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Abstract. Many physical problems cannot be easily formulated as
quantum circuits, which are a successful universal model for quantum
computation. Because of this, new models that are closer to the struc-
ture of physical systems must be developed. Discrete and continuous
quantum walks have been proven to be a universal quantum compu-
tation model, but building quantum computing systems based on their
structure is not straightforward. Although classical cellular automata are
models of universal classical computation, this is not the case for their
quantum counterpart, which is limited by the no-coning theorem and the
no-go lemma. Here we combine quantum walks, which reproduce unitary
evolution in space with quantum cellular automata, which reproduce uni-
tary evolution in time, to form a new model of quantum computation.
Our results show that such a model is possible.
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1 Introduction

Quantum circuits is the most known and most used quantum computation model
[1]. In quantum circuits the quantum gates, which are unitary Hilbert space
operators, act on the quantum bits (qubits) and evolve their state from the initial
state, which is the input to the quantum computation, towards the final state,
which is measured and produces the output of the quantum computation [2,3].
Most known quantum algorithms, such as Deutch [4], Grover [5] and Shor [6]
quantum algorithms can be formulated as quantum circuits. Although quantum
circuits are a powerful model, many physical problems and processes cannot
be easily described as quantum circuits. This fact has initiated the quest for
alternative models for quantum computation.

Quantum walks, first introduced in 1993, are quantum versions of classi-
cal random walks [7]. Since then, continuous and discrete quantum walks have
been extensively studied and it has been proven that quantum walks are a uni-
versal model for quantum computation. Continuous quantum walks on graphs
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can reproduce quantum computations. In this model, quantum gates are imple-
mented by scattering processes [8,9]. On the other hand, discrete quantum walks
have been proven to implement a universal quantum gate set and thus are able to
execute any quantum computation [10]. Both continuous and discrete quantum
walks on graphs are universal models for quantum computation, but building
a physical quantum computing system based on the mathematical graph struc-
tures is not straightforward. In quantum walk models, graphs and wires do not
represent qubits but basis states and cannot be mapped on a physical quantum
computer architecture.

Feynman in 1982 introduced the concept of quantum cellular automata
(QCAs) by examining the possibility of extending classical cellular automata
(CAs) as models that can simulate quantum systems [11]. QCA evolution must
be unitary, as is the evolution of all quantum systems. This fact causes several
limitations on the use of QCAs as universal quantum computation models. The
two most important limitations are imposed by the non-cloning theorem and
the no-go lemma. The non-cloning theorem, that imposes the first limitation,
forbids the cloning (copying) of an unknown quantum state [1]. Because of this,
copies of the neighboring cell states are not available to the central cell, as is the
case in classical CAs. Therefore, the evolution of the QCA cell states cannot be
directly determined by the states of their neighbors. Several models have been
proposed to circumvent this obstacle. Among them, a QCA with two qubits per
cell has been introduced [12], and a relaxed unitary evolution has been proposed,
in which probability is conserved and the evolution is linear, but the evolution
is approximately unitary [13]. The second limitation is imposed by the no-go
lemma, which states that except for the trivial case, unitary evolution of one-
dimensional QCAs is impossible, i.e. in one dimension there exist no non-trivial
homogeneous, local, linear QCA [14].

In QCAs one or more qubits are assigned to the QCA cells. The qubit states
are quantum states and are described by wave functions, which are solutions to
the Schrödinger equation. Quantum states should evolve both in space and time,
whereas the states of qubits in the sites of the QCA have a trivial evolution. This
is because their evolution in space is limited by the no-cloning theorem, which
forbids the transfer of states between neighboring QCA cells. On the other hand,
quantum walkers are quantum particles, the state of which evolves naturally in
space. It is therefore possible that a model comprising quantum walks, which will
reproduce quantum evolution in space, and QCAs, that will reproduce quantum
evolution in time, can be developed so that it can serve as a universal model for
quantum computation. Here we define the quantum walk on QCA lattices. The
quantum particle (i.e. the quantum walker) is transferred between neighboring
QCA sites and changes the quantum phase of the qubits according to a propaga-
tor, reproducing unitary space evolution. The QCA evolves in time reproducing
unitary time evolution. Our results show that the development of a universal
model of quantum computation based on quantum walks on the QCA lattice is
possible.
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2 Unitary Evolution of Quantum Walks on QCA Lattices

