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Abstract. An n-cell maximal length cellular automaton (CA) is a
binary CA which is having a cycle of length 2n − 1. These CAs are
linear and have been used in different applications, such as pseudo ran-
dom number generation, VLSI design & test, cryptosystem etc. For some
applications, however, it could be good if we can use non-linear maximal
length CAs. In this paper, we arrange an experiment for the search of
non-linear maximal length CAs. By experimentation, we have seen that
there exists non-linear maximal length CAs.
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1 Introduction

The cellular automata (CAs) that generate large cycles are highly useful in
computational processes like pseudo random number generator (PRPG) [5,7],
cryptosystem [3,6] etc. Prior works have considered the use of linear maximal
length cellular automata [1,2] for such applications, where the cycle length is as
large as 2n − 1 for an n-cell binary cellular automaton (CA). Linear maximal
length CAs, however, suffer from some drawbacks. Firstly, the availability of n-
degree primitive polynomial is limited. Besides, linear maximal length sequences
are not secure. So, there is a necessity of a construction that can provide both
non-linearity and maximal length sequence for optimized crypto-system (see [3,6]
for details).

There have been some researches to introduce non-linearity in maximal length
CAs [3,6]. The technique referred in [3] manipulates the number of clock cycles,
based on inputs, in a maximum length additive CA. This method becomes unsyn-
chronized for different inputs. An efficient technique [6] is devised for generat-
ing non-linear maximal length CA from linear maximal length CA by injecting
non-linearity in different cell positions. The effect of the non-linearity can be
propagated among multiple cells by shifting the non-linear function. However, it
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incurs increasing neighborhood dependency. For optimal design, the construction
of non-linear maximal length CA limits upto 5 neighborhood. This motivates us
to figure out if there exists a non-linear maximal length CA without exceed-
ing the neighborhood dependency. In this paper we answer this question in an
affirmative way.

2 Basics

2.1 Definitions

A 1-d finite CA of size n consists of an array of n cells. Each cell can be in
either of two states, 0 or 1 as we use binary CA. Let xi denote the state of cell
i. Then, a configuration of the CA is x = (x0x1 · · · xn−1) where xi ∈ {0, 1}. In
this work, we consider null boundary CA, which means x−1 = xn = 0. Cell i
of the CA changes its state at every time step following a next state function
fi : {0, 1}3 �→ {0, 1}, which is defined over the present states of cell i and its
left and right neighbors. Let us denote C as the set of all possible configurations
of the CA. The CA thus can be interpreted as a function F : C → C, which
satisfies the following conditions: y = F (x), x, y ∈ C, where y = (yi)0≤i≤n−1 and
yi = fi(xi−1, xi, xi+1).

There can be eight possible combinations depending on the present states
of a cell and its two neighbours. The next state for the cell for each of these
combinations depends on the next state function. Thus there can be 28 distinct
next state functions, and each next state function can be associated to a value
between 0 and 255, which we call rule. The rule corresponding to a particular
next state function is obtained as the decimal equivalent of next state generated
for the eight combinations of the present states xi−1, xi and xi+1 (as shown
in Table 1). For a particular rule R, let R[xi−1xixi+1] denote the next state of
cell i for the present states combination xi−1xixi+1 of cell i and its neighbours.
For example, 30[011] = 1. Thus a CA can alternatively be interpreted as a rule
vector R = (R0,R1, · · · ,Ri, · · · ,Rn−1), where each Ri is the rule to which fi
is associated. The uniform CA is a special case where R0 = R1 = · · · = Ri =
· · · = Rn−1. If an Ri of an n-cell CA is said to be linear if its corresponding fi
follows XOR logic.

Definition 1 If all the rules of a rule vector R are linear/additive, then the CA
is linear/additive.

Here, we consider only seven rules as linear – 60, 90, 102, 150, 170, 204 and
240. Another seven rules (15, 51, 85, 105, 153, 165 and 195) are complemented
additive rules.

Definition 2. If any Ri of R is not linear/ additive, then CA is non-linear.

Definition 3. A configuration x ∈ C is said to be cyclic if x = F t(x) for some
finite t ∈ N.

Definition 4. A CA is reversible if all the configurations are cyclic.
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Table 1. Rules 90, 150, 54 and 30

Present state 111 110 101 100 011 010 001 000 Rule

(i) Next state 0 1 0 1 1 0 1 0 90

(ii) Next state 1 0 0 1 0 1 1 0 150

(iii) Next state 0 0 1 1 0 1 1 0 54

(iv) Next state 0 0 0 1 1 1 1 0 30

2.2 Synthesis of Reversible CAs

Synthesis of a reversible CA given in [4]. Here we briefly present the methodolo-
gies for sake of completeness.

