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Abstract. Probabilistic Cellular Automata are extended stochastic sys-
tems, widely used for modelling phenomena in many disciplines. The
possibility of controlling their behaviour is therefore an important topic.
We shall present here an approach to the problem of controlling such
systems by acting only on the boundary of a target region.
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1 Introduction

Cellular Automata (CA) are widely used for studying the mathematical prop-
erties of discrete systems and for modelling physical systems [1–6]. They come
in two major “flavours”: deterministic CA (DCA) [9–14] and probabilistic CA
(PCA) [15,16].

DCA are the discrete equivalent of continuous dynamical systems (i.e., dif-
ferential equations or maps) but are intrinsically extended, constituted by many
elements, so they are in principle the discrete equivalent of system modelled by
partial differential equations. DCA are defined by graph, a discrete set of states
at the nodes of the graph, and a local transition function that gives the future
state of a node as a function of the present state of the node connected to it, its
so-called neighbourhood. This evolution rule is applied in parallel to all nodes.
PCA can be thought as an extension of DCA where the transition function gives
the probability that the target node goes in a certain state. If all these proba-
bilities are either zero or one, that the PCA reduces to a DCA. In both cases,
the state of the CA is the collection of states at the nodes of the graph and this
state changes in time according to functions defined in every node of the graph.
c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 243–254, 2018.
https://doi.org/10.1007/978-3-319-99813-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99813-8_22&domain=pdf


244 F. Bagnoli et al.

In analogy with continuous dynamical systems, it is important to develop
methods for controlling the behaviour of DCA and PCA. In particular, the main
control problems for extended systems are reachability and drivability. The first
is related to the possibility of applying a suitable control able to make the system
reach a given state or a set of states. For instance, assuming that the system
under investigation represents a population of pests, the control problem could
be that of bringing the population towards extinction at a given time or to keep
the population under a certain threshold.

The drivability problem is somehow complementary to the reachability one;
once that the system is driven to a desired state or collection of states, what
kind of control may make it follow a given trajectory? For instance, one may
want to stabilize a fixed point, or make the system follow a cycle, and so on.

As usual in control problems, one aims at achieving the desired goal with the
optimal cost or smallest effort, and we speak of an optimal control problem. One
may be interested not in controlling the whole space, but rather the state of a
given region, for instance how to avoid that a pollutant reaches a certain area.

The techniques for controlling discrete systems are quite different from those
used in continuous ones, since discrete systems are in general strongly non-linear
and the usual linear approximations cannot be directly applied. What one can
do is to change the state at a node or a set of chosen nodes. For Boolean CA the
state is either 0 or 1, so a change is either 1 or 0. The “intensity” of the control
therefore can be only associated to the average number of changes, and cannot
be made arbitrary small. We are interested in regional control of PCA, that is,
how to achieve a certain goal in a set of neighbouring nodes of a graph.

This problem is related to the so-called regional controllability introduced
in Ref. [17], as a special case of output controllability [18–20]. The regional
control problem consists in achieving an objective only in a subregion of the
domain when some specific actions are exerted on the system, in its domain
interior or on its boundaries. This concept has been studied by means of partial
differential equations. Some results on the action properties (number, location,
space distribution) based on the rank condition have been obtained depending
on the target region and its geometry, see for example Ref. [17] and the references
therein.

Regional controllability has also been studied using CA models. In Ref. [21], a
numerical approach based on genetic algorithms has been developed for a class of
additive CA in in one and two dimensions. In Ref. [22], an interesting theoretical
study has been carried out for one dimensional additive CA where the effect of
control is given through an evolving neighbourhood and a very sophisticated
state transition function. However, these studies did not provide a real insight
in the regional controllability problem.

Some results for control techniques applied to one dimensional DCA can be
found in Refs. [23–27].

For DCA, once the states in the neighbouring nodes are known, the future
state at the node under consideration is fixed and for PCA we have in general
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only the probability of reaching a certain state. One advantage of PCA vs. DCA
is that their dynamics can be fine-tuned. PCA are summarized in Sect. 3.

