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Abstract. We consider a problem of lifetime optimization in Wireless
Sensor Networks. The purpose of the system is to find a global activity
schedule maximizing the lifetime of the Wireless Sensor Network while
monitoring some area with a given measure of Quality of Service. The
main idea of the proposed approach is to convert the problem of a global
optimization into a problem of self-organization of a distributed multi-
agent system, where agents take part in a game and search a solution in
the form of a Nash equilibrium. We propose two game-theoretic models
related to the problem of the lifetime optimization in Wireless Sensor
Network and apply deterministic ε-Learning Automata as players in the
games. We present results of an experimental study showing the ability
of reaching optimal solutions in the course of Learning Automata self-
organization by local interactions in an iterated game.
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1 Introduction

Fast development of information and communication technologies opens new per-
spectives for creating Wireless Sensor Network (WSN)-based intelligent services
oriented on collecting, sending and processing large amount of data. This idea
is shortly termed as Ambient Intelligence and Internet of Things and is based in
particular on different applications of Wireless Sensor Networks (WSNs). WSNs
are networks of large number of tiny computer-communication devices called
sensors deployed in some area, which sense a local environment, collect local
data depending on an application and send them via a special node called a sink
to an external world for processing and taking a decision.

In many applications, such as e.g., monitoring remote and difficult to access
areas, sensors are equipped with single use batteries which can not be recharged.

c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 125–136, 2018.
https://doi.org/10.1007/978-3-319-99813-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99813-8_11&domain=pdf


126 J. G ↪asior et al.

From the point of view of Quality of Service (QoS) of such a WSN, one of the
most important issues is its operational lifetime. After a deployment (e.g., by an
aircraft) of sensors at random locations of some area they should self-organize:
to recognize their nearest neighbors to be able to communicate and start taking
locally decisions in subsequent moments of time about turning on or off their
batteries to monitor events. These decisions will directly influence the lifetime of
the network and should be taken in such a way as to maximize it. The problem
of lifetime maximization is closely related to the coverage problem. A group
of sensors monitoring some area is usually redundant, i.e., usually more than
one sensor cover monitored targets and forms of redundancy can be different.
By solving the coverage problem one can indirectly also solve the problem of
maximization of WSN lifetime.

There exists a number of algorithms to solve the problem of coverage/lifetime
maximization. They are classified either as centralized and assume availability of
entire information and a solution is delivered usually in the form of a schedule of
activities of all sensors during the entire lifetime, or distributed, where a solution
is found on the basis of only partial information about the network. Because
these problems are known as NP-complete [4] centralized algorithms are oriented
either on delivery of exact solutions for specific cases (see, e.g. [3]) or applying
heuristics or metaheuristics to find approximate solutions (see, e.g. [7,14]). The
main drawback of centralized algorithms is that a schedule of sensors’ activities
must be found outside the network and delivered to it before starting operation.
Therefore distributed algorithms become more and more popular because they
assume reactivity of sensors in real time, and they are scalable in contrast to
centralized algorithms.

A number of such algorithms based on applying Learning Automata (LA)
[6,11] or Cellular Automata (CA) [13] has been proposed recently. Each of these
techniques taken separately has own advantages and disadvantages. The main
disadvantage of classical CA is a lack of reactivity when they are applied to solve
optimization problems. On the other hand, a distinctive feature of LA is the
ability of interaction with an environment [1,2]. We believe that combining both
techniques is a rational approach in an attempt to solve optimization problems.
Some works to extend classical CA to the second order CA which are able to
self-adopt have been also appeared recently [5] and they are based on multi-agent
game-theoretic paradigm and we follow these both lines of research.

