
The Representation Role for Basic
Operations Embodied in Cellular
Automata: A Suitability Example

for Addition in Redundant Numeral
Systems vs Conventional Ones

Salvatore Di Gregorio1,2(B)

1 Department of Mathematics and Computer Science,
University of Calabria, 87036 Rende, CS, Italy

salvatore.digregorio@unical.it
2 ISAC - CNR, Lamezia Terme Zona Industriale, 88046 Lamezia Terme, CZ, Italy

Abstract. Cellular Automata (CA) are both a parallel computational
paradigm and an archetype for modelling complex systems, that evolve
on the basis of local interactions. CA can embody different numeral rep-
resentations and perform related basic arithmetical operations. However,
conventional numeral representations are thought as intrinsically sequen-
tial in such operations, which implies that CA parallelism is underex-
ploited when CA evolution mimics the sequentiality of calculation, while
some redundant numeral representations could exalt the CA parallelism
in a space/time trade-off, where the time complexity of some operations
is constant on input length. The problem then arises when the result of an
operation must be utilized in the conventional representation since, usu-
ally, the migration toward an advantageous redundant numeric represen-
tation is costless, but the inverse one implies necessarily a cost that can-
cels the benefits in terms of computation time. This paper explores the
properties of the conventional binary positional representation embod-
ied in a CA together with the addition operation and the corresponding
ones of a redundant binary positional representation, the rules and time
cost for the passage from conventional numeral system to redundant one
and vice versa. The results permit to individuate the CA computation
context, when redundancy could be exploited advantageously. It regards
cases where a longest sequence of additions (or operations based on addi-
tion, e.g., fast Fourier transforms) has to be performed in well-defined
short times as for the automatic control of mobile devices.

Keywords: Cellular Automata
Non-conventional positional numeral binary systems · Addition

1 Introduction

Cellular Automata (CA) were born with a paradox: von Neumann [1] embod-
ied in a cellular space of finite states automata a modified Turing Machine in
c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 307–318, 2018.
https://doi.org/10.1007/978-3-319-99813-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99813-8_28&domain=pdf


308 S. Di Gregorio

order to guarantee universal computation in the self-reproduction mechanisms.
In such a way, a purely parallel computing device supports a purely sequential
computation. CA are both a parallel computational paradigm and an archetype
for modelling ‘systems’, that are extended in space and evolve on the basis of
local interactions [2]. Using CA is suitable in such a type of context, even if a
substantially sequential computational behavior could be easily hidden in many
cases.

This question reveals distinctly itself for the case of the same numerical oper-
ations performed inside CA in numeral systems, that are related to the same set
of numbers, but differ in their representation. Here another factor, the represen-
tation, comes into play, but the question cannot simply be treated in terms of
time cost efficiency because in solving a particular problem, a type of represen-
tation could be mandatory for expressing solutions and/or the input data could
be available only in a specific representation. Therefore it is necessary to investi-
gate efficient translation methods in order to communicate between two or more
worlds with different representations, but with the same basic operations. If we
look at the single operation, e.g. the addition for the conventional vs redundant
numeral systems, it is important to know if there is advantage in passing from
a representation to another and returning to the previous one.

Nevertheless a criterion of computational cost effectiveness for a specific prob-
lem may be defined only if we consider the algorithmic features of the problem in
terms of sequence of basic operations in the context of possible diverse represen-
tations and the eventual computational costs for passages from a representation
to another one and vice versa. So the question does not regard the single opera-
tion but a specific problem, all having to be related for homogeneity to a single
computational paradigm, that are in our case CA, where sequentiality can coex-
ist with the structure parallelism.

In this paper, we consider the conventional binary representations vs a possi-
ble corresponding redundant binary representation for the addition operation on
the set of natural numbers N and their implementation inside CA, furthermore
opportune operations are evaluated in the same context for passing from a one
representation to the other and vice versa.

