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Abstract. Mutually Orthogonal Cellular Automata (MOCA) are sets
of bipermutive CA which can be used to construct pairwise orthogo-
nal Latin squares. In this work, we consider the inversion problem of
pairs of configurations in MOCA. In particular, we design an algorithm
based on coupled de Bruijn graphs which solves this problem for generic
MOCA, without assuming any linearity on the underlying bipermutive
rules. Next, we analyze the computational complexity of this algorithm,
remarking that it runs in exponential time with respect to the diameter
of the CA rule, but that it can be straightforwardly parallelized to yield
a linear time complexity. As a cryptographic application of this algo-
rithm, we finally show how to design a (2, n) threshold Secret Sharing
Scheme (SSS) based on MOCA where any combination of two players
can reconstruct the secret by applying our inversion algorithm.
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1 Introduction

The inversion problem is one of the oldest research questions investigated in the
field of Cellular Automata (CA). Indeed, the first results in this aspect of CA
theory dates back at least to Hedlund [4] and Richardson [14]. Stated informally,
the inversion problem consists in determining a preimage of a given configuration
under the action of a surjective CA. When dealing with the specific class of
reversible CA, one can compute such unique preimage in parallel by applying
an inverse CA to the desired configuration.

However, the general case of surjective CA usually requires the specification
of an inversion algorithm which computes a preimage in a sequential way, start-
ing from the knowledge of the states of some of its cells. Sutner [17] was among
the first to describe this inversion algorithm using the de Bruijn graph repre-
sentation of CA. More specifically, he showed that a preimage of a configuration
corresponds to a path on the vertices of the de Bruijn graph associated to the
CA, where the edges are labeled by the cells of the configuration. The existence
of such a path is guaranteed under the assumption that the CA global rule is
surjective.
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De Bruijn graphs turned out to be a very useful tool to address several inter-
esting questions related to the inversion problem, such as studying the spatial
periods of surjective CA preimages [10] and solving the parity problem through
CA [2].

A recent research thread involving the inversion problem concerns Mutually
Orthogonal Latin Squares (MOLS) generated by CA. In particular, it has been
shown in [7] that CA with bipermutive local rules can be used to define Latin
squares, and pairs of linear bipermutive rules whose associated polynomials are
coprime generate orthogonal Latin squares. The idea of the construction is to
split the CA initial configuration in two parts, in order to index the rows and
the columns of the squares. Then, the final configurations obtained by applying
two linear bipermutive rules with coprime polynomials are used to fill the two
entries in the square at the coordinates specified by the initial configuration. In
what follows we refer to a pair of bipermutive CA generating orthogonal Latin
squares as Orthogonal Cellular Automata (OCA), and to a set of pairwise OCA
as Mutually Orthogonal Cellular Automata (MOCA).

It can be remarked that any pair of OLS defines a permutation between the
Cartesian product of the rows/columns sets and the overlapped entries. Hence,
starting from a pair of final configurations generated by two OCA, an inter-
esting problem is to reconstruct the unique preimage (i.e. the row and column
coordinates) which generated them.

The aim of this paper is to investigate the inversion problem in MOCA,
without assuming any linearity of the underlying local rules. As a matter of fact,
the inversion of OCA defined by linear rules has already been settled in [7], and
it basically amounts to inverting a Sylvester matrix. Consequently, in this work
we focus on pairs of OCA defined by general bipermutive rules, whose exhaustive
and heuristic constructions have already been addressed in [8,11].

We leverage on the de Bruijn graph representation to solve the inversion
problem. In particular, we design an algorithm which, given as inputs the cou-
pled de Bruijn graph of two nonlinear OCA and a pair of final configurations,
computes their unique preimage by using a variant of Depth-First Search (DFS).
We remark in particular that the computational complexity of this algorithm is
exponential in the diameter of the OCA rules. Nonetheless, we also show that
this algorithm can be straightforwardly parallelized with respect to the initial
DFS calls, thus yielding an overall linear time complexity.

