark
of our design and implementation. Section 4 presents the results of executing the
benchmark in a time window and discusses our findings while evaluating the
selected FaaS solutions. Based on these findings we provide a series of lessons
that we learned and that we believe are relevant for FaaS adopters in Sect. 5.
Finally, Sect. 6 concludes this work with a short summary and future work.

2 For more on the subject, see https://martinfowler.com/articles/serverless.html.

https://martinfowler.com/articles/serverless.html

148 T. Back and V. Andrikopoulos

2 Background and Related Work

Since the introduction of Amazon Web Services Lambda3 back in 2014 all major
cloud providers have developed their own FaaS solution. Table 1 summarizes and
compares the offerings of the most popular public Cloud providers [12]. More
specifically, and in alphabetical order:

– AWS Lambda was the first FaaS public offering. At the time of writing, it offers
memory usage to be specified in the [128, 3008] MB interval in increments of
64 MB. It offers the most flexibility in terms of configuration options, and is
the more mature of implementations from the offerings investigated by this
work.

– Google Cloud Functions4 is in beta status since its launch in February 2016.
While the least flexible in terms of configuration options, Cloud Functions is
the only of the FaaS solutions that clearly defines the amount of allocated
CPU cycles per memory allocation option in its documentation.

– IBM Cloud (formerly known as IBM Bluemix) Functions5 is based on the
Apache OpenWhisk6 FaaS platform implementation, allowing for easy hybrid
deployment. It requires all functions to run as Docker containers, which allows
for function development in any language.

– Microsoft Azure Functions7, also launched in 2016, differs significantly from
the other solutions in the sense that it does not expect the user to specify a
fixed amount of memory to be used by the function in advance. The service
bills only for the used memory per invocation, rounded up to the nearest
128 MB step, using at the same time the smallest billable time unit (1 ms).

In terms of related work, and considering how recently serverless computing
was introduced, existing literature on the subject is relatively limited. Van Eyk
et al. [3] for example identify the need for community consensus on what con-
stitutes FaaS, and set the goal of developing an objective benchmark of FaaS
platforms as a target for future work. The approaches presented by [8,15] inves-
tigate the cost of FaaS solutions as an infrastructural platform for the hosting
of microservices. Their interest is in evaluating alternative deployment scenarios
involving FaaS services and not with the performance of FaaS solutions them-
selves. The Costradamus approach [6] aims to measure the computation waste in
FaaS usage accrued by monitoring function calls duration and contrasting them
to billed BTUs. Both [5,14] use microbenchmarking of FaaS solutions in order
to compare providers and calibrate their proposed systems, but for these works
the comparison of providers is incidental and not the main focus. These works
are therefore relevant but not directly related to the goals set for this work.

From more related works, [7,10] set out to explicitly benchmark and compare
FaaS solutions in terms of performance and cost. While useful and insightful in
3 AWS Lambda: https://aws.amazon.com/lambda/.
4 Google Cloud Functions: https://cloud.google.com/functions/.
5 IBM Cloud: https://console.bluemix.net/openwhisk/.
6 Apache OpenWhisk: https://openwhisk.apache.org/.
7 Microsoft Azure Functions: https://azure.microsoft.com/services/functions/.

https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://console.bluemix.net/openwhisk/
https://openwhisk.apache.org/
https://azure.microsoft.com/services/functions/

Using a Microbenchmark to Compare Function as a Service Solutions 149

Table 1. Comparison of the offerings by the major Cloud Service Providers (May 2018)

Amazon WS

Lambda

Google Cloud

Functions

IBM Cloud

Functions/Apache

Open-Whisk

Microsoft Azure

Functions

Memory Min 128MB 128MB 128MB 128MB

Memory Max 3008MB 2048MB 512MB 1536MB

Timeout Max 5min 9min 5min 10min

Billing Interval 100ms 100ms 100ms 1ms

Memory Allocation Fixed Fixed Fixed Dynamic

Natively Supported

Languages

C#

Go

Java

Node.js

Python

Node.js Java

Node.js

PHP

Python

Swift

. . .

C#

F#

Node.js

HTTP Invocation � � � �
HTTP plus

Authentication

� — � �

Free Tier (One

time/Periodical)

�/� �/� �/� �/�

their own right, both works use much more coarse–grained tasks for their evalu-
ation, focusing on concurrency and latency, respectively. The work by Malawski
et al. [11] provides similar conclusions to ones discussed by this work, and in some
ways supplements our findings with further insights; however it only discusses
performance issues with FaaS solutions and does not investigate their impact on
cost.

With this work, we focus on investigating the differences between the FaaS
solutions presented above with respect to their compute/memory allocation poli-
cies, and their consequent effect on the cost model of cloud functions running
on them.

3 Microbenchmark Design

As discussed in the previous section, and given the current lack of a FaaS bench-
mark, it becomes a common and necessary practice to use a microbenchmark
for performance evaluation purposes. We chose a microbenchmark for this pur-
pose since we aim to measure a basic feature of FaaS services (compute/memory
allocation) for which a simple program should suffice, and because microbench-
marking is quite popular for cloud services evaluation [9]. The faas-µbenchmark
is available online8 and it actually contains more functions than the ones we
explain in the following. In the interest of space, we limit the presentation of
results to only three major functions from the microbenchmark.

8 faas-µbenchmark: https://github.com/timonback/faas-mubenchmark.

https://github.com/timonback/faas-mubenchmark

150 T. Back and V. Andrikopoulos

Functions

The following functions were selected for inclusion in the faas-µbenchmark based
on their characteristics with respect to their computational and memory require-
ments:

– Fast Fourier Transformation (FFT): performs an FFT computation using the
Cooley-Tukey method as implemented by the fft-js library of Node.js (ver-
sion 0.0.11)9 for an increasing amount of discrete signals k = 2i, i ∈ N

+.
The Cooley-Tukey method has computational complexity O(NlogN) and is
therefore representative of a moderate load to the system.

– Matrix Multiplication (MM): multiply square matrices of increasing size with-
out any optimization (i.e. with complexity O(n3)); the length of the matrices
is defined as n = i × 100, i ∈ N

+, i.e. it increases by a step of 100 starting
from 100.

– Sleep (S): sleep for t = 2i, i ∈ N
+ ms. This function is selected for evaluating

the sensitivity of the FaaS offering to its invocation. Measured execution
durations should in principle be equal to the specified parameter t, plus some
initialization time.

Table 2 summarizes the characterization of the selected functions:

Table 2. Relative resource requirements for the benchmarking functions

Function Computational Memory

Fast Fourier Transformation (FFT) Moderate Moderate

Matrix Multiplication (MM) High High

Sleep (S) Minimum Minimum

The microbenchmark itself is highly configurable, allowing for subsetting or
extending the parameter values for each function as desired by the user. All
functions are implemented on top of the Node.js JavaScript runtime, since it is
the execution environment that is common across all FaaS offerings (see Table 1).

Instrumentation

In order to reduce the complexity of the deployment process of the defined
functions across different providers we decided to use the Serverless framework10,
as also adopted by [11]. This framework allows for the deployment of code to the
majority of FaaS/serverless solutions by a simple command, assuming of course
that an account has been created with the respective provider and the necessary
authentication credentials have been provided to it. Since FaaS providers expect
9 https://www.npmjs.com/package/fft-js.

10 Serverless: https://serverless.com/.

https://www.npmjs.com/package/fft-js
https://serverless.com/

Using a Microbenchmark to Compare Function as a Service Solutions 151

different bindings for functions executed in their platform we created a custom
minimal wrapper for each provider which reads the passed-in parameters, calls
the appropriate function, and returns the result. The called algorithm is the
same for every provider. The wrapper function is provided together with the
rest of the microbenchmark as discussed above.

4 Services Evaluation

In the following we discuss how we use the faas-µbenchmark to compare the
FaaS solutions presented in Sect. 2.

4.1 Evaluation Setup

Apache OpenWhisk is used as the baseline for the comparison between solu-
tions. The February 2018 version from the OpenWhisk GitHub repository was
deployed inside a VirtualBox machine (version 5.2.8) running Ubuntu Linux
14.04 LTS with 4 GB of memory allocated to it, on a notebook with a quad–core
Intel i7–6700HQ (@2.6 GHz) and 8 GB of memory in total. The three functions
discussed in the previous section (i.e. FFT, MM and S) are deployed on it, and
on the FaaS solutions offered in the public cloud deployment model using the
Serverless framework. Five configurations for each FaaS service are selected for
comparison purposes by setting the allocated memory to 128, 256, 512, 1024 and
2048 MB, and the functions are deployed in all of these configurations.

Looking at the comparison in Table 1, we need to clarify that IBM Cloud
Functions/Apache OpenWhisk has a maximum allocation limit of 512 MB per
function. However by building on Docker’s memory management, more memory
is addressable for function execution without terminating due to insufficient
memory. As we will show in the following, this works quite well for most of the
experiments we performed.

Moving on, in order to avoid potential differences among regions we try
to keep the location of the deployments comparable (more specifically, AWS
Lambda: us-east-1, Google Cloud Functions: us-central-1, Microsoft Azure
Functions: Central US) with the exception of IBM Cloud Functions that were
deployed in the United Kingdom region since this could not be changed for the
free tier version that we are using for all experiments. The functions are invoked
by a local machine at the University of Groningen using simply the curl command
on the Linux OS; as we will discuss in the following, the location of the invoker
does not affect any measurements, and it can therefore be placed anywhere it is
deemed more convenient. Timeout is set for all solutions and configurations at
300 s (i.e. 5 min) except in the case of Google Cloud Functions where it is set to
540 s (9 min).

The microbenchmark was executed across 3 consecutive working days in the
end of April 2018, resulting in three measurements per function and parameter
for each service configuration. For each microbenchmark run we execute all three
functions in Table 2 sequentially with their parameters ranging over the following
intervals (i ∈ N

+ in all cases):

152 T. Back and V. Andrikopoulos

1. S: t = 2i, i ∈ [1, 13]
2. MM: n = i × 100, i ∈ [1, 10]
3. FFT: k = 2i, i ∈ [13; 21]

For each invocation we are measuring the execution duration as reported by
the FaaS provider (i.e. without network latency affecting the measurements),
the execution status (i.e. success or reported type of error), the billed duration,
and the incurred cost for the function execution. All measurements are collected
from the respective logs of each service and are aggregated as CSV files for each
function for further processing. The measurements we report and analyze in the
following are also available in the faas-µbenchmark repository under /results/.

4.2 Microbenchmark Results and Findings

Note: for the rest of this discussion we will be using the convention FunM, as
a shorthand for function Fun ∈ {FFT,MM,S} executed on a service configura-
tion with M MBs of allocated memory, where M ∈ {128, 256, 512, 1024, 2048},
across all providers of interest. MM1024, for example, refers to the execution
of the matrix multiplication function in configurations with 1024 MB of allo-
cated memory in all providers, for all parameter values n = [100, 1000] with step
100. For purposes of space saving, in the following we are also using only the
provider’s name instead of the full name of the FaaS solution, with the exception
of Apache OpenWhisk which is simply shortened to OpenWhisk.

Fig. 1. Measured durations for S128 across all providers (log2–log plot). The straight
lines show the fitted linear models to the observed data per provider.

Using a Microbenchmark to Compare Function as a Service Solutions 153

Table 3. Mean Square Error (MSE) for linear regression to the observed data of S
per provider for the different memory configurations.

Configuration Provider

Amazon Google IBM Microsoft OpenWhisk

S128 265.82 2597.61 1.63 22.4 6.18

S256 62.46 1589.33 12.4 57.72 24.1

S512 41.96 726.93 1.79 20.04 12.06

S1024 31.62 757.52 2.03 14.63 15.96

S2048 12.31 851.3 2.4 18.75 5.72

mean (MSE) 81.03 1304.54 4.05 26.71 12.8

Sleep: With respect to function S, Fig. 1 shows the measured execution durations
for S128. As it can be seen in the figure, the benchmarked FaaS solutions behave
for the most part as expected, with a linear relation between execution time
and sleep parameter t. This holds true however only after a sufficient large value
of t—64 ms in our measurements—which is also around half of the BTU for all
providers (except Microsoft, see Table 1). The solution that delays the most to
converge into a linear relation with t, and at the same time exhibits the most
variance, is actually the one by Google. This phenomenon appears also in the
rest of the memory allocation configurations of this provider, as summarized
by Table 3 which presents the mean square error (MSE) for the fitting of the
measurements to a linear model with parameter t. The lm function of the R
programming language (version 3.4.3) is used for the model fitting in Table 3.
While the error in most configurations can be deemed acceptable, in the case of
S128 as illustrated in Fig. 1 it is roughly ±51 ms for the 128 MB configuration of
Google Cloud Functions—that is, 50% of the service’s BTU—and still an order
or two magnitudes larger than the other ones in Table 3.

Matrix Multiplication: For MM we discuss our findings for the largest configura-
tions (i.e. 1024 and 2048 MB), since we know that this function is the heaviest, at
least in theory, of the functions that we include in the microbenchmark. Similar
findings, but with the observed phenomena proportionally exaggerated are also
concluded from the measurements in smaller configurations.

Figure 2 illustrates the collected measurements for progressively increasing
matrix size n. Since we are in the normal–normal scale and we expect O(n3)
complexity, we use the loess method of R for local polynomial regression fitting
instead of the linear one. Looking at the measurements, it appears that the policy
of Microsoft Azure Functions to assign memory dynamically instead of allocating
it in advance is resulting in the relative worse among providers performance
for this function as n grows. Further investigations in the effect of memory
allocation in such calculations is necessary. On the other end of the spectrum,
the OpenWhisk and consequently the IBM Cloud Functions solutions appear to
be better able to handle the memory and computational requirements of this task

154 T. Back and V. Andrikopoulos

Fig. 2. Execution of MM1024 & MM2048 across all providers (norm–norm plots).

when compared to the other providers. It also seems that adding more memory
to Amazon and Google’s solutions results in better performance. Using only n =
1000 as a reference, the average execution times in these two solutions improve by
31.5% and 17.4%, respectively, when comparing the two configurations. We are
going to use FFT to investigate this improvement in more depth in the following.

Fig. 3. Measured durations of successful executions of FFT128–FFT1024 across all
providers (log2–log plots).

Using a Microbenchmark to Compare Function as a Service Solutions 155

Table 4. Successful executions of FFT across all configurations per parameter k value.

k Provider

Amazon Google IBM Microsoft OpenWhisk

[8192; 131072] 15 15 15 15 15

262144 15 15 12 15 15

524288 12 12 9 15 15

1048576 9 9 0 15 15

2097152 6 6 0 15 13

Total ∼86.7% ∼86.7% ∼71.1% 100% ∼98.5%

FFT: Figure 3 shows the reported execution durations of FFT across the
first four memory configurations for comparison purposes, omitting any error
responses. As it can be seen better in Table 4, only the dynamic memory allo-
cation scheme of Microsoft Azure Functions allows for all values of parameter k
to be calculated successfully. OpenWhisk is able to get additional memory from
the local VM in order to calculate the FFT for k in most of the higher values,
at the clear expense of speed however, as shown in Fig. 3. The figure also shows
that for the rest of the providers, allocating more memory to the function results
in more successful executions as k grows.

Zooming in on the interval of k values for which all FaaS solutions are able
to successfully execute FFT, that is k ∈ [8192; 131072] as shown in Table 4, we
can study better the effect of memory allocation to the overall performance of
each solution.

More specifically, as shown in Fig. 4, the solutions are separated into
two groups. In the first group, the FaaS implementations by Microsoft and
IBM/Apache do not meaningfully benefit from faster execution times by allo-
cating more memory—in the former case because memory is actually allocated
dynamically anyway, and in the latter because of the way OpenWhisk allows for
partially dynamic memory allocation through its interaction with Docker. As
shown in Table 4, however, the latter case can only cope with additional load so
far before it starts producing error responses. In the second group, Amazon and
Google’s implementations clearly benefit from additional allocated memory, not
only in terms of more successful executions, but also in terms of performance.

Focusing now on the cost incurred by the execution of FFT, Table 5 sum-
marizes the cost calculation for all studied solutions11 as cumulative total (sum)
cost including all function invocations and consequent executions, and mean
cumulative cost across configurations of 128 to 1024 MB per provider. While
normalizing the cost per invocation may seem a more attractive option, the use

11 OpenWhisk is deployed in a local VM, and therefore execution costs are not directly
relevant; however for illustrative purposes we use the GB–seconds cost of IBM Cloud
Functions for cost calculations. This makes the comparison between the private and
public, in essence, deployment of OpenWhisk particularly interesting.

156 T. Back and V. Andrikopoulos

Fig. 4. Total duration per configuration and provider for FFT in seconds using only
successful executions, i.e. k ∈ [8192; 131072] (log2–log plot).

Table 5. Cumulative total and average costs per provider across all configurations
for FFT in USD cents (April 2018 prices), respectively. See Footnote 11 for the cost
calculation of OpenWhisk.

Provider

Amazon Google IBM Microsoft OpenWhisk*

sum (cost) 2.832 1.941 0.258 3.305 2.228

mean (cost) 0.708 0.485 0.065 0.826 0.557

of cumulative costs fits better the interest of the consumer on the total cost of
the FaaS service usage, especially given the observed variance we discussed in
the previous.

As it can be seen from Table 5 and further reinforced by Fig. 5, when consid-
ering only successful function executions, IBM Cloud Functions is the most cost
effective solution. Its high error rate due to its inability to deal with larger values
of k has, however, to be taken seriously into consideration. Following on, Google’s
solution produces the next best solution in terms of cost, at the expense of high
variability in its performance. Microsoft’s solution on the other hand seems to be
the most expensive and slow option, but at the time the one being able to scale
better with k. Given the above, AWS Lambda seems to offer a good trade–off
between performance, cost, and ability to cope with the requirements of the FFT
function—but only if enough memory has been allocated per function.

Using a Microbenchmark to Compare Function as a Service Solutions 157

Fig. 5. Cumulative cost per provider and configuration for FFT in USD cents (April
2018 prices) with regression formulas (norm–norm scale).

5 Discussion and Lessons Learned

Before proceeding further, we have to identify the main threats to the validity
of this work:

1. Not sufficient data points were collected during the microbenchmark execu-
tion to ensure the robustness of the findings. This is a known issue with this
work and we plan to run it again for a longer period. Nevertheless, we can
claim that anecdotally, the reported behavior of the FaaS solutions is consis-
tent with any measurements we took outside of the reported ones in different
days of April and May 2018. We are therefore confident in their validity, at
least at this point in time.

2. Function implementation was done exclusively on Node.js; in principle, result
replication is necessary in other programming languages but in the interest
of time this is left as future work. In any case, as shown in Table 1, Node.js is
the only common platform across all examined solutions. Comparing across
programming languages could potentially only dilute the findings.

3. All measurements reported in the previous were taken on the free tier model
offered by platform providers. We do not expect significant deviations when
using the paid model, as the free tier seems to be a discount to have people try
out (new) products. However, further experimentation is necessary in order
to test this hypothesis.

4. The effect of the use of the Serverless framework for cross-provider deployment
was not controlled; however we have no evidence of it affecting the validity
of our measurements.

158 T. Back and V. Andrikopoulos

With respect to the lessons learned by the comparison of the various FaaS
solutions, they can be summarized by the following:

1. The maturity of the examined FaaS solutions varies significantly when consid-
ering their observed performance. Especially Google’s Cloud Functions seems
to justify its label of beta state based on our measurements (see both Figs. 1
and 2).

2. There is a three–way trade–off between performance, cost, and ability to
gracefully scale with each function’s load before running out of memory or
maximum execution time (see Figs. 2 and 3). Notice that there was no mea-
surement with concurrent requests, so it is not possible to comment on the
scaling of each solution with the overall load.

3. Adding more allocated memory only has a significant effect for some of the
providers in terms of performance improvement (Fig. 4) and this has also
been shown by [11]; however if the reliability of a function is important to
the application developer then more memory is definitely recommended.

4. However, in addition to the above, it needs to be taken into account that
while the relation between memory and cost appears to be linear, there is a
significant difference between the coefficients of the cost functions per solution
(see Fig. 5).