The CA approach to ‘fast’ addition of binary numbers of Sheth et al. [3] is
revisited as reference point for conventional representation of N. This operation
of binary addition was implemented on a Cellular Automata Machine (CAM-8
machine) [4]. A corresponding redundant representation, that is here presented
together with the related addition operation, was studied and developed for
basic arithmetic operations of integer numbers at the University of Calabria in
some ‘Laurea’ theses and reports, e.g. [6], a similar representation for the set of
integer numbers Z was adopted for addition implementation on the same CAM-8
by Clementi et al. in [5]. Mechanisms of translation between conventional and
redundant representation of N on CA is investigated. Hardware implementations
as in [7,8] are not here considered, but they can be deduced straightforwardly
in manifold ways, FPGA integrated circuits, e.g. [9], could be more significant
for using CA redundant arithmetic also in broader contexts. Anyway, the aim



The Representation Role for Basic Operations Embodied in CA 309

of this paper is a comparison between CA embodying two different numeral
representations and efficient passage mechanisms from one to other and vice
versa.

A CA performing the addition operations in the conventional binary represen-
tation for N (CBN) is presented in the next section, the third section introduces
a CA, that performs addition operations in a redundant binary representation
for N (RBN), RBN properties are defined, rules of passage between CBN CA
and RBN CA are established. Conclusions and comments end the paper.

2 CA for Addition in the Conventional Binary
Representation

Intuitively a homogeneous CA can be seen as a d -dimensional space, partitioned
in cells of uniform size, each one embedding an identical finite states automaton,
the elementary automaton (ea).

Input for each cell is given by the states of the neighboring cells, where
the neighborhood conditions are determined by a pattern invariant in time and
space.

At the time (step) t = 0, cells are in arbitrary states and the CA evolves
changing the state at discrete times simultaneously, according to the transition
function τ : Sr → S, where S is the finite set of the ea states and r is the number
of the neighboring cells.

The following definition (partly from Di Gregorio and Trautteur [10]) for CA
is adopted in this paper:

Definition 1. A Cellular Automaton A is a quadruple A = 〈Zd,X, S, τ〉 where:

– Z
d is the set of cells identified by points with integer co-ordinates in a

Euclidean d-dimensions space; such a formal definition may be extended to
different types of spaces (e.g., Riemannian spaces), different topologies (e.g.,
torus in 2-dimensions spaces), or different tessellations (e.g., hexagonal tes-
sellation for 2-dimensions;

– X = 〈ξ0, ξ1, . . . ξr−1〉 with #X = r is the neighborhood index, that is the
ordered finite set of d-dimensional vectors, that defines for a generic cell
i = 〈i1, i2, . . . , id〉 the set N(X, i) = 〈i + ξ0, i + ξ1, . . . , i + ξr−1〉 of the neigh-
boring cells (usually ξ0 is the null vector);

– S is the finite set of states of the elementary automaton. A specification of S
as Cartesian product of sets of sub-states: S = S1×S2× . . .×Ss is introduced.

– τ : Sr → S is the deterministic transition function of the elementary automa-
ton;

furthermore:

– C = {c | c : Zd → S} is the set of possible state assignment to the CA; it is
called the CA configuration set; c(i) is the state of the cell i;

– γ : C → C �→ [γ(c)](i) = τ(c(N(X, i))) for c ∈ C, is the global transition
function. A configuration c is stable if γ(c) = c.



310 S. Di Gregorio

The following two CA embody the addends as sequence of sub-states in the
configurations. So numbers may be so individuated and ‘writing’ and ‘reading’
for passage from one numeral representation to another one can be specified.

2.1 CA ADD Definition and Properties

A possible CA ADD for addition of two natural numbers m and n in the con-
ventional binary representation CBN is here defined as a 1-dimension CA with
ring topology of l cells with l > max(�log2 m�), (�log2 n�):
Definition 2. ADD = (Zl,X, S, τ) where:

– Zl = 〈l − 1, l − 2, · · · , 1, 0〉 is the finite cellular space of length l with ring
topology and reverse numeration of cells by formalization convenience;

– X = 〈0,−1〉 is the neighborhood: the cell itself and the ‘right’ one;
– S = S1 × S2, the set of states with S1 = S2 = 0, 1, the four states are

represented as {00, 0
1,

1
0,

1
1} where, for a configuration c, the former (upper) bit

in the cell i is the ith bit of the former addend m specified as mi and the
latter (lower) bit in the cell i is the ith bit of the latter addend n specified as
ni, both with positional weight 2i; m and n are respectively the upper and the
lower addends of c (see Fig. 1).

