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Abstract. Existing computer models of cancer focus mostly on disease
progression rather than its remission/recurrence caused by anti-cancer
therapy. Herein, we present a discrete model of tumor evolution in 3D,
based on the Particle Automata Model (PAM) that allows for following
the spatio-temporal dynamics of a small neoplasm (millimeters in diam-
eter) under treatment. We confront the 3D model with its simplified 0D
version. We demonstrate that the spatial factors such as the vasculariza-
tion density, absent in the structureless 0D cancer models, can critically
influence the results of treatment. We discuss briefly the role of computer
simulations in personalized anti-cancer therapy.
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1 Introduction

Even though the mortality rate of cancer is slowly decreasing, it is still one of
the main fatality factors worldwide. Approximately 40 percent of people will be
diagnosed with some type of cancer at one point during their lifetime [1]. Devel-
opment of an effective general anti-cancer treatment strategy is vastly restricted
because the neoplasms greatly differ between each other. Moreover, the microen-
vironment of tumor evolution defined by bio-mechanical properties of a tissue
and its vascularization can be completely different not only for various cancer
types but also for various patients and even parts of attacked tissue. Computer
model of a tumor that mimics its evolution before and after treatment for a spe-
cific patient, can help in control of principal tumor progression/recession mech-
anisms and in predicting possible scenarios of its dynamics, thus in development
of optimal personalized anti-cancer therapy.

Tumor growth, regression/recession and recurrence are complex, multi-scale
phenomena, influenced by countless mutually coupled microscopic and macro-
scopic factors (see e.g. [24]). The taxonomy of cancer models includes broad spec-
trum of homogeneous (discrete, stochastic, continuous: single-phase and multi-
phase) and heterogeneous (discrete-continuous) computational paradigms. They
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are employed for modeling both very detailed processes of oncogenesis occurring
in a single spatio-temporal scale (in molecular, tissue or organism level) and
complex multiscale systems. Diversity of existing tumor models are described in
comprehensive books from computational oncology (e.g. [6,18,24]) and hundreds
of papers.

Cancer dynamics can be simulated by means of both very simple 0D models
described by ODEs (ordinary differential equations) and more complicated, com-
putationally demanding spatio-temporal 3D systems (realized numerically by
using finite element methods FEM, agent-based discrete models etc.) [21,23,24].
The latter ones are focused mostly on tumor progression. Meanwhile, its remis-
sion/recurrence caused by anti-cancer therapy is rather modeled by using simpler
ODEs based codes [20,25]. This is understandable because the 3D tumor mod-
els are usually over-parametrized. Taking into account the processes responsible
for the anti-cancer therapy may result in additional excessive increase of their
complexity. Consequently, this can considerably lower the quality of predictions
of cancer dynamics due to overfitting, ill-conditioning and high computational
complexity of the models.

Therefore, simple 0D computer models of cancer, adapted to real data repre-
senting tumor dynamics [21], which exploits prediction/correction scheme (such
as in [7]), could seem to be more useful in predictive diagnosis systems. On the
other hand, because the variability of their parameters is prohibitively high and
depends strongly on the microenvironment of cancer dynamics, the elaborated
prognoses are too often inconclusive [21]. That is why, employing advanced image
diagnostics of the future as input data, 3D models could be extremely helpful
both in recognizing the most critical regression and recurrence factors and in the
process of detailed analysis of various scenarios of tumor evolution. Especially,
in respect to the specific tumor environment such as bio-mechanical properties
of tissue and its vascularization topology. We expect that balanced use of tumor
models of various complexity together with the new opportunities of the com-
putational and diagnostic technologies will decide about usefulness of predictive
oncology in personalized anti-cancer therapy in the future.