5. More extensive benchmarking of FaaS solutions is necessary in order to get a
clearer picture of the state of play in FaaS solutions. As with the related works
discussed in Sect. 2, this can extend beyond compute/memory evaluation to
e.g. network and I/O parameters.

6 Conclusions and Future Work

In the previous sections we developed and used a microbenchmark in order to
investigate two aspects of the Function as a Service (FaaS) sub–type of server-
less computing: the differences in observable behavior with respect to the com-
puter/memory relation of each FaaS implementation by the providers, and the
complex pricing models currently being in use. For this purpose, we chose to
include to our faas-µbenchmark three very common algorithmic tasks (Fast
Fourier Transformation, matrix multiplication, and a simple sleep as a baseline),
and implement them on top of the Node.js environment as the common denomi-
nator across the FaaS solutions under consideration. Executing the microbench-
mark itself produced some unforeseen results with respect to the maturity of the
offered solutions, and provided insights into the relation between performance
and cost for software that is running in this cloud delivery model.

Future work is aimed at addressing the concerns discussed in the previous
section. This entails proceeding with extensive benchmarking of the FaaS solu-
tions across a longer period, considering also additional functions that impose
different computational or memory constraints, and endeavor to clarify further
the relation between memory and CPU cycle allocation. Potential differences
between the perceived performance when functions are being executed in a free

Using a Microbenchmark to Compare Function as a Service Solutions 159

tier or not are also to be investigated. Furthermore, we also plan to expand
the evaluation to OpenLambda [4], which is explicitly positioned as a research–
oriented, non production–ready environment. The comparison with OpenWhisk
as the only other open source solution would be particularly interesting. Finally,
we aim to take the lessons learned by this work and put them into practice
by developing instrumentation that allows application developers to route load
across serverless or “traditional” IaaS resources in order to maximize their cost
efficiency based on the characteristics of the application load.

References

1. Baldini, I., et al.: Serverless computing: current trends and open problems. In:
Chaudhary, S., Somani, G., Buyya, R. (eds.) Research Advances in Cloud Com-
puting, pp. 1–20. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-
5026-8 1

2. Eivy, A.: Be wary of the economics of “serverless” cloud computing. IEEE Cloud
Comput. 4(2), 6–12 (2017)

3. van Eyk, E., Iosup, A., Seif, S., Thömmes, M.: The SPEC cloud group’s research
vision on FaaS and serverless architectures. In: Proceedings of the 2nd International
Workshop on Serverless Computing, pp. 1–4. ACM (2017)

4. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau,
A.C., Arpaci-Dusseau, R.H.: Serverless computation with OpenLambda. Elastic
60, 80 (2016)

5. Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., Recht, B.: Occupy the cloud:
distributed computing for the 99%. In: Proceedings of the 2017 Symposium on
Cloud Computing, pp. 445–451. ACM (2017)

6. Kuhlenkamp, J., Klems, M.: Costradamus: a cost-tracing system for cloud-based
software services. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.)
ICSOC 2017. LNCS, vol. 10601, pp. 657–672. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69035-3 48

7. Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing envi-
ronments. Technical report, April 2018. https://doi.org/10.13140/RG.2.2.28642.
84165

8. Leitner, P., Cito, J., Stckli, E.: Modelling and managing deployment costs of
microservice-based cloud applications. In: Proceedings of IEEE/ACM 9th Interna-
tional Conference on Utility and Cloud Computing (UCC), pp. 165–174, December
2016

9. Li, Z., Zhang, H., O’Brien, L., Cai, R., Flint, S.: On evaluating commercial cloud
services: a systematic review. J. Syst. Softw. 86(9), 2371–2393 (2013)

10. Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., Pallickara, S.: Serverless com-
puting: an investigation of factors influencing microservice performance. In: Pro-
ceedings of the IEEE International Conference on Cloud Engineering (IC2E 2018).
IEEE (2018)

11. Malawski, M., Figiela, K., Gajek, A., Zima, A.: Benchmarking heterogeneous cloud
functions. In: Heras, D.B., Bougé, L. (eds.) Euro-Par 2017. LNCS, vol. 10659, pp.
415–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75178-8 34

12. RightScale: RightScale 2018 State of the Cloud Report (2018). https://www.
rightscale.com/lp/state-of-the-cloud

https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-3-319-69035-3_48
https://doi.org/10.1007/978-3-319-69035-3_48
https://doi.org/10.13140/RG.2.2.28642.84165
https://doi.org/10.13140/RG.2.2.28642.84165
https://doi.org/10.1007/978-3-319-75178-8_34
https://www.rightscale.com/lp/state-of-the-cloud
https://www.rightscale.com/lp/state-of-the-cloud

160 T. Back and V. Andrikopoulos

13. Roberts, M., Chapin, J.: What is Serverless? O’Reilly Media, Sebastopol (2017)
14. Spillner, J.: Exploiting the cloud control plane for fun and profit. arXiv preprint

arXiv:1701.05945 (2017)
15. Villamizar, M., et al.: Infrastructure cost comparison of running web applications

in the cloud using aws lambda and monolithic and microservice architectures. In:
Proceedings of 16th IEEE/ACM International Symposium on Cluster Cloud and
Grid Computing (CCGrid 2016), pp. 179–182, May 2016. https://doi.org/10.1109/
CCGrid.2016.37

http://arxiv.org/abs/1701.05945
https://doi.org/10.1109/CCGrid.2016.37
https://doi.org/10.1109/CCGrid.2016.37

APIComposer: Data-Driven Composition
of REST APIs

Hamza Ed-douibi1(B) , Javier Luis Cánovas Izquierdo1 ,
and Jordi Cabot1,2

1 Internet Interdisciplinary Institute (IN3),
Universitat Oberta de Catalunya (UOC), Barcelona, Spain

{hed-douibi,jcanovasi}@uoc.edu
2 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. More and more companies and governmental organizations
are publishing data on the Web via REST APIs. The increasing number
of REST APIs has promoted the creation of specialized applications aim-
ing to combine and reuse different data sources to generate and deduce
new information. However, creating such applications is a tedious and
error-prone process since developers must invest much time in discover-
ing the data model behind each candidate REST API, define the compo-
sition strategy, and manually implement such strategy. To facilitate this
process, we propose an approach to automatically compose and orches-
trate data-oriented REST APIs. For an initial set of REST APIs, we
discover the data models, identify matching concepts, obtain a global
model, and make the latter available on the Web as a global REST API.
A prototype tool relying on OpenAPI for describing APIs and on OData
for querying them is also provided.

Keywords: REST API · Modeling · OData · OpenAPI
API Composition

1 Introduction

More and more individuals and organizations are sharing their data on the Web,
including governments and research initiatives. Web APIs have been increasingly
used to make these data available on the Web and allow third parties to infer
new information not visible at first glance. In particular, the REpresentational
State Transfer (REST) has become the prominent architectural style mainly due
to its adaptability to the Web, as it allows creating Web APIs by relying only
on URIs and HTTP messages.

This work has been supported by the Spanish government (TIN2016-75944-R
project).

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 161–169, 2018.
https://doi.org/10.1007/978-3-319-99819-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_12&domain=pdf
http://orcid.org/0000-0003-4342-4818
http://orcid.org/0000-0002-2326-1700
http://orcid.org/0000-0003-2418-2489

162 H. Ed-douibi et al.

By enabling a programmatic access to data sources, REST APIs promote the
creation of specialized data-driven applications that combine data from differ-
ent sources to offer user-oriented value-added APIs. Creating such applications
requires API discovery/understanding/composition and coding. Such tasks are
not easy since developers should [2,11]: (i) know the operations and data models
of the APIs to compose; (ii) define the composition strategy; and (iii) implement
an application (usually another Web API) realizing such strategy.

While automatic Web API composition has been heavily studied for the clas-
sical WSDL/SOAP style [20], REST API composition is of broad and current
interest specially after the emergence of new REST API specifications such as the
OpenAPI specification1 and OData2. OpenAPI is a vendor neutral, portable, and
open specification initially based on Swagger3 which allows defining the resources
and operations of a REST API, either in JSON or YAML. The OpenAPI speci-
fication has become the choice of reference to describe REST APIs. As a result,
OpenAPI is at the core of many research initiatives to, for instance, discover
OpenAPI definitions [6,9], provide semantic descriptions for OpenAPI defini-
tions [7,14], identify candidate REST APIs for selection [3], and allow semantic
integration of REST APIs [19]. On the other hand, OData is an open protocol
especially useful to expose and consume data sources as REST APIs.

In this paper we propose a lightweight model-based approach to automat-
ically compose data-oriented REST APIs given an initial set of OpenAPI def-
initions (potentially inferred when not explicitly available). As a result of the
composition, we obtain a global API that hides the complexity of the com-
position process to the user. Indeed, a user queries the global API and, in a
completely transparent way, the global queries triggers a fully automatic process
that accesses the individual APIs and combines their data to generate a single
response.

To facilitate the consumption of the global API, we expose it as an OData
service. OData allows creating resources which are defined according an Entity
Data Model (EDM) and can be queried by Web clients using a URL-based query
language in an SQL-like style. In our approach, this EDM corresponds to the
data schema behind the global API, which is generated during the composi-
tion process based on the discovery of matches between the individual data
schema of each single API. All these schemas are represented as models and
their manipulation (e.g., concept matching or composition) are implemented as
model transformations. Working at the model level helps us focus on the domain
concepts while abstracting from the low level technical details [18].

The rest of the paper is organized as follows. Section 2 describes our approach,
while Sects. 3 and 4 explain its main steps. Section 5 illustrates our approach
using an example. Section 6 presents our tool support. Section 7 discusses some
related works. Finally, Sect. 8 concludes the paper and presents some future
work.

1 www.openapis.org.
2 www.odata.org.
3 https://swagger.io.

www.openapis.org
www.odata.org
https://swagger.io

APIComposer: Data-Driven Composition of REST APIs 163

2 Our Approach

We propose a model-based approach to compose data-driven REST APIs. From
a set of initial REST APIs, our approach creates a global API exposing a unified
data model merging the data models of the initial APIs. The global model is
exposed as an OData service, thus allowing end-users to use the OData query
language to get the information they need in an easy and standard way.

Figure 1 shows an overview of our approach. APIComposer takes as input
the OpenAPI definitions of the REST APIs to be composed. Such definitions
may be (i) supplied by the API provider, (ii) generated using tools such as
APIDiscoverer [9] or AutoREST [6], which are able to infer OpenAPI definitions
from API call examples or API documentation pages, respectively. (iii) or derived
from other API definition formats (e.g., API Blueprint or RAML) using tools
such as API Transformer4.

Our approach includes two components, namely: (i) API importer, in charge
of integrating a new REST API to the global API; and (ii) Requests resolver,
responsible for processing the user requests and returning the queried data. We
explain each component in the following sections.

API

API

API

API

OpenAPI
definition

API importer
OData request

OData response

End-usersEnd-users
OData

Entity model

Requests resolver

APIComposer Discovery

Fig. 1. Overview of our approach.

3 API Importer

Figure 2 shows the API importer process. For each input OpenAPI definition, the
API importer first generates an equivalent model conforming to our OpenAPI
metamodel (see step 1 in Fig. 2). We previously introduced this metamodel
alongside the discovery process [9]. The generation of the OpenAPI model is
rather straightforward since the OpenAPI metamodel conforms to the OpenAPI
specification and only special attention had to be paid to resolve JSON refer-
ences.

The second step of the process (see step 2 in Fig. 2) performs a model-to-
model transformation to generate a UML model, which emphasizes the data
schema of the input API to facilitate the matching process later on. This process
consists on iterating over the data structures in the OpenAPI model (i.e., the
schema elements) to generate the adequate UML elements (i.e. classes, properties
and associations elements). This process relies on our tool OpenAPItoUML5 which
generates UML models from OpenAPI definitions [10].
4 http://apimatic.io/transformer.
5 http://hdl.handle.net/20.500.12004/1/A/O2U/001.

http://apimatic.io/transformer
http://hdl.handle.net/20.500.12004/1/A/O2U/001

164 H. Ed-douibi et al.

1 Model
generation

M2M
transformation
2

Open API
model

UML model
+ OData profile

B
CD =

UML
model

OpenAPI
model

1 Model
generation

M2M
transformation

2Binding
discovery

3
API ImporterI

OData
Entity model

OData
interpretation

4

OpenAPI
definition

Data
binding model

Input

AB
CD AA

AB

A
CD

Fig. 2. Composition process.

BindingModel BindingElement

preferredName: String

ClassBinding

Class Property Association

AssociationBindingPropertyBinding

bindingElements
*

binded binded binded* * *

UML metamodel

Fig. 3. Excerpt of the binding metamodel.

The third step (see step 3 in Fig. 2) analyzes the UML models to discover
matching elements and creates bindings to express the matches between them.
The binding model conforms to the binding metamodel which allows creat-
ing traceability and binding elements for the data elements in the UML mod-
els. Figure 3 shows an excerpt of the binding metamodel. The BindingModel
element is the root element of the binding metamodel and includes a set
of binding elements (i.e., bindingElements reference). The ClassBinding,
PropertyBinding, and AssociationBinding elements allow defining bindings
to Class, Property, and Association elements in a UML model, respectively.
Each element includes a preferred name (i.e., the preferredName attribute inher-
ited from the BindingElement element) and a set of binded elements (i.e., the
binded references). We currently support a simple two-step matching strategy to
define the bindings between elements. The first step finds matching candidates
based on their names and types. Then, the second step validates the matches
by calling the REST APIs and comparing data related to each candidate. Our
experience showed that such strategy is sufficient for APIs coming from the
same provider/domain, which share the same concept names across their APIs.
However, our approach can be extended in order to support more advanced
matching strategies specially for cross-domain composition by relying on, for
instance, database schema integration approaches [4] or the new approaches to

APIComposer: Data-Driven Composition of REST APIs 165

add semantic descriptions to OpenAPI [7,14]. Also, a designer can manually
curate the initial automatic result.

Finally, the last step creates an OData metadata document from: (i) the
generated UML models, and (ii) the binding model. This document includes
an OData entity model created by merging all the data models of the input
REST APIs and resolving the bindings between them. Thus, the creation process
iterates over all the data elements in the UML models and creates a new element
in the entity model if there is not a binding linking such element to another
element, or merging both elements otherwise. The OData metadata document
is the standard way OData provides to let end-users know how to query data
using the OData query language.

4 Requests Resolver

The Requests resolver is an OData service exposing the created data model, and in
charge of processing the end-user queries and building the query response based
on the bindings and extended OpenAPI models generated during the import
phase. Such process involves two steps, namely: query resolution and response
resolution.

The query resolver interprets first the OData query in order to determine
the target resource to retrieve (i.e., a collection of entities, a single entity or a
property) and the options associated with the query (e.g., filter or ordering). The
resolver transforms then the query into a set of API calls by tracing back the
origin of each element thanks to the binding model. From the binding model we
navigate first to the UML models then to the OpenAPI models. These OpenAPI
models contain all the necessary details to generate the actual calls6 as they
contain the same information as the original OpenAPI definitions.

On the other hand, the response resolver is in charge of providing the result
to the end-user by combining the different API answers in a single response
conforming to the OData entity model defined in the OData metadata document.

5 Illustrative Example

To illustrate our approach, we consider the following REST APIs: Battuta7,
which allows retrieving the regions and cities of a country; and Restcoun-
tries8, which allows getting general information about countries such as their
languages, currencies and population. Our goal is to create a global API com-
bining both APIs. Thanks to the global API, users will be able to query both
kinds of country information (either geographical, general or both) in a trans-
parent way, (i.e., without having to specify in each query what API/s the query

6 We created a set of heuristics which map operations to entity elements. More infor-
mation can be found at our repository.

7 https://battuta.medunes.net/.
8 https://restcountries.eu/.

https://battuta.medunes.net/
https://restcountries.eu/

166 H. Ed-douibi et al.

should read from). As a preliminary step, we generated the OpenAPI definitions
describing Battuta and Restcountries APIs using APIDiscoverer [9]. We
used the resulting definitions as inputs for our approach.

XOA model

<edmx:Edmx Version="4.0" ...>
<edmx:DataServices>
<Schema Namespace="com.example">

 <EntityType Name="Country">
<Property Name="name" .../>
<NavigationProperty Name="regions".../>

</EntityType>
<EntityType Name="Region">...

 </EntityType>
<EntityContainer Name="ODAService">
<EntitySet Name="Countries"

 EntityType="com.example.Country">
<NavigationPropertyBinding

 Path="regions" Target="Regions"/>
</EntitySet>...

</EntityContainer>
</Schema>

</edmx:DataServices>
</edmx:Edmx>

<edmx:Edmx Version="4.0" ...>
<edmx:DataServices>
<Schema Namespace="com.example">

 <EntityType Name="Country">
<Property Name="name" .../>
<NavigationProperty Name="regions".../>

</EntityType>
<EntityType Name="Region">...

 </EntityType>
<EntityContainer Name="ODAService">
<EntitySet Name="Countries"

 EntityType="com.example.Country">
<NavigationPropertyBinding

 Path="regions" Target="Regions"/>
</EntitySet>...

</EntityContainer>
</Schema>

</edmx:DataServices>
</edmx:Edmx>

OData metadata

{"swagger": "2.0",
"host": "restcountries.eu",...
"paths": {
"/all": {...},
"/name/{name}": {...},
"/alpha/{code}": {...},
"/currency/{currency}": {...},
...

"definitions": {
"Country": {...},
"Language": {...},
"RegionalBloc": {...},...}}

Battuta!

Restcountries

{"swagger": "2.0",
 "host": "battuta.medunes.net",...
 "paths": {
 "/country/all": {...},
 "/country/code/{code}": {...},
 "/region/{code}/all": {...},
 "/city/{code}/search": {...},
 ...
 },
 "definitions": {
 "Country": {...},
 "Region": {...},
 "City": {...}}}

Region

name: String

City
name: String
lattitude: String

cities
region

*
1

RegionalBlock

name: String
...

*

* regionalBlocks

countries

regions

cities

region

*

*

Region

name: String
1

1

OData query

{"@odata.context":"$metadata#Country",
 "name": "Spain",
 "code": "ES",
 "population": 46538422,....
 "regions":[
 {"name": "Andalucia"},
 {"name": "Aragon"},
 {"name":"Canary Islands"},,...]
}

OData response

name: String
code : String

Country

country
regions
*1

OData Entity model

a.1

a.2

b.1

e

g

d
Country

name: String
code : String
population: Long
...

Language

name: String
...

:ClassBinding

RegionalBlock

name: String
...

**

*

name: String
...

*
Language

regionalBlocks languages

countriescountries
Country

name: String
alpha2Code : String
population : Long
...

b.2City
name: String
lattitude: String
langitude: String

1&2

1&2

3

4
bi

nd
ed

country

*
countries

languages

*

cBinding model

XOA model

XOA model

3

4

4

preferredName:"Country"

GET http://host/ODAService/Countries('ES')?$expand=regions

f

Restcountries

Battuta

Fig. 4. Illustrative example.

Figure 4 illustrates the results of applying our composition mechanism on
these APIs. Figures 4a.1 and a.2 show parts of the OpenAPI definitions of Bat-
tuta and Restcountries APIs, respectively. As explained in the previous
section, the first step of the process generates an OpenAPI model describing the
input definition, while the second step generates UML model where the data
aspects have been refined and highlighted. Figure 4b.1 and b.2 show the gen-
erated UML models for Battuta and Restcountries APIs, respectively. As
can be seen, the data model for the Battuta API includes the classes Coun-
try, Region and City, while the model for the Restcountries API includes
the classes Country, RegionalBlock, and Currency. Figure 4c shows the binding
model including a ClassBinding element for the Country entities of both data
models, identified as a valid matching concept.

Figure 4d shows the OData Entity model created by joining the elements
of both data models and resolving the match between the Country entities.
As can be seen, the Country class is shared between both APIs and includes

APIComposer: Data-Driven Composition of REST APIs 167

properties and relationships coming from both APIs. Figure 4e shows an excerpt
of the Metadata document of the OData Entity model. This document can be
retrieved by appending $metadata to the URL of the OData application and
allows end-users to understand how to query the data.