The most important characteristic of a quantum computing system is the repro-
duction of the solutions of the Schrödinger equation. The simplest solution is
the plane wave:

|Ψ (x, t)〉 = Aei(kx−ωt) = Aei(px−Et)/� (1)

Where Ψ is the wave function in Dirac notation, k is the wave vector and ω
the angular frequency. E = �ω is the energy and p = �k is the momentum. The
one-dimensional, time dependent Schrödinger equation:
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has the following general solution:

|Ψ (xb, tb)〉 = U (x, t) |Ψ (xa, ta)〉 (4)

where U is a unitary operator:

U (x, t) = e
−iH t

� (5)

Both the simplest solution of (1) and the general solution of (4) describe the
evolution of the wave function from an initial space-time point (xa, ta) to a final
space-time point (xb, tb), as shown in Fig. 1. In the quantum circuit model, space
is defined by an one-dimensional array of qubits and the computation proceeds
in time steps, in each of which a number of quantum gates act on the qubits. In
the proposed model we follow the same discretization scheme as in the quantum
circuit model, i.e. qubits form the QCA lattice and the computation evolves in
discrete time steps.

In the proposed model we consider one-dimensional QCAs in which the QCA
cells form a one-dimensional lattice. Three qubits are allocated at each QCA cell,
the a-qubit, which is the QCA qubit and a two-qubit quantum register, w, which
comprises the two qubits necessary for the quantum walk. The state of the ith

QCA cell at computation step t is written as: |at
i wt

i〉. There are eight basis states
for each QCA cell. The global state of the QCA at the computation step t, |Qt〉,
is the tensor product of the states of its cells and is written as:

∣∣Qt
〉

=
∣∣· at

i+1 wt
i+1 at

i wt
i at

i−1 wt
i−1 · · ·〉 (6)
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Fig. 1. Wave function evolution in space-time, from an initial space-time point (xa, ta)
to a final space-time point (xb, tb). In the proposed model quantum walks evolve the
wave function in space and QCAs in time.

The evolution of the global QCA state, from computation step t to compu-
tation step t + 1 is given by:

∣∣Qt+1
〉

= U(x, t)
∣∣Qt

〉
= A (t) W (x)

∣∣Qt
〉

(7)

In our model the unitary operator U(x, t) is decomposed in a product of
two operators, A(t), which describes the time evolution of the QCA and W (x),
which describes the space evolution of the QCA qubit states by the action of
the quantum walk. Since only U has to be unitary, the unitarity criterion on
both operators A and W could be relaxed, as long as their product is unitary.
Nevertheless, we choose not to relax this criterion and in our model we demand
both A and W to be unitary. We describe below the action of these two operators.

In the discrete quantum walk, a walker (which can be a particle or a quantum
state) moves on the QCA lattice. The sites of this lattice are numbered by:
i = 0,±1,±2, · · · ±n. The quantum walker tosses a quantum coin and moves to
the right (towards +n) if the coin state is |1〉, and to the left (towards −n) if
the coin state is |0〉. The state of the quantum walker found at location i is:
|wi〉 = |i, ci〉, where i indicates the location and ci the coin state. The quantum
walk operator W is given by: W = S · (I ⊗ C), where I is the unit operator, and
C is the coin operator, which can be any one-qubit unitary quantum operator,
such as the Pauli, Hadamard or Phase-shift operators. The shift operator S that
moves the quantum walker is given by:

S =
n∑

i=−n

|1〉 〈1| ⊗ |i + 1〉 〈i| + |0〉 〈0| ⊗ |i − 1〉 〈i| (8)
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Fig. 2. The QCA structure and the W operator acting on qubits along with the A
operator described by Eq. 10. Shaded rectangles represent QCA cells and the qubits
connected with the arrowed (red) lines, are the qubits affected by the quantum walk.
(Color figure online)

Figure 2 shows the QCA structure and the W operator acting on qubits. The
global state of the QCA evolves according to evolution rules expressed by the
operator A.