The control problem of PCA is more subtle than of DCA. In general, it is
impossible to exactly drive these systems towards a given configuration, but it is
possible to increase the probability that the system will reach a target state in a
collection of nodes, or, alternatively, to lower as much as possible the probability
of the appearance of a given configuration, for instance the extinction of a species
inside a given region.

The evolution of a PCA can be seen as a Markov chain, where the elements of
the transition matrix are given by the product of the local transition probabilities
(Sect. 3). In particular we shall study here a particular PCA (BBR model) with
two absorbing states in Sect. 4.

A Markov chain is said to be ergodic if there is the possibility of going to any
state in the graph to any other state in a finite number of steps. If this goal can
be achieved for all pairs of states at a given time, the Markov chain is said to be
regular. This consideration allows us to define the reachability problem in terms
of the probability, once summed over all possible realizations of the control, of
connecting any two sites. And since DCA can be considered as the extreme limit
of PCA, this technique can be applied to them too, see Sect. 5.

Finally, one should remark that the problem of controllability (in particular
that of drivability) is strictly related to that of synchronization (see Ref. [25] for
instance). In this same issue the regional synchronization problem for the BBR
model is addressed [28].

2 Definitions

Cellular Automata are defined on graph composed by N nodes identified by
an index i = 1, . . . , N , by an adjacency matrix aij that establishes the neigh-
bourhood of each node with aij = 1 (aij = 0) if node j is (is not) in node i’s
neighbourhood, and by a transition function fi that gives the new state at node i
given the states in its neighbourhood. The connectivity of node i is ki =

∑
j aij .

We shall deal here with graphs having fixed connectivity ki = k and use the
same transition function in all the nodes, fi = f .

A lattice is a graph invariant by translation and the nodes are called sites. For
a one dimensional lattice with N sites with connectivity k = 2r +1, r = 1, 2, . . .
and r the range, the neighbourhood of site i is the set {i− r, . . . , i+ r}. Periodic
boundary conditions are generally imposed. The state at site i at time t, xi(t),
is chosen from a finite set of values, for Boolean CA, xi(t) ∈ {0, 1}. Then

xi(t + 1) = f(xi−r(t), . . . , xi+r(t))

We shall indicate with x′
i = xi(t + 1) its value at the following time step.

An ordered set of Boolean values like x1, x2, . . . , xN can be read as a Boolean
vector or as base-two number and we shall indicate it as x, 0 ≤ x < 2N . We
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Fig. 1. Left: The space-time lattice of 1D CA with periodic boundary conditions. Right:
CA boundary-value problem.

shall also indicate with vi the state of all connected neighbours. The state of
x′
i depends on the state of the neighbourhood vi, and on some random number

ri(t) for stochastic CA. In formulas (neglecting to indicate the random numbers)
we have

x′
i = f(vi).

The function f is applied in parallel to all sites. Therefore, we can define a vector
function F such that

x′ = F (x).

The sequence of states {x(t)}t=0,... is a trajectory of the system with x(0) as
the initial condition.

When f depends symmetrically on the states of neighbours, it can be shown
that f actually depends on the sum si =

∑
j aijxj . In this case we say that the

cellular automaton is totalistic and write

xi(t + 1) = fT (si(t)), (1)

with fT : {0, . . . , k} → {0, 1}. Totalistic cellular automata are generic, since
they exhibit the whole variety of behaviour of general rules [12]. It is possible to
visualize the evolution of the automata as happening on a space-time oriented
graph or lattice, Fig. 1-left.

3 Probabilistic Cellular Automata

Probabilistic CA constitute an extension of DCA. Let us introduce the transition
probability τ(1|v) that, given a certain configuration v = vi of the neighbour-
hood of site i, gives the probability of observing x′

i = 1 at next time step. Clearly
τ(0|v) = 1 − τ(1|v). DCA are such that τ(1|v) is either 0 or 1, while for PCA it
can take any value in the middle. For a PCA with k inputs, there are 2k indepen-
dent transition probabilities, and for totalistic PCA there are k +1 independent
probabilities. If one associates each transition probability to a different axis, the
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Fig. 2. Phase diagram of the BBR model. Left: Density phase diagram. Right: Damage
phase diagram.

space of all possible PCA is an unit hypercube, with corners corresponding to
DCA.

