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Abstract. Modern biological paradigms of invasion in tumour cells can-
not be fully explained or described by existing modelling techniques.
We present a novel cellular automata model which represents both the
nucleus of a cell and its membrane, allowing one to capture the interac-
tion of a cell with its environment, as well as selected theorems for the
efficient computation of solutions to such systems. We use this technique
to simulate cell-cell binding, single-cellular micro track invasion, and co-
injection of MITFHIGH(proliferative) and MITFLOW(invasive) tumour
cells into heterogeneous environments. Results shed new light on emer-
gent phenomena of cellular elongation, filopodial protrusion, and the
co-invasion of the local stroma by classically non-invasive cells. We also
provide a new modelling framework in which the cellular automaton
exhibits non-local interaction within its context.

Keywords: Cellular automata · Mathematical modelling
Cellular biology · Coöperation · Numerical analysis

1 Introduction

Biological paradigms involving mixtures of heterogeneous subpopulations of cells
have become the subject of increased scrutiny in recent years. Beginning from
problems of cell sorting [5], cellular interactions now have a field of automata
devoted to their exploration. One problem of significance is the change in
behaviour of ordinarily non-invading proliferative cells (MITFHIGH) in the pres-
ence of highly invasive, non-proliferative cells (MITFLOW). Injection of these
cellular populations, in vivo, in isolation yielded ordinary pathological behaviour
whereas co-injection of disparate species led to the co-invasion of the local stroma
by MITFHIGHcells, on a substrate altered by leading MITFLOWcells [4].

This also gives rise to more general problems in invasion. One methodology
of cellular invasion involves the utilisation of ‘microtracks’, or spaces of reduced
ECM concentration, by cells in order to gain a competitive advantage, travelling
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at increased speeds by direct comparison with those cells forced to travel through
the dense ECM [2]. This increase in migration through native microtracks was
shown, using time-lapse photography, to occur within the 3D collagen matrix.
These microtracks have further been shown to have varying mean width and
variance [8] which may be as a result of underlying matrix structuring and vary-
ing collagen densities across a given region. Importantly, the cells were shown to
exhibit patterns of actin recruitment that were not discernible from those found
in migratory cells out with microtracks [8].

The discrete Cellular Potts models which have been proposed model the cell
moving through a grid-like structure, however fine, guided by a mechanistic,
stochastic function [5]. Indeed, these have great power in reproducing quali-
tatively realistic results and can model even relatively complex systems [10].
These models exist in a discrete space where the implementation of behaviours
is dependent on a delta probability function rather than the continuous machin-
ery of the cell. This means that they lack the ability to, for example, explain or
describe microtrack motility or to fully explain any emergent phenomena due to
the model’s reliance on stochastic dynamics.

One particular model which does not study the cell mechanics themselves,
demonstrates that one can take a more physical interpretation of the tumour
and its environment [11]. This model, again, chooses to describe a cellular pop-
ulation as a non-autonomous series of ball-like structures in arbitrary space
acting under the standard forces (drag, traction, et cetera). The complexity
of membrane-dependent biological interactions requires the creation of a novel
cellular automata model who describes not only the position of the cells but
endows them with some physical form which mediates its interaction with its
environment.

In Sect. 2 of this paper, we begin to build the novel framework necessary to
accurately capture these phenomena and the field equations which biologically
contextualise the automata. We then provide, in Sect. 3, numerical analysis of
approximations, necessary for the fast computation of results, to the modelling
scheme in order to bound the errors for these approximations. Finally, in Sect. 4,
we present the result of simulations for a small system of cellular automata in
order to demonstrate their ability to elucidate biological cell invasion in hetero-
geneous colonies and environments.