As an application of our inversion algorithm, we design a perfect secret shar-
ing scheme based on MOCA where every pair of players can reconstruct the
secret, while any single player cannot gain any information about it. More specif-
ically, we show that the reconstruction phase consists in the application of the
inversion algorithm on the two shares of the players, using the coupled de Bruijn
graph of the OCA that the dealer used to compute such shares.

The rest of this paper is organized as follows. Section 2 covers all basic defi-
nitions and results concerning cellular automata, orthogonal Latin squares and
secret sharing schemes used to prove the results of the paper, addressing the
inversion problem in the case of MOCA defined by nonlinear bipermutive rules.
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Section 4 describes the application of our inversion algorithm to the design of
a (2, n) threshold secret sharing scheme. Finally, Sect. 5 summarizes the key
findings of the paper and puts them into perspective.

2 Preliminary Definitions

In this section, we recall the basic definitions and notions which we will use in the
rest of the paper. In particular, Sect. 2.1 covers all necessary background about
CA and their representation based on de Bruijn graphs. Section 2.2 gives the
basic definitions regarding orthogonal Latin squares and how they can be used
to construct perfect (2, n) secret sharing schemes. Section 2.3 briefly reviews the
construction of OLS by means of linear OCA and the exhaustive and heuristic
search of OLS by nonlinear OCA.

2.1 Cellular Automata

Throughout this work, we focus on one-dimensional No Boundary Cellular
Automata (NBCA), formally defined as follows:

Definition 1. Let Σ be a finite alphabet and n, d ∈ N with n ≥ d. Additionally,
let the function f : Σd → Σ be a local rule of diameter d. The No Boundary
Cellular Automaton (NBCA) F : Σn → Σn−d+1 is the vectorial function defined
for all x ∈ Σn as

F (x1, · · · , xn) = (f(x1, · · · , xd), f(x2, · · · , xd+1), · · · , f(xn−d+1, · · · , xn)). (1)

Function F is also called the CA global rule.

In other words, an NBCA can be viewed as an array of n ≥ d cells, where each
of the leftmost n − d + 1 cells computes its next state by evaluating rule f on
the neighborhood formed by itself and the d − 1 cells to its right. In particular,
the rightmost d − 1 cells of the array are ignored, so that the size of the CA
“shrinks” by d − 1 cells upon application of the global rule F .

In the rest of this paper, we assume that the state alphabet Σ is the finite
field with two elements F2 = {0, 1}. In this case, a NBCA can be interpreted as
a particular kind of vectorial Boolean function F : Fn

2 → F
n−d+1
2 , where each

coordinate function fi : Fn
2 → F2 defining the i-th output value corresponds to

the local rule applied to the neighborhood of the i-th cell. Since in this case the
local rule is a single-output d-variable Boolean function f : Fd

2 → F2, it can be
uniquely represented by the 2d-bit output column of its truth table, which we
denote by Ωf . In the CA literature it is customary to identify a local rule f by
its Wolfram code, which is the decimal encoding of its truth table Ωf .

A local rule f : F
d
q → F2 is called right (respectively, left) permutive if,

by fixing the values of the leftmost (respectively, rightmost) d − 1 cells to any
value x̃ ∈ Σd−1, the resulting restriction fx̃ : Σ → Σ is a permutation over Σ.
Moreover, f is called bipermutive if it is both left and right permutive. When
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Fig. 1. Example of NBCA defined by rule 150, together with its de Bruijn graph.

Σ = F2, a bipermutive rule f : Fd
2 → F2 is defined for all x = (x1, · · · , xd) ∈ F

d
2

as:
f(x1, · · · , xd) = x1 ⊕ g(x2, · · · , xd−1) ⊕ xd, (2)

where g : Fd−2
2 → F2 is a (d − 2)-variable Boolean function.