– τ : S2 → S is the transition function so defined from the following equations,
where two configurations c′ and c′′ are considered such that c′′ = γ(c′):
1. m

′′
i = m

′
i−1 ∧ n

′
i−1, 0 < i < l; m

′′
0 = m

′
l−1 ∧ n

′
l−1 by the ring topology;

2. n
′′
i = m

′
i ⊕ n

′
i, 0 ≤ i < l;

being m′ and n′ respectively the former and latter addend of c′, m
′′

and n
′′

respectively the upper and lower addend of c′′, where m
′′
i is the carry bit

with positional weight 2i of the sum m
′
i−1 + n

′
i−1; n

′′
i is the ‘lesser’ bit with

positional weight 2i of the sum m
′
i + n

′
i.

Fig. 1. An example of ADD configuration c (highlighted) with l = 8; the upper sequence
of bits is the former addend m, the lower sequence is the latter addend n; the positional
weight of each cell is specified below, values in base 10 of m and n are on the left in
brackets.

The ring topology of ADD (therefore a finite number of cells) involves that
additions are performed properly, only if there is no overflow, i.e., significant
length of numbers doesn’t overcome l − 1 bits, because the last cell is neighbor
to the first one; l may be large at will, so a sufficient length of bits may be always



The Representation Role for Basic Operations Embodied in CA 311

assumed (sufficient length condition). The ADD configuration example of Fig. 1
specifies the positional weight of the cells and values of m and n in the base 10
numeration.

Theorem 1. Let c be a generic configuration of ADD with length l and m, n
respectively the upper and lower addend of c; let c′ = γ(c), m′ and n′ respectively
the former and latter addend of c′, then m′ + n′ = m + n (examples in Fig. 2).

Proof. ml−1 = 0, nl−1 = 0 by the sufficient length condition, therefore m
′
0 = 0,

n
′
l−1 = 0 then:

m + n =
l−1∑

i=0

(mi + ni)2i = m
′
02

0 +
l−2∑

i=0

(m
′
i+12

i+1 + n
′
i2

i) + n
′
l−12

l−1

=
l−1∑

i=0

(m
′
i + n

′
i)2

i = m
′
+ n

′

�
Theorem 2. Let c be a configuration of ADD with m and n respectively the
upper and lower addend of c; let c′ = γ(c) and m′ and n′ respectively the upper
and lower addend of c′, if mi = 0 for 0 ≤ i < k < l − 1 then m

′
j = 0 for

0 ≤ j ≤ k.

Proof. ml−1 = 0, nl−1 = 0 by the sufficient length condition, therefore it is
always m

′
0 = 0 and m

′
i = mi−1 ∧ ni−1 = 0 for 1 ≤ i ≤ k by applying Eq. (1) of

the τ specification of ADD. �
Corollary 1. Let c be a configuration of ADD, c′ = γ(c) and c′′ = γl−1(c), with
m, n, m′, n′, m′′, n′′, respectively the upper and lower addend of c, c′ and c′′,
then always m = 0.

Proof. ml−1 = 0, nl−1 = 0 by the sufficient length condition, therefore always
m0

′ = 0, then m′′ = 0 by Theorem 2. �
Theorem 3. Let c be a configuration of ADD with m = 0 and n respectively the
upper and lower addend of c; let c′ = γ(c) and m′ and n′ respectively the upper
and lower addend of c′, c′ = c and c is a stable configuration (see example in
Fig. 2).

Proof. m
′
0 = ml−1 ∧ nl−1 = 0 ∧ nl−1 = 0, m

′
i = mi−1 ∧ ni−1 = 0 ∧ ni−1 = 0 for

1 ≤ i ≤ l − 1, by applying Eq. 1 of the τ specification of ADD; by applying Eq. 2
of the τ specification of ADD, ni

′ = mi ⊕ ni = 0 ⊕ ni = ni for 0 ≤ i ≤ l − 1. �
Corollary 2. Let c be a generic configuration of ADD of length l with m and n
respectively the upper and lower addend of c, c′ = γl−1(c), with m′, n′, respec-
tively the upper and lower addend of c′, then it is always m′ = 0 and n′ = m+n
after l − 1 steps (see Fig. 2).



