
Self-verifying Cellular Automata

Martin Kutrib1 and Thomas Worsch2(B)

1 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
worsch@kit.edu

Abstract. We study the computational capacity of self-verifying cellu-
lar automata with an emphasis on one-way information flow (SVOCA).
A self-verifying device is a nondeterministic device where each computa-
tion path can give one of the answers yes, no, or do not know. For every
input word, at least one computation path must give either the answer
yes or no, and the answers given must not be contradictory. Realtime
SVOCA are strictly more powerful than realtime deterministic one-way
cellular automata. They can be sped-up from lineartime to realtime and
are capable to simulate any lineartime computation of deterministic two-
way CA. Closure and decidability properties are considered as well.

1 Introduction

What is the power of nondeterminism in bounded-resource computations? Tra-
ditionally, nondeterministic devices have been viewed as having as many nonde-
terministic guesses as time steps. The studies of this concept of unlimited non-
determinism led, for example, to the famous open LBA-problem or the unsolved
question whether or not P equals NP. In order to gain further understanding of
the nature of nondeterminism, in for example [9] it has been viewed as an addi-
tional limited resource at the disposal of time or space bounded computations.
We study the computational power of self-verifying cellular automata (SVCA).
A self-verifying device is a nondeterministic device with symmetric conditions
for acceptance/rejection. Each computation path can give one of the answers
yes, no, or do not know. For every input word, at least one computation path
must give either the answer yes or no, and the answers given must not be con-
tradictory. So, if a computation path gives the answer yes or no, in both cases
the answer is definitely correct. This justifies the notion self-verifying and is in
contrast to general nondeterministic computations, where an answer that is not
yes does not allow to conclude whether or not the input belongs to the language.

Self-verifying finite automata have been introduced and studied in [6,11,12]
mainly in connection with randomized Las Vegas computations. Descriptional
complexity issues for self-verifying finite automata have been studied in [14]. The
computational and descriptional complexity of self-verifying pushdown automata
has been studied in [8].

c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 340–351, 2018.
https://doi.org/10.1007/978-3-319-99813-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99813-8_31&domain=pdf

Self-verifying Cellular Automata 341

The paper is organized as follows. In Sect. 2 we present the basic notation
and the definitions of self-verifying (one-way) cellular automata as well as an
introductory example. In Sect. 3 a strong speed-up result is derived that allows
the conversion of lineartime SVOCA to realtime. Section 4 is devoted to explore
the computational capacity of realtime SVOCA. It turns out that they are even
capable to simulate any lineartime computation of a two-way CA. Moreover, the
closure properties of the family of languages accepted by realtime SVOCA are
studied. It is shown that the family is closed under the set-theoretic operations,
reversal, concatenation, and inverse homomorphisms. Finally, decidability prob-
lems are considered. In particular, the property of being self-verifying turns out
to be non-semidecidable.

Because of a page limit not all proofs are included in the version for the
conference proceedings, but a research report with all details is available at [17].

2 Preliminaries

We denote the positive integers {1, 2, . . . } by N, the set N ∪ {0} by N0, and
the powerset of a set S by 2S . We write |S| for the cardinality of S. Let Σ
denote a finite set of letters. Then we write Σ∗ for the set of all finite words
(strings) consisting of letters from Σ. The empty word is denoted by λ, and
we set Σ+ = Σ∗ \ {λ}. For the reversal of a word w we write wR and for its
length we write |w|. A subset of Σ∗ is called a language over Σ. The devices
we will consider cannot accept the empty word. So, in order to avoid technical
overloading in writing, two languages L and L′ are considered to be equal, if they
differ at most by the empty word, that is, if L \ {λ} = L′ \ {λ}. Set inclusion is
denoted by ⊆ and strict set inclusion by ⊂.

A two-way cellular automaton is a linear array of identical finite automata,
called cells, numbered 1, . . . , n. Except for border cells the state transition
depends on the current state of a cell itself and those of its both nearest neigh-
bors. Border cells receive a boundary symbol on their free input lines. Syn-
chronous state changes take place at discrete time steps.