OData defines a URL-based query language sharing some similarities with
SQL that allows users to query the data described in the metadata document [16].
Figure 4f shows an example of an OData request to retrieve the details of Spain
and its regions using the query option $expand9. This request relies on the
concept binding for Country, which allows process the request using Rest-
countries API (mainly for information about the country) and Battuta
API (for information about the regions). Thus, the request is traced back to
both Restcountries and Battuta APIs (i.e., the operations /alpha/{code}
and /region/{code}/all, respectively), which are therefore queried. Figure 4g
shows the response in OData format. More query examples can be found in our
repository [1].

6 Tool Support

We created a proof-of-concept tool implementing our approach which we made
available as an Open Source application [1]. Our tool has been implemented as
a Java web application which can be deployed in any Servlet container (e.g.,
Apache Tomcat). The application relies on JavaServer Faces (JSF), a server-side
technology for developing Web applications; and Primefaces10, a UI framework
for JSF applications; to implement a wizard guiding the user through the steps of
the API importer and displaying the different models. The OpenAPI metamodel,
the extended OpenAPI metamodel, and the binding metamodel have been imple-
mented using the Eclipse Modeling Framework (EMF). OData implementation
relies on Apache Olingo11 to provide support for OData entity model, OData
query language, and serialization.

7 Related Work

Most of the previous works on REST APIs composition are tight to specific
API description languages [12]. For instance, some of them relied on WADL
(Web Architecture Description Language) and hREST (HTML for RESTful
Services) to describe the behavior of REST APIs, and WSMO (Web Service
Modeling Ontology) and SA-REST (Semantic Annotation of Web Resources) to
add semantic annotations (e.g., [8,13,15]). However, none of them gained a broad
support mainly because those languages were not successfully adopted [12]. We
decided to rely on the OpenAPI specification, which can be seen as a reference

9 $expand specifies that the related resources have to be included in line with retrieved
one.

10 http://www.primefaces.org.
11 http://olingo.apache.org/.

http://www.primefaces.org
http://olingo.apache.org/

168 H. Ed-douibi et al.

solution for REST APIs. The emergence of OpenAPI definitions has motivated
initiatives to annotate OpenAPI definitions with semantic descriptions [7,14]
and identify APIs for selection [3]. Our approach differs from these works by
putting OpenAPI specification at the core of the composition strategy, but we
can profit in the future from them (e.g., by considering semantic descriptions for
concept matching).

Our approach focuses on the composition of data-oriented APIs, which allows
us to rely on the family of approaches proposed for JSON data [5] and in the
database world for schema matching and merging [4,17]. To the best of our
knowledge, only the work by Serrano et al. [19] proposes a similar approach to
ours but theirs require annotating REST APIs with Linked-Data ontologies and
uses SPARQL to query to composed APIs.

8 Conclusion

We have presented a model-based approach to automatically compose and
orchestrate data-driven REST APIs. Our approach parses OpenAPI definitions
to extract data models, expressed as UML models, which are combined following
a pragmatic matching strategy to create a global data model representing the
union of all the data for the input APIs. The global model is exposed as an
OData service, thus allowing users to easily perform queries using the OData
query language. Queries on the global model are automatically translated into
queries on the underlying individual APIs. In case users are not familiar with
OData, OpenAPI definitions could also be easily derived from OData services12.
Also, note that we illustrated our composition using OData but a similar app-
roach could be followed to generate GraphQL APIs instead.

As future work we are interested in considering semantic descriptions for
improving the matching strategy and non-functional aspects (like Quality-of-
Service, QoS, or price) in the generation of the global model when alternative
APIs have a high degree of overlapping. The latter would allow users to choose
different resolution paths for the same query based on their preferences (e.g., by
using free APIs when possible). We would like to extend our approach in order
to support not only data retrieval but also data modification (i.e., support all
CRUD operations). We are also interested in improving the maintainability of
our approach by allowing the update of the composed APIs as they evolve.

References

1. APIComposer. http://hdl.handle.net/20.500.12004/1/A/APIC/001
2. Aué, J., Aniche, M., Lobbezoo, M., van Deursen, A.: An exploratory study on

faults in web API integration in a large-scale payment company. In: International
Conference on Software Engineering: Software Engineering in Practice, pp. 13–22
(2018)

12 https://github.com/oasis-tcs/odata-openapi.

http://hdl.handle.net/20.500.12004/1/A/APIC/001
https://github.com/oasis-tcs/odata-openapi

APIComposer: Data-Driven Composition of REST APIs 169

3. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through inter-
face analysis. In: European Conference on Service-Oriented and Cloud Computing,
pp. 19–33 (2017)

4. Boronat, A., Carśı, J.Á., Ramos, I., Letelier, P.: Formal model merging applied to
class diagram integration. Electron. Notes Theoret. Comput. Sci. 166, 5–26 (2007)

5. Cánovas Izquierdo, J., Cabot, J.: Composing JSON-based web APIs. In: Interna-
tional Conference on Web Engineering, pp. 390–399 (2014)

6. Cao, H., Falleri, J.-R., Blanc, X.: Automated generation of REST API specification
from plain HTML documentation. In: Maximilien, M., Vallecillo, A., Wang, J.,
Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 453–461. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69035-3 32

7. Cremaschi, M., De Paoli, F.: Toward automatic semantic API descriptions to sup-
port services composition. In: European Conference on Service-Oriented and Cloud
Computing, pp. 159–167 (2017)

8. De Giorgio, T., Ripa, G., Zuccalà, M.: An approach to enable replacement of SOAP
services and REST services in lightweight processes. In: International Conference
on Web Engineering, pp. 338–346 (2010)

9. Ed-Douibi, H., Cánovas Izquierdo, J.L., Cabot, J.: Example-driven Web API Spec-
ification Discovery. In: European Conference on Modelling Foundations and Appli-
cations (2017)

10. Ed-Douibi, H., Cánovas Izquierdo, J.L., Cabot, J.: OpenAPItoUML: a Tool to
Generate UML Models from OpenAPI definitions. In: International Conference on
Web Engineering (2018)

11. Espinha, T., Zaidman, A., Gross, H.G.: Web API growing pains: Stories from client
developers and their code. In: International Conference on Software Maintenance,
Reengineering and Reverse Engineering, pp. 84–93 (2014)

12. Garriga, M., Mateos, C., Flores, A., Cechich, A., Zunino, A.: Restful service com-
position at a glance: A survey. J. Netw. Comput. Appl. 60, 32–53 (2016)

13. Lanthaler, M., Gütl, C.: Towards a RESTful service ecosystem. In: International
Conference on Digital Ecosystems and Technologies, pp. 209–214 (2010)

14. Musyaffa, F.A., Halilaj, L., Siebes, R., Orlandi, F., Auer, S.: Minimally invasive
semantification of light weight service descriptions. In: International Conference
on Web Services, pp. 672–677 (2016)

15. Pautasso, C.: RESTful Web service composition with BPEL for REST. Data
Knowl. Eng. 68(9), 851–866 (2009)

16. Pizzo, M., Handl, R., Zurmuehl, M.: OData version 4.0 part 2: URL Conventions.
Technical report, OASIS (2014)

17. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

18. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003)

19. Serrano, D., Stroulia, E., Lau, D., Ng, T.: Linked REST APIs: a middleware for
semantic REST API integration. In: International Conference on Web Services,
pp. 138–145 (2017)

20. Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web services
composition: a decade’s overview. Inf. Sci. 280, 218–238 (2014)

https://doi.org/10.1007/978-3-319-69035-3_32

IaaS Service Selection Revisited

Kyriakos Kritikos1(B) and Geir Horn2

1 ICS-FORTH, Crete, Greece
kritikos@ics.forth.gr

2 University of Oslo, Oslo, Norway
geir.horn@mn.uio.no

Abstract. Cloud computing is a paradigm that has revolutionized the
way service-based applications are developed and provisioned due to the
main benefits that it introduces, including more flexible pricing and
resource management. The most widely used kind of cloud service is
the Infrastructure-as-a-Service (IaaS) one. In this service kind, an infras-
tructure in the form of a VM is offered over which users can create the
suitable environment for provisioning their application components. By
following the micro-service paradigm, not just one but multiple cloud
services are required to provision an application. This leads to requir-
ing to solve an optimisation problem for selecting the right IaaS services
according to the user requirements. The current techniques employed to
solve this problem are either exhaustive, so not scalable, or adopt heuris-
tics, sacrificing optimality with a reduced solving time. In this respect,
this paper proposes a novel technique which involves the modelling of an
optimisation problem in a different form than the most common one. In
particular, this form enables the use of exhaustive techniques, like con-
straint programming (CP), such that both an optimal solution is deliv-
ered in a much more scalable manner. The main benefits of this technique
are highlighted through conducting an experimental evaluation against
a classical CP-based exhaustive approach.

1 Introduction

Cloud computing is a new computing paradigm that has revolutionized the way
applications can be built and provisioned. Its high adoption is due to the main
benefits that it delivers, which include flexible pricing and resource management
as well as reduction of costs due to the outsourcing of infrastructure management.

This computing paradigm includes the potential delivery and exploitation
of different service models, which include Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS), with a gradual
release of management control from the requester to the provider. The most widely
used and researched model is the IaaS one. In this model, an infrastructure in the
form of a Virtual Machine (VM) is offered to requesters to enable them to create an
execution environment for their application components. Apart from this infras-
tructure, suitable tools are also supplied to requesters to enable them to better
exploit this cloud service kind, including suitable restful management APIs.
c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 170–184, 2018.
https://doi.org/10.1007/978-3-319-99819-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_13&domain=pdf

IaaS Service Selection Revisited 171

Once cloud computing has been set and evolved, it has also led to the rise of
a new application design and provisioning model based on micro-services. This
model caters for a better separation and reuse of business functionalities while
enables a more flexible adaptation of the micro-service application. In this model,
an application is functionally split into a set of services, which are deployed
individually in containers in different VMs. As such, to better manage such an
application’s provisioning, there is a need to cover the selection and adaptation of
the underlying IaaS services. This means that an initial set of IaaS services needs
to be selected according to the application requirements, while the application
can be reconfigured at runtime by either migrating micro-services from one IaaS
service to another or creating new instances of the micro-services, e.g., to handle
the additional, unexpected workload that might arrive.

Focusing on IaaS selection, various approaches have been proposed [1] which
differ along the optimisation solving techniques that they adopt and the opti-
misation objective kinds that they can handle. This differentiation also impacts
the capabilities of each approach with respect to the well-known solving time-
to-optimality trade-off. For example, exhaustive approaches, like those adopting
techniques like Constraint Programming (CP), are more suitable for delivering
optimal results but in the expense of increased solving time. On the other hand,
heuristic approaches more rapidly deliver near-optimal results.

In any case, current approaches follow a classical way to model the optimisa-
tion problem, where variables are mainly used to denote decisions that need to be
taken with respect to which service component should be mapped to which IaaS
offerings from those that satisfy its local (e.g., hardware or location) require-
ments. However, this classical way cannot scale in sight of the plethora of IaaS
services available on the market. Just focusing on one big cloud provider like
Amazon, one has to select among tens of thousands of IaaS offerings. Even if
multiple local constraints are being supplied per service component, this can
reduce the offering number to hundreds just for one cloud provider. However,
by considering the combinational nature of the optimisation problem to solve,
this can lead to a huge solution space that cannot be handled by any exhaustive
approach, while the results provided by any heuristic approach would be just
non-optimal, as a very small part of the solution space can be examined.

In our opinion, this inherent difficulty in the IaaS service selection problem
has not been well and appropriately addressed in the literature. In this respect,
this paper goes one step forward by proposing a novel technique which can enable
the use of an exhaustive approach to a modified modelling of the optimisation
problem in such a way that the main benefits of optimality are supplied in a
much more scalable manner. In particular, in this modelling, the decision space
is regulated by variables which map the service components to respective VM
attributes. As the number of VM attributes is usually quite limited while the size
of their value domain is small, this leads to the production of an optimisation
problem which is less complex and leads to a quite reduced solution space.

While this modelling is more suitable, it comes also with a certain flaw. In
particular, a solution mapping to a value for all these variables might not be

172 K. Kritikos and G. Horn

associated with a real IaaS offering. This then required our approach to adopt
a smart method to alleviate this. This method involves three main parts: (a)
the derivation of the dependencies between the offering cost with respect to the
values of the other VM variables in the form of a linear function; (b) the supply
of if-then-else conditional statements which enable to reflect other dependencies
between the different VM variables so as to further filter irrelevant combinations;
(c) the post-processing of the produced solution to map it to a real one which
has the least distance to the current, possibly virtual one.

The main benefits of our work are highlighted via an experimental evaluation
assessing how well the IaaS selection problem is solved in the context of the
Amazon cloud provider. The evaluation results show that our approach scales
much better than a classical, exhaustive one and can deliver results of almost the
same quality. Once the scalability limits are reached for the classical approach,
the proposed one is also able to deliver results of even better quality.

The rest of the paper is structured as follows. The next section reviews the
related work and provides important background knowledge. Section 3 analy-
ses the proposed IaaS selection technique. Section 4 reports and discusses the
main evaluation results. Finally, the last section concludes the paper and draws
directions for further research.

2 Background

2.1 Related Work Analysis

Many approaches [2–4] have been proposed for VM consolidation in data centres.
Such approaches tend to solve a similar problem, where instead of mapping
application components to VMs, they associate VMs to respective hosts. As such,
such approaches could be utilised only in the context of resource management
internally within a cloud provider’s data centre. However, their techniques are
similar or equivalent to those used for solving the IaaS selection problem.

The IaaS selection approaches [1] either focus on local IaaS selection
restricted to the context of one application component or on global IaaS selec-
tion where the selection concerns all components of a respective application. As
this paper focuses over the second and more advanced form of the IaaS selection
problem, the analysis is restrained over this form.

The global IaaS selection approaches differ [1] with respect to the solving
technique adopted as well as in the number and kind of objectives optimised.
Classically, depending on the solving technique used, there can be a trade-off
between solving time and optimality. Exhaustive techniques like CP [5] or Linear
Programming (LP) [6] attempt to explore the whole solution space so as to derive
the most optimal solution. However, this exploration is costly with respect to
solving time. In this respect, heuristic approaches have been adopted [7], such
as nature-inspired ones, which tend to produce rapidly a sub-optimal solution.

Cost [8] is the dominant optimisation objective that is usually optimised [1].
However, there exist other approaches that also attempt to optimise resource-
specific metrics [9], like the number of cores (mapping to the computational

IaaS Service Selection Revisited 173

power to be devoted to a micro-service component). Others focus on reducing
network latency [10] to guarantee a more suitable service execution time. There
is also an approach which attempts to cover multiple levels [11] by being able to
map resource-specific metrics to service-specific ones. Such an approach is then
able to optimise metrics which reside at the service/application level.

To reduce the solving time by still adopting an exhaustive technique, some
approaches attempt to learn from the application execution history. Such a learn-
ing enables then to fix some parts of the problem and thus accelerate its solving.
Learning-based approaches adopt different ways to conduct this learning. In [12],
a combined stochastic programming and learning approach is proposed which
attempts to remember bad solutions and to discard them when re-solving the
same optimisation problem. On the other hand, the approach in [13] employs a
rule-based method to derive the best deployments for both the current applica-
tion and its components from the application execution history.

The latter kind of approaches is complementary to our work. Such approaches
could be employed for further reducing the solving time. However, the main
advancement of the state-of-the-art lies on the capability to not require any
prior knowledge about the application execution but rely on smart techniques
that better and more rapidly explore the solution space by still employing an
exhaustive technique to guarantee optimality. In this respect, a better trade-off
between optimality and solving time is reached with respect to the state-of-the-
art which is the main subject of research here. Further, our work is more scalable
with respect to the others due to its capability to rely on a constant solution
space when then number of VM offerings is increased.

2.2 IaaS Allocation Problem

The classical IaaS allocation problem attempts to optimise one or more objec-
tives at the IaaS resource level. Let xi,j ∈ {0, 1} be a binary decision variable
indicating that application component type i ∈ I can be hosted on IaaS offering
j ∈ J. It is noted that there are |I| · |J| binary decision variables regarding the
assignment of all application component types. Furthermore, there are |I| deci-
sion variables ni ∈ ni ⊂ N0 representing the number of instances of application
component type i.

The allocation problem has given Q “quality” dimensions for which the good-
ness of an allocation is measured; e.g., cost- or performance-related dimensions.
Let

vq (X,n |θ) : {0, 1}|I|·|J| × |I| �→ Dq (1)

be the value function in dimension q ∈ {1, . . . , Q} given the matrix of the binary
allocations X = [xi,j] and the vector of instance counts n = [n1, . . . , |I|]T .
The vector θ represents the context parameters for the allocation. The con-
text parameters can be related to cost, performance or any other value that can
be considered constant for the allocation problem. As an example, consider the
situation where a quality dimension d represents the overall cost of an alloca-
tion and θj is the cost of IaaS offer j. Then, the value function takes the form
vd (X,n |θ) =

∑
i

∑
j ni · xi,j · θj .

174 K. Kritikos and G. Horn

For each quality dimension value there is a utility function indicating how
good this value is on a normalised scale, i.e. uq (vq (X,n |θ)) : Dq �→ [0, 1]. The
utility function is defined as the normalised value with respect to the extreme
values of the domain.

uq (vq (X,n |θ)) =
supDq − vq (X,n |θ)

supDq − inf Dq
(2)

Two kind of constraints are involved in the problem modelling. The first kind
involves component specific constraints that restrict the domain of respective
decision variables. For each service component only one IaaS offering must be
selected, which implies the following set of constraints

∑

j

xi,j = 1 for all i (3)

The second kind of constraints attempts to reflect user requirements posed at
the global level. For instance, if we consider the resource level, then we could have
constraints for, e.g., VM offering characteristics like the cost and the number of
cores. In general, the constraints of this kind can take the following form

g (X,n |θ) ≤ a (4)

Additional constraints might also be posed to express further user requirements,
like component co-location constraints. The interested reader can find more
details about such constraints in [11].

Given that the utility is normalised in all dimensions, each of them is a simple
unit less number in the interval [0, 1], and the overall allocation utility can be
computed as an affine combination of the utility dimensions, also known as the
Simple Additive Weighting (SAW) [14] technique. The weights wq ∈ [0, 1] can
be usually calculated by following the Analytic Hierarchy Process (AHP) [15].
The overall utility to be maximised is then given as

U (X,n |θ) =
Q∑

q=1

wq · uq (vq (X,n |θ)) (5)

subject to the constraints (3)–(4).
The main issue with the above problem formulation lies on the huge solution

space as can be seen from the Cartesian product in (1). By considering just
one cloud provider (Amazon) and that common hardware constraints (over core
number, memory, and storage size) are imposed at the local level which lead to
around 400 Amazon cloud offerings matching each application component, this
means that for an application with just 3 components, the number of combina-
tions could be at least 3400. Thus, such a solution space is already quite large.
So, imagine what would be the case for applications with a greater size. The use
of an exhaustive solver would be out of the question, while heuristic techniques
would just supply non-optimal solutions as it will be impossible for them to

IaaS Service Selection Revisited 175

check a great part of the solution space. This actually requires the proposal of a
technique that more smartly explores or even filters the solution space. Such a
technique is actually proposed in this paper and will be analysed in the following
section.

3 Technique

In order to find a better trade-off between solving time and optimality, our
technique attempts to modify the way the IaaS selection problem is modelled.
The main rationale is that by changing the solution space and making it much
smaller, we could still have the ability to exploit an exhaustive technique.

Indeed, this was the main idea that has been followed. Instead of mapping
each service component to all the IaaS offerings that match it, we now associate
it with the respective features of an IaaS offering, like the number of cores, the
main memory size and so on. This new mapping has the advantage that the
number of IaaS offering features is small and the value domain for that features
is also small. Further, the problem now becomes independent on the number of
IaaS offerings and thus more scalable.

However, this mapping comes with the penalty that the solution that is
produced, mapping each service component to a value from the domain of each
IaaS offering feature, might be virtual. This is actually quite probable as the
offering space of any single provider is smaller than the solution space formulated
by the cartesian product of the value domains of its IaaS offering features. In
order to cope with this major issue, we have employed two main measures.

First, on the modelling side, we have introduced smart constraints that enable
to further reduce the solution space, as it might be initially big, as well as guide
the solution process towards picking more suitable combinations of values for
the IaaS features.

