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Abstract. We study the regional master-slave synchronization of a one
dimensional probabilistic cellular automaton with two absorbing states.
The master acts on the boundary of an interval, the region, of a fixed
size. For some values of the parameters, this is enough to achieve syn-
chronization in the region. For other values, we extend the regional syn-
chronization to include a fraction of sites inside the region of interest.
We present four different ways of doing this and show which is the most
effective one, in terms of the fraction of sites inside the region and the
time needed for synchronization.

1 Introduction

Cellular Automata (CA) are spatially extended systems that are widely used
for modelling various problems ranging from physics to biology, engineering,
medicine, ecology and economics [1–8].

Cellular automata are discrete systems in time and space. The state at each
node, here 0 or 1, changes in time according to the transition probabilities of
assuming a certain state knowing the state of neighbouring nodes. When the
transition probabilities are either zero or one, the automata is deterministic, oth-
erwise it is probabilistic. Despite their simplicity, cellular automata may exhibit
a large number of different features.

In particular, deterministic cellular automata may exhibit “chaotic” trajec-
tories, in which a initial small disturbance (a “defect”) amplifies or spreads, in
average, over time. This is also called the “damage spreading” feature.

Deterministic cellular automata may be considered discrete dynamical sys-
tems, and one is interested in the problem of controlling the resulting trajecto-
ries. The control problem can be divided in two sub-problems: how to drive a
system into a desired state (reachability problem) and how to make it follow a
desired trajectory, which can be also a fixed point (drivability problem). We are
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interested here in the regional version of this problem, i.e., how to control just
a given region of a system. Clearly, one has at least to act on the boundaries
of such a region in order to promote this control, but this can be insufficient,
especially for chaotic CA.

As shown in Refs. [9,10], while it is possible to make a system reach a desired
state acting on the boundaries, it is in general not possible to impose a trajectory
which is not “natural”, i.e., a trajectory different from one that the system would
follow if starting from a proper initial configuration and with proper boundary
conditions. Except for simple states like fixed points or cycles, the identifica-
tion of a “natural” trajectory is best done using a replica of the system, that
evolves freely. The drivability problem is related to master-slave synchronization.
The problem of regional control, that is, where the control is applied in on the
boundary of a region with a fixed number of sites is discussed in Ref. [11].

One of the problems in studying discrete cellular automata is that it is not
possible to continuously vary their dynamical properties, so that it is difficult to
observe bifurcations and changes of behaviour. On the contrary, this is possible
with probabilistic cellular automata which however are intrinsically stochastic,
and therefore in principle impossible to synchronize. A review of phase transi-
tions for probabilistic cellular automata may be found in Ref. [12].

However, it is possible to “convert” probabilistic cellular automata into deter-
ministic ones, considering that the actual computation of a trajectory of such
systems makes use of random numbers, used to choose, for each site and each
time step, among the possible alternatives. One may assume that the set of all
needed random numbers is extracted at the beginning of the simulation for all
sites and all time steps, thus constituting a quenched random field. The evolution
of the automata over such a random field becomes deterministic, and therefore
it is possible to consider the problem of the divergence of initially similar trajec-
tories (damage spreading) also for Probabilistic Cellular Automata (PCA). The
advantage of such an approach is that the behaviour of PCA can be fine-tuned
by means of their control parameters, and therefore it is possible to investigate in
details the elements that contribute to chaoticity, control and synchronization, a
task that is much more difficult with Deterministic Cellular Automata (DCA).

In principle the synchronization characteristics depend on the quenched ran-
dom field, but in practice these systems are always self-averaging so that a large
enough simulation already gives the same value of observables as if one performs
an averaging over many realizations of the random field.

In Ref. [13], the problem of synchronization of DCA was addressed, showing
that it is possible achieve this goals by randomly choose at each time step a
large enough fraction of sites in which the state of sites in the slave system
is imposed to be that of the corresponding sites in the master one and it was
shown that the synchronization threshold is related to the chaotic properties
of automata. In Ref. [9], a similar technique, called pinching synchronization,
was applied to control problems, looking for the most efficient way of achieving
the synchronization goal. In Ref. [10] this procedure was applied to the regional
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control problem of DCA. We want here to apply, and extend, this technique to
PCA (see also Ref. [14]).

In what follows, we investigate different strategies of regional master-slave
pinching synchronization of a one-dimensional three-state probabilistic cellular
automaton with two absorbing states [15]. The state at any site in the lattice at
time t + 1 depends probabilistically on the states of the site itself and its two
next-nearest neighbours at time t, and two probabilities. The master and the
slave are two realizations of the same PCA starting from different initial states
and the slave is forced to follow the master at the boundary of a given region of
width L. Since this is in general insufficient to synchronize the two systems, the
slave is additionally forced to take the state of the master at certain sites inside
the target region, at every time step.