We first define nondeterministic cellular automata. The nondeterminism
is restricted to the first step. All further transitions are deterministic [2,16].
Although this is a very restricted case, we call such devices nondeterministic.

A nondeterministic two-way cellular automaton (NCA, for short) is a system
M = 〈S,Σ, F, #, δnd, δd〉, where

1. S is the finite, nonempty set of cell states,
2. Σ ⊆ S is the nonempty set of input symbols,
3. F ⊆ S is the set of accepting states,
4. # /∈ S is the boundary symbol,
5. δnd : (S∪{#})×S×(S∪{#}) → (2S\∅) is the nondeterministic local transition

function applied in the first state transition,
6. δd : (S ∪{#})×S ×(S ∪{#}) → S is the deterministic local transition function

applied in all further state transitions.

342 M. Kutrib and T. Worsch

In a one-way cellular automaton the next state of each cell only depends on
the state of the cell itself and the state of its immediate neighbor to the right.
So the domain of the transition functions is S × (S ∪ {#}).

A configuration ct of M at time t ≥ 0 is a mapping ct : {1, 2, . . . , n} → S, for
n ≥ 1, occasionally represented as a word over S. The initial configuration c0 for
an input w = a1a2 · · · an ∈ Σ+ is defined by c0(i) = ai, for 1 ≤ i ≤ n. For exam-
ple, the initial configuration of an NOCA for w is represented by a1a2 · · · an.
Successor configurations are computed according to the global transition func-
tion Δ mapping each configuration to a set of successor configurations.

For an NCA configuration ct the set of its successors ct+1 is defined as:

ct+1 ∈ Δ(ct) ⇐⇒
⎧
⎨

⎩

ct+1(1) ∈ σ(#, ct(1), ct(2))
ct+1(i) ∈ σ(ct(i − 1), ct(i), ct(i + 1)), i ∈ {2, . . . , n − 1}
ct+1(n) ∈ σ(ct(n − 1), ct(n), #)

where σ = δnd if t = 0, and σ = δd if t ≥ 1. For NOCA the global transition
function is defined analogously. Thus, Δ is induced by δnd and δd. An NCA
(NOCA) is deterministic if δnd(s1, s2, s3) (δnd(s1, s2)) is a singleton for all states
s1, s2, s3 ∈ S∪{#}. Deterministic cellular automata are denoted by CA and OCA.

An input w is accepted by a cellular automaton if at some time step dur-
ing some computation the leftmost cell enters an accepting state. The language
accepted by M is L(M) = {w ∈ Σ+ | w is accepted by M }. Let t : N → N be a
mapping. If all w ∈ L(M) are accepted with at most t(|w|) time steps, then M
is said to be of time complexity t (see [15] for a more on this general treatment
of time complexity functions). If t(n) = n acceptance is said to be in realtime. If
t(n) = k · n for a rational number k ≥ 1, then acceptance is in lineartime. The
set of all languages accepted by devices X with time complexity t is denoted by
Lt(X). We write Lrt(X) for real time and Llt(X) for linear time.

Now we turn to self-verifying (one-way) cellular automata (SV(O)CA). As
for NCA during the first step cells may choose between several new states. But
the definition of acceptance is different from nondeterministic CA.

There are now three disjoint sets of states representing answers yes, no,
and do not know. Moreover, for every input word, at least one computation
path must give either the answer yes or no, and the answers given must not
be contradictory. In order to implement the three possible answers the state set
is partitioned into three disjoint subsets S = F+∪̇F−∪̇F0, where F+ is the set
of accepting states, F− is the set of rejecting states, and F0 = S � (F+ ∪ F−)
is referred to as the set of neutral states. We specify F+ and F− in place of
the set F . of SVCA and SVOCA. So, let M = 〈S,Σ, F+, F−, #, δnd, δd〉 be an
SVOCA. For each input w ∈ Σ+, the set of states reachable by cell 1 is defined
as Sw = { s ∈ S | s ∈ (

Δ[t](w#)
)
(1) for some t ≥ 0 }, where Δ[t] denotes the t-

fold composition of Δ, that is, the set of configurations reachable in t time steps.
For the “self-verifying property” it is required that for each w ∈ Σ+, Sw ∩ F+ is
empty if and only if Sw ∩ F− is nonempty.