Second, once a solution has been produced, we employ a post-processing logic
aiming at making all IaaS offerings that have been mapped to the application
components real. Such logic will be shown to employ a distance measure in order
to guide the exploration for the finding of the most suitable, real IaaS offerings.

Both measures are now analysed in the following two sub-sections while the
last one attempts to provide the complete modelling of the optimisation problem.

3.1 Smart Constraints

To reduce the solution space of a problem, one kind of measure would be to
introduce special constraints which attempt to formulate dependencies between
the main problem variables. Such constraints through the respective constraint
propagation mechanism enable to restrict the solution space in a great extent.

As indicated in Sect. 2.1, one of the major factors always attempted to be
optimised is cost. As such, we got the idea that we could introduce a respec-
tive constraint in the optimisation problem which correlates application com-
ponent cost with the rest of the IaaS feature-based parameters. Such a con-
straint could be easily formulated if the exact cost model of an IaaS provider

176 K. Kritikos and G. Horn

was known. However, even if such a cost model was available, it could be quite
complex and might require formulating a great number of logical constraints of
the form: if (f2 == vf2 ∧ f3 == vf3 . . . ∧ fm == vfm) then (f1 = 0.1), where
fk represents IaaS feature k and f1 is the feature representing the cost. Unfor-
tunately, logical constraints are difficult to handle in any kind of mathematical
programming paradigm. They also create major scalability issues when their
number is large.

In this respect, another idea came to our mind. Instead of attempting to
formulate all possible logical constraint combinations, we could introduce just
a single function enabling to model the needed correlation. This then led us
to resort to linear regression techniques which have exactly this goal: to map
one parameter or variable to a set of other variables. Thus, in the end, we could
express cost as a function of the IaaS features for each cloud provider. This could
then take the following constraint form: f1 = Rp (f2, f3, . . . fm), where Rp(·) is
the regression function for IaaS provider p.

We could employ non-linear regression techniques instead but this did not
seem to be actually needed as we were able to produce a relative accurate linear
cost function for two of the most major IaaS providers, i.e., Amazon and Google.

However, the derived function does not exactly and completely solve the
current issue. It provides a mapping that enables us to become independent
of cost and be able to derive it through the rest of the variables. However, as
IaaS offering cost maps to a quite large value domain, this action enabled us to
significantly reduce the initial solution space.

To still follow the idea of formulating dependencies, the next clever devel-
opment that has been performed was to introduce a restricted form of logical
constraints for a widely used feature with a quite small domain. Such logical
constraints will not thus be great in number and could be still easily handled by
an exhaustive technique like Constraint Programming (CP).

This led us to focus on the number of cores feature which happens to have the
smallest value domain among the most widely used IaaS features while also plays
an important role in influencing IaaS offering cost. As such, we just processed
the whole IaaS offering space of each cloud provider and attempted to create
mappings from each value of the number of cores feature to the respective mini-
mum and maximum value that has been anticipated for the rest of the features,
including cost. This led to the definition of the following form of constraints:

if (f2 == vf2 ∧ p == 1) then

(min vf1 ≤ f1 ≤ max vf1) ∧ (min vf3 ≤ f3 ≤ max vf3)
. . . ∧ (min vfm ≤ fm ≤ max vfm)

where f2 is the number of cores feature and p is a variable that denotes a certain
IaaS provider.

By combining the above two constraint forms, the solution space is reduced
as cost feature is automatically calculated by a function while the different values
of the core number feature guide the solution process and enable us to pick more

IaaS Service Selection Revisited 177

correct values for the remaining IaaS features. This leads to a smarter solution
space exploration that can rapidly diverge to the optimal solution.

3.2 Solution Post-processing

The produced solution may not be a valid one. The combination of IaaS feature
values in the context of a certain IaaS provider does not guarantee that exactly
a real IaaS offering can be designated. The introduction of smart constraints
remedies slightly this but there is still a need for correcting this derived solution.

Such a correction or alignment is performed by examining the IaaS offering
space of all providers to find a real offering which is as much as possible close to
the derived virtual one. This involves first finding only the most relevant offerings
from all providers via a normal matchmaking step, which can be performed
ultra rapidly by employing unary matchmakers like the one in [16], and then
performing the local search over them to find the most appropriate real IaaS
offering.

The distance between the virtual and a real IaaS offering is calculated
according to the following definition: D (real, virtual) = Δutility (real, virtual) +
Δposition (real, virtual), where Δ is a difference function. The first factor attempts
to penalise the real IaaS offering based on the actual parameters that participate
in the optimisation objectives of the IaaS selection problem. While the second
factor attempts to penalise the real IaaS offering based on the distance of the
position of the respective IaaS offering feature value within the (ordered) value
domain of that feature.

By considering that the respective optimisation objective is only cost, the
first term of the distance function could take the following form:

Δutility (real, virtual) =
costreal

costvirtual
· 100000

where costreal and costvirtual represent the cost of the two offerings. On the other
hand, the second term of the distance function can be expressed as:

Δposition (real, virtual) =
∑

b

∣
∣Ib (fb,virtual) − Ib (fb,real)

∣
∣ · 1000

where Ib(·) represents the index function of the feature numbered as b which
returns the position in the feature’s (ordered) value domain for a specific value
of that feature. The feature value is represented by fb,virtual and fb,real in the
case of the virtual and real offering, respectively.

As it can be seen, the distance formula attempts to penalise more when we
move far away from the expected utility of the solution and less when we pick
more distant values for each feature with respect to its ordered value domain.
This leads to imposing two levels of penalisation. As it will be shown in the
evaluation section, this distance measure was enough for finding the right real
solution out of a virtual one.

178 K. Kritikos and G. Horn

3.3 Optimisation Problem Formulation

The general process for solving the IaaS selection problem according to our
approach follows three main steps: (a) problem formulation; (b) problem solving;
(c) solution alignment, where the last step applies the respective distance-based
search (see Sect. 3.2) for each application component with respect to the virtual
IaaS offering derived for it.

In this subsection, we focus on the first process step by attempting to modify
the formulation of the classical IaaS selection problem (see Sect. 2.2). Please note,
though, that the same principles are followed which regard the use of the AHP
and SAW techniques as well as linear utility functions.

The classical IaaS selection problem is, first of all, relaxed by replacing the
binary decision variables with variables based on the smart constraints. The
main decision variables of the relaxed optimisation problem comprise:

(a) component-to-feature variables of the form xi,b indicating that a certain
value from the domain of feature b has been selected with respect to appli-
cation component i. Thus, in contrast to the original problem, the domain
of such variables now is a certain value set and not the boolean domain with
just two possible values; and

(b) instance number variables for components as in the case of the original/class
problem formulation; and

(c) variable p which denotes the IaaS provider.

This means that we have the introduction of one new decision variable, the
modification of the first variable kind and the maintenance of the second with
respect to the original problem.

The original constraints of the problem, (3)–(4) remain the same, and we are
still maximising the overall utility (5). However, we do have a differentiation on
the concrete level with respect to (4). In particular, the value of the different
parameters at the global level can be actually easily computed from the sum of
these parameters at the local level for each application component multiplied
by the number of instances of that component (as we are considering mainly
resource characteristics). For instance, the overall cost could be computed by
the following formula: v1 =

∑
i xi,1 · ni if we consider that v1 is the value of cost

parameter which is indexed as 1 while xi,1 maps to the local cost of the virtual
IaaS offering for component i.

However, we do have now the introduction of new constraints, the smart
ones, as indicated in Sect. 3.1.

if (p == P) then xi,1 = Rp

(
xi,2, xi,3, . . . xi,|JP |

)
for all i, P (6)

if (xi,2 == v2,l ∧ p == P) then (7)
min vxi,1 ≤ xi,1 ≤ max vxi,1 ∧ min vxi,3 ≤ xi,3 ≤ max vxi,3

. . . ∧ min vxi,|JP | ≤ xi,|JP | ≤ max vxi,|JP | for all l, P

Constraint (6) indicates that if a certain IaaS provider P is selected, the cost
for each application component should be computed by applying the regression

IaaS Service Selection Revisited 179

function for that provider over the remaining VM features. While Constraint (7)
introduces the smart constraints reflecting the dependencies between the number
of cores and the rest of IaaS offerings for IaaS provider P .

Discussion and Implementation Details. As it can be seen from the above
formulation, the optimisation problem does include a greater number of con-
straints which, however, enable to better explore as well as filter the solution
space.

Such a problem is not linear so it cannot be solved by employing different
exhaustive technique kinds. On the contrary, CP seems to be the most suitable
candidate as it can handle both non-linear and logic-based constraints, while it is
also able to cater for the introduction of both integer- and float-based variables.

Based on this analysis, our implementation has relied on using the MiniZinc
language for specifying the constraint optimisation problem as well as different
kinds of CP solvers which can be deemed as best for the new IaaS selection prob-
lem formulation depending on the number of optimisation objectives involved.
The use of MiniZinc enabled us to easily evaluate a great set of CP solvers and
find those that have the best possible performance.

4 Evaluation

The goal of the experimental evaluation was to assess whether the performance
and optimality of our proposed approach does advance the state-of-the-art. To
conduct such evaluation we have relied on a certain experimental framework able
to control the way the optimisation problem is formulated according to certain
configuration parameters. The experiments were performed in a laptop with the
following characteristics: (CPU: Inter Core i5-2430M with 2 cores and 2.4 GHz
frequency, RAM: 6 GB, Disk: 500 GB SSD).

4.1 Experiment Configuration

Three main evaluation parameters were considered:

– cost as a parameter for evaluating the optimality of the examined approaches
for only single objective optimisation problems;

– the solution utility as the parameter for evaluating the optimality of the
examined approaches for multi-objective optimisation problems

– the solving time, i.e., the time required for solving a certain model of an
optimisation problem, including any kind of solution post-processing time.

Each experiment was conducted in a series of steps by step-wisely varying
one configuration parameter while leaving the rest stable. Each experiment step
was computed (30) times and average values from the raw data were calculated
for each approach considered and each from the above evaluation parameters.

The examined approaches were the following: (a) a classical problem formu-
lation approach denoted as OLD ; (b) a new problem formulation approach based

180 K. Kritikos and G. Horn

on our work without the solution post-processing denoted as NEW ; (c) the same
approach as the previous one along with the solution post-processing denoted
as NEW FIXED. Each approach was implemented in Java and relied on the use
of the best possible solver according to the actual problem at hand (variation
point is the number of objectives as indicated in the previous section). To not
make each solver run forever, a certain time limit was introduced (100 s) for the
solving process in order to also reduce the execution time of the experiments.

The experimental framework involves using different configuration parame-
ters to control the way the optimisation problem is generated: (a) the number of
application components; (b) the number of cloud providers; (c) the number and
kind of IaaS features; (d) the number of optimisation objectives. To keep the
problem complexity low so as to also evaluate in an error-free manner the OLD
approach, the cloud provider number was kept to the minimum (1, the Ama-
zon provider) while the kind of IaaS features considered were the most common
(core number, memory & disk size). Thus, to conduct the experiments, we varied
mainly the component and optimisation objective number. We should also note
that we have taken as a base all the actual real IaaS offerings available at the
time of the experiments for Amazon AWS.

As there is no actual benchmark for evaluating IaaS selection approaches,
we have relied on randomly creating IaaS service requests for each application
component in each experiment step execution. Each such request attempts to
randomly select a specific value from the value domain of each IaaS feature
considered (out of the 3 ones in the current experiment configuration). This looks
like a more correct way to produce the respective requests as we can consider
that there is already widespread knowledge about which are the most suitable
values for each IaaS feature across the whole developer community.

4.2 Experiment Analysis

Two main experiments have been conducted, which are now analysed below,
having as their main variation point the number of optimisation objectives.

First Experiment. In this experiment, we consider only cost as the main
optimisation objective and attempt to vary the number of application compo-
nents from 1 to 6. The respective experiment results are depicted in Fig. 1.

The solving time results are quite expected. The two variants of the proposed
approach seem to scale much better than the classical approach. Further, the
classical approach already reaches the time limit when the component number
equals to 5. The performance of the two proposed approach variants is similar.
This means that the post-processing step does not occupy a great proportion
of the overall approach execution time. In fact, the respective search time is
mainly proportional to the number of matched IaaS offerings and application
components. So, as the application component number linearly increases and
the match number remains more or less stable, the post-processing time also
increases linearly. So, the exponential behaviour in the two variants’ performance
is mainly due to the exponential increase of the solution space.

IaaS Service Selection Revisited 181

(a) Cost results (b) Solving time results

Fig. 1. 1st experiment results

Concerning cost, i.e., the current optimality parameter, we can see that the
non-aligned approach variant does not perform so well with respect to the rest
of the approaches. This is mainly related to the precision of the linear regression
function. As this precision is imperfect, we expect that the difference between the
utility derived by this approach variant and the utility of the other approaches
will be increased when the application component number increases. This is the
actual case in the experiment results. With the sole exception that the utility
difference between NEW and OLD gets reduced at some time point, mainly due
to the deterioration of the utility on the side of the OLD approach.

Such a deterioration is mainly due to the fact that the OLD approach is
starting to have a hard time in better exploring the solution space. Such that
when the time limit is eventually reached, the quality of the solution deteriorates
significantly. This gives the opportunity for the overall proposed approach, the
NEW FIXED to surpass the OLD one when the component number becomes 4.

Second Experiment. In the second experiment, the same control parameter
is varied (from 1 to 3) but the number of optimisation objectives is now 2. These
objectives include cost and total number of cores. The combination of these
objectives make sense as there is usually a trade-off between computation power
and cost. The respective results from this experiment are shown in Fig. 2.

As it can be seen, the OLD approach already reaches its time limit when
the component number is two. This signifies that the increase in the number of
objectives makes the exploration of the solution space more time consuming such
that the exponential increase in that space’s size makes the respective solver to
more rapidly exceed the time limit posed. On the other hand, the two variants of
the proposed approach are much more scalable while their solving time is always
below 2 seconds. The time difference is again quite small between these variants,
mainly due to the post-processing time penalty. This time penalty seems to be
increased quite slightly with the increase in the component number.

182 K. Kritikos and G. Horn

(a) Overall Utility results (b) Solving time results

Fig. 2. 2nd experiment results

The overall utility results seem a little bit surprising. As we can see, the best
approach is now NEW followed by NEW FIXED and OLD. This looks more
correct as NEW has more freedom to find the virtual solution exhibiting the best
possible trade-off while NEW FIXED is restrained over the capabilities of the
current offerings locally matching each application component. Such capabilities
might thus be less performant than those of the virtual solution found. The bad
utility result of OLD is mainly due to its hard time to explore the solution space.
Which is rather immediate than in the case of single-objective problems. While
not shown here, due to page restriction reasons, the only case where OLD is
better than the rest of the approaches is with respect to the overall cost (i.e., a
part of the objective set) and only when the component number equals to 1.

4.3 Discussion

As it can be observed from the experiment results, our novel approach is much
scalable and performant than the classical IaaS selection approach. Further,
it is able to find a better solution in most of the cases, due to the solution
space restrictions that the classical approach is facing. Only when the solution
space is quite small, the classical approach could be considered as slightly better
in optimality but such a case is not so frequent in reality. This validates the
superiority of our approach which opens up new opportunities for solving IaaS
and service selection problems in general in a much more optimal and rapid way.

5 Conclusions

This paper has presented a novel approach which exhibits a better trade-off
between optimality and solving time for the IaaS selection problem. In particular,
this approach models differently this optimisation problem and enables as such

IaaS Service Selection Revisited 183

the scalable use of state-of-the-art exhaustive solvers for optimally solving it. The
approach involves changing the decision variables as well as introducing smart
constraints in the model of the optimisation problem. This enables to reduce the
solution space significantly as well as have a better way to explore it. Due to a
side-effect of the modified problem modelling, the proposed approach involves a
solution post-processing step which attempts to guarantee that the components
of the application at hand are mapped to real IaaS offerings.

The following future work directions will be pursued. First, we plan to sup-
port more cloud providers apart from Amazon and Google in our implementation
as well as more thoroughly evaluate our approach in the increased solution space
that will be formulated. Second, we plan to expand the modelling of the optimi-
sation problem to cover multiple levels of abstraction. Third, we will explore
whether a learning-based method could be additionally employed to further
reduce the solving time of our approach. Finally, we will investigate whether
additional smart constraints can be incorporated into the optimisation problem
model such that the solution post-processing can be avoided.

Acknowledgements. The research leading to these results has received funding from
European Union’s Horizon 2020 programme under grant agreement No 731664 (con-
cerning the Melodic EU project).

References

1. Sun, L., Dong, H., Hussain, F.K., Hussain, O.K., Chang, E.: Cloud service selection:
state-of-the-art and future research directions. J. Netw. Comput. Appl. 45, 134–
150 (2014)

2. Dong, J., Jin, X., Wang, H., Li, Y., Zhang, P., Cheng, S.: Energy-saving virtual
machine placement in cloud data centers. In: CCGrid, pp. 618–624. IEEE/ACM
(2013)

3. Casalicchio, E., Menascé, D.A., Aldhalaan, A.: Autonomic resource provisioning in
cloud systems with availability goals. In: CAC, Miami, Florida, USA, vol. 1(1–1),
p. 10. ACM (2013)

4. Jayasinghe, D., Pu, C., Eilam, T., Steinder, M., Whally, I., Snible, E.: Improv-
ing performance and availability of services hosted on IaaS clouds with structural
constraint-aware virtual machine placement. In: SCC, Washington, DC, USA, pp.
72–79. IEEE Computer Society (2011)

5. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier
Science Inc., New York (2006)

6. Van Hentenryck, P., Saraswat, V.: Strategic directions in constraint programming.
ACM Comput. Surv. 28(4), 701–726 (1996)

7. Dastjerdi, A.V., Buyya, R.: Compatibility-aware cloud service composition under
fuzzy preferences of users. IEEE Trans. Cloud Comput. 2(1), 1–13 (2014)

8. Chaisiri, S., Lee, B.S., Niyato, D.: Optimization of resource provisioning cost in
cloud computing. IEEE Trans. Serv. Comput. 5(2), 164–177 (2012)

9. Soltani, S., Elgazzar, K., Martin, P.: QuARAM service recommender: a platform
for IaaS service selection. In: UCC, Shanghai, China, pp. 422–425. ACM (2016)

10. Klein, A., Ishikawa, F., Honiden, S.: Towards network-aware service composition
in the cloud. In: WWW (2012)

184 K. Kritikos and G. Horn

11. Kritikos, K., Plexousakis, D.: Multi-cloud application design through cloud service
composition. In: Cloud, pp. 686–693. IEEE Computer Society, June 2015

12. Horn, G.: A vision for a stochastic reasoner for autonomic cloud deployment. In:
Second Nordic Symposium on Cloud Computing & Internet Technologies (Nordi-
Cloud 2013), pp. 46–53. ACM, September 2013

13. Kritikos, K., Magoutis, K., Plexousakis, D.: Towards knowledge-based assisted IaaS
selection. In: CloudCom, pp. 431–439. IEEE Computer Society, December 2016

14. Hwang, C., Yoon, K.: Multiple Criteria Decision Making. Lecture Notes in Eco-
nomics and Mathematical Systems. Springer, Heidelberg (1981). https://doi.org/
10.1007/978-3-642-48318-9

15. Saati, T.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
16. Kritikos, K., Plexousakis, D.: Novel optimal and scalable nonfunctional service

matchmaking techniques. IEEE Trans. Serv. Comput. 7(4), 614–627 (2014)

https://doi.org/10.1007/978-3-642-48318-9
https://doi.org/10.1007/978-3-642-48318-9

An Innovative MapReduce-Based
Approach of Dijkstra’s Algorithm
for SDN Routing in Hybrid Cloud,

Edge and IoT Scenarios

Alina Buzachis, Antonino Galletta, Antonio Celesti(B), and Massimo Villari

MIFT Department, University of Messina, Messina, Italy
{abuzachis,angalletta,acelesti,mvillari}@unime.it

Abstract. Nowadays, with the advent of Cloud/Edge Computing and
Internet of Things (IoT) technologies, we are facing with a tremendous
increase of network connections required by different new cutting-edge
distributed applications spread over a wide geographical area. Specif-
ically, the proliferation of IoT devices used by such applications and
associated data streams require a highly dynamic network ecosystem;
the traditional network technologies are not adequate to efficiently sup-
port them in terms of routing strategies. In order to deploy such appli-
cations, providers need an advanced awareness of the Cloud/Edge and
IoT networks in terms of flexible packets routing that can compute the
paths according to different parameters including, e.g., hops, latency, and
energy efficiency policies. In this context, Software Defined Networking
(SDN) has emerged as the answer to these needs decoupling control and
data planes, using a logically centralized controller able to manage the
underlying networking resources. In this paper, we focus on the adop-
tion of Dijkstra’s algorithm in SDN environments to support applica-
tions deployed in Cloud/Edge and IoT scenarios. Specifically, considering
a highly scalable network topology that includes thousands of network
devices, in order to reduce the path computation, we propose a revised
MapReduce approach of Dijkstra’s algorithm. Experiments show that,
compared to the sequential implementation, the MapReduce approach
drastically reduces the shortest path computation performance when
considering a complex Cloud/Edge and IoT network topology including
thousands of virtual network devices.