In this paper we propose a novel approach to the problem of coverage/lifetime
optimization based on multi-agent interpretation of the problem and game-
theoretic interaction between players participating in a non-cooperative game
[10]. Each agent-player is oriented on the minimization of its level of redundant
coverage of monitored targets shared with other agent-players. The functions
of agent-players are performed by deterministic LA. We show that the agent-
players are able to find in a fully distributed way a solution defined as a Nash
equilibrium (NE) [8] corresponding to balanced coverage of (POIs) which reduces
batteries expenditures and prolongs the lifetime of WSNs.
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The structure of the paper is the following. Section 2 describes the prob-
lem of coverage/lifetime optimization in WSNs and the next section presents a
multi-agent interpretation of the problem. In Sect. 4 two game-theoretic mod-
els related to the studied problem are proposed, and in Sect. 5 these games are
experimentally studied with the use of deterministic LA as players. The last
section contains conclusions.

2 Sensor Networks and Coverage and Lifetime Problems

It is assumed that a sensor network S = {s1, s2, ..., sN} consisting of N sensors
is deployed over some area, where M POIs should be monitored. Sensors are
distributed randomly, each sensor can monitor POIs in a sensing range Rs and
has a non-rechargeable battery of capacity b. Each sensor can work in one of
two modes: an active mode when battery is turned on and a unit of its energy is
consumed and POIs in its sensing range are monitored; and a sleep mode when
battery is turned off and POIs in its sensing range are not monitored.

It is assumed that decisions about turning on/off batteries are taken in dis-
crete moments of time t. It is also assumed that there exists some QoS measure
evaluating the performance of WSN. As such a measure one can accept a value
of coverage defined as a ratio of POIs covered by active sensors to whole number
M of POIs. At a given moment of time this ratio should not be lower than some
predefined value of q (0 < q ≤ 1). Lifetime of WSN can be defined as a number
of consecutive time steps in which the coverage is within the predefined value of
q.

Figure 1(a) shows an example of a sensor network consisting of N = 4 sensors.
One can notice that if a given sensor is active and some other neighbor sensors
are also active than a number of POIs in the sensing ranges of these sensors are
covered by more than one sensor. This possibly redundant coverage is related
to extra use of sensors’ batteries which has a negative impact on the lifetime
of WSN. Figure 1(b) shows a graph of interaction depicting relations between
sensors and POIs of exemplary WSN from Fig. 1(a).

One can notice that the graph has two types of vertices: black square vertices
denote sensors and rectangle vertices denote POIs. A sensor si in an active mode
covers mi POIs which can be classified in the following way: POIs which can be
covered only by sensor si (mi0 is a number of such POIs), POIs which are shared
by sensors si and sj and can be covered by part or all these sensors (mij), POIs
which are shared by sensors si, sj and sk and can be covered by part or all these
sensors (mijk), etc.

Sensors which share one or more types of POIs are immediate neighbors. One
can see in Fig. 1(b) that e.g., sensors s2 and s4 are immediate neighbors because
they share m24 POIs, and sensors s1, s2 and s3 are immediate neighbors because
they share m123 POIs.
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Fig. 1. Example of a sensor network: area view (a), corresponding interaction graph
(b).

3 Multi-agent Approach to WSN Lifetime Optimization

Let us assume that each sensor si of WSN is controlled by an agent Ai of
a multi-agent system consisting of N agents. Each agent has two alternative
decisions (actions): αi = 0 (battery is turned off) and αi = 1 (battery is turned
on) and neighbor relations between agents are defined by an interaction graph
(see, Sect. 2). According to the interaction graph, an agent Ai has ki immediate
neighbors and will receive some reward revi() which depends on its decision and
decisions of its neighbors (see, Eq. (1)):

revi(αi, αneigh1 , αneigh2 , ..., αneighKi
) =

{
revoff

i − penoff
i (), if αi = 0

revon
i − taxbat

i (), if αi = 1,
(1)

where:

– αi, αneigh1 , αneigh2 , αneighki
– decisions of agent Ai and its neighbors;

– neighki
– a number of neighbors of sensor si;

– revoff
i – a reward for covering by active neighbor sensors shared POIs while

sensor si is inactive;
– penoff

i – a penalty for not covering POIs which are in the range of sensing of
inactive sensor si;

– revon
i – a reward for covering by active sensor si POIs which are in its range;

– taxbat
i – tax for the use of battery by sensor si.