If all w ∈ L(M) are accepted and all w /∈ L(M) are rejected after at most
t(|w|) time steps, then the self-verifying cellular automaton M is said to be of
time complexity t. We illustrate the definitions with an example.

Self-verifying Cellular Automata 343

Example 1. The non-semilinear unary language { a2n | n ≥ 0 } is accepted by
the SVOCA M = 〈{a,−, 1,X,∼, <1, <2,�,⊗,⊕, 0}, {a}, F+, F−, #, δnd, δd〉 in
realtime, where F+ = {⊕}, F− = {�,⊗}, and the transition functions δnd and
δd are defined as follows.

(1) δnd(a, a) = {1,−}
(2) δnd(a, #) = {⊕}
(3) δd(1,−) = X
(4) δd(−,−) = −
(5) δd(−, 1) = <1

(6) δd(−, <1) = −
(7) δd(−, <2) = <1

(8) δd(X,−) = X
(9) δd(X,<1) = X

(10) δd(<1,X) = <2

(11) δd(<1,∼) = <2

(12) δd(<2,X) = ∼
(13) δd(<2,∼) = ∼
(14) δd(∼,∼) = ∼
(15) δd(1,⊕) = ⊕
(16) δd(X,⊗) = ⊕
(17) δd(<1,⊕) = ⊗
(18) δd(<1,�) = ⊗
(19) δd(<2,�) = �
(20) δd(∼,⊕) = �
(21) δd(∼,�) = �

In addition to these transitions, δd maps any state from {�,⊗,⊕, 0} to itself,
regardless of its neighbor. And all still undefined transitions map to the state 0.

The idea of the construction is as follows (see Fig. 1). Assume that the cells
are numbered from 1 to n from right to left. In the first step, each cell guesses
whether its position is 2i, for some i ≥ 1 (1). Accordingly they enter state 1 or −.
The rightmost cell can identify itself and always enters state ⊕ (2). Next, each
cell in state 1 sends a signal with speed 1/2 to the left. The signal is realized
by states <1 and <2 (5–7 and 10–13). Moreover, cells in state 1 change to state
X (3) and each cell passed through by such a signal changes to state ∼ (12–14).

In addition, initially a signal s is sent by the rightmost cell to the left with
speed 1. This signal is realized by the states {�,⊗,⊕} and possibly by state 0 if
an initial guess is wrong. The states {�,⊗,⊕} represent accepting and rejecting
decisions of the cells. Once such state is entered it is never left again. Therefore
the decisions are not contradictory. Now the idea is that the initial guess is
verified if and only if signal s meets a 1/2-speed signal in a cell that initially
guessed to be at some position 2i and, thus, is now in state X (16–21).

In order to evidence the correctness of the construction, let us first assume the
initial guesses are correct. Then cells 1 and 2 behave as required by Transitions 2
and 15. Now let some cell 2i enter the accepting state ⊕ at time 2i (which is
true for cells 1 and 2). Then the 1/2-speed signal sent by that cell has reached
cell 2i + 2i−1. This implies that the fast and slow signal will meet in cell 2i+1,
as required. Altogether, for the case of initially correct guesses, the decisions are
never contradictory, they are correct, and the guesses are verified to be true.

For the cases where one of the initial guesses is wrong, the neutral state 0 is
used. Whenever a slow and the fast signal do not meet in a cell being in state X,
state 0 is entered. Moreover, it is entered whenever two neighboring cells are in
state 1. In particular, since the state 0 is never left, the fast signal checks the
correctness of the initial guesses from right to left. It is stopped by any cell in
the neutral state 0. Again, no contradictory decisions are made and, no decision

