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Abstract. Given a 2d Cellular Automaton (CA) with mobile agents
controlled by a finite state automaton (algorithm). Initially the field is
colored white and agents are randomly placed. They have the task to
color the whole field into black in shortest time. The objective is to find
algorithms that (1) can form the black–pattern, (2) keep it stable and then
(3) change into a global state where all agents stop their activity. Four
levels of stability are distinguished, depending on the grade of inactivity
after having formed the pattern. For systems with up to four agents we
found such algorithms by applying genetic algorithms (GA) and manual
post fine tuning. Performances and simulations of these algorithms are
presented.
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1 Introduction

The Problem. Initially all N = n × n cells of a square field with border
are colored white, k agents are there randomly placed and their direction is
also random. The CA multi-agent system (“CA–MAS”) has to solve the Black–
Pattern task with Termination, shortly the “BPT”. That is, the agents must
explore and color the whole cell field from white into black in shortest time and
keep it stable, and then they must stop moving around and turning. This means
that not only a stable output is required, but also a kind of termination for
the entire multi-agent system. The agents shall be controlled by a finite state
automaton with a minimal number of states. Actions and inputs must be very
limited and local. Although this task sounds easy to accomplish, that is not the
case, especially with more than one agent.
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The underlying general objective is to study the termination in CA–MAS and
thereby to motivate further research thereon. For this purpose, and in order to
keep the complexity as low as possible, we revisit an already studied very simple
CA, the Creature’s Exploration Problem [1], except that neither color (for indirect
communication) nor termination were considered therein. Incidentally, the basic
action of blacking a cell may also be interpreted as a control message – a primitive
signal, a marker, a trace, a stigma. According to [2], stigmergy is “the process of
indirect communication of behavioral messages with implicit signals” and where
indirect means the “interaction through the environment”. Thus, the cell color
acts also as a very limited distributed communication memory. It is worth to
emphasize the difference of nature between a static trace deposited in a cell
and a dynamic message traveling through a channel in distributed computing.
Stigmergy is now a feature widely highlighted in many environments [3].

Related Work to Termination. Termination detection is a fundamental
problem in distributed computing. A set of processes execute a task and commu-
nicate through interprocess channels by messages. The computation is entering a
quiescent state as soon as all processes are idle and all channels are empty. Since
there is neither global clock nor a common memory, the detection of a global
quiescence is impossible without an additional control mechanism which should
not interfere with the basic computation. The pioneering works of Lamport,
Dijkstra–Scholten, Francez, Misra–Chandy are well known and a lot of others
in the eighties thereon. All those control schemes are categorized, at least until
1998, in an elegant taxonomy including eight classes [4]. Termination detection is
also a fundamental problem in multi-agent “MAS” systems. As a matter of fact,
there is a close relationship between distributed systems and multi-agent sys-
tems, although some dissimilarities can be highlighted [5,6]. We consider their
differences as minor and thereby that MAS termination detection procedures
could enter Matocha–Camp taxonomy [4], at least updated.

In Sect. 2, the termination problem is defined through the black–pattern task
and four stability levels are proposed. In Sect. 3, the FSM–based multi–agent
system is presented. Then k–agent algorithms are analyzed in Sect. 4 with k =
1, 2, 4 and various scenarios of stability and termination are studied as well as
performances and robustness before Conclusion.

2 Termination and Stability Levels

The problem of termination in CA–MAS was already noticed in [7]. How can a
multi-agent system be stopped in a decentralized way after having formed the
required pattern? Like in [4], a simple way would be to flood the CA network with
a wave at each time-step. This technique requires a lot of additional resources and
is very time-consuming. Therefore we were looking for a more effective way. The
idea is, that during the run (without a separate wave phase after each time-step),
the agents themselves are able to detect that the pattern was formed (or will
safely be formed in the near future) and then automatically stop their activities.
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Thereby the energy consumption of the whole system stops or is minimized after
the job is done. Another advantage is the following: when the agents recognize
that the task is accomplished, they are able to trigger a new task. This is an
important feature allowing to execute a sequence of subtasks in a decentralized
way. Time is counted in discrete time steps t = 0, 1, ..., because CA agents are
working in the synchronous CA model. We define four levels Λ0 ≺ Λ1 ≺ Λ2 ≺ Λ3

of stability. The precedence means that Λj is stronger than Λi for j > i.

Λ0 – Unstable: the aimed pattern is formed for the first time at t = T0. After
that, the pattern may change.