In Sect. 2 we present this cellular automaton. In our first attempt, boundary
regional synchronization, or simply L-synchronization, the master imposes his
state on the border of a region of size L on the slave and we find that for
some values of the probabilities, there is synchronization in the sense that the
slave follows the master in the region of length L. This is discussed in Sect. 3.
When there is no L-synchronization, we discuss in Sect. 4 four different pinching
synchronization schemes at a fraction π of sites inside the region of size L and
show which one is the most successful one in the sense that synchronization
occurs with the smallest value of π and the shortest time. We finish with some
conclusions in Sect. 5.

2 The Probabilistic Cellular Automaton

We recall the definition of the probabilistic cellular automaton with two absorb-
ing states presented in Ref. [15]. The state at site i at time t, x

(t)
i , with

i = 0, . . . , N − 1 and t = 0, 1, . . . , can take two values, x
(t)
i = 0, dry, or x

(t)
i = 1,

wet. The state of the cellular automaton at time t is x(t) = (x(t)
0 , . . . , x

(t)
N−1)

and x
(t+1)
i depends on the number of wet sites in its neighbourhood and four

parameters or probabilities p0, . . . , p3. With

σ
(t)
i (x) =

1∑

j=−1

x
(t)
i+j ,

σ
(t)
i (x) = 0, . . . , 3, and the sum on the sub-indices taken modulo N to account

for periodic boundary conditions,

x
(t+1)
i =

3∑

s=0

[
r
(t)
i ≤ ps

] [
σ
(t)
i (x) = s

]
. (1)

In this expression r
(t)
i is a random number uniformly distributed between 0 and

1 and [ · ] = 1 if · is true and zero otherwise. In what follows p0 = 0, and
p3 = 1, which means that if the neighbours are all dry (wet), the central site
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will be dry (wet) at the next time step. Then, the states x = 0 = (0, . . . , 0) and
x = 1 = (1, . . . , 1) are absorbing. The activity a(t) is defined by

a(t) = a(x(t)) =
1
N

N−1∑

i=0

x
(t)
i . (2)

We indicate with a the asymptotic value of a(t).
In Fig. 1(a) we show the phase diagram of the average activity a over M

samples with random initial conditions with a(0) � 1/2. In the bottom left
part (in white), any random initial configuration will end in the absorbing state
x = 0, and in the upper right part, (in black), any random initial configuration
will end in the absorbing state x = 1. In the lower right part there is a region
where 0 < a < 1.

We can also define the damage spreading problem for such a model. Two
replicas, x and y, starting from different random initial conditions, evolve in
time with the same random numbers r

(t)
i ,

x
(t+1)
i =

3∑

s=0

[
r
(t)
i ≤ ps

] [
σ
(t)
i (x) = s

]
,

y
(t+1)
i =

3∑

s=0

[
r
(t)
i ≤ ps

] [
σ
(t)
i (y) = s

]
.

(3)

The Hamming distance between the two replicas, in a region of width L, is
defined as

hL =
1
L

L∑

i=1

xi ⊕ yi (4)

where ⊕ is the logical exclusive disjunction (sum modulo two).
In Fig. 1(b) we show the phase diagram of the average normalized regional

Hamming distance hL, that takes values different from zero at the phase bound-
aries of the activity a, since in these cases it is possible that a replica goes into
a state and the other into another state, and in the “chaotic” region for high
values of p1 and low values of p2.

3 L-synchronization

Let us now consider the problem where the two replicas, x and y, evolve in time
starting from different initial conditions chosen at random with the same random
numbers r

(t)
i but where at the fixed sites i = 0 and i = L+1, a distance L apart,

y
(t)
0 and y

(t)
L+1 take the values of x

(t)
0 and x

(t)
L+1, respectively, before updating as

in Eq. (1). In other words, the master, x imposes his state at two fixed sites
on the slave y or x and y are pinched together at i = 0 and i = L + 1. The
normalized regional damage hL is still defined as in Eq. (4).
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Fig. 1. (a) Phase diagram of the average activity a with N = 1, 000 sites, after T = 500
time steps, and M = 100 samples with different random initial conditions x(0) with
a(x(0)) � 1/2. (b) Phase diagram of the average normalized regional Hamming distance
hL as a function of p1 and p2 for the same values of N , T , and M as in (a) and L = 100
sites. (Color online)

If hL = 0 at some time t we say there is L-synchronization. In Fig. 1(b) we
show the phase diagram of the average hL over M samples as functions of p1
and p2. The area where hL > 0 with L = N is known as the chaotic phase [16]
but we prefer to call it the L-damage spreading phase for any value of L.

In Fig. 2(a) we show hL, as a function of p1 on the diagonal p2 = 1 − p1.
There are three different behaviors of hL, separated by ξ1 � 0.5 and ξ2 � 0.75.
For 0 < p1 ≤ ξ1, hL grows with L, with fixed T . For ξ1 < p1 ≤ ξ2, hL = 0 and
for ξ2 < p1 ≤ 1, hL seems to become independent of L for large L. However, in
the first interval of p1, hL goes to zero as T grows.

In Fig. 2(c) we show the average time for synchronization Ts as a function of
p1, p2 = 1 − p1, with 0 < p1 < ξ1 for different values of L. This average time
grows with L as expected.