344 M. Kutrib and T. Worsch

t

n

a a a a a a a a a a a a a a a a #

1 − − − − − − − 1 − − − 1 − 1 +
X − − − − − − <1 X − − <1 X <1 +
X − − − − − − <2 X − − <2 X ×
X − − − − − <1 ∼ X − <1 ∼ +
X − − − − − <2 ∼ X − <2 −
X − − − − <1 ∼ ∼ X <1 −
X − − − − <2 ∼ ∼ X ×
X − − − <1 ∼ ∼ ∼ +
X − − − <2 ∼ ∼ −
X − − <1 ∼ ∼ −
X − − <2 ∼ −
X − <1 ∼ −
X − <2 −
X <1 −
X ×
+

Fig. 1. Computation of a realtime SVOCA accepting the language { a2n | n ≥ 0 }. Slow
signals moving with speed 1/2 are depicted in light gray, the fast signal with states
�, ⊗, ⊕ in a darker gray.

is made by the leftmost cell in case of wrong guesses. So, this realtime one-way
cellular automaton accepts language { a2n | n ≥ 0 } and it is self-verifying. �

3 Characterization and Speed-Up

First we give evidence that self-verifying (one-way) cellular automata are in fact
a generalization of deterministic (one-way) cellular automata. To this end, it is
reasonable to consider only time complexities t that allow the leftmost cell to
recognize the time step t(n). Such functions are said to be time-computable. For
example, the identity t(n) = n is a time-computable time complexity for (O)CA.
A signal which is initially emitted by the rightmost cell and moves with maximal
speed, arrives at the leftmost cell exactly at time step n. By slowing down the
signal to speed x

y (that is, the signal moves x cells to the left and then stays in
a cell for y − x time steps), it is seen that the time complexities � y

x · n�, for any
positive integers x < y, are time-computable. More details can be found in [3].

Self-verifying Cellular Automata 345

Lemma 2. Any (one-way) deterministic cellular automaton with a time-com-
putable time complexity t can effectively be converted into an equivalent (one-
way) self-verifying cellular automaton with the same time complexity t.

For any time-computable time complexity t, the closures of the families
Lt(SVOCA) and Lt(SVCA) under complementation are immediately seen. In
order to construct an SVOCA that accepts the complement of the language
accepted by a given SVOCA, it is sufficient to interchange the accepting and
rejecting states while the neutral states remain as they are. On the other hand,
Example 1 gives a witness for the strictness of the inclusion Lrt(OCA) ⊂
Lrt(SVOCA) since all unary languages accepted by realtime OCA are regular.
This observation raises the natural question whether every language accepted
by some realtime NOCA, whose complement is again accepted by some realtime
NOCA, is accepted by a realtime SVOCA.

Proposition 3. Let t be a time-computable time complexity. Every language
L ∈ Lt(NCA) whose complement L belongs to Lt(NCA) as well is accepted by
some t-time SVCA. The same is true for one-way devices.

Proof. Let M1 be a device accepting L and M2 be a device accepting L with
time complexity t. Now a t-time self-verifying devices M simulates M1 and M2

on different tracks, that is, it uses the same two channel technique of [7,19].
Then it remains to define the set of accepting states as F+ = { (s, s′) | s ∈ F1 }

and the set of rejecting states as F− = { (s, s′) | s′ ∈ F2 }, where F1 is the set of
accepting states of M1 and F2 is the set of accepting states of M2. ��

Since it is straightforward to extract an NOCA accepting the complement of
L(M) from a given SVOCA M , the characterizations of the next theorem have
been derived.

Theorem 4. Let t be a time-computable time complexity. The family of lan-
guages L ∈ Lt(NCA) such that L belongs to Lt(NCA) as well coincides with the
family Lt(SVCA). The same is true for one-way devices.

Several types of cellular automata can be sped-up by a constant amount
of time as long as the remaining time complexity does not fall below realtime.
A proof in terms of trellis automata can be found in [4]. In [13] the speed-up
results are shown for deterministic and nondeterministic cellular and iterative
automata. The proofs are based on sequential machine characterizations of the
parallel devices. In particular, deterministic CA and OCA can be sped-up from
(n + t(n))-time to (n + t(n)

k)-time [1,13]. Thus, lineartime is close to realtime.
The question whether every lineartime CA can be sped-up to realtime is an open
problem. The problem is solved for OCA. The realtime OCA languages are a
proper subfamily of the lineartime OCA languages [4,20].

