
Giancarlo Mauri · Samira El Yacoubi
Alberto Dennunzio · Katsuhiro Nishinari
Luca Manzoni (Eds.)

 123

LN
CS

 1
11

15

13th International Conference on Cellular Automata 
for Research and Industry, ACRI 2018 
Como, Italy, September 17–21, 2018, Proceedings

Cellular Automata



Lecture Notes in Computer Science 11115

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Giancarlo Mauri • Samira El Yacoubi
Alberto Dennunzio • Katsuhiro Nishinari
Luca Manzoni (Eds.)

Cellular Automata
13th International Conference on Cellular Automata
for Research and Industry, ACRI 2018
Como, Italy, September 17–21, 2018
Proceedings

123



Editors
Giancarlo Mauri
University of Milano-Bicocca
Milan
Italy

Samira El Yacoubi
University of Perpignan
Perpignan
France

Alberto Dennunzio
University of Milano-Bicocca
Milan
Italy

Katsuhiro Nishinari
University of Tokyo
Tokyo
Japan

Luca Manzoni
University of Milano-Bicocca
Milan
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-99812-1 ISBN 978-3-319-99813-8 (eBook)
https://doi.org/10.1007/978-3-319-99813-8

Library of Congress Control Number: 2018952243

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-3520-4022
http://orcid.org/0000-0002-8017-5286
http://orcid.org/0000-0003-1420-404X
http://orcid.org/0000-0001-6312-7728


Preface

This volume contains a collection of original papers covering both applications and
theoretical results on cellular automata, that were selected for presentation at the 13th
International Conference on Cellular Automata for Research and Industry, ACRI 2018,
held in Como, Italy, during September 17–21, 2018. The event was organized by the
Department of Informatics, Systems, and Communication of the University of
Milano-Bicocca.

The primary goal of the conference was to bring together researchers coming from
many different scientific fields in order to foster international collaborations on cellular
automata and to spread scientific knowledge among the experts in several scientific
areas: computer science, pure and applied mathematics, physics, biology, and systems
theory.

Cellular automata are a powerful computational model that can be applied to the
study of complex phenomena characterized by the presence of many simple local
interactions. Cellular automata are a discrete model (in both time and space) that have
been successfully applied as a simplified representation of complex non-linear
dynamics and as a general model of complexity. Starting from their discovery in the
middle of the 20th century, cellular automata have generated more and more interest in
both the theoretical aspects and the practical applications.

The ACRI conference series was first organized in Italy, namely, ACRI 1994 in
Rende, ACRI 1996 in Milan, ACRI 1998 in Trieste and followed by ACRI 2000 in
Karlsruhe (Germany), ACRI 2002 in Geneva (Switzerland), ACRI 2004 in Amsterdam
(The Netherlands), ACRI 2006 in Perpignan (France), ACRI 2008 in Yokohama
(Japan), ACRI 2010 in Ascoli Piceno (Italy), ACRI 2012 on Santorini (Greece), ACRI
2014 in Kraków (Poland), and ACRI 2016 in Fez (Morocco).

This 13th edition of ACRI aimed at expanding the classic topics to include other
areas related to or extending cellular automata. This allowed a larger community to
have the opportunity to discuss their work in various related fields like, for example,
complex networks, bio-inspired computing, cryptography, biological network mod-
elling, multiagent models, etc.

This volume contains the accepted papers from the main track and from the three
organized workshops. We would first like to take this opportunity to express our
sincere thanks to the invited speakers, Raul Rechtman and Andreas Deutsch, who
kindly accepted our invitation to give plenary lectures at ACRI 2018. The whole book
is divided into eight parts:

The part “Biological Systems Modeling” contains papers that deal directly with
biological problems by using cellular automata. It is followed by the part “Simulation
and Other Applications of CA,” where cellular automata are applied in the study of
other real-world phenomena.



The part “Multi-agent Systems” contains papers dealing more with the multi-agent
view of cellular automata and, in the part “Pedestrian and Traffic Dynamics” this view
is further explored in the specific cases of traffic and pedestrian dynamics.

The more theoretical papers are collected in the two parts “Synchronization and
Control” and “Theory and Cryptography,” where the results vary from the classic
theory of control, to the solution of classic problems in cellular automata, like the firing
squad synchronization problem, to the study of the dynamical properties of cellular
automata, and to their application to cryptography.

The part titled “Asynchronous Cellular Automata” collects the papers accepted the
workshop Asynchronous Cellular Automata (ACA). We want to thank the chairs of the
workshop’s Program Committee, Alberto Dennunzio and Enrico Formenti, together
with all the members of the workshop’s Program Committee for their work in selecting
the papers.

The part “Crowds, Traffic, and Cellular Automata” contains the papers accepted for
the workshops Crowds and Cellular Automata (C&CA) and Traffic and Cellular
Automata (T&CA). We want to thank the Program Committee chairs of the two
workshops: Giuseppe Vizzari, Jarosław Wąs, Katsuhiro Nishinari, and Andreas
Schadschneider together with the members of the Program Committees for their work
in selecting the papers.

We are grateful to the Program Committee and all the additional reviewers for their
invaluable help in selecting the papers. We extend our thanks to the remaining
members of the local Organizing Committee, Stefania Bandini and Luca Mariot. We
are also grateful for the support by the Department of Informatics, Systems and
Communication and the University of Milano-Bicocca. Finally, we acknowledge the
excellent cooperation from the Lecture Notes in Computer Science team of Springer for
their help in producing this volume in time for the conference.

July 2018 Giancarlo Mauri
Samira El Yacoubi
Alberto Dennunzio
Katsuhiro Nishinari

Luca Manzoni
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Cellular Automata Model for Proteomics
and Its Application in Cancer

Immunotherapy

Soumyabrata Ghosh(B) and Parimal Pal Chaudhuri

CARLBio Pvt. Ltd., Kolkata, India
soumya@carlbio.com

https://carbio.com

Abstract. This paper presents our first version of Protein modeling
Cellular Automata Machine (PCAM). The peptide chain of amino acid
backbone of a protein having n number of amino acids is designed with
an 8n cell uniform CA employing one of the 64 three neighborhood CA
(3NCA) rules. Each amino acid of a protein chain is modeled by a group
of eight CA cells. Variation of the interaction pattern of a protein back-
bone under different physical conditions is modeled with different sixty-
four 3NCA rules. Another set of twenty 8-bit patterns are next designed
to encode the molecular structure of side chains of twenty amino acids.
The eight CA cells representing an amino acid in the chain is initial-
ized with the 8 bit pattern of its side-chain. A set of features extracted
from evolution of PCAM are mapped to real life experimental results.
The PCAM model is validated from cancer immunotherapy experimen-
tal results for MAb-PD-L1 interaction on multiple MAbs (Monoclonal
Antibodies) with the protein PD-L1 associated in human immunity.

Keywords: Cellular automata · Proteomics · Cancer immunotherapy

1 Background

On completion of the Human Genome project in 2003, the discipline of Pro-
teomics got enriched with addition of large number of proteins displaying wide
varieties of structure and function. This explosive growth of protein sequences
demands high-throughput tools for rapidly identifying various attributes based
on their sequence information alone. Machine Learning (ML) methodologies for
modeling protein sequences [1,2] have attracted considerable attention in recent
years. Such ML based tools have high dependency on voluminous experimental
data. However, “the majority of data in biology are still atypical for Machine
Learning; they are too sparse and incomplete, too biased and too noisy.” rightly
pointed out by Moreira et al. [3]. In this background, we propose a Cellular
Automata (CA) model named as Protein modeling CA Machine (PCAM)
which employs information content of bio-molecules and their building blocks.

c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-319-99813-8_1
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4 S. Ghosh and P. P. Chaudhuri

PCAM is designed with uniform 3-neighborhood CA (3NCA) to model pro-
tein interaction. PCAM evolution parameters are algorithmically mapped to the
protein functions without extensive training procedures used in machine learn-
ing. To summarize, the PCAM employs (1) a relatively simple CA model for
protein-protein interaction, uses (2) a new amino acid digital encoding based on
physico-chemical properties and generates (3) CA output patterns which can be
analyzed and mapped to the behaviors of interacting proteins.

Extensive study of CA rule evolution to analyze the behavior of complex
systems is a well-researched area [4–7]. Xiao et al. [6,7] first introduced CA as
the interaction modeling tool for proteomics. Most of the CA-based model for
protein chain converts amino acid sequence as an array of binary CA cells. Thus,
translating amino acid to binary code is a prerequisite for CA modeling. Many
researchers have proposed different amino acid encoding based on its structure
and codon degeneracy. Cristea [8] proposed a representation of genetic code,
which converts the DNA sequences into digital signals and used a base four
representation of the nucleotides. It leads to the conversion of the codons into
numbers in the range 0 to 63 and the amino acids in the range 0 to 20. Cristea
model reflects better amino acid structure and degeneracy. Pan et al. [9] also
proposed another amino acid coding scheme. Though both the procedures can
encode a protein sequence to a sequence of digital signals, the physico-chemical
properties of the amino acids were ignored. Xiao et al. [6] proposed a model of
digital coding for amino acids based on rule similarity, complementarity of rule,
molecular recognition theory, and information theory. The model reflects bet-
ter amino acid physico-chemical properties and degeneracy. The PCAM model,
introduced next, employs a new amino acid encoding based on its molecular
configuration.

Fig. 1. PCAM Structure for a protein PD-L1 - (a) 3D structure of PD-L1, (b) amino
acid chain of PD-L1, (c) molecular structure of amino acid Valine, (d) PCAM seed at
time-step t = 0, and (e) PCAM evolution for time-steps t = 999
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2 Design of Protein Modeling CA Machine (PCAM)

Cellular Automata is a discrete model consisting of a set of cells, which occupy
some or all sites of a regular lattice [10]. These cells have one or more internal
state variables and a set of rules specifying the evolution of their state. The
change of a cell state depends on the current state of the cell and those of
neighboring cells. The simplest type of cellular automata is one-dimensional,
three neighborhood and two state per cell, referred as 3NCA [10].

Proteins are covalently bonded chain of amino acids, also known as peptide
chain, which is folded to form a complex 3D structure having biological functions.
There are 20 common amino acids found in proteins, having a similar backbone
molecular structure with −CαH(−NH2) − COOH. Amino acids differ in their
respective side-chain. In a peptide chain, the common backbone of amino acids
are interconnected with its neighbors through peptide bonds between carboxyl
group (−COOH) and amino group (−NH2) of two neighboring amino acids. In
Fig. 1, an illustration of PCAM design for an example protein PD-L1 (Human
Programmed cell death 1 ligand 1) is shown. PD-L1’s 3D structure and the amino
acid sequence are shown in Fig. 1(a) and (b) respectively. Figure 1(c) (top-right
corner box) reports the molecular structure of amino acid Valine (V), with its
backbone and side-chain marked. Figure 1(d) and (e) show PCAM structure and
its evolution respectively, which will be discussed next.

To design a PCAM for an input protein sequence, the backbone and side-
chain of each amino acid are represented by a uniform 3NCA rule and a 8 bit
binary string respectively. The connected array of side-chains’ 8 bit binary strings
represents the CA seed (initiation step at time-step t = 0) of the PCAM structure
(Fig. 1(d)). Thus a protein chain with n amino acid residues is represented by an
8n cell uniform 3NCA. Next, the PCAM is evolved by backbone 3NCA rule for
t = 999 time-steps to generate a binary evolution matrix of (1000, 8n) dimension
(Fig. 1(e)). The assignment of backbone rule is discussed next, followed by the
discussion on side-chain encoding.

2.1 Modeling Amino Acid Backbone

To design the CA rules for interconnected amino acid backbone (−CαH(−NH)−
CO) in a peptide chain, we consider only heavy atoms (C,N,O) and exclude
hydrogen atom (H). Thus, the molecular structure of the common uniform back-
bone (−Cα(−N)−CO) of all amino acid residues has 4 atoms - one O, one N ,
and two Cs. Next, the 8 bit pattern of uniform 3NCA rules for backbone is
designed as follows borrowing the concept of “switching function”. A 3 variable
switching function has 8 Min Terms from 000 to 111. A 3NCA rule implements
a three variable switching function. The eight min terms of a 3NCA rule are
referred to as Rule Min Terms (Rule Min Terms):

– Step 1: Rule Mean Term (RMT) [10], the 3-bit binary string of CA Rule input
state, is classified into two classes:
1. 1-Major RMTs having two 1’s (111, 110, 101, 011).
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2. 0-Major RMTs having two 0’s (000, 001, 010, 100).
– Step 2: Two 1’s are assigned to represent O and N atoms in the next state

values of 1-Major RMTs.
– Step 3: Two 1’s are assigned to represent two C atoms in the next state value

of 0-Major RMTs.

In the process, the following sixty-four non-trivial balanced 3NCA rules are
designed to model different variants of amino acid backbone:
[141, 197, 177, 163, 75, 89, 210, 154, 45, 101, 180, 166, 58, 114, 92, 78, 139, 209, 153, 195, 57, 99, 156, 198,

46, 116, 60, 102, 77, 178, 90, 165, 135, 149, 225, 169, 27, 83, 216, 202, 39, 53, 228, 172, 30, 86, 120, 106, 147,

201, 150, 105, 15, 85, 240, 170, 29, 71, 184, 226, 51, 204, 54, 108].

This sixty-four 3NCA rules model sixty-four different variations of an amino
acid backbone, which means, for an input protein chain, we have sixty-four
PCAMs. While only heavy atoms are included in the modeling and all atoms
are treated equally, the variety of sixty-four rules essentially models the effect
of various molecular configurations. The diversity of derived PCAMs represents
the diverse functionality of a protein. The amino acid side-chain encoding is
discussed next.

2.2 Modeling Amino Acid Sidechain

Similar to the amino acid backbone, the digital encoding of side-chain proceeds
on considering only non-H atoms in the side-chains. We consider an 8 bit pattern
to be assigned to side-chains as 1-Major and 0-Major format discussed earlier.
The side-chain encoding is based on the assignment of atoms as 1’s to the next
state of Palindromic RMT (PRMT): 7(111), 5(101), 2(010), 0(000), which remain
unaltered on reversal of its sequence, and other non-palindromic RMT pairs
called CoP (Conjugate Pair): (6(110), 3(011)) and (4(100), 1(001)), where one
RMT is derived out of the other on reversing the three bit string.

Atoms are assigned as 1’s to the next state of different RMTs based on the
following conditions:

Conditions for Side-chain Encoding

1. Only non-H atoms C,N,O, S of the side-chain are considered in the design
process.

2. The 6-carbon ring (Aromatic ring) is considered as a single entity and it is
placed as the next state of the RMT 7(111) for the residues having ring in
the side-chain.

3. The design ensures that the covalent bond between a pair of side-chain atoms
are mapped while assigning atoms as 1’s to next states of RMTs maintaining
following rules:

– A covalent bond is implicit between atoms placed on CoP RMT pairs (6,
3) and (4, 1).

– An atom placed on a PRMT (7, 5, 2, 0), whenever necessary, is assumed
to make a covalent bond with any atom placed as the next state of any
other RMT.
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– C atoms, in general, are placed as the next state of 0-Major, while O,N, S
atoms are mapped to the next state of 1-Major RMTs. In case, the number
of C atoms is more than 2, it is placed as the next state of a 1-Major
RMT, and marked as an exception.

It is possible to assign atoms differently while maintaining the above condi-
tions. Thus the amino acid encoding used here is one of such possible configura-
tions. This is an open area of discussion and development to find the best config-
uration to be used. For the current study, we are using the encoding reported in
Table 1 showing RMTs as < 7 6 5 4 3 2 1 0> with marking of 1-Major RMTs
in grey background and 0-Major RMTS in white background.

The first two columns of Table 1 show the name and abbreviation of 20 amino
acids. The 8 bit binary patterns for each amino acid side-chain are reported in
3rd column. The 1-Major RMTs <7 6 5 3> are marked in grey background.
While next state value of each RMT from 0 to 6 represent an individual non-H
atom, the RMT 7 represents the 6-Carbon Aromatic Ring (R) – all amino acids

Table 1. Amino acid Side-chain Encoding. 1-Major RMTs are marked in grey back-
ground; total non-H atoms and compositions are shown – R= six carbon aromatic
ring, C = Carbon, O= Oxygen, N = Nitrogen, and S = Sulfur.; Exception * represents
exception in Condition 3.

Amino acids Abbreviations RMTs Total non-H atom Exception

7 6 5 4 3 2 1 0

Glycine G (Gly) 0 0 0 0 0 0 0 0 0

Alanine A (Ala) 0 0 0 0 0 1 0 0 1 (1C)

Proline P (Pro) 0 0 1 0 0 1 1 0 3 (3C) *

Valine V (Val) 0 0 0 1 0 1 1 0 3 (3C)

Methionine M (Met) 0 0 1 1 0 1 1 0 4 (3C+1S)

Tryptophan W (Trp) 1 0 1 1 0 1 1 0 R+4 (R+3C+1N)

Phenylalanine F (Phe) 1 0 0 0 0 1 0 0 R+1 (R+1C)

Isoleucine I (Ile) 0 0 0 1 1 1 1 0 4 (4C) *

Leucine L (Leu) 0 0 0 1 0 1 1 1 4 (4C)

Serine S (Ser) 0 0 1 0 0 1 0 0 2 (1C+1O)

Cysteine C (Cys) 0 1 0 0 0 1 0 0 2 (1C+1S)

Threonine T (Thr) 0 0 1 1 0 1 0 0 3 (2C+1O)

Asparagine N (Asn) 0 0 1 0 1 1 1 0 4 (2C+1N+1O)

Glutamine Q (Gln) 0 0 1 0 1 1 1 1 5 (3C+1N+1O)

Tyrosine Y (Tyr) 1 0 1 0 0 1 0 0 R+2 (R+1C+1O)

Histidine H (His) 0 1 1 1 1 1 1 0 6 (4C+2N) *

Lysine K (Lys) 0 0 1 1 0 1 1 1 5 (4C+1N)

Arginine R (Arg) 0 1 1 1 1 1 1 1 7 (4C+3N)

Aspartic Acid D (Asp) 0 1 1 1 0 1 0 0 4 (2C+2O)

Glutamic Acid E (Glu) 0 1 1 1 0 1 1 0 5 (3C+2O)
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containing such ring structure will have 1 in RMT 7 (Condition 1). The 4th

column shows the count of non-H atoms and their compositions.
For example, amino acid Asparagine (Asn) has total 4 non-H atoms – 2 Cs, 1

N , and 1 O. It’s encoding is < 0 0 1 0 1 1 1 0>. There are two 1’s in 1-Major
RMTs representing 1 N and 1 O, while two C atoms are placed in 0-Major
RMTs, maintaining Condition 3 representing covalent bond structures.

For seventeen out of twenty amino acids, all conditions are maintained. For
three amino acids, Pro, Ile and His, Condition 3 is not maintained to implement
the covalent bonds (marked * in Table 1 last column). The side-chain encoding
of amino acid Valine (Val) is illustrated next.

An Illustration of Amino Acid Sidechain Encoding for Valine. In Fig. 2,
the encoding of amino acid Valine is shown in the 4th row along with the decimal
values and binary patterns of RMTs in 1st and 2nd row respectively. The 3rd

row shows the class of RMT - PRMT or CoP. The side-chain of Valine has three
non-hydrogen atoms, all are Carbon (C). There are two C−C covalent bonds in
the side-chain. One C atom (Cβ) is connected to other two C atoms - Cγ and Cδ

by these bonds. The encoding of Valine in 4th row shows three 1’s representing
three C atoms – CoP RMT 4 and 1 are assigned to Cβ and Cγ respectively,
while PRMT 2 is assigned to Cδ. Thus, under Condition 3, CoP RMT 1 and
4 are connected by covalent bond (Cγ − Cβ), and PRMT 2 is connected to
CoP RMT 4 by covalent bond (Cδ − Cβ). In Fig. 2, the atom assignment and
covalent bonds are shown in 5th and 6th rows respectively. This atom assignment
is interchangeable between Cδ and Cγ , similar to the configuration change among
L/R isomers.

Fig. 2. Amino acid side-chain encoding. The decimal value and binary pattern of RMTs
and their class (PRMT or CoP) are shown. y = CoP(x) means RMT y is the Conjugate
Pair (CoP) of RMT x. An example side-chain encoding for amino acid Valine is also
shown with the assigned atoms and covalent bonds.

To summarize, we now have the sixty-four 3NCA rules for the amino acid
backbone and twenty 8-bit binary code for amino acid side-chain. The PCAM
evolution and feature extraction from PCAM output are discussed next.

2.3 PCAM Evolution

As discussed earlier, a PCAM model of a protein has two components - (1)
a uniform 3NCA rule modeled by amino acid backbone and (2) a 3NCA seed
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modeled by amino acid side-chain. The choice of backbone 3NCA rule depend
on the protein functions to be modeled. This means that we need to choose the
backbone rule depending on what we want to model and predict. For example,
the rule for analyzing localization of a protein will be different from the rule for
predicting its binding affinity with a ligand.

PCAM evolution is illustrated in Fig. 1(e) for a 3NCA rule. For each sixty-
four backbone rule, PCAM of a n-length protein is evolved for time-steps t = 999
to generate PCAM Evolution Matrix (PEM) - a binary matrix of (1000, 8n)
dimension. The resulting PCAM Evolution Matrix (PEM), also known as CA-
image, are stored for further texture analysis. The PCAM program steps are
discussed next.

Program: PCAM Module
Input: Amino acid sequence of n-length in Fasta format and sixty-four 3NCA
rules designed for backbone
Output: PCAM Evolution Matrices (PEM) for sixty-four backbone 3NCA rules

Steps:

1. Parse the input amino acid sequence. Check for any symbol other than 20
common amino acids. If passed, proceed to Step 2.

2. Encode the amino acid string using amino acid side-chain encoding Table 1.
This 8n length encoded binary string will be used as the CA seed.

3. For each of the sixty-four backbone 3NCA rules,
(a) Create a PEM matrix of (8n columns × 1000 rows).
(b) Store the CA seed as the first row in the PEM matrix.
(c) Evolve the next-state as null-boundary 3-neighborhood CA and repeat the

step for 999 times. Store the binary-output of each step in consecutive
row in the PEM matrix.

For sixty-four backbone rules, sixty-four PEM matrices are generated.

The PCAM is implemented as an in-house Python module. To make it faster,
the Python code is translated into C++ code by Shed Skin utility, an experi-
mental (restricted-Python)-to-C++ compiler. The compiled module is used as
a Python extension in larger complex code. Many open source Python libraries,
including MatPlotLib for graphics, Scikit-Learn for data analysis and SKImage
for texture analysis are also used.

PCAM is designed to be a platform to experiment with proteins of any length
and origin. Single or multiple mutation at any amino acid residue can be modeled
through PCAM. The effect of the mutation is modeled from the comparison of
the Mutant and Wild PEM matrices. From the known data, we can map a PCAM
with a specific backbone rule, for which the PEM matrices can efficiently model
the experimental findings in respect of difference observed between wild and
mutant proteins. Those rules can be used for the prediction of the unknown or
test-cases.

The sixty-four PEM matrices, generated by sixty-four backbone rules are
analyzed to extract features for the model. The feature extraction method is
discussed next.
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2.4 Feature Extraction

We employ a statistical method of examining texture that considers the spa-
tial relationship of pixels known as Gray-Level Co-occurrence Matrix (GLCM)
scheme [7] on the binary PEM matrices generated from PCAM evolution. Image
texture represents the information in respect of the spatial arrangement of binary
data in the PEM matrix. The GLCM functions characterize the texture of an
image by calculating how often pairs of pixel with specific values and in a speci-
fied spatial relationship occur in an image, creating a GLCM, and then extracting
statistical measures from this matrix.

GLCM matrix can be derived row-wise or column wise. Row-wise GLCM
(rGLCM) is sequence length independent, which means any length of protein
sequence will form a (t, 4) rGLCM matrix with the time-step of t. Further,
rGLCM captures the spatial nature of CA evolution. For our PCAM texture
analysis purpose, we have used rGLCM exclusively.

Four features extracted from GLCM - Angular Second Momentum (ASM),
Contrast, Correlation, and Entropy are commonly used in texture analysis [11].
In our applications, Angular Second Moment (ASM) values from GLCM analysis
found to be the most useful parameter. ASM for a GLCM matrix is derived as
a four element array.

For analyzing the effect of mutation on a specific residue position of a protein,
we substitute the amino acid side-chain code at that position with Alanine’s side-
chain code. This process is known as in silico Ala-mutagenesis. Subsequently,
we run PCAM on both Wild and Mutant (with Ala-mutagenesis) sequences
to generate Wild and Mutant rGLCM matrices. Next, the ASM values (four
element array) are derived from both GLCMs. The Difference Score (DS)
of a Mutant is the Mahalanobis Distance [12] between Wild and Mutant ASM
arrays. Higher DS value signifies higher effect of mutation at that position.

Next section reports the application of PCAM in the study of monoclonal
antibodies (MAbs), clinically used in cancer immunotherapy.

3 Study of Monoclonal Antibodies (MAb) for Cancer
Immunotherapy

Cancer immunotherapy utilizing Monoclonal Antibodies (MAb) to mask the
inhibitory receptor PD-L1 have drawn considerable attention in recent years.
Blockage of PD-L1 binding is an attractive strategy for restoring tumor-specific
T-cell immunity in patients with several forms of cancer [13–15]. It has been
shown that many residues are often involved in a protein binding interface
between MAbs and PD-L1, but only a few of them make critical contributions
towards formation of the complex. These key residues are called the hot-spots
and they are general targets for rational drug design in blocking protein inter-
actions.

Although MAb based immunotherapy has achieved great successes in recent
years, some basic questions yet exist. What are the hot-spots in the PD-L1-MAb
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interaction surface for checkpoint blockade MAb targeting? Can we predict the
possible mutational escapes on PD-L1 under the immune selective pressure of
the MAbs during immune checkpoint blockade therapy? We’ve employed our
PCAM based model to understand PD-L1-MAb interaction and answer these
questions in next two sub-sections.

3.1 PCAM Model for Hot-Spot Detection on MAbs

To design more specific MAbs for PD-L1, the knowledge of hot-spot residues of
the MAbs is a necessity. A computational model for hot-spot detection on MAbs
will decrease the time and cost of actual trial.

Recent structural studies of clinically used MAbs reports the high resolution
complex structure of Avelumab [13], Atezolizumab [14], and Durvalumab [15]
with PD-L1. The amino acid sequences of the heavy and light chain of these
MAbs are available on Drugbank [16].

PCAMs for each of the MAbs, for both heavy and light chain, are evolved for
time-steps t = 999. Next we have introduced in silico ALA mutagenesis in each
of residue positions of these MAbs, and evolved the PCAM. The derived PEM
(PCAM Evolution Matrix) data is analyzed by GLCM method and DS (Differ-
ence Score) is calculated for each residue positions as reported in Subsect. 2.4.

DS shows an interesting pattern among all the MAbs. For Rule 197 CA evo-
lution, the DS values can be grouped into a small number of clusters (1 to 3) for
each of the twenty amino acids irrespective of its position except a few positions,
which do not fall in any clusters. We mark these non-clustered residue posi-
tions as the probable hot-spots. The experimental and structural data [13–15]
of PDL1-MAb binding confirms that the majority of hot-spot residues necessary
for the binding are present in our predicted hot-spot list.

The detailed result of PD-L1 binding MAbs - Avelumab and Atezolizumab
are reported in Table 2. Each MAb has two chains - Heavy Chain and Light
Chain. For each chain, the known hotspots positions with amino acid are shown
in second column. Third column reports our prediction where HS means Hot-spot
and NS means Non-hot-spot. The Prediction quality and accuracy are reported
in last two columns.

The PCAM based hot-spot identification method shows prediction accuracy
more than 90%. Due to its highly variable regions in amino acid sequence, the
de facto homology based schemes are not suitable for MAb analysis. PCAM
model is next extended to analyze the effect of PD-L1 mutation on PD-L1-MAb
binding.

3.2 PCAM Model for Prediction of Mutational Effect on
PD-L1-MAb Binding

The aim of this study is to compare the binding affinity of wild and mutant PD-
L1 with two MAbs. To analyze the effect of mutation on PD-L1, the PCAM is
generated from the PD-L1 sequence. This study establishes the modeling capa-
bility of the PCAM on a case study recently reported [14]. Further, the 3NCA
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Table 2. PCAM based hot-spot prediction of MAbs (Avelumab and Atezolizumab)
for PD-L1-MAb binding

Chain Known hotspot Predicted hotspot Prediction quality Accuracy

Avelumab
heavy chain

F27 HS Total residue: 450
TP: 8
TN: 427
FP: 11
FN: 4

96.6%

T28 HS

S31 HS

I33 HS

Y52 NS

P53 HS

S54 HS

G55 HS

I57 NS

F59 HS

L101 NS

G102 NS

Avelumab
light chain

Y32 NS Total residue: 216
TP: 4
TN: 193
FP: 17
FN: 2

91.2%

Y34 NS

Y93 HS

S95 HS

S97 HS

R99 HS

Atezolizumab
heavy chain

G55 HS Total residue: 448
TP: 6
TN: 412
FP: 28
FN: 2

93.9%

S57 HS

T54 HS

T58 NS

D31 HS

R99 HS

W101 NS

S30 HS

Atezolizumab
light chain

Y93 HS Total residue: 214
TP: 1
TN: 194
FP: 19
FN: 0

91.1%

rule to be employed for the study of any mutant of PD-L1 with a specific MAb
gets identified from this study. A recent study [14] reported the crystal structure
of an anti-PD-L1 molecule KN035 and analyzed the contribution of each PD-L1
residue of the interface towards binding through mutagenesis and affinity mea-
surement. The hot-spot residues of PD-L1 surface identified are I54, Y56, E58,
Q66 and R113 [14].
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Table 3. PCAM based prediction of the effect of mutation on PDL1 - the known
Kd values of PD-L1 variants for KN035 and Atezolizumab and Difference Scores (DS)
calculated from PCAM with Rule 99 and Rule 201. Significantly higher changes of Kd

and DS values are marked in bold.

1 2 3 4 5 6 7
PD-L1
Mutants

Kd of
KN035

KWild
d

KMutant
d

DS
Rule 201

Kd of
Atezolizumab

KWild
d

KMutant
d

DS
Rule 99

Wild 3.0E-09 1 0 9.96E-09 1 0
I54A 2.42E-07 80.7 0 3.23E-08 3.2 1.42
Y56A 1.24E-06 413.3 2441.32 2.68E-08 2.7 0.57
E58A 1.49E-07 49.7 1 1.81E-07 18.2 334.43
D61A 1.99E-08 6.6 0 9.99E-09 1.0 0.35
N63A 2.30E-08 7.7 1 1.73E-08 1.7 12.55
Q66A 4.88E-07 162.7 998 2.46E-09 0.25 335.32
R113A 5.34E-07 178 0 8.52E-08 8.6 0.18
M115A 5.51E-08 18.4 1 4.57E-08 4.6 0.36
Y123A 4.24E-08 14.1 1 4.66E-08 4.7 374.78
R125A 2.97E-08 9.9 998 5.89E-08 6.0 0.51

In Table 3, the Kd values for KN035 and Atezolizumab are shown for ten
mutants and Wild Type (WT) of PD-L1 protein. Smaller the Kd value, higher
is the binding affinity of the ligand for its target. Column 1 of Table 3 reports
the ten mutants analyzed under this case study with wild. Kd value and ratio
of KMutant

d with KWild
d are reported on columns 2, 3 (for KN035) and columns

5, 6 (for Atezolizumab). These 10 mutants are analyzed through PCAM model.
The 4th and 7th columns (grey colored) report the Difference Score (DS) cal-
culated from the GLCM analysis of PCAM model from Rule 201 and Rule 99
respectively.

For KN035-PD-L1 interaction, PCAM with Rule 201 generates high DS val-
ues for mutants Y56A, Q66A and R125A respectively (4th column of Table 3).
Among these, Y56A, and Q66A are known mutants having high Kd value changes
towards KN035 reported in [14]. For Atezolizumab, the Kd values do not vary
as much as that for KN035. DS values estimated by PCAM model using Rule
99, reported in the 7th column in Table 3), show high value for three mutants
E58A, Q66A, and Y123A. Among these, E58A is a known mutant having high
Kd value change towards Atezolizumab [14]. Thus Rule 201 and Rule 99 model
the behavior of KN035-PD-L1 and Atezolizumab-PD-L1 binding. For any other
mutational study on KN035-PD-L1 and Atezolizumab-PD-L1 interactions, the
backbone 3NCA rule for PCAM will be Rule 201 and Rule 99 respectively.

4 Conclusion

The first version of our PCAM model lays the foundation on - how real life
problems of Bioinformatics can be addressed with Cellular Automata model
employing simple CA rules. Two key issues of this model are – (i) design of CA
rules that should represent the relevant information of physical domain features
including peptide backbone, its interaction with other bi-molecules, side chain
molecular structure; and (ii) unambiguous mapping of features extracted out
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of CA evolution to real life experimental results. This generic approach, in our
view, should be followed for design of CA model to address any application of
real-life problems in any field.

The proposed PCAM framework provides a novel approach to model protein
interaction with other bio-molecules. The model encodes amino acid backbone
and side-chain with sixty-four 3NCA rules based on their molecular configura-
tion. Parameters extracted out of sixty-four PCAM evolutions represent features
of diverse protein interactions. Based on limited experimental data, PCAM mod-
els the specific interaction with a bio-molecule and identifies the specific 3NCA
rule out of available sixty-four rules. Prediction of interaction with any mutated
version of the interacting bio-molecule employs this 3NCA rule.

The current version of PCAM considers only heavy atoms. The next ver-
sion of PCAM design, which takes into account all types of atoms including
“hydrogen”, is under rapid development.
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Abstract. Increasing experimental evidence suggests that the
behaviour of multi-cellular systems, such as tissues and organs, might
be largely driven by the complex interplay occurring among metabolic
networks. Computational approaches are required to unravel this com-
plexity. However, they currently deal with either the simulation of the
spatial dynamics of cell populations or with the simulation of metabolism
of individual cells. In order to integrate the modeling of these two key
biological processes, we here introduce FBCA (Flux Balance Cellular
Automata) a new multi-scale modeling framework that combines a cellu-
lar automaton representation of the (higher-level) spatial/morphological
dynamics of multi-cellular systems, i.e., the Cellular Potts Model, with a
model of the (lower-level) metabolic activity of individual cells, as mod-
eled via Flux Balance Analysis. The representation via cellular automata
allows to identify and analyze complex emergent properties and patterns
of real-world multi-cellular systems, in a variety of distinct experimen-
tal settings. We here present preliminary tests on a simplified model of
intestinal crypt, in which cell populations with distinct metabolic prop-
erties compete for space and nutrients. The results may allow to cast
a new light on the mechanisms linking metabolic properties to clonal
dynamics in tissues.

Keywords: Cellular Potts Model · Metabolic networks
Flux Balance Analysis · Population dynamics · Multi-cellular systems

1 Introduction

Computational models are increasingly used to investigate the properties of com-
plex biological systems, and especially those of multi-cellular systems, such as
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tissues and organs [9,26]. Compartmental models, for instance, analyze popula-
tion dynamics by employing mean-field approaches [1,2], whereas more recent
off- and in-lattice models explicitly account for the spatial and mechanical prop-
erties [3,12,15,18,20,23,28]. Cellular automata, in particular, are widely used
to represent in a very efficient way cell displacement, movement and interac-
tions, and are often employed in multi-scale models, which describe processes
and phenomena occurring at different space/time scales [16,27]. For example, in
[12] the relation between the spatial behaviour of cells on a tissue and that of
the underlying gene regulatory networks was investigated, allowing to identify
the necessary conditions for homeostasis in intestinal crypts, whereas in [20] the
spatial dynamics of cell populations during colorectal cancer development was
analyzed with a multi-scale cellular automaton modeling framework.

Conversely, current approaches to metabolic network modeling typically sim-
ulate the steady state behavior of an individual (or average) cell, or the inter-
action of several networks, via exchange of nutrients, while disregarding the cell
population dynamics in time, as well as the biophysical properties of cells and
their interactions, e.g., within tissues and organs. For instance, in [14] a steady
state condition is assumed for the population composition, while in [6] a single
snapshot of the composition of a population in time is depicted.

In this work, we aim at investigating the relation among high-level spatial
properties of a generic multi-cellular systems and the metabolism of its con-
stituting cells. In fact, increasing experimental evidences suggest that complex
biological phenomena, such as cancer emergence and development, might be
ruled by the complex metabolic interplay and its possible deregulation or rear-
rangement, one of the key hallmarks of cancer [13]. To this end, we exploit Flux
Balance Analysis (FBA), which is by far the most used approach to simulate the
dynamics of individual metabolic networks [4]. FBA relies on Linear Program-
ming to determine a metabolic flux distribution (i.e. the rate of each reaction)
that maximizes/minimizes a predefined objective function, given constraints on:
(i) the stoichiometry of reactions; (ii) the steady state assumption for internal
metabolites; (iii) constraints on the domain of the metabolic fluxes, as derived
from experimental measurements or from reaction thermodynamics.

We here introduce FBCA (Flux Balance Cellular Automata), a new multiscale
modeling framework, which includes two distinct and interacting levels:

(1) A spatial/morphological level, modeled via the Cellular Potts Model (CPM)
[11], in which biological cells are represented by sets of contiguous cells over
a lattice, and the overall dynamics is probabilistically driven according to an
energy minimization criterion, as provided by an Hamiltonian function. In
CPM framework cells can expand, move, undergo mitosis, die and interact
with each other. CPM has been used in several works and proved to repro-
duce complex emergent properties of real multi-cellular systems (see, e.g.,
[22]).

(2) A metabolic network level, in which the metabolic activity of each individual
cell is represented via Flux Balance Analysis.
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The growth rate at the spatial level (and consequently the cell replication
pace) is determined as a function of the biomass increase, computed for each cell
via FBA computation. Conversely, the emergent spatial dynamics at the spatial
level influence the distribution of nutrients among cells, which is essential for
cell survival and growth.

Our modeling approach is rooted in statistical physics and complex systems,
as we aim at designing the simplest possible model (with fewer parameters)
able to reproduce complex phenomena of multicellular systems, which might
be experimentally validated. Therefore, we keep the a priori assumptions at a
minimum and we investigate the emergent dynamical properties of the system,
taking advantage of extensive simulations in different experimental settings, as
proposed for instance in [7,19], where the dynamical interaction of simplified
models of gene regulatory networks was investigated by employing a cellular
automata-based representation of space.

To our knowledge, this is the first attempt to connect the dynamical behavior
of metabolic networks to biophysically realistic spatial and morphological prop-
erties of real multi-cellular systems. Notice that in [25] the authors introduce
a multi-scale model of colonic carbohydrate metabolism and bacterial popu-
lation dynamics, with a simplified geometrical representation of the gut. The
authors model bacteria metabolism via FBA and assume metabolites diffusion
via PDEs over a grid, in which bacteria populations can move and divide accord-
ing to the variations of biomass. There are major differences with our approach:
most importantly, in [25] no biophysical properties of the cells are taken into
account, as each point of the grid can contain different bacteria populations,
therefore no morphological dynamics, nor competition for space is considered.
In our finer-coarse model, cells and their spatial interactions are represented in a
physically plausible way, e.g., cells own individual area (volume), shape, rigidity
and velocity. Furthermore, cell growth rate, movement and division dynamics
are influenced by the underlying metabolic network dynamics, i.e., the biomass
production rate, but also by the available space, the composition of the neigh-
borhood and the biomechanical properties of the cells and the tissue, in addition
to the diffusion of metabolites.

We here focused on the representation of a generic intestinal crypt, as this
particular biological structure has been largely characterized and is supposed to
be the locus in which colorectal cancers originate. Furthermore, the geometrical
structure of crypts, which are single-layer one-side open cylinders, allows to
employ simplified representation of space.

The goal of this preliminary work is to provide a proof of principle of
the potentialities of our methodology in increasing the informative power of
constraint-based modeling of metabolic networks. In particular, FBA does pre-
dict the biomass production rate, at steady-state, of an individual (or average)
cell, but it does not predict its proliferation rate. The division rate of cells does
not necessarily correlate linearly with biomass, as many other factors come into
play, such as cell size, which is affected, among others, by competition for space.
To assess how competition for space affects cellular proliferation rates, as a first
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approximation, we performed simulations in which the interaction among cells
is limited to the competition for space and nutrients, whereas the interaction
among cells, via explicit exchange of metabolites is not taken into account.

2 Methods

2.1 Cellular-Automata Representation of Tissue Morphology

FBCA employs a simplified geometrical representation of a general tissue, based
on the CPM [11], a cellular-automaton modeling framework often used to model
energy-driven spatial pattern formation [22] (Fig. 1).

Fig. 1. FBCA scheme. In FBCA, biological cells (σ1, σ2, σ3 and σ4) are represented as
sets of contiguous lattice sites over a lattice L with periodic boundary condition and
opened at the lower side. Each cell includes an individual metabolic network, which is
used in FBA computation to determine the biomass gain at each time step, according
to the nutrients distributed over the lattice, which will be used to compute the Hamil-
tonian function in Eq. 3. An example MCS step is shown: at time t1 a random lattice
site in L is chosen, belonging to cell σ1; a flip attempt is attempted with a randomly
chosen lattice site in its Moore neighborhood and evaluated via the Hamiltonian func-
tion. In this case the flip is accepted and the lattice site is transferred from cell σ2 to
cell σ1 at time t2.

In this specific case we use a 2D representation of space, which is suitable
to model single-layer tissues, yet the model could be easily extended to the 3D
scenario. More in detail, the space is a rigid 2D grid with square lattice sites,
opened and rolled out onto a rectangular h × w lattice L through periodic bound-
ary condition, to mimic the morphology of intestinal crypts (i.e., approximately
a lower-side opened cylinder constituted of single-layer epithelial cells).
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A biological cell, identified with σi, is delimited by connected domains: the
space occupied by cell σi is denoted as C(σi) and consists of all lattice sites l ∈ L
with value σi:

C(σi) = {l = σi|l ∈ L} (1)

For every disposition of cells, an Hamiltonian energy function H is evalu-
ated, to account for the energy required for each mutual interaction, as well as
other physical quantities. The dynamics of the system is driven by a discrete-
time stochastic process (time unit: Monte-Carlo Step - MCS), in which cells are
rearranged in order to minimize the Hamiltonian energy of the whole lattice. To
this end, lattice sites of a given cell are probabilistically chosen to be flipped in
favor of another cell in its neighborhood, and this allows cells to move over the
lattice.

The update procedure can be summarized as follows: a lattice site l is selected
with uniform probability in lattice L; another random lattice site l′ is chosen in
its Moore neighborhood N (l); the lattice site l′ is then assigned to the cell
including l with probability:

P (l ← l′) = min{1, exp(
−ΔH
kbT

)} (2)

where ΔH is the Hamiltonian difference if the flip is accepted. A h × w × k
number of flips is attempted at each MCS (the parameters of the simulations
are provided in Table 1).

In Eq. 2 the Boltzmann distribution is used to drive cells to the configuration
with minimum energy, whereas the factor kbT accounts for the amplitude of the
cell membrane fluctuations.

In our framework, the Hamiltonian function has two main components, which
subsume: (i) the Differential Adhesion Hypothesis (DAH) [24], and (ii) the
growth tendency of each cell. In order to account for the DAH, according to
which cells of different types tend to segregate and form distinct compartments,
we include in our model two abstract cell types, i.e., standard cells and empty
space, along the lines of [12,28]. Cells will tend to fill the empty space, if available
in their surroundings.

Cell growth is defined as a function of the biomass Bσi
produced and accu-

mulated by each cell, and computed via Flux Balance Analysis at each MCS (see
below). In particular, at each MCS, cell σi will tend to grow toward an objective
area Atarget(Bσi

).
To link the biomass growth, which is measured in pico grams (pg), to the

target area, which is measured in lattice sites (1 lattice site is equal to 1µm), a
conversion factor is needed and defined (see Table 1). This defines the multiscale
link between the spatial and the metabolic levels.

The Hamiltonian function is then defined as:

H(L) =
1
2

∑

σi,σj∈N
J(τ(σi), τ(σj))(1 − δ(σi, σj)) + λ

∑

i

[|C(σi)| − Atarget(Bσi
)]2

(3)
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where i and j are lattice sites ∈ L, σi is the cell at site i, δ is the Kronecker
delta, τ(σi) is the cell type of cell σi, J(τ(σi), τ(σj)) is the amount of energy
required to stick tied cells σi and σj according to the DAH (which depends on
cell types and, in our case, will favor the migration toward empty space), |C(σi)|
is the current area of cell σi in lattice sites, and λ > 0 is a Lagrange multiplier
that accounts for the capacity to deform a cell membrane.

Cells grow via the accumulation of biomass, as for Eq. 3, up to an objective
area Amitosis, which is initially set as double than the area of cells in the initial
lattice configuration; when |C(σi)| = Amitosis, cell σi is divided in two daughter
cells, by splitting its space along a randomly chosen direction (either horizontal or
vertical), thus modeling symmetric cell division. Daughter cells will initially have
area (approximately) equal to Amitosis

2 and will inherit the metabolic network of
the parent cell.

As we are modeling intestinal crypts, we recall that the lower boundary of
the lattice is open: the expulsion of cells in the intestinal lumen is modeled by
deleting the cells that reach the lower boundary from the lattice. Therefore,
cell migration toward the open boundary is expected, due to cell growth and
duplication dynamics.

2.2 Metabolic Networks Dynamics

The metabolic network of a generic cell σ is defined as a set M = {m1, . . . ,mN}
of metabolites in the system and the set R = {r1, . . . , rM} of chemical reactions
taking place among them. Reactions are be defined as:

Rj :
N∑

i=1

αjiMi ←→
N∑

i=1

βjiMi, (4)

where αji, βji ∈ N are stoichiometric coefficients associated, respectively, with
the i-th reactant and the i-th product of the j-th reaction, with i = 1, . . . , N ,
j = 1, . . . , M . Let [Mi] be the abundance of reactant Mi and vj the flux of
reaction Rj , i.e., the net value between forward and backward reaction rate.

Because a steady state is assumed for the abundance each metabolite, i.e.,
d[Mi]/dt = 0 ∀i, Linear Programming is applied to identify the flux distribution
v = (v1, . . . , vM ) that maximizes (or minimizes) the objective Z =

∑M
j=1 wjvj ,

where wj is a coefficient that represents the contribution of flux j in vector v to
the objective function Z.

In our simulations, we typically set the maximization of the rate of biomass
production as objective function. It is standard practice in FBA computations
[17] to approximate this rate with the flux of a pseudo-reaction, representing the
conversion of biomass precursors into biomass.

Given a N × M stoichiometric matrix S, whose element sji takes value: (i)
−αji if metabolite Mi is a reactant of reaction Rj , (ii) +βji if metabolite Mi is
a product of reaction Rj , and (iii) 0 otherwise.
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In order to determine the biomass Bσ produced (and then accumulated) by
cell σ in the unit of time (MCS), we solve the following Linear Programming
Problem.

maximize Bσ

subject to Sv = 0, vL ≤ v ≤ vU

(5)

where vL and vU are two vectors specifying, respectively, the lower and upper
bounds of the admitted interval of each flux vj . A negative lower bound indicates
that flux is allowed in the backward reaction. The exchange of matter with the
environment is represented as a set of exchange reactions, in the form Mi ←→ ∅,
enabling a predefined set of species to be inserted in or removed from the network.

2.3 Simulation Settings

The parameter settings are reported in Table 1. In all initial configurations (i.e.,
MCS = 0) cells are drawn as squares of 5 × 5 lattice sites, and fill the whole
lattice. Example of initial configurations of the lattice are shown in Fig. 2[A]. It is
clear that the square shape is a strong simplification, yet the energy minimization
criterion that underlies the CPM simulation ensures that cells reach a rounded
and more physically sound shape in a few MCSs (despite some possible and
expected defects in cell boundaries). We assume a constant supply of nutrients:
at each MCS, each cell is supplied with an amount of nutrients (i.e., upper
bound of intake flux) that is proportional to the area of the cell. |C(σi)| is the
number of lattice sites occupied by cell σi; let [M l

j ] be the abundance assumed
for metabolite j in site l ∈ C(σi); the upper bound Uσi

j of the exchange reaction

of metabolite j for cell σi is set as: Uσi
j =

∑|C(σi)|
l=1 [M l

j ].
In all the analyses presented in this work, we used as metabolic network

model associated to each cell the model of central carbon metabolism HMRcore
introduced in [10] and used in [6], composed of 240 metabolites and 272 reactions.

In this preliminary work, we simulated the dynamics of two populations of
cells, each characterized by a different metabolism. A specific metabolism is
modeled by assigning a specific objective function and specific constraints on
flux bounds, which are both inherited by cell offsprings. We evaluated three
scenarios:

[SC 1 ] A control scenario in which two kinds of cell populations are modeled:
one mimicking the metabolism of cancer cells, in which biomass maxi-
mization is assumed, and the other mimicking normal cell metabolism,
in which maximization of energy (ATP) production is assumed. In this
setting, we assume that food is uniformly distributed and thus [M l

j ] =
k,∀l ∈ L. The constant values assumed for each nutrient are set in a way
to mimic a well-oxygenated environment [5] and are reported in Table 1.

[SC 2 ] A scenario in which two slightly different cancer metabolic populations
are simulated: one which is allowed to intake lactate, but not to secrete it
and the other viceversa. We refer to these two populations respectively as
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“type 1” and “type 2”. Also in this case, we assume a uniform distribution
of nutrients.

[SC 3 ] A scenario in which the aforementioned cell populations of “type 1”
and “type 2” are simulated in a non-uniform environment: two areas of
3875 lattice sites, positioned at the left/right sides of the lattice, are
characterized by limited oxygen abundance ([O2] = 0.5 fmol/lattice site),
thus mimicking an hypoxic area.

For each scenario, we executed 20 distinct simulations with random initial
configurations. At the initial condition (MCS = 0), 620 cells with an individual
area of 25 lattice sites (5 × 5) and a biomass of 1250 pg are disposed on the
lattice. Half of the cells are assigned to type 1 and the other half to type 2,
and are alternatively disposed on the lattice (i.e., both the left and the right
neighbours of a cell are of a distinct type).

Implementation. This preliminary version of FBCA has been implemented in
MATLAB, so to exploit both the COBRA Toolbox [21] for FBA computa-
tion and matrix calculus for CPM computations. The computation time for
a single MSC in a standard simulation setting is ∼5 s (ASUS NOTEBOOK;
CPU: Intel(R) Core(TM) i7-4710HQ CPU @ 2.50 GHz, 2501 Mhz, 4 core; RAM:
16.0 GB; WINDOWS 10 pro 64-bit).

Table 1. FBCA parameters. Most parameters have been chosen in accordance with
existing literature and allow for a biophysically plausible representation of intestinal
crypts (see, e.g., [12,20,28])

Symbol Value Description

- 1 lattice site = 1µm Conversion of space unit

- 1 MCS=1/10 h Conversion of time unit

h 155 lattice sites Height of the lattice

w 100 lattice sites Width of the lattice

k 4 Number of lattice spin attempts per lattice site
per MCS

N 1 Moore neighborhood size

λ 1 Area rigidity constraint

kBT 3 Temperature and Boltzmann constant

Amitosis 50 lattice sites Mitosis area for all cells

JNormal−Normal 4 Hamiltonian adhesion factor among
normal cells

JNormal−Empty 0.5 Hamiltonian adhesion factor among
normal cells and empty space

F 0.02 Area/biomass conversion factor

[O2] 6 fmol/lattice site Oxygen abundance per lattice site l

[Glc] and [Lact] 0.5 fmol/lattice site Glucose and lactate abundance per lattice site l

[Gln] and [Arg] 20 fmol/lattice site Glutamine and arginine abundance per cell l
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3 Results

3.1 Competition for Space in Homogenous Nutrients Environments

[SC 1] Proliferating Cells Colonize Space. With respect to the first sce-
nario, we analyzed the dynamics of the model for a total time of 1000 MCS
(= 100 h). In Fig. 2[A–D], the screenshots of the population composition are
displayed in four distinct moments of an example simulation, i.e., MCS = 1,
MCS = 120, MCS = 160 and at the end of the simulation (MCS = 1000). Can-
cer cells, i.e., those maximizing the biomass, are represented with red tonalities,
whereas normal cells, i.e., those maximizing the ATP production, in blue tonal-
ities. All the daughter cells maintain the same color of the parent, so each clone
is characterized by a unique and identifiable color.

A first visible result is that CPM simulation ensures that cells reach a cell-like
shape in a few MCSs. As expected, cancer cells quickly colonize the whole space.
It is also apparent that a few clones tend to colonize space in vertical stripes,
and such pattern remarkably reproduces the complex phenomenon of vertical
cell migration in real-world intestinal crypts [12].

In Fig. 2[F–I] the average volume and biomass of all the cells present on the
lattice as a function of time for each run is displayed (each run corresponds
to a different curve on the plot). It can be noticed that normal cells (blue
curves) always disappear from the system within 200 MCSs, and that, despite
the stochasticity, the dynamics of cancer cell population is conserved across the
different runs. As expected, cell division is synchronized, as it can be observed
also from the variation of the number of cells at each MCS (Fig. 2[E]), because
all cells start from the very same biomass and volume value at time MCS = 0.
This is reflected also in the observed oscillations in the values of volume and
biomass.

As opposed to standard FBA analysis, our model allows to compute the
duplication time, i.e., the number of MCSs passed before mitosis for a given
cell. The histogram in Fig. 2[H] shows the distribution of the duplication times
recorded for any cells in the lattice over 1000 MCSs, for the example simulation
run displayed in panels A–D.

With FBCA it is possible to analyze the variation of the distribution of the
clonal population size (i.e., the number of cells generated from a unique ances-
tor cell) in time. For instance, in Fig. 2[G] one can see that larger clones are
expectedly emerging during the example simulation displayed in panel A–D, yet
reaching a median value around 35/40 at the end of the simulation: starting from
the initial condition, in which 620 clones of size 1 are present on the lattice, at
the end of the simulation (MCS = 1000) around 15 distinct clones (on average)
composed by 35/40 cells are left.

[SC 2] Proliferative Cells with Fermentative Metabolism Colonize
Space. Type 1 (red) and type 2 (blue) cancer cells are both highly prolifer-
ative, but at slightly different rates (type 1 produces 11% more biomass than
type 2).
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Fig. 2. [SC 1]. (A–D) Snapshots of FBCA dynamics respectively at 1, 120, 160 and 1000
Montecarlo time steps of an example simulation; shapes with red tonalities indicate
type 1 cells, shapes with blue tonalities indicate type 2 cells; identical color refers to
the same clonal population. (E) Total number of cells of each type as a function of
time; one curve for each of the 20 simulations. (F) Average cell volume for each cell
type as a function of time; one curve for each of the 20 simulations. (G) Box-plot of
the distribution of clonal populations size for MCS ∈ [0, 5, 10, . . . , 1000] with respect
to the example simulation in panels A–D. (H) Distribution of cell duplication time in
the example simulation displayed in panels A–D; red rectangles correspond to type 1,
notice that no type 2 cell duplicates during the simulation. (I) Average cell biomass for
each cell type as a function of time; one curve for each of the 20 simulations. (Color
figure online)

Surprisingly, although in this scenario nutrients are homogeneously dis-
tributed, and in spite of the minor advantage of type 1 in terms of biomass
growth rate, type 2 cells tend to colonize all space after a period of time, in all
simulation runs. It can indeed be observed in Fig. 3[E] that the number of cells
of type 1 constantly decrease, in all 20 runs, approaching values close to zero
after 1500 MCSs. This phenomenon, which may depend on the properties of the
tissue and on the competition for limited space, deserves further investigations.

3.2 [SC 3] Competition for Space in Heterogenous Nutrients
Environments

In this scenario, the population dynamics becomes more complex, as an het-
erogenous distribution of nutrients is mimicked by introducing the hypoxic areas
depicted in Fig. 4[A].

In Fig. 4[A–D], one can see that type 1 cells (red) tend to migrate towards
and occupy the highly-oxygenated area, whereas type 2 cells (blue), which are
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Fig. 3. [SC 2]. (A–D) Snapshots of FBCA dynamics respectively at 1, 660, 1320 and
2000 MCSs of an example simulation; shapes with red tonalities indicate type 1 cells,
shapes with blue tonalities indicate type 2 cells; identical color refers to the same clonal
population. (E) Total number of cells of each type as a function of time; one curve for
each of the 20 simulations. (F) Average cell volume for each cell type as a function of
time; one curve for each of the 20 simulations. (G) Box-plot of the distribution of clonal
populations size for MCS ∈ [0, 10, 20, . . . , 2000] with respect to the example simula-
tion in panels A–D. (H) Distribution of cell duplication time in the example simulation
displayed in panels A–D; red histograms correspond to type 1, blue histograms corre-
spond to type 2. Transparency is used to make both series visible: when bars overlap
a darker color is displayed. (I) Average cell biomass for each cell type as a function of
time; one curve for each of the 20 simulations. (Color figure online)

allowed to have a fermentative metabolism succeed to proliferate in hypoxic
areas.

Two distinct dynamical behaviours emerge in different simulation runs: (i)
colonization by one cell type, (ii) coexistence of both cell types (homeostasis).
In the former case, one cell type ends up in colonizing the lattice; as one can
see from Fig. 4[E], in most cases type 1 cells dominate, but in a relevant number
of cases type 2 tend to colonize the space. We never observed complete extinc-
tion of a cell type, but this is most likely due to the limited simulation time.
More interestingly, in a certain number of cases the two cell populations reach
a dynamical equilibrium (i.e., homeostasis), in which they both coexist in a sta-
ble proportion during the simulation time, despite distinct metabolic properties,
different growth rates and the heterogeneous distribution of nutrients.

Notice also that the distribution of the observed duplication time displays
a long right tail, likely due to the non-homogeneity of nutrients, i.e., cells in
hypoxic areas tend to grow at a slower pace.
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Fig. 4. [SC 3]. (A–D) Snapshots of FBCA dynamics respectively at 1, 660, 1320 and
2000 MCSs of an example simulation; shapes with red tonalities indicate type 1 cells,
shapes with blue tonalities indicate type 2 cells; identical color refers to the same clonal
population. The yellow dashed boxes at the left/right sides of the lattice indicates the
hypoxic areas. (E) Total number of cells of each type as a function of time; one curve
for each of the 20 simulations. (F) Average cell volume for each cell type as a function
of time; one curve for each of the 20 simulations. (G) Box-plot of the distribution of
clonal populations size for MCS ∈ [0, 10, 20, . . . , 2000] with respect to the example
simulation in panels A–D. (H) Distribution of cell duplication time in the example
simulation displayed in panels A–D; red histograms correspond to type 1, blue his-
tograms correspond to type 2. Transparency is used to make both series visible: when
bars overlap a darker color is displayed. (I) Average cell biomass for each cell type as
a function of time; one curve for each of the 20 simulations. (Color figure online)

Finally, it is interesting to notice from Fig. 4[G] that in the simulation dis-
played in panels A–D certain clones tend to cyclically dominate the lattice (out-
liers in the boxplots), until a huge clone consisting of around 430 cells emerges
at the end of the simulation.

4 Discussion

We have here introduced FBCA, a new multiscale modeling framework that com-
bines a biophysically plausible representation of cell morphology and interac-
tions, via Cellular Potts Model, and a model of cellular metabolic activity, via
Flux Balance Analysis.

Despite the abstractions underlying both modeling approaches, we proved
that FBCA can reproduce complex phenomena observed in real world biological
systems, such as cell migration, tissue colonization and homeostasis, allowing to
perform in-depth quantitative analyses of key properties of cell populations in a
variety of simulated experimental settings.
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The aim of this work was to introduce the framework and present some
preliminary analyses to prove its effectiveness and reliability. Yet, many exten-
sions are underway in order to model more biologically realistic processes and
phenomena. For instance, metabolic communication among cells can be easily
modeled with FBCA, by allowing the metabolites secreted by cells to diffuse
over the tissue. In addition, the diffusion of nutrients via spacial gradients can
be introduced in FBCA, and this will allow to explore scenarios that might be
experimentally validated, e.g., in cell culture. Besides, it will be possible to char-
acterize the features and properties of each cell by employing the increasingly
available single-cell-omics data, as proposed for instance in [8].

The overall approach has a remarkable potential in several distinct appli-
cation domains, ranging from cancer research to metabolic engineering. For
instance, FBCA might be used to simulate the impact on tissue morphology of
mutations in metabolic genes accumulating through successive clonal expansions.

Efforts to speed up the execution time are ongoing, focused on the paral-
lelization of the CPM computation and distribution of FBA computation.
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2 Institut de Recherche en Cancérologie de Montpellier, 34298 Montpellier, France

arran.hodgkinson@umontpellier.fr

Abstract. Modern biological paradigms of invasion in tumour cells can-
not be fully explained or described by existing modelling techniques.
We present a novel cellular automata model which represents both the
nucleus of a cell and its membrane, allowing one to capture the interac-
tion of a cell with its environment, as well as selected theorems for the
efficient computation of solutions to such systems. We use this technique
to simulate cell-cell binding, single-cellular micro track invasion, and co-
injection of MITFHIGH(proliferative) and MITFLOW(invasive) tumour
cells into heterogeneous environments. Results shed new light on emer-
gent phenomena of cellular elongation, filopodial protrusion, and the
co-invasion of the local stroma by classically non-invasive cells. We also
provide a new modelling framework in which the cellular automaton
exhibits non-local interaction within its context.

Keywords: Cellular automata · Mathematical modelling
Cellular biology · Coöperation · Numerical analysis

1 Introduction

Biological paradigms involving mixtures of heterogeneous subpopulations of cells
have become the subject of increased scrutiny in recent years. Beginning from
problems of cell sorting [5], cellular interactions now have a field of automata
devoted to their exploration. One problem of significance is the change in
behaviour of ordinarily non-invading proliferative cells (MITFHIGH) in the pres-
ence of highly invasive, non-proliferative cells (MITFLOW). Injection of these
cellular populations, in vivo, in isolation yielded ordinary pathological behaviour
whereas co-injection of disparate species led to the co-invasion of the local stroma
by MITFHIGHcells, on a substrate altered by leading MITFLOWcells [4].

This also gives rise to more general problems in invasion. One methodology
of cellular invasion involves the utilisation of ‘microtracks’, or spaces of reduced
ECM concentration, by cells in order to gain a competitive advantage, travelling
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at increased speeds by direct comparison with those cells forced to travel through
the dense ECM [2]. This increase in migration through native microtracks was
shown, using time-lapse photography, to occur within the 3D collagen matrix.
These microtracks have further been shown to have varying mean width and
variance [8] which may be as a result of underlying matrix structuring and vary-
ing collagen densities across a given region. Importantly, the cells were shown to
exhibit patterns of actin recruitment that were not discernible from those found
in migratory cells out with microtracks [8].

The discrete Cellular Potts models which have been proposed model the cell
moving through a grid-like structure, however fine, guided by a mechanistic,
stochastic function [5]. Indeed, these have great power in reproducing quali-
tatively realistic results and can model even relatively complex systems [10].
These models exist in a discrete space where the implementation of behaviours
is dependent on a delta probability function rather than the continuous machin-
ery of the cell. This means that they lack the ability to, for example, explain or
describe microtrack motility or to fully explain any emergent phenomena due to
the model’s reliance on stochastic dynamics.

One particular model which does not study the cell mechanics themselves,
demonstrates that one can take a more physical interpretation of the tumour
and its environment [11]. This model, again, chooses to describe a cellular pop-
ulation as a non-autonomous series of ball-like structures in arbitrary space
acting under the standard forces (drag, traction, et cetera). The complexity
of membrane-dependent biological interactions requires the creation of a novel
cellular automata model who describes not only the position of the cells but
endows them with some physical form which mediates its interaction with its
environment.

In Sect. 2 of this paper, we begin to build the novel framework necessary to
accurately capture these phenomena and the field equations which biologically
contextualise the automata. We then provide, in Sect. 3, numerical analysis of
approximations, necessary for the fast computation of results, to the modelling
scheme in order to bound the errors for these approximations. Finally, in Sect. 4,
we present the result of simulations for a small system of cellular automata in
order to demonstrate their ability to elucidate biological cell invasion in hetero-
geneous colonies and environments.

2 A Novel Modelling Framework

Firstly, we choose to express the environmental system in standard Cartesian
coordinates and the radial equations for the distance of the membrane from
the nucleus in polar coordinates. We then have that the standard coordinate
conversion from polar to Cartesian is given by x = r cos θ, y = r sin θ and we
write x := [x, y]T . Therefore, let I = [0, T ) be the time domain on which the
system exists and D ⊆ R

2 be the spatial domain.
Secondly, let r(t, θ), be a 2π periodic function such that r(t, θ + 2nπ) =

r(t, θ), ∀n ∈ N, and let it further define the perimeter of a cell with the brief
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notation r := r(θ) := r(t, θ). Let Θ = [0, 2π) be the domain for the nucleus-
centred radius and let R ⊆ R be the domain for the radius of the cell such that
r : I × Θ → R. For cell i, we denote the radius ri. Finally, let v : I × D → R

define the extracellular matrix (ECM) density and let m : I × D → R
q define

the q molecular species densities on the domain.

2.1 On Cell-Cell Bonding and Associated Field Equations

We begin by reposing every cell-cell interaction problem as a generic problem
between two cells situated a given distance d from one another and with both of
their respective centres at y = 0. First, let the vector p(ci, cj) be the vector in
polar coordinates such that

||p|| :=
√

(c̄i,x − c̄j,x)2 + (c̄i,x + c̄j,x)2 , pθ := tan−1

(
c̄j,y − c̄i,y

c̄j,x − c̄i,x

)
(1)

where c̄i denotes the centre of mass for the cell ci, then call this the pointing vec-
tor and perform the transforms (rj , θj) →

(
rj , θj − pθ +

π

2

)
and (c̄j,x, c̄j,y) →

(0, ||p||), in order to move cell j onto the x-axis and to rotate the cell such that
the same points are aligned as was the case prior to the coordinate transform.

Then, from simple algebraic reasoning, one has that the distance between
any two points on the membranes of these cells, with respect to θ, is given by

d(θ) =
√

(ci,r cos(θ) − cj,r cos(θ))2 + (ci,r sin(θ) − cj,r sin(−θ) + ||p||)2 (2)

and this means that the contribution to a given radius can be calculated by
the force at that point, multiplied by the appropriate elongation factor which is
given by the trigonometric relation d̄ = d cos

(
θ − π

2

)
, where

π

2
is a factor which

accounts for the reorientation of the cells.
Let us now look at the attractive intercellular force, FA(d). There is evidence

to suggest that, below some limiting distance, the negative charges on repeat 3
of α-actinin and positive charges on intercellular adhesion molecule (ICAM)-1
dominate the interaction. Above this distance, the contribution of the positive-
positive interaction is increased between the acidic centre of the α-actinin domain
and Lys acids on ICAM1 [3,9]. We model this by introducing some constant
imaginary distance, i, between the two membranes.

The repulsive Coulomb force, FR(d), emanates from the addition of pressure
to the membrane reducing the spacing between membranous lipids, producing
a restorative force. Therefore, we calculate the distance at which the centre
of charge of the membrane sits, with respect to the cell radius. For a circle of

uniform radius r(θ) = r, the radial centre of charge is approximated by r̄ ≈ 4
3π

r,
which shall serve as a positioning of the internal charge.

We can then write the overall field equation as

F (d) =
1

(d − dA)2 + 1
− 1

(
d + 4

3π

)2 + 1
Qs

(3)
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where Qs gives the ratio of charge separation for the protein complex, with
respect to the separation of the charges in the lipid bilayer of the melanoma cells
themselves. Biological precedents for this force distribution exists, with physical
measurement being taken between staphylococcus aureus cells and biofilms [6].

2.2 On Cell-ECM Bonding and Associated Field Equations

The dissociation rate of one protein from another is widely considered [1,7] to
have the form k = k0 exp (fx/kbT ) , where k0 is the zero rate of dissociation, f is
the force applied in separating the proteins, x is the distance of separation, and
kBT gives the thermal energy of the system. Now, consider an arbitrary force
that brings the proteins of the cell and the ECM together, then their normalised
association rate, k̄, would be given by k̄ = [1 − (k0/K) exp (−fx/kbT )] where
the maximal rate of dissociation is given by K.

The force on the cell from the ECM is proportional to the density of the
ECM itself and therefore we write |F+

c | = k̄v. We also have that the direction
of association is from lower to higher densities of protein, which follows directly
from their proportionality. As for the force equation for pressure, we assume
the field generated scales with the square of the ECM density, and acts in the
opposite direction. Therefore, we can write the entirety of the force equation as

|F | =
[
1 − k0

K
exp

(
− fx

kbT

)]
v − kP v2 , F̂ = tan−1

(
∂v

∂y

∂x

∂v

)
. (4)

2.3 Molecular Species on the Boundary — Chemotaxis

The chemotaxis of a cell is dependent on the molecular species concentration
m(t, x) on the immediate boundary of the cell, since it is not endocytosis but
simply sensory response that is necessary for this stimulus.

Using the standard definition of a line integral, we can write the line integral
of the molecular species concentration mi(x, y) over the boundary of the cell and
with surface element σ as

I =
∫

∂Ωi

mi(x̄) dσ , dσ =
√
r(θ)2 sin2 θ + r(θ)2 cos2 θ dθ = r(θ) dθ . (5)

It is then trivial to rewrite the line integral with respect to the individual cell
and a specific molecular species, mj(t, x), to obtain the overall molecular species
concentration on the boundary, and the bias of such a concentration.

Taking the biased molecular concentrations and extract from them the opti-
mal direction, in terms of chemical attractants, the mean biased chemotaxis is
given by

◦
χ =

1
q∑

j=1

χmj

⎛

⎜⎜⎜
⎜⎜
⎝

χm1

...
χmq

⎞

⎟⎟⎟
⎟⎟
⎠

·

⎛

⎜⎜⎜
⎜⎜
⎝

tan−1

(∫
Θ

m1(r(θ) cos θ, r(θ) sin θ) cos θ dθ
∫

Θ
m1(r(θ) cos θ, r(θ) sin θ) sin θ dθ

)

...

tan−1

(∫
Θ

mq(r(θ) cos θ, r(θ) sin θ) cos θ dθ
∫

Θ
mq(r(θ) cos θ, r(θ) sin θ) sin θ dθ

)

⎞

⎟⎟⎟
⎟⎟
⎠

(6)
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where the chemotactic constant for any given molecular species mj(t, x) is given
by χmj

.

2.4 Temporal Changes in Intracellular Properties

We must, further, have a means by which the cell’s interior can reposition itself
with respect to the environment. A sensible candidate for this movement can
simply be taken as a result of the net forces which move the membrane of the
cell having direct and proportionate effect on the position of the nucleus such
that we can write

∂
∂tx1 =

∫

[0,2π)

∂
∂tr(θ̃) · cos θ̃ dθ̃ , ∂

∂tx2 =
∫

[0,2π)

∂
∂tr(θ̃) · sin θ̃ dθ̃ , (7)

reflecting a mechanical movement of the nucleus with the membrane.
Consider the overall change in the polarisation, φ, of the cell and that the cell

is capable of rearranging its internal infrastructure in response to the attraction
of chemicals and in order to maximise its potential for utilising the byproducts
of this infrastructure. Then we assume that the cell will attempt to reorient itself
to the optimal direction

φ̄ =
1

ωF + ωχ

(
ωF tan−1

(
∂x2

∂t

∂t

∂x1

)
+ ωχ

◦
χ

)
, (8)

given the weightings ωF , ωχ for the force and chemotactically mediated polarity
preferences, respectively.

Then consider that the cell will have more success in achieving small angu-
lar reorientation than in large angular reorientations. Therefore, we make the
assumption that the polarisation may only change through small changes around
the perimeter of the cell and that ln (∂φ/∂t) ∝ − (

φ̄ − φ
)2. We write that the

change in polarisation can be given by

∂φ

∂t
= exp

⎡

⎣−
((

∂x1

∂t

)2

+
(

∂x2

∂t

)2
)− 1

2

· (
φ̄ − φ

)2
⎤

⎦. (9)

3 Numerical Approach

3.1 Movement of the Nucleus: A Simple Translation Method

The current methodology for reassignment, or mathematical translation, of the
position of a radial function r(θ) to a differing position is given as follows

r1 =
√

r2 + r20 + 2rr0 cos(θ0 − θ) , θ1 = cos−1

(
r cos θ + r0 cos θ0

r1

)
, (10)

where (r, θ) gives the original solution in polar coordinates; (r0, θ0) gives the
magnitude and direction of the translation; and (r1, θ1) gives the translated set
of solutions. Then observe the following simplification:
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Theorem 1. Let the space N ⊆ R
2 define the Cartesian plane on which the

nucleus of a given 2-dimensional cell is defined, and the space Q ⊆ R × [0, 2π)
define the polar domain centred at (x, y) ∈ N on which the membrane of the cell
is defined. Then we can define a cell as some [(x0, y0), (r0(θ0), θ0)] ∈ N × Q,
where r(θ) : [0, 2π) → R is the radial membrane distance as measured from the
centre of the cell. Define further a formula for translation of the nucleus of this
cell, given by (x, y) → (x + ξ, y), where the membrane of the cell retains its
position in the cartesian space and dependence on θ0, given by

r1(θ0) = r0(θ0) − ξ cos(θ0) .

Then the error for this translation is given by

Er ≤
⎛

⎝1 − sin

⎛

⎝1
2

cos−1

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠

⎞

⎠

⎞

⎠

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠ ξ,

where r(θ̂) = max
θ∈[0,2π)

r(θ).

Proof. Recall the coordinate relations given by x0 = r(θ) cos θ, y0 = r(θ) sin θ
and the counter-relation r(θ)2 = x2 + y2. Consider, further, the translation in
only the cartesian x-direction, of magnitude ξ, corresponding to a linear progres-
sion in an aligned set of polar axes given by x1 = r(θ) cos θ − ξ, y1 = r(θ) sin θ.

Using the translation approximation r1(θ0) = r0(θ0)− ξ cos(θ0) and allowing
that the maximal error for this approximation is given at θ0 = θ̂, defined by
r(θ̂) := max

θ∈[0,2π)
r(θ), the maximal error is given by

Ē = (r(θ̂) + ξ cos θ̂) sin θ̂
︸ ︷︷ ︸

approximation

− (r(θ̂)2 − (r(θ̂) sin θ̂ − ξ)2)
1
2

︸ ︷︷ ︸
absolute calculation

.
(11)

We can then find this maximum at θ̂ by considering the derivative of the term
for the translation approximation, which simplifies to

Ẽ′ = r(θ̂) cos θ̂ + ξ cos 2θ̂ = 0 (12)

and by further using the trigonometric relation cos 2θ = 2 cos2 θ−1 we can write

r(θ̂) cos θ̂ + 2ξ cos2 θ̂ − ξ = 0 (13)

who is a quadratic in cos θ̂, such that the solution for θ̂ is given by

cos θ̂ =
−r(θ̂) ±

√
r(θ̂)2 + 8ξ2

4ξ
=⇒ θ̂ = cos−1

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠ .

(14)
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Substituting this into the original equation, and recognising that the negative
term in the error is minimised at x = ξ, one has that the maximal error is written

Ē = r

⎛

⎝cos−1

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠

⎞

⎠+

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠ ξ − r(θ̂) .

(15)

Then the precise value of y(ˆ̃θ) is given at y(ˆ̃θ) = r(
1
2
θ̂) sin(

1
2
θ̂), such that the

maximal error can be given precisely by

Ē =

⎛

⎝1 − sin

⎛

⎝1
2

cos−1

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠

⎞

⎠

⎞

⎠

⎛

⎝
−r(θ̂) +

√
r(θ̂)2 + 8ξ2

4ξ

⎞

⎠ ξ.

(16)

In this case, using Theorem 1, the error for values of ξ ≤ 0.1 is such that
Er < 1

2ξ2 and ξ is proportional with the time step such that ξ ∝ δτ . Thus, for
sufficiently small time steps one is able to discern that the error is sufficiently
small, and non-cumulative, and that this may be acceptable within the bounds
of expected numerical error.

3.2 Numerical Approximations of Line Integrals

We begin by recalling that the analytic, single-variable line integral for a radial
function is given by I =

∫
S r(θ) dσ, where S is used to denote the surface of the

cell and σ is some surface element on S. Discretisation of this system leads us to
derive a metric on the basis of maximal efficacy on the discrete radial interval,
(θ̃, θ̃ + δθ). Begin by considering the true arc length in this portion of the radius
of a given cell and notice that this can be approximated by sketching a line
between the two extreme radii, r(θ̃), r(θ̃ + δθ).

Theorem 2. Let Ω be the internal cell space of a cell whose radius is is given
by r : I × Θ → R. Further, let the perimeter length of the cell be given by
Ic =

∫

∂Ω

r(t, θ) dσ∂Ω , where σ∂Ω is a surface element on ∂Ω, and let Ĩc be given

by the numerical approximation

Ĩ =
∑

θ̃∈{0,δθ,...,2π−δθ}
δθ ·

((
min(r(θ̃), r(θ̃ + δθ))δθ

)2

+
∣
∣∣∣r(θ̃) − r(θ̃ + δθ)

∣
∣∣∣

2
) 1

2

.

Then, for a discrete step length, h, the error, EL, for this approximation is of
order O(h2) and is given explicitly by

EL ≤
∫

∂Ω

[
h2

2
∂2

∂θ2
r(θi + η) + O(h3)

]
dσ∂Ω
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Proof. Begin by noticing that our approximation is given precisely by the length
of the line connecting the points r(θi) and r(θi + h) such that

r̃(η) =
r(θi + h) − r(θi)

h
η + r(θi) (17)

for η ∈ (0, h) and centred around the point θi and where we are interested in
values in the interval (θi, θi + h).

Further, write the analytic function as the Taylor series

Ic(θi + η) ≈ r (θi + η) + η
∂

∂θ
r(θi + η) +

η2

2
∂2

∂θ2
r(θi + η) + O(η3) (18)

then from the intermediate value theorem, we can choose η such that it satisfies

∂

∂θ
r(θi + η) =

r(θi + h) − r(θi)
h

. (19)

Next, we take the difference between the two line integrals to find the analytic
error in our approximation

EL =
∫

∂Ω

[
r (θi + η) + η

∂

∂θ
r(θi + η) +

η2

2
∂2

∂θ2
r(θi + η) + O(h3)

]
dσ∂Ω

− ∫

∂Ω

[
r(θi + h) − r(θi)

h
η + r(θi)

]
dσ∂Ω

(20)

and since the linear terms for the Taylor expansion and the approximation (19)
describes straight lines between two equidistant points, their magnitudes are
equal. Therefore, considering that we have h ≥ η, we obtain the maximal error
bound

EL ≤ ∫

∂Ω

[
h2

2
∂2

∂θ2
r(θi + η) + O(h3)

]
dσ∂Ω . (21)

4 Results and Conclusions

In order to attempt the sorting experiment, we began with high affinity cells as
the outer cells of a cellular Bravais lattice and low affinity cells in the centre,
repeating the results of Graner et al. [5] (data not shown), which provided some
base validation of the model. Counterintuitively, cells who have high cell-cell
binding coefficients quickly separate into a web like structure whereas low bind-
ing constant scenarios tend to instead form a 2-dimensional hexagonal lattice.

In our second experiment we wanted a testable scenario to measure the migra-
tion of simulated cancerous cells through the ECM. For this we chose the sce-
nario of microtracks since this presents 2 unique and measurably distinguishable
scenarios in which to place our cells. We endow each with a polarisation of
θp = 0 and with the initial conditions r0(θ) = const. such that they are repre-
sented as circular cells in the 2D domain. Working with a normalised 2D domain
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t = 2 t = 4 t = 6 t = 8 t = 10

Fig. 1. Snapshots of simulated cells migrating through the ECM for the initial condition
for the nucleus of the cell given within the ECM itself (top) or within an artificial
microtrack (bottom) at times t′ ∈ {2, 4, 6, 8, 10}.

D = [0, 1]2, parameter values were estimated and rescaled from experimental
data [7] or approximated, in the case of cell-cell adhesion.

The first thing to notice is that although the membranes of cells within the
microtracks start partially submerged in the ECM, they retract their membranes
and conform entirely to the width of the microtrack (Fig. 1 bottom), as in the bio-
logical case [2]. Moreover, elongation in the microtrack cell is marked compared
with those who remain within the ECM (Fig. 1).

Travel through the ECM also appears to be more conducive to the extension
of lamellipodia (Fig. 1 top), whereas travel through the microtrack appears to be
more conducive to the extension of longer, thinner, and more directive filopodia
(Fig. 1 bottom). Not only this but the heterogeneity of the environment, alone,
is sufficient to give rise to differing rates of travel within or without microtracks.
Moreover, for increasing ECM density, one observes a decrease in velocity for cells
within the ECM but no such changes in velocity for those within the microtrack
(Fig. 2), which closely aligns with the results of in vitro experimentation [2].

Beyond the maximum time displayed (t > 10) these cells proceed to the
right hand boundary and return to a more circular shape and lie dormant on
this boundary ad infinitum. This is an artefact of the experiment, in that cells
in this experiment have a fixed polarisation and are incapable of travelling in
their assigned directions. In the following experiment we lifted this constraint.

Fig. 2. Results of in silico microtrack experiments from the numerical simulations
(right) and corresponding to those exemplar experiments in Fig. 1.
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Our final experiment involves the interaction between two different metabolic
phenotypes of cell: Highly proliferative, non-invasive (MITFHIGH) cells and
highly invasive, non-proliferative (MITFLOW) cells. We begin with a heteroge-
neous distribution of v1 and v2(t, x) = 0. MITFHIGHcells are attracted to v2 but
not v1 and MITFLOWcells are attracted to v1 but not v2 and convert v1 → v2
[4]. Furthermore, to begin the experiment, we generated a random polarisation
for each cell.

Injection of MITFHIGHcells, alone (and in the absence of mitosis), reveals an
extremely non-invasive behaviour with dominating cell-cell adhesive dynamics
(Fig. 3 top). Injection of MITFLOWcells, alone, one observes a highly invasive
dynamic (Fig. 3 middle). Co-injection of the two disparate populations displays
a mixture of behaviours between cell-cell binding and cell-ECM motility and one
observes a co-invasion of MITFHIGHcells in the wake of invading MITFLOWcells
(Fig. 3 bottom). Again, one can identify the production of filopodia by cells who
have elongated upon the heterogeneous substrate for invasion (Fig. 3).

The qualitative results of this experiment were not significantly effected by
the random initial polarisations of the cells. In the short term (t ≤ 200) cellular
automata mimic the behaviour of in vivo cells [4], with MITFHIGHcells clustering
and MITFLOWcells dispersing, in isolation, and some intermediate behaviour,
otherwise. These times were chosen to be indicative of the overall behaviour as,
in the long term (t > 200), those cells who have not yet dispersed at t = 200
will continue to cluster, whilst those who have dispersed will find some steady
state position at the boundary of the domain t → ∞. Again, these behaviours
show close conformity with in vivo experiments [4], assuming that those on the
boundary of the domain would otherwise continue to invade.

t = 0 t = 50 t = 100 t = 150 t = 200

Fig. 3. Experimental in silico injection of red MITFHIGHcells (top); green
MITFLOWcells (middle); or both cell types (bottom) onto a heterogeneous density
function for v1 coloured blue through yellow, at time points t ∈ {0, 50, 100, 150, 200}.
(Color figure online)
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We have derived a modelling framework to solve problems which previous
frameworks [5,10] were unable to approach. Errors for the numerical imple-
mentation of estimates for these models are small and, as such, allow one to
be confident in their predictive power. Moreover, the introduction of low-error
approximations to this framework allow for a fast model execution time. This
novel modelling framework has also shown practical promise; recreating the cell
sorting experiment before predicting the outcomes of biological microtrack [2]
and co-invasion [4] experiments. Moreover, this model may explain emergent phe-
nomena, such as cellular elongation and filo- or lamellipodia extension, which
could be explained through simple physical interactions between the cellular
membrane and the homo- or heterogeneous ECM. Future work should aim to
extend this model through the addition of microscale boundary interactions and
look to explore more complex biological phenomena.

This cellular automata model could also be useful in other environments
where one requires a nuanced interaction between automata and their contexts.
This can be achieved either through the method of implementation employed
above, for entirely nonlocal interactions, or through treating the cellular mem-
brane as a domain boundary and utilising a kernel to vary the impact across
the domain, allowing diverse interactions between automata and their contexts.
Obvious applications of this framework arise in cellular biology but one can also
envisage application in game theory and financial markets, where individuals
(automata) will or must take into account their environment (the context) to
varying degrees.
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Abstract. Existing computer models of cancer focus mostly on disease
progression rather than its remission/recurrence caused by anti-cancer
therapy. Herein, we present a discrete model of tumor evolution in 3D,
based on the Particle Automata Model (PAM) that allows for following
the spatio-temporal dynamics of a small neoplasm (millimeters in diam-
eter) under treatment. We confront the 3D model with its simplified 0D
version. We demonstrate that the spatial factors such as the vasculariza-
tion density, absent in the structureless 0D cancer models, can critically
influence the results of treatment. We discuss briefly the role of computer
simulations in personalized anti-cancer therapy.

Keywords: Tumor dynamics
3-D particle automata computer model
Anti-tumor treatment simulation

1 Introduction

Even though the mortality rate of cancer is slowly decreasing, it is still one of
the main fatality factors worldwide. Approximately 40 percent of people will be
diagnosed with some type of cancer at one point during their lifetime [1]. Devel-
opment of an effective general anti-cancer treatment strategy is vastly restricted
because the neoplasms greatly differ between each other. Moreover, the microen-
vironment of tumor evolution defined by bio-mechanical properties of a tissue
and its vascularization can be completely different not only for various cancer
types but also for various patients and even parts of attacked tissue. Computer
model of a tumor that mimics its evolution before and after treatment for a spe-
cific patient, can help in control of principal tumor progression/recession mech-
anisms and in predicting possible scenarios of its dynamics, thus in development
of optimal personalized anti-cancer therapy.

Tumor growth, regression/recession and recurrence are complex, multi-scale
phenomena, influenced by countless mutually coupled microscopic and macro-
scopic factors (see e.g. [24]). The taxonomy of cancer models includes broad spec-
trum of homogeneous (discrete, stochastic, continuous: single-phase and multi-
phase) and heterogeneous (discrete-continuous) computational paradigms. They
c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 42–54, 2018.
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are employed for modeling both very detailed processes of oncogenesis occurring
in a single spatio-temporal scale (in molecular, tissue or organism level) and
complex multiscale systems. Diversity of existing tumor models are described in
comprehensive books from computational oncology (e.g. [6,18,24]) and hundreds
of papers.

Cancer dynamics can be simulated by means of both very simple 0D models
described by ODEs (ordinary differential equations) and more complicated, com-
putationally demanding spatio-temporal 3D systems (realized numerically by
using finite element methods FEM, agent-based discrete models etc.) [21,23,24].
The latter ones are focused mostly on tumor progression. Meanwhile, its remis-
sion/recurrence caused by anti-cancer therapy is rather modeled by using simpler
ODEs based codes [20,25]. This is understandable because the 3D tumor mod-
els are usually over-parametrized. Taking into account the processes responsible
for the anti-cancer therapy may result in additional excessive increase of their
complexity. Consequently, this can considerably lower the quality of predictions
of cancer dynamics due to overfitting, ill-conditioning and high computational
complexity of the models.

Therefore, simple 0D computer models of cancer, adapted to real data repre-
senting tumor dynamics [21], which exploits prediction/correction scheme (such
as in [7]), could seem to be more useful in predictive diagnosis systems. On the
other hand, because the variability of their parameters is prohibitively high and
depends strongly on the microenvironment of cancer dynamics, the elaborated
prognoses are too often inconclusive [21]. That is why, employing advanced image
diagnostics of the future as input data, 3D models could be extremely helpful
both in recognizing the most critical regression and recurrence factors and in the
process of detailed analysis of various scenarios of tumor evolution. Especially,
in respect to the specific tumor environment such as bio-mechanical properties
of tissue and its vascularization topology. We expect that balanced use of tumor
models of various complexity together with the new opportunities of the com-
putational and diagnostic technologies will decide about usefulness of predictive
oncology in personalized anti-cancer therapy in the future.

The main contribution of this paper is the application of 3D PAM modeling
paradigm [8] in simulating cancer dynamics, assuming treatment. The 3D model
considers the most important factors influencing cancer remission caused by the
anti-tumor therapy. The PAM model allows for simulating the tumor evolution
in the mesoscopic scale (a millimeter in diameter, i.e., N = 105 − 106 cells) in
a reasonable CPU time on a laptop computer. Simulation time for a greater
systems, scales up linearly with N. We also developed the method for generating
realistic vascular network structure, which can be easily adapted to various tis-
sues. Additionally, by assuming different types of interactions between cells, the
extended PAM model reflects more realistic bio-mechanical properties of can-
cerous tissue in which the rheological properties of “healthy” and tumor cells
are distinctly different. We aim to demonstrate that our model constitutes an
important complement to approximate 0D tumor models, which are currently of
clinical use [3,19,21]. Our goal is to show that the 3D model is sensitive to a spe-
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cific tumor micro-environment defined by the density of tissue vascularization,
which is a crucial factor determining the result of anti-cancer therapy.

In the following section we present a simple structureless 0D model of tumor
dynamics, which was applied in clinical practice and is a good approximation of
our 3D solution. Next, we briefly describe the 3D PAM model of cancer evolution
under treatment and the computational layout, which mimics realistic tissue
vascularization. We describe some computer experiments showing the influence
of the tissue vascularization density on the tumor evolution under treatment.
Finally, we discuss the conclusions.

2 Simplified 0D Cancer Model

The 0D tumor model [21] is presented schematically in Fig. 1. It is assumed
that there are three basic types of tumor cells: proliferative P , quiescent Q and
mutated quiescent QP . We assume also that only the proliferative cells are able
to reproduce. The proliferative tumor cells, which stay some time in a very hostile
environment (e.g. low concentration of oxygen and nutrients, high pressure etc.)
become quiescent. In case of anti-tumor treatment, the proliferative cells die
and the damaged (mutated) quiescent cells appear, which can either die, stay
dormant or revert (after some time) to proliferative state, becoming “the seeds”
of even more voracious cancer. The model is defined by the set of four ODEs.
Each of them describes the dynamics of the population of a specific cell type.
The equations are as follows [21]:

dC
dt = −TcC, (1) dQ

dt = kPQP − γQCTCQ, (2)

dQP

dt = γQCTCQ − kQPPQP − δQPQP , (3) P ∗ = P + Q + QP , (4)

dP
dt = λPP (1− P∗

K )+kQPPQP −kPQP −γPCTCP. (5)

where: P - the total volume of proliferative cells; Q - the total volume of quiescent
cells; QP - the total volume of mutated quiescent cells; C - anti-cancer drug
concentration; TC - a constant used for calculating decrease of anti-cancer drug
concentration; λP - a rate of growth for P; kPQ - a rate the cells change their
states from P to Q; kQPP - a rate the cells change their states from QP to P ;
γQ, γP - damage rates in proliferative and quiescent tissue, respectively.

In [21], the model parameters were adapted to real data - glioma cancer
evolution - which were taken from many (more than 300) patients for three types
of anti-cancer therapies. In Fig. 2 we can see two examples of tumor size dynamics
for two different (averaged) “patients”, obtained by solving the model equations.
Herein, we have chosen the averaged set of model parameters obtained for PCV
chemotherapy and trained additionally by using Bayesian adaptation technique
(ABC) [5]. Despite apparent differences, we can remark that the tumor evolution
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Fig. 1. Block diagram of the 0-D cancer model.

is very similar in both cases. The tumor increases in size at the beginning of the
simulation, then rapidly shrinks due to treatment and, finally, some time after
treatment it re-grows again. This simple model applies to rather big tumors,
i.e., up to 8 cm of mean tumor diameter (MTD) [21]. Our 3-D model is able to
simulate tumor of much more modest size - up to a millimeter in diameter (on a
laptop computer). Thus, we expect the tumor evolution type such as that for the
“first patient” with early tumor symptoms (see Fig. 2). As shown in [21], for the
majority of cases, typical not optimistic result is observed - an inevitable and very
quick re-growth of tumor mass. We demonstrate in Fig. 2 that a wrong choice
of treatment plan, or its abrupt discontinuation, can result in a rapid tumor
recurrence. For example, as shown in Fig. 2, the tumors of the two “patients”
may be similar in size after 50 months of their appearance, despite the patients
started their therapies in very different stages of tumor development. In the ideal
case presented in Fig. 2, i.e., when the size of real tumor evolution follows exactly
the model (1–5), we are able to predict tumor size dynamics not only after but
also before treatment. The predictions were made by training the model (i.e.,
adapt its parameters from data) by using the Bayesian adaptation technique
(ABC) [5] employing continually “measured” tumor volume in a relatively short
time interval Fig. 2. On the other hand, as shown in [21], due to rather scarce and
not accurate data, and most of all, incompatibility between the 0-D model and
the reality, the quality of model predictions is definitely worse. Therefore, even
though the 0D model can be very useful, it cannot extrapolate long term changes
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Fig. 2. Tumor volume in time, for two “patients”. The green line represents the exact
solution of the equations (1–5). The red line delineate the predictions based on data
located between blue dashed lines. (Color figure online)

in the tumor spatial dynamics stimulated by the non-homogeneous density of
tissue and vascularization, e.g., caused by occurrence of voids due to necrosis
and vascular remodeling processes, respectively. Thus, the model parameters
should be continuously corrected in the course of treatment. The 3D tumor
model could help in better adjustment of the approximate 0D model to real data.
Assuming that in the future we will be able not only to measure the tumor size
in real time but also to observe its shape and biological structure of its growth
environment, we can think about application of more sophisticated 3-D tumor
models in predictive oncology. Knowing the real initial tumor layout, we would
be able to predict spatial scenarios of its evolution taking into account that a
specific tissue structure (its mechanical properties and/or density of vasculature)
could block or accelerate its dynamics. Particularly, it might be possible to see
if the cancer does not start to re-grow in a location where the access to the anti-
cancer drug is restricted (for example, in a small tissue fragment which is away
from blood vessels). This information plays a key role in choosing a therapy plan
and decide about the way of its application, e.g., the dose and frequency of drug
administration.

3 3D Tumor Model

3.1 Particle Automata Model

We extended the 0D model of tumor with treatment to three dimensions. To this
end we adapted the PAM heterogeneous discrete-continuous modeling paradigm
[8,23] to the framework from Fig. 1. The basic properties of 3D PAM model are
described below.

As shown in Fig. 3a, the system consisting of tumor and healthy tissue can
be represented by interacting cells (particles) with a few variable states. The
particle system is bounded by a computational box under a constant external
pressure. Each particle i (cell) is defined as a tuple (xi,vi,ai), where: i - particle
index and (i = 1, ...., N), ri - its position, vi - velocity, ai - attributes (states).
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Fig. 3. The scheme of main components of the Particle Automata Model and cell
states. (a) Particles representing tissue cells and blood vessels. (b) Life cycle of a cell.
We mark in gray the states possible only for tumor cells.

Each particle represents a tissue cell while two particles create a single seg-
ment of a blood vessel. The blood vessels are made of connected segments. The
vector of particle attributes ai includes information on: the cell type (tumor:
{proliferative, quiescent, mutated), healthy, blood vessel}, a phase of the cell
life-cycle (see Fig. 3b), cell size, cell age, hypoxia time, concentrations of O2,
TAF (tumor angiogenic factor) and anti-tumor drug, and total pressure exerted
on a particle from the rest of the tissue. The spring-like forces [8] between par-
ticles mimic mechanical repulsion and attraction between cells. The total force
acting on a particle i is the sum of all forces from other surrounding parti-
cles in a given cut-off radius. The particles of all types move according to the
ODE system of the Newtonian equations of motion, while their states follow
automata rules (defining, e.g., cell life-cycle from Fig. 3b, thresholding rules,
chemical interactions between neighboring cells etc.). The blood pressure in the
vessels is approximated by the Kirchhoff law. Spatio-temporal evolution of each
cell is highly dependent on the concentrations of oxygen (and TAF in angiogenic
phase) and anti-tumor drugs calculated in a cell position by solving continu-
ous reaction-diffusion PDEs. The concentrations define internal state of each
cell. The blood vessel network Ω releases in each time step a constant amount
of oxygen and anti-tumor drugs (sources), which diffuse inside the tumor mass.
Simultaneously, the diffusive oxygen and drugs are consumed in a given constant
rate by the tissue cells (sinks).

3.2 The Layout and Blood Vessel Network

We have developed a simple algorithm that allows us to generate a realistic,
non-deterministic vessel network being the approximation of more sophisticated
approaches presented in [17,22]. We assumed that all the vessels consist of a
series of line segments of the length equal to “vessel length”. Starting and ending
points of the vessels are chosen at the left and right sides of bounding box. Their
radii are defined by “max thickness” parameter. Then, the subsequent layers of
vessel segments are added towards the center of the computational box with
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randomly chosen curvature from 0 to “max curvature” interval. Each vessel seg-
ment has a chance to split into two vessels with a probability “chance of split”.
The thickness of a blood vessel segment is inversely proportional to its distance
to the center of the computational box. The number of layers of vessel segments
is defined by “levels” parameter. When all the layers are created, we connect
each blood vessel to the nearest neighbor. In Fig. 4, we present the layouts we
used in our experiments.

Fig. 4. The layouts of the tissue model with dense (left) and poor vasculature (right).
Healthy cells are hidden for visualization purposes.

Finally, the tissue cells surrounding the vessels are added. All of the cells are
arranged in densely packed layers. The initial cluster of tumor cells is situated
at the center of the computational box.

3.3 Viscosity of the Tissue

In the PAM model we have introduced a new model of interparticle forces. The
healthy and cancerous tissues are represented by viscous SPH particles. Then,
the whole particle ensemble simulates the dynamics of a multiphase Navier-
Stokes fluid. The main reason for this assumption is the possibility to mimic
real differences between rheological properties of tumor and healthy tissues (the
healthy cells are more “viscous”). For smaller tumors, this difference in viscosity
makes tumor cells much more flexible what is demonstrated in Fig. 5.

Fig. 5. Comparison of PAM simulations with and without SPH properties of viscosity
force. Left: with viscosity force. Right: without viscosity force.
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For larger tumors this difference in viscosity does not reveal in observed
growth patterns. The pressure exerted on the tumor and its fluctuations are too
small to trigger tumor surface instability effects. Therefore, the avascular tumors
can evenly grow in all directions. We anticipate that, the surface instabilities
can be visible for larger tumors (over 1 cm in diameter), for which the fingering
instability can be expected, as it is in large ensembles of DPD (dissipative)
particles in [9].

3.4 Anti-cancer Treatment

The PAM model of the tumor behavior after treatment is based on the same
assumptions as the 0-D model [21]. We assume that all the tumor cells start
their life cycle as the proliferative ones. If the oxygen concentration drops below
a given threshold the proliferative cells become quiescent, i.e., they will no longer
have the capability to replicate. If the medicine concentration is above a certain
level, the proliferative cells die and the mutated quiescent cells appear [4]. If
the medicine concentration will stay high, the mutated quiescent cells will either
stay mutated (but dormant), die or become proliferative once again [14,18] being
the sources of cancer re-growth. The tumor transforms from homogeneous to
heterogeneous one.

Changes in drug concentration are governed by the mechanisms of medicine
impact, transport&redistribution (diffusion and advection) and elimination
(decay and cellular uptake), similar as in [15]. We assume, that drugs are secreted
by the functional and permeable (destructed by vascular remodeling process)
blood vessels at a constant rate. The cells also consume the medicine at a con-
stant rate, depending on a tissue type. The medicine diffusion is governed by
the diffusion-reaction equation:

∂C

∂t
= Dc · ΔC − NrC − TcC + c · h(Ω,T − t), (1)

where: Nr - drug consumption rate, Dc - medicine diffusion constant, C - drug
concentration, TC - a constant used for calculating decrease of anti-cancer drug
concentration, c - medicine source rate in the blood network Ω during time T .
For the sake of simplicity, constant drug secretion c and its absorption TcC rates
by the tissue are assumed. The function h(x, t) = 1, for t > 0 and h(x, t) = 0, for
t < 0. Our assumptions are consistent with the simple model described in Sect. 2
[21]. Comparing to the fully continuous drug diffusion model [15], the advection
of drug in PAM is realized by moving particles. Therefore, the advection term
v · ∇C is lacking in (6).

4 Results of Simulation

The size of a fragment of tissue modeled was limited to 3.0 · 105 cells in total.
This bound is defined mostly by the computational power we dispose for simula-
tions. They have been run on a single core of the CPU specified in Table 1. One
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Fig. 6. Tumor evolution for the setups with (a) poor and (b) dense vasculature. The
treatment was administered on the step marked with a black arrow.

simulation needs around 24 h CPU time for simulating 1.6 · 104 time steps. The
initial setup of the simulations (Fig. 4) assumes around 200 cancer cells placed in
the middle of the layout. In Table 2 we collected the most important parameters
influencing tumor dynamics.

Table 1. Specification of the machine running the simulations.

CPU Intel R©CoreTMi7-5960X @ 4.2 GHz (8 cores, 16
threads, 20 MB of L3 cache)

RAM DDR4 2666 MHz 32 GB (4 × 8 GB Quad-Channel)

Disk Samsung NVMe SSD 960 Pro

GPU nVidia GeForce GTX 1080

As shown in the previous section, the tumor evolves in a fragment of tissue
composed of healthy cells and blood vessels. The proliferative and quiescent
cells, being the components of the cancerous tissue, have different properties
than the healthy cells and the vessels. The letter are more resistant to pressure
and low oxygen concentration. The proliferative cells consume more oxygen and
are very susceptible to anti-cancer drugs. These properties allow them, on the
one hand, for rapid reproduction under favorable conditions and, on the other,
fast necrosis (death) due to devastating effects of treatment. The quiescent cells
are more resistant on the anti-cancer drugs and need extremely little oxygen to
stay alive.

To show how the spatial topology of tissue exploits these cell properties and
influences cancer evolution during and after treatment, we have compared tumor
dynamics for two different layouts (see Fig. 4). In the first one, the tumor is well
oxygenated by a dense vasculature, while in the other it is situated in a poorly
vascularized tissue. As we can see in Fig. 6, after growth phase, the tumors
collapse due to treatment (see also Figs. 7 and 8).

However, the results from Figs. 6 and 7 show that eradication of the tumor
in the layout with poorer vasculature can fail. The tumor shrinks down during



PAM: Discrete 3-D Model of Tumor Dynamics 51

Table 2. The most important parameters of the simulation (concerning tumor growth).

Name Description Value Units

force r cut Cut-off radius in forces calculations 10 µm

p o2 O2 threshold to change state proliferative cells 0.7 norm.

q o2 O2 threshold to change state for quiescent cells0.35 norm.

diff O2 Diffusion coefficient for O2 2000 p.u.

diff med Diffusion coefficient for medicine 4000 p.u.

time apop Time to apoptosis 3600 p.u

min inter time Minimum interphase time 600 p.u

max pressure hMax pressure in healthy cells 1 ∗ 10−16p.u

max pressure t Max pressure in tumor cells 1 ∗ 10−15p.u

cons rate h Medicine consumption rate in healthy cells 2 ∗ 10−12p.uh−1

cons rate t Medicine consumption rate in tumor cells 2 ∗ 10−11p.u

o2 cons h O2 consumption rate in healthy cells 5 ∗ 10−11p.u

o2 cons t O2 consumption rate in proliferative cells 1 ∗ 10−10p.u

o2 cons q O2 consumption rate in quiescent cells 2 ∗ 10−11p.u

o2 hypoxia O2 threshold for entering hypoxia state 0.01 p.u

*p.u. - program units, norm. - normalized

Fig. 7. Remission of the tumor in poor vasculature. The cross-section of the tumor
is shown. Brown - proliferative cells, red - quiescent cells and blue - mutated. (Color
figure online)

Fig. 8. Remission of the tumor in the tissue with dense vasculature.
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treatment, but it can start to re-grow when the quiescent cells from tumor rem-
nants become mutated and will convert into tumor cells. On the other hand, one
can observe a dramatic decline in the number of proliferative tumor cells during
treatment for the second layout. As shown in Fig. 8, for denser vasculature, due
to good oxygenation, also the number of quiescent cells can be marginal. Con-
sequently, as shown in Fig. 8 almost all cancer cell can be exterminated during
treatment. These results demonstrate that the choice of the right concentration
of anti-tumor drugs and the type of treatment is highly dependent on the tumor
vasculature what is in full agreement with observations (see, e.g., [11]. It also
shows that anti-angiogenic therapy - which inhibits tumor vascularization - in
the incipient stages of tumor grow may be very risky [11]. One can expect that if
anti-angiogenic therapy fails, more demanding chemotherapy need to be applied,
what leads to worse side effects and poor prognoses. If we compare the tumor
dynamics from Fig. 6 to the tumor evolution simulated by 0-D model from Fig. 2,
we can see that the results are fairly consistent. The initial growth stage and
rapid decline during treatment look similar to the tumor model with a dense
vasculature. The tumor regrowth is not observed due to insufficient number of
quiescent cells and the death of all proliferative ones. In the second case of poor
vascularization, many quiescent cells survive the treatment. Some of them, which
become mutated, can be the source of further cancer recurrence. This is partic-
ularly dangerous in case of cancers with scattered consolidation (e.g. in lung
cancer), i.e., evolving in the form of the cluster consisting of large number of
tiny tumors. After not sufficiently destructive chemotherapy, though the most
of small tumors will die, the cancer recurrence can be still feasible starting from
tumor blobs such as in Figs. 6a and 7.

5 Concluding Remarks

In this paper we present the 3-D model of a small (mesoscopic) tumor simu-
lating various phases of its evolution, particularly, remission/recurrence stimu-
lated by anti-cancer therapy. We demonstrate that our extended PAM model
reveals a strong dependence of the cancer dynamics under treatment on its
spatial environment, such as the tumor vascularization. The size of simulated
tumor is constrained by the high computational complexity of the PAM model
and the processing power of available computer systems. However, the model-
ing of anti-cancer treatment even in case of the tumors of millimeters size is
also very rational. Some types of cancer (e.g., lung and breast cancers) consist
of many scattered clusters of tumor cells. Moreover, the increasing effectiveness
of diagnostics enables us to discover minuscule tumors in very early stages of
their development. Consequently, due to different size and structure of small
tumors than large ones, what reveals in smaller population of mutated quiescent
cells, one can expect different scenarios of tumor re-growth which require other
therapy plans than those applied for larger tumors.

Although, we did not try to match the parameters of PAM model to the
0-D model (in fact, the two models presented here represent completely different
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tumors) one can see that in the context of both their spatial scales and types,
they behave very similarly for small tumor sizes. Thus, we believe that the
calibration of the two is possible. So, afterwards, the 3-D model of tumor could
be used as a “ground truth” for learning the parameters and normalization of
approximated 0-D cancer model and to mimic a broad range of tumor evolution
scenarios depending on its spatial structure and the environment.

Summarizing, nowadays, the 3-D model of tumor can be used as an extension
and support for simpler 0-D models in personalized anti-cancer therapy. Its main
disadvantage is the large number of parameters, what can make it useless (over-
fitting) when adapted to small and poor (e.g., only tumor MTD measurements)
real data sets. However, in the future, having in mind, on the one hand, the
fast development of medical imaging tools which soon will provide us with the
realistic 3-D images of the environment of cancer evolution, and, on the other,
the expected radical increase of computational power, the 3-D tumor models can
soon become independent and precise tools in predictive oncology.
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Abstract. In this paper we propose a new approach to evaluate electri-
cal performances and temperature field for standard photovoltaic (PV)
panels. The model is based on two-component cellular automata (CA)
that describe the dynamics and behavior of a solar cell. The first com-
ponent represents the evolution and distribution of the temperature in
PV panels and the second consists of the electrical output characteris-
tics of the solar cells. The coupling of these two-components allows us
to simulate numerically the operation mode of solar cells according to
four defined states: direct mode, inverse mode, hot spot mode and failure
mode in order to compute the generated electrical power. This model is
adapted to the case of uniform and non-uniform irradiation. Some sim-
ulations and experimental results illustrate our approach.

Keywords: Cellular automata · Photovoltaic cell · Temperature field

1 Introduction

Nowadays, photovoltaic systems are some of the most widely used renewable
energy sources in the world. They have a particular interest for governments, and
industries because they are green and sustainable. As a result of their impor-
tance, multiple countries have inaugurated huge photovoltaic parks. However,
because of the high initial capital required for this technology, the exploitation
of solar energy produced must be optimized; this requires the use of reliable sim-
ulation and relevant modeling of PV system that takes into account the thermal
behaviors in PV modules.

There are numerous published papers that describe the thermal behaviors
in PV modules. In [1] a simple method have been considered to determine tem-
perature of solar cells based on linear relationship between basic environmental
variables; ambient temperature, humidity and wind speed, this method is still
poor because the electrical operating points of the PV module are not taken into
account. In [2] the thermal mechanism used is based on correlation of electrical
c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 57–67, 2018.
https://doi.org/10.1007/978-3-319-99813-8_5
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Resistance and Capacitance (RC circuit) to Thermal Resistance and Thermal
Capacitance (Rth, Cth), Cth concern the conductive heat transfer in the PV
layers and Rth is defined as the index of a materials resistance.

Recently an important work on this subject has been provided by Pierre-Luc
[3]; the method presented in this paper consists in combining an optical model
with a five parameter PV electrical model and a 2-D heat conduction equation.
Other papers have been proposed for modeling thermal and electrical behaviors
of PV panel in the case of partial shading [4–6].

In this paper we propose a new approach for modeling the electrical and
thermal behaviors of the PV panels. The model is based on two-component cel-
lular automata (CA) through which a 2-D heat conduction equation is combined
with a PV electrical model of five parameters for every time step of simulation.
Our CA allows describing in a simple mathematical formalism the dynamics and
behavior of a solar cell in a PV panel. Moreover, it is to be noted that this is the
first time that the dynamic behavior of photovoltaic (PV) panels are simulated
using CA.

2 Problem Statement

Several representative models of the PV cell are found in the literature, which
differs from each other in the procedure and the number of parameters involved
in the calculation of the voltage and current. The model proposed by Bishop
[7] is the most representative to the actual behavior of the solar cell, because it
takes into account the reverse bias polarity (see Fig. 1a).

Figure 1b shows solar cell current-voltage characteristics in two zones opera-
tion

– Zone 1: corresponds to forward mode. In this mode the cell works in a gen-
erator and delivers the power as shown in the rightn part of the vertical axis
in Fig. 1b.

– Zone 2: corresponds to bias reverse polarity mode. The cell works in reception
and dissipates the power in the form of heat which will cause overheating of
the solar cell. This can provoke what is then called as a hot spot [8]. In general,
the solar cell is polarized in reverse when it is shadowed.

The main purpose of this paper is that of modeling the thermal and electrical
behavior of the solar cell in its two modes of operation.

3 Problem Approach

Because the cellular automaton (CA) is a powerful tool for modeling dynamics
of systems, we have exploited it as an approach to achieve our purpose.
Let us recall the definition of the cellular automaton.
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(a) Equivalent circuit.

(b) Electrical output and mode operation.

Fig. 1. Principles of solar cell operation.

3.1 CA Definition

A cellular automaton is a mathematical object, also studied in theoretical com-
puter science. It was introduced by J. von Neumann in 1948. It consists of a
grid of cells arranged in n-dimensional space, each cell bearing finite discrete
states which can evolve over time depending on the state of its neighborhood.
The simplest application is the Game of Life, proposed in 1970 by the British
mathematician John Horton Conway. A cellular automaton is defined by the
quadruplet A, plus the boundary and initial condition [10].

A = (L,N ,S,F) (1)

Where L is called lattice, N is a neighborhood, S is a set of states and F is a
function of transition, as can be seen in Fig. 2.

3.2 Description of the Proposed CA

We present briefly the proposed cellular automaton model.
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Neighborhood
Set of states

Lattice

Boundary space

Fig. 2. Principle of cellular automata.

Lattice: The lattice consists of solar cells wired in series or parallels and
arranged in a two-dimensional square grid to form a PV model as illustrated
in Fig. 3:

L = {Cij ; i, j ∈ N; i = 1, 2.., ni and j = 1, 2.., nj} (2)

with ni and nj are the numbers of solar cells along vertical and horizontal axis
respectively.

(a) series circuit (b) series-parallel circuit

Fig. 3. Lattice considered in the approach.

Neighborhood: The neighborhood is adjusted according to the transition rules
of the solar cell (current and temperature):

– To determine the maximum operating point current, the choice of the neigh-
borhood depends mainly on the interconnection circuit of the PV panel. If
the cells are wired in series, the neighborhood is the entire lattice as shown
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in Fig. 4a, and if they are wired in series-parallel circuit, the neighborhood is
the cells connected to the same string as illustrated in Fig. 4b.

– To compute the temperature, we consider a von Neumann neighborhood as
in Fig. 4c and d.

Fig. 4. Cellular automaton neighborhood considered in the approach in the case of a
series circuit and series-parallel circuit; (a) and (b) for operating point current , (c) and
(d) for temperature (the objective cell is shown in black and neighborhood in gray).

Set of States: The state of each cell corresponds to the mode operation of the
PV cell, which is a coupling between the temperature Tc (i, j) and the electrical
characteristics of the solar cell Iopc (i, j). There are four possible states as:

S = {1, 2, 3, 4} (3)

with

1 : Direct mode,

2 : Inverse mode,

3 : Hotspot mode,

4 : Failure mode.
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The solar cell is characterized on several physico-chemical intrinsic attributes
as illustrated in Fig. 5. Then, with these data, the proposed CA State is given
as:

S (cij , t) :

⎧
⎪⎪⎨

⎪⎪⎩

1 if Its (i, j) ≥ Itopc (i, j)
2 if Its (i, j) < Itopc (i, j) and T t

c (i, j) < Ths

3 if Its (i, j) < Itopc (i, j) and Ths≤ T t
c (i, j) < Tcri

4 if Its (i, j) < Itopc (i, j) and T t
c (i, j) ≥ Tcri

(4)

where Is is solar cell short-circuit current at arbitrary conditions, Iopc is solar
cell maximum operating point current at arbitrary conditions, Tc is solar cell
temperature, Ths is minimum temperature of hot spot phenomenon equal to
90 ◦C, and Tcri is the critical temperature value that can damage the solar cell
(according to [9] Tcri = 150 ◦C).

Photovoltaic layer properties

k = Thermal conductivity
cp = Specific heat capacity
ρ = Density
ε = Emissivity
ζ = Absorbtance
t = Thickness
σ = Boltzmann constant

Panel geometry and attitude

β = Panel angle
γ = Surface azimuth angle
ω = Hour angle
φ = Latitude
Ns = Cell in series
Np = Cell in parallel

Photovoltaic layer properties

q
[t]
solar(i, j) = Quantity of incident thermal energy from

the sun on solar cell
q[t]conv(i, j) = Quantity of convection heat losses with

on solar cell the surrounding air
q
[t]
rad(i, j) = Quantity of radiative heat transfer between

the solar cell and the sky
q
[t]
cond(i, j) = Heat conduction terms

q
[t]
diss(i, j) = Quantity of the heat dissipated from solar cell

θ = Angle of incidence
θz = Zenith angle of the sun

= Effective absorptivity
Gt

c d(i, j) = Diffuse irradiance
Gt

c b(i, j) = Beam irradiance

Solar cell characteristics

Isc = Short-circuit current
Voc = Open-circuit voltage
Imp = Maximum power current
Vmp = Maximum power voltage
Iph 0 = Light generated current
Rs = Series resistance
α0 = Current temperature coefficient
β0 = Voltage temperature coefficient

Meteorological parameters

Vwind = wind speed
Ta = Ambient temperature
Gc = hourly total radiation

Itopc(i, j) = maximum operating point current at arbitrary conditions
Its(i, j) = short-circuit current at arbitrary conditions
T t
c (i, j) = solar cell temperature

STATE OF SET

S ={ 1, 2, 3, 4}

(τα)

Fig. 5. The data considered in the approach (dynamic factors are shown in red and
intrinsic attributes in blue). (Color figure online)

Transition Rules: According to Eq. 4, the evolution of the state between ti
and ti+1 depends on the evolution of the temperature T t

c (i, j) and the operating
point current Itopc (i, j). We have for:
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– Temperature: The two-dimensional diffusion equation in Cartesian coordi-
nates (x, y), is used to compute the temperature of solar cells:

ρcp
∂T (x, y)

∂t
= kΔT (x, y, t) + ξ(x, y, t) (5)

where ρ, cp, k and ξ stand respectively for density, heat capacity, thermal
conductivity and source term.

To solve Eq. 5 we use the iterative method formulation such as that proposed
by Patankar [11]. The expression of temperature cell at instant t+1 is obtained
by adding the heat generation term and the temperatures values of the four
neighbor’s cells as expressed in Eq. 6:

T t+1
c (i, j) = F0

[
T t
c (i, j) + T t

c (i + 1, j) + T t
c (i − 1, j) + T t

c (i, j + 1) +

T t
c (i, j − 1)

]
+ (1 − 4F0) × T t

c (i, j) +
Δt

ρcp
×ξ[t] (i, j) (6)

with
ξ[t] (i, j) = q

[t]
solar (i, j) + q

[t]
diss (i, j) + q

[t]
rad (i, j) + q[t]conv (i, j) (7)

ξ[t] is the source term rate per unit volume, corresponds to; incident thermal
energy from the sun (q[t]solar), the heat dissipated from solar cell (q[t]diss), the
heat transfer by radiation between the solar cell and the sky (q[t]rad) and the
energy transfer between a cell surface and surrounding air (q[t]conv). A detailed
description of each of these parameters is available in [3].

– Operating Point Current: The operating point current Iopc consist the
current owing through each of the cell at instant t. If all cells are wired in
series they all carry the same current Iopc equal to the minimum current (Im)
provided by the bad cell (shaded one) of the PV panel as expressed by Eq. 8.
If the cells are wired in a series-parallel circuit, the operating point current
is equal to the minimum current provided by the bad cell connected in the
string, as expressed by Eq. 9:

Itopc (i, j) = min
{
Itm (i, j) ; i = 1, 2..ni and j = 1, 2..nj

}
(8)

Itopc (i, j) = min
{
Itm (k, j) ; k = 1, 2..ni

}
(9)

The diagram shown in Fig. 6 explains all of the possible scenarios that can arise
for each cell and that explain the operation mode evolution of the solar cell.

Initial and Boundary Conditions: The initial condition is the solar cell
temperature at the beginning of the experiment, also it’s assumed to be equal
to the ambient temperature :

T t=0
c (i, j) = Ta (10)

The boundary condition corresponds to convection heat transfer flux between
ambient air and the solar cells.
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Fig. 6. Diagram of state.

4 Experimental Test and Simulation Result

The methodology for modeling the PV panel using CA method is described in
the flowchart of Fig. 7.

The experimental setup for the proposed model is shown in Fig. 8. The setup
consists of a Computer Controlled Photovoltaic Solar Energy Unit (EESFC).
The EESFC is a scaled laboratory system which includes equipment that is
used for the study of the transformation of solar power into electrical power
[12]. It is installed in the laboratory of green energy of Abdelmalek- Essaadi
University. At each step of simulation the sensors connected to EESFC unit
measure respectively the ambient temperature (Ta), irradiation (E) and wind
speed (Vv), which were used as inputs values to the numerical model to simulate
the transient PV panel temperature field and the associated electrical power
generated.

In Table 1 the measured data and simulation results of electrical power gener-
ation are summarized. The results are obtained every 5 min step for one contin-
uous hour of simulation. Thus to compare between the measured and simulation
results we have calculated the average relative error given by Eq. 11:

Er = abs

∣
∣
∣
∣
(PmpS − PmpM )

PmpM

∣
∣
∣
∣ × 100 (11)

where PmpS and PmpM are simulated and measured values of maximum power.
The simulation has been carried out for the situations described below:

– uniform irradiation during the time horizon.
– partial shading, created by an object in the cell C43 at time t = 35ṁin.