The main contribution of this paper is the application of 3D PAM modeling
paradigm [8] in simulating cancer dynamics, assuming treatment. The 3D model
considers the most important factors influencing cancer remission caused by the
anti-tumor therapy. The PAM model allows for simulating the tumor evolution
in the mesoscopic scale (a millimeter in diameter, i.e., N = 105 − 106 cells) in
a reasonable CPU time on a laptop computer. Simulation time for a greater
systems, scales up linearly with N. We also developed the method for generating
realistic vascular network structure, which can be easily adapted to various tis-
sues. Additionally, by assuming different types of interactions between cells, the
extended PAM model reflects more realistic bio-mechanical properties of can-
cerous tissue in which the rheological properties of “healthy” and tumor cells
are distinctly different. We aim to demonstrate that our model constitutes an
important complement to approximate 0D tumor models, which are currently of
clinical use [3,19,21]. Our goal is to show that the 3D model is sensitive to a spe-
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cific tumor micro-environment defined by the density of tissue vascularization,
which is a crucial factor determining the result of anti-cancer therapy.

In the following section we present a simple structureless 0D model of tumor
dynamics, which was applied in clinical practice and is a good approximation of
our 3D solution. Next, we briefly describe the 3D PAM model of cancer evolution
under treatment and the computational layout, which mimics realistic tissue
vascularization. We describe some computer experiments showing the influence
of the tissue vascularization density on the tumor evolution under treatment.
Finally, we discuss the conclusions.

2 Simplified 0D Cancer Model

The 0D tumor model [21] is presented schematically in Fig. 1. It is assumed
that there are three basic types of tumor cells: proliferative P , quiescent Q and
mutated quiescent QP . We assume also that only the proliferative cells are able
to reproduce. The proliferative tumor cells, which stay some time in a very hostile
environment (e.g. low concentration of oxygen and nutrients, high pressure etc.)
become quiescent. In case of anti-tumor treatment, the proliferative cells die
and the damaged (mutated) quiescent cells appear, which can either die, stay
dormant or revert (after some time) to proliferative state, becoming “the seeds”
of even more voracious cancer. The model is defined by the set of four ODEs.
Each of them describes the dynamics of the population of a specific cell type.
The equations are as follows [21]:

dC
dt = −TcC, (1) dQ

dt = kPQP − γQCTCQ, (2)

dQP

dt = γQCTCQ − kQPPQP − δQPQP , (3) P ∗ = P + Q + QP , (4)

dP
dt = λPP (1− P∗

K )+kQPPQP −kPQP −γPCTCP. (5)

where: P - the total volume of proliferative cells; Q - the total volume of quiescent
cells; QP - the total volume of mutated quiescent cells; C - anti-cancer drug
concentration; TC - a constant used for calculating decrease of anti-cancer drug
concentration; λP - a rate of growth for P; kPQ - a rate the cells change their
states from P to Q; kQPP - a rate the cells change their states from QP to P ;
γQ, γP - damage rates in proliferative and quiescent tissue, respectively.

In [21], the model parameters were adapted to real data - glioma cancer
evolution - which were taken from many (more than 300) patients for three types
of anti-cancer therapies. In Fig. 2 we can see two examples of tumor size dynamics
for two different (averaged) “patients”, obtained by solving the model equations.
Herein, we have chosen the averaged set of model parameters obtained for PCV
chemotherapy and trained additionally by using Bayesian adaptation technique
(ABC) [5]. Despite apparent differences, we can remark that the tumor evolution
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Fig. 1. Block diagram of the 0-D cancer model.