Another common way for representing a CA is through its de Bruijn graph.
Let us assume that u, v ∈ Σn are two strings over the alphabet Σ of length n
such that u = u1x and v = xv1, where u1, v1 ∈ Σ and x ∈ Σn−1 is a string of
length n − 1. In other words, u and v overlap respectively on the rightmost and
leftmost n − 1 symbols. The fusion between u and v is the string z = u � v of
length n + 1 obtained by adding to u the last symbol of v [17]. Then, one can
formally define the de Bruijn graph associated to a CA as follows:

Definition 2. Let F : ΣZ → ΣZ be a CA defined by a local rule f : Σd → Σ
of diameter d. The de Bruijn graph associated to F is the directed labeled graph
GDB(f) = (V,E, l) where V = Σd−1 and such that for any v1, v2 ∈ V , one
has (v1, v2) ∈ E if and only if there exists z ∈ Σd such that z = v1 � v2.
The label function l : E → Σ on the edges is defined for all (v1, v2) ∈ E as
l(v1, v2) = f(v1 � v2).

Stated otherwise, the vertices of the de Bruijn graph correspond to all possible
blocks of d−1 cells. Two vertices v1 and v2 are connected by an edge if and only
if they overlap respectively on the rightmost and leftmost d − 1 cells, and the
label on this edge is obtained by computing the CA local rule on the fusion of
v1 and v2. Figure 1 depicts an example of binary NBCA F : F6

2 → F
4
2 induced by

the local rule f(xi, xi+1, xi+2) = xi ⊕ xi+1 ⊕ xi+2, whose Wolfram code is 150,
together with its de Bruijn graph.

2.2 Orthogonal Latin Squares and Secret Sharing Schemes

Given N ∈ N, let us denote by [N ] the set {1, · · · , N}. Then, one can formally
define orthogonal Latin squares as follows:
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Definition 3. A Latin square L of order N ∈ N is a N ×N matrix whose rows
and columns are permutations of [N ], i.e. every element of [N ] occurs exactly
once in each row and each column. Two Latin squares L1, L2 of order N are
called orthogonal if for all distinct pairs of coordinates (i1, j1), (i2, j2) ∈ [N ]×[N ]
one has

(L1(i1, j1), L2(i1, j1)) �= (L1(i2, j2), L2(i2, j2)), (3)

that is, the superposition of L1 and L2 yields all possible pairs in the Cartesian
product [N ] × [N ].

Remark 1. Two orthogonal Latin squares L1, L2 of order N ∈ N induce a per-
mutation π : [N ]× [N ] → [N ]× [N ] over the Cartesian product [N ]× [N ], which
is defined as

π(i, j) = (L1(i, j), L2(i, j)) (4)

for all (i, j) ∈ [N ] × [N ].

A set n pairwise orthogonal Latin squares of order [N ] is denoted as n− MOLS
(Mutually Orthogonal Latin Squares). Figure 2 reports an example of orthogonal
Latin squares of order N = 4, together with their superposition.

Fig. 2. Orthogonal Latin squares of order N = 4.

Orthogonal Latin squares turn out to have several applications in cryptog-
raphy and coding theory [5,16], one of the most interesting being secret sharing
schemes (SSS). Informally speaking, a SSS is a procedure which enables a trusted
party (called the dealer) to share a secret S among a set of n players. In par-
ticular, the players receive shares of the secret from the dealer, and only certain
authorized subsets of players specified in an access structure can reconstruct the
secret by combining together their shares. A SSS is called perfect if any sub-
set not belonging to the access structure cannot determine the secret (in an
information-theoretic sense).

In this work we focus mainly on perfect (k, n)− threshold SSS, where the
authorized subsets are those having cardinality at least k. Hence, any combina-
tion of k shares is enough to uniquely determine the secret, while knowing k − 1
or less shares keeps any value of the secret equally likely.