PCA can be also partially deterministic, i.e., the transition probability τ(1|v)
can be zero or one for certain v. This opens the possibility for the automata
to have one or more absorbing state, i.e., configurations that always originate
the same configuration (or give origin to a cyclic behaviour). The BBR model
illustrated below has one or two absorbing states.

The evolution of all possible configurations x of a PCA can be written as
a Markov chain. Let us define the probability P (x, t), i.e., the probability of
observing the configuration x at time t. Its evolution is given by

P (x, t + 1) =
∑

y

M(x|y)P (y, t), (2)

where the matrix M is such that

M(x|y) =
N∏

i=1

τ (xi|vi(y)) . (3)

For a CA on a 1D lattice and k = 3 we have

M(x|y) =
N∏

i=1

τ(xi|yi−1, yi, yi+1). (4)

Phase transitions for PCA can be described as degeneration of eigenvalues
in the limit N → ∞ and (subsequently) T → ∞ [29].

Notice that since DCA are limit cases of PCA, they also can be seen as
particular Markov chains.
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Fig. 3. Damage spreading; time runs downwards. Left: CA rule 150. Right: CA rule
126.

A Markov chain such that, for some t, (M t)ij > 0 for all i, j is said to be
regular, and this implies that any configuration can be reached by any configu-
ration in time t. A weaker condition (ergodicity) says that t may depend on the
pair i, j (for instance, one may have an oscillating behaviour such that certain
pairs can be connected only for even or odd values of t). Also for ergodic systems
all configurations are connected.

4 The BBR Model

We shall use as a testbed model the one presented in Ref. [30], which is an
extension of the Domany-Kinzel CA [15]. We shall refer to it as the BBR model
from the name of its authors. It is a totalistic PCA defined on a one-dimensional
lattice, with connectivity k = 3. The transition probabilities of the model are

τ(1|0) = 0; τ(1|1) = p; τ(1|2) = q; τ(1|3) = w. (5)

This model has one absorbing state, corresponding to configuration 0 =
(0, 0, 0, . . . ), For w = 1 also the configuration 1 = (1, 1, 1, . . . ) is an absorb-
ing state. This is the version studied in Ref. [30].

Notice that for p = 1, q = 1, w = 0 we have DCA rule 126 while for p = 1,
q = 0 , w = 1 we have DCA rule 150. In the following we shall use w = 1.

The implementation of a stochastic model makes use of one of more random
numbers. For instance, the BBR model can be implemented using the function

x′
i = f(xi−1, xi, xi+1;ri) = [ri < p](xi−1 ⊕ xi ⊕ xi+1 ⊕ xi−1xixi+1)

⊕ [ri < q](xi−1xi ⊕ xi−1xi+1 ⊕ xixi+1 ⊕ xi−1xixi+1)
⊕ xi−1xixi+1,

(6)

where [·] is the truth function which takes value one if · is true and zero otherwise,
and ⊕ is the sum modulo two. The ri = ri(t) random numbers have to be
extracted for each site and for each time. One can think of extracting them once
and for all at the beginning of the simulation, i.e., running the simulation on
a space-time lattice on which a random field ri(t), i = 1, . . . , N ; t = 0, . . . is
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defined. Notice that in this way one has a deterministic CA over a quenched
random field.

The phase diagram of the BBR model is reported in Fig. 2-left. One can
see three regions. The one marked in white, for p < 0.65, is where the only
asymptotically stable configuration is the absorbing state formed by all zeros,
i.e., the asymptotic probability distribution of configurations P (x) is a delta
on zero. The symmetric region marked in black, for q > 0.35 is where the only
stable configuration is formed by all ones. Actually, in a region near the diagonal
q = 1−p, for p < 0.5 the two absorbing states are both stable, the transition line
is fixed by the initial configuration, which in the figure is drawn at random with
the same probability of extracting a zero and a one. These regions are denoted
with the term “quiescent”. The region marked in shades of grey, for p > 0.65
and q < 0.35 is a region where the two absorbing states are unstable, and
the asymptotic probability distribution is distributed over many configurations,
with average number of ones proportional to the shades of grey. In the insect
it is reported the asymptotic average number of ones (the “density”) computed
along the dashed lines. This region is denoted with the term “active”.