2 A Novel Modelling Framework

Firstly, we choose to express the environmental system in standard Cartesian
coordinates and the radial equations for the distance of the membrane from
the nucleus in polar coordinates. We then have that the standard coordinate
conversion from polar to Cartesian is given by x = r cos θ, y = r sin θ and we
write x := [x, y]T . Therefore, let I = [0, T ) be the time domain on which the
system exists and D ⊆ R

2 be the spatial domain.
Secondly, let r(t, θ), be a 2π periodic function such that r(t, θ + 2nπ) =

r(t, θ), ∀n ∈ N, and let it further define the perimeter of a cell with the brief
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notation r := r(θ) := r(t, θ). Let Θ = [0, 2π) be the domain for the nucleus-
centred radius and let R ⊆ R be the domain for the radius of the cell such that
r : I × Θ → R. For cell i, we denote the radius ri. Finally, let v : I × D → R

define the extracellular matrix (ECM) density and let m : I × D → R
q define

the q molecular species densities on the domain.

2.1 On Cell-Cell Bonding and Associated Field Equations

We begin by reposing every cell-cell interaction problem as a generic problem
between two cells situated a given distance d from one another and with both of
their respective centres at y = 0. First, let the vector p(ci, cj) be the vector in
polar coordinates such that

||p|| :=
√

(c̄i,x − c̄j,x)2 + (c̄i,x + c̄j,x)2 , pθ := tan−1

(
c̄j,y − c̄i,y

c̄j,x − c̄i,x

)
(1)

where c̄i denotes the centre of mass for the cell ci, then call this the pointing vec-
tor and perform the transforms (rj , θj) →

(
rj , θj − pθ +

π

2

)
and (c̄j,x, c̄j,y) →

(0, ||p||), in order to move cell j onto the x-axis and to rotate the cell such that
the same points are aligned as was the case prior to the coordinate transform.

Then, from simple algebraic reasoning, one has that the distance between
any two points on the membranes of these cells, with respect to θ, is given by

d(θ) =
√

(ci,r cos(θ) − cj,r cos(θ))2 + (ci,r sin(θ) − cj,r sin(−θ) + ||p||)2 (2)

and this means that the contribution to a given radius can be calculated by
the force at that point, multiplied by the appropriate elongation factor which is
given by the trigonometric relation d̄ = d cos

(
θ − π

2

)
, where

π

2
is a factor which

accounts for the reorientation of the cells.
Let us now look at the attractive intercellular force, FA(d). There is evidence

to suggest that, below some limiting distance, the negative charges on repeat 3
of α-actinin and positive charges on intercellular adhesion molecule (ICAM)-1
dominate the interaction. Above this distance, the contribution of the positive-
positive interaction is increased between the acidic centre of the α-actinin domain
and Lys acids on ICAM1 [3,9]. We model this by introducing some constant
imaginary distance, i, between the two membranes.

The repulsive Coulomb force, FR(d), emanates from the addition of pressure
to the membrane reducing the spacing between membranous lipids, producing
a restorative force. Therefore, we calculate the distance at which the centre
of charge of the membrane sits, with respect to the cell radius. For a circle of

uniform radius r(θ) = r, the radial centre of charge is approximated by r̄ ≈ 4
3π

r,
which shall serve as a positioning of the internal charge.

We can then write the overall field equation as

F (d) =
1

(d − dA)2 + 1
− 1

(
d + 4

3π

)2 + 1
Qs

(3)
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where Qs gives the ratio of charge separation for the protein complex, with
respect to the separation of the charges in the lipid bilayer of the melanoma cells
themselves. Biological precedents for this force distribution exists, with physical
measurement being taken between staphylococcus aureus cells and biofilms [6].

2.2 On Cell-ECM Bonding and Associated Field Equations

The dissociation rate of one protein from another is widely considered [1,7] to
have the form k = k0 exp (fx/kbT ) , where k0 is the zero rate of dissociation, f is
the force applied in separating the proteins, x is the distance of separation, and
kBT gives the thermal energy of the system. Now, consider an arbitrary force
that brings the proteins of the cell and the ECM together, then their normalised
association rate, k̄, would be given by k̄ = [1 − (k0/K) exp (−fx/kbT )] where
the maximal rate of dissociation is given by K.