In the third interval ξ2 < p1 ≤ 1 the quantity hL is practically independent of
T . Clearly, since the automata is probabilistic and ergodic, and the synchronized
state is absorbing, the asymptotic state is always the synchronized one, but the
time required for achieving this result is so large, for large enough L, that it is
practically unachievable. Indeed, the synchronization task is essentially the same
of a percolation problem for defects [17].

In summary L-synchronization is successful for 0 < p1 < ξ1 although it may
take a long time Ts that grows with L. For ξ1 < p1 ≤ ξ2, L-synchronization is
present and for ξ2 < p1 < 1 there is no L-synchronization. In the next section, we
present four strategies that achieve regional synchronization when ξ2 < p1 ≤ 1
by adding a fraction π of sites where y follows x.
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Fig. 2. (a) The average damage hL for L = 25, 50, 100, 200 as a function of p1 on the
diagonal p2 = 1 − p1. We estimate that ξ1 � 0.5 and ξ2 � 0.75. The number of sites is
N = 1, 000 and the average is taken over M = 100 samples after a time T = 1, 000. (b)
The average damage hL for L = 100 and different total times, T = 1e3, 1e4, 1e5, 1.5e5
as a function of p1 with p2 = 1 − p1, N = 1, 000 and M = 100. (c) The average
synchronization time Ts for L = 25, 50, 100, 200 as a function of p1, 0 ≤ p1 ≤ ξ1, with
N = 1, 000 and M = 100. (Color online)

4 Lπ-synchronization

By Lπ-synchronization we mean that in the region of size L, besides the sites
a distance L apart, a fraction π of sites, denoted by j, are chosen and at every
time step the slave takes the values of the master, that is y

(t)
j = x

(t)
j .

In other words, x and y are pinched together at those sites. We propose four
strategies of Lπ-synchronization, L-divide pinching synchronization, L-quenched
pinching synchronization, L-annealed pinching synchronization and L-random
walk pinching synchronization. In what follows we refer to them as LDP, LQP,
LAP and LRWP synchronization respectively.

In the four strategies, a fraction πL, 0 < π ≤ 1/2, of sites in the region of
length L are chosen. In the first strategy, LDP, the sites j divide the region of
length L into equally spaced intervals. In the second one LQP, the sites j are
chosen at random in the region L while in the third one, LAP, the sites j are
chosen at random at every time step. In the fourth strategy, LRWP, the fraction



Regional Synchronization of a Probabilistic Cellular Automaton 261

πL of sites are the starting point of random walkers that at every time step can
move one site to the right or left with the same probability.

Walkers do not know the others’ position, cannot coordinate with them, and
may cross each other. When they reach the border of the region at i = 0 or
i = L + 1, they bounce back. In Fig. 3 we show examples of the four strategies.

Fig. 3. Space-time diagrams of the four bulk synchronization schemes. (a) L-divide
pinching synchronization. (b) L-quenched pinching synchronization. (c) L-annealed
pinching quenched synchronization. (d) L-random walk pinching synchronization. In
all cases, L = 60, p1 = 0.8, p2 = 0.2, π = 0.1 and the region of size L = 60 is shown
during T = 200 time steps. (Color online)

In Fig. 4(a) and (b) we show hL and Ts as functions of π with p1 = 0.85 and
p2 = 0.15 respectively. The best strategy, in the sense of achieving synchroniza-
tion for the smallest value of π in the shortest time, is LDP synchronization.
This is valid for other values of p1. To simplify our results, if Ts > T , that occurs
for small p1, we write Ts = T .
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Fig. 4. The average normalized Hamming distance hL in (a), and the average normal-
ized synchronization time fraction Ts/T in (b) as functions of π with πL the fraction
of sites in the region of size L where synchronization is imposed for p1 = 0.85 and
p2 = 1 − p1 = 0.15 in the four strategies. In (a) and (b) the data correspond, from left
to right, to L divide pinching synchronization, LDP (in magenta), L quenched pinching
synchronization, LQP (in green), L annealed pinching synchronization, LAP (in blue),
and L random walk pinching synchronization, LRWP (in red). The parameters are
N = 1, 000, L = 100, M = 100 and T = 10, 000. (Color online).

5 Conclusions

We presented regional synchronization, the synchronization of two extended sys-
tems to a sub-domain, the region. As an example, we discussed some proper-
ties the three state probabilistic cellular automaton and showed that regional
synchronization has three different behaviours on the diagonal p2 = 1 − p1 of
Fig. 1(b). In the first one, 0 < p1 < ξ1 � 0.5, L-synchronization occurs for long
times. In the second one, ξ1 < p1 < ξ2 � 0.75, L-synchronization is always
present, and in the third one, ξ2 < p1 < 1, L-synchronization is not possible. If
we insist on trying to synchronize y with x in this third case, we have to split the
region in subregions and we presented four different strategies and show which
one is the most effective. It might prove interesting to extend the analysis of
Lπ-synchronization to the whole phase diagram of Fig. 1 and to other cellular
automata.
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