312 S. Di Gregorio

Proof. m′ = 0 from Corollary 2, m + n = m′ + n′ from Theorem 1, therefore
n′ = m + n. �

The addition is performed by ADD in l − 1 steps in the worst case, therefore
the time cost is O(l). An example of ADD evolution with length l = 8 is presented
in Fig. 2, where the stable configuration is obtained after 4 steps.

ADD parallelism speeds up addition in irregular way, it depends on how short
is the longest sequence of consecutive carries 1 in the conventional arithmetic
operation of addition.

An extension of ADD for integers according to the two complement repre-
sentation could be developed in several ways; the most intuitive way is breaking
the ring between cells 0 and l−1 (cell l−1 assumes a positional weight of −2l−1)
and considering that the state of the −1 neighbor of cell 0 (now such a neighbor
no longer exists) is always acquired as 0

0. The operability holds for integers in
the interval [−2l−1, 2l−1].

Fig. 2. Evolution example of ADD with length 8 for 5 steps (t). Configurations are
highlighted, the upper sequence of bit is the former addend m, the lower one is the
latter addend n, their values in base 10 are on the left in brackets; the cell positional
weight is specified on top.



The Representation Role for Basic Operations Embodied in CA 313

3 CA for Addition in a Redundant Binary Representation

3.1 The Redundant Binary Representation RBN for N

The proposed redundant binary representation RBN is very similar to those pre-
sented in [5,6]; it differs from CBN because the same positional weight is assigned
to a couple of consecutive bits, this involves that there are more sequences of
bits for the same value (except 0).

Definition 3. RBN associates to a sequence of 2l bits: b2l−1, b2l−2, . . . , b0, the
value:

b =
2l−1∑

i=0

bi2� i
2 �

Examples:

– 1001 in RBN gives 1 · 2�3/2� + 0 · 2�2/2� + 0 · 2�1/2� + 1 · 2�0/2� = 3
– 110 in RBN gives 1 · 2�2/2� + 1 · 2�1/2� + 0 · 2�0/2� = 3

Definition 4. A string of bits representing in RBN a natural number n is called
canonical form α(β) of n if each even (odd) bit is 0.

By the previous definition, if even (odd) 0 digits are removed from a canonical
form α(β) of RBN, a binary string is obtained with the same value in CBN; if
we put the 0 digit at the right (at the left) of each digit of a binary string
representing a numerical value in CBN, a canonical form α(β) is obtained with
the same value in RBN, an example is here given for n = 13:

10100010 ← 1101 → 01010001
RBN canonical form α ← CBN → RBN canonical form β

The passage from a canonical form α(β) of RBN to CBN and vice versa may
be considered costless in the prospective of CA, as specified afterwards.

From now on, the length of strings of bits in RBN will be always taken even
without loss of generality, the canonical form α is abbreviated in cfα.

3.2 CA ADDr Definition and Properties

A CA ADDr for addition of two natural numbers m and n in RBN is
here defined as a 1-dimension CA of l cells with ring topology and l >
max(�log2 m�), (�log2 n�)
Definition 5. ADDr= (Zl,X, S, τ) where:

– Zl = 〈l − 1, l − 2, · · · , 1, 0〉 is the finite cellular space of length l with ring
topology and reverse numeration of cells by formalization convenience;

– X = 〈0,−1〉 is the neighborhood: the cell itself and the ‘right’ one;



314 S. Di Gregorio

– S = {0000, 00
01,

01
00,

01
01,

00
10,

00
11,

01
10,

01
11,

10
00,

10
01,

11
00,

11
01,

10
10,

10
11,

11
10,

11
11} is the set of states,

(S = S1×S2, with S1 = S2 = {00, 01, 10, 11} the 4 couples of bits); the former
(upper) couple of bits in the cell i are respectively the (2i + 1)th and the 2ith

bit of the former (upper) addend m and are specified as m2i+1, m2i, the latter
(lower) couple of bits in the cell i are respectively the (2i + 1)th and the 2ith

bit of the latter addend n and are specified as n2i+1, n2i, all with positional
weight 2i (see Fig. 3).