is very similar in both cases. The tumor increases in size at the beginning of the
simulation, then rapidly shrinks due to treatment and, finally, some time after
treatment it re-grows again. This simple model applies to rather big tumors,
i.e., up to 8 cm of mean tumor diameter (MTD) [21]. Our 3-D model is able to
simulate tumor of much more modest size - up to a millimeter in diameter (on a
laptop computer). Thus, we expect the tumor evolution type such as that for the
“first patient” with early tumor symptoms (see Fig. 2). As shown in [21], for the
majority of cases, typical not optimistic result is observed - an inevitable and very
quick re-growth of tumor mass. We demonstrate in Fig. 2 that a wrong choice
of treatment plan, or its abrupt discontinuation, can result in a rapid tumor
recurrence. For example, as shown in Fig. 2, the tumors of the two “patients”
may be similar in size after 50 months of their appearance, despite the patients
started their therapies in very different stages of tumor development. In the ideal
case presented in Fig. 2, i.e., when the size of real tumor evolution follows exactly
the model (1–5), we are able to predict tumor size dynamics not only after but
also before treatment. The predictions were made by training the model (i.e.,
adapt its parameters from data) by using the Bayesian adaptation technique
(ABC) [5] employing continually “measured” tumor volume in a relatively short
time interval Fig. 2. On the other hand, as shown in [21], due to rather scarce and
not accurate data, and most of all, incompatibility between the 0-D model and
the reality, the quality of model predictions is definitely worse. Therefore, even
though the 0D model can be very useful, it cannot extrapolate long term changes
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Fig. 2. Tumor volume in time, for two “patients”. The green line represents the exact
solution of the equations (1–5). The red line delineate the predictions based on data
located between blue dashed lines. (Color figure online)

in the tumor spatial dynamics stimulated by the non-homogeneous density of
tissue and vascularization, e.g., caused by occurrence of voids due to necrosis
and vascular remodeling processes, respectively. Thus, the model parameters
should be continuously corrected in the course of treatment. The 3D tumor
model could help in better adjustment of the approximate 0D model to real data.
Assuming that in the future we will be able not only to measure the tumor size
in real time but also to observe its shape and biological structure of its growth
environment, we can think about application of more sophisticated 3-D tumor
models in predictive oncology. Knowing the real initial tumor layout, we would
be able to predict spatial scenarios of its evolution taking into account that a
specific tissue structure (its mechanical properties and/or density of vasculature)
could block or accelerate its dynamics. Particularly, it might be possible to see
if the cancer does not start to re-grow in a location where the access to the anti-
cancer drug is restricted (for example, in a small tissue fragment which is away
from blood vessels). This information plays a key role in choosing a therapy plan
and decide about the way of its application, e.g., the dose and frequency of drug
administration.

3 3D Tumor Model

3.1 Particle Automata Model

We extended the 0D model of tumor with treatment to three dimensions. To this
end we adapted the PAM heterogeneous discrete-continuous modeling paradigm
[8,23] to the framework from Fig. 1. The basic properties of 3D PAM model are
described below.

As shown in Fig. 3a, the system consisting of tumor and healthy tissue can
be represented by interacting cells (particles) with a few variable states. The
particle system is bounded by a computational box under a constant external
pressure. Each particle i (cell) is defined as a tuple (xi,vi,ai), where: i - particle
index and (i = 1, ...., N), ri - its position, vi - velocity, ai - attributes (states).
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Fig. 3. The scheme of main components of the Particle Automata Model and cell
states. (a) Particles representing tissue cells and blood vessels. (b) Life cycle of a cell.
We mark in gray the states possible only for tumor cells.

Each particle represents a tissue cell while two particles create a single seg-
ment of a blood vessel. The blood vessels are made of connected segments. The
vector of particle attributes ai includes information on: the cell type (tumor:
{proliferative, quiescent, mutated), healthy, blood vessel}, a phase of the cell
life-cycle (see Fig. 3b), cell size, cell age, hypoxia time, concentrations of O2,
TAF (tumor angiogenic factor) and anti-tumor drug, and total pressure exerted
on a particle from the rest of the tissue. The spring-like forces [8] between par-
ticles mimic mechanical repulsion and attraction between cells. The total force
acting on a particle i is the sum of all forces from other surrounding parti-
cles in a given cut-off radius. The particles of all types move according to the
ODE system of the Newtonian equations of motion, while their states follow
automata rules (defining, e.g., cell life-cycle from Fig. 3b, thresholding rules,
chemical interactions between neighboring cells etc.). The blood pressure in the
vessels is approximated by the Kirchhoff law. Spatio-temporal evolution of each
cell is highly dependent on the concentrations of oxygen (and TAF in angiogenic
phase) and anti-tumor drugs calculated in a cell position by solving continu-
ous reaction-diffusion PDEs. The concentrations define internal state of each
cell. The blood vessel network Ω releases in each time step a constant amount
of oxygen and anti-tumor drugs (sources), which diffuse inside the tumor mass.
Simultaneously, the diffusive oxygen and drugs are consumed in a given constant
rate by the tissue cells (sinks).