Next we are going to derive a stronger result for SVOCA from which follows
that realtime is as powerful as lineartime. The result follows from the charac-
terization of Theorem 4 and known results for NCA and NOCA [2], where the

346 M. Kutrib and T. Worsch

so-called packing-and-checking technique is introduced and used. The basic prin-
ciple is to guess the input in a packed form on the left of the array. Then the
verification of the guess can be done by a deterministic OCA in realtime.

Theorem 5. Let k ≥ 1 and t be a time-computable time complexity. Then
Lk·t(SVCA) = Lt(SVCA). The same is true for one-way devices.

Proof. Given a (k · t)-time SVCA M , there are (k · t)-time NCA M1 and M2

with L(M1) = L(M) and L(M1) = L(M) by Theorem 4. Both can be sped-up to
t-time as shown in [2]. Applying Theorem 4 again yields a t-time SVCA that
accepts L(M). The reasoning for one-way devices is similar. ��

In particular, we have:

Corollary 6. The families Lrt(SVOCA) and Llt(SVOCA) coincide and the
families Lrt(SVCA) and Llt(SVCA) coincide.

4 Self-verifying One-Way Cellular Automata

4.1 Computational Capacity

First we recall that Example 1 gives a witness for the strictness of the following
inclusion.

Theorem 7. The family Lrt(OCA) is properly included in Lrt(SVOCA).

The inclusion of the previous result can be pushed higher in the hierarchy of
language families. However, the strictness of the inclusion gets lost. The question
of the strictness is strongly related to the famous open problem whether or not
the realtime CA languages are a proper subfamily of the CA languages.

Theorem 8. The family Llt(CA) is included in Lrt(SVOCA).

Proof. Let L ∈ Llt(CA). Since the family Llt(CA) is closed under reversal [19],
there exists a lineartime CA accepting LR. This CA, in turn, can be sped-up by a
multiplicative and additive constant [13]. Hence there is a CA M = 〈S,Σ, F, #, δ〉
that accepts LR with time complexity 2n − 1.

First a deterministic OCA M ′ = 〈S′, Σ′, F, #, δ′〉 is constructed such that M ′

accepts the language { �|w|wR | w ∈ L(M) } with time complexity 2n − 2,
(where � /∈ S and n > 1): Let S′ = (S ∪ {�}) ∪ (S ∪ {�})2, A′ = A ∪ {�},
and ∀s1, s2 ∈ S ∪ {�} : let δ′(s1, #) = (s1, �) and δ′(s1, s2) = (s1, s2). Further-
more ∀(s1, s2), (s2, s3) ∈ (S ∪ {�})2 :

δ′((s1, s2), (s2, s3)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ(s3, s2, s1) if (s1 �= � ∧ s2 �= � ∧ s3 �= �)
δ(#, s2, s1) if (s1 �= � ∧ s2 �= � ∧ s3 = �)
δ(s3, s2, #) if (s1 = � ∧ s2 �= � ∧ s3 �= �)
� otherwise

.

Self-verifying Cellular Automata 347

Fig. 2. Example for the proof of Theorem 8.

The basic idea is that during an intermediate step the cells of M ′ are collect-
ing the information needed to simulate one step of the CA (see Fig. 2). Due to
the one-way information flow a cell i thereby can collect information from the
cells i + 1 and i + 2 and, thus, simulate one step of the CA cell i + 1. Therefore,
the relevant part of the configuration shifts in space to the left.

The cells of an SVOCA M ′′ that accepts the language {wR | w ∈ L(M) } are
constructed such that they can store two input symbols. Under input wR the
SVOCA M ′′ guesses in its first step the configuration �|w|wR whereby two adja-
cent symbols are stored in one cell, respectively. The subsequent verification of
the guess can be done by a deterministic realtime OCA as shown by the packing-
and-checking technique in [2]. In parallel to the verification M ′′ simulates the
OCA M ′ with double speed on the compressed input. Therefore, M ′′ has time
complexity 1 + 2n−2

2 = n. Since L(M ′′) = {wR | w ∈ L(M) } = LR(M) =
(LR)R = L the theorem follows.