More detailed formulation of Eq. 1 (see, Sect. 4) shows that an agent Ai can
receive some reward even if it is inactive (αi = 0) and saves its own battery. It
happens when some neighbor sensors are active and shared POIs are covered by
them, and when a number of not covered POIs does not exceed some threshold
value related to a predefined coverage parameter q and penalty for that is lower
that obtained reward.
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On the other hand, agent Ai receives a reward when it spends energy of its
battery, but this reward can be lowered when some other neighbor sensors are
active and cover shared POIs. The purpose of each agent is to maximize its total
reward which corresponds to finding a local trade-off between requested level of
the coverage and expending battery power. This way of behavior of agents is in
line with the main goal of this work: finding a global trade-off between requested
level of QoS and minimization of battery expenditure to maximize the lifetime
of WSN.

There exists many ways to organize the work of agents to realize this
global goal. In this paper we propose a game-theoretic approach based on non-
cooperative games where agent-players compete for achieving their own goals and
a solution of the optimization problem is converted into a problem of searching
for Nash equilibrium (NE) by players in a game. Similar game-theoretic approach
has been recently successfully applied in the context of solar-powered WSN [9].

4 Game-Theoretic Approach to WSN Lifetime
Optimization

One of the main sources of imbalance between the level of coverage of POIs and
spending battery power are shared POIs. In particular, one can see from Fig. 1(b)
two extreme patterns of sharing: the same number of POIs can be shared by some
(perhaps huge) number of sensors (see, m123), and on the other hand – different
pairs of sensors can share different sets of POIs (see, m12,m13,m23).

These situations correspond to two different models with different expected
solutions, and they are shown in Figs. 2(left) and 3(right), respectively together
with corresponding interaction graphs.

Fig. 2. Model 1: a sensor network (left), corresponding graph interaction (right).

4.1 Model 1: Leader Election Game

In this model (see, Fig. 2) it is assumed that a number of N sensors controlled
by corresponding agents share a common set of POIs. A reward obtained by a
single agent revi(α1, α2, ..., αi, ..., αN ) depends on actions of all agents and can
be evaluated according to Eq. (2):
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revi(α1, α2, ..., αi, ..., αN ) =
{

revoff
i (mshared on

i ), if αi = 0
revon

i (mi), if αi = 1,
(2)

where:

– revoff
i () = Coff

rev × mshared on
i

M ,
– revon

i () = Con
rev × mi

M(Non
ij +1) = Con

rev

Non
ij +1 ,

where:
• mshared on

i – a number of POIs which are in sensing range of inactive
sensor si and shared with active neighbor sensors;

• mi – a number of POIs which are in sensing range of sensor si;
• M – a total number of POIs;
• Non

ij – a number of active neighbors of sensor si;
• Coff

rev , Con
rev – model constants.

In the NE of the game an expected rational behavior of players is such that
only one agent-player selects action αi = 1 and remaining players select actions
αj = 0 (i �= j). Therefore this game will be further referred to as the Leader
Election Game. From definition of NE the following relations between payoffs of
players selecting action αi = 1 and players selecting action αj = 0 (i �= j) should
be fulfilled:

Con
rev

Non
ij +1 > Coff

rev × mshared on
i

M , for Non
ij = 0,

Coff
rev × mshared on

i

M >
Con

rev

Non
ij +1 , for Non

ij > 0.
(3)

Thus, we obtain:
Con

rev > Coff
rev , for Non

ij = 0,

Coff
rev >

Con
rev

Non
ij +1 , for Non

ij > 0.
(4)

Let us assume that:

a = Coff
rev , b = Con

rev, c ≤ 0, (5)

so:
b > a, for Non

ij = 0,

a > b
Non

ij +1 , for Non
ij > 0. (6)

Finally we can construct for Model 1 the following (see, Table 1) payoff func-
tion u1

i (α1, α2, ..., αN ) of the game:

Table 1. Payoff function u1
i (α1, α2, ..., αN ) for i − th player.