Λ1 – Stable: the aimed pattern is formed and remains stable for time t ≥ T1

and at least one agent continues moving around.
Λ2 – Stable idle-stop: the aimed pattern is formed and remains stable for time

t ≥ T2, all agents have stopped moving around at time T stop
2 ≥ T2 and at

least one agent continues turning. We call such algorithm idle–stopping.
Λ3 – Stable full-stop: the aimed pattern is formed and remains stable for time

t ≥ T3 and all agents have stopped moving around and turning at time
T stop
3 ≥ T3. No activity is visible and we call such algorithm full–stopping.

Note that at level Λ3 all agents become passive from the global observer’s point
of view. Nevertheless passive agents may change their internal state or may enter
into in a special final dead-state. Note also that the agents need not to stop at
the same time. If each agent wants to be informed about the termination, an
additional consensus operation among the agents is necessary.

3 The Designed Multi-agent Cell Architecture

At first we have to design a cell architecture which is able to model agents,
potentially can solve the problem, and is relatively simple in terms of “hardware”
elements. It has to be tailored to a certain extent to the problem in order to
solve it at all. Such an architecture consists in basic hardware elements, such
as registers, memories, combinatorial logic and wires. We assume a synchronous

Fig. 1. The architecture of a cell. The state table defines the agent’s next control state,
its next direction, and whether to move or not. It defines also the setting of the color
(0/1) as part of the environment.
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working principle. One part of the architecture shall be fixed, and another part
shall be configurable. The configurable part can be seen as a program, that
allows to define the functionality within certain limits. For example a classical
1d CA cell consists of a 1–bit register (holding the state), a rule function (fixed,
configurable or even variable logic or table), a feedback loop for the state, and
wires in and between the cells. Such a classical cell corresponds to a simple
Moore automaton.

Here we use a more complex cell, where the cell rule depends on the agent’s
current state (taking the history into account), and the rule is only executed on
a site where an active agent is situated. The whole model is still fully compat-
ible with the CA model, and therefore we use the term CA agent system. The
designed cell architecture is depicted in Fig. 1. The whole cell state is stored in
a composition of several registers:

CellState = (Color,AgentState)
Color L ∈ {0, 1}
AgentState = (Active, Identifier,Direction, State)

Active ∈ {true, false}
Identifier ID ∈ {0, 1, ..., k − 1}
Direction D ∈ {0, 1, 2, 3} ≡{toN, toE, toS, toW}
State S ∈ {0, 1, ..., Ns − 1}. // control state, initially set to zero

Each cell contains a color (as part of the environment) and one agent, which
is either active and visible, or passive and not visible. When an agent is moving
from cell A to cell B, AgentState is copied from A to B and the Active bit of A
is set to false. The first cell ahead (front cell) in the moving direction and the
second cell ahead (in order to detect conflicts) are the neighbors.

An agent is controlled by a Mealy automaton, consisting of the state register
s and the transition function, which here is defined by a state transition/output
table, a state table for short. Table inputs are the control state s and defined input
situations x, table outputs are the signals nextstate, turn, move and setcolor. The
signal nextstate defines the next control state of the automaton. The turn signal
triggers the change of the direction. The move signal is interpreted by the agent
itself and is presented to the neighboring cells. The setcolor signal defines the
setting of the color. The Mealy automaton realizes the “brain” or control unit of
the agent. The state table can also be seen as a program or algorithm. Therefore
we call the state table also agent’s algorithm “AA”. The state table corresponds
to the genome (configurable part of the architecture) to be optimized by GA.

An agent has a moving direction D that also selects the cell in front as
the actual neighbor. An agent can interpret the following conditions: color : cell
color L, front color : front cell’s color LF , blocked by border : then the front color is
defined as LF = −1, blocked by another agent : either another agent is situated in
front, or another agent with a higher priority wants to move to the same target
cell in front. The sensor is responsible for the reduction of the neighboring states
to the conditions blocked and front color, then further used by the input mapping.
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Table 1. Input mapping function with Nx = 10 inputs.

blocked color front color x

blocked 1 0 -1 0
by border 1 1 -1 1

0 0 0 2
free 0 0 1 3

0 1 0 4
0 1 1 5

1 0 0 6
blocked 1 0 1 7
by agent 1 1 0 8

1 1 1 9

Triggered by the state table output signals, the following actions are per-
formed: next state: state ← nextstate ∈ {0, ..., Ns − 1}, move: move ∈
{0, 1} ≡ {wait, go}, turn: turn ∈ {0, 1, 2, 3}. The new direction is D(t + 1) ←
(D(t) + turn) mod 4, set color: setcolor ∈ {0, 1} ≡ {color0, color1}. The new
color is L(t + 1) ← setcolor.

All actions are performed in parallel. There is only one constraint: when the
agent’s action is go and the situation is blocked, then an agent cannot move and
has to wait, but still it can turn and change the cell’s color.