Only 62 out of the 256 possible rules are used to form non-uniform reversible
CAs. These rules can be classified into different classes as shown in Tables 2, 3
and 4. We now state how a reversible CA can be generated from these tables.
The rule at the cell zero i.e., R0 is selected out of the rules given in first column
of Table 2. Note that the first and last rules of a null boundary CA are to be
chosen differently (see [4] for details). However, the selected rule at the cell zero
defines the class (second column of Table 2) from which R1 has to be selected.
For every i between 1 and n − 2, the first column of Table 4 shows the probable
classes of rule Ri; the second column shows the possible rules for rule Ri from
each class, while corresponding to a particular rule Ri, the third column defines
the class from which Ri+1 has to be selected. Finally, depending on the class of
the rule at the last cell, the rule Rn−1 is selected from Table 3.

Example 1. Let us consider a 4-cell CA (10, 150, 90, 20) which is reversible. It is
obtained as follows: here, R0 is 10. The class of R1 is II (see Table 2). Thus the
rule at cell 1 must be selected from the row corresponding to class II of Table 4.
In particular, let R1 is selected to be 150. R2 should be selected from class I, as
the class for selecting the next rule corresponding to rule 150 is class I (see last
column of Table 4). Let R2 is selected as 90. Applying the same methodology,
the class of rule R3 comes out to be class II. From Table 3, the rule R3 is selected
from the row corresponding to class II, in particular R3 is selected to be 20.

Definition 5. An n-cell CA is maximal length if, for a configuration x ∈ C,
x = F 2n−1(x), but x �= F t(x) where 1 ≤ t < 2n − 1.

The CA (10, 150, 90, 20) is equivalent to the CA (90, 150, 90, 150) when the
boundary condition is null. That is, this CA is linear. Further, it is a maximal
length CA (see Fig. 1).

3 Cellular Automata with Large Cycles

Maximal length CAs are having the largest possible cycle length for given CA
size n. In this section we develop a process to design CAs which are expected
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Fig. 1. Configuration transition diagram of the CA (10, 150, 90, 20)

Table 2. First rule table

Rules for R0 Class of R1

3, 12 I

5, 10 II

6, 9 III

Table 3. Last rule table

Rule class for Rn−1Rule set for Rn−1

I 17, 20, 65, 68

II 5, 20, 65, 80

III 5,17, 68, 80

IV 20, 65

V 17, 68

VI 5, 80

to have large cycles. If non-linear maximal length CAs really exist, we can get
such CAs by repeatedly applying this process.

We first intuitively present the idea behind our approach. Clearly, a cell i
changes its state in next time step depending on the present states of itself
and its neighbours. If the cells of a CA does not depend on their neighbors,
the CA cannot produce large cycles. For example, in the extreme case, if
fi(xi−1, xi, xi+1) = xi for all i, then every cycle is of length one. Similarly, if
fi(xi−1, xi, xi+1) = 1 − xi for all i, every cycle is of length two. Thus lower the
dependency of the next state function on the present state of the neighbours of
a cell, smaller will be the length of the cycles generated by the corresponding
CA. Conversely, if the next state of a cell is more influenced by the state of its
neighbours, greater is the chance of obtaining a large length cycle.

Let (x0x1 · · · xi · · · xn−1) denote a configuration of the CA. Suppose
fi(xi−1, xi, xi+1) = fi(xi−1, xi, 1 − xi+1), for all values of xi and xi−1. This
implies that the next state of cell i is not influenced by the present state of cell
i + 1; we say that cell i is independent of its right neighbor. In an analogous
manner, if fi(xi−1, xi, xi+1) = fi(1−xi−1, xi, xi+1) for all values of xi and xi+1,
cell i is independent of its left neighbor.

We can define the degree of dependence on the neighbor of a cell as follows.
Let αrd(xi−1 = x, xi = y) denote the dependence of cell i on its right neighbor
when the present states of xi−1 and xi are respectively x and y. Note that each
of x and y can be either 0 or 1.
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Table 4. Class relationship of Ri and Ri+1