3.2 The Layout and Blood Vessel Network

We have developed a simple algorithm that allows us to generate a realistic,
non-deterministic vessel network being the approximation of more sophisticated
approaches presented in [17,22]. We assumed that all the vessels consist of a
series of line segments of the length equal to “vessel length”. Starting and ending
points of the vessels are chosen at the left and right sides of bounding box. Their
radii are defined by “max thickness” parameter. Then, the subsequent layers of
vessel segments are added towards the center of the computational box with
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randomly chosen curvature from 0 to “max curvature” interval. Each vessel seg-
ment has a chance to split into two vessels with a probability “chance of split”.
The thickness of a blood vessel segment is inversely proportional to its distance
to the center of the computational box. The number of layers of vessel segments
is defined by “levels” parameter. When all the layers are created, we connect
each blood vessel to the nearest neighbor. In Fig. 4, we present the layouts we
used in our experiments.

Fig. 4. The layouts of the tissue model with dense (left) and poor vasculature (right).
Healthy cells are hidden for visualization purposes.

Finally, the tissue cells surrounding the vessels are added. All of the cells are
arranged in densely packed layers. The initial cluster of tumor cells is situated
at the center of the computational box.

3.3 Viscosity of the Tissue

In the PAM model we have introduced a new model of interparticle forces. The
healthy and cancerous tissues are represented by viscous SPH particles. Then,
the whole particle ensemble simulates the dynamics of a multiphase Navier-
Stokes fluid. The main reason for this assumption is the possibility to mimic
real differences between rheological properties of tumor and healthy tissues (the
healthy cells are more “viscous”). For smaller tumors, this difference in viscosity
makes tumor cells much more flexible what is demonstrated in Fig. 5.

Fig. 5. Comparison of PAM simulations with and without SPH properties of viscosity
force. Left: with viscosity force. Right: without viscosity force.
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For larger tumors this difference in viscosity does not reveal in observed
growth patterns. The pressure exerted on the tumor and its fluctuations are too
small to trigger tumor surface instability effects. Therefore, the avascular tumors
can evenly grow in all directions. We anticipate that, the surface instabilities
can be visible for larger tumors (over 1 cm in diameter), for which the fingering
instability can be expected, as it is in large ensembles of DPD (dissipative)
particles in [9].

3.4 Anti-cancer Treatment

The PAM model of the tumor behavior after treatment is based on the same
assumptions as the 0-D model [21]. We assume that all the tumor cells start
their life cycle as the proliferative ones. If the oxygen concentration drops below
a given threshold the proliferative cells become quiescent, i.e., they will no longer
have the capability to replicate. If the medicine concentration is above a certain
level, the proliferative cells die and the mutated quiescent cells appear [4]. If
the medicine concentration will stay high, the mutated quiescent cells will either
stay mutated (but dormant), die or become proliferative once again [14,18] being
the sources of cancer re-growth. The tumor transforms from homogeneous to
heterogeneous one.

Changes in drug concentration are governed by the mechanisms of medicine
impact, transport&redistribution (diffusion and advection) and elimination
(decay and cellular uptake), similar as in [15]. We assume, that drugs are secreted
by the functional and permeable (destructed by vascular remodeling process)
blood vessels at a constant rate. The cells also consume the medicine at a con-
stant rate, depending on a tissue type. The medicine diffusion is governed by
the diffusion-reaction equation:

∂C

∂t
= Dc · ΔC − NrC − TcC + c · h(Ω,T − t), (1)

where: Nr - drug consumption rate, Dc - medicine diffusion constant, C - drug
concentration, TC - a constant used for calculating decrease of anti-cancer drug
concentration, c - medicine source rate in the blood network Ω during time T .
For the sake of simplicity, constant drug secretion c and its absorption TcC rates
by the tissue are assumed. The function h(x, t) = 1, for t > 0 and h(x, t) = 0, for
t < 0. Our assumptions are consistent with the simple model described in Sect. 2
[21]. Comparing to the fully continuous drug diffusion model [15], the advection
of drug in PAM is realized by moving particles. Therefore, the advection term
v · ∇C is lacking in (6).