The connection between perfect threshold SSS and orthogonal Latin squares
is established by the following result [16]:
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Theorem 1. A perfect (2, n)− threshold SSS exists if and only if there exists a
set of n MOLS of order N .

The setup phase of a (2, n)− threshold SSS from a set of n MOLS L1, · · · , Ln

goes as follows. First, the secret S is represented as a row i ∈ [N ] of the
squares, and the dealer randomly chooses a column j ∈ [N ]. Then, for each
m ∈ {1, · · · , n}, the dealer secretly sends to the m-th player the share Bm =
Lm(i, j), i.e. the entry of the m-th Latin square at row i and column j. Finally,
the dealer publishes the Latin squares L1, · · · , Ln.

In the recovery phase, any pair of players p, q respectively holding shares
Bp, Bq can recover the secret simply by overlaying the two public Latin squares
Lp, Lq. Since Lp and Lq are orthogonal, the pair of shares (Bp, Bq) occurs at a
single pair of coordinates (i, j), the row of which is the secret S. Conversely, if
p tries to determine the secret on her own without knowing the share Bq, there
will be exactly N pairs (Bp, ·) in the overlay of the two Latin squares, due to the
fact that Lp and Lq are orthogonal. A symmetric argument holds when q tries
to determine S by herself without knowing Bp. Hence, the knowledge of a single
share leaves the value of the secret completely undetermined, which makes the
scheme perfect.

2.3 Construction of OLS by CA

We now describe how CA can be employed to obtain orthogonal Latin squares,
briefly recalling the construction reported in [7]. In what follows, given a binary
vector x ∈ F

n
2 , we will denote by φ(x) ∈ {1, · · · , 2n} the integer number corre-

sponding to the decimal representation of x+1. On the contrary, for any integer
number i ∈ {1, · · · , 2n}, ψ(i) ∈ F

n
2 will stand for the n-bit binary representation

of i − 1. Notice that φ = ψ−1 and ψ = φ−1.
Let F : F2(d−1)

2 → F
d−1
2 be a CA based on a local rule f : Fd

2 → F2 of d
variables. This means that F is a vectorial Boolean function mapping binary
strings of length 2(d − 1) to strings of length d − 1. Setting N = 2d−1, one can
associate a N × N square matrix SF to F as follows: for each (i, j) ∈ [N ] × [N ],
the entry of SF at row i and column j equals

SF (i, j) = φ(F (ψ(i)||ψ(j))), (5)

where || denotes the concatenation operator. Thus, the entry SF (i, j) is deter-
mined by computing the CA on the input vector where the first d − 1 bits
corresponds to the binary representation of row i, while the last d − 1 are the
binary representation of column j.

One may wonder under which conditions the matrix associated to a CA is a
Latin square. As shown in the next result [7], this situation happens when the
underlying local rule is bipermutive:

Lemma 1. Let F : F2(d−1)
2 → F

d−1
2 be a CA with bipermutive local rule f : Fd

2 →
F2. Then, the square SF induced by F is a Latin square of order N = 2d−1.
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As an example, Fig. 3 depicts the Latin square of order N = 4 associated to the
CA F : F4

2 → F
2
2 with bipermutive local rule 150. A natural question immediately

following from Lemma 1 is when the Latin squares associated to two bipermutive
CA F,G are orthogonal. In this case, we call the pair F,G as Orthogonal Cellular
Automata (OCA), and by analogy a family of bipermutive CA whose associated
Latin squares are MOLS is called a set of Mutually Orthogonal Cellular Automata
(MOCA).

Fig. 3. Example of Latin square to the CA F : F4
2 → F

2
2 with local rule 150.