4.1 Damage Spreading

One possibility for controlling the evolution of a system with little efforts is
offered by the sensitive dependence on initial conditions, i.e., when a small vari-
ation in the initial state propagates to the whole system. Indeed, this is also
the main ingredient of chaos, which in general prevents a careful control. But
in discrete systems the situation is somehow different. These systems are not
affected by infinitesimal perturbations in the variables (assuming that they can
be extended in the continuous sense), only to finite ones. The study of the propa-
gation of a finite perturbation in CA goes under the name of “damage spreading”,
indicating how an initial disturbance (a “defect” or “damage”) can spread in the
system. A CA where a damage typically spreads is said to be chaotic.

Mathematically, one has two copies of the same system, say x and y, evolving
with the same rule but starting from different initial conditions. We shall indicate
with zi = xi ⊕ yi the local difference at site i. Typical patterns of the spreading
of a damage (i.e., the evolution of z) are reported in Fig. 3.

For PCA, the concept of damage spreading is meant “given the random field”.
The phase diagram of the damage z for the BBR model is shown in Fig. 2-right.

5 Reachability Problem

We shall mainly deal here with the problem of regional control via boundary
actions, i.e., boundary reachability as illustrated in Fig. 1-right, however the
techniques of analysis can be extended to other cases.
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Let us now consider the problem of computing the probability Mxy (a, b) =
M(x|y; a, b) which is the probability of getting configuration x at time t+1 given
the configuration y at time t, and boundaries a and b (for simplicity we refer
here only to one-dimensional cases). The Markov matrix M(a, b) is given by

Mxy (a, b) = τ(x1|a, y1, y2)τ(x2|y1, y2, y3) . . . τ(xn|yn−1, yn, b),

where n indicates the size of the target region.
For a given control sequence a = a1, . . . , aT and b = b1, . . . , bT , the resulting

Markov matrix for time T is

M(a, b) =
T∏

t=1

M(at, bt).

We can define several control problems. A first one is about ergodicity: which
is the best control sequence a and b so that Mxy (a, b) > 0 for all pairs x,y and
minimum time T? Another is: given a certain time T and a pair x,y, which is
the best control sequence a and b that maximises Mxy (a, b) > 0?

Clearly, one can also be interested in avoiding certain configurations, for
instance, if xi = 1 represents the presence of some animal or plant in position i at
time t, one could be interested in devising a control that prevents the extinction
of animals, i.e., avoid the state x = 0.

As we shall show in the following, so far we have not found algorithms for
finding the best control but exhaustive search.

Beyond finding the actual sequence that maximises the observable, one could
be rather interested in determining the existence of such a sequence, for a certain
time interval T , or to find the minimum time T for which an optimal sequence
exists.

In particular this latter problem can be faced with less computer efforts than
finding the actual sequence for the best control. If one considers the matrix

C =
1
4

∑

a,b

M(a, b) =
1
4
(
M(0, 0) + M(0, 1) + M(1, 0) + M(1, 1)

)
,

and then computes its power CT , all possible control sequences of length T
are contained in such a power. Therefore, the problem of the existence of a
control sequence for a given time T reduces to checking if (CT )xy > 0. One can
also quantify the effective of the control by computing the ratio η between the
minimum and maximum values of C. If this ratio is zero, it means that there are
certain pairs of configurations that cannot be connected by any control sequence,
while η = 1 means that all pairs of configurations can be connected with equal
easiness.
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Fig. 4. The ratio η = min(C)/ max(C) for the BBR model with n = 5 for T = 3
(lower, blue curve) and T = 5 (upper, red curve). Left: q = 0, Right: q = 1 − p (color
figure online)