Class of Ri Ri Class of Ri+1

I 51, 204, 60, 195 I

85, 90, 165, 170 II

102, 105, 150, 153 III

53, 58, 83, 92, 163, 172, 197, 202 IV

54, 57, 99, 108, 147, 156, 198, 201 V

86, 89, 101, 106, 149, 154, 166, 169 VI

II 15, 30, 45, 60, 75, 90, 105, 120, I

135, 150, 165, 180, 195, 210, 225, 240

III 51, 204, 15, 240 I

85, 105, 150, 170 II

90, 102, 153, 165 III

23, 43, 77, 113, 142, 178, 212, 232 IV

27, 39, 78, 114, 141, 177, 216, 228 V

86, 89, 101, 106, 149, 154, 166, 169 VI

IV 60, 195 I

90, 165 IV

105, 150 V

V 51, 204 I

85, 170 II

102, 153 III

86, 89, 90, 101, 105, 106, VI

149, 150, 154, 165, 166, 169

VI 15, 240 I

105, 150 IV

90, 165 V

αrd(xi−1 = x, xi = y) =

{
1 if fi(x, y, xi+1) �= fi(x, y, 1 − xi+1)
0 otherwise

The degree of dependence of cell i on its right neighbor is the ratio of the
number of combinations of values of xi and xi−1 for which the next state function
on xi depends on xi−1. This is called the degree of right dependence for rule Ri

and denoted by Pr(Ri). Clearly, Pr(Ri) can take values 0, 0.5 or 1. Formally,

Pr(Ri) =

∑
x∈{0,1}

∑
y∈{0,1} αrd(xi−1 = x, xi = y)

4
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Similarly, let αld(xi = x, xi+1 = y) denote the dependence of cell i on its left
neighbor when the present states of xi and xi+1 are respectively x and y.

αld(xi = x, xi+1 = y) =

{
1 if fi(xi−1, x, y) �= fi(1 − xi−1, x, y)
0 otherwise

In an analogous way, we define the parameter Pl which determines how much
a cell i depends on its left neighbor. It is the ratio of the number of combinations
of values of xi and xi+1 for which the next state function on xi depends on xi+1.
This is called the degree of left dependence for rule Ri, and denoted by Pl(Ri).

Pl(Ri) =

∑
x∈{0,1}

∑
y∈{0,1} αld(xi = x, xi+1 = y)

4
Example 2. Let us consider rule 54. We observe that for the next state function
corresponding to this rule, αrd(xi−1 = 0, xi = 0) = 1, αrd(xi−1 = 0, xi = 1) = 1,
while αrd(xi−1 = 1, xi = 0) = 0, αrd(xi−1 = 1, xi = 1) = 0. Therefore, Pr(54) is
0.5. On the other hand, αld(xi = 0, xi+1 = 0) = 1, αld(xi = 1, xi+1 = 0) = 1,
while αld(xi = 1, xi+1 = 1) = 0, αld(xi = 1, xi+1 = 0) = 0. Therefore, Pl(54) is
0.5. Similarly, for rules 90 and 60, Pr(90) = 1 and Pr(60) = 0. For rules 150 and
170, we get Pl(150) = 1 and Pl(170) = 0.

The rules of reversible CAs can be classified into three categories depending
on Pr and Pl parameter. The three categories are named as completely right
dependent, partially right dependent and right independent, and they correspond
respectively to right dependence degree values of 0, 0.5 and 1. In null boundary
condition, all possible inputs to first and last rules are not valid. So, we need to
classify first and last rules separately using the same process stated above.

In order to have a CA generates a cycle of 2n−1 length, it is desirable to have
the rules of the CA dependent on both the left and the right neighbours. The
degree of dependence of a rule Ri on both of its neighbours can be determined
by the product of Pr(Ri) and Pl(Ri), and we denote this by P(Ri).

P(Ri) = Pr(Ri) ∗ Pl(Ri).

Clearly, P(Ri) can take values 0, 0.25, 0.5 or 1. We can thus classify the rules
here into four categories based on the P parameter. As shown in Table 5, any rule
can correspond to either of the four categories completely dependent, partially
dependent, weakly dependent and independent depending on the P values of 1,
0.5, 0.25 and 0 respectively. However, to obtain a large cycle, we generate the
corresponding CA by selecting rules from Table 5 as follows.

The first and the last rules of every CA are selected uniformly at random
from the class of completely dependent. For the remaining, we pick n − 2 rules
randomly following Gaussian distribution in such a way that the maximum rules
are selected from the category of completely dependent, some selected from the
category of partially dependent, and a very few from the category of weakly
dependent. Since most of the rules, selected in this manner, have high degree of
dependence on both of their neighbours, it is highly likely that the corresponding
CA will have a large cycle.
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Table 5. Four categories of reversible CA rules on the parameter P

Category Ri R0 Rn−1

Completely
dependent

90, 165, 150, 105 5, 6, 9, 10 5, 20, 65, 80

Partially
dependent

30, 45, 75, 120, 135, 180, 210, 225,
86, 89, 101, 106, 149, 154, 166, 169

Weakly
dependent

53, 58, 83, 92, 163, 172, 197, 202,
54, 57, 99, 108, 147, 156, 198, 201,
23, 43, 77, 113, 142, 178, 212, 232,
27, 39, 78, 114, 141, 177, 216, 228,