It is readily apparent from results shown in Table 1 that the simulation results
are in good agreement with measurement data in most of the time, the aver-
age relative error is low, and does not exceed 10%. These results indicate the
capability of our model to evaluate electrical performances of PV panel.

The validation of temperature distribution is done through the use of thermal
imaging by an infrared camera as shown in Fig. 9. The distribution of temper-
ature varies between 18 ◦C (ambient temperature) and 150◦C (critical value of
temperature) as shows the color bar in Fig. 9e. The temperature ranges from 8 ◦C
at step 1 which corresponds to ambient temperature, to 45 ◦C at step 3 (after
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Fig. 7. Methodology for the proposed model.

Fig. 8. Experimental setup elements. (Color figure online)
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Table 1. Comparison of measured data and simulation result of electrical power gen-
eration

Time Meteorological parameters Shadowing Simulation result Measured data

Iteration Minute Ta(
◦C) E(w/m2) Vv(km/h) Yes/No PmpS(w) PmpM (w) Er(%)

01 00 18.7 633 17 No 32.13 29.22 09.96

02 05 18.7 640 17 No 32.89 31.15 05.59

03 10 18.8 650 17 No 35.14 32.76 07.26

04 15 18.8 660 17 No 35.98 34.15 05.36

05 20 19.0 200 17 Yes 10.12 09.12 10.96

06 25 19.1 660 17 No 36.88 34.65 06.44

07 30 19.1 670 17 No 38.87 37.21 04.46

08 35 19.2 680 17 Yes 04.90 05.22 06.13

09 45 19.3 680 17 No 41.91 38.33 09.34

10 50 19.3 700 17 No 44.41 40.05 10.89

11 55 19.3 750 17 No 45.65 41.87 09.03

10 min of simulation) and 55 ◦C at step 7 (after 30 min of simulation). Also,
we can observe that the simulation results (Fig. 9b, d) slightly overestimate the
experiments data (Fig. 9a, c) by approximately 10 ◦C. This can be attributed to
the influence of the reflection of thermal radiation on glass layer as explained by
Krenzinger in [13].

Fig. 9. Validation of temperature field: (a), (c) thermal imaging at iteration 02 and
06, respectively; (b), (d) simulation results; (e) color bar (Color figure online)

5 Conclusion

A cellular automata approach for modeling electrical and thermal behaviors of
PV panels has been presented in this paper. The model has been validated
by measurements of electrical characteristics and temperature distributions of
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PV panel. Finally, this model can be developed to be adaptable to other types
of collectors that exclude the technologies of the heat exchanger as a thermal
absorber plate and amorche panel, in order to detect possible malfunctions.
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Abstract. Cellular Automata (CA) models have been applied to differ-
ent fields of knowledge, from cryptography, arts, to the modelling and
simulation of complex systems. In the latter area, however, sometimes
the ability to properly represent complex interacting but distinct dynam-
ics taking place within a given area is limited by the need of calibrat-
ing models in which the number of necessary parameters grows. Hidden
costs related to the identification of specific values or plausible ranges
for parameters can become overwhelming.

Here we model the assembly process of plant communities after fire.
The number of elements of plant communities (plants of different species)
and processes involved (seed dispersal, plant recruitment, competence,
etc.) require a high degree of parameterization because all those pro-
cesses have great relevance on the evolution of the system, for instance
during post-fire recovery.

The fire, aside negative effects, releases a number of resources (space,
nutrients, . . . ) making them easily available for plants, which promptly
use those resources so they are no longer available to other plants after a
period of time which usually ranges from months to years. In the mean-
time, the plasticity of species in relation to fire and environment and the
interactions among species determine the direction of changes to occur.

In this work we present a novel approach to the assembly of plant
communities after fire using CA. In particular we gather the prelimi-
nary results of their application and give a feasible way to optimize the
parameterization of the model.

1 Introduction

Plant Community Assembly After Fire. The vegetation is the base in the func-
tioning of the majority of terrestrial ecosystems as it captures the energy from

c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 68–79, 2018.
https://doi.org/10.1007/978-3-319-99813-8_6
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sunlight and makes it available to the other elements of the ecosystem. Despite
the vegetation being primarily dependent on the environment, as it grows com-
plex, it modifies the environment to such a degree that it takes control of certain
processes in the ecosystem.

However, plant communities are continuously changing along time following
a patch pattern, where the death of plants creates gaps, so that the temporary
increase of resources (light, space, water, nutrients, . . . ) promotes the growth of
neighbouring plants and the recruitment of new ones until the majority of those
resources are retained, or occupied, by plants or leaked out of the system [18].
These changes are usually slow; however, disturbances trigger large changes in
plant community structure and functioning [15]. Disturbances often produce a
large increase in the availability of resources through plant mortality [26], and
fire is one of the most widespread disturbances [13]. The recovery of vegetation
after fire depends on the regenerative strategies of the species [12,26], that should
be interpreted as a measure of the resistance and resilience of communities and
ecosystems. Indeed, this measure has been used in this way by other authors, for
instance in [25]. Nonetheless, the assembly of plant communities after fire depend
on interactions among species, which have a primary importance but that, up to
now, have barely been considered due to their complexity [16]. In any case the
general trend of vegetation assembly after fire and the involved process have
been outlined in some types of vegetation such as Atlantic ecosystems [2,26].

Plant Communities and Cellular Automata Models: State of the Art. CA mod-
els incorporate both spatial and temporal dynamics [1,7], making them suitable
tools to model space-oriented ecological processes [9,10,17]. The plasticity of CA
models has encouraged researchers tackling new challenges in ecology and their
application has increased during the last decades [8,10,29]. They have been
used for methodological purposes [7,19,21], for modelling vegetation dynam-
ics [3,5,9,10,14] and the impact of disturbances [1]. Despite their strong depen-
dence on parameterization, the main advantage of such models is that they are
less laborious and they can be used for simulating complex systems with only
a few rules. However, the sampling effort and computation requirements have
prevented CA becoming an ordinary tool in ecological research. In this regard,
CA models are not usually intended to reproduce the spatio-temporal patterns
of vegetation; they are just a loose approach to the structure of vegetation, for
instance [7], or to any process.

Objectives. The objective of this work is the development of CA models that
reproduce the assembly of plant communities after fire and shortly discuss a
possible way of optimizing their parameterization.

2 Background Data

The information for the cellular automaton has been recorded by the Fire Ecol-
ogy Group of the University of Santiago de Compostela in a high number
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of locations in the north-west of the Iberian Peninsula for the last 18 years.
Some of those data have been previously published in scientific journals, for
instance [4,16,23,24,26–28]. Other data still remain unpublished.

The burnt areas studied cover a wide range of conditions. The main environ-
mental sources of variation in our database are topography and climate, which
ranges from Atlantic to transition climates to Mediterranean. The information
used to build the model covers a broad scope of biological processes along the
biological cycle of plants, from seed production and dispersal, plant regeneration
strategies after fire, plant structure and vegetation structure and assembly. How-
ever, the largest set of information and the main input in the model is species
cover, recorded in burnt shrublands during the first years after fire.

3 The Cellular Automaton Model

The probabilistic CA herein developed is defined by the tuple 〈L,H,Q, f, I〉
where L is the lattice structure of the CA, H is the neighbourhood, Q the set
of states, f : Q × Q|H| → Q the local rule, and I is the initial configuration
of the CA. Notice that, differently from traditional probabilistic CA, where the
probabilities of the possible transitions are constant with time, in this case they
can change to better reflect the empirical observations. We are now going to
define in detail each one of this components of the CA model developed.

Lattice L. The post-fire recovery of vegetation is simulated in a bidimensional
square lattice intended to reproduce a 30 m× 30 m field plot, so that each cell
represents a 0.1 m × 0.1 m square. Thus, the lattice is defined as L = {(i, j) : 1 ≤
i ≤ N, 1 ≤ j ≤ M} where N = 300 × M = 300. The sizes of lattice and of
the cells were chosen according to field studies and computation requirements,
because the probability of finding new species is directly related to the size of the
plot [11,30] and the cell size determines the relationships that can be detected
among species [16]. However, a high number of cells increases the number of
computations needed to simulate the whole model.

Neighbourhood H. The growth of plants across the plot was implemented in the
CA model through the transition functions which use the Moore neighbourhood
of radius 1. We assumed that the cells in the neighbourhood are not equidistant
from the central cell. Namely, the cells reachable via a diagonal step are far-
ther away from the central cell than the other ones. Since this distance has an
influence in the real world, we have considered it when implementing the model.

Cell Values Q. The CA was designed to reproduce the dynamics of aboveground
vegetation; accordingly, belowground characteristics are part of the initial config-
uration of the model and cell values are only concerned by changes aboveground.
In the following, we will use the notation Qi,j,t to denote the state of the cell in
position (i, j) at time t.

Each plant in the CA model, no matter the species or the way it was recruited,
needs to be tracked through the entire simulation in order to display its spreading
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and interactions with other plants. In particular, every plant in the CA model
has its own ID. In particular, for each 1 ≤ v ≤ V where V the maximum number
of species, the set of possible plants is defined as follows:

Spv,rs = {Spv,rs,i}Zrs
v

i=1 Spv,sd = {Spv,sd,i}Zsd
v

j=1

Community =
V⋃

v=1

(Spv,rs ∪ Spv,sd)

where Zrs
v is the number of plants recruited by resprouting and Zsd

v is the number
of plants recruited by seed germination; these two values depend on the particular
species v under consideration. Community is the set that includes all plants
in the CA, recruited by resprouting (Spv,rs) of by seed germination (Spv,sd).
Accordingly, the state of a cell is either Bare ground, which means that is empty
of vegetation, or the ID(s) of the plant(s) that occupy the cell. This means
that Qi,j,t ⊂ Community, where Qi,j,t = ∅ designates Bare ground. With this
representation the state of each cell can represent the presence of zero, one, or
more than one plant in the physical space that the cell denotes.

Initial Configuration I. Initially Qi,j,0 = ∅ for (i, j) ∈ L. The recovery of veg-
etation strongly depends on the pre-fire situation and fire damages, and thus
the statements which govern the initial configuration of the CA were carefully
conceived.
1. The pre-fire plant community of v species with cover cvv, randomly picked

up from field data, is the target community assuming auto-succession.
2. The pre-fire plants are randomly placed in the plot according to the cover of

each species.
3. The plot is environmentally homogeneous and empty of aboveground vegeta-

tion immediately after fire.
4. A proportion of plants of each species survives and are recruited following a

temporal distribution obtained via field recruitment data. Post-fire resprout-
ing mortality is not considered.

5. A number of plants of each species are recruited by seed germination following
a temporal distribution that follows field recruitment data. The distribution
of seeds is randomly uniform across the plot before fire. The number of seeds
is not a limiting factor, and post-fire seedling mortality is not considered.

Thus, for all 1 ≤ v ≤ V , the spatio-temporal location of new plants

Ssd = {x�, y�, T�}Spv,sd

�=1 Srs = {x�, y�, T�}Spv,rs

�=1

follows the following distribution:

Ssd, Srs ∼ (U(1, N), U(1,M), f1(t))

where Ssd is the total amount of seedlings in the community, Srs the set of
resprouted plants, and f1(t) probability distribution of plant recruitment along
time, taken from field data (Fig. 1). That is, a new plant is placed in the CA
in a spatial position selected uniformly at random at a time determined by
function f1.
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Fig. 1. Temporal distribution (f1(t)) of recruitment events for seedling (red) and
resprout (green) at the top and the their distribution across the lattice and time at the
bottom. (Color figure online)

Rules of the Automaton. The transition rules to update the CA model in the
context of the Moore neighbourhood are as follow:

1. A plant j of a species v spreads to neighbouring cells at time t with different
probabilities depending on its origin: with probability pv,rs,i for resprouted
plants (Spv,rs,i) and probability pv,sd,j for plants (Spv,sd,j) recruited by seed
germination.

2. Any cell that is occupied by a plant j remains occupied by that plant till
the end of the simulation. This means that mortality and pruning are not
considered in the model.

3. The probabilities pv,rs,i and pv,sd,j depend on the age of the plant, the biolog-
ical type and the way the plant was recruited after fire. Since the simulations
run in a square lattice using the Moore neighbourhood, the distance from the
central cell of the neighbourhood was also taken into account as a correction
factor. Thus,

Qi,j,t+1 = F
(
Qi,j,t,Wt, Q

|H|
i,j,t, S

sd
t , Srs

t

)
for (i, j) ∈ L and t ∈ N

where Wt is the matrix containing the relationships and transition probabili-
ties of elements in Qi,j,t and Q

|H|
i,j,t at time t and the growth of plants through

time follow the functions dSpv,rs,i = f2(t)Spv,rs,i and dSpv,rs,j = f2(t)Spv,rs,j ,
where the family of functions f

Spv,rs,i

2 and f
Spv,rs,j

2 provide a time-dependant
value obtained via field data.

4. Any cell occupied by a plant A can be occupied by another plant B in the
neighbourhood with probability pB if t > 36 and BB > BA and with prob-
ability βpB otherwise, where t is a time span (years after fire), BA is the
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Fig. 2. Mean plant diameter of species and regenerative traits in the CA along time,
fitted from field data. Species were coded with different colours; solid lines indicate
plant growth of resprouts and dotted lines the growth of plants recruited by seed
germination. (Color figure online)

biological type of plant A and BB the type of plant B, and β is a correction
factor.

Parametrization. The whole CA was parameterized by measuring the error with
respect to field data values. The growth along time of each species and the
regenerative trait in the CA were parameterized using a sigmoid distribution
with the aim that one loop in the CA equals one month (Fig. 2); then, the whole
community was simulated.

The cellular automata model can potentially reproduce the post-fire dynam-
ics of any plant community because it gathers the main ecological processes in
the post-fire recovery; it only requires some information about the species in
that community. However, the availability of data limited the scope of plant
communities to be modelled, being heathlands, broomlands and gorselands the
best represented communities. The average number of woody species in those
communities was relatively high (x = 10.6, σx = 0.4) and the majority of the
woody species involved (33 out of 37) are able to regenerate through resprout-
ing and seed germination. Thus, about 20 parameters (one for each species and
regenerative trait) would be required in an average simulation, if independent
growth among species was considered. Nevertheless, overlayering among species
in nature is common and the competence among species usually decreases the
rate of spreading of plants, indicating a non-independent growth and occurrence
of species. Within this new context, having just two species coexisting in a sin-
gle cell would already increase the mean number of parameters up to 2′2 = 400.
Even though the number of species in a 0.1 m× 0.1 m cell is usually low in nature,
it has been reported to be greater than 5 in some cases. As a result, a highly
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Fig. 3. Outputs of a random simulation at different time steps during the first 5 years
after fire. Colours represent different cell states, that is plants or combination of plants.
The background colour represents bare soil. (Color figure online)

complex parameterization should be used in order to fit real data. In order to
reach a compromise among the number of parameters, data, and computation
requirements, instead of parameterizing all the interactions among species, we
decided to parameterize each species and regenerative trait in isolation and to
use a one-off correction factor to fit the spreading rate in presence of any other
species, as indicated in the rules of the automaton.

The squared error of the overall cover of woody species in the pre-fire com-
munity and the post-fire communities was used to validate the model because
the model assumes autosuccession. We have chosen field data around 3 years
after fire to validate the community model because it is a critical period in the
post-fire recovery and has a high impact on the overall recovery of the vegeta-
tion. Afterwards, the increase in cover of woody species tends to decrease and
changes tend to occur slowly. Furthermore, it is a suitable subset of data for
validation since a high percentage of field data focuses on the development of
plant communities around the first three years after fire.
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4 Results and Discussion

The average value of pre-fire community around 3 years after fire in the validation
subset was 88.1 ± 2.7 (mean ± SEM) and the average cost of the simulations,
i.e., the squared error, was 5.16. The error of validation simulations was relatively
low having into account the large variation of field data [4,16,23,24], particularly,
around 3 years after fire.

From an ecological point of view, the CA based model matches the objective
of reproducing the main patterns of the plant community assembly after fire.
There are strong differences in the occupation of available space among species
and biological traits. In this regard, the growth of plants along time changes
in the same way as field data do. As a result, CA models can be very useful
for hypothesis testing and for exploring different scenarios, but it reproduces an
idealized and oversimplified community, not in terms of the number of elements
(plants and populations) but in terms of their interactions. Despite the high
quality of data, the huge variation of ecosystems drives to the impossibility of
sampling all the possible situations, resulting in missing information. Thus, some
factors and processes have been simplified in order to get a good compromise
among model performance and computing requirements. One useful performance
for the model has been finding a good correspondence between plant growth and
growth probability for each loop in the CA. In our model one month equals one
loop, which makes it worthy in terms of computing resources requirements and
ecological interpretation of the results. A relatively low number of loops is rec-
ommended due to the high number of parameters and the extent and number
of cells in the lattice, which is predefined in this work. The size of plot and cells
successfully fit our purpose of reproducing the vegetation recovery. Too small
plots would produce results that are due to the specific vegetation patterns [30],
not to ecological processes; instead, large cells would not reproduce plant com-
petition for resources, following other studies [16], and would result in unreal
morphologies. Hence, the spatial scale have a crucial role in the interpretation of
interactions among the plants, and species, in the community [16]. Furthermore,
the spatial structure cannot be neglected when an analysis of their sensitivity
with respect to their inputs and parameters is performed [6]. The number of
processes, parameters and data required by the model would increase exponen-
tially, when considering the influence of other processes or even the environment,
which is often the hidden force modulating biological processes and interactions,
and has multiple feedbacks with the biological component.

4.1 Proposal for Parameter Optimization

As it is possible to observe, there are multiple parameters that are necessary
for the model to provide a realistic simulation of real world phenomena. In
particular, the functions that regulates the rates of spreading of the plants are
an essential part of the model and should be estimated accurately. While field
data provide some values for those functions, it is necessary to provide them for
all possible input values (i.e., time, in this case).
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Machine Learning Methods. Genetic Algorithms (GA) [22] are a well-known
nature-inspired optimization method where a collection (called population) of
solutions (called individuals) to an optimization problems is represented as fixed
length vectors of bits. An initial random population is iteratively evolved using
operators inspired by the Darwinian theory of evolution: first of all, a subsection
of the population is selected via a selection process that mimics natural selec-
tion, where better solutions have better survival probabilities. This sampled
individuals are then combined via the operations of crossover, which mimics
reproduction, and mutation that, similarly to natural occurring mutations in
DNA, changes bits in the individuals. This process is repeated until one of the
termination criteria is met, for example once a good enough solution has been
found.

Genetic Programming (GP) was introduced by Koza [20] as a mean to evolve
not only arrays of bits, as in traditional GA, but entire programs. In GP a pro-
gram is usually represented by a tree, by its parsing tree. As in GA, a population
of is evolved by mean of selection, crossover, and mutation, where the last two
operators, depending on the actual representation used, are specific to GP.

Parameter Optimization Architecture. To perform the parameter optimization
process, a two-level method has been devised. Initially, for each species GP is
employed to provide a function estimating the rate of spreading in isolation. That
is, for each species we are estimating functions that provide a realistic spreading
rate when no competition is present. While this is not a sufficient condition
to obtain realistic solutions when other species are present, it is, nevertheless,
a necessary condition. This first step is performed to limit the computational
costs: the evaluation of the solutions can be performed by running a smaller and
simpler simulation (since only one species is involved).

Once a large enough number m of solutions has been obtained for each
species, we consider the following matrix:

⎡

⎢⎢⎢⎣

f1,1 f1,2 · · · f1,V

f2,1 f2,2 · · · f2,V

...
...

...
fm,1 fm,2 · · · fm,V

⎤

⎥⎥⎥⎦

where the i-th column represents the collection of m solutions for the i-th species
that were found in the previous step. Now, it is possible to select via GA an
element for each column to provide a solution to the problem of optimizing the
spreading rates of the different species. For example, for 3 species the vector
(1, 3, 3) will represent the three functions f1,1, f3,2, f3,3, one for each species.
This second phase does not require to re-compute the spreading rates of the
different species in isolation, but only to find a subset of them that produces a
realistic simulation when they are combined. This two phase process should help
reduce the computational burden of finding the correct parameters.

Field data will be separated into training, testing, and validation sets in
the proportions 70%, 20% and 10% to deal with data dependence. Plant level
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data, particularly plant dimensions along time, will be used in the first phase to
fit species spreading, while species abundance (cover data) will be used in the
second phase. Furthermore, the cover of each woody species and their combined
occurrence will be used to compute the cost of the parameters for the simulations
unlike the current model, which only uses overall cover.

5 Conclusions

Ecosystems are highly complex systems that can be successfully simulated using
cellular automata models. However there are two limiting factors: the availability
of information about biological processes and the optimization of a high number
of parameters. The balance between both of them (sampling effort and compu-
tational requirements) has to be met in order to make CA valuable for ecological
research.

In the future we plan to apply the proposed two-level optimization procedure
to correctly set the parameters. We think that this procedure can be generalised
to other kinds of CA models where there are multiple distinct processes inter-
acting in complex ways.
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E Ás Ciencias Do Medio AmbienteD (2016)

17. Hogeweg, P.: Cellular automata as a paradigm for ecological modeling. Appl. Math.
Comput. 27(1), 81–100 (1988)

18. Huntley, B., Baxter, R.: Vegetation ecology and global change. In: Vegetation Ecol-
ogy, pp. 357–372 (2005)

19. Kowalewski, L.K., Chizinski, C.J., Powell, L.A., Pope, K.L., Pegg, M.A.: Accu-
racy or precision: implications of sample design and methodology on abundance
estimation. Ecol. Model. 316, 185–190 (2015)

20. Koza, J.R.: Genetic programming as a means for programming computers by nat-
ural selection. Stat. Comput. 4(2), 87–112 (1994)

21. Lengyel, A., Csiky, J., Botta-Dukát, Z.: How do locally infrequent species influence
numerical classification? A simulation study. Community Ecol. 13(1), 64–71 (2012)

22. Mitchell, M.: An Introduction to Genetic Algorithms. MIT press, Cambridge (1998)
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Abstract. A hybrid model, combining a Cellular Automaton (CA)
and a multi-agent system, was proposed to mimic the computation
abilities of the plasmodium of Physarum polycephalum. This model
was implemented on software, as well as, on hardware, namely on a
Field Programmable Gate Array (FPGA). The specific ability of the
P. polycephalum simulated here is given in brief, also bringing atten-
tion to the approximation of a Kolmogorov-Uspensky machine (KUM),
an alternative to the Turing machine. KUM represent data and pro-
gram by a labeled indirected graphs and a computation is performed by
adding/removing nodes/edges. The proposed model implementation is
taking full advantage of the inherent parallel nature of automaton net-
works, and CA, as a result of the mapping of the local rule to a digital
circuit. Consequently, the acceleration of the computation for the hard-
ware implementation, compared to the software, is as high as 6 orders of
magnitude.

Keywords: Slime mould · Cellular automata · Hardware
Agents · Kolmogorov machine

1 Introduction

Physarum polycephalum is widely used in the last decade as an unconventional
computing substrate, because it demonstrates complex behavior, regardless of its
apparent simplicity, easy culturing and very low-cost experimentation. In vivo
experiments with that biological, massively parallel computing prototype were
developed [1]. A plasmodium, the ‘vegetative’ stage of P. polycephalum life cycle,
was persuaded to scout for nutrients in its vicinity and link all of them with a
tubular network. The importance of the functionality of the tubular network to
the survival of the plasmodium (transfer of nutrients, metabolites, and chemical
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and electrical messages) subjects its actual configuration in rounds of optimiza-
tion by the actual plasmodium and the local conditions of the experiment. This
is the reason why the plasmodium is such a successful paradigm of a biological
substrate computer with inputs of geometrical configuration of nutrient sources
(NSs) and an output of an interconnected graph [2].

Some examples of the vast range of problems tackled by P. polycephalum [3]
are labyrinth solving [4,5], approximation of Voronoi diagrams and Delaunay
triangulation [6], travelling salesman problem [7], simulation of Boolean logic
[8] and evaluation of transport [9] and ancient road networks [10]. Nonetheless,
the abilities of P. polycephalum inspired scientists to invest efforts towards the
simulation of its behavior and its usage to solve complex problems, like designing
routes in information networks [11]. Some examples of the computerized approx-
imation of the behavior of the plasmodium are a mathematical model with feed-
back of the tube dynamics [12], agent–based particle models [13] and cellular
automata (CA) [14–16] We propose a novel approach towards computerizing the
abilities of the slime mould by designing a hybrid model, which combines CA
and a multi–agent system is introduced.

Moreover, a rather interesting paradigm of in-vivo experiments utilizing P.
polycephalum is the approximation of Kolmogorov–Uspensky machine [17,18].
Thus, here the results produced from these experiments were used as a control
for the novel hybrid model proposed. Kolmogorov and Uspensky [19,20] pro-
posed that a dynamically changing graph could represent an abstract computing
machine. This graph has a finite amount of nodes and the edges between them
are not directed. Each of the graph’s nodes are alternatively labelled and only
one of the nodes can be activated for a given time step. This structured was ini-
tially defined as the Kolmogorov complex and, then, was more commonly known
as Kolmogorov-Upsensky machine (KUM). This term will be used hereafter.

KUM is an alternative to the Turing machine, with the main difference of the
replacement of the tape of the Turing machine by a graph. Given this geometric
substrate of the KUM (the graph), it can accurately mimic growth phenom-
ena and computation influenced by structure in natural systems (like biological
systems, chemical systems etc.). An additional meaningful distinction is that
whereas the Turing machine was intended to replicate a human-executed com-
putation, the KUM aims to portray “computation as a physical process” [21].

Despite their differences, Turing and KU machines belong the same classes
of abstract mathematical machines. A physical implementation of a KUM is
searched within biological substrates, like the plasmodium of P. polycephalum
[17,18]. P. polycephalum is an ideal choice for this because of its capacity of
exploring and growing in a graph-like configuration and dynamic reshaping of
the edges and nodes in the graph.

Moreover, as the plasmodium is stimulated by chemoattractant nutrient
sources, utilizing a vast distributed array of membrane–bound sensor proteins,
distributed tools were chosen for its simulation, like CA and multi-agent models.
In this paper, we focus on the hardware implementation of the proposed hybrid
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model of P. polycephalum to mimic the physical implementation of a KUM in
the plasmodium of P. polycephalum.

2 Description of the CA-Multiagent Model

A new model of CA was developed, in order to combine CA [15,16], and multi-
agent modeling [22]. This new model integrates the parallel nature of CA along
with the dynamic behavior in space and time of the multi-agent system without,
however, increasing the complexity of the system. The model is computation-
ally simple by using distributed local sensory behaviors, although approaching
some of the complex phenomena observed in Physarum. In order to configure
Physarum’s adaptive motif, the selected mechanism must be able to adjust its
pattern over time, i.e. the pattern must be more flexible to show the emerging
properties, which are extensible and can be calculated.

In this model, the inherent flow of the colloidal solution is provided by agent-
to-cell mediation, and gel matrix resistance is provided by the agent-agent col-
lisions. The consistency of this set of “crowd” is ensured by the fact that there
is mutual attraction to the stimuli deposited by the population of the agents.
The directional orientation and movement of the activated plasmodium front
is created by coupling the emerging mass behaviors by dragging local source
stimuli. Changing the value of cell identities is equivalent to secreting a quan-
tity of chemoattractant during their successful motion and detecting the largest
amount in the cell’s neighborhood by three sensors. As a result, they adjust the
cell’s angle, so the behavior of other agents can also affect their behavior.

The area of the experiment is divided into a grid of identical square cells,
with the side of length equal to α and represented by a CA assuming that each
square element of the surface is a cell of a CA. The width of the neighborhood
of (i, j) cell is assumed to be equal to one on both sides, meaning that, we have
a Moore neighborhood. The state of the new CA model at time t is:

Ct
i,j = {griddatat

i,j , trailti,j , particle idsti,j , angleti,j} (1)

Parameter griddatat
i,j can get values at time t that indicate whether the

cell is a wall or a food stimulus. Referring to trailti,j , is the value derived from
the food diffusion equation and represents the strength of the smell of the food
stimuli at time t in the (i, j) cell. Additionally, particle idsti,j is the value of
the agent’s (i, j) identity at time t. When there is no agent in the cell, then, as
normal, its value is equal to zero. Finally, angleti,j is a variable that shows the
angle of the agent in a cell.

Some program variables are specified at the initialization of the model. The
main parameters are the amount of agents in the population, grid size, consump-
tion of food value (diffdamp) and the variable that indicates how large the value
of the data nodes are. This is displayed as griddatat

i,j to trailti,j and can get two
values, the projectvalue (when there is no agent nearby or on the central cell)
or the suppressvalue (when there is at least one agent in the neighborhood of
the central cell on which the food is placed).
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Subsequently, the agents are placed in random positions within the CA grid
with their velocity vectors oriented at random angle values. When a CA neigh-
borhood contains one agent or is fully occupied of agents then the value of the
trail value is generated by the equation:

trailt+1
i,j = trailti,j + suppressvalue (2)

Else, if the area is free from agents then it gets the value

trailt+1
i,j = trailti,j + projectvalue (3)

During the evolution of the model, the cell motor behavior is activated to
move the agents along their velocity vectors, thus renewing the values of the
particle ids and their velocity vectors. The new coordinates of an agent are cal-
culated and an attempt is made to move by one cell in the Moore neighborhood
of the central cell (where the agent is located).

tvi = i + cos(angle(i, j)) × speed and tvj = j + sin(angle(i, j)) × speed (4)

If a cell is bound or wall and is selected by an agent to make a move towards
it, then that agent will not move to that cell but the angle of the velocity vector
will be renewed to a random value, i.e. anglet+1

i,j = random() × 360. However,
if all the prerequisites are met in order to make a movement, the value of the
agent’s identifier of the given cell will be given to the new cell, as well as its
angle, and the trail value will be renewed by increasing it by an amount depT .
This will be an attractive means for other agents to move towards it in order to
create a single structure as the biological organism.

particle idst+1
i,j = particle idsti+1,j+1

anglet+1
i,j = angleti+1,j+1

trailt+1
i,j = trailti,j + depT

(5)

The algorithm proceeds by calculating the sensory inputs of the cells. Each
cell containing an agent has 3 sensors that are located in the neighborhood of
this cell in the direction of the agent’s angle. The neighborhood could be larger,
e.g. by integrating all the cells that are spaced 2, 3, . . . cells away from the central
one. Moreover, this would act as an escalation parameter in a large CA, a cell
would receive values in its sensors from a more distant area and could direct its
agent towards that direction (Fig. 1).

The sensors receive the trail values of neighboring cells in which they are
located. Then those three variables are compared, in order to decide the highest
food value from the trail of the neighboring cells. The prevailing sensor, will be
the one who will also indicate which direction the agent should follow to reach
the point of feeding.

If f sensor has the highest value, then the cell’s angle retains the same value.
If the value of f is less than the other two, then if fl is less than f, anglet+1

i,j =
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Fig. 1. Placement of 3 sensors in the Moore neighborhood of the cell according to its
angle.

angleti,j+45, otherwise, if fr is less than fl then anglet+1
i,j = angleti,j−45. Finally,

if f is greater than fl and less than fr then anglet+1
i,j = angleti,j + 45, otherwise,

if f is greater than fr and less than fl then anglet+1
i,j = angleti,j − 45.

The final step of the algorithm is to update the trail of each cell, where its
value is given by the equation of food diffusion.

trailt+1
i,j = {(trailti−1,j−1 + trailti,j−1 + trailti+1,j−1 + trailti−1,j + trailti,j+

trailti+1,j + trailti−1,j+1 + trailti,j+1 + trailti+1,j+1)/9 ∗ (1 − diffamp)} (6)

3 Hardware Implementation of the Proposed Model

The proposed hardware system is comprised of the same basic structure repre-
senting a CA cell. Each cell circuit (Fig. 2) is interconnected with other cells in
its vicinity.

This circuit is equipped with 46 inputs and 19 outputs. As inputs we consider
eight signals, 9 bits each, that indicate an integer from 0 to 511, representing the
identifier number of the agents; eight signals, 9 bits each, that indicate an integer
number with range from 0 to 511, which represents the food value; eight signals,
9 bits each, that indicate an integer number ranging from 0 to 360, representing
the angle of agents in the CA; eight signals one bit each, needed to inform the
cell that an agent is going to move in its direction.

Eight additional signals one bit each that inform the central cell that the
agent cannot move to a neighboring cell; an 8-bit signal used to characterize the
central cell (food = 255, wall = 51, normalcell = 0); two signals, 9 bits each
that are used to initialize agents and angles in the grid and three signals, 1 bit
each for clk, reset and initialize.
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Fig. 2. Input and output signals of the circuit generated by the VHDL code.
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As outputs there are eight signals, one bit each to inform neighbors that
the agent will move in that direction; eight signals, one bit each indicating that
the central cell is free to receive an agent and three signals, 9 bits each, which
represent the identifier, the angle and the smell of the food in the central cell.

Firstly, initialize signal is set high, for cells to obtain random values
needed. In the first stage, the cell in which the food stimuli is found, renews
the trail value by noticing whether there is an agent in the neighborhood. The
following stage is the motor behavior where each cell will signal if there is an
agent to attempt to move in the direction which is indicated by the angle. If the
agent cannot move, then the angle will be modified to a random value and the
algorithm will continue.

However, if the agent can move, then the central cell will raise a flag to inform
its neighbors. Two additional steps in relation to the software code are introduced
to check whether two or more agents attempt to move to the central cell. In the
next stage, if the previous prerequisites are met, the agent’s identifier and angle
of the neighboring cell will be transferred to the central cell and its trace value
will be increased by depT. Afterwards, the sensory behavior of the food and the
adjustment of the angle of each cell are followed. Direction is indicated by the
higher smell of food detected by the sensors. Sensors f , fl and fr receive the
trail of the neighboring cells and the front is impacted by the angle of the central
cell. The final stage is the food diffusion equation.

A n × n grid of cells is designed and interconnected Then the grid circuit
received the following input signals: p + 1 (0 ≤ p ≤ 511) signals, 9 bits each,
that indicate an integer with range from 0 to 511. These signals are used to
load agents’ identifiers into different cells within the grid. Another p + 1 signals
are used to give angle values in the cells. An 8-bit signal set to zero, i.e. to
the absence of food in a cell and another one 8-bit signal corresponding to the
number 255 and given to the cells that we intend to have food stimulus. Three
signals, one bit each corresponding to clk, reset and initialize. The outputs
are n × n signals, 9 bits each representing the ID number of the agent in each
cell of the grid.

In order to prove that the software program and the CA hardware circuit
generated by the VHDL code have the same behavior, the following section
presents the results of trying to create a Kolmogorov–Uspensky machine.

4 Simulation Results

In this section, the proposed CA–multiagent model will be used to reproduce
functions Fuse and Mult. These functions are characteristic of the Physarum
machine presented in [18], which mimics universal storage modification machines,
like the Kolmogorov-Uspensky machine. The CA is selected to have a size of
20 × 20. The agents are placed in random locations and with random angles.
The deposition value of the chemoattractant is equal to one for each successive
transfer of the particle’s identifier from one cell to another. The input signals
given to the system designed with the VHDL code were: the period of the clk
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Fig. 3. Output of the model in software (a, b) and in hardware (c, d) with initial and
final positions of agents.

signal is set to 1 ns, the rst signal for 9 ns equal to 1 and then 0, the initialize
signal equal to one for 10 ns and then equal to 0.

The experimental operations with the active zones as recorded by Adamatzky
and Jones [17,18] were used as verification of the model.

Initialization of the CA is illustrated in Fig. 3a for the software model and
in Fig. 3c for the hardware model. It is noted that cell values that are closer to
food sources will modify their status and will undergo changes in both identifiers
and angles. As already mentioned the output signals are 400, so for convenience,
all the changes noted in the cells are shown in a table. In the example of Fig. 3,
each agent has a sensory behavior of a larger neighborhood (3 cells), so that it
can detect the smell of the food of another cell on the grid without staying only
around a constant food stimuli. The pieces of plasmodium are attracted by the
food sources (red color) and plasmodium spots are created around these sources.
The food stimuli are initially placed in the cells (4, 10) and (17, 10).

By comparing these two models, we observed that they present similar
results. On the other hand, the time spent by the CA circuit to form the result
(554 ns) is much less than the time spent in the software (0.3381 s).

In the following, a new stimulus is placed to attract the plasmodium in its
location. The new food source is installed in cell (10, 10). The growing plasmod-
ium is attracted by the inner source and the propagation continues inwards from
each initial source (Fig. 4). These two active zones fuse and retain a structure
spanning the array of nodes. After a few time steps, it is observed that the cells
near the new food source are starting to change their ID values, which means
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Fig. 4. The Fuse operation in software (a, b) and in hardware (c, d).

Fig. 5. The Mult operation of the Physarum machine (adopted from [18]).
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Fig. 6. (a, b, c, d). Mult operation of the virtual model. At the time of 1.5628 s the
formation result for the software program (top) is produced, while for the program that
is designed with hardware description language (below) the formation of the network
is generated at 850 ns.

that the active zones migrate in these directions. In software the chain structure
is formed at 0.7366 s (Fig. 4b), while in hardware at 786 ns (Fig. 4d).

An example is displayed in Fig. 5, given a food source chain where the plas-
modium has formed protoplasmic tubes, two oat flakes can be added right and
left and cause new active zones (Fig. 5a). After 10 h, 2 new active zones A1 and
A2 are formed (Fig. 5b).

Using the chain structure created by the previous method (Fig. 4) two addi-
tional food sources are added to each side of the array, at points (10, 6) and (10,
14). Two active fronts were produced to engulf the sources (Fig. 6). In Fig. 6 is
illustrated the function Mult of physarum machine, some agents will gradually
become aware of the existence of new food stimuli and will start moving in that
direction developing a diamond area.

5 Conclusions

A novel hybrid model was used to approximate the computing abilities of a
(geometrically represented) biological substrate, namely the plasmodium of P.
polycephalum. The model proposed here is a CA-based method incorporating a
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multi–agent system. The results of the computerized plasmodium were closely
imitating the results obtained from in vivo experimental studies. The developed
methodology was implemented in software as well as in hardware. The motivation
was the fact that the parallel nature of CA is lost in the software implementation.
The higher the complexity of the problem, the longer it will take to be resolved.
Whereas, the circuit generated by the VHDL code uses the advantage of parallel
processing and, therefore, solves the problem within a vast range of complexity,
using the resources for a given amount of time.
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4. Nakagaki, T., Yamada, H., Tóth, Á.: Intelligence: maze-solving by an amoeboid
organism. Nature 407(6803), 470 (2000)

5. Adamatzky, A.: Slime mold solves maze in one pass, assisted by gradient of chemo-
attractants. IEEE Trans. Nanobiosci. 11(2), 131–134 (2012)

6. Adamatzky, A.: Developing proximity graphs by physarum polycephalum: does the
plasmodium follow the toussaint hierarchy? Parallel Process. Lett. 19(01), 105–127
(2009)

7. Aono, M., Zhu, L., Hara, M.: Amoeba-based neurocomputing for 8-city traveling
salesman problem. Int. J. Unconv. Comput. 7(6), 463–480 (2011)

8. Tsuda, S., Aono, M., Gunji, Y.P.: Robust and emergent physarum logical-
computing. BioSystems 73(1), 45–55 (2004)

9. Adamatzky, A.: Bioevaluation of World Transport Networks. World Scientific, Sin-
gapore (2012)

10. Evangelidis, V., Tsompanas, M.A., Sirakoulis, G.C., Adamatzky, A.: Slime mould
imitates development of Roman roads in the Balkans. J. Archaeol. Sci. Rep. 2,
264–281 (2015)

11. Tsompanas, M.A.I., Mayne, R., Sirakoulis, G.C., Adamatzky, A.I.: A cellular
automata bioinspired algorithm designing data trees in wireless sensor networks.
Int. J. Distrib. Sens. Netw. 11(6), 471045 (2015)

12. Tero, A., et al.: Rules for biologically inspired adaptive network design. Science
327(5964), 439–442 (2010)

13. Jones, J.: From Pattern Formation to Material Computation: Multi-agent Mod-
elling of Physarum Polycephalum, vol. 15. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-319-16823-4

14. Gunji, Y.P., Shirakawa, T., Niizato, T., Yamachiyo, M., Tani, I.: An adaptive and
robust biological network based on the vacant-particle transportation model. J.
Theor. Biol. 272(1), 187–200 (2011)

15. Tsompanas, M.A.I., Sirakoulis, G.C.: Modeling and hardware implementation of
an amoeba-like cellular automaton. Bioinspiration Biomim. 7(3), 036013 (2012)

https://doi.org/10.1007/978-3-319-26662-6
https://doi.org/10.1007/978-3-319-26662-6
https://doi.org/10.1007/978-3-319-16823-4
https://doi.org/10.1007/978-3-319-16823-4


Hardware Implementation of a Biomimicking Hybrid CA 91

16. Tsompanas, M.-A.I., Sirakoulis, G.C., Adamatzky, A.: Cellular automata models
simulating slime mould computing. In: Adamatzky, A. (ed.) Advances in Physarum
Machines. ECC, vol. 21, pp. 563–594. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-26662-6 27

17. Adamatzky, A.: Physarum machine: implementation of a Kolmogorov-Uspensky
machine on a biological substrate. Parallel Process. Lett. 17(04), 455–467 (2007)

18. Adamatzky, A., Jones, J.: Programmable reconfiguration of physarum machines.
Nat. Comput. 9(1), 219–237 (2010)

19. Kolmogorov, A.N.: On the concept of algorithm. Uspekhi Mat. Nauk 8(4), 175–176
(1953)

20. Kolmogorov, A.N., Uspenskii, V.A.: On the definition of an algorithm. Uspekhi
Mat. Nauk 13(4), 3–28 (1958)

21. Blass, A., Gurevich, Y.: Algorithms: a quest for absolute definitions. Bull. EATCS
81, 195–225 (2003)

22. Jones, J.: Approximating the behaviours of Physarum polycephalum for the con-
struction and minimisation of synthetic transport networks. In: Calude, C.S.,
Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC 2009. LNCS,
vol. 5715, pp. 191–208. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03745-0 23

https://doi.org/10.1007/978-3-319-26662-6_27
https://doi.org/10.1007/978-3-319-26662-6_27
https://doi.org/10.1007/978-3-642-03745-0_23
https://doi.org/10.1007/978-3-642-03745-0_23


Potential Oscillations in Cellular
Automaton Based Model for Passivation

of Metal Surface
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Abstract. Cellular Automata based approach to modelling of the cor-
rosion and passivation of metals in electrolytes is presented. We simulate
the growth of the passive layer using an asynchronous CA, implemented
for parallel processing on a GPU. In the present version of our model,
the studied system is under galvanostatic control. The electric potential
is adjusted to fix the current flow to a prescribed value. In the elec-
trochemical experiments, this leads to potential oscillations for certain
values of the current. This is related to the fact that for certain range of
potentials our system displays a negative differential resistivity. We man-
age to obtain potential oscillations in our simulations. To our knowledge
this is the first time that this peculiar feature of passivating system is
reproduced by a computer simulation.

Keywords: Corrosion · Passivation · Diffusion · Oscillations
Modelling · Parallel computing · Block-synchronous automata
Asynchronous cellular automata · Stochastic cellular automata

1 Introduction

This paper is devoted to modelling of the corrosion and passivation of metals.
Many metals tend to corrode via electrochemical oxidation, particularly when in
contact with electrolytes. Depending on the conditions, such corrosion may lead
to creation of a passive layer on the metal surface [20]. This layer can be com-
posed of weakly soluble corrosion products, including metal oxides, hydroxides
and salts. Passivation slows corrosion down by a large factor. As the experiments
have shown [11,12,15–17], it is possible to control whether, and how fast passi-
vation occurs. The passive layer thickness and morphology can also be regulated.
Passivation is strongly influenced by a constant or time dependent electric poten-
tial applied to the piece of metal, passing electric current through the surface,
or by modifying the composition of the solution.
c© Springer Nature Switzerland AG 2018
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We have been studying passivation in electrolyte solutions for many years,
by means of simulations with stochastic asynchronous cellular automata. Our
research so far [5,6,19] was focused on passivation in potentiostatic conditions,
that is – with constant electric potential applied to the metal. In this paper, some
results for passivation in galvanostatic conditions are presented. Connecting the
passivating metal to a galvanostat may induce oscillations of the potential, and
our simulations manage to reproduce such oscillations.

The simulations can help us understand the physico-chemical mechanism
of passivation better, than using only experiments. Besides, they allow us to
regulate any parameters of the system at will, particularly those that are not
amenable to experimental control. Thus we can separate some features that
have to be unseparated in the real world experiments. Furthermore, they may
provide us with advice on how to control the morphology of passive layers,
possibly including formation of interesting nanostructures. One example is the
emergence of nanopores on titania or alumina [3,4,21] – hypothetically it could
be possible to obtain similarly regular patterns on valve metals.

We are using CA in our work for a few reasons. Firstly, they find their use
as general (toy) models applicable to wide classes of systems that have common
features. Further, CA are often adequate models for complex phenomena. This
is largely for efficiency reasons. In many cases molecular-scale simulations or dif-
ferential equations are associated with unreasonably high computational costs.
Corrosion is one of those complex phenomena – it is an inhomogenous system,
involving many components and an unobvious interaction between reaction and
diffusion. Finally, CA can be translated to parallel algorithms in a straightfor-
ward manner, and those algorithms will typically make use of multiprocessor
hardware with high efficiency. In our work, graphics processing units (GPUs)
are used for computation. Note that parallelization becomes slightly less trivial
in cases where the choice is taken to employ an asynchronous CA, instead of a
classic, synchronous one. This is the case for the model described here. Still, the
solutions for the problems that arise can be found in the literature, e.g. in [1,2].

The CA-based models have found many applications in physical chemistry
and related fields – including electrochemistry [13], corrosion science [7], mate-
rials science and metallurgy [8–10,14].

The rest of this paper is structured as follows: The Model section presents
the CA model used for the simulations. It is discussed in which ways the model
accounts for the particular physico-chemical phenomena, and how is it imple-
mented for parallel execution. The Simulations, Results and Discussion section
describes for which parameter vectors the simulations were conducted, what data
was collected and how was it processed. After that, the most important results
are presented, along with discussion. The article is summarized in Conclusions.

2 Model

The model of passivation presented here is the same as in our publications on
the passivation in potentiostatic conditions [5,6,19]. This is why only a short
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description is presented in this section. The reader can find more details else-
where. The new aspect is the galvanostatic control over the system.

The model is kept as general and simple as possible. It contains only the
ingredients that are essential for reproducing the salient features of passivation.
Corrosion and passivation works in similar ways for many different metals. This
model assumes a metal with chemical properties similar to those of iron or other
valve metals.

2.1 Physicochemical Basis of the Model

The model includes three processes that are responsible for the passive layer
formation. The first of them is electrochemical oxidation of metal at its surface,
caused by a corrosive environment. The rate of oxidation of exposed metal is a
function of electric potential applied to the metal. The overall rate of corrosion
depends also on the degree of passivation (coverage by the products of corrosion)
and it is directly proportional to the current flowing through the system. In this
model, we assume that the metal is connected with a galvanostat, therefore the
potential is continuously regulated in an effort to keep the current constant. It
should be emphasized, that the current cannot be controlled directly. Even with
the best galvanostat, the current will be subject to random fluctuations. What
is more, the maximum current in the studied system is limited by passivation.
If the desired current value is too high, it is not possible to maintain it by
galvanostatic control. In such a situation, the galvanostat will eventually output
the highest potential available. The condition, when increasing the potential
leads to a decrease in the current, is called negative differential resistivity.

The second modelled process is the precipitation of insoluble corrosion prod-
ucts on the metal surface and formation of a compact passive layer. For the
passivation to occur, the corrosion product has to be hardly soluble. It has to
adhere to the metal surface, as well as to itself. This is modelled by the random
walk with asymmetric exclusion that mimics diffusion of the oxide to solution
and its surface rearrangement. Passivation is never perfect – even with the sur-
face fully covered with the oxide, a small current keeps flowing. In our study,
this is made possible by a symmetry of oxide and solution in asymmetric exclu-
sion. If the oxide particles can enter the solution, then in the same way solution
inclusions can move into the oxide layer. This sustains a growth of the layer even
when it becomes compact. The solution inclusions behave in an analogous way
as the ionic vacancies postulated by Macdonald [18].

If only those two processes are taken into account, infinite growth of the
passive layer becomes possible, although the growth rate will converge to zero
as the layer’s thickness increases. To limit the oxide layer thickness, we have
included a mechanism of irreversible dissolution of oxide. This enables the sys-
tem to achieve a steady state (equilibrium), when the rate of the irreversible
dissolution balances the oxide production.
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2.2 Specification of the Automaton

The CA used for the simulations is stochastic and asynchronous. The lattice is
three-dimensional, cubic, with periodic boundary conditions. The neighbourhood
is that of von Neumann. There are three cell states postulated: metal (MET for
short), aqueous solution SOL, and metal oxide OXI. In the initial state, the
bottom 40% of the lattice is filled with metal, with the upper part containing
solution. The transition rule is composed of three transitions:

1. Metal oxidation: MET + SOL → OXI + OXI
It can occur for a MET cell which is in contact with the solution, i.e. has at
least one SOL neighbour.

2. Oxide diffusion (random walk): OXI + SOL → SOL + OXI
Possible for an OXI cell which is in contact with the solution.

3. Oxide dissolution: OXI → SOL
Considered only for an OXI cell whose all neighbours are SOL.

The automaton is stochastic, which means that the transitions listed above
occur with certain probabilities, discussed below. The model has four param-
eters: Pbreak influences the oxide diffusion by regulating its adhesion to itself
and the metal, Pdie regulates the oxide loss via dissolution, Rdif and IGS char-
acterize the operation of the galvanostat.

The probability Pcorr of an oxidation event depends on the potential V via
the function:

Pcorr =
exp(V )

1 + exp(V )
(1)

which is plotted in Fig. 1. The probability Pswap of a diffusion event is dependent
on −nbroken, the change in the number of MET and OXI neighbours of the OXI
cell being moved. If nbroken ≤ 0, then Pswap = 1. Otherwise, Pswap = P nbroken

break ,
where Pbreak is a model parameter. The probability Pdie of oxide dissolution is
another parameter. If a MET is considered for dissolution, and it is stochastically
chosen not to occur, then diffusion is considered immediately.

Electric potential V is adjusted by the galvanostat after each time step, in
order to keep the actual current as close as possible to the set value. This is done
using the following formula:

Vt − Vt−1 = −Rdif (It−1 − IGS) (2)

Fig. 1. Corrosion event probability Pcorr as function of the potential V.
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where Vt and It are respectively potential and current values during the time
step number t, Rdif is the galvanostat’s sensitivity factor, and IGS is the desired
current. Here, current is defined as the number of oxidation events per time
step. Note that the state of the system is described by the states of the cells,
and additionally a global variable V. Therefore, the initial V value also has to
be specified.

2.3 Parallel Implementation

Due to the efficiency reasons, the lattice size has to be reasonable. In our case, it
hardly ever exceeds 2048×2048×64. We approximate studying a part of a much
larger system by using periodic boundary conditions for the x and y directions.
For z direction, it is assumed that the bulk solution extends to +∞, and the bulk
metal to −∞. This condition is handled by introducing a scrolling mechanism.
Every time when the corrosion consumes a metal volume corresponding to a
single layer of cells, a monolayer is removed from the top of the lattice, and a
monolayer of metal is appended to the bottom. When an oxide particle would
diffuse past the z -extent of the lattice, it is annihilated (turned to SOL) instead.
This method makes it possible to run a simulation for an arbitrarily long time.

Employment of a traditional, synchronous CA with the transition rule given
is not possible without substantial changes to the model, because oxidation and
diffusion transitions affect not just one cell, but also a randomly chosen neigh-
bour. Therefore, as it has been mentioned, we decide to use an asynchronous
automaton. In this case, an order of considering the cells for updating has to be
given. To efficiently use the parallel processing capability of the GPUs, we have
implemented our algorithm as a block-synchronous automaton, similar to those
described in [1]. The only difference is that sampling with replacement is used
in our case. The block size is set to 43.

The algorithm for the simulation, therefore, is as follows:
Until the desired simulation time is reached, do:

– for 64 times (block size):
• Randomly choose a position in the unit block;
• For the cell in that position, in every block: (the parallel part)

– Choose a random neighbour (relevant for an oxidation or diffusion
event);

– Choose a transition based on the cell and selected neighbour’s states
– oxidation for MET and SOL, dissolution for OXI with only SOL
neighbours, do nothing for SOL;

– Randomly (with given probability) decide, whether the transition
happens;

– If the cell is OXI and dissolution has not been performed, consider
diffusion next;

– If a transition is chosen to be performed, update the cell(s) affected;
– If an equivalent of a monolayer of metal has been oxidized since last scrolling:

Scroll by removing the top monolayer of the lattice and adding a monolayer
of MET at the bottom;
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– Compute the potential V for the next step (Galvanostat)

3 Simulations, Results and Discussion

The simulations are conducted to check the influence of all parameters. The sets
of values for every parameter are selected based on initial test simulations, the
earlier results presented in [19], and on the authors’ intuition.

Instead of bare IGS (current setting) and Rdif (galvanostat sensitivity), we
used respectively IGS/A and Rdif · A as parameters, where A is the area of the
horizontal section of the lattice, dimx ·dimy (all dimensions are in cells). Adopt-
ing this convention makes the system’s behavior independent of the lattice size,
if it is sufficiently large. To determine the appropriate size for further simula-
tions, the impact of the lattice size was examined. First, the horizontal (dimx

and dimy) dimensions from range 96–4096 were checked, with the lattice height
(dimz) = 96. Next, dimx = dimy = 1024 were assumed and dimz was varied
from 8 to 144. The other parameters were: Pbreak = 0.15, Pdie = 0.01, IGS/A =
0.0002 and RdifA = 200. Those values had been found to cause nice potential
oscillations (see Fig. 2, discussed later). The simulation time was 40000 steps.
We found that for most of the following simulations, dimx = dimy = 1536 and
dimz = 64 are sufficient. For the cases when very small IGS/A values were cho-
sen, we extended dimx and dimy to 2048. This was meant to reduce the content
of the random noise in the observed current.

The impact of Pdie was also examined, assuming its values of 0–1. The other
parameters were as given in the preceding paragraph. For the next simulations,
we decided to keep Pdie = 0.01, like in the previous work [19].

The influence of RdifA and initial V was checked for several IGS/A and
Pbreak values. This influence is nontrivial and deserves more attention in a future
work. For the presented simulations, we assumed RdifA = 200 and V = 0 as the
initial value. The focus is on the role of the two other parameters. Preliminary
simulations were conducted for Pbreak in range 0.1–0.3, and IGS/A = 5 · 10−5 −
−6 · 10−4. Having gained some experience, for further simulations we select the
parameter values that seem most likely to produce interesting behavior.

Data collected from the simulations are mainly V and I values as functions of
time. For selected simulations, surface morphologies at chosen moments of time
are rendered as snapshots, mainly in order to analyse the connection between the
layer morphology and the potential oscillation stage. This connection is shown
in Fig. 2 on an example of a system’s evolution at Pbreak = 0.15 and IGS/A =
2 · 10−4. Here, we can notice that high potential corresponds to high coverage of
metal by the oxide.

3.1 Impact of Current and Adhesive Forces

The plots in Fig. 3 show how the overall behavior of the system depends on Pbreak

and IGS/A. Observed current is shown in the units of IGS , so if it remains close to
one, then it can be said that the galvanostat serves its purpose well. The plots
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Fig. 2. Plot of time evolution of I (in purple) and V (green). observed current is
divided by IGS . Below the plot, shown are images of the metal surface at time t ∈
{1000, 4000, 16000, 28000}. Metal is rendered in light gray, oxide – in dark brown.
(Color figure online)

Fig. 3. Comparison of I and V evolution in time, for IGS/A ∈ {2 · 10−4, 6 · 10−4, 1.5 ·
10−3} (left to right), Pbreak ∈ {0.3, 0.25, 0.2} (top to bottom). Observed modes of
behavior include: convergence to a steady state (left), stable oscillations of V (esp.
central plot), damped oscillations (bottom central), chaotic oscillations (middle right)
and passivation (bottom right plot).
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show smooth convergence to a steady state, then damped, stable and chaotic
oscillations, and passivation (saturation), when the potential grows rapidly, but
no longer has any influence on the current, which stays below the target value.
Those regimes occur approximately in the order of rising IGS/A or falling Pbreak.

 0

 200

 400

 600

 0  10000  20000  30000  40000  50000
 0

 1

 2

 3

 4

V

I o
bs

/I G
S

t

I
V

 0

 200

 400

 600

 0  10000  20000  30000  40000  50000
 0

 1

 2

 3

 4

V

I o
bs

/I G
S

t

I
V

 0

 40

 80

 120

 160

 0  10000  20000  30000  40000  50000
 0

 1

 2

 3

 4

V

I o
bs

/I G
S

t

I
V

Fig. 4. Examples of I and V evolution in time, showing depassivation. Top: Pbreak

= 0.2, with IGS/A = 7.75·10−4 (left) and 8·10−4 (right). Bottom: Pbreak = 0.25 and
IGS/A = 1.8·10−3. Depassivation occurs about t = 10000 (top) and 2000 (bottom).

Another phenomenon that can be observed in the simulations is the depassi-
vation, when after a period of passivity the oxide layer becomes less compact and
the current as set or greater starts flowing again. This can be seen in the I and V
versus time plots, in Fig. 4. As we can see, the most interesting nonlinear behavior
of the system occurs when the IGS value is close to Imax – the maximum current
that can be maintained for an arbitrarily long time. Imax obviously depends on
all of the other parameters. It is difficult to calculate its value precisely, mostly
due to the stochasticity of the model. When IGS � Imax, we observe chaotic
potential oscillations or passivation with subsequent depassivation.

4 Conclusions

We simulate passivation of metal in an electrolyte solution using a three-
dimensional asynchronous stochastic cellular automaton as model. The model
is taken from our earlier work, and coupled with a simple galvanostat, which
changes the electric potential with a rate that is directly proportional to the
difference between the desired and observed current. In the beginning of the
research it was not obvious whether the oscillations could be obtained in our
simulations. It could have been speculated, for example, that the time scale of
the oscillations is too small related to the automaton’s time step. Such doubts,
however, appear to be unfounded. In fact, no modifications to the originally
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assumed model are required. All of the results are obtained just by varying the
values of the parameters – mostly the galvanostat current setting and the oxide
adhesion strength, expressed in terms of Pbreak. To our knowledge, at the time
of writing this paper, the presented model is the only one that mimics the salient
features of passivation in so much detail. The simulated oscillatory patterns are
still simpler and less varied, than those seen in the experiments – compare e.g.
[15,17]. Thus, there is still room for improvement.

In general, the simulation studies on the passivation in galvanostatic condi-
tions are far from over. More simulations are going to be conducted to explore
the influence of the parameters in more detail, especially the sensitivity of the
galvanostat. Future research includes also topological description of the oxide
layers, modelling of the influence of aggressive anions (Cl−, F−) on passiva-
tion, and the influence of boundary conditions (periodic conditions are assumed
in this paper). Following that, passivation in potentiodynamic and galvanody-
namic conditions is going to be simulated. Hypothetically, using an appropriate
potential or current protocol can result in the corrosion product forming curious
nanostructures.
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Abstract. In this paper we present a method for motion detection
and characterization using Cellular Automata. The original approach
employs results of the application of the Sobel operator to individual
frames, that are translated to CA configurations that are processed with
the aim of detecting and characterizing moving entities to support col-
lision avoidance from the perspective of the viewer. The paper formally
describes the adopted approach as well as its experimentation videos
representing plausible situations.

Keywords: Cellular Automata · Motion detection · Video analysis

1 Introduction

Motion detection and object tracking are both tasks of great interest in Com-
puter Vision (CV). They are part of studies, for example, in medical imaging,
surveillance methods [22] and (of more recent interest) driver assistance [2] and
many other applications. The aim of this paper is to present a method for motion
detection and characterization using Cellular Automata. The approach has the
aim of detecting and characterizing moving entities to support collision avoid-
ance from the perspective of the viewer.

In order to pursue this goal we identified in the edge detection, more specif-
ically in the Sobel operator [19], an algorithm that performs an efficient trans-
formation of an image in its edge-based counterpart with satisfactory effective-
ness. This image transformation, leading to a gray-scale representation, can be
easily translated in a cellular automaton configuration [21]. Considering that
edge detection [3,5,15,17] is a very specific field of computer vision technique,
it is nonetheless possible to find some peculiarities that fit well in the cellular
automaton approach.

Likewise, intrinsic features of cellular automata make them naturally suited
to parallelization [20] and efficient hardware implementation [7], with the support
of ad-hoc devices, they could bear the development and usage of a real time
system. We will now briefly discuss most relevant related works to this research,
then the approach will be introduced. Discussion of achieved results and future
research directions will end the paper.
c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 102–111, 2018.
https://doi.org/10.1007/978-3-319-99813-8_9
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2 Related Works

Even though works related to motion detection using Sobel operator and CA
are not present in the literature, Cellular Automata have recently been used for
saliency detection [16]: the cited work, employing a stochastic CA approach, has
been well received by the CV community being characterized, at the same time,
by a good effectiveness and high efficiency, and it actually generated interest and
further researches. Saliency detection analysis with CA, in fact, was later also
investigated in [8], which also characterized it as one of the most relevant steps of
the process of motion detection. CA approaches had been earlier used for other
CV tasks, in particular to process edge detection [12,14] and to perform resizing
operation preserving edges (and therefore quality of the image) [10], but also for
segmentation of medical images [18].

3 The Introduced CA Approach

Our approach and the associated work-flow implies several steps in order to
process a frame-by-frame object movement, as shown in Fig. 1. It involves Cellu-
lar Automata (CA) which is a mathematical idealization of physical systems in
which space and time are discrete. It consists of a regular uniform lattice where,
in each site, there is a discrete variable called “cell”. Each individual cell is in a
specific state and changes synchronously depending on the state of its neighbors,
given a local update rule. The neighborhood at a certain site is typically taken
to be the site itself and its immediate adjacent sites.

3.1 From a Frame to a Sobel-Filtered Frame

To transform an image into an instance of a CA, every frame of a video will
be filtered using the Sobel operator. The latter applies two 3× 3 kernels to the
original image in order to calculate approximations of the derivatives, horizontal-
axiswise and vertical-axiswise (see Fig. 2). Therefore the gradient G of the edge
will be G =

√
G2

x + G2
y. Because of its approximated nature, this filter helps in

the process of discretization of an image. Applying this filter, colors are going to
be removed, highlighting only edges in scales of gray. Edges are basically areas
where contrast intensity γ ∈ Γ is strong. Filtering an image with this operator,
provides a new image which will be used to initialize a CA lattice.

The main reason for the usage of Sobel operator rather than other edge
detectors can be found in the simplicity of the related algorithm. While other
edge detectors (e.g. Canny edge detector) imply various steps to process the
image and achieve its edge-based counterpart, as explained in [10], the Sobel
operator edge detection method instead implies a shorter number of steps that
are part of a much simpler algorithm.
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Fig. 1. The overall pipeline of the proposed approach for CA-based motion detection
and characterization.

(a) (b)

Fig. 2. (a) Matrix used on x axis (Gx); (b) Matrix used on y axis (Gy).

3.2 CA Initialization

Due to the intrinsic discrete nature of a CA, the actual set of contrasts Γ ,
processed by the Sobel filter, needs to be discretized in clusters. The cardinality
of these clusters will be set as the highest value that a cell ci ∈ C, where
i = 1 . . . |C|, in a lattice L can assume. The number of clusters is determined
according to the content of the processed video with the aim of preserving the
possibility to discriminate edges but also to keep limited the processing time. So
once clustered, there will be a finite set of states S = {0, . . . , K} every cell can
assume.
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Therefore defining a frame F t = {pt0, p
t
1, . . . , p

t
(n∗m)−1, p

t
n∗m}, where n is the

number of pixels on the x axis and m the number of pixels on the y axis, as the
tth frame in a video V = {F 0, F 1, . . . , Fmax(t)}, the flattening process will follow
this method:

S(cti) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k − 1, if min(γKn) ≤ γpt
i
≤ max(γKn)

...
1, if 0 < min(γK1) ≤ γpt

i
≤ max(γK1)

0, otherwise

(1)

At the end of this process there will be a fully initialized lattice L with cells
assuming up to k different states which will be associated to a sobel-filtered
video frame.

3.3 Frames Comparison

Having the lattice set, a process of frames comparison to elaborate movement
within the considered video will start. In order to do this, we will use 2 different,
but contiguous in time, lattices L(F t) and L(F t+1); they will be overlapped to
retrieve uncommon cells according to their position. As a result a new lattice
Λ(L(F t), L(F t+1)) will be produced according to this method:

S(ct,t+1
i ) =

{
1, if S(cti) �= S(ct+1

i )
0, otherwise

(2)

In other words, lattice Λ(L(F t), L(F t+1)) will essentially show different pixels
from each frame, which intuitively represent the focus of the movement detection
process. More precisely, this new lattice presents edges that were present at time
t and that changed at time t + 1: it therefore includes edge pixels of both time
t and t + 1.

In order to determine more precisely the so called region of interest (ROI) of
the distinct frames, we have to separate this information, to be then analyzed to
characterize movement. More precisely, we would have to exclude from the lattice
Λ(L(F t), L(F t+1)) cells that do not match their state value when compared to
L(F t) cells and when compared to L(F t+1) cells. Therefore, this process will
bring to two new different lattices ROI(L(F t)) and ROI(L(F t+1)). Respectively,
their cell states will be set according to this method:

S(cROI(L(F t))
i ) = S(cti) ∗ S(ct,t+1

i ) (3)

and
S(cROI(L(F t+1))

i ) = S(ct+1
i ) ∗ S(ct,t+1

i ) (4)
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(a) (b)

Fig. 3. (a) Frame 104 of the video (b) Sobel-filtered frame 104.

3.4 Building a Bounding Box Around Salient Objects

Having reached this point of the pipeline, the expected output are 2 CA config-
urations showing salient objects meant to be evaluated in the process of motion
detection. In order to do this, a bounding box will be constructed around the
ROIs and thus we will be able to collect their centroids and process an approxi-
mate estimation of the frame-to-frame behavior of the salient object.

The effectiveness of the estimation will be calculated upon completion of the
collection of salient objects’ centroids. A trajectory of all of the bounding boxes
will show the approximate behavior of the moving object in the whole video.

4 Experimental Results

To exemplify what has been explained so far, the whole pipeline has been devel-
oped in pure Python language, using SciPy (ndimage)1 library for the Sobel
filtering part along with OpenCV2 for several tasks on the video processing.

4.1 Analyzed Videos and Achieved Results

For evaluating the effectiveness of the approach, we used a video3 with no cam-
era movement, whose frame resolution is 360 × 496 pixels; the background is
therefore permanently motionless (unless for artifacts due to video compression,
changes in the illumination, etc.). The video represents a cat entering the screen
from the right side and moving towards the other end. It must be noted that we
did not run benchmarking tests for the analysis of computational times yet: in
this work we mainly focus on the effectiveness of the approach, and its potential
regarding the parallelization aspect will be considered in future works.

1 https://docs.scipy.org/doc/scipy/reference/ndimage.html.
2 https://opencv.org/.
3 https://www.youtube.com/watch?v=HDb9StNG8 Q.

https://docs.scipy.org/doc/scipy/reference/ndimage.html
https://opencv.org/
https://www.youtube.com/watch?v=HDb9StNG8_Q
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(a) (b)

Fig. 4. (a) Sobel-filtered frame 104 (b) Flattened Sobel-filtered frame given as a CA
configuration

From a Frame to a Sobel-Filtered Frame

In Fig. 3 it is shown how the Sobel operator works: given an image as input, it
returns the most significant edges of that image based on their magnitude in
terms of contrast.

CA Initialization

In Fig. 4 the Sobel-filtered frames was flattened to be better processed in the
subsequent step of frames comparison. This step aims to remove superfluous
edges, not so worth further evaluation.

Frames Comparison

In order to better evaluate the difference between frames, we propose, in Fig. 5,
2 examples of differences through overlapping frames

Bounding box of Regions of Interest and their trajectories

In an initial part of the video (frames 1 to 49 ) there is no motion (the cat has not
yet entered the screen) and consequently nothing is detected; starting at frame 50
and until frame 268 the system detects an object moving at a relatively constant
speed from the right side of the frame to the left side. Finally, the sequence of
frames between 269 and 293 depict the background since the cat has exited
from the right side of the screen, and the system correctly does not report any
movement. In Fig. 5d we show the positions of centroids of the bounding boxes
built around ROIs.

In Fig. 6 we more briefly describe the results of another experiment, in which
a video of a ball bouncing on screen4, from the left side to the right side, was
analyzed. Figure 6b shows the trajectory of centroids of ROIs of the video with
a ball bouncing along the frame.

4 https://www.youtube.com/watch?v=SW3rvS3wLqg from which we digitally
removed the “Ball” text.

https://www.youtube.com/watch?v=SW3rvS3wLqg
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(a) (b)

(c) (d)

Fig. 5. (a) CA configuration of frame 104 (b) CA configuration of frame 106 (c)
Λ(L(F 104), L(F 106)) (d) Trajectory of centroids of ROIs (markers identify centroids
of bounding boxes of ROIs)

4.2 Discussion of Experiments

The heterogeneous movement of the cat and its tail provide a continuous
although smooth change in the produced bounding box around the ROI, and
this makes it quite dynamic and unstable. While the movement of the cat was
basically homogeneous and predictable, the movement of its tail instead was
fairly unpredictable. This lead to a continuous change of bounding boxes shapes.
It is a matter of fact that this pointed out different movement directions between
the cat and its own tail.

Moreover, the video presents some issues in terms of compression artifacts,
leading to a slight change of colors of pixels in certain frames. On top of that,
this method does not consider the problem of object classification, meaning that
it does not consider the case of more objects moving in the same frame yet.
Nevertheless, as it can be seen in Fig. 5, only 3 frames out of 219 show a clear
discrepancy between the expected bounding box position and the one retrieved
from the system: the points around the coordinates (300, 150) are due to the
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(a) (b)

(c)

Fig. 6. (a) A frame taken from a video of a ball bouncing on screen (upper right part
of the frame) (b) Trajectory of ROIs of video with a bouncing ball (markers identify
centroids of bounding boxes of ROIs) (c) Frame where the left edge of the ball is not
completely on screen (the ball is in the lower right part of the frame and it is much
less visible than in the first frame).

recognition of noisy pixels in the top left part of the video as a possible moving
object and part of the ROI.

The second test is proposed on another video that represents a ball with a
black background bouncing at a static bouncing rate and moving from left to
right at a constant speed. In this case, the object is fundamentally not changing
from a morphological perspective, although it is constantly changing velocity,
even with relatively significant displacements withing the frame. Results for this
scenario are slightly more satisfactory than the previous experiment: even though
the number of frames showing discrepancies between the expected bounding box
position and the output one is 5 out of 295, the errors made in the estimated
trajectory for those frames is very small (see the points at the borders of Fig. 6b).
This is due to the fact that, in those frames, e.g. Fig. 6a, the ball speed is rather
high and its edges become blurry. This makes the Sobel filter face some difficulties
in processing the gradient of ball edges. Therefore only the right edge of the ball
is detected and the bounding box built around it makes the centroid of the
bounding box slightly shifted along the two axes.

With reference to the achieved results in both the experiments, even before
moving in the direction of trying to classify the detected objects, simply con-
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sidering some physical constraints characterizing the typically observed objects
(or the movement capabilities of an autonomous robot on which the camera
is positioned) supports the possibility of completely dismissing or significantly
reducing this kind of error. For instance, in [11] the authors analyzed trajectories
generated by pedestrians and they were able to reject as outliers tracks in which
changes of direction were simply too sudden for a walking human, but analogous
considerations could be done with respect to commonsense reasoning [4] on the
morphology of the detected and tracked objects.

5 Future Works

The present paper fundamentally reports the current results of an ongoing work
investigating a wider research challenge, that is, the possibility to transfer intu-
itions, approaches and concrete results from the field of insect sensory and motor
system study to the area of autonomous robotics, in the vein of [1,13].

The present results show that CA can represent useful blocks within a more
complex work-flow for the processing of videos, in particular with the aim of
detecting and characterizing motion within the analyzed frame. Relationship
between the present model and current biological results are still thin; nonethe-
less, there are results related to the functioning of individual photo-receptors [6]
and the conjecture is that CA could be applied to explain the visual processing on
the retina. Visual processing is basically composed of local interaction between
nearby photo-receptor cells at receptor level and inter-neurons at higher levels.

With respect to the implementation aspect, due to the high level of paral-
lelization of CA, we would like to focus our work on the classification of moving
elements in an image, in order to process more objects within the CA. Regard-
ing the classification problem, the greatest challenge is to reduce complexity
computationwise.

An additional work that could be taken as inspiration for future implemen-
tations is also [9], describing a bio-inspired vehicle collision detection system
using the neural network of a locust. While this work uses effectively cameras
to process videos, our project would aim to do this with a CA abstracting the
photo-receptor layer of the locust using a CA lattice.

References

1. Ando, N., Kanzaki, R.: Using insects to drive mobile robots–hybrid robots bridge
the gap between biological and artificial systems. Arthropod Struct. Dev. 46(5),
723–735 (2017)

2. Avidan, S.: Support vector tracking. IEEE Trans. Pattern Anal. Mach. Intell.
26(8), 1064–1072 (2004)

3. Canny, J.: A computational approach to edge detection. In: Readings in Computer
Vision, pp. 184–203. Elsevier (1987)

4. Davis, E., Marcus, G.: Commonsense reasoning and commonsense knowledge in
artificial intelligence. Commun. ACM 58(9), 92–103 (2015)



Motion Detection and Characterization with CA 111

5. Deriche, R.: Optimal edge detection using recursive filtering. Int. J. Comput. Vis.
2, 167–187 (1987)

6. Frye, M.: Elementary motion detectors. Curr. Biol. 25(6), R215–R217 (2015)
7. Georgoudas, I., Kyriakos, P., Sirakoulis, G., Andreadis, I.: An FPGA implemented

cellular automaton crowd evacuation model inspired by the electrostatic-induced
potential fields. Microprocess. Microsyst. 34(7), 285–300 (2010)

8. Guo, J., Ren, T., Huang, L., Liu, X., Cheng, M.M., Wu, G.: Video salient object
detection via cross-frame cellular automata. In: 2017 IEEE International Confer-
ence on Multimedia and Expo (ICME), pp. 325–330. IEEE (2017)

9. Hartbauer, M.: Simplified bionic solutions: a simple bio-inspired vehicle collision
detection system. Bioinspiration Biomim. 12(2), 026007 (2017)

10. Ioannidis, K., Andreadis, I., Sirakoulis, G.C.: An edge preserving image resizing
method based on cellular automata. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI
2012. LNCS, vol. 7495, pp. 375–384. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33350-7 39

11. Khan, S.D., Bandini, S., Basalamah, S.M., Vizzari, G.: Analyzing crowd behavior
in naturalistic conditions: identifying sources and sinks and characterizing main
flows. Neurocomputing 177, 543–563 (2016)

12. Kumar, T., Sahoo, G.: A novel method of edge detection using cellular automata.
Int. J. Comput. Appl. 9(4), 38–44 (2010)

13. Linan-Cembrano, G., Carranza, L., Rind, C., Zarandy, A., Soininen, M., Rodriguez-
Vazquez, A.: Insect-vision inspired collision warning vision processor for automo-
biles. IEEE Circ. Syst. Mag. 8(2), 6–24 (2008)

14. Popovici, A., Popovici, D.: Cellular automata in image processing. In: Fifteenth
International Symposium on Mathematical Theory of Networks and Systems, vol.
1, pp. 1–6 (2002)

15. Prewitt, J.M.: Object enhancement and extraction. Pict. Process. Psychopictorics
10(1), 15–19 (1970)

16. Qin, Y., Lu, H., Xu, Y., Wang, H.: Saliency detection via cellular automata. In:
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
110–119. IEEE (2015)

17. Roberts, L.G.: Machine perception of three-dimensional solids. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1963)

18. Rundo, L., et al.: Neuro-radiosurgery treatments: MRI brain tumor seeded image
segmentation based on a cellular automata model. In: El Yacoubi, S., W ↪as, J.,
Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 323–333. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44365-2 32

19. Sobel, I.: An isotropic 3 × 3 image gradient operator. In: Machine Vision for
Three-Dimensional Scenes, pp. 376–379 (1990)

20. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for
Modeling. MIT Press, Cambridge (1987)

21. Wolfram, S.: Cellular automata as models of complexity. Nature 311(5985), 419–
424 (1984)

22. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv.
(CSUR) 38(4), 13 (2006)

https://doi.org/10.1007/978-3-642-33350-7_39
https://doi.org/10.1007/978-3-642-33350-7_39
https://doi.org/10.1007/978-3-319-44365-2_32


Multi-Agent Systems



Coexistence in Three-Species Cyclic
Competition: Lattice-Based Versus

Lattice-Free Individual-Based Models

Aisling J. Daly(B), Ward Quaghebeur, Tim Depraetere, Jan M. Baetens,
and Bernard De Baets

KERMIT, Department of Data Analysis and Mathematical Modelling,
Ghent University, Ghent, Belgium

aisling.daly@ugent.be

Abstract. Individual-based modelling is an increasingly popular frame-
work for modelling biological systems. Many of these models represent
space as a lattice, imposing unrealistic limitations on the movement of
the modelled individuals. We adapt existing models of three competing
species by using a lattice-free approach, thereby improving the realism
of the spatial dynamics. We retrieve the same qualitative dynamics as
the lattice-based approach. However, by facilitating a higher spatial het-
erogeneity and allowing for small spatial refuges to form and persist,
the maintenance of coexistence is promoted. This corresponds well with
experimental results.

1 Background

Spatially explicit individual-based modelling is an increasingly popular frame-
work for simulating a wide range of phenomena in various fields of research [13,
28,29], including racial segregation [4], microbial growth [17], pandemics [23],
and multicellular self-organisation [27]. These models can reproduce a system’s
complex behaviour at the macroscopic level by modelling the characteristics and
interactions of its individuals, whether these be cars, people, microbes, or other
entities, through simple rules at the microscopic level. The emergent macroscopic
dynamics can then be analysed to gain insight into the fundamental mechanisms
underpinning the system, a key example being mechanisms that permit the coex-
istence of individuals of multiple types or species, even when these are engaged
in competition. Determining whether this coexistence can be maintained, and
under which conditions, is a major focus of modelling studies. In particular, a
cyclic competition scheme has been used extensively in literature to investigate
the mechanisms underlying coexistence of competing species, yielding valuable
insights [25,30]. Such a competition scheme, where there is no strict hierar-
chy among the species, has been observed in natural systems of, among others,
coral reefs, plant ecosystems, lizard mating strategies, and bacterial communi-
ties [8,15,16,32].

c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 115–124, 2018.
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Although their inherent flexibility allows individual-based models to be used
in many different settings, this generality can however lead to oversimplifica-
tions, a very common example being the use of a lattice to represent space
(e.g. [18,20,30,35]), thereby imposing an artificial restriction on the position-
ing of individuals, who typically occupy one lattice cell each. Although justified
in applications where the geometry of the lattice cells has an actual meaning,
such as urban planning modelling [31], the use of a lattice deviates significantly
from reality when modelling biological systems [11]. Namely, the mobility of
individuals in this lattice-based setting is restricted to displacement to one of
their neighbouring lattice cells, uncharacteristic of the real movement of individ-
uals [1], and precluding motile behaviour (the ability to move deliberately and
actively). To mitigate these disadvantages, some lattice-free approaches have
been developed [6,12], however these have focused on active matter rather than
on species competition and coexistence.

2 Model Description

2.1 Model Versions

To investigate whether a lattice-free approach can enhance our understanding of
coexistence mechanisms, we employ a spatially explicit individual-based model
of a community of three species engaged in cyclic competition. To do so, we
adapt the two-dimensional model proposed by [30] to account for (i) a lattice-
free representation of space, and (ii) a continuous migration mechanism. We then
assess the impact of these adaptations on the coexistence of the community by
examining the respective extinction probabilities of the in silico species relative
to those obtained using the less realistic lattice-based approach.

Benchmark Lattice-Based Model. The model proposed in [30] takes into
account three key demographic processes at the individual level: reproduction,
competition, and migration, which occur at rates μ, σ, and ε, respectively, iden-
tical for all species. For simplicity, we consider equal rates of reproduction and
competition, and (without loss of generality) determine the time unit by fixing
μ = σ = 1. We consider two-dimensional space divided into a regular lattice of
identical square cells, occupied by at most one individual. The system mobility
M is proportional to the typical area explored by one individual per unit time,
M = 2εN−1, where N is the number of lattice cells in the system [30].

During each interaction event, a focal cell is randomly selected. If the focal
cell is empty, another cell is chosen randomly. If the focal cell is occupied, then
one of its four von Neumann neighbours (those sharing an edge) is randomly
selected. Reproduction can occur if the neighbouring cell is empty. Competition
can occur if the neighbouring cell is occupied by an individual of a different
species than the focal individual, with the outcome determined by the cyclic
competition scheme: species A beats species B, which beats species C, which
beats species A. The defeated individual is removed and the lattice cell becomes
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empty. Migration can occur irrespective of the neighbouring cell’s occupancy: if
it is empty, the individual simply moves there, and if it is occupied then the two
individuals exchange positions.

Simulations advance by iterating through the following procedure at every
time step: an occupied focal cell and one of its neighbouring cells are randomly
selected. A random number is drawn to determine which type of interaction will
occur: a reproduction event occurs with probability μ

s , a competition event with
probability σ

s , and a migration event with probability ε
s , where s = μ+σ+ε. The

interaction outcome is determined as described above, and the lattice is updated
accordingly. The time step is advanced and the procedure is repeated until the
end of the simulation is reached. We define one generation as the number of
interactions needed so that each cell had the chance to interact on average once,
namely N2.

Lattice-Free Approach. To assess the impact of continuous space on the
maintenance of coexistence, we construct a model using the same framework
as the benchmark model, except that individuals do not position themselves in
lattice cells, but in continuous space. Each individual is represented by a circle
of diameter of one unit length, equal to the length of a lattice cell, centred at a
certain point (x, y). Two individuals i and j are considered to be neighbours if
the Euclidean distance dij between their centres is less than or equal to one unit,
so that they are either touching (dij = 1) or overlapping (dij < 1). We permit a
certain maximal overlap between individuals, for reasons of both computational
efficiency and biological realism, since the modelled individuals (e.g. bacteria)
may slightly deform or cave into each other [33].

To minimize this overlap, thus permitting comparison with the benchmark
lattice-based model (which assumes that individuals do not share space), we
incorporate a repulsive force between overlapping individuals, modelled as soft
spheres [21],

Fij =

⎧
⎨

⎩
α
(
1 − dij

) 5
2
rij , if dij < 1,

0 , otherwise,
(1)

where Fij is the resulting repulsive force on individual i induced by individual j,
α is a coefficient, dij is the distance between the centres of the individuals, rij is
the vector defined by the centres of the two individuals, pointing outwards from
the centre of individual i, and 0 is the zero vector. Hence, no repulsion occurs
between individuals that are touching but not overlapping, or not touching at
all.

When multiple individuals overlap with a given individual, vector addition of
the individual forces applies. At the end of each generation, the repulsive force
is computed for every individual, after which their positions are updated accord-
ingly. Multiple iterations are executed until the minimum distance between the
centres of neighbouring individuals exceeds a given threshold.

The distance travelled during one migration event is similar for the lattice-
free and lattice-based models, since in the former case individuals can move
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a distance of one unit (the diameter of their body), analogous to the lattice-
based displacement to a neighbouring cell (also having length one unit). Migra-
tion events may involve two neighbours exchanging their positions, again similar
to the lattice-based model. Hence, we can consider the mobility M = 2εN−1,
analogous to the lattice-based model, thereby allowing us to compare the two
approaches.

An individual positioned at (x, y) can reproduce by splitting itself into two
daughter individuals of equal size, positioned at (x + r cos θ, y + r sin θ) and
(x − r cos θ, y − r sin θ), where r is the radius of an individual (fixed as 0.5 units)
and θ is a randomly chosen angle in [0, π]. Reproduction can occur when an indi-
vidual’s neighbourhood is not fully populated, i.e. it has less than six neighbours,
the maximum number of neighbours in a hexagonal packing of circles.

3 In Silico Experiments

For the lattice-based approach, a 100 × 100 lattice is initialized with 10% empty
lattice cells, and the remaining cells evenly and randomly distributed among
the three species. Periodic boundary conditions are imposed to avoid boundary
effects. Next, individual interactions are simulated as described in Sect. 2.1 for
10 000 generations.

The lattice-free approach is evolved in an analogous manner, with certain
adaptations. A 100 unit × 100 unit space is initialized with 9000 individu-
als evenly and randomly distributed among the three species. At the start of
each generation, a cell list [24] and Verlet list [34] are constructed to efficiently
keep track of each individual’s neighbours, as defined in Sect. 2.1. These two
specialised data structures were initially developed for molecular dynamics sim-
ulations, and permit the practical simulation of large numbers of interacting
individuals (particles). The cell list subdivides the continuous in silico domain
into blocks and sorts the individuals into these blocks, so that interactions are
computed between individuals in the same or neighbouring blocks. The Verlet
list overcomes the need to determine an individual’s neighbours at each inter-
action: by determining them only once, saving this information and updating it
when needed, the simulation efficiency is also improved.

After an interaction event, the Verlet list and the in silico domain are updated
accordingly. At the end of a generation, the repulsion mechanism described in
Sect. 2.1 is executed, with α = 5 and a threshold of 0.95 for the minimum
distance between the centres of individuals, so that the repulsion mechanism
converges rapidly (provided system carrying capacity is not reached).

At each time step, the identity and location of each individual are tracked.
The probability of extinction Pext is calculated at the end of the simulations as
the fraction of simulations with at least one extinction event. Patchiness, a mea-
sure of spatial aggregation, is calculated as the average fraction of neighbours of
the same species [22]. Similarly, the probability of interspecific encounter (PIE)
is calculated as the average fraction of an individual’s neighbours that are preda-
tor species [14]. A pressure distribution, visualizing the number of individuals
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within a certain distance, and thus spatial heterogeneity, is calculated from the
position of the individuals, using the method described in [7].

The lattice-based approach is compared with the lattice-free approach to
assess the impact of the latter on the probability of extinction. Both models are
implemented in Mathematica (version 11.0, Wolfram Research, Champaign, IL,
USA). For each model, the migration rate ε is varied in order to test different
values of mobility M between 2×10−4 and 1.6×10−2, while all other parameters
are fixed. For each initial condition, 50 replicate simulations are conducted. Sim-
ulations are carried out using the High Performance Computing infrastructure
at Ghent University.

4 Results and Discussion

Figure 1 shows an example of the spatial dynamics arising from the lattice-
based and lattice-free approaches. Both approaches result in the same qualitative
behaviour, with the individuals arranging themselves in stable spatial structures,
thereby facilitating coexistence of all species. Moreover, these emerging spatial
structures are of equal size for the same mobility, irrespective of the approach,
thus resembling the results obtained with a similar lattice-free model [5]. How-
ever, the latter model considers a system where the total density of individuals
is conserved, which is not always realistic.

Fig. 1. Example of the spatial dynamics obtained for M = 2× 10−4 with lattice-based
approach (left) and lattice-free approach (right).

Figure 2 shows the extinction probability Pext as a function of mobility M
for both approaches. In both cases, we can observe a qualitative behaviour sim-
ilar to the findings of [30], namely a higher probability of extinction Pext for
higher mobility M . However, the lattice-based Pext is consistently higher than
the lattice-free Pext for the same mobility M . For the former, the transition from
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Fig. 2. Extinction probability Pext (50 simulations, 10 000 generations) versus mobility
M for the lattice-based (blue, square) and lattice-free approach (red, circle). (Color
figure online)

stable coexistence (Pext = 0) to extinction (Pext = 1) sharpens at the critical
mobility Mc = (5 ± 1) × 10−3. In contrast, this happens at critical mobility
Mc = (1.3 ± 0.1) × 10−2 for the lattice-free approach. Hence, when using the
latter approach coexistence is maintained for a wider parameter range than its
lattice-based counterpart, and coexistence may be considered more robust.

By not constraining the individuals to lattice cells, the lattice-free approach
permits individuals more freedom to position themselves. This influences the
formation of spatial structures. In Fig. 3 we show an example of the pressure
distribution, representing the number of individuals within a certain distance,
therefore visualizing the spatial heterogeneity of the system. Comparing this
plot with the spatial species distribution reveals that pressure is highest inside
the spatial structures, and lowest along the borders between clusters of species,
where interactions are manifold. This heterogeneity is in contrast to the lattice-
based model, where the pressure is spatially homogeneous, and explains the
more robust coexistence, since spatial heterogeneity is known to promote coex-
istence [26].

It is known that threatened species, when reduced to a few individuals, often
retreat into small spatial structures called refuges [19]. Figure 4 shows an exam-
ple of an in silico spatial refuge obtained with both approaches. When spatial
refuges become surrounded by their predator, they are quickly destroyed [19].
However, inspection of the simulation results reveals that refuges tend to be
more resilient in the lattice-free approach. Individuals can arrange themselves
more compactly, since the highest density arrangement of circles in a contin-
uous space (a hexagonal tessellation) leads to an area occupancy of π/

√
12,

which is greater than the highest area occupancy that can be achieved with a
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Fig. 3. Example of the spatial dynamics (left) obtained with the lattice-free approach
for M = 2 × 10−4, and corresponding pressure distribution (right), representing the
number of individuals within a certain distance (darker colour indicates higher density
of individuals).

square lattice arrangement, namely π/4 [9]. This effect can be seen in Fig. 3,
where species aggregations have clearly defined borders and permit fewer hostile
intrusions. This increases their robustness in terms of maintaining coexistence,
implying a lower extinction probability Pext at the same mobility rate. This
corresponds with experimental findings, where spatial refuges have been found
to be important for maintaining diversity in predator-prey systems of, among
others, crab-molluscs [2] and spider-bugs [10]. Furthermore, it reflects in vivo
ecosystems, which are typically composed of a few dominant species and many
rare species [3,36]. We can thus conclude that, by constraining individuals to a
lattice, the lattice-based approach tends to underestimate the ability to maintain
coexistence, compared to the more realistic lattice-free approach.

Thus, while the lattice-free approach produces qualitatively similar dynam-
ics to the lattice-based approach, the maintenance of coexistence is affected by
the more realistic spatial configurations that can arise from the former model.
Furthermore, a lattice-free approach opens up many possibilities of extensions to
study scenarios related to the fundamental persistence of biological systems. For
example, we have also investigated a continuous mobility mechanism, whereby
individuals no longer move in steps of length strictly equal to one unit, but
instead may take steps of a random length less than a specified maximum of 1.5
units. While this is a more realistic implementation of individual movement, we
found that it does not lead to significantly different results than those obtained
with the implementation reported in this paper. Notably, the spatial dynam-
ics and the relationship between the system’s mobility and its probability of
extinction are qualitatively very similar (results not shown).

The modelling framework outlined in this work would also permit various
extensions to study motility (deliberate and active movement), an example being
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Fig. 4. Examples of spatial refuges retrieved with lattice-based (left) and lattice-free
(right) approaches.

chasing and escaping behaviour. Such scenarios involving directed movement
would also benefit from the additional spatial degrees of freedom offered by the
lattice-free approach, and further studies on this topic are planned.

5 Conclusions

We have compared the lattice-based individual-based model for a three-species
cyclic competition scheme proposed in [30] to a more realistic lattice-free model.
By permitting more spatial heterogeneity and enhancing the formation and per-
sistence of spatial refuges, the lattice-free approach tends to be more robust in
terms of maintaining coexistence.

We have focused on the simplest possible lattice-free model so that we are able
to make the most direct comparison with the lattice-based benchmark. Avoiding
the restrictions and simplifications that are intrinsic to a lattice-based approach
is of great importance for any future work seeking to understand the complex and
inherently lattice-free phenomena found in real world biological systems, such
as directed movement, the effect of variable body sizes, or biased movement.
Overall, a lattice-free approach improves the realism of the individual-based
model, and allows us to study more realistic scenarios related to the conditions
under which coexistence is maintained in biological systems.
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Abstract. We consider a problem of lifetime optimization in Wireless
Sensor Networks. The purpose of the system is to find a global activity
schedule maximizing the lifetime of the Wireless Sensor Network while
monitoring some area with a given measure of Quality of Service. The
main idea of the proposed approach is to convert the problem of a global
optimization into a problem of self-organization of a distributed multi-
agent system, where agents take part in a game and search a solution in
the form of a Nash equilibrium. We propose two game-theoretic models
related to the problem of the lifetime optimization in Wireless Sensor
Network and apply deterministic ε-Learning Automata as players in the
games. We present results of an experimental study showing the ability
of reaching optimal solutions in the course of Learning Automata self-
organization by local interactions in an iterated game.

Keywords: Learning Automata · Non-cooperative games
Self-organization · Wireless Sensor Networks · Network lifetime

1 Introduction

Fast development of information and communication technologies opens new per-
spectives for creating Wireless Sensor Network (WSN)-based intelligent services
oriented on collecting, sending and processing large amount of data. This idea
is shortly termed as Ambient Intelligence and Internet of Things and is based in
particular on different applications of Wireless Sensor Networks (WSNs). WSNs
are networks of large number of tiny computer-communication devices called
sensors deployed in some area, which sense a local environment, collect local
data depending on an application and send them via a special node called a sink
to an external world for processing and taking a decision.

In many applications, such as e.g., monitoring remote and difficult to access
areas, sensors are equipped with single use batteries which can not be recharged.
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From the point of view of Quality of Service (QoS) of such a WSN, one of the
most important issues is its operational lifetime. After a deployment (e.g., by an
aircraft) of sensors at random locations of some area they should self-organize:
to recognize their nearest neighbors to be able to communicate and start taking
locally decisions in subsequent moments of time about turning on or off their
batteries to monitor events. These decisions will directly influence the lifetime of
the network and should be taken in such a way as to maximize it. The problem
of lifetime maximization is closely related to the coverage problem. A group
of sensors monitoring some area is usually redundant, i.e., usually more than
one sensor cover monitored targets and forms of redundancy can be different.
By solving the coverage problem one can indirectly also solve the problem of
maximization of WSN lifetime.

There exists a number of algorithms to solve the problem of coverage/lifetime
maximization. They are classified either as centralized and assume availability of
entire information and a solution is delivered usually in the form of a schedule of
activities of all sensors during the entire lifetime, or distributed, where a solution
is found on the basis of only partial information about the network. Because
these problems are known as NP-complete [4] centralized algorithms are oriented
either on delivery of exact solutions for specific cases (see, e.g. [3]) or applying
heuristics or metaheuristics to find approximate solutions (see, e.g. [7,14]). The
main drawback of centralized algorithms is that a schedule of sensors’ activities
must be found outside the network and delivered to it before starting operation.
Therefore distributed algorithms become more and more popular because they
assume reactivity of sensors in real time, and they are scalable in contrast to
centralized algorithms.

A number of such algorithms based on applying Learning Automata (LA)
[6,11] or Cellular Automata (CA) [13] has been proposed recently. Each of these
techniques taken separately has own advantages and disadvantages. The main
disadvantage of classical CA is a lack of reactivity when they are applied to solve
optimization problems. On the other hand, a distinctive feature of LA is the
ability of interaction with an environment [1,2]. We believe that combining both
techniques is a rational approach in an attempt to solve optimization problems.
Some works to extend classical CA to the second order CA which are able to
self-adopt have been also appeared recently [5] and they are based on multi-agent
game-theoretic paradigm and we follow these both lines of research.

In this paper we propose a novel approach to the problem of coverage/lifetime
optimization based on multi-agent interpretation of the problem and game-
theoretic interaction between players participating in a non-cooperative game
[10]. Each agent-player is oriented on the minimization of its level of redundant
coverage of monitored targets shared with other agent-players. The functions
of agent-players are performed by deterministic LA. We show that the agent-
players are able to find in a fully distributed way a solution defined as a Nash
equilibrium (NE) [8] corresponding to balanced coverage of (POIs) which reduces
batteries expenditures and prolongs the lifetime of WSNs.
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The structure of the paper is the following. Section 2 describes the prob-
lem of coverage/lifetime optimization in WSNs and the next section presents a
multi-agent interpretation of the problem. In Sect. 4 two game-theoretic mod-
els related to the studied problem are proposed, and in Sect. 5 these games are
experimentally studied with the use of deterministic LA as players. The last
section contains conclusions.

2 Sensor Networks and Coverage and Lifetime Problems

It is assumed that a sensor network S = {s1, s2, ..., sN} consisting of N sensors
is deployed over some area, where M POIs should be monitored. Sensors are
distributed randomly, each sensor can monitor POIs in a sensing range Rs and
has a non-rechargeable battery of capacity b. Each sensor can work in one of
two modes: an active mode when battery is turned on and a unit of its energy is
consumed and POIs in its sensing range are monitored; and a sleep mode when
battery is turned off and POIs in its sensing range are not monitored.

It is assumed that decisions about turning on/off batteries are taken in dis-
crete moments of time t. It is also assumed that there exists some QoS measure
evaluating the performance of WSN. As such a measure one can accept a value
of coverage defined as a ratio of POIs covered by active sensors to whole number
M of POIs. At a given moment of time this ratio should not be lower than some
predefined value of q (0 < q ≤ 1). Lifetime of WSN can be defined as a number
of consecutive time steps in which the coverage is within the predefined value of
q.

Figure 1(a) shows an example of a sensor network consisting of N = 4 sensors.
One can notice that if a given sensor is active and some other neighbor sensors
are also active than a number of POIs in the sensing ranges of these sensors are
covered by more than one sensor. This possibly redundant coverage is related
to extra use of sensors’ batteries which has a negative impact on the lifetime
of WSN. Figure 1(b) shows a graph of interaction depicting relations between
sensors and POIs of exemplary WSN from Fig. 1(a).

One can notice that the graph has two types of vertices: black square vertices
denote sensors and rectangle vertices denote POIs. A sensor si in an active mode
covers mi POIs which can be classified in the following way: POIs which can be
covered only by sensor si (mi0 is a number of such POIs), POIs which are shared
by sensors si and sj and can be covered by part or all these sensors (mij), POIs
which are shared by sensors si, sj and sk and can be covered by part or all these
sensors (mijk), etc.

Sensors which share one or more types of POIs are immediate neighbors. One
can see in Fig. 1(b) that e.g., sensors s2 and s4 are immediate neighbors because
they share m24 POIs, and sensors s1, s2 and s3 are immediate neighbors because
they share m123 POIs.
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Fig. 1. Example of a sensor network: area view (a), corresponding interaction graph
(b).

3 Multi-agent Approach to WSN Lifetime Optimization

Let us assume that each sensor si of WSN is controlled by an agent Ai of
a multi-agent system consisting of N agents. Each agent has two alternative
decisions (actions): αi = 0 (battery is turned off) and αi = 1 (battery is turned
on) and neighbor relations between agents are defined by an interaction graph
(see, Sect. 2). According to the interaction graph, an agent Ai has ki immediate
neighbors and will receive some reward revi() which depends on its decision and
decisions of its neighbors (see, Eq. (1)):

revi(αi, αneigh1 , αneigh2 , ..., αneighKi
) =

{
revoff

i − penoff
i (), if αi = 0

revon
i − taxbat

i (), if αi = 1,
(1)

where:

– αi, αneigh1 , αneigh2 , αneighki
– decisions of agent Ai and its neighbors;

– neighki
– a number of neighbors of sensor si;

– revoff
i – a reward for covering by active neighbor sensors shared POIs while

sensor si is inactive;
– penoff

i – a penalty for not covering POIs which are in the range of sensing of
inactive sensor si;

– revon
i – a reward for covering by active sensor si POIs which are in its range;

– taxbat
i – tax for the use of battery by sensor si.

More detailed formulation of Eq. 1 (see, Sect. 4) shows that an agent Ai can
receive some reward even if it is inactive (αi = 0) and saves its own battery. It
happens when some neighbor sensors are active and shared POIs are covered by
them, and when a number of not covered POIs does not exceed some threshold
value related to a predefined coverage parameter q and penalty for that is lower
that obtained reward.



Self-organizing WSNs: Game-Theoretic Learning Automata Approach 129

On the other hand, agent Ai receives a reward when it spends energy of its
battery, but this reward can be lowered when some other neighbor sensors are
active and cover shared POIs. The purpose of each agent is to maximize its total
reward which corresponds to finding a local trade-off between requested level of
the coverage and expending battery power. This way of behavior of agents is in
line with the main goal of this work: finding a global trade-off between requested
level of QoS and minimization of battery expenditure to maximize the lifetime
of WSN.

There exists many ways to organize the work of agents to realize this
global goal. In this paper we propose a game-theoretic approach based on non-
cooperative games where agent-players compete for achieving their own goals and
a solution of the optimization problem is converted into a problem of searching
for Nash equilibrium (NE) by players in a game. Similar game-theoretic approach
has been recently successfully applied in the context of solar-powered WSN [9].

4 Game-Theoretic Approach to WSN Lifetime
Optimization

One of the main sources of imbalance between the level of coverage of POIs and
spending battery power are shared POIs. In particular, one can see from Fig. 1(b)
two extreme patterns of sharing: the same number of POIs can be shared by some
(perhaps huge) number of sensors (see, m123), and on the other hand – different
pairs of sensors can share different sets of POIs (see, m12,m13,m23).

These situations correspond to two different models with different expected
solutions, and they are shown in Figs. 2(left) and 3(right), respectively together
with corresponding interaction graphs.

Fig. 2. Model 1: a sensor network (left), corresponding graph interaction (right).

4.1 Model 1: Leader Election Game

In this model (see, Fig. 2) it is assumed that a number of N sensors controlled
by corresponding agents share a common set of POIs. A reward obtained by a
single agent revi(α1, α2, ..., αi, ..., αN ) depends on actions of all agents and can
be evaluated according to Eq. (2):
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revi(α1, α2, ..., αi, ..., αN ) =
{

revoff
i (mshared on

i ), if αi = 0
revon

i (mi), if αi = 1,
(2)

where:

– revoff
i () = Coff

rev × mshared on
i

M ,
– revon

i () = Con
rev × mi

M(Non
ij +1) = Con

rev

Non
ij +1 ,

where:
• mshared on

i – a number of POIs which are in sensing range of inactive
sensor si and shared with active neighbor sensors;

• mi – a number of POIs which are in sensing range of sensor si;
• M – a total number of POIs;
• Non

ij – a number of active neighbors of sensor si;
• Coff

rev , Con
rev – model constants.

In the NE of the game an expected rational behavior of players is such that
only one agent-player selects action αi = 1 and remaining players select actions
αj = 0 (i �= j). Therefore this game will be further referred to as the Leader
Election Game. From definition of NE the following relations between payoffs of
players selecting action αi = 1 and players selecting action αj = 0 (i �= j) should
be fulfilled:

Con
rev

Non
ij +1 > Coff

rev × mshared on
i

M , for Non
ij = 0,

Coff
rev × mshared on

i

M >
Con

rev

Non
ij +1 , for Non

ij > 0.
(3)

Thus, we obtain:
Con

rev > Coff
rev , for Non

ij = 0,

Coff
rev >

Con
rev

Non
ij +1 , for Non

ij > 0.
(4)

Let us assume that:

a = Coff
rev , b = Con

rev, c ≤ 0, (5)

so:
b > a, for Non

ij = 0,

a > b
Non

ij +1 , for Non
ij > 0. (6)

Finally we can construct for Model 1 the following (see, Table 1) payoff func-
tion u1

i (α1, α2, ..., αN ) of the game:

Table 1. Payoff function u1
i (α1, α2, ..., αN ) for i − th player.

Number of opponents selecting action α = 1

0 1 2 . . . N − 1

0 (off) c a a . . . a

1 (on) b b/2 b/3 . . . b/(N − 1)
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We will accept the following values for parameters of the game: a = 1, b = 1.5
and c = 0. The table shows a payoff of i − th player selecting either the action
“0” or the action “1” as a function of a number of remaining players selecting
the action “1”. If i− th player selects “0” and 0 remaining players are “on” than
the player receives the payoff equal to c = 0, while if at least one of remaining
players is “on” the player receives the value of payoff equal to a = 1.

If i − th player selects “1” and all remaining players are “off” the player
receives the payoff equal to b = 1.5, but if more remaining players are “on” he
receives lower value of the payoff which depends on the number of players being
“on”. Let us assume a two players (N = 2) game. The following action profiles
exist in the game: (0, 0), (0, 1), (1, 0) and (1, 1). Let us consider the action profile
(0, 1). Player 1 payoff u1

1(0, 1) = 1 and player 2 payoff u1
2(0, 1) = 1.5. If the player

1 changes its action it results in lowering its payoff to u1
1(1, 1) = 0.75.

Similarly for the second player. It means that no player has a reason to
change its action, and considered action profile is a NE point. This NE provides
a perfect balance between coverage of POIs and spending battery power which
maximizes lifetime of the considered network.

4.2 Model 2 - Synchronized Local Leader Election Game

In this model (see, Fig. 3) local sets of POIs are shared by neighbor sensors. The
reward of agent Ai depends on its action αi and the actions of its two nearest
neighbors revi(αi�1, αi, αi⊕1) and can be calculated according to Eq. (7):

Fig. 3. Model 2: a sensor network (left), corresponding graph interaction (right).

revi(αi�1, αi, αi⊕1) =
{

revoff
i () − penoff

i (), if αi = 0,
revon

i (), if αi = 1,
(7)

where:

– revoff
i () = Coff

rev ×
∑

j mshared on
ij

M ,
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– penoff
i () =

{
Coff

pen × mi−∑
j mshared on

ij

M
, if (mi − ∑

j mshared on
ij ) ≥ mi(1 − q),

0, otherwise,

– revon
i () = Con

rev × (
mi−

∑
j mshared on

ij

M +
∑

j(m
shared on
ij /(Non

ij +1)

M ),
where:

• revoff
i () – a reward of inactive agent Ai for covering shared POIs by

active neighbor sensors;
• penoff

i () – a penalty of inactive agent Ai for not covering its POIs when
their number exceeds threshold value mi(1 − q);

• revon
i () – a reward of active agent Ai for covering its POIs and redundant

covering by active neighbor sensors.

From the point of view of rational players each second player in a ring con-
sisting of N player (N – even number) should select action “1” while remaining
players should select action “0”. It means that the following relations between
rewards of a player i in the game should be fulfilled in order to achieve NE:

– b = revon
i (0, 1, 0) > a = revoff

i (1, 0, 1),
– a = revoff

i (1, 0, 1) > d1 = revoff
i (1, 0, 0) = revoff

i (0, 0, 1) > c,
– a = revoff

i (1, 0, 1) > d2 = revon
i (1, 1, 0) = revon

i (0, 1, 1) > c,
– a = revoff

i (1, 0, 1) > d3 = revon
i (1, 1, 1) > c,

– d2 = revon
i (0, 1, 1) > d1 = revoff

i (0, 0, 1) > c.

The payoff function u2
i (αi�1, αi, αi⊕1) (see, Table 2) fulfills these require-

ments.

Table 2. Payoff function u2
i (αi�1, αi, αi⊕1) for i − th player.

No. αi�1 αi αi⊕1 u2
i (αi�1, αi, αi⊕1)

0 0 0 0 c = 0

1 0 0 1 d1 = 0.2

2 0 1 0 b = 1.5

3 0 1 1 d2 = 0.5

4 1 0 0 d1 = 0.2

5 1 0 1 a = 1.0

6 1 1 0 d2 = 0.5

7 1 1 1 d3 = 0.3

5 Iterated Games of Learning Automata: Experimental
Study

In this section we will study dynamic games of deterministic ε-LA [12,15] acting
as players in iterated games presented in Sect. 4. ε-LA has d actions and acts
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in a deterministic environment c = (c1, c2, ..., cd), where ck stands for a reward
obtained for its action αk. It has also a memory of the length H. Whenever an
automaton generates an action, the environment sends it a payoff in a deter-
ministic way. The objective of a reinforcement learning algorithm represented
by ε-automaton is to maximize its payoff in an environment where it operates.

Fig. 4. Model 1: the average team payoff vs ε and H for N = 2 (left) and N = 32)
(right).

The automaton remembers its last H actions and corresponding payoffs. As
the next action ε-automaton chooses its the best action from the last H games
(rounds) with the probability 1 - ε (0 < ε ≤ 1), and with probability ε/d any of
its d actions. In our case d = 2 (sleep or active). The purpose of this study was to
find out experimentally whether and under which conditions the team of players
is able to find in a fully distributed way solutions of the games represented by
NEs.

We start the overview of conducted experiments with results for Model 1.
We studied the behavior of teams consisting of N = 2, 4, 16 and 32 players for
different values of ε and H. Some results of this study are shown in Fig. 4. One
can see (Fig. 4 (left)) that for N = 2 the ability to reach NE under given value
of H depends on the value of ε. Lower value of ε results in higher average value
of team payoff, which for NE is equal to 1.25. Increasing value of ε also increases
the chance of disrupting NE. The figure shows also that this ability depends on
the value of H. An optimal value of H is around 4–8. Too small values of H
(H = 2) makes the team very unstable, while higher values of H reduce the
ability to achieve NE.

For increasing values of N , the dependence on ε and H is similar (see, Fig. 4
(right)) like for small values of N , but the team of players is more stable for
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Fig. 5. Model 1: typical run (N = 32): the average team payoff (left) and a number of
active players in the game (right).

Fig. 6. Model 2: typical run (N = 32): the average team payoff (left) and a number of
active players in the game (right).
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a whole range of values of H. Figure 5 (left) shows a typical run (N = 32) of
the game as a function of a number of rounds. One can see that the team of
LA achieves NE after around 37 iterations. An optimal number of active player-
sensors is equal to 1 (see, Fig. 5 (right)). One can see that while playing the
game corresponding to NE there is a small probability that a player-leader can
change suddenly and temporary its action.

Results of the experimental study of Model 2 are similar to Model 1. The
ability to achieve NE by a team of LA depends in a similar way (not shown here)
like for Model 1 on values of ε and H, except that only for small values of H and
relatively large values of ε the system can lose its stability for any number of
LA players. Figure 6 shows an example of the run of the game with a number of
players N = 32 for values of ε = 0.001 and H = 8. One can see (Fig. 6 (left)) that
the team of LA is able to reach relatively fast the corresponding NE providing
the highest average team payoff. Figure 6 (right) shows that an optimal number
of active sensor-players in the NE is equal to 16. It may happen that a number
of active players in the game may change suddenly and temporary.

6 Conclusion

We have proposed an approach to lifetime optimization in WSN which assumes
replacing a problem of a global optimization by a problem of searching for NE
by a team of players participating in a non-cooperative game. We analyzed
relations between the coverage problem and the lifetime optimization problem,
and selected two building blocks – basic sources of imbalance between the level
of coverage of POIs and batteries expenditure and proposed game-theoretical
models for their solutions.

We have shown that in iterated games a team of deterministic ε-LA was able
to find in a fully distributed way global solutions presenting in this way the pos-
sibility of self-organization in WSN oriented on solving the lifetime optimization
problem. We believe that combining this approach with CA will stimulate the
development of second order CA able to solve optimization problems.
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Abstract. Given a 2d Cellular Automaton (CA) with mobile agents
controlled by a finite state automaton (algorithm). Initially the field is
colored white and agents are randomly placed. They have the task to
color the whole field into black in shortest time. The objective is to find
algorithms that (1) can form the black–pattern, (2) keep it stable and then
(3) change into a global state where all agents stop their activity. Four
levels of stability are distinguished, depending on the grade of inactivity
after having formed the pattern. For systems with up to four agents we
found such algorithms by applying genetic algorithms (GA) and manual
post fine tuning. Performances and simulations of these algorithms are
presented.

Keywords: Termination in multi-agent systems · Stability
Cellular automata agents · Pattern formation · Genetic algorithm
Spatial computing

1 Introduction

The Problem. Initially all N = n × n cells of a square field with border
are colored white, k agents are there randomly placed and their direction is
also random. The CA multi-agent system (“CA–MAS”) has to solve the Black–
Pattern task with Termination, shortly the “BPT”. That is, the agents must
explore and color the whole cell field from white into black in shortest time and
keep it stable, and then they must stop moving around and turning. This means
that not only a stable output is required, but also a kind of termination for
the entire multi-agent system. The agents shall be controlled by a finite state
automaton with a minimal number of states. Actions and inputs must be very
limited and local. Although this task sounds easy to accomplish, that is not the
case, especially with more than one agent.
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The underlying general objective is to study the termination in CA–MAS and
thereby to motivate further research thereon. For this purpose, and in order to
keep the complexity as low as possible, we revisit an already studied very simple
CA, the Creature’s Exploration Problem [1], except that neither color (for indirect
communication) nor termination were considered therein. Incidentally, the basic
action of blacking a cell may also be interpreted as a control message – a primitive
signal, a marker, a trace, a stigma. According to [2], stigmergy is “the process of
indirect communication of behavioral messages with implicit signals” and where
indirect means the “interaction through the environment”. Thus, the cell color
acts also as a very limited distributed communication memory. It is worth to
emphasize the difference of nature between a static trace deposited in a cell
and a dynamic message traveling through a channel in distributed computing.
Stigmergy is now a feature widely highlighted in many environments [3].

Related Work to Termination. Termination detection is a fundamental
problem in distributed computing. A set of processes execute a task and commu-
nicate through interprocess channels by messages. The computation is entering a
quiescent state as soon as all processes are idle and all channels are empty. Since
there is neither global clock nor a common memory, the detection of a global
quiescence is impossible without an additional control mechanism which should
not interfere with the basic computation. The pioneering works of Lamport,
Dijkstra–Scholten, Francez, Misra–Chandy are well known and a lot of others
in the eighties thereon. All those control schemes are categorized, at least until
1998, in an elegant taxonomy including eight classes [4]. Termination detection is
also a fundamental problem in multi-agent “MAS” systems. As a matter of fact,
there is a close relationship between distributed systems and multi-agent sys-
tems, although some dissimilarities can be highlighted [5,6]. We consider their
differences as minor and thereby that MAS termination detection procedures
could enter Matocha–Camp taxonomy [4], at least updated.

In Sect. 2, the termination problem is defined through the black–pattern task
and four stability levels are proposed. In Sect. 3, the FSM–based multi–agent
system is presented. Then k–agent algorithms are analyzed in Sect. 4 with k =
1, 2, 4 and various scenarios of stability and termination are studied as well as
performances and robustness before Conclusion.

2 Termination and Stability Levels

The problem of termination in CA–MAS was already noticed in [7]. How can a
multi-agent system be stopped in a decentralized way after having formed the
required pattern? Like in [4], a simple way would be to flood the CA network with
a wave at each time-step. This technique requires a lot of additional resources and
is very time-consuming. Therefore we were looking for a more effective way. The
idea is, that during the run (without a separate wave phase after each time-step),
the agents themselves are able to detect that the pattern was formed (or will
safely be formed in the near future) and then automatically stop their activities.
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Thereby the energy consumption of the whole system stops or is minimized after
the job is done. Another advantage is the following: when the agents recognize
that the task is accomplished, they are able to trigger a new task. This is an
important feature allowing to execute a sequence of subtasks in a decentralized
way. Time is counted in discrete time steps t = 0, 1, ..., because CA agents are
working in the synchronous CA model. We define four levels Λ0 ≺ Λ1 ≺ Λ2 ≺ Λ3

of stability. The precedence means that Λj is stronger than Λi for j > i.

Λ0 – Unstable: the aimed pattern is formed for the first time at t = T0. After
that, the pattern may change.

Λ1 – Stable: the aimed pattern is formed and remains stable for time t ≥ T1

and at least one agent continues moving around.
Λ2 – Stable idle-stop: the aimed pattern is formed and remains stable for time

t ≥ T2, all agents have stopped moving around at time T stop
2 ≥ T2 and at

least one agent continues turning. We call such algorithm idle–stopping.
Λ3 – Stable full-stop: the aimed pattern is formed and remains stable for time

t ≥ T3 and all agents have stopped moving around and turning at time
T stop
3 ≥ T3. No activity is visible and we call such algorithm full–stopping.

Note that at level Λ3 all agents become passive from the global observer’s point
of view. Nevertheless passive agents may change their internal state or may enter
into in a special final dead-state. Note also that the agents need not to stop at
the same time. If each agent wants to be informed about the termination, an
additional consensus operation among the agents is necessary.

3 The Designed Multi-agent Cell Architecture

At first we have to design a cell architecture which is able to model agents,
potentially can solve the problem, and is relatively simple in terms of “hardware”
elements. It has to be tailored to a certain extent to the problem in order to
solve it at all. Such an architecture consists in basic hardware elements, such
as registers, memories, combinatorial logic and wires. We assume a synchronous

Fig. 1. The architecture of a cell. The state table defines the agent’s next control state,
its next direction, and whether to move or not. It defines also the setting of the color
(0/1) as part of the environment.
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working principle. One part of the architecture shall be fixed, and another part
shall be configurable. The configurable part can be seen as a program, that
allows to define the functionality within certain limits. For example a classical
1d CA cell consists of a 1–bit register (holding the state), a rule function (fixed,
configurable or even variable logic or table), a feedback loop for the state, and
wires in and between the cells. Such a classical cell corresponds to a simple
Moore automaton.

Here we use a more complex cell, where the cell rule depends on the agent’s
current state (taking the history into account), and the rule is only executed on
a site where an active agent is situated. The whole model is still fully compat-
ible with the CA model, and therefore we use the term CA agent system. The
designed cell architecture is depicted in Fig. 1. The whole cell state is stored in
a composition of several registers:

CellState = (Color,AgentState)
Color L ∈ {0, 1}
AgentState = (Active, Identifier,Direction, State)

Active ∈ {true, false}
Identifier ID ∈ {0, 1, ..., k − 1}
Direction D ∈ {0, 1, 2, 3} ≡{toN, toE, toS, toW}
State S ∈ {0, 1, ..., Ns − 1}. // control state, initially set to zero

Each cell contains a color (as part of the environment) and one agent, which
is either active and visible, or passive and not visible. When an agent is moving
from cell A to cell B, AgentState is copied from A to B and the Active bit of A
is set to false. The first cell ahead (front cell) in the moving direction and the
second cell ahead (in order to detect conflicts) are the neighbors.

An agent is controlled by a Mealy automaton, consisting of the state register
s and the transition function, which here is defined by a state transition/output
table, a state table for short. Table inputs are the control state s and defined input
situations x, table outputs are the signals nextstate, turn, move and setcolor. The
signal nextstate defines the next control state of the automaton. The turn signal
triggers the change of the direction. The move signal is interpreted by the agent
itself and is presented to the neighboring cells. The setcolor signal defines the
setting of the color. The Mealy automaton realizes the “brain” or control unit of
the agent. The state table can also be seen as a program or algorithm. Therefore
we call the state table also agent’s algorithm “AA”. The state table corresponds
to the genome (configurable part of the architecture) to be optimized by GA.

An agent has a moving direction D that also selects the cell in front as
the actual neighbor. An agent can interpret the following conditions: color : cell
color L, front color : front cell’s color LF , blocked by border : then the front color is
defined as LF = −1, blocked by another agent : either another agent is situated in
front, or another agent with a higher priority wants to move to the same target
cell in front. The sensor is responsible for the reduction of the neighboring states
to the conditions blocked and front color, then further used by the input mapping.
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Table 1. Input mapping function with Nx = 10 inputs.

blocked color front color x

blocked 1 0 -1 0
by border 1 1 -1 1

0 0 0 2
free 0 0 1 3

0 1 0 4
0 1 1 5

1 0 0 6
blocked 1 0 1 7
by agent 1 1 0 8

1 1 1 9

Triggered by the state table output signals, the following actions are per-
formed: next state: state ← nextstate ∈ {0, ..., Ns − 1}, move: move ∈
{0, 1} ≡ {wait, go}, turn: turn ∈ {0, 1, 2, 3}. The new direction is D(t + 1) ←
(D(t) + turn) mod 4, set color: setcolor ∈ {0, 1} ≡ {color0, color1}. The new
color is L(t + 1) ← setcolor.

All actions are performed in parallel. There is only one constraint: when the
agent’s action is go and the situation is blocked, then an agent cannot move and
has to wait, but still it can turn and change the cell’s color.