Let us illustrate some of these concepts for the BBR model, for p = q and
for q = 0. In Fig. 4 we show the easiness parameter η in function of p for q = 0
and q = 1 − p, for n = 5 and different values of T . One can see that in the
“quiescent” phase p < 0.5 the control is almost impossible, and that on the line
q = 1 − p, for p > 0.5, the easiness of the control rises with T faster that on
the line q = 0. Indeed, referring to Fig. 2, one can see that this portion of the
diagram corresponds to the “active” phase, where the BBR model is ergodic.
One can also notice that the easiness of the control is not related to the damage
spreading phase: considering for instance the line q = p, from Fig. 2-right one sees
that the damage spreading phase starts for p > 0.75, while from Fig. 4-right one
sees that the control is possible well before this threshold. The control properties
are probably associated to the “chaoticity” of the associated deterministic CA
over the random quenched field, a problem which will be faced in the future (for
“chaotic” CA and the associated Boolean derivatives, see Refs. [31–33]).

Let us now turn to the problem of finding the best control. For compactness,
let us consider the case n = 3, for which the minimum control time is T = 2.
The highest probability for each pair of configurations x (row index in base two)
and y (column index in base two) for q = 1 − p and p = 0.7 is

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 2 3 4 5 6 7
0 1.000 0.262 0.213 0.396 0.262 0.396 0.396 0.240
1 0.700 0.278 0.208 0.293 0.208 0.293 0.293 0.343
2 0.343 0.221 0.221 0.253 0.221 0.195 0.253 0.490
3 0.343 0.293 0.293 0.278 0.293 0.208 0.208 0.700
4 0.700 0.208 0.208 0.293 0.278 0.293 0.293 0.343
5 0.490 0.253 0.195 0.221 0.253 0.221 0.221 0.343
6 0.343 0.293 0.293 0.208 0.293 0.208 0.278 0.700
7 0.240 0.396 0.396 0.262 0.396 0.213 0.262 1.000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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corresponding to controls a and b (again in base two)

a =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 2 3 4 5 6 7
0 0 1 1 0 0 1 1 1
1 2 2 2 2 3 3 3 3
2 0 0 0 3 1 1 1 1
3 1 2 2 1 3 0 0 3
4 0 3 3 0 2 1 1 2
5 2 2 1 2 0 3 3 0
6 0 0 0 0 1 1 1 1
7 1 2 2 3 3 2 2 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 2 3 4 5 6 7
0 0 0 1 1 1 1 0 2
1 0 2 3 1 3 1 0 2
2 3 1 0 1 0 2 3 1
3 0 1 0 1 0 1 0 1
4 2 3 2 3 2 3 2 3
5 2 0 2 3 2 3 2 3
6 1 3 2 0 2 0 1 3
7 2 3 2 2 2 2 3 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

These results should be read in this way. Let us consider for instance the
initial configuration y = 3 = 110|2 (numbers are coded in reverse order) and
final configuration x = 4 = 001|2. The best control is given by a sequence
a = 0 = 00|2 and b = 3 = 11|2, which is reasonable since one is trying to force
zeros on the left side of the configurations and ones on the right side.

Notice however that the entries for a and b are not always either 0 or 3,
meaning that the best control is not a uniform one for all pairs. For instance,
for going from y = 3 = 110|2 to x = 1 = 100|2 one has to apply a = 2 = 01|2
and b = 1 = 10|2, exploiting the fact that q = τ(1|3) = 1− p = 0.3 and therefore
for forcing a zero in the presence of a neighbourhood already containing a one,
it is better to insert another one than a zero.

6 Conclusions and Future Perspectives

We have introduced the problem of controlling probabilistic cellular automata
by an action performed on the boundary of a target region (boundary control or
boundary reachability problem). We have formulated the problem and presented
the first results.

The field of control of cellular automata and discrete systems is extremely
recent and only a handful of results are known [26,27]. In particular, the control
of probabilistic cellular automata is still to be explored in depth, and more
efficient algorithms for finding the best control sequence are needed if one wants
to exert control on large regions, and in higher dimensions.