In order to make M ′′ self-verifying it enters accepting states if the guesses are
correct and the simulation ends accepting, and enters rejecting states when the
guesses are correct and the simulation does not end in an accepting state. All
other states, in particular those entered in case of wrong guesses, are neutral. ��

348 M. Kutrib and T. Worsch

4.2 Closure Properties

This section is devoted to the closure properties of the family of realtime SVOCA
languages, summarized in Table 1. From above we know already that the family
of languages accepted by realtime SVOCA is closed under complementation,
union, and intersection.

It is known that Lrt(OCA) is closed under reversal [4], which is a long-
standing open problem for Lrt(CA).

Proposition 9. The family of languages accepted by realtime SVOCA is closed
under reversal.

Proposition 10. The family of languages accepted by realtime SVOCA is closed
under concatenation.

Proof. Let L1, L2 ∈ Lrt(SVOCA). If the empty word belongs to L1 then lan-
guage L2 belongs to the concatenation and vice versa. Since the family of lan-
guages accepted by realtime SVOCA is closed under union, it remains to consider
languages L1, L2 ∈ Lrt(SVOCA) that do not contain the empty word. Let M1,
M2 be acceptors for L1 and L2. As an intermediate step, we construct a self-
verifying cellular automaton M with two-way information flow, that is, each
cell is connected to its both nearest neighbors and the leftmost cell receives a
boundary symbol on its free input line.

Since the family Lrt(SVOCA) is closed under reversal, there is a realtime
SVOCA MR

1 that accepts the reversal LR
1 of L1. Now M has two tracks with

identical inputs. On one track it simulates M2, whereby each cell that enters
an accepting or rejecting state is marked accordingly. On the second track, M
simulates MR

1 from left to right. That is, the simulation is such that each cell
receives the state from its left neighbor. So, the information flow is from left
to right. Again, each cell that enters an accepting or rejecting state is marked
accordingly.

Let the input be x1x2 · · · xn. If a cell at position i is marked accepting by the
simulation of M2, the word xixi+1 · · · xn belongs to the language L2. If a cell at
position i is marked accepting by the simulation of MR

1 , the word xixi−1 · · · x1

belongs to the language LR
1 and, thus, x1x2 · · · xi belongs to the language L1. So,

the input x1x2 · · · xn belongs to the concatenation L1L2 if and only if MR
1 may

mark a cell at position i and M2 a cell at position i+1 accepting, for 1 ≤ i < n.
In order to check this condition, M uses a signal that is emitted from the

rightmost cell when the simulation of MR
1 reaches that cell at time step n. The

signal moves to the left and informs the leftmost cell at time step 2n.
When the signal arrives, the leftmost cell enters an accepting state if and

only if the signal has found two adjacent cells marked accepting. So, M accepts
any input from L1L2 and only inputs from the concatenation L1L2. If the signal
found neither two adjacent cells marked accepting, nor two adjacent cells that are
marked accepting and unmarked, nor two adjacent cells unmarked the leftmost
cell enters a rejecting state. In this case, no matter between which two adjacent
symbols one assumes the cut between first and second factor, M has explicitly

Self-verifying Cellular Automata 349

rejected at least one of them. Clearly, in this case the input cannot belong to
the concatenation. On the other hand, if some input does not belong to the
concatenation, then there is always a computation of M that results in such a
marking. So, M rejects any input that does not belong to L1L2 and only inputs
that do not belong to L1L2. In any other case, the leftmost cell remains in a
neutral state.

So far, we have constructed a two-way self-verifying cellular automaton with
time complexity 2n. The proof of Theorem 8 can almost literally be used to show
that also a lineartime two-way self-verifying cellular automaton can be simulated
by a realtime SVOCA. ��

Next, we turn to the operations homomorphism and inverse homomorphism.

Proposition 11. The family of languages accepted by realtime SVOCA is not
closed under homomorphisms.