The question has been settled in [7] for linear rules. A local rule f : Fd
2 → F2

is linear if there exists a vector a = (a1, · · · , ad) ∈ F
d
2 such that f(x1, · · · , xd) =

a1x1⊕· · ·⊕adxd for all x = (x1, · · · , xd) ∈ F
d
2. In this case, rule f is bipermutive

if and only if a1 = ad = 1. Additionally, one can easily associate to f a polynomial
pf (X) ∈ F2[X] of degree d−1 by defining it as pf (X) = a1+a2X+· · ·+adX

d−1.
Using this representation, the authors of [7] proved the following result:

Theorem 2. Let F,G : F2(d−1)
2 → F

d−1
2 be two CA respectively defined by two

linear bipermutive rules f, g : Fd
2 → F2. Further, let pf , pg denote the two poly-

nomials respectively associated to f and g. Then, F and G are OCA if and only
if gcd(pf , pg) = 1, that is, if and only if f and g are coprime.

In [8] the authors performed an exhaustive search for finding all OCA pairs
equipped with nonlinear bipermutive rules of diameter up to d = 6. Further,
the optimization problem of determining nonlinear OCA of diameter d = 7, 8
has been addressed in [11]. In particular, since exhaustive search is not feasible
for any d > 6, the authors resorted to genetic algorithms (GA) and genetic
programming (GP).

3 Computing Preimages of OCA

We can now formally state the inversion problem for OCA which we analyze in
the rest of this paper:

Problem 1. Let F,G : F2(d−1)
2 → F

d−1
2 be a pair of OCA respectively defined by

bipermutive local rules f, g : Fd
2 → F2, and let w, z ∈ F

d−1
2 be two (d − 1)−bit

vectors. Then, find the vector c = x || y with x, y ∈ F
d−1
2 such that (F (c), G(c)) =

(w, z).
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Using the terminology of Latin squares, Problem1 requires finding a pair of
row/column coordinates (φ(x), φ(y)) such that the corresponding entry in the
superposition of Latin squares SF and SG is the pair (φ(w), φ(z)). Since SF and
SG are orthogonal, by Remark 1 such pair of coordinates is unique.

Notice that Problem 1 does not assume any linearity on the bipermutive local
rules underlying the two OCA, so the inversion algorithm which we develop in
this section works both for linear and nonlinear OCA. Before describing it, we
first need to introduce some additional data structures and algorithms.

Let GDB(f) = (V,E, lf ) and GDB(g) = (V,E, lg) be the de Bruijn graphs
respectively associated to two CA F,G : Σ2(d−1) → Σd−1 equipped with local
rules f, g : Σd → Σ of diameter d. Then, the coupled de Bruijn graph induced
by F and G is the de Bruijn graph GDB(f, g) = (V,E, lf,g) whose edge labeling
function l : E → Σ × Σ is defined for all (v1, v2) ∈ E as

l(v1, v2) = (lf (v1, v2), lg(v1, v2)). (6)

Thus, the labeling on the coupled de Bruijn graph is formed setting side by side
the edge labels of the de Bruijn graphs of the single CA.

In what follows, we will make use of the variant of Depth First Search origi-
nally introduced in [10] to compute the unfolding of de Bruijn graphs. Given a
configuration y of length p and a vertex v of a de Bruijn graph GDB(f) = (V,E, l)
associated to a CA, this algorithm visits GDB(f) starting from a single vertex
v1 and following the path on the edges labeled by y. In particular, contrary to
the plain version of DFS, this variant does not mark the visited edges, so that in
principle they can be visited multiple times. The fusion of the vertices v1, · · · , vp
visited during this algorithm determines a preimage x of configuration y. In our
case, we will denote by DFS-Mod(V,E, l, v, w, z) a call to this DFS variant on
the coupled de Bruijn graph GDB(f, g) = (V,E, l) associated to f and g, starting
from vertex v and reading the edge labels determined by juxtaposing the config-
urations w, z ∈ F

d−1
2 . In particular, it is not guaranteed that a preimage of w, z

can be found, since for any i ∈ {1, · · · , d − 1} there might be no edges labeled
with (wi, zi) that exit from vertex vi visited by the DFS on step i − 1. Thus, we
will assume that DFS-Mod(GDB(f, g), l, v, w, z) either returns a preimage c of
w, z or the value NIL when such preimage cannot be constructed starting from
vertex v.