An input mapping function is used to limit the size of the state table memory.
The input mapping reduces all possible input combinations to an index x ∈ X =
{0, 1, . . . , Nx −1} used in combination with the control state to select the actual
line of the state table. The input mapping was defined as shown in Table 1.

Note that the hardware resources and capabilities (sensed situations, action
set) are quite limited, which makes the given task with automatic termination
difficult to solve. Moreover, the agents have not any knowledge about north–
east–south–west orientation, that makes the task more complicated and more
universal.

4 Multi-agent Algorithms

Algorithms for k-agent systems “k–AA” (k = 1, 2, 4) with different termination
conditions were evolved by GA with manual improvement1. More details of the
used GA method are given in [8]. Note that finite state algorithms were evolved,
each represented as a state stable (the genome). The number of desired control
states and the desired stability level were used as input parameters.

1–Agent Algorithm. A full-stopping algorithm was partly found by GA, and
then manually improved. It needs only three states (Fig. 2). Zero is the initial

1 The GA method was very time consuming (millions of multi-agent simulations)
and took around 4 weeks of computation time on a state–of–the–art quad-core PC
3.5 GHz.



142 R. Hoffmann et al.

0

21

(5)100

(0)013

(3)101

(0)013

(2)010

(2)002

(4)110

full-stop

(0)011
(2)110

conditions:
(2): colors LLF =00 and free
(3): colors LLF =01 and free
(4): colors LLF =10 and free
(5): colors LLF =11 and free
(0): blocked by border and L=0
actions:
010: color0, go, no turn
011: color0, go, turn right
002: color0, wait, turn back
013: color0, go, turn left
100: color1, wait, no turn
101: color1, wait, turn right
110: color1, go, no turn

(a) (b) (c)

Fig. 2. The full-stopping 1-agent algorithm with 3 states. (a) Conditions and actions
used in graph (b), (c) corresponding state table with don’t cares (-).

Fig. 3. (a) Simulation of the full-stopping 1–AA in a 6 × 6 field, T stop
3 = 58 (b)

Simulation of the idle-stopping 2–AA, T stop
2 = 35 (c) Simulation of the full-stopping

4–AA, starting randomly, T stop = 28.

and final state. The strategy can be understood by looking at a simulation
(Fig. 3a). At first the agent searches for a corner, moving straight and turning
right when detecting a border. After having found the corner, it starts to color
the cells black, first moving along the borders and then moving inwards towards
the center in a spiral-like trajectory. Then the agent stops moving and turning
at t ≥ T stop

3 . This full-stop corresponds to the self-loop in state 0 by Condition
5 (colors LLF = 11) and Action 100 (color1, wait, no turn).

This full-stopping algorithm can easily be changed into an idle-stopping
algorithm by changing the final actions from (color1, wait, no turn) into
(color1, wait, turn). And it can be changed into a weaker algorithm (with
stability level < 2) by changing actions into (color1, go, turn/no turn).

The number of needed time-steps is given in Table 2. Its time-complexity is
linear in O(N), an exact formula t(n) could be derived by a simple analysis. The
most time-consuming part is the coloring in a spiral-like way, in addition some
steps are needed to detect borders, corners and already painted cells.
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Table 2. Full-stopping 1–AA: number of time steps. Average is over 1000 fields.

Size 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10

T stop
3,mean 27.76 39.80 53.73 69.87 88.01 108.07 129.87

T stop
3,min 24 35 48 63 80 99 120

T stop
3,max 31 44 59 76 95 116 139

T stop
3,mean/N 1.74 1.59 1.49 1.43 1.38 1.33 1.30

Table 3. Average time steps per cell T stop/N . Full-stopping and idle-stopping 2–AA,
evolved on 10 × 10 fields, simulated on 1000 fields for each field size.

Size 4× 4 5× 5 6× 6 7× 7 8× 8 9× 9 10× 10

Full-stop 2–Agent system T stop
3 /N 1.22 1.09 1.01 0.96 0.72 0.90 0.87

Idle-stop 2–Agent system T stop
2 /N 1.19 1.04 0.96 0.89 0.84 0.81 0.78

Full-and-idle-stop 1-A. S. T stop/N 1.74 1.60 1.49 1.43 1.38 1.33 1.30

2–Agent Algorithm. The 2-agent algorithm was first evolved by GA on 6× 6
fields. It turned out that the found algorithms were not working well on other
field sizes. Therefore GA optimization was performed on one thousand 10 ×
10 training fields with 4 states. Then the found idle-stopping algorithm was
manually changed into a full-stopping algorithm.

A simulation sample is shown in Fig. 3b. At first, the agents search for corners.
Then they start paint black in spiral-like way, with two active opposite coloring
points. The agents in the idle-stopping algorithm continue turning after coloring
whereas they fully stop in the full-stopping algorithm.