– τ : S2 → S is the transition function so defined from the following equations,
where two configurations c′ and c′′ are considered such that c′′ = γ(c′):

1. m
′′
2i = 0, 0 ≤ i < l;

2. m
′′
2i+1 = m

′
2i, 0 ≤ i < l;

3. n
′′
2i = (m

′
2i−1 ∧ n2i−1

′) ∨ (m
′
2i−1 ∧ n

′
2i−2) ∨ (n

′
2i−1 ∧ n

′
2i−2), 0 < i < l;

n
′′
0 = (m

′
2l−1 ∧ n

′
2l−1) ∨ (m

′
2l−1 ∧ n

′
2l−2) ∨ (n

′
2l−1 ∧ n

′
2l−2)

4. n
′′
2i+1 = m

′
2i+1 ⊕ n

′
2i+1 ⊕ n

′
2i, 0 ≤ i < l;

m’ and n’ are respectively the former and latter addend of a configuration c′,
m

′′
and n

′′
are respectively the former and latter addend of c

′′
where n

′′
2i is the

carry bit with positional weight 2i of m
′
2i−1 + n

′
2i−1 + n

′
2i−2; n

′′
2i−1 is the ‘lesser’

bit with positional weight 2i of m
′
2i+1 + n

′
2i + n

′
2i+1 (see Fig. 4).

The ring topology of ADDr (therefore a finite number of cells) involves that
additions are performed properly, only if there is no overflow, i.e., significant
length of numbers doesn’t overcome l−1 bits, because the last cell is the neighbor
to the first one; l may be large at will, so a sufficient length of cells may be always
assumed (sufficient length condition).

Theorem 4. Let c′ be a generic configuration of ADD with length l and m′,
n′ respectively the upper and lower addend of c′; let c′′ = γ(c′) and m′′ and n′′

respectively the upper and lower addend of c′′, then m′ + n′ = m′′ + n′′ (see
Fig. 4).

Proof. m
′
2l−1 = 0, n

′
2l−1 = 0, m

′
2l−2 = 0, n

′
2l−21 = 0 by the sufficient length

condition. Therefore m
′′
0 = 0, n

′′
2l−1 = 0, m

′′
2i = 0 for 0 ≤ i < l by Eq. 1 defining

τ :

Fig. 3. An example of ADDr configuration c (highlighted) with l = 8; the upper
sequence of bits is the former addend m, the lower sequence is the latter addend n; the
positional weight of each cell is specified below, values of m and n in base 10 are on
the left in brackets.



The Representation Role for Basic Operations Embodied in CA 315

m′ + n′ =
l−1∑

i=0

(m
′
2i+1 + m

′
2i + n′

2i+1 + n
′
2i)2

i

=
l−2∑

i=0

(m
′
2i+1 + n

′
2i+1 + n

′
2i)2

i + (m
′
2l−1 + n

′
2l−1 + n

′
2l−2)2

l−1 +
l−1∑

i=0

m
′
2i2

i

=
l−2∑

i=0

(n
′′
2i2

i+1 + n
′′
2i+12

i) + (n
′′
020 + n

′′
2l−12

l−1) +
l−1∑

i=0

m
′′
2i+12

i +
l−1∑

i=0

m
′′
2i2

i

=
l−1∑

i=0

(m
′′
2i+1 + m

′′
2i + n

′′
2i+1 + n

′′
2i)2

i = m
′′

+ n
′′

�
Theorem 5. Let c be a generic configuration of ADDr with length l and m, n
respectively the upper and lower addend of c; let c′ = γ(c) and c

′′
= γ(c′), m′,

n′ and m′′, n′′, respectively the upper and lower addend of c′ and c′′, then m′ is
a cfα and m′′ = 0.