∣∣Qt+1
〉

= A
∣∣Qt

〉
(9)

This operator can be any two-qubit unitary quantum operator, for example it
can comprise Controlled-NOT (CNOT) gates:

A = · · · ⊗ CN ⊗ CN ⊗ CN ⊗ · · · (10)

Figure 2 shows the A operator in the case of Eq. 10. The phase of the QCA
qubit, |ai〉, is controlled by the location qubit of the quantum walk, |i〉. The
qubits connected by the arrowed (red) line, i.e. |ci〉 and |i〉 are the qubits affected
by the quantum walk, which transfers information about the states of neighbor-
ing QCA qubits. The QCA evolves in time by interaction between its qubit
states, which in the case of Fig. 2 is a concatenation of CNOT quantum gates.
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Fig. 3. Quantum walk on a QCA lattice, with potential increasing towards the right.
The potential is shown by the red line. (Color figure online)

3 Simulation of Quantum Walks on QCA Lattices

We aim to develop a new quantum computation model that is closer to the
structure of physical systems. We use our model to simulate the most basic
quantum mechanical process: the motion of a particle (i.e. the quantum walker)
in spaces where various potentials exist. Following Eq. 2, where the potential
enters in the exponent, we formulate the problem by entering the values of the
space potentials as phases of the QCA qubits and evolve the quantum walk in
these spaces. It is well known that if the initial value of the quantum walker coin
qubit is in state |0〉, the quantum walk is directed towards the left direction from
the starting point and when the coin is in state |1〉 the quantum walk is directed
towards the right. We start the evolution of the quantum walk with the initial
coin state in superposition of the basis states 1/

√
2 (|0〉 + |1〉) which results in

symmetric quantum walk evolution towards both directions.
Figure 3 shows the evolution of a quantum walk on a QCA lattice which

encodes a potential that increases towards the right. The potential is shown by
the red line. The quantum walk starts at location 0 with the initial coin state in
the superposition described above. The red line shows the potential and the blue
bars at lattice sites show the probability of the quantum walker to be found in
the corresponding lattice sites. Our computation results reproduce the motion
of the quantum walker towards the left, as expected.

We simulated a quantum walk on a QCA lattice encoding a potential that
is mirror symmetric to the previous one and increases towards the left, shown
by the red line. Again, the quantum walk starts at location 0 with the same
initial coin state superposition. Figure 4 shows the evolution of this quantum
walk, reproducing a mirror symmetric probability distribution, characteristic of
the motion of the quantum walker towards the right, as expected.

We also simulated a quantum walk on a QCA lattice encoding a potential
barrier shown in red in Fig. 5. The width of the potential barrier is small and
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Fig. 4. Quantum walk on a QCA lattice, with potential increasing towards the left.
The potential is shown by the red line. (Color figure online)

Fig. 5. Quantum walk on a QCA lattice, with a thin potential barrier. The barrier is
shown by the red line. (Color figure online)

the barrier is relatively transparent to the quantum particle, with a large trans-
mission coefficient. Our computation results, shown in Fig. 5, reproduced the
tunneling through a barrier, characteristic of quantum particles. The quantum
walk starts at lattice site 0. The probability distribution is near zero inside the
potential barrier and the non-zero to the left of the barrier.

Figure 6 shows the evolution of a quantum walk on a QCA lattice encoding
both a potential gradient and a potential barrier. The potential distribution is
shown by the red line. In this case the width of the potential barrier is large, and
its transmission coefficient is near zero. Although the potential gradient drives
the quantum walk towards the left, the particle is not transmitted through the
barrier and the probability distribution to the left of the barrier is almost zero,
as expected.
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Fig. 6. Quantum walk on a QCA lattice, with a large potential barrier and with poten-
tial increasing towards the right. Potential and barrier are shown by the red line. (Color
figure online)

4 Conclusions

We developed a new quantum computation model based on quantum walks on
quantum cellular automata lattices. This new model is closer to the structure
of many quantum mechanical systems and processes. We used this model to
simulate the most basic quantum mechanical processes, i.e. the motion of a
particle in a one-dimensional space in which potential distributions exist. Our
model reproduced qualitatively the expected motions in spaces with potential
gradients and potential barriers, which were encoded as phases of the quantum
cellular automaton qubits. Our results show that the development of an accurate
universal quantum computation model based on quantum walks on quantum
cellular automata lattices is possible.
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