Number of opponents selecting action α = 1

0 1 2 . . . N − 1

0 (off) c a a . . . a

1 (on) b b/2 b/3 . . . b/(N − 1)
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We will accept the following values for parameters of the game: a = 1, b = 1.5
and c = 0. The table shows a payoff of i − th player selecting either the action
“0” or the action “1” as a function of a number of remaining players selecting
the action “1”. If i− th player selects “0” and 0 remaining players are “on” than
the player receives the payoff equal to c = 0, while if at least one of remaining
players is “on” the player receives the value of payoff equal to a = 1.

If i − th player selects “1” and all remaining players are “off” the player
receives the payoff equal to b = 1.5, but if more remaining players are “on” he
receives lower value of the payoff which depends on the number of players being
“on”. Let us assume a two players (N = 2) game. The following action profiles
exist in the game: (0, 0), (0, 1), (1, 0) and (1, 1). Let us consider the action profile
(0, 1). Player 1 payoff u1

1(0, 1) = 1 and player 2 payoff u1
2(0, 1) = 1.5. If the player

1 changes its action it results in lowering its payoff to u1
1(1, 1) = 0.75.

Similarly for the second player. It means that no player has a reason to
change its action, and considered action profile is a NE point. This NE provides
a perfect balance between coverage of POIs and spending battery power which
maximizes lifetime of the considered network.

4.2 Model 2 - Synchronized Local Leader Election Game

In this model (see, Fig. 3) local sets of POIs are shared by neighbor sensors. The
reward of agent Ai depends on its action αi and the actions of its two nearest
neighbors revi(αi�1, αi, αi⊕1) and can be calculated according to Eq. (7):

Fig. 3. Model 2: a sensor network (left), corresponding graph interaction (right).

revi(αi�1, αi, αi⊕1) =
{

revoff
i () − penoff

i (), if αi = 0,
revon

i (), if αi = 1,
(7)

where:

– revoff
i () = Coff

rev ×
∑

j mshared on
ij

M ,
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– penoff
i () =

{
Coff

pen × mi−∑
j mshared on

ij

M
, if (mi − ∑

j mshared on
ij ) ≥ mi(1 − q),

0, otherwise,

– revon
i () = Con

rev × (
mi−

∑
j mshared on

ij

M +
∑

j(m
shared on
ij /(Non

ij +1)

M ),
where:

• revoff
i () – a reward of inactive agent Ai for covering shared POIs by

active neighbor sensors;
• penoff

i () – a penalty of inactive agent Ai for not covering its POIs when
their number exceeds threshold value mi(1 − q);

• revon
i () – a reward of active agent Ai for covering its POIs and redundant

covering by active neighbor sensors.

From the point of view of rational players each second player in a ring con-
sisting of N player (N – even number) should select action “1” while remaining
players should select action “0”. It means that the following relations between
rewards of a player i in the game should be fulfilled in order to achieve NE:

– b = revon
i (0, 1, 0) > a = revoff

i (1, 0, 1),
– a = revoff

i (1, 0, 1) > d1 = revoff
i (1, 0, 0) = revoff

i (0, 0, 1) > c,
– a = revoff

i (1, 0, 1) > d2 = revon
i (1, 1, 0) = revon

i (0, 1, 1) > c,
– a = revoff

i (1, 0, 1) > d3 = revon
i (1, 1, 1) > c,

– d2 = revon
i (0, 1, 1) > d1 = revoff

i (0, 0, 1) > c.

The payoff function u2
i (αi�1, αi, αi⊕1) (see, Table 2) fulfills these require-

ments.