A promising possibility is that of exploring the relationship between the
control and the “chaotic” properties of the associated deterministic CA over a
quenched random field.

Acknowledgment. R.S. acknowledges partial financial support from PPA-DGAPA-
UNAM.
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https://doi.org/10.1007/b138451

5. Ermentrout, G., Edelstein-Keshet, L.: Cellular automata approaches to biological
modeling. J. Theor. Biol. 160, 97–133 (1993). https://doi.org/10.1006/jtbi.1993.
1007

6. Boccara, N., Goles, E., Mart́ınez, S., Picco, P. (eds.): Cellular Automata and Coop-
erative Systems. Nato Science Series C, vol. 396. Springer, Amsterdam (1983).
https://doi.org/10.1007/978-94-011-1691-6

7. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cam-
bridge University Press, Cambridge (1998). https://doi.org/10.1007/978-1-4614-
1800-9 27

8. Codd, E.F.: Cellular Automata. Academic Press, New York (1968). ISBN
0121788504

9. Burks, A.W.: Essays on Cellular Automata. University of Illinois Press, Champaign
(1970)

10. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical
Plays, vol. 2. Academic Press, New York (1982). EAN 9781568811420

11. Vichniac, G.: Simulating physics with cellular automata. Phys. D 10, 96–115
(1984). https://doi.org/10.1016/0167-2789(84)90253-7

12. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601
(1983). https://doi.org/10.1103/RevModPhys.55.601

13. Wolfram, S.: Universality and complexity in cellular automata. Physica 10D, 1
(1984). https://doi.org/10.1016/0167-2789(84)90245-8

14. Kari, J.: Theory of cellular automata: a survey. Theor. Comput. Sci. 334, 3–33
(2005). https://doi.org/10.1016/j.tcs.2004.11.021

15. Domany, E., Kinzel, W.: Equivalence of cellular automata to Ising models and
directed percolation. Phys. Rev. Lett. 53, 311–314 (1984). https://doi.org/10.
1103/PhysRevLett.53.311

16. Louis, P.-Y., Nardi, F. (eds.): Probabilistic Cellular Automata, Emergence, Com-
plexity and Computation, vol. 27. Springer, Basel (2018). https://doi.org/10.1007/
978-3-319-65558-1

https://doi.org/10.1007/3-540-45830-1;
https://doi.org/10.1007/3-540-45830-1;
https://doi.org/10.1007/b102055
https://doi.org/10.1007/11861201
https://doi.org/10.1007/978-3-540-79992-4
https://doi.org/10.1007/978-3-540-79992-4
https://doi.org/10.1007/978-3-642-15979-4
https://doi.org/10.1007/978-3-642-15979-4
https://doi.org/10.1007/978-3-642-33350-7
https://doi.org/10.1007/978-3-642-33350-7
https://doi.org/10.1007/978-3-319-11520-7
https://doi.org/10.1007/978-3-319-44365-2
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1049/iet-syb.2010.0039
https://doi.org/10.1049/iet-syb.2010.0039
https://doi.org/10.1007/b138451
https://doi.org/10.1006/jtbi.1993.1007
https://doi.org/10.1006/jtbi.1993.1007
https://doi.org/10.1007/978-94-011-1691-6
https://doi.org/10.1007/978-1-4614-1800-9_27
https://doi.org/10.1007/978-1-4614-1800-9_27
https://doi.org/10.1016/0167-2789(84)90253-7
https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1016/0167-2789(84)90245-8
https://doi.org/10.1016/j.tcs.2004.11.021
https://doi.org/10.1103/PhysRevLett.53.311
https://doi.org/10.1103/PhysRevLett.53.311
https://doi.org/10.1007/978-3-319-65558-1
https://doi.org/10.1007/978-3-319-65558-1


254 F. Bagnoli et al.

17. Zerrik, E., Boutoulout, A., El Jai, A.: Actuators and regional boundary control-
lability for parabolic systems. Int. J. Syst. Sci. 31, 73–82 (2000). https://doi.org/
10.1080/002077200291479
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