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Abstract. Cellular automaton (CA) models of traffic flow are typically
constructed to reproduce macroscopic features of traffic flow. Here, a few
thoughts based on real car-following data are presented that show how
to construct a discrete time/discrete space microscopic model of traffic
flow. The question whether this can still be called a CA-model is left to
the reader.
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1 Introduction

The title of this article seems strange, since a traffic flow model like the CA
introduced in [9] (see e.g. [2,8] for reviews) may be called with right a microscopic
model of traffic flow.

And the answer is: no, since CA models are created to reproduce macroscopic
features of traffic flow, and not microscopic ones. Clearly, this boundary is fuzzy
[5,7], especially when it comes to CA models with smaller spatial discretization
δx than the paradigmatic δx = 7.5m used in the original work of [3,9]. To make
this boundary clearer, a microscopic model of traffic flow discrete in space and
time will be constructed here which is based on real car-following data.

1.1 Notation, CA-Rules, Data-Set

The time, space, speed, and acceleration discretization (in real metric units) will
be called δt, δx, δv and δa, respectively. Each vehicle i at time-step t is described
by a position xi, a speed vi, and the acceleration ai. Sometimes, to write clearer
equations, the index is dropped and instead capital letters X,V,A are used for
the vehicle in front i−1, while the follower is described by small letters (x, v, a),
Then, the net space headway g is defined as

g = X − x − � or gi = xi−1 − xi − �

where � is the length of the vehicle plus the distance when standing. Note, that
this is correct only when working with homogeneous traffic, i.e. all vehicles have
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the same length. If not, then one must fix the co-ordinate system (front of the
car, e.g.) and include the lengths of both vehicles.

Another useful short-hand notation is the speed difference Δv between the
lead and the following vehicle:

Δv = V − v = ġ or Δvi = vi−1 − vi

The CA model introduced in [9] is characterized by δt = 1 s, δx = 7.5m,
from which δv = 7.5m/s and δa = 7.5m/s2 follows. Its deterministic rule-set is
defined, in a slightly different variant as in the original formulation as:

a = min{g − v, 1} (1)
v′ = max{min{v + a, v0}, 0} (2)
x′ = x + v′ (3)

The primed variables are the updated variables, and the stochastic term
is left-out because an explicit white noise acceleration noise is a bad physical
description of a heavy vehicle. The complicated looking second Eq. (2) simply
restricts the speed to the interval [0, v0].

The data to be used in the following are an excerpt (from 3 August 2012) from
a German project named simTD [1], which was a natural driving study although
with the goal to do research on vehicle-to-vehicle communication. There, about
100 vehicles, most of them instrumented with sensors to measure position, speed,
acceleration, distance, and speed-difference to the lead vehicles drove with about
1000 different drivers for three months in an area around Frankfurt/Main, Ger-
many. A more detailed description of the data can be found else-where [12], here
the data from the car-following episodes have been used. A first glimpse into the
data can be gained from Fig. 1, where the distributions of the speed, the speed
differences, the gaps, and the time headways are displayed.

2 From Scratch

To fix the spatial discretization at the vehicle length as done in [9] is definitely
very elegant. Nevertheless, this is also creating the biggest problems for a truly
microscopic model, since it makes acceleration way too big. To fix that, it is
argued here that there is a kind of a minimum acceleration step δa, that is given
by the acceleration noise (its standard deviation denoted σa) created by human
drivers. This variable is difficult to measure, the following approach is used here
to get hold of it, at least to a certain approximation.

2.1 Acceleration Noise

Acceleration noise will be defined as follows: in a deterministic world, the accel-
eration of a vehicle is determined by a function a(v, g,Δv), and eventually addi-
tional variables which are difficult to measure or have not been measured. In
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Fig. 1. The distribution of the variables speed (upper left), speed-difference (upper
right), gap (lower left), and net time headway T (lower right). The headway data are
filtered and contain only values where v > 10 km/h, g > 5 m, and T ≤ 5.

a stochastic setting, even for the same set of variables, the acceleration at the
same point is drawn from a distribution pv,g,Δv(a), and therefore it has a certain
width, which can be quantified e.g. by the standard-deviation of the accelera-
tion σa(v, g,Δv). Neither the exact function a(v, g,Δv), nor the distribution is
known, and to make life even more complicated, it might be suspected that it
depends on the state itself. However, both a(v, g,Δv) and σa(v, g,Δv) can be
extracted from these data, to a rough approximation and within certain limits.