Table 2. Payoff function u2
i (αi�1, αi, αi⊕1) for i − th player.

No. αi�1 αi αi⊕1 u2
i (αi�1, αi, αi⊕1)

0 0 0 0 c = 0

1 0 0 1 d1 = 0.2

2 0 1 0 b = 1.5

3 0 1 1 d2 = 0.5

4 1 0 0 d1 = 0.2

5 1 0 1 a = 1.0

6 1 1 0 d2 = 0.5

7 1 1 1 d3 = 0.3

5 Iterated Games of Learning Automata: Experimental
Study

In this section we will study dynamic games of deterministic ε-LA [12,15] acting
as players in iterated games presented in Sect. 4. ε-LA has d actions and acts
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in a deterministic environment c = (c1, c2, ..., cd), where ck stands for a reward
obtained for its action αk. It has also a memory of the length H. Whenever an
automaton generates an action, the environment sends it a payoff in a deter-
ministic way. The objective of a reinforcement learning algorithm represented
by ε-automaton is to maximize its payoff in an environment where it operates.

Fig. 4. Model 1: the average team payoff vs ε and H for N = 2 (left) and N = 32)
(right).

The automaton remembers its last H actions and corresponding payoffs. As
the next action ε-automaton chooses its the best action from the last H games
(rounds) with the probability 1 - ε (0 < ε ≤ 1), and with probability ε/d any of
its d actions. In our case d = 2 (sleep or active). The purpose of this study was to
find out experimentally whether and under which conditions the team of players
is able to find in a fully distributed way solutions of the games represented by
NEs.

We start the overview of conducted experiments with results for Model 1.
We studied the behavior of teams consisting of N = 2, 4, 16 and 32 players for
different values of ε and H. Some results of this study are shown in Fig. 4. One
can see (Fig. 4 (left)) that for N = 2 the ability to reach NE under given value
of H depends on the value of ε. Lower value of ε results in higher average value
of team payoff, which for NE is equal to 1.25. Increasing value of ε also increases
the chance of disrupting NE. The figure shows also that this ability depends on
the value of H. An optimal value of H is around 4–8. Too small values of H
(H = 2) makes the team very unstable, while higher values of H reduce the
ability to achieve NE.

For increasing values of N , the dependence on ε and H is similar (see, Fig. 4
(right)) like for small values of N , but the team of players is more stable for
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Fig. 5. Model 1: typical run (N = 32): the average team payoff (left) and a number of
active players in the game (right).

Fig. 6. Model 2: typical run (N = 32): the average team payoff (left) and a number of
active players in the game (right).
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a whole range of values of H. Figure 5 (left) shows a typical run (N = 32) of
the game as a function of a number of rounds. One can see that the team of
LA achieves NE after around 37 iterations. An optimal number of active player-
sensors is equal to 1 (see, Fig. 5 (right)). One can see that while playing the
game corresponding to NE there is a small probability that a player-leader can
change suddenly and temporary its action.

Results of the experimental study of Model 2 are similar to Model 1. The
ability to achieve NE by a team of LA depends in a similar way (not shown here)
like for Model 1 on values of ε and H, except that only for small values of H and
relatively large values of ε the system can lose its stability for any number of
LA players. Figure 6 shows an example of the run of the game with a number of
players N = 32 for values of ε = 0.001 and H = 8. One can see (Fig. 6 (left)) that
the team of LA is able to reach relatively fast the corresponding NE providing
the highest average team payoff. Figure 6 (right) shows that an optimal number
of active sensor-players in the NE is equal to 16. It may happen that a number
of active players in the game may change suddenly and temporary.

6 Conclusion

We have proposed an approach to lifetime optimization in WSN which assumes
replacing a problem of a global optimization by a problem of searching for NE
by a team of players participating in a non-cooperative game. We analyzed
relations between the coverage problem and the lifetime optimization problem,
and selected two building blocks – basic sources of imbalance between the level
of coverage of POIs and batteries expenditure and proposed game-theoretical
models for their solutions.