Proof. m
′
2i = 0, 0 ≤ i < l by ADDr definition (Eq. 1), then m′ is a cfα (e.g., steps

1 and 2 in Fig. 4); m
′′
2i+1 = m

′
2i = 0 by ADDr definition (Eq. 2) and m

′′
2i = 0 by

ADDr definition (Eq. 1), 0 ≤ i < l; then m′′ = 0 (e.g., steps 2 and 3 in Fig. 4).�
Corollary 3. Let c be a generic configuration of ADDr with length l and m, n
respectively the upper and lower addend of c; let c′ = γ(c) and c′′ = γ(c′), m′,
n′ and m′′, n′′, respectively the upper and lower addend of c′ and c′′, m + n =
m′ + n′ = m

′′
+ n

′′
= n

′′
.

Proof. m + n = m′ + n′ = m
′′

+ n
′′

by Theorem 4, m′ is a cfα by Theorem 5,
m

′′
= 0 by Theorem 5. �

Therefore an addition in ADDr is exactly performed in two steps, the result is
found in the latter addend, that is in RBN representation. If the former addend
is in a cfα, such an addition is performed in one step (e.g., step 2 and 3 in Fig. 4).

Theorem 6. Let c′ be a configuration of ADDr of length l with m′, n′ respec-
tively the upper and lower addend of c; let c′′ = γ(c′), m′′, n′′, respectively the
upper and lower addend of c′′, if m′ = 0, then m′′ = m′ = 0, n′′ = m′ + n′ = n′.
Furthermore, Eqs. 3 and 4 correspond to Eqs. 1 and 2 of the definition of ADD
in Sect. 2.1.

Proof. The configuration c′ with the upper addend m′ = 0 (m
′
2i+1 = 0, m

′
2i = 0)

evolves according to the following simplified equations:



316 S. Di Gregorio

1. m
′′
2i = 0

2. m
′′
2i+1 = m

′
2i = 0

3. n
′′
2i = (m

′
2i−1 ∧ n

′
2i−1) ∨ (m

′
2i−1 ∧ n

′
2i−2) ∨ (n

′
2i−1 ∧ n

′
2i−2) = (n

′
2i−1 ∧ n

′
2i−2)

4. n
′′
2i+1 = m

′
2i+1 ⊕ n

′
2i+1 ⊕ n

′
2i = n

′
2i+1 ⊕ n

′
2i

�
Note that by Theorem 6, Eqs. 1 and 2 ensure that if the upper addend of a
configuration in ADDr is 0, the upper addend of the following configurations are
0; furthermore Eqs. 3 and 4 are the same of Eqs. 1 and 2 of ADD. Therefore,
if the bits of lower addend of ADDr in even (odd) position match the bits of
upper (lower) addend in a configuration of ADD, then the ADDr configurations
evolve in a cfα after a maximum steps of l+1 (the first two steps obtain that the
upper addend is 0, the following ones that the lower addend is a cfα) according
to Corollary 3, therefore the following corollary holds:

Corollary 4. Let c be a generic configuration of ADDr of length l with m, n
respectively the upper and lower addend of c; let c′ = γ2(c), c′′ = γl−1(c′), being
m′, n′, respectively the upper and lower addend of c′, then c′′ = γl+1(c) implies
that n′′ = m + n and n′′ is a cfα.

Proof. m′ = 0 by Theorem 6, then m′ = 0, n′ = m + n, therefore n′′ is a cfα. �

Fig. 4. Evolution example of ADDr with length l = 8 for 4 steps (t). Configurations
are highlighted, the upper sequence of bit is the former addend m, the lower one is the
latter addend n, their values in base 10 are on the left in brackets; the cell positional
weight is specified on top.



The Representation Role for Basic Operations Embodied in CA 317

An addend in CBN can be translated in RBN as a cfα costless, just adding
in parallel 0’s at right of each bit, vice versa an addend in cfα of RBN can be
translated in CBN costless, just eliminating in parallel the even 0’s, an addition
in ADD takes l − 1 (l is the number of cells of ADD and ADDr) steps, while
an addition in ADDr takes one step if the first addend is in cfα, but it takes
l − 1 steps if the result of a such addition has to be obtained in cfα. So working
in ADDr is convenient only if ADDR is fed by p > 2l upper addends, if the
calculation involves a sequence of additions of natural numbers.