Keywords: SDN · MapReduce · Dijkstra · Cloud computing
Edge computing · Internet of Things

A. Celesti—On behalf of Gruppo Nazionale Per il Calcolo Scientifico (GNCS) -
INdAM.

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 185–198, 2018.
https://doi.org/10.1007/978-3-319-99819-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_14&domain=pdf

186 A. Buzachis et al.

1 Introduction

Nowadays, in the era of Internet of Things (IoT), we are observing a prolif-
eration of new cutting-edge pervasive applications. In this panorama, Gartner
[1] predicts that there will be 26 billion of IoT devices by 2020 representing an
almost 30-fold increase from 900 million in 2009. Despite the rapid advances
of IoT technologies, due to hardware limitations, applications deployed on IoT
devices (e.g. Single Board Computers (SBCs), mobile phones, tablets, etc.) have
to interact with the microservice architecture hosted by the central Cloud Com-
puting [2,3] data centers and, in order to reduce network latency, also by devices
distributed in an intermediate layer called Edge Computing [4].

The microservice architecture is a variant of the traditional Service-Oriented
Architecture (SOA) that structures an application as a collection of loosely cou-
pled fine-grained services (i.e., microservices) based on lightweight protocols. The
decomposition of applications into different smaller services allows to improve
modularity, making them simpler and more resilient. Specifically, applications
require the interaction of different smaller services or microservices generally
spread in the Cloud, Edge and IoT layers over a wide geographical network.
This introduces an important issue: ICT operators must flexibly manage the
network in order to meet the requirements of today’s emerging applications. In
fact, network awareness [5] is fundamental during the deployment of microser-
vices on Cloud, Edge and IoT devices. Unfortunately, ICT operators are not able
to have a view of the whole network topology and to think about quickly chang-
ing the setup of the physical network assets, if needed, in order to meet the
requirements of their hybrid Cloud/Edge/IoT applications [6–8], because net-
work connections are generally shared among different providers. Furthermore,
this would cause management problems for Internet Service Providers (ISPs).
Therefore, ICT operators need an alternative solution that allows them to gain
an advanced awareness of Cloud/Edge and IoT networks in terms of flexible
packets routing in order to compute paths according to different parameters
including, e.g., hops, latency, and energy efficiency policies.

Driving the need for a new networking solution, Network Function Virtu-
alization (NFV) was introduced with the purpose of building networks without
being dependent on ISPs. In particular, Software Defined Networking (SDN) has
emerged as the answer to these needs by decoupling control and data planes,
using a logically centralized controller able to manage the underlying physical
resources of the network, abstracting them to allow ICT operators to perform
rapid and automatic configuration of network routing. The ability to dynamically
define the behavior of a network via SDN gives ICT operators the flexibility to
adapt the network to applications’ requirements, without complex and expensive
reconfiguration tasks on physical network devices.

One of the main algorithms adopted for network routing is Dijkstra that
allows to find the shortest path between two nodes. This algorithm has been
recently adopted in SDN environments.

In this paper, unlike the scientific works available in the literature, in order to
address a Cloud/Edge and IoT scenario that includes a large number of network

An Innovative MapReduce-Based Approach of Dijkstra’s Algorithm 187

nodes, we propose a revised MapReduce version of Dijkstra’s algorithm to opti-
mize the connections required by applications whose microservices are deployed
over Cloud/Edge and IoT environments.

The experiments carried out haves shown that, with a minimal configuration
of the Hadoop cluster - 3 computational nodes and an input dataset describing a
complex Cloud/Edge and an IoT network topology with 10.000 virtual network
devices, since the number of devices present within the network increases the
path computation time performed with the MapReduce approach drastically
improves up to approximately 92% compared to the the sequential one.

The remainder of the paper is organized as follows. In Sect. 2, we present an
overview of related works and contributions. Motivation is discussed in Sect. 3.
In Sect. 4, we introduce some preliminary knowledge regarding the SDN concept.
Starting with a sequential implementation of Dijkstra’s algorithm for SDN envi-
ronments, a revised MapReduce version is presented in Sect. 5. Section 6 shows
the simulation results and observations. Finally, this paper is concluded with
Sect. 7.

2 Related Work

Recently, several initiatives have been proposed regarding the application of the
Dijkstra’s algorithm in SDN. The limits of traditional hierarchical architecture
design principles based on Dijkstra’s algorithm in the perspective of emerging
Cloud/Edge computing systems are highlighted in [9]. One of the major chal-
lenges is the mapping of virtual networks onto physical network infrastructures,
which is defined as a Virtual Network Embedding (VNE) problem. In this con-
text, a surviving virtual network mapping problem was formulated and solved
using an SVE Survivable Heuristic (GRC-SVNE) algorithm based on the Dijk-
stra’s algorithm proposed in [10]. Furthermore, an alternative GRC-M algorithm
in combination in combination with the Multicommodity Flow (MCF) algorithm
is discussed in [11].

The application of the Dijkstra’s algorithm in SDN raises numerous chal-
lenges in terms of reliability, capacity control and scalability. The application
of network virtualization in Fiber-wireless (FiWi) networks with the purpose to
alleviate bandwidth tension when a physical link serving different virtual net-
works fail is discussed in [12]. In particular, a shared protection mechanism is
embedded within the Dijkstra’s routing algorithm in order to improve its relia-
bility when a physical link fails. A reliable security-oriented SDN routing mech-
anism, named RouteGuardian, which considers the capabilities of SDN switch
nodes combined with a piece of Network Security Virtualization framework is
proposed in [13]. In particular, it overcomes the limits of the traditional routing
mechanisms in SDN, based on the Dijkstra’s shortest path, in terms of capac-
ity control in order to prevent network congestion. A self-adjusting architecture
based on Pairing heap to scale SDN network overcoming scalability issues due to
a centralized control plane is proposed in [14]. By using Network Virtualization
Function (NVF), the whole network is viewed as a huge heap and divide it into

188 A. Buzachis et al.

several sub heaps repeatedly until get the basic units of physical switches in the
network. In this context, the Dijkstra’s algorithm is applied and optimized based
on Pairing heap outperforming the original one when the network is dense.

Dijkstra’s Algorithm has been recently used in many emerging applications
based on SDN. In [15], an autonomous agent based shortest path load balancing
using the Dijkstra’s algorithm was proposed to find the shortest path to virtual
machines when a Cloud services saturates its processing capabilities. A piece
of framework to lightweight process the 3D shape based on Web Browser con-
sidering Web3D technology areas in the era of “Internet plus” is discussed in
[11]. This framework is based on Mesh Segmentation. Therefore, a new Dijkstra-
based mesh segmentation approach is presented. The application of SDN/Open-
Flow in an Internet Protocol Television (IPTV) multicasting implementation is
proposed in [16]. In this context, an important function of IPTV multicasting
is the Joint/Leave request of client in a multicast group. In order to obtain
an efficient IPTV service routing, Dijkstra’s and Prim’s algorithms were used
to comparatively calculate minimum total edge weight. Moreover, the Mininet
environment is used to emulate the system, that consists of Open vSwitch and
a POX controller. Experiments compare the transmission time of the first join-
t/receive packet to a client when using Dijkstra’s and Prim’s algorithms. In [17],
the Service Function Chaining (SFC) was used as a model of the Shortest Path
Tour Problem in order to find the minimum transmission cost path by exploiting
a constructed multistage graph. In particular, the minimum transmission cost
paths for multiple SFC classes is derived using the Dijkstra’s Shortest Path Algo-
rithm with resource constraints in a flexible way. Finally, some experiments are
carried out and the results show the effectiveness and efficiency of our proposed
method.

Differently from the scientific work available in literature, in this paper, we
focus on a Cloud scenario based on SDN in which the Dijkstra algorithm can
benefit from parallel processing in order process a huge amount of virtual network
nodes in order to assess best paths.

3 Motivation

With reference to those applications whose structure obeys the microservice
architecture in which microservices are deployed on devices across the Cloud,
Edge and IoT layers, there is the need to optimize certain network parameters
to align applications requirements in terms of latency and energy consumption
with network connections.

Figure 1 illustrates a scenario that includes two hosts, H1 and H2, that need
to communicate through a network topology including switches S1, S2, S3 and
S4. Moreover, we consider two applications App1 and App2 that run on both
host H1 and host H2. App1 consists of microservice MS1, while App2 consists
of microservice MS2.

Suppose App1 wants to take care of energy consumption, while App2 wants to
take care of latency minimization; applying the shortest path routing approach

An Innovative MapReduce-Based Approach of Dijkstra’s Algorithm 189

(a) Shortest path (b) Latency/Energy aware

Fig. 1. Routing approaches

shown in Fig. 1(a), the connections between H1 and H2 pass through the switches
S1 and S3. This approach is not the best in terms of energy consumption and
latency minimization because we obtain 100J of energy for App1 and 10ms of
latency for App2.

Figure 1(b) shows an alternative latency/energy aware routing approach that
allows to better optimize network resources and paths according to different
application requirements. In fact, although they share the same source and des-
tination hosts, App1 and App2 are routed separately according to their require-
ments. In particular, with regard to App1, the connections between H1 and H2

pass through S1, S4 and S3 with 2J of energy consumption, while as regards
App2, connections between H1 and H2 pass through S1, S2 and S3 with 2ms of
latency. Furthermore, it is possible to organize customized network connections
between H1 and H2 for each application such as:

– Simplex. Transmission is allowed in only one direction: H1 always acts as a
transmitter, while H2 acts as receiver.

– Half Duplex. Transmission is allowed in both directions, but not simulta-
neously: when H1 acts as a transmitter, H2 acts as a receiver.

– Full Duplex. Transmission is allowed in both directions at the same time:
both H1 and H2 act, at the same time, as transmitter and receiver.

The objective of this paper is to combine shortest path and latency/en-
ergy aware routing approaches for SDN environments supporting Cloud, Edge
and IoT scenarios. In order to achieve this, we adopt the Dijkstra’s algorithm.
Although several scientific works have been recently proposed focusing on the
adoption of Dijkstra’s algorithm in SDN, in this paper, we focus on a revised
MapReduce approach of this algorithm that can improve processing times when
thousands of Cloud, Edge and IoT devices are considered.

4 SDN Overview

SDN technology is an emerging network architecture in which network control is
decoupled from forwarding and directly programmable. The migration of control
logic, closely linked to individual network devices, to accessible Cloud, Edge and

190 A. Buzachis et al.

IoT devices, allows to abstract the underlying networking infrastructure giving,
to applications, a virtual vision of the network. Management is centralized in a
purely software SDN controller that has a global view of the network. As a result,
the network appears to applications as a single logical switch. With SDN, it is
possible to achieve the control of the network, from a single point, regardless
of ISPs and network assets, simplifying network design and usage. Moreover,
SDN abstraction also simplifies the operation of the network devices, as they
no longer need to understand and process thousands of standard protocols, but
they simply have to accept instructions from the SDN controller.

Basic SDN operations are performed by a standard protocol that allows the
SDN controller to send instructions to the various switches. OpenFlow is one of
main open protocols that allows an intermediate communication plane between
the SDN controller, i.e., the control plane device, and routers/switches, i.e., data
plane devices, that enforces network policies. In particular, OpenFlow routers
and/or switches include one or more flow tables and/or group tables updated
by an OpenFlow controller that can add or delete flow entries responsively or
proactively. Several OpenFlow controller solutions are OpenDaylight, Floodlight,
POX, Pyretic, and so on.

Figure 2 shows the general architecture of latency/energy aware applications
over OpenFlow. Looking up at the top of Fig. 2, different applications with spe-
cific network requirements interact with the OpenFlow controller that monitors
their network latency and energy consumption by receiving information from
OpenFlow network devices. If a particular network latency and energy consump-
tion parameter does not meet the requirements of an application, the OpenFlow
controller enforces network changes to OpenFlow devices.

Fig. 2. Architecture of latency/energy aware applications.

An Innovative MapReduce-Based Approach of Dijkstra’s Algorithm 191

5 Dijkstra’s Algorithm

Dijkstra’s algorithm is very useful in deriving the best routing path for sending
packets from a specific source node to a destination node in an SDN environ-
ment where different parameters (such as hops, latency and energy consumption)
associated to each link in the network must be considered in order to meet the
application requirements deployed in Cloud/Edge and IoT scenarios. Suppose
we can derive from the SDN topology a graph G = (V,E), which is weighted,
directed and connected. Figure 3 shows an example of a real/virtual network
through a weighted, directed and connected graph. Therefore, V represent the
set of network devices and E the set of network links, while to each link is
associated a weight w[e] quantifying different network parameters.

Fig. 3. Representation of an SDN topology through a weighted, directed and connected
graph.

A full duplex connection between two network devices can be arranged as a
pair of simplex connections each represented as a directed edge. Given that, we
suppose there is at least a path between a network device to each other. Consid-
ering the latency minimization as an application preference, we assume that w[e]
quantify the latency associated to the edge that connects two nodes. A latency-
oriented application will be provided with a path with lowest latency between
the source and intended destination microservice deployed in the Cloud, Edge
or IoT layers. Allocated virtual paths will be periodically updated as underlying
physical network changes to ensure a given latency requirement.

Considering that there are many factors that affect the properties of the con-
nections, network changes are more and more varied and unpredictable because
the Cloud/Edge and IoT networking scenarios are very complex. This complex-
ity is due to the fact that virtual paths that directly connect two nodes, actually
pass through tunnels and/or overlay networks, built on different physical net-
work devices distributed in the Cloud, Edge and IoT layers, that can frequently
change.

192 A. Buzachis et al.

5.1 Sequential Approach

One of the most common problems in graph theory is represented by the single-
source shortest path problem. Moreover, the task deals to find the shortest paths
from a source node to all other nodes in the graph. In particular, edges are
associated with costs or weights, in which case the task is to compute lowest-
cost or lowest-weight paths.

Given a weighted, directed and connected graph G = (V,E), with V the
set of vertexes and E the set of edges, the Dijkstra’s algorithm uses a Greedy
strategy to solve the problem of minimum paths with single source s of the graph
G = (V,E) if all the weights are non-negative.

Algorithm 1 shows the sequential Dijkstra’s algorithm pseudo-code, whose
input is a given connected graph G = (V,E) represented with adjacency lists
and w(u, v) ≥ 0 representing the edge weight from a vertex u to a vertex v, and
the single source node s.

Algorithm 1. Dijkstra’s Algorithm
INPUT G = (V,E), s
OUTPUT d|V |

d[s] ← ∅
for all v ∈ V − {S} do

d[v] ← ∞, for each v �= s, v ∈ V
end for
S ← ∅
while q �= ∅ do

u ← Extract − Min(Q, d)
S ← S ∪ {u}
for all v ∈ neighbours[u] do

if d[v] > d[u] + w(u, v) then
d[v] ← d[u] + w(u, v)

end if
end for

end while
return d

The algorithm maintains a set S that contains the vertexes whose minimum
path weight from the source s has already been determined, i.e., for each vertex
v ∈ S it is worth d[v] = d(s, v). The algorithm repeatedly selects the vertexes
u ∈ V − S with the minimum shortest path estimation, inserts u into S, and
releases all the edges outgoing from u. Moreover, a queue with priority Q that
contains all the nodes V − S is kept, using the respective values d as key.

An Innovative MapReduce-Based Approach of Dijkstra’s Algorithm 193

5.2 MapReduce Approach

The MapReduce approach of the Dijkstra’s algorithm is implemented in Hadoop.
From an architectural point of view, there are two types of nodes that control
the job execution: one JobTracker and several TaskTrackers. The first acts as
master node and coordinates all job executions by scheduling all tasks to different
TaskTrakers that act as workers. TaskTrackers perform the assigned tasks and
send back to the JobTracker reports on the processing status. If a task fails, the
JobTracker reschedules it on another TaskTracker. When a MapReduce job is
invoked by an user, the JobTracker divides the job into a set of tasks that are
assigned to TaskTrackers to process the job in parallel.

As previously discussed, in the sequential approach the key element is rep-
resented by the priority queue Q that keeps a globally-sorted list of vertexes
by current distance. This is not possible in MapReduce, as the programming
model does not provide a mechanism for exchanging global data. Therefore, we
adopted a brute force approach known as parallel breadth-first search. First of
all, as a simplification, we assumed that all edges have associated unit weights.
This assumption allows us to make the algorithm easier to be understood. The
basic idea of the MapReduce Dijkstra’s algorithm is that iteratively the distance
of all vertexes directly connected to the source vertexes is one; the distance of
all vertexes directly connected to those is two; and so on.

Suppose we want to compute the shortest path to vertex n. The shortest
path must go through one of the vertexes in M that contains an outgoing edge
to n. Therefore, we need to examine all m ∈ M to find ms, the vertex with the
shortest distance. The shortest distance to n is the distance to ms + 1.

The pseudo-code of the parallel breadth-first search algorithm is provided in
the Algorithms 2 and 3. As already assumed for the sequential approach of the
Dijkstra’s algorithm, we consider a connected, directed graph represented with
adjacency lists. Distance to each vertex is directly stored alongside the adjacency
list of that vertex, and initialized with distance d[v], v ∈ V to ∞, except for the
source vertex, whose distance to itself is zero. Therefore, in the pseudo-code, n
denotes the nodeid (i.e., an integer) and N denoted the node’s corresponding to
the adjacency list. Substantially, the algorithm works by mapping over all ver-
texes and emitting a key-value pair for each neighbor on the vertex’s adjacency
list. Therefore, the key will contain the nodeid of the neighbor, and the value
will be the current distance plus one.

To achieve the implementation of the Dijkstra’s algorithm using the MapRe-
duce programming model it has been necessary to implement the Map() and
Reduce() functions as follows.

– Map() is invoked in the Mapper task for each available vertex within the
graph. The output of the Mapper produces different key-value pairs - a key
value pair having as key the source vertex, and as value the adjacent vertexes
and another key-value pair where the key is given by the source vertex and
the value represents the minimum distance value.

194 A. Buzachis et al.

– Reduce() for each key vertex all distances are gathered together and the
minimum between them is chosen. Gathering of distances is performed by the
Hadoop framework while the choice of the minimum distance is implemented
by the user. The output of the Reducer produces another key-value pair where
the key is represented by the respective selected vertex and the value is the
minimum distance.

Parallel breadth-first search is an iterative algorithm, in which each iteration
corresponds to a MapReduce job. At the first iteration, the algorithm discovers
all vertexes that are connected to the source. At the second iteration, all vertexes
connected to those are discovered, and so on. With each iteration, the algorithm
expands the search frontier by one hop.

A crucial aspect of the algorithm, is the determination of the number of
iterations that it needs in order to finish the computation. Typically, there are
six degrees of separation suggesting that everyone on the planet is connected
to everyone else by at most six steps (the people a person knows are one step
away, people that they know are two steps away, etc.). In practical terms, we
will iterate our algorithm until there are no more vertex distances that are ∞.