4 Results of Simulation

The size of a fragment of tissue modeled was limited to 3.0 · 105 cells in total.
This bound is defined mostly by the computational power we dispose for simula-
tions. They have been run on a single core of the CPU specified in Table 1. One
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Fig. 6. Tumor evolution for the setups with (a) poor and (b) dense vasculature. The
treatment was administered on the step marked with a black arrow.

simulation needs around 24 h CPU time for simulating 1.6 · 104 time steps. The
initial setup of the simulations (Fig. 4) assumes around 200 cancer cells placed in
the middle of the layout. In Table 2 we collected the most important parameters
influencing tumor dynamics.

Table 1. Specification of the machine running the simulations.

CPU Intel R©CoreTMi7-5960X @ 4.2 GHz (8 cores, 16
threads, 20 MB of L3 cache)

RAM DDR4 2666 MHz 32 GB (4 × 8 GB Quad-Channel)

Disk Samsung NVMe SSD 960 Pro

GPU nVidia GeForce GTX 1080

As shown in the previous section, the tumor evolves in a fragment of tissue
composed of healthy cells and blood vessels. The proliferative and quiescent
cells, being the components of the cancerous tissue, have different properties
than the healthy cells and the vessels. The letter are more resistant to pressure
and low oxygen concentration. The proliferative cells consume more oxygen and
are very susceptible to anti-cancer drugs. These properties allow them, on the
one hand, for rapid reproduction under favorable conditions and, on the other,
fast necrosis (death) due to devastating effects of treatment. The quiescent cells
are more resistant on the anti-cancer drugs and need extremely little oxygen to
stay alive.

To show how the spatial topology of tissue exploits these cell properties and
influences cancer evolution during and after treatment, we have compared tumor
dynamics for two different layouts (see Fig. 4). In the first one, the tumor is well
oxygenated by a dense vasculature, while in the other it is situated in a poorly
vascularized tissue. As we can see in Fig. 6, after growth phase, the tumors
collapse due to treatment (see also Figs. 7 and 8).

However, the results from Figs. 6 and 7 show that eradication of the tumor
in the layout with poorer vasculature can fail. The tumor shrinks down during
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Table 2. The most important parameters of the simulation (concerning tumor growth).

Name Description Value Units

force r cut Cut-off radius in forces calculations 10 µm

p o2 O2 threshold to change state proliferative cells 0.7 norm.

q o2 O2 threshold to change state for quiescent cells0.35 norm.

diff O2 Diffusion coefficient for O2 2000 p.u.

diff med Diffusion coefficient for medicine 4000 p.u.

time apop Time to apoptosis 3600 p.u

min inter time Minimum interphase time 600 p.u

max pressure hMax pressure in healthy cells 1 ∗ 10−16p.u

max pressure t Max pressure in tumor cells 1 ∗ 10−15p.u

cons rate h Medicine consumption rate in healthy cells 2 ∗ 10−12p.uh−1

cons rate t Medicine consumption rate in tumor cells 2 ∗ 10−11p.u

o2 cons h O2 consumption rate in healthy cells 5 ∗ 10−11p.u

o2 cons t O2 consumption rate in proliferative cells 1 ∗ 10−10p.u

o2 cons q O2 consumption rate in quiescent cells 2 ∗ 10−11p.u

o2 hypoxia O2 threshold for entering hypoxia state 0.01 p.u

*p.u. - program units, norm. - normalized

Fig. 7. Remission of the tumor in poor vasculature. The cross-section of the tumor
is shown. Brown - proliferative cells, red - quiescent cells and blue - mutated. (Color
figure online)