We have shown that in iterated games a team of deterministic ε-LA was able
to find in a fully distributed way global solutions presenting in this way the pos-
sibility of self-organization in WSN oriented on solving the lifetime optimization
problem. We believe that combining this approach with CA will stimulate the
development of second order CA able to solve optimization problems.
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7. Musilek, P., Krömer, P., Bartoň, T.: Review of nature-inspired methods for
wake-up scheduling in wireless sensor networks. Swarm Evol. Comput. 25,
100–118 (2015). sI: RAMONA. http://www.sciencedirect.com/science/article/
pii/S2210650215000656

8. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951).
http://www.jstor.org/stable/1969529

9. Niyato, D., Hossain, E., Fallahi, A.: Sleep and wakeup strategies in solar-powered
wireless sensor/mesh networks: performance analysis and optimization. IEEE
Trans. Mob. Comput. 6(2), 221–236 (2007)

10. Osborne, M.: An Introduction to Game Theory. Oxford University Press (2009).
https://books.google.pl/books?id= C8uRwAACAAJ

11. Razi, A., A. Hua, K., Majidi, A.: NQ-GPLS: N-queen inspired gateway placement
and learning automata-based gateway selection in wireless mesh network. In: Pro-
ceedings of the 15th ACM International Symposium MobiWaC 2017, pp. 41–44,
November 2017

12. Seredynski, F.: Competitive coevolutionary multi-agent systems: the application
to mapping and scheduling problems. J. Parallel Distrib. Comput. 47(1), 39–57
(1997). http://www.sciencedirect.com/science/article/pii/S0743731597913940

13. Tretyakova, A., Seredynski, F., Bouvry, P.: Cellular automata approach to maxi-
mum lifetime coverage problem in wireless sensor networks. In: W ↪as, J., Sirakoulis,
G.C., Bandini, S. (eds.) Cellular Automata, pp. 437–446. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11520-7 45

14. Tretyakova, A., Seredynski, F., Guinand, F.: Heuristic and meta-heuristic
approaches for energy-efficient coverage-preserving protocols in wireless sensor net-
works. In: Proceedings of the 13th ACM Symposium on QoS and Security for Wire-
less and Mobile Networks, Q2SWinet 2017, pp. 51–58. ACM, New York (2017).
http://doi.acm.org/10.1145/3132114.3132119

15. Warschawski, W.I.: Kollektives Verhalten von Automaten. Akademie-Verlag,
Berlin (1978)

https://doi.org/10.1007/s11276-005-6615-6
https://doi.org/10.1007/s11276-005-6615-6
https://doi.org/10.1007/978-3-540-79992-4_8
http://www.sciencedirect.com/science/article/pii/S0167739X17313262
http://www.sciencedirect.com/science/article/pii/S0167739X17313262
http://www.sciencedirect.com/science/article/pii/S2210650215000656
http://www.sciencedirect.com/science/article/pii/S2210650215000656
http://www.jstor.org/stable/1969529
https://books.google.pl/books?id=_C8uRwAACAAJ
http://www.sciencedirect.com/science/article/pii/S0743731597913940
https://doi.org/10.1007/978-3-319-11520-7_45
http://doi.acm.org/10.1145/3132114.3132119

	Towards Self-organizing Sensor Networks: Game-Theoretic -Learning Automata-Based Approach
	1 Introduction
	2 Sensor Networks and Coverage and Lifetime Problems
	3 Multi-agent Approach to WSN Lifetime Optimization
	4 Game-Theoretic Approach to WSN Lifetime Optimization
	4.1 Model 1: Leader Election Game
	4.2 Model 2 - Synchronized Local Leader Election Game

	5 Iterated Games of Learning Automata: Experimental Study
	6 Conclusion
	References