The execution of an iterative MapReduce algorithm requires a non-
MapReduce “driver” program, which submits a MapReduce job in order to
iterate the algorithm, checks to see if a termination condition has been met,
and if not, repeats. The iterative approach is realized using the Hadoop API to
construct “counters”, which, can be used for counting events that occur during
the execution, e.g., number of corrupt records, number of times a certain condi-
tion is met, or anything that the programmer desires. Counters can be defined
to count the number of vertexes that have distances of ∞: at the end of the job,
the final counter value is checked in order to see if another iteration is necessary.
The counter values of each worker are periodically propagated to the master.
It brings together the values from the completion of the mapping operations
and reducing and subsequently returned to the user. The Mapper and Reducer
through the use of Reporter can communicate the progress.

Algorithm 2. Mapper Class Pseudo-code
Class MAPPER
method MAP (nid n, node N)

d ← N.Distance
EMIT (nid n,N)
for all nodeid m ∈ N.ADJACENCY LIST do

EMIT (nid m, d + 1)
end for

An Innovative MapReduce-Based Approach of Dijkstra’s Algorithm 195

Algorithm 3. Reducer Class Pseudo-code
Class REDUCER
method REDUCE(nid m, [d1, d2, ...])

d ← ∞
M ← ∅
for all d ∈ counts [d1, d2, ...] do

if ISNODE(d) then
M ← d

else
if d < dmin then

dmin ← d
end if

end if
end for
M.DISTANCE ← dmin

EMIT (nid m,node M)

6 Experiments

We carried out a scalability analysis in order to investigate the performance of
our sequential and MapReduce implementations of Dijkstra’s algorithm. In par-
ticular, the scalability analysis is based on the input dataset size to evaluate the
average execution time of both implemented approaches. Specifically, we gener-
ated several input datasets representing network topologies describing different
hybrid Cloud, Edge and IoT scenarios, and of different size (i) 10, (ii) 100, (iii)
1000, and (iv) 10000 vertexes respectively. We remark that in each proposed
scenario the vertexes are randomly connected to each other in order to create
a weighted, directed and connected graph. In order to have truthful results we
performed 30 subsequent iterations of the algorithm for both distributed and
sequential approaches and calculated mean values and 95% confidence intervals
respectively

6.1 Experimental Setup

We use three server nodes to deploy the Hadoop MapReduce cluster. Each node
has 4 vCPUs at 2.9 GHz, 8 GB of RAM and Ubuntu Server 16.04 LTS, all servers
install Apache Hadoop 2.6.1 and JDK version 1.8. The sequential approach of
Dijkstra’s algorithm, implemented in Java, runs on another server node having
the same software and hardware features.

Figure 4(a) illustrates the trend of both distributed and sequential approaches
using an input dataset that describes a topology composed of 10 network devices.
The execution times of the distributed approach are very large respect to those
obtained with the sequential one. This behavior is due to the overhead intro-
duced by the intra-cluster nodes communications. In fact, the MapReduce app-
roach requires roughly 77 s respect to the sequential one which requires only few
milliseconds.

196 A. Buzachis et al.

(a) Network topology with 10 devices (b) Network topology with 100 devices

(c) Network topology with 1000 devices (d) Network topology with 10000 devices

Fig. 4. Execution Times [s] of the Sequential/MapReduce Approach of Dijkstra’s Algo-
rithm (Color figure online)

Figure 4(b) illustrates the mean execution time of both distributed and
sequential approaches using an input dataset that describes a topology com-
posed of 100 network devices. The trend is very similar to that obtained in the
Fig. 4(a), with the difference that there is a slight variation of execution times.
In particular, the execution time of the distributed approach ranges around 79 s,
while for the sequential one increases by a couple of milliseconds

Figure 4(c) illustrates the mean execution time of both distributed and
sequential approach using an input dataset that describes a topology composed
of 1000 network devices. The trend is similar to that illustrated previous two
figures. In fact, the execution time registered with the distributed approach
increases sligthly by 10 s, the sequential one still be more efficient.

Figure 4(d) illustrates the mean execution time of both distributed and
sequential approaches using an input dataset describing a network topology with
10000 network devices. In this configuration, the trend is different. In particular,
the execution times collected using the distributed approach are slower - circa
170 s, compared to those obtained through the sequential one.

This behavior is evident also performing a vertical scalability by increasing
the heap memory of the JVM from 2GB to 3GB. Indeed, with reference to
orange and green bars of Fig. 4(d) representing the mean response times of the
sequential approach of Dijkstra’s algorithm with respectively 2 GB and 3 GB
of heap memory reserved for the JVM, the mean processing times are roughly
constant and greater than 1000 s. In conclusion, the distributed approach of Dijk-
stra’s algorithm is suitable for huge network topologies (10000 network devices)

An Innovative MapReduce-Based Approach of Dijkstra’s Algorithm 197

being 95% and 92% faster than the sequential one configured with 2GB and
3GB of heap memory reserved for the JVM.

7 Conclusion and Future Work

In this paper, we considered a scalable SDN scenario, where Cloud, Edge and
IoT devices must communicate efficiently to met the application requirements
to minimize different network parameters such as hops number, latency, energy
consumption, produced CO2 and so on.

In this complex scenario, a single centralized routing policy can not meet all
application requirements at the same time. To achieve this, we considered an
SDN environment running a Dijkstra’s algorithm to produce routing tables that
minimize application network latency.

To address a scalable scenario that includes a huge amount of Cloud, Edge
and IoT network devices, in addition to considering a sequential implementa-
tion of Dijkstra’s algorithm, we also considered a MapReduce implementation
to minimize processing times. Specifically, considering small network topologies
(up to 1000 network devices), such as that of an intra-building scenario, the
sequential Dijkstra’s algorithm presents a better mean processing time than the
MapReduce one, whereas in a more complex network topology, such as that of
an intra-campus or smart cities scenario, in which roughly 10000 network devices
are considered, the MapReduce approach represents the optimal solution.

Our future work involves the improvement of our distributed Dijkstra’s algo-
rithm implementation to address reliability issues when physical links fail, net-
work capability control, and scalability due to a single control plane.

Acknowledgment. This work has been supported by FP7 Project the Cloud for
Europe, grant agreement number FP7-610650.

References

1. Gartner Says the Internet of Things Installed Base Will Grow to 26 Billion Units
By 2020. https://www.gartner.com/newsroom/id/2636073

2. Celesti, A., Galletta, A., Carnevale, L., Fazio, M., Lay-Ekuakille, A., Villari, M.: An
IoT cloud system for traffic monitoring and vehicular accidents prevention based
on mobile sensor data processing. IEEE Sens. J. 18, 4795–4802 (2018)

3. Galletta, A., Carnevale, L., Celesti, A., Fazio, M., Villari, M.: A cloud-based system
for improving retention marketing loyalty programs in industry 4.0: a study on big
data storage implications. IEEE Access 6, 5485–5492 (2017)

4. Ahmed, E., Ahmed, A., Yaqoob, I., Shuja, J., Gani, A., Imran, M., Shoaib, M.:
Bringing computation closer toward the user network: is edge computing the solu-
tion? IEEE Commun. Mag. 55, 138–144 (2017)

5. Liotta, A.: The cognitive net is coming. IEEE Spectr. 50, 26–31 (2013)
6. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How the dataweb can support cloud

federation: service representation and secure data exchange. In: Proceedings - IEEE
2nd Symposium on Network Cloud Computing and Applications, NCCA 2012, pp.
73–79 (2012)

https://www.gartner.com/newsroom/id/2636073

198 A. Buzachis et al.

7. Fazio, M., Celesti, A., Marquez, F., Glikson, A., Villari, M.: Exploiting the fiware
cloud platform to develop a remote patient monitoring system. In: Proceedings
- IEEE Symposium on Computers and Communications, vol. 2016, pp. 264–270
(2016)

8. Mulfari, D., Celesti, A., Villari, M., Puliafito, A.: How cloud computing can sup-
port on-demand assistive services. In: W4A 2013 - International Cross-Disciplinary
Conference on Web Accessibility (2013)

9. Lin, C., Xue, C., Hu, J., Li, W.Z.: Hierarchical architecture design of computer
system. Jisuanji Xuebao/Chin. J. Comput. 40, 1996–2017 (2017)

10. Zheng, X., Tian, J., Xiao, X., Cui, X., Yu, X.: A heuristic survivable virtual network
mapping algorithm. Soft Comput. 1–11 (2018)

11. Zhou, W., Jia, J.: Lightweight Web3D visualization framework using Dijkstra-
based mesh segmentation. In: Tian, F., Gatzidis, C., El Rhalibi, A., Tang, W.,
Charles, F. (eds.) Edutainment 2017. LNCS, vol. 10345, pp. 138–151. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-65849-0 15

12. Liu, Z., Yang, H., Kou, S.: Shared Protection Algorithm Based on Virtual Network
Embedding Framework In Fiber-wireless Access Network (2017)

13. Wang, M., Liu, J., Mao, J., Cheng, H., Chen, J., Qi, C.: Routeguardian: Construct-
ing. Tsinghua Sci. Technol. 22, 400–412 (2017)

14. Wang, C., Yan, S.: Scaling SDN Network With Self-adjusting Architecture, pp.
116–120 (2017)

15. Vig, A., Kushwah, R., Tomar, R., Kushwah, S.: Autonomous Agent Based Shortest
Path Load Balancing in Cloud, pp. 33–37 (2017)

16. Rattanawadee, P., Ruengsakulrach, N., Saivichit, C.: The Transmission Time Anal-
ysis of IPTV Multicast Service in SDN/OpenFlow Environments (2015)

17. Liu, F., Chen, X., An, W., Peng, Y., Cao, J., Zhang, Y.: Minimizing Transmission
Cost for Multiple Service Function Chains in SDN/NFV Networks, vol. 2017, pp.
1–6 (2018)

https://doi.org/10.1007/978-3-319-65849-0_15

Little Boxes: A Dynamic Optimization
Approach for Enhanced Cloud

Infrastructures

Ronny Hans1, Björn Richerzhagen1, Amr Rizk1(B), Ulrich Lampe1,
Ralf Steinmetz1, Sabrina Klos (née Müller)2, and Anja Klein2

1 Multimedia Communications Lab (KOM), Technische Universität Darmstadt,
Darmstadt, Germany

{Ronny.Hans,amr.riz}@KOM.tu-darmstadt.de
2 Communications Engineering Lab, Technische Universität Darmstadt, Darmstadt,

Germany

Abstract. The increasing demand for diverse, mobile applications with
various degrees of Quality of Service requirements meets the increas-
ing elasticity of on-demand resource provisioning in virtualized cloud
computing infrastructures. This paper provides a dynamic optimization
approach for enhanced cloud infrastructures, based on the concept of
cloudlets, which are located at hotspot areas throughout a metropoli-
tan area. In conjunction, we consider classical remote data centers that
are rigid with respect to QoS but provide nearly abundant computation
resources.

Keywords: Cloud computing · Data center · Cloudlet
Quality of service · Multimedia · Service · Dynamic · Optimization

1 Introduction

Over the last decade, the development of Information Technology (IT) has been
shaped by different trends. One of these trends is cloud computing, which started
as a paradigm for monetizing surplus IT resources to become a cornerstone
paradigm in resource provisioning for business as well as private customers. In
addition to these trend, we observed another major trend of increasing dissem-
ination of mobile devices over the past few years. Omnipresent smartphones
are heavily used today to consume multimedia services, communicate, and play
massive real-time online games.

Combining these two trends together, i.e., (i) the demand for more diverse
services – especially given device mobility – together with (ii) the elastic on-
demand service (resource) provisioning of the cloud computing paradigm, we
arrive at the mobile cloud computing paradigm. This paradigm imposes many
new challenges, specifically regarding the Quality of Service (QoS) requirements
of mobile services. Strict QoS requirements while providing multimedia services
c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 199–206, 2018.
https://doi.org/10.1007/978-3-319-99819-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_15&domain=pdf

200 R. Hans et al.

stand in contrast to the usual concentration of computational resources in a
small number of large, centralized cloud data centers. To reduce the latency
between data centers and users, research showed that a higher service quality
can be achieved with an increased number of data centers. This obviously causes
immense additional costs and oppose the economies of scale advantage of cloud
computing [1,2].

Mobile devices using LTE networks suffer from higher latency [6] and high
energy consumption [4]. Such problems can be addressed by utilizing (minia-
ture) data centers or computation resources in proximity to the user. In the best
case, such resources are accessible via Wi-Fi and offer interfaces to offload the
computation of intensive tasks. These resources at the edge of the network are
referred to as cloudlets [5]. In the work at hand, we investigate a cost-efficient
and QoS-aware placement of cloudlet resources using a time dynamic, multi-
period optimization model. The remainder of the paper is structured as follows:
In Sect. 2, we provide the problem statement from a provider’s perspective. Sub-
sequently, in Sect. 3 we present an optimization approach for the given problem.
In Sect. 4 a conclusion of the work at hand is given.

The subsequently presented optimization problem constitutes a Mixed Inte-
ger Program (MIP), which is NP-hard. To solve any corresponding problem
instances in polynomial time, we publish a heuristic approach as part of an
extended technical report [3]. This technical report includes the exact and heuris-
tic solution approaches, as well as, an elaborate evaluation.

2 Problem Statement

In this work, we assume the role of a cloud infrastructure provider that aims to
provide resources for higher layer application service providers. We assume that
the provider owns the cloud infrastructure at hand and, thus, has free disposure
over all of its resources. For premium services with rigid QoS constraints, the
provider aims to augment his infrastructure using cloudlets within a metropoli-
tan area. Therefore, we consider stationary cloudlets with permanently installed
hardware, which are connected to the same Local Area Network (LAN), i. e., Wi-
Fi, as the users [5,7]. Hence, the users benefit from a low propagation delay and a
high bandwidth. As deployment method, we assume a top-down approach, where
the provider owns and offers cloudlets and, hence, bears the entrepreneurial risk
[5]. We consider cloudlet locations at existing restaurants or cafes (e. g., Star-
bucks stores) in Manhattan. Obviously, such deployments require contractual
agreements. Since we are focusing on the optimization approaches, the underly-
ing business models are out of scope for this paper.

In the following, we aggregate all users covered by a local Wi-Fi into a user
cluster with a defined demand for services. Naturally, this user demand is fluc-
tuating over time. As depicted in Fig. 1, a user cluster comprises different types
of network connections.

First, a hard-wired LAN connects the Wi-Fi hotspot, a possibly installed
cloudlet, and the router to communicate to external remote resources. Sec-
ond, Wi-Fi connections that connect the mobile devices to the Wi-Fi hotspot.

Little Boxes: Dynamic Optimization for Enhanced Cloud Infrastructures 201

Since we are assuming a higher bandwidth on the wired LAN compared to the
wireless Wi-Fi hotspot, we do not consider the LAN as a limiting factor.

The third network component connects a user cluster to a central router
within the Metropolitan Area Network (MAN) and hence, to other user clus-
ters, cloudlets, and remote data centers. Figure 1 shows the basic structure of a
cloudlet, the networks, and the connection to a remote cloud data center. The
provider may place cloudlets and the corresponding resources at different loca-
tions. When putting a new location into service, fixed infrastructure cost will
arise. Each cloudlet can be equipped with a number of servers up to an upper
capacity bound. The capacity is restricted by limited physical space, limited
feasibility for cooling, or restrictions regarding the overall energy consumption.
For each deployed server, fixed hardware costs occur. Furthermore, for each
resource unit variable costs arise, e. g., for electricity and cooling. Since such
costs may fluctuate over time, e. g., due to varying energy prices, a provider
needs to consider a planning time horizon that is captured here through mul-
tiple time periods. If a resource migration, e. g., in form of VM migration, is
required, migration costs arise. We assume that these costs are independent of
the type of cloudlet or the distance between the cloudlets. In real world sce-
narios, service migrations can be time aligned with data transfer. Therefore, we
consider different migration costs depending on the service class.

In our model, penalty costs arise if a specific user demand cannot be fulfilled.
Data centers provide different QoS guarantees with respect to each user clus-

ter, i. e., with respect to the end-to-end latency that depends on the distance
between the data center and the user cluster. Therefore, a provider needs to
differentiate between the different types of data centers for service placement,
i. e., local cloudlets and remote data centers. The latter one generally possesses
a higher latency.

By the means of the provided infrastructure, users access various services.
We distinguish between three different service classes, whereby each class pos-
sesses specific QoS requirements: (i) Cloud services that can be easily used via a

d1

dn

u1

un

dn+1

MANdown
MANup

MANup

MANdown

WANup WANdown

LANup

LANdown

Fig. 1. Integration of cloudlets within a network topology

202 R. Hans et al.

cellular network, i. e., services with low QoS requirements regarding latency and
bandwidth, for example messaging tools. (ii) Cloud services that can be easily
used via broadband internet, i. e., services with high bandwidth requirement,
but not necessarily realtime constraints, such as on-demand video streaming.
(iii) Cloud services with high computational effort, realtime constraints, and
high bandwidth requirements, e. g., cloud gaming.

The first class of services plays a minor role in our scenario, since cloudlets
only offer marginal additional benefits to such services. Nevertheless, these ser-
vices can by provided by cloudlets if free capacities are available. For the second
class of services, cloudlets increase the users’ quality of experience through a
high bandwidth to demanded content. For the third class of services, we note
that cloudlets are required to ensure appropriate quality of service guarantees.

The purpose of this optimization, which is based on a provider’s perspective,
is to place resources in data centers and take decisions regarding the required
capacity while providing QoS guarantees. Thereby, the goal is a minimization
of the overall provisioning costs. In the following, we refer to this problem as
Dynamic Cloudlet Placement and Selection Problem (DCPSP).

3 Exact Optimization Approach

Next, we present a Mixed Integer Linear Program (MILP) formulation for the
dynamic cloudlet placement and selection problem. In order to efficiently solve
the problem, we provide a heuristic solution approach in the extended version
of this paper [3]. To provide a mathematical model, we introduce the formal
notation in Table 1. The objective here is the minimization of the total monetary
cost associated with the cloudlet placement and selection.

3.1 Optimization Goal

The objective function aiming to minimize the total costs is given in Eq. 1. These
costs are split into fixed infrastructure cost, variable operating cost, variable
reservation cost, penalty cost, migration cost, and fixed hardware cost.

min C =
∑

λ=1..Λ

xdλ
×Cfix

dλ
+

∑

o=1..O

(
∑

λ=1..Λ
μ=1..M
ν=1..N

ydλ,uμ,sν ,to
×Cop

dλ,to
+

∑

μ=1..M
ν=1..N

ypen
uμ,sν ,to

×Cpen
uμ,sν

)

+
O∑

o=2

∑

λ=1..Λ
μ=1..M
ν=1..N

ymig
dλ,uμ,sν ,to

× Cmig
sν

+
∑

λ=1..Λ

zdλ
× Chw

dλ
(1)

The first summand represents the fixed infrastructure cost that depends on
the selected data centers represented by the decision variable xdλ

and the cor-
responding value for the individual fixed cost Cfix

dλ
. Such resource-agnostic cost

Little Boxes: Dynamic Optimization for Enhanced Cloud Infrastructures 203

occurs once for each planning period when a data center is placed. The sec-
ond part of the term summarizes to the variable operational costs Cop

dλ,to
that

are caused by the provided resource units ydλ,uμ,sν ,to
. The operational costs

depend on the selected data center and may well vary over time. The third sum-
mand refers to capacities requested by a user cluster uμ that are unfulfilled by
the selected data centers. These capacities, ypen

uμ,sν ,to
, cause penalty cost Cpen

uμ,sν
.

Penalty cost may be financial penalties defined in a Service Level Agreement
but also may reflect opportunity cost for lost revenues. The migration cost is
expressed in the fourth summand. Such migration cost Cmig

uμ,sν
includes the data

transfer cost from one data center to another. Assuming that launching a new
service does not cause migration cost, such cost only occurs from the second
time period on.