To do so, two sub-sets of the data are picked, a city and a freeway data-
set. This is motivated by the two peaks in the speed distribution, so in a first
step all speeds v ∈ [40, 60] km/h (city) and v ∈ [100, 120] km/h (freeway) will
be selected. In addition, only data from close following situations will be used,
which are defined by Δv ≤ 10 km/h and g ≤ 80m. Then, the phase-space (Δv, g)
is partitioned into boxes whose width is chosen so that in each dimension the
same number of points is in each box. Within each box, now, the mean value
of the acceleration and the corresponding standard deviation can be computed.
This yields the result in Fig. 2.
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Fig. 2. a(v = 50, Δv, g) (upper left) and σa(v = 50, Δv, g) for city speeds, and for
freeway speeds (lower row).

From Fig. 2, a minimum value of σa ≈ 0.4m/s2 may be read out. This will be
chosen in the following equal to the minimum acceleration step δa = 0.4m/s2.

2.2 Time Step Size δt

Having fixed δa = 0.4m/s2, the time-step size is the next. Here, either the
minimum reaction time of humans, which is of the order of 0.3 s might be used.
Interestingly, this value is also close to the minimum time headway found in
empirical data, see Fig. 1. Using δt = 0.25 s gives an additional safety margin
and it divides nicely by 1 (what is not really necessary).

Having fixed δa and δt, which also shows that this construction process is
bottom up, the remaining discretization values are determined, too. Since

δa = δv/δt and δv = δx/δt,

the spatial discretization follows to be δx = δaδt2 which gives δx = 0.025m.
This is of course way smaller than the value in [9]. For the speeds, this yields
δv = 0.1m/s. For maximum speeds larger than 25.5 m/s, this will no longer fit
into a 1 byte integer.
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2.3 The Dynamics

There are two observations relevant here: the first is that human control is dis-
crete. At so called action-points [10], the human controler changes acceleration
(more precisely, the gas- and or brake-pedal position) quickly, and keeps it con-
stant for 0.5. . . 5 s, see [11] for the distribution of this times which may follow a
gamma-distribution. This might have made another time-discretization δt, but it
is more difficult to measure, since a small acceleration change is hard to discern
from high-frequency acceleration noise. However, at least the size is similar to
the 0.25 s that have been chosen above.

The second observation is that to model the car-following process (car-
following is abbreviated CF in the following), at least the original model is too
gross. Additionally, it mixes the car-following with a safety consideration, and
since the small time-step size chosen above lead to plenty of modelling leeway,
these two will be separated in the following. So, there is an emergency braking
which happens if the normal car-following fails and that is with the typical Euler
backward update formulated as follows:

if v > g/δt then v = g/δt (4)

Since in the discretization framework chosen here δt = 1, this is exactly the same
as in the original formulation.

For the CF-process, a slightly more complex approach is chosen. Instead of
the original dependence on distance g alone, the model acts as a linear controler
with limited acceleration a0, which is also pretty close to some of the adaptive
cruise control of modern driver assistant systems. Furthermore, there is the need
to introduce two pre-factors c1, c2 to the two terms in the equation, whose
physical relevance will be discussed later on. Here, they simply scale the variables
to a reasonable size (typically, ci < 1).

a0 = min
{

max
{

c1

( g

T
− v

)
+ c2(V − v),−β

}
, α

}
(5)

and a0 is bounded between −β from below, and α from above, which again is
written as the complicated min, max combination. This is however not the whole
model. In addition, the action-points are included in the dynamics pretty much
like in a Monte Carlo simulation. This acceleration a0 is only made the new
acceleration with a certain probability pAP, so the additional step is needed:

a′ =
{

a0 with probability pAP

a else (6)
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The rest, then, is just the same as in Eqs. (2), (3):

v′ = max{min{v + a′, v0}, 0}
x′ = x + v′

This is a simple linear controler, and it clearly has a stable fixed-point at
v = g/T . The randomness injected by the action-point mechanism is too weak to
change this. However, some randomness is needed, since it seems almost impos-
sible to find car-following data where the lead vehicle’s speed is constant. There
are many ways how to do this, and the worst one (not to be followed here) is
to add acceleration noise. Better is the approach of the so called 2D models [4].
There the preferred headway T is made stochastic. Here, we only allow three val-
ues of the headway T = 3, 4, 5 (in units of δt), and the driver switches between
them each time a new AP is issued.

3 Phenomenology

Here, we simulate first the microscopic features, and then have a look at the
macroscopic ones like the fundamental diagram.

3.1 Microscopic

For the microscopic description, it should be noticed that the behaviour, and
especially the stability of the car-following process is strongly determined by
the choice of the two parameters c1, c2. Clearly, they are inverse time-constants,
named Tg and TΔv. From the theory of linear controlers which is being used for
adaptive driver assistant systems, it is well-known, that a platoon of those vehi-
cles is only platoon-stable for a certain range of parameters, typically for small
values. The model here is a little bit more complicate than a linear controler,
since the acceleration is bounded, making it a non-linear controler. Therefore,
for too small values of Tx, the acceleration distribution becomes bimodal with
peaks at the limiting value a0. Which is not realistic. Therefore, there is only a
fairly small range of values for the Tx, where they are platoon stable and not
bimodal. In the following, the parameters T1 = 26 (6.5 s) and T2 = 6 (1.5 s) are
chosen, while pAP = 0.4 is used. For a string of four vehicles, this yields then
the results presented in Fig. 3.