An input mapping function is used to limit the size of the state table memory.
The input mapping reduces all possible input combinations to an index x ∈ X =
{0, 1, . . . , Nx −1} used in combination with the control state to select the actual
line of the state table. The input mapping was defined as shown in Table 1.

Note that the hardware resources and capabilities (sensed situations, action
set) are quite limited, which makes the given task with automatic termination
difficult to solve. Moreover, the agents have not any knowledge about north–
east–south–west orientation, that makes the task more complicated and more
universal.

4 Multi-agent Algorithms

Algorithms for k-agent systems “k–AA” (k = 1, 2, 4) with different termination
conditions were evolved by GA with manual improvement1. More details of the
used GA method are given in [8]. Note that finite state algorithms were evolved,
each represented as a state stable (the genome). The number of desired control
states and the desired stability level were used as input parameters.

1–Agent Algorithm. A full-stopping algorithm was partly found by GA, and
then manually improved. It needs only three states (Fig. 2). Zero is the initial

1 The GA method was very time consuming (millions of multi-agent simulations)
and took around 4 weeks of computation time on a state–of–the–art quad-core PC
3.5 GHz.
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0

21

(5)100

(0)013

(3)101

(0)013

(2)010

(2)002

(4)110

full-stop

(0)011
(2)110

conditions:
(2): colors LLF =00 and free
(3): colors LLF =01 and free
(4): colors LLF =10 and free
(5): colors LLF =11 and free
(0): blocked by border and L=0
actions:
010: color0, go, no turn
011: color0, go, turn right
002: color0, wait, turn back
013: color0, go, turn left
100: color1, wait, no turn
101: color1, wait, turn right
110: color1, go, no turn

(a) (b) (c)

Fig. 2. The full-stopping 1-agent algorithm with 3 states. (a) Conditions and actions
used in graph (b), (c) corresponding state table with don’t cares (-).

Fig. 3. (a) Simulation of the full-stopping 1–AA in a 6 × 6 field, T stop
3 = 58 (b)

Simulation of the idle-stopping 2–AA, T stop
2 = 35 (c) Simulation of the full-stopping

4–AA, starting randomly, T stop = 28.

and final state. The strategy can be understood by looking at a simulation
(Fig. 3a). At first the agent searches for a corner, moving straight and turning
right when detecting a border. After having found the corner, it starts to color
the cells black, first moving along the borders and then moving inwards towards
the center in a spiral-like trajectory. Then the agent stops moving and turning
at t ≥ T stop

3 . This full-stop corresponds to the self-loop in state 0 by Condition
5 (colors LLF = 11) and Action 100 (color1, wait, no turn).

This full-stopping algorithm can easily be changed into an idle-stopping
algorithm by changing the final actions from (color1, wait, no turn) into
(color1, wait, turn). And it can be changed into a weaker algorithm (with
stability level < 2) by changing actions into (color1, go, turn/no turn).

The number of needed time-steps is given in Table 2. Its time-complexity is
linear in O(N), an exact formula t(n) could be derived by a simple analysis. The
most time-consuming part is the coloring in a spiral-like way, in addition some
steps are needed to detect borders, corners and already painted cells.
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Table 2. Full-stopping 1–AA: number of time steps. Average is over 1000 fields.

Size 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10

T stop
3,mean 27.76 39.80 53.73 69.87 88.01 108.07 129.87

T stop
3,min 24 35 48 63 80 99 120

T stop
3,max 31 44 59 76 95 116 139

T stop
3,mean/N 1.74 1.59 1.49 1.43 1.38 1.33 1.30

Table 3. Average time steps per cell T stop/N . Full-stopping and idle-stopping 2–AA,
evolved on 10 × 10 fields, simulated on 1000 fields for each field size.

Size 4× 4 5× 5 6× 6 7× 7 8× 8 9× 9 10× 10

Full-stop 2–Agent system T stop
3 /N 1.22 1.09 1.01 0.96 0.72 0.90 0.87

Idle-stop 2–Agent system T stop
2 /N 1.19 1.04 0.96 0.89 0.84 0.81 0.78

Full-and-idle-stop 1-A. S. T stop/N 1.74 1.60 1.49 1.43 1.38 1.33 1.30

2–Agent Algorithm. The 2-agent algorithm was first evolved by GA on 6× 6
fields. It turned out that the found algorithms were not working well on other
field sizes. Therefore GA optimization was performed on one thousand 10 ×
10 training fields with 4 states. Then the found idle-stopping algorithm was
manually changed into a full-stopping algorithm.

A simulation sample is shown in Fig. 3b. At first, the agents search for corners.
Then they start paint black in spiral-like way, with two active opposite coloring
points. The agents in the idle-stopping algorithm continue turning after coloring
whereas they fully stop in the full-stopping algorithm.

The performance for different field sizes is shown in Table 3. The 2-agent
algorithm executed on 1-agent systems yields the same performance as the former
1–AA in Table 2. A full-stopping 10×10 system with 2 agents is 1.49 times faster
(1.30/0.87) than a system with 1 agent only. And a full-stopping 10× 10 system
with 2 agents is 1.12 times slower (0.87/0.78) than an idle-stopping system. In
order to compute T stop average values, 1,000 random fields were simulated.

Table 4. Performance of 4–AA on 6× 6 fields. Full-stopping (left), idle-stopping (right).
Values are averaged over 1000 fields.
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4–Agent Algorithm. Many computer-time consuming attempts were made by
GA to find a 4-agent algorithm with 6 states that can work successfully on any
field size. Until now, no general algorithms were found. Nevertheless GA was
able to find specialized algorithms that work on one thousand random fields of
size 6 × 6 or 10 × 10.

If the agents start rotational symmetrically then they are first searching for
corners and then they build the pattern using a counter-clock spiral trajectory.
When the agents start randomly (Fig. 3c) then the pattern building is slower
and not so symmetric, but still the tendency of building a counter-clock spiral
can be observed.

The full-stopping 4-agent system is 30.46/26.53 = 1.15 times slower than
the idle-stopping system (Table 4). The cost per cell is the number k of agents
multiplied with the number of needed time units per cell. So the 4-agent systems
are about twice more costly than the 1-agent systems, while they are about two
times faster.

5 Conclusion

In this paper four stability levels for the termination of CA multi-agent system
were proposed. Idle-stopping and full-stopping algorithms were found for the
BPT where the whole field has to be painted from white to black in shortest
time. The general 1-AA need only 3 states and are relatively fast with time-
complexity O(N). The general full-stopping 2–AA needs 4 states and is about
50% faster than the 1–AA. Until now, no general 4–AA was found, but spe-
cial ones for fields of size 6 × 6 and 10 × 10 were evolved by GA. They work
about twice as fast as 1–AA. All found algorithms follow in principle the same
strategy: first searching for corners, then follow a spiral-like trajectory until the
midpoints are reached. Future work is directed to find general algorithms that
can work successfully on any field size with any number of agents. Another topic
is the efficient communication and synchronization of the stopping state between
agents.
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Abstract. In our paper we use the, recently proposed, model for simu-
lating the process of disease spreading in the environment defined by the
Cellular Automaton. The main effort goes to the analysis of the influ-
ence of cell size on the epidemic curves and other characteristics related
to the studied process. We take into account some real data concerning
the occupation in the city of �Lódź, which has about 700000 inhabitants.
The results show that by marshaling the parameters of simulation we
can obtain explicitly different results. This comment applies to a lot of
features like: the shape of epidemic curve, the total number of diseased
or the amount of ill in particular areas/cells.

1 Introduction

The problem of modeling of the spreading of different illnesses in the popula-
tions is an interdisciplinary issue studied for many years and interesting due to
the possibility of comparison of experimental and simulation results (see e.g.
[1]). Basically, the majority of the proposed approaches base on the so-called
SEIR model [2]. Its crucial part is the set of four first order differential equa-
tions describing the “velocity” of change of number of individuals in different
groups, regarding to the state of illness. Some interesting versions of the use of
SEIR model can be found in [3] where the seasonal increase of disease strength
is studied in the frame of nonlinear transmission rate, [4] where the Principal
Component Analysis is applied. We can mention also one of the review papers
[5].

The Cellular Automata technique is also used to study the process of disease
spreading. The main effort goes usually to model the transmission of disease
through the boundaries of cells. The different approaches have been proposed
by e.g.: Hoya White [6] where the slightly simplified SIR model with additional
vaccination is studied on the system of equinumerous cells, Pfeifer et al. [7]
who proposed a framework for study the different scenarios for Tyrol (Austria)
conditions or quite new paper by Sharma et al. [8] where special attention is
paid to the incubation process.
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2 Model

The model we use is based indeed on the one presented and accurately described
in [9], therefore we do not pay special attention to present a lot of its details.
We rather concentrate on the presentation of some basic ideas and formulas and
later on weaknesses which can strongly influence the result.

The crucial observation following basic models devoted to study epidemics
processes is the division of whole population into four groups defined as:

– Susceptible (S) - all people who can contract the disease
– Exposed (E) - people in the phase of incubation of illness
– Infectious (I) - individuals who are capable to transmit the disease
– Recovered (R) - individuals recovered who are permanently immune

In the model studied in the paper we do not use differential equations which
correspond to some totalistic view on the problem but we adapt the Cellular
Automata related approach [9]. As usually, we have to define the tuple containing
the states, topology, neighborhood and the rule (transition function).

The set of states is certainly given by by 4-tuple {S,E, I,R}. In the original
paper the topology is the result of the division of some geographical area into
rectangular grid. Originally, as the considered one it was the territory of Poland
divided into 36 rows and 36 columns. By combining these two factors we can
obtain the mapping of number of individuals onto particular cells denoted by
{Sij , Eij , Iij , Rij}, where (i, j) ∈ C and C is the cellular space. The possibility
of spreading of disease not only inside the cells but also into another ones is
provided by the assumption about the possible transfers of individuals between
different cells. In the paper we follow the original assumption that the transfer
can take place only into cells in the Moore’s neighborhood.

The transition function is based on some additional assumptions. When con-
sidering the particular disease we have to know the specific numbers defining
the period when individual is in the exposed and infectious state. Following the
original paper we denote then as a and b respectively and assume a = 2 and
b = 4 [10] what corresponds to some statistical results of Infectious Period Dis-
tribution. The crucial problem is here the passage between states S and E, it
means simply the chance to become ill. The probability of this process is given
by the Eq. 1.

ptij =

⎧
⎨

⎩

0, qtij < 0
1, qtij > 1
qtij , elsewhere

(1)
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Fig. 1. Epidemic curves for parameters used in Holko [9] paper (β = 0.6, c v = 0.5)

In the above equation rnd means sampling from the Gaussian distribution,
β is called contact rate, pairs (i, j) and (x, y) describe he coordinates of cells on
the rectangular grid, the vertical line in the subscript referring to the index of
summation corresponds to the index of day, among the b in the infectious state,
the individual stays in this state and t is the time index.

The model presented in [9] has several interesting features which need some
discussion. We have e.g. to mention the large size of single cells (with edge of
about 15 km) what leads to the fact that there are large differences between the
occupation of particular cells. Also the division ratio of the studied area can be
the property under consideration.

We select the smaller area, particularly the urban area of �Lódź which shape
is close to the square one. We are then able to easily find the amount of individ-
uals in every cell. In order to do this we use the number of voters in the general
election announced by the city council. Since this number is announced for irreg-
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Fig. 2. Epidemic curves for lower c v (c v = 0.01)

ular parts of city called subdivision, by assuming that a distribution of people
in every subdivision is uniform, we add to the given cell such a number of peo-
ple which follows the surface percentage contribution of this cell in subdivision.
Since the voters numbers is determined only for adults, the resulting numbers
are then normalized in order to have in total 700 000 individuals. By using such
an approximation we obtain for example from 1839 up to 106000 individuals in
every cell of 4 × 4 grid.
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Fig. 3. Epidemic curves for variant c v

3 Results and Conclusions

We decided to initialize the simulation with just one individual in the exposed
state. The additional question we can try to answer is whether the location
of “patient zero” influences the process of disease spread. These analysis we
perform for more dense cells division. We decided to allocate “patient zero” in
the cell (1, 1) in the 4 × 4 grid, where the cell (0, 0) is the westernmost and
northernmost cell of grid. It means that our initial cell belongs to the group
of cells with the relatively middle occupation however adjoining with the cells
with low occupation as well as with the cell with the highest occupation in a
system. When further dividing the cells into four smaller ones we consider the
difference initializing the disease once in the cell with highest occupation among
the subcells of cell (1, 1) then in the cell with the lowest occupation among them.
In the pictures they are denoted as “8 max” and “8 min” respectively. The same
procedure is then adapted for the divided cell in 8 × 8 grid, so “16 max max”
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cell is the one with the highest occupation among four subcells of “8 max” while
“16 max min” is the one with lowest number of individuals among them. The
same standard of notation is used for description of subcells of “8 min” cell.

Our first attempts are made for the parameters proposed in the original
paper. Since the calculations were made for the set of values β ∈ {0.2, 0.4, 0.6}
we decided to use one of these pretested values and set β = 0.6. The selection
of cv value is also the effect of earlier suggestion and we choose the middle of
the values used in the original paper and set cv = 0.5. The results are presented
in Fig. 1. It can be observed that there is no visible differences in the results
of simulations performed for different sizes of grids. However, as opposed to
the authors of original paper we present the epidemic curves on the percentage
scale and not on the absolute one. This allow us to emphasize the fact that by
using the model with given parameters we obtain the number of ill individuals
encompassing whole population. It is well known that the typical local epidemy
causes the illness of about 2–4% of population. Also the data concerning the
most famous pandemy of 20th century [11–13] are not unambiguous. They show
that the rate of ill was in the interval 10–30% and the mortality among the ill
individuals was on the level of 10–30%. This leads to the conclusion that the
numbers produced by the model are too high to describe the real case.

The first step we make is to decrease the cv parameter. In the second attempt
we use cv = 0.01 which is close to the proposed cv = 0 but introduces some
dispersion of values. The Fig. 2 shows that this change does not lead to any sub-
stantial change. Certainly, the maximum of curves is shifted from about seventh
to about tenth-twelfth day and the number of ill in the maximum declines from
the totally unreal number of almost 100% to about 40–50% but the plot still do
not correspond to the mentioned above features.

Finally we introduce the fundamental change into the model. We make cv
dependent on the average calculated as the first parameter of formula 2. The
deviation is determined by simply multiplying the average by 0.1. Our idea is
that the distribution can be ever wider when the number of ill is higher. We
call ths case as “variant cv” and present in Fig. 3. It can be observed that this
change influences the results very strongly. We obtain the differences in the shape
of epidemic curves as well the variable total number of ill. The crucial observation
is that the decrease of cell size seems to decrease the epidemic curve. The points
for 4 × 4 and 8 × 8 grids use to lay higher than for 16 × 16. The very interesting
effect is the one that the height of epidemic curve peak is higher when starting
the epidemy from the cell with lower occupation. This effect has to be explained
by presenting the detailed curves for particular cells.

Some view on the run of simulation in particular groups is shown in Fig. 4.
In the Figure, the number of people in particular phase of disease as well as the
percentage in particular cell is presented for every cell and for the 7th day of
simulation. The organization of rows and columns corresponds strictly to the
organization of simulation and the cells number is 4 × 4. So, the upper row
describes the northernmost part of the city and so on.
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Fig. 4. The number of individuals in particular groups and cells in the same time - the
7th day. From up to down cv = 0.5, cv = 0.01, variant cv From the lightest shade of
grey: (S, R, E, I).

Only the results for variant cv are presented. The results for absolute numbers
shows clearly the high contribution of people in the S state for every cell in
the simulation system. Especially when we compare it with the expected high
number of individuals in the E and I states following the Figs. 1 and 2 for
constant and larger cv. Some more interesting information can be observed in
the lower plot of Fig. 4 which shows the results for percentages. There are the
lowest bars corresponding to the susceptible state in the northern part of the
city, so the majority of ill concentrates in this region. Keeping in mind that a
disease starts from the cell (1, 1) so the cell second from up and second from left
we can say that starting the illness in the sparsely populated part of the city we
can rather easily limit it to rather confined area.
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The presented results confirm that when using the Cellular Automata based
model of disease spreading, even with the relatively simple mechanism of total-
istic rules, we can generate different results corresponding to real process of the
studied phenomena. In our opinion the next steps should be directed into sev-
eral points, like: the further densifying of CA grid, the more realistic rules of
disease transfer or the individualization of contacts between people what brings
us closer to the mixed CA and agent oriented approach.
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Abstract. This work investigates a coordination model based on a two-
dimensional cellular automata applied to a team of surveillance robots.
The synergy among the robots emerges from the indirect communica-
tion performed by repulsive pheromone interactions. Five strategies are
evaluated for the decision-making related to the next-cell selection: three
stochastic (pure, elitist and inertial), one random and one deterministic.
The performance of the team performing surveillance are evaluated in
respect to two aspects: the number of task cycles (visiting all the rooms)
completed in a fixed interval of time and the homogeneity of the environ-
ment coverage. Experimental results corroborate the importance of the
cooperative pheromone and shows that the decision-making strategies
have different inherent skills that can be explored for distinct situations.

Keywords: Cellular automata · Inverted pheromone · Robotics

1 Introduction

Swarm robotics has been a popular topic among researchers [4]. Models for
swarm robotics are characterized by decentralized coordination, mimicking the
behaviour of social insects. Besides, they are characterized by the employment of
simple robots with the emergence of a complex behaviour when they are working
together to solve a cooperative task. Different methods have been investigated as
the underlying model for the cooperative behaviour. A coordination mechanism
based on the representation of the environment in graphs is proposed in [1]. Other
works try to reproduce physical phenomena, such as fluid dynamics [9,17] and
potential fields [14]. However, a large part of the works focus on the application
of bioinspired strategies, such as ant pheromone-inspired models [2,5,15].

Cellular Automata (CA) are able to represent high complex phenomena and
due to its massive decentralized structure based on local rules, they can be used
for modelling the cooperative behaviour in robotics, providing high-distributed
solutions. In [7], a review of several applications of CA models in robotics is
presented. More recently, CA-based models for swarm robotics and multi-robot
systems have been investigated for different robotics tasks, such as formation
control [8], foraging [11–13], crowd evacuation [3] and surveillance [10,16].
c© Springer Nature Switzerland AG 2018
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Five variations of a coordination model for a team of robots in surveillance
are investigated here. The model is based on a two-dimensional cellular automata
with Moore neighborhood, where the cells store a repulsive pheromone as a part
of their states. The variations differ on the way the robot decides the next posi-
tion at each time step. Previous work [10] proposed the basic model named IACA
(Inverted Ant Cellular Automata), in which the next position decision is given
by a probabilistic selection, where all the eight neighbors cells can be selected
and their probabilities are inversely proportional to the pheromone amount in
each cell. Later, this model was improved to IACA-DI (Inverted Ant Cellu-
lar Automata with Discrete pheromone diffusion), where the pheromone deposit
based on a continuous function used in IACA was improved to reflect the discrete
nature of CA modelling and achieving better results [16]. Besides, two variations
of the next position decision was investigated, where the robots make decisions
based on more elaborated stochastic rules. The first is an elitist probabilistic deci-
sion in which just a part of the neighbors can be selected. The second uses an
inertial-elitist decision in which the maintenance of the robot’s current direction
of movement receives a higher probability. The cooperative model investigated
here is based in IACA-DI and we introduce two variations for the next-step
decision. The first is a deterministic selection, in which the neighbor with the
smallest pheromone concentration is chosen (similar to the first-choice models
used in crowd dynamics modelling [13]). In the second strategy, the next cell
selection is made at random, without the pheromone influence.

Although previous works [10,16] have employed the pheromone interaction as
a way to provide a good synergy among team members, it was not investigated
the influence of the pheromone-sharing in the team performance. Therefore, here
we also investigate two approaches: (i) the robots can make indirect communi-
cation based on the pheromone deposits in the floor or (ii) the pheromone can
be used just as a model for decision based on its own past navigation. Each
model variation is evaluated regarding both pheromone approaches (individual
and combined) to evaluate the contribution of the indirect communication on
team performance in the surveillance task, except for the random decision model
since it does not use pheromone in its decision. The performance of the team in
surveillance is analysed in two aspects: (i) the efficiency of the robots to make
the higher number of cycles of visiting as possible, being that a cycle of visiting
is completed when all the rooms of the environment receive at least one visit
of one robot since the last cycle end; (ii) the efficiency of the team to make an
homogeneous coverage of the environment, i.e., it is desirable that each cell in
each room receives approximately the same number of visits.

This paper is organized as follows: Sect. 2 presents the coordination model
with five variations in the movement strategy. Experimental results are discussed
in Sect. 3. Section 4 presents the main conclusions and future works.

2 Model

The model is based on a two-dimensional CA with Moore neighbourhood. The
CA lattice corresponds to the environment discretization in a grid composed of
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Fig. 1. Robot behavior controlled by a finite state machine (Adapted from [16]).

square cells of the same size. Each cell state is composed by two substates. The
first represents the presence of robots, obstacles or free spaces, using the discrete
set {R, O, F}. The second sub-state is continuous and stores the pheromone con-
centration: a real number belonging to the interval [0, 1]. This dual representation
of states can also be seen as a CA lattice with two-layers [10].

The individual robot control is represented by a Finite State Machine (FSM)
and it is illustrated in Fig. 1. It controls the robot behaviour at each time step
and is composed by four states: Pheromone Detection, Next Position Decision,
Pheromone Deposition and Movement. Pheromone detection is the state in which
each robot of the swarm will read the pheromone values in the neighbourhood
cells (within its vision radius rv). In Next Position Decision, the robot will use
the neighbourhood reading to decide which one of the cells will be the destination
of its next move. In this work, five decision strategies are evaluated: (a) Random,
(b) Deterministic, (c) Stochastic, (d) Elitist and (e) Inertial. Having made the
choice of the next cell, the Pheromone Deposition is the state in which the
robot deposits pheromone in its current position and in the neighbourhood.
This deposition is a diffusion process given by Eq. 1:

�t
ij =

[
α · (δ · e)η· rp

π

]
(1)

where the constants α, δ and η represent, respectively, the maximum possi-
ble amount of deposited pheromone, the deposition pheromone rate and the
environmental dispersion rate. Equation 1 represents the amount of pheromone
deposited in each cell, by each robot in the swarm, at each time step t.

The pheromone diffusion has a pheromone radius (rp) that can be different
from the vision radius (rv). Here, we use rv = rp = 1. The five decision strategies
investigated here for the second state of the FSM are:

– Random: gives the same probability of being selected for all the cells in
the neighbourhood. Therefore, no cell is discarded and there is the same
probability to the robots move in any direction, even those recently visited.
Thus, there is no influence of the pheromone concentration detected.

– Deterministic: takes into account the pheromone detected within the vision
radius. It is used to carry out a deterministic choice, in which the neighbour
cell with the lowest pheromone concentration is always chosen.
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– Stochastic: takes into account the pheromone amount of all neighbourhood
cells. The pheromone concentration in each cell xij is used to make a prob-
abilistic selection. It is defined in such a way that the lower the pheromone
concentration in the cell, the greater is the probability to be selected. The
selection is given by Eq. 2, where ψij represents the pheromone concentration
of the cell xij and variables M , c, ψmax and t are the set of cells belonging to
the current neighbourhood, the index of a cell ∈ M , the maximum amount
of pheromone in a cell and the current time step, respectively. This strategy
was also investigated in [10,16].

P (xij)t =
ψmax − ψt

ij∑
c∈M

(ψmax − ψt
c)

(2)

– Elitist: takes into account the pheromone of a limited number of neighboring
cells. A percentage μ of these cells is selected in an elitist way (the lowest
pheromone concentrations) and a percentage ν of them will be randomly
selected, ensuring that all cells in the neighbourhood are selectable. This
strategy was investigated in [16] and it was adapted from [6].

– Inertial: adds an inertial tendency in the robot movement jointly with an
elitist selection. When identifying the percentage μ and ν of cells to be used
in the elitist draw, it guarantees that the cell which represents a continuity on
the robot moving direction belongs to this restricted set and it also amplifies
the probability of this cell. As a consequence, the robot has a tendency to
exhibit a smoother trajectory, as well as increases swarm performance, since
turning moves require more effort and time. It was proposed in [16] and it
returned the better results compared with elitist and stochastic strategies.

Regarding the model investigated here, it uses the same discrete pheromone
adjustment scheme, compared to the IACA-DI model described in [16]. However,
in addition to the three stochastic movement decision strategies (probabilistic,
elitist, inertial) in the present work we also investigate the deterministic and
purely random. The purpose of proposing the last one is to have a lower per-
formance limit of the pheromone based model, since in the random decision
this information is not taken into account. In addition, besides the shared use
of the pheromone proposed in [16], in the present work we investigate the per-
formance of the robots when they use, in the choice of movement, only the
pheromone deposited by themselves. Thus, in this scenario, the robots do not
take into account the pheromone of the other robots. Therefore, we investigate
the influence of historical information sharing (stored in the pheromone) in the
performance of the team. Another point to be highlighted is that, while in the
previous work [16] the environmental cover was investigated from a more general
point of view, in this work we deepen this analysis further, trying to understand
how more specific regions of the environment are covered (walls, doors, room
centers and intermediate regions).
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3 Experiments

This section presents the results of experiments with the coordination model
described in Sect. 2 and the five variations of the decision-making strategies. We
can highlight as the main goal of the experiments reported here: (i) to investigate
the emergence of synergy resulted by the sharing of the pheromone information
among the robots, trying to characterized if any performance improvement could
be associated with this synergy; (ii) to compare the five decision strategies taking
in account the two desired characteristics of the surveillance task: a high number
of visiting cycles and an homogeneous spreading over the environment.

Figure 2 shows the two environments used in the experiments. The Environ-
ment 1 is composed by seven rooms and the Environment 2 is composed by ten
rooms. Figure 2c also shows the Environment 1 divided in regions of interest,
which were defined to perform a more accurate analysis: the orange cells rep-
resent the doors, the blue cells represent the edge of the rooms, the white cells
represent the centre of the room, and the green cells are related to an intermedi-
ate region between the centre and the edges (Environment 2b is also divided in
an analogous way into regions of interest). All the experiments were performed
using the same parameters defined in [16]: a team of N = 3 robots, β = 0.5%,
rv = 1, maximum pheromone concentration in a cell ψmax = 1.0, α = 0.5,
δ = 0.1, η = 2, μ = ν = 30% of the neighbourhood cells (used in elitist and iner-
tial strategies). All the simulations were executed using T = 10, 000 time steps.
When using the inertial strategy, the preferable cell (which keeps the movement
direction) has its chance of being chosen doubled, after the pheromone detection.

Aiming to investigate the importance of the synergy resulted by the shar-
ing of the pheromone information among the robots, we performed two exper-
iments with each model variation: in the first one each robot accesses only the
information about their own pheromone deposits and constructs its individual
pheromone map, while in the second experiment all the robots are able to access
the pheromone map resultant of the combined information of the pheromone
deposits of the team. We called the first experiment as “Individual pheromone”
and the second as “Combined pheromone”. They were applied with four strate-
gies, except for the random. Since the robots do not rely on the pheromone infor-
mation to make their decisions at random, it does not matter if individual or
combined pheromone map is used. Figure 3 shows the pheromone heatmaps taken
after 10,000 time steps from two arbitrary executions of the individual and com-
bined pheromone experiments using inertial strategy for the next cell decision. In
these heatmaps, warm colors have high pheromone concentration whereas areas
with cold colors have low concentration. Figures 3a, b and c shows the individual
pheromone maps related to robots 1, 2 and 3, respectively. Figure 3d shows the
combined pheromone map, which is shared by all the robots.

In order to evaluate the efficiency of each strategy in each pheromone app-
roach (individual and combined) performing the surveillance task, the first anal-
ysis count the number of task points reached in each execution after 10,000 time
steps. A task point is reached when all rooms have been visited by at least one
member of the team, and then the count is restarted. Figure 4a illustrates the
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(a) Environment 1 (b) Environment 2 (c) Regions of interest

Fig. 2. Environments grids: (a) 7 rooms, (b) 10 rooms and (c) regions of interest.
(Color figure online)

(a) Individual - r1 (b) Individual - r2 (c) Individual - r3 (d) Combined

Fig. 3. Pheromone heatmaps for individual and combined maps.

task point boxplots for the five strategies analysed, also considering both individ-
ual and the combined pheromone experiments, except for the random strategy. It
results on 9 boxplots and each one represents the number of task points reached
in 100 runs of T = 10, 000 time steps, using the Environment 1. Some important
points to highlight from this experiment: (i) the random strategy showed the
worst performance (a mean of 13 task points in 10,000 time steps), as expected,
showing that the pheromone information is important to spread the robots over
the rooms and improving the team performance; (ii) the deterministic strat-
egy showed the best performance in both experiments (individual and combined
pheromone, a mean of 84 task points in the former and 110 task points in the
later); (iii) among the stochastic strategies, the inertial decision returned the
best performance as observed in [16]; (iv) an efficiency increase was observed
in all the strategies based on pheromone detection when the information of the
pheromones is combined, confirming that information sharing increases the syn-
ergy of the team, emerging a more coordinated behaviour: deterministic strategy
(from 84 to 110 task points), stochastic (from 39 to 42), elitist (from 51 to 60)
and inertial (from 55 to 63). Thus, the deterministic strategy was more efficient,
showing a greater dynamism in the exchange of rooms, especially when using
the combination of pheromone deposits information.

The second analysis about these experiments was performed considering the
second desirable characteristic: an homogenous spreading of the robots visits
over the entire environment. Firstly, this analysis was performed by means of
a visual inspection of the number of visits to each free cell of the environment.
Figure 5 illustrates the cellstep map obtained with each variation model using the
Environment 1. In this figure we presented just the results of experiments with
the combined pheromone approach. Each cell in the map represents the mean
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(a) Task Points (b) Cellsteps

Fig. 4. Performance in surveillance task, using Environment 2a. (Color figure online)

(a) Random (b) Deterministic (c) Stochastic

(d) Elitist (e) Inertial

Fig. 5. Cellstep heatmaps for each model variation.

number of times that it has received a robot visit. For the mean calculation,
each map has 100 runs of T = 10, 000 time steps. Cold-colored cells represent a
low mean of cellsteps, while warmer colors have a high mean of cellsteps. Each
map in Fig. 5 represents an experiment with a different model variation: random
strategy (Fig. 5a), deterministic strategy (Fig. 5b), stochastic strategy (Fig. 5c),
elitist strategy (Fig. 5d) and inertial strategy (Fig. 5e).

When the random strategy was employed, it was possible to observe a high
concentration of cellsteps in the intermediate and central regions and a low
concentration of visits in the cells that are on the edges of the rooms. It shows
a not good spreading of the team, although the random choice turns the team
to walk with the same probability for any direction. This somehow unexpected
behaviour is due to the fact that edge cells (specially corner cells) have lesser
neighbours than central ones, therefore they will be chosen less often than the
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others. Aiming to clarify this point, suppose a single retangular room (without
doors) with 5 cells of width and 5 cells of height and there is one robot inside
this room. Suppose that there are free cells in positions (0, 0), (0, 3) and (3, 3).
What is the possibilities of each free cell to receive a robot visit in the next time
step? Considering the cell (0,0), there are 3 possibilities: if the current robot’s
position is (0, 1), (1, 0) or (1, 1). For the free cell (0, 3), there are 5 possibilities:
if the current robot’s position is (0, 2), (0, 4), (1, 2), (1, 3) or (1, 4). On the
other hand, considering the free cell (3, 3) there are 8 possibilities: (2, 2), (2, 3),
(2, 4), (3, 2), (3, 4), (4, 2), (4, 3) or (4, 4). Therefore, if a totally random choice
is employed to make the robot to move, the central cells will receive more visits
than the cells next to walls and even more compared to the corner cells.

It was possible to observe an opposite behaviour in Fig. 5b, when the deter-
ministic strategy was employed: there are a concentration of cellsteps in the
edges of the rooms, whereas the central regions have low concentration of visits.
Besides, the movements of the robots are quite ordered, forming specific routes
in the grid, concentrated in the edge cells. In general, the spreading is not homo-
geneous. The more homogeneous spreading was obtained by the three stochastic
decision-based models, specially with the purely stochastic variation in Fig. 5c.
It seems that the pheromone information pushes the team to occupy the edge
cells although in a more random walk they tend to be avoided (except for the
corner cells which have few visits). The other two variations (elitist and inertial)
presented a good homogeneity in almost all regions of the rooms. However, the
elitist presents a slightly higher concentration of visits on edge cells (with more
visits in the corners than the purely stochastic), whereas the inertial variation
presents a more significant concentration of visits on the edges.

Figure 4b presents results also related to the cellsteps, but using a more quan-
titative analysis. The boxplots in Fig. 4b represents the mean of cellsteps in the
Environment 1. The boxplots were built using 100 runs of T = 10, 000 time
steps. Figure 4b illustrates the cellstep boxplots for each variation model, con-
sidering the cells of the entire environment. Here, we present the results for both
approaches: individual and combined pheromone. The green line represents the
mean cellsteps considering all the environment cells: 67.2 cellsteps. The boxplot
dispersion helps us identify if the distribution of the cellsteps in the lattice is more
homogeneous or heterogeneous. The boxplots show that random and determinis-
tic decision strategies, both using individual and combined pheromones, present
a great dispersion in the data. On the other hand, elitist, stochastic and inertial
variations exhibited the smaller dispersions. It corresponds to the visual informa-
tion given by the cellsteps heatmaps in Fig. 5. Thus, this analysis reinforce that
the random and deterministic strategies implies a more heterogeneous coverage
performed by the team, with respect to their scattering throughout the environ-
ment, while the stochastic, elitist and inertial strategies, imply a more homoge-
neous coverage. Moreover, we can verify that the homogeneous/heterogeneous
behavior related to each variation does not change from experiments with indi-
vidual to combined pheromones. One may conclude they are inherent to the
decision strategy employed to choose the next robot position.
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In order to confirm the results obtained in the previous experiments, the
task point and cellsteps experiments were run again in Environment 2 (Fig. 2b),
and are illustrated in Fig. 6. As in the experiment performed with Environment
1, Fig. 6a illustrates the task point boxplots considering all strategies analysed,
using the individual and combined pheromone. The similarity with the same
experiment performed with Environment 1 is remarkable, showing that, inde-
pendent of the environment, the characteristics and particularities of each strat-
egy are maintained. Of course, in this case since the environment has a larger
number of rooms, the amount of task points reached by each strategy would
be smaller, considering that the same 10,000 time steps were performed in the
experiment. Again, pheromone-based strategies have been shown to have an
efficiency greater than the lower limit we set (random strategy). The determin-
istic strategy presented a better dynamism and achieved the best results in this
experiment. Followed by the inertial, elitist and stochastic strategies, respec-
tively. In this case, the difference between the use of the individual pheromone
and the combined pheromone was as follows: deterministic strategy (from 71 to
87 task points), stochastic (from 28 to 33), elitist (from 42 to 47) and inertial
(from 44 to 49). This allows us to point out once again that the combination of
the pheromones deposited by each robot increases the dynamism of the team,
allowing better results.

Figure 6b shows the experiment with cellsteps. Similar to the previous exper-
iment, 100 runs were done using Environment 2b with T = 10, 000 time steps.
Environment 2b has the same dimensions as Environment 2a, but with a differ-
ent number of cells representing walls. Thus, for the Environment 2b, the mean
of cellsteps, considering the entire set of free cells, is 68.9 cellsteps. This mean
is represented by the green line in Fig. 6b. As seen in the experiment using the
Environment 2a, the random and deterministic strategies showed a large disper-
sion of data, confirming the heterogeneity in the distribution of cellsteps by the
environment. On the other hand, the stochastic, elitist and inertial strategies
presented a more homogeneous distribution. Again, there was no significant dif-
ference between the boxplots using the individual pheromone and the combined
pheromone in the same strategy. An interesting feature to highlight is the small
increase in the dispersion of the number of cellsteps when the inertial strategy is
applied, compared to the dispersion of the stochastic and elitist strategies. This
increase can be observed both in the experiments performed, using the Environ-
ment 2a (Fig. 4b) and in the experiments using Environment 2b (Fig. 6b). This
is due to the fact that the inertial strategy tends to keep the robots in their
current direction, making them get in touch with the cells by the side of the
walls more easily. Thus, increasing the amount of cellsteps in this area.

The same set of experiments presented in this section, was performed by
doubling the dimensions of the two environments (Figs. 2a and b), resulting in
environments with dimensions equal to (40 × 60). This was done to investigate
the scalability of the model and the strategies. In both scenarios, the strategies
allowed the swarm to exhibits similar behaviours to those observed in smaller
environments.
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(a) Task Points (b) Cellsteps

Fig. 6. Performance in surveillance task, using Environment 2b. (Color figure online)

4 Conclusion

A decentralized bio-inspired coordination model for a team of robots performing
the surveillance task is investigated here. This model uses a two-dimensional
cellular automata (CA) with Moore neighbourhood to support the navigation
moves and the interaction between the robots. Cells store physical information
about the environment using discrete states: walls, free cells and robot positions.
Besides, they also store a real-coded information that enables the stigmergy
among the team members: a repulsive pheromone that condenses the information
about the recent paths navigated by the robots, helping the team to spread
over the rooms. Five variations of the coordination model are investigated here,
related to the next position decision performed at each time step. Three of
them are stochastic and based on a probabilistic choice using the pheromone
information. They were also investigated in [16]. The other two, although simple,
have not been investigated with this model: a random decision is employed to
compare its performance with the pheromone-based decisions and a deterministic
strategy aims to investigate the importance of the probabilistic decision.

This work carried out an analysis of the influence of the indirect pheromone-
based communication when the team performs the task of surveillance. For that,
each model variation were executed with two approaches: in the first one, the
robots make their decisions based on their own individual pheromone information
and, in the second one, the pheromone information is shared among the robots.

Considering the experiments results, it was possible to conclude that (i) the
pheromone information is very important for the team coordination, evidenced
by the poor results obtained with the random strategy in terms of number of
completed tasks points in a fixed interval of time; (ii) when the information about
the pheromone deposited by each robot is combined, a cooperative behaviour
emerges, allowing the team having a superior performance on the tasks, being
that this behaviour was observed in all variations; (iii) the deterministic strategy
returned the best performance considering its higher number of completed task
points (even using the individual pheromone it overcame the other strategies);
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(iv) on the other hand, the deterministic strategy does not spread the team in a
homogeneous way, displaying a high predictable path close to the walls; (v) the
elitist decision returned the most homogeneous coverage among all the analysed
strategies, although it is the third strategy in terms of the number of completed
tasks points; (vi) the inertial strategy exhibited the more balanced behaviour,
both for the global scattering, searching for new areas, and locally, ensuring a
homogeneous coverage through the environment; (vii) although not presented
here due to the lack of space, experiments with larger environments have shown
that the conclusions obtained here could be extended for other scenarios.

The most unexpected result for us was the good performance of the determin-
istic model in achieving an elevate number of task points. Previous investigations
of CA models in other problems have shown that the deterministic choice can
lead to jams and bottlenecks in the dynamics of robots, pedestrians and cars
[13]. We believe that this difference is due to the fact that in the other problems,
where jams and bottlenecks were observed, the information used to define the
better choice at each next-move decision was fixed (or almost fixed). For exam-
ple, in pedestrian models [12] typically the distance from a free cell to the door is
used in a previously known environment. This information does not change along
the time and the pedestrians tend to choose the same path to the door, with this,
they collapse on the path. On our model for surveillance, on the other hand, the
information that guides the next move – the pheromone – is changeable and once
a robot decides to use a path because it has the lower value among neighbours,
this value is incremented and the next robots will avoid the same path. There-
fore, as the pheromone mapping is a dynamical environmental information, it
seems that this problem was avoided and the use of the best choice turned the
team to achieve the best walking close to the walls in the rooms. However, in
the surveillance task, this predictable behaviour would be not appropriate, since
intruders could anticipate robots trajectories. On the other hand, if the task is
only for exploration, the deterministic strategy could be the most adequate.

Our analyses and conclusions allow us to characterize the model as being
robust, scalable and flexible, the main desirable characteristics for a swarm
robotics model [4]. However, here we present the results of experiments employ-
ing a team of 3 robots. We intend to continue this investigation towards swarms
applications using teams with many robots. For future work, the authors also
intend to investigate an automatic way to find the number of members of the
swarm according to the variation in the sizes of the grid, ensuring that the model
maintains the same efficiency independent of the environment. Furthermore, we
intend to analyse new strategies, trying to get closer to the results of deter-
ministic strategy without being predictable. The employment of mixed teams,
where each robot can employ a different strategy, is also a hot topic of our future
investigations.
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Abstract. A model of agent-based simulation of communicating vehi-
cles is presented to study the information spreading in a vehicular ad
hoc network (VANET). The agents are moving along the fastest paths
between their starting points and their destinations on real urban topo-
logy. During the motion, they can exchange information by short-range
wireless communication. The goal is to analyze the statistical properties
of the information spreading in the system, e.g. the time evolution of
the average awareness or the age distribution of information owned by
separate vehicles.

Keywords: Agent-based simulation · Information spreading
VANET · Traffic simulation · City map

1 Introduction

Several smart city services are based on information dissemination in vehicular
networks that is why the topic is in the focus of scientific research in the last
couple of years. These applications try to make the urban traffic safer and our
life even more comfortable. In order to increase the efficiency of these intelligent
transportation systems the topological properties of urban road maps were ana-
lyzed [1,2], the traffic flow was measured and studied [3]. Different algorithms
and methods were developed to simulate the motion of vehicles and generate
traffic in urban or in highway environment [4–6]. Several communication pro-
tocols were introduced to ensure the communication of moving wireless devices
using eighter Dedicated Short Range Communication (DSRC) or for example
IEEE 802.11p standard [7–9]. In VANETs both the routing [10–12] and the
broadcasting [4,13] is actively investigated fields.

Nevertheless, there are open questions still related to the statistical properties
of the general spreading processes in VANETs. The goal of this research is to
create a new framework in order to be able to answer some of the questions.
What are the limits of the information spreading? Can we reach all actors of
the traffic system based only on self-organization? Do all vehicles own up-to-
date information? Similar questions have been appeared and already answered
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in social networks [14,15], but due to the continuously changing topology, the
characteristics of spreading can be very different.

In Sect. 2 authors give some introduction how the realistic urban topology
is built up. It is followed by the details of the simulation of vehicular motion
in Sect. 3. The spreading of information based on carry-and-forward and multi-
hop broadcast dissemination schemes is presented in Sect. 4 and then the first
results of our investigation are shown in Sect. 5. This paper is closed by some
conclusions.

2 Underlying Map Topology of Simulations

In order to reach realistic simulation environment, a real city map is applied as
an underlying topology. The map of the authors’ city was planned to apply. A
very detailed dataset is available from the OpenStreetMap project [16]. For the
later agent based simulation a much more simplified topology is needed, that is
why the source was reduced keeping the topology of crossroad network and the
distances between junctions, but losing the real geographical locations of road
sections.

According to the original .osm format any crooked road can be build up from
shorter straight segments and the geographical coordinates of their endpoints are
given. In this way, a road section between crossroads can be described by a list of
internal nodes with degree 2. In our traffic approach, the shape of a road section
is negligible and only the length of the section is important. This was the base
of our topology simplifying method. In case of any two road segments between
nodes A−B and nodes B−C, node B was eliminated if it has no other neighbors
than A and C, merging the segments to only one longer segment between nodes
A − C with a distance equal to the sum of lengths of the previous segments
(Fig. 1).

Fig. 1. Conversion of a street map to a simplified network. A small part of the map
of Debrecen [16] is presented on the left. A visual representation of the corresponding
graph is on the right, where crossroads are illustrated by circles. The thicker links
represent road sections with higher average traffic speed. A possible route is highlighted.

Thus the map of Debrecen was reduced to a network of only 3422 nodes
(junctions) connected by 4812 links (road sections). It was found that 84% of
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crossroads connects 3 or 4 roads. In the unit of linknumber (ignoring road length)
the diameter of the network is 96. Taking into account the geographical distances
the average distance between two crossroads is 121.5 m, however, the distribu-
tion is quite wide, there is almost 3 orders of magnitude difference between the
shortest and the longest road section. (See the inset of Fig. 2.)
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Fig. 2. Travel time distribution of routes. The vertical gray dashed line shows the
average and the dotted lines indicate the standard deviation of the distribution. Inset:
Length distribution of road sections (between crossroads).

3 Motion of Vehicles

It was assumed that vehicles proceed from their randomly chosen starting node
toward their randomly chosen destination node along the fastest path because
drivers usually use a route with the shortest travel time instead of the shortest
distance route. The original dataset contains information about the rank of all
road segments (for example: primary, secondary, residential, living street, etc.).
The average speeds of cars depend on the rank of the road. Based on the speed
prediction/offer of the Google Maps [17] different average velocity is applied
in case of different road rank. Thus the shortest and the fastest route can be
different.

Between two neighboring nodes, all vehicles proceed with constant velocity,
at a crossroad they turn according to their route (and perhaps change speed).
Traffic jams, traffic lights or the finite size of vehicles are not taken into account
during the simulation because from the point of view of the later spreading
process the short-term fluctuations of the speed of cars are negligible.
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When a new vehicle is departed in the system it needs to get a route that
is a node sequence to move along from the given location to the destination.
Since the generation of shortest/fastest routes in a network of several thousand
nodes is very time consuming, more than one million different random routes
are generated and stored only once before the traffic simulation. In this way,
the simulation itself can be fast because each vehicle just chooses a random
route from the stored possibilities. However, the source and destination nodes
are random the density of the traffic is really diversified due to the topology
(connectivity, ranks).

It was assumed that the number of moving cars in the system at a given time
can be constant because the simulated time interval is small compared to the
daily life cycle of a city or the duration of rush-hours traffic. At the beginning
of the simulation, the cardinality of vehicles is N . Later, when a vehicle arrives
to its destination, it was removed and immediately a new one is initialized and
started. At the beginning of the time evolution of the system, all the cars are
just departed. In order to avoid artificial transient effects the measurement is
started only later (t = 0) when the system become randomized, however, the
simulation is started at t = −T0. The length of the randomization time interval
(−T0 ≤ t < 0) is longer then the most of trips (T0 = 750 s, average travel time
is 459 ± 261 s, see the main panel of Fig. 2), so when the scientific observation is
started all the initial cars have been arrived and others are launched in different
time moments.

The simulation is stopped at t = Tmax. The time interval of the analysis
(0 ≤ t ≤ Tmax) is enough long to cover several generations of vehicles, so the
total number of simulated cars (Nt) is at least five times greater the number of
cars at a given moment (Nt > 5N). The time evolution of the system is discrete.
The time step Δt is enough to move only a few meters, so it is tiny compared
to the whole simulation time Δt � T0 + Tmax.

4 Spreading of Information

In this system, smart vehicles are represented by agents which can interact
by short-range communication. If the distance of two vehicles at a given time
moment is less than the range R of the wireless communication, they can
exchange information. Based on this, in our model the agents can have two
different states. On the one hand agent i can be uninformed, so it has not
received any data (denoted by Si = 0). On the other hand, it can be informed,
so it has already got some data (denoted by Si = 1). Beside this Inter-Vehicular
Communication (IVC) there is Vehicle-to-Roadside Communication (VRC) as
well. In the latter case the On Board Units (OBU) of smart vehicles can receive
information from Road Side Units (RSU). In our first model initially all agents
are in uninformed state and only one RSU is present, playing the role of an
information source. When an agent passes by the RSU it receives a new up-to-
date information (e.g. traffic or weather alert). The agent stores it together with
the actual time stamp and later it shares with others within the communication
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range. If one of these neighboring agents is uninformed it becomes informed. If
both agents in the contact have been already informed, the agent with older time
stamp will update its knowledge storing the newer information with the given
timestamp. Thus information can spread in this dynamically changing network
from the RSU to any vehicle even if they have never passed by the RSU. In
order to characterize agent i in detail we introduce the quantity τi which is
the latest/newest time stamp of information owned by the informed agent i or
τi = −1, if agent i is uninformed. (So τi > 0 is the simulation time when the
given information entered into the system by the RSU.) The behavior of the
system is shown in Fig. 3.

Fig. 3. The behavior of the system. A vehicle (agent i) proceeds from node A to node
D. It goes by the RSU in node B receiving new information at t = τ . An other vehicle
(agent j) move from node E toward node F . Both of them are in the vicinity of the
node C at the same time. Since they are within the range R, agent i can transmit the
information to agent j. Between nodes A and B agent i is uninformed, but between C
and D it is in an informed state, having timestamp τ . Agent j possesses also timestamp
τ between nodes C and F .

At simulation time t an informed agent i have information with age Ai =
t − τi. The average age of information 〈A〉 owned by agents can be written as

〈A〉 =
∑

i τiSi

N i
, (1)

where N i is the number of informed agents, defined as N i =
∑

i Si. Large
value of N i indicate extensive information spreading. When the average age of
information 〈A〉 is low, it means that our smart traffic system is in an up-to-
date phase. Thus the number of informed agents N i and the average age of
information 〈A〉 are good measures of the effectiveness of information spreading
in VANET.
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5 Results

While an SI (Susceptible-Infected) model is applied more and more agents
become informed. Nevertheless, the system never reaches a fully informed state,
because of the continuously changing set of agents. Organically new, uninformed
agents appear in the system, while informed ones disappear. Investigating the
time evolution of the agents it was found that the system reaches a steady state
described by saturating functions. In Fig. 4 one can observe that at t = 0 (when
the RSU is just activated) there is no informed agents in the system, but soon
some agents pass by the information source of the infrastructure. Then the vehi-
cles carry the information during their motion to different places of the city
meanwhile they also behave as information sources speeding up the spreading of
information so leading to increasing N i(t)/N function with a significant slope.

0.0

0.2

0.4

0.6

0.8

1.0

N
i /N

0 500 1000 1500 2000
t

N=1000
N=10000

0.0

0.2

0.4

0.6

0.8

1.0

N
i (T

m
ax
)/
N

10 102 103 104

N

Fig. 4. Number of informed agents (vehicles) as a function of time for different numbers
of agents. After a short time period a saturation is achieved at a quite high value. Inset:
The saturation level depends on the number of vehicles in the system (of course more
smart vehicle leads to higher level of awareness).

After a quite short time period, a dominant proportion of agents are in the
informed state, spreading slows down resulting in saturation of the number of
informed agents. The average movement of vehicles during a simulation step
Δt is the half of the applied range of communication R. (Of course, increasing
range R speeds up the spreading.) Due to this, the propagation of information
can be faster then the motion of vehicles, so that is why we reach saturation
so quickly. The N i(t)/N curves never reach 1.0, the saturation level depends on
the number of agents (the density of smart vehicles in the city). It is illustrated
in the inset of Fig. 4. As we can observe the information coverage of VANET
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can be effective only if the number of smart vehicles exceeds a given threshold
(about few hundreds of vehicles in Debrecen).

The number of informed agents is proved to be relatively high in the sys-
tem, but the really important questions are the follows. How old is the average
information? Is the system in an up-to-date phase continuously? The average
information age as a function of time 〈A〉 (t) can give the answers. It is illus-
trated in Fig. 5 the most of agents have relatively young information. Recent
information from RSU overwrites the system very quickly without any outer
control. Of course the level of 〈A〉 (t) (far from the opening time period) deter-
mined by the number of agents. More smart vehicles lead to a more up-to-date
system. (See the inset of Fig. 5.) The average age of information is even less
than the length of time period needed to reach the saturation of the number of
informed agents.
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Fig. 5. The average age of information owned by the vehicles as a function of time.
It shows saturation for different system size. Inset: The average age of information in
the saturation phase decreases logarithmically with the number of vehicles, so denser
vehicle park in the city results more up-to-date system.

6 Summary

An agent-based model of information spreading in VANET was presented. The
time-dependent network topology of agents was based on the motion of smart
vehicles. The changing set of vehicles (with constant cardinality) are following
their routes based on shortest travel time between the randomly selected start
and destination points of a real city. Due to the short-range communication
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moving vehicles can receive information from each other or from fix infrastructure
unit(s). In this ad hoc network, the statistical properties of information spreading
can be investigated. Above a threshold of smart vehicles information spreads in
a very fast way, and a dominant part of the system can be in an up-to-date state.

However this work is mainly focused on the implementation of the model, the
some results of the computer simulation show that there are hidden potentials in
the introduced complex system. In our further research, we try to find answers to
essential, practical questions. What happens if the RSU is removed (turned off)?
How does an old information die out? How to avoid the presence old (fake, not
up-to-date) information? What is the effect of the introduction of an Susceptible-
Infected-Susceptible (SIS) model (forgetting old information)? How to optimize
spreading reducing the number of information exchanges (energy efficiency),
but keeping system in an up-to-date phase? What is the topology of this ad hoc
communication network?
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Abstract. The rates of cognitive agents’ correct and incorrect crossing deci-
sions, correct and incorrect waiting decisions in learning to cross cellular
automaton based highway are studied. The effects of presence of risk takers and
risk avoiders on these rates are investigated for agents using observational social
learning strategies. One of these strategies is based on the assessment of agents
crossing decisions, and another one is based on the assessment of agents
crossing and waiting decisions. Also, the effects of transfer of agents’ knowl-
edge base built in one traffic environment to the agents in another one on the
rates of agents’ various decisions are investigated.

Keywords: Agents � Cognitive agents � Observational learning
Knowledge base � Decision-making � Autonomous robots

1 Introduction

The autonomous robots may be identified with cognitive agents. This permit studying,
through modeling and simulation, how their learning performance depends on various
parameters, [1]. We study performance of homogeneous and heterogeneous (i.e.,
containing risk takers and risk avoiders) populations of cognitive agents learning to
cross a cellular automaton (CA) based highway under various traffic conditions. The
agents use a simple observational social learning strategy, [2] in which they learn by
observing the performance of other agents, mimicking what worked for them and
avoiding what did not in the past. Our work focuses on simplicity of the learning
algorithms and it is an extension of the previous research [3–5], in which the agents’
decision formula was based only on the assessment of agents crossing decisions. In [6]
we introduced a modified decision formula which incorporates the assessment of the
agents both crossing and waiting decisions. We study how this modification improves
agents’ performance measured by the rates of agents four decision types: correct and
incorrect crossing decisions, and correct and incorrect waiting decisions. We investi-
gate the effects of the presence of risk takers and risk avoiders on these rates for various
density of cars on the highway. We study how the transfer of agents’ knowledge base,
built by agents in one traffic environment to the agents learning to cross in a different
traffic environment, affects the rates of their decisions.
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The paper is organized as follows: Sect. 2 describes the model focusing on agents’
decision-making algorithms; Sect. 3 describes setup of simulation parameters, the
resulting data, introduces the rate functions of agents’ decisions and the considered
agents’ populations; Sect. 4 presents analysis of selected simulation results. Section 5
reports our conclusions and outlines future work.

2 Model of Agents Learning to Cross a Highway

For detailed description of the model the reader is referred to [3–6]. We assume that:
(1) the environment is a single lane unidirectional highway, modelled by adopting the
Nagel-Schreckenberg cellular automaton (CA) model [7]; (2) all agents want to learn
how to cross the highway without being hit/killed by the oncoming vehicles and they
witness what had happened to the agents that previously crossed the highway at a given
crossing point (with exclusion of the first one). These allow each crossing point (CP) to
build one knowledge base (KB) during an experiment that is available to all agents at
that CP. An agent is generated only at the CPs set at the initialization step and is placed
into the queue at this CP. Each generated agent falls with equal probability (0.25) into
one of the four categories: (1) no Fear nor Desire; (2) only Fear; (3) only Desire;
(4) both Fear and Desire. The agents’ attributes/parameters of Fear and Desire play a
role in their decision-making process of crossing the highway. The values of Fear
reflect the agents’ aversion to risk taking and the values of Desire reflect their
propensity to risk taking. Agents attempt to cross the highway having a limited horizon
of vision and they can perceive only fuzzy levels of speed (e.g., slow, medium, fast, very
fast) and of distance (e.g., close, medium, far) of cars within this horizon. The distances
and speeds that each agent can perceive are set in the configuration file. If an agent at
some instance of time does not cross the highway, because it has become afraid, agents
will build up in the queue until the agent at the top of the queue, called active agent,
decides to cross, or moves to a different location from which to attempt crossing. If the
simulation setup permits, an agent may move randomly right or left from its CP along
the highway, [3–6].

Each active agent must make one of the following two decisions: Crossing Deci-
sion (CD) or Waiting Decision (WD). The CD is Correct Crossing Decision (CCD) if
the active agent succeeds, if not then it is Incorrect Crossing Decision (ICD). The WD
is: (1) Correct Waiting Decision (CWD), in the case when, if the agent did not wait and
chose to cross, it would be hit; (2) Incorrect Waiting Decision (IWD), in the case when,
the active agent chose to wait but it could have crossed the highway successfully. The
assessment of each decision of an active agent, i.e. if the decision was CCD, ICD,
CWD, or IWD, is recorded, respectively, as a count in the Knowledge-Based
(KB) table of all agents waiting at the CP of the active agent. Thus, with each CP is
associated its KB table.

Each KB table is organized as a matrix with an extra row entry. The columns
names are slow, medium, fast and very fast. They stand for the car speeds perceived by
the active agents. The rows names are close, medium and far. They stand for the car
distances perceived by the active agents. Since the agents have limited horizon of
vision, the extra row entry corresponds to agents’ out of range vision, i.e. the situation
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in which an active agent cannot perceive if outside its horizon of vision there is a car
and if it is, what is its velocity. Because of this the cells corresponding to the described
fuzzy velocity levels are all merged together into the extra row entry. At each time t,
each entry of the KB table (including the extra row entry) contains four numbers:
number of CCDs, number of ICDs, number of CWDs and number of IWDs, i.e. of each
of the decision type made by the active agents up to time t − 1. The KB table is
initialized as tabula rasa; i.e. a “blank slate”, represented by “(0, 0, 0, 0)” at each table
entry, for further details see [3–6]. After the initialization period the active agents make
their decisions based on the outcomes of the implemented intelligence/decision-making
algorithm, which for a given (distance, velocity) pair or out of range vision combines
the success ratio of crossing the highway for the observed situation with the agent’s
Fear and/or Desire parameters’ values.

The main simulation loop of the model consists of: (1) generating randomly cars
using the Car Prob.; (2) generating agents at each CP with their attributes; (3) updating
the car speeds according the Nagel-Schreckenberg model; (4) moving the agents from
their CP queues into the highway (if the decision algorithm indicates this should occur);
(5) updating locations of the cars on the highway, checking if any agent has been killed
and updating the KB tables; (6) advancing of the current time step. After the simulation
is completed, the results are written to output files using an output function.

The decision formula (DF) of [3–5] considers only the outcomes of agents’ CDs,
i.e. numbers of successful and killed agents for each fuzzy (distance, velocity) pair
observation or for out of range vision at time t. Since the number of successful agents is
equal to the number of CCDs, and the number of killed agents is equal to the number of
ICDs, we call this formula Crossing Based Decision Formula (cDF).

After the initialization phase, at each time step t, each active agent, carries several
tasks, namely: (1) determines if there is a car in its horizon of vision. If it is, then it
determines the fuzzy (ith distance, jth velocity) values of the closest car; (2) from the KB
table associated with its CP it gets information about the number of CCDs and the
number of ICDs for the observed (ith distance, jth velocity) pair, or for the observed out
of range vision situation, entry of which in the KB table is denoted by (0, 0) pair of
indexes; (3) for the observed (i, j) situation it calculates the value of the cDF, i.e. the
value cDFij tð Þ; corresponding to the (i, j) entry of the KB table (including the extra row
entry). The expression cDFij tð Þ is calculated as follows:

cDFij tð Þ ¼ cSRij tð Þþ v Desireð Þ � v Fearð Þ; ð1Þ

where v(Desire) and v(Fear) are the values of the active agent Fear and Desire
attributes/parameters, and cSRij(t) is the Crossing Based Success Ratio (cSR) corre-
sponding to the ijth entry of the KB table. The cSRij(t) is calculated as follows:

cSRij tð Þ ¼ CCDij t� 1ð Þ�ICDij t� 1ð Þ� �
=CCDtotal t� 1ð Þ: ð2Þ

The terms CCDij(t − 1) and ICDij(t − 1) are, respectively, the numbers of CCDs
and of ICDs recorded in the ijth entry of the KB table up to time t − 1. The term
CCDtotal(t − 1) is the number of all CCDs made by active agents up to time t − 1, i.e. it
is the sum of CCDs made up to time t − 1 over all the entries of the KB table. The
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number CCDtotal(t − 1) is equivalent to the total number of successful agents up to
time t − 1.

After the initialization period (for details see [6]), if cDFij tð Þ� 0, then an active
agent decides to cross, if cDFij tð Þ� 0, then it decides to wait and additionally it may
move to another crossing point, if simulation setup permits.

The modified decision formula, called Crossing-and-Waiting Based Decision
Formula (cwDF) [6], is based on the assessment of both crossing and waiting decisions
of the active agents. The formula cwDF is obtained from cDF formula by replacing the
term cSRij(t) by the term cwSRij(t) in the cDF formula (1). The term cwSRij(t), called
Crossing-and-Waiting Based Success Ratio (cwSR), is defined for each ij entry of the
KB table at time t as follows:

cwSRij tð Þ ¼ CCDij t� 1ð Þ�ICDij t� 1ð Þ � CWDij t� 1ð Þþ IWDij t� 1ð Þ� �
=S t� 1ð Þ;

ð3Þ

where CCDij(t − 1), ICDij(t − 1), CWDij(t − 1) and IWDij(t − 1), respectively, is the
number of CCDs, ICDs, CWDs and IWDs, made by active agents up to time t − 1,
which is recorded in the entry ij of KB table. The term S(t − 1) is the sum of all the
numbers of decisions made up to time t − 1 over all the entries of the KB table, and it
is given by

S t� 1ð Þ ¼
X

ij
CCDij t� 1ð Þ þ ICDij t� 1ð Þ þCWDij t� 1ð Þ þ IWDij t� 1ð Þ� �

:

ð4Þ

Thus, the formula cwDF can be written as follows

cwDFij tð Þ ¼ cwSRij tð Þþ v Desireð Þ � v Fearð Þ; ð5Þ

where the term cwSRij(t) is defined in (3). As before v(Desire), v(Fear) are the values of
an active agent Desire and Fear attributes/parameters and for an observed (i, j) situ-
ation an active agent decides to cross the highway only when cwDFij(t) � 0. Other-
wise, the active agent will wait and additionally it may move to another crossing point,
if the simulation setup allows this.

Depending on Desire and Fear parameters values the difference v(Desire) −
v(Fear) in the DFs (1) and (5) acts like a threshold and determines an agent
“rationality”, or “propensity to risk taking”, or “aversion to risk taking”. If the values of
Desire and Fear are both 0.0, then all agents use cSR or cwSR in their decision-making
process, i.e. the entire population of agents acts “rationally” alike in their decision-
making process. However, if the values of Desire and Fear are different from 0.0, then
no longer all agents act “rationally” alike, i.e. at least 25% of agents will have
propensity to risk taking and at least 25% will have aversion to risk taking.
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3 Simulation Data and Rate Functions of Agents Decisions

To study the effects of DF on agents performance data sets were generated, respec-
tively, for cDF and cwDF, with the same setup of the other parameter values.

We consider the model parameters as factors with various levels in the sense of the
experimental design paradigm [8]. Some parameters have constant values some other
not. The detailed description of the parameters and their values is in [6]. We consider
the same values of the parameters as in [6].

There are 6 parameters/factors values of which vary in the simulation setups of the
software. These parameters are: (1) car creation probability, i.e. CCP; (2) Fear
parameter; (3) Desire parameter; (4) the KB transfer parameter, i.e. KBT; (5) random
deceleration, i.e. RD and (5) horizontal movement of an active agent, i.e. HM.

We measure the agents’ performance by the rate functions of their CCDs, ICDs,
CWDs and IWDs, i.e. by the time series RCCD(t), RICD(t), RCWD(t) and RIWD(t),
where “R” stands for “rate”. Each value of each of these times series at each time t is a
mean calculated over many simulation runs. Consider RCCD(t) as an example, then

RCCD tð Þ ¼ 1
n

Xn

k¼1

CCDk tð Þ
t

; ð6Þ

where CCDk(t) is the number of all CCDs up to time t in the simulation run k, where
k ¼ 1; . . .; n, and n stands for the number of repeats. In our case n = 30. Thus, CCDk(t)
is the sum of CCDij(t) over all the entries of the KB table at time t in the simulation run
k. The time series RICD(t), RCWD(t) and RIWD(t) are calculated by replacing CCDk(t)
in (6), respectively, by ICDk(t), CWDk(t) and IWDk(t), which are calculated similarly as
CCDk(t). When HM = 0, i.e. when only one CP is allowed, then only one active agent
makes decision per each time step. Thus, the values of each rate function are always
between 0 and 1.

4 Simulation Results

We compare the rates of decision functions of the agents using cwDF with the rates of
these functions when the agents use cDF instead. Also, we study how the values of
Fear and Desire parameters and the transfer of KB affect the agents’ rates of decisions.
Let’s recall that the values of Fear and Desire parameters determine the value of the
threshold each agent uses in its decision-making process. Thus, they determine if an
agent acts “rationally” or not (i.e., it makes its decision based on Success Ratio cSR or
cwSR only), or if it is risk taker or risk avoider. To illustrate the effects of risk takers
and risk avoiders on agents’ populations performance we discuss the results for the
following representative pairs of (Desire, Fear) parameters’ values: (0.0, 0.0), (0.5,
0.5), (0.25, 0.75) and (0.75, 0.25). For (Desire, Fear) parameters’ values (0.0, 0.0) each
population of agents is homogeneous one, i.e. all agents act “rationally”. For the other
values of the parameters the populations of agents are heterogeneous ones. For (0.5,
0.5) they contain the same numbers of risk takers as risk avoiders, for (0.25, 0.75)
smaller number, for (0.75, 0.25) larger number of risk takers than risk avoiders. The
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risk takers’ and risk avoiders’ subpopulations are homogeneous ones for (0.5, 0.5).
However, the risk avoiders’ subpopulations are heterogeneous ones for (0.25, 0.75) and
the risk takers’ subpopulations are heterogeneous ones for (0.75, 0.25), i.e. the agents
in these subpopulations use different thresholds in their decisions.

The simulation results are organized as follows. The results are displayed for
KBT = 0, RD = 0, HM = 0 in the first two columns and for KBT = 1, RD = 0,
HM = 0 in the last two columns. The figure’s first and third column display the
decision rate functions for cDF and the second and fourth column display these
functions for cwDF. On each inset of the figure the solid curves display the rate of
decision functions, and the corresponding colour marker curves display one standard
deviations of rate of decision functions. On each inset we display 5 graphs of the rate of
decision functions, each one of them for different CCP value. We assign the colours to
these graphs as follows: red to CCP = 0.1, blue to CCP = 0.3, green to CCP = 0.5,
black to CCP = 0.7 and yellow to CCP = 0.9. The values of CWDs and ICDs rate
functions are very small for both DF. Thus, we do not display them here.

Our simulations show that the values of rate functions of “rational” populations of
agents (i.e., homogeneous ones) are alike for all CCP values and both DFs, and the
transfer of KB does not improve significantly the agents’ performance (results not
display here). This is not the case for heterogeneous populations of agents, see Fig. 1,
which displays CCDs and IWDs rate functions for (Desire, Fear) parameters’ values
(0.25, 0.75), (0.5, 0.5) and (0.75, 0.25). We notice that for heterogeneous populations
of agents: (1) the performance depends on CCP vlaues and DF the agents use; (2) the
performance degradation increases with the increase of Fear parameter values, i.e. with
the increase of risk avoiders’ numbers and their threshold values. For cwDF, after some
transient times the agents’ population overcome this and their decisions’ rates are like
those of homogeneous population of agents (except RIWD for (0.75, 0.25)), this is not
the case for cDF; (3) variability in performance increases with the increase of Desire
parameter values (i.e., with the increase of risk takers numbers and risk takers threshold
values) significantly for cDF but not for cwDF. The transfer of KB reduces this
variability for cwDF but not for cDF; (4) the transfer of KB improves significantly the
performance of heterogeneous populations of agents for cwDF but does not for cDF.
After the KB transfer the performance for cwDF becomes alike to the one of homo-
geneous population of agents but not for cDF.

Our simulations show that for the heterogeneous population of agents using cDF
the values of IWDs rate functions are significantly higher than the respective values of
the homogeneous populations, and with the increase of CCP values and as time pro-
gresses the values of IWDs rate functions monotonically increase causing decrease, to
almost zero, in the values of CCDs rate functions. Thus, for cDF, the values of CCDs
rate functions are significantly lower for the heterogeneous populations of agents than
for the homogeneous ones. Also, these values are lower from those when the agents use
cwDF instead. For cwDF and when KBT = 0, the values of CCDs rate functions, after
some transient times, increase monotonically with the increase of CCP values and as
time progresses they reach asymptotically almost the values like the ones of the
homogeneous populations of agents. These monotonic increase is the result of the
monotonic decrease in the values of IWDs rate functions. Thus, when the heteroge-
neous populations of agents use cwDF the values of CCDs and IWDs rate functions
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Case Study KBT=0, RD=0, HM=0 Case Study KBT=1, RD=0, HM=0
cDF cwDF cDF cwDF

Desire = 0.25, Fear = 0.75
Rate of Correct Crossing Decisions

Rate of Incorrect Waiting Decisions

Desire = 0.5, Fear = 0.5
Rate of Correct Crossing Decisions

Rate of Incorrect Waiting Decisions

Desire = 0.75, Fear = 0.25
Rate of Correct Crossing Decisions

Rate of Incorrect Waiting Decisions

Fig. 1. Mean values (solid curves) of CCDs and IWDs rates and their one standard deviations
(marker curves) for various Desire, Fear and CCP parameters values. (Color figure online)

Analysis of Rates of Agents’ Decisions in Learning to Cross a Highway 183



behave in opposite way than when the agents use cDF instead. Also, transferring of KB
improves agents’ performance when they use cwDF, it becomes alike to the one of
homogeneous population of agents, which is not the case for cDF. Thus, the use of
cwDF guarantees consistency and predictability in the agents’ performance, which is
not the case when the agents use cDF instead.

5 Conclusions and Future Work

The simulation results show that the performance of the homogeneous population of
agents is almost the same regardless which DF they use. However, this is not the case
for heterogeneous populations of agents, i.e. including risk takers and risk avoiders.
A heterogeneous population of agents’ performance is much better when the agents use
cwDF instead of cDF in their decision-making process. The inclusion of the assessment
of agents WDs into their DF formula, based only on the assessment of their CDs, can
mitigate the negative effects caused by the presence of risk takers and risk avoiders in
agents’ population. Transfer of the KB improves significantly the performance of a
heterogeneous population of agents when they use cwDF but not when they use cDF.
Also, the performance of agents using cwDF is much more consistent across various
traffic environments, then the one when they use cDF instead. We plan to investigate
agents’ performance in learning to cross the highway for other types of decision-
making process.
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Abstract. The Hermes project [1] demonstrated the usefulness of on
site predictive simulations of probable evacuation scenarios for security
personnel. However, the hardware needed was prohibitively expensive
[2]. For use in crowd management, the software has to run on available
computers. The CA methods, which are fast enough, have well known
problems with treating corners and turns. The present paper shows how
a standard CA method can be modified to produce a realistic movement
of people around bends and obstacles by changing the standard floor
field. This can be done adaptively allowing for the momentary situation
using simple predictions for the immediate future. The approach has one
or two tuning parameter that have an obvious meaning and can therefore
be set correctly by people not familiar with the inner process of a CA
simulation. With this, a high end laptop can simulate more than 100 000
persons faster than real time, which should be enough for most occasions.
It is intended to integrate the method into the tool JuPedSim [23].

Keywords: Cellular automata · Modeling · Pedestrian dynamics
Lanes at corners

1 Introduction

During the last few decades, the number and size of events that involve large
crowds has increased considerably. At the same time, the safety requirements
have increased also. Since about 1990, computer simulations have been estab-
lished as a useful planning tool for the design of pedestrian facilities and are
routinely applied in the design of large buildings, cruise ships, sports arenas
or public transport facilities. However, the methods have not yet found their
way into the steering of actual events, as the established systems for planning
are too time consuming for steering of events, where simulation and display of
results faster than real time is required. Faster and easier to use simulations
can be helpful for crowd managers of large events, but also in the evacuation of
facilities because of present danger (e.g. fire, bomb threat) where the preplanned
c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 185–195, 2018.
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evacuation routes may not be operational any more. The Hermes project demon-
strated that on the site predictive simulations of probable crowd movement are
feasible and useful for crowd management. However, the requirements in specific
hardware were higher than facilities are willing to pay by a large margin.

Computer simulations of pedestrian facilities can be (and are) done on dif-
ferent scales. The coarsest scale uses a tree or network of pathways that take
time, but have no active capacity restriction, and nodes (doors, junction of floors
etc.), that do have active capacity restrictions [7]. These models are very fast,
but there is no reliable way to include the highly nonlinear effects that appear
in high density crowds. They may indicate that there is trouble ahead, but at
that time (which is the time when information is needed most) they stop to
make useful predictions. An intermediate scale is mostly handled by a cellular
automata (CA) model where space and time are discrete and agents are moving
from one space element to another according to some transition rules [11,15].
These methods are fast enough for on site real time simulations e.g. of a large
sports stadium, and they can make predictions for high density crowds, but
have in the established versions other deficiencies [16]. We will treat the details
in the paper. The finest scale uses models in continuous space and time where
agents are moved usually according to Newton’s laws, by forces generated mostly
internally as a reaction to the desired momentary destination and the local envi-
ronment. Examples of this methods are [17,18]. It is possible to combine models
on different scales [8–10], and this leads to a good combination of speed, res-
olution and reliability. Unfortunately, setting up the coupling is not automatic
yet but requires expertise and time with predefined coupling zones, so this is at
present not the way for crowd management.

In this paper we show how the most obvious problems of the standard CA
can be removed by an automatic procedure with only a moderate increase in
computing time. This modification is following the ideas of a manual changing
of the floor field that the authors have implemented before [10,16] and demon-
strated as reliable and useful. With this modification, a simple CA is able to
simulate the movement of more than 100 000 persons faster than real time on an
i7 quadcore for a large variety of floor plans. It still does not reach the flexibility
and resolution of continuous models, and is not fully realistic in some aspects
(more details below), but for a quick evaluation of the likely development of a
situation over a few minutes it should be sufficiently accurate to be helpful.

2 General Properties of CA Models

Cellular automata are the most widely used approach. The commercial codes
buildingEXODUS [12] and PedGo [13] are CA codes. They have demonstrated
their ability to give good estimates of evacuation times of high rise buildings [19]
or cruise ships, while details may still need improvement. While they differ in
many aspects, the basics are identical.
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2.1 Introduction to the General Theory

The principles of cellular automata for simulating pedestrians are explained in
many places, e.g. [11,15]. For readability,we give a short sketch following [15].
The floor geometry is discretized into tiles, usually of 40 cm · 40 cm size. An initial
distribution of persons on the tiles is defined. In every time step each person can
move to another tile (or stay put) according to a probability depending on

– The availability of free space (only one person per tile at any time).
– A floor field describing the intended direction.
– Personal data, describing e.g. handicaps.

With a time step of ≈ 0.3 s this gives a reasonable speed of free movement of
1.3m/s.The movement is either done in parallel with subsequent conflict resolu-
tion or (simpler) in a random order sequentially. Non random orders have been
used, but give strong artifacts. The floor field S is usually derived from the gra-
dient of the distance to the destination (exit) in some metric, the Manhattan
metric being the most common one because of its extreme simplicity.

Research codes may also use hexagonal tiles or smaller tiles with persons
occupying more than one tile. They may also use more elaborate floor fields.
These methods have somewhat different properties, but because they are not
much in use they are not treated here.

2.2 Movement Properties of CA

The movement in simple CA grids is strongly non isotropic. Let us first consider
the movement without interference from others towards a single cell goal. If
for a person the direction to the goal is aligned with the grid, the movement
probability is high (≈ 0.9) for that direction, small (≈ 0.03) for sidewards or no
movement and almost nil for backward movement. If the direction is not aligned
with the grid, the probability is ≈ 0.48 for the two grid directions that enclose
the direction to the goal. For a grid aligned goal, this results in a very narrow
path that is actually used. The probability to leave the direct path is low from
the start, and when this has happened (on average once every 15 moves), the
probability to get back to the direct path is almost 1/2 for every move, so a
deviation of more than one grid cell from the direct path is extremely rare.

Table 1. Probabilities to pass through a cell for a oblique goal - top left to bottom
right. The sum along each diagonal from top right to bottom left is 1.

1 1/2 1/4 1/8 1/16 1/32

1/2 2/4 3/8 4/16 5/32 7/64

1/4 3/8 6/16 10/32 15/64 29/128

1/8 5/16 16/32 42/64 99/128 1
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The situation is quite different for a direction not aligned with the grid.
For simplicity, we will at first consider only forward movements. There is equal
probability of ≈ 0.5 to move right or left of the actual direction. This results in
a spreading out of the likely positions to a binomial distribution to the right and
left of the diagonal of the grid. This carries on until a position is reached where
the direction is grid aligned. From here on, the movement is again concentrating
along the direct Table 1. The small probability of no or backward movement
changes the spreading of the path by a tiny margin only, it mostly introduces a
retardation, the person usually just reaches the same position using more moves.

When the forward movement is blocked by another person, the most probable
reaction is moving sidewards or not at all. This leads to a spreading out of the
plumes in front of a narrow pathway or exit. Backward movement is always
improbable. This means that there is no automatic redirection from a jammed
exit to a open one at some distance.

2.3 Natural Structuring of the Space

By simply counting the high probability routes leading in and out of a cell, we
can distinguish different types of grid cells. There are the special cells - exits
cells, which can be entered, but not left via the normal mechanism, because a
person in an exit cell is taken out of the simulation either immediately or after
completion of a move, and possibly entrance cells, which can be left but not
entered with CA. Beside these, we have three kinds:

– The normal cells, where there are as many high probability passes leading in
as there are leading out

– The convergence cells, where there are more high probability passes leading
in than there are leading out

– The divergence cells, where there are less high probability passes leading in
than there are leading out.

The divergence cells build lines that separate the grid into areas with minimal
or no interaction, because people are striving away. Usually, unless there are
entrance cells on such a line, after very few moves these lines are completely
empty. The convergence cells build lines which are possible points of trouble
because they can be fed easier than emptied. This is especially true for cells
where two convergence lines meet. Whether there will be trouble depends on
the densities further out. The normal cells can be fed and emptied at the same
speed, so they may be critical only when there are convergence cells close ahead.
Figure 3 right shows such a division for a building that could e.g. be an exhibition
room, and Fig. 3 left the number of persons usage of the grid cells for a simulation
where 1795 persons are randomly distributed on the floor and walk to the exit
with an ordering and timing so that there is no interference. It shows clearly the
severe concentration on the convergence lines and the preference for ≈ 45o to
the grid when the direction is not aligned.

So there is a natural structure for the walking space: blocks defined by the
convergence and divergence lines with a diagonal movement pattern inside, and
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Fig. 1. Starting positions for all simulations. The size of the floor is 83 by 102 cells of
40 ∗ 40 cm2

Fig. 2. Left: Utilization of tiles without conflicts (persons near exit start first, others
wait till persons in front are out of reach), from pink–low (0-25) to green–high (>400)
right: Exit (blue), walls (black) divergence lines (green) and convergence lines (purple)
(Color figure online)

some blocks aligned with exits with parallel movement. The critical areas are
near the crossing of two convergence lines. These are neighboring some of the
corners or ends of the walls, other wall corners may be of no importance (Fig. 1).

3 Guiding People Around Corners

In actual walking, people are trying to cut corners only if that does not create
conflicts with others. This results in the formation of lanes near the corner [14].
This can easily be modeled by changing the floor field near a corner in a way that
not the shortest path is preferred but staying in lane [16]. The open questions
are: How many lanes are needed, how long do they have to be and where exactly
do they start and end. For use in crowd management, this needs an automatic
procedure.

3.1 Getting the Required Number of Lanes

The number of lanes needed may be different for every corner and may change
over simulation time. The easiest way to obtain the information is to run a sim-
plified simulation - ignoring conflicts - and check the flow around each corner.
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Fig. 3. Left: Utilization of tiles at corner of wall (black) without conflicts, from pink–
low (0-25) to dark green – high (>600), right: divergence (green) and convergence
(red/purple) lines. (Color figure online)

The maximal flow per lane is ≈ 1.5 persons/s, but this is modeling an uncomfort-
ably crowded situation. Taking one lane for a flow of 1 p/s is usually better, but
the factor should be a tuning parameter for the crowd manager to set. Multiple
lanes may be required along walls and possibly (more below) along each side
of an interior converging line. In the latter case, this line will often need to be
moved outward so that its lanes do not end in a wall hugging lane that cannot
take the flow.

With this, the computing time will be about twice the time for a simple CA
simulation. In most cases, this is of no importance, CA is quite fast. For very
large crowds, the time can be reduced by using the movement patterns described
above. Any person can be moved to the next convergence line or along such a
line to a corner in one action. This disregards the statistic spreading, but for the
sum of many people moving, the spreading will cancel out to a large extent. The
movement just along the most probable path will therefore be accurate enough
to determine the expected flow, and reduce the computing time by a factor
that depends on the distances between critical points. With this approximated
simulation, the additional computing time will be dominated by the changing of
the floor field.

It may be that the space available is not sufficient for the required number of
lanes. This will result in an unavoidable jam in the final simulation, which will
in all likelihood show up in reality just the same. The only thing that should be
done is defining the lanes in a way that the load is approximately the same for
all lanes, otherwise the simulation will perform worse than reality.

If the situation changes considerably over time, it may be advisable to gather
and use information repeatedly. This will be treated below.

3.2 Placing the Lanes

At the forward end of a wall hugging convergence line the flux is expected the be
largest in this critical area. This flux is used to determine the number of lanes
required. Then we follow the convergence lines from the far end. As soon as the
flux exceeds the capacity of the lanes placed there, we add one more lane. At
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the wall, it is obvious that new lanes will be added to the interior of the area. In
the example, the wall hugging lane for the area where people move to the right
will has receives its share at about the 45th cell to the right. From there on a
second lane is defined, from which entering the first lane is no longer possible.
This will be filled at about the 56th cell to the right, and so on until 5 lanes are
defined.

At the inner convergence line, the situation is a little more complicated.
Simply adding lanes to the side where people come from is not correct. These
lanes would interfere with the lanes near the wall. In Fig. 3 we see that most
people will reach the critical area following the inner convergence line, the flux
along the wall does not require an additional line. What is needed is a change
in the floor field in a block of cells such that the inner convergence line is moved
away from the end of the wall and a gap a few cells wide is opened for the
required number of lanes, see Fig. 4. Similarly, the floor field is changed in front
of the exit and at the right end of the space within the inner walls, such that
the convergence lines do not extend from the walls but from points a few cells
away. With this, the cutting of corners will be reduced and the space actually
used allows a passing with fairly high density, but without a jam.

Fig. 4. Lanes (green/blue) and shifted inner convergence line (red) (Color figure online)

In many cases, it is not necessary to construct the lanes in the floor field, an
opening two or three cells width will automatically be utilized quite well, because
of the sideways movement if forward movement is blocked. For good performance
on wider gaps, lanes at the new inner convergence line must be formed in the
same way as near the walls. In the area concerned, the CA simulation is not
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fully realistic in all cases, the unisotropy of the grid gives unrealistic preferred
individual pathways.

The lanes will end in a line leading out from the last cell of the convergence
line. Test showed that small variations in the length of the lanes have no effect
on performance, just on local pathways. What has to be avoided is a situation
where the flux from the outer lane end tends inward as will happen with outer
lanes that are too short.

Within the lanes, we redefine the floor field. The high probability step will
be forward within the lane, and changing lanes will get a medium probability
to get a local equilibration of usage. With these measures, the CA performance
around corners will be fairly realistic.

3.3 Results

The procedure has been tested for a number of geometries, the one of Fig. 2
being the most complicated one. In all cases the results were satisfactory, while
standard CA simulations showed unrealistic behaviors (jams) at all corners where
our procedure estimated a need for more than two lanes. For the modified floor
field, we can see that the number of cells heavily used at the corner is sufficient
to give the required flow and the full width of the exit is utilized (Fig. 6). This
is a big improvement over the standard floor field, where only two cells each are
heavily used at the upper and lower corners of the wall and at the corners of
the exit, with one more cell in moderate use. For the modified floor field, there
are high densities near the corner, but they do not act as effective bottlenecks.
The only effective bottleneck is the exit, which is used to capacity for almost the
entire simulation time. What is not realistic is the shape of the plume of persons
in the jam, they would in reality be accumulation more in front of the exit and
not near the wall. This improvement also results in a much faster evacuation -
505 versus 764 time steps.

Fig. 5. Utilisation of tiles, colors and dimensions as above. left: modified floorfield,
right: standard
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Fig. 6. Left: Positions at time step 200 for the standard floor field. right: for the
modified floor field. bottom: People exited against time steps, black - standard, red -
modified. (Color figure online)

3.4 Treating Variations in Time

The determination may either be done once for the entire simulation or repeat-
edly for a shorter period. In the latter case, the starting configuration for the
predictive simulation should be taken from the final time step of the actual
simulation, and the predictive simulation will run only for a limited time. The
modified floor field will then be valid only for that time. This is useful if there
are strong variations in the situation over time. The additional computing time
needed for the predictive simulation is about the same for both cases, chopping
the run into parts will not much change the required time. However, the time
needed for setting up the new floor field will approximately be multiplied with
the number of prediction runs. This can possibly be reduced by using incremen-
tal changes, but the present work does not include any tests in this direction
(Fig. 5).

4 Conclusion and Outlook

CA methods still are very far from getting realistic individual trajectories or
realistic distributions of people waiting in a jam, but with the proposed treat-
ment of corners they can give realistic flows and evacuation times even for quite
complicated buildings or sites. As long as large scale jams are avoided, the accu-
racy is sufficient to give e.g. a crowd manager an idea about what could be an
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upcoming situation. The speed of the simulation is high, available equipment will
do for a faster than real time simulation. Constructing a floor field adaptively
from monitoring the situation near the critical points can help, especially with
the density distribution. A remaining problem of CA methods is the unisotropy
introduced. This can be reduced by using hexagonal cells or Moore neighbour-
hood. The guidance near corners should be possible for these approaches, too,
but has not yet been tried. Both approaches will be a topic of further research.
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Braunsfeld (1971)
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Abstract. The problem of analysis of traffic jams performed by the Cel-
lular Automata oriented techniques is widely studied since the beginning
of 90th and the seminal paper of Nagel and Schreckenberg. The typical
approach is based on the one to one relation between the sizes of cell and
the particular vehicle. We propose to take into account the smaller size
of cells what makes possible to consider more densely distributed values
of typical features of vehicles like velocity or acceleration. On the other
hand, the decrease of cell size can lead to the model which is very similar
to the continuous one. We think that our approach does not exceed the
limits sensible for CA.

1 Introduction

Since the pioneering work by Nagel and Schreckenberg [1] Cellular Automata was
developed such that they now are one of the most important tools of modelling
road traffic. Although the history of NaSch-based approaches is long and the
number of models were used to study the traffic in a lot of different conditions,
it seems that some new effects can still be presented.

In our paper we pay attention to the problem of small grids. In the seminal
approach, the vehicle occupies one cell. This assumption causes a lot of effects.
Such unified view of traffic is certainly easy to manage but disables to take into
account many typical features describing the process. We can enlist here espe-
cially the diversity of vehicles, the abilities of drivers, the granularity of changes
of physical quantities (velocity, acceleration, deceleration). The technique is cer-
tainly not new. Earlier for example Liu [2] shown the effect of small grid on the
choice of optimal route between two points, in our earlier paper [3] some remarks
concerning small grids were used to study the pedestrian motion. On the other
hand we have to point out that a notion of “small grid” is often understood as
an internal structure in the grid of grids (see e.g. [4]).

In the paper we present mainly some basic curves, like fundamental diagrams
prepared for the selected features of system. This, very basic and simple, app-
roach makes possible to study the effect itself and to distinguish it from a lot of
features which can follow the proposed change and are mentioned in the previous
paragraph.
c© Springer Nature Switzerland AG 2018
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After some basic figures we show the effect of assumed changes on some prac-
tical problem. We choose very popular issue of “on-ramp” motion. The problem
is a particular case of a study of vehicles motion on intersections [5,6] and has
been studied in different contexts almost from the beginning of NaSch model
up today [7–10].

2 Model

Although all results presented in this paper are shown for the constant param-
eters of vehicles, the model is generalized in such a form that every vehicle is
characterized by a set of properties. When enumerating them we can mention:

– position on a road - the number of the front cell (appropriate for the direction
of vehicle) covered by a vehicle

– size (size) - the amount of cells covered by a vehicle
– velocity - the amount of cells, the vehicle will be moved during the next time

step
– maximal velocity (vmax) - the maximal velocity achievable by the vehicle
– acceleration (acc) - the maximal positive change of vehicle’s velocity during

one time step
– deceleration (dec) - the maximal negative change of vehicle’s velocity during

one time step
– probability of random change velocity (prnd) - probability of random loss of

velocity
– maximal value of random change velocity (vrnd) - maximal value of random

loss of velocity

The majority of features of model are the same as of the original one. The
motion of vehicle is performed according to the current value of velocity, the
random change of velocity is performed with respect to the above listed values.
The only difference when taking into account the random change is that its value
can be greater than 1, what characterized the seminal model [1].

The more important modifications concern the change of velocity. In the
typical CA-related model the change is performed in the way that the increase
(acceleration) takes value 1 and the decrease (deceleration) can be even infinite.
The value of velocity can decline from some value to zero in one time step.
When using the model with smaller cells we have to better consider the distance
between the vehicle and the foregoing one. So, if the distance allows for accelera-
tion, the value of velocity is increased and it reaches either the maximal defined
for the particular type of vehicle or the maximal value following the physical
restrictions on the road. Respectively, the process of deceleration is organized
in the way that it is possible to adjust it taking the value of change from the
interval [0, deceleration].

The crucial parameters and results are presented as the same values as in
the typical papers. However, due to changes introduced in the possibilities of
different vehicles creation, we have to slightly redefine the well known formulas.
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Fig. 1. Fundamental diagram for different maximal velocities in base model and dif-
ferent random velocity change probability.

The density, corresponding typically to a number of vehicles related to the length
of the road averaged over the time of simulation:

ρ̄T =
1
T

∑

T

ni(t) (1)

is now understood as:

ρ̄ = ρ̄TL =
1

T × L

∑

T

∑

road

sizei(t). (2)

L means here the length of road (all roads) on which the density is determined.
The formula 1 corresponds directly to the Nagel-Schreckenberg model and for-
mulas, so ρ̄T is the density on a fixed site i where ni may be 0 or 1, dependently
on the absence or presence of the vehicle at the ith position. In our approach
we calculate the total density on the road by summing also all sizes of vehicles
on the road. Such a formula makes it possible to generalize the model especially
when taking into account different vehicles’ sizes. The flow (also averaged) is
defined:

q̄T =
1
T

∑

T

ni,i+1(t) (3)

with ni,i+1(t) = 1 if the car motion is detected between cells numbered i and
i + 1. We modify the formula 3 averaging over time as well as over the whole
road:

q̄ = q̄TL =
1

T × L

∑

T

∑

i∈road

ni,i+1(t), (4)
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Fig. 2. Fundamental diagram for different accelerations

where i enumerates cells on road or on the passage between roads. This last
concept will be in more detail described in the next section when some problems
related to the motion on ramp will be studied.

In all simulations presented in the paper we simplify the model by introducing
some assumptions. As the most important one it should be noticed that we do
not take into account any distribution of different types of vehicles. During every
simulation process we assume the same parameters of all vehicles. This makes it
possible to analyze the effects which are related to the model itself and not to the
variety of objects. The first set of results are shown for the simple construction
of road with the length corresponding to about 5 km. We ensure that the density
on the road is constant during the whole simulation run. For the second set of
results we use the specially prepared organization of four roads which will be
described later.

3 Results

In order to test the model we start from the simple simulation of base model
which can be described by means of properties described as {size = 1, vmax ∈
{1, 2, 3, 4, 5}, acc = 1, dec = ∞, prnd ∈ {0.25, 0.5}, vrnd = 1}. Certainly, the
values of probabilities are relatively high but such values allow to distinguish
the differences. The base model used as the maximal velocity value vmax = 5
which corresponds to the typical maximal velocity in highway conditions (about
130 km/h). The larger set of values makes it possible to try to use the model
for different conditions. The similar approach was used e.g. in our earlier paper
devoted to study the behavior of vehicles at different forms of intersections [5].

The results are shown in Fig. 1.
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Fig. 3. Fundamental diagram for different decelerations (JW23/35)

Since the plot is well known we do not pay a lot of attention to the visi-
ble dependencies. We just want to notice that the effect of shift of position of
maximal flow and the decrease of the value of maximal flow is observed with
decreasing maximal velocity as well as the large decrease of maximal flow with
the strengthening of random effects. This last effect can be even very strong. By
using the two presented values of probabilities we can double the top value of
flow.

The first case which shows the effects of the model presented in the paper
on some fundamental characteristics concerns the process of acceleration. When
preparing the Fig. 2 we use the model of vehicle with such tuple of features:
{size = 10, vmax = 50, prnd = 0.5, vrnd = 10}. When assuming the size of
vehicle being the length of typical car and the length of time step equal 1 s we can
estimate the other values as: {vmax = 90 km/h, vrnd = −5m/s2}. These values
correspond to the typical single-track and to the very rapid sudden change of
velocity which, applied to the full process of stopping, would lead to the little bit
exaggerated value of braking distance of about 22.4 m from the velocity of about
50 km/h. In the figure we use the values of acceleration from 1 up to 50. These
highest values correspond to the parameters of such vehicles like those from
formula 1. It means that taking these values into account is completely unrealistic
for the typical traffic but allows to consider extremely high parameters.

For the typical cars the value of acceleration would be, in the conditions of
current simulation, in the range about [2, 6]. So it corresponds to the three lower
set of points in the figure. As we can see the highest flow is obtained for the
similar for this range of accelerations values of densities around 0.6. This value
means almost total occupation of the road with the separation between cars
being unsafely small. The highest value is approximately proportional to the
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Fig. 4. Fundamental diagram for different vehicle properties (JW29/44)

value of acceleration. With increasing acceleration, the highest value increases
but the dependence is not further proportional and the maximum point shifts
to the lower densities.

The data presented in Fig. 3 are created from one of the plots of Fig. 2. We
take the curve for acc = 10 and realign the value of deceleration. As it has
been mentioned earlier the typical values for passenger cars are those less than
dec = 10. By showing the values from dec = 20 down to dec = 1 allows to observe
the change introduced by decreasing deceleration value. Certainly the differences
are mainly the effect of the technique of slowing down when approaching the car
in front. The crucial observation is that the change introduced does not influence
strongly the value of density where maximal flow is observed. Indeed, just for
dec = 1 the significant shift can be noticed.

Finally, we are going to show the influence of the single change of parameter.
We select the initial parameters of cars as {size = 5, vmax = 24, acc = 4, dec =
10, prnd = 0.0, vrnd = 0}. When taking into account that the cell size equals 0.5 m
this parameters correspond to the very small car in city conditions. We try then
to increase the size, maximal velocity, acceleration and deceleration. The results
are shown in Fig. 4. We present the results for values of acceleration up to 50.
It means that once more we have to mention the relatively unrealistic character
of upper limit of assumed value. The value acc = 50 corresponds to the time
of acceleration from 0 to 100 km/h lower than 2 s. An interesting information
is that the shape of all dependencies is colinear above ρ > 0.1. The differences
are visible only below this value. The change of velocity does not cause any
significant change and while increasing the size we decrease the flow. We can
however lead to the increase of flow by using smaller cars or by increasing the



202 J. Wójtowicz et al.

strength of brakes. All these results are certainly obtained when assuming the
ideal driving technique.

In order to show the differences following the introduced changes in some
practical case, we use the well known case of ramp. The vehicles try to enter
the highway traffic through the special lane parallel to the lanes of highway. In
our approach we distinguish 4 different sections of roads. They are labeled with
numbers and understood as follows:

1. the section of highway before the common part, this section will be called
“main”

2. the section of highway along the common part with ramp
3. the section of access road before the common part, this section will be called

“approach”
4. the ramp - the section of access road along the highway.

The schematic view of the configuration is shown in Fig. 5.

Fig. 5. The schematic view of different sections of ramp-type junction with the pre-
sentation of notation used in the paper.

The densities of vehicles at the roads will be defined according to the formula
2 on the main and approach section of both roads. We assume that the vehicles
run on the main road with the maximal velocity permissible on the polish high-
ways, i.e. 130 km/h and on the access road they run with the velocity 40 km/h.
The difference between these velocities seems to be relatively large nevertheless
it corresponds to the real conditions on polish roads.

The most important element of this part of model is certainly the existence
of algorithms which ensure the save behavior of vehicles when changing the lane
and entering the highway traffic. There are mainly two general aspects which
are taken into account when analyzing this phase.

Firstly, we approximate the behavior of drivers in such a way that the driver
with priority is not forced to dynamically brake the vehicle. This fact entrails that
several options have to be included in the algorithm. There are certainly lot of
factors influencing the characteristic of braking procedure: the type of vehicle,
the type of tires, the time of driver’s reaction, the road surface and weather
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conditions. We decided to set the deceleration value as the one corresponding to
almost ideal case when the stopping of car running with velocity ∼ 15 m/s takes
place on the segment of ∼ 25 m. We consider the dynamic braking as the one
when the vehicle slows down from the initial velocity by a factor of 10% in the
three successive time steps. This limitation seems to make possible that driving
would be relatively smooth. In our model we try to anticipate the behavior of
drivers three time steps forward. The second factor is the analysis of different
situations between the vehicles on neighboring lanes (ramp and the highway’s
lane). Here the numerous situations are taken into account and their detailed
presentation exceeds the scope of this paper.

In the paper there are not considered the differences of sizes of vehicles. It
is clear that by taking into account some distributions of properties of different
road users, as it is in reality, we can force significant differences in obtained
characteristics. We intentionally want to omit the confusion coming from the
common consideration of different effects. Concerning the technique of driving
we have also to mention that every driver aims to change the lane as quickly as
possible even with the relatively small velocity.

We show two figures related to the problem, Fig. 6 shows the average velocity
of vehicles moving from the ramp to the highway’s lane, Fig. 7 - the flow of this
process. The figures are prepared for 8 sets of possible pair of parameters deter-
mining the organization of road (ramp length Lramp ∈ {200 m, 300 m, 400 m,
500 m}) as well as the organization of simulation (cell size, size ∈ {0.5 m, 2 m}).
The simulations are performed for 400 different pairs of densities. The density of
vehicles on the main as well as access road change in the interval (0.01, 0.2) with
the step 0.01. The selected range of densities can be easily related to the realistic
values. Considering the typical size of vehicle as 5 m and assuming the maximal
density 0.2 we obtain the spacing between vehicles as 20 m. It is certainly not
safe in e,g, highway conditions but clearly sets the upper limit for the density
value. Finally, for every configuration the simulation is 10000 time steps long.

The crucial effect we want to observe in the figures is the dependence of
obtained surfaces on the parameters of simulation. Somehow helpful is the pre-
sentation of results for different ramp lengths. The plot for velocities (Fig. 6)
shows that there exist the curve in the plane of densities where the transfer
between ramp and highway starts. An interesting effect is that the transfer
zeroes for large densities on access road and the value of threshold is larger
for larger densities on main road. The crucial observation concerns however the
differences between both plots. It is explicitly seen that the size of single cell
has a decisive influence on the shape of surface. There are smaller differences
following such features like the length of ramp than those caused by the some
technical assumption.

We also have to point out that the scale of z-axis is different and this differ-
ence is not an effect of rescaled cell length. The velocities of transfer are higher
for larger cells so the real velocities expressed in physical units are still more
high. In order to show the presented relation in comparable scale we show also
the transfer flows in Fig. 7. The figure confirms the dependence of the results on
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Fig. 6. The average velocity of vehicles changing lane between ramp and highway. The
upper plot - cell size 0.5 m, the lower one 2 m. The line type corresponds to the length
of ramp: thin solid line - Lramp = 200m, thick solid line - Lramp = 300 m, thin dashed
line - Lramp = 400 m, thick dashed line - Lramp = 500m,
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Fig. 7. The flow between ramp and highway. The organization of figure and the descrip-
tion of plots are the same as in Fig. 6

the size of cell. Although the characteristics are more similar one to another on
both plots, the slope is once more significantly different. We must also emphasize
the large deviations of particular measurements in the Figures. This is often due
to jams rising at the end of ramp when driver was unable to change the lane.
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4 Conclusions

In the paper we presented the model of traffic based on the small sizes of cells
used to construct the roads. The figures, especially Figs. 6 and 7 shows explicitly
that in the same road conditions, the choice of technical parameters of simu-
lation plays a substantial role influencing the result. Considering the velocity
of changing the lane as well as the flow we can observe different effects. The
threshold by which the flow starts as well as the slope of characteristics depends
on the size of cells. It means that we have to carefully study the effect in order
to remove possible artifacts related to the parameters of modelling.

The future work can be lead in many directions. First of all we have to check
the features just mentioned here in more detail. The surfaces shown in Figs. 6 and
7 were prepared for 10000 time steps what corresponds to relatively long time.
But maybe some extend of simulation time will produce more smooth character-
istics. The main direction is certainly the incorporation of real features of road
motion, like the technique of driving of particular road user or the distribution
of different vehicles.
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Abstract. In the article the influence of corners on the path on discrete-
continuous pedestrian dynamics model have been discussed. Angles from
classic 90◦ case study to “Z”-shaped geometry were considered. “Z”-
shaped geometry is peculiar for modern shopping and entertainment
centers, when we consider way from the stadium to outer perimeter.

Keywords: Pedestrian dynamics · Simulation · Turns on the path

1 Introduction

People movement around turns differs from movement along straight pathes.
It is strongly dependent on local density. One can find variety of lengthes of
trajectories, different velocities and not homogeneous density in the area around
the corner (in front of a turn, just in the turn, and after the turn). Turns may shift
laminar flow to turbulent depending on local density. But turns are inevitable
parts of evacuation ways in every building. So it is very important to simulate
movement around turns in a correct way to estimate travel/evacuation time
correctly.

There are number of real experiments with investigation of movement around
the turns. Real data is necessary to understand phenomenon and to calibrate
and validate pedestrian movement mathematical models. In the project Hermes
there were investigated movement around the 90◦ corner in a corridor 2.4 m
in width, T-junction, movement from stadium tribunes [5–7,15]. Trajectories,
full flow rate, speeds in front of a turn and after the turn were observed and
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connecting with density. In [8–11] a corridor 1.5 m in width and turns with
angles 0◦, 45◦, 90◦ and 180◦ are considered. Movement trajectories, density and
speed distribution over an investigation area, speed and flow rate for different
initial densities were matter of investigation.

The following inferences come from real experiments. Flow rate and density
after the turn is less then before. Speed is higher after the turn. Trajectories
tend closer to inner angle. Geometries are proper for office buildings and similar
ones and it gives restrictions for density which varies no higher then 3 1/m2.

One approach to simulate pedestrian movement around turns correctly by
cellular automata floor field (CA FF) models is to change a method to calculate
the floor field S [13–15]. The field S give the shortest distance from each node.
Such approach is justified for high densities. It allows to realize so called the
shortest time [1,12]. But there are many situations when it does not work, and
the strategy of the shortest path should be pronounced. Moreover a real sizes of
the simulation area influence on flow dynamics, and it is pronounced for large
facilities as stadiums.

Section 2 presents a discrete-continuous model which is realized in the com-
puter module SigmaEva. Section 3 contains the description of tests, simulation
experiments, and results obtained. Different angles from classic 90◦ case study
to “Z”-shaped geometry were considered. We conclude with a summary.

2 Description of the Model

In this discrete-continuous model people (particles) move in a continuous space
(in this sense model is continuous), but number of directions where particles may
move is limited and predetermined by a user (in this sense model is discrete).

2.1 Space and Initial Conditions

A continuous modeling space Ω ∈ R2 and an infrastructure (obstacles) are
known. People may move to (and on) free space only. To orient particles use the
static floor field S [17]. A target point of each pedestrian is an assigned exit.

Shape of each particle is a disk with diameter di, initial positions of particles
are given by coordinates of disks’ centers xi(0) = (x1

i (0), x2
i (0)), i = 1, N , N

– number of particles (it is assumed that these are coordinates of body’s mass
center projection). Each particle is assigned with the free movement speed1 v0

i ,
square of projection, mobility group. It is also assumed that while moving the
speed of any particular person does not exceed the maximal value (free movement
speed), and speed of each person is controlled in accordance with local density.

Each time step t each particle i may move in one of the predetermined direc-
tions e i(t) ∈ {eα(t), α = i = 1, q}, q – the number of directions, model param-
eter (for example, a set of directions uniformly distributed around the circle
will be considered here {eα(t), α = 1, q} = {(cos 2π

q α, sin 2π
q α)α = i = 1, q}).

Particles that cross target line leave the modeling space.
1 We assume that free movement speed is random normal distributed value with some

mathematical expectation and dispersion [18,19].
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2.2 Preliminary Calculations

To model directed movement a “map” that stores the information on the shortest
distance to the nearest exit is used. The unit of this distance is meters, [m]. Such
map is saved in static floor field S which is is imported from the FF CA model
[17]. In our model this field increases radially from the exit; and it is zero in the
exit(s) line(s). It does not change with time and is independent of the presence of
the particles. Distance to the exit from arbitrary point is given by bidirectional
interpolation among nearest nodes.

2.3 Movement Equation

For each time instant t, the coordinates of i-th particle are given by the formula:

x i(t) = x i(t − Δt) + vi(t)e i(t)Δt, i = 1, N, (1)

where x i (t − Δt) denotes the particle’s position at time t − Δt; vi(t) is the
particle’s current speed measures in m/s; ei(t) is the unit direction vector. The
time shift Δt = 0.25 s is assumed to be fixed, Fig. 1.

Fig. 1. Left: movement scheme. Right: visibility area.

Unknown values in (1) for every time step for each particle are the speed
vi(t) and the direction ei (t). A probability approach is used to find direction for
the next step. A procedure to calculate probabilities to move in each direction
is adopted from previously presented stochastic CA FF model [1].

We propose to get the speed from experimental data (fundamental diagram),
for example [18,19], according to the local density in the direction chosen.
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2.4 Choosing Movement Direction

In this discrete-continuous model we took inspiration from our previously pre-
sented stochastic CA FF model [1,4]. All predetermined directions for every
particle for each time step are assigned with some probability to move, and
direction is chosen according to the probability distribution obtained.

Probabilities in the model are not static and vary dynamically and issued on
the following basis. Pedestrians keep themselves at a certain distance from other
people and obstacles. The tighter the people flow and the more in a hurry a
pedestrian is, the smaller this distance. During movement, people follow at least
two strategies: the shortest path and the shortest time. The highest probability
is given to direction that has got most preferable conditions for movement.

Let i-th particle has current coordinate x i (t−Δt). The probability of move-
ment from this position to the direction eα

i (t), α = 1, q, during the next time
step is:

pi
α(t) =

p̂i
α(t)

Norm

=
exp

[
ki

SΔSα

]
exp

[−ki
P F (r∗

α)
]
exp

[
−ki

W (1 − r∗
α

r ) 1(ΔSα)
]

Norm
W

(
r∗
α − di

2

)
,

where Norm =
q∑

α=1
p̂i

α(t).

Visibility radius r (r >= max {di/2}), [m], is model parameter representing the
maximum distance at which people and obstacles influence on the probability in
the given direction. It may be reduced to a value r∗

α, in Fig. 1 (right) grey area
is obstacle, and visibility radius r is reduced up to r∗

α in this direction. People
density F (r∗

α) is estimated in the visibility area. 1(·) is the Heaviside unit step
function.

The model parameter ki
S > 0 is the field S-sensitive parameter, ki

W > 0 is
wall-sensitive parameter, ki

P > 0 is density-sensitive parameter.
ΔSα = S(t−Δt)−Sα, where S(t−Δt) is the static floor field in the coordinate

x i (t−Δt), Sα is the static floor field in the coordinate x = x i (t−Δt)+0.1 eα
i (t).

With ΔSα moving to the target point is controlled.

W
(
r∗
α − di

2

)
=

{
1, r∗

α − di

2 > w;
0, r∗

α − di

2
<= w.

The function W (·) controls approaching

to obstacles, model parameter w ∈ [0, 0.1], [m].
If Norm = 0 than particle does not leave present position. If Norm �= 0 than

required direction ei (t) is considered as discrete random value with distribution
that is given by transition probabilities obtained. Exact direction ei (t) = e α̂

i (t)
is determined in accordance with standard procedure for discrete random values.

2.5 Speed Calculation

Person’s speed is density dependent [18–21]. We assume that only conditions in
front of the person influence on speed. It is motivated by the front line effect
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(that is well pronounced while flow moves in open boundary conditions) in a
dense people mass. It results in the diffusion of the flow. Thus, only density
Fi(α̂) in the direction chosen ei (t) = e α̂

i (t) is required to determine the speed.
The current speed of the particle may be calculated, for instance, in the way
[18,19]:

vi(t) = vα̂
i (t) =

{
v0

i (1 − a ln Fi(α̂)
F 0 ), Fi(α̂) > F 0;

v0
i , Fi(α̂) ≤ F 0.

(2)

where F 0 is the limit people density under which free movement is possible;
a = 0, 295 is for horizontal way; a = 0, 4, for down stairs; a = 0, 305, for upstairs.

Numerical procedures which is used to estimate local density is presented
in [3]. An area where density is determined is reduced by chosen direction and
visibility area which is presented in Fig. 1.

2.6 Model Parameters

There are non-dimensional model parameters: ki
S , ki

W , ki
P . The parameter ki

S > 0
is field S-sensitive parameter which can be interpreted as knowledge of the short-
est way to the target or a wish to move to the target. The equality ki

S = 0 means
that the pedestrian ignore the information from field S and move randomly. The
higher ki

S , the better directed the movement.
Parameter ki

W > 0 is wall-sensitive parameter which determines the effect of
walls and obstacles. We assume that people avoid obstacles only moving towards
the target. When ΔSα̂ < 0 approaching the obstacles is not excluded.

Parameter ki
P > 0 is the density-sensitive parameter which determines the

effect of the people density. The higher parameter ki
P , the more pronounced the

shortest time strategy for the person.
Note that probabilities are density adaptive; the low people density lowers

the effect of density-sensitive term, and the probability of the shortest path
strategy increases automatically. But this automatic property is not enough.
Ideally a time-spatial adaptation for model parameters is required. There are
time-spatial conditions when it is necessary to adapt values of ki

S , ki
P and ki

W .
Turns provide just such spatial conditions when density-dependant correction of
the model parameters is required.

3 Case Studies

An aim of the section is to consider behaviour of the discrete-continuous model
presented in special geometrical situations with turns. Angles of classic 90◦ (“L”-
shaped geometry, Figs. 2, 4) and “Z”-shaped geometry (Figs. 3, 5) were consid-
ered. “Z”-shaped geometry is peculiar for modern shopping and entertainment
centers, stadiums. There were considered similar geometries of two scales.
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0=
W_k ,0=

P_k
2=

W_k,6 =
P_k

6=
W _k,01 =

P_k

0 1.90 m/s

0 1.88 m/s

0 1.87 m/s

Fig. 2. “L”-geometry (small), kS = 40. Position of the particles at t = 30 s and t = 90 s,
and total intensity for three pairs of kP , kW .

3.1 Description of the Simulation Conditions

We considered “L”-shaped and “Z”-shaped corridors of two width 2 m (small)
and 8 m (large) in sizes. Initially (t = 0) a set of initial numbers of people
(particles) N = 300 and N = 1200 were placed in a square room. Square rooms
played a role of a source of particles which move to the connected “L”-shaped
and “Z”-shaped corridors.

Each person was assigned with a free movement speed of v0
1 = 1, 66 m/s. All

persons were assigned with the same square of projection 0, 125 m2.
There were considered a set of values of the model parameters2. They give an

opportunity to vary dynamics of the model from only the shortest path strategy
(kS = 40, r = 4 m, kP = 0, kW = 0) to combination of the strategies – the
shortest path and the shortest time (kS = 40, r = 4 m, kP > 0, kW > 0), and
investigate a force of parameters influence.

2 All parameters were unified for all involved particles.



The Impact of Different Angle Paths 213

0=
W_k,0=

P_ k
2=

W_k,6=
P_k

6 =
W_k,0 1=

P_k
0 1.87 m/s

0 1.87 m/s

0 1.99 m/s

Fig. 3. “Z”-geometry (small), kS = 40. Position of the particles at t = 30 s and t = 90 s,
and total intensity for three pairs of kP , kW .

3.2 Simulation Results

The expected dynamics of people flow for geometries considered are the follow-
ing. In “L”-geometry people tend to block those who move closer to inner angle.
The tighter the flow, the more pronounced this effect. Thus people move faster
along the outer perimeter of the turn trajectory. A congestion before turn is
inevitable and density dependent. “Z”-geometry consists of three parts. Before
the first turn the same effect is pronounced. And then there is a transforma-
tion of the flow because inner angle is changed. Those people who moved faster
along the outer perimeter became blocked. Congestions before the both turns
are inevitable and density dependent.

Qualitatively such description is independent on geometry linear sizes. But
model dynamics is dependent and model parameters play important role.

For wide range of evacuation tasks which intend directed movement, kS = 40
is normal and provides realisation of the shortest path strategy. A turn radius is
the smallest. To have a goal not to disturb such strategy other parameter should
be zero: kP = 0, kW = 0, see the first line of pictures in Figs. 2, 3, 4 and 5.
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0=
W_k,0=

P_k
2=

W_k,6 =
P _k

6=
W_k,01=

P_k

0 1.98 m/s

0 1.92 m/s

0 1.92 m/s

Fig. 4. “L”-geometry (large), kS = 40. Position of the particles at t = 30 s and t = 90 s,
and total intensity for three pairs of kP , kW .

The worthiest (not realistic) dynamics is in these pictures. Particle are colored
according to local speed, black color is for zero value. Thus particles not move
mainly and wait for the shortest path to became free.

Parameter ki
W > 0 is wall-sensitive parameter which determines the effect of

walls and obstacles. Making detours around the angle (moving along the outer
trajectory) implies avoiding the walls. At the same time density perceptibility
should be activated to avoid congestions. The way to do it is to “turn-on” the
density-sensitive parameter ki

P > 0.
One can observe influence of two pairs of parameters kP = 6, kW = 2 and

kP = 10, kW = 6 and their manifestation for “L”-geometry and “Z”-geometry
for small and large scales. See the second and the third lines of pictures in Figs. 2,
3, 4 and 5 correspondingly. The first pair (kP = 6, kW = 2) is good for small
scale (Figs. 2 and 3) and the other pair (kP = 10, kW = 6) is good for the large
scale (Figs. 4 and 5). It is pronounced in an expected spatial distribution of the
particles over the simulation area and dynamics which is shown by speed colors.
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W_k,0=
P_k

=0
W_k,6=

P_k
=2

W_k, 01=
P _k

=6

0 1.95 m/s

0 1.95 m/s

0 1.92 m/s

Fig. 5. “Z”-geometry (large), kS = 40. Position of the particles at t = 30 s and t = 90 s,
and total intensity for three pairs of kP , kW .

The opposite correspondences does not work due to unsuitable combination of
linear sizes and values of model parameters.

4 Conclusion

Model parameters kP and kW allows to tune dynamics of the model. And move-
ment along “L”-shaped geometry and “Z”-shaped geometry could be simulated
in a proper way. But as it is now clear these parameters are not only density-
dependent they are scale-dependant.

Very often model parameters are calibrated for one scale of geometry but
they are not good for the larger ones. And there are still thing to be done to
improve quality of the simulation of pedestrian dynamics. It is concern not only
of the model presented but other models as well. A new point for investigation is
to develop a scale-sensitive algorithms for self-adaptation of model parameters.
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Abstract. The paper presents a model of a two-way one-lane road with
loading/unloading bays. The developed model is based on the theory
of cellular automata. The model reflects the real behaviour of drivers
described in the literature and observed in reality. A micro-simulator was
developed to present the measurement results. The model was compared
with the one-way two-lane road with loading/unloading bays model
described in the literature.

Keywords: Cellular automata (CA) · Computer simulation
Urban freight transport (UFT)

1 Introduction

Analysis of the effectiveness of freight deliveries in cities is particularly impor-
tance due to the number of interested parties, narrow areas for freight delivery
or environmental problems like poor air quality, noise and greenhouse gas emis-
sions. The analysis of the impact of urban freight transport (UFT) is the subject
of research [1–4]. Particularly important is the fact that the attempt to improve
the situation in the supply of goods often takes place at the expense of the inhab-
itants of a given area of the city [5]. For example, designating space for loading
and unloading in city centres often results in narrowing the road or reducing the
number of public parking spaces. Narrowing the road reduces the speed of vehi-
cles which, in turn, leads to a smaller number of vehicles that will pass through
the area. This aspect will be further referred to as reducing the capacity of the
road.

Lack of data on traffic volumes, vehicle classifications, car routes and deliver-
ies contributes to difficulties in analysing the effectiveness of the freight transport
system and its impact on the urban environment [6]. Computer simulation can
be helpful in this area of research. Many mathematical models for traffic mod-
elling have been prepared and the investigation of behaviour of road users have
been checked [7–10].

This article presents the model of unloading bays for two-way one-lane roads,
which in city centres are much more common than one-way two-lane roads anal-
ysed in [11,12]. Additionally a comparison between both models has been done.
c© Springer Nature Switzerland AG 2018
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2 Related Work

There are various simulation solutions related to traffic research [13–15]. Among
the proposed models CA methods are used as simulation techniques for complex
traffic. The ability to manage with various types of traffic and high computa-
tional efficiency made CA a widely used tool for simulation of traffic nature.
Basic mathematical models of car traffic, based on CA, are presented in [16–21].

The simple and effective computational method of traffic modelling was pro-
posed by Nagel and Schreckenberg [16]. The authors formulated a stochastic
model (NaSch) of a cellular automaton for single-lane roads. In the developed
model time and space are discretized, and due to the low computational complex-
ity, the model can be used to model a large number of vehicles [22]. The model
was extended and discussed in further studies [23–25]. The original assump-
tions of the NaSch model have been maintained. Additionally a second lane of
road and the lane-changing possibility have been introduced. The symmetry and
asymmetry of traffic flow were also studied.

A hybrid approach, a graph-based cellular automaton model has been done
and the comparison to previous models has been presented [26]. Studies have
shown that the computational complexity of such approach was much greater
than the computational complexity of classic CA-based models.

The literature also includes articles analysing the use of loading/unloading
bays. The most important benefit of loading/unloading bay is its impact on
reducing traffic congestion, and consequently a perceptible reduction of pollutant
emissions [12,27]. Gatta and Marcussi [28] investigate the impact of loading and
unloading bays number, the probability of finding bays free and entrance fees and
they conclude that these aspects have an influence on retailers’ and transport
providers’ utilities.

3 Proposed Approach

The CA paradigm stems from the attempts made by scientists to develop seem-
ingly complicated processes in the form of a series of simple local decisions [29].
The implementation of that paradigm consists in presenting the analysed space
in the form of a homogeneous network of cells. The decision at the cell level is
made on the basis of the transition function, which depends on the analysed cell
and its surroundings (i.e. adjacent cells). Each cell takes one state from a finite
set of states. Adjacent cells are cells connected to a specific cell and they do not
change [30]. The time in the model is discreet. Due to the iterative application
of the rules, the CA process coincides with the description of the global system
behaviour [31]. Moreover, as Was and Sirakoulis indicate, CA can be considered
as a mature computational system [32].

The proposed model is a discreet, non-deterministic model that extends the
well-known NaSch model [16]. The model was adapted to the needs of parking
analysis and departure from unloading bays located on the two-way one-lane
road (Fig. 1). Elements describing the behaviour of truck drivers (willingness to
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park in the unloading bay and a parameter describing the possibility of joining
the traffic) were introduced.