The force on the cell from the ECM is proportional to the density of the
ECM itself and therefore we write |F+

c | = k̄v. We also have that the direction
of association is from lower to higher densities of protein, which follows directly
from their proportionality. As for the force equation for pressure, we assume
the field generated scales with the square of the ECM density, and acts in the
opposite direction. Therefore, we can write the entirety of the force equation as

|F | =
[
1 − k0

K
exp

(
− fx

kbT

)]
v − kP v2 , F̂ = tan−1

(
∂v

∂y

∂x

∂v

)
. (4)

2.3 Molecular Species on the Boundary — Chemotaxis

The chemotaxis of a cell is dependent on the molecular species concentration
m(t, x) on the immediate boundary of the cell, since it is not endocytosis but
simply sensory response that is necessary for this stimulus.

Using the standard definition of a line integral, we can write the line integral
of the molecular species concentration mi(x, y) over the boundary of the cell and
with surface element σ as

I =
∫

∂Ωi

mi(x̄) dσ , dσ =
√
r(θ)2 sin2 θ + r(θ)2 cos2 θ dθ = r(θ) dθ . (5)

It is then trivial to rewrite the line integral with respect to the individual cell
and a specific molecular species, mj(t, x), to obtain the overall molecular species
concentration on the boundary, and the bias of such a concentration.

Taking the biased molecular concentrations and extract from them the opti-
mal direction, in terms of chemical attractants, the mean biased chemotaxis is
given by

◦
χ =

1
q∑

j=1

χmj

⎛

⎜⎜⎜
⎜⎜
⎝

χm1

...
χmq

⎞

⎟⎟⎟
⎟⎟
⎠

·

⎛

⎜⎜⎜
⎜⎜
⎝

tan−1

(∫
Θ

m1(r(θ) cos θ, r(θ) sin θ) cos θ dθ
∫

Θ
m1(r(θ) cos θ, r(θ) sin θ) sin θ dθ

)

...

tan−1

(∫
Θ

mq(r(θ) cos θ, r(θ) sin θ) cos θ dθ
∫

Θ
mq(r(θ) cos θ, r(θ) sin θ) sin θ dθ

)

⎞

⎟⎟⎟
⎟⎟
⎠

(6)
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where the chemotactic constant for any given molecular species mj(t, x) is given
by χmj

.

2.4 Temporal Changes in Intracellular Properties

We must, further, have a means by which the cell’s interior can reposition itself
with respect to the environment. A sensible candidate for this movement can
simply be taken as a result of the net forces which move the membrane of the
cell having direct and proportionate effect on the position of the nucleus such
that we can write

∂
∂tx1 =

∫

[0,2π)

∂
∂tr(θ̃) · cos θ̃ dθ̃ , ∂

∂tx2 =
∫

[0,2π)

∂
∂tr(θ̃) · sin θ̃ dθ̃ , (7)

reflecting a mechanical movement of the nucleus with the membrane.
Consider the overall change in the polarisation, φ, of the cell and that the cell

is capable of rearranging its internal infrastructure in response to the attraction
of chemicals and in order to maximise its potential for utilising the byproducts
of this infrastructure. Then we assume that the cell will attempt to reorient itself
to the optimal direction

φ̄ =
1

ωF + ωχ

(
ωF tan−1

(
∂x2

∂t

∂t

∂x1

)
+ ωχ

◦
χ

)
, (8)

given the weightings ωF , ωχ for the force and chemotactically mediated polarity
preferences, respectively.

Then consider that the cell will have more success in achieving small angu-
lar reorientation than in large angular reorientations. Therefore, we make the
assumption that the polarisation may only change through small changes around
the perimeter of the cell and that ln (∂φ/∂t) ∝ − (

φ̄ − φ
)2. We write that the

change in polarisation can be given by

∂φ

∂t
= exp

⎡

⎣−
((

∂x1

∂t

)2

+
(

∂x2

∂t

)2
)− 1

2

· (
φ̄ − φ

)2
⎤

⎦. (9)