Independent 51, 204, 85, 170, 102, 153, 60, 195,
15, 240

3, 12 17, 68

Table 6. Cycles are close to 2k − 1 for k-cell CA (Here k = 10)

Cycle length 10-cell CA

1015 (9, 90, 43, 150, 166, 90, 165, 150, 90, 65)

923 (9, 166, 105, 105, 101, 150, 150, 105, 150, 20)

801 (9, 86, 90, 149, 105, 90, 165, 165, 90, 65)

1008 (10, 165, 86, 150, 165, 90, 105, 90, 150, 65)

1023 (10, 90, 150, 169, 165, 101, 150, 90, 165, 20)

1001 (10, 90, 53, 90, 90, 150, 89, 90, 105, 80)

1003 (10, 105, 90, 150, 57, 150, 90, 105, 150, 65)

761 (5, 90, 165, 180, 154, 165, 106, 165, 90, 80)

1000 (10, 165, 86, 90, 101, 165, 105, 105, 165, 65)

920 (10, 165, 90, 150, 86, 105, 105, 90, 150, 20)

1022 (9, 106, 150, 105, 90, 105, 150, 90, 150, 65)

827 (9, 43, 105, 154, 105, 165, 150, 90, 150, 20)

1017 (9, 90, 89, 150, 165, 150, 106, 90, 89, 80)

728 (10, 90, 57, 105, 165, 101, 150, 165, 90, 65)

1023 (6, 150, 210, 53, 150, 150, 165, 105, 150, 20)

4 Experimental Results

Using the above mentioned approach, we generate a number of CAs of different
sizes. We observe that the cycles of the synthesized CAs are large, and most
of the time, the largest cycle of such CAs are close to 2n − 1. Table 6 shows a
sample result of our experiment. Bold faced rows are the non-linear maximal
length CAs. This result proves that there exist non-linear maximal length CAs.

Let us now understand the percentage frequency distribution of different
categories of rules which can generate non-linear maximal length by using the
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above process. For CA size 10, we generate 100 non-linear maximal length CAs
and using these data, we observe that 83% of the rules belong to completely
dependent category, 13.8% belong to the partially dependent class, while 3.02%
belong to the weakly dependent class.

To understand the efficacy of the above mentioned approach, we conduct
experiments. We generate random non-linear maximal length reversible CAs of
size n extensively. Obviously, each CA follows a distribution for the rules being
selected from the different categories based on P which mentioned already. By
maintaining this distribution, we get CAs of length 2n − 1 of a fixed CA size n.
We perform experiment for different values of n ranges from 4 to 20. Here, by
experiments, we observe that there exists a non-linear maximal length CA for
any n. In Table 7, we shows the CAs which contributes maximal length CA for
sizes 4 to 20.

From the experimental results, however, we observe that sixteen rules from
category weakly dependent have not participated in the maximal length CA gen-
eration. These rules are 92, 172, 197, 202, 108, 156, 198, 201, 77, 142, 212, 232,
78, 141, 216, 228.

Table 7. n-cell non-linear maximal length CAs

n (CA size) R (CA)

4 (6, 178, 90, 20)

5 (5, 150, 99, 165, 5)

6 (5, 90, 106, 90, 166, 5)

7 (6, 101, 90, 154, 105, 165, 65)

8 (9, 90, 105, 30, 54, 150, 105, 65)

9 (5, 180, 150, 105, 165, 149, 150, 90, 65)

10 (10, 105, 54, 154, 90, 166, 90, 86, 105, 65)

11 (5, 150, 165, 30, 58, 90, 150, 86, 105, 90, 65)

12 (6, 105, 165, 90, 180, 147, 165, 165, 105, 165, 150, 8)

13 (6, 86, 90, 169, 105, 150, 89, 90, 165, 150, 90, 90, 65)

14 (9, 177, 89, 90, 89, 90, 101, 105, 165, 90, 150, 90, 150, 65)

15 (10, 75, 90, 90, 166, 90, 86, 105, 90, 150, 166, 105, 90, 90, 20)

16 (6, 90, 178, 150, 154, 150, 105, 105, 90, 150, 150, 90, 165, 105, 90, 80)

17 (6, 165, 150, 165, 150, 150, 90, 101, 150, 165, 150, 105, 165, 169, 150, 165, 20)

18 (9, 165, 86, 150, 90, 90, 165, 150, 105, 150, 165, 150, 105, 105, 150, 149, 150, 20)

19 (10, 45, 58, 90, 165, 105, 165, 150, 165, 150, 149, 165, 90, 165, 90, 105, 105, 105, 5)

20 (10, 150, 165, 105, 149, 165, 165, 150, 150, 89, 90, 105, 105, 165, 105, 150, 150, 165, 165, 20)
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