Fig. 1. Schematic sketch of the road segment.

The model includes the occurrence of two types of vehicles with different
characteristics - passenger vehicles and delivery vehicles. In Fig. 1 a rectangle
with a contour symbolizes a delivery vehicle, which has a lower maximum speed
compared to a passenger vehicle. The numbers on cars indicate the current vehi-
cle speed, i - the cell number, j - the road number, dj,i - the distance to the
nearest preceding vehicle, ubj,i - the distance of the vehicle to the nearest unload-
ing bay, cj,i - the distance of the vehicle located in the i-th cell of road numbered
j to the car before it on the adjacent road lane in the opposite direction.

The “2-way-road-ub” model simulates a situation in which the deliverer is
forced to stop the vehicle on the road lane in order to carry out the delivery.
The road fragment (the cell of the CA indicated as X) is the unloading bay
(Fig. 1). If the unloading bay is not occupied by another freight vehicle, the
remaining vehicles can pass through this part of the road without any restriction.
If, however, the vehicle has stopped in the loading/unloading bay, the remaining
vehicles must avoid this part of the road. The transition function of this CA
consists of six steps, pointed below.

Step 1 – Parking in the Unloading Bay. At this stage, a case that “the
unloading bay is free” is considered. If “the unloading bay is busy” then step 2
is realised. In addition, the following parameters have been defined whose values
may vary and allow observation of the simulated phenomenon:

– desire - desire (willingness) to stop the car in the unloading bay - value 1
means that the driver wants to park in the bay (0 as the opposite). Individual
vehicles will get a value of 1 with a certain probability, which symbolizes the
fact that not every car is entitled to park in such place.

– ub - the distance from which the unloading bay is visible. This parameter,
in addition, allows to enforce the vehicle to slow down systematically before
stopping completely on the marked cell.

The parking process (Fig. 2) can be written as follows: if the driver wants to
park in the bay (the bay is within sight and is empty), he/she reduces the speed
(to a minimum of 1) and slowly drives up:
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Fig. 2. Particular steps of the CA operation for parking in the unloading bay, ub = 3,
ubtj,i = 2. Delivery vehicle is a vehicle with contour. The light gray rectangles show
where vehicles have been in the previous iteration.

desiretj,i = 1 and ubtj,i <= ub and vtj,i > min − (dtj,i, ub
t
j,i),

⇒ vt+1
j,i = min(dtj,i, ub

t
j,i),

(1)

desiretj,i = 1 and ubtj,i <= ub and vtj,i = 1 ⇒ vt+1
j,i = 1, (2)

When the vehicle approaches the bay area (ubtj,i = 0), the vehicle stops:

desiretj,i = 1 and ubtj,i = 0 and vtj,i >= 1 ⇒ vt+1
j,i = 0, (3)

Stopping in the unloading bay area results in the desire parameter getting
0:

ubtj,i = 0 and vtj,i = 0 ⇒ desiretj,i = 0, (4)

After a certain time (the unloading time), the vehicle leaves the unloading
bay increasing its speed, according to the third step of the NaSch model – accel-
eration.

All parameter values are presented in Table 1.
If the vehicle approaches a loading/unloading bay occupied by another vehi-

cle, it performs a maneuver to overtake the unloading bay (Step 2).

Step 2 – Overtaking the Unloading Bay. The unloading bay is overtaken
when another vehicle is parked in it. If the unloading bay is free, vehicles can pass
over this part of the road (ignoring this area). In the case the bay is occupied,
the vehicle will change the road lane if it is possible to overtake the bay (there
are enough free CA cells on the opposite lane - the driver has sufficient courage)
and the unloading bay is visible for the vehicle:

ubtj,i <=ub and c + ubtj,i + vtj,i =< ctj,i and c + vtj,i =< ct+1
j,i

⇒ jt+1 = (jt mod 2) + 1 and overtaket+1
j,i = 1,

(5)
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where: ub – the distance from which the unloading bay is visible, ubtj,i – the
distance of the vehicle located in the i-th cell of the road numbered j to the
nearest unloading bay located on its lane, c – driver’s courage parameter, ctj,i
– the distance of the vehicle located in the i-th cell of the road numbered j to
the nearest vehicle located on opposite lane, ct+1

j,i – the predicted distance of a
vehicle in the i-th cell of the road numbered j to the nearest vehicle located on
opposite lane, bj,i - the distance between car which is overtaking the unloading
bay and that bay, overtaketj,i - the variable indicating that the car bypasses the
unloading bay, t - the moment of time.

In the next iteration, when the car has passed the unloading bay, it has to
change the road lane again:

overtaketj,i = 1 and btj,i >= 0

⇒ jt+1 = (jt mod 2) + 1 and overtaket+1
j,i = 0,

(6)

Figure 3 shows the case of this step.

Fig. 3. Visualization of the step 2 – overtaking the unloading bay.

The next steps of the developed model are consistent with the NaSch model:
acceleration, braking, random events and shifts.

Step 3 – Acceleration.

vtj,i < vmax ⇒ vt+1
j,i = vtj,i + 1, (7)

where: vj,i – velocity of the car in the i-th cell of the road numbered j, t - time.

Step 4 – Breaking.

vtj,i > min − (dtj,i, ub
t
j,i) ⇒ vt+1

j,i = min − (dtj,i, ub
t
j,i), (8)

where: dj,i – the distance between the cars on the same lane, ubj,i – the distance
of the car in the i-th cell of the road numbered j to the nearest loading/unloading
bay located on its lane.
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Step 5 – Randomization. This step corresponds to the additional, random
appearing lane obstructions and it is described as:

vtj,i > 0 and P < p ⇒ vt+1
j,i = vtj,i − 1, (9)

where: P – random value, p – the probability of the random event, t - time.

Step 6 – Car Motion. The last step concerns car motion on the lane and it
is described as:

xt+1
j,i = xt

j,i + vt+1
j,i , (10)

where: xj,i - location of the car in the cell i of the road numbered j, vj,i – velocity
of the car in the i-th cell of the road numbered j, t – the moment of time.

Table 1. Parameters used in the model.

Name of
parameter

Possible
values

Description

desire 0, 1 1 - the car is going to park in the unloading bay

0 - the opposite

overtake 0, 1 1 - the car is going to overtake the occupied bay

0 - the opposite

ub 1..15 Determines the distance from which the bay is visible

c 5..12 Determines the courage of driver who is going to overtake
the occupied unloading bay

i i ∈ N The number of CA cell

j 1, 2 The road number

dj,i d ∈ N The distance to the nearest preceding car

ubj,i ub ∈ N The distance to the nearest unloading bay

cj,i c ∈ N The distance between cars on opposite lanes

bj,i b ∈ N The distance between car which is overtaking the unloading
bay and that bay

vj,i v ∈ N The car speed

vmax vmax ∈ N The maximum speed

xj,i xj,i ∈ N The location of the car

4 The System Developed for the Simulation

In order to carry out the simulation, the presented model has been implemented
in the form of a computer application. The process of starting the simulation
consists of two stages: defining the parameters’ values of the simulated road
section and the run of the simulation using the traffic parameters defined in the
model.
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As part of the first stage, it is possible to determine the length of the analysed
road section, adding or removing unloading points, as well as adding or removing
additional permanent road blocks, which allows to simulate restrictions in traffic,
resulting from road works, as an example.

Fig. 4. The main window of the developed simulator.

After determining the parameters of the analysed road, the main simulator
window is started (Fig. 4). The analysed road is visible in the centre of the screen.
Cells marked in blue represent unloading bays located on the road lane or on
side of the road (this type of unloading bays is not described in this article). At
the bottom of the panel there are sliders, which are responsible for setting the
parameters of the simulation: maximum passenger car speed, maximum delivery
vehicle speed, probability of a random event, visibility of loading bays, delivery
time, corresponding to the number of CA iterations and others. The developed
system updates every 1 s.

5 Experimental Results

The main goal of this paper was to develop a CA model, aimed at investigating
the impact of the unloading bays located at 2-way road on traffic flow.

In order to verify the proper operation of the model, several experiments
have been done. A measure of the capacity of the road in all the presented
experiments is the simulation time with the assumed number of 10.000 vehicles
passing through a certain stretch of road. The simulation time is the average
time of 10 simulations performed for the same settings. The greater the time is,
the road capacity is smaller. The road length was set at 100 CA cells, which,
under the premise of the NaSch model gives the actual length of 750 m.

The first simulation (Fig. 5) was carried out for the following input parame-
ters:
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– the maximum velocity of the passenger car: 5;
– the maximum velocity of the delivery vehicle: 3;
– the probability of random event: 0.1;
– the timidity of the driver: 2 (the higher the value is, the greater number of CA

free cells is required to a vehicle parked in that bay could leave the unloading
bay);

– the visibility of bays: 5 (the number of cells of CA - the distance from which
the unloading bay can be seen);

– the probability of the new car appearance: 0.9;
– the unloading time: 20–100 iterations of CA;
– the number of unloading bays: 0–4;

Simulations were performed for a set number of vehicles that were to pass
through the analysed road.

Fig. 5. The impact of the number of unloading bays and unloading time on the simu-
lation time.

Analysis of the results leads to the conclusion that the time of unloading of
goods has a significant impact on the capacity of the road with loading/unloading
bays. This parameter becomes crucial when unloading bays are located in the
lane of a road.

While the delivery vehicle occupies the unloading bay, the remaining vehi-
cles are forced to bypass the place of unloading. This requires an overtaking
maneuver. It is a maneuver depending on the courage of the driver ahead of the
unloading bay. In the next experiment the courage parameter takes values – from
8 to 12. The smallest value means that the driver has a lot of courage (he/she
needs only some space to overtake the vehicle in the unloading bay). The value
of 12 means low courage, i.e. the driver needs a lot of free space to perform the
overtaking maneuver. Analysis of the results of the experiment (Fig. 6) indicates
that drivers who are courageous (they do not need a lot of free space between
vehicles) generate a smaller slowdown in traffic, although sometimes they slow
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down vehicles approaching on the opposite lane of the road. The unloading time
in this study has a constant value. With the increase in the number of unloading
bays, the slowdown of traffic also increased.

Fig. 6. The impact of driver’s courage parameter on the simulation time.

Fig. 7. The comparison of developed model and model presented in [11,12].

The results of comparison of the developed model with the model presented
in [11,12] are shown in Fig. 7. In the case of unloading bays located on a two-
lane one-way road, the problem of traffic slowdown is minimal. However, placing
unloading bays on the two-way road results in an increase the local congestion,
which is caused by the need to bypass the vehicle parked in the bay. If traffic
flow is big, the phenomenon of avoiding the vehicle delivering the goods is more
difficult and congestion is increasing. The solution may be such an organization
that there are two road lanes at the unloading bay.
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6 Conclusion

This paper focused on applying cellular automata in modelling a two-way road
with loading/unloading bays. A model was developed and implemented in the
form of a simulation system, which served to carry out the research study
described herein.

The basic traffic CA model has been extended with the parking and leaving
the unloading bay mechanism and the mechanism of bypassing the unloading
bay which is occupied. Experimental research has shown that as the unloading
time increases, the capacity of the road decreases, i.e. it takes more time for
vehicles to overcome a given section of the road. In addition, the developed
model was compared with another model taking into account unloading bays
and conclusions were presented on figure. The developed model can be used to
test traffic flow, air pollution generated by transport within the analysed road
and other aspects oriented to the use of loading/unloading bays.

Further work will be aimed at extending the model with unloading bays
placed off the road and performing tests based on field data.

References

1. Kijewska, K., Johansen, B.G., Iwan, S.: Analysis of freight transport demand at
Szczecin and Oslo area. Transp. Res. Proc. 14, 2900–2909 (2016)

2. Kijewska, K., Konicki, W., Iwan, S.: Freight transport pollution propagation at
urban areas based on Szczecin example. Transp. Res. Proc. 14, 1543–1552 (2016)
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In: Macioszek, E., Sierpiński, G. (eds.) Recent Advances in Traffic Engineering
for Transport Networks and Systems. LNNS, vol. 21, pp. 16–26. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-64084-6 2
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10. Ma�lecki, K., Wa̧tróbski, J.: Cellular automaton to study the impact of changes in
traffic rules in a roundabout: a preliminary approach. Appl. Sci. 7(7), 742 (2017)

11. Iwan, S., et al.: Analysis of the environmental impacts of unloading bays based on
cellular automata simulation. Transp. Res. D: Transp. Env. 61(A), 104–117 (2018)

12. Iwan, S., Ma�lecki, K.: Utilization of cellular automata for analysis of the efficiency
of urban freight transport measures based on loading/unloading bays example.
Transp. Res. Proc. 25, 1021–1035 (2017)

13. Fellendorf, M.: VISSIM: a microscopic simulation tool to evaluate actuated signal
control including bus priority. In: Proceedings of the 64th Institute of Transporta-
tion Engineers Annual Meeting, Dallas, TX, USA, 16–19 October 1994, pp. 1–9,
Technical Paper (1994)

14. Barcelo, J., Ferrer, J.L., Montero, L.: AIMSUN: advanced interactive microscopic
simulator for urban networks. User‘s Manual, Departament d ‘Estad́ıstica i Inves-
tigacio Operativa, UPC (1997)

15. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and
applications of SUMO-simulation of urban mobility. Int. J. Adv. Syst. Meas. 5,
128–138 (2012)

16. Nagel, K., Schreckenberg, M.: A cellular automata model for freeway traffic. J.
Phys. I(2), 2221–2229 (1992)

17. Biham, O., Middleton, A.A., Levine, D.: Self-organization and a dynamical tran-
sition in traffic-flow models. Phys. Rev. A 46(10), 6124 (1992)

18. Nagel, K., Wolf, D.E., Wagner, P., Simon, P.M.: Two-lane traffic rules for cellular
automata: a systematic approach. Phys. Rev. E 58(2), 1425–1437 (1998)

19. Chowdhury, D., Schadschneider, A.: Self-organization of traffic jams in cities:
effects of stochastic dynamics and signal periods. Phys. Rev. E 59, 1311–1314
(1999)

20. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular
traffic and some related systems. Phys. Rep. 329, 199–329 (2000)

21. Ma�lecki, K., Iwan, S.: Development of cellular automata for simulation of the
crossroads model with a traffic detection system. In: Mikulski, J. (ed.) TST 2012.
CCIS, vol. 329, pp. 276–283. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34050-5 31

22. Hoogendoorn, S., Bovy, P.: State-of-the-art of vehicular traffic flow modelling. Proc.
IMECH E Part I J. Syst Control Eng. 215(4), 283–303 (2001)

23. Nagel, K., Paczuski, M.: Emergent traffic jams. Phys. Rev. E 51(4), 2909–2918
(1995)

24. Schadschneider, A., Schreckenberg, M.: Traffic flow models with ‘slow-to-
start’rules. Ann. Phys. 509(7), 541–551 (1997)

25. Chopard, B., Luthi, P.O., Queloz, P.: Cellular automata model of car traffic in a
two-dimensional street network. J. Phys. A 29(10), 2325–2336 (1996)

26. Ma�lecki, K.: Graph cellular automata with relation-based neighbourhoods of cells
for complex systems modelling: a case of traffic simulation. Symmetry 9(12), 322
(2017)

27. Roche-Cerasi, I.: State of the art report. Urban logistics practices. Green Urban
Distribution, Deliverable 2.1. SINTEF Teknologi og samfunn (2012)

28. Gatta, V., Marcucci, E.: Behavioural implications of non-linear effects on urban
freight transport policies: the case of retailers and transport providers in Rome.
Case Stud. Transp. Policy 4(1), 22–28 (2016)

29. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

https://doi.org/10.1007/978-3-642-34050-5_31
https://doi.org/10.1007/978-3-642-34050-5_31


Two-Way Road Cellular Automaton Model 229

30. Mamei, M., Roli, A., Zambonelli, F.: Emergence and control of macro-spatial struc-
tures in perturbed cellular automata, and implications for pervasive computing sys-
tems. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 35(3), 337–348 (2005)
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Abstract. Cellular automaton (CA) models of traffic flow are typically
constructed to reproduce macroscopic features of traffic flow. Here, a few
thoughts based on real car-following data are presented that show how
to construct a discrete time/discrete space microscopic model of traffic
flow. The question whether this can still be called a CA-model is left to
the reader.
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1 Introduction

The title of this article seems strange, since a traffic flow model like the CA
introduced in [9] (see e.g. [2,8] for reviews) may be called with right a microscopic
model of traffic flow.

And the answer is: no, since CA models are created to reproduce macroscopic
features of traffic flow, and not microscopic ones. Clearly, this boundary is fuzzy
[5,7], especially when it comes to CA models with smaller spatial discretization
δx than the paradigmatic δx = 7.5m used in the original work of [3,9]. To make
this boundary clearer, a microscopic model of traffic flow discrete in space and
time will be constructed here which is based on real car-following data.

1.1 Notation, CA-Rules, Data-Set

The time, space, speed, and acceleration discretization (in real metric units) will
be called δt, δx, δv and δa, respectively. Each vehicle i at time-step t is described
by a position xi, a speed vi, and the acceleration ai. Sometimes, to write clearer
equations, the index is dropped and instead capital letters X,V,A are used for
the vehicle in front i−1, while the follower is described by small letters (x, v, a),
Then, the net space headway g is defined as

g = X − x − � or gi = xi−1 − xi − �

where � is the length of the vehicle plus the distance when standing. Note, that
this is correct only when working with homogeneous traffic, i.e. all vehicles have
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the same length. If not, then one must fix the co-ordinate system (front of the
car, e.g.) and include the lengths of both vehicles.

Another useful short-hand notation is the speed difference Δv between the
lead and the following vehicle:

Δv = V − v = ġ or Δvi = vi−1 − vi

The CA model introduced in [9] is characterized by δt = 1 s, δx = 7.5m,
from which δv = 7.5m/s and δa = 7.5m/s2 follows. Its deterministic rule-set is
defined, in a slightly different variant as in the original formulation as:

a = min{g − v, 1} (1)
v′ = max{min{v + a, v0}, 0} (2)
x′ = x + v′ (3)

The primed variables are the updated variables, and the stochastic term
is left-out because an explicit white noise acceleration noise is a bad physical
description of a heavy vehicle. The complicated looking second Eq. (2) simply
restricts the speed to the interval [0, v0].

The data to be used in the following are an excerpt (from 3 August 2012) from
a German project named simTD [1], which was a natural driving study although
with the goal to do research on vehicle-to-vehicle communication. There, about
100 vehicles, most of them instrumented with sensors to measure position, speed,
acceleration, distance, and speed-difference to the lead vehicles drove with about
1000 different drivers for three months in an area around Frankfurt/Main, Ger-
many. A more detailed description of the data can be found else-where [12], here
the data from the car-following episodes have been used. A first glimpse into the
data can be gained from Fig. 1, where the distributions of the speed, the speed
differences, the gaps, and the time headways are displayed.

2 From Scratch

To fix the spatial discretization at the vehicle length as done in [9] is definitely
very elegant. Nevertheless, this is also creating the biggest problems for a truly
microscopic model, since it makes acceleration way too big. To fix that, it is
argued here that there is a kind of a minimum acceleration step δa, that is given
by the acceleration noise (its standard deviation denoted σa) created by human
drivers. This variable is difficult to measure, the following approach is used here
to get hold of it, at least to a certain approximation.

2.1 Acceleration Noise

Acceleration noise will be defined as follows: in a deterministic world, the accel-
eration of a vehicle is determined by a function a(v, g,Δv), and eventually addi-
tional variables which are difficult to measure or have not been measured. In
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Fig. 1. The distribution of the variables speed (upper left), speed-difference (upper
right), gap (lower left), and net time headway T (lower right). The headway data are
filtered and contain only values where v > 10 km/h, g > 5 m, and T ≤ 5.

a stochastic setting, even for the same set of variables, the acceleration at the
same point is drawn from a distribution pv,g,Δv(a), and therefore it has a certain
width, which can be quantified e.g. by the standard-deviation of the accelera-
tion σa(v, g,Δv). Neither the exact function a(v, g,Δv), nor the distribution is
known, and to make life even more complicated, it might be suspected that it
depends on the state itself. However, both a(v, g,Δv) and σa(v, g,Δv) can be
extracted from these data, to a rough approximation and within certain limits.

To do so, two sub-sets of the data are picked, a city and a freeway data-
set. This is motivated by the two peaks in the speed distribution, so in a first
step all speeds v ∈ [40, 60] km/h (city) and v ∈ [100, 120] km/h (freeway) will
be selected. In addition, only data from close following situations will be used,
which are defined by Δv ≤ 10 km/h and g ≤ 80m. Then, the phase-space (Δv, g)
is partitioned into boxes whose width is chosen so that in each dimension the
same number of points is in each box. Within each box, now, the mean value
of the acceleration and the corresponding standard deviation can be computed.
This yields the result in Fig. 2.
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Fig. 2. a(v = 50, Δv, g) (upper left) and σa(v = 50, Δv, g) for city speeds, and for
freeway speeds (lower row).

From Fig. 2, a minimum value of σa ≈ 0.4m/s2 may be read out. This will be
chosen in the following equal to the minimum acceleration step δa = 0.4m/s2.

2.2 Time Step Size δt

Having fixed δa = 0.4m/s2, the time-step size is the next. Here, either the
minimum reaction time of humans, which is of the order of 0.3 s might be used.
Interestingly, this value is also close to the minimum time headway found in
empirical data, see Fig. 1. Using δt = 0.25 s gives an additional safety margin
and it divides nicely by 1 (what is not really necessary).

Having fixed δa and δt, which also shows that this construction process is
bottom up, the remaining discretization values are determined, too. Since

δa = δv/δt and δv = δx/δt,

the spatial discretization follows to be δx = δaδt2 which gives δx = 0.025m.
This is of course way smaller than the value in [9]. For the speeds, this yields
δv = 0.1m/s. For maximum speeds larger than 25.5 m/s, this will no longer fit
into a 1 byte integer.
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2.3 The Dynamics

There are two observations relevant here: the first is that human control is dis-
crete. At so called action-points [10], the human controler changes acceleration
(more precisely, the gas- and or brake-pedal position) quickly, and keeps it con-
stant for 0.5. . . 5 s, see [11] for the distribution of this times which may follow a
gamma-distribution. This might have made another time-discretization δt, but it
is more difficult to measure, since a small acceleration change is hard to discern
from high-frequency acceleration noise. However, at least the size is similar to
the 0.25 s that have been chosen above.

The second observation is that to model the car-following process (car-
following is abbreviated CF in the following), at least the original model is too
gross. Additionally, it mixes the car-following with a safety consideration, and
since the small time-step size chosen above lead to plenty of modelling leeway,
these two will be separated in the following. So, there is an emergency braking
which happens if the normal car-following fails and that is with the typical Euler
backward update formulated as follows:

if v > g/δt then v = g/δt (4)

Since in the discretization framework chosen here δt = 1, this is exactly the same
as in the original formulation.

For the CF-process, a slightly more complex approach is chosen. Instead of
the original dependence on distance g alone, the model acts as a linear controler
with limited acceleration a0, which is also pretty close to some of the adaptive
cruise control of modern driver assistant systems. Furthermore, there is the need
to introduce two pre-factors c1, c2 to the two terms in the equation, whose
physical relevance will be discussed later on. Here, they simply scale the variables
to a reasonable size (typically, ci < 1).

a0 = min
{

max
{

c1

( g

T
− v

)
+ c2(V − v),−β

}
, α

}
(5)

and a0 is bounded between −β from below, and α from above, which again is
written as the complicated min, max combination. This is however not the whole
model. In addition, the action-points are included in the dynamics pretty much
like in a Monte Carlo simulation. This acceleration a0 is only made the new
acceleration with a certain probability pAP, so the additional step is needed:

a′ =
{

a0 with probability pAP

a else (6)
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The rest, then, is just the same as in Eqs. (2), (3):

v′ = max{min{v + a′, v0}, 0}
x′ = x + v′

This is a simple linear controler, and it clearly has a stable fixed-point at
v = g/T . The randomness injected by the action-point mechanism is too weak to
change this. However, some randomness is needed, since it seems almost impos-
sible to find car-following data where the lead vehicle’s speed is constant. There
are many ways how to do this, and the worst one (not to be followed here) is
to add acceleration noise. Better is the approach of the so called 2D models [4].
There the preferred headway T is made stochastic. Here, we only allow three val-
ues of the headway T = 3, 4, 5 (in units of δt), and the driver switches between
them each time a new AP is issued.

3 Phenomenology

Here, we simulate first the microscopic features, and then have a look at the
macroscopic ones like the fundamental diagram.

3.1 Microscopic

For the microscopic description, it should be noticed that the behaviour, and
especially the stability of the car-following process is strongly determined by
the choice of the two parameters c1, c2. Clearly, they are inverse time-constants,
named Tg and TΔv. From the theory of linear controlers which is being used for
adaptive driver assistant systems, it is well-known, that a platoon of those vehi-
cles is only platoon-stable for a certain range of parameters, typically for small
values. The model here is a little bit more complicate than a linear controler,
since the acceleration is bounded, making it a non-linear controler. Therefore,
for too small values of Tx, the acceleration distribution becomes bimodal with
peaks at the limiting value a0. Which is not realistic. Therefore, there is only a
fairly small range of values for the Tx, where they are platoon stable and not
bimodal. In the following, the parameters T1 = 26 (6.5 s) and T2 = 6 (1.5 s) are
chosen, while pAP = 0.4 is used. For a string of four vehicles, this yields then
the results presented in Fig. 3.

The lower panel compares the distributions of Δv and of T with the empirical
ones. While this fits well for the speed-differences, it does not so well for the
headways. The simulation has used only three headway values T = 3, 4, 5 (0.75,
1, 1.25 s in real units), it seems that the distribution of real drivers is much wider
than this three values.
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Fig. 3. The behaviour of the model in (Δv, g)-space, for the first follower (green), the
second (red) and the third (black, upper left). The upper right displays the acceleration
distribution in CA-units, still a slight peak at the boundary value is to be seen. The
lower panel displays the speed-difference and headway distribution, and compares it
directly with the empirical ones. (Color figure online)

3.2 Macroscopic

To compute a fundamental diagram, the simplest possible set-up is chosen. The
vehicles run in a ring, which means that the density k is the control parameter of
the fundamental diagram. Simulations are run for 1024 vehicles for 40 values of
the scaled density k/kmax values ranging from 0.01 to 0.99. The system is started
either in a homogeneous or in a jammed configuration, each simulation runs for
105 time-steps of which the first 25,000 time-steps are discarded. Only the speed
distribution is sampled, where 40 simulation steps are left out between each
sampling step to minimize correlations between subsequent states. The results
shown in Fig. 4 the following: at small densities, only the free flow state exists.
There is an intermediate range, where the system’s state consists of a mixture of
free flow and jams, and finally, for large densities, the system eventually becomes
bistable.

No more detailed and exhaustive studies have been performed.
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Fig. 4. The fundamental diagram of the model. Presented is the speed distribution p(v)
as function of the scaled density. The left plot is for homogeneous initial conditions,
while the right plot for a system started in a jammed condition, the color scale is
logarithmic to include more information about the distributions.

4 Execution Speed

There are a lot of science tales around the fantastic numerical performance of
CA models. Partially, they stem from the time where the floating point units of
computers were weak in comparison with the integer units, and therefore it was
worth to look for integer-based models. With this model at hand that lingers
between discrete and continuous, it is time to have a look into this issue. Note,
that there is also a much more detailed contribution to this conference by Moreno
Marzolla, which discusses in much detail what can be reached and which kind
of tricks to apply in order to achieve good performance. Therefore, only a few
short remarks to the issue of numerical performance may be added here.

One of the challenges with this problem is, that the performance depends very
much on a lot of things that are difficult to control. Just for starters, when writing
a program that implements the model in [9], and comparing it with a continuous
one that implements SUMO’s [6] default model, not much of a difference can be
seen. This difference becomes even smaller, when real world things like copying
data from the running simulation, or if the open system’s simulations are needed.
For some-one to dive into the depths of modern compilers and the tremendous
possibilities of modern CPU’s such as their SIMD (=Single Instruction Multiple
Data) units, some differences can be found.
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The implementation used here runs with 30 MUPS on a Pentium G4400 with
Windows 10 and cygwin’s g++ compiler in the version 6.4.0, which is on par
with a implementation of the model of SUMO without any fancy tricks. The
unit MUPS means Mega Updates Per Second and has been introduced in [9].
This is just by using a normal optimization setting of a year 2017 compiler. If
the SIMD units of modern CPU’s are utilized, this performance improves, in
some cases by a factor of 10. Interestingly, there is not much difference between
the CA implementation and the continuous one. But note, that this is only
possible in the case of a closed system, where the numbers of particle (cars)
does not change. It may also work, if the CA is implemented in a grid-based
manner instead of a vehicle-based which is more efficient in terms of memory,
but then a lot of simulation time is spent by updating empty cells. We have not
found an implementation that can utilize SIMD or GPU’s when simulating an
open system car-based, which is the case for most applied settings. Then, those
beautiful speed-ups vanish and one sticks with the 30 MUPS above.

5 Conclusions

In conclusion, the building blocks of a microscopic discrete space/discrete time
CA model have been presented. When following the approach pursued here, this
leads to a CA model with time-step size δt = 0.25 s and spatial discretization
Δx = 0.025m. While still discrete, we think that such a model is not easy to
discern from a continuous model, if this possible at all. When looking into the
plots in this article only the acceleration is clearly discrete. It may be interesting
to see what of the features included here can be left out to still have a valid
description of microscopic driving. Another valid conclusion is also, that such
simple models as the CA have their value, but should not be used when a really
microscopic description of traffic flow is needed for the application at hand.
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Abstract. Probabilistic Cellular Automata are extended stochastic sys-
tems, widely used for modelling phenomena in many disciplines. The
possibility of controlling their behaviour is therefore an important topic.
We shall present here an approach to the problem of controlling such
systems by acting only on the boundary of a target region.

Keywords: Probabilistic cellular automata · Control theory
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1 Introduction

Cellular Automata (CA) are widely used for studying the mathematical prop-
erties of discrete systems and for modelling physical systems [1–6]. They come
in two major “flavours”: deterministic CA (DCA) [9–14] and probabilistic CA
(PCA) [15,16].

DCA are the discrete equivalent of continuous dynamical systems (i.e., dif-
ferential equations or maps) but are intrinsically extended, constituted by many
elements, so they are in principle the discrete equivalent of system modelled by
partial differential equations. DCA are defined by graph, a discrete set of states
at the nodes of the graph, and a local transition function that gives the future
state of a node as a function of the present state of the node connected to it, its
so-called neighbourhood. This evolution rule is applied in parallel to all nodes.
PCA can be thought as an extension of DCA where the transition function gives
the probability that the target node goes in a certain state. If all these proba-
bilities are either zero or one, that the PCA reduces to a DCA. In both cases,
the state of the CA is the collection of states at the nodes of the graph and this
state changes in time according to functions defined in every node of the graph.
c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 243–254, 2018.
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In analogy with continuous dynamical systems, it is important to develop
methods for controlling the behaviour of DCA and PCA. In particular, the main
control problems for extended systems are reachability and drivability. The first
is related to the possibility of applying a suitable control able to make the system
reach a given state or a set of states. For instance, assuming that the system
under investigation represents a population of pests, the control problem could
be that of bringing the population towards extinction at a given time or to keep
the population under a certain threshold.

The drivability problem is somehow complementary to the reachability one;
once that the system is driven to a desired state or collection of states, what
kind of control may make it follow a given trajectory? For instance, one may
want to stabilize a fixed point, or make the system follow a cycle, and so on.

As usual in control problems, one aims at achieving the desired goal with the
optimal cost or smallest effort, and we speak of an optimal control problem. One
may be interested not in controlling the whole space, but rather the state of a
given region, for instance how to avoid that a pollutant reaches a certain area.

The techniques for controlling discrete systems are quite different from those
used in continuous ones, since discrete systems are in general strongly non-linear
and the usual linear approximations cannot be directly applied. What one can
do is to change the state at a node or a set of chosen nodes. For Boolean CA the
state is either 0 or 1, so a change is either 1 or 0. The “intensity” of the control
therefore can be only associated to the average number of changes, and cannot
be made arbitrary small. We are interested in regional control of PCA, that is,
how to achieve a certain goal in a set of neighbouring nodes of a graph.

This problem is related to the so-called regional controllability introduced
in Ref. [17], as a special case of output controllability [18–20]. The regional
control problem consists in achieving an objective only in a subregion of the
domain when some specific actions are exerted on the system, in its domain
interior or on its boundaries. This concept has been studied by means of partial
differential equations. Some results on the action properties (number, location,
space distribution) based on the rank condition have been obtained depending
on the target region and its geometry, see for example Ref. [17] and the references
therein.

Regional controllability has also been studied using CA models. In Ref. [21], a
numerical approach based on genetic algorithms has been developed for a class of
additive CA in in one and two dimensions. In Ref. [22], an interesting theoretical
study has been carried out for one dimensional additive CA where the effect of
control is given through an evolving neighbourhood and a very sophisticated
state transition function. However, these studies did not provide a real insight
in the regional controllability problem.

Some results for control techniques applied to one dimensional DCA can be
found in Refs. [23–27].

For DCA, once the states in the neighbouring nodes are known, the future
state at the node under consideration is fixed and for PCA we have in general
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only the probability of reaching a certain state. One advantage of PCA vs. DCA
is that their dynamics can be fine-tuned. PCA are summarized in Sect. 3.

The control problem of PCA is more subtle than of DCA. In general, it is
impossible to exactly drive these systems towards a given configuration, but it is
possible to increase the probability that the system will reach a target state in a
collection of nodes, or, alternatively, to lower as much as possible the probability
of the appearance of a given configuration, for instance the extinction of a species
inside a given region.

The evolution of a PCA can be seen as a Markov chain, where the elements of
the transition matrix are given by the product of the local transition probabilities
(Sect. 3). In particular we shall study here a particular PCA (BBR model) with
two absorbing states in Sect. 4.

A Markov chain is said to be ergodic if there is the possibility of going to any
state in the graph to any other state in a finite number of steps. If this goal can
be achieved for all pairs of states at a given time, the Markov chain is said to be
regular. This consideration allows us to define the reachability problem in terms
of the probability, once summed over all possible realizations of the control, of
connecting any two sites. And since DCA can be considered as the extreme limit
of PCA, this technique can be applied to them too, see Sect. 5.

Finally, one should remark that the problem of controllability (in particular
that of drivability) is strictly related to that of synchronization (see Ref. [25] for
instance). In this same issue the regional synchronization problem for the BBR
model is addressed [28].

2 Definitions

Cellular Automata are defined on graph composed by N nodes identified by
an index i = 1, . . . , N , by an adjacency matrix aij that establishes the neigh-
bourhood of each node with aij = 1 (aij = 0) if node j is (is not) in node i’s
neighbourhood, and by a transition function fi that gives the new state at node i
given the states in its neighbourhood. The connectivity of node i is ki =

∑
j aij .

We shall deal here with graphs having fixed connectivity ki = k and use the
same transition function in all the nodes, fi = f .

A lattice is a graph invariant by translation and the nodes are called sites. For
a one dimensional lattice with N sites with connectivity k = 2r +1, r = 1, 2, . . .
and r the range, the neighbourhood of site i is the set {i− r, . . . , i+ r}. Periodic
boundary conditions are generally imposed. The state at site i at time t, xi(t),
is chosen from a finite set of values, for Boolean CA, xi(t) ∈ {0, 1}. Then

xi(t + 1) = f(xi−r(t), . . . , xi+r(t))

We shall indicate with x′
i = xi(t + 1) its value at the following time step.

An ordered set of Boolean values like x1, x2, . . . , xN can be read as a Boolean
vector or as base-two number and we shall indicate it as x, 0 ≤ x < 2N . We
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Fig. 1. Left: The space-time lattice of 1D CA with periodic boundary conditions. Right:
CA boundary-value problem.

shall also indicate with vi the state of all connected neighbours. The state of
x′
i depends on the state of the neighbourhood vi, and on some random number

ri(t) for stochastic CA. In formulas (neglecting to indicate the random numbers)
we have

x′
i = f(vi).

The function f is applied in parallel to all sites. Therefore, we can define a vector
function F such that

x′ = F (x).

The sequence of states {x(t)}t=0,... is a trajectory of the system with x(0) as
the initial condition.

When f depends symmetrically on the states of neighbours, it can be shown
that f actually depends on the sum si =

∑
j aijxj . In this case we say that the

cellular automaton is totalistic and write

xi(t + 1) = fT (si(t)), (1)

with fT : {0, . . . , k} → {0, 1}. Totalistic cellular automata are generic, since
they exhibit the whole variety of behaviour of general rules [12]. It is possible to
visualize the evolution of the automata as happening on a space-time oriented
graph or lattice, Fig. 1-left.

3 Probabilistic Cellular Automata

Probabilistic CA constitute an extension of DCA. Let us introduce the transition
probability τ(1|v) that, given a certain configuration v = vi of the neighbour-
hood of site i, gives the probability of observing x′

i = 1 at next time step. Clearly
τ(0|v) = 1 − τ(1|v). DCA are such that τ(1|v) is either 0 or 1, while for PCA it
can take any value in the middle. For a PCA with k inputs, there are 2k indepen-
dent transition probabilities, and for totalistic PCA there are k +1 independent
probabilities. If one associates each transition probability to a different axis, the



Regional Control of Probabilistic Cellular Automata 247

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.5

1

p
2

p
1 p

q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
2

p
1 p

 q

Fig. 2. Phase diagram of the BBR model. Left: Density phase diagram. Right: Damage
phase diagram.

space of all possible PCA is an unit hypercube, with corners corresponding to
DCA.

PCA can be also partially deterministic, i.e., the transition probability τ(1|v)
can be zero or one for certain v. This opens the possibility for the automata
to have one or more absorbing state, i.e., configurations that always originate
the same configuration (or give origin to a cyclic behaviour). The BBR model
illustrated below has one or two absorbing states.

The evolution of all possible configurations x of a PCA can be written as
a Markov chain. Let us define the probability P (x, t), i.e., the probability of
observing the configuration x at time t. Its evolution is given by

P (x, t + 1) =
∑

y

M(x|y)P (y, t), (2)

where the matrix M is such that

M(x|y) =
N∏

i=1

τ (xi|vi(y)) . (3)

For a CA on a 1D lattice and k = 3 we have

M(x|y) =
N∏

i=1

τ(xi|yi−1, yi, yi+1). (4)

Phase transitions for PCA can be described as degeneration of eigenvalues
in the limit N → ∞ and (subsequently) T → ∞ [29].

Notice that since DCA are limit cases of PCA, they also can be seen as
particular Markov chains.
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Fig. 3. Damage spreading; time runs downwards. Left: CA rule 150. Right: CA rule
126.

A Markov chain such that, for some t, (M t)ij > 0 for all i, j is said to be
regular, and this implies that any configuration can be reached by any configu-
ration in time t. A weaker condition (ergodicity) says that t may depend on the
pair i, j (for instance, one may have an oscillating behaviour such that certain
pairs can be connected only for even or odd values of t). Also for ergodic systems
all configurations are connected.

4 The BBR Model

We shall use as a testbed model the one presented in Ref. [30], which is an
extension of the Domany-Kinzel CA [15]. We shall refer to it as the BBR model
from the name of its authors. It is a totalistic PCA defined on a one-dimensional
lattice, with connectivity k = 3. The transition probabilities of the model are

τ(1|0) = 0; τ(1|1) = p; τ(1|2) = q; τ(1|3) = w. (5)

This model has one absorbing state, corresponding to configuration 0 =
(0, 0, 0, . . . ), For w = 1 also the configuration 1 = (1, 1, 1, . . . ) is an absorb-
ing state. This is the version studied in Ref. [30].

Notice that for p = 1, q = 1, w = 0 we have DCA rule 126 while for p = 1,
q = 0 , w = 1 we have DCA rule 150. In the following we shall use w = 1.

The implementation of a stochastic model makes use of one of more random
numbers. For instance, the BBR model can be implemented using the function

x′
i = f(xi−1, xi, xi+1;ri) = [ri < p](xi−1 ⊕ xi ⊕ xi+1 ⊕ xi−1xixi+1)

⊕ [ri < q](xi−1xi ⊕ xi−1xi+1 ⊕ xixi+1 ⊕ xi−1xixi+1)
⊕ xi−1xixi+1,

(6)

where [·] is the truth function which takes value one if · is true and zero otherwise,
and ⊕ is the sum modulo two. The ri = ri(t) random numbers have to be
extracted for each site and for each time. One can think of extracting them once
and for all at the beginning of the simulation, i.e., running the simulation on
a space-time lattice on which a random field ri(t), i = 1, . . . , N ; t = 0, . . . is
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defined. Notice that in this way one has a deterministic CA over a quenched
random field.

The phase diagram of the BBR model is reported in Fig. 2-left. One can
see three regions. The one marked in white, for p < 0.65, is where the only
asymptotically stable configuration is the absorbing state formed by all zeros,
i.e., the asymptotic probability distribution of configurations P (x) is a delta
on zero. The symmetric region marked in black, for q > 0.35 is where the only
stable configuration is formed by all ones. Actually, in a region near the diagonal
q = 1−p, for p < 0.5 the two absorbing states are both stable, the transition line
is fixed by the initial configuration, which in the figure is drawn at random with
the same probability of extracting a zero and a one. These regions are denoted
with the term “quiescent”. The region marked in shades of grey, for p > 0.65
and q < 0.35 is a region where the two absorbing states are unstable, and
the asymptotic probability distribution is distributed over many configurations,
with average number of ones proportional to the shades of grey. In the insect
it is reported the asymptotic average number of ones (the “density”) computed
along the dashed lines. This region is denoted with the term “active”.

4.1 Damage Spreading

One possibility for controlling the evolution of a system with little efforts is
offered by the sensitive dependence on initial conditions, i.e., when a small vari-
ation in the initial state propagates to the whole system. Indeed, this is also
the main ingredient of chaos, which in general prevents a careful control. But
in discrete systems the situation is somehow different. These systems are not
affected by infinitesimal perturbations in the variables (assuming that they can
be extended in the continuous sense), only to finite ones. The study of the propa-
gation of a finite perturbation in CA goes under the name of “damage spreading”,
indicating how an initial disturbance (a “defect” or “damage”) can spread in the
system. A CA where a damage typically spreads is said to be chaotic.

Mathematically, one has two copies of the same system, say x and y, evolving
with the same rule but starting from different initial conditions. We shall indicate
with zi = xi ⊕ yi the local difference at site i. Typical patterns of the spreading
of a damage (i.e., the evolution of z) are reported in Fig. 3.

For PCA, the concept of damage spreading is meant “given the random field”.
The phase diagram of the damage z for the BBR model is shown in Fig. 2-right.

5 Reachability Problem

We shall mainly deal here with the problem of regional control via boundary
actions, i.e., boundary reachability as illustrated in Fig. 1-right, however the
techniques of analysis can be extended to other cases.
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Let us now consider the problem of computing the probability Mxy (a, b) =
M(x|y; a, b) which is the probability of getting configuration x at time t+1 given
the configuration y at time t, and boundaries a and b (for simplicity we refer
here only to one-dimensional cases). The Markov matrix M(a, b) is given by

Mxy (a, b) = τ(x1|a, y1, y2)τ(x2|y1, y2, y3) . . . τ(xn|yn−1, yn, b),

where n indicates the size of the target region.
For a given control sequence a = a1, . . . , aT and b = b1, . . . , bT , the resulting

Markov matrix for time T is

M(a, b) =
T∏

t=1

M(at, bt).

We can define several control problems. A first one is about ergodicity: which
is the best control sequence a and b so that Mxy (a, b) > 0 for all pairs x,y and
minimum time T? Another is: given a certain time T and a pair x,y, which is
the best control sequence a and b that maximises Mxy (a, b) > 0?

Clearly, one can also be interested in avoiding certain configurations, for
instance, if xi = 1 represents the presence of some animal or plant in position i at
time t, one could be interested in devising a control that prevents the extinction
of animals, i.e., avoid the state x = 0.

As we shall show in the following, so far we have not found algorithms for
finding the best control but exhaustive search.

Beyond finding the actual sequence that maximises the observable, one could
be rather interested in determining the existence of such a sequence, for a certain
time interval T , or to find the minimum time T for which an optimal sequence
exists.

In particular this latter problem can be faced with less computer efforts than
finding the actual sequence for the best control. If one considers the matrix

C =
1
4

∑

a,b

M(a, b) =
1
4
(
M(0, 0) + M(0, 1) + M(1, 0) + M(1, 1)

)
,

and then computes its power CT , all possible control sequences of length T
are contained in such a power. Therefore, the problem of the existence of a
control sequence for a given time T reduces to checking if (CT )xy > 0. One can
also quantify the effective of the control by computing the ratio η between the
minimum and maximum values of C. If this ratio is zero, it means that there are
certain pairs of configurations that cannot be connected by any control sequence,
while η = 1 means that all pairs of configurations can be connected with equal
easiness.
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Fig. 4. The ratio η = min(C)/ max(C) for the BBR model with n = 5 for T = 3
(lower, blue curve) and T = 5 (upper, red curve). Left: q = 0, Right: q = 1 − p (color
figure online)

Let us illustrate some of these concepts for the BBR model, for p = q and
for q = 0. In Fig. 4 we show the easiness parameter η in function of p for q = 0
and q = 1 − p, for n = 5 and different values of T . One can see that in the
“quiescent” phase p < 0.5 the control is almost impossible, and that on the line
q = 1 − p, for p > 0.5, the easiness of the control rises with T faster that on
the line q = 0. Indeed, referring to Fig. 2, one can see that this portion of the
diagram corresponds to the “active” phase, where the BBR model is ergodic.
One can also notice that the easiness of the control is not related to the damage
spreading phase: considering for instance the line q = p, from Fig. 2-right one sees
that the damage spreading phase starts for p > 0.75, while from Fig. 4-right one
sees that the control is possible well before this threshold. The control properties
are probably associated to the “chaoticity” of the associated deterministic CA
over the random quenched field, a problem which will be faced in the future (for
“chaotic” CA and the associated Boolean derivatives, see Refs. [31–33]).

Let us now turn to the problem of finding the best control. For compactness,
let us consider the case n = 3, for which the minimum control time is T = 2.
The highest probability for each pair of configurations x (row index in base two)
and y (column index in base two) for q = 1 − p and p = 0.7 is

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 2 3 4 5 6 7
0 1.000 0.262 0.213 0.396 0.262 0.396 0.396 0.240
1 0.700 0.278 0.208 0.293 0.208 0.293 0.293 0.343
2 0.343 0.221 0.221 0.253 0.221 0.195 0.253 0.490
3 0.343 0.293 0.293 0.278 0.293 0.208 0.208 0.700
4 0.700 0.208 0.208 0.293 0.278 0.293 0.293 0.343
5 0.490 0.253 0.195 0.221 0.253 0.221 0.221 0.343
6 0.343 0.293 0.293 0.208 0.293 0.208 0.278 0.700
7 0.240 0.396 0.396 0.262 0.396 0.213 0.262 1.000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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corresponding to controls a and b (again in base two)

a =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 2 3 4 5 6 7
0 0 1 1 0 0 1 1 1
1 2 2 2 2 3 3 3 3
2 0 0 0 3 1 1 1 1
3 1 2 2 1 3 0 0 3
4 0 3 3 0 2 1 1 2
5 2 2 1 2 0 3 3 0
6 0 0 0 0 1 1 1 1
7 1 2 2 3 3 2 2 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 2 3 4 5 6 7
0 0 0 1 1 1 1 0 2
1 0 2 3 1 3 1 0 2
2 3 1 0 1 0 2 3 1
3 0 1 0 1 0 1 0 1
4 2 3 2 3 2 3 2 3
5 2 0 2 3 2 3 2 3
6 1 3 2 0 2 0 1 3
7 2 3 2 2 2 2 3 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

These results should be read in this way. Let us consider for instance the
initial configuration y = 3 = 110|2 (numbers are coded in reverse order) and
final configuration x = 4 = 001|2. The best control is given by a sequence
a = 0 = 00|2 and b = 3 = 11|2, which is reasonable since one is trying to force
zeros on the left side of the configurations and ones on the right side.

Notice however that the entries for a and b are not always either 0 or 3,
meaning that the best control is not a uniform one for all pairs. For instance,
for going from y = 3 = 110|2 to x = 1 = 100|2 one has to apply a = 2 = 01|2
and b = 1 = 10|2, exploiting the fact that q = τ(1|3) = 1− p = 0.3 and therefore
for forcing a zero in the presence of a neighbourhood already containing a one,
it is better to insert another one than a zero.

6 Conclusions and Future Perspectives

We have introduced the problem of controlling probabilistic cellular automata
by an action performed on the boundary of a target region (boundary control or
boundary reachability problem). We have formulated the problem and presented
the first results.

The field of control of cellular automata and discrete systems is extremely
recent and only a handful of results are known [26,27]. In particular, the control
of probabilistic cellular automata is still to be explored in depth, and more
efficient algorithms for finding the best control sequence are needed if one wants
to exert control on large regions, and in higher dimensions.

A promising possibility is that of exploring the relationship between the
control and the “chaotic” properties of the associated deterministic CA over a
quenched random field.
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UNAM.
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3 Instituto de Enerǵıas Renovables, Universidad Nacional Autónoma de México,
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Abstract. We study the regional master-slave synchronization of a one
dimensional probabilistic cellular automaton with two absorbing states.
The master acts on the boundary of an interval, the region, of a fixed
size. For some values of the parameters, this is enough to achieve syn-
chronization in the region. For other values, we extend the regional syn-
chronization to include a fraction of sites inside the region of interest.
We present four different ways of doing this and show which is the most
effective one, in terms of the fraction of sites inside the region and the
time needed for synchronization.

1 Introduction

Cellular Automata (CA) are spatially extended systems that are widely used
for modelling various problems ranging from physics to biology, engineering,
medicine, ecology and economics [1–8].

Cellular automata are discrete systems in time and space. The state at each
node, here 0 or 1, changes in time according to the transition probabilities of
assuming a certain state knowing the state of neighbouring nodes. When the
transition probabilities are either zero or one, the automata is deterministic, oth-
erwise it is probabilistic. Despite their simplicity, cellular automata may exhibit
a large number of different features.

In particular, deterministic cellular automata may exhibit “chaotic” trajec-
tories, in which a initial small disturbance (a “defect”) amplifies or spreads, in
average, over time. This is also called the “damage spreading” feature.

Deterministic cellular automata may be considered discrete dynamical sys-
tems, and one is interested in the problem of controlling the resulting trajecto-
ries. The control problem can be divided in two sub-problems: how to drive a
system into a desired state (reachability problem) and how to make it follow a
desired trajectory, which can be also a fixed point (drivability problem). We are
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interested here in the regional version of this problem, i.e., how to control just
a given region of a system. Clearly, one has at least to act on the boundaries
of such a region in order to promote this control, but this can be insufficient,
especially for chaotic CA.

As shown in Refs. [9,10], while it is possible to make a system reach a desired
state acting on the boundaries, it is in general not possible to impose a trajectory
which is not “natural”, i.e., a trajectory different from one that the system would
follow if starting from a proper initial configuration and with proper boundary
conditions. Except for simple states like fixed points or cycles, the identifica-
tion of a “natural” trajectory is best done using a replica of the system, that
evolves freely. The drivability problem is related to master-slave synchronization.
The problem of regional control, that is, where the control is applied in on the
boundary of a region with a fixed number of sites is discussed in Ref. [11].

One of the problems in studying discrete cellular automata is that it is not
possible to continuously vary their dynamical properties, so that it is difficult to
observe bifurcations and changes of behaviour. On the contrary, this is possible
with probabilistic cellular automata which however are intrinsically stochastic,
and therefore in principle impossible to synchronize. A review of phase transi-
tions for probabilistic cellular automata may be found in Ref. [12].

However, it is possible to “convert” probabilistic cellular automata into deter-
ministic ones, considering that the actual computation of a trajectory of such
systems makes use of random numbers, used to choose, for each site and each
time step, among the possible alternatives. One may assume that the set of all
needed random numbers is extracted at the beginning of the simulation for all
sites and all time steps, thus constituting a quenched random field. The evolution
of the automata over such a random field becomes deterministic, and therefore
it is possible to consider the problem of the divergence of initially similar trajec-
tories (damage spreading) also for Probabilistic Cellular Automata (PCA). The
advantage of such an approach is that the behaviour of PCA can be fine-tuned
by means of their control parameters, and therefore it is possible to investigate in
details the elements that contribute to chaoticity, control and synchronization, a
task that is much more difficult with Deterministic Cellular Automata (DCA).

In principle the synchronization characteristics depend on the quenched ran-
dom field, but in practice these systems are always self-averaging so that a large
enough simulation already gives the same value of observables as if one performs
an averaging over many realizations of the random field.

In Ref. [13], the problem of synchronization of DCA was addressed, showing
that it is possible achieve this goals by randomly choose at each time step a
large enough fraction of sites in which the state of sites in the slave system
is imposed to be that of the corresponding sites in the master one and it was
shown that the synchronization threshold is related to the chaotic properties
of automata. In Ref. [9], a similar technique, called pinching synchronization,
was applied to control problems, looking for the most efficient way of achieving
the synchronization goal. In Ref. [10] this procedure was applied to the regional
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control problem of DCA. We want here to apply, and extend, this technique to
PCA (see also Ref. [14]).

In what follows, we investigate different strategies of regional master-slave
pinching synchronization of a one-dimensional three-state probabilistic cellular
automaton with two absorbing states [15]. The state at any site in the lattice at
time t + 1 depends probabilistically on the states of the site itself and its two
next-nearest neighbours at time t, and two probabilities. The master and the
slave are two realizations of the same PCA starting from different initial states
and the slave is forced to follow the master at the boundary of a given region of
width L. Since this is in general insufficient to synchronize the two systems, the
slave is additionally forced to take the state of the master at certain sites inside
the target region, at every time step.

In Sect. 2 we present this cellular automaton. In our first attempt, boundary
regional synchronization, or simply L-synchronization, the master imposes his
state on the border of a region of size L on the slave and we find that for
some values of the probabilities, there is synchronization in the sense that the
slave follows the master in the region of length L. This is discussed in Sect. 3.
When there is no L-synchronization, we discuss in Sect. 4 four different pinching
synchronization schemes at a fraction π of sites inside the region of size L and
show which one is the most successful one in the sense that synchronization
occurs with the smallest value of π and the shortest time. We finish with some
conclusions in Sect. 5.

2 The Probabilistic Cellular Automaton

We recall the definition of the probabilistic cellular automaton with two absorb-
ing states presented in Ref. [15]. The state at site i at time t, x

(t)
i , with

i = 0, . . . , N − 1 and t = 0, 1, . . . , can take two values, x
(t)
i = 0, dry, or x

(t)
i = 1,

wet. The state of the cellular automaton at time t is x(t) = (x(t)
0 , . . . , x

(t)
N−1)

and x
(t+1)
i depends on the number of wet sites in its neighbourhood and four

parameters or probabilities p0, . . . , p3. With

σ
(t)
i (x) =

1∑

j=−1

x
(t)
i+j ,

σ
(t)
i (x) = 0, . . . , 3, and the sum on the sub-indices taken modulo N to account

for periodic boundary conditions,

x
(t+1)
i =

3∑

s=0

[
r
(t)
i ≤ ps

] [
σ
(t)
i (x) = s

]
. (1)

In this expression r
(t)
i is a random number uniformly distributed between 0 and

1 and [ · ] = 1 if · is true and zero otherwise. In what follows p0 = 0, and
p3 = 1, which means that if the neighbours are all dry (wet), the central site
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will be dry (wet) at the next time step. Then, the states x = 0 = (0, . . . , 0) and
x = 1 = (1, . . . , 1) are absorbing. The activity a(t) is defined by

a(t) = a(x(t)) =
1
N

N−1∑

i=0

x
(t)
i . (2)

We indicate with a the asymptotic value of a(t).
In Fig. 1(a) we show the phase diagram of the average activity a over M

samples with random initial conditions with a(0) � 1/2. In the bottom left
part (in white), any random initial configuration will end in the absorbing state
x = 0, and in the upper right part, (in black), any random initial configuration
will end in the absorbing state x = 1. In the lower right part there is a region
where 0 < a < 1.

We can also define the damage spreading problem for such a model. Two
replicas, x and y, starting from different random initial conditions, evolve in
time with the same random numbers r

(t)
i ,

x
(t+1)
i =

3∑

s=0

[
r
(t)
i ≤ ps

] [
σ
(t)
i (x) = s

]
,

y
(t+1)
i =

3∑

s=0

[
r
(t)
i ≤ ps

] [
σ
(t)
i (y) = s

]
.

(3)

The Hamming distance between the two replicas, in a region of width L, is
defined as

hL =
1
L

L∑

i=1

xi ⊕ yi (4)

where ⊕ is the logical exclusive disjunction (sum modulo two).
In Fig. 1(b) we show the phase diagram of the average normalized regional

Hamming distance hL, that takes values different from zero at the phase bound-
aries of the activity a, since in these cases it is possible that a replica goes into
a state and the other into another state, and in the “chaotic” region for high
values of p1 and low values of p2.

3 L-synchronization

Let us now consider the problem where the two replicas, x and y, evolve in time
starting from different initial conditions chosen at random with the same random
numbers r

(t)
i but where at the fixed sites i = 0 and i = L+1, a distance L apart,

y
(t)
0 and y

(t)
L+1 take the values of x

(t)
0 and x

(t)
L+1, respectively, before updating as

in Eq. (1). In other words, the master, x imposes his state at two fixed sites
on the slave y or x and y are pinched together at i = 0 and i = L + 1. The
normalized regional damage hL is still defined as in Eq. (4).
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Fig. 1. (a) Phase diagram of the average activity a with N = 1, 000 sites, after T = 500
time steps, and M = 100 samples with different random initial conditions x(0) with
a(x(0)) � 1/2. (b) Phase diagram of the average normalized regional Hamming distance
hL as a function of p1 and p2 for the same values of N , T , and M as in (a) and L = 100
sites. (Color online)

If hL = 0 at some time t we say there is L-synchronization. In Fig. 1(b) we
show the phase diagram of the average hL over M samples as functions of p1
and p2. The area where hL > 0 with L = N is known as the chaotic phase [16]
but we prefer to call it the L-damage spreading phase for any value of L.

In Fig. 2(a) we show hL, as a function of p1 on the diagonal p2 = 1 − p1.
There are three different behaviors of hL, separated by ξ1 � 0.5 and ξ2 � 0.75.
For 0 < p1 ≤ ξ1, hL grows with L, with fixed T . For ξ1 < p1 ≤ ξ2, hL = 0 and
for ξ2 < p1 ≤ 1, hL seems to become independent of L for large L. However, in
the first interval of p1, hL goes to zero as T grows.

In Fig. 2(c) we show the average time for synchronization Ts as a function of
p1, p2 = 1 − p1, with 0 < p1 < ξ1 for different values of L. This average time
grows with L as expected.

In the third interval ξ2 < p1 ≤ 1 the quantity hL is practically independent of
T . Clearly, since the automata is probabilistic and ergodic, and the synchronized
state is absorbing, the asymptotic state is always the synchronized one, but the
time required for achieving this result is so large, for large enough L, that it is
practically unachievable. Indeed, the synchronization task is essentially the same
of a percolation problem for defects [17].

In summary L-synchronization is successful for 0 < p1 < ξ1 although it may
take a long time Ts that grows with L. For ξ1 < p1 ≤ ξ2, L-synchronization is
present and for ξ2 < p1 < 1 there is no L-synchronization. In the next section, we
present four strategies that achieve regional synchronization when ξ2 < p1 ≤ 1
by adding a fraction π of sites where y follows x.
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Fig. 2. (a) The average damage hL for L = 25, 50, 100, 200 as a function of p1 on the
diagonal p2 = 1 − p1. We estimate that ξ1 � 0.5 and ξ2 � 0.75. The number of sites is
N = 1, 000 and the average is taken over M = 100 samples after a time T = 1, 000. (b)
The average damage hL for L = 100 and different total times, T = 1e3, 1e4, 1e5, 1.5e5
as a function of p1 with p2 = 1 − p1, N = 1, 000 and M = 100. (c) The average
synchronization time Ts for L = 25, 50, 100, 200 as a function of p1, 0 ≤ p1 ≤ ξ1, with
N = 1, 000 and M = 100. (Color online)

4 Lπ-synchronization

By Lπ-synchronization we mean that in the region of size L, besides the sites
a distance L apart, a fraction π of sites, denoted by j, are chosen and at every
time step the slave takes the values of the master, that is y

(t)
j = x

(t)
j .

In other words, x and y are pinched together at those sites. We propose four
strategies of Lπ-synchronization, L-divide pinching synchronization, L-quenched
pinching synchronization, L-annealed pinching synchronization and L-random
walk pinching synchronization. In what follows we refer to them as LDP, LQP,
LAP and LRWP synchronization respectively.

In the four strategies, a fraction πL, 0 < π ≤ 1/2, of sites in the region of
length L are chosen. In the first strategy, LDP, the sites j divide the region of
length L into equally spaced intervals. In the second one LQP, the sites j are
chosen at random in the region L while in the third one, LAP, the sites j are
chosen at random at every time step. In the fourth strategy, LRWP, the fraction
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πL of sites are the starting point of random walkers that at every time step can
move one site to the right or left with the same probability.

Walkers do not know the others’ position, cannot coordinate with them, and
may cross each other. When they reach the border of the region at i = 0 or
i = L + 1, they bounce back. In Fig. 3 we show examples of the four strategies.

Fig. 3. Space-time diagrams of the four bulk synchronization schemes. (a) L-divide
pinching synchronization. (b) L-quenched pinching synchronization. (c) L-annealed
pinching quenched synchronization. (d) L-random walk pinching synchronization. In
all cases, L = 60, p1 = 0.8, p2 = 0.2, π = 0.1 and the region of size L = 60 is shown
during T = 200 time steps. (Color online)

In Fig. 4(a) and (b) we show hL and Ts as functions of π with p1 = 0.85 and
p2 = 0.15 respectively. The best strategy, in the sense of achieving synchroniza-
tion for the smallest value of π in the shortest time, is LDP synchronization.
This is valid for other values of p1. To simplify our results, if Ts > T , that occurs
for small p1, we write Ts = T .
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Fig. 4. The average normalized Hamming distance hL in (a), and the average normal-
ized synchronization time fraction Ts/T in (b) as functions of π with πL the fraction
of sites in the region of size L where synchronization is imposed for p1 = 0.85 and
p2 = 1 − p1 = 0.15 in the four strategies. In (a) and (b) the data correspond, from left
to right, to L divide pinching synchronization, LDP (in magenta), L quenched pinching
synchronization, LQP (in green), L annealed pinching synchronization, LAP (in blue),
and L random walk pinching synchronization, LRWP (in red). The parameters are
N = 1, 000, L = 100, M = 100 and T = 10, 000. (Color online).

5 Conclusions

We presented regional synchronization, the synchronization of two extended sys-
tems to a sub-domain, the region. As an example, we discussed some proper-
ties the three state probabilistic cellular automaton and showed that regional
synchronization has three different behaviours on the diagonal p2 = 1 − p1 of
Fig. 1(b). In the first one, 0 < p1 < ξ1 � 0.5, L-synchronization occurs for long
times. In the second one, ξ1 < p1 < ξ2 � 0.75, L-synchronization is always
present, and in the third one, ξ2 < p1 < 1, L-synchronization is not possible. If
we insist on trying to synchronize y with x in this third case, we have to split the
region in subregions and we presented four different strategies and show which
one is the most effective. It might prove interesting to extend the analysis of
Lπ-synchronization to the whole phase diagram of Fig. 1 and to other cellular
automata.
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Abstract. A large number of cellular automata have been given as
a transition table constructed by hand. The methodology of “cellular
fields” propose to give them by their modular design principles instead,
and to generate the transition table in last step, as it is the case for high-
level programming language source code and their binary executable file.
In this paper, we check whether this generated tables can be optimized to
be as small a their counterpart constructed by hand. This is done in the
particular case of a cellular automaton solving the Firing Squad Synchro-
nization Problem using cellular fields. We study the internal structure of
this solution and study their reductions in the same vein as determinis-
tic finite automata minimization. We also compare this solution with the
8-states solution of Noguchi and devise another notion of optimization.

Keywords: Cellular automata · Automata minimization
Program optimization · Firing Squad Synchronization Problem

1 Introduction

Since von Neumann’s studies on auto-replication and synchronization of Cellular
Automata (CA for short), a number of algorithmic problems have been consid-
ered. Their solutions have been developed by explicitly building the automata
transition table “by hand”. More recently, the works of Maignan and Yunès [2]
put forward a high-level approach allowing to have a formal description closer
to the design principle of a cellular automaton and to generate only in last step
its transition table. It is achieved by the use of a concept of modularity and
abstraction called “cellular field”. However, the transition tables thus generated
are currently not comparable in terms of size with those produced “by hand”.
This situation is like a recall of the period of the first compilers and the com-
petition between assembly assembler “by hand” and that by compilation from
a high-level program. In analogy with this story, the goal is to enrich the set
of methods for generating transition tables and also to set up optimization pro-
cesses to reduce the number of states.

To build these tools, the study of a particular case is useful as a first step in
order to identify some strategies that can then be generalized in a second step. In
this paper, we study the transition table generated by following the field-based
c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 264–273, 2018.
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approach described in [2] to solve the Firing Squad Synchronization Problem
(FSSP for short). We study its internal structure to identify some possible opti-
mizations and also compare it with a similar, but more efficient, pre-existing
solution produced by hand by Noguchi [3] to identify more possibilities.

The paper is organized as follows. In Sect. 2, we compare our goal with clas-
sical deterministic finite automata minimization, then introduce the class of
cellular automata at study and the FSSP. In Sect. 3, we present the CA at study
and its generated transition table and study exhaustively all of its reductions, for
a notion of reduction similar to that of deterministic finite automata minimiza-
tion. In Sect. 4, we present the 8-states Noguchi’s solution and compare it with
the generated CA. This leads to a generalization of the definition of reduction
formalizing the relation between the two CA. We then discuss, in Sect. 5 the
results together with the other on-going works and future works as a conclusion.
To allow reproducability of the results, we fully provided the transition tables.

2 Theoretical Grounds and Backgrounds

2.1 Relation with Deterministic Finite Automata Minimization

When talking about automata optimization, one immediately thinks about the
minimization of Deterministic Finite Automata (DFA for short) and there are
a number of well-known algorithms like the Moore algorithm, the Brzozowski
algorithm and the Hopcroft algorithm. A DFA receives an input word u1u2 . . . un
build from its input alphabet, and transitions through a sequence q0q1q2 . . . qn of
states according to a transition function. Each state produces a bit of information
called “accepting” or “rejecting”. The collection gathering for each possible input
word its last outputted bit of information is taken as a complete specification of
the input-output behavior of the DFA and is usually formalized by the notion of
recognized language. To minimize a DFA means to merge together its states in
a coherent way so that the input-output behavior stays unchanged. It is known
that starting with any DFA recognizing a language, such a merging of states
produces the best possible DFA that recognizes this language.

For CA, things are more intricated and such a strong minimization is impos-
sible but we can start by approaching the problem in a similar way (although a
departure from this approach in initiated in Sect. 4). Using the modular notion
of cellular fields, it is possible to describe a CA-equivalent to the notion of input
word (input field), output bit of information (output field) and cellular field
respecting a specified input-output behavior as initiated in [2], but this is out of
the scope of this short paper. We narrow the discussion to the particular case of
the FSSP.

2.2 Cellular Automata Minimization and the FSSP Particular Case

CA and FSSP Informally. A cellular automaton is a set of rules describing
the local, synchronous and homogenous evolution of any array of cells having a
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finite number of state. The Firing Squad Synchronization Problem was proposed
by John Myhill in 1957. The goal is to find a single cellular automaton that
synchronizes any one-dimensional horizontal array of an arbitrary number of
cells. More precisely, one consider that at initial time, all cells are inactive (i.e.
in the quiescent state) except for the leftmost cell which is in the general (i.e. in
the general state). One wants the evolution of the cellular automaton to lead all
cells to transition to a special state (i.e. the synchronization or firing state) for
the first time at the same time. This time ts is called the synchronization time
and it is known that the minimal possible value for it is 2n − 2 where n is the
number of cells.

Here, its input-output behavior is mainly specified by the fact the quiescent
state should act as an inactive state and, considering the firing state as the only
accepting state, by the fact that no accepting state should appears before the
transition 2n − 2 and all states should be accepting at transition ts = 2n − 2 for
any length n.

CA Formally. We consider a definition of cellular automata that fits the
purpose of this article. A cellular automaton α is specified by a finite set of
states Σα, a set of initial configurations Iα ⊆ ⋃

n∈N+ Σα
n and a partial function

Tα : Σ�
α × Σα × Σ�

α �→ Σα called the local transition function or local transition
table. Here, we denote Σ�

α = Σα ∪ {�} where � is a new element representing
the absence of cell. The elements of Σ�

α × Σα × Σ�
α are called local configura-

tions and are noted in the form [a, b, c]. A local transition, or rule, is denoted
by [a, b, c] �→ d with a, c ∈ Σ� and b, d ∈ Σ. This partial function is required
to respect a certain closure condition, namely that all space-time diagrams are
totally defined. A cellular automaton associates any initial configuration c ∈ Iα
of size n with a space-time diagram Dα(c) : N × [[0,n + 1]] → Σ�

α such that:

Dα(c)(t , p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

� if p = 0 or p = n + 1;
cp if t = 0 and p ∈ [[1,n]];
Tα(s(p − 1), s(p), s(p + 1)) if t > 0 and p ∈ [[1,n]];

with s(p′) = Dα(c)(t − 1, p′).

When we have Dα(c)(t , p) = s, we say that, with the cellular automaton α and
initial configuration c, the cell at position p has state s at time t .

FSSP Formally. A cellular automaton is a minimal-time FSSP solution if there
are three special states gα, qα, fα ∈ Σα and if for any size n, Dα(n)(t , p) = fα

if and only if t ≥ 2n − 2 and 1 ≤ p ≤ n. Here, n denotes the FSSP initial
configuration of size n, i.e. n1 = gα and np = qα for any p ∈ [[1,n]]. Moreover,
qα must be a quiescent state, i.e. we must have Tα(s, qα, s ′) = qα whenever s
and s ′ are either qα or �. We are only concerned with minimal-time solutions
but sometimes simply write FSSP solution, or solution for short.
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Family of Space-Time Diagrams. We have also the notion of a family of
space-time diagrams D ⊆ ⋃

n∈N+(S ∪ {�})N×[[0,n+1]] on a set of states S . Such a
family is said to be a deterministic family when for any two diagrams d , d ′ ∈ D
of respective sizes n and n ′, and for any (t , p) ∈ N×[[1,n]] and (t ′, p′) ∈ N×[[1,n ′]]
we have :

(∀ x ∈ {−1, 0, 1}, d(t , p + x ) = d ′(t ′, p′ + x )) ⇒ d(t + 1, p) = d(t ′ + 1, p′).

We forget here the details of the border cells. It is obvious that, for any cellular
automaton α, the family {Dα(c) | c ∈ Iα } of all its space-time diagrams is
deterministic. Conversely, when we have a deterministic family of space-time
diagram D on a finite set of state S , we can construct a cellular automaton α
such that Σα = S and {Dα(c) | c ∈ Iα } = D , the local transition function Tα :
[d(t , p−1), d(t , p), d(t , p+1)] �→ d(t+1, p) for any d ∈ D and (t , p) ∈ N×[[1,n]]
being well defined because of the determinism of the family. Note that, since Tα

has a finite domain, there are finite subsets of D that are enough to specify it
completely.

3 Optimizations of a Field - Based FSSP Solution

3.1 The Cellular Automaton F

Maignan - Yunès have proposed a modular minimal-time FSSP solution. The
modularization is to replace the traditional notion of “signals” by the concept
of “cellular fields”. A cellular field is a module that takes inputs from its envi-
ronment and produces a result to its environment. The cellular fields can be
composed to produce larger modules or be a complete cellular automaton. The
FSSP solution is described in two steps: the first step is to describe the fields and
to compose them into a cellular automaton with an unbounded number of states
and the second step is to reduce the latter into a new finite state classical cellular
automaton. The detailed procedure of this solution is described in [2]. This work
has been done for the generalized FSSP where the general is not necessarily the
leftmost cell.

Following the procedure, we re-implemented the unbounded solution and, to
retrieve the transition table for the restricted case of classical FSSP, we generated
a finite subpart of its family of space-time diagrams, i.e. the space-time diagrams
associated with the FSSP initial configuration of size 2 to 1000. For each of space-
time diagram, we transformed each state according to the prescribed reduction
function to produce a new family of space-time diagram. We found that this
family is deterministic (see Sect. 2.2) and extracted the local transition table of
cellular automaton associated to it. In fact, the extraction was already complete
with the FSSP initial configurations of size 2 to 105.

The result is a cellular automaton F of 21 states and 486 local transition
rules. Among these rules, there are 477 symmetric rules consisting of 23 self-
symmetric rules and 227 pairs of symmetric rule. A rule [a, b, c] �→ d ∈ TF is
self-symmetric if a = c and symmetric if [c, b, a] �→ d ∈ TF. In Fig. 3 in page 10
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Fig. 1. Space-time diagrams for the FSSP initial configuration of size 15

is depicted the 9 asymmetric rules firsts, and then the symmetric rules, keeping
only one element of each pair of (non-self)-symmetric rules. The set of 21 states
consists of the 3 states , and . The other 18 states are composed of three
informations: a number denoting the distance to a border modulo 3, a boolean
the presenting the stability of the distance and represented by typesetting the
number in bold or italics; and the level of division modulo 3 represented by
have the background white, gray or dark gray. We have , and

. The space-time diagram DF(15) of the cellular automaton F on the
FSSP initial configuration of size 15 is shown in Fig. 1b.

3.2 Brute Force Exploration of All Reductions

As in the case of DFA minization, we want to merge as many states of F as possi-
ble while preserving the fact that it is a minimal-time FSSP solution. The merg-
ing of many states can always be obtained by merging two states, then another
two states, and so on so forth. Also, merging two states might be described
simply as a substitution of one of them by the other. However, the resulting
object might not be a CA in the strict sense. Indeed, we might have a cellular
automaton α with two transitions [a, b, c] �→ d , [e, f , g ] �→ h ∈ Tα with d �= h
and the substitution renders [a, b, c] equals to [e, f , g ] but keeps d �= h. In this
case, the transition table is not a partial function anymore and we have a non-
deterministic CA. However, if we then substitute d by h, and so on so forth
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every time we obtain a non-deterministic CA, we will necessarily end up with a
deterministic CA at some point.

More precisely, let α be a CA, e0 ∈ Σα be a state and e1 an arbitrary
element, a substitution of e0 by e1 in α gives a new (maybe non-deterministic)
CA β = ρ(e0, e1, α) with Σβ = (Σα\{e0}) ∪ {e1}, Iβ = {c′ | c ∈ Iα} and
Tβ = {[a ′, b′, c′] �→ d ′ | [a, b, c] �→ d ∈ Tα} where

x ′ =
{
e1 if x = e0
x otherwise.

As we are considering FSSP solutions, we also need to keep track of the three
special states and have gβ = gα

′, qβ = qα
′ and fβ = fα

′.
We also define γ = ρ+(e0, e1, α) the closest deterministic CA obtained by

first computing β = ρ(e0, e1, α), and then taking γ = β if β is deterministic. If
β is not deterministic, then there exists a, b, c, e2, e3 ∈ Σ�

β such that [a, b, c] �→
e2 ∈ Tβ and [a, b, c] �→ e3 ∈ Tβ but e2 �= e3. In this case, we recursively set
γ = ρ+(e2, e3, β). This operation is well defined up to a state renaming. We use
the following straightforward algorithm to explore all reductions by brute force.
This algorithm is indeed exhaustive because once a CA is not an FSSP solution,
none of its reductions can be. Indeed, if it is not a FSSP solution, it is necessarily
because the firing state occurs too early, and more merging can only make the
firing states occur in more places in the space-time diagrams.

AllReductions(α)
res := {}
for {e1, e2} ⊆ Σα with e1 �= e2 do

β = ρ+(e1, e2, α)
if β is an FSSP solution then

res := res ∪ {β}
res := res ∪ AllReductions(β)

end

end
return res

3.3 A Brief Analysis of the Reductions

An execution of this algorithm on the CA F does not produce a combinatorial
explosion and stops after a few minutes. We found 3483 distinct reductions:
30 reductions appear at recursion depth 1, 294 reductions at depth 2, 1106
reductions of depth 3, 1466 reductions of depth 4, 530 reductions of depth 5,
56 reductions of depth 6, and 1 reduction of depth 7. We verified that the 3483
CA are minimal-time FSSP solution by checking their space-time diagram for all
FSSP initial configuration of size 2 to 1000. All the other reductions that have
been generated and declared non-solution merges the firing state with some other
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Fig. 2. Transition table of an 8-state and 119-rule Noguchi’s CA N

state, and in fact merges almost all states together to become deterministic.
Another interesting fact is that all of the valid reductions only merges states two
by two. In other words, changing ρ+(e1, e2, α) into ρ(e1, e2, α) and changing the
test β is an FSSP solution by the test β is a deterministic CA in the algorithm
lead to the same set of reductions. Figure 1a shows a space-time diagram of
the CA reduction of 14-state. It has 480 rules and is obtained by merging the
following set of substitutions: ( , ), ( , ), ( , ), ( , ), ( , ),
( , ), ( , ). Note that these pairs are all disjoints.

Organizing these reductions into a Hasse diagram under the finer-coarser
partial order reveals some more interesting structure, but this is out of the scope
of this paper. This 14-state symmetric FSSP solution should be compared with
other symmetric solutions. However, there are hand-made solution with smaller
number of state and we now jump to the subject of a comparison with F, which
will lead to a generalization of the concept of reduction.

4 Comparison of F with Noguchi’s Solution

4.1 The Cellular Automaton N

Kenichiro Noguchi proposed an 8-state and 119-rule solution for the FSSP as
described in [3]. The space-time diagrams of this solution have the same structure
with those of the field-based solution. Figure 2 shows the transition table TN of
this CA that we denote N. In each table, the first line presents the current state
e0, the second line présents the state of the right neighbour e1, the first column
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presents the state of the left neighbour e−1. Each other cell of the table shows
the results TN(e−1, e0, e1). A cell is empty to say there is no local transition
for [e−1, e0, e1]. Figure 1c shows the space-time diagram of this CA on an FSSP
initial configuration of size 15. In Figs. 2 and 1c, G denotes the general gN, - the
quiescent state qN and F denotes the firing state fN.

4.2 Generalized Reductions of F into N

Although the space-time diagram of N looks similar to the one of F, N is not a
reduction of F since we did not obtained any 8-state reduction in the previous
section. It is expectable since that transition table of N is non symmetric, i.e. that
are local configurations that gives a different results when reversed. However,
looking only a local part of the space-time diagram of F seemed enough to known
a local part of the corresponding space-time diagram of N. More precisely, one
can check on Fig. 1 that at any time t and any position p, the local configuration
[DF(15)(t , p − 1),DF(15)(t , p),DF(15)(t , p + 1)] on the space-time diagram of F
determines the state DN(15)(t +1, p) on the space-time diagram of N, i.e. if this
local configuration appears at some other place (t ′, p′) on F, leads to the same
states at (t ′ + 1, p) on N.

Formally, we therefore consider the generalized reduction function f : Σ�
F ×

ΣF × Σ�
F → ΣN defined as :

f = {[DF(n)(t , p − 1),DF(n)(t , p),DF(n)(t , p + 1)] �→ DN(n)(t + 1, p)}
for any n ∈ N

+, t ∈ N and p ∈ [[1,n]]. We approximated it by taking it with
n ∈ [[2, 1000]], i.e. we only considered the FSSP initial configuration of size 2 to
1000, but the function stayed unchanged above n = 105. This is indeed the size
at which all local transition of F appears. The check until n = 1000 was still
necessary to check informally that the function is indeed well defined, and is not
a mere non-functional relation.

4.3 A Brief Analysis of the Result

We have built the generalized reduction function which have the same number
of elements with the local transition table TF. Each element of f of the form
[a, b, c] �→ d with a, c ∈ Σ�

F, b ∈ ΣF, d ∈ ΣN is indeed well-defined. This is
indeed a notion of reduction because the CA N can be recovered from the CA
F in the following way. From the CA F, we that consider its family of space-
time diagram (up to a certain size). Using the generalized reduction function,
we can transform of those space-time diagrams to obtain a new family of space-
time diagram. This new family being deterministic, we can obtain N as the CA
associated to this deterministic family.

Moreover, this is indeed a generalization because the previous notion of
reduction can always be described as a particular case of this new notion.
Indeed, merging many states of a CA α transform each state e ∈ Σα to some
state g(e). The associated generalized reduction function f is simply defined as
f (a, b, c) = g(Tα(a, b, c)).
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Fig. 3. Transition table of Maignan - Yunès’s solution
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5 Conclusion

We found a 14-states reductions of a field-based solution to the FSSP. Note that
the original solution is designed for the generalized FSSP where the general can
be at any position. We also have shown in which sense the Noguchi’s solution
can be viewed as a particular reduction of the field-based solution. Other rela-
tions between FSSP solutions are currently under study. Indeed, the original
unbounded field-based CA can be reduced in many different way, by consdering
modulo 2 instead of modulo 3 for the level value, and more relation exists with
Noguchi’s solution, and certainly with other solutions. These study should allow
to identify technics to optimized automatically other solutions designed using
the field-based approach.
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Abstract. The firing squad synchronization problem (FSSP, for short)
on cellular automata has been studied extensively for more than fifty
years, and a rich variety of FSSP algorithms has been proposed. Here we
study the classical FSSP on a model of fault-tolerant cellular automata
that might have possibly some defective cells and present the first
state-efficient implementations of fault-tolerant FSSP algorithms for one-
dimensional (1D) and two-dimensional (2D) arrays. It is shown that,
under some constraints on the distribution and length of defective cells,
any 1D cellular array of length n with p defective cell segments can
be synchronized in 2n − 2 + p steps and the algorithm is realized on
a 1D cellular automaton with 164 states and 4792 transition rules. In
addition, we give a smaller implementation for the 2D FSSP that can
synchronize any 2D rectangular array of size m × n, including O(mn)
rectangle-shaped isolated defective zones, exactly in 2(m + n) − 4 steps
on a cellular automaton with only 6 states and 939 transition rules.

1 Introduction

Synchronization of large-scale networks is an important and fundamental com-
puting primitive in parallel and distributed systems. The synchronization in
ultra-fine grained parallel computational model of cellular automata, known as
the firing squad synchronization problem (FSSP), has been studied extensively
for more than fifty years [5,8], and a rich variety of synchronization algorithms
has been proposed. In the present paper, we consider the FSSP from a view-
point of fault tolerance. Reliable and fault-tolerant computation on a large-scale
cellular automaton is a key issue to be studied so far. Gács [2] constructed reli-
able cellular automata from unreliable ones that make errors with some constant
probability. Fault tolerance in FSSP has been studied by Kutrib and Vollmar [3],
Umeo [6], Yunès [9], and recently by Dimitriadis, Kutrib, and Sirakoulis [1]. One
of the major open questions on fault-tolerant FSSP is: how many states would
be required in their realizations on a finite state automaton? No full imple-
mentations were given in the past. In this paper, we present two state-efficient
implementations of fault-tolerant FSSP algorithms for one-dimensional (1D) and
two-dimensional (2D) arrays. It is shown that, under some constraints on the
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distribution and length of defective cells, any 1D cellular array of length n with
p defective cell segments can be synchronized in nearly minimum 2n−2+p steps
and the algorithm is realized on a 1D cellular automaton with 164 states and
4792 transition rules. In addition, we give a smaller implementation for the 2D
FSSP that can synchronize any 2D rectangular array of size m × n, including
O(mn) rectangle-shaped isolated defective zones, exactly in 2(m + n) − 4 steps
on a cellular automaton with only 6 states and 939 transition rules.

2 Fault-Tolerant FSSP Algorithm and Its Implementation
on 1D Arrays

In this section we review a nearly minimum-time fault-tolerant FSSP algorithm
in Umeo [6] and present an implementation of the algorithm on a 1D cellular
automaton with 164 states and 4792 transition rules.

2.1 FSSP on Cellular Automata with Defective Cells

Consider a 1D array of cells, shown in Fig. 1, some of which are defective. Each
cell has its own self-diagnosis circuit that diagnoses itself before its operation.
The diagnosis result is stored as a flag in the special register augmented with each
cell. We assume that new defections do not occur during the operational lifetime
on any cell, thus the fault-tolerance we study is a static one. A consecutive
defective (intact) cells are referred to as a defective (intact) segment, respectively.
Figure 1 illustrates a 1D array with three defective and four intact segments. Any
defective and intact cells can detect whether its neighbor cells are defective or
not.

1 2 3 4 n
: Intact cell

: Defective cell

General
Soldiers

Fig. 1. A one-dimensional (1D) cellular array with three defective and four intact
segments

We use the following notations. The array consists of p defective segments and
(p+1) intact segments, denoted by Ii and Dj , respectively and p be any positive
integer, where 1 ≤ p ≤ n. Let ni and mj be number of cells on the ith intact and
jth defective segments, where 1 ≤ i ≤ p + 1 and 1 ≤ j ≤ p. Let n be the length
of the array such that n = (n1 + m1) + (n2 + m2)+, ...,+(np + mp) + np+1.

In our model we assume that any cell in defective segment can only transmit
a signal to its right or left neighbor depending on the direction in which it comes
to the defective segment. The speed of the signal in any defective segment is
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Defective 
segment

Cellular space

Time

Intact
segment

Intact
segment

1/2

1/2

1/3

1/3

1/1

1/1

Fig. 2. In defective segments, any signal is transmitted at a constant speed 1/1

fixed to 1/1, that is, one cell per one step. In defective segments, both the infor-
mation carried by the signal and the direction in which the signal is propagated
are preserved without any modifications. Thus, we can see that any defective
segment has two one-way pipelines that can transmit the state at 1/1 speed in
either direction (Fig. 2).

The fault-tolerant FSSP for cellular automata with defective cells is to deter-
mine a description for cells that ensures all intact cells enter the fire state at
exactly the same time and for the first time. The set of states and the next-state
function must be independent of n.

1 step

1 step

p steps

t = 0
n1 m1 n2 m2 n3 m3 n4

t = 2n-2+p

a-signal

a-signal

b-signal

b-signal

Frozen

Frozen

Frozen

Fig. 3. A space-time diagram for the fault-tolerant FSSP algorithm operating on an
array with three defective segments
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2.2 Fault-Tolerant FSSP Algorithm and Its Implementation on 1D
Arrays

First we introduce a freezing-thawing technique that yields a delayed synchro-
nization developed in Umeo [6].

Theorem 1. Let t1, t2 and Δt be any integer such that 0 ≤ t1 ≤ n − 1, t1 ≤ t2
and Δt = t2 − t1. We assume that the right end cell of the array of length n
receives a special signal from outside at time t = t1 and t2. Then, there exists a
CA that can fire at time t = 2n − 2 + Δt.

We can freeze the entire configuration on the array during Δt steps and delay
the synchronization on the array for Δt steps.

Fault-Tolerant FSSP Algorithm
Let p be any positive integer and M be any cellular array of length n with
p defective segments, where ni ≥ mi and ni + mi ≥ p − i, for any i such
that 1 ≤ i ≤ p. A space-time diagram of the fault-tolerant FSSP algorithm is
illustrated in Fig. 3. The algorithm is based on the freezing-thawing technique
in Theorem 1. In order to thaw the intact segment, special thawing signals: a-
and b-signals, are used and the initiation of synchronization process is delayed
for one step at each intact segment. Precisely, the synchronization for the i-th
segment is initiated at time ti = 2

∑i−1
j=1(nj + mj) + (i − 1). Whenever the fast

signal arrives at each right end of intact segment, it splits into two signals. One is
the freezing signal and the other is the a- and b-signals which propagate toward
the right end of the array at 1/1-speed. The b-signal stays for one step at the
left end of each intact segment that it encounters. Both a- and b-signals reflect
at the right end of the array and proceed to the left direction at 1/1-speed. This
time the reflected a-signal stops for one step at the left end of each defective
segment that it encounters. When the conditions given above are satisfied, two
reflected a- and b-signals meet at the right end of right intact segment just where
the original a- and b-signals have been generated. Now the thawing operation
for the configuration of the intact segment is started.

Let tai and tbi be time steps at which the a- and b-signals emitted by the i-th
segment hit the right end of the array, respectively. We have:

tai = ti +
∑p

j=i
(nj + mj) + np+1, t

b
i = tai + p − i + 1.

The freezing and thawing operations for Ii are started, respectively, at time
ti1 = ti + ni − 1 and ti2 = ti1 + 2mi + 2

∑p
j=i+1(nj + mj) + 2np+1 + p − i + 1.

The condition: tai+1 ≥ tbi for any i such that 1 ≤ i ≤ p is necessary and sufficient
for the configuration on Ii to be thawed by the thawing signal emitted by the
i-th segment. The condition is satisfied for any i such that 1 ≤ i ≤ p, since
tai+1 − tbi = ni + mi − p + i ≥ 0.

Thus the configuration on Ii is frozen during Δt = ti2 − ti1 = 2mi +
2
∑p

j=i+1(nj + mj) + 2np+1 + p − i + 1 steps. Based on Theorem 1, the i-th
intact segment Ii can be fired at time t = ti + 2ni − 2 + Δt = 2n − 2 + p. In
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 M L L L L L L L L (F) (F) (F ) (F) L L L L L L L

1 M C L L L L L L L (F) (F) (F ) (F) L L L L L L L

2 M C C L L L L L L (F) (F) (F ) (F) L L L L L L L

3 M C R C L L L L L (F) (F) (F ) (F) L L L L L L L

4 M C R B C L L L L (F) (F) (F ) (F) L L L L L L L

5 M C C B R C L L L (F) (F) (F ) (F) L L L L L L L

6 M C C R R B C L L (F) (F) (F ) (F) L L L L L L L

7 M C C R B B R C L (F) (F) (F ) (F) L L L L L L L

8 M C C C B R R B C (F) (F) (F ) (F) L L L L L L L

9 M C R C R R B B R (F) (F) (F ) (F) L L L L L L L

10 M C R C R B B R uVLE (F) (F) (F ) (F) L L L L L L L

11 M C R C C B R vLLE g (F) (F) (F ) (F) L L L L L L L

12 M C R B C R vLLE B g (F) (F) (F ) (F) L L L L L L L

13 M C C B C vLLE B B g (F) (F) (F ) (F) C L L L L L L

14 M C C B C BLLG B B g (F) (F) (F ) (F) B C L L L L L

15 M C C B C BLLH B B g (F) (F) (F ) (F) jWLL R C L L L L

16 M C C B C BLLI B B g (F) (F) (F ) (F) j SWL L B C L L L

17 M C C B C B BLLG B g (F) (F) (F ) (F) j S SWL L R C L L

18 M C C B C B BLLH B h (F) (F) (F ) (F) j S S SWL L B C L

19 M C C B C B BLLI BLLJ i (F) (F) (F ) (F) j S S S SWL L R t

20 M C C B C B B BLLK i (F) (F) (F ) (F) j S S S S Sx<L t

21 M C C B C B B B iLLN (F) (F) (F ) (F) j S S S SL<L SL{L t

22 M C C B C B B B i (F) (F) (F ) (F) j S S SL<L SL{L S t

23 M C C B C B B B i (F) (F) (F ) (F) j S SL<L SL{L S S t

24 M C C B C B B B i (F) (F) (F ) (F) j SL<L SL{L S S S t

25 M C C B C B B B i (F) (F) (F ) (F) jL(L SL{L S S S S t

26 M C C B C B B B i (F) (F) (F ) (F) kL[L S S S S S t

27 M C C B C B B B i (F) (F) (F ) (F) l S S S S S t

28 M C C B C B B B i (F) (F) (F ) (F) l C S S S S t

29 M C C B C B B B i (F) (F) (F ) (F) l C C S S S t

30 M C C B C B B B i (F) (F) (F ) (F) l C R C S S t

31 M C C B C B B B s (F) (F) (F ) (F) l C R B C S t

32 M C C B C B B A s (F) (F) (F ) (F) l C C B R C t

33 M C C B C B Q R s (F) (F) (F ) (F) l C C R R B M

34 M C C B C Q R Q s (F) (F) (F ) (F) l C C R B A M

35 M C C B M R L Q s (F) (F) (F ) (F) l C C C Q R M

36 M C C A M B Q Q s (F) (F) (F ) (F) l C R M R Q M

37 M C M Q M C M Q s (F) (F) (F ) (F) l C Q M C Q M

38 M M M M M M M M s (F) (F) (F ) (F) l M M M M M M

39 F F F F F F F F F (F) (F) (F ) (F) F F F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 M L L L L L (F) (F) (F) L L L L L L (F ) (F) (F) L L L L L (F ) (F) L L L L L

1 M C L L L L (F) (F) (F) L L L L L L (F ) (F) (F) L L L L L (F ) (F) L L L L L

2 M C C L L L (F) (F) (F) L L L L L L (F ) (F) (F) L L L L L (F ) (F) L L L L L

3 M C R C L L (F) (F) (F) L L L L L L (F ) (F) (F) L L L L L (F ) (F) L L L L L

4 M C R B C L (F) (F) (F) L L L L L L (F ) (F) (F) L L L L L (F ) (F) L L L L L

5 M C C B R C (F) (F) (F) L L L L L L (F ) (F) (F) L L L L L (F ) (F) L L L L L

6 M C C R R B (F) (F) (F) L L L L L L (F ) (F) (F) L L L L L (F ) (F) L L L L L

7 M C C R B aVLE (F) (F) (F) L L L L L L (F ) (F) (F) L L L L L (F ) (F) L L L L L

8 M C C C bLLE g (F) (F) (F) L L L L L L (F ) (F) (F) L L L L L (F ) (F) L L L L L

9 M C R cLLH R g (F) (F) (F ) C L L L L L (F ) (F) (F) L L L L L (F ) (F) L L L L L

10 M C e RLLI R g (F) (F) (F ) R C L L L L (F ) (F) (F) L L L L L (F ) (F) L L L L L

11 M C C R RLLG g (F) (F) (F ) jWLL B C L L L (F ) (F) (F) L L L L L (F ) (F) L L L L L

12 M C C R RLLH g (F) (F) (F ) j SWL L R C L L (F ) (F) (F) L L L L L (F ) (F) L L L L L

13 M C C R RLLI h (F) (F) (F ) j S SWL L B C L (F ) (F) (F) L L L L L (F ) (F) L L L L L

14 M C C R R iLLN (F) (F) (F ) j S S SWL L R C (F ) (F) (F) L L L L L (F ) (F) L L L L L

15 M C C R R i (F) (F) (F ) j S S S SWL L B (F ) (F) (F) L L L L L (F ) (F) L L L L L

16 M C C R R i (F) (F) (F ) j S S S S iXLL (F ) (F) (F) L L L L L (F ) (F) L L L L L

17 M C C R R i (F) (F) (F ) j S S S S i (F ) (F) (F) L L L L L (F ) (F) L L L L L

18 M C C R R i (F) (F) (F ) k S S S S i (F ) (F) (F ) C L L L L (F ) (F) L L L L L

19 M C C R R i (F) (F) (F ) l S S S S i (F ) (F) (F ) R C L L L (F ) (F) L L L L L

20 M C C R R i (F) (F) (F ) l C S S S i (F ) (F) (F ) jXLL B C L L (F ) (F) L L L L L

21 M C C R R i (F) (F) (F ) l C C S S i (F ) (F) (F ) j SXL L R C L (F ) (F) L L L L L

22 M C C R R i (F) (F) (F ) l C R C S i (F ) (F) (F ) j S SXL L B C (F ) (F) L L L L L

23 M C C R R i (F) (F) (F ) l C R B C i (F ) (F) (F ) j S S SXL L R (F ) (F) L L L L L

24 M C C R R i (F) (F) (F ) l C C B R mLLO (F ) (F) (F ) j S S S iYLL (F ) (F) L L L L L

25 M C C R R i (F) (F) (F ) l C C R R nLLP (F ) (F) (F ) j S S S i}LL (F ) (F ) C L L L L

26 M C C R R i (F) (F) (F ) l C C R b iLLE (F ) (F) (F ) j S S S i (F ) (F ) B C L L L

27 M C C R R i (F) (F) (F ) l C C p RLLE i (F ) (F) (F ) j S S S i (F ) (F ) jZLL R C L L

28 M C C R R i (F) (F) (F ) l C C RLLH R i (F ) (F) (F ) q S S S i (F ) (F ) j}LL SZL L B C L

29 M C C R R i (F) (F) (F ) l C C RLLI R i (F ) (F) (F ) r S>LL S S i (F ) (F ) j S}LL SZL L R t

30 M C C R R i (F) (F) (F ) l C C R RLLG i (F ) (F) (F ) j S}LL S>LL S i (F ) (F ) j S S}LL SL<L t

31 M C C R R i (F) (F) (F ) l C C R RLLH i (F ) (F) (F ) j S S}LL S>LL i (F ) (F ) j S SL<L S}LL t

32 M C C R R i (F) (F) (F ) l C C R RLLI hLLK (F ) (F) (F ) j S S S}LL i>LL (F ) (F ) j SL<L S S t]LL

33 M C C R R i (F) (F) (F ) l C C R R iLLN (F ) (F) (F ) j S S S i)LL (F ) (F ) jL(L S S SL{L t

34 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) j S S S i}LL (F ) (F ) jL<L S SL{L S t

35 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) j S S S i (F ) (F ) j>LL SL{L S S t

36 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) j S S S i (F ) (F ) jL{L S>LL S S t

37 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) k S S S iL<L (F ) (F ) j}LL S S>LL S t

38 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) l S S SL<L i (F ) (F ) j S}LL S S>L L t

39 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) l C SL<L S iL{L (F ) (F ) j S S}LL S t/LL

40 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) l CL<L C SL{L i (F ) (F ) j S S S}<L t

41 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) lL(L C RL{L C i (F ) (F ) j S SL<L S t]LL

42 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) lL<L CL{L R B mLLO (F ) (F ) j SL<L S SL{L t

43 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) lL{L C C B iLLP (F ) (F ) jL(L S SL{L S t

44 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) l C C B iLLE (F ) (F ) jL<L SL{L S S t

45 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) l C C BLLE i (F ) (F ) qL{L S S S t

46 M C C R R i (F) (F) (F ) l C C R R iL<L (F ) (F) (F ) l C C BLLG i (F ) (F ) r S>LL S S t

47 M C C R R i (F) (F) (F ) l C C R RL<L iL{L (F ) (F) (F ) l C C BLLH iL<L (F ) (F ) j S}LL S>LL S t

48 M C C R R i (F) (F) (F ) l C C RL<L RL{L i (F ) (F) (F ) l C C BL<I hL{L (F ) (F ) j S S}LL S>L L t

49 M C C R R i (F) (F) (F ) l C CL<L RL{L R i (F ) (F) (F ) l C CL<L BL{L iLLN (F ) (F ) j S S S}LL t/LL

50 M C C R R i (F) (F) (F ) l CL<L CL{L R R i (F ) (F) (F ) l CL<L CL{L B i (F ) (F ) j S S SL<L t]LL

51 M C C R R i (F) (F) (F ) lL(L CL{L C R R i (F ) (F) (F ) lL(L CL{L C B i (F ) (F ) j S SL<L SL{L t

52 M C C R R i (F) (F) (F ) lL[L C C R R i (F ) (F) (F ) lL[L C C B i (F ) (F ) k SL<L SL{L S t

53 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) l C C B i (F ) (F ) lL(L SL{L S S t

54 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) l C C B i (F ) (F ) lL[L C S S t

55 M C C R R i (F) (F) (F ) l C C R R i (F ) (F) (F ) l C C B i (F ) (F ) l C C S t

56 M C C R R s (F) (F) (F ) l C C R R s (F ) (F) (F ) l C C B i (F ) (F ) l C R C t

57 M C C R Q s (F) (F) (F ) l C C R Q s (F ) (F) (F ) l C C B s (F ) (F ) l C R B M

58 M C C Q Q s (F) (F) (F ) l C C Q Q s (F ) (F) (F ) l C C A s (F ) (F ) l C C A M

59 M C M M Q s (F) (F) (F ) l C M M Q s (F ) (F) (F ) l C M Q s (F ) (F ) l C M Q M

60 M M M M M s (F) (F) (F ) l M M M M s (F ) (F) (F ) l M M M s (F ) (F ) l M M M M

61 F F F F F F (F) (F) (F ) F F F F F F (F ) (F) (F ) F F F F F (F ) (F ) F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

0 M L L L L L L (F) (F) L L L L L (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

1 M C L L L L L (F) (F) L L L L L (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

2 M C C L L L L (F) (F) L L L L L (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

3 M C R C L L L (F) (F) L L L L L (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

4 M C R B C L L (F) (F) L L L L L (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

5 M C C B R C L (F) (F) L L L L L (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

6 M C C R R B C (F) (F) L L L L L (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

7 M C C R B B R (F) (F) L L L L L (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

8 M C C C B R uVLE (F) (F) L L L L L (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

9 M C R C R vLLE g (F) (F ) C L L L L (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

10 M C R C vLLE B g (F) (F ) B C L L L (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

11 M C R C BLLG B g (F) (F ) jWLL R C L L (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

12 M C R C BLLH B h (F) (F ) j SWL L B C L (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

13 M C R C BLLI BLLJ i (F) (F ) j S SWL L R C (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

14 M C R C B BLLK i (F) (F ) j S S SWL L B (F) L L L L L (F) L L L L (F) L L L L (F) L L L L

15 M C R C B B iLLN (F) (F ) j S S S iXL L (F ) C L L L L (F) L L L L (F) L L L L (F) L L L L

16 M C R C B B i (F) (F ) j S S S i (F ) R C L L L (F) L L L L (F) L L L L (F) L L L L

17 M C R C B B i (F) (F ) j S S S i (F ) jXLL B C L L (F) L L L L (F) L L L L (F) L L L L

18 M C R C B B i (F) (F ) k S S S i (F ) j SXL L R C L (F) L L L L (F) L L L L (F) L L L L

19 M C R C B B i (F) (F ) l S S S i (F ) j S SXL L B C (F) L L L L (F) L L L L (F) L L L L

20 M C R C B B i (F) (F ) l C S S i (F ) j S S SXL L R (F) L L L L (F) L L L L (F) L L L L

21 M C R C B B i (F) (F ) l C C S i (F ) j S S S iYL L (F ) C L L L (F) L L L L (F) L L L L

22 M C R C B B i (F) (F ) l C R C i (F ) j S S S i}LL (F ) B C L L (F) L L L L (F) L L L L

23 M C R C B B i (F) (F ) l C R B mLLO (F ) j S S S i (F ) jZLL R C L (F) L L L L (F) L L L L

24 M C R C B B i (F) (F ) l C C B iLLP (F ) j S S S i (F ) j}LL SZLL B C (F) L L L L (F) L L L L

25 M C R C B B i (F) (F ) l C C B iLLE (F ) q S S S i (F ) j S}LL SZL L R (F) L L L L (F) L L L L

26 M C R C B B i (F) (F ) l C C BLLE i (F ) r S>LL S S i (F ) j S S}LL iZLL (F) C L L L (F) L L L L

27 M C R C B B i (F) (F ) l C C BLLG h (F ) j S}LL S>LL S i (F ) j S S i)LL (F) B C L L (F) L L L L

28 M C R C B B i (F) (F ) l C C BLLK i (F ) j S S}LL S>LL i (F ) j S S i}LL (F) jZLL R C L (F) L L L L

29 M C R C B B i (F) (F ) l C C B iLLN (F ) j S S S}LL i>LL (F ) j S S i (F) j SZL L B C (F) L L L L

30 M C R C B B i (F) (F ) l C C B i (F ) j S S S i)LL (F ) j S S i (F) j}LL S SZLL R (F) L L L L

31 M C R C B B i (F) (F ) l C C B i (F ) k S S S i}LL (F ) j>LL S S i (F) j S}LL S iZLL (F ) C L L L

32 M C R C B B i (F) (F ) l C C B i (F ) l S S S i (F ) j S>L L S i (F) j S S}LL i (F ) B C L L

33 M C R C B B i (F) (F ) l C C B i (F ) l C S S i (F ) j}LL S S>LL i (F) j S S i)LL (F ) jZLL R C L

34 M C R C B B i (F) (F ) l C C B i (F ) l C C S i (F ) j S}LL S i>LL (F) j S S i}LL (F ) j SZL L B t

35 M C R C B B i (F) (F ) l C C B i (F ) l C R C i (F ) j S S}LL i (F) j S S i (F ) j S SL<L t

36 M C R C B B i (F) (F ) l C C B i (F ) l C R B mLLO (F ) j S S i)LL (F) j>LL S S i (F ) j}LL SL<L S t

37 M C R C B B i (F) (F ) l C C B i (F ) l C C B iLLP (F ) j S S i}LL (F) j S>LL S i (F ) jL(L S}LL S t

38 M C R C B B i (F) (F ) l C C B i (F ) l C C B iLLE (F ) q S S i (F) j S S>L L i (F ) jL<L S S}LL t

39 M C R C B B i (F) (F ) l C C B i (F ) l C C BLLE i (F ) r S>L L S i (F) j}LL S S i>LL (F ) j S S t]LL

40 M C R C B B i (F) (F ) l C C B i (F ) l C C BLLG h (F ) j S}LL S>LL i (F) j S}LL S iL<L (F ) j S SL{L t

41 M C R C B B i (F) (F ) l C C B i (F ) l C C BLLK i (F ) j S S}LL i>LL (F) j S S}<L i (F ) j>LL SL{L S t

42 M C R C B B i (F) (F ) l C C B i (F ) l C C B iLLN (F ) j S S i)LL (F) j SL<L S i)LL (F ) jL{L S>LL S t

43 M C R C B B i (F) (F ) l C C B i (F ) l C C B i (F ) j S S i}LL (F) j>(L S S i}LL (F ) j S S>LL t

44 M C R C B B i (F) (F ) l C C B i (F ) l C C B i (F ) k S S i (F) jL<L S>LL S iL{L (F ) j S S t/LL

45 M C R C B B i (F) (F ) l C C B i (F ) l C C B i (F ) l S S i (F) j}LL S S>{L i (F ) j}LL S SL<L t

46 M C R C B B i (F) (F ) l C C B i (F ) l C C B i (F ) l C S iL<L (F) j S}{L S i>LL (F ) j S}<L S t

47 M C R C B B i (F) (F ) l C C B i (F ) l C C B i (F ) l C CL<L i (F) jL{L S S}LL i (F ) jL(L S S}LL t

48 M C R C B B i (F) (F ) l C C B i (F ) l C C B i (F ) l CL<L R mLLO (F) j S S i)LL (F ) j><L S S t]LL

49 M C R C B B i (F) (F ) l C C B i (F ) l C C B i (F ) lL(L C R nL{P (F) j S S i}LL (F ) j S>LL SL{L t

50 M C R C B B i (F) (F ) l C C B i (F ) l C C B i (F ) lL<L C RL{L iLLE (F) q S S iL<L (F ) j SL{L S>LL t

51 M C R C B B i (F) (F ) l C C B i (F ) l C C B i (F ) l CL{L RLLH i (F) r S>LL SL<L i (F ) j}{L S S t/LL

52 M C R C B B i (F) (F ) l C C B i (F ) l C C B iL<L (F ) lL{L C RLLI hLLK (F) j S}<L S>L L i (F ) j S}LL SL<L t

53 M C R C B B i (F) (F ) l C C B i (F ) l C C BL<L i (F ) l C R iLLN (F) jL(L S S}LL i>{L (F ) j SL<L S}LL t

54 M C R C B B i (F) (F ) l C C B i (F ) l C CL<L B iL{L (F ) l C R i (F) jL<L S SL{L i)LL (F ) jL(L S S t]LL

55 M C R C B B i (F) (F ) l C C B i (F ) l CL<L C BL{L i (F ) l C R i (F) k SL{L S i}LL (F ) j><L S SL{L t

56 M C R C B B i (F) (F ) l C C B i (F ) lL(L C CL{L B i (F ) l C R iL<L (F) lL{L S S i (F ) j S>{L S t

57 M C R C B B i (F) (F ) l C C B i (F ) lL<L CL{L C B i (F ) l C RL<L i (F) l C S iL<L (F ) j}{L S S>LL t

58 M C R C B B i (F) (F ) l C C B i (F ) lL{L C C B i (F ) l CL<L R iL{L (F) l C CL<L i (F ) j S}LL S t/LL

59 M C R C B B i (F) (F ) l C C B iL<L (F ) l C C B i (F ) lL(L C RL{L i (F) l CL<L R mL{O (F ) j S S}<L t

60 M C R C B B i (F) (F ) l C C BL<L iL{L (F ) l C C B i (F ) lL<L CL{L R i (F) lL(L C RL{L nLLP (F ) j SL<L S t]LL

61 M C R C B B i (F) (F ) l C CL<L BL{L i (F ) l C C B i (F ) lL{L C R i (F) lL<L CL{L R iLLE (F ) qL(L S SL{L t

62 M C R C B B i (F) (F ) l CL<L CL{L B i (F ) l C C B iL<L (F ) l C R i (F) lL{L C RLLH i (F ) rL<L S>{L S t

63 M C R C B B i (F) (F ) lL(L CL{L C B i (F ) l C C BL<L iL{L (F ) l C R iL<L (F) l C RLLI hLLK (F ) jL{L S}LL S>LL t

64 M C R C B B i (F) (F ) lL[L C C B i (F ) l C CL<L BL{L i (F ) l C RL<L iL{L (F) l C R iL<N (F ) j S S}LL t/LL

65 M C R C B B i (F) (F ) l C C B i (F ) l CL<L CL{L B i (F ) l CL<L RL{L i (F) l C RL<L iL{L (F ) j S SL<L t]LL

66 M C R C B B i (F) (F ) l C C B i (F ) lL(L CL{L C B i (F ) lL(L CL{L R i (F) l CL<L RL{L i (F ) k SL<L SL{L t

67 M C R C B B s (F) (F ) l C C B i (F ) lL[L C C B i (F ) lL[L C R i (F) lL(L CL{L R i (F ) lL(L SL{L S t

68 M C R C B A s (F) (F ) l C C B i (F ) l C C B i (F ) l C R i (F) lL[L C R i (F ) lL[L C S t

69 M C R C Q R s (F) (F ) l C C B s (F ) l C C B s (F ) l C R i (F) l C R i (F ) l C C t

70 M C R M R Q s (F) (F ) l C C A s (F ) l C C A s (F ) l C R s (F) l C R s (F ) l C R M

71 M C Q M C Q s (F) (F ) l C M Q s (F ) l C M Q s (F ) l C Q s (F) l C Q s (F ) l C Q M

72 M M M M M M s (F) (F ) l M M M s (F ) l M M M s (F ) l M M s (F) l M M s (F ) l M M M

73 F F F F F F F (F) (F ) F F F F F (F ) F F F F F (F ) F F F F (F) F F F F (F ) F F F F

Fig. 4. Snapshots of the synchronization processes operating on a 1D array of length
n = 20 with one defective segment (left), an array of length n = 30 with 3 defective
segments (middle), and an array of length n = 35 with 5 defective segments (right),
respectively

this way, the entire intact segments can be synchronized at time t = 2n − 2 + p.
From the assumptions ni + mi ≥ p − i, for any i, 1 ≤ i ≤ p, it is seen that
p = O(

√
n). Thus the time complexity of the algorithm is 2n + O(

√
n). The

algorithm is stated as follows.

Theorem 2. Let p be any positive integer and M be any cellular array of length
n with p defective segments, where ni ≥ mi and ni + mi ≥ p − i, for any i such
that 1 ≤ i ≤ p. Then, M can be synchronized in 2n − 2 + p steps.

We have implemented the algorithm on a 1D cellular automaton with 164
states and 4792 transition rules. In Fig. 4 we give several snapshots of the syn-
chronization processes operating on a 1D array of length n = 20 with one defec-
tive segment (left), an array of length n = 30 with 3 defective segments (middle),
and an array of length n = 35 with 5 defective segments (right), respectively.

3 Fault-Tolerant FSSP Algorithm and Its Implementation
on 2D Arrays

A fault-tolerant FSSP on 2D arrays has never been discussed nor studied due
to the difficulties in designing synchronization algorithms. Here we present a
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Fig. 5. A 2D rectangular array of size 13 × 26 with 20 isolated defective zones

6-state fault-tolerant FSSP algorithm on 2D arrays. The fault-tolerant model
that we consider is slightly different from the 1D one in Sect. 2. Now we consider
a 2D rectangular array of size m × n,m, n ≥ 2. Each cell is an identical (except
the border and defective cells) finite-state automaton. The cell on the ith row,
jth column is denoted by Ci,j , where 1 ≤ i ≤ m and 1 ≤ j ≤ n. The array
operates in lock-step mode in such a way that the next state of each cell (except
border and defective cells) is determined by both its own present state and the
present states of its north, south, east and west neighbors, thus assuming the von
Neumann neighborhood. All cells (soldiers), except the general at the north-west
corner and defective cells, are initially in the quiescent state at time t = 0 with
the property that the next state of a quiescent cell with quiescent neighbors is
the quiescent state again. At time t = 0, the general on C1,1 is in the fire-when-
ready state, which is the initiation signal for the array. The 2D rectangular array
includes some defective regions, each consisting of defective cells that cannot
transmit any information nor change their states. The defective regions can be
regarded as obstacles or holes that cannot process any information in the array.
We assume that no new defective cells appear after the initiation.

The fault-tolerant FSSP is to determine a description (state set and next-
state function) for the intact cells that ensures all intact cells enter the fire
state at exactly the same time and for the first time. The set of states and its
transition function must be independent of m and n. A typical 2D rectangular
array of size 13 × 26 with 20 isolated holes (obstacles) is shown in Fig. 5. Each
defective region may be a rectangle, but must be isolated from each other and
from the boundary of a given array. The readers can see that the initial general
in yellow is on C1,1, intact cells in white take the quiescent state L, and defective
cells are illustrated as black cells in Fig. 5, respectively.

The fault-tolerant FSSP algorithm is based on a mapping developed in Umeo,
Maeda, Hisaoka, and Teraoka [7], where any 1D FSSP algorithm can be embed-
ded onto 2D arrays without introducing additional states. We consider a 2D
array of size m × n, where m,n ≥ 2, shown in Fig. 6. The array is decomposed
into m + n − 1 groups gk, 1 ≤ k ≤ m + n − 1, defined as follows.

gk = {Ci,j |i + j = k + 1}, i.e.,

g1 = {C1,1}, g2 = {C1,2,C2,1}, g3 = {C1,3,C2,2,C3,1}, . . . , gm+n−1 = {Cm,n}.
Figure 6 shows the decomposition of the 2D array of size m × n into m + n − 1
groups.



280 H. Umeo et al.

...

C14

C24

C34

Cm4

...

...

...

...

...

...

...

...

C11

C12

C13

C1n

C21

C22

C23

C31

C32

C2n

C33

C3n

Cm1

Cm2

Cm3

Cmn

......

Cm+3C1 C2 C3 Cm Cm+1 Cm+2 Cm+n-1

gm+n-1

gm+3

gm+2

gm+1

gm

g3

g2

g1

......

...

...

Upp
er

Right

Fig. 6. Correspondence between 1D and 2D arrays

Fig. 7. Construction of transition rules for 2D fault-tolerant FSSP algorithm

Let M = (Q, δM , w) be any 1D array that fires � cells in T (�) steps, where Q
is the finite state set of M , δM : Q3 → Q is the transition function, and w ∈ Q
is the state of the right and left ends. We assume that M has m + n − 1 cells,
denoted by Ci, 1 ≤ i ≤ m+n−1. For convenience, we assume that M has a left
and right end cells of the array, denoted by C0 and Cm+n, respectively. Both
end cells C0 and Cm+n always take the state w ∈ Q. We consider a one-to-one
correspondence between the ith group gi and the ith cell Ci on M such that
gi ↔ Ci, where 1 ≤ i ≤ m + n − 1 (see Fig. 6). We can construct a 2D array
N = (Q, δN , w) such that each cell in gi simulates the ith cell Ci in real-time and
N can fire any 2D m×n array at time t = T (m+n−1) if and only if M fires the
1D array of length m+n−1 at time t = T (m+n−1), where δN : Q5 → Q is the
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transition function, and w ∈ Q is the border/defective state of the array. Note
that the set of internal states of N is the same as M . The transition function
δN is constructed as follows:

Fig. 8. Configurations of Mazoyer’s 6-state FSSP algorithm on 11 cells (left) and snap-
shots of the synchronization processes on a 2D array of size 7 × 5 (right)

Let δM (a, b, c) = d be any transition rule of M , where a, b, c, d ∈ {Q − {w}}.
Then, N has nine transition rules, as shown in Fig. 7, Type (I). The first rule
(1) in Type (I) is used by an inner cell that does not include border/defective
cells amongst its four neighbors. Rules (2)-(9) are used by an inner cell that has
a border/defective cell as its upper, lower, left, right, lower left, and upper right
neighbor, respectively. Here the terms upper, right etc. on the rectangular array
are interpreted in a usual way, shown in Fig. 7, although the array is rotated by
45◦ in the counter-clockwise direction. When a = w, that is, δM (w, b, c) = d,
where b, c, d ∈ {Q − {w}}, then N has three rule, as shown in Type (II). These
rules are used by the cell located in the upper left corner. When c = w, that is,
δM (a, b, w) = d, where a, b, d ∈ {Q − {w}}, then N has three rules, as shown in
Type (III). These rules are used by the cell located in the lower right corner.

Now let M have m + n − 1 cells. We can show that the constructed 2D
array N can generate the configuration of M in real-time. Specifically, for any
i, 1 ≤ i ≤ m + n − 1, the state of any cell in gi at any step is the same and is
identical to the state of Ci at the corresponding step. Let St

i , St
i,j and St

gi denote
the state of Ci, Ci,j and the set of states of the cells in gi at step t, respectively.

First we consider the case where a given 2D array of size m × n includes no
defective zones. The following lemma holds.