An extension of ADDr for the integers according to the two’s complement
representation could be developed; an intuitive way is breaking the ring between
cells 0 and l−1 (cell l−1 assumes a positional weight of −2l−1) and considering
that the state of the −1 neighbor of cell 0 is always acquired as 0 0

0 0.

4 Conclusions and Comments

The exemplary case of the addition operation on N within two CA ADD and
ADDr with two different representations is here treated in order to investigate
how CA can efficiently exploit their intrinsic parallelism. Natural numbers were
considered in order that CA properties could emerge more clearly, even if a pos-
sible extension to Z (therefore to the elementary arithmetic) could be straight-
forward, but lengthy. A further investigation will be devoted to this problem.

The addition of two natural numbers can be surely operated by a CA in
parallel way, but the carry problem in the usual numerical representation could
make the parallel calculation a caricature of the sequential calculation, but, if
we adopt an appropriate redundant numerical representation, then all the power
of the parallelism discloses.

However to give an explicandum for a criterion of cost-effectiveness is not easy
because situation is further complicated if a particular numeral representation
is mandatory for the solution of a problem: e.g., sensors of automatic mobile
systems could receive information only in a particular representation and utilize
the elaborated solutions in that same representation. If a single operation (a
single addition of two natural numbers in this case) is considered, there is no
convenience in using a faster CA, because costs of translation from RBN to
CBN annul any advantage, but not if a long sequence of consecutive additions
is necessary.

This often elusive question has to move from the analysis of single operations
over the whole of the operations, necessary for the problem solution. A notion
of complexity that accounts for the relations operation/representation should
possibly be investigated.



318 S. Di Gregorio

References

1. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana (1966)

2. Mitchell, M.: Computation in cellular automata: a selected review. In: Schuster,
H.G., Gramms, T. (eds.) Nonconventional Computation, pp. 95–140. VCH Ver-
lagsgesellschaft, Weinheim (1996)

3. Sheth, B., Nag, P., Hellwarth, R.W.: Binary addition on cellular automata. Com-
plex Syst. 5(5), 479–486 (1991)

4. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for
Modeling. MIT Press, Cambridge (1987)

5. Di Gregorio, S.: Una rappresentazione non univoca degli interi: basi per una
nuova aritmetica degli elaboratori elettronici (in Italian). Quaderno del Progetto
Nazionale Teoria degli Algoritmi, M.P.I., Università della Calabria (1984)

6. Clementi, A., De Biase, G.A., Massini, A.: Fast parallel arithmetic on cellular
automata. Complex Syst. 8(6), 435–442 (1994)

7. Clementi, A., De Biase, G.A., Massini, A.: Pipelined addition, accumulation and
multiplication of binary numbers on cellular automata. Università della Sapienza,
Roma (1995)

8. Choudhury, P.P., Sahoo, S., Chakraborty, M.: Implementation of basic arithmetic
operations using cellular automaton. In: IEEE International Conference on Infor-
mation Technology, ICIT 2008, pp. 79–80 (2008)

9. Vourkas I., Sirakoulis G.: FPGA based cellular automata for environmental model-
ing. In: 19th IEEE International Conference on Electronics, Circuits and Systems,
ICECS 2012, pp. 93–96 (2012)

10. Di Gregorio, S., Trautteur, G.: On reversibility in cellular automata. J. Comput.
Syst. Sci. 11, 382–391 (1975)


	The Representation Role for Basic Operations Embodied in Cellular Automata: A Suitability Example for Addition in Redundant Numeral Systems vs Conventional Ones
	1 Introduction
	2 CA for Addition in the Conventional Binary Representation
	2.1 CA ADD Definition and Properties

	3 CA for Addition in a Redundant Binary Representation
	3.1 The Redundant Binary Representation RBN for N
	3.2 CA ADDr Definition and Properties

	4 Conclusions and Comments
	References