We can now describe the structure of our inversion procedure for OCA, whose
pseudocode is reported in Algorithm 1. The procedure takes as input the coupled
de Bruijn graph GDB(f, g) of two OCA F,G : F2(d−1)

2 → F
d−1
2 defined by biper-

mutive rules f, g : Fd
2 → F2 respectively, and two configurations w, z ∈ F

d−1
2 .

The first three steps of the algorithm simply extract the vertex set, the edge
set and the labeling function of the graph, while the fourth step initializes the
configuration to be returned to NIL. Then, the while loop is performed until
there are edges in E labeled with the first symbols of w and z, and c equals NIL.
Inside the loop, the only instruction is the call to DFS-Mod starting from the
first vertex of the edge. If the DFS visit successfully completes, then a preimage
of (w, z) is returned and assigned to c, otherwise c remains NIL. As soon as a
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preimage is found or there are no other edges labeled with (w1, z1) in the coupled
de Bruijn graph, the execution exits the while loop and the current value of c is
returned.

Algorithm 1. Invert-OCA(GDB(f, g), w, z)
V := Vertex(GDB(f, g))
E := Edges(GDB(f, g))
l := Labels(GDB(f, g))
c := NIL
while e ∈ {(v1, v2) ∈ E : l(v1, v2) = (w1, z1)} AND c = NIL do

c := DFS-Mod(V,E, l, v1, w, z)
end while
return c

We now prove the correctness and the time complexity of Algorithm 1, under
the assumption that F and G are OCA.

Theorem 3. Let F,G : F
2(d−1)
2 → F

d−1
2 be two OCA with bipermutive local

rules f, g : Fd
2 → F2 and let GDB(f, g) be the coupled de Bruijn graph of F and

G. Then, for any pair of final configurations w, z ∈ F
d−1
2 , the procedure Invert-

OCA correctly returns the unique preimage c ∈ F
2(d−1)
2 such that (F (c), G(c)) =

(w, z) in O(d · 2d) steps.

Proof. Correctness. Let w, z ∈ F
d−1
2 be two configurations of d − 1 bits, and let

φ(w), φ(z) be their decimal representations ranging in [N ], where N = 2d−1.
Since the two Latin squares SF and SG are orthogonal, the pair (φ(w), φ(z))
appears exactly once in their superposition. Let i, j ∈ [N ] be respectively the row
and column coordinates where such pair occurs. Given the binary representation
ψ(i), ψ(j) ∈ F

d−1
2 of i, j and denoting by c = ψ(i) || ψ(j) their concatenation,

this means that
(F (c), G(c)) = (w, z) (7)

Algorithm 1 invokes DFS-Mod on all vertices v ∈ V which have an outgoing
edge labeled by (w1, z1). In particular, due to the fact that SF and SG are orthog-
onal, there will be exactly one call which returns a value different from NIL, and
this value corresponds to the only preimage c which satisfies Eq. (7).

Complexity. To determine the time complexity of Invert-OCA, first remark
that a single call to DFS-Mod requires at most d − 1 steps to complete, because
the two configurations w, z have length d−1 each, and their symbols are pairwise
read during the DFS visit. In particular, a DFS visit could return before d − 1
steps, due to the fact that there are no outgoing edges labeled with the pairs of
symbols of w and z. To conclude, we need to determine how many times DFS-
Mod is invoked. Lemma 3 in [8] shows that the local rules of OCA are pairwise
balanced, meaning that there are exactly 2d−2 edges on the coupled de Bruijn
graph labeled with (w1, z1). Consequently, DFS-Mod is invoked 2d−2 times, thus
the overall time complexity of Invert-OCA is O(d · 2d). �	
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One may notice that the time complexity of Algorithm1 is exponential with
respect to the diameter of the CA. However, remark that Algorithm 1 can be
straightforwardly parallelized by assigning a processor to each DFS call inside
the while loop. Hence, by using 2d−2 processors in parallel, the time complexity
of Invert-OCA can be reduced down to O(d), which is the number of steps
necessary to complete a DFS visit.