Lemma 3. Let i and t be any integer such that 1 ≤ i ≤ m + n − 1, 0 ≤ t ≤
T (m + n − 1). Then, St

gi = {St
i}.
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t = 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C A L L L L L L L L L L L L L L L L L L L L

2
C G L L L L L L L L L L L L L L L L L

3
G L L L L L L L L L L L L L L L L

4
L C A L L L L L L L L L L L L L L L

5
C A L L L L L L L L L L L L L L L L L L L L L L L

6
A L L L L L L L L L L L L L L L L L L

7
L L L L L L L L L L L L L L L L L L L L

8
L L L L L L L L L L L L L L

9
L L L L L L L L L L L L L L

10
L L L L L L L L L L L L L L L L L L

11
L L L L L L L L L L L L L L L L L L L L L L L L

12
L L L L L L L L L L L L L L L L L L L

13
L L L L L L L L L L L L L L L L L L L L L L L L L L

t = 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L A A G L L L L L L L L L L L L L L L L L L L

2
B A L L L L L L L L L L L L L L L L L

3
A L L L L L L L L L L L L L L L L

4
L A A G L L L L L L L L L L L L L L

5
A A G L L L L L L L L L L L L L L L L L L L L L L

6
A G L L L L L L L L L L L L L L L L L

7
G L L L L L L L L L L L L L L L L L L L

8
L L L L L L L L L L L L L L

9
L L L L L L L L L L L L L L

10
L L L L L L L L L L L L L L L L L L

11
L L L L L L L L L L L L L L L L L L L L L L L L

12
L L L L L L L L L L L L L L L L L L L

13
L L L L L L L L L L L L L L L L L L L L L L L L L L

t = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G L L L L L L L L L L L L L L L L L L L L L L L L L

2
L L L L L L L L L L L L L L L L L L L

3
L L L L L L L L L L L L L L L L L

4
L L L L L L L L L L L L L L L L L L

5
L L L L L L L L L L L L L L L L L L L L L L L L L

6
L L L L L L L L L L L L L L L L L L L

7
L L L L L L L L L L L L L L L L L L L L

8
L L L L L L L L L L L L L L

9
L L L L L L L L L L L L L L

10
L L L L L L L L L L L L L L L L L L

11
L L L L L L L L L L L L L L L L L L L L L L L L

12
L L L L L L L L L L L L L L L L L L L

13
L L L L L L L L L L L L L L L L L L L L L L L L L L

t = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
A C L L L L L L L L L L L L L L L L L L L L L L L L

2
C L L L L L L L L L L L L L L L L L L

3
L L L L L L L L L L L L L L L L L

4
L L L L L L L L L L L L L L L L L L

5
L L L L L L L L L L L L L L L L L L L L L L L L L

6
L L L L L L L L L L L L L L L L L L L

7
L L L L L L L L L L L L L L L L L L L L

8
L L L L L L L L L L L L L L

9
L L L L L L L L L L L L L L

10
L L L L L L L L L L L L L L L L L L

11
L L L L L L L L L L L L L L L L L L L L L L L L

12
L L L L L L L L L L L L L L L L L L L

13
L L L L L L L L L L L L L L L L L L L L L L L L L L

t = 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L L L L L L L L L L L L L L L L L L L L L L L

2
B A L L L L L L L L L L L L L L L L L

3
A L L L L L L L L L L L L L L L L

4
L L L L L L L L L L L L L L L L L L

5
L L L L L L L L L L L L L L L L L L L L L L L L L

6
L L L L L L L L L L L L L L L L L L L

7
L L L L L L L L L L L L L L L L L L L L

8
L L L L L L L L L L L L L L

9
L L L L L L L L L L L L L L

10
L L L L L L L L L L L L L L L L L L

11
L L L L L L L L L L L L L L L L L L L L L L L L

12
L L L L L L L L L L L L L L L L L L L

13
L L L L L L L L L L L L L L L L L L L L L L L L L L

t = 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G G L L L L L L L L L L L L L L L L L L L L L L

2
C G L L L L L L L L L L L L L L L L L

3
G G L L L L L L L L L L L L L L L

4
G L L L L L L L L L L L L L L L L L

5
L L L L L L L L L L L L L L L L L L L L L L L L L

6
L L L L L L L L L L L L L L L L L L L

7
L L L L L L L L L L L L L L L L L L L L

8
L L L L L L L L L L L L L L

9
L L L L L L L L L L L L L L

10
L L L L L L L L L L L L L L L L L L

11
L L L L L L L L L L L L L L L L L L L L L L L L

12
L L L L L L L L L L L L L L L L L L L

13
L L L L L L L L L L L L L L L L L L L L L L L L L L

t = 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A B C L L L L L L L L L L L L L L L L L L L L L

2
B A L L L L L L L L L L L L L L L L L

3
A B L L L L L L L L L L L L L L L

4
B C L L L L L L L L L L L L L L L L

5
C L L L L L L L L L L L L L L L L L L L L L L L L

6
L L L L L L L L L L L L L L L L L L L

7
L L L L L L L L L L L L L L L L L L L L

8
L L L L L L L L L L L L L L

9
L L L L L L L L L L L L L L

10
L L L L L L L L L L L L L L L L L L

11
L L L L L L L L L L L L L L L L L L L L L L L L

12
L L L L L L L L L L L L L L L L L L L

13
L L L L L L L L L L L L L L L L L L L L L L L L L L

t = 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L C L L B C C A A G L L L L L L L L L L L L L

2
B A B C C A G L L L L L L L L L L L L

3
A L C C A A G L L L L L L L L L L

4
L C L L B C C A G L L L L L L L L L

5
C L L B C C A A G L L L L L L L L L L L L L L L L

6
L L B C A A L L L L L L L L L L L L L

7
L B C A A G L L L L L L L L L L L L L L

8
B C A A G L L L L L L L L L

9
C C A L L L L L L L L L L L

10
C A G L L L L L L L L L L L L L L L

11
A A G L L L L L L L L L L L L L L L L L L L L L

12
A G L L L L L L L L L L L L L L L L L

13
G L L L L L L L L L L L L L L L L L L L L L L L L L

t = 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C A L L C A A B B C L L L L L L L L L L L L

2
C G L C A A B C L L L L L L L L L L L

3
G L C A A B B C L L L L L L L L L

4
L C A L L C A B B C L L L L L L L L

5
C A L L C A A B B C L L L L L L L L L L L L L L L

6
A L L C A B L L L L L L L L L L L L L

7
L L A A B B L L L L L L L L L L L L L L

8
L C A B B C L L L L L L L L

9
C A B C L L L L L L L L L L

10
A A B C L L L L L L L L L L L L L L

11
A B B C L L L L L L L L L L L L L L L L L L L L

12
B B L L L L L L L L L L L L L L L L L

13
B C L L L L L L L L L L L L L L L L L L L L L L L L

t = 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L A B B C L L L L L L L L L L L L L L L L L L

2
C G C L L L L L L L L L L L L L L L L

3
G L L L L L L L L L L L L L L L L

4
L A B B C L L L L L L L L L L L L L

5
A B B C L L L L L L L L L L L L L L L L L L L L L

6
B B C L L L L L L L L L L L L L L L L

7
B C L L L L L L L L L L L L L L L L L L

8
C L L L L L L L L L L L L L

9
L L L L L L L L L L L L L L

10
L L L L L L L L L L L L L L L L L L

11
L L L L L L L L L L L L L L L L L L L L L L L L

12
L L L L L L L L L L L L L L L L L L L

13
L L L L L L L L L L L L L L L L L L L L L L L L L L

t = 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L L B C C A L L L L L L L L L L L L L L L L L

2
B A C A L L L L L L L L L L L L L L L

3
A L A L L L L L L L L L L L L L L

4
L L B C C A L L L L L L L L L L L L

5
L B C C A L L L L L L L L L L L L L L L L L L L L

6
B C C A L L L L L L L L L L L L L L L

7
C C L L L L L L L L L L L L L L L L L L

8
C A L L L L L L L L L L L L

9
A L L L L L L L L L L L L L

10
L L L L L L L L L L L L L L L L L L

11
L L L L L L L L L L L L L L L L L L L L L L L L

12
L L L L L L L L L L L L L L L L L L L

13
L L L L L L L L L L L L L L L L L L L L L L L L L L

t = 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G G L L C A A G L L L L L L L L L L L L L L L L

2
C G A A G L L L L L L L L L L L L L L

3
G G A G L L L L L L L L L L L L L

4
G L L C A A G L L L L L L L L L L L

5
L L C A A G L L L L L L L L L L L L L L L L L L L

6
L C A A L L L L L L L L L L L L L L L

7
C A G L L L L L L L L L L L L L L L L L

8
A A L L L L L L L L L L L L

9
A G L L L L L L L L L L L L

10
G L L L L L L L L L L L L L L L L L

11
L L L L L L L L L L L L L L L L L L L L L L L L

12
L L L L L L L L L L L L L L L L L L L

13
L L L L L L L L L L L L L L L L L L L L L L L L L L

t = 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A B C L A A B B C L L L L L L L L L L L L L L L

2
B A A B B C L L L L L L L L L L L L L

3
A B B B C L L L L L L L L L L L L

4
B C L A A B B L L L L L L L L L L L

5
C L A A B B C L L L L L L L L L L L L L L L L L L

6
L A A B C L L L L L L L L L L L L L L

7
A A B C L L L L L L L L L L L L L L L L

8
A B C L L L L L L L L L L L

9
B B L L L L L L L L L L L L

10
B C L L L L L L L L L L L L L L L L

11
C L L L L L L L L L L L L L L L L L L L L L L L

12
L L L L L L L L L L L L L L L L L L L

13
L L L L L L L L L L L L L L L L L L L L L L L L L L

t = 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C L A B B C C A L L L L L L L L L L L L L L

2
C G B B C C L L L L L L L L L L L L L

3
G L B C C A L L L L L L L L L L L

4
L C L A B B C A L L L L L L L L L L

5
C L A B B C C A L L L L L L L L L L L L L L L L L

6
L A B B C A L L L L L L L L L L L L L

7
A B C C A L L L L L L L L L L L L L L L

8
B B C A L L L L L L L L L L

9
B C A L L L L L L L L L L L

10
C C L L L L L L L L L L L L L L L L

11
C A L L L L L L L L L L L L L L L L L L L L L L

12
A L L L L L L L L L L L L L L L L L L

13
L L L L L L L L L L L L L L L L L L L L L L L L L L

t = 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G G L L C A A L A B B C C A A B B C L L L L L L

2
C G A A L A B C C A A C L L L L L L L

3
G G A L A B B C C A A B B C L L L

4
G L L C A A L B B C C A B C L L L L

5
L L C A A L A B B C C A A B B L L L L L L L L L L

6
L C A A A B A B B C L L L L L L L L L

7
C A L A B B B B C L L L L L L L L L L L

8
A A A B B C B L L L L L L L

9
A L B C C C L L L L L L L L

10
L A B C C A L L L L L L L L L L L L

11
A B B C C A A B B C L L L L L L L L L L L L L L

12
B B C A A B C L L L L L L L L L L L L

13
B C C A A B B C L L L L L L L L L L L L L L L L L L

t = 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A B C L A A A L L B C C A A B B C C A L L L L L

2
B A A A L L C C A A B C A L L L L L L

3
A B A L L B C C A A B B C C A L L

4
B C L A A A L B C C A B B C A L L L

5
C L A A A L L B C C A A B B C A L L L L L L L L L

6
L A A A L B B B C C L L L L L L L L L

7
A A L L B C B C C A L L L L L L L L L L

8
A A L B C C C A L L L L L L

9
A L B C A C A L L L L L L L

10
L L C C A A A L L L L L L L L L L L

11
L B C C A A B B C C A L L L L L L L L L L L L L

12
B C A A B B C A L L L L L L L L L L L

13
C C A A B B C C A L L L L L L L L L L L L L L L L L

t = 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L A A G L A A B B C C A L L L L L L L L L L L

2
B A L A A B C C A L L L L L L L L L L

3
A L A A B B C C A L L L L L L L L

4
L A A G L A A B C C A L L L L L L L

5
A A G L A A B B C C A L L L L L L L L L L L L L L

6
A G L A B B L L L L L L L L L L L L L

7
G L A B B C L L L L L L L L L L L L L L

8
L A B B C C L L L L L L L L

9
A A B C A L L L L L L L L L

10
A B C C A L L L L L L L L L L L L L

11
B B C C A L L L L L L L L L L L L L L L L L L L

12
B C A L L L L L L L L L L L L L L L L

13
C C A L L L L L L L L L L L L L L L L L L L L L L L

t = 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L A B B L A B B C C A A G L L L L L L L L L L

2
C G L A B B C A A G L L L L L L L L L

3
G L A B B C C A A G L L L L L L L

4
L A B B L A B C C A A L L L L L L L

5
A B B L A B B C C A A G L L L L L L L L L L L L L

6
B B L A B C L L L L L L L L L L L L L

7
B L B B C C L L L L L L L L L L L L L L

8
L A B C C A L L L L L L L L

9
A B C A A L L L L L L L L L

10
B B C A A G L L L L L L L L L L L L

11
B C C A A G L L L L L L L L L L L L L L L L L L

12
C C A G L L L L L L L L L L L L L L L

13
C A A G L L L L L L L L L L L L L L L L L L L L L L

t = 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L L B G L L B C C A A B B C L L L L L L L L L

2
B A L L B C A A B B C L L L L L L L L

3
A L L B C C A A B B C L L L L L L

4
L L B G L L B C A A B C L L L L L L

5
L B G L L B C C A A B B C L L L L L L L L L L L L

6
B G L L C C C L L L L L L L L L L L L

7
G L B C C A L L L L L L L L L L L L L L

8
L L C C A A L L L L L L L L

9
L B C A B L L L L L L L L L

10
B C A A B B L L L L L L L L L L L L

11
C C A A B B C L L L L L L L L L L L L L L L L L

12
C A B B C L L L L L L L L L L L L L L

13
A A B B C L L L L L L L L L L L L L L L L L L L L L

t = 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G G L B B C L L C A A B B C C A L L L L L L L L

2
C G C L L C A B B C C L L L L L L L L

3
G G L L C A A B B C C A L L L L L

4
G L B B C L L A A B B C A L L L L L

5
L B B C L L C A A B B C C A L L L L L L L L L L L

6
B B C L C A C A L L L L L L L L L L L

7
B C L C A A A L L L L L L L L L L L L L

8
C L C A A B L L L L L L L L

9
L L A B B L L L L L L L L L

10
L C A B B C L L L L L L L L L L L L

11
C A A B B C C A L L L L L L L L L L L L L L L L

12
A A B C C A L L L L L L L L L L L L L

13
A B B C C A L L L L L L L L L L L L L L L L L L L L

t = 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A B L B C C A L A A B B C C A A G L L L L L L L

2
B A C A L A B B C C A L L L L L L L L

3
A B A L A A B B C C A A G L L L L

4
B L B C C A L A B B C A A L L L L L

5
L B C C A L A A B B C C A A G L L L L L L L L L L

6
B C C A A A A A G L L L L L L L L L L

7
C C L A A B A G L L L L L L L L L L L L

8
C A A A B B G L L L L L L L

9
A L A B C L L L L L L L L L

10
L A B B C C L L L L L L L L L L L L

11
A A B B C C A A G L L L L L L L L L L L L L L L

12
A B C C A A L L L L L L L L L L L L L

13
B B C C A A G L L L L L L L L L L L L L L L L L L L

t = 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L A A G L C C A A G L A A B B C C A A B B C C

2
B A L C C A G L A A B C A A B B C C A

3
A L C C A A G L A A B B C C A A L

4
L A A G L C C A G L A B B C A A L L

5
A A G L C C A A G L A A B B C A A B B C C A L L L

6
A G L C A A B B C C A B B C C A L L L

7
G L C A A G B C C A B B C C A L L L L L

8
L C A A G L C A A B B A L L

9
C C A L A C A A B B C L L L

10
C A G L A A A A B C C L L L L L L L

11
A A G L A A B B C C A A B B C C A L L L L L L L

12
A G A A B B C A A B C A L L L L L L L

13
G L A A B B C C A A B B C C A L L L L L L L L L L L

t = 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L A B B L C A A B B L A B B C C A A B B C C A

2
C G L C A A B L A B B A A B B C C A A

3
G L C A A B B L A B B C C A A A G

4
L A B B L C A B B L A B C A A B G L

5
A B B L C A A B B L A B B C C A B B C C A A G L L

6
B B L C A B B C C A B B C C A A L L L

7
B L A A B B C C A A B C C A A G L L L L

8
L C A B B L C A B B C A L L

9
C A B L A A A B B C C G L L

10
A A B L A B A B B C A L L L L L L L

11
A B B L A B B C C A A B B C C A A L L L L L L L

12
B B A B B C A A B B A A G L L L L L L

13
B L A B B C C A A B B C C A A G L L L L L L L L L L

t = 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C L A A A G L L C A A B B C C A A G L L L L

2
C G A A G L C A A B B A A G L L L L L

3
G L A G L L C A A B B C C A A L L

4
L C L A A A G L C A A B C A A G L L

5
C L A A A G L L C A A B B C C A G L L L L L L L L

6
L A A A L L B C C A G L L L L L L L L

7
A A G L L C C C A A L L L L L L L L L L

8
A A L L C A C A G L L L L L

9
A G L A A A A G L L L L L L

10
G L C A A B A G L L L L L L L L L L

11
L L C A A B B C C A A G L L L L L L L L L L L L

12
L C A B B C A A G L L L L L L L L L L

13
C A A B B C C A A G L L L L L L L L L L L L L L L L

t = 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L C L A A B B C L A A B B C C A A B B C L L L

2
B A A B B C A A B B C A B B C L L L L

3
A L B B C L A A B B C C A A B L L

4
L C L A A B B L A A B C C A B B L L

5
C L A A B B C L A A B B C C A B B C L L L L L L L

6
L A A B C L C C A A B C L L L L L L L

7
A A B C L A C A A B C L L L L L L L L L

8
A B C L A A A B B C L L L L

9
B B L A B A B B C L L L L L

10
B C A A B B B B C L L L L L L L L L

11
C L A A B B C C A A B B C L L L L L L L L L L L

12
L A B B C C A B B C L L L L L L L L L

13
A A B B C C A A B B C L L L L L L L L L L L L L L L

t = 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C L A B B C C L A B B C C A A B B C C A L L

2
C G B B C C A B B C C B B C C A L L L

3
G L B C C L A B B C C A A B B L L

4
L C L A B B C L A B B C A B B C L L

5
C L A B B C C L A B B C C A A B C C A L L L L L L

6
L A B B C L C A A B C C A L L L L L L

7
A B C C L A A A B B C A L L L L L L L L

8
B B C L A B A B C C A L L L

9
B C L B B B B C C A L L L L

10
C C A B B C B C C L L L L L L L L L

11
C L A B B C C A A B B C C A L L L L L L L L L L

12
L A B C C A B B C C L L L L L L L L L

13
A B B C C A A B B C C A L L L L L L L L L L L L L L

t = 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L C L L B C C C L L B C C A A B B C C A A G L

2
B A B C C C L B C C A B C C A A G L L

3
A L C C C L L B C C A A B B C L L

4
L C L L B C C L L B C A A B C C L L

5
C L L B C C C L L B C C A A B C C A A G L L L L L

6
L L B C C L A A B B C A A G L L L L L

7
L B C C L L A B B C A A G L L L L L L L

8
B C C L L B B C C A A L L L

9
C C L B C B C C A A G L L L

10
C C L B C C C C A G L L L L L L L L

11
C L L B C C A A B B C C A A G L L L L L L L L L

12
L L C C A A B C C A L L L L L L L L L

13
L B C C A A B B C C A A G L L L L L L L L L L L L L

t = 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C A L L C C C A L L C A A B B C C A A B B C

2
C G L C C C L L C A A C C A A B B C L

3
G L C C C A L L C A A B B C C L L

4
L C A L L C C A L L C A B C C A L L

5
C A L L C C C A L L C A A B B C A A B B C L L L L

6
A L L C C A A B B C A A B B C L L L L

7
L L C C A L B B C C A B B C L L L L L L

8
L C C A L L B C A A B L L L

9
C C A L C C C A A B B L L L

10
C C L L C A C A A B C L L L L L L L

11
C A L L C A A B B C C A A B B C L L L L L L L L

12
A L C A A B C C A A C L L L L L L L L

13
L L C A A B B C C A A B B C L L L L L L L L L L L L

t = 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G G L L C C L L C A A A A G L L C A A B B C C A

2
C G C L L C A A A G L A A B B C C A A

3
G G L L C A A A A G L L C A A A B

4
G L L C C L L A A A A L L A A B B B

5
L L C C L L C A A A A G L L C A B B C C A A B B C

6
L C C L C A L L C A B B C C A A B C C

7
C C L C A A L C A A B C C A A B B C C A

8
C L C A A A C A B B C A A A

9
L L A A A A A B B C C B A G

10
L C A A A G A B B C A B C C A A G L

11
C A A A A G L L C A A B B C C A A C C A A G L L

12
A A A G L L A A B B A A B C A A L L L

13
A A A G L L C A A B B C C A A B B C C A A G L L L L

t = 34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A B C L C C A L A A A A B B C L A A B B C C A A

2
B A C A L A A A B B C A B B C C A A B

3
A B A L A A A A B B C L A A B B B

4
B C L C C A L A A A B C L A B B B C

5
C L C C A L A A A A B B C L A B B C C A A B B C C

6
L C C A A A C L A A B C C A A B C C A

7
C C L A A A L A A B C C A A B B C C A A

8
C A A A A A A B B C C B A B

9
A L A A B A B B C C A B B B

10
L A A A B B B B C A A C C A A B B C

11
A A A A B B C L A A B B C C A A B C A A B B C L

12
A A B B C L A B B C A B B A A B C L L

13
A A B B C L A A B B C C A A B B C C A A B B C L L L

t = 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L L B G L A A B B G L L B C C A A B B C C A A

2
B A L A A B G L L B C A B B C C A A B

3
A L A A B B G L L B C C A A B B B

4
L L B G L A A B G L L C C A B B B C

5
L B G L A A B B G L L B C C A B B C C A A B B C L

6
B G L A B B C C A A B C C A A B C L L

7
G L A B B G C A A B C C A A B B C L L L

8
L A B B G L A B B C C B L L

9
A A B L L A B B C C A B L L

10
A B G L L B B B C A A C L L L L L L

11
B B G L L B C C A A B B C C A A B L L L L L L L

12
B G L B C C A B B C A B B L L L L L L

13
G L L B C C A A B B C C A A B B C L L L L L L L L L

t = 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G G L B B L A B B B B C L L C A A B B C C A A B

2
C G L A B B B C L L C B B C C A A B B

3
G G A B B B B C L L C A A B B B C

4
G L B B L A B B B C L C A B B C C C

5
L B B L A B B B B C L L C A A B C C A A B B C C A

6
B B L A B B C A A B C C A A B B C A L

7
B L B B B B A A B B C A A B B C C A L L

8
L A B B B C A B C C A B L L

9
A B B C L B B C C A A C L L

10
B B B C L L B C C A B C A L L L L L

11
B B B C L L C A A B B C C A A B B A L L L L L L

12
B B L L C A B B C C B B C L L L L L L

13
B C L L C A A B B C C A A B B C C A L L L L L L L L

t = 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A B L B G L L B B B C C A L A A B B C C A A B B

2
B A L L B B C C A L A B C C A A B B C

3
A B L B B B C C A L A A B B C C C

4
B L B G L L B B C C A A A B C C C A

5
L B G L L B B B C C A L A A B C C A A B B C C A A

6
B G L L B B A A B B C A A B B C A A G

7
G L B B B C A B B C A A B B C C A A G L

8
L L B B C C B C C A A C L L

9
L B B C A B C C A A B C L L

10
B B C C A L C C A B B A A G L L L L

11
B B C C A L A A B B C C A A B B C A G L L L L L

12
B C A L A A B C C A B C C G L L L L L

13
C C A L A A B B C C A A B B C C A A G L L L L L L L

t = 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G G L B B C L B B C C A A L A B B C C A A B B C

2
C G C L B B C A A L A C C A A B B C C

3
G G L B B C C A A L A B B C C C A

4
G L B B C L B C C A A A B C C A A A

5
L B B C L B B C C A A L A B B C A A B B C C A A B

6
B B C L B C A B B C A A B B C C A B B

7
B C B B C C B B C C A B B C C A A B B C

8
C L B C C A B C A A B C C L

9
L B C A A C C A A B B A L L

10
B B C A A L C A A B C A B B C L L L

11
B C C A A L A B B C C A A B B C C B B C L L L L

12
C C A L A B C C A A C C A B C L L L L

13
C A A L A B B C C A A B B C C A A B B C L L L L L L

t = 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A B L B C C L B C C A A A L L B C C A A B B C C

2
B A C L B C A A A L L C A A B B C C A

3
A B L B C C A A A L L B C C A A A

4
B L B C C L B C A A A L B C A A A B

5
L B C C L B C C A A A L L B C A A B B C C A A B B

6
B C C L C C L B C C A B B C C A B B C

7
C C B C C A B C C A B B C C A A B B C C

8
C L C C A A C A A B B A C A

9
L B C A A C A A B B C A A L

10
B C A A A L A A B C C B B C C A L L

11
C C A A A L L B C C A A B B C C A B C C A L L L

12
C A A L L B C A A B C A A C C A L L L

13
A A A L L B C C A A B B C C A A B B C C A L L L L L

t = 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L C L A A B B C L C C A A B B G L L B C C A A

2
B A A B B C C C A A B L L B C C A A B

3
A L B B C L C C A A B B G L L B B

4
L C L A A B B L C C A B B L L B B C

5
C L A A B B C L C C A A B B G L B C C A A B B C C

6
L A A B C L B B G L B C C A A B C C A

7
A A B C L C B G L L C C A A B B C C A A

8
A B C L C C G L B C C B A B

9
B B L C A L L B C C A B B B

10
B C C C A A L B C A A C C A A B B A

11
C L C C A A B B G L L B C C A A B C A A B B A C

12
L C A A B B L L B C A B B A A B A C B

13
C C A A B B G L L B C C A A B B C C A A B B A C B L

t = 41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C L A B B C C L C A A B B B B C L L C A A B

2
C G B B C C C A A B B C L L C A A B B

3
G L B C C L C A A B B B B C L B C

4
L C L A B B C L C A A B B C L L C C

5
C L A B B C C L C A A B B B B L L C A A B B C C A

6
L A B B C L B B B C L C A A B B C A A

7
A B C C L C B B C L C A A B B C C A A B

8
B B C L C A B L L C A B B B

9
B C L A A C L L C A A C B A

10
C C C A A B L L C A B C A A B B A C

11
C L C A A B B B B C L L C A A B B A A B B A C B

12
L C A B B B C L L C B B C A B B C B L

13
C A A B B B B C L L C A A B B C C A A B B A C B L L

t = 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C L C A A L A A A B B C C L A B B C C A A B

2
C G A A L A A B B C C B B C C A A B B

3
G L A L A A A B B C C L A B B B C

4
L C L C A A L A A B B C L B B C C C

5
C L C A A L A A A B B C C L A B C C A A B B C C A

6
L C A A A A C L A B C C A A B B C A A

7
C A L A A A L A B B C A A B B C C A A B

8
A A A A A B A B C C A B B B

9
A L A B B B B C C A A C B C

10
L A A B B C B C C A B C A A B B C C

11
A A A B B C C L A B B C C A A B B A A B B C C A

12
A A B C C L B B C C B B C A B B C A L

13
A B B C C L A B B C C A A B B C C A A B B C C A L L

t = 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L C L A A A L A A B B C C C L L B C C A A B B

2
B A A A L A B B C C C B C C A A B B C

3
A L A L A A B B C C C L L B C C C

4
L C L A A A L A B B C C L B C C C A

5
C L A A A L A A B B C C C L L C C A A B B C C A A

6
L A A A A A C L L B C A A B B C A A B

7
A A L A A B L L B C A A B B C C A A B B

8
A A A A B B L C C A A C B C

9
A L A B C B C C A A B C C C

10
L A B B C C C C A B B A A B B C C A

11
A A B B C C C L L B C C A A B B C A B B C C A A

12
A B C C C L B C C A B C C B B C A A G

13
B B C C C L L B C C A A B B C C A A B B C C A A G L

t = 37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C L A A A L A B B C C C C A L L C A A B B C

2
C G A A L A B C C C C L C A A B B C C

3
G L A L A B B C C C C A L L C C A

4
L C L A A A L B B C C C A L C A A A

5
C L A A A L A B B C C C C A L C A A B B C C A A B

6
L A A A A B C A L L A A B B C C A B B

7
A A L A B B A L L C A B B C C A A B B C

8
A A A B B C L C A A B C C C

9
A L B C C L C A A B B A C A

10
L A B C C C C A A B C A B B C C A A

11
A B B C C C C A L L C A A B B C C B B C C A A B

12
B B C C C A L C A A C C A B C C A B B

13
B C C C C A L L C A A B B C C A A B B C C A A B B A

t = 38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L C L A A A L L B C C C C A A G L A A B B C C

2
B A A A L L C C C C A L A A B B C C A

3
A L A L L B C C C C A A G L A A A

4
L C L A A A L B C C C A A L A A A B

5
C L A A A L L B C C C C A A G A A B B C C A A B B

6
L A A A L B A A G L A B B C C A B B C

7
A A L L B C A G L A B B C C A A B B C C

8
A A L B C C G A A B B A C A

9
A L B C C L A A B B C A A A

10
L L C C C C A A B C C B B C C A A B

11
L B C C C C A A G L A A B B C C A B C C A A B B

12
B C C C A A L A A B C A A C C A B B A

13
C C C C A A G L A A B B C C A A B B C C A A B B A C

t = 39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C L A A A G L L C C C A A B B L A B B C C A

2
C G A A G L C C C A A L A B B C C A A

3
G L A G L L C C C A A B B L A A B

4
L C L A A A G L C C C A B L A B B B

5
C L A A A G L L C C C A A B B A B B C C A A B B C

6
L A A A L L A B B L B B C C A A B C C

7
A A G L L C B B L A B C C A A B B C C A

8
A A L L C C B A B B C A A A

9
A G L C C L A B B C C B A B

10
G L C C C A A B B C A B C C A A B B

11
L L C C C A A B B L A B B C C A A C C A A B B A

12
L C C A A B L A B B A A B C A A B A C

13
C C C A A B B L A B B C C A A B B C C A A B B A C B

t = 47

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G G L B B L C A A A L L C A A A A B B C C L A B

2
C G L C A A L L C A A B B C C L A B B

3
G G C A A A L L C A A A A B B B A

4
G L B B L C A A L L C A A B B C A C

5
L B B L C A A A L L C A A A A B C C L A B B A C B

6
B B L C A A A A A B C C L A B B C B L

7
B L A A A L A A B B C L A B B A C B L L

8
L C A A L L A B C C L B L L

9
C A A L C B B C C L A A L L

10
A A L L C A B C C A B C B L L L L L

11
A A L L C A A A A B B C C L A B B B L L L L L L

12
A L C A A A B B C C B B A L L L L L L

13
L L C A A A A B B C C L A B B A C B L L L L L L L L

t = 48

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A B L B G L A A A A G L A A A A B B C C C L L B

2
B A L A A A G L A A A B C C C L L B A

3
A B A A A A G L A A A A B B C A C

4
B L B G L A A A G L A A A B C C C B

5
L B G L A A A A G L A A A A B C C C L L B A C B L

6
B G L A A A A A B B C C L L B A B L L

7
G L A A A G A B B C C L L B A C B L L L

8
L A A A G L B C C C L A L L

9
A A A L A B C C C L L C L L

10
A A G L A A C C C L B B L L L L L L

11
A A G L A A A A B B C C C L L B A L L L L L L L

12
A G A A A A B C C C B A C L L L L L L

13
G L A A A A B B C C C L L B A C B L L L L L L L L L

t = 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L C L L B C C C L A A B B B B C C A L A A B B

2
B A B C C C A A B B B C A L A A B B C

3
A L C C C L A A B B B B C C A C C

4
L C L L B C C L A A B B B C A L C A

5
C L L B C C C L A A B B B B C A L A A B B C C A A

6
L L B C C L B B C C L A A B B C A A B

7
L B C C L A B C C A A A B B C C A A B B

8
B C C L A A C A L A A C B A

9
C C L A B C A L A A B C A C

10
C C A A B B A L A B B A A B B A C B

11
C L A A B B B B C C A L A A B B C A B B A C B L

12
L A B B B B C A L A B C C B B A B L L

13
A A B B B B C C A L A A B B C C A A B B A C B L L L

t = 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C A L L C C C L A B B B B C C A A L A B B C

2
C G L C C C A B B B B A A L A B B C C

3
G L C C C L A B B B B C C A A C A

4
L C A L L C C L A B B B C A A L A A

5
C A L L C C C L A B B B B C C A L A B B C C A A B

6
A L L C C L B C C A L A B B C C A B B

7
L L C C L A C C A A A B B C C A A B B A

8
L C C L A B C A L A B C A C

9
C C L B B A A L A B B A C B

10
C C A B B B A L A B C A B B A C B L

11
C L A B B B B C C A A L A B B C C B B A C B L L

12
L A B B B C A A L A C C A B A C L L L

13
A B B B B C C A A L A B B C C A A B B A C B L L L L

t = 44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L A A G L C C C L L B B B C C A A A L L B C C

2
B A L C C C L B B B C A A L L B C C A

3
A L C C C L L B B B C C A A A A A

4
L A A G L C C L L B B C C A A L A B

5
A A G L C C C L L B B B C C A A L L B C C A A B B

6
A G L C C L C C A A L L B C C A B B A

7
G L C C L L C A A A L B C C A A B B A C

8
L C C L L B A A L L B A C B

9
C C L B B A A L L B C A B L

10
C C L B B B A L L C C B B A C B L L

11
C L L B B B C C A A A L L B C C A B A C B L L L

12
L L B B C C A A L L C A A A C B L L L

13
L B B B C C A A A L L B C C A A B B A C B L L L L L

t = 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L A B B L C C C A L B B C C A A A A G L L C A

2
C G L C C C L B B C C A A G L L C A A

3
G L C C C A L B B C C A A A A A B

4
L A B B L C C A L B B C A A A G B B

5
A B B L C C C A L B B C C A A A G L L C A A B B A

6
B B L C C A C A A A G L L C A A B A C

7
B L C C A L A A A A L L C A A B B A C B

8
L C C A L B A A G L L A B L

9
C C A B B A A G L L C B L L

10
C C L B B C A G L C A B A C B L L L

11
C A L B B C C A A A A G L L C A A A C B L L L L

12
A L B C C A A A G L A A B C B L L L L

13
L B B C C A A A A G L L C A A B B A C B L L L L L L

t = 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L L B G L C C A A L B C C A A A A B B C L A A

2
B A L C C A L B C C A A B B C L A A B

3
A L C C A A L B C C A A A A B B B

4
L L B G L C C A L B C A A A B B B A

5
L B G L C C A A L B C C A A A B B C L A A B B A C

6
B G L C A A A A A A B C L A A B A C B

7
G L C A A L A A A B C L A A B B A C B L

8
L C A A L B A B B C L B L L

9
C C A B C A B B C L A B L L

10
C A L B C C B B C A A A C B L L L L

11
A A L B C C A A A A B B C L A A B C B L L L L L

12
A L C C A A A B B C A B B B L L L L L

13
L B C C A A A A B B C L A A B B A C B L L L L L L L

t = 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A B L B C C L B B B C C A L C C A A C B L L L G

2
B A C L B B C C A L C A C B L L L G B

3
A B L B B B C C A L C C A A C B A

4
B L B C C L B B C C A C C A C B A B

5
L B C C L B B B C C A L C C A C B L L L G B A B C

6
B C C L B B C C A A B L L L G B B C L

7
C C B B B C C A A C L L L G B A B C L L

8
C L B B C C A C B L L B L L

9
L B B C A A C B L L L A L L

10
B B C C A L C B L L G B C L L L L L

11
B B C C A L C C A A C B L L L G B C L L L L L L

12
B C A L C C A C B L G B A L L L L L L

13
C C A L C C A A C B L L L G B A B C L L L L L L L L

t = 55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G G L L C C L B B C C A A L C A A C B L L L L G

2
C G C L B B C A A L C C B L L L L G C

3
G G L B B C C A A L C A A C B C G

4
G L L C C L B C C A A C A C B L G L

5
L L C C L B B C C A A L C A A B L L L L G C G L C

6
L C C L B C C A A C L L L L G C L C A

7
C C B B C C A A C B L L L G C G L C A L

8
C L B C C A A B L L L C L L

9
L B C A A C B L L L L G L L

10
B B C A A L B L L L G L C A L L L L

11
B C C A A L C A A C B L L L L G C C A L L L L L

12
C C A L C A C B L L G C G A L L L L L

13
C A A L C A A C B L L L L G C G L C A L L L L L L L

t = 49

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G G L B B L A A A B B L A A A B B C C C C A L G

2
C G L A A A B L A A A C C C C A L G C

3
G G A A A B B L A A A B B C C C B

4
G L B B L A A B B L A A B C C C B L

5
L B B L A A A B B L A A A B B C C C A L G C B L L

6
B B L A A B A B B C C C A L G C L L L

7
B L A A B B B B C C C A L G C B L L L L

8
L A A B B L B C C C A C L L

9
A A B L A C C C C A L B L L

10
A A B L A A C C C L G L L L L L L L

11
A B B L A A A B B C C C C A L G C L L L L L L L

12
B B A A A B C C C C G C B L L L L L L

13
B L A A A B B C C C C A L G C B L L L L L L L L L L

t = 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A B L B G L A A B B G L A A B B C C C C A A C G

2
B A L A A B G L A A B C C C A A C G B

3
A B A A B B G L A A B B C C C B L

4
B L B G L A A B G L A B B C C C L L

5
L B G L A A B B G L A A B B C C C A A C G B L L L

6
B G L A B B B B C C C A A C G B L L L

7
G L A B B G B C C C A A C G B L L L L L

8
L A B B G L C C C A A B L L

9
A A B L A C C C A A C L L L

10
A B G L A A C C A C G L L L L L L L

11
B B G L A A B B C C C C A A C G B L L L L L L L

12
B G A A B B C C C A G B L L L L L L L

13
G L A A B B C C C C A A C G B L L L L L L L L L L L

t = 51

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G G L B B L A B B B B L A B B C C C C A A C B G

2
C G L A B B B L A B B C C A A C B G C

3
G G A B B B B L A B B C C C C C L

4
G L B B L A B B B L A B C C C A L L

5
L B B L A B B B B L A B B C C C A A C B G C L L L

6
B B L A B B B C C C A A C B G C L L L

7
B L B B B B C C C C A C B G C L L L L L

8
L A B B B L C C A A C C L L

9
A B B L A C C A A C B L L L

10
B B B L A B C A A B G L L L L L L L

11
B B B L A B B C C C C A A C B G C L L L L L L L

12
B B A B B C C C A A G C L L L L L L L

13
B L A B B C C C C A A C B G C L L L L L L L L L L L

t = 52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A B L B G L L B B B G L L B C C C C A A C B L G

2
B A L L B B G L L B C C A A C B L G B

3
A B L B B B G L L B C C C C A B A

4
B L B G L L B B G L L C C C A A A L

5
L B G L L B B B G L L B C C C A A C B L G B A L L

6
B G L L B B C C C C A C B L G B L L L

7
G L B B B G C C C A C B L G B A L L L L

8
L L B B G L C A A C B B L L

9
L B B L L C A A C B L A L L

10
B B G L L B A A C L G L L L L L L L

11
B B G L L B C C C C A A C B L G B L L L L L L L

12
B G L B C C C A A C G B A L L L L L L

13
G L L B C C C C A A C B L G B A L L L L L L L L L L

t = 53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G G L B B C L B B B B C L L C C C A A C B L L G

2
C G C L B B B C L L C A A C B L L G C

3
G G L B B B B C L L C C C A A C G

4
G L B B C L B B B C L C C A A C G G

5
L B B C L B B B B C L L C C C A C B L L G C G G L

6
B B C L B B C C C A C B L L G C G L L

7
B C B B B B C C A A B L L G C G G L L L

8
C L B B B C C A C B L C L L

9
L B B C L A A C B L L G L L

10
B B B C L L A C B L G G L L L L L L

11
B B B C L L C C C A A C B L L G C L L L L L L L

12
B B L L C C A A C B G C G L L L L L L

13
B C L L C C C A A C B L L G C G G L L L L L L L L L

t = 61

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C L A A A L A A A C B L G C G G L L L L L G

2
C G A A L A A C B L G G L L L L L G C

3
G L A L A A A C B L G C G G L C G

4
L C L A A A L A A C B G C G L L G L

5
C L A A A L A A A C B L G C G L L L L L G C G L C

6
L A A A A A G C G G L L L L G C L C L

7
A A L A A A C G G L L L L G C G L C L A

8
A A A A A C G L L L L C A B

9
A L A C B G L L L L L G B B

10
L A A C B L L L L L G L C L A B B C

11
A A A C B L G C G G L L L L L G C C L A B B C C

12
A A B L G C G L L L G C G L A B C C A

13
A C B L G C G G L L L L L G C G L C L A B B C C A L

t = 62

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L C L A A A L A A C B L L G B A B C L L L L G

2
B A A A L A C B L L G B C L L L L G B

3
A L A L A A C B L L G B A B C B A

4
L C L A A A L A C B L G B B C L A L

5
C L A A A L A A C B L L G B A C L L L L G B A L C

6
L A A A A A G B A B L L L L G B L C L

7
A A L A A C B A B C L L L G B A L C L L

8
A A A A C B A C L L L B L B

9
A L A B L B C L L L L A B C

10
L A C B L L C L L L G L C L L B C C

11
A A C B L L G B A B C L L L L G B C L L B C C A

12
A C L L G B B C L L G B A L L B C A A

13
C B L L G B A B C L L L L G B A L C L L B C C A A C

t = 56

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A B C L C C L B C C A A A L A A C B L L L L L G

2
B A C L B C A A A L A B L L L L L G B

3
A B L B C C A A A L A A C B L B A

4
B C L C C L B C A A A A A B L L A L

5
C L C C L B C C A A A L A A C L L L L L G B A L A

6
L C C L C C A A C B L L L L G B L A A

7
C C B C C A A C B L L L L G B A L A A G

8
C L C C A A C L L L L B G L

9
L B C A A B L L L L L A L L

10
B C A A A L L L L L G L A A G L L L

11
C C A A A L A A C B L L L L L G B A A G L L L L

12
C A A L A A B L L L G B A A G L L L L

13
A A A L A A C B L L L L L G B A L A A G L L L L L L

t = 57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C L C C L L C A A A A L A C B L L L L L L G

2
C G C L L C A A A L A L L L L L L G C

3
G L L L C A A A A L A C B L L C G

4
L C L C C L L A A A A A C L L L G L

5
C L C C L L C A A A A L A C B L L L L L G C G L A

6
L C C L C A A C B L L L L L G C L A B

7
C C L C A A C B L L L L L G C G L A B B

8
C L C A A A B L L L L C B C

9
L L A A A L L L L L L G C L

10
L C A A A L L L L L G L A B B C L L

11
C A A A A L A C B L L L L L L G C A B B C L L L

12
A A A L A C L L L L G C G B B C L L L

13
A A A L A C B L L L L L L G C G L A B B C L L L L L

t = 58

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L C L C C A L A A A A A L G B L L L L L L L G

2
B A C A L A A A A L G L L L L L L G B

3
A L A L A A A A A L G B L L L B A

4
L C L C C A L A A A A G B L L L A L

5
C L C C A L A A A A A L G B L L L L L L G B A L L

6
L C C A A A G B L L L L L L G B L L B

7
C C L A A A B L L L L L L G B A L L B C

8
C A A A A A L L L L L B C C

9
A L A A A L L L L L L A C A

10
L A A A A L L L L L G L L B C C A L

11
A A A A A L G B L L L L L L L G B L B C C A L L

12
A A A L G B L L L L G B A B C C L L L

13
A A A L G B L L L L L L L G B A L L B C C A L L L L

t = 59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C L C A A L A A A A A C G C L L L L L L L G

2
C G A A L A A A A C G L L L L L L G C

3
G L A L A A A A A C G C L L L C G

4
L C L C A A L A A A A G C L L L G G

5
C L C A A L A A A A A C G C L L L L L L G C G G L

6
L C A A A A G C L L L L L L G C G L L

7
C A L A A A C L L L L L L G C G G L L C

8
A A A A A A L L L L L C C A

9
A L A A A L L L L L L G A A

10
L A A A A C L L L L G G L L C A A G

11
A A A A A C G C L L L L L L L G C L L C A A G L

12
A A A C G C L L L L G C G L C A G L L

13
A A A C G C L L L L L L L G C G G L L C A A G L L L

t = 60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L C L A A A L A A A A C B G B A L L L L L L G

2
B A A A L A A A C B G L L L L L L G B

3
A L A L A A A A C B G B A L L B A

4
L C L A A A L A A A C G B L L L A B

5
C L A A A L A A A A C B G B A L L L L L G B A B C

6
L A A A A A G B A L L L L L G B B C L

7
A A L A A A B A L L L L L G B A B C L A

8
A A A A A A A L L L L B A A

9
A L A A C L L L L L L A A B

10
L A A A C B L L L L G B C L A A B B

11
A A A A C B G B A L L L L L L G B C L A A B B C

12
A A C B G B L L L L G B A L A A B C L

13
A A C B G B A L L L L L L G B A B C L A A B B C L L

t = 68

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L C L G B L L G B A B C L G B A B C L G A C G

2
B A B L L G A B C L G B C L G A C G B

3
A L L L G B A B C L G B A B C B A

4
L C L G B L L B A B C G B B C L A B

5
C L G B L L G B A B C L G B A C L G A C G B A B L

6
L G B L G B G B A B L G A C G B B L B

7
G B L G B A B A B C G A C G B A B L B A

8
B L G B A B A C L G A B A C

9
L L B B C B C L G A C A C G

10
L G A B C L C L G C G B L B A C G B

11
G B A B C L G B A B C L G A C G B L B A C G B A

12
B A C L G B B C L G G B A B A C B A L

13
A B C L G B A B C L G A C G B A B L B A C G B A L L

t = 69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C G G C L L G C G L C G G C G L C G G C B G

2
C G C L L G G L C G G L C G G C B G C

3
G L L L G C G L C G G C G L C C G

4
L C G G C L L C G L C G C L C G G G

5
C G G C L L G C G L C G G C G C G G C B G C G G L

6
G G C L G C G C G L G G C B G C G L G

7
G C L G C G C G L C G C B G C G G L G C

8
C L G C G L G C G G C C C B

9
L L C L C L C G G C B G B G

10
L G G L C G C G G B G G L G C B G C

11
G C G L C G G C G L C G G C B G C L G C B G C G

12
C G C G G C L C G G G C G G C B C G G

13
G L C G G C G L C G G C B G C G G L G C B G C G G L

t = 63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C L A A A L A C B L L L G C G L C A L L L G

2
C G A A L A B L L L G L C A L L L G C

3
G L A L A C B L L L G C G L C C G

4
L C L A A A L C B L L G C L C A G L

5
C L A A A L A C B L L L G C G C A L L L G C G L C

6
L A A A A C G C G L A L L L G C L C A

7
A A L A C B C G L C L L L G C G L C A L

8
A A A C B L G C A L L C L L

9
A L C L L L C A L L L G L C

10
L A B L L L C A L L G L C A L L C A

11
A C B L L L G C G L C A L L L G C C A L L C A A

12
C B L L G C L C A L G C G A L L A A C

13
B L L L G C G L C A L L L G C G L C A L L C A A C B

t = 64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L C L A A A L G B L L L L G B A L A A G L L G

2
B A A A L G L L L L G L A A G L L G B

3
A L A L G B L L L L G B A L A B A

4
L C L A A A L B L L L G B L A A A L

5
C L A A A L G B L L L L G B A A A G L L G B A L A

6
L A A A G B G B A L A G L L G B L A A

7
A A L G B L B A L A G L L G B A L A A G

8
A A G B L L A A A G L B G L

9
A L B L L L A A G L L A L A

10
L G L L L L A A G L G L A A G L A A

11
G B L L L L G B A L A A G L L G B A A G L A A C

12
B L L L G B L A A G G B A A G L A C B

13
L L L L G B A L A A G L L G B A L A A G L A A C B L

t = 65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C L A A A C G C L L L L G C G L A B B C L G

2
C G A A C G L L L L G L A B B C L G C

3
G L A C G C L L L L G C G L A C G

4
L C L A A A C C L L L G C L A B G L

5
C L A A A C G C L L L L G C G A B B C L G C G L A

6
L A A A G C G C G L B B C L G C L A B

7
A A C G C L C G L A B C L G C G L A B B

8
A A G C L L G A B B C C B L

9
A C C L L L A B B C L G L A

10
C G L L L L A B B L G L A B B L A C

11
G C L L L L G C G L A B B C L G C A B B L A C B

12
C L L L G C L A B B G C G B B L C B L

13
L L L L G C G L A B B C L G C G L A B B L A C B L L

t = 66

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L C L A A C B G B A L L L G B A L L B C C G G

2
B A A C B G A L L L G L L B C C G G B

3
A L C B G B A L L L G B A L L B A

4
L C L A A C B B A L L G B L L B A L

5
C L A A C B G B A L L L G B A L B C C G G B A L L

6
L A A C G B G B A L B C C G G B L L B

7
A A B G B A B A L L C C G G B A L L B G

8
A C G B A L A L B C C B G L

9
C B B L L L L B C C G A L G

10
B G A L L L L B C G G L L B G L G B

11
G B A L L L G B A L L B C C G G B L B G L G B L

12
B A L L G B L L B C G B A B G L B L L

13
A L L L G B A L L B C C G G B A L L B G L G B L L L

t = 67

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G L C L A C B L G C G G L L G C G G L L C B A G

2
C G C B L G G G L L G G L L C B A G C

3
G L B L G C G G L L G C G G L C G

4
L C L A C B L C G G L G C G L L G G

5
C L A C B L G C G G L L G C G L L C B A G C G G L

6
L A C B G C G C G G L C B A G C G L B

7
A C L G C G C G G L C B A G C G G L B B

8
C B G C G G G L L C B C B A

9
B L C G L G L L C B A G A G

10
L G G G L L L L C A G G L B B A G C

11
G C G G L L G C G G L L C B A G C L B B A G C L

12
C G L L G C G L L C G C G B B A C L L

13
G G L L G C G G L L C B A G C G G L B B A G C L L L

t = 70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B A L G A G B A L G B A L G A G B A L G A G B L G

2
B A B A L G A L G A G L G A G B L G B

3
A L A L G B A L G A G B A L G B A

4
L G A G B A L B A L G G B L G A A B

5
G A G B A L G B A L G A G B A G A G B L G B A B A

6
A G B A G B G B A L A G B L G B B A G

7
G B L G B A B A L G G B L G B A B A G B

8
B A G B A L A G A G B B B L

9
A L B L G L G A G B L A L G

10
L G A L G A G A G L G B A G B L G B

11
G B A L G A G B A L G A G B L G B A G B L G B A

12
B A G A G B L G A G G B A G B L B A B

13
A L G A G B A L G A G B L G B A B A G B L G B A B A

t = 71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G C G C G C G C G C G C G C G C G C G C G C G C L G

2
C G C G C G G C G C G C G C G C L G C

3
G C G C G C G C G C G C G C G C G

4
C G C G C G C C G C G G C C G C G B

5
G C G C G C G C G C G C G C G G C G C L G C G B C

6
C G C G G C G C G C C G C L G C B C G

7
G C C G C G C G C G G C L G C G B C G C

8
C G G C G C G G C G C C C L

9
G C C C G C G C G C L G L G

10
C G G C G C G C G L G B C G C L G C

11
G C G C G C G C G C G C G C L G C C G C L G C G

12
C G G C G C C G C G G C G G C L C G B

13
G C G C G C G C G C G C L G C G B C G C L G C G B C

t = 72

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G B G B G B G B G B G B G B G B G B G B G B G B G G

2
B G B G B G G B G B G B G B G B G G B

3
G B G B G B G B G B G B G B G B G

4
B G B G B G B B G B G G B B G B G B

5
G B G B G B G B G B G B G B G G B G B G G B G B G

6
B G B G G B G B G B B G B G G B B G G

7
G B B G B G B G B G G B G G B G B G G B

8
B G G B G B G G B G B B B G

9
G B B B G B G B G B G G G G

10
B G G B G B G B G G G B G G B G G B

11
G B G B G B G B G B G B G B G G B G G B G G B G

12
B G G B G B B G B G G B G G B G B G B

13
G B G B G B G B G B G B G G B G B G G B G G B G B G

t = 73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
G G G G G G G G G G G G G G G G G G G G G G G G G G

2
G G G G G G G G G G G G G G G G G G G

3
G G G G G G G G G G G G G G G G G

4
G G G G G G G G G G G G G G G G G G

5
G G G G G G G G G G G G G G G G G G G G G G G G G

6
G G G G G G G G G G G G G G G G G G G

7
G G G G G G G G G G G G G G G G G G G G

8
G G G G G G G G G G G G G G

9
G G G G G G G G G G G G G G

10
G G G G G G G G G G G G G G G G G G

11
G G G G G G G G G G G G G G G G G G G G G G G G

12
G G G G G G G G G G G G G G G G G G G

13
G G G G G G G G G G G G G G G G G G G G G G G G G G

t = 74

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1
T T T T T T T T T T T T T T T T T T T T T T T T T T

2
T T T T T T T T T T T T T T T T T T T

3
T T T T T T T T T T T T T T T T T

4
T T T T T T T T T T T T T T T T T T

5
T T T T T T T T T T T T T T T T T T T T T T T T T

6
T T T T T T T T T T T T T T T T T T T

7
T T T T T T T T T T T T T T T T T T T T

8
T T T T T T T T T T T T T T

9
T T T T T T T T T T T T T T

10
T T T T T T T T T T T T T T T T T T

11
T T T T T T T T T T T T T T T T T T T T T T T T

12
T T T T T T T T T T T T T T T T T T T

13
T T T T T T T T T T T T T T T T T T T T T T T T T T

Fig. 9. Snapshots of the synchronization processes on a 2D array of size 13 × 26,
containing 20 defective rectangle zones

We see that any configuration on a 1D array consisting of m+n−1 cells can
be mapped onto a 2D array of size m × n. Therefore, if the embedded 1D array
fires m + n − 1 cells in T (m + n − 1) steps, then the corresponding 2D array of
size m × n can be synchronized in T (m + n − 1) steps. Thus, we can embed any
1D FSSP algorithm onto a 2D array without increasing the number of internal
states. We complete the observation in the next theorem.

Theorem 4. Let M be any s-state FSSP algorithm operating in T (�) steps on
1D arrays of length �. Then, there exists a 2D s-state cellular automaton that
can synchronize any rectangular array of size m × n in T (m + n − 1) steps.

Here we can embed a 1D 6-state minimum-time FSSP algorithm developed
in Mazoyer [4], synchronizing � cells in 2� − 2 steps. The next rectangle syn-
chronization algorithm fires any m × n array in 2(m + n) − 4 steps, since
T (m + n − 1) = 2(m + n − 1) − 2 = 2(m + n) − 4.
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Fig. 10. Snapshots of the synchronization processes on a 2D array of size 10 × 10,
including 4 defective zones

Fig. 11. Snapshots of the synchronization processes on a 2D array of size 10 × 10,
including 7 defective rectangle zones

Theorem 5. There exists a 6-state 939-rule FSSP algorithm that can synchro-
nize any m × n rectangular array in 2(m + n) − 4 steps.

Figure 8 (left) illustrates snapshots of Mazoyer’s 6-state FSSP algorithm on
11 cells. These configurations are mapped on a 2D array of size 7 × 5, shown in
Fig. 8 (right).

We now consider a class of 2D arrays A of size m × n, initially including
intact and defective cells, which satisfies the following conditions:

1. The initial general is on the north-west corner cell C1,1.
2. Any intact cell, except C1,1, takes a quiescent state initially.
3. Any intact cell Ci,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, except C1,1 and Cm,n, must have at

least one intact cell in {Ci−1,j , Ci,j−1} and one intact cell in {Ci+1,j , Ci,j+1}
at time t = 0.

4. The defective cell, assuming the boundary state initially, keeps the state dur-
ing operations.
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Fig. 12. Snapshots of the synchronization processes on a 2D array of size 10 × 10,
including 4 defective zones

Fig. 13. Snapshots of the synchronization processes on a 2D array of size 9×9, including
16 defective cells

In the case where a given 2D array includes some defective zones satisfying
the conditions above, the following lemma holds.

Lemma 6. Let i and t be any integer such that 1 ≤ i ≤ m + n − 1, 0 ≤ t ≤
T (m + n − 1). For any initial configuration in A, we have:

St
gi =

{
{St

i , w}, if gi includes some defective cells,
{St

i}, otherwise.
(1)

The 6-state 2D FSSP algorithm stated in Theorem 5 can also synchronize
any 2D array in A. We have:

Theorem 7. There exists a 6-state 939-rule fault-tolerant FSSP algorithm that
can synchronize any m × n rectangular array in A in 2(m + n) − 4 steps.

Several snapshots of the 6-state fault-tolerant FSSP algorithm running on a
rectangular array of size 13 × 26 including 20 holes (Fig. 5) are shown in Fig. 9.
Figures 10, 11, 12 and 13 illustrate similar snapshots for some different initial
configurations.
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4 Conclusions

It has been shown that, under some constraints on the distribution of defective
cells, any 1D cellular array of length n with p defective cell segments can be
synchronized in 2n − 2 + p steps and the algorithm has been realized on a finite
state automaton having 164 states and 4792 rules. We have also given a smaller
implementation for the 2D FSSP that can synchronize any 2D rectangular array
of size m×n, including O(mn) rectangle-shaped isolated defective zones, exactly
in 2(m+n)−4 steps on a cellular automaton with only 6 states and 939 transition
rules.
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Abstract. An n-cell maximal length cellular automaton (CA) is a
binary CA which is having a cycle of length 2n − 1. These CAs are
linear and have been used in different applications, such as pseudo ran-
dom number generation, VLSI design & test, cryptosystem etc. For some
applications, however, it could be good if we can use non-linear maximal
length CAs. In this paper, we arrange an experiment for the search of
non-linear maximal length CAs. By experimentation, we have seen that
there exists non-linear maximal length CAs.

Keywords: Non-linear cellular automata · Reversible
Maximal length · Configuration · Rule

1 Introduction

The cellular automata (CAs) that generate large cycles are highly useful in
computational processes like pseudo random number generator (PRPG) [5,7],
cryptosystem [3,6] etc. Prior works have considered the use of linear maximal
length cellular automata [1,2] for such applications, where the cycle length is as
large as 2n − 1 for an n-cell binary cellular automaton (CA). Linear maximal
length CAs, however, suffer from some drawbacks. Firstly, the availability of n-
degree primitive polynomial is limited. Besides, linear maximal length sequences
are not secure. So, there is a necessity of a construction that can provide both
non-linearity and maximal length sequence for optimized crypto-system (see [3,6]
for details).

There have been some researches to introduce non-linearity in maximal length
CAs [3,6]. The technique referred in [3] manipulates the number of clock cycles,
based on inputs, in a maximum length additive CA. This method becomes unsyn-
chronized for different inputs. An efficient technique [6] is devised for generat-
ing non-linear maximal length CA from linear maximal length CA by injecting
non-linearity in different cell positions. The effect of the non-linearity can be
propagated among multiple cells by shifting the non-linear function. However, it
c© Springer Nature Switzerland AG 2018
G. Mauri et al. (Eds.): ACRI 2018, LNCS 11115, pp. 289–297, 2018.
https://doi.org/10.1007/978-3-319-99813-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99813-8_26&domain=pdf
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incurs increasing neighborhood dependency. For optimal design, the construction
of non-linear maximal length CA limits upto 5 neighborhood. This motivates us
to figure out if there exists a non-linear maximal length CA without exceed-
ing the neighborhood dependency. In this paper we answer this question in an
affirmative way.

2 Basics

2.1 Definitions

A 1-d finite CA of size n consists of an array of n cells. Each cell can be in
either of two states, 0 or 1 as we use binary CA. Let xi denote the state of cell
i. Then, a configuration of the CA is x = (x0x1 · · · xn−1) where xi ∈ {0, 1}. In
this work, we consider null boundary CA, which means x−1 = xn = 0. Cell i
of the CA changes its state at every time step following a next state function
fi : {0, 1}3 �→ {0, 1}, which is defined over the present states of cell i and its
left and right neighbors. Let us denote C as the set of all possible configurations
of the CA. The CA thus can be interpreted as a function F : C → C, which
satisfies the following conditions: y = F (x), x, y ∈ C, where y = (yi)0≤i≤n−1 and
yi = fi(xi−1, xi, xi+1).

There can be eight possible combinations depending on the present states
of a cell and its two neighbours. The next state for the cell for each of these
combinations depends on the next state function. Thus there can be 28 distinct
next state functions, and each next state function can be associated to a value
between 0 and 255, which we call rule. The rule corresponding to a particular
next state function is obtained as the decimal equivalent of next state generated
for the eight combinations of the present states xi−1, xi and xi+1 (as shown
in Table 1). For a particular rule R, let R[xi−1xixi+1] denote the next state of
cell i for the present states combination xi−1xixi+1 of cell i and its neighbours.
For example, 30[011] = 1. Thus a CA can alternatively be interpreted as a rule
vector R = (R0,R1, · · · ,Ri, · · · ,Rn−1), where each Ri is the rule to which fi
is associated. The uniform CA is a special case where R0 = R1 = · · · = Ri =
· · · = Rn−1. If an Ri of an n-cell CA is said to be linear if its corresponding fi
follows XOR logic.

Definition 1 If all the rules of a rule vector R are linear/additive, then the CA
is linear/additive.

Here, we consider only seven rules as linear – 60, 90, 102, 150, 170, 204 and
240. Another seven rules (15, 51, 85, 105, 153, 165 and 195) are complemented
additive rules.

Definition 2. If any Ri of R is not linear/ additive, then CA is non-linear.

Definition 3. A configuration x ∈ C is said to be cyclic if x = F t(x) for some
finite t ∈ N.

Definition 4. A CA is reversible if all the configurations are cyclic.
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Table 1. Rules 90, 150, 54 and 30

Present state 111 110 101 100 011 010 001 000 Rule

(i) Next state 0 1 0 1 1 0 1 0 90

(ii) Next state 1 0 0 1 0 1 1 0 150

(iii) Next state 0 0 1 1 0 1 1 0 54

(iv) Next state 0 0 0 1 1 1 1 0 30

2.2 Synthesis of Reversible CAs

Synthesis of a reversible CA given in [4]. Here we briefly present the methodolo-
gies for sake of completeness.

Only 62 out of the 256 possible rules are used to form non-uniform reversible
CAs. These rules can be classified into different classes as shown in Tables 2, 3
and 4. We now state how a reversible CA can be generated from these tables.
The rule at the cell zero i.e., R0 is selected out of the rules given in first column
of Table 2. Note that the first and last rules of a null boundary CA are to be
chosen differently (see [4] for details). However, the selected rule at the cell zero
defines the class (second column of Table 2) from which R1 has to be selected.
For every i between 1 and n − 2, the first column of Table 4 shows the probable
classes of rule Ri; the second column shows the possible rules for rule Ri from
each class, while corresponding to a particular rule Ri, the third column defines
the class from which Ri+1 has to be selected. Finally, depending on the class of
the rule at the last cell, the rule Rn−1 is selected from Table 3.

Example 1. Let us consider a 4-cell CA (10, 150, 90, 20) which is reversible. It is
obtained as follows: here, R0 is 10. The class of R1 is II (see Table 2). Thus the
rule at cell 1 must be selected from the row corresponding to class II of Table 4.
In particular, let R1 is selected to be 150. R2 should be selected from class I, as
the class for selecting the next rule corresponding to rule 150 is class I (see last
column of Table 4). Let R2 is selected as 90. Applying the same methodology,
the class of rule R3 comes out to be class II. From Table 3, the rule R3 is selected
from the row corresponding to class II, in particular R3 is selected to be 20.

Definition 5. An n-cell CA is maximal length if, for a configuration x ∈ C,
x = F 2n−1(x), but x �= F t(x) where 1 ≤ t < 2n − 1.

The CA (10, 150, 90, 20) is equivalent to the CA (90, 150, 90, 150) when the
boundary condition is null. That is, this CA is linear. Further, it is a maximal
length CA (see Fig. 1).

3 Cellular Automata with Large Cycles

Maximal length CAs are having the largest possible cycle length for given CA
size n. In this section we develop a process to design CAs which are expected
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0 0 0 0

1 0 1 1

1 0 0 1

0 1 1 1

1 0 0 0 1 1 1 10 1 0 0

0 1 0 1

1 1 0 1

1 1 1 0

1 1 0 0

1 0 1 0

0 1 1 0 0 0 1 1

0 0 0 1

0 0 1 0

Fig. 1. Configuration transition diagram of the CA (10, 150, 90, 20)

Table 2. First rule table

Rules for R0 Class of R1

3, 12 I

5, 10 II

6, 9 III

Table 3. Last rule table

Rule class for Rn−1Rule set for Rn−1

I 17, 20, 65, 68

II 5, 20, 65, 80

III 5,17, 68, 80

IV 20, 65

V 17, 68

VI 5, 80

to have large cycles. If non-linear maximal length CAs really exist, we can get
such CAs by repeatedly applying this process.

We first intuitively present the idea behind our approach. Clearly, a cell i
changes its state in next time step depending on the present states of itself
and its neighbours. If the cells of a CA does not depend on their neighbors,
the CA cannot produce large cycles. For example, in the extreme case, if
fi(xi−1, xi, xi+1) = xi for all i, then every cycle is of length one. Similarly, if
fi(xi−1, xi, xi+1) = 1 − xi for all i, every cycle is of length two. Thus lower the
dependency of the next state function on the present state of the neighbours of
a cell, smaller will be the length of the cycles generated by the corresponding
CA. Conversely, if the next state of a cell is more influenced by the state of its
neighbours, greater is the chance of obtaining a large length cycle.

Let (x0x1 · · · xi · · · xn−1) denote a configuration of the CA. Suppose
fi(xi−1, xi, xi+1) = fi(xi−1, xi, 1 − xi+1), for all values of xi and xi−1. This
implies that the next state of cell i is not influenced by the present state of cell
i + 1; we say that cell i is independent of its right neighbor. In an analogous
manner, if fi(xi−1, xi, xi+1) = fi(1−xi−1, xi, xi+1) for all values of xi and xi+1,
cell i is independent of its left neighbor.

We can define the degree of dependence on the neighbor of a cell as follows.
Let αrd(xi−1 = x, xi = y) denote the dependence of cell i on its right neighbor
when the present states of xi−1 and xi are respectively x and y. Note that each
of x and y can be either 0 or 1.
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Table 4. Class relationship of Ri and Ri+1

Class of Ri Ri Class of Ri+1

I 51, 204, 60, 195 I

85, 90, 165, 170 II

102, 105, 150, 153 III

53, 58, 83, 92, 163, 172, 197, 202 IV

54, 57, 99, 108, 147, 156, 198, 201 V

86, 89, 101, 106, 149, 154, 166, 169 VI

II 15, 30, 45, 60, 75, 90, 105, 120, I

135, 150, 165, 180, 195, 210, 225, 240

III 51, 204, 15, 240 I

85, 105, 150, 170 II

90, 102, 153, 165 III

23, 43, 77, 113, 142, 178, 212, 232 IV

27, 39, 78, 114, 141, 177, 216, 228 V

86, 89, 101, 106, 149, 154, 166, 169 VI

IV 60, 195 I

90, 165 IV

105, 150 V

V 51, 204 I

85, 170 II

102, 153 III

86, 89, 90, 101, 105, 106, VI

149, 150, 154, 165, 166, 169

VI 15, 240 I

105, 150 IV

90, 165 V

αrd(xi−1 = x, xi = y) =

{
1 if fi(x, y, xi+1) �= fi(x, y, 1 − xi+1)
0 otherwise

The degree of dependence of cell i on its right neighbor is the ratio of the
number of combinations of values of xi and xi−1 for which the next state function
on xi depends on xi−1. This is called the degree of right dependence for rule Ri

and denoted by Pr(Ri). Clearly, Pr(Ri) can take values 0, 0.5 or 1. Formally,

Pr(Ri) =

∑
x∈{0,1}

∑
y∈{0,1} αrd(xi−1 = x, xi = y)

4
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Similarly, let αld(xi = x, xi+1 = y) denote the dependence of cell i on its left
neighbor when the present states of xi and xi+1 are respectively x and y.

αld(xi = x, xi+1 = y) =

{
1 if fi(xi−1, x, y) �= fi(1 − xi−1, x, y)
0 otherwise

In an analogous way, we define the parameter Pl which determines how much
a cell i depends on its left neighbor. It is the ratio of the number of combinations
of values of xi and xi+1 for which the next state function on xi depends on xi+1.
This is called the degree of left dependence for rule Ri, and denoted by Pl(Ri).

Pl(Ri) =

∑
x∈{0,1}

∑
y∈{0,1} αld(xi = x, xi+1 = y)

4
Example 2. Let us consider rule 54. We observe that for the next state function
corresponding to this rule, αrd(xi−1 = 0, xi = 0) = 1, αrd(xi−1 = 0, xi = 1) = 1,
while αrd(xi−1 = 1, xi = 0) = 0, αrd(xi−1 = 1, xi = 1) = 0. Therefore, Pr(54) is
0.5. On the other hand, αld(xi = 0, xi+1 = 0) = 1, αld(xi = 1, xi+1 = 0) = 1,
while αld(xi = 1, xi+1 = 1) = 0, αld(xi = 1, xi+1 = 0) = 0. Therefore, Pl(54) is
0.5. Similarly, for rules 90 and 60, Pr(90) = 1 and Pr(60) = 0. For rules 150 and
170, we get Pl(150) = 1 and Pl(170) = 0.

The rules of reversible CAs can be classified into three categories depending
on Pr and Pl parameter. The three categories are named as completely right
dependent, partially right dependent and right independent, and they correspond
respectively to right dependence degree values of 0, 0.5 and 1. In null boundary
condition, all possible inputs to first and last rules are not valid. So, we need to
classify first and last rules separately using the same process stated above.

In order to have a CA generates a cycle of 2n−1 length, it is desirable to have
the rules of the CA dependent on both the left and the right neighbours. The
degree of dependence of a rule Ri on both of its neighbours can be determined
by the product of Pr(Ri) and Pl(Ri), and we denote this by P(Ri).

P(Ri) = Pr(Ri) ∗ Pl(Ri).

Clearly, P(Ri) can take values 0, 0.25, 0.5 or 1. We can thus classify the rules
here into four categories based on the P parameter. As shown in Table 5, any rule
can correspond to either of the four categories completely dependent, partially
dependent, weakly dependent and independent depending on the P values of 1,
0.5, 0.25 and 0 respectively. However, to obtain a large cycle, we generate the
corresponding CA by selecting rules from Table 5 as follows.

The first and the last rules of every CA are selected uniformly at random
from the class of completely dependent. For the remaining, we pick n − 2 rules
randomly following Gaussian distribution in such a way that the maximum rules
are selected from the category of completely dependent, some selected from the
category of partially dependent, and a very few from the category of weakly
dependent. Since most of the rules, selected in this manner, have high degree of
dependence on both of their neighbours, it is highly likely that the corresponding
CA will have a large cycle.
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Table 5. Four categories of reversible CA rules on the parameter P

Category Ri R0 Rn−1

Completely
dependent

90, 165, 150, 105 5, 6, 9, 10 5, 20, 65, 80

Partially
dependent

30, 45, 75, 120, 135, 180, 210, 225,
86, 89, 101, 106, 149, 154, 166, 169

Weakly
dependent

53, 58, 83, 92, 163, 172, 197, 202,
54, 57, 99, 108, 147, 156, 198, 201,
23, 43, 77, 113, 142, 178, 212, 232,
27, 39, 78, 114, 141, 177, 216, 228,

Independent 51, 204, 85, 170, 102, 153, 60, 195,
15, 240

3, 12 17, 68

Table 6. Cycles are close to 2k − 1 for k-cell CA (Here k = 10)

Cycle length 10-cell CA

1015 (9, 90, 43, 150, 166, 90, 165, 150, 90, 65)

923 (9, 166, 105, 105, 101, 150, 150, 105, 150, 20)

801 (9, 86, 90, 149, 105, 90, 165, 165, 90, 65)

1008 (10, 165, 86, 150, 165, 90, 105, 90, 150, 65)

1023 (10, 90, 150, 169, 165, 101, 150, 90, 165, 20)

1001 (10, 90, 53, 90, 90, 150, 89, 90, 105, 80)

1003 (10, 105, 90, 150, 57, 150, 90, 105, 150, 65)

761 (5, 90, 165, 180, 154, 165, 106, 165, 90, 80)

1000 (10, 165, 86, 90, 101, 165, 105, 105, 165, 65)

920 (10, 165, 90, 150, 86, 105, 105, 90, 150, 20)

1022 (9, 106, 150, 105, 90, 105, 150, 90, 150, 65)

827 (9, 43, 105, 154, 105, 165, 150, 90, 150, 20)

1017 (9, 90, 89, 150, 165, 150, 106, 90, 89, 80)

728 (10, 90, 57, 105, 165, 101, 150, 165, 90, 65)

1023 (6, 150, 210, 53, 150, 150, 165, 105, 150, 20)

4 Experimental Results

Using the above mentioned approach, we generate a number of CAs of different
sizes. We observe that the cycles of the synthesized CAs are large, and most
of the time, the largest cycle of such CAs are close to 2n − 1. Table 6 shows a
sample result of our experiment. Bold faced rows are the non-linear maximal
length CAs. This result proves that there exist non-linear maximal length CAs.

Let us now understand the percentage frequency distribution of different
categories of rules which can generate non-linear maximal length by using the
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above process. For CA size 10, we generate 100 non-linear maximal length CAs
and using these data, we observe that 83% of the rules belong to completely
dependent category, 13.8% belong to the partially dependent class, while 3.02%
belong to the weakly dependent class.

To understand the efficacy of the above mentioned approach, we conduct
experiments. We generate random non-linear maximal length reversible CAs of
size n extensively. Obviously, each CA follows a distribution for the rules being
selected from the different categories based on P which mentioned already. By
maintaining this distribution, we get CAs of length 2n − 1 of a fixed CA size n.
We perform experiment for different values of n ranges from 4 to 20. Here, by
experiments, we observe that there exists a non-linear maximal length CA for
any n. In Table 7, we shows the CAs which contributes maximal length CA for
sizes 4 to 20.

From the experimental results, however, we observe that sixteen rules from
category weakly dependent have not participated in the maximal length CA gen-
eration. These rules are 92, 172, 197, 202, 108, 156, 198, 201, 77, 142, 212, 232,
78, 141, 216, 228.

Table 7. n-cell non-linear maximal length CAs

n (CA size) R (CA)

4 (6, 178, 90, 20)

5 (5, 150, 99, 165, 5)

6 (5, 90, 106, 90, 166, 5)

7 (6, 101, 90, 154, 105, 165, 65)

8 (9, 90, 105, 30, 54, 150, 105, 65)

9 (5, 180, 150, 105, 165, 149, 150, 90, 65)

10 (10, 105, 54, 154, 90, 166, 90, 86, 105, 65)

11 (5, 150, 165, 30, 58, 90, 150, 86, 105, 90, 65)

12 (6, 105, 165, 90, 180, 147, 165, 165, 105, 165, 150, 8)

13 (6, 86, 90, 169, 105, 150, 89, 90, 165, 150, 90, 90, 65)

14 (9, 177, 89, 90, 89, 90, 101, 105, 165, 90, 150, 90, 150, 65)

15 (10, 75, 90, 90, 166, 90, 86, 105, 90, 150, 166, 105, 90, 90, 20)

16 (6, 90, 178, 150, 154, 150, 105, 105, 90, 150, 150, 90, 165, 105, 90, 80)

17 (6, 165, 150, 165, 150, 150, 90, 101, 150, 165, 150, 105, 165, 169, 150, 165, 20)

18 (9, 165, 86, 150, 90, 90, 165, 150, 105, 150, 165, 150, 105, 105, 150, 149, 150, 20)

19 (10, 45, 58, 90, 165, 105, 165, 150, 165, 150, 149, 165, 90, 165, 90, 105, 105, 105, 5)

20 (10, 150, 165, 105, 149, 165, 165, 150, 150, 89, 90, 105, 105, 165, 105, 150, 150, 165, 165, 20)
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Abstract. We introduce an algebraic approach for the analysis and
composition of finite, discrete-time dynamical systems based on the
category-theoretical operations of product and sum (coproduct). This
allows us to define a semiring structure over the set of dynamical sys-
tems (modulo isomorphism) and, consequently, to express many decom-
position problems in terms of polynomial equations. We prove that these
equations are, in general, algorithmically unsolvable, but we identify a
solvable subclass. Finally, we describe an implementation of the semiring
operations for the case of finite cellular automata.

1 Introduction

Discrete dynamical systems are a formal tool widely used in applications to
model real phenomena. Even if this formalism provides very interesting results,
the overall theory is still a hot research topic. In this paper, we are going to adopt
an abstraction of the formalism of (finite) discrete dynamical systems in order to
provide general results which are valid for all the systems. The underlying idea
is that in the abstract view one can find patterns that are simpler to study and
precisely define and, in a second step, these patterns can be assembled to help
studying complex particular cases. For example, consider the finite dynamical
systems which are bijective. Their dynamics is represented by a graph which is
made of disjoint cycles and which coincides with the graph of a permutation.
Assume that from experimental data one knows that the phenomenon being
modelled has a certain number of periodic orbits. Then, it is natural to won-
der whether the observed system is composed of smaller parts and the overall
behaviour has some variables. In our setting this translates into the formula-
tion of an equation on dynamical systems in which the unknowns multiply the
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expected patterns. Unfortunately, we prove that solving equations over dynam-
ical systems is algorithmically infeasible in the general case, even in the case
of polynomial equations (Theorem1). However, if one of the two sides of the
equations is constant, then the problem of finding the roots turns out to be in
NP (Theorem 2). We believe it to actually be complete, and we suspect that its
weaker versions are good candidates for the class of NP-intermediate problems.
As a concrete example, we show that (finite) cellular automata are a subsemiring
of the semiring D of (finite) discrete dynamical system and that, indeed, they
are isomorphic to the whole D.

The paper is structured as follows. The next section introduces the formalism
and basic concepts. It also provides a first example of a subsemiring (Proposi-
tion 1). Section 3 introduces the concept of equations over dynamical systems
and the main results of the paper. Cellular automata and their subsemiring are
introduced in Sect. 4. In the last section we draw our conclusions and provide
several research directions for further developments.

2 The Semiring of Dynamical Systems

In this paper, a (finite, discrete-time) dynamical system is any pair (D, f)
where D is a finite set of states and f : D → D is the next-state function which
maps each state to the next one. We sometimes refer to (D, f) simply as D when
the function f is implied by the context. We also allow D = ∅ as a legitimate
set of states; in that case, f is necessarily the empty function.

Given a dynamical system, one can consider the graph of its dynam-
ics G(D, f) having the states D as vertices, and those edges (x, y) ∈ D2 such
that f(x) = y. A graph represents the dynamics of a dynamical system if and
only if it is functional, i.e., each vertex has outdegree exactly 1; since there is a
bijection between dynamical systems and functional graphs, we sometimes refer
interchangeably to a dynamical system and the graph of its dynamics.

Finite dynamical systems form a category D [3, p. 136], where
arrows (D, f) → (E, g) are given by functions ϕ : D → E compatible with the
two dynamics: g ◦ ϕ = ϕ ◦ f . This category has an initial object 0 (the empty
dynamical system) and terminal objects 1 (any single-state dynamical system
with the identity function). Furthermore, this category has products:

(D, f) × (E, g) = (D × E, f × g) where (f × g)(d, e) = (f(d), g(e))

which corresponds to the tensor product of the graphs of the dynamics, and
coproducts (or sums):

(D, f) + (E, g) = (D � E, f + g) where (f + g)(x) =

{
f(x) if x ∈ D

g(x) if x ∈ E

which corresponds to the disjoint union of the graphs of the dynamics.
The product D × E defined above consists in the parallel, synchronous exe-

cution of the two dynamical systems D and E. The sum D + E is the mutually
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exclusive alternative between the behaviour of D and the behaviour of E; the
resulting dynamical system behaves as one of the two terms, depending on its
initial state.

In this paper we are only interested in the dynamics of dynamical systems,
irrespective of the precise nature of their states and their next-state functions. In
other words, we consider dynamical systems having isomorphic graphs of their
dynamics as identical. With this convention, the objects of the category D of
finite dynamical systems are a countable set rather than a proper class, and
the operations of sum (coproduct) and product give it a commutative semiring
structure with zero and identity [2]. Indeed, as can be easily checked from the
definitions above:

– (D,+) is a commutative monoid with neutral element 0,
– (D,×) is a commutative monoid with neutral element 1,
– products distribute over sums: x × (y + z) = x × y + x × z.

Notice that this semiring is not a ring, since no element (besides the trivial case
of 0) possesses an additive inverse; furthermore, the only element invertible with
respect to the product is trivially 1. This follows immediately from the fact
that sum and product are monotonic with respect to the sizes of the dynamical
systems. On the other hand, this same property guarantees us that D is an
integral semiring, i.e., there are no zero divisors.

While the graphs of the dynamics of the sum of two dynamical systems
simply consist of the juxtaposition of the graphs of the two terms, the product
generates more interesting results, as shown in Fig. 1. Just by looking at the
Cayley table of the monoid (D,×), we can already observe that the semiring D
does not possess unique factorisations. Indeed, we have

and both and are irreducible (any nontrivial factorisation would oth-
erwise appear, due to its size, in the Cayley table of Fig. 1).

Another interesting property of D is that it contains the semiring of the
natural numbers, which is initial in the category of commutative semirings.

Proposition 1. The semiring D contains a subsemiring N isomorphic to the
natural numbers.

Proof. For each n ∈ N, let ϕ(n) ∈ D be the dynamical system consisting
of exactly n fixed points (i.e., the identity function over a set of n points),
and let N = ϕ(N). Clearly N contains both 0 = ϕ(0) and 1 = ϕ(1).
Given ϕ(m), ϕ(n) ∈ N we have ϕ(m)+ϕ(n) = ϕ(m+n) ∈ N and ϕ(m)×ϕ(n) =
ϕ(n × m) ∈ N. Finally, we have ϕ(m) = ϕ(n) if and only if m = n. This means
that ϕ is a semiring monomorphism, and that its image N is a subsemiring of D
isomorphic to N. ��

Due to Proposition 1, in the following we will denote the subsemiring N of D
simply by N.
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Fig. 1. A portion of the Cayley table of the commutative monoid (D,×), including
products of all dynamical systems with 0, 1, and 2 states, as well as some dynamical
systems with 3 states, in increasing order of size (and arbitrary order among those with
the same size).

3 Polynomial Equations

Having equipped the dynamical systems D with a semiring algebraic structure
allows us to formulate a number of problems in terms of polynomial equa-
tions. Recall that the polynomials over a commutative semiring are themselves
a commutative semiring; in our case, we deal with polynomials over several vari-
ables D[X1, . . . , Xk].

One basic problem is to analyse a given dynamical system D in terms of
smaller, simpler components. For instance, a solution to an equation of the form
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allows us to express the (parametric) behaviour on the right-hand side in terms
of a possibly different set of components combined as described on the left-hand
side. One possible solution is

In a ring R, by moving all terms on the left-hand side, any polynomial equa-
tion can be expressed as p( �X) = 0 with �X = (X1, . . . , Xk) a set of variables
and p ∈ R[ �X] a polynomial. In a proper semiring this is generally impossible,
due to the lack of additive inverses; in our case, due to the above-mentioned
monotonicity of + and × with respect to the sizes of dynamical systems, the
equations of the form p( �X) = 0 are actually trivial, as they only admit the
solution �X = �0 when the constant term of p is null, and no solution other-
wise. A general polynomial equation in D will then have the form p( �X) = q( �X)
with p, q ∈ D[ �X].

Given a set of variables �X = (X1, . . . , Xk), a polynomial p ∈ D[ �X], where
the maximum degree of each variable is d, can be denoted by

p =
∑

�i∈[0,d]k

a�i
�X

�i with �X
�i =

k∏
j=1

X
ij
j

Unfortunately, the algorithmic solution of polynomial equations over D turns
out to be impossible by reduction from Hilbert’s tenth problem [4]. This is not an
immediate corollary of Proposition 1, since a polynomial equation over N might
admit non-natural solutions in the larger semiring D of dynamical systems1; for
instance, the equation 2X2 = 3Y has the non-natural solution

However, this equation obviously also has the natural solution X = 3, Y = 6
(uncoincidentally, these are the sizes of the dynamical systems of the previous
solution). As we are going to show, this is actually a general property of equations
over N: by moving to the larger semiring D we might be able to find extra
solutions, but only if there already exists a natural one.

Given a dynamical system D ∈ D, let |D| denote the size of its set of states.

Lemma 1. The function | · | : D → N is a semiring homomorphism.

Proof. Clearly |0| = 0 and |1| = 1. Since sums and products in D respectively
involve the disjoint union and the Cartesian product of the sets of states, we
have |D1 + D2| = |D1| + |D2| and |D1 × D2| = |D1| × |D2|. ��
1 While the existence of integer roots of a polynomial in Z[X] is undecidable, the
existence of roots in the larger ring of real numbers is decidable, and the problem
becomes even trivial for complex roots (due to the fundamental theorem of algebra).
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Lemma 2. Let �X = (X1, . . . , Xk) be variables, let p, q ∈ N[ �X] be polynomials,
and suppose that p( �D) = q( �D) for some �D ∈ Dk. Then, there exists �n ∈ N

k

such that p(�n) = q(�n).

Proof. Let �D = (D1, . . . , Dk) ∈ Dk and suppose

p =
∑

�i∈[0,d]k

a�i
�X

�i q =
∑

�i∈[0,d]k

b�i
�X

�i

Since p( �D) = q( �D), we also have |p( �D)| = |q( �D)|, and since | · | is a semiring
homomorphism (Lemma 1), this means that

∑
�i∈[0,d]k

a�i| �D
�i| =

∑
�i∈[0,d]k

b�i| �D
�i| with | �D�i| =

k∏
j=1

|Dj |ij

or, in other words, that p(| �D|) = q(| �D|), where | �D| = (|D1|, . . . , |Dk|). By let-
ting �n = | �D|, the thesis follows. ��

Since, by Proposition 1, every natural solution to a polynomial equation
over N is also a dynamical system, we obtain that each equation over N has
a solution in D if and only if it has a solution in N. The latter is a variant of
Hilbert’s tenth problem [4], proving our problem also algorithmically unsolvable.

Theorem 1. The problem of deciding whether a general polynomial equation
over D admits a solution (and, by implication, finding one such solution when
it is the case) is undecidable. ��
Remark 1. Notice that, although polynomial equations over N with solutions
in D always admit a natural solution, this is not always the case for equations
with more general coefficients; for instance

but cannot have a solution with natural X, since X2 would also be natural,
while the right-hand side of the equation is never natural.

The equations become algorithmically solvable if one side is a constant, i.e.,
if the equation has the form p( �X) = D with p ∈ D[ �X] and D ∈ D. Indeed,
in that case the size |D| of the right-hand side of the equation allows us to
perform a bounded search: due to the monotonicity of + and × with respect to
the sizes of the dynamical system, each dynamical system of an assignment to �X
satisfying the equation (excluding any redundant variables which only appear
with coefficient 0) has size at most |D|.

Assuming that the coefficients of the polynomials are given in input as explicit
graphs, the value of each variable can be guessed in polynomial time by a non-
deterministic Turing machine; the solution can then be checked by evaluating the
polynomial on the left-hand side, with the caveat that we must halt and reject
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as soon as the partial result becomes larger than the right-hand side (this avoids
a potentially exponential increase of the evaluated graph due to a polynomial of
large degree). Finally, we need to check whether the evaluated left-hand side and
the right-hand side of the equation are isomorphic, which can easily be performed
by guessing an isomorphism between the two graphs. We can therefore conclude
that

Theorem 2. The problem of finding solutions of polynomial equations over D
with a constant side is in NP.

4 The Semiring of Cellular Automata

When dealing with a semiring, one interesting problem to tackle in order to
understand its structure is to find its subsemirings. In the case of the semiring D
specifically, it is also important to establish whether specific kinds of dynamical
systems correspond to subsemirings or other subsets, such as ideals.

Let us consider finite, one-dimensional cellular automata (A,n, r, λ), where A
is the alphabet of states, n the number of cells, r the radius and λ : A2r+1 → A
the local rule; we also assume cyclic boundary conditions for simplicity.

The additive identity 0 of D has the empty graph as its dynamics; in terms
of cellular automata this corresponds to length-0 automata. Notice that this
is actually an equivalence class of automata, since any choice of A, r and λ
generates this dynamics whenever n = 0.

The multiplicative identity 1 of D has a dynamics consisting of a single fixed
point. This dynamics is generated exactly by the cellular automata having |A| =
1, i.e., exactly one state a, with any length n and radius r, and with the constant
local rule λ(a, . . . , a) = a.

Given two cellular automata (A1, n1, r1, λ1) and (A2, n2, r2, λ2) with global
rule Λ1 and Λ2 respectively, their sum can be constructed as an automa-
ton (A3, n3, r3, λ3) with alphabet A3 = An1

1 � An2
2 , i.e., the disjoint union of

the global configurations of the two automata, length n = 1, radius r = 0 and
local rule λ3 : A1

3 → A3 defined by

λ3(c) =

{
Λ1(c) if c ∈ An1

1

Λ2(c) if c ∈ An2
2

Since n = 1, the local rule λ3 is, in fact, identical to the global rule Λ3, and this
easily allows us to see that the dynamics of this automaton is the disjoint union
of the dynamics of the terms of the sum, as required.

A configuration of the product of two cellular automata (A1, n1, r1, λ1)
and (A2, n2, r2, λ2) is obtained by “laying side-by-side” the configurations of
the two automata and grouping the cells together in order to obtain rectangular
macro-cells:
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The length of the product automaton is n3 = gcd(n1, n2), with macro-cells
consisting of c1 = n1/n3 cells of the first automaton and c2 = n2/n3 cells of the
second; its alphabet is thus A3 = A

n1/n3
1 ×A

n2/n3
2 . The radius can be computed

by including the minimal number of macro-cells that suffices in order to include
the neighbourhoods of the cells of the two automata being multiplied, as depicted
in Fig. 2. A neighbourhood of the first automaton is contained within a radius
of �r1/c1� =

⌈
r1n3
n1

⌉
macro-cells, and a neighbourhood of the second within a

radius of �r2/c2� =
⌈

r1n3
n2

⌉
; by taking the maximum, in order to account for

both original automata, we obtain

r3 = max
(⌈r1n3

n1

⌉
,
⌈r1n3

n2

⌉)
=

⌈
gcd(n1, n2) × max

( r1
n1

,
r2
n2

)⌉
.

Fig. 2. If the two automata being multiplied have radius r1 = 1 and r2 = 2, respec-
tively, then computing the next state of the dark grey micro-cell in the first (resp.,
second) row requires the states of the neighbouring cells in light grey, as shown in the
top left (resp., top right) diagram. These are entirely contained in a neighbourhood of
macro-cells of radius r3 = 1 in the product automaton (bottom diagram).

Since finite cellular automata can generate the dynamics of the identity ele-
ments 0 and 1, and are closed under sum and product, they constitute a sub-
semiring of D. Notice that, since any finite dynamical system (D, f) can be
implemented as a length-1, radius-0 cellular automaton over the alphabet D,
this semiring actually coincides with the whole semiring D.

5 Conclusions

In this paper, we have presented a new abstract way of reasoning about finite
discrete dynamical systems which is inspired by category theory. Introducing
the natural operations of addition and multiplication over dynamical systems
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provides an algebraic structure of semiring to the set of dynamical systems. This
allowed to introduce classical formalisms for semirings like polynomials and lead
to polynomial equations. We stress the importance of polynomial equations as
a tool for the analysis of the dynamics of a system. Indeed, their solutions (if
any) provide useful decompositions to further analyse the overall behaviour of
the system.

Although solving general polynomial equations is algorithmically impracti-
cable (see Theorem 1), the same problem turn out to be in NP in the case of
polynomial equations in which the right-hand side is constant (see Theorem2).
Of course, this might still prove infeasible (if the problem turns out to be NP-
complete, as expected) but it has the merit of being decidable. However, remark
that, the proof of Theorem2 essentially consists of two parts: guessing potential
candidates and then checking if the two members of the equation are isomor-
phic. Now, consider the subsemiring B of D made by the dynamical systems
which have a bijective next-state function. These systems are indeed permuta-
tions and for them the graph isomorphism problem can be solved in polynomial
time (see [1]). It is therefore natural to ask for a polynomial time algorithm
for this subsemiring. This subsemiring might be a good candidate for targeting
polynomial time solving algorithms.

Another research direction naturally arises along the same line of thoughts. It
consists in finding more significant subsemirings and their practical implications.

The exploration of polynomial equations in the general case has just started
and most of the questions are still open. For example, can the number of solu-
tions to a polynomial equation be tightly bounded? Is there any interesting
decomposition theorem into irreducibles? What is precisely the role played by
irreducibles w.r.t. the dynamical behaviour? Are they just a base for the limit
set or can we extract more information?
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Abstract. Cellular Automata (CA) are both a parallel computational
paradigm and an archetype for modelling complex systems, that evolve
on the basis of local interactions. CA can embody different numeral rep-
resentations and perform related basic arithmetical operations. However,
conventional numeral representations are thought as intrinsically sequen-
tial in such operations, which implies that CA parallelism is underex-
ploited when CA evolution mimics the sequentiality of calculation, while
some redundant numeral representations could exalt the CA parallelism
in a space/time trade-off, where the time complexity of some operations
is constant on input length. The problem then arises when the result of an
operation must be utilized in the conventional representation since, usu-
ally, the migration toward an advantageous redundant numeric represen-
tation is costless, but the inverse one implies necessarily a cost that can-
cels the benefits in terms of computation time. This paper explores the
properties of the conventional binary positional representation embod-
ied in a CA together with the addition operation and the corresponding
ones of a redundant binary positional representation, the rules and time
cost for the passage from conventional numeral system to redundant one
and vice versa. The results permit to individuate the CA computation
context, when redundancy could be exploited advantageously. It regards
cases where a longest sequence of additions (or operations based on addi-
tion, e.g., fast Fourier transforms) has to be performed in well-defined
short times as for the automatic control of mobile devices.

Keywords: Cellular Automata
Non-conventional positional numeral binary systems · Addition

1 Introduction

Cellular Automata (CA) were born with a paradox: von Neumann [1] embod-
ied in a cellular space of finite states automata a modified Turing Machine in
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order to guarantee universal computation in the self-reproduction mechanisms.
In such a way, a purely parallel computing device supports a purely sequential
computation. CA are both a parallel computational paradigm and an archetype
for modelling ‘systems’, that are extended in space and evolve on the basis of
local interactions [2]. Using CA is suitable in such a type of context, even if a
substantially sequential computational behavior could be easily hidden in many
cases.

This question reveals distinctly itself for the case of the same numerical oper-
ations performed inside CA in numeral systems, that are related to the same set
of numbers, but differ in their representation. Here another factor, the represen-
tation, comes into play, but the question cannot simply be treated in terms of
time cost efficiency because in solving a particular problem, a type of represen-
tation could be mandatory for expressing solutions and/or the input data could
be available only in a specific representation. Therefore it is necessary to investi-
gate efficient translation methods in order to communicate between two or more
worlds with different representations, but with the same basic operations. If we
look at the single operation, e.g. the addition for the conventional vs redundant
numeral systems, it is important to know if there is advantage in passing from
a representation to another and returning to the previous one.

Nevertheless a criterion of computational cost effectiveness for a specific prob-
lem may be defined only if we consider the algorithmic features of the problem in
terms of sequence of basic operations in the context of possible diverse represen-
tations and the eventual computational costs for passages from a representation
to another one and vice versa. So the question does not regard the single opera-
tion but a specific problem, all having to be related for homogeneity to a single
computational paradigm, that are in our case CA, where sequentiality can coex-
ist with the structure parallelism.

In this paper, we consider the conventional binary representations vs a possi-
ble corresponding redundant binary representation for the addition operation on
the set of natural numbers N and their implementation inside CA, furthermore
opportune operations are evaluated in the same context for passing from a one
representation to the other and vice versa.

The CA approach to ‘fast’ addition of binary numbers of Sheth et al. [3] is
revisited as reference point for conventional representation of N. This operation
of binary addition was implemented on a Cellular Automata Machine (CAM-8
machine) [4]. A corresponding redundant representation, that is here presented
together with the related addition operation, was studied and developed for
basic arithmetic operations of integer numbers at the University of Calabria in
some ‘Laurea’ theses and reports, e.g. [6], a similar representation for the set of
integer numbers Z was adopted for addition implementation on the same CAM-8
by Clementi et al. in [5]. Mechanisms of translation between conventional and
redundant representation of N on CA is investigated. Hardware implementations
as in [7,8] are not here considered, but they can be deduced straightforwardly
in manifold ways, FPGA integrated circuits, e.g. [9], could be more significant
for using CA redundant arithmetic also in broader contexts. Anyway, the aim
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of this paper is a comparison between CA embodying two different numeral
representations and efficient passage mechanisms from one to other and vice
versa.

A CA performing the addition operations in the conventional binary represen-
tation for N (CBN) is presented in the next section, the third section introduces
a CA, that performs addition operations in a redundant binary representation
for N (RBN), RBN properties are defined, rules of passage between CBN CA
and RBN CA are established. Conclusions and comments end the paper.

2 CA for Addition in the Conventional Binary
Representation

Intuitively a homogeneous CA can be seen as a d -dimensional space, partitioned
in cells of uniform size, each one embedding an identical finite states automaton,
the elementary automaton (ea).

Input for each cell is given by the states of the neighboring cells, where
the neighborhood conditions are determined by a pattern invariant in time and
space.

At the time (step) t = 0, cells are in arbitrary states and the CA evolves
changing the state at discrete times simultaneously, according to the transition
function τ : Sr → S, where S is the finite set of the ea states and r is the number
of the neighboring cells.

The following definition (partly from Di Gregorio and Trautteur [10]) for CA
is adopted in this paper:

Definition 1. A Cellular Automaton A is a quadruple A = 〈Zd,X, S, τ〉 where:

– Z
d is the set of cells identified by points with integer co-ordinates in a

Euclidean d-dimensions space; such a formal definition may be extended to
different types of spaces (e.g., Riemannian spaces), different topologies (e.g.,
torus in 2-dimensions spaces), or different tessellations (e.g., hexagonal tes-
sellation for 2-dimensions;

– X = 〈ξ0, ξ1, . . . ξr−1〉 with #X = r is the neighborhood index, that is the
ordered finite set of d-dimensional vectors, that defines for a generic cell
i = 〈i1, i2, . . . , id〉 the set N(X, i) = 〈i + ξ0, i + ξ1, . . . , i + ξr−1〉 of the neigh-
boring cells (usually ξ0 is the null vector);

– S is the finite set of states of the elementary automaton. A specification of S
as Cartesian product of sets of sub-states: S = S1×S2× . . .×Ss is introduced.

– τ : Sr → S is the deterministic transition function of the elementary automa-
ton;

furthermore:

– C = {c | c : Zd → S} is the set of possible state assignment to the CA; it is
called the CA configuration set; c(i) is the state of the cell i;

– γ : C → C �→ [γ(c)](i) = τ(c(N(X, i))) for c ∈ C, is the global transition
function. A configuration c is stable if γ(c) = c.
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The following two CA embody the addends as sequence of sub-states in the
configurations. So numbers may be so individuated and ‘writing’ and ‘reading’
for passage from one numeral representation to another one can be specified.

2.1 CA ADD Definition and Properties

A possible CA ADD for addition of two natural numbers m and n in the con-
ventional binary representation CBN is here defined as a 1-dimension CA with
ring topology of l cells with l > max(�log2 m�), (�log2 n�):
Definition 2. ADD = (Zl,X, S, τ) where:

– Zl = 〈l − 1, l − 2, · · · , 1, 0〉 is the finite cellular space of length l with ring
topology and reverse numeration of cells by formalization convenience;

– X = 〈0,−1〉 is the neighborhood: the cell itself and the ‘right’ one;
– S = S1 × S2, the set of states with S1 = S2 = 0, 1, the four states are

represented as {00, 0
1,

1
0,

1
1} where, for a configuration c, the former (upper) bit

in the cell i is the ith bit of the former addend m specified as mi and the
latter (lower) bit in the cell i is the ith bit of the latter addend n specified as
ni, both with positional weight 2i; m and n are respectively the upper and the
lower addends of c (see Fig. 1).

– τ : S2 → S is the transition function so defined from the following equations,
where two configurations c′ and c′′ are considered such that c′′ = γ(c′):
1. m

′′
i = m

′
i−1 ∧ n

′
i−1, 0 < i < l; m

′′
0 = m

′
l−1 ∧ n

′
l−1 by the ring topology;

2. n
′′
i = m

′
i ⊕ n

′
i, 0 ≤ i < l;

being m′ and n′ respectively the former and latter addend of c′, m
′′

and n
′′

respectively the upper and lower addend of c′′, where m
′′
i is the carry bit

with positional weight 2i of the sum m
′
i−1 + n

′
i−1; n

′′
i is the ‘lesser’ bit with

positional weight 2i of the sum m
′
i + n

′
i.

Fig. 1. An example of ADD configuration c (highlighted) with l = 8; the upper sequence
of bits is the former addend m, the lower sequence is the latter addend n; the positional
weight of each cell is specified below, values in base 10 of m and n are on the left in
brackets.

The ring topology of ADD (therefore a finite number of cells) involves that
additions are performed properly, only if there is no overflow, i.e., significant
length of numbers doesn’t overcome l − 1 bits, because the last cell is neighbor
to the first one; l may be large at will, so a sufficient length of bits may be always
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assumed (sufficient length condition). The ADD configuration example of Fig. 1
specifies the positional weight of the cells and values of m and n in the base 10
numeration.

Theorem 1. Let c be a generic configuration of ADD with length l and m, n
respectively the upper and lower addend of c; let c′ = γ(c), m′ and n′ respectively
the former and latter addend of c′, then m′ + n′ = m + n (examples in Fig. 2).

Proof. ml−1 = 0, nl−1 = 0 by the sufficient length condition, therefore m
′
0 = 0,

n
′
l−1 = 0 then:

m + n =
l−1∑

i=0

(mi + ni)2i = m
′
02

0 +
l−2∑

i=0

(m
′
i+12

i+1 + n
′
i2

i) + n
′
l−12

l−1

=
l−1∑

i=0

(m
′
i + n

′
i)2

i = m
′
+ n

′

�
Theorem 2. Let c be a configuration of ADD with m and n respectively the
upper and lower addend of c; let c′ = γ(c) and m′ and n′ respectively the upper
and lower addend of c′, if mi = 0 for 0 ≤ i < k < l − 1 then m

′
j = 0 for

0 ≤ j ≤ k.

Proof. ml−1 = 0, nl−1 = 0 by the sufficient length condition, therefore it is
always m

′
0 = 0 and m

′
i = mi−1 ∧ ni−1 = 0 for 1 ≤ i ≤ k by applying Eq. (1) of

the τ specification of ADD. �
Corollary 1. Let c be a configuration of ADD, c′ = γ(c) and c′′ = γl−1(c), with
m, n, m′, n′, m′′, n′′, respectively the upper and lower addend of c, c′ and c′′,
then always m = 0.

Proof. ml−1 = 0, nl−1 = 0 by the sufficient length condition, therefore always
m0

′ = 0, then m′′ = 0 by Theorem 2. �
Theorem 3. Let c be a configuration of ADD with m = 0 and n respectively the
upper and lower addend of c; let c′ = γ(c) and m′ and n′ respectively the upper
and lower addend of c′, c′ = c and c is a stable configuration (see example in
Fig. 2).

Proof. m
′
0 = ml−1 ∧ nl−1 = 0 ∧ nl−1 = 0, m

′
i = mi−1 ∧ ni−1 = 0 ∧ ni−1 = 0 for

1 ≤ i ≤ l − 1, by applying Eq. 1 of the τ specification of ADD; by applying Eq. 2
of the τ specification of ADD, ni

′ = mi ⊕ ni = 0 ⊕ ni = ni for 0 ≤ i ≤ l − 1. �
Corollary 2. Let c be a generic configuration of ADD of length l with m and n
respectively the upper and lower addend of c, c′ = γl−1(c), with m′, n′, respec-
tively the upper and lower addend of c′, then it is always m′ = 0 and n′ = m+n
after l − 1 steps (see Fig. 2).
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Proof. m′ = 0 from Corollary 2, m + n = m′ + n′ from Theorem 1, therefore
n′ = m + n. �

The addition is performed by ADD in l − 1 steps in the worst case, therefore
the time cost is O(l). An example of ADD evolution with length l = 8 is presented
in Fig. 2, where the stable configuration is obtained after 4 steps.

ADD parallelism speeds up addition in irregular way, it depends on how short
is the longest sequence of consecutive carries 1 in the conventional arithmetic
operation of addition.

An extension of ADD for integers according to the two complement repre-
sentation could be developed in several ways; the most intuitive way is breaking
the ring between cells 0 and l−1 (cell l−1 assumes a positional weight of −2l−1)
and considering that the state of the −1 neighbor of cell 0 (now such a neighbor
no longer exists) is always acquired as 0

0. The operability holds for integers in
the interval [−2l−1, 2l−1].

Fig. 2. Evolution example of ADD with length 8 for 5 steps (t). Configurations are
highlighted, the upper sequence of bit is the former addend m, the lower one is the
latter addend n, their values in base 10 are on the left in brackets; the cell positional
weight is specified on top.
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3 CA for Addition in a Redundant Binary Representation

3.1 The Redundant Binary Representation RBN for N

The proposed redundant binary representation RBN is very similar to those pre-
sented in [5,6]; it differs from CBN because the same positional weight is assigned
to a couple of consecutive bits, this involves that there are more sequences of
bits for the same value (except 0).

Definition 3. RBN associates to a sequence of 2l bits: b2l−1, b2l−2, . . . , b0, the
value:

b =
2l−1∑

i=0

bi2� i
2 �

Examples:

– 1001 in RBN gives 1 · 2�3/2� + 0 · 2�2/2� + 0 · 2�1/2� + 1 · 2�0/2� = 3
– 110 in RBN gives 1 · 2�2/2� + 1 · 2�1/2� + 0 · 2�0/2� = 3

Definition 4. A string of bits representing in RBN a natural number n is called
canonical form α(β) of n if each even (odd) bit is 0.

By the previous definition, if even (odd) 0 digits are removed from a canonical
form α(β) of RBN, a binary string is obtained with the same value in CBN; if
we put the 0 digit at the right (at the left) of each digit of a binary string
representing a numerical value in CBN, a canonical form α(β) is obtained with
the same value in RBN, an example is here given for n = 13:

10100010 ← 1101 → 01010001
RBN canonical form α ← CBN → RBN canonical form β

The passage from a canonical form α(β) of RBN to CBN and vice versa may
be considered costless in the prospective of CA, as specified afterwards.

From now on, the length of strings of bits in RBN will be always taken even
without loss of generality, the canonical form α is abbreviated in cfα.

3.2 CA ADDr Definition and Properties

A CA ADDr for addition of two natural numbers m and n in RBN is
here defined as a 1-dimension CA of l cells with ring topology and l >
max(�log2 m�), (�log2 n�)
Definition 5. ADDr= (Zl,X, S, τ) where:

– Zl = 〈l − 1, l − 2, · · · , 1, 0〉 is the finite cellular space of length l with ring
topology and reverse numeration of cells by formalization convenience;

– X = 〈0,−1〉 is the neighborhood: the cell itself and the ‘right’ one;
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– S = {0000, 00
01,

01
00,

01
01,

00
10,

00
11,

01
10,

01
11,

10
00,

10
01,

11
00,

11
01,

10
10,

10
11,

11
10,

11
11} is the set of states,

(S = S1×S2, with S1 = S2 = {00, 01, 10, 11} the 4 couples of bits); the former
(upper) couple of bits in the cell i are respectively the (2i + 1)th and the 2ith

bit of the former (upper) addend m and are specified as m2i+1, m2i, the latter
(lower) couple of bits in the cell i are respectively the (2i + 1)th and the 2ith

bit of the latter addend n and are specified as n2i+1, n2i, all with positional
weight 2i (see Fig. 3).

– τ : S2 → S is the transition function so defined from the following equations,
where two configurations c′ and c′′ are considered such that c′′ = γ(c′):

1. m
′′
2i = 0, 0 ≤ i < l;

2. m
′′
2i+1 = m

′
2i, 0 ≤ i < l;

3. n
′′
2i = (m

′
2i−1 ∧ n2i−1

′) ∨ (m
′
2i−1 ∧ n

′
2i−2) ∨ (n

′
2i−1 ∧ n

′
2i−2), 0 < i < l;

n
′′
0 = (m

′
2l−1 ∧ n

′
2l−1) ∨ (m

′
2l−1 ∧ n

′
2l−2) ∨ (n

′
2l−1 ∧ n

′
2l−2)

4. n
′′
2i+1 = m

′
2i+1 ⊕ n

′
2i+1 ⊕ n

′
2i, 0 ≤ i < l;

m’ and n’ are respectively the former and latter addend of a configuration c′,
m

′′
and n

′′
are respectively the former and latter addend of c

′′
where n

′′
2i is the

carry bit with positional weight 2i of m
′
2i−1 + n

′
2i−1 + n

′
2i−2; n

′′
2i−1 is the ‘lesser’

bit with positional weight 2i of m
′
2i+1 + n

′
2i + n

′
2i+1 (see Fig. 4).

The ring topology of ADDr (therefore a finite number of cells) involves that
additions are performed properly, only if there is no overflow, i.e., significant
length of numbers doesn’t overcome l−1 bits, because the last cell is the neighbor
to the first one; l may be large at will, so a sufficient length of cells may be always
assumed (sufficient length condition).

Theorem 4. Let c′ be a generic configuration of ADD with length l and m′,
n′ respectively the upper and lower addend of c′; let c′′ = γ(c′) and m′′ and n′′

respectively the upper and lower addend of c′′, then m′ + n′ = m′′ + n′′ (see
Fig. 4).

Proof. m
′
2l−1 = 0, n

′
2l−1 = 0, m

′
2l−2 = 0, n

′
2l−21 = 0 by the sufficient length

condition. Therefore m
′′
0 = 0, n

′′
2l−1 = 0, m

′′
2i = 0 for 0 ≤ i < l by Eq. 1 defining

τ :

Fig. 3. An example of ADDr configuration c (highlighted) with l = 8; the upper
sequence of bits is the former addend m, the lower sequence is the latter addend n; the
positional weight of each cell is specified below, values of m and n in base 10 are on
the left in brackets.
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m′ + n′ =
l−1∑

i=0

(m
′
2i+1 + m

′
2i + n′

2i+1 + n
′
2i)2

i

=
l−2∑

i=0

(m
′
2i+1 + n

′
2i+1 + n

′
2i)2

i + (m
′
2l−1 + n

′
2l−1 + n

′
2l−2)2

l−1 +
l−1∑

i=0

m
′
2i2

i

=
l−2∑

i=0

(n
′′
2i2

i+1 + n
′′
2i+12

i) + (n
′′
020 + n

′′
2l−12

l−1) +
l−1∑

i=0

m
′′
2i+12

i +
l−1∑

i=0

m
′′
2i2

i

=
l−1∑

i=0

(m
′′
2i+1 + m

′′
2i + n

′′
2i+1 + n

′′
2i)2

i = m
′′

+ n
′′

�
Theorem 5. Let c be a generic configuration of ADDr with length l and m, n
respectively the upper and lower addend of c; let c′ = γ(c) and c

′′
= γ(c′), m′,

n′ and m′′, n′′, respectively the upper and lower addend of c′ and c′′, then m′ is
a cfα and m′′ = 0.

Proof. m
′
2i = 0, 0 ≤ i < l by ADDr definition (Eq. 1), then m′ is a cfα (e.g., steps

1 and 2 in Fig. 4); m
′′
2i+1 = m

′
2i = 0 by ADDr definition (Eq. 2) and m

′′
2i = 0 by

ADDr definition (Eq. 1), 0 ≤ i < l; then m′′ = 0 (e.g., steps 2 and 3 in Fig. 4).�
Corollary 3. Let c be a generic configuration of ADDr with length l and m, n
respectively the upper and lower addend of c; let c′ = γ(c) and c′′ = γ(c′), m′,
n′ and m′′, n′′, respectively the upper and lower addend of c′ and c′′, m + n =
m′ + n′ = m

′′
+ n

′′
= n

′′
.

Proof. m + n = m′ + n′ = m
′′

+ n
′′

by Theorem 4, m′ is a cfα by Theorem 5,
m

′′
= 0 by Theorem 5. �

Therefore an addition in ADDr is exactly performed in two steps, the result is
found in the latter addend, that is in RBN representation. If the former addend
is in a cfα, such an addition is performed in one step (e.g., step 2 and 3 in Fig. 4).

Theorem 6. Let c′ be a configuration of ADDr of length l with m′, n′ respec-
tively the upper and lower addend of c; let c′′ = γ(c′), m′′, n′′, respectively the
upper and lower addend of c′′, if m′ = 0, then m′′ = m′ = 0, n′′ = m′ + n′ = n′.
Furthermore, Eqs. 3 and 4 correspond to Eqs. 1 and 2 of the definition of ADD
in Sect. 2.1.

Proof. The configuration c′ with the upper addend m′ = 0 (m
′
2i+1 = 0, m

′
2i = 0)

evolves according to the following simplified equations:



316 S. Di Gregorio

1. m
′′
2i = 0

2. m
′′
2i+1 = m

′
2i = 0

3. n
′′
2i = (m

′
2i−1 ∧ n

′
2i−1) ∨ (m

′
2i−1 ∧ n

′
2i−2) ∨ (n

′
2i−1 ∧ n

′
2i−2) = (n

′
2i−1 ∧ n

′
2i−2)

4. n
′′
2i+1 = m

′
2i+1 ⊕ n

′
2i+1 ⊕ n

′
2i = n

′
2i+1 ⊕ n

′
2i

�
Note that by Theorem 6, Eqs. 1 and 2 ensure that if the upper addend of a
configuration in ADDr is 0, the upper addend of the following configurations are
0; furthermore Eqs. 3 and 4 are the same of Eqs. 1 and 2 of ADD. Therefore,
if the bits of lower addend of ADDr in even (odd) position match the bits of
upper (lower) addend in a configuration of ADD, then the ADDr configurations
evolve in a cfα after a maximum steps of l+1 (the first two steps obtain that the
upper addend is 0, the following ones that the lower addend is a cfα) according
to Corollary 3, therefore the following corollary holds:

Corollary 4. Let c be a generic configuration of ADDr of length l with m, n
respectively the upper and lower addend of c; let c′ = γ2(c), c′′ = γl−1(c′), being
m′, n′, respectively the upper and lower addend of c′, then c′′ = γl+1(c) implies
that n′′ = m + n and n′′ is a cfα.

Proof. m′ = 0 by Theorem 6, then m′ = 0, n′ = m + n, therefore n′′ is a cfα. �

Fig. 4. Evolution example of ADDr with length l = 8 for 4 steps (t). Configurations
are highlighted, the upper sequence of bit is the former addend m, the lower one is the
latter addend n, their values in base 10 are on the left in brackets; the cell positional
weight is specified on top.
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An addend in CBN can be translated in RBN as a cfα costless, just adding
in parallel 0’s at right of each bit, vice versa an addend in cfα of RBN can be
translated in CBN costless, just eliminating in parallel the even 0’s, an addition
in ADD takes l − 1 (l is the number of cells of ADD and ADDr) steps, while
an addition in ADDr takes one step if the first addend is in cfα, but it takes
l − 1 steps if the result of a such addition has to be obtained in cfα. So working
in ADDr is convenient only if ADDR is fed by p > 2l upper addends, if the
calculation involves a sequence of additions of natural numbers.

An extension of ADDr for the integers according to the two’s complement
representation could be developed; an intuitive way is breaking the ring between
cells 0 and l−1 (cell l−1 assumes a positional weight of −2l−1) and considering
that the state of the −1 neighbor of cell 0 is always acquired as 0 0

0 0.

4 Conclusions and Comments

The exemplary case of the addition operation on N within two CA ADD and
ADDr with two different representations is here treated in order to investigate
how CA can efficiently exploit their intrinsic parallelism. Natural numbers were
considered in order that CA properties could emerge more clearly, even if a pos-
sible extension to Z (therefore to the elementary arithmetic) could be straight-
forward, but lengthy. A further investigation will be devoted to this problem.

The addition of two natural numbers can be surely operated by a CA in
parallel way, but the carry problem in the usual numerical representation could
make the parallel calculation a caricature of the sequential calculation, but, if
we adopt an appropriate redundant numerical representation, then all the power
of the parallelism discloses.

However to give an explicandum for a criterion of cost-effectiveness is not easy
because situation is further complicated if a particular numeral representation
is mandatory for the solution of a problem: e.g., sensors of automatic mobile
systems could receive information only in a particular representation and utilize
the elaborated solutions in that same representation. If a single operation (a
single addition of two natural numbers in this case) is considered, there is no
convenience in using a faster CA, because costs of translation from RBN to
CBN annul any advantage, but not if a long sequence of consecutive additions
is necessary.

This often elusive question has to move from the analysis of single operations
over the whole of the operations, necessary for the problem solution. A notion
of complexity that accounts for the relations operation/representation should
possibly be investigated.
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Abstract. Many physical problems cannot be easily formulated as
quantum circuits, which are a successful universal model for quantum
computation. Because of this, new models that are closer to the struc-
ture of physical systems must be developed. Discrete and continuous
quantum walks have been proven to be a universal quantum compu-
tation model, but building quantum computing systems based on their
structure is not straightforward. Although classical cellular automata are
models of universal classical computation, this is not the case for their
quantum counterpart, which is limited by the no-coning theorem and the
no-go lemma. Here we combine quantum walks, which reproduce unitary
evolution in space with quantum cellular automata, which reproduce uni-
tary evolution in time, to form a new model of quantum computation.
Our results show that such a model is possible.

Keywords: Quantum cellular automata · Quantum walks
Quantum computing

1 Introduction

Quantum circuits is the most known and most used quantum computation model
[1]. In quantum circuits the quantum gates, which are unitary Hilbert space
operators, act on the quantum bits (qubits) and evolve their state from the initial
state, which is the input to the quantum computation, towards the final state,
which is measured and produces the output of the quantum computation [2,3].
Most known quantum algorithms, such as Deutch [4], Grover [5] and Shor [6]
quantum algorithms can be formulated as quantum circuits. Although quantum
circuits are a powerful model, many physical problems and processes cannot
be easily described as quantum circuits. This fact has initiated the quest for
alternative models for quantum computation.

Quantum walks, first introduced in 1993, are quantum versions of classi-
cal random walks [7]. Since then, continuous and discrete quantum walks have
been extensively studied and it has been proven that quantum walks are a uni-
versal model for quantum computation. Continuous quantum walks on graphs
c© Springer Nature Switzerland AG 2018
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can reproduce quantum computations. In this model, quantum gates are imple-
mented by scattering processes [8,9]. On the other hand, discrete quantum walks
have been proven to implement a universal quantum gate set and thus are able to
execute any quantum computation [10]. Both continuous and discrete quantum
walks on graphs are universal models for quantum computation, but building
a physical quantum computing system based on the mathematical graph struc-
tures is not straightforward. In quantum walk models, graphs and wires do not
represent qubits but basis states and cannot be mapped on a physical quantum
computer architecture.

Feynman in 1982 introduced the concept of quantum cellular automata
(QCAs) by examining the possibility of extending classical cellular automata
(CAs) as models that can simulate quantum systems [11]. QCA evolution must
be unitary, as is the evolution of all quantum systems. This fact causes several
limitations on the use of QCAs as universal quantum computation models. The
two most important limitations are imposed by the non-cloning theorem and
the no-go lemma. The non-cloning theorem, that imposes the first limitation,
forbids the cloning (copying) of an unknown quantum state [1]. Because of this,
copies of the neighboring cell states are not available to the central cell, as is the
case in classical CAs. Therefore, the evolution of the QCA cell states cannot be
directly determined by the states of their neighbors. Several models have been
proposed to circumvent this obstacle. Among them, a QCA with two qubits per
cell has been introduced [12], and a relaxed unitary evolution has been proposed,
in which probability is conserved and the evolution is linear, but the evolution
is approximately unitary [13]. The second limitation is imposed by the no-go
lemma, which states that except for the trivial case, unitary evolution of one-
dimensional QCAs is impossible, i.e. in one dimension there exist no non-trivial
homogeneous, local, linear QCA [14].

In QCAs one or more qubits are assigned to the QCA cells. The qubit states
are quantum states and are described by wave functions, which are solutions to
the Schrödinger equation. Quantum states should evolve both in space and time,
whereas the states of qubits in the sites of the QCA have a trivial evolution. This
is because their evolution in space is limited by the no-cloning theorem, which
forbids the transfer of states between neighboring QCA cells. On the other hand,
quantum walkers are quantum particles, the state of which evolves naturally in
space. It is therefore possible that a model comprising quantum walks, which will
reproduce quantum evolution in space, and QCAs, that will reproduce quantum
evolution in time, can be developed so that it can serve as a universal model for
quantum computation. Here we define the quantum walk on QCA lattices. The
quantum particle (i.e. the quantum walker) is transferred between neighboring
QCA sites and changes the quantum phase of the qubits according to a propaga-
tor, reproducing unitary space evolution. The QCA evolves in time reproducing
unitary time evolution. Our results show that the development of a universal
model of quantum computation based on quantum walks on the QCA lattice is
possible.
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2 Unitary Evolution of Quantum Walks on QCA Lattices

The most important characteristic of a quantum computing system is the repro-
duction of the solutions of the Schrödinger equation. The simplest solution is
the plane wave:

|Ψ (x, t)〉 = Aei(kx−ωt) = Aei(px−Et)/� (1)

Where Ψ is the wave function in Dirac notation, k is the wave vector and ω
the angular frequency. E = �ω is the energy and p = �k is the momentum. The
one-dimensional, time dependent Schrödinger equation:

i �
∂

∂ t
|Ψ (x, t)〉 = H |Ψ (x, t)〉 (2)

where H is the Hamiltonian operator:

H =
(

− �
2

2m

∂2

∂x2
+ V (x, t)

)
(3)

has the following general solution:

|Ψ (xb, tb)〉 = U (x, t) |Ψ (xa, ta)〉 (4)

where U is a unitary operator:

U (x, t) = e
−iH t

� (5)

Both the simplest solution of (1) and the general solution of (4) describe the
evolution of the wave function from an initial space-time point (xa, ta) to a final
space-time point (xb, tb), as shown in Fig. 1. In the quantum circuit model, space
is defined by an one-dimensional array of qubits and the computation proceeds
in time steps, in each of which a number of quantum gates act on the qubits. In
the proposed model we follow the same discretization scheme as in the quantum
circuit model, i.e. qubits form the QCA lattice and the computation evolves in
discrete time steps.