Equation 2 expresses the number of resource units to be migrated. To cal-
culate the total amount, we distinguish two different cases: (i) The amount of
resources that is provided to a specific user cluster uμ w.r.t. a specific service
is either constant or increases between two subsequent time periods, while the
resource share provided by specific data center decreases. (ii) the aggregated
amount of resources provided to a specific user cluster uμ w.r.t. a specific service
decreases between to time slots, while the resource share provided by a spe-
cific data center increases. To model and implement the optimization problem,
this case differentiation requires a transformation into a linear equation system.
However, due to space restrictions, this transformation is not part of the work
at hand.

ymig
dλ,uμ,sν ,to

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ydλ,uμ,sν ,to−1 − ydλ,uμ,sν ,to
if∑

α=1..Λ ydα,uμ,sν ,to
≥ ∑

α=1..Λ ydα,uμ,sν ,to−1

∧ ydλ,uμ,sν ,to
≤ ydλ,uμ,sν ,to−1

ydλ,uμ,sν ,to
− ydλ,uμ,sν ,to−1 if∑

α=1..Λ ydα,uμ,sν ,to
<

∑
α=1..Λ yda,uμ,sν ,to−1

∧ ydλ,uμ,sν ,to
> ydλ,uμ,sν ,to−1

0 else

∀dλ ∈ D,∀uμ ∈ U,∀sν ∈ S,∀to ∈ T (2)

Note that the last summand in Eq. 1 refers to the provided hardware units
zdλ

in each data center. Providing servers leads to hardware cost Chw
dλ

.

3.2 Constraints

In the following, we present the required constraints to ensure a valid solution of
this optimization problem. The first constraint in Eq. 3 concerns the user cluster
demand Vuμ,sν ,to

. Since a provider has the choice either to fulfill the demand or
cause a penalty, the summation of provided and unfulfilled capacities must be
equal or greater to the resource demand of all user clusters for all services at
each point in time.

204 R. Hans et al.

Table 1. Formal notations

Symbol Description

dλ Represents a specific data center and encompasses cloud data centers
and cloudlets

uμ Represents a specific user cluser

sν Represents a specific service

qξ Represents a specific QoS attribute

to Represents a specific time slot within the planning period

Vuμ,sν ,to Service demand of user uμ for service sν at time to

Kmin
dλ

Minimal capacity of data center dλ

Kmax
dλ

Maximal capacity of data center dλ

K
LANdown
uμ LAN downlink capacity of user cluster uμ

K
LANup
uμ LAN uplink capacity of user cluster uμ

KMANdown
uμ WAN downlink capacity of user cluster uμ

K
MANup
uμ WAN uplink capacity of user cluster uμ

Cfix
dλ

Fixed cost of selecting data center dλ

Chw
dλ

Fixed costs for buying or leasing hardware for data center dλ

Cop
dλ,to

Variable cost for operating one resource unit for one time unit in data
center dλ at time to

Cmig
sν

Migration cost for moving service sν from one data center to another
between two subsequent time periods t and t+ 1

Cpen
uμ,sν

Penalty cost per service unit not provided to user uμ w.r.t. service sν

Qgua
dλ,uμ,qξ

QoS guarantee of data center di w.r.t. user uj for QoS attribute qξ

Qreq
uμ,sν ,qξ

QoS requirement of user ui w.r.t. service sν for QoS attribute qξ

Ldown
sν

Required downstream capacity for service sν

Lup
sν

Required upstream capacity for service sν

xdλ Variable ∈ {0, 1} indicates whether a data center dλ will be used or not

ydλ,uμ,sν ,to Number of resources a data center dλ provides to a user cluster uμ

regarding a service sν in time period to

ymig
dλ,uμ,sν ,to

Number of resources that are migrated from one to another data
center in between the time periods to−1 and to

ypen
uμ,sν ,to

Demand that is not satisfied by the provider and that will cause
penalty costs

zdλ Number of hardware resource units provided within a data center dλ

ypen
uμ,sν ,to

+
∑

λ=1..Λ

ydλ,uμ,sν ,to
≥ Vuμ,sν ,to

∀uμ ∈ U,∀sν ∈ S,∀to ∈ T (3)

The available data center resources are limited by a maximal capacity con-
straint Kmax

dλ
, e. g., by the available space or cooling. Further, we consider a

lower capacity bound Kmin
dλ

reflecting the economic necessity of a cost-efficient

Little Boxes: Dynamic Optimization for Enhanced Cloud Infrastructures 205

operation of data centers. As cloudlets can be established with few hardware
resources, e. g., a single server, this bound could also be set to zero. These con-
ditions determine the number of hardware resources zdλ

that can be installed
within a data center dλ (cf. Eqs. 4 and 5).

∑

m=1..n
ν=1..N

ydλ,uμ,sν ,to
≤ zdλ

∀dλ ∈ D,∀to ∈ T (4)

zdλ
≤ xdλ

× Kmax
dλ

∀dλ ∈ D, zdλ
≥ xdλ

× Kmin
dλ

∀dλ ∈ D (5)

The adherence to QoS requirements is expressed by the binary variable
pdλ,uμ,sν

. If all QoS guarantees Qgua
dλ,uμ,qξ

are fulfilled, the variable is set to one
(cf. Eq. 6). Otherwise, a data center cannot provide any resources (cf. Eq. 7).

pdλ,uμ,sν
=

{
1 if Qgua

dλ,uμ,qξ
≥ Qreq

uμ,sν ,qξ
∀qξ ∈ Q

0 else
(6)

ydλ,uμ,sν ,to
≤ pdλ,uμ,sν

× Kmax
dλ

∀dλ ∈ D,∀uμ ∈ U,∀sν ∈ S,∀to ∈ T (7)

As described earlier, each user cluster is connected to two types of networks, a
LAN, i. e., Wi-Fi, and a MAN that connects the different user clusters with each
other and to remote cloud data centers. All services that are consumed require a
specific average amount of bandwidth. Note that the required bandwidth most
be lower or equal than the available bandwidth. Since services may have different
requirements regarding download and upload capacities, we differentiate between
these two (cf. Eqs. 8 and 9).

∑

λ=1..Λ

∑

ν=1..N

ydλ,uμ,sν ,to
× Ldown

sν
≤ KLANdown

uμ

∀uμ ∈ U,∀sν ∈ S,∀to ∈ T (8)

∑

λ=1..Λ

∑

ν=1..N

ydλ,uμ,sν ,to
× Lup

sν
≤ KLANup

uμ

∀uμ ∈ U,∀sν ∈ S,∀to ∈ T (9)

The MAN connection is required to provide services from remote resources
to a local user cluster, and may be necessary to provide services from a local
cloudlet to remote users. For services that are provided by the local cloudlet and
consumed by the local users, no MAN capacities are required at all. Equations 10
and 11 represent the corresponding constraints. Further, we differentiate between
download and upload capacities to take specific service requirements and network
characteristics into account.

∑

λ=1..Λ
λ�=α

∑

ν=1..N

ydλ,uα,sν ,to
×Ldown

sν
+

∑

μ=1..M
μ�=α

∑

ν=1..N

ydα,uμ,sν ,to
×Lup

sν
≤KMANdown

uα

∀dα ∈ D,∀uα ∈ U,∀sν ∈ S,∀to ∈ T (10)

206 R. Hans et al.

∑

λ=1..Λ
λ�=α

∑

ν=1..N

ydλ,uα,sν ,to
× Lup

sν
+

∑

μ=1..M
μ�=α

∑

ν=1..N

yda,uμ,sν ,to
× Ldown

sν
≤ KMANup

uα

∀dα ∈ D,∀uα ∈ U,∀sν ∈ S,∀to ∈ T (11)

The presented optimization problem constitutes a Mixed Integer Program
(MIP) and is NP-hard. In the extended version of this work [3], we describe a
heuristic solution approach to obtain solutions to this problem with reasonable
effort.

4 Conclusion

To provide services with stringent QoS requirements, an augmentation of the
centralized cloud infrastructure by locally installed cloudlets is a promising app-
roach. Since the utilization of decentralized micro data center is costly, we exam-
ined the Dynamic Cloudlet Placement and Selection Problem to provide the
means of a cost-efficient infrastructure augmentation. We formulate a mixed inte-
ger optimization problem to compute the exact solution to the dynamic cloudlet
placement and selection problem. In the extended version of this work [3], we
provide different heuristic approaches to overcome the problem of high compu-
tational effort where we significantly reduce the computation time while main-
taining a high solution quality under slightly increased costs.

Acknowledgment. This work has been sponsored in part by the German Federal
Ministry of Education and Research (BMBF) under grant no. 01IS12054, by E-Finance
Lab e.V., Frankfurt a.M., Germany (www.efinancelab.de), and by the German Research
Foundation (DFG) in the Collaborative Research Center (SFB) 1053 – MAKI.

References

1. Choy, S., Wong, B., Simon, G., Rosenberg, C.: The brewing storm in cloud gaming:
a measurement study on cloud to end-user latency. In: 11th Annual Workshop on
Network and Systems Support for Games (2012)

2. Goiri, I.n., Le, K., Guitart, J., Torres, J., Bianchini, R.: Intelligent placement of
datacenters for internet services. In: 31st International Conference on Distributed
Computing Systems (2011)

3. Hans, R., et al.: Little boxes: A dynamic optimization approach for enhanced cloud
infrastructures. arXiv preprint - http://arxiv.org/abs/1807.02615 (2018)

4. Huang, J., Qian, F., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: A close exam-
ination of performance and power characteristics of 4G LTE networks. In: 10th
International Conference on Mobile Systems, Applications, and Services (2012)

5. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based
cloudlets in mobile computing. Pervasive Comput. 8(4), 14–23 (2009)

6. Sommers, J., Barford, P.: Cell vs. WiFi: on the performance of metro area mobile
connections. In: 2012 Conference on Internet Measurement (2012)

7. Verbelen, T., Simoens, P., De Turck, F., Dhoedt, B.: Cloudlets: bringing the cloud to
the mobile user. In: 3rd ACM Workshop on Mobile Cloud Computing and Services
(2012)

www.efinancelab.de
http://arxiv.org/abs/1807.02615

Cloud Topology and Orchestration Using
TOSCA: A Systematic Literature Review

Julian Bellendorf(B) and Zoltán Ádám Mann

paluno – The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

{julian.bellendorf,zoltan.mann}@paluno.uni-due.de

Abstract. Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) is a standard for specifying the topology of cloud appli-
cations, their deployment on cloud resources, and their orchestration. In
recent years, the cloud research community has shown increasing inter-
est in TOSCA, leading to an increasing number of publications. These
publications address different topics around TOSCA, e.g., devise cloud
orchestration methods using TOSCA, extend the language of TOSCA,
or present tools for manipulating TOSCA models. To help researchers
and practitioners overview this multifaceted area of research, this paper
presents the results of a systematic survey of the relevant literature.

Keywords: TOSCA · Cloud · Topology · Orchestration

1 Introduction

Cloud applications may comprise many components with different technical
dependencies and constraints, making their deployment and ongoing manage-
ment complicated and error-prone [27]. Also, the interoperability between man-
agement tools has become challenging [4]. Thus, the need arose to describe cloud
applications and related management tasks on a higher level of abstraction, in a
standardized format. To address these issues, the Organization for the Advance-
ment of Structured Information Standards (OASIS) published the Topology and
Orchestration Specification for Cloud Applications (TOSCA) standard in 2013
[30]. TOSCA is a modeling language addressing the deployment and portability
of applications, and the reusability of application components [2,13]. The orig-
inal TOSCA specification was based on XML; the simplified TOSCA profile,
released in 2016, used YAML [32].

TOSCA describes (i) the structure of composite cloud applications as topology
graphs and (ii) management plans for deploying and maintaining cloud applica-
tions. In topology graphs, nodes represent components, which include manage-
ment operations e.g. for creating, configuring or starting the component [19]. The
topology graph also contains relationships between components; e.g., a “hosted-
on” relation indicates the allocation of virtual to physical components.
c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 207–215, 2018.
https://doi.org/10.1007/978-3-319-99819-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_16&domain=pdf

208 J. Bellendorf and Z. Á. Mann

In imperative processing, a Management Plan defines the management oper-
ations and their execution order, using a workflow language such as Business
Process Model and Notation [31] or Business Process Execution Language [29].
In declarative processing, no Management Plans are defined; instead, a runtime
system infers the necessary steps for typical operations (e.g., deployment) from
the application topology based on some conventions [5].

TOSCA has played various roles in different research approaches: some used
TOSCA as part of a more general methodology, others extended the modeling
capabilities of TOSCA or designed tools to manipulate TOSCA models. The
multifaceted use of TOSCA and the growing number of relevant papers make it
hard to track all related research. The aim of this paper is to give an overview
of the use of TOSCA in the research community. We performed a systematic
literature survey to devise a taxonomy of the main research topics that have
been addressed in connection with TOSCA.

To identify relevant papers, we first used Scopus1 with the search string
"Topology and Orchestration Specification for Cloud Applications"
AND (ABS(tosca) OR TITLE (tosca)). Here, ABS(tosca) OR TITLE (tosca)
means that the word TOSCA must be contained in the abstract or title, ensur-
ing that TOSCA is a main aspect of the paper. In addition, we are looking for
the full term (Topology and Orchestration Specification for Cloud Applications)
to exclude papers that use the word TOSCA in another meaning. We focused
on the period 2012–2017, since the first TOSCA papers were published in 2012,
and 2017 was the last full year until the time of writing. We found 89 papers.
We excluded 6 very short papers (less than 4 pages). Using Google Scholar2,
we found 8 more papers that were not in Scopus but fit our search string. This
led to a total of 91 papers. Afterwards, we read each paper and categorized it
using open coding. By continuously refining our coding scheme, we built up a
taxonomy in a bottom-up fashion. Finally, we analyzed the results to identify
focal points of existing research and directions for further research.

2 Survey Results

Figure 1 presents the taxonomy that we developed based on the analyzed papers.
On the highest level, we categorized the papers based on their main contribution
regarding TOSCA. We identified the following categories:

1. Tools: papers describing a tool for TOSCA. Further categorization is possible
based on the type of tool; in particular, this includes modeling tools, tools
for deployment automation, and run-time environments.

2. Extension of language: approaches that extend the TOSCA language. The
extension may relate to topologies, Management Plans, or both. Furthermore,
extensions aiming at a visual notation also belong to this category.

1 https://www.scopus.com.
2 https://scholar.google.com.

https://www.scopus.com
https://scholar.google.com

Cloud Topology and Orchestration Using TOSCA 209

Papers rela ng to TOSCA

Tools Extension of
language

Methodologies for mani-
pula ng TOSCA models

Rela on to other
solu ons

Usage of
TOSCA

TOSCA
introduc on

Modeling

Deployment

Run- me
environment

Topology

Management plans

Topology and
management plans

Visual nota on

Topology processing

Combining declara ve and
impera ve processing

Policy enforcement

Verifica on of cloud
orchestra on

Case studies

IoT

DevOps

Tes ng

Comparison

Conversion

Fig. 1. Taxonomy for categorizing the processed papers

3. Methodologies for manipulating TOSCA models: papers describing
a methodology for processing TOSCA models. The identified sub-categories
are: papers about processing TOSCA topology models, approaches that com-
bine declarative and imperative processing, solutions to enforce some given
policies, and verification of cloud orchestration.

4. Relation to other solutions: papers about a relation – comparison or
conversion – between TOSCA and some other technique.

5. Usage of TOSCA: papers demonstrating the use of TOSCA. This includes
case studies that showcase the practical applicability of TOSCA, papers about
the contribution of TOSCA to DevOps, papers about the use of TOSCA in an
IoT (Internet of Things) setting, as well as papers about the use of TOSCA
models for testing purposes.

6. TOSCA introduction: papers that introduce TOSCA or some of the con-
cepts within TOSCA.

The following paragraphs describe some representative papers in each cate-
gory of the taxonomy of Fig. 1, except for the category “TOSCA introduction.”
(Due to space limitation we cannot describe all found papers in detail.)

(1) Tools. The Tools category consists of papers mainly presenting tools for
describing, deploying, and instantiating cloud applications using TOSCA. Pro-
totypes that only serve to evaluate an approach are not assigned to this category.

Kopp et al. present the web-based modeling tool Winery [23]. First, Winery
includes the Topology Modeler, with which components can be combined to form
an application topology. Second, Winery contains the Element Manager, which
can be used to create, modify, and delete components. Kopp et al. propose an
extension to Winery that can be used to model Management Plans [24].

Binz et al. describe OpenTOSCA, a runtime for imperative processing of
TOSCA applications [1]. This tool executes the defined Management Plans
respectively the operations described within the nodes. Wettinger et al. present
an extension to OpenTOSCA in the form of a unified invocation interface [40].

210 J. Bellendorf and Z. Á. Mann

Breitenbücher et al. present Vinothek, which offers the user an interface for
providing an instance of an application [7]. For this purpose, the user is offered
the set of applications without having to deal with the technical details.

Katsaros et al. also provide a tool to deploy and manage software components
[21]. The execution environment TOSCA2Chef parses TOSCA documents and
deploys the components described in OpenStack Clouds using the Opscode Chef
configuration management software and BPEL processes.

(2) Extension of language. Brogi et al. extend TOSCA by means for specify-
ing the behavior of the application components when executing the management
operations defined in the nodes [9]. Considering the effects of the operations to be
performed and the states that the components assume after execution, makes the
validation of Management Plans possible. Breitenbücher et al. propose a visual
notation to unify the presentation of nodes within the topology [8]. Kopp et al.
extend the BPMN to provide direct access to the topology elements [22]. The
extension, called BPMN4TOSCA, can be transformed into standards-compliant
BPMN.

(3) Methodologies for manipulating TOSCA models. Various approaches
have been proposed to work with TOSCA models. Some focus on the processing
of topologies, whereas others also take Management Plans into account to enforce
policies, to verify the orchestration of the components, or to combine declarative
and imperative processing.

Processing of Topologies. Brogi and Soldani describe an approach that
involves matching between individual Node Types and Service Templates [11,12].
This matching allows sets of Node Types to be grouped together in a topology
to reduce its complexity. In addition, proven combinations of Node Types can be
reused in new application topologies. Service Templates which do not fit exactly
can be adapted to create a template that matches exactly to a given node type.

Binz et al. observed that container components (e.g. virtual machines) are
often underutilized by a single application component, so that additional com-
ponents can be hosted by these containers [3]. For this purpose, the topologies
from two applications that use the same container components are merged into
one topology in which both applications retain their respective functionality.
Saatkamp et al. present an approach for adapting the application topology when
a provider specifies a new offer and certain components of the application need
to be migrated to new container components [33].

Multiple approaches for topology completion were proposed, with the aim
that an application developer only has to model the business-relevant compo-
nents and the underlying infrastructure is automatically added. The approach of
Hirmer et al. is based on a repository of nodes and relationships to fill in incom-
plete topologies [20]. Brogi et al. present an approach to collect information about
suitable cloud offerings by crawling the network and storing their TOSCA rep-
resentation in a repository [10]. This representation can be used by application
developers to complete the topology. Soldani et al. propose TOSCAMart, an
approach to reuse proven topologies in new environments [35]. The developer

Cloud Topology and Orchestration Using TOSCA 211

of a composite application defines a node in the topology that describes the
requirements for the fragment being inserted. TOSCAMart then selects a solu-
tion suitable for these requirements from a repository of various existing topolo-
gies.

Combining Declarative and Imperative Processing. Breitenbücher et al.
propose an approach that combines declarative and imperative processing to
achieve hybrid processing [5,6]. The defined application topologies are inter-
preted and finally, the associated Management Plans are generated. Calcaterra
et al. present a similar approach, also based on interpreting a topology and
providing the appropriate Management Plan [14].

Policy Enforcement. Waizenegger et al. present a TOSCA runtime extension
to enforce policies describing non-functional requirements, specifically security
properties, such as the encryption of a database or the geographic positioning
of privacy-related data [37,38]. Policies can be defined using both single-node
management operations and Management Plans.

Verification of Cloud Orchestration. Yoshida et al. describe an approach to
the formal verification of TOSCA topologies that can be used to test the achieve-
ment of a target state in the declarative processing of the TOSCA model [42].
The execution of the management operation is described by a state transition
system in which a state with a certain property is to be reached. Chareonsuk
and Vatanawood use Model Checking to verify security properties for impera-
tive processing [15]. The approach of Tsigkanos and Kehrer is about defining
patterns and anti-patterns and finally checking their presence or absence in the
topology of a service template so that quality aspects can be proven [36].