3 Numerical Approach

3.1 Movement of the Nucleus: A Simple Translation Method

The current methodology for reassignment, or mathematical translation, of the
position of a radial function r(θ) to a differing position is given as follows

r1 =
√

r2 + r20 + 2rr0 cos(θ0 − θ) , θ1 = cos−1

(
r cos θ + r0 cos θ0

r1

)
, (10)

where (r, θ) gives the original solution in polar coordinates; (r0, θ0) gives the
magnitude and direction of the translation; and (r1, θ1) gives the translated set
of solutions. Then observe the following simplification:
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Theorem 1. Let the space N ⊆ R
2 define the Cartesian plane on which the

nucleus of a given 2-dimensional cell is defined, and the space Q ⊆ R × [0, 2π)
define the polar domain centred at (x, y) ∈ N on which the membrane of the cell
is defined. Then we can define a cell as some [(x0, y0), (r0(θ0), θ0)] ∈ N × Q,
where r(θ) : [0, 2π) → R is the radial membrane distance as measured from the
centre of the cell. Define further a formula for translation of the nucleus of this
cell, given by (x, y) → (x + ξ, y), where the membrane of the cell retains its
position in the cartesian space and dependence on θ0, given by

r1(θ0) = r0(θ0) − ξ cos(θ0) .

Then the error for this translation is given by

Er ≤
⎛

⎝1 − sin

⎛

⎝1
2

cos−1

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠

⎞

⎠

⎞

⎠

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠ ξ,

where r(θ̂) = max
θ∈[0,2π)

r(θ).

Proof. Recall the coordinate relations given by x0 = r(θ) cos θ, y0 = r(θ) sin θ
and the counter-relation r(θ)2 = x2 + y2. Consider, further, the translation in
only the cartesian x-direction, of magnitude ξ, corresponding to a linear progres-
sion in an aligned set of polar axes given by x1 = r(θ) cos θ − ξ, y1 = r(θ) sin θ.

Using the translation approximation r1(θ0) = r0(θ0)− ξ cos(θ0) and allowing
that the maximal error for this approximation is given at θ0 = θ̂, defined by
r(θ̂) := max

θ∈[0,2π)
r(θ), the maximal error is given by

Ē = (r(θ̂) + ξ cos θ̂) sin θ̂
︸ ︷︷ ︸

approximation

− (r(θ̂)2 − (r(θ̂) sin θ̂ − ξ)2)
1
2

︸ ︷︷ ︸
absolute calculation

.
(11)

We can then find this maximum at θ̂ by considering the derivative of the term
for the translation approximation, which simplifies to

Ẽ′ = r(θ̂) cos θ̂ + ξ cos 2θ̂ = 0 (12)

and by further using the trigonometric relation cos 2θ = 2 cos2 θ−1 we can write

r(θ̂) cos θ̂ + 2ξ cos2 θ̂ − ξ = 0 (13)

who is a quadratic in cos θ̂, such that the solution for θ̂ is given by

cos θ̂ =
−r(θ̂) ±

√
r(θ̂)2 + 8ξ2

4ξ
=⇒ θ̂ = cos−1

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠ .

(14)
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Substituting this into the original equation, and recognising that the negative
term in the error is minimised at x = ξ, one has that the maximal error is written

Ē = r

⎛

⎝cos−1

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠

⎞

⎠+

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠ ξ − r(θ̂) .

(15)

Then the precise value of y(ˆ̃θ) is given at y(ˆ̃θ) = r(
1
2
θ̂) sin(

1
2
θ̂), such that the

maximal error can be given precisely by

Ē =

⎛

⎝1 − sin

⎛

⎝1
2

cos−1

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠

⎞

⎠

⎞

⎠

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠ ξ.

(16)

In this case, using Theorem 1, the error for values of ξ ≤ 0.1 is such that
Er < 1

2ξ2 and ξ is proportional with the time step such that ξ ∝ δτ . Thus, for
sufficiently small time steps one is able to discern that the error is sufficiently
small, and non-cumulative, and that this may be acceptable within the bounds
of expected numerical error.

3.2 Numerical Approximations of Line Integrals

We begin by recalling that the analytic, single-variable line integral for a radial
function is given by I =

∫
S r(θ) dσ, where S is used to denote the surface of the

cell and σ is some surface element on S. Discretisation of this system leads us to
derive a metric on the basis of maximal efficacy on the discrete radial interval,
(θ̃, θ̃ + δθ). Begin by considering the true arc length in this portion of the radius
of a given cell and notice that this can be approximated by sketching a line
between the two extreme radii, r(θ̃), r(θ̃ + δθ).