In the proposed model we consider one-dimensional QCAs in which the QCA
cells form a one-dimensional lattice. Three qubits are allocated at each QCA cell,
the a-qubit, which is the QCA qubit and a two-qubit quantum register, w, which
comprises the two qubits necessary for the quantum walk. The state of the ith

QCA cell at computation step t is written as: |at
i wt

i〉. There are eight basis states
for each QCA cell. The global state of the QCA at the computation step t, |Qt〉,
is the tensor product of the states of its cells and is written as:

∣∣Qt
〉

=
∣∣· at

i+1 wt
i+1 at

i wt
i at

i−1 wt
i−1 · · ·〉 (6)
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Fig. 1. Wave function evolution in space-time, from an initial space-time point (xa, ta)
to a final space-time point (xb, tb). In the proposed model quantum walks evolve the
wave function in space and QCAs in time.

The evolution of the global QCA state, from computation step t to compu-
tation step t + 1 is given by:

∣∣Qt+1
〉

= U(x, t)
∣∣Qt

〉
= A (t) W (x)

∣∣Qt
〉

(7)

In our model the unitary operator U(x, t) is decomposed in a product of
two operators, A(t), which describes the time evolution of the QCA and W (x),
which describes the space evolution of the QCA qubit states by the action of
the quantum walk. Since only U has to be unitary, the unitarity criterion on
both operators A and W could be relaxed, as long as their product is unitary.
Nevertheless, we choose not to relax this criterion and in our model we demand
both A and W to be unitary. We describe below the action of these two operators.

In the discrete quantum walk, a walker (which can be a particle or a quantum
state) moves on the QCA lattice. The sites of this lattice are numbered by:
i = 0,±1,±2, · · · ±n. The quantum walker tosses a quantum coin and moves to
the right (towards +n) if the coin state is |1〉, and to the left (towards −n) if
the coin state is |0〉. The state of the quantum walker found at location i is:
|wi〉 = |i, ci〉, where i indicates the location and ci the coin state. The quantum
walk operator W is given by: W = S · (I ⊗ C), where I is the unit operator, and
C is the coin operator, which can be any one-qubit unitary quantum operator,
such as the Pauli, Hadamard or Phase-shift operators. The shift operator S that
moves the quantum walker is given by:

S =
n∑

i=−n

|1〉 〈1| ⊗ |i + 1〉 〈i| + |0〉 〈0| ⊗ |i − 1〉 〈i| (8)
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Fig. 2. The QCA structure and the W operator acting on qubits along with the A
operator described by Eq. 10. Shaded rectangles represent QCA cells and the qubits
connected with the arrowed (red) lines, are the qubits affected by the quantum walk.
(Color figure online)

Figure 2 shows the QCA structure and the W operator acting on qubits. The
global state of the QCA evolves according to evolution rules expressed by the
operator A.

∣∣Qt+1
〉

= A
∣∣Qt

〉
(9)

This operator can be any two-qubit unitary quantum operator, for example it
can comprise Controlled-NOT (CNOT) gates:

A = · · · ⊗ CN ⊗ CN ⊗ CN ⊗ · · · (10)

Figure 2 shows the A operator in the case of Eq. 10. The phase of the QCA
qubit, |ai〉, is controlled by the location qubit of the quantum walk, |i〉. The
qubits connected by the arrowed (red) line, i.e. |ci〉 and |i〉 are the qubits affected
by the quantum walk, which transfers information about the states of neighbor-
ing QCA qubits. The QCA evolves in time by interaction between its qubit
states, which in the case of Fig. 2 is a concatenation of CNOT quantum gates.
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Fig. 3. Quantum walk on a QCA lattice, with potential increasing towards the right.
The potential is shown by the red line. (Color figure online)

3 Simulation of Quantum Walks on QCA Lattices

We aim to develop a new quantum computation model that is closer to the
structure of physical systems. We use our model to simulate the most basic
quantum mechanical process: the motion of a particle (i.e. the quantum walker)
in spaces where various potentials exist. Following Eq. 2, where the potential
enters in the exponent, we formulate the problem by entering the values of the
space potentials as phases of the QCA qubits and evolve the quantum walk in
these spaces. It is well known that if the initial value of the quantum walker coin
qubit is in state |0〉, the quantum walk is directed towards the left direction from
the starting point and when the coin is in state |1〉 the quantum walk is directed
towards the right. We start the evolution of the quantum walk with the initial
coin state in superposition of the basis states 1/

√
2 (|0〉 + |1〉) which results in

symmetric quantum walk evolution towards both directions.
Figure 3 shows the evolution of a quantum walk on a QCA lattice which

encodes a potential that increases towards the right. The potential is shown by
the red line. The quantum walk starts at location 0 with the initial coin state in
the superposition described above. The red line shows the potential and the blue
bars at lattice sites show the probability of the quantum walker to be found in
the corresponding lattice sites. Our computation results reproduce the motion
of the quantum walker towards the left, as expected.

We simulated a quantum walk on a QCA lattice encoding a potential that
is mirror symmetric to the previous one and increases towards the left, shown
by the red line. Again, the quantum walk starts at location 0 with the same
initial coin state superposition. Figure 4 shows the evolution of this quantum
walk, reproducing a mirror symmetric probability distribution, characteristic of
the motion of the quantum walker towards the right, as expected.

We also simulated a quantum walk on a QCA lattice encoding a potential
barrier shown in red in Fig. 5. The width of the potential barrier is small and
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Fig. 4. Quantum walk on a QCA lattice, with potential increasing towards the left.
The potential is shown by the red line. (Color figure online)

Fig. 5. Quantum walk on a QCA lattice, with a thin potential barrier. The barrier is
shown by the red line. (Color figure online)

the barrier is relatively transparent to the quantum particle, with a large trans-
mission coefficient. Our computation results, shown in Fig. 5, reproduced the
tunneling through a barrier, characteristic of quantum particles. The quantum
walk starts at lattice site 0. The probability distribution is near zero inside the
potential barrier and the non-zero to the left of the barrier.

Figure 6 shows the evolution of a quantum walk on a QCA lattice encoding
both a potential gradient and a potential barrier. The potential distribution is
shown by the red line. In this case the width of the potential barrier is large, and
its transmission coefficient is near zero. Although the potential gradient drives
the quantum walk towards the left, the particle is not transmitted through the
barrier and the probability distribution to the left of the barrier is almost zero,
as expected.
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Fig. 6. Quantum walk on a QCA lattice, with a large potential barrier and with poten-
tial increasing towards the right. Potential and barrier are shown by the red line. (Color
figure online)

4 Conclusions

We developed a new quantum computation model based on quantum walks on
quantum cellular automata lattices. This new model is closer to the structure
of many quantum mechanical systems and processes. We used this model to
simulate the most basic quantum mechanical processes, i.e. the motion of a
particle in a one-dimensional space in which potential distributions exist. Our
model reproduced qualitatively the expected motions in spaces with potential
gradients and potential barriers, which were encoded as phases of the quantum
cellular automaton qubits. Our results show that the development of an accurate
universal quantum computation model based on quantum walks on quantum
cellular automata lattices is possible.
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Abstract. Cellular automata (CAs) have played a significant role in
studies of complex systems. Recently, a recursive estimation of neigh-
bors algorithm that distinguishes the perception area of each cell from
the CA rule neighborhood was introduced to extend CA. This frame-
work makes it possible to construct non-uniform CA models composed
of cells with different sizes of the perception area, which can be inter-
preted as an individual attribute of each cell. For example, focusing pri-
marily on one-dimensional (1D) elementary CA, fractal CAs composed
of self-similarly arranged cells have been proposed and their character-
istics have been investigated. In this paper, 2D fractal CAs are defined
and implemented for outer-totalistic CA rules. Fractal CAs derived from
a linear rule inherit that rule’s features, including replicability and time
reversibility, which indicate their applicability to various fields.

1 Introduction

Cellular automata (CAs), which were first introduced by von Neumann and Ulam
to model biological self-reproduction [1], are discrete computational systems that
have played a significant role in the study of complex systems. CAs comprise
a set of cells arranged on a regular lattice where each cell in an initial state is
taken from a finite set. The state is updated at each time step according to a
local rule based on its own state and the states of a fixed set of neighboring cells.
Such CAs are uniform and synchronous, i.e., all cells apply the same local rule
and are updated synchronously, and are referred to as standard CAs. Various
extended CA models that are of theoretical and practical interest have been
investigated by relaxing the characteristics of standard CA. Recently, based on
the recursive estimation of neighbors (REN) algorithm, a method to construct
non-uniform CAs in which each cell is allowed to follow a different local rule
has been proposed [2,3]. The REN algorithm, a framework inspired by that of
Reynolds’ Boids program [4], takes a standard CA rule with a unit rule radius
and extends it to rules with larger radii other than the unit rule radius. The
perception area of each cell, which is defined by the value of the extra radius,
is no longer identical to the neighborhood specified by the standard CA rule.
c© Springer Nature Switzerland AG 2018
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In the following, cells within the neighborhood of a cell defined by the standard
CA rule are referred to as neighbors. The standard CA rule is used recursively to
estimate the next states of the neighbors from the present states of cells within
the perception area. Moreover, the extended rules form a sequence indexed by
the value of the extra radius, which contains the standard CA rule, referred
to as the basic rule, as its first term. Even though the rules in the sequence
are obtained from the extension of a basic rule via REN, each extended rule
corresponds to a standard CA rule with an equal value of the rule radius to
its extra radius as a rule mapping cell configurations of the perception area of
a target cell to its next state. In other words, extension using REN relates a
standard CA rule with a unit radius to others with longer radius values.

A non-uniform CA can be constructed from cells that follow distinct extended
rules that belong to the same sequence of extended rules. Among various possi-
ble cell arrangements, those with fractal geometries are particularly interesting
because such geometries, such as Koch’s curve and Sierpinski’s gasket, have a
property known as self-similarity. Fractal structures also play an important role
in complex systems in nature, such as biological structures, Internet connections,
and social networks. Such non-uniform CA that comprise fractally arranged cells,
i.e., fractal CA (F-CA), have been proposed [5]. The attractive characteristics of
basic rules, e.g., pattern replicability and reversibility in linear rules of 1D ele-
mentary CA (ECA), are carried over into their F-CA. Here we focus on F-CAs
derived from 2D CA rules. A practical implementation is discussed in consid-
eration of outer-totalistic rules. Similar to fractal ECA, some characteristics of
linear basic rules in outer-totalistic CA are inherited by their F-CAs.

The remainder of this paper is organized as follows. Section 2 explains exten-
sion using REN. A practical extension of 2D outer-totalistic CA rules is described
in Sect. 3. Section 4 describes the construction of 2D F-CA from the sequence of
extended rules and implements the F-CA construction for outer-totalistic rules.
In addition, as potential applications of F-CA derived from a multi-state linear
outer-totalistic rule, a diffusion process of encryption systems and textile design
samples are presented. Conclusions and suggestions for future work are given in
Sect. 5.

2 Extension of CA Using REN

In case of Reynolds’ Boids program, each boid acquires information regarding the
positions and velocities of other boids within its perception area and determines
its own movement to follow the representative values of the neighbors. The radius
of the perception area can be treated as a parameter differentiating individual
elements. To incorporate a similar scenario in a CA, the perception area of a
cell should be separated from the neighborhood determined by the CA rule, so
that the size of the area can be treated as an attribute of each cell. Under the
standard CA framework, however, there is no scope for expanding the sensory
area of a cell. For example, each cell of ECA acquires the states of the three
cells within its radius-one neighborhood to determine its own state in the next



330 Y. Kayama et al.

time step. Such separation can be possible if the update process of each cell has
an intermediate process of estimating next states of neighboring cells, given as
follows:

Acquire information about neighbors ⇒ estimate their next states
⇒ determine its own nextstate (1)

Estimation and determination of states are assumed to be processed by only a
basic CA rule because if other rules or mechanisms were introduced, the present
framework would become complicated and finding a reasonable selection method
would, therefore, be difficult. Moreover, it is assumed that all cells use the same
update algorithm. Then, the basic rule will be used recursively as explained in
the next subsection.

When a standard CA rule, i.e., the basic rule, is extended using REN, any
extended rule is assumed to have a larger cell perception area than the neigh-
borhood defined by the basic rule. The neighborhood and the perception area
are parameterized by their respective radii, r and R, where r is the common
radius of the neighborhoods of all cells defined by the basic rule, and R is the
extra radius given by the perception area of each cell. As illustrated in Fig. 1, the
neighbors in the neighborhood are included in the perception area. The value of
the extra radius representing the size of the perception area of a target cell can
now be recognized as its independent attribute.

Fig. 1. Perception area of a target (yellow cell) including its neighbors (red cells) in
2D extended CAs with (a) Moore and (b) von Neumann neighborhoods. Each target
cell has an extra radius R = 3 and the radius of the basic rule r = 1. (Color figure
online)

The basic rule is used recursively in the REN process to estimate the next
states of the neighbors of a target cell and to determine the next state of the
target cell by applying it to the estimated next states of the neighbors and the
current state of the target. The update process (1) is expressed by the following
steps.

1. Perceive the current states of all cells within the perception area of a target.
2. Apply REN to estimate the next states of the neighbors.
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3. Determine the next state of the target by applying the basic rule to the
neighbors’ estimated next states and to the target’s current state.

In the second step, the next states of the target’s neighbors are estimated as a
set

{
ϕ
(t+1)
neighbors

}
by applying REN to the information in the set of current states

of the cells within the perception area
{

x
(t)
p−area

}
(first step). Here, x and ϕ

represent the actual and estimated states of a cell, respectively. { } indicates the
set of states of cells within an area or a group. The next state of the target is
estimated as ϕ

(t+1)
target by applying the basic rule to

{
ϕ
(t+1)
neighbors

}
together with its

current state x
(t)
target. Finally, ϕ

(t+1)
target is assigned to x

(t+1)
target, i.e., the next actual

state of the target.
The estimated next states of the neighbors are not necessarily identical to

their actual next states because the estimation requires information about the
neighbors’ extra radius values, and it is assumed that each cell cannot perceive
such information. The REN algorithm includes an assumption about the estima-
tion of the extra radius values of neighbors as mentioned in the next subsection.
Given that we focus primarily on extending 2D eight-neighbor (or four-neighbor)
CA rules, r is set to one in the following, where neighbors are adjacent to each
cell. In the time evolution of a cell, only the basic rule is used recursively, regard-
less of the value of R. In that sense, R can be an attribute of each cell, thereby
allowing the construction of non-uniform models containing cells with different
R values. Note that this differs from standard CAs, which are always uniform.

2.1 Recursive Estimation of Neighbors

The recursive nature of REN comes from an assumption of self-similarity, i.e.,
the next state of each cell in a perception area is determined by the previously
described three steps. A target cell’s immediate neighbors estimate the states
of their neighbors, which are denoted as neighbors(1). To describe REN more
concretely, we set the radius R of the target to an integer k. As mentioned pre-
viously, the target can perceive the current states of its neighbors because they
are all contained within its perception area (first step). However, the sizes of
the neighbors’ perception areas are assumed to be unperceivable by the target.
Therefore, to estimate the neighbors’ next states

{
ϕ
(t+1)
neighbors

}
, the target must

evaluate their sizes. Here, we assume that the target cell estimates a perception
area that is as large as possible for each neighbor within its own perception
area. Thereafter, the radius value of the neighbor’s perception area is assumed
to be k − 1. The target cell then attempts to estimate the next state of each
of its neighbors by assuming that a neighbor applies the same steps, i.e., the
neighbor can be considered the next target, target(1), and its next state will
be estimated by the next states of its neighbors (i.e., the neighbors’ neighbors:
neighbors(1)) and its present state using REN. At this time, the size of the per-
ception area of each of the neighbors(1) will be evaluated as k − 2. Next, if each
of the neighbors(1) is considered the next target, i.e., target(2), the perception
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area size of its neighbors (neighbors(2)) will be evaluated as k − 3. Similarly,
each of the neighbors(2) can be considered the next target, i.e., target(3), and
the perception area of its neighbors (neighbors(3)) will be evaluated as k − 4.
Eventually, the chain of neighbors will reach the edge of the perception area of
the original target. Such a boundary cell, i.e., target(k), will have no neighbors;
therefore, the basic rule cannot be applied. Here, we add the further assumption
that the next state of the boundary cell will be estimated as being the same as
the current state. Note that this is the REN algorithm’s termination condition:

ϕ
(t+1)

neighbor(k−1) = ϕ
(t+1)

target(k) = x
(t)

target(k) . (2)

where ϕ
(t+1)

neighbor(k−1) ∈
{

ϕ
(t+1)

neighbors(k−1)

}
. Finally, the next states of all cells

within the perception area are estimated recursively using the basic rule.

3 Extension of 2D Outer-Totalistic Rules

Outer-totalistic implies that the rule function depends on the sum of the states of
the outer neighbors, i.e., all cells except the center cell within the neighborhood
defined by a CA rule. When the state of the (i, j)-th cell at time step t and
the CA rule function are denoted x

(t)
(i,j) and f , respectively, the standard time

evolution of the state is given as follows:

Std.CA: x(t+1)
(i,j) = f(x(t)

(i,j), σ8(i, j)), σ8(i, j) =
∑

nb(i,j)

x
(t)
nb(i,j) (3)

where σ8(i, j) represents the sum of the states of the eight cells neighboring the
target cell with the Moore neighborhood1 (Fig. 1a), and nb(i, j) represents each
position of the target’s immediate neighbors, such as the following.

nb(i, j) ∈ {(i − 1, j − 1), (i, j − 1), (i + 1, j − 1), (i − 1, j),
(i + 1, j), (i − 1, j + 1), (i, j + 1), (i + 1, j + 1)}. (4)

Next, we demonstrate the time evolution process in extended 2D outer-
totalistic CA. Here, an extended CA is assumed to be uniform such that all
cells have the same value of R = k. The time evolution of the (i, j)-th cell
requires the sum of the estimated states of its neighbors at t + 1 and its current
state x

(t)
k,(i,j), as mentioned in the third step discussed in the previous section.

When the sum is denoted σ8(i, j; k − 1), Eq. (3) becomes:

ϕ
(t+1)
k,(i,j) = f(x(t)

k,(i,j), σ8(i, j; k − 1)), (5)

where ϕ
(t+1)
k,(i,j) is the estimated state of the target, which is assigned as the actual

next state x
(t+1)
k,(i,j). The sum σ8(i, j; k − 1) can be expressed as follows:

1 CAs with the von Neumann neighborhood (Fig. 1b) can be extended through similar
steps.
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σ8(i, j; k − 1) =
∑

nb(i,j)

ϕ
(t+1)
k−1,nb(i,j) (6)

where ϕ
(t+1)
k−1,nb(i,j) is the estimated state of each neighbor at t + 1 with an assumed

radius R of k − 1. This value comes from the assumptions of the REN algorithm
because k − 1 is the maximum value of the perception area for the immediate
neighbors within the perception area of the target with R = k. However, each
ϕ
(t+1)
k−1,nb(i,j) is not necessarily equal to its respective actual state x

(t+1)
k,nb(i,j) because

the true value of R of the neighbors is not k − 1 but k in this uniform case.
Following the procedure mentioned in Sect. 2.1, the REN algorithm produces

the following recursive expressions for the estimated states of the m-th immediate
neighbors (neighbors(m)):

ϕ
(t+1)

k−m,nb(m)(i,j)
= f(x(t)

k,nb(m)(i,j)
, σ8(nb(m)(i, j); k − m − 1)) (7)

σ8(nb(m)(i, j); k − m − 1) =
∑

nb(m+1)(i,j)

ϕ
(t+1)

k−m−1,nb(m+1)(i,j)
, (8)

where nb(m)(i, j) =

m︷ ︸︸ ︷
nb(· · · (nb(i, j)) · · · ), m = 1, 2, · · · , k − 1. Given that m = k

implies that the estimated value of R will be equal to 0 (< r = 1), the following
termination condition ends the recursion.

ϕ
(t+1)

0,nb(k)(i,j)
= x

(t)

k,nb(k)(i,j)
. (9)

Once the next states of the k -th neighbors are determined, we can go back to
Eq. (5) by using the above recursive expressions.

As a concrete demonstration, we begin by considering the case where k =
r = 1. Equations (5) and (9) yield x

(t+1)
1,(i,j) = f(x(t)

1,(i,j), σ8(i, j; 0)) and ϕ
(t+1)
0,nb(i,j) =

x
(t)
1,nb(i,j) = x

(t)
nb(i,j) respectively. These mean that σ8(i, j; 0) = σ8(i, j) (Eq. (6)),

such that the extended CA rule with R = 1 is identical to the basic rule (Eq. (3)).
In the next case, where R = 2, Eq. (5) gives x

(t+1)
2,(i,j) = f(x(t)

2,(i,j), σ8(i, j; 1)) and
the recursive expressions (Eqs. (7) and (8)) give the following:

ϕ
(t+1)
1,nb(i,j) = f(x(t)

nb(i,j), σ8(nb(i, j); 0)), (10)

σ8(nb(i, j); 0) =
∑

nb(2)(i,j)

ϕ
(t+1)

0,nb(2)(i,j)
. (11)

Owing to the termination condition ϕ
(t+1)

0,nb(2)(i,j)
= x

(t)

nb(2)(i,j)
(Eq. (9)), the

extended CA rule with R = 2 is expressed as follows:

x
(t+1)
(i,j) = f(x(t)

(i,j),
∑

nb(i,j)

f(x(t)
nb(i,j),

∑
nb(2)(i,j)

x
(t)

nb(2)(i,j)
)), (12)
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which can be considered a standard CA rule with r = 2. Considering that cases
in which R takes larger values can be derived in the same manner, each extended
rule is one of the standard CA rules with such large rule radius r = R. Eventually,
the extended rules form a sequence indexed by the value of R, and the first term
is identical to the basic rule.

Furthermore, if the rule function f of a basic rule is independent of the state
of the (i, j) cell, i.e.,

Std.CA: x
(t+1)
i = f(σ8(i, j)) = f(

∑
nb(i,j)

x
(t)
nb(i,j)), (13)

Equation (12) becomes

x
(t+1)
(i,j) = f(

∑
nb(i,j)

f(
∑

nb(2)(i,j)

x
(t)

nb(2)(i,j)
)). (14)

The right hand side of Eq. (14) is identical to

Std.CA: x
(t+2)
i = f(

∑
nb(i,j)

x
(t+1)
nb(i,j)) = f (2) • x

(t)
i , (15)

thus indicating that the extended rule with R = 2 is identical to two evolutions
of the basic rule. According to the similar discussion of cases with larger values
of R, the sequences of extended rules derived from a basic rule independent of
the state of the center cell are identical to the time evolutions of the basic rule.

When the basic rule is assigned the code N , the sequence formed by its
extended rules is represented as [N ]. If each rule in the sequence is identified,
it is denoted by the code of the basic rule followed by the letter R, indicating
the extra radius and its value k. Therefore, [N ] can be enumerated as {NR1,
NR2, NR3, · · · }, where NR1 is identical to the basic rule, as discussed above.
In the following, a cell with the value k for its attribute R or a cell that follows
the rule NRk is referred to as an Rk cell. For example, one of the most famous
2D CA, i.e., Conway’s Game of Life (GoL) [6,7], can be specified as B3S23 in
the Golly/RLE format [8,9]. The sequence of extended rules derived from the
GoL rule is denoted [B3S23] = {B3S23R1, B3S23R2, B3S23R3, · · · }, and the
first term B3S23R1 is identical to the GoL rule.

4 2D Fractal CA

The extension of a basic rule enables the construction of non-uniform CAs in
which cells take different values for the extra radius R or follow different extended
rules that belong to the sequence originating from the basic rule. This allows CAs
with self-similar fractal structures to be derived as a special arrangement of the
cells using the classical initiator-generator method [10]. In Sect. 4.2, F-CAs for
2D outer-totalistic CA rules are discussed, whereas those for 1D elementary CA,
or F-ECAs, have been studied in the literature [5].
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Fig. 2. Initiator and generator of 2D F-CA. The white circles are cells, and the black
lines are the links connecting them. The blue lines with an R1 sign represent the
values of the extra radius R of the cells. In Fig. 2a, the four green cells at the corners
are identical, and the two pairs of side cells (front and back (red) and left and right
(yellow)) are also identical according to the periodic boundary conditions. (Color figure
online)

4.1 2D Fractal Arrangement

To construct a self-similar fractal arrangement of cells that follows the extended
rules in a sequence, an initiator and generator set must be defined. Given that
the following discussion applies a periodic boundary condition (i.e., a torus), a
F-CA with a Moore neighborhood begins with a 2 × 2 regular lattice, where the
four R1 cells (green) at the corners are identical, and the two pairs of R1 cells
(front and back (red) and left and right (yellow)) are also identical (Fig. 2a).
Note that a generator can be adopted as two links with an R1 cell (Fig. 2b).
Figure 3 shows that the level zero F-CA is identical to the initiator and that
the level l F-CA is generated by the generator by replacing all links of the level
(l − 1) F-CA. Eventually, the total number of independent cells becomes 22(l+1)

at level l because the number of R2l cells is four and that of R2l−m cells is
3 × 22m (m = 1 . . . l) due to the periodic boundary conditions (Fig. 3d).

Fig. 3. 2D F-CA with Moore neighborhood. The four green cells at the corners are
identical, and the two pairs of side cells (front and back (red) and left and right (yellow))
are also identical due to the periodic boundary conditions. The level l F-CA is generated
by replacing all links of the level (l − 1) F-CA (Fig. 2b). (Color figure online)

4.2 2D Fractal Outer-Totalistic CA

If we restrict examples to life-like CAs, which are outer-totalistic binary
CAs (including the GoL), each rule can be denoted Bb1b2 · · · Ss1s2 · · · in the
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Golly/RLE format, where B and S mean “Born” and “Survival,” respectively,
and

b1, b2, · · · , s1, s2, · · · ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} ,

2D fractal life-like CAs can be constructed by arranging the cells presented
above. As noteworthy examples, “Replicators” (B1357S02468 and B1357S1357
[11]) are expressed as follows:

fB1357S02468(x
(t)
(i,j)) =

i+1∑
k=i−1

j+1∑
l=j−1

⊕ x
(t)
(k,l), (16)

fB1357S1357(x
(t)
(i,j)) = x

(t)
(i,j) ⊕

i+1∑
k=i−1

j+1∑
l=j−1

⊕ x
(t)
(k,l), (17)

where ⊕ represents the exclusive-OR (XOR) operation. Because the latter func-
tion fB1357S1357 is substantially independent of the current state of the center cell
x
(t)
(i,j) by the XOR between x

(t)
(i,j) and

∑ ∑⊕x
(t)
(k,l), the sequence [B1357S1357]

is identical to the time evolution of a standard CA B1357S1357, as remarked in
Sect. 3. As shown in Fig. 4, its F-CA, i.e., F-CA[B1357S1357] exhibits an inter-
esting feature that every group of cells separated by the R value maintains an
independent lifetime each: a group of cells with R = 2n has a lifetime of 2n time
steps, which means that all cell states of the group become zero from almost
initial configurations after the lifetime and that each group evolves indepen-
dently. The cause of the phenomena can be attributed to the coefficients of the
extended rules in [B1357S1357] which form two-dimensional Sierpinski’s gasket
in the same manner that those of the extended rules in [#90] of ECA form
one-dimensional Sierpinski’s gasket [5].

Fig. 4. A sample plot of rates of change of cell states in a level 7 F-CA[B1357S1357],
starting from a pseudorandomly generated initial configuration. The red arrows indicate
the averaged values for time = 33 − 64 and 65 − 128, respectively. The values 0.4686 ±
0.0017(std) and 0.3750 ± 0.0018(std) correspond to the half values of the number rate

of R1 and R2 cells 3×214

216
+ 3×212

216
= 0.9375 and that of R1 cells 3×214

216
= 0.75. (Color

figure online)
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As an attractive example among fractal ECAs, the time reversibility of lin-
ear rule #150 is inherited by its F-CA, denoted F-ECA[#150] [5]. Another lin-
ear rule B1357S02468 (Eq. 16) is also time reversible and leads to reversible F-
CA[B1357S02468]. Although time reversibility for any level has not been proven
mathematically, no counterexamples have been found to date2. The fractaliza-
tion of the CA presented here is independent of the number of cell states; thus,
multi-state CA rules can be adopted for the basic rules. If we assume linear 2n-
state (or modulo-2n) CA [12], the above total sum is expressed by the modulo-2n

operation:

fmodulo−2n(x(t)
(i,j)) = (

i+1∑
k=i−1

j+1∑
l=j−1

x
(t)
(k,l)) mod 2n, (n = 1, 2, · · · ). (18)

Note that the F-CA constructed from the above linear modulo-2n rule also shows
time reversibility. As a potential application, this may work as a diffusion algo-
rithm for image encryption systems [13]. There are some possible advantages
of such models, e.g., each cell can be used to handle an individual character or
image pixel as is, and fewer time steps are required to fully scramble plain data.
Specifically, from the above linear rule, the level l arrangement of the F-CA
shows reversibility with a period 2l+n. Table 1 illustrates the time reversibility
of the uniform CA (R1 cells only) of the rule with n = 4 in Eq. (18) (16 colors)
and the F-CA arrangement with level 7 (lattice size: 256 × 256). Figure 5a shows
the changing averaged entropy of the cell-state frequencies of the process shown
in Table 1. The rapid scrambling of the F-CA arrangement can be recognized by
comparing the uniform CA and F-CA in Fig. 5b.

Table 1. Time reversibility of CA constructed from the 2D 16-state linear rule
(Eq. (18)). The number of colors of the original Lenna image was reduced to 24 = 16.
The second and third rows show the time evolutions of the uniform CA (R1 cells
only) and level 7 F-CA[modulo-24 linear], respectively. The period of the F-CA equals
27+4 = 2048 time steps.

As another example, fractally symmetric patterns generated from time
advances of the F-CA can be used to design textiles. Table 2 shows sample pat-
2 The time reversibility of F-CA[B1357S02468] was proved until level 2 by a round-

robin check of all configurations.
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Fig. 5. Entropy changes of the cases in Table 1: (a) F-CA[modulo-24 linear] at time =
0 ∼ 5 and 2043 ∼ 2048, and (b) comparison of initial scramblings between the uniform
CA (SSTD) and F-CA[modulo-24 linear] (SFCA).

Table 2. Sample patterns of textile design using the level 8 F-CA[modulo-24 linear].
Each pattern appears from the respective initial state after the time steps. A color
pallet showing the correspondence of cell states and colors is common to these three
cases.

terns generated from the F-CA of the linear modulo-2n CA. Note that different
initial configurations can reduce completely different patterns.

5 Conclusions and Discussion

The extension of standard CA rules using the REN algorithm allows the con-
struction of non-uniform CA comprising cells with different sized perception
areas. In this paper, we have proposed 2D F-CA by arranging such cells self-
similarly and presented an implementation for outer-totalistic CA rules. By
focusing on the extension of the linear CA rules, their features, such as repli-
cability and reversibility, are carried over into their F-CA. In addition, image
scrambling and textile design samples have been presented as specific application
examples.

Note that the mathematical proof of the reversibility of F-CA[B1357S02468]
should be provided, and its availability for encryption systems and the inde-
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pendent lifetimes of the cell groups of F-CA[B1357S1357] requires additional
detailed discussion. Survey of F-CAs other than F-CA[modulo-2n linear] is also
the focus of our future work.
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Abstract. We study the computational capacity of self-verifying cellu-
lar automata with an emphasis on one-way information flow (SVOCA).
A self-verifying device is a nondeterministic device where each computa-
tion path can give one of the answers yes, no, or do not know. For every
input word, at least one computation path must give either the answer
yes or no, and the answers given must not be contradictory. Realtime
SVOCA are strictly more powerful than realtime deterministic one-way
cellular automata. They can be sped-up from lineartime to realtime and
are capable to simulate any lineartime computation of deterministic two-
way CA. Closure and decidability properties are considered as well.

1 Introduction

What is the power of nondeterminism in bounded-resource computations? Tra-
ditionally, nondeterministic devices have been viewed as having as many nonde-
terministic guesses as time steps. The studies of this concept of unlimited non-
determinism led, for example, to the famous open LBA-problem or the unsolved
question whether or not P equals NP. In order to gain further understanding of
the nature of nondeterminism, in for example [9] it has been viewed as an addi-
tional limited resource at the disposal of time or space bounded computations.
We study the computational power of self-verifying cellular automata (SVCA).
A self-verifying device is a nondeterministic device with symmetric conditions
for acceptance/rejection. Each computation path can give one of the answers
yes, no, or do not know. For every input word, at least one computation path
must give either the answer yes or no, and the answers given must not be con-
tradictory. So, if a computation path gives the answer yes or no, in both cases
the answer is definitely correct. This justifies the notion self-verifying and is in
contrast to general nondeterministic computations, where an answer that is not
yes does not allow to conclude whether or not the input belongs to the language.

Self-verifying finite automata have been introduced and studied in [6,11,12]
mainly in connection with randomized Las Vegas computations. Descriptional
complexity issues for self-verifying finite automata have been studied in [14]. The
computational and descriptional complexity of self-verifying pushdown automata
has been studied in [8].
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The paper is organized as follows. In Sect. 2 we present the basic notation
and the definitions of self-verifying (one-way) cellular automata as well as an
introductory example. In Sect. 3 a strong speed-up result is derived that allows
the conversion of lineartime SVOCA to realtime. Section 4 is devoted to explore
the computational capacity of realtime SVOCA. It turns out that they are even
capable to simulate any lineartime computation of a two-way CA. Moreover, the
closure properties of the family of languages accepted by realtime SVOCA are
studied. It is shown that the family is closed under the set-theoretic operations,
reversal, concatenation, and inverse homomorphisms. Finally, decidability prob-
lems are considered. In particular, the property of being self-verifying turns out
to be non-semidecidable.

Because of a page limit not all proofs are included in the version for the
conference proceedings, but a research report with all details is available at [17].

2 Preliminaries

We denote the positive integers {1, 2, . . . } by N, the set N ∪ {0} by N0, and
the powerset of a set S by 2S . We write |S| for the cardinality of S. Let Σ
denote a finite set of letters. Then we write Σ∗ for the set of all finite words
(strings) consisting of letters from Σ. The empty word is denoted by λ, and
we set Σ+ = Σ∗ \ {λ}. For the reversal of a word w we write wR and for its
length we write |w|. A subset of Σ∗ is called a language over Σ. The devices
we will consider cannot accept the empty word. So, in order to avoid technical
overloading in writing, two languages L and L′ are considered to be equal, if they
differ at most by the empty word, that is, if L \ {λ} = L′ \ {λ}. Set inclusion is
denoted by ⊆ and strict set inclusion by ⊂.

A two-way cellular automaton is a linear array of identical finite automata,
called cells, numbered 1, . . . , n. Except for border cells the state transition
depends on the current state of a cell itself and those of its both nearest neigh-
bors. Border cells receive a boundary symbol on their free input lines. Syn-
chronous state changes take place at discrete time steps.

We first define nondeterministic cellular automata. The nondeterminism
is restricted to the first step. All further transitions are deterministic [2,16].
Although this is a very restricted case, we call such devices nondeterministic.

A nondeterministic two-way cellular automaton (NCA, for short) is a system
M = 〈S,Σ, F, #, δnd, δd〉, where

1. S is the finite, nonempty set of cell states,
2. Σ ⊆ S is the nonempty set of input symbols,
3. F ⊆ S is the set of accepting states,
4. # /∈ S is the boundary symbol,
5. δnd : (S∪{#})×S×(S∪{#}) → (2S\∅) is the nondeterministic local transition

function applied in the first state transition,
6. δd : (S ∪{#})×S ×(S ∪{#}) → S is the deterministic local transition function

applied in all further state transitions.
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In a one-way cellular automaton the next state of each cell only depends on
the state of the cell itself and the state of its immediate neighbor to the right.
So the domain of the transition functions is S × (S ∪ {#}).

A configuration ct of M at time t ≥ 0 is a mapping ct : {1, 2, . . . , n} → S, for
n ≥ 1, occasionally represented as a word over S. The initial configuration c0 for
an input w = a1a2 · · · an ∈ Σ+ is defined by c0(i) = ai, for 1 ≤ i ≤ n. For exam-
ple, the initial configuration of an NOCA for w is represented by a1a2 · · · an.
Successor configurations are computed according to the global transition func-
tion Δ mapping each configuration to a set of successor configurations.

For an NCA configuration ct the set of its successors ct+1 is defined as:

ct+1 ∈ Δ(ct) ⇐⇒
⎧
⎨

⎩

ct+1(1) ∈ σ(#, ct(1), ct(2))
ct+1(i) ∈ σ(ct(i − 1), ct(i), ct(i + 1)), i ∈ {2, . . . , n − 1}
ct+1(n) ∈ σ(ct(n − 1), ct(n), #)

where σ = δnd if t = 0, and σ = δd if t ≥ 1. For NOCA the global transition
function is defined analogously. Thus, Δ is induced by δnd and δd. An NCA
(NOCA) is deterministic if δnd(s1, s2, s3) (δnd(s1, s2)) is a singleton for all states
s1, s2, s3 ∈ S∪{#}. Deterministic cellular automata are denoted by CA and OCA.

An input w is accepted by a cellular automaton if at some time step dur-
ing some computation the leftmost cell enters an accepting state. The language
accepted by M is L(M) = {w ∈ Σ+ | w is accepted by M }. Let t : N → N be a
mapping. If all w ∈ L(M) are accepted with at most t(|w|) time steps, then M
is said to be of time complexity t (see [15] for a more on this general treatment
of time complexity functions). If t(n) = n acceptance is said to be in realtime. If
t(n) = k · n for a rational number k ≥ 1, then acceptance is in lineartime. The
set of all languages accepted by devices X with time complexity t is denoted by
Lt(X). We write Lrt(X) for real time and Llt(X) for linear time.

Now we turn to self-verifying (one-way) cellular automata (SV(O)CA). As
for NCA during the first step cells may choose between several new states. But
the definition of acceptance is different from nondeterministic CA.

There are now three disjoint sets of states representing answers yes, no,
and do not know. Moreover, for every input word, at least one computation
path must give either the answer yes or no, and the answers given must not
be contradictory. In order to implement the three possible answers the state set
is partitioned into three disjoint subsets S = F+∪̇F−∪̇F0, where F+ is the set
of accepting states, F− is the set of rejecting states, and F0 = S � (F+ ∪ F−)
is referred to as the set of neutral states. We specify F+ and F− in place of
the set F . of SVCA and SVOCA. So, let M = 〈S,Σ, F+, F−, #, δnd, δd〉 be an
SVOCA. For each input w ∈ Σ+, the set of states reachable by cell 1 is defined
as Sw = { s ∈ S | s ∈ (

Δ[t](w#)
)
(1) for some t ≥ 0 }, where Δ[t] denotes the t-

fold composition of Δ, that is, the set of configurations reachable in t time steps.
For the “self-verifying property” it is required that for each w ∈ Σ+, Sw ∩ F+ is
empty if and only if Sw ∩ F− is nonempty.

If all w ∈ L(M) are accepted and all w /∈ L(M) are rejected after at most
t(|w|) time steps, then the self-verifying cellular automaton M is said to be of
time complexity t. We illustrate the definitions with an example.
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Example 1. The non-semilinear unary language { a2n | n ≥ 0 } is accepted by
the SVOCA M = 〈{a,−, 1,X,∼, <1, <2,�,⊗,⊕, 0}, {a}, F+, F−, #, δnd, δd〉 in
realtime, where F+ = {⊕}, F− = {�,⊗}, and the transition functions δnd and
δd are defined as follows.

(1) δnd(a, a) = {1,−}
(2) δnd(a, #) = {⊕}
(3) δd(1,−) = X
(4) δd(−,−) = −
(5) δd(−, 1) = <1

(6) δd(−, <1) = −
(7) δd(−, <2) = <1

(8) δd(X,−) = X
(9) δd(X,<1) = X

(10) δd(<1,X) = <2

(11) δd(<1,∼) = <2

(12) δd(<2,X) = ∼
(13) δd(<2,∼) = ∼
(14) δd(∼,∼) = ∼
(15) δd(1,⊕) = ⊕
(16) δd(X,⊗) = ⊕
(17) δd(<1,⊕) = ⊗
(18) δd(<1,�) = ⊗
(19) δd(<2,�) = �
(20) δd(∼,⊕) = �
(21) δd(∼,�) = �

In addition to these transitions, δd maps any state from {�,⊗,⊕, 0} to itself,
regardless of its neighbor. And all still undefined transitions map to the state 0.

The idea of the construction is as follows (see Fig. 1). Assume that the cells
are numbered from 1 to n from right to left. In the first step, each cell guesses
whether its position is 2i, for some i ≥ 1 (1). Accordingly they enter state 1 or −.
The rightmost cell can identify itself and always enters state ⊕ (2). Next, each
cell in state 1 sends a signal with speed 1/2 to the left. The signal is realized
by states <1 and <2 (5–7 and 10–13). Moreover, cells in state 1 change to state
X (3) and each cell passed through by such a signal changes to state ∼ (12–14).

In addition, initially a signal s is sent by the rightmost cell to the left with
speed 1. This signal is realized by the states {�,⊗,⊕} and possibly by state 0 if
an initial guess is wrong. The states {�,⊗,⊕} represent accepting and rejecting
decisions of the cells. Once such state is entered it is never left again. Therefore
the decisions are not contradictory. Now the idea is that the initial guess is
verified if and only if signal s meets a 1/2-speed signal in a cell that initially
guessed to be at some position 2i and, thus, is now in state X (16–21).

In order to evidence the correctness of the construction, let us first assume the
initial guesses are correct. Then cells 1 and 2 behave as required by Transitions 2
and 15. Now let some cell 2i enter the accepting state ⊕ at time 2i (which is
true for cells 1 and 2). Then the 1/2-speed signal sent by that cell has reached
cell 2i + 2i−1. This implies that the fast and slow signal will meet in cell 2i+1,
as required. Altogether, for the case of initially correct guesses, the decisions are
never contradictory, they are correct, and the guesses are verified to be true.

For the cases where one of the initial guesses is wrong, the neutral state 0 is
used. Whenever a slow and the fast signal do not meet in a cell being in state X,
state 0 is entered. Moreover, it is entered whenever two neighboring cells are in
state 1. In particular, since the state 0 is never left, the fast signal checks the
correctness of the initial guesses from right to left. It is stopped by any cell in
the neutral state 0. Again, no contradictory decisions are made and, no decision
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t

n

a a a a a a a a a a a a a a a a #

1 − − − − − − − 1 − − − 1 − 1 +
X − − − − − − <1 X − − <1 X <1 +
X − − − − − − <2 X − − <2 X ×
X − − − − − <1 ∼ X − <1 ∼ +
X − − − − − <2 ∼ X − <2 −
X − − − − <1 ∼ ∼ X <1 −
X − − − − <2 ∼ ∼ X ×
X − − − <1 ∼ ∼ ∼ +
X − − − <2 ∼ ∼ −
X − − <1 ∼ ∼ −
X − − <2 ∼ −
X − <1 ∼ −
X − <2 −
X <1 −
X ×
+

Fig. 1. Computation of a realtime SVOCA accepting the language { a2n | n ≥ 0 }. Slow
signals moving with speed 1/2 are depicted in light gray, the fast signal with states
�, ⊗, ⊕ in a darker gray.

is made by the leftmost cell in case of wrong guesses. So, this realtime one-way
cellular automaton accepts language { a2n | n ≥ 0 } and it is self-verifying. �

3 Characterization and Speed-Up

First we give evidence that self-verifying (one-way) cellular automata are in fact
a generalization of deterministic (one-way) cellular automata. To this end, it is
reasonable to consider only time complexities t that allow the leftmost cell to
recognize the time step t(n). Such functions are said to be time-computable. For
example, the identity t(n) = n is a time-computable time complexity for (O)CA.
A signal which is initially emitted by the rightmost cell and moves with maximal
speed, arrives at the leftmost cell exactly at time step n. By slowing down the
signal to speed x

y (that is, the signal moves x cells to the left and then stays in
a cell for y − x time steps), it is seen that the time complexities � y

x · n�, for any
positive integers x < y, are time-computable. More details can be found in [3].
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Lemma 2. Any (one-way) deterministic cellular automaton with a time-com-
putable time complexity t can effectively be converted into an equivalent (one-
way) self-verifying cellular automaton with the same time complexity t.

For any time-computable time complexity t, the closures of the families
Lt(SVOCA) and Lt(SVCA) under complementation are immediately seen. In
order to construct an SVOCA that accepts the complement of the language
accepted by a given SVOCA, it is sufficient to interchange the accepting and
rejecting states while the neutral states remain as they are. On the other hand,
Example 1 gives a witness for the strictness of the inclusion Lrt(OCA) ⊂
Lrt(SVOCA) since all unary languages accepted by realtime OCA are regular.
This observation raises the natural question whether every language accepted
by some realtime NOCA, whose complement is again accepted by some realtime
NOCA, is accepted by a realtime SVOCA.

Proposition 3. Let t be a time-computable time complexity. Every language
L ∈ Lt(NCA) whose complement L belongs to Lt(NCA) as well is accepted by
some t-time SVCA. The same is true for one-way devices.

Proof. Let M1 be a device accepting L and M2 be a device accepting L with
time complexity t. Now a t-time self-verifying devices M simulates M1 and M2

on different tracks, that is, it uses the same two channel technique of [7,19].
Then it remains to define the set of accepting states as F+ = { (s, s′) | s ∈ F1 }

and the set of rejecting states as F− = { (s, s′) | s′ ∈ F2 }, where F1 is the set of
accepting states of M1 and F2 is the set of accepting states of M2. ��

Since it is straightforward to extract an NOCA accepting the complement of
L(M) from a given SVOCA M , the characterizations of the next theorem have
been derived.

Theorem 4. Let t be a time-computable time complexity. The family of lan-
guages L ∈ Lt(NCA) such that L belongs to Lt(NCA) as well coincides with the
family Lt(SVCA). The same is true for one-way devices.

Several types of cellular automata can be sped-up by a constant amount
of time as long as the remaining time complexity does not fall below realtime.
A proof in terms of trellis automata can be found in [4]. In [13] the speed-up
results are shown for deterministic and nondeterministic cellular and iterative
automata. The proofs are based on sequential machine characterizations of the
parallel devices. In particular, deterministic CA and OCA can be sped-up from
(n + t(n))-time to (n + t(n)

k )-time [1,13]. Thus, lineartime is close to realtime.
The question whether every lineartime CA can be sped-up to realtime is an open
problem. The problem is solved for OCA. The realtime OCA languages are a
proper subfamily of the lineartime OCA languages [4,20].

Next we are going to derive a stronger result for SVOCA from which follows
that realtime is as powerful as lineartime. The result follows from the charac-
terization of Theorem 4 and known results for NCA and NOCA [2], where the
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so-called packing-and-checking technique is introduced and used. The basic prin-
ciple is to guess the input in a packed form on the left of the array. Then the
verification of the guess can be done by a deterministic OCA in realtime.

Theorem 5. Let k ≥ 1 and t be a time-computable time complexity. Then
Lk·t(SVCA) = Lt(SVCA). The same is true for one-way devices.

Proof. Given a (k · t)-time SVCA M , there are (k · t)-time NCA M1 and M2

with L(M1) = L(M) and L(M1) = L(M) by Theorem 4. Both can be sped-up to
t-time as shown in [2]. Applying Theorem 4 again yields a t-time SVCA that
accepts L(M). The reasoning for one-way devices is similar. ��

In particular, we have:

Corollary 6. The families Lrt(SVOCA) and Llt(SVOCA) coincide and the
families Lrt(SVCA) and Llt(SVCA) coincide.

4 Self-verifying One-Way Cellular Automata

4.1 Computational Capacity

First we recall that Example 1 gives a witness for the strictness of the following
inclusion.

Theorem 7. The family Lrt(OCA) is properly included in Lrt(SVOCA).

The inclusion of the previous result can be pushed higher in the hierarchy of
language families. However, the strictness of the inclusion gets lost. The question
of the strictness is strongly related to the famous open problem whether or not
the realtime CA languages are a proper subfamily of the CA languages.

Theorem 8. The family Llt(CA) is included in Lrt(SVOCA).

Proof. Let L ∈ Llt(CA). Since the family Llt(CA) is closed under reversal [19],
there exists a lineartime CA accepting LR. This CA, in turn, can be sped-up by a
multiplicative and additive constant [13]. Hence there is a CA M = 〈S,Σ, F, #, δ〉
that accepts LR with time complexity 2n − 1.

First a deterministic OCA M ′ = 〈S′, Σ′, F, #, δ′〉 is constructed such that M ′

accepts the language { �|w|wR | w ∈ L(M) } with time complexity 2n − 2,
(where � /∈ S and n > 1): Let S′ = (S ∪ {�}) ∪ (S ∪ {�})2, A′ = A ∪ {�},
and ∀s1, s2 ∈ S ∪ {�} : let δ′(s1, #) = (s1, �) and δ′(s1, s2) = (s1, s2). Further-
more ∀(s1, s2), (s2, s3) ∈ (S ∪ {�})2 :

δ′((s1, s2), (s2, s3)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ(s3, s2, s1) if (s1 �= � ∧ s2 �= � ∧ s3 �= �)
δ(#, s2, s1) if (s1 �= � ∧ s2 �= � ∧ s3 = �)
δ(s3, s2, #) if (s1 = � ∧ s2 �= � ∧ s3 �= �)
� otherwise

.
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Fig. 2. Example for the proof of Theorem 8.

The basic idea is that during an intermediate step the cells of M ′ are collect-
ing the information needed to simulate one step of the CA (see Fig. 2). Due to
the one-way information flow a cell i thereby can collect information from the
cells i + 1 and i + 2 and, thus, simulate one step of the CA cell i + 1. Therefore,
the relevant part of the configuration shifts in space to the left.

The cells of an SVOCA M ′′ that accepts the language {wR | w ∈ L(M) } are
constructed such that they can store two input symbols. Under input wR the
SVOCA M ′′ guesses in its first step the configuration �|w|wR whereby two adja-
cent symbols are stored in one cell, respectively. The subsequent verification of
the guess can be done by a deterministic realtime OCA as shown by the packing-
and-checking technique in [2]. In parallel to the verification M ′′ simulates the
OCA M ′ with double speed on the compressed input. Therefore, M ′′ has time
complexity 1 + 2n−2

2 = n. Since L(M ′′) = {wR | w ∈ L(M) } = LR(M) =
(LR)R = L the theorem follows.

In order to make M ′′ self-verifying it enters accepting states if the guesses are
correct and the simulation ends accepting, and enters rejecting states when the
guesses are correct and the simulation does not end in an accepting state. All
other states, in particular those entered in case of wrong guesses, are neutral. ��
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4.2 Closure Properties

This section is devoted to the closure properties of the family of realtime SVOCA
languages, summarized in Table 1. From above we know already that the family
of languages accepted by realtime SVOCA is closed under complementation,
union, and intersection.

It is known that Lrt(OCA) is closed under reversal [4], which is a long-
standing open problem for Lrt(CA).

Proposition 9. The family of languages accepted by realtime SVOCA is closed
under reversal.

Proposition 10. The family of languages accepted by realtime SVOCA is closed
under concatenation.

Proof. Let L1, L2 ∈ Lrt(SVOCA). If the empty word belongs to L1 then lan-
guage L2 belongs to the concatenation and vice versa. Since the family of lan-
guages accepted by realtime SVOCA is closed under union, it remains to consider
languages L1, L2 ∈ Lrt(SVOCA) that do not contain the empty word. Let M1,
M2 be acceptors for L1 and L2. As an intermediate step, we construct a self-
verifying cellular automaton M with two-way information flow, that is, each
cell is connected to its both nearest neighbors and the leftmost cell receives a
boundary symbol on its free input line.

Since the family Lrt(SVOCA) is closed under reversal, there is a realtime
SVOCA MR

1 that accepts the reversal LR
1 of L1. Now M has two tracks with

identical inputs. On one track it simulates M2, whereby each cell that enters
an accepting or rejecting state is marked accordingly. On the second track, M
simulates MR

1 from left to right. That is, the simulation is such that each cell
receives the state from its left neighbor. So, the information flow is from left
to right. Again, each cell that enters an accepting or rejecting state is marked
accordingly.

Let the input be x1x2 · · · xn. If a cell at position i is marked accepting by the
simulation of M2, the word xixi+1 · · · xn belongs to the language L2. If a cell at
position i is marked accepting by the simulation of MR

1 , the word xixi−1 · · · x1

belongs to the language LR
1 and, thus, x1x2 · · · xi belongs to the language L1. So,

the input x1x2 · · · xn belongs to the concatenation L1L2 if and only if MR
1 may

mark a cell at position i and M2 a cell at position i+1 accepting, for 1 ≤ i < n.
In order to check this condition, M uses a signal that is emitted from the

rightmost cell when the simulation of MR
1 reaches that cell at time step n. The

signal moves to the left and informs the leftmost cell at time step 2n.
When the signal arrives, the leftmost cell enters an accepting state if and

only if the signal has found two adjacent cells marked accepting. So, M accepts
any input from L1L2 and only inputs from the concatenation L1L2. If the signal
found neither two adjacent cells marked accepting, nor two adjacent cells that are
marked accepting and unmarked, nor two adjacent cells unmarked the leftmost
cell enters a rejecting state. In this case, no matter between which two adjacent
symbols one assumes the cut between first and second factor, M has explicitly
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rejected at least one of them. Clearly, in this case the input cannot belong to
the concatenation. On the other hand, if some input does not belong to the
concatenation, then there is always a computation of M that results in such a
marking. So, M rejects any input that does not belong to L1L2 and only inputs
that do not belong to L1L2. In any other case, the leftmost cell remains in a
neutral state.

So far, we have constructed a two-way self-verifying cellular automaton with
time complexity 2n. The proof of Theorem 8 can almost literally be used to show
that also a lineartime two-way self-verifying cellular automaton can be simulated
by a realtime SVOCA. ��

Next, we turn to the operations homomorphism and inverse homomorphism.

Proposition 11. The family of languages accepted by realtime SVOCA is not
closed under homomorphisms.

Proof. It is well known that every recursively enumerable language is the homo-
morphic image of the intersection of two context-free languages [10]. Moreover,
every context-free language is the homomorphic image of the intersection of a
regular language and a Dyck language [5].

The Dyck languages as well as the regular languages are realtime OCA lan-
guages [7] and therefore realtime SVOCA languages. Additionally, the family
of realtime SVOCA languages is closed under intersection. So, if the family
Lrt(SVOCA) would be closed under homomorphisms, it would contain every
recursively enumerable language. Due to the time bound to realtime this is a
contradiction. ��
Proposition 12. The family of languages accepted by realtime SVOCA is closed
under inverse homomorphisms.

The closure of Lrt(SVOCA) with respect to Kleene star and non-erasing
homomorphisms are not known. They are settled for nondeterministic devices
since, basically, for iteration it is sufficient to guess the the positions in the
array at which words are concatenated, and for non-erasing homomorphism it is
sufficient to guess the pre-image of the input. However, self-verifying devices have
to reject explicitly if the input does not belong to the language. It seems that
they have to ‘know’ that all choices either do not lead to accepting computations
or are ‘wrong.’

Table 1. Closure properties of the language family Lrt(SVOCA) in comparison with
the family Lrt(OCA), where hλ denotes λ-free homomorphisms.

Family ∪ ∩ R · ∗ hλ h h−1

Lrt(SVOCA) Yes Yes Yes Yes Yes ? ? No Yes

Lrt(OCA) Yes Yes Yes Yes No No No No Yes
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4.3 Decidability Questions

Now we turn to decidability questions. The membership problem is decidable for
realtime SVOCA languages since the family is effectively included in the deter-
ministic context-sensitive languages. However, even realtime OCA can accept
the so-called valid computations of Turing machines. These are languages of
encodings of accepting Turing machine computations (see [18] for details or [15]
for a survey). Hence many of the not even semi-decidable problems for Tur-
ing machines can be reduced to realtime OCA (see [18] for details or [15] for a
survey). The following theorem is from [15].

Theorem 13. For any language family that effectively contains Lrt(OCA) the
problems emptiness, universality, finiteness, infiniteness, context-freeness, and
regularity are not semidecidable.

So, we have the following consequences.

Corollary 14. The problems emptiness, universality, finiteness, infiniteness,
inclusion, equivalence, regularity, and context-freeness are not semidecidable for
realtime SVOCA.

Finally, we turn to the problem to decide whether a given realtime nonde-
terministic one-way cellular automaton is self-verifying or not.

Theorem 15. Given a realtime deterministic one-way cellular automaton M ,
it is not semidecidable whether or not M is an SVOCA.

Proof. Let M be a realtime OCA with accepting states F . An equivalent realtime
SVOCA M ′ is constructed (Lemma 2). Next, M ′ is modified by adding a new
input symbol (and neutral state) � and new states � ∈ F− and ⊕ ∈ F+. The
transition functions are modified such that a cell in state � in the first step
nondeterministically can either change to � and remain in that state forever or
to stay in � unless its right neighbor is in an accepting state. In the latter case,
the cell changes from state � to ⊕ and stays in that state from then on.

We claim that M ′ is self-verifying if and only if L(M ′) is empty. If L(M ′) is
empty, none of its cells will ever enter an accepting state. So, a cell that is in state
� remains in � and, thus, will not give a contradictory answer. On the other
hand, if there is w ∈ L(M ′), then on input �w by the choices of the leftmost cell
there is a rejecting computation, but an accepting one as well. Therefore, in this
case, M ′ is not self-verifying. If it were semidecidable whether a realtime OCA is
self-verifying then one could semidecide emptiness contradicting Corollary 14. ��

By Lemma 2 any deterministic CA with a time-computable time complex-
ity can effectively be made self-verifying. But it is non-semidecidable whether it
already is self-verifying. That generalizes immediately to nondeterministic cellu-
lar automata. However, Lemma 2 does not since an input may induce accepting
as well as non-accepting computations, which would become rejecting. In fact,
it is an open problem whether the family of realtime one-way nondeterministic
cellular automata is closed under complementation or not.
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Abstract. Cellular Automata (CA) are a self reproducing model widely
accepted for their applications in pattern recognition, VLSI design, error
correcting codes, cryptography etc. They have also been widely accepted
as good random number generators. The pseudorandom properties of
3- and 4-neighbourhood CA have been studied and they show that the
neighbourhood radii has an impact on pseudorandomness. This moti-
vated us to perform the exploration of 5-neighbourhood 1-dimensional
CA for better cryptographic properties. We construct a class of linear
and nonlinear rules for 5-neighbourhood CA and also propose a new
stream cipher design using 5-neighbourhood CA inspired from the Grain
cipher.

Keywords: Cellular Automata (CA) · 3-neighbourhood CA
5-neighbourhood CA · Cryptography · Stream Cipher

1 Introduction

In cryptography, the encryption techniques can be classified as symmetric key
encryption and asymmetric key encryption. Symmetric key encryption encrypts
plaintext into ciphertext using a common key shared between the sender and
the receiver. This encryption can be done either on blocks of plaintext or one
bit at a time. A block cipher encrypts a fixed size of n-bits block of data at
a time. A stream cipher encrypts 1 bit or byte of data at a time. It normally
uses a long stream of pseudorandom bits as the key. In order to implement a
secure stream cipher, its pseudorandom generator should be unpredictable and
the reuse of key should never happen. Stream ciphers are faster and have a
lower hardware complexity than block ciphers. They are also appropriate when
buffering is limited. The eSTREAM project [1] which was started as part of
ECRYPT [2] aimed to promote the design of efficient stream ciphers. The finalists
in eSTREAM were classified under two profiles namely, profile-1 and profile-2.

The ciphers in profile-1 were intended to give excellent throughput when
implemented in software whereas the ciphers in profile-2 were intended to be
efficient in terms of the physical resources required when implemented in hard-
ware. Two widely studied ciphers Grain [3] and Trivium [4] belong to profile-2.
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Recent studies and research in the field of stream ciphers and CA have shown
the use of CA as a better cryptographic primitive. Parallel transformations of
stream cipher can be achieved using CA and this provides high throughput which
is beneficial in the case of stream ciphers. Work done in [5–9] clearly discusses the
cryptographic suitability of CA as stream ciphers. They also give some light to
the fact that as the neighborhood of CA increases, the cryptographic properties
of the cipher also increases if proper CA rules are employed but with the cost
of time needed for doing the computation. FresCA [7] and Cavium [5] were
the designs that applied CA in the eSTREAM finalists GRAIN and TRIVIUM
respectively.

CA based stream ciphers CASTREAM [10] and FResCA were proposed in
ACRI 2012 and ACRI 2016 respectively. Here, we propose CARPenter as a
stream cipher based on 5-neighbourhood CA. This paper is organized as follows.
Section 2 discusses the terminologies and basics of CA. Section 3 gives a literature
survey on CA based stream ciphers. Section 4 discusses 5-neighbourhood CA and
the linear and nonlinear rules associated with it. Description of the proposed
stream cipher design is provided in Sect. 5. The cryptographic suitability of the
new design is discussed in the last section.

2 Preliminaries

2.1 Cellular Automata

A cellular automaton is a collection of cells and each cell is capable of storing a
value and a next-state computation function which is also called CA rule. Rules
determine the behaviour of a cellular automata [11]. The state of each cell of a
CA together at any instant t defines the global state of the CA. The next state
of the ith cell of a 3-neighbourhood CA at any instance t is given by

St+1
i = f(St

i−1, S
t
i , S

t
i+1).

The next state of ith cell of a 5-neighbourhood CA is given by

St+1
i = f(St

i−2, S
t
i−1, S

t
i , S

t
i+1, S

t
i+2).

where f is the next state function or rule, St+1
i denotes the next state of the ith

cell, St
i−2 is the current state of second left neighbour, St

i−1 is the current state
of first left neighbour, St

i is the current state of the cell to be updated, St
i+1

is the current state of first right neighbour, St
i+2 is the current state of second

right neighbour. In general, the number of cells n that participate in a CA cell
update is given by n = 2a+1 where a is the radius of the neighbourhood [11].

Cellular automata with null boundary is the one in which the left neighbour
of the leftmost cell and the right neighbour of the rightmost cell are zero [12].
Hybrid CA is a cellular automata where more than one rule is involved in the
generation of next state [12]. If a cellular automata of n bits (where n is an
integer) evolves 2n − 1 different states before getting back to the initial state,
then it is called as maximum length CA.
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There are 256 (22
3
) and 4294967296 (22

5
) such Boolean functions or rules

possible for 3-neighbourhood CA and 5-neighbourhood CA respectively. Rules
are named as decimal equivalent of the binary number that is formed by apply-
ing that rule to all 2n possibilities of the neighbourhood of a n-neighbourhood
CA. Last combination with all ones becomes the most significant bit and first
combination with all zeros becomes the least significant bit.

2.2 Cryptographic Properties of Boolean Functions

Cryptographically suitable Boolean functions should satisfy certain proper-
ties. Some important cryptographic properties are discussed below. A detailed
description of cryptographic properties can be found in [13]. Some basic defini-
tions are provided to better understand some of the cryptographic properties.

Affine Function: A Boolean function which can be expressed as the XOR of
some or all of its inputs and a Boolean constant is called Affine function.

Hamming Weight: The number of 1’s in the truth table representation of a
Boolean function is called its Hamming weight.

Hamming Distance: Hamming distance between two given functions is the Ham-
ming weight of the XOR of the two functions.

Balancedness. The balanced Boolean functions have equal number of zeros
and ones in their truth table. Balancedness should be satisfied by all the Boolean
functions used in cryptographic applications. There is a statistical bias present in
unbalanced Boolean functions which can be exploited by differential and linear
cryptanalysis.

Algebraic Degree. Algebraic degree is the maximum number of variables
present in an AND term among all the AND terms of a given Boolean function.
Higher algebraic degree is necessary in order to have high linear complexity.

Nonlinearity. Nonlinearity of a Boolean function is given as the minimum
Hamming distance of the given Boolean function to all the affine functions.

Correlation Immunity. A Boolean function is kth order correlation immune
if the output of the given Boolean function is independent of atmost k input
variables.

Resiliency. A Boolean function which is both balanced and kth order correla-
tion immune is called k-resilient. If a Boolean function is not k-resilient, then the
output depends on at most k input variables which can be exploited to recover
the initial state of k inputs.
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3 Literature Survey on CA Based Stream Ciphers

CA have a natural tendency to resist fault attacks [9]. CASTREAM [10], CAR30
[6], CAvium [5] and FResCA [7] are some of the CA based stream ciphers. CAS-
TREAM is a CA based stream cipher suitable for both hardware and software.
It makes the nonlinearisation faster. In CASTREAM, each state bit is influenced
by all key bits and IV bits after six iterations. CAR30 is a stream cipher based
on CA Rule 30 and a maximum length linear hybrid CA with rule 90 and 150.
It is efficient for both hardware and software and its generic design leads to its
scaling up to any length of key and IV. This cipher is found to be faster than
both Grain and Trivium. CAvium design is a modification of Trivium using CA
which increases its strength against almost all the attacks against its reduced
rounds. The design has faster startup as it has reduced the number of rounds
from 1152 to 144 in the initialization phase and hence needs less clock cycles.
It is more secure and faster than Trivium at the cost of more computations per
iteration. FResCA (Fault Resistant Cellular Automata Based Stream Cipher) is
a modification of Grain, another eSTREAM finalist. This is a 4-neighbourhood
CA based Grain-like cipher whose initialization is 8 times faster than Grain since
there are only 32 iterations in the initialization phase of FresCA whereas Grain
has 256 iterations. FResCA eliminates fault attacks possible in Grain cipher and
is also resistant to many other different attacks. Its cells are updated using linear
and nonlinear rules and its output depends upon a nonlinear mixing function
called NMix [14].

4 Five-Neighbourhood CA

In most of the applications, 1-dimensional 3-neighbourhood Cellular Automata
are used. In [8], 4-neighbourhood nonlinear CA were studied and shown to pro-
vide good randomness and less correlation. In [11], Catell and Muzio have given
a method to synthesize a 3-neighbourhood Linear Hybrid CA. Based on [11],
Maiti and Roy Chowdhury in [15] have given an algorithm to synthesize 5-
neighbourhood null boundary Linear Hybrid CA (LHCA) using two linear rules.
The randomness and diffusion properties of 3-, 4- and 5-neighbourhood were
studied and it was shown that the CA can be improved with increase in size
of neighbourhood radius of the CA cell if appropriate CA rules are used. The
diffusion rate of 5-neighbourhood CA is high and hence is found suitable for high
speed application. The improvement comes at a cost of increased computation.

4.1 Five Neighborhood Linear Rules

Based on [15], we have found a 128-bit 5-neighbourhood Linear Hybrid CA rule
vector. Out of the 22

5
possible 5-neighbourhood rules, only 25 = 32 rules are

linear. Out of these 32 rules, only 23 = 8 are of exactly 5-neighbourhood [15].
The combination of rule R0 and rule R1 given below gives the largest number
of rule vectors (8) for 5-bit maximum length 5-neighbourhood CA [15]. Hence,
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these two rules are considered for finding 128-bit 5-neighbourhood maximum
length CA. These two rules are given as

R0 : St+1
i =St

i−2 ⊕ St
i−1 ⊕ St

i+1 ⊕ St
i+2

R1 : St+1
i =St

i−2 ⊕ St
i−1 ⊕ St

i ⊕ St
i+1 ⊕ St

i+2

R0 and R1 are in resemblance to linear rules 90 and 150 respectively of the
3-neighbourhood CA. Rules 90 and 150 are used in [11] to synthesize a maximum
length 3-neighbourhood hybrid CA. The state transition function of the ith cell
of 5-neighbourhood CA using the rules R0 and R1 can be expressed as

St+1
i = St

i−2 ⊕ St
i−1 ⊕ di.S

t
i ⊕ St

i+1 ⊕ St
i+2

where di = 0 if R0 is used and di = 1 if rule R1 is used [15].
An n-cell 5-neighbourhood CA can be represented as a combination of these

two rules as an n-tuple [d1, d2, ..., dn] called as rule vector. A 5-neighbourhood CA
is represented by a characteristic matrix over GF(2) and the characteristic matrix
has a characteristic polynomial [15]. A characteristic polynomial is a degree n
polynomial, where n is the length of rule vector of CA. A CA is maximum length
if and only if its characteristic polynomial is primitive [16]. Theorem 1 [15] has
been used to derive the characteristic polynomial of CA.

Theorem 1: Let �n be the characteristic polynomial of a n-cell null boundary
5-Neighbourhood CA with rule vector [d1, d2, . . . , dn]. �n satisfies the following
relation

�n = (x + dn)�n−1 + �n−2 + (x + dn−1)�n−3 + �n−4,n > 0

Initially �−3 = 0, �−2 = 0, �−1 = 0, �0 = 1.

Theorem 1 provides an efficient algorithm to compute the characteristic poly-
nomial of a CA. We found a 128-bit maximum length null boundary CA rule
vector [0, 0, . . . , 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0] and its primitive characteristic
polynomial (CP) is

CP = x
128

+ x
127

+ x
125

+ x
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+ x
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+ x
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+ x
117

+ x
115

+ x
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+ x
15
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+ x
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+ x
8
+ x

4
+ x

2
+ x + 1.

Proof:
Rule Vector:

[d1, d2, . . ., d118, d119, d120, d121, d122, d123, d124, d125, d126, d127, d128]
= [0, 0, . . . , 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0]



CARPenter: A Cellular Automata Based Resilient Pentavalent Stream 357

Derivation of the characteristic polynomial:-
Initially �−3=0, �−2=0, �−1=0, �0 = 1.

�1 = (x + d1)�0 + �−1 + (x + d0)�−2 + �−3

= x

�2 = (x + d2)�1 + �0 + (x + d1)�−1 + �−2

= x2 + 1

.

.

.

�128 = (x + d128)�127 + �126 + (x + d127)�125 + �124

= x128 + x127 + x125 + x122 + x120 + x119 + x117 + x115 + x113 + x112 + x111+

x110 + x106 + x104 + x103 + x94 + x90 + x89 + x88 + x87 + x85 + x84 + x83 + x82+

x79 + x78 + x76 + x75 + x72 + x71 + x69 + x67 + x65 + x64 + x62 + x58 + x57 + x56+

x53 + x51 + x49 + x48 + x44 + x43 + x42 + x39 + x37 + x36 + x35 + x34 + x30+

x26 + x25 + x24 + x23 + x21 + x20 + x19 + x18 + x15 + x14 + x10 + x8 + x4 + x2 + x1 + 1

�128 represents a characteristic polynomial (CP). Test for primitiv-
ity of obtained CP is done by using a primitive polynomial search pro-
gram(ppsearch256) given in [17].

4.2 Five Neighborhood Nonlinear Rule

In [18], Leporati and Mariot have investigated bipermutive rules of a given radius
and studied a set of 5-neighbourhood nonlinear rules for their cryptographic
suitability. All the rules have been studied taking Rule 30 as the benchmark.
Based on the test results obtained from NIST [19] and ENT [20] tests, the
following two rules have been found out to be better [18].

Rule 1452976485 : St+1
i = (¬St
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Rule 1520018790 : St+1
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where ‘+’ and ‘.’ and ¬ represents OR, AND and NOT Boolean operations
respectively.

5 Description of CARPenter - Cellular Automata Based
Resilient Pentavalent Stream Cipher

Our cipher model is inspired by the design of Grain, one of the eSTREAM
finalists and FResCA, a CA based version of Grain. The design consists of three
blocks, namely linear block (L block), nonlinear block (NL block) of lengths 128
bits each and a nonlinear mixing block (NMix). Figure 1 shows initialization of
the cipher and Fig. 2 shows the generation of keystream bits. Both linear and
nonlinear block use 5-neighbourhood rules and together form the 256-bit state of
the cipher. Output stream is produced by NMix block after performing nonlinear
mixing.
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Fig. 1. Cipher initialization Fig. 2. Keystream generation

5.1 Nonlinear Block

Cells of nonlinear block will be updated using one of the 5-neighbourhood non-
linear rules (Rule 1452976485, Rule 1520018790) given in Sect. 4.2.

5.2 Linear Block

Cells of linear block are updated using a 5-neighbourhood Linear Hybrid CA
rule vector which has been realized using two linear rules R0 and R1 discussed
in Sect. 4.1. The cell positions 2, 8 and 10 use rule R1 and all the remaining 125
positions use rule R0 to realize the maximum length CA.

5.3 Nonlinear Mixing Block

NMix is a Boolean function which is nonlinear, balanced and reversible [14]. It
is used as good key mixing function in block ciphers and also resists differential
attacks. The NMix function is defined for two n-bits inputs. If input bit sets are
X = x1, x2, . . . , xn−1, xn and Y = y1, y2, . . . , yn−1, yn and output bit set is Z =
z1, z2, . . . , zn−1, zn, then NMix for ith bit is defined as follows.

zi = xi ⊕ yi ⊕ ci−1

ci = x0.y0 ⊕ · · · ⊕ xi.yi ⊕ xi−1.xi ⊕ yi−1.yi

and x−1 = y−1 = c−1 = 0, 0 ≤ i ≤ n − 1
Input to the NMix is eight bits each from both the linear and nonlinear

blocks and the Most Significant Bit (MSB) of NMix is the output of the cipher.
All the input bits are present in the computation of MSB of nonlinear mixing
block which provides good diffusion.

5.4 Working of CARPenter

CARPenter is a Grain-like Cellular Automata Based Resilient Pentavalent
Stream Cipher. The cipher has two phases, namely initialization phase and
keystream generation phase. The initialization phase consists of 16 iterations
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and the output is suppressed in this phase. Here, the number of iterations (16
iterations) is less when compared to Grain (256 iterations) and FresCA (32 iter-
ations). The 128-bit key is loaded into the nonlinear block and the 128-bit IV is
loaded into the linear block of the cipher. During this phase, the output is fed
back to the linear and nonlinear blocks as shown in the Fig. 1. The output of the
NMix function is XORed with the first bit in the linear block and this has dual
role in nonlinear block. It acts as the second-right-neighbour of the 127th bit and
as both first- and second-right-neighbour of the 128th bit in the nonlinear block.
This is shown in Fig. 3. The output of NMix also acts as the second-right-

Fig. 3. Updation of cell 127 and cell 128 of nonlinear block

neighbour of the 127th bit and as both first- and second-right-neighbours of the
128th bit in the linear block. In each iteration, each bit in the nonlinear block
changes its state according to the 5-neighbourhood nonlinear rule mentioned in
Sect. 4.2. In the linear block, the state transition takes place according to the
rules R0 and R1. We need to select taps in both linear and nonlinear blocks of
the cipher. Taps are the bit positions that affect the output. Eight taps each are
selected from both linear and nonlinear blocks so that the number of inputs to
the NMix block are 16. The eight taps correspond to the bit positions 1, 22, 43,
64, 65, 86, 107, and 128 in both the blocks. In order to have influence of all the
state bits in output in lesser number of iterations, the taps are positioned equally
except the two middle ones. After initialization phase, the feed back lines are
removed and the keystream bits are generated.

6 Security Analysis

6.1 NIST Statistical Test

National Institute of Standards and Technology (NIST) has developed a statisti-
cal test suite known as NIST-statistical test suite [19]. It is a package of 15 tests
to test the randomness of pseudo-random binary sequence of arbitrary length.
To test the randomness of CARPenter, a bit stream of length 0.1 billion bits has
been generated and fed to the NIST test suite. Input bit stream is divided into
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100 keystreams of 1 million bits each by the NIST test suite. All the tests passed
with appropriate p-values as shown in Table 1.

Table 1. NIST test result

Nonlinear rule - 1 Nonlinear rule - 2

SI.No Test name P-value Status P-value Status

1 Frequency test 0.955835 Pass 0.657933 Pass

2 Block frequency test 0.494392 Pass 0.289667 Pass

3 Cumulative sums test 0.595549 Pass 0.108791 Pass

4 Runs test 0.616305 Pass 0.955835 Pass

5 Longest runs test 0.171867 Pass 0.534146 Pass

6 Rank test 0.739918 Pass 0.191687 Pass

7 FFT test 0.153763 Pass 0.616305 Pass

8 Non overlapping template test 0.595549 Pass 0.289667 Pass

9 Overlapping template test 0.834308 Pass 0.595549 Pass

10 Universal 0.419021 Pass 0.334538 Pass

11 Approximate entropy 0.115387 Pass 0.419021 Pass

12 Random excursions 0.178278 Pass 0.026648 Pass

13 Random excursions variant 0.706149 Pass 0.723129 Pass

14 Serial 0.759756 Pass 0.319084 Pass

15 Linear complexity 0.994250 Pass 0.202268 Pass

6.2 Resiliency

The two bipermutive nonlinear rules used in the NL block of CARPenter are
2-resilient [18]. Since the rules are 2-resilient, they are both balanced and 2nd

order correlation immune.

6.3 Algebraic Attack

If the number of different input variables available in the output Boolean func-
tion is high, then the immunity against the algebraic attack will be high. The
output function of CARPenter contains 16 and 68 different input variables in
first and second iteration respectively and will increase with each iteration. After
16 iterations, at the time of keystream generation the output Boolean function
will be affected by all the 256 bits of the cipher. So output Boolean function of
the cipher will have high algebraic degree at the time of key generation and this
fact will prevent the algebraic attack on CARPenter.
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6.4 Linear Attack

Nonlinearity of output Boolean function in the first iteration is 32256 and will
increase with each iteration. At the time of key generation phase, nonlinearity
will be much higher.

6.5 Meier-Staffelbach Attack

Meier and Staffelbach attacked the Rule-30 based stream cipher designed by Wol-
fram in [21]. The state of the ith cell from time t to t+n (temporal sequence) is
known to the attacker. This attack tries to guess the right half of initial state and
then tries to generate the right adjacent neighbour of temporal sequence. Since
there is a many-to-one mapping from the right side to the temporal sequence,
a guessed right side value may give correct right adjacent sequence. Since there
is a linear relation between the temporal sequence and the left half, the attack
calculates the left half, by moving backward from t + n to t. Then the calcu-
lated seed is used to generate the temporal sequence. Attack is successful if the
generated temporal sequence matches with original temporal sequence.

This attack is not applicable to CARPenter. In order to compute the right
adjacent neighbour of temporal sequence, knowledge of the state of left neighbour
is required because of the use of 5-neighbourhood CA. Random value cannot be
assigned to the left hand side of the temporal sequence because there is no
many-to-one mapping from left hand side to the temporal sequence.

6.6 Time/Memory/Data Tradeoff Attack

If inner state of a stream cipher consists of n bits, then O(2n/2) is the complexity
of this attack on stream cipher. Inner state of the CARPenter consists of 256
bits which makes it difficult to perform Time/Memory/Data/tradeoff attack.

6.7 Fault Attack

In this attack, a fault can be introduced at any bit position. The attacker has
partial control over the timing and the position of the fault. She can observe the
behaviour of the cipher by resetting the cipher and reintroducing the fault at
different positions. Because of the use of CA in CARPenter, the fault tracking
becomes impossible. In NL block, the fault will dissipate nonlinearly and any
fault introduced in linear block will reach the nonlinear block in initialization
phase itself making it difficult to track the fault.

7 Conclusion

We have proposed a Grain-like, 5-neighbourhood CA based stream cipher called
CARPenter. The cipher exhibits very good cryptographic properties. The use
of 2-resilient nonlinear rule makes our cipher resilient. Initialization phase of
CARPenter is faster than Grain and FResCA. Generated keystream has good
pseudorandomness and is strong against different attacks.
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Università degli Studi Milano-Bicocca, Viale Sarca 336, 20126 Milan, Italy

{luca.mariot,alberto.leporati}@unimib.it

Abstract. Mutually Orthogonal Cellular Automata (MOCA) are sets
of bipermutive CA which can be used to construct pairwise orthogo-
nal Latin squares. In this work, we consider the inversion problem of
pairs of configurations in MOCA. In particular, we design an algorithm
based on coupled de Bruijn graphs which solves this problem for generic
MOCA, without assuming any linearity on the underlying bipermutive
rules. Next, we analyze the computational complexity of this algorithm,
remarking that it runs in exponential time with respect to the diameter
of the CA rule, but that it can be straightforwardly parallelized to yield
a linear time complexity. As a cryptographic application of this algo-
rithm, we finally show how to design a (2, n) threshold Secret Sharing
Scheme (SSS) based on MOCA where any combination of two players
can reconstruct the secret by applying our inversion algorithm.

Keywords: Cellular automata · Latin squares
Secret sharing schemes · de Bruijn graph

1 Introduction

The inversion problem is one of the oldest research questions investigated in the
field of Cellular Automata (CA). Indeed, the first results in this aspect of CA
theory dates back at least to Hedlund [4] and Richardson [14]. Stated informally,
the inversion problem consists in determining a preimage of a given configuration
under the action of a surjective CA. When dealing with the specific class of
reversible CA, one can compute such unique preimage in parallel by applying
an inverse CA to the desired configuration.

However, the general case of surjective CA usually requires the specification
of an inversion algorithm which computes a preimage in a sequential way, start-
ing from the knowledge of the states of some of its cells. Sutner [17] was among
the first to describe this inversion algorithm using the de Bruijn graph repre-
sentation of CA. More specifically, he showed that a preimage of a configuration
corresponds to a path on the vertices of the de Bruijn graph associated to the
CA, where the edges are labeled by the cells of the configuration. The existence
of such a path is guaranteed under the assumption that the CA global rule is
surjective.
c© Springer Nature Switzerland AG 2018
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De Bruijn graphs turned out to be a very useful tool to address several inter-
esting questions related to the inversion problem, such as studying the spatial
periods of surjective CA preimages [10] and solving the parity problem through
CA [2].

A recent research thread involving the inversion problem concerns Mutually
Orthogonal Latin Squares (MOLS) generated by CA. In particular, it has been
shown in [7] that CA with bipermutive local rules can be used to define Latin
squares, and pairs of linear bipermutive rules whose associated polynomials are
coprime generate orthogonal Latin squares. The idea of the construction is to
split the CA initial configuration in two parts, in order to index the rows and
the columns of the squares. Then, the final configurations obtained by applying
two linear bipermutive rules with coprime polynomials are used to fill the two
entries in the square at the coordinates specified by the initial configuration. In
what follows we refer to a pair of bipermutive CA generating orthogonal Latin
squares as Orthogonal Cellular Automata (OCA), and to a set of pairwise OCA
as Mutually Orthogonal Cellular Automata (MOCA).

It can be remarked that any pair of OLS defines a permutation between the
Cartesian product of the rows/columns sets and the overlapped entries. Hence,
starting from a pair of final configurations generated by two OCA, an inter-
esting problem is to reconstruct the unique preimage (i.e. the row and column
coordinates) which generated them.

The aim of this paper is to investigate the inversion problem in MOCA,
without assuming any linearity of the underlying local rules. As a matter of fact,
the inversion of OCA defined by linear rules has already been settled in [7], and
it basically amounts to inverting a Sylvester matrix. Consequently, in this work
we focus on pairs of OCA defined by general bipermutive rules, whose exhaustive
and heuristic constructions have already been addressed in [8,11].

We leverage on the de Bruijn graph representation to solve the inversion
problem. In particular, we design an algorithm which, given as inputs the cou-
pled de Bruijn graph of two nonlinear OCA and a pair of final configurations,
computes their unique preimage by using a variant of Depth-First Search (DFS).
We remark in particular that the computational complexity of this algorithm is
exponential in the diameter of the OCA rules. Nonetheless, we also show that
this algorithm can be straightforwardly parallelized with respect to the initial
DFS calls, thus yielding an overall linear time complexity.

As an application of our inversion algorithm, we design a perfect secret shar-
ing scheme based on MOCA where every pair of players can reconstruct the
secret, while any single player cannot gain any information about it. More specif-
ically, we show that the reconstruction phase consists in the application of the
inversion algorithm on the two shares of the players, using the coupled de Bruijn
graph of the OCA that the dealer used to compute such shares.

The rest of this paper is organized as follows. Section 2 covers all basic defi-
nitions and results concerning cellular automata, orthogonal Latin squares and
secret sharing schemes used to prove the results of the paper, addressing the
inversion problem in the case of MOCA defined by nonlinear bipermutive rules.
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Section 4 describes the application of our inversion algorithm to the design of
a (2, n) threshold secret sharing scheme. Finally, Sect. 5 summarizes the key
findings of the paper and puts them into perspective.

2 Preliminary Definitions

In this section, we recall the basic definitions and notions which we will use in the
rest of the paper. In particular, Sect. 2.1 covers all necessary background about
CA and their representation based on de Bruijn graphs. Section 2.2 gives the
basic definitions regarding orthogonal Latin squares and how they can be used
to construct perfect (2, n) secret sharing schemes. Section 2.3 briefly reviews the
construction of OLS by means of linear OCA and the exhaustive and heuristic
search of OLS by nonlinear OCA.

2.1 Cellular Automata

Throughout this work, we focus on one-dimensional No Boundary Cellular
Automata (NBCA), formally defined as follows:

Definition 1. Let Σ be a finite alphabet and n, d ∈ N with n ≥ d. Additionally,
let the function f : Σd → Σ be a local rule of diameter d. The No Boundary
Cellular Automaton (NBCA) F : Σn → Σn−d+1 is the vectorial function defined
for all x ∈ Σn as

F (x1, · · · , xn) = (f(x1, · · · , xd), f(x2, · · · , xd+1), · · · , f(xn−d+1, · · · , xn)). (1)

Function F is also called the CA global rule.

In other words, an NBCA can be viewed as an array of n ≥ d cells, where each
of the leftmost n − d + 1 cells computes its next state by evaluating rule f on
the neighborhood formed by itself and the d − 1 cells to its right. In particular,
the rightmost d − 1 cells of the array are ignored, so that the size of the CA
“shrinks” by d − 1 cells upon application of the global rule F .

In the rest of this paper, we assume that the state alphabet Σ is the finite
field with two elements F2 = {0, 1}. In this case, a NBCA can be interpreted as
a particular kind of vectorial Boolean function F : Fn

2 → F
n−d+1
2 , where each

coordinate function fi : Fn
2 → F2 defining the i-th output value corresponds to

the local rule applied to the neighborhood of the i-th cell. Since in this case the
local rule is a single-output d-variable Boolean function f : Fd

2 → F2, it can be
uniquely represented by the 2d-bit output column of its truth table, which we
denote by Ωf . In the CA literature it is customary to identify a local rule f by
its Wolfram code, which is the decimal encoding of its truth table Ωf .

A local rule f : F
d
q → F2 is called right (respectively, left) permutive if,

by fixing the values of the leftmost (respectively, rightmost) d − 1 cells to any
value x̃ ∈ Σd−1, the resulting restriction fx̃ : Σ → Σ is a permutation over Σ.
Moreover, f is called bipermutive if it is both left and right permutive. When
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Fig. 1. Example of NBCA defined by rule 150, together with its de Bruijn graph.

Σ = F2, a bipermutive rule f : Fd
2 → F2 is defined for all x = (x1, · · · , xd) ∈ F

d
2

as:
f(x1, · · · , xd) = x1 ⊕ g(x2, · · · , xd−1) ⊕ xd, (2)

where g : Fd−2
2 → F2 is a (d − 2)-variable Boolean function.

Another common way for representing a CA is through its de Bruijn graph.
Let us assume that u, v ∈ Σn are two strings over the alphabet Σ of length n
such that u = u1x and v = xv1, where u1, v1 ∈ Σ and x ∈ Σn−1 is a string of
length n − 1. In other words, u and v overlap respectively on the rightmost and
leftmost n − 1 symbols. The fusion between u and v is the string z = u � v of
length n + 1 obtained by adding to u the last symbol of v [17]. Then, one can
formally define the de Bruijn graph associated to a CA as follows:

Definition 2. Let F : ΣZ → ΣZ be a CA defined by a local rule f : Σd → Σ
of diameter d. The de Bruijn graph associated to F is the directed labeled graph
GDB(f) = (V,E, l) where V = Σd−1 and such that for any v1, v2 ∈ V , one
has (v1, v2) ∈ E if and only if there exists z ∈ Σd such that z = v1 � v2.
The label function l : E → Σ on the edges is defined for all (v1, v2) ∈ E as
l(v1, v2) = f(v1 � v2).

Stated otherwise, the vertices of the de Bruijn graph correspond to all possible
blocks of d−1 cells. Two vertices v1 and v2 are connected by an edge if and only
if they overlap respectively on the rightmost and leftmost d − 1 cells, and the
label on this edge is obtained by computing the CA local rule on the fusion of
v1 and v2. Figure 1 depicts an example of binary NBCA F : F6

2 → F
4
2 induced by

the local rule f(xi, xi+1, xi+2) = xi ⊕ xi+1 ⊕ xi+2, whose Wolfram code is 150,
together with its de Bruijn graph.

2.2 Orthogonal Latin Squares and Secret Sharing Schemes

Given N ∈ N, let us denote by [N ] the set {1, · · · , N}. Then, one can formally
define orthogonal Latin squares as follows:
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Definition 3. A Latin square L of order N ∈ N is a N ×N matrix whose rows
and columns are permutations of [N ], i.e. every element of [N ] occurs exactly
once in each row and each column. Two Latin squares L1, L2 of order N are
called orthogonal if for all distinct pairs of coordinates (i1, j1), (i2, j2) ∈ [N ]×[N ]
one has

(L1(i1, j1), L2(i1, j1)) �= (L1(i2, j2), L2(i2, j2)), (3)

that is, the superposition of L1 and L2 yields all possible pairs in the Cartesian
product [N ] × [N ].

Remark 1. Two orthogonal Latin squares L1, L2 of order N ∈ N induce a per-
mutation π : [N ]× [N ] → [N ]× [N ] over the Cartesian product [N ]× [N ], which
is defined as

π(i, j) = (L1(i, j), L2(i, j)) (4)

for all (i, j) ∈ [N ] × [N ].

A set n pairwise orthogonal Latin squares of order [N ] is denoted as n− MOLS
(Mutually Orthogonal Latin Squares). Figure 2 reports an example of orthogonal
Latin squares of order N = 4, together with their superposition.

Fig. 2. Orthogonal Latin squares of order N = 4.

Orthogonal Latin squares turn out to have several applications in cryptog-
raphy and coding theory [5,16], one of the most interesting being secret sharing
schemes (SSS). Informally speaking, a SSS is a procedure which enables a trusted
party (called the dealer) to share a secret S among a set of n players. In par-
ticular, the players receive shares of the secret from the dealer, and only certain
authorized subsets of players specified in an access structure can reconstruct the
secret by combining together their shares. A SSS is called perfect if any sub-
set not belonging to the access structure cannot determine the secret (in an
information-theoretic sense).

In this work we focus mainly on perfect (k, n)− threshold SSS, where the
authorized subsets are those having cardinality at least k. Hence, any combina-
tion of k shares is enough to uniquely determine the secret, while knowing k − 1
or less shares keeps any value of the secret equally likely.

The connection between perfect threshold SSS and orthogonal Latin squares
is established by the following result [16]:
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Theorem 1. A perfect (2, n)− threshold SSS exists if and only if there exists a
set of n MOLS of order N .

The setup phase of a (2, n)− threshold SSS from a set of n MOLS L1, · · · , Ln

goes as follows. First, the secret S is represented as a row i ∈ [N ] of the
squares, and the dealer randomly chooses a column j ∈ [N ]. Then, for each
m ∈ {1, · · · , n}, the dealer secretly sends to the m-th player the share Bm =
Lm(i, j), i.e. the entry of the m-th Latin square at row i and column j. Finally,
the dealer publishes the Latin squares L1, · · · , Ln.

In the recovery phase, any pair of players p, q respectively holding shares
Bp, Bq can recover the secret simply by overlaying the two public Latin squares
Lp, Lq. Since Lp and Lq are orthogonal, the pair of shares (Bp, Bq) occurs at a
single pair of coordinates (i, j), the row of which is the secret S. Conversely, if
p tries to determine the secret on her own without knowing the share Bq, there
will be exactly N pairs (Bp, ·) in the overlay of the two Latin squares, due to the
fact that Lp and Lq are orthogonal. A symmetric argument holds when q tries
to determine S by herself without knowing Bp. Hence, the knowledge of a single
share leaves the value of the secret completely undetermined, which makes the
scheme perfect.

2.3 Construction of OLS by CA

We now describe how CA can be employed to obtain orthogonal Latin squares,
briefly recalling the construction reported in [7]. In what follows, given a binary
vector x ∈ F

n
2 , we will denote by φ(x) ∈ {1, · · · , 2n} the integer number corre-

sponding to the decimal representation of x+1. On the contrary, for any integer
number i ∈ {1, · · · , 2n}, ψ(i) ∈ F

n
2 will stand for the n-bit binary representation

of i − 1. Notice that φ = ψ−1 and ψ = φ−1.
Let F : F2(d−1)

2 → F
d−1
2 be a CA based on a local rule f : Fd

2 → F2 of d
variables. This means that F is a vectorial Boolean function mapping binary
strings of length 2(d − 1) to strings of length d − 1. Setting N = 2d−1, one can
associate a N × N square matrix SF to F as follows: for each (i, j) ∈ [N ] × [N ],
the entry of SF at row i and column j equals

SF (i, j) = φ(F (ψ(i)||ψ(j))), (5)

where || denotes the concatenation operator. Thus, the entry SF (i, j) is deter-
mined by computing the CA on the input vector where the first d − 1 bits
corresponds to the binary representation of row i, while the last d − 1 are the
binary representation of column j.

One may wonder under which conditions the matrix associated to a CA is a
Latin square. As shown in the next result [7], this situation happens when the
underlying local rule is bipermutive:

Lemma 1. Let F : F2(d−1)
2 → F

d−1
2 be a CA with bipermutive local rule f : Fd

2 →
F2. Then, the square SF induced by F is a Latin square of order N = 2d−1.
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As an example, Fig. 3 depicts the Latin square of order N = 4 associated to the
CA F : F4

2 → F
2
2 with bipermutive local rule 150. A natural question immediately

following from Lemma 1 is when the Latin squares associated to two bipermutive
CA F,G are orthogonal. In this case, we call the pair F,G as Orthogonal Cellular
Automata (OCA), and by analogy a family of bipermutive CA whose associated
Latin squares are MOLS is called a set of Mutually Orthogonal Cellular Automata
(MOCA).

Fig. 3. Example of Latin square to the CA F : F4
2 → F

2
2 with local rule 150.

The question has been settled in [7] for linear rules. A local rule f : Fd
2 → F2

is linear if there exists a vector a = (a1, · · · , ad) ∈ F
d
2 such that f(x1, · · · , xd) =

a1x1⊕· · ·⊕adxd for all x = (x1, · · · , xd) ∈ F
d
2. In this case, rule f is bipermutive

if and only if a1 = ad = 1. Additionally, one can easily associate to f a polynomial
pf (X) ∈ F2[X] of degree d−1 by defining it as pf (X) = a1+a2X+· · ·+adX

d−1.
Using this representation, the authors of [7] proved the following result:

Theorem 2. Let F,G : F2(d−1)
2 → F

d−1
2 be two CA respectively defined by two

linear bipermutive rules f, g : Fd
2 → F2. Further, let pf , pg denote the two poly-

nomials respectively associated to f and g. Then, F and G are OCA if and only
if gcd(pf , pg) = 1, that is, if and only if f and g are coprime.

In [8] the authors performed an exhaustive search for finding all OCA pairs
equipped with nonlinear bipermutive rules of diameter up to d = 6. Further,
the optimization problem of determining nonlinear OCA of diameter d = 7, 8
has been addressed in [11]. In particular, since exhaustive search is not feasible
for any d > 6, the authors resorted to genetic algorithms (GA) and genetic
programming (GP).

3 Computing Preimages of OCA

We can now formally state the inversion problem for OCA which we analyze in
the rest of this paper:

Problem 1. Let F,G : F2(d−1)
2 → F

d−1
2 be a pair of OCA respectively defined by

bipermutive local rules f, g : Fd
2 → F2, and let w, z ∈ F

d−1
2 be two (d − 1)−bit

vectors. Then, find the vector c = x || y with x, y ∈ F
d−1
2 such that (F (c), G(c)) =

(w, z).
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Using the terminology of Latin squares, Problem1 requires finding a pair of
row/column coordinates (φ(x), φ(y)) such that the corresponding entry in the
superposition of Latin squares SF and SG is the pair (φ(w), φ(z)). Since SF and
SG are orthogonal, by Remark 1 such pair of coordinates is unique.

Notice that Problem 1 does not assume any linearity on the bipermutive local
rules underlying the two OCA, so the inversion algorithm which we develop in
this section works both for linear and nonlinear OCA. Before describing it, we
first need to introduce some additional data structures and algorithms.

Let GDB(f) = (V,E, lf ) and GDB(g) = (V,E, lg) be the de Bruijn graphs
respectively associated to two CA F,G : Σ2(d−1) → Σd−1 equipped with local
rules f, g : Σd → Σ of diameter d. Then, the coupled de Bruijn graph induced
by F and G is the de Bruijn graph GDB(f, g) = (V,E, lf,g) whose edge labeling
function l : E → Σ × Σ is defined for all (v1, v2) ∈ E as

l(v1, v2) = (lf (v1, v2), lg(v1, v2)). (6)

Thus, the labeling on the coupled de Bruijn graph is formed setting side by side
the edge labels of the de Bruijn graphs of the single CA.

In what follows, we will make use of the variant of Depth First Search origi-
nally introduced in [10] to compute the unfolding of de Bruijn graphs. Given a
configuration y of length p and a vertex v of a de Bruijn graph GDB(f) = (V,E, l)
associated to a CA, this algorithm visits GDB(f) starting from a single vertex
v1 and following the path on the edges labeled by y. In particular, contrary to
the plain version of DFS, this variant does not mark the visited edges, so that in
principle they can be visited multiple times. The fusion of the vertices v1, · · · , vp
visited during this algorithm determines a preimage x of configuration y. In our
case, we will denote by DFS-Mod(V,E, l, v, w, z) a call to this DFS variant on
the coupled de Bruijn graph GDB(f, g) = (V,E, l) associated to f and g, starting
from vertex v and reading the edge labels determined by juxtaposing the config-
urations w, z ∈ F

d−1
2 . In particular, it is not guaranteed that a preimage of w, z

can be found, since for any i ∈ {1, · · · , d − 1} there might be no edges labeled
with (wi, zi) that exit from vertex vi visited by the DFS on step i − 1. Thus, we
will assume that DFS-Mod(GDB(f, g), l, v, w, z) either returns a preimage c of
w, z or the value NIL when such preimage cannot be constructed starting from
vertex v.

We can now describe the structure of our inversion procedure for OCA, whose
pseudocode is reported in Algorithm 1. The procedure takes as input the coupled
de Bruijn graph GDB(f, g) of two OCA F,G : F2(d−1)

2 → F
d−1
2 defined by biper-

mutive rules f, g : Fd
2 → F2 respectively, and two configurations w, z ∈ F

d−1
2 .

The first three steps of the algorithm simply extract the vertex set, the edge
set and the labeling function of the graph, while the fourth step initializes the
configuration to be returned to NIL. Then, the while loop is performed until
there are edges in E labeled with the first symbols of w and z, and c equals NIL.
Inside the loop, the only instruction is the call to DFS-Mod starting from the
first vertex of the edge. If the DFS visit successfully completes, then a preimage
of (w, z) is returned and assigned to c, otherwise c remains NIL. As soon as a
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preimage is found or there are no other edges labeled with (w1, z1) in the coupled
de Bruijn graph, the execution exits the while loop and the current value of c is
returned.

Algorithm 1. Invert-OCA(GDB(f, g), w, z)
V := Vertex(GDB(f, g))
E := Edges(GDB(f, g))
l := Labels(GDB(f, g))
c := NIL
while e ∈ {(v1, v2) ∈ E : l(v1, v2) = (w1, z1)} AND c = NIL do

c := DFS-Mod(V,E, l, v1, w, z)
end while
return c

We now prove the correctness and the time complexity of Algorithm 1, under
the assumption that F and G are OCA.

Theorem 3. Let F,G : F
2(d−1)
2 → F

d−1
2 be two OCA with bipermutive local

rules f, g : Fd
2 → F2 and let GDB(f, g) be the coupled de Bruijn graph of F and

G. Then, for any pair of final configurations w, z ∈ F
d−1
2 , the procedure Invert-

OCA correctly returns the unique preimage c ∈ F
2(d−1)
2 such that (F (c), G(c)) =

(w, z) in O(d · 2d) steps.

Proof. Correctness. Let w, z ∈ F
d−1
2 be two configurations of d − 1 bits, and let

φ(w), φ(z) be their decimal representations ranging in [N ], where N = 2d−1.
Since the two Latin squares SF and SG are orthogonal, the pair (φ(w), φ(z))
appears exactly once in their superposition. Let i, j ∈ [N ] be respectively the row
and column coordinates where such pair occurs. Given the binary representation
ψ(i), ψ(j) ∈ F

d−1
2 of i, j and denoting by c = ψ(i) || ψ(j) their concatenation,

this means that
(F (c), G(c)) = (w, z) (7)

Algorithm 1 invokes DFS-Mod on all vertices v ∈ V which have an outgoing
edge labeled by (w1, z1). In particular, due to the fact that SF and SG are orthog-
onal, there will be exactly one call which returns a value different from NIL, and
this value corresponds to the only preimage c which satisfies Eq. (7).

Complexity. To determine the time complexity of Invert-OCA, first remark
that a single call to DFS-Mod requires at most d − 1 steps to complete, because
the two configurations w, z have length d−1 each, and their symbols are pairwise
read during the DFS visit. In particular, a DFS visit could return before d − 1
steps, due to the fact that there are no outgoing edges labeled with the pairs of
symbols of w and z. To conclude, we need to determine how many times DFS-
Mod is invoked. Lemma 3 in [8] shows that the local rules of OCA are pairwise
balanced, meaning that there are exactly 2d−2 edges on the coupled de Bruijn
graph labeled with (w1, z1). Consequently, DFS-Mod is invoked 2d−2 times, thus
the overall time complexity of Invert-OCA is O(d · 2d). �	
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One may notice that the time complexity of Algorithm1 is exponential with
respect to the diameter of the CA. However, remark that Algorithm 1 can be
straightforwardly parallelized by assigning a processor to each DFS call inside
the while loop. Hence, by using 2d−2 processors in parallel, the time complexity
of Invert-OCA can be reduced down to O(d), which is the number of steps
necessary to complete a DFS visit.

4 Application to Secret Sharing Schemes

On account of Theorem 2, a set {p1, · · · , pn} of n pairwise coprime polynomials
of degree d − 1 is equivalent to a family of n linear MOCA of order N = 2d−1,
and thus by Theorem 1 it is also equivalent to a perfect (2, n)-threshold SSS.
However, publishing the whole set of n MOLS is not an efficient way to implement
the recovery phase of a SSS, especially if the size of the squares is huge. Thus,
one needs to find a compact way to describe the recovery phase of the secret
starting from the knowledge of two shares.

In this concluding section, we show how our inversion algorithm Invert-
OCA can be used precisely for this purpose. To our knowledge, this is the first
time that a full perfect (2, n)-threshold SSS based on CA is described in the
literature. As a matter of fact, there have been other attempts at designing
CA-based secret sharing schemes (such as [9,13]), but the resulting access struc-
tures suffered from an additional adjacency constraint on the shares, since they
actually represent blocks of CA configurations.

Let the secret S be a vector of Fm
2 where m = d − 1, and assume that there

are n players P1, · · · , Pn. Then, the setup phase of our (2, n)-threshold SSS is as
follows:

Setup Phase
Initialization:

1. Find n local rules f1, · · · , fn : F
d
2 → F2 which give rise to a set of n

MOCA of order N = 2d−1. By Theorem 2, this can be done for example
by picking n relatively prime polynomials pf1(x), · · · , pfn(x) over F2

2. Concatenate secret S with a random vector R ∈ F
m
2 , thus obtaining a

configuration C ∈ F
2m
2 of length 2(d − 1)

Loop: For all i ∈ {1, · · · n} do:
1. Given Fi : F2m

q → F
m
2 the NBCA defined by rule fi, compute Bi = Fi(C)

2. Send share Bi to player Pi

Termination: Publish the n local rules f1, · · · , fn defining the MOCA.

For the recovery phase, suppose that two players Pi and Pj want to determine
the secret. Let Bi and Bj respectively denote the share of Pi and Pj . Since the
local rules of the MOCA are public, both Pi and Pj know the CA linear rules
fi and fj used by the dealer to compute their shares. Hence, they adopt the
following procedure to recover S:
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Recovery Phase
Initialization:

1. Find the CA linear rules fi and fj published by the dealer corresponding
to players Pi and Pj

2. Compute the coupled de Bruijn graph GDB(fi, fj)
Reconstruction:

1. Compute configuration C by calling Invert-OCA(GDB(fi, fj), Bi, Bj)
2. Return the first half of C as the secret S

Hence, the recovery phase of this SSS simply consists in computing the preimage
of the pair of configurations represented by the shares Bi, Bj under the action of
the two OCA with local rules fi, fj . In particular, the whole preimage returned
by Invert-OCA contains both secret S in its left half and the random column
chosen by the dealer in the second half.

5 Discussion, Conclusions and Directions for Future
Work

In this paper, we described an algorithm to invert a pair of configurations under
the action of two OCA. Specifically, starting from the coupled de Bruijn graph
of the two OCA of diameter d, the algorithm applies a DFS-based search until
a valid path labeled with the two configurations is found. The existence of such
unique path is guaranteed by the fact that the two OCA define a pair of orthog-
onal Latin squares, and thus a bijection among pairs of (d−1)-bit vectors. Since
there are 2d−1 vertices in the coupled de Bruijn graph, in the worse case the run-
ning time of our algorithm is exponential in the diameter of the CA. However,
this algorithm is easily parallelizable, by assigning a DFS call to a separate pro-
cessor. Hence, using O(2d) processors in parallel yields a time complexity which
is linear in the CA diameter. As an application of this algorithm, we showed
how to implement the recovery phase of a (2, n)-threshold secret sharing scheme
based on MOCA.

Taking a closer look at the computational complexity of Algorithm 1, one
may notice that we did not consider the size of the input in our analysis. As a
matter of fact, the de Bruijn graph of a CA is already exponential in the CA
diameter, something which apparently hinders the applicability of our inversion
algorithm. However, depending on the nature of the underlying local rules, one
can find more efficient representations of this algorithm. For instance, if the local
rules are linear, then it is possible to adapt the preimage construction procedure
described in [9] as follows: first, the leftmost (d− 1)-cell block of the preimage is
randomly guessed. Then, one exploits the right permutivity property of the two
local rules to compute the two values for the d-th cell of the preimage. If the two
values are equal, then the preimage is consistent up to that point, and the next
cell in position d+1 can be computed. This process is repeated rightwards, until
either a mismatch is found between the two computed values (meaning that one
has to start over with a new left block of d − 1 cells), or the rightmost block
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is completed (i.e. the correct preimage mapping to the pair of configurations
has been found). Under this procedure, one can compute the two values for the
current preimage cell using the Algebraic Normal Form (ANF) [3] of the two
CA local rules. If the rules are linear, then the size of their ANF is linear in the
CA diameter d, since it just corresponds to an XOR of a subset of the input
variables. Of course, in the general case of nonlinear bipermutive rules the size
of the ANF can still be exponential in the diameter.

However, we remark that this issue is mainly a matter of trade-off between the
required amount of nonlinearity of the CA local rules and their ANF sizes, which
highly depends on the specific application domain of our inversion algorithm.
Returning to our secret sharing scheme example, most of the existing protocols
used in practice are actually linear. Thus, plugging linear rules into our example
described in Sect. 4 would yield another linear threshold scheme with a recovery
phase that can be performed in O(d) steps using O(2d) processors in parallel. As
a consequence, it would be interesting to compare the complexity of our scheme
with those of other well-established linear SSS, such as Shamir’s scheme [15].
Further, as pointed out in [7], the inversion problem of two linear OCA actually
amounts to the inversion of a Sylvester matrix. Hence, another direction worth
exploring for further research is to investigate the computational complexity of
inverting this kind of matrices, in order to verify if a faster inversion algorithm
can be designed.

Under a different perspective, for certain applications there is the need for
nonlinear secret sharing schemes. An example are cheater-immune secret sharing
schemes based on nonlinear constructions, which are robust towards dishonest
players who submit fake shares during the reconstruction phase [18]. In this
case, it would be interesting to analyze the trade-off between the amount of
nonlinearity that the local rules must have to achieve cheater-immunity and the
size of their ANF. A possible strategy could be to cast this question in terms
of an optimization problem, and then solve it through heuristic techniques such
as Genetic Programming (GP), which already proved to be successful in the
design of S-boxes with good cryptographic properties and small implementation
costs [12].

As a closing remark, we note that determining how large a family of MOCA
can be is still an open problem, even in the linear case. As shown in [7], verifying
whether a set of linear bipermutive CA of diameter d form a family of MOCA is
equivalent to check that the polynomials associated to the local rules are pairwise
coprime. However, despite the enumeration of coprime polynomials over finite
fields is a well-developed research topic (see e.g. [1]), as far as we know there
are no works in the literature addressing coprimality of monic polynomials with
nonzero constant term, which is exactly the subclass corresponding to linear
bipermutive local rules. Very recently, the first author showed a construction
of a family of pairwise coprime polynomials of this kind in his PhD thesis [6],
thus providing a first lower bound on its size. Nonetheless, optimality of this
construction is still open.
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Eroders and Proliferation: Repairing that
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Abstract. We study a cellullar automata inspired asynchronous model
of computation that models core features of the structure and functioning
of living cells. We describe cell repair rules that ensure that the structure
and the computation performed by a group of cells withstands occasional
faults that may occur.

We observe that some self-organizing healing strategies of cells do
admit that, under certain conditions, cells do exhibit massive prolifera-
tion of cells.

Keywords: Faults · Nubots · Eroders · Proliferation

1 Introduction

We consider a specific version of the Nubot model established in [4], which can be
understood as asynchronous and non-deterministic cellular automata. The model
allows the creation and destruction of cells, and most importantly, it admits
exponential growth. We consider the dynamics of this model under noise that
may cause that some cells alter their state to an arbitrary state, die completely,
or create a cell on an empty site. The basic problem in the study of reliable
computation is the storage problem: we want to save one bit of information –
say bit 0 — forever, despite the faults caused by the noise mentioned above.
A typical solution of this problem in plain vanilla two-dimensional CA in Von
Neumann neighborhood is to encode this bit on a CA using the repetition code,
and then apply the Toom’s rule [3]. At each instance of time, a cell checks its
current state, the neighboring square to the North and the neighboring square
to the East. If the majority of these states is 1, then the state of the current
square becomes 1; otherwise it becomes 0. This rule is applied synchronously.

We say that a CA is an eroder if it wipes all islands in a finite (but not
necessarily uniform) number of steps. The Toom’s rule is an eroder. Per [2],
even when the updates are performed asynchronously, the CA is still an eroder
(in a bit modified but still equivalent sense). In our model, Toom’s rule is a good
starting point but it is not enough.

The model facilitates reasoning about basic rules that guide the robustness
of organized groups of cells (aka colonies) against random noise or decay that
c© Springer Nature Switzerland AG 2018
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may cause that certain cells die, some get their state altered to an arbitrary
state, or that a new cell is created at an empty site. We will present majority
based rules that will wipe islands of We observe that under certain conditions, a
massive proliferation of cells occurs. Alas, this proliferation is programmatically
guided by the repair rules.

This paper is aimed to be a starting point for further study of proliferation
phenomena and in particular, to study optimal rules that provably prevent it
from occurring altogether.

2 The Model

The model uses a two-dimensional triangular grid with a coordinate system using
x and y . A pair p ∈ Z

2 is called a site, and it has 6 neighbors. A cell is the basic
unit of the model defined as state-labeled disk of unit diameter centered on a
site. Each site has at most one cell. A (finite) set of rules specifies how adjacent
cells interact with each-other. This set is embedded in each cell. Cells have also
a state – a finite amount of information from a fixed finite set called the state
space. Cells are connected to each other through bonds. After applying a set
of rules, they can change their state or the type of bond between them. These
rules are applied asynchronously. Two adjacent cells can have a rigid (depicted
as a solid disk) or a flexible bond (depicted as a small circle), or no bond at all
between them.

Rules are written as follows:

r = (s1, s2, b,u) → (s1′, s2′, b′,u’ ),

where s1, s2 ∈ Σ ∪ {empty} are cell states from the finite set Σ, empty denotes
the absence of a cell; b ∈ {flexible, rigid,null} is the bond type between two cells,
u is the relative position of the s2 cell to the s1 cell. The same applies for the
right part of the arrow. If s1 or s2 is empty, the bond b between them is null,
also if either or both s1′, s2′ is empty, then b′ is null.

In Fig. 1 we give some examples that illustrate state and bond changes,
cell creation and cell removal with the following respective rules: r1 =
(2, 4,null,x ) → (1, 5,null,x ), r2 = (0, 0,null,x ) → (0, 0,flexible,x ) , r3 =
(1, 1, rigid,x ) → (1, 1,null,x ), r4 = (5, 2, rigid,x ) → (1, 3,flexible,x ), r5 =
(a, empty,null,x ) → (x, 1,flexible,x ), r6 = (b, 1, rigid,x ) → (1, empty,null,x ).

2 4 1 5
r1

0 0 0 0
r2

1 1 1 1
r3

5 2 1 3

a 1 3

b 1 1

r4

r5

r6

Fig. 1. Examples of cell interaction rules. Rule r1 change states. Rule r2 make a flexible
bond. Rule r3 break a rigid bond. Rule r4 change a rigid bond to a flexible bond and
change the states. Rule r5 appearance of a cell. Rule r6 disappearance of a cell.
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3 Fault-Tolerance Step-by-Step

Clearly, having a single cell saving the information embedded within is impos-
sible, since noise can change the state of the cell or remove the cell completely.
For this, we need to split this task among a group of cells. This group of cells
will have a specific size and certain geometric properties (see Fig. 2). We will call
such a group of cells a colony.

f

Fig. 2. Encoding one cell using redundancy on a colony

We focus our attention on the following problem: how one colony of cells with
the same state (say, they display number 1) can live forever despite “occasional”
flips of some cells’ states. For the moment, we assume that the colony that
we are observing is of infinite size. We cannot apply the idea of the Toom’s
rule directly, because our model is asynchronous, each cell in our model has 6
immediate neighbors, and our rules define the change of a pair of cells rather
of a one single cell. However, its core idea — the majority voting — is a good
starting point. Below we develop this idea precisely in several steps.

1. Majority rule. Let us consider one large enough colony of cells, all of them
displaying the same state. Neighboring cells of a shape are connected via
rigid bonds. Suppose that noise can only flip the state of some cells. To apply
the Toom’s rule, we need the following rules: r1 = (1, 0, 1, E) → (a, 0, 1, E),
r2 = (a, 0, 1, NE) → (0, 0, 1, NE), and r3 = (a, 1, 1, NE) → (1, 1, 1, NE),
where state a is an intermediate one that helps us to determine properly the
state of the cell in the next step. When rule r1 is applied, the cell checks its
own state and the neighbor in the east. Then by using r2 and r3 we take into
consideration the two possible states of the neighbor cells in the northeast,
which results in the majority of the states of itself, east and northeast neigh-
bor. The above rules are given for state 1. Rules pertaining to the state 0 are
written analogously.

2. When a cell is deleted by noise. If a cell is deleted by the noise,
then a new cell with state X is added instead of it. State X represents
a kind of an “undifferentiated state” of a cell. Such a cell is called a
generic. To add a cell with state X in the interior part of the shape we
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use r7 = (1, empty, 0, E) → (1,X, 1, E). We apply rules similar to r7 on any
of the possible six directions in order to fill all the gaps that can be created
in the shape. Then we change the bonds to rigid ones throughout the shape
with the rules like r8 = (X, 1, 0, SW ) → (X, 1, 0, SW ). A cell with state X
determines its new state according to the state of its neighbors. If it sees 0
in the East, it behaves like it was a cell with state 1 and sets its state to a;
otherwise it sets it to b. We do this using r9 = (X, 0, 1, E) → (a, 0, 1, E) and
r10 = (X, 1, 1, E) → (b, 1, 1, E), where states a and b are intermediate states
in the process of “differentiation” of a newly created cell with the state X to
a cell with a state 0 or 1 respectively.

3. Preserving the shape through a liner. Until now, we did not consider
the size of a colony nor its shape. However, since we have added a rule that
creates a cell on an empty site, we need to introduce a kind of a boundary
that preserves the geometrical features of a colony and does not allow its
uncontrolled growth. For this, we need to “wrap” a colony with a liner with
a kind of cells that will not apply the creation rule. For this, we add a three
layer shell around the shape made of cells with specific state for each layer of
the shell, say with the state a1 for the first layer, a2 for the second, and a3
for the outermost layer. The cells of the outer layer cannot create a cell on an
empty site. If a cell of this kind is killed, then it will be created by the cells
of the other layers of the liner. To determine properly the state of the new
cells, Toom’s rule is applied by the cells comprising the liner, using r16 =
(V,A, 1, E) → (V ′, A, 1, E), r17 = (V ′, A, 1, SE) → (A′, A, 1, SE), r18 =
(D,V, 1,W ) → (D′, V, 1,W ), and r19 = (D′, V, 1, NW ) → (A′, V, 1, NW )
If one of the cells of the liner is deleted, we add a new cell using r11 =
(A, empty, 0, NE) → (A,D, 1, NE). If the state of a cell is D, and it has
a neighboring cell with a state in {1, 0, a, b}, then, its state changes to X
by r12 = (D, 0, 1,W ) → (X, 0, 1,W ). Further, if a cell with a state in
{a, b, 1, 0} has a neighbor with state A′, its state switches to D, that is
r13 = (a,A′, 1, NE) → (D,A′, 1, NE). If a cell whose state is V neighbors
a cell with the state in {0, 1, a, b}, then it changes its state to X by rule
r14 = (V, b, 1, SW ) → (X, b, 1, SW ). When it sees X, it becomes D by the
application of r15 = (V,X, 1, E) → (D,X, 1, E).

4. When a cell is created by mistake. If the noise causes a cell to be created
on an empty site with the empty neighborhood, that cell will die, after it has
confirmed that it is surrounded by empty sites.

Assuming that the noise cannot kill or modify consecutive cells of the liner, in [1],
the recovery power of the rules is demonstrated for various convex shapes with
various degree of initial damages of the colony in terms of islands of cells with
different state or holes of missing cells.
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4 Uncontrolled Programatically Guided Proliferation
of Cells

Let us assume that a colony has a shape of a regular hexagon and its interior
is initially filled with number 1. We will show that some of the above repair
rules, may lead to uncontrolled proliferation of cells under some conditions and
circumstances that we will demonstrate below.

1. Colony without a liner. Trivially, if the liner is missing, then the rules
that create cells on empty sites will fire, hence growing the shape constantly.
Indeed, recall that the creation of the cells is performed in all directions.

2. The case of one layer liner. For simplicity, let us begin by considering a
one layer liner. Suppose that two consecutive cells of the liner are removed as
depicted in Fig. 3. The system in a noise-free setting will evolve as depicted
in Fig. 4. Clearly, this would not happen if only one cell of the liner could
have been removed since there is no majority which can allow this spread.
We also point out that this kind of proliferation is much slower and rare (in
probabilistic terms) or does not occur at all on the other sides of the colony.
Indeed, recall that the majority rules are applied in N and NE direction.