The performance for different field sizes is shown in Table 3. The 2-agent
algorithm executed on 1-agent systems yields the same performance as the former
1–AA in Table 2. A full-stopping 10×10 system with 2 agents is 1.49 times faster
(1.30/0.87) than a system with 1 agent only. And a full-stopping 10× 10 system
with 2 agents is 1.12 times slower (0.87/0.78) than an idle-stopping system. In
order to compute T stop average values, 1,000 random fields were simulated.

Table 4. Performance of 4–AA on 6× 6 fields. Full-stopping (left), idle-stopping (right).
Values are averaged over 1000 fields.
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4–Agent Algorithm. Many computer-time consuming attempts were made by
GA to find a 4-agent algorithm with 6 states that can work successfully on any
field size. Until now, no general algorithms were found. Nevertheless GA was
able to find specialized algorithms that work on one thousand random fields of
size 6 × 6 or 10 × 10.

If the agents start rotational symmetrically then they are first searching for
corners and then they build the pattern using a counter-clock spiral trajectory.
When the agents start randomly (Fig. 3c) then the pattern building is slower
and not so symmetric, but still the tendency of building a counter-clock spiral
can be observed.

The full-stopping 4-agent system is 30.46/26.53 = 1.15 times slower than
the idle-stopping system (Table 4). The cost per cell is the number k of agents
multiplied with the number of needed time units per cell. So the 4-agent systems
are about twice more costly than the 1-agent systems, while they are about two
times faster.

5 Conclusion

In this paper four stability levels for the termination of CA multi-agent system
were proposed. Idle-stopping and full-stopping algorithms were found for the
BPT where the whole field has to be painted from white to black in shortest
time. The general 1-AA need only 3 states and are relatively fast with time-
complexity O(N). The general full-stopping 2–AA needs 4 states and is about
50% faster than the 1–AA. Until now, no general 4–AA was found, but spe-
cial ones for fields of size 6 × 6 and 10 × 10 were evolved by GA. They work
about twice as fast as 1–AA. All found algorithms follow in principle the same
strategy: first searching for corners, then follow a spiral-like trajectory until the
midpoints are reached. Future work is directed to find general algorithms that
can work successfully on any field size with any number of agents. Another topic
is the efficient communication and synchronization of the stopping state between
agents.

References

1. Halbach, M., Hoffmann, R., Both, L.: Optimal 6-state algorithms for the behavior of
several moving creatures. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI
2006. LNCS, vol. 4173, pp. 571–581. Springer, Heidelberg (2006). https://doi.org/
10.1007/11861201 66

2. Tummolini, L., Castelfranchi, C.: Trace signals: the meanings of stigmergy. In:
Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol.
4389, pp. 141–156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71103-2 8

3. Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Environments
for multiagent systems State-of-the-art and research challenges. In: Weyns, D., Van
Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp.
1–47. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32259-7 1

https://doi.org/10.1007/11861201_66
https://doi.org/10.1007/11861201_66
https://doi.org/10.1007/978-3-540-71103-2_8
https://doi.org/10.1007/978-3-540-71103-2_8
https://doi.org/10.1007/978-3-540-32259-7_1


Termination and Stability in CA Agents for the Black–Pattern Task 145

4. Matocha, J., Camp, T.: A taxonomy of distributed termination detection algorithms.
J. Syst. Softw. 43(3), 207–221 (1998)

5. Wellman, M.P., Walsh, E.W.: Distributed quiescence detection in multiagent nego-
tiation. In: Fourth International Conference on Multi-Agent Systems, ICMAS, pp.
317–324 (2000)

6. Lahlouhi, A.: MAS-td: an approach to termination detection of multi-agent sys-
tems. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.) MICAI 2014. LNCS
(LNAI), vol. 8856, pp. 472–482. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13647-9 42

7. Hoffmann, R., Désérable, D.: Generating maximal domino patterns by cellular
automata agents. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 18–31.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62932-2 2

8. Hoffmann, R.: How agents can form a specific pattern. In: W ↪as, J., Sirakoulis, G.C.,
Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 660–669. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11520-7 70

https://doi.org/10.1007/978-3-319-13647-9_42
https://doi.org/10.1007/978-3-319-13647-9_42
https://doi.org/10.1007/978-3-319-62932-2_2
https://doi.org/10.1007/978-3-319-11520-7_70

	Termination and Stability Levels in Evolved CA Agents for the Black–Pattern Task
	1 Introduction
	2 Termination and Stability Levels
	3 The Designed Multi-agent Cell Architecture
	4 Multi-agent Algorithms
	5 Conclusion
	References