4 Application to Secret Sharing Schemes

On account of Theorem 2, a set {p1, · · · , pn} of n pairwise coprime polynomials
of degree d − 1 is equivalent to a family of n linear MOCA of order N = 2d−1,
and thus by Theorem 1 it is also equivalent to a perfect (2, n)-threshold SSS.
However, publishing the whole set of n MOLS is not an efficient way to implement
the recovery phase of a SSS, especially if the size of the squares is huge. Thus,
one needs to find a compact way to describe the recovery phase of the secret
starting from the knowledge of two shares.

In this concluding section, we show how our inversion algorithm Invert-
OCA can be used precisely for this purpose. To our knowledge, this is the first
time that a full perfect (2, n)-threshold SSS based on CA is described in the
literature. As a matter of fact, there have been other attempts at designing
CA-based secret sharing schemes (such as [9,13]), but the resulting access struc-
tures suffered from an additional adjacency constraint on the shares, since they
actually represent blocks of CA configurations.

Let the secret S be a vector of Fm
2 where m = d − 1, and assume that there

are n players P1, · · · , Pn. Then, the setup phase of our (2, n)-threshold SSS is as
follows:

Setup Phase
Initialization:

1. Find n local rules f1, · · · , fn : F
d
2 → F2 which give rise to a set of n

MOCA of order N = 2d−1. By Theorem 2, this can be done for example
by picking n relatively prime polynomials pf1(x), · · · , pfn(x) over F2

2. Concatenate secret S with a random vector R ∈ F
m
2 , thus obtaining a

configuration C ∈ F
2m
2 of length 2(d − 1)

Loop: For all i ∈ {1, · · · n} do:
1. Given Fi : F2m

q → F
m
2 the NBCA defined by rule fi, compute Bi = Fi(C)

2. Send share Bi to player Pi

Termination: Publish the n local rules f1, · · · , fn defining the MOCA.

For the recovery phase, suppose that two players Pi and Pj want to determine
the secret. Let Bi and Bj respectively denote the share of Pi and Pj . Since the
local rules of the MOCA are public, both Pi and Pj know the CA linear rules
fi and fj used by the dealer to compute their shares. Hence, they adopt the
following procedure to recover S:
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Recovery Phase
Initialization:

1. Find the CA linear rules fi and fj published by the dealer corresponding
to players Pi and Pj

2. Compute the coupled de Bruijn graph GDB(fi, fj)
Reconstruction:

1. Compute configuration C by calling Invert-OCA(GDB(fi, fj), Bi, Bj)
2. Return the first half of C as the secret S

Hence, the recovery phase of this SSS simply consists in computing the preimage
of the pair of configurations represented by the shares Bi, Bj under the action of
the two OCA with local rules fi, fj . In particular, the whole preimage returned
by Invert-OCA contains both secret S in its left half and the random column
chosen by the dealer in the second half.

5 Discussion, Conclusions and Directions for Future
Work

In this paper, we described an algorithm to invert a pair of configurations under
the action of two OCA. Specifically, starting from the coupled de Bruijn graph
of the two OCA of diameter d, the algorithm applies a DFS-based search until
a valid path labeled with the two configurations is found. The existence of such
unique path is guaranteed by the fact that the two OCA define a pair of orthog-
onal Latin squares, and thus a bijection among pairs of (d−1)-bit vectors. Since
there are 2d−1 vertices in the coupled de Bruijn graph, in the worse case the run-
ning time of our algorithm is exponential in the diameter of the CA. However,
this algorithm is easily parallelizable, by assigning a DFS call to a separate pro-
cessor. Hence, using O(2d) processors in parallel yields a time complexity which
is linear in the CA diameter. As an application of this algorithm, we showed
how to implement the recovery phase of a (2, n)-threshold secret sharing scheme
based on MOCA.