3. The case when the liner has three layers. Let us consider a “wound” on
the liner at the same side as before. The wound consists of three consecutive
cells of the outermost liner, two cells of the second layer next to them, and
two neighboring cells of these of the third layer. This is a sufficiently large
wound in which, with probability 1/3, a proliferation will occur as in the case
of the one layer liner.

Fig. 3. A wound on a liner
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(a) (b) (c)

(d) (e) (f)

Fig. 4. In (a), two generic cells are created, which according to the majority rules will
result in (b). Now these two cells, will create another generic cell as shown in (c). The
evolution now continues by having a massive proliferation of cells.

5 Conclusions and Open Questions

In the paper, the focus is given to the problem of preserving the information
and the shape of a group of cells referred to as a colony when automaton is
subjected to noise. We proposed rules which do preserve information within the
colony despite the noise. Alas, under certain conditions, the repair rules do admit
massive proliferation of cells. As shown in the examples given, even majority
computation does have some influence in these sequences of bad events. Finding
repair rules that provably do not admit proliferation of cells is the most intriguing
open question in this context. Furthermore, geometric properties of colonies
appear to have some influence in the proliferation phenomena. Establishing this
link formally, is also an interesting open question.
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Abstract. Alesia is a two-player zero-sum game which is quite similar
to the rock-paper-scissors game: the two players simultaneously move
and do not know what the opponent plays at a given round. The simul-
taneity of the moves implies that there is no deterministic good strategy
in this game, otherwise one would anticipate the moves of the oppo-
nent and easily win the game. We explore how to build a family of one-
dimensional stochastic cellular automata to play this game. The rules
are built in an iterative way by progressively increasing the complexity
of the transitions. We show the possibility to construct a family of rules
with interesting results, including a good performance when confronted
to the Nash-equilibrium strategy.

Keywords: Stochastic cellular automata
Probabilistic dynamical systems · Zero-sum markov strategy games

1 Introduction

The purpose of this note is to present a sketch on how stochastic cellular
automata can be used to play a simple strategy game in which randomness
has a central role. This game, named Alesia after the battle that opposed Gallic
tribes and the army of J. Caesar 52 BC, has simple rules [4]: (1) The two play-
ers initially have the same number of soldiers, say 50. (2) Each round, the two
players fight a battle by simultaneously engaging a given number of soldiers. The
soldiers are then lost, whatever the outcome. Players must engage at least one
soldier at each round (if they have not lost all their soldiers). (3) The winner of
battle is simply the player who has engaged more troops; the front moves by one
step in the direction of his opponent. (4) The winner of the game is the player
who succeeds to reach his opponent’s camp, that is, to make the front advance
more than W steps, where W is fixed in advanced (here we take W = 2). (5)
The game ends in a draw if none of the players reaches the opponent’s camp.

To illustrate these rules, an example of game is given on Fig. 1-left.
After playing a few games, one discovers that any good strategy should

find a balance between playing too much or too little soldiers at each battle.
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sA pA pB sB
50 11 o . . @ . . o 14 50
39 12 o . @ . . . o 12 36
27 9 o . @ . . . o 1 24
18 5 o . . @ . . o 5 23
13 4 o . . @ . . o 3 18
9 3 o . . . @ . o 4 15
6 2 o . . @ . . o 3 11
4 2 o . @ . . . o 4 8
2 1 o @ . . . . o 2 4
1 - @ . . . . . o - 2

Fig. 1. (left) Example of an Alesia game: sA, sB, pA, and pB are the soldiers and the
plays of player A and B, respectively. (right) Example of space-time diagram produced
by the q2h2 player (see below). The cells in blue, brown, and green code the initial
condition (states A, F, B); the result is given by the number of black cells (state V);
other colours encode auxiliary states (see below for details). Time goes upward. (Color
figure online)

Indeed, a large number of soldiers ensures victory but depletes the reserves for
the next rounds. On the contrary, a small number of soldiers saves the reserves
but increases the risks to loose the battle.

The other important point is that a good strategy is necessarily stochastic.
Indeed, if for instance a player always plays 4 at the first round, the opponent
can foresee this decision and decide to play 5 and thus win the first round. If
the player always plays 20, the opponent’s interest is to play only 1, and to
deliberately loose the first round to gain an advantage in the number of soldiers.
Of course, this argument can be recursively applied to the next rounds...

Our aim is to analyse whether simple cellular automata could calculate a
good strategy for this game. Our motivation is to explore how “noisy” com-
ponents with an elementary behaviour can cooperate to perform an interesting
computation, as in a biological organisms. We are aware that cellular automata
constitute a Turing-universal model of computation, and can thus compute any
function that is computable by a classical machine, but our goal here is to make
a decision emerge from simple non-deterministic mechanisms.

The links between cellular automata and game theory have been mainly
explored with iterated two-player games on grids or graphs: these models dis-
tribute n players on a grid (or on a graph) and make the players interact by
pairs with their neighbours. The players generally update their strategy accord-
ing to the payoff received and the goal is to observe how the strategies dynami-
cally evolve on the graph [6]. Interestingly enough, it can be observed that even
small variations in the updating method (e.g., from synchronous to partially
synchronous) may radically change the ultimate evolution of the system [3].

However, the use of cellular automata for the design of strategies is almost
absent from the literature. Fraenkel has presented a pioneering work of how
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cellular automata may compute a particular strategy [2]. Cook, Larsson
and Neary also made interesting connections between (deterministic) one-
dimensional cellular automata and a generalisation of the game of Nim called
the Blocking Wythoff Nim [1].

The purpose of this paper is to present some other simple examples by taking
the Alesia game as a starting point. It can thus be considered as a pedagogical
example in order to solve a problem in a distributed way. Our goal is not to
reach optimality, but we will nevertheless compare our solutions to an optimal
strategy in order to have a quantitative estimation of the quality of our cellular
automata strategy.

2 Definitions

2.1 Formalisation of the Game

We now introduce the formal definitions of the game. We assume that the game
starts with N soldiers and that the “arena” is such that a player needs to make
W (cumulative) steps in the direction of his opponent to win.

For the sake of simplicity we model a game by an infinite sequence of moves.
Let at, bt be the number of soldiers of player A and B, respectively, at time t and
αt, βt the number of soldiers that they respectively engage at time t. We have:

∀t ∈ N, at+1 = at − αt and ∀t ∈ N, bt+1 = bt − βt.
The position of the front evolves according to w0 = 0 and:

wt+1 = wt +

⎧
⎪⎨

⎪⎩

1 if αt > βt

−1 if αt < βt

0 otherwise.
The game stops when one of the players hits the camp of his adversary or

when there are no more soldiers. As the outcome of the game depends on the
sequence of moves s = (at, bt)t∈N, we call this sequence the game for the sake of
simplicity.

Since each player is forced to play at least one soldier at each time step, the
number of rounds is finite; we denote it by T (s).

The gain G(s) that results from a game s is 1, −1 or 0, if player A wins, or
if player B wins, or if there is a draw, respectively. Formally, we have:

T (s) = min
t∈N

{wt = W + 1 or wt = −W − 1 or (at, bt) = (0, 0)},

and : G(s) =

⎧
⎪⎨

⎪⎩

1 if wT = W + 1,

−1 if wT = −W − 1,

0 otherwise.
The rules of the game impose a0 = b0 = N and: ∀t < T , at > 0 =⇒ 1 ≤

αt ≤ at, and bt > 0 =⇒ 1 ≤ βt ≤ bt and, for t ≥ T , we set αt = βt = 0.
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2.2 Stochastic Cellular Automata

For the sake of simplicity, we will use one-dimensional cellular automata with
nearest-neighbours interaction. To describe our model, we simply take an infinite
line of cells: Z. Note however that for the simulations, it is more convenient to
use periodic boundary conditions (Z/nZ with a large value for n).

We denote by Q the set of states the cells can hold. A configuration represents
the global state of the system; it is an element of QZ.

A stochastic cellular automaton is defined with a local transition function
ϕ : Q3 × Q → [0, 1] and we write ϕ

(
(x, y, z), q

)
= p to express that a cell with

a neighbourhood state (x, y, z) has a probability p to update to the state q. We
require: ∀(x, y, z) ∈ Q3,

∑
q∈Q ϕ

(
(x, y, z), q

)
= 1.

The global transition function thus maps a configuration xt to the configu-
ration xt+1 such that:

∀i ∈ Z, Pr[xt+1
i = q] = ϕ

(
(xt

i−1, x
t
i, x

t
i+1), q

)
,

and where all the probabilities are drawn independently for each cell.
In order to build a strategy that uses a cellular automaton, we will translate

the state of the game into a configuration, make this configuration evolve, and
then interpret the resulting configuration as an action of the player. Given two
players A and B, we will measure their relative strength with the expected gain
that player A has against player B. This statistical estimation is obtained by
repeating N games opposing A and B. If NA and NB are the number of games
that A or B won, respectively, then the expected gain of A against B is given by
(NA − NB)/N .

We now present how we build a cellular automaton player by progressively
improving the strategy players. This improvements are made by defining fami-
lies of rules and making each new family compete against the previously found
players. This method can be seen as a “bootstrapping” technique because each
level of complexity emerges from a previously defined level of complexity.

3 Cellular Automata Players

All our players are Markovian: they base their decision on the current state of
the game only. For the sake of readability, we will assume that the player we are
describing is player A, while its opponent is player B. We recall our notations: a,
b denote the number of soldiers of player A and B, respectively, and w denotes
the position of the front at time t, the number of soldiers played by a given
player Π is denoted by Π(a,w, b). We also assume that the game is played in
“standard” conditions, that is, with W = 2 and N = 50 [5].

3.1 Uniform Distribution Players

The first player we can consider, denoted by uniform, plays a uniform number
between 1 and a. It will serve as the basis of our bootstrapping process. Formally:
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uni-M(a,w, b) = U{a}, where U{0} = 0 and U{k} draws a random number
uniformly in {1, . . . , k} for k > 0.

This strategy is easy to defeat with the following opponent: beatUnif always
plays 1 unless the front is in position −W (danger of loosing the game),
in which case it plays b (as many soldiers as the opponent has). Formally:
beatUnif(a,w, b) = b if w = −W and beatUnif(a,w, b) = 1 otherwise.

Our simulations show that beatUnif has an expected gain of 0.93 against
unif: it wins the game with a probability greater than 95%.

Table 1. Expected gains of uni-M players opposed to other uni-M player. The deviation
from an antisymmetrical form are due to the statistical variations (105 samples).

uni-10 uni-12 uni-14 uni-16 uni-18 uni-20 uni-22 uni-24

uni-10 −0.133 −0.178 −0.182 −0.170 −0.146 −0.109 −0.057

uni-12 0.130 −0.068 −0.076 −0.060 −0.027 0.016 0.075

uni-14 0.177 0.069 −0.030 −0.017 0.016 0.061 0.122

uni-16 0.180 0.071 0.027 −0.006 0.018 0.068 0.133

uni-18 0.171 0.058 0.013 0.003 0.016 0.049 0.105

uni-20 0.148 0.026 −0.017 −0.023 −0.015 0.030 0.075

uni-22 0.108 −0.019 −0.065 −0.068 −0.053 −0.033 0.042

uni-24 0.060 −0.072 −0.124 −0.126 −0.103 −0.076 −0.038

3.2 Uniform Distribution Players with Saturation

The weakness of uniform comes from the fact that it is too “generous”: it
is easy to “exhaust” simply by using a defensive strategy. A straightforward
improvement of this player is to limit the maximum number of soldiers engaged
at each time step. We define uni-M as the player which draws a number uniformly
between 1 and a and then plays this value if it is lower than a threshold value
M , or plays M otherwise. Formally: uni-M(a,w, b) = max{U{a},M}.

The question then comes to know what is the best setting for M . Again, as
there is no “absolute” good player; we thus simply oppose players with various
settings of M and observe how they perform one against the other.

The results are presented in Table 1. The data represents the expected gain
of uni-M players with different settings of M . These experiments indicate that
a good setting of M is in the interval 16–18. Indeed uni-16 and uni-18 have
a positive expected gain defeat when opposed to the other players and when
opposed to each other, the difference in expected gain is not significant.

We are now in position to continue our bootstrapping process: our next objec-
tive is to build a CA player that performs better than uni-18. Before going on, let
us observe that “coding” the uniform or uni-M players with a one-dimensional
cellular automaton is not that easy. Indeed, if the input is coded in the form of
a configuration that has n cells in a given state, it is not clear how cells could
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interact locally in order to produce every possible output between 0 and n − 1
(or n) with an equal probability.

Table 2. Expected gains of binomial players against uniform players (105 samples).

uni-8 uni-10 uni-12 uni-14 uni-16 uni-18 uni-20

bin-22 0.554 0.409 0.370 0.375 0.368 0.377 0.391

bin-24 0.589 0.428 0.400 0.411 0.430 0.441 0.463

bin-26 0.608 0.433 0.399 0.417 0.451 0.475 0.501

bin-28 0.622 0.428 0.380 0.405 0.448 0.485 0.513

bin-30 0.628 0.420 0.345 0.368 0.420 0.468 0.504

bin-32 0.627 0.398 0.314 0.319 0.374 0.431 0.480

3.3 Another Simple Player: The Binomial Player

If we have a set of cells which can hold a state with a given probability, the most
intuitive “computation” is to draw a number according to a binomial distribu-
tion. We define the binomial players as the strategy where each soldier of the
player has a probability ρ “to be played”. For a given ρ, we set R = 100 ∗ ρ and
denote by bin-R the binomial with parameter ρ = R/100.

To encode our player, we simply use the binary alphabet Q = {0, 1} and map
a game state (a,w, b), to the initial condition x ∈ QZ formed by a consecutive
1’s on a background of 0’s. Then each cell independently applies the rule where
a 0 remains a 0 and a 1 remains a 1 with probability ρ and becomes a 0 with
probability 1 − ρ. We have: binomial(a, f, b) = card{i ∈ Z, yi = 1}, where y
denotes the configuration obtained by a one-step transformation of x.

Table 3. Expected gains of binomial players against other binomial players (105

samples).

bin-15 bin-20 bin-25 bin-30

bin-15 -0.182 -0.327 -0.417
bin-20 0.180 -0.002 -0.021
bin-25 0.328 0.003 0.098
bin-30 0.419 0.017 -0.099

bin-20 bin-22 bin-24 bin-26

bin-20 -0.004 -0.005 0.000
bin-22 0.006 0.015 0.039
bin-24 0.005 -0.018 0.035
bin-26 0.005 -0.030 -0.029

Table 2 shows the expected gain of various binomial players against various
uniform-M players. We observe that for each value of M , there is a different
value of ρ which maximizes the expected gain. The player which has the highest
minimal expected gain is bin-24. It is interesting to note that if we take ρ =
0.28, the “best” opponent of this binomial players is uni-12 and not uni-18,
as expected from what was seen by making uniform-M players together. This
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illustrates the fact that it is not possible to compare the expected gain of rules
with a total order. Given three players A,B,C, we can observe that B performs
better than C versus A, and nevertheless B is beaten by C.

When opposing the binomial players one against another, the best player
is bin-22 (Table 3). Our objective is now to find a player that beats this new
challenger.

4 Taking into Account the Situation: The q2h2 Player

The previous model was not really a cellular automaton since there was no
interaction between cells. The next improvement we can do is to take into account
the position of the front and number of soldiers of the opponent.

We request that the initial state of the game to be translated in an initial
condition of the cellular automaton with a simple method. Typically, the number
of soldiers and the position of the front should be coded with a “unary” code,
that is, each number of soldiers should correspond to the same number of cells in
a given state, plus or minus some constants. Let us now present a player which
respects these constraints, we name it q2h2.

The model employs 8 states: Q = {E, A, V, V*, R, F, F*, B}; its elements respec-
tively represent the following states: empty, A-soldier, voluntary, voluntary-star,
reluctant, front, front-star, B-soldier. The ‘star’ represents an information that
travels from right to left in order to transmit an influence from the B-soldier cells
to the different cells which represent the strength of player A. The following rules
describe how this influence is transmitted.

We associate to a game position (a,w, b) an initial configuration xini built as
follows : the a first cells are in state A. Next, we put δ cells in state F, where
δ = W +w +1 represents the state of the front. The next following b cells are in
state B. We thus have: xini(a,w, b) = ..EE AAAAA︸ ︷︷ ︸

a times

FFF︸ ︷︷ ︸
δ times

BBBBBBB︸ ︷︷ ︸
b times

EEE...

The evolution of the cellular automaton can be described with the following
scenario: soldiers of player A (state A) turn to the voluntary state (V) or to the
reluctant state (R) in one step. After that, some reluctant soldiers of A may turn
to voluntary according to the “danger” they feel. This danger is evaluated as a
combination of b and w: (a) the more soldiers the opponent has, the greater the
danger; (b) the smaller the front is, the greater the danger. In practice, each cell
in state B has a given probability (pT) to initiate a signal that will travel to the
left until it eventually reaches a cell in state R; it then turns this cell to a V. This
signal can also be absorbed with probability pA.

As the information travels from the right to the left, we can define the local
function ϕ

(
(x, y, z), q

)
with the use of the probabilistic function ξ(q, q′), which

takes as an input the state of the cell itself q and the state of right neighbour q′

and outputs a state in Q with a given probability. This function, which depends
on three probabilities pV, pT and pA, is defined as follows.

– An empty cell remains empty: ξ(E, ·) = E.
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– Each A immediately decides if it turns to a voluntary state or to a reluctant

state: ξ(A, ·) =

{
V with probability pV,

R with probability 1 − pV.

– The behaviour of front cells and front-star cells depend on what they see on
their right: (a) a B cell: this corresponds to the case where the “stars” are
initiated by the soldiers of the opponent. (b) another F or F* cell: this case
corresponds to the transmission of the star to the left. We set a probability
pA to be absorbed, i.e., the star is not transmitted. This reads:

ξ(F, B) = ξ(F*, B) =

{
F* with probability pT,

F with probability 1 − pT,
and:

ξ(F, F*) = ξ(F*, F*) =

{
F* with probability 1 − pA,

F with probability pA.

In all other cases, the front cells remains stable, the front-star cells become
front cells: ξ(F, q) = F(F*, q) = F for q /∈ {B, F, F*}. (Note that in a normal
behaviour, the only useful case is q = E.)

– A voluntary cell or voluntary-star cell simply transmits the star from right
to left. This reads: ξ(V, q′) = ξ(V*, q′) = V* if q′ ∈ {V*, F*} and ξ(V, q′) =
ξ(V*, q′) = V otherwise.

– A refractory cell remains refractory unless it sees a star on its right. This is
translated by: ξ(R, V*) = ξ(R, F*) = V and ξ(R, q′) = R if q′ /∈ {V*, F*}.

– Cells in state B simply disappear at the rate of one cell per time step. This
reads: ξ(B, E) = E and ξ(B, q′) = B if q′ 	= B.

An illustration of this behaviour can be seen on Fig. 1-right. (As it can be easily
guessed, the front-star are drawn in red and the voluntary-star cells are in green.)

Table 4. Expected gains of q2h2 players with pA = 0 against bin-22 (left) and bin-35

(right). The two parameters pT (columns) and pV (lines) are varied (2.104 samples).

pT

p
V 0.10 0.20 0.30 0.40 0.50

0.0 -0.986 -0.189 0.470 0.637 -0.240
0.5 -0.565 0.133 0.530 0.346 -0.656
0.10 -0.070 0.264 0.507 -0.076 -0.864
0.15 0.021 0.342 0.343 -0.500 -0.953
0.20 0.062 0.328 0.023 -0.774 -0.989

0.10 0.20 0.30 0.40 0.50 0.60
0.0 -0.997 -0.870 -0.212 -0.026 -0.246 -0.844
0.10 -0.415 0.007 -0.111 -0.311 -0.776 -0.984
0.20 0.107 -0.171 -0.382 -0.753 -0.971 -0.999
0.30 -0.205 -0.436 -0.735 -0.960 -0.998 -1.000
0.40 -0.501 -0.743 -0.948 -0.996 -1.000 -1.000
0.50 -0.778 -0.949 -0.997 -1.000 -1.000 -1.000

To analyse this rule, first, let us simply set pA = 0, in other words, we do
not take into account the state of the front. We ask how we can tune pV and
pT in order to beat the binomial players. Recall that so far our best binomial
player is bin-22 (ρ = 0.22). Table 4-left shows the result of this player against
bin-22 for different values of pV and pT. It can be seen that this player is easy
to defeat: for example, for pV = 0.40 and pT = 0, one obtains an expected gain
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greater than 0. A zero value indicates that in fact, in this case it is sufficient to
take into account only the strength of the opponent to obtain good results.

Note that the value of (pV, pT) which maximises the expected gain against
binomial players varies greatly with ρ. For example, for bin-35, the best
expected gain is obtained for pV = 0.20 and pT = 0.10, and this gain (∼0.15)
is much lower than for bin-22. This may seem paradoxical but remember that
bin-22 is the player which has the best result against the other binomial play-
ers, and that we know nothing for the other rules. All we can say is that we are
sure that even with pA = 0 the family of q2h2 players dominates the family of
binomial players: for every binomial player, there exists a q2h2 player which
can defeat it. This is a direct consequence of the fact that the q2h2 players
include all the binomial players simply by setting pT = 0.

Table 5. Expected gains of binomial players (lines) against q2h2 players (columns)
with pV = 0.22, pA = 0 and a varying value of pT (104 samples).

pT 0.0 0.5 0.10 0.15 0.20 0.25 0.30

bin-15 −0.330 −0.541 −0.650 −0.709 −0.607 −0.276 0.277

bin-20 0.007 −0.114 −0.269 −0.389 −0.376 −0.102 0.323

bin-25 −0.008 0.086 0.058 −0.020 −0.048 0.083 0.387

bin-30 −0.082 0.015 0.157 0.206 −0.203 0.286 0.478

bin-35 −0.192 −0.143 0.009 0.188 0.326 −0.408 0.554

Table 5 show how various binomial players can be defeated by fixing pV =
0.22 and setting an appropriate value of pT. Similar results can be obtained
for other values of pV, which confirms the great advantage of the q2h2 players
against the binomial players.

Despite these encouraging results, we could not find any setting of (pV, pT)
which would dominate all the other binomial players. Once again, the difficulty
stems from the impossibility to establish a total order between rules. For example
the rule with the setting (pV, pT) = (0.5, 0.8) defeats bin-22 (with an expected
gain of 0.60) and is defeated by bin-35 (with an expected gain of 0.67)... but,
as seen above, bin-22 defeats bin-35!

In a second step, to demonstrate how setting a positive value of pA can be
useful, simply examine a precise situation and leave a more systematic study for
future work. In the paragraph above we showed how setting pA = 0 and varying
pV and pT allows us to defeat every binomial player. However, against bin-30,
only a small region of (pV, pT) has a positive expected gain, and the maximum
positive gain one can obtain is around 0.1.

Table 6-left shows the expected gain of q2h2 against bin-30 when we set
pT = 0.25 and vary pA and pV. It can be seen that allowing pA > 0 gives much
better results: in particular for pV = 0.15 and pA = 0.8, the expected again is
above 0.4, which is quite impressive.
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Table 6. Expected gains of q2h2 players with pT = 0.25 against bin-30 (left) and
against Nash (right). The two parameters pA (lines) and pV (columns) are varied (105

samples).

0.10 0.15 0.20 0.25
0.20 0.111 -0.065 -0.256 -0.370
0.40 0.254 0.208 -0.010 -0.213
0.60 0.280 0.348 0.178 -0.027
0.80 0.276 0.395 0.272 0.081
0.100 0.267 0.403 0.280 0.108

0.0 0.2 0.4 0.6 0.8 0.10
0.20 -0.050 -0.058 -0.075 -0.095 -0.115 -0.148
0.40 -0.039 -0.033 -0.043 -0.056 -0.063 -0.088
0.60 -0.035 -0.029 -0.027 -0.029 -0.039 -0.048
0.80 -0.093 -0.051 -0.038 -0.029 -0.027 -0.038
0.100 -0.183 -0.139 -0.081 -0.046 -0.043 -0.033

We have seen that it is not possible to totally order the players according to
their respective scores. There exists however a strategy which is never defeated
(on average). We denote this player by Nash, as it corresponds to what is called
the Nash equilibrium: Nash gives a guarantee to have a positive expected gain
against any player P, but against a third player P’, it may be that P performs
better than Nash.

We have tested the performance of q2h2 against Nash, with a setting of
pT = 0.25 and different values of pV and pA. The results are displayed on Table 6-
right: we see that in some cases, the average expected loss is close to zero and of
the same amplitude as the noise on the measures. In practice, this implies that
one can hardly distinguish between the Nash player and the q2h2 player with
the proper settings.

These first results are rather encouraging and there are many directions
in which they can be deepened. For example, it is interesting to examine the
scaling properties of our cellular automata: while obtaining the optimal Nash-
equilibrium player demands more time as the size of the game increases, our
models can easily be applied to larger sizes, maybe with an adjustment of the
three probabilities. Of course, the behaviour of this cellular automaton can also
be obtained with classical mathematical functions but here we wanted to exam-
ine how simple interacting elements would play this game. Our goal was to
show that a non-trivial behaviour can be obtained by progressively increasing
the complexity of the rules. Another research direction would be to make the
system evolve autonomously and see if it can discover new levels of complexity
without an external aid.
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Abstract. The asynchronous dynamics associated with a Boolean net-
work f : {0, 1}n → {0, 1}n is a finite deterministic automaton considered
in many applications. The set of states is {0, 1}n, the alphabet is [n], and
the action of letter i on a state x consists in either switching the ith com-
ponent if fi(x) �= xi or doing nothing otherwise. This action is extended
to words in the natural way. We then say that a word w fixes f if, for all
states x, the result of the action of w on x is a fixed point of f . A whole
family of networks is fixable if its members are all fixed by the same word,
and the fixing length of the family is the minimum length of such a word.
In this paper, which is building closely on [2] where these notions have
been introduced, we are interested in families of Boolean networks with
relatively small fixing lengths. Firstly, we prove that fixing length of the
family of networks with acyclic asynchronous graphs is Θ(n2n). Secondly,
it is known that the fixing length of the whole family of monotone net-
works is O(n3). We then exhibit two families of monotone networks with
fixing length Θ(n) and Θ(n2) respectively, namely monotone networks
with tree interaction graphs and conjunctive networks with symmetric
interaction graphs.

Keywords: Boolean networks · Asynchronous dynamics
Fixed points · Asynchronous graph

1 Introduction

A Boolean network (network for short) is a finite dynamical system defined
by a function

f : {0, 1}n → {0, 1}n, x = (x1, . . . , xn) �→ f(x) = (f1(x), . . . , fn(x)).

The “network” terminology comes from the fact that these systems are typi-
cally used to model networks of interacting entities. For a list of applications
of Boolean networks to gene networks, neural networks, and more, see [2] and
references therein.

The interaction graph of f depicts the architecture of the network of inter-
actions, and is often considered as the main parameter of f . Formally, it is the
directed graph G(f) with vertex set [n] := {1, . . . , n} and an arc from j to i
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if fi depends on xj , that is, if there exist x, y ∈ {0, 1}n that only differ in the
component j such that fi(x) �= fi(y).

In many applications, the dynamics derived from f is the asynchronous
dynamics [1]; it is represented by the directed graph Γ (f), called asynchronous
graph of f . This graph is defined as follows. For any i ∈ [n], the result of the
action of the letter i on x is given by

f i(x) := (x1, . . . , fi(x), . . . , xn). (1)

The vertex set of Γ (f) is {0, 1}n, the set of all the possible states, and there is
an arc from x to y if and only if y �= x and y = f i(x) for some i. See Fig. 1 for
an illustration.

x f(x)
000 000
001 000
010 001
011 001
100 010
101 000
110 010
111 100

f1(x) = x1 ∧ x2 ∧ x3

f2(x) = x1 ∧ ¬x3

f3(x) = x2 ∧ ¬x1.

000

001

010

011

100

101

110

111

1 2

3

3-component network f Γ (f) G(f)

Fig. 1. A network f with its asynchronous graph Γ (f) and its interaction graph G(f).

The action in Eq. (1) is extended to any word w = i1i2 . . . ik on the alphabet
[n] as

fw := f ik ◦ f ik−1 ◦ · · · ◦ f i1 .

A word w fixes f if fw(x) is a fixed point of f for every x [2]. If f admits a
fixing word we say that f is fixable. For instance, the network in Fig. 1 is fixed
by w = 1231, and it is hence fixable. It is rather easy to see that f is fixable if
and only if there is a path in Γ (f) from any initial state to a fixed point of f .
We may think that the fixability is a strong property. However, for n sufficiently
large, more than half of the n-component networks are fixable:

Theorem 1 (Bollobás, Gotsman and Shamir[4]). Let φ(n) be the fraction
of n-component networks that are fixable. Then limn→∞ φ(n) = 1 − 1

e .

For any fixable network f , the fixing length of f is the minimum length
of a word fixing f and is denoted as λ(f). For instance, we have seen that
w = 1231 fixes the network in Fig. 1, and it is easy to see that no word of length
three fixes this network, thus it has fixing length exactly 4. For any fixable n-
component network f , we have λ(f) ≤ 4n. Indeed, let {0, 1}n = {x1, . . . , x2n}
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and recursively define the word W := w1, . . . , w2n

such that fw1,...,wk

(xk) is a
fixed point for all 1 ≤ k ≤ 2n. Since every wk can be chosen to be of length at
most 2n, we have |W | ≤ 4n. By extension, we say a family F of n-component
networks is fixable if there is a word w such that w fixes f for all f ∈ F . The
fixing length λ(F) is defined naturally as the minimum length of a word fixing
F . By concatenating all the fixing words W for each member f of F , we obtain
λ(F) ≤ 4n|F|.

We are then interested in families F which can be fixed “rapidly”, i.e. far
below the trivial upper bound above. In [2], the following families have been
shown to have small fixing lengths: monotone networks (fixing length O(n3)),
networks with acyclic interaction graphs (fixing length Θ(n2)), and increasing
networks (fixing length Θ(n2)). Studying the fixing length of an entire family
allows us to identify some patterns common to the asynchronous dynamics of
all the members of that family. For instance, the word of cubic length fixing
all monotone networks given in [2] has a recursive structure, thus showing a
recursive pattern in the asynchronous dynamics of any monotone network.

In this paper, we focus on the following two classes. Firstly, we prove that the
fixing length of the family of n-component networks with acyclic asynchronous
graphs is in Θ(n2n). Secondly, we exhibit two families of monotone networks
which have linear and quadratic fixing lengths: monotone networks with tree
interaction graphs and conjunctive networks with symmetric interaction graphs.

2 Notation

Let w = w1 . . . wp be a word. Then length p of w is denoted |w|. We say that a
word u = u1 . . . uq is a subword of w is there exits 1 ≤ i1 < i2 < · · · < iq ≤ p
such that u = wi1 . . . wiq

. The empty word is denoted ε. A word w is n-universal
if every permutation of [n] (word of length n without repetition) is a subword of
w. The minimum length of an n-universal word is denoted λ(n). We then have
λ(n) = n2 − o(n2) (see [2] and references therein):

Directed graphs have no parallel arcs, and may have loops (arcs from a vertex
to itself). Paths and cycles are always without repeated vertices. Given a directed
graph G, the underlying undirected graph H of G has the same vertex set,
and two vertices i and j are adjacent in H if and only if i �= j and G has an arc
from i to j or from j to i. We refer the reader to the authoritative book on graphs
by Bang-Jensen and Gutin [3] for basic concepts, notation and terminology.

Given x, y ∈ {0, 1}n, we write x ≤ y to mean that xi ≤ yi for all i ∈ [n].
Equipped with this partial order, {0, 1}n is the usual Boolean lattice. An n-
component network f is monotone if it preserves this partial order, that is,

∀x, y ∈ {0, 1}n, x ≤ y ⇒ f(x) ≤ f(y).

We denote by FM (n) the family of n-component monotone networks and by
λM (n) the fixing length of FM (n). More generally, if FX(n) is any family of n-
component fixable networks, then λX(n) is the fixing length of FX(n). If G is a
directed graph, then F (G) denotes the set of n-component networks f such that
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the interaction graph of f is isomorphic to a subgraph of G. Then, FX(G) :=
FX(n) ∩ F (G) and λX(G) is the fixing length of FX(G).

Let f be an n-component network. We set f ε := id and, for any integer i
and x ∈ {0, 1}n, we define f i(x) as in Eq. (1) if i ∈ [n], and f i(x) := x if i �∈ [n].
This extends the action of letters in [n] to letters in N, and by extension, this
also defines the action of a word over the alphabet N.

Let G be a directed graph with vertex set [n]. The conjunctive network
on G is the n-component network f defined as follows: for all i ∈ [n] and
x ∈ {0, 1}n,

fi(x) =
∧

j∈N−(i)

xj ,

where N−(i) is the in-neighbourhood of i in G (with fi(x) = 1 if the in-
neighbourhood of i is empty). As shown in [2], every conjunctive network on
n vertices has a fixing length of at most 2n − 2, and this is tight.

3 Asynchronous-Acyclic Networks

A network is asynchronous-acyclic if its asynchronous graph is acyclic. The
family of all such networks is denoted as FAΓ (n). Clearly, any asynchronous-
acyclic network is fixable. It is well known, and easy to prove, that if G(f) is
acyclic then so is Γ (f) [8].

Let P = x1x2 . . . xl be a path of the n-cube, and let ik be the component
that differs between xk and xk+1, 1 ≤ k < l. The word i1i2 . . . il−1 is the word
induced by P , and a word is an n-path-word if it is induced by at least one
path of the n-cube. A word w is an n-path-word if and only if, for all i < j, there
exists k ∈ [n] which occurs an odd number of times in wi . . . wj [5]. Note that
an n-path-word has no consecutive repetitions and is of length at most 2n − 1.
A word W is n-path-universal if it contains all n-path-words as subwords.
Let Λ(n) denote the minimum length of an n-path-universal word. For instance,
for n = 2, the maximal n-path-words are 121 and 212, hence the word 1212 is
n-path-universal and Λ(2) = 4. In general, Λ(n) = Θ(n2n):

Lemma 1. For all n ≥ 1, n2n−1 ≤ Λ(n) ≤ (n − 1)(2n − 1) + 1.

Proof. We first show the lower bound. For that, we define inductively a Hamil-
tonian path Pn of the n-cube in the following way: P 1 := x1x2 with x1 = 0 and
x2 = 1 and, for n > 1, Pn is defined from Pn−1 = x1x2 . . . x2n−1

by setting

Pn := (0, x1)(0, x2) . . . (0, x2n−1
)(1, x2n−1

)(1, x2n−1−1) . . . (1, x2)(1, x1).

Pn then corresponds to the canonical Gray code. Let wn be the word induced
by Pn. It is easy to see that the letter n appears exactly 2n−1 times in wn. Thus
any n-path-universal word contains at least 2n−1 occurrences of the letter n. By
symmetry, every letter appears at least 2n−1 times, thus Λ(n) ≥ n2n−1.
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We now show the upper bound. Let

W := 1, u1, u2, . . . , u2n−1 with
{

uk := 2, 3, . . . , n if k is odd
uk := n − 1, n − 2, . . . , 1 if k is even.

Then W contains all words of length at most 2n − 1 without consecutive repe-
titions, and hence is n-path-universal. �
Theorem 2. A word fixes FAΓ (n) if and only if it is n-path-universal, thus

λAΓ (n) = Λ(n).

Moreover, maxf∈FAΓ (n) λ(f) = 2n − 1.

Proof. Let P be any path of the n-cube, and let w be the word induced by P .
Consider the n-component network f whose asynchronous graph only has the
arcs contained in P . Then f is clearly asynchronous-acyclic and a word fixes f if
and only if it contains w as a subword. We deduce the following three properties
(the third is obtained from the second using the fact that the n-cube has a
Hamiltonian path, e.g. the path Pn constructed above):

(1) Any word fixing FAΓ (n) is n-path-universal, thus λAΓ (n) ≥ Λ(n).
(2) For any n-path-word w, there exists f ∈ FAΓ (n) with λ(f) ≥ |w|.
(3) There exists f ∈ FAΓ (n) with λ(f) ≥ 2n − 1.

Conversely, let us prove that λ(f) ≤ 2n − r for any f ∈ FAΓ (n) with r
fixed points. Since r ≥ 1, together with the property (3), this shows the second
assertion of the statement. Let x1x2 . . . x2n

be a topological sort of Γ (f): for all
1 ≤ p ≤ q ≤ 2n, Γ (f) has no arc from xq to xp. Then xp is a fixed point if and
only if p > 2n − r. Furthermore, we have the following two properties: (i) for all
i ∈ [n] we have f i(xp) = xq for some q ≥ p; and (ii) if p ≤ 2n − r then there
exists at least one component in [n], say ip, such that f ip(xp) = xq for some
q > p. We will prove that w := i1i2 . . . i2n−r fixes f . Let 1 ≤ p ≤ 2n, and let us
prove, by induction on k, that:

∀1 ≤ k ≤ 2n − r, f i1i2...ik(xp) = xq for some q > k.

If k = 1, we deduce that f i1(xp) = xq for some q > 1 from (i) if p ≥ 2, and
from (ii) if p = 1. Suppose now that k > 1. By induction, f i1i2...ik−1(xp) = xl

for some l > k − 1. We then deduce that f i1i2...ik(xp) = f ik(xl) = xq for some
q > k from (i) if l > k, and from (ii) if l = k. This completes the induction. The
particular case k = 2n −r shows that fw(xp) = xq for some q > 2n −r, and thus
fw(xp) is a fixed point.

It remains to prove that any n-path-universal word W = j1j2 . . . js fixes f .
Let y1 ∈ {0, 1}n, and for all 1 ≤ k ≤ s, let

yk+1 := f j1j2...jk(y1) (or, equivalently, yk+1 := f jk(yk)).

Let us prove that ys+1 = fW (y1) is a fixed point. This is clear if y1 is a fixed
point. Otherwise y1 �= ys+1. Then, in the sequence y1y2 . . . ys+1, let a1, . . . at
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be the positions such that yak �= yak+1. The states visited by the sequence
then correspond to the path P := ya1ya2 . . . yatyat+1 of Γ (f), where at+1 :=
s + 1, and w := ja1ja2 . . . jat

is the word induced by this path. Suppose, for
a contradiction, that yat+1 is not a fixed point. Let yat+2 be an out-neighbor
yat+1 in Γ (f), and let i be the component that differs between these two states.
Then ya1ya2 . . . yat+1yat+2 is a path of Γ (f), and w′ := ja1ja2 . . . jat

i is the word
induced by this path. Hence, w′ is a subword of W . By construction, a1a2 . . . at

corresponds to the first occurrence of w in W . That is, setting a0 := 0, we have
the following: for all 1 ≤ k ≤ t, ak is the first position in W greater than ak−1

where the letter jak
appears. Since w′ is a subword of W , we deduce that i

appears after the position at, that is, there exists at < b ≤ s such that jb = i. By
the definition of the sequence a1, . . . at, we have yk = ys+1 for all at < k ≤ s+1,
and thus yb = ys+1 = yat+1 . But then, yb+1 = f i(yb) = f i(yat+1) = yat+2 �=
yat+1 = yb, a contradiction. Thus every n-path-universal word fixes FAΓ (n).
Thus λAΓ (n) ≤ Λ(n), and with the property (1) we obtain an equality. �

4 Monotone Networks

It is proved in [2] that the fixing length of the family of n-component monotone
networks FM (n) is O(n3) and Ω(n2); closing the gap is challenging. In this
section, we introduce two classes of monotone networks with linear and quadratic
fixing lengths respectively. The first family is based on trees. We say a directed
graph is loop-full if every vertex has a loop.

Theorem 3. Let G be a loop-full tree with n vertices and L leaves. Then

λM (G) = 2n − L − 1.

Proof. The result is clear for n ≤ 2, thus we assume n ≥ 3 henceforth. Then
G has a non-leaf, say r; we then root G at r. We order the non-leaf vertices
of G in non-decreasing order of distance from the root (and hence r = 1 and
1, . . . , N := n − L are non-leaves) and we denote the leaves as N + 1, . . . , n (in
no particular order). Note that according to this order, i ≤ j if and only if the
path from j to r goes through i.

We first prove that λM (G) ≤ 2n − L − 1 = 2N − 1 + L. Let W 1 := 1 and
W i := iW i−1i for all i ∈ [N ]; therefore,

W := WN = N,N − 1, . . . , 2, 1, 2, . . . N

has length 2N − 1. Let f ∈ FM (G) and x ∈ {0, 1}n. We say that x is fixed on [i]
if fj(x) = xj for all j ∈ [i].

Claim. For all i ∈ [N ], fW i

(x) is fixed on [i].

Proof. This is obvious for i = 1, thus assume that i > 1. Let

x1 := f i(x), x2 := fW i−1
(x1), x3 := f i(x2).
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By induction, x2 is fixed on [i − 1], and we want to prove that fW i

(x) = x3

is fixed on [i]. Since we have have fi(x3) = x3
i , if x3 is not fixed on [i] there

exists j ∈ [i − 1] such that fj(x3) �= x3
j = x2

j = fj(x2). Thus x3 �= x2, and this
implies x3

i �= x2
i , and since i is the only component that differs between these

two states, there is an arc from i to j in G. Assume that x3
i > x2

i , the other case
being similar. Then fi(x2) = x3

i = 1, and x3 ≥ x2. Since fj is monotone, we
deduce that fj(x3) > fj(x2) = x2

j = 0. Thus x2
i = x2

j = 0. Since, i is a leaf in the
subgraph of G induced by [i], and since j is adjacent to i in G, we deduce that,
in G, i has no in-neighbors in [i] \ {i, j}. Since x2

i = x2
j = 0, we deduce that,

for all in-neighbors k of i in G, we have xk ≥ x2
k, with an equality if k �= i, j

(since then k does not appear in W i). Since fi is monotone, we deduce that
fi(x) ≥ fi(x2) = 1. Thus fi(x) = 1 and we deduce that x1

i = 1. Since x1
i = x2

i

(because i does not appear in W i−1), we obtain a contradiction. Thus fW i

(x)
is fixed on [i] for all i ∈ [N ]. �

In particular, y := fW (x) is fixed on [N ]. Let Ω = W,N + 1, . . . , n and
z := fN+1,...,n(y) = fΩ(x). Then we claim that z is a fixed point of f . First,
it is easy to check that fl(z) = zl for any leaf l. Second, by the claim above,
fp(z) = fp(y) = yp = zp for any non-leaf p which is not adjacent to any leaf. All
that is left to show is that non-leaves which are adjacent to some leaves are still
fixed by fΩ . Let m ∈ N be a non-leaf, Λ be the set of leaves adjacent to m and
P be the other neighbours of m. Then zP = yP , zm = ym = fm(yP , yΛ) (by the
claim) and zl = fl(ym, yl) for all l ∈ Λ. Suppose that ym = 0 (the case ym = 1 is
similar). Then zl ≤ yl, since otherwise we have zl = 1 = fl(0, 0), which implies
that fl is either constant or non-monotonic. Thus fm(zP , zΛ) ≤ fm(yP , yΛ) =
ym = zm = 0 and m is indeed fixed.

We now prove that λM (G) ≥ 2N − 1 + L. Let f be the conjunctive network
on G and let w be a word fixing f . Firstly, every i ∈ [n] appears in W . Indeed, let
j �= i and x ∈ {0, 1}n such that xj = 1 and xk = 0 for all k �= j. Then the only
fixed point reachable by x is the all-zero state and hence the value of xi must
be updated. This first claim is sufficient to prove the lower bound when N = 1,
thus we assume N ≥ 2 in the sequel. Secondly, W contains every sequence of the
form ij as a subword for any distinct i, j ∈ [N ]. Indeed, let u, i, . . . , j be a path
in G. By considering the state x ∈ {0, 1}n such that xu = 1 and xk = 0 for all
k �= u, we see that W must contain ij as a subword. Now consider the subword
W ′ of W only containing the occurrences of letters from N . Let k ∈ [N ] be the
letter whose first occurrence in W ′ happens last (thus the first occurrence of k
is in position q ≥ N). Since W ′ contains ki as a subword for all i ∈ [N ], we see
that |W ′| ≥ N + (N − 1). By the first claim, |W | ≥ |W ′| + L ≥ 2N − 1 + L. �

The circumference of a directed graph G is the length of a longest cycle in
G, and zero if G is acyclic. It is easy to verify that G has circumference at most
two if and only if the underlying undirected graph of each strong component of
G is a tree. An l -feedback vertex set is a set of vertices I such that G \ I
has circumference at most l. The l -feedback number of G, denoted as τl(G),
is the minimum cardinality of an l-feedback vertex set of G. In [2], it is shown
that, for every directed graph G with n vertices, λM (G) ≤ (2τ1(G)2 + 1)n. We
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now show that a bounded 2-transversal number in G implies that FM (G) has
quadratic fixing length.

Corollary 1. For every directed graph G with n vertices,

λM (G) ≤ τ2(G)n2 + 3n.

Proof. Let τ := τ2(G), α := n − τ , and let us label the vertices of G from 1 to
n in such a way that I = {α + 1, . . . , n} is a minimum 2-feedback vertex set of
G. Let T1, . . . , Tk be the strong components of G \ I in topological order. Note
that α ≥ 2 and that the underlying undirected graph of every Ti is a tree, say
with ni vertices. Let wi be a word of length at most 2ni − 1 fixing each FM (Ti),
which exists in virtue of the previous theorem. It is then easy to see that the
word w = w1, . . . , wk fixes FM (G \ I), and |w| ≤ 2α − k ≤ 2n.

By adapting the proof of [2, Theorem 13], we can prove the following result.
If w is a word fixing FM (G\I) and if, for all 1 ≤ k ≤ τ , ωk is an (α+k)-universal
word, then FM (G) is fixed by the word

W := w,α + 1, ω1, α + 2, ω2, . . . , n, ωτ .

Applying this result to our problem yields a word W of length

|W | = |w| + τ +
τ∑

k=1

λ(α + k) ≤ 2n + n +
n∑

i=α+1

i2 ≤ τn2 + 3n.

�
The second family is described as follows. A directed graph is symmetric

if, for all distinct vertices i and j, if there is an arc from i to j then there is
also an arc from j to i (thus a symmetric directed graph can be regarded as an
undirected graph with possibly a loop on some vertices). We consider the family
FCS(n) of conjunctive networks on symmetric directed graphs.

Say a word w over the alphabet [n] is (n,k)-universal if it contains, as
subwords, all the words of length n− k without repetition (there are (n− k)!

(
n
k

)

such words). Let λk(n) denote the minimum length of an (n, k)-universal word.
In particular, λ0(n) = λ(n) and λk(n) = 0 for k ≥ n.

Lemma 2. For all fixed k, λk(n) = n2 − o(n2).

Proof. Let W k := 1, w1, w2, . . . , wn−k with wr := 2, 3, . . . , n if r is odd and
wk := n − 1, n − 2, . . . , 1 otherwise. Then it is easy to check that W k is (n, k)-
universal. Thus

λk(n) ≤ (n − 1)(n − k) + 1.

Furthermore, if ωk and ωn−k are any two words that are (n, k)-universal and
(n, n − k)-universal respectively, then ω := ωk, ωn−k is n-universal. This shows
that λ(n) ≤ λk(n) + λn−k(n), and from the upper bound above we obtain

λk(n) ≥ λ(n) − (n − 1)k − 1.

Since λ(n) = n2 − o(n2) as n tends to infinity, this proves the lemma. �
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By this lemma and the theorem below, the fixing length of FCS(n) is Θ(n2).

Theorem 4. For all n ≥ 1,

λ1(n) ≤ λCS(n) ≤ λ2(n) + n.

Proof. We first prove the lower bound. This is obvious for n ≥ 1, so suppose
that n > 1. Let i1i2 . . . in be a permutation of [n], and let f be the n-component
conjunctive network defined by fi1(x) = xi1 ∧ xi2 , fin

(x) = xin
∧ xin−1 and

fik
(x) = xik−1 ∧ xik+1 for all 1 < k < n. Then the interaction graph of f is

symmetric, and the arguments in the proof of Theorem3 shows that any word
fixing f contains i2 . . . in as subword (as well as in−1in−2 . . . i1). Hence, any word
fixing FCS(n) contains all the words of length n − 1 without repetition, and is
thus of length at least λ1(n).

We now prove the upper bound. Consider the word W := w,ω, where w :=
12 . . . n and ω is a shortest (n, 2)-universal word. Then |W | = λ(n) + n and we
will prove that W fixes FCS(n). Let G by any symmetric directed graph with
vertex set [n], and let f the conjunctive network on G. Let H be the underlying
undirected graph of G. Let H1 . . . Hp be the connected components of H, with
vertices V1, . . . , Vp. Let any x ∈ {0, 1}n, y := fw(x), z := fω(y) = fW (x) and
1 ≤ q ≤ p.

Suppose first |Vq| = 1, say Vq = {i}. Then there are two possibilities: either
i has no loop in G, and then fi = 1 is constant, thus yi = zi = fi(z) = 1; or i
has a loop and then xi = yi = zi = fi(z). Suppose now that |Vq| ≥ 2.

Claim. Either yi = 1 for all i ∈ Vk, or yi = yj = 0 for some edge of Hq.

Proof. For the sake of contradiction, suppose that the subgraph of Hq induced by
{i ∈ Vq : yi = 0} contains an isolated vertex, say i. Let j be adjacent to i in Hk.
If i < j then f1...j−1(x)i = yi = 0 and thus yj = f1...j(x)j = fj(f1...j−1(x)) = 0,
a contradiction. Thus k < i for every vertex k adjacent to i in Hq. Then i has a
loop, since otherwise yi = fi(f1...i−1(x)) =

∧
k∈N−(i) yk = 1. We deduce that

yi = xi ∧
∧

k∈N−(i)\{i}
yk = 0,

thus xi = 0, but then we would have yk = 0 for any neighbour k of i, a contra-
diction. This proves the claim. �

If yi = 1 for all i ∈ Vq, then we clearly have yi = zi = fi(z) = 1 for all
i ∈ Vq. Otherwise, yi = yj = 0 for some edge ij of Hk. It is easy to check that
fu(y)i = fu(y)j = 0 for any word u. Thus the states of i and j are always
blocked in zeroes when performing the updates in ω, which allows these two
zeroes to be propagated to the whole component Hq. Since any vertex k in Hq is
reachable from the edge ij by a path of length at most n − 2, it is easy to verify
that zk = 0 for all k ∈ Vq, and we deduce that fk(z) = 0 = zk for all k ∈ Vq.
Hence, in any case, fk(z) = zk for all k ∈ Vq, and thus z is a fixed point of f as
desired. �
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5 Perspectives

Asynchronous dynamics of monotone networks is the subject of some previous
work, which seems to suggest some amount of structure and yet some richness.
Let us mention some properties of the asynchronous dynamics of a n-component
monotone network f . Firstly, [7] shows that the asynchronous graph of almost
any n-component network can be embedded into the asynchronous graph of a
(2n)-component monotone network. As a consequence, f can have a fixed point
y and state x such that the shortest path from x to y in the asynchronous graph
of f is of exponential length. Secondly, and despite the first property, any state
can be individually fixed in linear time. More precisely, for any state x there
exists a fixed point y of f such that Γ (f) has a geodesic from x to y [6]. Thirdly,
all the states can be concurrently fixed in cubic time [2].

From our work on the fixing length of monotone and conjunctive networks,
four main quantities arise:

λ′
M (n) := max

f∈FM (n)
λ(f), λM (n), λ′

C(n) := max
f∈FC(n)

λ(f), λC(n).

We know that λ′
C(n) = 2n−2, and that the other three quantities are O(n3) and

Ω(n2) [2]. The main problem is then to determine the asymptotic behaviour of
those three quantities. In particular, is there an asymptotic gap between λ′

M (n)
and λM (n), or between λC(n) and λM (n)?
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p.montealegre@uai.cl
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Abstract. In this paper we study the family of two-state Totalistic
Freezing Cellular Automata (FTCA) defined over the triangular grids
with von Neumann neighborhoods. We say that a Cellular Automaton is
Freezing and Totalistic if the active cells remain unchanged, and the new
value of an inactive cell depends only of the sum of its active neighbors.
We study the family of FTCA in the context of asynchronous updating
schemes (calling them FTACA), meaning that at each time-step only
one cell is updated. The sequence of updated sites is called a sequential
updating schemes. Given configuration, we say that a site is stable if it
remains in the same state over any sequential updating scheme.

In this context, we consider the Asynchronous Stability problem,
consisting in decide whether there is a sequential updating scheme such
that an inactive cell becomes active. We show that in this family the
problem is NC, i.e. it can be solved by fast-parallel algorithms.

1 Introduction

Introduced by von Neumann and Ulam in the 1950s, Cellular automata (CA)
is a discrete complex system that has been used to model different real-world
phenomena. A Cellular Automaton is defined over a regular grid divided in cells,
each one having a state which evolves according to the states of their neighbors
in the grid in synchronous time-steps. The hypothesis that each cell has a clock
capable of synchronizing all the cells at the same time is somehow unrealistic.
Looking for more realistic models is introduced the idea of studying asynchronous
cellular automata (ACA), where cells evolve one by one, following a predefined
order called updating scheme.

An active research topic in the context of the study of CAs, is the prediction
problem, i.e. anticipate the future state of a cell given an initial configuration.
In the context of ACA, this problem can be translated into find a sequential
updating scheme that changes the state of a cell. Our objective is to study
the prediction in the context of the Computational Complexity Theory. More
c© Springer Nature Switzerland AG 2018
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precisely, our objective is to classify the prediction problem of a ACA (CA) in
one of the following classes: P of problems solvable in polynomial time on a
deterministic Turing machine; NC of problems that can be solved by a fast-
parallel algorithm, and NP the problems that can be solved in polynomial time
in a non-deterministic Turing machine. It is known that NC ⊆ P ⊆ NP, and it
is a wide-believed conjecture that the inclusion is proper (for further details on
this definition we refer to [1]).

Recently, in [2], is studied a particular family of CA, the freezing CA (FCA).
These are CA where the state of a cell can only change to another bigger state.
For example, if the states are active and inactive, the active cell remains active
forever in a freezing CA. It is direct that, every initial configuration consisting
on N cells reaches a fixed point in O(N2) steps, on every updating scheme.
However, there are cells that remain inactive regardless of the chosen updating
scheme. These cells are called stable. We call AsyncStability the problem of
deciding, given an initial configuration, if a given cell is stable on any updating
scheme.

In [3] it was studied the freezing majority cellular automaton, also known as
bootstrap percolation model, in arbitrary undirected graph. In this case, an inac-
tive cell becomes active if and only if the active cells are the most represented
in its neighborhood. In this paper, it is shown that in these ACAs any updating
scheme converges at the same fixed point and it was proved that AsyncSta-
bility is P-Complete over graphs such that its maximum degree (number of
neighbors) ≥ 5. Otherwise (graphs with maximum degree ≤ 4), the problem is
in NC. This clearly includes the two-dimensional case with triangular grid.

In this paper, we consider a family of two-state two dimensional Asyn-
chronous Cellular Automaton (ACA) defined in a triangular grid. The trian-
gular grid consists of a regular toroidal two-dimensional grid of triangular cells,
each one having two possible states, such as active and inactive or 1 and 0 (see
Fig. 1). The family we present is the Freezing Totalistic Asynchronous Cellular

u

p

qr

n

Fig. 1. Triangular grid, a cell u with its neighbors p, q and r.



408 E. Goles et al.

Automata. The term totalistic means that the next state of a cell depends in the
sum of the states of their neighbors.

We show that for every Freezing Totalistic Asynchronous Cellular Automata
in this family the problem AsyncStability is in NC. We show this result
following two approaches:

– Infiltration approach: FTACAs where there is a connected set S of inactive
cells such that, if any set in the perimeter of S becomes active, then for every
cell in the connected set there is an updating scheme that activates it (we say
that the set was infiltrated).

– Monotone approach: We use a result of [3] that relates the behavior of mono-
tone rules on asynchronous updating schemes with respect to the same rules
in synchronous updating schemes.

The paper is structured as follows: First, in Sect. 2, we give the main defini-
tions and notations. In Sect. 3, we study the complexity of FTACAs using the
infiltration approach. In Sect. 4, we study the complexity of FTACAs using the
monotone approach. Finally, in Sect. 5 we give some conclusions.

2 Preliminaries

We consider a finite configuration over the triangular grid with dimension n×n,
denote T (n), as Fig. 1. Each triangle on the grid is called a cell and it has
three adjacent cells. A cell that is adjacent to a cell u is called a neighbor of u.
The set of neighbors of u is denoted by N(u) and is called the von Neumann
Neighborhood.

Each cell in the grid has two possible states, which are denoted 0 and 1. We
say that a site in state 1 is active and a site in state 0 is inactive. A configuration
of the grid is a function x that assigns values in {0, 1} to a rhomboid shaped
area of 2n2 cells T (n), see Fig. 1. The value of the cell u in the configuration x
is denoted xu.

Given a finite configuration x of dimension n × n, the periodic configuration
c = c(x) is an infinite configuration over the grid, obtained by repetitions of x in
all directions. The configuration c(x) can be interpreted as a torus, where each
cell in the boundary of x has a neighbor placed in the opposite boundary of x.

A Asynchronous cellular automata (ACA) with states {0, 1} and local func-
tion f : {0, 1}N(0,0) → {0, 1}, is a function F : {0, 1}T (n) → {0, 1}T (n), where the
new state of the configuration x are defined by the asynchronous application cell
by cell of the local function on c(x) following the order given by σ : N → T (n).
Formally the t-th asynchronous iteration of c is given by,

F σ(0)(c) = c; F σ(t)(c)z =

{
f(F σ(t−1)(c)N(z)) if z = σ(t)
cz otherwise.

Where σ : N → T (n), called asynchronous iteration mode, is a function where
each n2 visit each cell of x.
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This definition meaning that in each time t we iterate only the cell σ(t).
An asynchronous cellular automaton is called freezing.
[2] (FACA) if the local rule f satisfies that the active cells always remain

active. A cellular automaton is called totalistic.
[4] (TACA) if the local rule f satisfies f(cN(u)) = f(cu,

∑
v∈N(u) cv), i.e. it

depends only in the sum of the states in the neighborhood of a cell.
We call FTACA the family of two-state freezing totalistic asynchronous cel-

lular automata, over the triangular grids, with von Neumann neighborhood. In
this family, the active cells remain active, because the rule is freezing, and the
inactive cells become active depending only in the sum of their neighbors.

Let F be a FTACA. We can identify F with a set IF ⊆ {0, 1, 2, 3} such that,
for every configuration c and site u:

f(cN(u)) =
{

1 if (cu = 1) ∨ (
∑

v∈N(u) cv ∈ IF ),
0 otherwise.

We will name the FTACAs according to the elements contained in IF , as the
concatenation of the elements of IF in increasing order (except when IF = ∅,
that we call φ). For example, let Maj be the freezing majority vote CA, where
an inactive cell becomes active if the majority of its neighbors is active. Note
that IMaj = {2, 3}. We call then Maj the rule 23 in this notation.

We deduce that there are 24 different FTCA, each one of them represented
by the corresponding set IF . We will focus our analysis in the FTACAs where
the inactive state is a quiescent state, which means that the inactive sites where
the sum of their neighborhoods is 0 remain inactive. Therefore, we will consider
initially only 8 different FTACA.

Definition 1. Given a configuration c ∈ {0, 1}Z2
and a FTACA F , we say that

a site v is stable if and only if cv = 0 and it remains inactive after any iterated
application of the rule under any updating scheme, i.e., F σ(t)(c)v = 0 for all
t ≥ 0 and any updating scheme σ.

From the previous definition, we consider the problem AsyncStability,
which consists in deciding if a cell on a periodic configuration c is stable. More
formally, if F is a FTACA, then:

Asynchronous Stability (AsyncStability)
Input: A finite configuration x of dimensions n × n and a site u ∈ [n] × [n]
such that xu = 0.
Question: Does there exists an updating scheme σ and T > 0 such that
F σ(T )(c(x))u = 1?

We will study this problem using two approaches:

The infiltration approach, we study rules where a cell with one active neigh-
bor becomes active (i.e. FTACA with “1” in its rule number). The technique
here is to find a connected component of cells that it needs exactly one active
neighbor to activate. If we find an active cell outside it such that it can
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activate a cell in the connected component (infiltrate the set), then we can
activate our decision cell following a path connecting the infiltrated cell with
our decision cell.

Monotone approach, where we study the monotone freezing rules. In this rule
any updating scheme reaches the same fixed point. We then use results of [5]
for the synchronous updating scheme (usual CA) to study AsyncStability.

Since in rule 123 a cell is stable if and only if all the cells in the configuration
are inactive and, in the rule, φ all the inactive cells are stable, then we will not
study these rules, because trivially for these AsyncStability is in NC.

2.1 Some Graph Topics

For a set of cells S ⊆ Z
2, we call G[S] = (S,E) the graph defined with vertex

set S, where two vertices are adjacent if the corresponding sites are neighbors
for the von Neumann neighborhood.

For a graph G = (V,E), a sequence of vertices P = v1, . . . , vk is called a
v1, vk- path if {vi, vi+1} is an edge of G, for each i ∈ [k − 1].

Definition 2. A graph G is called connected if for every pair of vertices u, v ∈
V (G), G contains a u, v-paths.

A maximal set of vertices of a graph G that induces a connected subgraph is
called a connected component of G.

This structure is quick to find using a parallel machine.

Proposition 1 ([6]). There is an algorithm that computes the connected com-
ponents of a graph with n vertices in time O(log2 n) with O(n2) processors.

2.2 Monotonicity

For two configurations c and c′, denote by ≤ the partial order relation over
configurations, where c ≤ c′ if and only if cu ≤ c′

u for every u ∈ Z
2. A (A)CA

G : {0, 1}Z2 → {0, 1}Z2
is called monotone if c ≤ c′ implies that G(c) ≤ G(c′).

For example, the freezing majority automata is monotone. Some of our FCA are
in a particular class of CA, the monotone cellular automata.

Definition 3. A CA F is monotone if ∀c, c′ ∈ QZ
d

: c ≤ c′ ⇒ F (c) ≤ F (c′),
where ≤ is induced by order in Q cell by cell.

A fixed point of an ACA (resp. CA) F is a configuration that remains invari-
ant on the application F on every updating scheme (resp. the synchronous updat-
ing scheme). In [3] it is shown that any configuration of a Monotone Freezing
ACA reaches the same fixed point that it reaches on the synchronous version of
the rule.

Proposition 2 ([3]). Any configuration of a Monotone Freezing ACA reaches
the same fixed point that it reaches on the synchronous version of the rule.

We will call Stability the problem to decide if a cell becomes stable when
every cell evolve synchronously. Proposition 2 implies that for Freezing Monotone
rules, the Stability problem is equivalent to the AsyncStability problem.
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3 The Infiltration Technique

In this section we study the rules where an inactive cell becomes active with one
active neighbor. These cases include the rules 1, 12 and 13. For all this rules we
define, for an initial configuration x, V+1 the set of all cells in T (n) that need
exactly one active neighbor to be activated, formally V+1 = {v ∈ [n] × [n] : xv =
0 ∧ ∑

w∈N(v) xw + 1 ∈ IF}
We define G+1 as the graph induced by V+1. Also we define B+1, called

boundary of G+1, as the cell in the complement of V+1 with at least one neighbor
in V+1, formally B+1 = {v �∈ V+1 : V+1 ∩ N(v) �= ∅} (Fig. 2).

Fig. 2. : Cell in V+1. : Cell in B+1. Example of V+1 and B+1 for rule 1. The cell
without number are in state 0. The cell (a) is not in V+1 cannot evolve. The cell (b) is
not in V+1 because evolves immediately.

To decide if an initially inactive cell u will becomes active, note that if u �= G+

then u is stable. Without loss of generality, we suppose that G+1 is connected
and containing u (otherwise, we restrict to the connected component of G+1

containing u). Also, we will use the next lemma easy to check. The following
lemma explains what happens if a cell infiltrates the border.

Lemma 1. If there is an updating scheme such that some cell in B+1 becomes
activated, then there is an updating scheme activating u.

Proof. Roughly, if a boundary cell v becomes active (it infiltrates V+1), then, by
connectivity, we choose a v − u path of cells in V+. Then, choosing an updating
scheme activating the cells of the v − u path one by one form v we activate u.

Now we will see that is enough check the information of the neighborhood of
each border cell is enough to know if this cell is stable or it infiltrate to V+1. We
are not interested in the cells that become active with three active neighbors,
because this cells can belong to B+1 and also they cannot affect its neighbors,
because every one of this is already active.
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Lemma 2. To decide if a boundary cell v ∈ B+1 will become active or it is
stable depends only of N(v).

Proof. Let v ∈ B+1. We will consider the following facts:

– By definition of B+1, v has at least one inactive neighbor, the neighbor in
V+1.

– Given that v �∈ V+1, then it has at least one active neighbor, otherwise v ∈
V+1.

– If v has exactly one active neighbor, then v evolves in one time-step and we
are done.

– If v has exactly two active neighbor, then v evolves in one iteration and we
decide (because 2 belongs to IF ) or it does not evolve, then v is stable and
we decide (because 2 �∈ IF ).

We deduce the lemma.

Theorem 1. AsyncStability is in NC for the rules 1, 12 and 13.

Proof. Let (x, u) be an input of AsyncStability, i.e. x is a finite configuration
of dimensions n×n, and u is a site in [n]×[n]. Our algorithm for AsyncStability
first check if the neighborhood of u is a stable pattern or can evolve in one
step, then computes V+1 and G+1. Then, the algorithm compute the connected
components of G+1 and restricts G+1 to the connected component containing u
and then compute B+1. Finally, the algorithm answers Reject if there is a vertex
v ∈ B+1 that can be activated. Otherwise answer Accept.

This algorithm works too on the rules changing with three active neighbors,
because to activate a boundary cells with three neighbors implies to have an
active cell in V+.

Algorithm 1. AsyncStability solving 1, 12 and 13
Input: x ∈ {0, 1}T (n) and u ∈ T (n) such that xu = 0.
1: if N(u) is a stable pattern then return Accept end if
2: if f(xN(u)) = 1 then return Reject end if
3: Compute the V+1 = {v ∈ Z

2 : xv = 0 ∧ |xN(v)|1 + 1 ∈ IF }.
4: Compute the graph G+1 = G[V+1].
5: Compute the connected components of G+1, {Ci}M

i=1 .
6: Redefine V+1 = Ci : u ∈ Ci.
7: Compute the B+1 = {v �∈ V+1 : V+1 ∩ N(v) �= ∅}.
8: for all v ∈ B+1 do in parallel
9: if f(xN(v)) = 1 then return Reject

end if
10: end for
11: return Accept

Let N = n2 the size of the input. The lines 1–6 are computed easily in time
O(log N) using O(N) processors. The line 7 is computed in time O(log N) using
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O(N) processors, 1 processor by cell v ∈ [n]×[n] and it test that |xN(v)|1+1 ∈ IF .
The line 8 is computed in time O(log N) using O(N) processors, 1 processor
by edge (u, v) in the grid (there is O(N) edges) and it add (u, v) to the edges of
G+1 if u and v are in V+1. The line 9 is computed in time O(log N) using O(N)
processors by Proposition 1. The line 10 is computed in time O(log N) using
O(N) processors, 1 processor by cell v in each connected component, it test that
v = u and define i as the index of the connected component containing u. Each
processor remove form V+ its vertex is not in Ci. The line 11 is computed in
time O(log N) using O(N) processors, 1 processor by cell v �∈ V+1 and it test
that V+1 ∩ N(v) �= ∅. The line 12–16 are computed in time O(log N) using
O(N) processors, 1 processor by cell v ∈ B+1 and it test that f(xN(v)) = 1. If
there is a cell that verifies this condition return Reject.

4 Monotone Rules

Given that we know the complexity of Stability for 23 then AsyncStability
has at the most the same complexity.

Theorem 2. AsyncStability is in NC for the rule 23.

Proof. In [3] is shown an algorithm solving Stability in time O(log2 n) with
O(n3/ log n) processors. Roughly the stable cells are characterized as the cells in
a bi-connected component (cycles) or a cell in a path between two cycles in the
graph induced by inactive cells. The complexity of the algorithm is then given by
the complexity of to compute bi-connected components. For more information
about this can be found in [7] (Fig. 3).

Fig. 3. Example of fix point for the rule 23. The north east lines cells are cells in the a
bi-connected component of inactive cells. The white cells are in a path of inactive cells
connecting two bi-connected components of inactive cells.
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Moreover, we can use this fact to know the complexity of AsyncStability
in its non-monotone versions, the ACA 2.

Lemma 3. Let a configuration x. The cell u with at least one inactive neighbor.
Then u is stable for the rule 23 if and only if u is stable for the rule 2.

Proof. Note that a site u that is stable for rule 23 is directly stable for rule 2.
Indeed, an updating scheme that activates u for rule 2 also activates u on rule
23. Suppose now that u is not stable for rule 23 and let σ be an updating scheme
such that after t time-steps u becomes active. Moreover, we pick σ such that t
is minimum. Since t is minimum, we can assume that every cell that is updated
before u is initially inactive, and switches from inactive to active. Moreover, note
that a cell with three active neighbors does not affect the dynamics of other cells,
because active cells remain active. Therefore, we assume that every cell updated
in σ before u had exactly two inactive neighbors. Finally, suppose that in t − 1
cell u had three active neighbors. Since we are assuming that u had at least one
inactive neighbor, it means that there is a time step in 0, . . . , t − 2 in which u
had two active neighbors. This contradicts the minimality of t. We deduce that
u had exactly two active neighbors at time t. Therefore u becomes active on rule
2 updated according to σ.

The previous lemma show that it is possible to use the algorithm to solve
AsyncStability for 23 to solve AsyncStability for the rule 2.

Theorem 3. AsyncStability is in NC for the rule 2.

Algorithm 2. AsyncStability solving 2
Proof. Input: x ∈ {0, 1}T (n) and u ∈ T (n) such that xu = 0.
1: if N(u) has three active neighbors then return Reject end if
2: To solve AsyncStability for the rule 23.
3: return The same answer obtained in the previous line.

Let N = n2 the size of the input. The lines 1–3 are computed easily in
time O(log N) using O(N) processors, because is to compute the sum of three
cell. The lines 4 are computed in timeO(log2 n) using O(n3/ log n) processors.,
because is the complexity of AsyncStability for the rule 23, see Theorem 2.

5 Concluding Remarks and Perspectives

In this paper we proved that the AsyncStability problem is in NC for all
Freezing Totalistic Asynchronous Cellular Automata (FTACA) in the triangular
grid with the von Neumann Neighborhood. There are 16 FTACA. We focus our
study on 8 rules, where the inactive state is quiescent. There are some rules that
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are trivial (φ and 3). Rules 1, 12 and 13 are in NC by the infiltration approach
and the rules 2 and 23 are in NC by the monotone approach.

If we consider the rules where 0 is not quiescent the infiltration approach and
monotone approach can be modified to compute AsyncStability in NC too.
For the infiltration approach is enough to remove the inactive cells with only
inactive cell in its neighborhood to V+, because now this cell can not 1 neighbor
to active. For monotone approach note that for all configuration c and updating
scheme σ we have F σ

23(c) ≤ F σ
023(c). Let C the set of cell initially with every

neighbor inactive and S the set of cells stables for the rule 23, then is enough to
check if is possible destroy the cycles of stable cells protecting u activating some
cells of C ∩S. Further research consists in to study the FTACA two-dimensional
squared grid Z

2. Here each cell has four neighbors, the they are 32 FTACA in
this family.
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Abstract. We investigate the dependence of steady-state properties of
Schelling’s segregation model on the agents’ activation order. Our basic
formalism is the Pollicott-Weiss version of Schelling’s segregation model.
Our main result modifies this baseline scenario by incorporating conta-
gion in the decision to move: (pairs of) agents are connected by a second,
agent influence network. Pair activation is specified by a random walk
on this network.

The considered schedulers choose the next pair nonadaptively. We can
complement this result by an example of adaptive scheduler (even one
that is quite fair) that is able to preclude maximal segregation. Thus
scheduler nonadaptiveness seems to be required for the validity of the
original result under arbitrary asynchronous scheduling. The analysis
(and our result) are part of an adversarial scheduling approach we are
advocating to evolutionary games and social simulations.

1 Introduction

Schelling’s Segregation Model [1] is one of the fundamental dynamical systems
of Agent-Based Computational Economics, perhaps one of the most convincing
examples of Asynchronous Cellular Automata (ACA) [2] employed in the social
sciences. It exhibits large-scale self-organizing neighborhoods, due to agents’
desire to live close to their own kind. A remarkable feature of the model that
has captured the attention of social scientists is the fact that segregation is
an emergent phenomenon, that may appear even in the presence of just mild
preferences (at the individual level) towards living with one’s own kind. The
model has sparked a significant interest and work, coming from various areas
such as Statistical Physics [3], agent-based computational economics [4,5], game
theory [6], theoretical computer science [7–9], or applied mathematics [10].
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Schelling’s segregation model is an asynchronous dynamical system on a
graph (usually a finite portion of the one-dimensional or the two-dimensional
lattice). It can be described, informally as follows: vertices in the graph are in
one of three states: unoccupied, when no agent sits on the given node, or one
of red/blue (±1), corresponding to the color of the agent inhabiting the node.
Agents have a (non-strict) preference towards living among agents of the same
color. This is modeled by considering a local neighborhood around the agent.
Depending on the density of like-colored agents in the neighborhood the agent
may be in one of two states: happy and unhappy. An unhappy agent may seek
to trade places with another agent in order to become happy. It was originally
observed via “pen-and-paper simulations”, and proved rigorously in a variety of
settings, that segregated states may arise even when agent only have a weak pref-
erence for its own color, and are happy to live in a mixed neighborhood, as long
as it contains “enough” of its own kind. Difference in the topology, activation
order, specification of the update mechanism account for the dizzying variety
of variants of the model that have been investigated so far (for the intellectual
context of the model and a related one, due to Sakoda, see [11]).

Qualitative properties of asynchronous cellular automata are highly depen-
dent on activation order [12,13]. In particular, when viewed as dynamical sys-
tems, ACA may exhibit a multitude of limit cycles, and the update dynamics
“chooses” one of these limit cycle in a path dependent manner. The challenge
then becomes to explain the selection of one particular limit cycle among many
possible ones.

One particularly interesting class of techniques, brought to evolutionary
games by Foster and Young [14] (see also [6]) uses the concept of stochastic
stability to deal with this problem. It was the fundamental insight of Peyton-
Young [6] that adding continuous small perturbations to a certain dynamics
might help “steer”—the system towards a particular subset of equilibria, the
so-called stochastically stable states. Indeed, in several versions of Schelling’s
segregation model [5,6,15] the most segregates states are identified as precisely
the stochastically stable equilibria of the dynamics.

Though such results are interesting, they are still not realistic enough enough:
results about stochastic stability in models on graphs may be sensitive to the pre-
cise specification of the update order, which in realistic scenarios need not be the
random one. As noted in many papers, precise specification of an asynchronous
schedule in social systems can arise from many factors, including geography or
agent incentives [16]. It is thus important to study validity of baseline results
under different scheduling models. A dramatic example of this type is that of the
related model of logit response dynamics, another model analyzed via stochastic
stability [17]. Going in this model from a random single-node update to parallel
modes (the so-called revision process of [18]) may lead (in general games) to
the selection (via stochastic stability) of states that are not even Nash equilbria.
In contrast, for local interaction games the parallel all-logit rule has a Gibbs
limiting distribution [9], similar to the random update case.
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Neither random scheduling nor parallel update can accurately model social
contagion phenomena, i.e., agents becoming active as a result of other agents’
action, via communication or imitation. Thus it is of interest to study the robust-
ness social models to variations in the update rule. Indeed, in [19,20] we have
proposed an adversarial approach to social simulations. Roughly speaking, this
means that we consider the baseline dynamics under random scheduling, then
modify the update order to arbitrary scheduling, and attempt to derive necessary
and/or sufficient conditions on the scheduler that make the results from the ran-
dom update case extend to the adversarial setting. We have accomplished this
in [20] for Prisoners’ Dilemma with Pavlov strategy, a Markov chain previously
investigated in [21], and in [19] for the logit response dynamics.

The purpose of this paper is to introduce contagion in evolutionary versions
of Schelling’s segregation model, as studied by Pollicott and Weiss [10], and study
the setting where the set of agents that becomes active is specified by a random
walk on a second “communication” network. A similar model was investigated
for the logit response dynamics in [19], and is apparently consistent with some
real-life contagion phenomena in power networks [22]. In the most general setting
this communication network works on pairs of vertices. The more natural case
where agents influence each other is a special case of our setting. The feature of
the Pollicott-Weiss model that is of special interest to our study is that, although
Schelling’s model might have multiple equlibria, it is only the most segregated
states that are stochastically stable. Our result shows that this extends to a
scenario with social contagion: we prove a result with a similar flavor under a
more general nonadaptive model of activation.

Even though we use analytic rather than experimental techniques, our results
are naturally related to a long line of research that investigates the robustness of
discrete models under various scheduling models [13,23]. On the other hand the
notion we consider, that of stochastic stability, is highly related to the analysis of
cellular automata using dynamical systems techniques [24]. In contrast to many
such studies, though, that only perturb the initial system state, stochastic sta-
bility embodies the notion of stability under continuous (but vanishingly small)
perturbations.

2 Preliminaries

We first review the notion of stochastic stability for perturbed dynamical systems
described by Markov chains:

Definition 1. Let the Markov chain P 0 be defined on a finite state set Ω. For
every ε > 0, we also define a Markov chain P ε on Ω. Family (P ε)ε≥0 is called a
regular perturbed Markov process if all of the following conditions hold:

– For every ε > 0 Markov chain P ε is irreducible and aperiodic.
– For each pair of states x, y ∈ Ω, limε>0 P ε

xy = P 0
xy.

– Whenever Pxy = 0 there exists a real number r(m) > 0, called the resistance
of transition m = (x → y), such that as ε → 0, P ε

xy = Θ(εr(m)).
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Let με be the stationary distrib. of P ε. State s is stochastically stable if
limε→0μ

ε(s) > 0.

We use a standard tool in this area: a result due to Young (Lemma 3.2 in
[6]) that allows us to recognize stochastically stable states in a Markov Chain
using spanning trees of minimal resistance:

Definition 2. If j ∈ S(G) is a state, a tree rooted at node j is a set T of edges
so that for any state w �= j there exists an unique (directed) path from w to j.
The resistance of a rooted tree T is defined as the sum of resistances of all edges
in T .

Proposition 3 (Young). The stochastically stable states of a regular Markov
process (Pε) are precisely those states z ∈ Ω such that there exists a tree T rooted
at z of minimal resistance (among all rooted trees).

3 The Model

We consider an N × N two-dimensional lattice graph G with periodic boundary
conditions (that is, a torus). Let V be the set of vertices of this graph. Each
vertex of G hosts an agent, colored either red or blue. The neighborhood of a
vertex v is the four-point neighborhood, consisting of the cell to the left, up,
right, down of the cell holding v. An agent’s utility is written as ∀i ∈ V , ui(x) =
r · w(xi) + εi, where r is a positive constant, assumed similarly to [5] to be
the same for all agents, and w(x) is defined, similarly to [10], as the difference
between the number of neighbors of x having the same color and the number
of neighbors of x having the opposite color. Finally, εi are (possibly different)
agent-specific constants.

Next we specify our scheduling model, defined as follows:

Definition 4. [Markovian contagion]: To each pair of vertices e we associate
a probability distribution De on V ×V such that e ∈ supp(De)1. We then choose
the pair to be scheduled next as follows: Let pi be the pair chosen at stage i.
Select the next scheduled pair pi+1 by sampling from the set of pairs in Dpi

. We
assume that for any two pairs e, e′ the following condition holds:

Pr[e → e′] > 0 ⇔ Pr[e′ → e] > 0. (1)

In other words: the next scheduled pair only depends on the last scheduled
pair, succession relation e → e′ specifies a bidirected graph H(G) whose vertex
set is V × V , and the scheduled pair can be seen as performing a random walk
(possibly a non-uniform one) on H(G). In particular the next chosen pair is
not guaranteed to have different labels on endpoints. Furthermore, graph H(G)
should be connected, otherwise the choice of a particular initial sequence of
moves could preclude a given edge from ever being scheduled sometimes in the
future.
1 This translates, intuitively, to the following condition: we always give the participants

in a swap the chance to immediately reevaluate their last move.
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Observation 1. A particular case of Definition 4, which justifies the name con-
tagion is described informally as follows: agents, rather than pairs, are given the
opportunity to switch. They randomly choose a swapping neighbor among those
available to them. There exists a second, separate influence network I. The next
scheduled agent is one of the neighbors (in I) of the previously scheduled agent.
Indeed, to describe this scenario in the setting of the previous definition, define
De to consist of pairs e′ that share with e a vertex.

Observation 2. The random scheduler is a particular case of Definition 4, when
De is the uniform distribution on V × V .

To complete the description of the dynamics, we only need to specify the
probability that two agents inhabiting the different endpoints of a pair e = (u, v)
switch when pair e is scheduled. This is accomplished using the so-called log-
linear response rule [6,18,25], specified as follows: let S be the state before the
switch and T be the state obtained if the two agents at u, v switch. Then:

Pr[S → T ] =
eβ·[u1(T )+u2(T )]

eβ[u1(S)+u2(S)] + eβ[u1(T )+u2(T )]
, (2)

where u1, u2 are the corresponding utility functions of the two agents at the
endpoints of the scheduled pair, and β > 0 is a constant. This is, of course,
the noisy version of the best-response move, that would choose the move that
maximizes the sum of utilities u1(·) + u2(·).

The state of the system is defined by a vector w ∈ {−1,+1}V is a vector
encoding the labels of all vertices of the torus. To obtain a description of the
dynamics as an aperiodic Markov chain we have to complete the description of
the system state by a pair r of vertices, i.e., the last pair that had the opportu-
nity to switch by being scheduled. Thus the state space of the Markov chain is
S(G) := {±1}V × (V × V ). When H(G) is strongly connected, Mβ is ergodic,
so it has an unique stationary distribution Πβ . It is easy to see (and similar
to previous results e.g. in [6]) that the family of chains (Mε)ε>0 is a regularly
perturbed Markov process (where we define ε = e−β).

Definition 5. A state w ∈ {±1}V is called maximally segregated if w realizes
the minimum value of the number of red-blue edges (of the torus), across all
possible states on G with a given number of red/blue agents.

In [10] a complete characterization of a maximally segregated state was
obtained (Theorem 2 in that paper). Roughly they are horizontal or vertical
“bands”, possibly with a “strip” attached, or a rectangle, possibly with at most
two “strips” attached. We refer the reader to [10] for details, and don’t discuss
it any further.
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4 Main Result and Its Interpretation

Our main result is:

Theorem 6. The stochastically stable states for Schelling’s segregation model
with Markovian contagion form a subset of the set Q ⊆ S(G),

Q = {(w, e)|w is maximally segregated and e ∈ V × V } (3)

In other words: the conclusion that stochastically stable states in
Schelling’s segregation model are maximally segregated is robust to
extending the update model from a random one to those from the
family from Definition 4, that incorporate Markovian contagion.

The defining feature of the class of schedulers in the previous result seems to
be that they choose the next scheduled pair nonadaptively : the next pair only
depends on the last scheduled pair, and not on other particulars of the system
state. Indeed, in the full version of the paper we will complement the result above
by another one (very easy to state and prove), that shows that some adaptive
scheduler (despite being quite fair) can forever preclude the system from ever
reaching maximal segregation (thus “breaking the baseline stylized result”).

Proof. We will employ a fundamental property, noted for models of segregation
such as the one in this paper e.g. in [5]: they are potential games [26], i.e., they
admit a function L : S(G) → R such that, for any player i, any strategy profile
(i.e., vector of player strategies) x−i := (xj)j∈V,j �=i, and any two strategies z, t
for player i

ui(z;x−i) − ui(t;x−i) = L(z;x−i) − L(t;x−i). (4)

In other words, differences in utility of the i’th player as a result of using
different strategies are equal to the differences in potential among the two corre-
sponding profiles. The function L is defined simply as L(s) =

∑
i ui(s). Strictly

speaking the potential above is defined for the original Policott-Weiss model
i.e., defined on {±1}V , instead of S(G). But it can be easily extended by sim-
ply applying it to any pair (s, e) (thus neglecting e). Moreover, the following
property holds, which determines the resistance of moves:

Lemma 7. Let A ∈ {±1}V be a state of the system, and let e = (i, j) be a pair
in V × V . Let B be a state obtained by making the move m = A → B (B is
either A or is the state obtained from A by swapping the states Ai, Aj). Then
the resistance r(m) of move m is equal to:

r(m) = [ui(A) + uj(A)] − [ui(B) + uj(B)] = 2(L(A) − L(B)) > 0 (5)

when A → B is a swap that diminishes potential, and to

[ui(C) + uj(C)] − [ui(A) + uj(A)] = 2(L(C) − L(A)) > 0 (6)

when A = B, but the corresponding swap A → C would be a potential improving
one. In all other cases r(m) = 0 (that is m is a neutral move).
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In other words, a move has positive resistance when one of the following
two alternatives hold: (a) The move corresponds to a decrease in potential. The
resistance of the move is, in this case, equal to the potential decrease. (b) The
move corresponds to preserving the current state (as well as agents’ utilities),
but the other possible move would have led to a state of higher potential. The
resistance of the move is, in this case, equal to the difference in potentials between
this better state and the current one.

Proof. Follows directly from Eq. (2) and the definition of resistance.

We apply this result to prove the following lemma:

Lemma 8. Consider a state Y ∈ Q that is maximally segregated. Consider
another state X, and a tree T rooted at X having minimal potential. Then there
exists another tree T rooted at Y whose potential is at most that of tree T , strictly
less in case when X is not a maximally segregated state.

Proof. Note that, by the definition of utility functions, maximally segregated
states are those that maximize the potential.

Since T is an oriented tree, there is an unique directed path

p : [Y = (s0, e0) → . . . → (sk, ek) → (sk+1, ek+1) → . . . → (sr, er) = X] (7)

in T from Y to X. Here s0, sr ∈ {±1}V are states, and e0, er are pairs in
V × V . First, we decompose T into three subsets as follows:

1. The set of edges of p (see Fig. 1).
2. The set of edges of, WY the subtree rooted at y.
3. The edges of subtrees Wk rooted at nodes (sk, ek) of p, other than Y (but

possibly including X).

Fig. 1. Decomposition of edges of tree T . Path p is on top.

Lemma 9. Without loss of generality we may assume that the path p contains
no two consecutive vertices (sk, ek) and (sr, er), k < r, with sk = . . . = sr and
all the moves between sk and sr having zero resistance.
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Proof. Suppose there was such a pair k, r. Take one with maximal k − r. Define
a tree T ′ by

– First connecting (sk, ek) directly to (sr+1, er+1). This is legal since sk = sr.
Indeed, since activating edge er+1 move the system from sr to sr+1, activating
the same edge moves the system from (sk, ek) to sr+1 as well.

– Also connecting (sk+1, ek+1), . . . , (sr, er) directly to (sr+1, er+1).

It is easy to see that T ′ is a tree with the same resistance as T , since the only
removed edges have zero resistance. �	

In particular, applying iteratively Lemma9, we may assume that all transi-
tions on the path from p to q either change the system state or have positive
resistance.

Now, to obtain tree T we will first obtain a graph T , in which every node
has at least one path to node Y . “Thinning out” this directed graph to a tree
yields a tree T of even lower resistance. To obtain directed graph T :

1. First, add to T the edges of TY .
2. Next, define path q from X to Y as follows:

q : [(sr, er) → (sr−1, er) → (sr−2, er−1) → . . . → (s0, e1) → (s0, e0)]. (8)

In other words, q aims to “undo” the sequence of moves in path p from Eq. (7)
from Y to X. However, since the states of the Markov chain also have as a
second component a pair in V ×V , (corresponding to the last scheduled edge),
we need to take a little extra care when defining q. Specifically q starts at X
but cannot simply reverse the edges of p, since these do not correspond to
legal moves. To define q, we first make a move at er by “undoing” the last
move of p2. This yields state (Sr−1, er) (since pair er is scheduled in this as
well). We then continue to “undo moves of p” until the state becomes S0. This
is possible because of condition (1): since pair er+1 can be scheduled after er,
scheduling er can move the system from sr to sr−1, scheduling pair er−1 can
move the system from sr−1 to sr−2, and so on, until state S0 is reached. At
this moment the last activated pair was e1. q then moves to Y by making a
move (with no effect) on e0.
Note that every such path will contain, for every k = 1, r, a vertex whose
state is sk.

3. For every tree component Wk obtained by removing path p from T , attached
to p at (sk, ek) perform one of the following:

2 This is where we use a property specific to our model of Schelling segregation, as
opposed to proving a result valid for general potential game: the property that we
employ is that in Schelling’s model any move m “can be undone”. This means that
there is a move n using the same pair of vertices as m that brings the system back
to where it was before. Move n simply “swaps back” the two agents if they were
swapped by m, and leaves them in place otherwise.
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– Case 1: sk = sk−1.
In this case the point (sk, ek) = (sk−1, ek) is on path q as well, therefore
we also add the rooted tree Wk to T . This is possible since attaching a tree
to a node depends only on the system state, but not on the last scheduled
node. Moreover, the resistance of Wk does not change as a result of this
attachment.

– Case 2: sk �= sk−1 and move (sk−1, ek−1) → (sk, ek) has resistance > 0.
In this case, since in configuration sk−1 and scheduled move ek we have a
choice between moving to sk and staying in sk−1, it follows that the tran-
sition (sk−1, ek−1) → (sk−1, ek) has zero resistance and L(sk) < L(sk−1).
Hence transition (sk, ek) → (sk−1, ek) has zero resistance.
We now add the tree Wk = Wk ∪ {(sk, ek) → (sk−1, ek)} (rooted at node
(sk−1, ek), which is on q) to T . The tree Wk has the same total resistance
as Wk. All nodes from Wk, including (sk, ek) can now reach Y via q.

– Case 3: sk−1 �= sk, move (sk−1, ek−1) → (sk, ek) has zero resistance and
all moves on p between sk and X have zero resistance.
Then we add to T this portion of p, together with Wk. This way we
connect nodes in Wk−1,Wk to Y (via X and q). All added edges except
those of one of the trees Wl have zero resistance.

– Case 4: sk−1 �= sk, the move (sk−1, ek−1) → (sk, ek) has zero resistance,
but some move on p, between sk and X has positive resistance.
Let (sk+l, el) → (sk+l+1, el+1) be the closest move (i.e., the one that
minimizes l) with positive resistance.
If sk+l = sk+l+1 then we have already connected (sk+l, el) to Y , as it falls
under Case 1. Now just add all the (zero resistance) edges of p between
sk, ek and (sk+l, ek+l), together with edges of Wk, to connect all such
nodes to Y .
If sk+l = sk+l+1 then we have already connected (sk+l, el) to Y , as it falls
under Case 2. We proceed similarly.

The previous construction has ensured that any pair (s, e) is connected by at
least one path to Y . Thinning out T we get a rooted tree T having resistance less
or equal to the resistance of T . Since the four outlined transformations only add,
in addition to trees Wk, edges of zero resistance, to compare the total resistances
of T and T one should simply compare the total resistances of paths p and q. We
claim that this difference in resistances of these paths is equal to the difference
in potentials:

Claim. r(p) − r(q) = 2(L(Y ) − L(X)) ≥ 0.

Proving Claim (4) would validate our conclusion, since L(Y ) − L(X) ≥ 0, and
L(X) = L(Y ) iff X is a global minimum state for the potential function. We
prove this by considering the correspondence between edges of paths p and q: to
each edge e of p one can associate an unique edge e′ of Q that “undoes e”.

By the additivity of both resistance and potential, it is enough to prove that,
for every edge e of p and its associated edge of q, e′, r(e′) − r(e) is equal to
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twice the difference in potentials between Sfin, the final state for the forward
transition and Sinit, the initial state. The first thing to note is none of the two
resistances can be infinite: the transition e → e′ corresponds to a move of the
perturbed Markov chain (optimal or not). Its inverse corresponds to “undoing”
that move, which is a legal move (eventually perturbed) in itself. We employ
Lemma 7 and identify several cases:

– The move e corresponds to not switching, and its resistance is zero. Let S1

be the common state, and let S2 be the state corresponding to a switch.
Then S1 = Sinit = Sfin. Also, L(S1) ≥ L(S2). So the move e′ also stays
in state S1 (when it could have gone to S2), which is the optimal action,
given that L(S1) ≥ L(S2). Thus in this case both the “forward” and the
“backward” transition have resistance zero, and do not count towards the
sum of resistances on the path.

– The move e corresponds to switching , and its resistance is zero. Then,
Sfin = S2, Sinit = S1. By Lemma 7 L(S2) > L(S1). The backward move
has positive resistance equal to 2(L(S2) − L(S1)). The result is verified.

– The move e corresponds to not switching, and its resistance is nonzero. Then
Sinit = Sfin = S1 and L(S1) < L(S2) (since switching would be beneficial).
Therefore in the backward move the state stays S1 (when it could have gone
to S2). The resistance is equal to 2(L(S2)−L(S1)), the same as the resistance
of the forward move. Therefore r(e′) − r(e) = L(Sfin) − L(Sinit) = 0.

– The move e corresponds to switching , and its resistance is nonzero. Then,
Sfin = S2, Sinit = S1, by Lemma 7 L(S2) < L(S1) and the resistance of
the forward move is equal to 2(L(S1) − L(S2)) = 2(L(Sinit) − L(Sfin)). The
resistance of the backward move is equal to zero, so the result is verified in
this case as well.
Thus the claim is established and the proof of the theorem is complete.

5 Outlook and Further Work

Theorem 6 is only the main result in the adversarial analysis of Schelling’s seg-
regation model. It shows that stochastically segregated states are maximally
segregated. Is the converse true? Namely, is every maximally segregated state
stochastically stable? Such a result is indeed true in 1D versions of Schelling’s
segregation model (such as the one presented in [6]). We will discuss the 2D case
with Markovian contagion in the journal version of the paper.

Other topics deserving research include studying conditions that preclude
segregation, determining the convergence time of the segregation dynamics with
Markovian contagion, models with Markovian contagion and concurrent updates
[8,9], etc. We plan to address these and other issues in follow-up papers.
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13. Bouré, O., Fates, N., Chevrier, V.: Probing robustness of cellular automata through
variations of asynchronous updating. Nat. Comput. 11(4), 553–564 (2012)

14. Foster, D., Young, H.P.: Stochastic evolutionary game dynamics. Theor. Popul.
Biol. 38(2), 219–232 (1990)

15. Young, H.P.: The dynamics of conformity. In: Social Dynamics, pp. 133–153 (2001)
16. Page, S.E.: On incentives and updating in agent based models. Comput. Econ.

10(1), 67–87 (1997)
17. Kandori, M., Mailath, G.J., Rob, R.: Learning, mutation, and long run equilibria

in games. Econometrica 61, 29–56 (1993)
18. Alós-Ferrer, C., Netzer, N.: The logit-response dynamics. Games Econ. Behav.

68(2), 413–427 (2010)
19. Istrate, G., Marathe, M.V., Ravi, S.S.: Adversarial scheduling analysis of game-

theoretic models of norm diffusion. In: Beckmann, A., Dimitracopoulos, C., Löwe,
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Abstract. Cellular Automata (CA) have a long history being employed
as pseudo-random number generators (PRNG), especially for crypto-
graphic applications such as keystream generation in stream ciphers.
Initially starting from the study of rule 30 of elementary CA, multiple
rules where the objects of investigation and were shown to be able to
pass most of the rigorous statistical tests used to assess the quality of
PRNG. In all cases, the CA employed where of the classical, synchronous
kind. This assumes a global clock regulating all CA updates which can
be a weakness if an attacker is able to tamper it. Here we study how
much asynchrony is necessary to make a CA-based PRNG ineffective.
We have found that elementary CA are subdivided into three class: (1)
there is a “state transition” where, after a certain level of asynchrony,
the CA loses the ability to generate strong random sequences, (2) the
randomness of the sequences increases with a limited level of asynchrony,
or (3) CA normally unable to be used as PRNG exhibit a much stronger
ability to generate random sequences when asynchrony is introduced.

1 Introduction

Cellular Automata (CA) are one of the oldest nature-inspired computational
models in computer science [25,26]. Defined informally, CA are composed of a
lattice of identical finite state automata (or cells) all updating at the same time
according to their state and the state of their neighbours. CA have been suc-
cessfully employed in multiple fields, like for instance the modelling of physical
systems [5] such as fluids [4], natural ecosystems [1], traffic flows [13], and of
pedestrians in crowds [2]. Here, we mainly deal with the cryptographic appli-
cations of CA. In particular, we consider the well-known problem of generat-
ing pseudo-random sequences by exploiting the dynamical behaviour of CA.
Pseudo-random sequences play a fundamental role in cryptography, for example
in keystream generation for stream ciphers [14]. Differently from other studies,
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we do not try to find new CA that works well as PRNG; instead, we study how
asynchrony influences the ability of a CA to produce pseudo-random sequences.

In classical CA, all cells update at the same time (i.e., synchronously), the
underlying assumption being that there is a single, global clock regulating all
cells. This is, however, a strong assumption since real-world systems are usually
not synchronous. Once this assumption is dropped, there are multiple ways to
introduce asynchronous behaviours in CA. For example by using a probabilistic
activation [9–11], updating a cell at a time according to a given sequence [18],
having different areas of the CA update with different speeds [17,19], or even
more general updating schemes [8,28]. Here we deal with a simplified model of
asynchrony where the CA is partitioned in separate, contiguous sequences of
cells, all cells inside the same sequence update in parallel, but the sequences
update sequentially.

Our goal is to study what happens when the aforementioned assumption of
a global clock is broken not by design, but by a malicious actor who wants to
tamper with the PRNG. Since PRNG are used in cryptographic applications,
limiting the amount of damage that can be carried on by damaging them (or,
at least, the global clock governing their updates) is paramount. Here, in par-
ticular we experimentally study how different levels of asynchrony impacts the
generation of pseudo-random sequences generated by elementary CA.

The paper is organised as follows: some necessary basic notions are recalled
in Sect. 2. Section 3 briefly reviews the state of the art in CA-based PRNG,
mostly focusing on the synchronous approach. Section 4 describes in the detail
experiments we performed. In particular, Sect. 4.1 explains all the experimental
settings used, while a general discussion of the experimental results is carried
out in Sect. 4.2. The discussion of the results, particularly the classification of
the observed behaviours in three broad classes, is given in Sects. 4.3, 4.4 and 4.5.
Some further considerations and directions for future works are presented in
Sect. 5.

2 Basic Notions

In this section we recall some basic notions on CA, their properties, and how
they can be employed as PRNG.

Definition 1. A cellular automaton (CA) is a tuple (Σ, f, r) where Σ is a finite
alphabet, r ∈ N is the radius, and f : Σ2r+1 → Σ is the local function of the CA.
If the CA only has a finite number n ∈ N of cell, i.e., it is a finite CA, we say
that it is a CA of size n.

A CA is said to be an elementary CA (ECA) when its alphabet is {0, 1} and it
has radius 1. There are exactly 256 ECA, each one numbered with its Wolfram
code, a number between 0 and 255 whose binary expansion represents the output
column of the truth table defining the local function of the CA.

Here we only deal with CA of finite size with periodic boundary conditions,
that is, the cell adjacent to the n-th one is the first one and vice versa. In
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the following we assume that the subscript denoting the cell position is to be
interpreted modulo n, the size of the CA.

The configuration of a cellular automaton (Σ, f, r) of size n is a vector c =
c0, . . . , cn−1 ∈ Σn. The CA updates its state using a global rule F : Σn → Σn

where each cell updates its state at the same time using the local rule, thus
giving the following global rule:

F (c)i = f(ci−r, . . . , ci, . . . , ci+r), for 0 ≤ i < n

Finite CA of length n with alphabet {0, 1} are usually employed as PRNG
in the following way [27]:

– A random seed of n bits is the initial configuration of the CA;
– To obtain an new pseudo-random bit the entire CA is updated and one cell

(usually the central one) is sampled.

Since CA update all cells in parallel and each cell requires only access to local
information, they can be easily parallelized and/or implemented in hardware [23].

2.1 The Asynchronous Model

While classical CA are inherently synchronous, in recent years multiple variations
of CA were defined with the addition of some kind of asynchronous behaviour.
In our work we deal with a very specific kind of asynchrony, where a finite CA of
length n has its set of cells {0, . . . , n−1} partitioned into k contiguous segments
I0, . . . , In−1 with Ii =

{
ink , . . . , (i + 1)nk − 1

}
, where k is a divisor of n. At time 0

only the cells in the segment I0 are updated; at the successive time step only the
cells in the segment I1 are updated, and so on. In general, at the t-th time step
only the cells in the segment t mod k are updated. This kind of asynchrony can
be tuned by using the parameter k: when k = 1 there is only one segment and the
update is synchronous, like in classical CA. When k = n only one cell updates
at each time step, mimicking the behaviour of fully asynchronous CA [18]. It
is also possible to obtain intermediate levels of asynchrony: for example, with
k = 2 the CA is effectively split into two parts which update alternately.

In this paper we empirically study how increasing the value of k influences
the ability of a CA to produce robust pseudo-random sequences (i.e., which pass
rigorous statistical tests). To avoid the risk of sampling multiple times a cell
that still has not updated, we perform the sampling every k steps. In this case
for k = 1 the behaviour is the same as in classical CA and in all other cases we
ensure that the sampled cell has always been updated between two samplings.

3 Related Work

In this section, we give a brief historical overview of the literature concerning
pseudo-random sequence generation by means of cellular automata.

Wolfram [27] was the first to propose a PRNG based on a chaotic CA to
be employed in cryptographic applications. Specifically, he suggested to use a
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periodic CA equipped with rule 30, and to sample the value of a certain cell as
a pseudo-random sequence. Some years later, Damg̊ard [7] showed a concrete
construction of iterated hash function based on Wolfram’s PRNG.

Unfortunately, Wolfram’s PRNG later turned out to be very weak from a
cryptographic standpoint: Meier and Staffelbach [22] proved that it is vulnerable
to a known plaintext attack, unless the CA is composed of at least 1000 cells.
The attack exploits the quasi-linearity of rule 30, which allows to rewrite it in
an equivalent way where the initial seeds are not equiprobable. Analogously,
Daemen et al. [6] cryptanalysed Damg̊ard’s hash function, proving that it is
computationally feasible to generate collisions in it.

Sipper and Tomassini [24] proposed a cellular programming approach based
on a non-uniform CA, where the rule vector specifying which rule is applied
in each cell is evolved by a Genetic Algorithm (GA). The fitness of each cell is
evaluated by computing the entropy of the pseudo-random sequence generated by
its current rule for 4096 time steps, averaging the results over 300 initial random
configurations. The final rule vectors evolved through the cellular programming
algorithm were then further investigated by testing longer sequences with the
ENT statistical test suite.

A common trend that can be noticed in the CA-based PRNG literature
is that the cryptographic quality of the pseudo-random sequences is usually
assessed by means of statistical tests. A more refined approach which emerged
in the last years consists in analysing the cryptographic properties of the local
rules underlying the CA, by interpreting them as Boolean functions. Considering
Wolfram’s PRNG, it turns out that rule 30 is both balanced and nonlinear, but
it is not first order correlation-immune [21]. This is the reason why Meier and
Staffelbach’s attack proved to be successful. As a consequence, recent works like
Formenti et al. [12] and Leporati and Mariot [15,16] focused on the search of
local functions of radius 2 and 3 in order to find new rules with a better trade-
off of balancedness, nonlinearity and correlation-immunity, and which can also
pass stringent statistical tests (such as the NIST suite [3]) when plugged into
Wolfram’s PRNG model.

4 Experiments

4.1 Experimental Settings

For performing the experiments we considered only balanced ECA, meaning that
the truth table of the local rules is composed of an equal number of zeros and
ones. The reason behind this choice is that balancedness is a fundamental cryp-
tographic criterion, and CA with unbalanced rules have an inherent statistical
bias in their dynamics [16]. Hence, since our aim in this work is to investigate
the resilience against asynchrony of local rules which already yield good pseudo-
random sequences in the classical synchronous update scheme, we focused only
on the subset of balanced rules.

The initial random seed was chosen using https://random.org to obtain a 64
bit initial configuration for the CA. For each CA 1000 runs with different initial

https://random.org
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configurations were performed and 106 bits were generated in each run, thus
producing sequences of 109 bits. The values k governing the asynchrony of the
CA were all divisors of 64, the length of the CA configuration: 1 (synchronous
behaviour), 2, 4, 8, 16, 32, and 64 (fully asynchronous behaviour).

The randomness of each sequence was assessed using the NIST test suite [3],
consisting of 188 statistical tests. The quality of the pseudo-random sequences
generated is thus expressed using a value from 0 (no test passed) to 188 (all
tests passed). It is important to remember that, while not passing a large enough
number of statistical tests indicates a weakness, even passing them all does not
ensure that the PRNG employed is robust.

4.2 Experimental Results

We have experimentally observed three main behaviours depending on the level
of asynchrony in CA:

1. A “phase transition” happens when enough asynchrony is present. Before
the cutoff value the CA retains its ability to generate strong pseudo-random
sequences. After the cutoff value most of the statistical tests fail (Sect. 4.3).

2. The CA ability to generate strong pseudo-random sequences increases with
a limited amount of asynchrony and decreases with a large amount of it
(Sect. 4.4).

3. A CA that is usually unsuitable to be used as a PRNG generates sequences
with better pseudo-randomness once a limited amount of asynchrony is added
(Sect. 4.5).

We are excluding from this classification the CA that did not pass a high enough
level of statistical tests with any level of asynchrony. The subdivision of the
remaining balanced ECA rules in the three classes is presented in Table 1. In the
following we discuss the results obtained for each one of these classes.

Table 1. The subdivision in classes of balanced ECA.

Type 1 30, 45, 75, 86, 89, 101, 135, 149

Type 2 106, 120, 169, 225

Type 3 60, 90, 105, 150, 154, 165, 166, 180, 195, 210

4.3 Type 1 Rules

Type 1 rules includes rule 30, which as remarked in Sect. 3 was among the first
employed as a PRNG, even if later it was found to have some weaknesses [22].
The results for this class of rules is shown in Fig. 1.

It is possible to observe that most of the rules pass all or almost all the tests
when the parameter k is below 32, with 188 or 187 tests passed by each rule.
The first difference can be observed when k = 32:
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Fig. 1. The number of NIST test passed by type 1 rules with the change in asynchrony

– rules 86, 89, 101, and 149 still pass most of the tests (from a maximum of 188
for rule 101 to a minimum of 184 for rule 149);

– rules 30, 45, 75, and 135 have a sharp decrease in the number of tests passed,
which is 29.

In all cases, when full asynchrony is present, none of the rules in this class can
pass even one of the tests, showing that full asynchrony completely changes the
behaviour of the CA.

4.4 Type 2 Rules

Type 2 rules are, in some sense, similar to the ones of type 1, as it can be
observed in Fig. 2. With a high enough level of asynchrony (i.e., k = 32 or
k = 64), they are unable to pass any statistical test of the NIST suite. It is
for small levels of asynchrony that their behaviour differ. In fact, when updates
happen synchronously the rules of this class are not as good as the ones of type
1, with the number of tests passed ranging from 167 (rule 169) to 172 (rules
106 and 120). When a small amount of asynchrony is added (k between 2 and
16) their ability to generate strong pseudo-random sequences increases. This is
a quite interesting behaviour since it shows that asynchrony is not always an
hindering factor for using CA as PRNG, but can be also employed to strengthen
them.

4.5 Type 3 Rules

Possibly the most interesting class of rules is the one where asynchrony is an
essential factor in enabling the generation of strong pseudo-random sequences,
as it can be observed in Fig. 3.

All of these rules have in common the fact that they pass none of the NIST
tests when the updates are synchronous. Once asynchrony is added the behaviour
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Fig. 2. The number of NIST test passed by type 2 rules with the change in asynchrony
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Fig. 3. The number of NIST test passed by type 3 rules with the change in asynchrony

changes drastically. As it is possible to observe in Table 2, the maximum number
of NIST statistical tests passed is, for most of the rules neat the maximum (188).
Among the rules considered, there are simple ones, like rule 90, the “traffic rule”,
whose behaviour is, in the synchronous case, extremely predictable since, after
n steps (in our case n = 64) an attacker has enough information on the CA to
predict exactly its dynamics. When asynchrony is introduced this ceases to be
true and, while there is no assurance that similar predictions are not possible,
the statistical tests are unable to expose any clear regularity in the resulting
data.

An observation of the results, however, shows that not all rules in this class
share exactly the same behaviour, even if, in the general trend, they are all
quite similar. Therefore, we can further subdivide the rules of this class into four
distinct sub-classes:
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1. rules 154 and 166 already show increased scores in the tests with k = 2,
showing that even a limited amount of asynchrony is sufficient;

2. rules 180 and 210 perform similarly to 154 and 166, but they show a decrease
for k = 32 that is not present in the latter two rules;

3. rules 60, 105, 150, and 195 require more asynchrony (k = 4) before reaching
high enough scores in the statistical tests;

4. rules 90 and 165 are able to pass more tests than any other rule for full
asynchrony (51 and 52 tests, respectively).

In particular, the last case is of particular interest, since it seems to highlight that
the two considered rules have some characteristic that is able to counteract, in a
limited way, the effect of full asynchrony. It could be interesting to understand
what this characteristic is in order to take it into account in the design of new
CA-based PRNG.

Table 2. The maximum number of tests passed by the rules of type 3 together with
the value of the asynchrony parameter where the maximum was reached.

Rule 60 90 105 150 154 165 166 180 195 210

Max score 184 187 186 187 186 187 187 186 183 187

k 16 8, 16, 32 4 4 16 4, 16, 32 32 16 16 16

5 Conclusions

In this paper we have explored the effect of increasing levels of asynchrony in
ECA used as PRNG. Since they can be employed in cryptographic applica-
tions, it is important to understand what is the edge that an attacker can gain
by disturbing the global clock regulating the update of the cells. Three differ-
ent interesting behaviours were found. The least unexpected one is the type 1
behaviour, where there is an abrupt decrease in the pseudo-randomness quality
of the sequences generated when asynchrony increases. Similar to the first class,
type 2 CA exhibit a more complex behaviour, where a limited amount of asyn-
chrony produces an increase in the pseudo-randomness quality of the generated
sequences, while a further increase greatly reduces it. Finally, CA of type 3 are
usually unsuited to be used as PRNG, but a limited amount of asynchrony make
them competitive with the traditional rules employed for pseudo-random num-
ber generation. It is noticeable the fact that there are no CA where the decrease
in quality is smoother; it appears as if the qualities necessary for obtaining a
good PRNG are “binary”: they are either almost all present or almost all absent.

This preliminary study opens many different possibilities for exploring
the relationship between pseudo-randomness and asynchrony. It is currently
unknown if the same behaviours can also be found in CA with radius grater
than 1 or if new behaviours will appear. The results found for CA of type 3 open
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a lot of questions on why such CA need asynchrony to generate pseudo-random
sequences: what are the factors that make them predictable when synchronous
and unpredictable when asynchronous? Moreover, the way asynchrony has been
introduced in this study is quite limited: the updates are always performed in
contiguous blocks of the same size. It would be interesting to study if different
updating patterns produce different behaviours or if the observed ones are all
the possible ones.

Finally, another direction for further research is to relate the results presented
in this paper with the cryptographic properties of the considered local rules. An
interesting starting point could be to compare the three classes of rules observed
in our experiments with respect to the property of asynchrony immunity, recently
introduced in [20]. Of course, this line of research could also be generalised to
rules of higher radius.
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Abstract. This paper presents an analysis how different acceleration
policies to reach the maximum speed of the road, considered as a het-
erogeneity unobserved in usual measurements, influence the probability
of occurrence of Dangerous Situations (DS) that can lead to accidents
between vehicles. For this, a modified version of the NaSch model is pro-
posed. The probability Density Function (PDF) Beta is used to describe
these distinct behaviors. The effect of these policies on the traffic dynam-
ics was also analyzed. A new metric is presented so that we can analyze
results where real deceleration rates data are used to evaluate accident
probability.

Keywords: Accidents · Traffic · Cellular automata
Dangerous Situations · Computer simulation

1 Introduction

In densely populated areas the frequent traffic jams cause significant economic
and social damages. In order to make effective planning, traffic flow simulations
can be of fundamental importance to better understand traffic flow behavior, in
different situations, helping to improve traffic networks design and of the def-
inition of more efficient transportation systems. For this purpose, microscopic
numerical models, as those based on Cellular Automata (CA), have emerged as
an alternative to model traffic flow helping to understand its behavior. Micro-
scopic models typically focus their attention on the behavior of individual vehi-
cles, the road topology and on the influence coming from neighborhood vehicles.

The fundamental traffic model proposed by Nagel and Schreckenberg [1], is
a stochastic Cellular Automata model of vehicular traffic, known as the NaSch
model. It reproduces the basic features of traffic flow. Many others CA models
were proposed trying more realistic traffic representation. Among these we find
the so called “slow to start” rules [2–4] to model the meta-stable traffic flows.
Some others models embody anticipation rules in order to take into account
c© Springer Nature Switzerland AG 2018
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drivers’ movement at next time step. By including anticipation and the brake
lights concept [5–9] in the modeling, the vehicles do not solely determine their
velocities based on the distance to the next vehicle in front of it, but they also
consider the speed and the deceleration of the ahead vehicle. Others models try
to include characteristics of driver’s behavior at the moment of the definition of
its new speed [6,10,11].

The dense road traffic has increased the number of accidents. The absence of
observations of behaviors that can potentially cause modifications in traditional
analyses, may lead to erroneous inferences or erroneous accident predictions. To
carry out simulations that can bring information about the effects of distinct
acceleration policies behavior is fundamental to understand occurrence of roads
Dangerous Situations (DS) that can lead accidents.

Recently, cellular automata models have been extended to investigate car
accidents probabilities. Boccara et al. [12] were the first authors to propose con-
ditions for car accidents occurrences in the deterministic NaSch model. Huang et
al. [13] presented analytical expressions for car accidents in this model with lower
maximum velocity, Vmax = 1, and Fukui et al. [14] for high velocities. In Jiang et
al. [15], car accidents probabilities are obtained for the so called velocity effect
(VE) model. Moussa [16] analyzes car accidents occurrence based on delayed
reaction time of the successor car. More recently, Bentaleb et al. [17] presents car
accidents occurrence probability in the extended Nagel-Schreckenberg (NaSch)
model considering fast and slow vehicles. It also analyzes the effect of damaged
vehicles evacuation from the road. Results of car accidents probabilities for the
non deterministic NaSch model were obtained [18–20] and also for two-lane CA
model [21]. The influence of speed limit zone in roads [22] and intersections [23]
were also analyzed for open boundary conditions and Speed Limit Zone. Madani
and Moussa [24] present results for NaSch Model and NaSch model with the
“slow-to-stop” rule.

In this work we present a modified version of the NaSch model that proposes
to evaluate numerically how distinct acceleration policies, to reach the same
maximum speed of the road, can influence the traffic dynamics and the Danger-
ous Situations (DS) evaluation that can result in traffic accidents. Simulating
these behaviors, unobserved in usual measurements, can contribute to improve
the procedures that evaluate the probability of accidents on roads, actual decel-
eration data were used to evaluate the accidents probability and the results were
compared to those obtained when the road maximum velocity changes. The
paper is structured as follows: Sect. 2 presents the NaSch modified model, with
heterogeneity in acceleration and deceleration policies and its influence in the
traffic flow. Section 3 describes conditions for the occurrence of Dangerous Situ-
ations and analyzes results for distinct acceleration policies. In Sect. 4 we show
results when actual deceleration data were used to evaluate the probability of
accidents. Discussions and conclusions are presented in Sect. 5.
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2 Modified Nagel-Schreckenberg Model

The Nagel-Schreckenberg (NaSch) model is a one-dimensional probabilistic cel-
lular automata traffic model, that represents the lane as a lattice of cells, where a
vehicle occupies one cell and each cell is either empty or occupied by one vehicle.
At any instant of time t, a vehicle occupies the cell x(i,t) and has the velocity
v(i,t), which tells how many cells it will move at that instant of time. The number
of unoccupied cells in front of each vehicle, generally called as gap, is denoted
by d(i, t) = x(i + 1, t) − x(i, t − 1) − L,where L = 1 is the vehicles’ length, and
the vehicle i+1 is considered to be in front of the vehicle i. A periodic boundary
condition is considered. The four distinct rules applied in parallel for all vehicles
are given by Algorithm 1 (Table 1):

Table 1. Algorithm 1.

(1) Acceleration v(i, t+ 1) = min[v(i, t) +A, Vmax]

(2) Deceleration v(i, t+ 1) = min[v(i, t+ 1), d(i, t)]

(3) Random deceleration v(i, t+ 1) = max[v(i, t+ 1)−A, 0], with a probability p

(4) Movement x(i, t+ 1) = x(i, t) + v(i, t+ 1)

The model uses parameters such as: Vmax, the maximum velocity that a vehi-
cle can reach; A, the acceleration rate of the vehicles; p, the stochastic parameter
that represents the probability through which a vehicle randomly slows down,
aiming to model the uncertainty about the drivers’ behavior.

The traditional NaSch model sets A = 1 cell/s2. The typical length of a cell
is 7.5 m. Each time step corresponds to one second, resulting vehicles’ speed
multiples of 1 cell/s, which is equivalent to 27 km/h. Also, Vmax is typically set
as 5 cell/s, corresponding to 135 km/h.

Although being a simple model, the NaSch model is able to represent traffic’s
main characteristics such as the spontaneous occurrence of traffic jams and to
show the relation between traffic flow and density, representing two different
phases (free and congested flow) and a transition stage between them [25].

2.1 The Proposed Modification in the NaSch Model

Despite the random deceleration rule in the NaSch model, the parameter A
is a constant. We investigate whether different acceleration policies influence
in traffic dynamics or not. A more refined lattice discretization is proposed
to allow the representation of these different policies and each driver’s profile
tends to accelerate in a characteristic way: abruptly (aggressive profile) or more
smoothly (non aggressive profile). A non-uniform Probability Density Function
(PDF) is used to describe trends in the drivers’ acceleration policy. The new
acceleration parameter is stochastic and is calculated as A = int[(1 − α)Amax],
where α is a random value between 0 and 1 and int is the function that returns
the nearest integer of its argument. Therefore, the probability p models the
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drivers’ intention to accelerate while α models how they will accelerate. In
this work, α is modeled by a continuous Beta Function (PDF), defined as
B(a, b) = Γ (a + b)/[Γ (a)Γ (b)xa−1(1−x)b−1], where 0 ≤ x ≤ 1 and Γ (n+1) = n!,
n is a positive integer. Depending on the values of the parameters a and b, major-
ity of α values will tend to different values between 0 a 1 and those closer to 0
will produce accelerations A closer to Amax, while those closer to 1 will produce
accelerations A closer to 0. In fact, the α values float around the Beta mean
value, which are given by μ = a

a+b . Thus, it is possible to predict each profile
acceleration trend based on the average of the Beta function used to model it.
Therefore, each profile is defined by a different pair (a,b) of parameters, that
defines a Beta function, and the different mean values of these distributions
model the desired acceleration tendencies.

2.2 Numerical Results

For all results presented in this paper, the parameters of the model are set as:
size of the cell equal to 1.5 m; Vmax = 25 cell/s = 135 km/h; Amax= 5 cell/s2 =
7.5m/s2; p = 0.30. To maintain analogy with the traditional NaSch model, a
vehicle in our model occupies 5 cells = 7.5 m. Beta functions were chosen to
represent the different acceleration policies, with distinct averages and similar
variance. Besides the results from traditional NaSch model, four different profiles
were considered in this work, the Beta functions that describe their acceleration
are: B(10, 30), Aggressive profile, with an average acceleration of μ = 4 cells/s2;
B(20, 28), called Intermediary I, with μ = 3 cells/s2; B(28, 20), Intermediary II,
with μ = 2 cells/s2 and B(30, 10), Non-Aggressive profile, with μ = 1 cells/s2.