(4) Relation to other solutions. A comparison between TOSCA and the
Heat Orchestration Template (HOT) is provided by Di Martino et al. [17]. HOT
is the template format used to define the structure of an application for declara-
tive processing by the OpenStack orchestrator Heat. The main difference between
the two approaches is that HOT is declarative while TOSCA supports both
declarative and imperative processing. Also, similarities are shown, for exam-
ple, both provide a catalog of nodes and resources that can be composed to
applications.

Yongsiriwit et al. address the interoperability of standards for describing
cloud resources: TOSCA, Open Cloud Computing Interface (OCCI) and Cloud
Infrastructure Management Interface (CIMI) [41]. For interoperability, ontologies
are defined that describe the resources noted in each standard. In addition, an
upper-level ontology is presented to describe cloud resources regardless of the
used standards. Using inference rules, the special descriptions can be translated
into this higher-level format and vice versa, which also allows the translation
from one standard to another. Using the upper ontology, a knowledge base could
be created, providing insights into relationships and possible inconsistencies.

(5) Usage of TOSCA. This category consists of approaches that use the
existing TOSCA notation. Kostoska et al. present a case study of the use of

212 J. Bellendorf and Z. Á. Mann

TOSCA for specifying the University Management System iKnow [25]. This sys-
tem offers professors and students a platform to exchange electronic information
and provide electronic services. Besides a detailed description of node and rela-
tionship types, this paper also mentions the challenges of using TOSCA for the
specification of this application.

A different domain for using TOSCA is the specification of Internet of Things
(IoT) applications. Li et al. show how TOSCA can be used for an IoT appli-
cation: an Air Handling Unit (AHU) that controls air circulation in modern
buildings [26]. Da Silva et al. demonstrate the feasibility of defining IoT appli-
cations using TOSCA, in the context of different technologies [16]. In another
paper, Da Silva et al. address the multitude of sensor data produced in IoT [34].
The authors describe how Complex Event Processing Systems can be deployed
using TOSCA to process the incoming data and efficiently use network resources.

3 Discussion

Our survey shows the versatility of TOSCA: its use in different domains (also
beyond cloud computing), for different purposes, in different phases of the ser-
vice lifecycle, by different groups of users. This versatility is mainly due to (i) the
possibility to define custom types for nodes, relationships, and capabilities and
(ii) the possibility to define and manipulate partial topologies. However, this ver-
satility also poses the risk of the proliferation of incompatible TOSCA dialects.
Hence we expect that interoperability will play an increasingly important role.

Some further topics received limited attention so far and represent important
targets for future research. First, given the enormous importance of security in
cloud computing, it is striking that very few papers address it so far (although
several authors mentioned it as future work [33,41]). Also, TOSCA support for
other related topics like data protection needs to be investigated [28]. Second,
the topic of verification and validation (V&V) is also addressed by few papers.
Given the importance of V&V, we expect to see more work on how TOSCA can
be used to improve V&V. Third, partial topologies open many possibilities for
optimization, from which only a little has been investigated, mainly in connection
with cost minimization. Many other aspects of optimization, e.g., related to
performance and reliability, are yet to be explored. Finally, TOSCA has been
shown to be useful in areas such as IoT and DevOps [39]. We expect to see
TOSCA being applied to new domains like network function virtualization [18]
or fog and edge computing.

Acknowledgment. This work received funding from the European Union’s Horizon
2020 research and innovation programme (grant agreement 731678 (RestAssured)).

Cloud Topology and Orchestration Using TOSCA 213

References

1. Binz, T., et al.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp.
692–695. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-
1 62

2. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014). https://doi.org/10.1007/978-1-4614-7535-4 22

3. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F., Weiß, A.: Improve resource-
sharing through functionality-preserving merge of cloud application topologies. In:
Proceedings of the CLOSER 2013, pp. 96–103 (2013)

4. Binz, T., Breiter, G., Leyman, F., Spatzier, T.: Portable cloud services using
TOSCA. IEEE Internet Comput. 16(3), 80–85 (2012)

5. Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann, F., Wettinger, J.:
Combining declarative and imperative cloud application provisioning based on
TOSCA. In: Proceedings of the IC2E 2014, pp. 87–96 (2014)

6. Breitenbücher, U., Binz, T., Kopp, O., Képes, K., Leymann, F., Wettinger, J.:
Hybrid TOSCA provisioning plans: integrating declarative and imperative cloud
application provisioning technologies. In: Helfert, M., Méndez Muñoz, V., Ferguson,
D. (eds.) CLOSER 2015. CCIS, vol. 581, pp. 239–262. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-29582-4 13

7. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Vinothek - a self-service portal
for TOSCA. In: Proceedings of the ZEUS 2014, pp. 72–75 (2014)

8. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA:
a visual notation for application topologies based on TOSCA. In: Meersman, R.,
et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 416–424. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33606-5 25

9. Brogi, A., Canciani, A., Soldani, J.: Modelling and analysing cloud application
management. In: Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS,
vol. 9306, pp. 19–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24072-5 2

10. Brogi, A., Cifariello, P., Soldani, J.: DrACO: discovering available cloud offerings.
Comput. Sci. Res. Dev. 32(3–4), 269–279 (2017)

11. Brogi, A., Soldani, J.: Matching cloud services with TOSCA. In: Canal, C., Villari,
M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 218–232. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45364-9 18

12. Brogi, A., Soldani, J.: Finding available services in TOSCA-compliant clouds. Sci.
Comput. Program. 115–116, 177–198 (2016)

13. Brogi, A., Soldani, J., Wang, P.W.: TOSCA in a nutshell: promises and perspec-
tives. In: Villari, M., Zimmermann, W., Lau, K.-K. (eds.) ESOCC 2014. LNCS,
vol. 8745, pp. 171–186. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44879-3 13

14. Calcaterra, D., Cartelli, V., Di Modica, G., Tomarchio, O.: Combining TOSCA
and BPMN to enable automated cloud service provisioning. In: Proceedings of the
CLOSER 2017, pp. 159–168 (2017)

15. Chareonsuk, W., Vatanawood, W.: Formal verification of cloud orchestration
design with TOSCA and BPEL. In: Proceedings of the ECTI-CON 2016, pp. 1–5
(2016)

https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1007/978-1-4614-7535-4_22
https://doi.org/10.1007/978-3-319-29582-4_13
https://doi.org/10.1007/978-3-642-33606-5_25
https://doi.org/10.1007/978-3-319-24072-5_2
https://doi.org/10.1007/978-3-319-24072-5_2
https://doi.org/10.1007/978-3-642-45364-9_18
https://doi.org/10.1007/978-3-662-44879-3_13
https://doi.org/10.1007/978-3-662-44879-3_13

214 J. Bellendorf and Z. Á. Mann

16. Da Silva, A., et al.: Internet of Things out of the box: using TOSCA for automating
the deployment of IoT environments. In: Proceedings of the CLOSER 2017, pp.
330–339 (2017)

17. Di Martino, B., Cretella, G., Esposito, A.: Defining cloud services workflow: a
comparison between TOSCA and OpenStack Hot. In: Proceedings of the CISIS
2015, pp. 541–546 (2015)

18. Dräxler, S., Karl, H., Mann, Z.A.: Joint optimization of scaling and placement of
virtual network services. In: Proceedings of the CCGrid 2017, pp. 365–370 (2017)

19. Haupt, F., Leymann, F., Nowak, A., Wagner, S.: Lego4TOSCA: composable build-
ing blocks for cloud applications. In: Proceedings of the CLOUD 2014, pp. 160–167
(2014)

20. Hirmer, P., Breitenbücher, U., Binz, T., Leymann, F.: Automatic topology comple-
tion of TOSCA-based cloud applications. In: Proceedings of the Informatik 2014,
pp. 247–258 (2014)

21. Katsaros, G., Menzel, M., Lenk, A., Rake-Revelant, J., Skipp, R., Eberhardt, J.:
Cloud application portability with TOSCA, Chef and Openstack: experiences from
a proof-of-concept implementation. In: Proceedings of the IC2E 2014, pp. 295–302
(2014)

22. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: a domain-
specific language to model management plans for composite applications. In:
Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 38–52.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33155-8 4

23. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45005-1 64

24. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F., Michelbach, T.: A domain-
specific modeling tool to model management plans for composite applications. In:
Proceedings of the ZEUS 2015, pp. 51–54 (2015)

25. Kostoska, M., Chorbev, I., Gusev, M.: Creating portable TOSCA archive for iKnow
university management system. In: Proceedings of the FedCSIS 2014, pp. 761–768
(2014)

26. Li, F., Vögler, M., Claeßens, M., Dustdar, S.: Towards automated IoT application
deployment by a cloud-based approach. In: Proceedings of the SOCA 2013, pp.
61–68 (2013)

27. Mann, Z.Á.: Resource optimization across the cloud stack. IEEE Trans. Parallel
Distrib. Syst. 29(1), 169–182 (2018)

28. Mann, Z.Á., Metzger, A.: Optimized cloud deployment of multi-tenant software
considering data protection concerns. In: Proceedings of the CCGrid 2017, pp.
609–618 (2017)

29. OASIS: Web Services Business Process Execution Language Version 2.0, April
2007. OASIS Standard

30. OASIS: Topology and Orchestration Specification for Cloud Applications Version
1.0, November 2013. OASIS Standard. http://docs.oasis-open.org/tosca/TOSCA/
v1.0/os/TOSCA-v1.0-os.html

31. OMG: Business Process Model and Notation (BPMN) Version 2.0, January 2011.
OMG Document Number: formal/2011-01-03

32. Palma, D., Rutkowski, M., Spatzier, T.: TOSCA Simple Profile in YAML Version
1.0, December 2016. OASIS Standard. http://docs.oasis-open.org/tosca/TOSCA-
Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html

https://doi.org/10.1007/978-3-642-33155-8_4
https://doi.org/10.1007/978-3-642-45005-1_64
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html

Cloud Topology and Orchestration Using TOSCA 215

33. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: Topology splitting and
matching for multi-cloud deployments. In: Proceedings of the CLOSER 2017, pp.
247–258 (2017)

34. Franco da Silva, A., Hirmer, P., Breitenbücher, U., Kopp, O., Mitschang, B.: Cus-
tomization and provisioning of complex event processing using TOSCA. Comput.
Sci. Res. Dev. 33, 1–11 (2017)

35. Soldani, J., Binz, T., Breitenbücher, U., Leymann, F., Brogi, A.: ToscaMart: a
method for adapting and reusing cloud applications. J. Syst. Softw. 113, 395–406
(2016)

36. Tsigkanos, C., Kehrer, T.: On formalizing and identifying patterns in cloud work-
load specifications. In: Proceedings of the WICSA 2016, pp. 262–267 (2016)

37. Waizenegger, T., et al.: Policy4TOSCA: a policy-aware cloud service provisioning
approach to enable secure cloud computing. In: Meersman, R., et al. (eds.) OTM
2013. LNCS, vol. 8185, pp. 360–376. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41030-7 26

38. Waizenegger, T., Wieland, M., Binz, T., Breitenbücher, U., Leymann, F.: Towards
a policy-framework for the deployment and management of cloud services. In:
Proceedings of the SECURWARE 2013, pp. 14–18 (2013)

39. Wettinger, J., et al.: Integrating configuration management with model-driven
cloud management based on TOSCA. In: Proceedings of the CLOSER 2013, pp.
437–446 (2013)

40. Wettinger, J., Binz, T., Breitenbücher, U., Kopp, O., Leymann, F., Zimmer-
mann, M.: Unified invocation of scripts and services for provisioning, deployment
and management of cloud applications based on TOSCA. In: Proceedings of the
CLOSER 2014, pp. 559–568 (2014)

41. Yongsiriwit, K., Sellami, M., Gaaloul, W.: A semantic framework supporting cloud
resource descriptions interoperability. In: Proceedings of the CLOUD 2016, pp.
585–592 (2017)

42. Yoshida, H., Ogata, K., Futatsugi, K.: Formalization and verification of declarative
cloud orchestration. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM 2015.
LNCS, vol. 9407, pp. 33–49. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-25423-4 3

https://doi.org/10.1007/978-3-642-41030-7_26
https://doi.org/10.1007/978-3-642-41030-7_26
https://doi.org/10.1007/978-3-319-25423-4_3
https://doi.org/10.1007/978-3-319-25423-4_3

Author Index

Andrikopoulos, Vasilios 146

Back, Timon 146
Bellendorf, Julian 207
Benamar, Abdelkrim 74
Bersani, Marcello M. 49
Borkowski, Michael 90
Bouloukakis, Georgios 1
Bouziane, Hinde Lilia 65
Brogi, Antonio 17
Buzachis, Alina 185

Cabot, Jordi 161
Canciani, Andrea 17
Cánovas Izquierdo, Javier Luis 161
Celesti, Antonio 185
Çemberci, Süleyman Berk 120
Colman, Alan 33
Cremaschi, Marco 130

De Paoli, Flavio 130
Dony, Christophe 65

Ed-douibi, Hamza 161

Fatemi Moghaddam, Faraz 120

Galletta, Antonino 185
Georgantas, Nikolaos 1

Hadjila, Fethellah 74
Han, Jun 33
Hans, Ronny 199
Horn, Geir 170

Issarny, Valérie 1

Klein, Anja 199
Klos (née Müller), Sabrina 199

Kritikos, Kyriakos 170
Kumara, Indika 33

Lampe, Ulrich 199

Mahamane, Rahina Oumarou 65
Mann, Zoltán Ádám 207
Mentzas, Gregoris 105
Merzoug, Mohammed 74
Mirandola, Raffaela 49

Patiniotakis, Ioannis 105
Pea, Giorgio 49

Richerzhagen, Björn 199
Rizk, Amr 199

Sailhan, Françoise 1
Schubert, Christian 90
Schulte, Stefan 90
Selmadji, Anfel 65
Seriai, Abdelhak-Djamel 65
Smahi, Mohammed Ismail 74
Soldani, Jacopo 17
Stefanidis, Vassilis 105
Steinmetz, Ralf 199

Tamburri, Damian A. 33, 49
Texier, Géraldine 1
Tibermacine, Chouki 74

van den Heuvel, Willem-Jan 33
Verginadis, Yiannis 105
Villari, Massimo 185

Wieder, Philipp 120

Yahyapour, Ramin 120

	Preface
	Organization
	Contents
	When Service-Oriented Computing Meets the IoT: A Use Case in the Context of Urban Mobile Crowdsensing
	1 Introduction
	2 Monitoring the Exposure to the Urban Environmental Pollution: A Use Case
	3 System Architecture for the Urban IoT
	3.1 Supporting Wide-Scale IoT Apps
	3.2 Supporting Heterogeneous IoT Apps

	4 Overcoming the Low Accuracy of Mobile Crowdsensors
	5 When Crowdsensing Meets the Infrastructured IoT Networks
	6 Conclusion
	References

	True Concurrent Management of Multi-component Applications
	1 Introduction
	2 Motivating Example
	3 Modelling True Concurrent Management Protocols
	4 Analysing True Concurrent Application Management
	4.1 True Concurrent Management Behaviour of Applications
	4.2 Analysing True Concurrent Management Plans

	5 Related Work
	6 Conclusions
	References

	Runtime Evolution of Multi-tenant Service Networks
	1 Introduction
	2 Motivating Scenarios and General Requirements
	3 Realizing Multi-tenant Service Networks: An Overview
	4 Change and Impact Management for Multi-tenant Service Networks
	4.1 Types of Changes and Impacts
	4.2 Change Management System
	4.3 Design and Enactment of Change Management Policies

	5 Prototype Implementation and Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	DevOps Service Observability By-Design: Experimenting with Model-View-Controller
	1 Introduction
	2 State of the Art: MVC and Its Variants
	3 Redesigning MVC for Observability
	3.1 Observability Limitations for MVC and Its Variants
	3.2 Improving MVC for Observability: oMVC
	3.3 Relationship with MVC

	4 Evaluating Software Quality Metrics for oMVC
	5 Threats to Validity
	6 Conclusions
	References

	Re-architecting OO Software into Microservices
	1 Introduction
	2 Related Works
	3 Microservices Identification from OO Source Code
	3.1 From Microservices Characteristics Description to Characteristics Evaluation
	3.2 Evaluation of Microservice Characteristics Based on Metrics
	3.3 Clustering Process

	4 Experimentation and Validation
	4.1 Research Questions and Data Collection
	4.2 Experimental Protocol
	4.3 Direct Results
	4.4 Answers to Research Questions
	4.5 Threats to Validity

	5 Conclusion
	References

	An Encoder-Decoder Architecture for the Prediction of Web Service QoS
	1 Introduction
	2 Background on Autoencoders
	3 Proposed Approach
	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Research Questions
	4.3 Results and Discussion
	4.4 Threats to Validity

	5 Related Works
	6 Conclusion and Perspectives
	References

	Trustworthy Detection and Arbitration of SLA Violations in the Cloud
	1 Introduction
	2 Background
	3 Trustworthy SLA Monitoring
	3.1 Architecture Overview
	3.2 Agent
	3.3 AOP Advices
	3.4 TTP Component

	4 Evaluation
	4.1 Testbed Environment
	4.2 Accuracy: CPU and Memory Usage
	4.3 Successability
	4.4 Performance Impact
	4.5 Maintaining Trustworthiness

	5 Related Work
	6 Conclusion and Future Work
	References

	Distributed Complex Event Processing in Multiclouds
	Abstract
	1 Introduction
	2 Related Work
	3 Distributed Complex Event Processing (DCEP) Architecture
	3.1 Conceptual Architecture
	3.2 Deploying and Managing DCEP Agents Over Multiclouds
	3.3 DCEP Implementation

	4 An Illustrative Example
	5 Evaluation
	6 Conclusions
	Acknowledgements
	References

	A Multi-level Policy Engine to Manage Identities and Control Accesses in Cloud Computing Environment
	Abstract
	1 Introduction
	2 Problem Description
	3 Proposed Schema
	3.1 Policy Engine
	3.2 Policy Check-Point
	3.3 Policy Match-Gate

	4 Discussion and Conclusion
	Acknowledgement
	References

	A Practical Approach to Services Composition Through Light Semantic Descriptions
	1 Introduction
	2 Services Description and Composition
	3 A Light Semantic Web API Description Model
	4 Composition Types and Rules
	5 AutomAPIc: Composition of REST APIs
	5.1 Getting OpenAPI Descriptions
	5.2 Adding Semantic Annotation
	5.3 Performing Automatic Composition

	6 Validation
	7 Conclusions and Future Work
	References

	Using a Microbenchmark to Compare Function as a Service Solutions
	1 Introduction
	2 Background and Related Work
	3 Microbenchmark Design
	4 Services Evaluation
	4.1 Evaluation Setup
	4.2 Microbenchmark Results and Findings

	5 Discussion and Lessons Learned
	6 Conclusions and Future Work
	References

	APIComposer: Data-Driven Composition of REST APIs
	1 Introduction
	2 Our Approach
	3 API Importer
	4 Requests Resolver
	5 Illustrative Example
	6 Tool Support
	7 Related Work
	8 Conclusion
	References

	IaaS Service Selection Revisited
	1 Introduction
	2 Background
	2.1 Related Work Analysis
	2.2 IaaS Allocation Problem

	3 Technique
	3.1 Smart Constraints
	3.2 Solution Post-processing
	3.3 Optimisation Problem Formulation

	4 Evaluation
	4.1 Experiment Configuration
	4.2 Experiment Analysis
	4.3 Discussion

	5 Conclusions
	References

	An Innovative MapReduce-Based Approach of Dijkstra's Algorithm for SDN Routing in Hybrid Cloud, Edge and IoT Scenarios
	1 Introduction
	2 Related Work
	3 Motivation
	4 SDN Overview
	5 Dijkstra's Algorithm
	5.1 Sequential Approach
	5.2 MapReduce Approach

	6 Experiments
	6.1 Experimental Setup

	7 Conclusion and Future Work
	References

	Little Boxes: A Dynamic Optimization Approach for Enhanced Cloud Infrastructures
	1 Introduction
	2 Problem Statement
	3 Exact Optimization Approach
	3.1 Optimization Goal
	3.2 Constraints

	4 Conclusion
	References

	Cloud Topology and Orchestration Using TOSCA: A Systematic Literature Review
	1 Introduction
	2 Survey Results
	3 Discussion
	References

	Author Index