Proof. It is well known that every recursively enumerable language is the homo-
morphic image of the intersection of two context-free languages [10]. Moreover,
every context-free language is the homomorphic image of the intersection of a
regular language and a Dyck language [5].

The Dyck languages as well as the regular languages are realtime OCA lan-
guages [7] and therefore realtime SVOCA languages. Additionally, the family
of realtime SVOCA languages is closed under intersection. So, if the family
Lrt(SVOCA) would be closed under homomorphisms, it would contain every
recursively enumerable language. Due to the time bound to realtime this is a
contradiction. ��
Proposition 12. The family of languages accepted by realtime SVOCA is closed
under inverse homomorphisms.

The closure of Lrt(SVOCA) with respect to Kleene star and non-erasing
homomorphisms are not known. They are settled for nondeterministic devices
since, basically, for iteration it is sufficient to guess the the positions in the
array at which words are concatenated, and for non-erasing homomorphism it is
sufficient to guess the pre-image of the input. However, self-verifying devices have
to reject explicitly if the input does not belong to the language. It seems that
they have to ‘know’ that all choices either do not lead to accepting computations
or are ‘wrong.’

Table 1. Closure properties of the language family Lrt(SVOCA) in comparison with
the family Lrt(OCA), where hλ denotes λ-free homomorphisms.

Family ∪ ∩ R · ∗ hλ h h−1

Lrt(SVOCA) Yes Yes Yes Yes Yes ? ? No Yes

Lrt(OCA) Yes Yes Yes Yes No No No No Yes

350 M. Kutrib and T. Worsch

4.3 Decidability Questions

Now we turn to decidability questions. The membership problem is decidable for
realtime SVOCA languages since the family is effectively included in the deter-
ministic context-sensitive languages. However, even realtime OCA can accept
the so-called valid computations of Turing machines. These are languages of
encodings of accepting Turing machine computations (see [18] for details or [15]
for a survey). Hence many of the not even semi-decidable problems for Tur-
ing machines can be reduced to realtime OCA (see [18] for details or [15] for a
survey). The following theorem is from [15].

Theorem 13. For any language family that effectively contains Lrt(OCA) the
problems emptiness, universality, finiteness, infiniteness, context-freeness, and
regularity are not semidecidable.

So, we have the following consequences.

Corollary 14. The problems emptiness, universality, finiteness, infiniteness,
inclusion, equivalence, regularity, and context-freeness are not semidecidable for
realtime SVOCA.

Finally, we turn to the problem to decide whether a given realtime nonde-
terministic one-way cellular automaton is self-verifying or not.

Theorem 15. Given a realtime deterministic one-way cellular automaton M ,
it is not semidecidable whether or not M is an SVOCA.

Proof. Let M be a realtime OCA with accepting states F . An equivalent realtime
SVOCA M ′ is constructed (Lemma 2). Next, M ′ is modified by adding a new
input symbol (and neutral state) � and new states � ∈ F− and ⊕ ∈ F+. The
transition functions are modified such that a cell in state � in the first step
nondeterministically can either change to � and remain in that state forever or
to stay in � unless its right neighbor is in an accepting state. In the latter case,
the cell changes from state � to ⊕ and stays in that state from then on.

We claim that M ′ is self-verifying if and only if L(M ′) is empty. If L(M ′) is
empty, none of its cells will ever enter an accepting state. So, a cell that is in state
� remains in � and, thus, will not give a contradictory answer. On the other
hand, if there is w ∈ L(M ′), then on input �w by the choices of the leftmost cell
there is a rejecting computation, but an accepting one as well. Therefore, in this
case, M ′ is not self-verifying. If it were semidecidable whether a realtime OCA is
self-verifying then one could semidecide emptiness contradicting Corollary 14. ��

By Lemma 2 any deterministic CA with a time-computable time complex-
ity can effectively be made self-verifying. But it is non-semidecidable whether it
already is self-verifying. That generalizes immediately to nondeterministic cellu-
lar automata. However, Lemma 2 does not since an input may induce accepting
as well as non-accepting computations, which would become rejecting. In fact,
it is an open problem whether the family of realtime one-way nondeterministic
cellular automata is closed under complementation or not.