Fig. 8. Remission of the tumor in the tissue with dense vasculature.
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treatment, but it can start to re-grow when the quiescent cells from tumor rem-
nants become mutated and will convert into tumor cells. On the other hand, one
can observe a dramatic decline in the number of proliferative tumor cells during
treatment for the second layout. As shown in Fig. 8, for denser vasculature, due
to good oxygenation, also the number of quiescent cells can be marginal. Con-
sequently, as shown in Fig. 8 almost all cancer cell can be exterminated during
treatment. These results demonstrate that the choice of the right concentration
of anti-tumor drugs and the type of treatment is highly dependent on the tumor
vasculature what is in full agreement with observations (see, e.g., [11]. It also
shows that anti-angiogenic therapy - which inhibits tumor vascularization - in
the incipient stages of tumor grow may be very risky [11]. One can expect that if
anti-angiogenic therapy fails, more demanding chemotherapy need to be applied,
what leads to worse side effects and poor prognoses. If we compare the tumor
dynamics from Fig. 6 to the tumor evolution simulated by 0-D model from Fig. 2,
we can see that the results are fairly consistent. The initial growth stage and
rapid decline during treatment look similar to the tumor model with a dense
vasculature. The tumor regrowth is not observed due to insufficient number of
quiescent cells and the death of all proliferative ones. In the second case of poor
vascularization, many quiescent cells survive the treatment. Some of them, which
become mutated, can be the source of further cancer recurrence. This is partic-
ularly dangerous in case of cancers with scattered consolidation (e.g. in lung
cancer), i.e., evolving in the form of the cluster consisting of large number of
tiny tumors. After not sufficiently destructive chemotherapy, though the most
of small tumors will die, the cancer recurrence can be still feasible starting from
tumor blobs such as in Figs. 6a and 7.

5 Concluding Remarks

In this paper we present the 3-D model of a small (mesoscopic) tumor simu-
lating various phases of its evolution, particularly, remission/recurrence stimu-
lated by anti-cancer therapy. We demonstrate that our extended PAM model
reveals a strong dependence of the cancer dynamics under treatment on its
spatial environment, such as the tumor vascularization. The size of simulated
tumor is constrained by the high computational complexity of the PAM model
and the processing power of available computer systems. However, the model-
ing of anti-cancer treatment even in case of the tumors of millimeters size is
also very rational. Some types of cancer (e.g., lung and breast cancers) consist
of many scattered clusters of tumor cells. Moreover, the increasing effectiveness
of diagnostics enables us to discover minuscule tumors in very early stages of
their development. Consequently, due to different size and structure of small
tumors than large ones, what reveals in smaller population of mutated quiescent
cells, one can expect different scenarios of tumor re-growth which require other
therapy plans than those applied for larger tumors.

Although, we did not try to match the parameters of PAM model to the
0-D model (in fact, the two models presented here represent completely different
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tumors) one can see that in the context of both their spatial scales and types,
they behave very similarly for small tumor sizes. Thus, we believe that the
calibration of the two is possible. So, afterwards, the 3-D model of tumor could
be used as a “ground truth” for learning the parameters and normalization of
approximated 0-D cancer model and to mimic a broad range of tumor evolution
scenarios depending on its spatial structure and the environment.

Summarizing, nowadays, the 3-D model of tumor can be used as an extension
and support for simpler 0-D models in personalized anti-cancer therapy. Its main
disadvantage is the large number of parameters, what can make it useless (over-
fitting) when adapted to small and poor (e.g., only tumor MTD measurements)
real data sets. However, in the future, having in mind, on the one hand, the
fast development of medical imaging tools which soon will provide us with the
realistic 3-D images of the environment of cancer evolution, and, on the other,
the expected radical increase of computational power, the 3-D tumor models can
soon become independent and precise tools in predictive oncology.
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