The lower panel compares the distributions of Δv and of T with the empirical
ones. While this fits well for the speed-differences, it does not so well for the
headways. The simulation has used only three headway values T = 3, 4, 5 (0.75,
1, 1.25 s in real units), it seems that the distribution of real drivers is much wider
than this three values.
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Fig. 3. The behaviour of the model in (Δv, g)-space, for the first follower (green), the
second (red) and the third (black, upper left). The upper right displays the acceleration
distribution in CA-units, still a slight peak at the boundary value is to be seen. The
lower panel displays the speed-difference and headway distribution, and compares it
directly with the empirical ones. (Color figure online)

3.2 Macroscopic

To compute a fundamental diagram, the simplest possible set-up is chosen. The
vehicles run in a ring, which means that the density k is the control parameter of
the fundamental diagram. Simulations are run for 1024 vehicles for 40 values of
the scaled density k/kmax values ranging from 0.01 to 0.99. The system is started
either in a homogeneous or in a jammed configuration, each simulation runs for
105 time-steps of which the first 25,000 time-steps are discarded. Only the speed
distribution is sampled, where 40 simulation steps are left out between each
sampling step to minimize correlations between subsequent states. The results
shown in Fig. 4 the following: at small densities, only the free flow state exists.
There is an intermediate range, where the system’s state consists of a mixture of
free flow and jams, and finally, for large densities, the system eventually becomes
bistable.

No more detailed and exhaustive studies have been performed.
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Fig. 4. The fundamental diagram of the model. Presented is the speed distribution p(v)
as function of the scaled density. The left plot is for homogeneous initial conditions,
while the right plot for a system started in a jammed condition, the color scale is
logarithmic to include more information about the distributions.

4 Execution Speed

There are a lot of science tales around the fantastic numerical performance of
CA models. Partially, they stem from the time where the floating point units of
computers were weak in comparison with the integer units, and therefore it was
worth to look for integer-based models. With this model at hand that lingers
between discrete and continuous, it is time to have a look into this issue. Note,
that there is also a much more detailed contribution to this conference by Moreno
Marzolla, which discusses in much detail what can be reached and which kind
of tricks to apply in order to achieve good performance. Therefore, only a few
short remarks to the issue of numerical performance may be added here.

One of the challenges with this problem is, that the performance depends very
much on a lot of things that are difficult to control. Just for starters, when writing
a program that implements the model in [9], and comparing it with a continuous
one that implements SUMO’s [6] default model, not much of a difference can be
seen. This difference becomes even smaller, when real world things like copying
data from the running simulation, or if the open system’s simulations are needed.
For some-one to dive into the depths of modern compilers and the tremendous
possibilities of modern CPU’s such as their SIMD (=Single Instruction Multiple
Data) units, some differences can be found.
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The implementation used here runs with 30 MUPS on a Pentium G4400 with
Windows 10 and cygwin’s g++ compiler in the version 6.4.0, which is on par
with a implementation of the model of SUMO without any fancy tricks. The
unit MUPS means Mega Updates Per Second and has been introduced in [9].
This is just by using a normal optimization setting of a year 2017 compiler. If
the SIMD units of modern CPU’s are utilized, this performance improves, in
some cases by a factor of 10. Interestingly, there is not much difference between
the CA implementation and the continuous one. But note, that this is only
possible in the case of a closed system, where the numbers of particle (cars)
does not change. It may also work, if the CA is implemented in a grid-based
manner instead of a vehicle-based which is more efficient in terms of memory,
but then a lot of simulation time is spent by updating empty cells. We have not
found an implementation that can utilize SIMD or GPU’s when simulating an
open system car-based, which is the case for most applied settings. Then, those
beautiful speed-ups vanish and one sticks with the 30 MUPS above.

5 Conclusions

In conclusion, the building blocks of a microscopic discrete space/discrete time
CA model have been presented. When following the approach pursued here, this
leads to a CA model with time-step size δt = 0.25 s and spatial discretization
Δx = 0.025m. While still discrete, we think that such a model is not easy to
discern from a continuous model, if this possible at all. When looking into the
plots in this article only the acceleration is clearly discrete. It may be interesting
to see what of the features included here can be left out to still have a valid
description of microscopic driving. Another valid conclusion is also, that such
simple models as the CA have their value, but should not be used when a really
microscopic description of traffic flow is needed for the application at hand.
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