Theorem 2. Let Ω be the internal cell space of a cell whose radius is is given
by r : I × Θ → R. Further, let the perimeter length of the cell be given by
Ic =

∫

∂Ω

r(t, θ) dσ∂Ω , where σ∂Ω is a surface element on ∂Ω, and let Ĩc be given

by the numerical approximation

Ĩ =
∑

θ̃∈{0,δθ,...,2π−δθ}
δθ ·

((
min(r(θ̃), r(θ̃ + δθ))δθ

)2

+
∣
∣∣∣r(θ̃) − r(θ̃ + δθ)

∣
∣∣∣

2
) 1

2

.

Then, for a discrete step length, h, the error, EL, for this approximation is of
order O(h2) and is given explicitly by

EL ≤
∫

∂Ω

[
h2

2
∂2

∂θ2
r(θi + η) + O(h3)

]
dσ∂Ω
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Proof. Begin by noticing that our approximation is given precisely by the length
of the line connecting the points r(θi) and r(θi + h) such that

r̃(η) =
r(θi + h) − r(θi)

h
η + r(θi) (17)

for η ∈ (0, h) and centred around the point θi and where we are interested in
values in the interval (θi, θi + h).

Further, write the analytic function as the Taylor series

Ic(θi + η) ≈ r (θi + η) + η
∂

∂θ
r(θi + η) +

η2

2
∂2

∂θ2
r(θi + η) + O(η3) (18)

then from the intermediate value theorem, we can choose η such that it satisfies

∂

∂θ
r(θi + η) =

r(θi + h) − r(θi)
h

. (19)

Next, we take the difference between the two line integrals to find the analytic
error in our approximation

EL =
∫

∂Ω

[
r (θi + η) + η

∂

∂θ
r(θi + η) +

η2

2
∂2

∂θ2
r(θi + η) + O(h3)

]
dσ∂Ω

− ∫

∂Ω

[
r(θi + h) − r(θi)

h
η + r(θi)

]
dσ∂Ω

(20)

and since the linear terms for the Taylor expansion and the approximation (19)
describes straight lines between two equidistant points, their magnitudes are
equal. Therefore, considering that we have h ≥ η, we obtain the maximal error
bound

EL ≤ ∫

∂Ω

[
h2

2
∂2

∂θ2
r(θi + η) + O(h3)

]
dσ∂Ω . (21)

4 Results and Conclusions

In order to attempt the sorting experiment, we began with high affinity cells as
the outer cells of a cellular Bravais lattice and low affinity cells in the centre,
repeating the results of Graner et al. [5] (data not shown), which provided some
base validation of the model. Counterintuitively, cells who have high cell-cell
binding coefficients quickly separate into a web like structure whereas low bind-
ing constant scenarios tend to instead form a 2-dimensional hexagonal lattice.

In our second experiment we wanted a testable scenario to measure the migra-
tion of simulated cancerous cells through the ECM. For this we chose the sce-
nario of microtracks since this presents 2 unique and measurably distinguishable
scenarios in which to place our cells. We endow each with a polarisation of
θp = 0 and with the initial conditions r0(θ) = const. such that they are repre-
sented as circular cells in the 2D domain. Working with a normalised 2D domain
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t = 2 t = 4 t = 6 t = 8 t = 10

Fig. 1. Snapshots of simulated cells migrating through the ECM for the initial condition
for the nucleus of the cell given within the ECM itself (top) or within an artificial
microtrack (bottom) at times t′ ∈ {2, 4, 6, 8, 10}.

D = [0, 1]2, parameter values were estimated and rescaled from experimental
data [7] or approximated, in the case of cell-cell adhesion.

The first thing to notice is that although the membranes of cells within the
microtracks start partially submerged in the ECM, they retract their membranes
and conform entirely to the width of the microtrack (Fig. 1 bottom), as in the bio-
logical case [2]. Moreover, elongation in the microtrack cell is marked compared
with those who remain within the ECM (Fig. 1).