Self-verifying Cellular Automata 351

References

1. Bucher, W., Čulik II, K.: On real time and linear time cellular automata. RAIRO
Inform. Théor. 18, 307–325 (1984)

2. Buchholz, T., Klein, A., Kutrib, M.: On interacting automata with limited nonde-
terminism. Fundam. Inform. 52, 15–38 (2002)

3. Buchholz, T., Kutrib, M.: On time computability of functions in one-way cellular
automata. Acta Inform. 35, 329–352 (1998)

4. Choffrut, C., Čulik II, K.: On real-time cellular automata and trellis automata.
Acta Inform. 21, 393–407 (1984)

5. Chomsky, N.: Context-free grammars and pushdown storage. Tech report, QPR
65, Massachusetts Institute of Technology (1962)

6. Durǐs, P., Hromkovič, J., Rolim, J.D.P., Schnitger, G.: Las Vegas versus determin-
ism for one-way communication complexity, finite automata, and polynomial-time
computations. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200,
pp. 117–128. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023453

7. Dyer, C.R.: One-way bounded cellular automata. Inf. Control 44, 261–281 (1980)
8. Fernau, H., Kutrib, M., Wendlandt, M.: Self-verifying pushdown automata. In:

Freund, R., Mráz, F., Pr̊uša, D. (eds.) Non-Classical Models of Automata and
Applications (NCMA 2017), vol. 329, pp. 103–117. Austrian Computer Society,
Vienna (2017). books@ocg.at

9. Fischer, P.C., Kintala, C.M.R.: Real-time computations with restricted nondeter-
minism. Math. Syst. Theory 12, 219–231 (1979)

10. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM
14, 389–418 (1967)

11. Hromkovic, J., Schnitger, G.: On the power of Las Vegas for one-way communica-
tion complexity, OBDDs, and finite automata. Inf. Comput. 169, 284–296 (2001)

12. Hromkovic, J., Schnitger, G.: Nondeterministic communication with a limited num-
ber of advice bits. SIAM J. Comput. 33, 43–68 (2003)

13. Ibarra, O.H., Kim, S.M., Moran, S.: Sequential machine characterizations of trellis
and cellular automata and applications. SIAM J. Comput. 14, 426–447 (1985)

14. Jirásková, G., Pighizzini, G.: Optimal simulation of self-verifying automata by
deterministic automata. Inf. Comput. 209, 528–535 (2011)

15. Kutrib, M.: Cellular automata and language theory. In: Meyers, R. (ed.) Encyclo-
pedia of Complexity and System Science, pp. 800–823. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-0-387-30440-3

16. Kutrib, M.: Non-deterministic cellular automata and languages. Int. J. Gen. Syst.
41, 555–568 (2012)

17. Kutrib, M., Worsch, Th.: Self-verifying cellular automata. Technical report,
1803, Universität Gießen (2018). http://www.informatik.uni-giessen.de/reports/
Report1803.pdf

18. Malcher, A.: Descriptional complexity of cellular automata and decidability ques-
tions. J. Autom. Lang. Comb. 7, 549–560 (2002)

19. Smith III, A.R.: Real-time language recognition by one-dimensional cellular
automata. J. Comput. Syst. Sci. 6, 233–253 (1972)

20. Umeo, H., Morita, K., Sugata, K.: Deterministic one-way simulation of two-way
real-time cellular automata and its related problems. Inf. Process. Lett. 14, 158–
161 (1982)

https://doi.org/10.1007/BFb0023453
https://doi.org/10.1007/978-0-387-30440-3
http://www.informatik.uni-giessen.de/reports/Report1803.pdf
http://www.informatik.uni-giessen.de/reports/Report1803.pdf

	Self-verifying Cellular Automata
	1 Introduction
	2 Preliminaries
	3 Characterization and Speed-Up
	4 Self-verifying One-Way Cellular Automata
	4.1 Computational Capacity
	4.2 Closure Properties
	4.3 Decidability Questions

	References