Taking a closer look at the computational complexity of Algorithm 1, one
may notice that we did not consider the size of the input in our analysis. As a
matter of fact, the de Bruijn graph of a CA is already exponential in the CA
diameter, something which apparently hinders the applicability of our inversion
algorithm. However, depending on the nature of the underlying local rules, one
can find more efficient representations of this algorithm. For instance, if the local
rules are linear, then it is possible to adapt the preimage construction procedure
described in [9] as follows: first, the leftmost (d− 1)-cell block of the preimage is
randomly guessed. Then, one exploits the right permutivity property of the two
local rules to compute the two values for the d-th cell of the preimage. If the two
values are equal, then the preimage is consistent up to that point, and the next
cell in position d+1 can be computed. This process is repeated rightwards, until
either a mismatch is found between the two computed values (meaning that one
has to start over with a new left block of d − 1 cells), or the rightmost block
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is completed (i.e. the correct preimage mapping to the pair of configurations
has been found). Under this procedure, one can compute the two values for the
current preimage cell using the Algebraic Normal Form (ANF) [3] of the two
CA local rules. If the rules are linear, then the size of their ANF is linear in the
CA diameter d, since it just corresponds to an XOR of a subset of the input
variables. Of course, in the general case of nonlinear bipermutive rules the size
of the ANF can still be exponential in the diameter.

However, we remark that this issue is mainly a matter of trade-off between the
required amount of nonlinearity of the CA local rules and their ANF sizes, which
highly depends on the specific application domain of our inversion algorithm.
Returning to our secret sharing scheme example, most of the existing protocols
used in practice are actually linear. Thus, plugging linear rules into our example
described in Sect. 4 would yield another linear threshold scheme with a recovery
phase that can be performed in O(d) steps using O(2d) processors in parallel. As
a consequence, it would be interesting to compare the complexity of our scheme
with those of other well-established linear SSS, such as Shamir’s scheme [15].
Further, as pointed out in [7], the inversion problem of two linear OCA actually
amounts to the inversion of a Sylvester matrix. Hence, another direction worth
exploring for further research is to investigate the computational complexity of
inverting this kind of matrices, in order to verify if a faster inversion algorithm
can be designed.

Under a different perspective, for certain applications there is the need for
nonlinear secret sharing schemes. An example are cheater-immune secret sharing
schemes based on nonlinear constructions, which are robust towards dishonest
players who submit fake shares during the reconstruction phase [18]. In this
case, it would be interesting to analyze the trade-off between the amount of
nonlinearity that the local rules must have to achieve cheater-immunity and the
size of their ANF. A possible strategy could be to cast this question in terms
of an optimization problem, and then solve it through heuristic techniques such
as Genetic Programming (GP), which already proved to be successful in the
design of S-boxes with good cryptographic properties and small implementation
costs [12].

As a closing remark, we note that determining how large a family of MOCA
can be is still an open problem, even in the linear case. As shown in [7], verifying
whether a set of linear bipermutive CA of diameter d form a family of MOCA is
equivalent to check that the polynomials associated to the local rules are pairwise
coprime. However, despite the enumeration of coprime polynomials over finite
fields is a well-developed research topic (see e.g. [1]), as far as we know there
are no works in the literature addressing coprimality of monic polynomials with
nonzero constant term, which is exactly the subclass corresponding to linear
bipermutive local rules. Very recently, the first author showed a construction
of a family of pairwise coprime polynomials of this kind in his PhD thesis [6],
thus providing a first lower bound on its size. Nonetheless, optimality of this
construction is still open.
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