Travel through the ECM also appears to be more conducive to the extension
of lamellipodia (Fig. 1 top), whereas travel through the microtrack appears to be
more conducive to the extension of longer, thinner, and more directive filopodia
(Fig. 1 bottom). Not only this but the heterogeneity of the environment, alone,
is sufficient to give rise to differing rates of travel within or without microtracks.
Moreover, for increasing ECM density, one observes a decrease in velocity for cells
within the ECM but no such changes in velocity for those within the microtrack
(Fig. 2), which closely aligns with the results of in vitro experimentation [2].

Beyond the maximum time displayed (t > 10) these cells proceed to the
right hand boundary and return to a more circular shape and lie dormant on
this boundary ad infinitum. This is an artefact of the experiment, in that cells
in this experiment have a fixed polarisation and are incapable of travelling in
their assigned directions. In the following experiment we lifted this constraint.

Fig. 2. Results of in silico microtrack experiments from the numerical simulations
(right) and corresponding to those exemplar experiments in Fig. 1.
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Our final experiment involves the interaction between two different metabolic
phenotypes of cell: Highly proliferative, non-invasive (MITFHIGH) cells and
highly invasive, non-proliferative (MITFLOW) cells. We begin with a heteroge-
neous distribution of v1 and v2(t, x) = 0. MITFHIGHcells are attracted to v2 but
not v1 and MITFLOWcells are attracted to v1 but not v2 and convert v1 → v2
[4]. Furthermore, to begin the experiment, we generated a random polarisation
for each cell.

Injection of MITFHIGHcells, alone (and in the absence of mitosis), reveals an
extremely non-invasive behaviour with dominating cell-cell adhesive dynamics
(Fig. 3 top). Injection of MITFLOWcells, alone, one observes a highly invasive
dynamic (Fig. 3 middle). Co-injection of the two disparate populations displays
a mixture of behaviours between cell-cell binding and cell-ECM motility and one
observes a co-invasion of MITFHIGHcells in the wake of invading MITFLOWcells
(Fig. 3 bottom). Again, one can identify the production of filopodia by cells who
have elongated upon the heterogeneous substrate for invasion (Fig. 3).

The qualitative results of this experiment were not significantly effected by
the random initial polarisations of the cells. In the short term (t ≤ 200) cellular
automata mimic the behaviour of in vivo cells [4], with MITFHIGHcells clustering
and MITFLOWcells dispersing, in isolation, and some intermediate behaviour,
otherwise. These times were chosen to be indicative of the overall behaviour as,
in the long term (t > 200), those cells who have not yet dispersed at t = 200
will continue to cluster, whilst those who have dispersed will find some steady
state position at the boundary of the domain t → ∞. Again, these behaviours
show close conformity with in vivo experiments [4], assuming that those on the
boundary of the domain would otherwise continue to invade.

t = 0 t = 50 t = 100 t = 150 t = 200

Fig. 3. Experimental in silico injection of red MITFHIGHcells (top); green
MITFLOWcells (middle); or both cell types (bottom) onto a heterogeneous density
function for v1 coloured blue through yellow, at time points t ∈ {0, 50, 100, 150, 200}.
(Color figure online)
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We have derived a modelling framework to solve problems which previous
frameworks [5,10] were unable to approach. Errors for the numerical imple-
mentation of estimates for these models are small and, as such, allow one to
be confident in their predictive power. Moreover, the introduction of low-error
approximations to this framework allow for a fast model execution time. This
novel modelling framework has also shown practical promise; recreating the cell
sorting experiment before predicting the outcomes of biological microtrack [2]
and co-invasion [4] experiments. Moreover, this model may explain emergent phe-
nomena, such as cellular elongation and filo- or lamellipodia extension, which
could be explained through simple physical interactions between the cellular
membrane and the homo- or heterogeneous ECM. Future work should aim to
extend this model through the addition of microscale boundary interactions and
look to explore more complex biological phenomena.

This cellular automata model could also be useful in other environments
where one requires a nuanced interaction between automata and their contexts.
This can be achieved either through the method of implementation employed
above, for entirely nonlocal interactions, or through treating the cellular mem-
brane as a domain boundary and utilising a kernel to vary the impact across
the domain, allowing diverse interactions between automata and their contexts.
Obvious applications of this framework arise in cellular biology but one can also
envisage application in game theory and financial markets, where individuals
(automata) will or must take into account their environment (the context) to
varying degrees.
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