All the simulations were performed with a lane composed of 10, 000 cells,
with density varying from 1 to 100 (given in percentage of occupied cells). An
usual simulation varies the density ρ, while keeping constant the parameters
Vmax, A, and p. A total of 15, 000 time units were simulated, but only the data
from the last 5, 000 units were taken into consideration since transient effects
were not the target. The modified model was configured, to every profile, with
Amax = 5 cell/s2, Vmax = 25 cell/s, p = 0.30. The simulation starts with vehicles
at random positions and V = 0.

(a) Velocity-Density (b) Flow-Density

Fig. 1. Diagrams
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Traffic Flow, Vmax = 25 cell/s. In this section, we present in Fig. 1, funda-
mental (flow-density) and velocity-density diagrams for traditional and modified
NaSch model. Since Vmax= 135 km/h in all simulations, Fig. 1(a) and (b) show
the impact of the different acceleration policies on traffic dynamics. In the free
flow region of the diagram presented in Fig. 1(a), the mean velocity of the Aggres-
sive driver is lower than the Non-Aggressive one, under the same speed limit.
However, the inverse happens when the interaction between vehicles begins. Even
though the modified model takes the NaSch as base, the Non-Aggressive profile
starts to represent the meta-stability region in Fig. 1(b).

3 Conditions for the Occurrence of Dangerous Situations

In this work we analyzed the impact the consideration of different drivers profiles
has in the occurrence of situations that can lead to traffic accidents, which is a
heterogeneity unobserved in usual measurements in a usual scenario. It should
be noted, in rule (2) of Algorithm1, that the models prevent collisions between
vehicles. Thus, we analyze the occurrence of dangerous situations (DS) which
could lead to collisions between vehicles in a real scenario. As usual, we consider
the DS caused by sudden deceleration and sudden stop and adapt the conditions
utilized by Moussa [12,16,24].

3.1 Dangerous Situations Caused by Sudden Deceleration

Real accidents frequently happen when vehicles are at high speeds and a sudden
deceleration occurs. If the vehicle i, that is behind the i+1, is near enough, this
situation may lead to an accident. Hence, we consider a Dangerous Situation
(DS) due to sudden deceleration when the following conditions are satisfied:

Condition 1: τ · v(i, t) > d(i, t) + v(i + 1, t + 1)
Condition 2: v(i + 1, t) − v(i + 1, t + 1) ≥ Vd

τ is a reaction time and the parameter Vd is the deceleration limit, beyond which
the risk of an accident exists. In Condition 1, the vehicle i has a velocity v greater
than the space d it has to move at the current time. The Condition 2 indicates
when the front car has decelerated more than a limit Vd, previously defined.

3.2 Dangerous Situations Caused by Sudden Stop

In this definition of DS, the vehicle i + 1 will stop at the next instant of time
and, since the vehicle i, that is behind it, is close enough, this situation might
lead to an accident. In this context, the following conditions are satisfied:

Condition 1: τ · v(i, t) > d(i, t)
Condition 2: v(i + 1, t) ≥ Vmin

Condition 3: v(i + 1, t + 1) = 0
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where Vmin is a velocity limit, beyond which the risk of an accident exists. In
Condition 1, the vehicle i is close enough to the vehicle ahead, i.e. it is at a
speed v greater than the space it has to move at the current time. In Condition
2, the vehicle ahead i+1 is moving with a velocity higher than or equal to Vmin

at the current instant of time. The Condition 3 indicates that the vehicle ahead
i + 1 will stop at the next instant of time t + 1. Moussa [16] and Madani and
Moussa [24], in their work with the NaSch model, consider Vmin = 1 cel/s, what
corresponds to 27 km/h in their discretization. In this work we can represent
velocities smaller than 27 km/h.

(a) DS due to sudden deceleration, Vd

= 10m/s2
(b) DS due to sudden stop, with Vmin=
5 cell/s

Fig. 2. Analysis of Dangerous Situations (DS)

3.3 Numerical Results

The probability per vehicle and per time step for a DS to occur is denoted by
Pds. Figure 2(a) presents the results for the probability of Dangerous Situations
(Pds) due to sudden deceleration, using Vd = 10 cell/s = 15m/s2, while Fig. 2(b)
presents results for the Pds due to sudden stop, using Vmin = 5 cell/s = 27 km/h,
to compare with results presented in Madani and Moussa [24] for the NaSch
model. In all simulations we consider τ = 1 s. We can observe that in the free
flow region, since vehicles do not stop, there are no vehicle accidents. The value
of the critical density where DS is maximum appears to remain unchanged with
respect to the four different Beta functions.

Note that in the NaSch model, drivers have a constant acceleration rate A
and, for the discretization used in this work, A = 5 cell/s2. The most aggressive
driver considered in the modified NaSch model here proposed, accelerates A =
4 cell/s2 = 6.0m/s2 in average. For comparison reasons, the results presented
for the NaSch model were obtained following the propositions of Madani and
Moussa [24]. It is noticeable in Fig. 2(b) that, even under the same speed limit,
the more aggressive the profile is, the higher is the probability of occurrence of
DS.



Drivers’ Behavior Effects 447

4 Conditions for the Occurrence of Accidents

In the previous section we presented conditions that analyzed the occurrence
of dangerous situations (DS) that can cause traffic accidents. However, in some
cases an attentive driver would be able to avoid the accident. In this section we
propose a new metric to evaluate the existence of DS that are highly probable
to lead to accidents in a real scenario.

4.1 Accidents Probability

We intended to evaluate if a considered vehicle would be able to brake and avoid
collision, given a maximum deceleration rate parameter being counted as an
accident wich does not occur. The metric is similar to the case of sudden stop,
but now it is taken into account the maximum deceleration rate MDR a real
vehicle is capable of performing. Thus, the conditions are defined as:

Condition 1: v(i, t) − d(i, t) ≥ MDR
Condition 2: v(i + 1, t) > 0
Condition 3: v(i + 1, t + 1) = 0

Condition 1 indicates whether the vehicle i would have sufficient distance to
brake or not. If v(i, t) − d(i, t) ≥ MDR, then the vehicle i needs to perform a
deceleration higher than MDR, what would be impossible in a real scenario.
Conditions 2 and 3 represent the sudden stop.

4.2 Numerical Results

Accident Probability. Figure 3(a) presents the result obtained for MDR =
5 cell/s2 = 7.5m/s2 as the maximum deceleration rate that a vehicle could per-
form in a real scenario. Thus, we consider a real accident when a vehicle needs
to decelerate more than 7.5m/s2.

We considered that the Maximum Deceleration Rate (MDR) of a normal
vehicle is between 6.0 and 9.0m/s2. Figure 3(b) presents the result of accident
probability for the Aggressive driver, where the parameter MDR is varied.

(a) Accident probability, for different
drivers profile, MDR = 5 cell/s2

(b) Aggressive driver for different MDR

Fig. 3. Relations of the accident analysis with maximum deceleration rate (MDR)
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The Influence of the Speed Limit and the Drivers’ Behavior. Results
presented in the previous sections indicate that the acceleration policies impact
decisively on the number of accidents in the road. Thus, in order to compare
the influence of the speed limit of the road with the impact of the acceleration
policy of the drivers in the accident probability, we present a comparative result
in Fig. 4(a). Five different driver profiles, with different speed limits, were con-
sidered: (1) Aggressive drivers with the speed limit of Vmax = 25 cell/s; with
Vmax = 20 cell/s; with Vmax = 15 cell/s; and with Vmax = 10 cell/s; (2) Non-
Aggressive drivers with the speed limit of Vmax = 25 cell/s. It can be observed
in Fig. 4(a) that, for the used metric, even with the decrease of the speed limit
for the Aggressive profile, its curve remains well above the curve for the Non-
Aggressive profile with a much higher speed limit. This indicates that the vehicle
acceleration policy has greater impact on the number of accidents due to colli-
sion between vehicles than the speed limit, except in Region 1 (Fig. 4), where
in profiles using Vmax = 135 km/h there is already interaction between vehicles,
earlier than the curves using Vmax < 135 km/h with Agressive profile.

(a) Influence of Vmax against the accel-
eration profile.

(b) Sudden stop, with Vmin = 5 cell/s,
for different profile ratios.

Fig. 4. Accident analysis

The situation in which the road is filled with drivers of different acceleration
profiles is also analyzed. Aggressive and Non-Aggressive profiles, with the same
speed limit of Vmax = 25 cell/s, are used to simulate that situation. Figure 4(b)
presents results obtained due to sudden stop with Vmin = 5 cell/s, where different
ratios for the Aggressive profile were considered. These results suggest that the
probability of Dangerous Situations increases as the road’s ratio of drivers with
aggressive acceleration policies increases.

5 Conclusions

In this article we presented a modified version of the NaSch model that proposes
to numerically analyze the influence of heterogeneity due to different acceleration
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policies for vehicles under the same speed limit, that usually is an unobserved
situation in usual traffic flow measuring. To enable this analysis, the lane dis-
cretization was refined and heterogeneity was introduced in the drivers’ accelera-
tion, using a continuous probability density function, the Beta function, to model
it. The usage of functions with different mean values made possible the consid-
eration of drivers with different steering behaviours, given by their acceleration
profile. Dangerous Situations on roads, which can cause collisions between vehi-
cles, were also analyzed for this modified NaSch model. Actual deceleration rates
data was used to evaluate the probability of accidents and the obtained results
were compared to those obtained when varying the road’s maximum velocity.

Having distinct drivers’ behaviors allowed us to capture its effects on traffic
dynamics and evaluate the most important features of the traffic flow phenom-
ena. It was shown, for instance, how the fundamental diagram are affected by
these behaviors. We observed that, even under the same maximum velocities,
different policies influences the flow, improving the average speed in free flow
regimes and altering the region of bottled flow, depending on the considered
profile.

Using the Dangerous Situation definition [12,16,24], adapted for our pro-
posed modified NaSch model, we noted that DS decreased with more cautious
acceleration policies. We also observed that these behaviors have fundamental
importance on avoiding collisions between vehicles and may be more relevant
than the maximum speed of the road.

Acknowledgement. Authors thank CNPq/PIBIC/PIBIT (UFF, LNCC) scholarship.
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Abstract. In the paper we present a model using Cellular Automata
dedicated for competitive evacuation. Floor field models of pedestrian
dynamics are the starting point. We have observed that during com-
petitive evacuation, the dynamics of particular pedestrians is similar to
the dynamics of particles in granular flow when viscosity is taken into
account. In order to address this issue we have prepared real experiments
and have proposed and implemented a Cellular Automata model using
an idea of viscosity.

Keywords: CA-based models · Pedestrian dynamics
Competitive evacuation · Crowd dynamics · Evacuation · Viscosity

1 Introduction

The rules of behavior of people in different situations are of interest to archi-
tects, engineers and security managers. Competitive evacuation is one of the
greatest challenges, in particular when it occurs in a situation of high density
of pedestrians [7]. Generally, simulation of such situations is not a trivial task,
especially if we take into account a discrete framework. However, discrete models
are generally much more efficient and useful for simulations of large scenarios. It
should be stressed that in classical CA-based models like [2,10] different physi-
cal analogies, namely: floor fields, bosons, transition functions, etc. are applied.
There are no direct calculations of superposition of forces for particular pedes-
trians like in molecular dynamics models of granular flow [6,9], however, one can
point out hybrid algorithms [3,15] when some forces influence the movement of
pedestrians in terms of CA lattices.

The main concept in many CA based models is the static floor field [2,5,
16], which points out attractors – pedestrians’ aims [13], and dynamic floor
field which provide mechanisms analogous to chemo-taxis. Sample mechanisms
regulating pedestrians’ speeds in CA models, are discussed in [1,8].

In this paper our starting point is a classical CA-based model of floor field
and we propose additional rules which mimic movement in high densities when
pedestrians become competitive. Idea of friction in pedestrian dynamics was pro-
posed in [11,12]. We propose extension of this idea taking into account analysis
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of viscosity in high densities. In our approach friction is dependent on the pres-
sure force (precisely - crowd pressure) and we take into consideration pressure
from different directions. In order to address this issue we performed some real
experiments which illustrate viscosity in high densities.

2 Motivation and Observations

When a group of people relocates in the conditions of high density, apart from
social forces, additional direct physical forces caused by mutual pressure appear.
These forces result in jams in narrow passages, that is the speed of movement
of particular persons decreases. In case of pressure, people from the back pass
the narrow passage much more slowly than in a situation when there is no
crowd. While describing human traffic, most discrete models based on Cellular
Automata do not take into account physical effects between people in high den-
sity, which happen e.g. during competitive evacuations. It might considerably
influence the accuracy of simulation results, e.g. while setting the time required
for the evacuation of a building.

In one of Cracow’s universities we have carried out a set of experiments with
competitive (Fig. 1) and non-competitive evacuation (Fig. 2).

Fig. 1. Experiments with competitive evacuation. Blockages are visible.

A group of 68 students took part in the experiments and their task was
to pass the door following two scenarios. We have divided experiments for two
parts: during the first one they had to obtain the best individual time and during
the second one they had to obtain the best time for the whole group [14]). The
door width was 1 m.

During competitive evacuation we observed high local densities and conges-
tions. We also observed stopping of particular participants (Fig. 1).

During non-competitive evacuation we observed no rivalry between pedes-
trians and lower densities of pedestrians. Due to much less pressure between
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Fig. 2. Experiments with non-competitive evacuation.

students in this situation blockades in the narrow passage were not observed
(Fig. 2).

One can distinguish different flow characteristics during the experiments. In
Fig. 3 we present pedestrians’ flow through the door per second.

Fig. 3. Flow per second in various experiment scenarios per 1 m of door width. As we
can see competitive evacuation has lower maximum flow, but it takes shorter for entire
group.

Analogously, we present density of participants (students) in the analyzed
scene (Fig. 4).

3 Proposed Model

3.1 Basic Issues

In order to map the dependence between the speed of moving through narrow
passages and the crowd’s pressure, the movement of a group of people will be
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Fig. 4. Density of pedestrians per 1 square meter during competitive evacuation.

compared to fluid flow. In describing fluid flow with the use of equations of
motion, viscosity is an important factor. Adopting the approach from classic
physics textbooks (e.g. [4]), the impact of viscosity on the fluid motion can
be illustrated with the following experiment (see Fig. 5). Let us assume that we
have two flat plates and liquid (e.g. water) between them. The bottom plate
is fixed, and the top plate is moving horizontally with speed v0, as a result of
applied force F . The force which needs to be applied in order to keep speed v0
is proportional to the area of the plates (A) and to the proportion v0/d, where
d is the distance between the plates. So, shear stress (F/A) is proportional to
v0/d:

F

A
= µ

v0
d

(1)

Viscosity is the proportionality factor µ in this formula. If force F , area A and the
distance d between the plates are the same, when viscosity increases, the speed
with which the top plate moves decreases. Analogously, if we treat a group of
people as fluid, the decrease in the speed of motion which happens in narrow
passages for high densities (in case of the crowd pressure) can be explained as
the increase of liquid viscosity. So, for high densities the crowds behave as non-
Newtonian fluid, for which - when the pressure grows (caused by the increase of
the forces operating between persons) - viscosity grows (shear thickening fluid).

3.2 The Details of the Model

The model presented in this paper is an extended version of standard models of
Cellular Automata, which are based on static and dynamic fields. The extension
is achieved by introducing additional interactions between persons representing
physical forces occurring in situation with high density of crowds (e.g. in case of
competitive evacuation). These interactions can increase the pressure affecting
particular persons and, by doing this, increase viscosity in a given area. A classic
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Fig. 5. Velocity of fluid layers between two plates. Based on [4].

CA model [2] has been applied in the study as the base model. Following this
model, physical interactions have been introduced as additional bosons trans-
ferred between cells occupied by individuals - we call them ‘p-bosons’ (physical
forces bosons). These bosons propagate between consecutive time steps of the
simulation (we assume that the speed of propagation of interactions is much
higher that the speed with which these individuals move). Individuals whose
preferred direction of movement is directed at the cell occupied by another indi-
vidual (one person presses another) are the source of p-bosons creation. A p-
boson also carries information about the direction of this interaction (it is the
same as the direction of pressure exerted by one person on another) - it can
assume one of 8 values (consistent with the Moore neighborhood). Bosons are
propagated along the direction of the impact till the moment when cells are
occupied by other individuals; at the moment when an empty cell appears, a
boson cascade is no longer propagated. It corresponds to a situation occurring
in real life: physical interactions between persons are propagated only for a crowd
with high density; when density is low, the interaction is no longer propagated.
When p-bosons reach a person who faces an obstacle (a wall or people press-
ing him from this direction) on his other side (looking from the direction of a
given boson), they increase viscosity in the cell occupied by this person. In case
of a wall, i.e. a fixed obstacle, all p-bosons coming from the opposite direction
increase viscosity - let us call them compensated bosons. When bosons reach
a person pressed by other people from the opposite direction (bosons have an
opposite direction), the number of compensated bosons is the smaller value of
the number of bosons coming from two opposite directions.

3.3 The Impact of Viscosity on People’s Movement

As it was shown above, the consequence of the increase of viscosity is the decrease
of the maximum speed v0 with which a layer of liquid moves. Analogously, when
people move, the increase of viscosity should lead to the decrease of the speed
with which they move. Because in the base model [2] the speed of moving is
constant and equals 40 cm (the length of the side of the cell) divided by 1 time
step (that is 1/3 of a second), the introduction of slowing down must be expressed
as the lack of movement (remaining in the same cell) in a given time step. In
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the proposed model it was assumed that the probability of a blockade (lack of
movement of a given person) is proportional to viscosity in a given cell:

Pblockade ∼ µ (2)

where:

– Pblockade is probability of a blockade in a given cell
– µ is viscosity in a given cell

The proportionality factor can be introduced to the equation above:

Pblockade = c · µ (3)

where:

– c is proportionality factor

The higher physical pressure is exerted on a person by other people (the num-
ber of compensated p-bosons), the more slowed down the person will be, and
the greater viscosity will appear in the cell occupied by this person. The c fac-
tor’s value can be estimated empirically by comparing with data from real life
experiments.

4 Implementation and Results

We have implemented the above mentioned floor field model using C + + pro-
gramming language. Our starting point was a classical floor field model [2].

In order to compare the results of the simulation with experimental data, we
prepared a simulation with analogous geometry and allocation of pedestrians.
The initial allocation of pedestrians visualised as 3D figures is visible in Fig. 6:

Fig. 6. Initial allocation of participants (before opening the door).

Next we compared two versions of the application. Firstly, we implemented a
traditional floor field model without the viscosity mechanism. A sample screen-
shot from the simulation is visible in Fig. 7.
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Fig. 7. Simulation of the competitive scenario without viscosity after 4.7 s since the
simulation started.

Fig. 8. Simulation of the competitive scenario with viscosity after 4.7 s since the sim-
ulation started.

Fig. 9. Flow per second in our program with and without considering viscosity (flow
through 1 m of door width).
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Next we implemented a floor field model with the viscosity mechanisms. As
we can see, it reflects a situation of local congestions caused by a competitive
behavior of pedestrians.

As can be seen in Fig. 9, the total time of evacuation in case of a traditional
floor field model without the viscosity mechanism is over two times shorter then
when this mechanism is present. Such fast movement of people is possible when
density is low, that is there are no narrow passages or other obstacles which slow
the crowd down and make people exert physical pressure on one another. In case
of high density such fast movement is impossible due to a frequent occurrence
of blockades. The proposed viscosity mechanism can improve the model in such
situations - as can bee seen in Figs. 9 and 3 the total time of evacuation (that
is a time step during which flow through the door continues) estimated by the
model with the viscosity mechanism and time obtained in real life experiments
are similar (Fig. 8).

5 Conclusions

We have performed a set of simulations as well as experiments regarding non-
competitive and competitive evacuation. We have noticed that the great pressure
between participants particularly influences flow in the bottleneck. The pres-
sure is more clearly visible in blockages between participants in the door. Thus,
competitive behavior of pedestrians, when the exit is narrow (1 m) makes the
evacuation process inefficient - we observe the faster-is-slower effect.

In the simulation part of our study we have proposed applying the concept
of viscosity, which is responsible for the transition function in high densities,
to competitive behavior of pedestrians. We compared classical floor field mod-
els with a model including the viscosity mechanism. We have confirmed that
such a mechanism can reflect the faster-is-slower effect [17] during competitive
evacuation.

We believe that the application of idea of viscosity for pedestrian flow is a
convenient mechanism of presenting different levels of competitive evacuation or
even panic. Discrete modes like CA are efficient, thus such an implementations
can be profitable.
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Abstract. Computer simulation for the study of pedestrian dynamics is
an active and lively area in which contributions from different disciplines
still produce advancements on the state of the art. Discrete modelling
of pedestrian dynamics represents a more computationally efficient app-
roach than the continuous one, despite the potential loss of precision in
the reproduced trajectories or modelling artefacts. To overcome these
issues and reducing the intrinsic effects of employing a discrete environ-
ment, several works have been proposed focusing on distinct objectives
within this framework. This paper proposes a general approach to repro-
duce smooth and rounded trajectories of pedestrians in presence of bends
and corners, by means of a so-called angular floor field. The proposed
algorithm works with arbitrary settings and it is tested on benchmark
situations to evaluate its effects from both a quantitative and qualitative
perspective.

Keywords: Cellular automata · Pedestrian dynamics
Angular floor field

1 Introduction and Related Works

Computer simulation systems for the study of pedestrian dynamics is at the same
time an application area in which research has completed its cycle, producing
technological transfer, and an active and lively area in which contributions from
different disciplines still produce advancements on the state of the art. Discrete
pedestrian simulation models are viable alternatives to particle based models,
based on a continuous spatial representation (see, e.g., [13]) and they are able to
reproduce realistic pedestrian dynamics from the point of view of a number of
observable properties. The well-known floor-field [3] model represents the most
successful representative of Cellular Automata approaches to pedestrian simula-
tion, with numerous extensions and improvements over the initial definition.
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While models adopting a continuous spatial representation can present issues
in generating smooth but also plausible trajectories in particular situations (see,
e.g., [12] for conceptual issues in even relatively simple situations, but also [8]
for technical issues in the numerical implementation of force-based continuous
models), the intrinsic limits in generating clean trajectories with discrete models
are well-known, and they show up particularly in geometries where the effective
trajectories of pedestrians become less linear (e.g., a corner). On the other hand,
several works aimed at quantifying and, if possible, reducing the effects and
errors provided by the discretization can be found in the literature: for example,
the works [9,16] study the influence of rotation of the rectangular grid on the
simulated space utilization. Moreover, a set of verification and validation tests
particularly tailored for discrete models and for the quantification of the influence
of discretization errors on the simulated pedestrian dynamics has been proposed
in [11].

In this line of work, this paper presents an approach to improve the plausibil-
ity of trajectories crossing corners and bends, with the definition of a particular
floor field describing values of angular distance towards the target. It must be
noted that the idea of angular fields to induce circular trajectories of pedestrian
is not completely new in the literature: [14] introduced a static field in polar
coordinates to simulate the circumnavigation around the Kaaba during the rit-
ual of the Tawaf. The problem of simulating plausible trajectories at corners
is also discussed by Dias and Lovreglio [5], who propose two versions of static
field – a discrete and a continuous one – both empirically estimated (although
just with a dataset describing trajectories of individual pedestrians walking in a
90-degree corner setting).

In this paper we aim at providing a more general approach, defining an
algorithm to generate potential fields from targets in arbitrary geometries and
considering the possible presence of obstacles. The algorithm for the computation
of the field makes use of a mapping function that translates the coordinates of
cells. The algorithm is completely general but it has been tested with a discrete
simulation model made by the authors [1], which is briefly introduced in Sect. 2.
The approach for the calculation of angular fields is described in Sect. 3 and
analysed in the next section with benchmark tests for a quantitative evaluation,
considering the fundamental diagram in a corner scenario, and a qualitative one
by checking the simulated trajectories of pedestrians. Conclusions will end the
paper.

2 A Discrete Model for Pedestrian and Group Dynamics

The model here described and used to test the algorithm for the generation of
the angular floor field is the one firstly introduced in [15], and later extended and
improved with many works by the authors (e.g. [1]) allowing the reproduction
of heterogeneous speeds and group behaviour.

The model is an extension of the classic floor field model [3] and it employs the
same space discretization by means of a rectangular grid of 0.4 × 0.4 m2 cells.
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Positions of obstacles and the configuration of the environment is allowed by
means of spatial markers, defining: (i) areas where pedestrians will be generated;
(ii) obstacles; (iii) final destinations; (iv) intermediate destinations, used to
divide the environment in smaller components and to allow the computation of
higher-level paths for pedestrians to their final destination; (v) labels describing
the name and typology of environment the cell belongs to (e.g. staircase, ramp,
flat floor, etc.).

Space annotation allows the definition of additional grids to the one repre-
senting the environment, as containers of information for pedestrians and their
movement. This describes the well-known floor field approach [3]. These discrete
potentials are used to support pedestrians in the navigation of the environment,
representing their interactions with static objects or with other pedestrians.
Three kinds of floor fields are defined in our model:

– path field (static), which indicates distances from one destination;
– obstacles field (static), which indicates distances from neighbour obstacles or

walls;
– proxemics field (dynamic), which provides information to identify crowded

areas at a given time-step.

The behaviour of simulated pedestrians at a locomotion layer is defined with
probabilistic mechanisms. According to their desired speed and to the assumed
duration of the time-step of the model, pedestrians are activated for the move-
ment at each turn, and they can move in the Moore neighbourhood of their posi-
tion. The choice of movement is modelled in a probabilistic fashion by means of
a utility function U(c):

U(c) =
κgG(c) + κobOb(c) + κsS(c) + κcC(c) + κdD(c) + κovOv(c)

d
(1)

P (c) = N · eU(c) (2)

Parameters κ are the calibration weights allowing to configure a pedestrian-
like behaviour and N of Eq. 2 is a normalization factor. Individual functions of
Eq. 1 model respectively: (i) attraction towards the current target; (ii) obsta-
cle repulsion; (iii) keeping distance from other pedestrians; (iv) cohesion with
other group members; (v) direction inertia; (vi) moving in a cell occupied by
another pedestrian (overlapping) to avoid gridlock in counter-flow situations.
Details about how these functions are defined will not be provided since they
are considered out of the scope of this paper (for a thorough discussion on this
aspect, see [1,15]).

3 A General Algorithm for Angular Fields

The computation of static floor fields can be performed by using several existing
methodologies and metrics, as discussed by [10], which lead to very different
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results and behaviours of simulated pedestrians. Floor fields are generally com-
puted using the Dijkstra’s algorithm [6] on the grid of the environment, consid-
ering cells as nodes of a graph with edges reflecting the Moore Neighbourhood.
The weight of each edge –information used to compute the distance from each
cell to the destination– is assigned as the Euclidean distance between the linked
cells, so that horizontally or vertically aligned neighbours have distance 1 and
other ones have

√
2. Figure 1(a) shows an example computation in a 90◦ turning,

with the destination positioned in the bottom right.

Fig. 1. (a) Gray-scale representation of field values after the computation. (b) Space
utilisation of a simulation run (number of time-steps each cell has been occupied). (c)
L-shaped scenario used to calculate the fundamental diagram and gray scale represen-
tation of floor fields leading towards the destination.
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This technique works with arbitrary settings, providing proper paths for
pedestrians from any cell of the walkable space and allowing them to avoid
obstacles. On the other hand, it can also provide implausible space utilizations
of pedestrians with geometries like the example bend, where in the real world
pedestrians tend to assume smoothly curved trajectory. In such settings, this
field diffusion from a unique destination leads pedestrians to flatten their trajec-
tories close to the wall much before the turning, differently from what is observed
in the reality (see, e.g., [5]). Moreover, a pattern of mostly used cells is clearly
visible in the direct surrounding of the corner, as shown in Fig. 1(b).

The issue can be addressed by dividing the setting in more regions, annotat-
ing intermediate destinations (see the test environment in Fig. 1(c)), each one
spreading its own floor field in the connected regions of the environment (as
discussed by the authors in [4]). This relevantly improves the space utilization
in the area before the bend, but it still generates narrow turnings of pedestrians
after reaching the first target: once they start following the gradient spread by
the target after the bend, their much probably move towards the south direction
and this is again a modelling artefact.

In order to generally achieve smooth trajectories when pedestrians have to
rotate around corners or obstacles, we introduce an algorithm employing a map-
ping function φ(−→x ) applied to each coordinate −→x of cells, which deforms the
geometry by translating the cells of the bend in a “linear” environment where
the Dijkstra algorithm with the Euclidean metric will be used. The distance
metric between two neighbour cells with coordinates

−→
i and

−→
j is, thus, firstly

defined as:
δ(

−→
i ,

−→
j ) = ||φ(

−→
i ) − φ(

−→
j )|| (3)

Regarding the mapping function, we are interested in outcoming a floor field
that encodes the angular distance between neighbour cells. Hence, we use a
function φ that transforms the coordinate of cells into polar ones, according to
a reference vector −→o and a unit vector −→m, as the following function:

φ−→o ,−→m(−→x ) = (�(−→m,−→x − −→o ), ||−→x ||) (4)

where � is a function returning the counter-clockwise angle between the first
and second vector, −→o describes the origin point of the turning (i.e. the corner
of the bend) and −→m the direction of the marked intermediate destination, which
is calculated as the difference between its farthest cell from −→o and its closest.
An example result of the mapping is graphically shown in Fig. 2(a) and (b),
considering −→o = (0, 0) and −→m = (1, 0).

As shown in Fig. 2(c), the usage of the mapping makes the approach robust
and generally working with obstacles inside the turning area.

4 Experimental Results

In this section we propose two simulation campaigns aimed at testing the pro-
posed approach for the simulation of bends in benchmark environments. The first
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Fig. 2. Mapping cells positions (a) to polar coordinates (b). (c) Computed angular
field with an irregular obstacle at the turning.

experiment analyses the dynamics generated in a 90-degree turning at aggre-
gated level with the fundamental diagram, while the second one focuses on the
space utilization in a slightly different environment describing a u-turn. For both
experiments we configure the same calibration parameters of the model, which
have been found to fit well empirical datasets of pedestrian dynamics in other
benchmark settings and allowing to reproduce plausible behaviour in low density
situations (see [1]).

4.1 Fundamental Diagram in a 90-Degrees Turn

We analyse the fundamental diagram in a L-shaped environment with a 1-
directional flow configured as shown in Fig. 1(c). Standard floor fields are gen-
erated from the final destination and from the intermediate ψ1, while the target
ψ2 generates an angular field in the cells of the region R2. Note that the inter-
mediate destinations have not been placed at the very borders of the corner, but
slightly moved “backward”, and the origin of the angular field has been assigned
to −→o = (9.2m, 9.2m). This is motivated by the fact that pedestrians tend to
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Fig. 3. Results of the simulation campaign in the form density–speed.

start the turning slightly before the border of the bend (see, e.g., in [5]) and, in
addition, they usually do not use all the space available inside this geometry.

A unique long simulation of about 50000 time-steps (3.5 h) was run with a
very low frequency of generation of pedestrians (about 1 every 100 time-steps)
and with their re-introduction in the start area once they arrive at the desti-
nation. In this way the whole fundamental diagram is calculated with a unique
long run, guaranteeing a sufficiently large number of samples for each density
point to achieve a stable average.

In order to compute the fundamental diagram, travel times τi of every travel
of pedestrians are collected and used to compute the average speed ν(τi) =
24/τi m/s (24 m represents the length of the central path in the L environment).
Results of the density–speed relation are presented in Fig. 3. Overall the results
do not show a relevant difference with the simulated fundamental diagram for
the 1-directional flow in a corridor, and the data are in good agreement with
literature datasets.

4.2 Analysis of Space Utilisation in a U-Turn

For a qualitative evaluation of the behaviour generated in environments with
the proposed angular fields, it is now analysed the space utilization on a u-turn
environment. To allow the comparison with real world data, we simulated the
setting of the controlled experiment discussed in [2]. The experiment studied a
1-directional flow of pedestrians climbing down two short runs of stairs (2.8 m
each) linked by a semicircular landing and composing a u-turn. The size of the
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Fig. 4. (a) U-turn scenario used to evaluate the space utilization generated with the
proposed angular field, together with a grey scale representation of the path fields
followed by simulated pedestrians. (b–c) Cumulative mean density map related to 10
simulation runs for the simulation of the low (b) and high (c) density scenario.

scenario and its annotation are described in Fig. 4(a). Note how the first run of
stairs has been divided into two regions: this was done to reproduce the tendency
to approach the bend in an inner zone by pedestrian slightly before the end of
the staircase –at ψ2 instead of the target ψ3 (analogously as in [17]). For both
targets ψ3 and ψ4, the origin point −→o is assigned to (5.2m, 3m) to reproduce
trajectories at the bend closer to the central wall, as it is observed in [2].

Two configurations of the simulation scenario are proposed to analyse the
effect of a growing density in the dynamics of the system. A low density scenario
is configured with a light incoming flow of about 2.5 ped/s, for a total of 300
pedestrian in a single simulation run. For the high density situation, the exper-
imental procedure S1 of [2] is reproduced, describing a higher incoming flow to
the setting with an arrival rate of about 4.4 ped/s (a plausible approximation of
the initial bottleneck of 2.4 m of the experiment). To gather a reliable result, 10
iterations of simulation have been run for both scenario and statistics have been
averaged accordingly.
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We evaluate the usage of space by pedestrians by means of the results of
local densities, with a comparison between the cumulative mean density map.
The results are shown in Fig. 4(b) and (c). The low density scenario characterizes
a free-flow situation where the two areas with higher values in the heat map are
the two runs of stairs, and practically no congestion appears in the landing zone.
The situation changes at the increase of the incoming flow and of the density
of pedestrians inside this environment. For the second scenario, in fact, the
configured arrival rate of pedestrians led to the achievement of a similar range
of values observed in [2], with a maximum of about 3 ped/m2, and the heat
map highlights higher densities in the landing instead of the two staircases. The
simulation result shows a comparable trend of local densities to the empirical
data, whose higher values are distributed before and at the center of the turning.
The pattern of high densities at the center of the turning turns out to be slightly
translated towards the second run of stairs in the simulations and it also seems
a bit wider than what was observed, but overall the result is in good agreement
and the space utilization by simulated pedestrians appear to be quite similar to
the observation.

5 Conclusions and Future Works

An algorithm for the computation of angular fields in arbitrary environments
has been discussed and evaluated with the implementation in a discrete model
for pedestrian dynamics coming from previous works by the authors [1]. The
evaluation tests have shown a good agreement between trajectories simulated
with the angular field and empirical ones from a controlled experiments, high-
lighting that the proposed approach effectively reduces the artefacts generated
by the discrete environment. From a more quantitative perspective, the funda-
mental diagram generated on a L-shaped setting crossed by a 1-directional flow
showed a quite similar trend to the standard uni-directional flow in the corridor.
While the data are in agreement with literature datasets, the lack of a significant
difference between the flow generated in a corridor setting and in the L-shaped
environment (as instead is highlighted in, e.g., [7]) suggests that the behaviour
of pedestrians at the bend needs further investigation. Our conjecture is that the
desired walking speed should decrease due to the fact that the pedestrian cannot
anticipate the presence of obstacles or other pedestrians around the corner, and
ignoring this actually causes an overestimation of the flow.
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Abstract. This study presents a simple Cellular Automata model which
allows to estimate the combined effect of crowd control and information
provision on pedestrian dynamics. We assume the case of a closed loop
consisting of two lanes connected in only two points where pedestrians
are allowed to move from the inner to the outer loop and in the opposite
direction. Both lanes are virtually divided by a wall which does not allow
to visually inspect the other side except on the locations connecting
them. To investigate the effect of information provision we assume that
a given number of pedestrians have information on the speed in both
lanes. In addition, we assume that lane changing locations are guarded
by security staff which can give orders to the crowd on which lane to
choose. However, only a given number of pedestrians are compliant and
will obey to the orders. Initial settings for the simulation have been
set so that free flow in both lanes is obtained only when the number
of lane changes is limited and density is equal in both inner and outer
loops. Results show that crowd control strategy, compliance ratio and
information provision have a clear impact on the overall group speed.
The combined analysis of all variables showed that efficient information
provision is the most reliable method to ensure an adequate speed (and
flow) even when crowd control fails or when compliance is low.

1 Introduction

The urbanization trend of the last decades has led to an increasing interest
to topics related to pedestrian traffic, with crowd management and (real time)
information provision taking an important role in this context. A large num-
ber of simulation models have been created to allow predicting the motion of
pedestrians inside buildings during normal operation and in case of evacuation.
Although early simulation models considered pedestrian crowds in a very homo-
geneous way and were designed for very specific situations [1], modern simulation
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tools allow to consider very diverse crowds and to take into account architectural
features such as stairs or escalators [2], thus making results more accurate.

It is therefore now possible to design buildings such as transportation hubs
or events’ venues already considering pedestrian traffic at the early stages of
the planning process. This represents a considerable advantage in making those
structures more safe and comfortable in regard to pedestrian traffic, since mod-
ifications for finished structures are hard to make and very costly.

However, even the most accurate and complex simulation models are still not
able to account for psychological features, which represent an important aspect
in pedestrian motion [7]. Although research is showing an increasing interest in
this direction, it will take a long time until mechanisms of collective psychology
will be completely understood and numerical models developed. Even then, very
peculiar behavior for a specific type of crowd (football fans, protesters...) may
be not exactly modeled as the outbreak of some behaviors is mostly random
and dependent on the surrounding events (a goal scored, arrival of the police...).
In addition, it is always possible that a mass event taking place in a carefully
designed location may deteriorate into a chaotic situation due to poor event
planning, thus vanishing the effort made in the design phase for that building.

A consequence of the above discussion is that active crowd control (or guid-
ance) will always play a central role even with the increase in accuracy of sim-
ulation models. Having an efficient crowd control strategy (i.e. having a system
or staff providing guidance to the crowd) is therefore fundamental to ensure
safe and comfortable mass events. While this aspect may be straightforward in
theory, practical aspects are much more complex and very specific for the envi-
ronment and the crowd to be controlled. In addition, while accurate data are
not available, it is known that some people (sometimes most of the crowd) tend
to not follow suggestions from guidance personnel and under those conditions
crowd control is therefore ineffective.

To ensure smoother pedestrian motion, information provision may also help,
thus allowing the crowd itself to take decisions based on accurate facts rather
than their own perception. With this said, it is not always possible (or easy) to
inform everyone (for example in the case of people with hearing/visual disabili-
ties) and some people may ignore information surrounding them.

In this study we consider a simple scenario and investigate how the different
aspects discussed above relate to each other’s and which strategy is the most
effective to increase pedestrian flow and speed in a specific situation.

2 Selected Case Study

The scenario presented here has been inspired by the “fork case” often consid-
ered in vehicular traffic; a situation which occurs when a large road connecting
two locations get divided into two smaller roads for most of its length. When
all the cars take one road, traffic jams occur and average travel time between
both locations increases. To ensure that both roads are used equally, optimal
information provision is required at the time drivers decide which road to use.
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A number of studies [4,5,8–10] have focused their attention on these optimal
strategies and the type of information which is required to avoid traffic jam.

To adapt it to pedestrian traffic and also account for the effect of crowd
control, we will consider a partially different design. The general idea is to recre-
ate a situation where a structure generating a large amount of pedestrian flow
is connected to another point attracting it (like a train station and a stadium
for example). It is often the case that different direct paths are connected each
other’s by smaller transverse routes which allow to change path in case of con-
gestion.

In simulations, it is convenient to consider a loop, which allows to recreate an
infinite path. We can therefore assume a loop consisting of two paths: an inner
route and an outer route. Both paths get connected in two opposite locations
where pedestrians may move from one path to the other in case of need. A
schematic representation of the scenario considered for this study is given in
Fig. 1(a).

(a) Scenario configuration (b) Fundamental diagram [6]

Fig. 1. Scenario considered for the simulation and fundamental diagram for pedestrian
unidirectional motion. Chosen values are: d = 10m and w = 0.8 m.

Now, in order to enforce the need for crowd control it is necessary to choose
initial conditions which will either require an action from the crowd to avoid con-
gestion or an external intervention. We can further assume that in the locations
where lane change is allowed, pedestrians either decide to change by themselves
or are forced by guidance personnel present on-site (supervisors).

To choose the best initial configuration it is necessary to consider the funda-
mental diagram for pedestrians, which is presented in Fig. 1(b) using data from
the literature by Jelić et al. [6]. Given the diameter of the loop, the width of
both paths and the number of pedestrians for each route in the initial setup it is
possible to compute the flow. By selecting a very different number of pedestrians
between the inner and outer loop the total flow will be lower than the optimal
flow reached when density is uniform everywhere (given in Fig. 2(b)).

To create a realistic scenario which could possibly be reproduced experimen-
tally in the future, a crowd of 60 people is chosen. Figure 2(a) shows the ratio
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(a) Optimal/initial flow gain (b) Optimal conditions

Fig. 2. Optimal conditions (right) and increase in flow relative to the initial config-
uration (left) for different values of mid-diameter. Both graphs are created using the
fitting of the experimental data by Jelic et al. given in Fig. 1(b).

between the total initial flow and the optimal flow for a starting configuration
having 50 people in the inner loop and 10 people in the outer one (both values
are chosen to create a large optimal/initial difference). The maximum gain in
Fig. 2(a) is found for a diameter of about 9.2 m and consequently we decided
to use a mid-diameter (between inner and outer loop) of 10 m. Under these
circumstances the optimal speed is about 0.78 m/s (see Fig. 2(b)).

3 Cellular Automata Model

The hypothetical scenario presented above has been written into a Cellular
Automata simulation model whose characteristics are described in this section.
To simplify the computational algorithm, instead of two loops two horizontal
parallel paths have been used. The end of each path is connected with its start
so that the endless characteristic of the loops is recreated. Path width was chosen
equal 0.8 m with a cell size of 0.4 m. Considering those dimensions and the mid-
diameter chosen earlier, the internal and external loops had a length of 73 and
85 cells respectively. Lane change locations have been set at a uniform distance
along the mid-path1 (see Fig. 3).

Fig. 3. Computational grid used in the model. Positions for lane change are given in
dark gray and pedestrians as dots.

1 Since inner and outer loop have different lengths, lane change location is not exactly
uniformly distributed in the linear representation. On average there is a 6 cells
difference between both lane change positions in both loops.
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Motion inside each loop is computed based on the Fukui–Ishibashi model [3].
This model was chosen because it allows to reproduce the fundamental diagram
of pedestrian motion with good accuracy and account for its asymmetry in regard
to density (see Fig. 1(b)). In addition, its rules for position update are rather
simple, thus allowing more flexibility in adding more important aspects specific
for this study.

In the Fukui–Ishibashi model, particles (or pedestrians in this case) can pro-
ceed for a maximum of umax cells with a hopping probability p = (0, 1] if they
have at least umax empty cells in front. If the empty space is less than umax

cells, they will proceed as many cells as possible with the same hopping prob-
ability p. In this study umax = 2 and p = 0.85 have been taken to fit with the
experimental fundamental diagram found in the literature.

In our analysis we will always consider long time intervals (several hours)
to generate results. Under this assumption, it is possible to use the following
equation to get a velocity expressed in physical units which can be useful to
quickly evaluate the results:

V =
X

S · N · vfree
p · umax

(1)

In (1) X is the total distance traveled by all pedestrians (in cells), N is the
number of pedestrians (60 here), S is the total number of simulation time steps
and vfree is the free walking speed (set at 1.20 m/s here).

The time step has been chosen considering that the maximum distance trav-
eled by one person in one time step is stochastically given by Δx · umax · p with
Δx being the mesh length. Considering the free walking speed and the numerical
values provided earlier, the time step can be computed as:

Δt =
Δx · umax · p

vfree
= 0.57 s (2)

Parallel update is used for computing positions at each iteration, i.e. pedes-
trians reserve their position before actually moving and conflicts (which occur
only when changing loop) are resolved with equal probability among contenders.

(a) (b) (c) (d)

Fig. 4. Example for a lane change from outer to inner loop. Pedestrian considered is
given in blue (dark gray). Images from (a) to (d) are in sequential order. (Color figure
online)

An additional important aspect in the dynamics of the model are the rules
used for lane change. A pedestrian is allowed to change lane when he/she is at



Study on the Efficacy of Crowd Control and Information Provision 475

a distance of one or two cells from the lane change position (remember that
pedestrians are allowed to move a maximum of two cells per iteration). If the
cell used for lane change is empty he/she is allowed to move to that location and
later enter the opposite loop. If the central cell is occupied he/she will have to
keep moving and may have a chance to change loop at the next location. Figure 4
shows an example for a pedestrian moving from the outer to the inner loop. In
all the cases, lane change results in a slowdown (in particular when entering the
new loop) as it should be in the real case.

In our model, we assume that each lane change position is supervised, i.e.
switching direction (move to inner or outer loop) is given by the corresponding
supervisor. We further assume that pedestrians can be compliant (i.e. will fol-
low any order given) or non-compliant (ignore orders). Compliant ratio is the
ratio of compliant pedestrians over the total number. Finally, we assume that
a variable portion of pedestrians have access to reliable information (informed
pedestrians), i.e. they know the walking speed for each loop. In practical terms,
we can consider those people as having access to navigation systems or paying
attention to information given in monitors along the path. Informed ratio is the
number of informed pedestrians over the total.

Under those assumptions lane change for a given pedestrian may occur under
the following conditions:

– The pedestrian is compliant. If a lane change is ordered he/she will move to the
loop indicated by the corresponding supervisor. Non-compliant pedestrians
can ignore those orders and follow their own intuition as given below.

– The pedestrian is non-compliant. If that pedestrian has information on the
speed in both loops (informed pedestrian), he/she can decide to move based
on a rational decision (i.e. he/she will choose the fastest one if the difference
is larger than 0.1 m/s). All pedestrians are able to remember the walking
speed for the last 10 s. Consequently, non-informed pedestrians can decide
to change loop by comparing their recent walking speed with the one of the
opposite loop when the lane change position is reached. If the other lane is
faster they will move in it.

To account for the effects of crowd control, different strategies has been used
to determine how supervisors give information to pedestrians in each lane change
location. The three scenarios considered here are listed as follow:

– Worst-case scenario: each supervisor has a limited field of view (90◦) and
take decisions by his/her own. Order for lane change will be issued so that
both lanes have the same number of pedestrians. This quickly leads into a
long lane taking half of the inner and half of the outer loop (see Fig. 5(a)).

– Best-case scenario: each supervisor has a complete overview (360◦) of the
area and knows the density in each loop. In addition, both will work together
until the density difference between both loops is below 0.05 m−1. The final
outcome will be something like the case shown in Fig. 5(b).

– Realistic scenario: each supervisor has a limited view (again 90◦) but both
are communicating with each other’s considering a communication delay of
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2 s and a reaction time before acting of 3 s (this “reaction time” also includes
the decision making process, hence the relative long time used).

(a) Worst-case scenario (b) Best-case scenario

Fig. 5. Typical results for different crowd control strategies.

4 Results

Using the model presented above a number of simulations have been run by
changing the compliant ratio, the number of people informed and the crowd
control strategy. Starting condition for each simulation has been of 50 people in
the inner loop and 10 in the outer loop, mid-diameter has been chosen of 10 m.
Average overall speed has been used as a parameter to calibrate and validate the
model and to measure the efficacy of crowd control strategies and information
provision.

(a) Speed – density (b) Flow – density

Fig. 6. Comparison between experimental fundamental diagram from literature [6] and
numerical results obtained using the Fukui–Ishibashi model.
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4.1 Validation of Fundamental Dynamics

First of all, in order to find the most appropriate parameters and check the
validity of the Fukui–Ishibashi model used for the dynamics of pedestrians, we
run a number of simulations for the simplest case, i.e. without loop change and
with the same density in both loops. Results for different values of hopping
probability are given in Fig. 6. Each simulation has been run for a corresponding
time of one hour. In general, a fairly good agreement is found for a hopping
probability of 0.85 for the whole range of densities considered in this study (a
maximum of 1.76 m−1 is found when all the 60 people are in the inner loop).

4.2 Effect of Information Provision and Compliance

We can now consider the case where it is possible to change lane and those
locations are supervised by crowd control personnel. Results for simple situations
considering information provision and compliance separately are given in Fig. 7.
To study information provision, we assumed that pedestrians are free to choose
(in other words all are non-compliant and crowd control strategy is irrelevant),
while for compliance we assumed a completely non-informed crowd.

(a) Information provision (b) Compliance

Fig. 7. Simple effect of information provision and compliance on the speed of the crowd
for different crowd control strategies.

From Fig. 7(a) it is seen that information provision has a linear effect on the
overall speed of the group. The more people are informed the faster the crowd
moves. The relation with compliance (given in Fig. 7(b)) clearly depends on
the strategy used for crowd control, with the realistic case lying between both
extreme scenarios. In general, compliance has a slightly non-linear relationship,
which becomes more evident for high level of compliance.

4.3 Combined Effect and Relation with Crowd Control

Finally, we wish to consider the effect of compliance and information provision
together and see how this may affect the overall speed of the group in regard
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to the different crowd control strategies presented earlier. In this regard, both
the compliant and the informed people ratio have been varied for the three
crowd control strategies generating the three diagrams shown in Fig. 8. A variable
number of 10 to 40 one-hour simulations were run to generate each dot.

(a) Worst-case (b) Best-case (c) Realistic

Fig. 8. Influence of compliance and information provision on the overall speed of the
group considering three different crowd control strategies. Color scale is the same for
the three cases and is given on the right. (Color figure online)

In the worst-case scenario it is clearly seen that when compliance is high
pedestrians are at the mercy of supervisors, who, by failing in their control
strategies, contribute to considerably slowing down the whole crowd. When com-
pliance is low (and pedestrians are basically free to choose) then information
provision plays a more important role and the maximum speed is found for the
non-compliant case where everyone is informed. It is important to notice that
in the worst-case scenario difference between minimum and maximum speed is
large (around 0.50 m/s) and the optimal speed is never reached.

The best-case scenario shows the opposite result compared to the previous
case. The maximum speed, which is equal to the optimal one in this case, is
found for fully compliant crowds. In this case, compliance seems to play a minor
role when all people are informed, making the upper part of Fig. 8(b) almost
constant. In the best-case scenario speed difference is lower than the previous
case (0.37 m/s), showing that optimal crowd control strategies benefit in all
conditions.

Finally, we can consider the realistic case, whose result is a sort of average
between the worst-case and best-case scenario. As for the previous cases, speed
is obviously constant along the full-compliant line. In this case, it is however
interesting to notice that the non-compliant informed case has an higher speed
(0.72 m/s) than the compliant uninformed case (0.55 m/s). Overall, the three
cases show that having an informed crowd is more important than focusing on
crowd control and compliance. While only a small improvement is found in the
best-case scenario, differences get easily larger as the crowd control strategy fails.
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5 Conclusions

In this study, a hypothetical scenario where both pedestrians’ compliance and
information provision have an impact on the overall performance of the system
has been presented and studied through a Cellular Automata simulation model.
Results clearly showed that when compliance is high, the crowd control strategy
has a dramatic effect on the overall system and the advantages of having an
informed crowd are nullified. On the other hand, having an informed crowd
represents the best tradeoff, guaranteeing that even when crowd control is not
optimal, good results in terms of crowd dynamics are obtained. Results also show
that in case of a complete failure of crowd control an informed not-compliant
crowd may still represent the best outcome given the worst-case condition.

Although the case studied here is very simple and more research need to
be done on the subject by also considering more in detail decision making for
large crowds, results may suggest that, when a choice is needed, informing a
crowd should be prioritized on enforcing organizers’ decision, especially when
the outcome of crowd control is uncertain.
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Abstract. Cellular Automata simulations of crowd dynamics can sup-
port the design of transportation facilities in terms of efficiency, com-
fort and safety. The development of realistic CA models requires the
acquisition of empirical evidences about human individual and collec-
tive behavior. The paper reports the results of controlled experiments
of personal space in static and dynamic situations: the area surround-
ing human body, linked to crowding due to spatial intrusion/restriction.
We propose a discrete representation of personal space through discrete
potentials and an innovative crowding estimation method (i.e. Cumula-
tive Mean Crowding). Simulation results are focused on the parametric
evaluation of pedestrians’ psychological stress reaction to density.

Keywords: Modeling and simulations · Pedestrian crowds
Personal space · Crowding

1 Introduction

The use of advanced computer-based systems for the simulation of pedestrian
crowd dynamics is a consolidated and successful domain, thanks to its capability
to support the design of mass gathering and transportation facilities (including
large stadiums, railway stations, subways and other venues where effective posi-
tioning of entry and exit points is required), offering optimized architectural
solutions in terms of efficiency, comfort and safety. Although there are some
objections about the simplified level of correspondence between computer-based
simulations and crowd phenomena [19], the use of advanced simulation systems
offer a sufficient level of expressiveness allowing to envision those phenomena
that are difficult to be directly observed in real scenarios, testing alternative
conditions and courses of action (i.e. what-if scenarios).
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In order to finalize pedestrian crowd simulations into operational steps it is
necessary the acquisition of empirical evidences about human behavior, consider-
ing both individual and collective behavioral dynamics. This is aimed at defining
descriptive sets of metrics and parameters for characterizing crowd phenomena,
supporting the development of computational models against real data. In line
with other Cellular Automata models present in the literature [1,16,23,24], the
current work is aimed at applying the general framework of the Proxemic Theory
[11], coming from anthropology and environmental psychology, to define a micro-
scopic CA model focused on spatial interpersonal distances among pedestrians
and psychological stress reaction in situation of variable density.

The condition of inappropriate proximity with others or spatial restriction
in crowded situations represents, in fact, a stressful factor among human beings.
Pedestrian crowd dynamics are characterized by turbulences and reciprocal com-
petition, due to the low degree of freedom for spatial positioning. Continuous
and sudden detouring maneuvers are needed to adjust trajectories and to avoid
collision with oncoming pedestrians. However, the condition of density is not
sufficient by itself to elicit a psychological stress reaction. This is related to the
spatial invasion of personal space [20]: the area surrounding human body, linked
to crowding in case of spatial intrusion/restriction.

The proposed CA model is based on the results achieved through of a series of
experiments focused on measuring the size and shape of personal space in static
and dynamic situations. In particular, we focused on the front zone of static
personal space (from now denoted as SPS ) and pedestrian personal space (from
now denoted as PPS ). The results achieved by means of a simulation campaign
execution allowed to define an innovative crowing estimation method based on
the invasion of personal space among the simulated pedestrians (i.e. Cumulative
Mean Crowding, from now denoted as CMC ). This represents a novel contri-
bution for the estimation of psychological stress reaction among pedestrians,
comparing traditional approaches devoted to the merely estimation of density
in the environment (e.g., flow rate [13], Level of Service [9]).

The general framework of the Proxemic Theory is presented in Sect. 2.
Section 3 presents the results of an experimental study focused on SPS and
PPS. The description of the model and the novel discrete representation of PPS
are presented in Sect. 4. Simulation results and the metric for the analysis of
the CMCare presented in Sect. 5. The paper ends with final remarks about the
achieved results and future works.

2 Personal Space and Crowding

In analogy with territorial behavior in animals, proxemics [11] is a type of non-
verbal communication among human beings based on the dynamic regulation
of interpersonal distances: intimate, personal, social and public distances. Prox-
emics is based on the notion of SPS [20]: a boundary regulation mechanism
around the human body, intended to protect themselves from physical and psy-
chological threats [6]. The condition of inappropriate proximity with others or the
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Fig. 1. The spatial configuration of SPS (a) and PPS (b). The latter is characterized
by an additional margins in the front zone to avoid intrusion while walking.

condition of spatial restriction in situation of high density represents a stressful
factor strictly linked to crowding [2]: a physiological and psychological response
of arousal and stress mediated by the endocrine system and associated with
some after-effects, including reducing tolerance for frustration and aggressive
behavior.

The shape of SPS is commonly represented as a circular area surrounding
individuals, but this configuration does not adequately characterize the flexibility
of this body buffer zone in relation to human distance receptors (including visual,
auditory, olfactory and thermal receptors). In particular, the asymmetrical and
flexible shape of SPS is related to the subject’s head orientation and visual
mechanisms [12]: the front and lateral zones of SPS are slightly larger than
the rear zone (see Fig. 1/a). In case of dynamic situations while walking (see
Fig. 1/b), the front zone of PPS is composed of a pacing zone for foot placement
and an additional margins in the front zone to avoid spatial intrusion or collision
with oncoming pedestrians [9,22].

Crowding stress reaction to density depend on several factors related to
social, cultural and environmental factors. For instance, the size of personal
space is influenced by cultural preference in spatial positioning [11]. Male exhibit
more aggressive responses under crowded conditions than female [8]. Crowd-
ing in primary environment (e.g., home, classroom) has more significant effects
than relatively unimportant environments (e.g., shopping center) [21]. Lastly,
the intensity of sensory inputs and physical contact in high density situations
can be labeled either positively (e.g., concert, sport event) or negatively (e.g.,
transportation facility), depending on contexts of social interaction [18].

3 Experimental Data

A series of experiments have been performed by the authors [10] in 2013 at
The University of Tokyo (Tokyo, Japan) to measure the size of SPS and PPS,
taking into account also the impact of walking speed. In particular, the front
zone of PPS was assumed to be larger than the one in static situations and
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Fig. 2. A schematic representation of stop-distance procedure (a) and locomotion-
distance procedure (b), which have been used to respectively measure SPS and PPS.
The participant (experimental subject) is highlighted in red color, while the confederate
of the experimenter is highlighted in black color. (Color figure online)

linearly speed-dependent, due to the need of an additional margin projected
towards the direction of movement to anticipate the spatial intrusion of oncoming
pedestrians.

3.1 Experimental Procedures

The experiments were participated by a sample of 20 Asiatic male students,
aged from 18 to 25 years old and with sufficient visual capacity (if necessary
fitted with glasses or contact lenses). The size of SPS was measured by means
of the stop-distance procedure [12] (see Fig. 2/a), which consisted of asking the
confederate to approach the participant walking straight ahead from a distance
of 5 m (neutral facial expression, no speaking, no eye contact). The experimental
subject was asked to stop the approach when he felt uncomfortable about spatial
nearness. The spatial distance between the confederate and the participant is
measured as the size of the front zone of SPS.

To measure the size of PPS we used the ad hoc designed locomotion-distance
procedure (see Fig. 2/b), which consists of asking participant and confederate to
approach the each other walking straight ahead from a distance of 5 m (neutral
facial expression, no speaking, no eye contact). Participant was asked to stop
when he felt uncomfortable about the closeness of the confederate, who immedi-
ately stops after. The distance between them is measured as the size of the front
zone of PPS.

To test the impact of walking speed on personal space, the procedure was
repeated at low speed (0.93 m/s), medium speed (1.23 m/s) and high speed
(1.46 m/s). To control and maintain the speed of the participant and of the



A CA Model for Crowding Estimation in Pedestrian Dynamics 485

Fig. 3. The modeled spatial configuration of SPS (a) and PPS(b). Numerical values
of the potential of PPS considering axis origin as the position and (0,1) as direction of
the agent (c).

confederate constant while approaching, they were asked to walk following tra-
jectories and foot markers drawn on the floor and to synchronize their gait to
digital-metronome background sounds.

3.2 Experimental Results

Results showed a significant effect of walking speed on the size of PPS (ANOVA,
p < 0.05). In particular, the size of the front zone of PPS in case of a recipro-
cal approach at low speed (0.9 m/s), medium speed (1.23 m/s) and high speed
(1.46 m/s) were respectively 71.45 cm (sd 21.78), 68.9 cm (sd 24.02) and 91.1 cm
(sd 30.3). Further analyses showed that the size of the front zone of PPS (high
speed procedure) is significantly larger than the one of SPS (72.15 cm, sd 25.71,
t-test, p < 0.05). Results confirmed the asymmetrical and flexible shape of PPS
which is affected by the need of an additional margin projected ahead towards
the direction of movement to anticipate the spatial intrusion of oncoming pedes-
trians. This allowed to model a discrete representation of the measured elliptical
shape of PPS and to define a crowding estimation method based on spatial
intrusion/restriction in situations of variable density.
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4 Model Description

The proposed CA model for the microscopic simulation of crowd dynamics is
based on the representation of pedestrians as occupied states of the cells, while
pedestrian interactions are represented through the floor field method [3,7]: a
virtual traces that influence pedestrian transitions and movements. At each time-
step of the simulation, agents evaluate cells c of the Moore neighborhood with the
utility function U(c). This aggregates the components associated to the repro-
duction of a particular behavior by means of a weighted sum:

U(c) =
κgG(c) + κobOb(c) + κsS(c) + κdD(c) + κovOv(c)

d
(1)

Individual functions model respectively: (i) goal attraction; (ii) obstacle
repulsion; (iii) keeping distance from other pedestrians; (iv) direction inertia;
(v) overlapping to avoid gridlock in counter-flow situations. The first three ele-
ments are modeled with the usage of floor-field approach [7,17] to model the base
behavior of pedestrians: movement towards a target, obstacle avoidance, prox-
emics with other pedestrians in a repulsive sense. After the utility evaluation for
all the cells of the neighborhood, the choice of action is decided by the probability
to move in each cell c as (N is the normalization factor): P (c) = N · eU(c).

In line with other works present in the literature [23,24], the proposed CA
model is devoted to the explicit representation of the asymmetrical shapes of
personal space in static and locomotion situations (see Fig. 1). In particular, on
the basis of the achieved experimental results we introduced a discrete represen-
tation of the shape of SPS and PPS into the simulated environment (see Fig. 3).
Moreover, we introduced a potential considering positions and directions of each
pedestrian, and providing a value ∈ [0, 1] that describes whether a cell in the
surrounding of the agent position belongs to its SPS or PPS (see Fig. 3/c). The
potential is designed with functions that aim at reproducing the flexible spatial
configuration of personal space in relation to human distance receptors:

φr(x) =
1

1 + er·(x−r)
(2)

ψ(x, y) = φ2(|x|) · φ3.5(|y|) (3)

Function φr is a customized sigmoid used to represent the spatial boundaries
of SPS and PPS into the two axis in a smooth way, with parameter r describing
the length of the area considered inside it. Function φr is based on considering
the pedestrian centered in the origin and moving along the y-axis (during the
simulation the potential is then rotated and translated accordingly). ψ(x, y)
thus provides a value ∈ [0, 1] describing whether the cell with coordinates x,y
belongs to the personal space of a pedestrian (numerical values assigned to r are
expressed in cells).

For the representation of SPS in the discrete space, values of the function are
cut and discretized in the rectangle of width 3 cells and height 4, as in Fig. 4(a). In
case of diagonal movement, the potential of SPS is rotated as shown in Fig. 4(b).



A CA Model for Crowding Estimation in Pedestrian Dynamics 487

(a) SPS - VN (b) SPS - oblique

(c) PPS - VN (d) PPS - oblique

Fig. 4. The representation of SPS and PPS in case of agent’s orientation (the last
movement of the agents), belonging to the Von Neumann (VN) neighborhood (a, c)
and in case of diagonal orientation (b, d).

According to the experimental results presented in Sect. 3, the discrete represen-
tation of PPS is based instead on a rectangle of width 3 cells and height 5, as
in Fig. 4(c). In case of diagonal movement, the potential of PPS is rotated as
shown in Fig. 4(d).

It must be noted that in this work we did not integrate the notions of denoted
in the Eqs. 2 and 3 into the model, yet. Future works presented in Sect. 6 will
be focused on integrating the notion of SPS and PPS into the model for a more
expressive representation of proxemic-based behavioral rules among each agent.

5 Crowding Estimation Through Simulations

A simulation campaign of pedestrian crowd dynamics has been executed starting
from the configuration of a counter flow situation in a corridor-like scenario (fully
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balanced bi-directional flow), characterized by the presence of No. 54 agents
in total. The objective was to compare results about density and crowding stress
reaction among agents due to the invasion of personal space.

In particular, the novelty of this work is based on an innovative crowding esti-
mation method (i.e. Cumulative Mean Crowding) based on the invasion of SPS
and PPS among the simulated pedestrians. According to other works focused on
the empirical estimation of crowding among animal entities [4,15], the proposed
CMC has been calculated by considering the discretized shape of SPS and PPS
for each agent in the simulated environment, and the possibility to be invaded
by other agents due to the contextual condition of density. For each step of the
simulation, each agent store in the grid, in coordinates describing its position, a
value ∈ 0, 1 related to the invasion of its personal space. The value is calculated
with respect to the gradients shown in Fig. 4, considering only occupied cells of
the agent’s surrounding. If more than one cell are occupied, the maximum of
those values is considered. Values of the grid are then cumulated and averaged
over the time of simulations, resulting in the end in a grid of values in range
[0, 1] (see Fig. 5/b).

Simulation results are focused on comparing data about cumulative mean
density and cumulative mean crowding, to estimate the stress reaction among
agents due to spatial invasion/restriction. Results (see Fig. 5) highlight fruitful
insights regarding the evident difference among the mere estimation of density
and the crowding stress reaction among agents due to the invasion of SPS and
PPS. In particular, results about density show a situation of slight congestion
only at the center of the simulated scenarios being an accurate method for the
recognition of the pedestrian jam. CMC, instead, show a more homogeneous
distribution of values, but it makes possible to recognize situations of spatial
invasion/restriction also at the agents’ generation areas. Starting from the con-
sideration that highlighting that the condition of density is not sufficient by
itself to elicit crowding [2], the proposed CMC represents a novel contribution
for the assessment of pedestrian crowd dynamics focusing on the level of comfort
experienced by pedestrians in situations of variable density.

6 Conclusions

The paper presents a novel CA model of pedestrian crowd dynamics focused
on the general framework of proxemics and on the discrete representation of
personal space among pedestrians. This is based on the experimental results
achieved by the authors [10] about the asymmetrical and flexible shape of per-
sonal space in static and motion situations. Starting from the results of a simula-
tion campaign execution, the paper proposes an innovative method (i.e. Cumu-
lative Mean Crowding) for estimating the psychological stress reaction among
pedestrians due to spatial invasion of personal space in situations of variable
density.

Simulations were focused on comparing data about cumulative mean density
and cumulative mean crowding. Simulations results highlighted that the pro-
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Fig. 5. Simulation results about cumulative mean density (a) and cumulative mean
crowding (b) of the simulated scenario.

posed CMC method could be successfully combined to the use of more consoli-
dated approaches devoted to the merely estimation of density in the environment
(e.g., flow rate [13], Level of Service [9]) to consider also pedestrians’ comfort
while walking through mass gathering/transportation facilities.

It must be noted that in this work we did not integrate the notions of SPS
and PPS into the model for a more expressive representation of proxemic-based
behavioral rules among each agent. Future works will be focused on integrat-
ing this aspect, and on introducing the notion of shared personal space among
group members. Previous studies performed by the authors have highlighted, in
facts, the importance to consider pedestrian crowd dynamics as characterized
by the presence of groups [5]. Moreover, since proxemic behavior depends on
several socio-psychological factors related to the variability among culture [14],
the achieved simulation results definitely encourages future cross-cultural exper-
imental investigations about personal space and tolerance for spatial intrusion,
testing also the impact of participants’ culture on CMC.
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Abstract. This study presents the principles of an application that is designed
to facilitate customized evacuation from indoor spaces. The proposed approach
combines in-doors detection using existing wireless networks based on trilat-
eration technique and proper evacuation estimation based on cellular automata
(CA). An efficient application has been developed that can be installed in
smartphones under Android operation system and technically fulfills the scopes
of the aforementioned evacuation model. More specifically, it offers the user the
option to view her/his location at any time and to find the closest possible route
to an exit in case of an emergency. The efficiency of the application to provide
reliable guidance towards an exit is also evaluated. Preliminary results are
reasonably encouraging; provided that the application is properly customized
then a reliable, real-time evacuation guidance could be realized.

Keywords: Cellular automata � Evacuation � Modelling � Trilateration
Smartphones � Wireless � Android

1 Introduction

Indoor Positioning System (IPS) is a new scientific research area that has already
offered a wide region of applications, although its realization has not been fully
standardized yet [1]. Till today there are quite a few commercial systems found on the
market; however no standard for an IPS system exists. The proposed so far IPSs utilize
diverse technologies, namely distance measurement to neighboring anchor nodes
(nodes with known positions, for example Wi-Fi access points), magnetic positioning,
dead reckoning, etc. As such, these systems either actively locate mobile devices and
tags or provide ambient location or environmental context for devices to get sensed [2].

One of the key issues arising from navigating in large public venues is the iden-
tification of the location of an individual at any time. Indeed, areas such as stadiums,
shopping malls, museums and many public spaces are often occupied by many people
that make the move to these areas even more difficult. On the other hand, applications
have been already developed that employ the knowledge of the exact location of an
individual, in order to display the appropriate content in one of the electronic devices
that she/he possesses. An example of such an embodiment is the ability to
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automatically open an e-wallet application when the user approaches the cashier of a
store and/or to activate her/his mobile phone. Such applications that belong to the so-
called aware applications are incorporated into the Internet of Things (IoT).

The proposed approach combines in-doors detection using existing wireless net-
works and proper evacuation estimation based on Cellular Automata (CA). Wi-Fi –
based detection is realized using the trilateration technique. The study focuses on the
convenient application of pre-established equipment. The feasibility of available
methods to be realized with the use of commercial devices already widespread on the
market forms a key criterion for the selection of an identification method because it is
easy to be adopted by users. Currently, most people who visit public areas carry a smart
mobile phone (smartphone) and almost all areas are already equipped with access
points of Wi-Fi wireless networks. Furthermore, it would be valuable that IPSes could
also provide effective guidance towards an exit, especially in case of emergency. In
such conditions, it is important for individuals to be guided towards exits in a swiftly
and safe manner. Thus, the main objective of this study is the implementation and
evaluation of an active and dynamic guidance method.

According to the structure of this paper, Sect. 2 presents a short review of research,
whereas in Sect. 3, the theoretical principles of the model are described. In Sect. 4, the
CA-based active route leading method is developed. The corresponding smartphones’-
oriented application is described, discussed and evaluated in Sect. 5. Conclusions are
drawn, and future perspectives are proposed in the last section of the paper.

2 Related Work

In the framework of this study, various works on the navigation using wireless net-
works were studied. More particularly, different approaches have been utilized so far to
achieve localization. The most popular and simplest approach is to calculate the dis-
tance from some access points and then apply a method such as triangulation or triple
positioning to determine the specific position [3]. In such approaches, the appropriate
placement of the necessary number of access points is considered as a prerequisite.
Another approach allows navigation without the knowledge of access points in the
room, with the aid of the sensors of the device that are used to calculate the direction
and speed of the user’s movement. However, this method falls relatively short in
accuracy and requires several improvements mainly related to the limitation of errors
[4]. In several studies, a method is used, which employs a modified centroid approach
with or without weights that offers quite good accuracy and reliability [5]. In some
methods, the compass is used to improve accuracy [4, 5], whereas in others, the device
is calibrated by successive fixed signal strength measurements, before starting the
detection process [3]. In some more complex detection techniques, fluctuations in
signal strength are exploited to identify the location of access points so that they can be
applied even in unknown locations [3]. Another almost common and relatively easy
practice is fingerprinting [6, 7], whereby certain combinations in the signal power
levels obtained from the access points are assigned to certain locations within the area
of interest by making use of a suitable database that has been previously created.
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A relevant idea is to create databases that help improve the accuracy of detection
methods using crowdsourcing [8], where data collected by the devices of different users
are uploaded to a network for sharing. Several attempts focus on developing robust
navigation methods against fluctuations in the received signal. Yet another object that
several studies deal with, even if their main objective is not the creation of a navigation
system, is to estimate the distance between the user and an obstacle, as well as the
existence of noise sources [7, 9].

As far as it regards the estimation of an exit route, the use of CA has been preferred.
In most works, they are used in order to predict and study crowds in building evac-
uation situations, but they can also serve as an excellent basis of instructing platforms
in indoor navigation systems; especially since they can emulate the movement of many
individuals within an area [10, 11]. More recent studies apply distributed techniques to
succeed real-time evacuation guidance [12] and pave the way of more standardized and
well developed techniques for real-time applications referring to pedestrian and crowd
evacuation issues.

In this work, we focused on the study, application, realization and possible
improvement of detection methods without the use of databases, in order to draw
conclusions about their suitability under various scenarios. More particularly, the main
aim of this study is the development of an application that enables real-time indoors
detection using exclusively smartphones as well as wireless network access points
already in place. Extended use of smartphone devices and Wi-Fi wireless networks,
along with ease of implementation and low cost of installation constitute the main
reasons of that choice.

3 The Theoretical Principles of the Model

3.1 Detection Using Trilateration Method

Trilateration is a geometric technique that determines the location of a point [13, 14]
and extensively used on tracking systems such as GPS. In two-dimensional geometry,
in case that a point lies on two circles, then the centers and the two radii of the circles
provide sufficient information to limit the possible locations down to two. Additional
information may limit possible options to one unique location (see Fig. 1).

In the localization method that has been developed in this study, the position of an
unknown object is determined with the use of two known points. The reason is that the
availability of two instead of three access points within the range of the user’s device is
closer to realistic scenarios. It should be considered that wireless access points are
located within an area to provide access to networks rather than being used for navi-
gation purposes. Thus, the number of existing access points in most locations is not so
large as to allow detection with trilateration of three points, and it is unreasonable to
place additional access points just for that purpose. In addition, two-point calculations
are simpler and less costly.

The trilateration method allows the user to be identified by only two access points,
making it perhaps the most cost-effective method when using hardware. Moreover, the
fact that detection at any time does not require knowledge of the prior position means
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that the error does not accumulate over time and that there are no prerequisites for the
initial position of the user at the beginning of the navigation. This method needs only
the knowledge of the received signal strength indication (RSSI) to be realized and does
not use any kind of sensor, such as a compass or accelerometer, making it less energy-
demanding for the mobile device. RSSI is a measurement of the power of a radio wave
and it represents the weakening of its power along its path in space. However, this
method also has some drawbacks. The fact that it is necessary to know in advance the
location and identity of the access points as well as that these points should be placed
within the area of interest in a specific way means that the method cannot be used in
unknown areas, especially in case that the placement of access points is beforehand
inappropriate. Moreover, the method is impossible to be applied in case that the contact
with an access point is lost. Additionally, in locations that are very close to the
imaginary line joining the two access points, it is possible the trilateration method to
fail, in the event of an error in the distance calculation.

Assuming that the access points have been appropriately positioned and that their
identity and coordinates are known, the trilateration method is implemented in two
main steps: the calculation of the user’s distance from each access point and the
application of the trilateration method itself. The procedure applied is as follows. Given
the coordinates of the access points, hence the distance between them and the
knowledge of the user’s distance from the access points, the dimensions of the triangle
formed by the user’s device and the two access points is known. Then, applying
properly a system of Cartesian coordinates and trigonometric formulas, the coordinates
of the user’s position can be calculated. First, we use the type of Heron to find the
surface of the triangle formed by the user’s device and the two access points:

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p p� að Þ p� bð Þ p� cð Þ
p

ð1Þ

where a, b, c the sides of the triangle formed, with a representing the side that joins the
two access points and p the semi-perimeter of the triangle. Then the height h of the
triangle is calculated, which corresponds to the y coordinate of the position:

Fig. 1. Trilateration method. The positions of circle centers and their radii are known. The
desired point is the intersection of the three circles.

CA Based Evacuation Process Triggered by Indoors Wi-Fi and GPS 495



h ¼ 2A=a ð2Þ

The x coordinate is then easily located with the use of the Pythagorean theorem and
thus, the positioning process is completed:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � y2
p

ð3Þ

Overall, the exact steps followed for the implementation of the trilateration method
are: (1) The location of any access point within the area of interest is searched and it is
detected whether they correspond to the points that are used for the application of the
trilateration method, (2) in case that both necessary access points are found, the user’s
device distance from each of them is calculated, (3) the trilateration method is applied
and from the resulting coordinates, the location of the user is defined in the area of
interest, and (4) the procedure is repeated at regular intervals to calculate the user’s new
location.

3.2 The Route Estimation Model

A key element in each navigation system is its ability to find the shortest possible route
to a desired point. In addition, the fact that other users are also trying to find an exit
means that their presence should be taken into account in the process of estimating the
route, otherwise it may cause accidents during the evacuation process. In order to meet
the needs described above, a method of finding a route to the shortest exit is imple-
mented in the context of this work. This method is based on the use of two-dimensional
CA. The main reason for the selection of CA is that they enable the estimation of an
effective route in near real time. In addition, by appropriately implementing a system of
CA, it is possible to take into account the presence of other users within the same area,
or even the sudden appearance of obstacles or a passage that is not accessible [11, 15–
17]. But there is also another factor that may be of decisive importance to the use of
CA. In crowded areas, a CA-based route estimation system could act anticipatively and
prevent congestion in front of exits, provided that detected positions of the users could
update the initial configuration of the CA grid [18].

In this model, the space is represented by a grid of identical square cells, each
representing a predetermined surface with side a. The grid of the CA is considered
homogeneous and isotropic. A variable is assigned to each cell, the value of which
corresponds to the state of the cell. The possible states are: (1) free, which corresponds
to a free area, (2) occupied, which corresponds to an area that is occupied by a user,
(3) obstacle, which corresponds to a static obstacle or a wall, (4) a passage, which
corresponds to a door through which the user goes from one part of the venue to
another, (5) exit, which corresponds to the exit of the area of interest. For each step of
the exit path exploring process, the state of each cell is refreshed. Thus, the movement
of all people is taken into account. It is assumed that individuals move at a fixed and
specific speed. In addition, each user can move one cell at a time. Acceleration and
deceleration times of the user are considered negligible. According to the rule that
applies to route calculation, at each step, each individual is selected to move one cell in
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one of the eight possible different directions corresponding to adjacent cells and form
the so-called Moore neighborhood. The choice of the cell depends on whether it meets
the shortest route criterion and whether it is occupied or not by another person or an
obstacle. As far as the shortest route selection is concerned, this is based on the
minimum number of cells to be covered from any position to the exit moving only
horizontally or vertically. Thus, in the CA plane, the distance D, between a cell located
at position p1; p2ð Þ and another one positioned at q1; q2ð Þ is defined by Eq. (4). The
main advantage of such an adoption is that calculations with irrational numbers such as
ffiffiffi

2
p

or p are technically avoided, thus the process becomes simpler and faster.

D ¼ p1 � q1j j � p2 � q2j j ð4Þ

The cell corresponding to the smallest number of steps is the one selected as the
next person’s location. The process is repeated until the individual reaches the exit. The
length of the side a of the cell corresponds to a good compromise between accuracy
and computational cost. A very small value (and therefore many cells) means more
accuracy but greater cost and therefore increased time to calculate the route. Obviously,
the CA grid is adapted to the needs and layout of the area of interest. The fundamental
flowchart of the CA model is presented in Fig. 2.

Fig. 2. The fundamental flowchart of the CA-based evacuation model.
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4 The Application and the Experimental Process

In order to test the effectiveness of the model, an application is developed running on a
smart mobile phone device. There are two prerequisites that should be satisfied in order
this application to be operational. First, an appropriate sensor (compass) should be
installed on the mobile device and data from this sensor should be accessible. Second,
access to information about the Wi-Fi networks to which the device can be connected
should also be available.

The dominant platforms for such devices are three; Apple iOS, Microsoft Windows
Phone and Google Android. As far as Windows Phone is concerned, the development
of such an application is not an option, because Wi-Fi network information is not
available. The same restriction applies for iOS. Finally, the platform in which the
application is developed is Google Android. There are a couple of reasons that led to
such a decision, and, more specifically, that all necessary tools that someone needs to
access the information for navigation are available. Furthermore, it is an open platform
with a large community and good support from developers. It also supports developing
of applications in Java programming language. Finally, the corresponding integrated
developing environment (IDE), i.e. Android Studio is highly regarded as an efficient
choice. The application that is developed can operate on devices running Android 4.4
and more recent versions. All implemented methods are written in Java. The appli-
cation enables parameterization by the user in order for the corresponding results to
match the equipment that is used.

Figure 3 shows the operation of the application. The user initially chooses the
desired tracking method (here trilateration), and then selects the map of the space to
which she/he wants to navigate. The location of the user in space is marked with a red
mark.

In addition, for the needs of the tests, a message is displayed on the device at
regular intervals, indicating information about the position and inclination of the
device, as well as details of surrounding access points (identity, transmission fre-
quency, power signal, distance). At any time during the tracking process, the user can
enable the output path finder option. Once the option is enabled, the application
activates the CA-based evacuation method. As soon as the process is completed, the
route that the user has to follow in the space is displayed on the screen of the device.
This process can be repeated at any time for any user’s location.

Measurements for position detection took place indoors, in a venue without walls
but surrounded with various furniture. A Linksys and a Netgear rooter devices were
considered for the realization of the trilateration tracking method. First, the signal
strength was measured for each router at different distances. The purpose of this
process is to calculate the values of the constants to be used in the formula for cal-
culating the distance. Theoretically, the application of various router devices would
downgrade the accuracy of this method because it does not take into account the
differences among the devices. In practice, however, it was proven that the corre-
sponding differences in the received signal value were negligible. Tests were then
performed to determine the accuracy of the detection methods. A common problem in
all methods is the generation of fluctuations in the signal level even if the mobile device
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is at a fixed location. There are many factors that affect the signal, such as the operation
of other devices, the shape of the space, interference from other networks, etc.

According to the trilateration method the user’s position is recalculated each time
(see Fig. 4). As shown in Table 1, which shows the mean deviation from the actual
position for 10 consecutive measurements at different positions, the method achieves
relatively good accuracy in position calculation. However, it was empirically proven
that this method requires fairly high accuracy in calculating the distance of the device
from the access points, otherwise it may not be able even to detect the position of the
user. A study of the efficiency of the route estimation method using CA took place. In
particular, the ability of the proposed CA-based method to find the exit form different
starting positions was studied, as well as the ability of the method to find the optimum

Fig. 3. A snapshot of the CA-based application that defines the evacuation route. (Color figure
online)
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path and the corresponding response time. A grid that simulates a venue with 4 rooms
and one exit was constructed for testing purposes. Then the response of the model was
tested for different initial locations. During simulations, we assumed no other persons
in the area.

In all cases studied, the method was able to provide a route to the exit. In addition,
all routes proposed by the method were reasonable and short. The time response of the
model depends on the required number of iterations. In case that the number of iter-
ations can be defined dynamically, the method is terminated as soon as the exit route is
determined.

Fig. 4. Example of application of the trilateration method. The user’s calculated position is
marked in red. (Color figure online)

Table 1. Deviation of the calculated position from the actual when performing the trilateration
method.

Number of measurement Deviation (m)

1 0.1
2 0.3
3 NA
4 0.8
5 NA
6 1.5
7 0.7
8 1.2
9 1.5
10 1.3
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5 Conclusions and Future Perspectives

The main conclusion is that it is indeed possible to navigate indoors using Wi-Fi
networks and without the use of specialized equipment. Trilateration method provides
in most cases acceptable results and it is executed quickly and with relatively small
cost. Regarding the route estimation method, experimental results are very encourag-
ing. Indeed, the use of CA is suitable for finding a real-time exit route, providing short
and reliable routes in any case.

Based on our early observations during the experimental process, we can propose
some future improvements. Initially, other detection methods such as compass-based
and weighted centroid should also be tested. Moreover, the CA-based route estimation
method could run centrally on a system stronger than a smartphone and then sending
the application to the device concerned. Last but not least, a major challenge is the
application of the proposed method to larger environments, where the tool will be
definitely proved more useful, especially in correspondence with very interesting recent
research results that indicate that individuals do not tend to optimize their paths [19].
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Abstract. The Biham-Middleton-Levine (BML) traffic model is a sim-
ple two-dimensional discrete Cellular Automaton (CA) that has been
used to study self-organization and phase transitions in traffic flows.
From the computational point of view, the BML model exhibits the
usual features of discrete CA, where the new state of each cell is com-
puted according to simple rules involving its current state and that of
the immediate neighbors. In this paper we evaluate the impact of various
optimizations for speeding up CA computations on shared-memory par-
allel architectures using the BML model as a case study. In particular,
we analyze parallel implementations of the BML automaton for mul-
ticore CPUs and GPUs. Experimental evaluation provides quantitative
measures of the payoff of different optimization techniques. Contrary to
popular claims of “double-digit speedups” of GPU versus CPU imple-
mentations, our findings show that the performance gap between CPU
and GPU implementations of the BML traffic model can be greatly
reduced by clever exploitation of all available CPU features.

Keywords: Biham-Middleton-Levine model · Cellular automata
Parallel computing

1 Introduction

Cellular Automata (CA) are a simple computational model of many natural
phenomena, such as virus infections in biological systems, turbulence in fluids,
chemical reactions [4] and traffic flows [7]. In its simplest form, a discrete CA
consists of a finite lattice of cells (domain), where each cell can be in any of a
finite number of states. The cells evolve synchronously at discrete points in time;
the new value of a cell depends on its current value and on that of its neighbors
according to some fixed rule.

Simulating the evolution of CA models can be computationally challenging,
especially for large domains and/or complex update rules. However, many CA
models belong to the class of embarrassingly parallel computations, meaning
that new states can be computed in parallel if multiple execution units are
available. This is indeed the case, since virtually every desktop- or server-class
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processor on the market provides parallel capabilities, such as multiple execu-
tion cores and Single Instruction Multiple Data (SIMD) instructions. Moreover,
programmable Graphics Processing Units (GPUs) are ubiquitous and affordable,
and are particularly suited for this kind of applications since they provide a large
number of execution units that can operate in parallel.

Unfortunately, exploiting the computational power of modern parallel archi-
tectures requires programming techniques and specialized knowledge that are
not as diffuse as they should be. Additionally, there is considerable misunder-
standing about which programming technique and/or parallel architecture is the
most effective in a given situation. This results in many exaggerated claims that
later proved to be unsubstantiated [6].

In this paper we study the impact of various optimizations for speeding up CA
computations on parallel architectures by using the Biham-Middleton-Levine
(BML) model as a case study. We focus on two common computing architec-
tures: (i) multicore CPUs, i.e., processors with multiple independent execution
units, and (ii) general-purpose GPUs that include hundreds of simple execution
units that can be programmed for any kind of computation. Starting with an
unoptimized CPU implementation of the BML model, we develop incremental
refinements that incorporate more advanced features: shared-memory program-
ming, SIMD instructions, and a full GPU implementation. We compare the vari-
ous implementations on two machines to study the impact of each optimization.
Our findings show that, for the BML model, CPUs can be extremely effective if
all their features are correctly exploited. We believe that the findings reported
in this paper can be useful for improving the simulation of other, more realistic,
traffic models based on Cellular Automata.

This paper is organized as follows: in Sect. 2 we briefly describe the main
features of the BML model. Then, we illustrate a simple serial implementation
of the model (Sect. 3), that is later improved to take advantage of multicore
parallelism on the CPU (Sect. 4), of Single Instruction Multiple Data extensions
(Sect. 5), and of GPUs parallelism (Sect. 6). In Sect. 7 we compare the perfor-
mance of the implementations above. Finally, the conclusions of this work are
reported in Sect. 8.

2 The Biham-Middleton-Levine Traffic Model

The BML model [1] is a simple CA that describes traffic flows in two dimensions.
In its simplest form, the model consists of a periodic square lattice of N × N
cells. Each cell can be either empty, or occupied by a vehicle moving from top
to bottom (TB) or from left to right (LR). The model evolves by alternating
horizontal and vertical phases. During a horizontal phase, all LR vehicles move
one cell right, provided that the destination cell is empty. Similarly, during a
vertical phase all TB vehicles move one cell down the grid if possible. A vehicle
exiting the grid from one side reappears on the opposite side.

Despite its simplicity, the BML model undergoes a phase transition when the
density ρ of vehicles exceeds a critical value that depends on the grid size N [1,3].
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Fig. 1. BML model on a 256 × 256 lattice after 4096 steps. (a) Free-flowing phase,
ρ = 0.25; (b) Intermediate phase, ρ = 0.32; (c) Globally jammed phase, ρ = 0.38. Red
dots represent LR vehicles, while blue dots represent TB vehicles. (Color figure online)

When ρ is below the critical threshold, the system stabilizes in a free-flowing
state where vehicles arrange themselves in a non-interfering pattern to achieve
maximum average speed. If the density is just above the critical threshold, a
global jam eventually develops and no further movement is possible.

Figure 1 shows three configurations of the BML model after 4096 steps (each
step includes a horizontal and vertical phase) on a grid of size 256 × 256 for
different values of the vehicle density ρ. There are approximately ρN/2 vehicles
of each type that are initially placed randomly on the grid. Figure 1(a) shows
the free-flowing state that arises when ρ = 0.25. Increasing the vehicle density
ρ = 0.32 Fig. 1(b) shows the intermediate phase that can be observed if the value
of ρ is increased, but is still below the critical threshold. When the density ρ
reaches the critical threshold, all vehicles are eventually stuck in a global traffic
jam as shown in Fig. 1(c), and the average speed drops to zero. In fact, the
free-flowing and jammed states might coexist, i.e., have non-zero probability to
occur, when ρ lies within some interval around the critical point [3].

The following rule can be used during a horizontal phase to compute the new
state center’ of a cell, given its current state center and the current state of
its left and right neighbors:

center’ =

⎧
⎪⎨

⎪⎩

LR if left = LR ∧ center = EMPTY

EMPTY if center = LR ∧ right = EMPTY

center otherwise

Similarly, the following rule can be used to compute the new state of a cell
during a vertical phase, given its current state and the state of its neighbors
locate at the top and bottom:

center’ =

⎧
⎪⎨

⎪⎩

TB if top = TB ∧ center = EMPTY

EMPTY if center = TB ∧ bottom = EMPTY

center otherwise
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3 Serial Implementation

The BML model is a synchronous CA, since it requires that all cells are updated
at the same time. To achieve this it is possible to use two grids, say cur and
next, holding the current and next CA configuration, respectively. Cell states
are read from cur and new states are written to next. When all the new states
have been computed, cur and next are exchanged.

Since the C language lays out 2D arrays row-wise in memory, it is easier to
treat cur and next as 1D arrays, and use a function (or macro) IDX(i,j) to
compute the mapping of the 2D coordinates (i, j) to a linear index. Therefore,
we write cur[IDX(i,j)] to denote the cell at coordinates (i, j) of cur. In case
of a N × N grid, the function IDX(i,j) will return (i × N + j).

Since the BML model is a three-state CA, two bits would be sufficient to
encode each cell. However, to simplify memory accesses we use one byte per cell.
The following code defines all necessary data types, and shows how the horizontal
phase can be realized (the vertical phase is very similar, and is therefore omitted).

typedef unsigned char cell_t;

enum {EMPTY = 0, LR , TB};

cell_t *cur , *next;

void horizontal_step(cell_t *cur , cell_t *next , int N) {

int i, j;

for (i=0; i<N; i++) {

for (j=0; j<N; j++) {

const cell_t left = cur[IDX(i,(j-1+N)%N)];

const cell_T center = cur[IDX(i,j)];

const cell_t right = cur[IDX(i,(j+1)%N)];

cell_t *out = &next[IDX(i,j)];

*out = (left == LR && center == EMPTY ? LR :

(center == LR && right == EMPTY ? EMPTY :

center ));

}

}

}

void vertical_step(cell_t *cur , cell_t *next , int N) { ... }

A direct implementation of the BML morel uses grids of N × N elements.
However, care must be taken when accessing the neighbors of cell (i, j) to avoid
out-of-bound accesses. A common optimization is to surround the domain with
additional rows and columns, called ghost cells [5]. The domain becomes a grid
of size (N + 2) × (N + 2), where the true domain consists of the cells (i, j) for
all 1 ≤ i ≤ N + 1, 1 ≤ j ≤ N + 1, while those on the border contain a copy of
the cells at the opposite side (see Fig. 2).

The top and bottom ghost rows must be filled before each vertical update
phase (Fig. 2(a)), while the ghost columns on the left and right must be filled
before each horizontal phase (Fig. 2(b)). Ghost cells simplify the indexing of
neighbors and provide a significant speedup as will be shown in Sect. 7.
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Fig. 2. An N × N domain (white) augmented with ghost cells (gray). The corners of
the extended domain are ignored, since they are not used by the BML update rules.

4 OpenMP Implementation

OpenMP [2] is an open standard that supports parallel programming on shared-
memory architectures; bindings for the C, C++ and FORTRAN languages are
available. OpenMP allows the programmer to annotate portions of the code as
parallel regions; the compiler generates the appropriate code to dispatch those
regions to the processor cores.

In the C and C++ languages, OpenMP annotations are specified using
#pragma preprocessor directives. One such directives is #pragma omp parallel
for, that can be used to automatically distribute the iterations of a “for” loop
to multiple cores, provided that the iterations are independent (this requirement
must be verified by the programmer). The update loop(s) of the BML model can
then be parallelized very easily as follows (we are assuming the presence of ghost
cells, so that the indexed i and j assume the values 1, . . . , N).

...

#pragma omp parallel for

for (i=1; i<N-1; i++) {

for (j=1; j<N-1; j++) {

/* update cell (i,j) */

}

}

...

5 SIMD Implementation

Modern processors provide SIMD instructions that can apply the same mathe-
matical or logical operation to multiple data items stored in a register. A SIMD
register is a small vector of fixed length (usually, 128 or 256 bits). Depending
on the processor capabilities, a 128-bit wide SIMD register might contain two
64-bit doubles, four 32-bit floats, four 32-bit integers, and so on.
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Some applications can greatly benefit from SIMD instructions, since they
execute multiple operations in the same time of one corresponding scalar instruc-
tion. However, there are some limitations: (i) SIMD instructions are processor-
specific, and hence not portable; (ii) automatic generation of SIMD instructions
from scalar code is beyond the capabilities of most compilers and requires manual
intervention from the programmer; (iii) SIMD instructions might impose con-
straints on how data is laid out in memory, e.g., by forcing specific alignments
for memory loads and stores.

The SSE2 instruction set of Intel processors provides instructions that can
operate on 16 chars packed into a 128-bit SIMD register. This allows us to
compute the new states of 16 adjacent cells at the time. The SIMD version of
the BML model has been realized using vector data types provided by the GNU
C Compiler (GCC). Vector data types are a proprietary extension of GCC that
allow users to use SIMD vectors as if they were scalars: the compiler emits the
appropriate instructions to apply the desired arithmetic or logical operator to
all elements of the SIMD vector.

The conditional branches required to compute the next state of the BML
model pose a challenge. The reason is that a branch may cause a different
execution path to be taken for different elements of the same SIMD regis-
ter, which contrasts with the SIMD paradigm that requires that the same
sequence of operations is applied to all data items. To overcome this prob-
lem it is possible to compute the new states using a technique called selection
and masking, that makes use of bit-wise operations only. The idea is to replace
a statement like a = (C ? x : y), where C is 0 or −1 (0xffffffff in two’s
complement, hexadecimal notation), with the functionally equivalent statement
a = (C & x) | (~C & y), where no branch appears.

The code below defines a vector datatype v16i of 16 chars and uses it to
compute the new state out of 16 adjacent cells at the time.

typedef char v16i __attribute__ (( vector_size (16)));

void horizontal_step(cell_t *cur , cell_t *next , int N) {

int i, j;

for (i=1; i<N+1; i++) {

for (j=1; j<(N+1) -15; j += 16) {

const v16i left = __builtin_ia32_loaddqu(( char *)&cur[IDX(i,j -1)]);

const v16i center = __builtin_ia32_loaddqu(( char *)&cur[IDX(i,j)]);

const v16i right = __builtin_ia32_loaddqu(( char *)&cur[IDX(i,j+1)]);

const v16i mask_lr = ((left == LR) & (center == EMPTY ));

const v16i mask_empty = (( center == LR) & (right == EMPTY ));

const v16i mask_center = ~( mask_lr | mask_empty );

const v16i out = (( mask_lr & LR) | (mask_empty & EMPTY) | \

(mask_center & center ));

__builtin_ia32_storedqu (( char *)& next[IDX(i,j)], out);

}

}

}

left, center and right can be thought as arrays of length 16 holding the val-
ues of the left, center, and right neighbors of 16 adjacent cells. Their contents are
fetched from memory using the __builtin_ia32_loaddqu (Load Double Quad-
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word Unaligned) intrinsic; we are assuming that the domain is extended with
ghost cells.

The mask_lr, mask_empty and mask_center vector variables contain the
value −1 in the positions where LR, EMPTY and center should be stored, respec-
tively. Note that the compiler automatically converts scalars to vectors in order
to handle mixed comparisons like (left == LR). Conveniently, SSE2 compar-
ison instructions generate the value −1 for true instead of 1. The new states
out of the 16 cells can then be computed using bit-wise operators that the
compiler translates into a sequence of SIMD instructions. The result is stored
back in memory using the __builtin_ia32_storedqu (Store Double Quadword
Unaligned) intrinsic.

6 CUDA Implementation

A modern GPU contains a large number of programmable processing cores that
can be used for general-purpose computations. The first widely used frame-
work for GPU programming has been the CUDA toolkit by NVidia corporation.
A CUDA program consists of a part that runs on the CPU and one that runs on
the GPU. The source code is annotated using proprietary extensions to the C,
C++ or FORTRAN programming languages that are understood by the nvcc
compiler. Recently, CUDA has evolved into an open standard called OpenCL
that is supported by other vendors; however, in the following we consider CUDA
since it is currently more robust and efficient than OpenCL.

The basic unit of work that can be executed on a CUDA-capable GPU is
the CUDA thread. Threads can be arranged in one-, two-, or three-dimensional
blocks, that can be further assembled into a one-, two-, or three-dimensional grid.
Each thread has unique coordinates describing its position in a block or grid. The
CUDA paradigm favors decomposition of a problem into very small tasks that
are assigned to threads (fine-grained parallelism). The CUDA runtime schedules
threads to cores for execution; the hardware supports multitasking with almost
no overhead, so that the number of threads can (and usually does) exceed the
number of cores.

Implementation of the BML model with CUDA is quite simple, and con-
sists of transforming the horizontal_step and vertical_step functions to
CUDA kernels, i.e., blocks of code that can be executed by a thread. CUDA
kernels are designated with the __global__ specifier. Using two-dimensional
blocks of threads it is possible to assign one thread to each cell of the automa-
ton; this requires launching N × N threads to handle the whole domain. The
horizontal_step function becomes a CUDA kernel as follows:

__global__

void horizontal_step(cell_t *cur , cell_t *next , int N) {

const int i = 1 + threadIdx.y + blockIdx.y * blockDim.y;

const int j = 1 + threadIdx.x + blockIdx.x * blockDim.x;

if (i < N+1 && j < N+1) { /* update cell (i,j) */ }

}
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CUDA cores have no direct access to system RAM; instead, they can only use
the GPU memory, called device RAM. Therefore, input data must be transferred
from system RAM to device RAM before the CUDA threads are activated. Once
computation on the GPU is completed, the output data is transferred back to
system RAM. The parameters cur and next above point to device RAM.

Table 1. Hardware used for the experimental evaluation

Machine A Machine B

CPU Intel Xeon E3-1220 Intel Xeon E5-2603

Max clock rate 3.50 GHz 1.70 GHz

Cores 4 12

HyperThreading No No

RAM 16 GB 64 GB

L2 Cache 256 KB 256 KB

L3 Cache 8192 KB 15360 KB

GPU Quadro K620 GeForce GTX 1070

Max clock rate 1.12 GHz 1.80 GHz

CUDA cores 384 1920

Device RAM 1993 MB 8114 MB

7 Performance Evaluation

In this section we compare the following implementations of the BML
model described so far: the scalar version without ghost cells from Sect. 3
(serial); the scalar version with ghost cells (Serial+halo); the OpenMP
version from Sect. 4 (OpenMP); the SIMD version from Sect. 5 (SIMD);
a combined OpenMP+SIMD version, where cells are updated using SIMD
instructions and the outer loops are parallelized with OpenMP directives
(OpenMP+SIMD); and finally, the CUDA version from Sect. 6 (CUDA).
In the cases where OpenMP is used, we make use of all processor cores available
in the machine.

All implementations have been realized under Ubuntu Linux version 16.04.4
using GCC 5.4.0 with the flags -O3 -march=native to enable various optimiza-
tions; the CUDA version has been compiled with the proprietary nvcc compiler
from the CUDA Toolkit version 9.1. We run the programs on two multi-core
machines equipped with CUDA capable GPUs, whose specifications are shown
in Table 1. Machine A has a fast, four-core processor but includes a low-end GPU.
Machine B has a more powerful GPU and a processor with twelve cores; however,
each core runs at a lower clock rate than those on machine A.
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Machine A Machine B

N 1024 2048 4096 1024 2048 4096

Serial 15.446 61.957 249.026 31.554 126.298 508.046
Serial+halo 9.091 36.545 148.266 18.725 75.046 304.818
OpenMP 4.080 16.256 65.366 2.988 12.184 44.763
SIMD 0.294 1.021 5.252 0.524 2.044 9.652
OpenMP+SIMD 0.090 0.339 4.730 0.228 1.079 2.292
CUDA 0.351 1.482 5.970 0.052 0.202 0.768

Fig. 3. Mean execution time of BML model implementations (ρ = 0.3, 1024 steps)

The BML model has been simulated with a vehicle density ρ = 0.3 on a
domain of size N × N , N = 1024, 2048, 4096 for 1024 steps. Figure 3 shows
the execution time of each implementation, computed as the average of five
executions. Note the logarithmic scale of the vertical axis, that is necessary
since the execution times vary more than two orders of magnitude.

The use of ghost cells provides a significant reduction of the execution time
(about 40%) compared to the use of the modulo operator. The OpenMP version
using all available processor cores provides an additional speedup of about 2×
for machine A and about 6× for machine B (recall that machine B has more
cores). These speedups come very cheaply: the OpenMP version differs from the
scalar implementation with ghost cells by a couple of #pragma omp parallel
for directives that have been added to the functions computing the horizontal
and vertical steps.

The SIMD implementation provides perhaps the most surprising results,
especially on machine A. A single CPU core delivers more computing power than
the mid-range GPU installed on the machine; by combining OpenMP and SIMD
instructions it is possible to further reduce the execution time on the CPU.
The OpenMP+SIMD version is more than four times faster than the GPU for
N = 1024, 2048; however, the gap closes for the larger domain size N = 4096.
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Machine B has a slower CPU and a better GPU, so the GPU version is four to
five times faster than the OpenMP+SIMD version.

8 Conclusions

In this paper we have analyzed the impact of several implementations of the BML
traffic model on modern CPUs and GPUs. Starting with a scalar version, we have
applied the ghost cells pattern to reduced the overhead caused by the access to
the neighbors of each cell. A parallel version has then been derived by applying
OpenMP directives to the serial implementation, to take advantage of multicore
processors. More effort is required to restructure the code to take advantage
of SIMD instructions; the payoff is however surprising: the SIMD version running
on a single CPU core proved to be faster than a GPU implementation running
on a mid-range graphic card.

The results suggest that traffic models can greatly benefit from accurately
tuned CPU implementations, especially considering that a fast CPU can execute
this type of workload faster than an average GPU. However, the most useful
optimization, namely, the use of SIMD instructions, requires technical knowledge
that the average user is unlikely to possess. It is therefore advised that traffic
simulators and other CA modeling tools make these features available to the
scientific community.

We are extending the work described in this paper by considering more
complex and realistic traffic models based on CA. We expect that the findings
reported above will still apply to a certain extent to any discrete CA.
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Abstract. Organizational models and holonic multiagent systems are
growing as a powerful tool for modeling and developing large-scale com-
plex system. The main issue in deploying holonic multiagent systems is
the building of the holonic model called holarchy. This paper presents a
novel top down approach based on graph theory in order to build recur-
sively the initial holarchy of road traffic. Moreover, multilevel indicators
based on standard deviation is proposed to evaluate the consistency of
the holonification process.

Keywords: Graph theory · Holonic multiagent systems
Road traffic · Multilevel model

1 Introduction

In the last decades, there has been several research on agent organization in mul-
tiagent System (MAS) field. Organizational approach could improve the over-
all performance and effectiveness of multiagent systems and allows to model
successfully complex systems [9] by defining several abstractions levels of sys-
tem. Road traffic is a complex system because interactions between vehicles are
non-linear, the collective behavior of vehicles is non-trivial and traffic exhibits
hierarchical self-organization behavior under selective constraints. Modeling and
simulation of traffic is one of the effective solution in order to understand the
relationship between level exhibited by traffic and to manage and improve traffic
flow. Three main approaches are presented to model road traffic in literature [12]:
microscopic, intermediate (mesoscopic and hybrid or multilevel) and macroscopic
approach. Macroscopic approach is unable to manage destination of drivers and
generally is applied on highway while microscopic level requires a high computa-
tional cost and generally is applied on small urban area scale with a high degree
of accuracy. Both of macroscopic and microscopic models are not suitable to
deal with large scale traffic, particularly in developing countries, e.g. Cameroon
where there is few clusters to run efficiently microscopic model or there is none
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highway to apply macroscopic models. To model and simulate large scale traffic
in these countries, we argue that an intermediate approach like mesoscopic or
multilevel is needed. Multilevel or hybrid models [14,16] integrate different lev-
els of detail in the same model (micro-meso, meso-macro, micro-macro) with the
advantages of the models integrated. This motivation leads the paper to focus
on multilevel modeling of large scale road traffic.

The principle generally applied in the creating of a multilevel model for traf-
fic is to divide the road network into several parts. Each part is associated to an
abstraction level. The goal of hybridization is therefore to deals with the tran-
sition between the different abstraction levels at the border [3]. Consequently,
most of the existing hybrid models are static and define a priori the different
abstraction levels [18]. However, to be able to observe congestion formation or to
find the exact location of a jam in a macro section, a dynamic hybrid modeling
approach is needed [2]. There are a very few works dedicated to the dynamic
multilevel of traffic flow [2]. The paper takes a step towards a dynamic multilevel
agent-based model by using holonic multiagent systems (HMAS).

HMAS have been studied on various large-scale applications successfully.
Holonic organizations are among the successful organizational models that have
been introduced in MAS [10]. HMAS allows to dynamically switch between lev-
els of detail according to the simulation’s objectives or available computational
resources [9]. HMAS is a recursive structure of holons. A holon is a natural or
artificial structure that is stable and coherent and that consists of several holons
as sub-structures. In the context of MAS, a holon is assimilated to an agent that
could be composed by other agents.

In general, the life-cycle of HMAS consists of two primary stages: building
the initial holarchy and controlling its structure against internal and external
stimuli during its lifetime [7]. The initial holarchy represents the system struc-
ture in term of composition at time t = 0. While, the control structure of the
system against internal and external stimuli represents the life of system struc-
ture at time t > 0. The contribution of this paper is on building the initial
holarchy of a large-scale road traffic with a descending approach using a graph
for supporting the decomposition process. To this end, our model considers the
road traffic as a recursive system and the recursive decomposition of traffic is
presented within this paper.

The paper presents a holonification method based on graph theory. Graph
theory is used to model and solve various problems [1] and contains many well
established algorithms like graph bisection. In the proposed method, vehicles
are represented by the graph’s vertices and the follower → leader relationship
by the graph’s edges. The method is a top-down recursive bisection of graph in
order to build the initial holarchy of road traffic. The validation of our multilevel
approach is based on a standard deviation indicators.

The rest of this paper is organized as follows: in Sect. 2, a brief description
of several HMAS and related works are presented. Section 3 explains our graph-
based holonification road traffic algorithm in detail. Experimentation and results
is presented in Sect. 4. Finally, Sect. 5 gives a conclusion and future works.
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2 Holonic Multiagent Systems and Related Works

Holonic modeling is used to model the intrinsic hierarchical nature of the sys-
tems. A holon, according to Koestler [13] is defined as simultaneously a whole
and a part of the whole, thus it can be made up of other holons, strictly meeting
three conditions: being stable, having a capacity for autonomy and being able
to cooperate. One of the most interesting properties of holonic systems, which
is the essence of their complexity, is that a holon can be both an entity and an
organization. The holons are therefore stable and self-similar or recursive struc-
tures. The hierarchic structure of HMAS allows to simulate a system at several
abstraction levels according to the simulation objectives or available computa-
tional resources. A holarchy, i.e. a hierarchy of holons is shown on Fig. 1. HMAS
can allows to switch into different level of holarchy dynamically [9]. To design
HMAS, the generic Capacity-Role-Interaction-Organization (CRIO) metamodel
[4,11] could be used.

As stated before, the life-cycle of HMAS consists of two stages: building the
initial holarchy (holonification) and controlling the system structure over time.
The initial holarchy of HMAS depicts the overall composition of all holons at
each level at time t = 0. The control structure against internal and external
stimuli depicts the self-organization of HMAS over time.

Fig. 1. A nested holarchy of four holarchical level [9]

Among the works on building the initial holarchy of HMAS, Esmaeili et al.
[6] propose a method, inspired from social networks, to build the initial holonic
structure of multiagent network with a bottom-up approach. The prerequisite
of their method is an un-weighted undirected multiagent network model. They
use urban traffic signal control to evaluate the quality of the holons constructed.
The main limit of this work is they assume that importance of their agents is
based on eigenvector centrality. In fact, this assumption is restrictive and not
compatible with several complex system.

Abdoos et al. [1] propose a method to construct the initial holarchy for a
multiagent urban area network based on graph theory. In their method, agents
are modeled using an undirected and weighted graph in which the weights denote
the degrees of the dependencies between the agents. Authors propose a quality
measure to evaluate the consistency of their method. The main drawback of this



516 I. H. Tchappi et al.

algorithm is the rebuilding of the graph after each choice of best candidates to
form or to join a holon. Another shortcoming is that they build only the first
level of holarchy. Our approach can build more than one hierarchical levels.

In order to solve the above issues, we consider the graph partitioning in
graph theory [5]. Let a graph G a pair of sets G = (V,E). The set V is the
set of vertices and the set E contains the edges of the graph. The partitioning
problem is defined as follows: given a graph G = (V,E), partition V into subsets
such that: (i) no subset is empty, (ii) the union of subsets is equal to V , (iii)
all the subsets are disjoint two by two. Bisection is the partition of graph in
two subsets. In application, in general, bisection of graph is recursive that’s
means first partition the graph in two partitions, then partition each of these
two partitions in two sub-partitions and so on. For some important classes of
graphs, recursive bisection works quite well and if the goal does not insist on
partitions of exactly equal size, it is possible to use recursive bisection to find
good partitions [5]. Holonification is therefore very similar to partitioning in
graph theory [1].

3 Graph-Based Model for the Holonification of Road
Traffic

In highway or urban areas, vehicles follow one another on a line and tend to
regroup in convoys when approaching a heavy vehicle or when the road becomes
winding [19]. These groups of spontaneous vehicles are called convoy in this
paper. Whenever a spontaneous grouping of entities is possible, organizational
and holonic approaches are interesting [18]. The partitioning approaches are
well adapted to road traffic because the dynamics of road traffic triggers the
formation of “natural” clusters at the intersections, or convoys on the highways
[19].

Vèque et al. [19] assert that “the geographical position of vehicles is one of
the important criteria in clustering ” In the same paper, they also assert that:
“since vehicles move in a space constrained by routes, other criteria are also
significant such as speed and direction”. According to these assertions, in our
model the criterion used to model vehicles are speed, position, length of vehicle
and direction (lane).

3.1 Organizational Model of Road Traffic

One approach concerning the design of a multilevel agent based model is to
observe, detect and possibly reify (or more precisely agentify) phenomena emerg-
ing from agents interactions [15]. According to this assertion, in order to build our
multilevel road traffic model, we can observe the emergent phenomena in traffic
and reify it. In traffic simulation, congestion—the queue of tighter vehicles—is
an emergent phenomenon due to the interaction between the vehicles. In this
paper, this queue is called “convoy”. The paper uses the CRIO metamodel [4,11]
and Fig. 2 presents the organizational model of road traffic. There a three orga-
nizations:
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(i) Free Driver: In this organization, the role Free is defined. It is played by
an agent, which is moving with its desired speed.

(ii) Car Following: In this organization, the role Leader and Follower are
defined. The Leader is the vehicle located just in front of the Follower.

(iii) Convoy: In this organization, the roles Head and Member are defined. The
agent which plays Head is the vehicle on the top of convoy; the others agents
vehicles which belongs to a convoy play Member. The Head role is the repre-
sentative of the convoy and imposes his speed to all the convoy.

Fig. 2. Road traffic organizational model according to the ASPECS [4] methodol-
ogy’s formalism. Each organization is representing by a box with the stereotype
“organization”. Each role is defined within an organization and represented by a
box with the “role” stereotype. Links between roles boxes represent the interaction
between the agents which are playing these roles.

An organization is made up of sub-organizations, so we can recursively define
road traffic organization as follows:

Organization ::= 〈Convoys, Free Drivers〉 (1)
Convoys ::= {Convoy} (2)
Convoy ::= 〈Head,Members〉 (3)

Members ::= {Car Following} (4)
Car Following ::= 〈Leader, Follower〉 (5)
Free Drivers ::= {Free} (6)

Free ::= 〈Agent〉 (7)
Leader ::= 〈Agent〉 (8)

Follower ::= 〈Agent〉 (9)
Agent ::= 〈V ehicle,Driver〉 (10)

3.2 Holonic Model of Road Traffic

In order to represent car following interaction among vehicles, concepts from
graph theory is useful to model relationships and interactions in complex sys-
tems. In this paper, a directed and weighted graph is used in which, the agents
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(couple vehicle–driver) are represented by the vertices. A directed edge repre-
sents the car following interaction among two vehicles (a follower and a leader).
Road traffic could be represented by a graph as in Eq. 11.

G = ((V,E), WE ,WV ), WE : E → R+, WV : V → R
4
+ (11)

V represents the set of vertices (vehicles); E represents the set of edges (car
following interactions among follower and leader); WE is the weight of edges
(inter-distances between leader and follower); and WV is the weight of vertices
(features of vehicles).
∀v ∈ WV , WV (v) = (x, y, l, L), x is position, y is speed, l is length and L is
lane where agent vehicle moves.
∀e = (v1, v2) ∈ E, v2 is the leader of v1 or v1 is the follower of v2. The weight of
each edge is inter-distance between vehicles and is given by Eq. 12.

∀e = (v1, v2) ∈ E,WE(e) = x(v2) − x(v1) − l(v2) (12)

Numerous approaches exist depending on the problem to partition a graph.
If the geometric layout of the graph is known, an appropriate recursive bisection
could be used [5]. In our case, we have the geometric information about the road
traffic graph, consequently, application of recursive bisection in order to build
the top-down holarchy of traffic is possible. Figures 3 and 4 present an example of
geometric layout of traffic with two lanes and a few vehicles and his corresponding
graph according to our method. In this example, G = (V,E) is defined such
that V = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12) and E = ((v1, v2), (v2, v3),
(v3, v4), (v4, v5), (v5, v6), (v6, v7), (v8, v9), (v9, v10), (v10, v11), (v11, v12)).

Fig. 3. Example of a traffic situation.
It is a road composed by two lanes. Car
are in yellow color and truck in blue
color (Color figure online)

Fig. 4. Traffic graph that corresponds
to the traffic situation in Fig. 3.

The road traffic graph have the following properties: (i) simple directed graph
(oriented and without loops or multiple edges), (ii) planar graph (can draw in a
plane without crossing two edges), (iii) acyclic graph (graph without cycle).

Let be G1 = (V1, E1), G2 = (V2, E2) two partitions of G. A cut is a partition
of the vertices of a graph into two disjoint subsets. A cut [5] of G is defined by
Eq. 13.

cut(G1, G2) =
∑

v1∈V1,v2∈V2

WE(v1, v2) (13)
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3.3 Holon Formation

The holonic model partitions and hierarchizes agents into group or holons in
such that the most related group of agents belong to the same holon. The
proposed holonification algorithm to extract the holarchy for a given graph
G = 〈(V,E),WV ,WE〉, is given by Algorithm 1. In this algorithm, vehicles
are vertices and interactions follower → leader between vehicles are edges. Algo-
rithm 1 begins with a graph of the set of agents’ vehicles with their own internal
state described by four variables characteristics: speed, length, position and lane.
The algorithm starts at level 0 with an empty set of holons and build the upper
level (the holarchy). Decomposition of the graph is based on bisection on the
edge with a maximum weight (line 7) if the graph is connected (road traffic on a
single lane). Nevertheless, if the graph is not connected (road traffic on several
lanes), the recursive bisection firstly makes a connected graph (line 9) in order
to build single lanes. During the recursive bisection of the graph, new holons are
created at each abstraction level. We have assumed that holons can’t overlap,
i.e. at each abstraction level, holons are disjoints.

Algorithm 1. Extract all the holarchy
1: procedure Holarchy(G = (V, E), level = 0)

2: Create an empty holon H at level level

3: Hlevel ← V

4: if |V | ≥ 2 then

5: for each e ∈ E, compute WE(e) as in Eq. 12

6: if G is a connected graph then

7: G1, G2 = maxCut(G) � Not traditionally max cut; but on the maximum edge weight

8: else

9: G1, G2 = minCut(G) � Not traditionally min cut; but on the minimum edge weight

10: end if

11: Holarchy(G1 = (V1, E1), level + 1)

12: Holarchy(G2 = (V2, E2), level + 1)

13: else

14: Holarchy(G = (V, E), level + 1) if level level + 1 exist � Stopping condition

15: end if

16: end procedure

3.4 Multilevel Indicators

The holonic model reduces the complexity of the system’s model. Holons with
complex objectives are decomposed into sub-holons such that holon behavior
approximates the behavior of his sub-holons. To this end, the behavior of a holon
is obtained by finding the mean of the behavior (mean of speed, unweighted
barycenter of position) of his sub-holons.

Multilevel indicators helps to ensure the consistency of the decomposition
process [9]. In other words, multilevel indicators is a tool for validating that an
aggregated behavior of a given holon is an acceptable approximation of his holons
members. In order to ensure the consistency of this approximation, standard
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deviation σ is used. Standard deviation is a statistical concept used to measure
the dispersion of a data-set. It measures the dispersion of a set of vehicles inter-
distance as defined by Eq. (14), and the dispersion of a set of vehicles speed, as
described by Eq. (15).

σWE
=

√
1

|E|
∑

e∈E

(WE(e) − WE(e))2 where WE =
1

|E|
∑

e∈E

WE(e) (14)

σy(V ) =

√
1

|V |
∑

v∈V

(y(v) − y(V ))2 where y(V ) =
1

|V |
∑

v∈V

y(v) (15)

4 Case Study and Experimental Results

In this section, the application of our model on a case study is presented and
discussed.

4.1 Description of the Case Study

Generally, in traffic simulation, vehicles are generated and distributed on a road
network according to an Origin/Destination matrix. Let Fig. 5 represents vehicles
on a lane at time t = 0 of the system life. The initial characteristics of vehicles
are recorded in Table 1. For case study simplification, all vehicles are on the same
lane, and the length of the vehicles are not considered, i.e. vehicles are points.
Application of our recursive bisection algorithm gives the holarchy shown in
Fig. 6.

Fig. 5. A view of the road traffic state for the case study.

Table 1. Pair (position, velocity) of each vehicle in the case study

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

X (position) 2 7 8 9 10 12 17 21 22 23 24

Y (velocity) 45.0 20.1 20.5 20.3 19.9 20.8 40.0 31.1 31.5 31.2 31.7

Holons composition are given by Table 2. As the standard deviation of a
group consisting of a single member is zero, we did not insert these values in
order to not saturate Table 2.
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Fig. 6. Initial holarchy of vehicles built with the recursive bisection algorithm on the
case study.

Table 2. Holons composition in holarchy presented in Fig. 6

Level Holons σWE
σy(V )

0 h(0, 1) = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11} σ
h(0,1)
x = 1.66 σ

h(0,1)
y = 8.38

1 h(1, 1) = {v1};
h(1, 2) = {v2, v3, v4, v5, v6, v7, v8, v9, v10, v11}

σ
h(1,2)
x = 1.44 σ

h(1,2)
y = 6.84

2 h(2, 1) = {v1}; h(2, 2) = {v2, v3, v4, v5, v6};
h(2, 3) = {v7, v8, v9, v10, v11}

σ
h(2,2)
x = 0.43

σ
h(2,3)
x = 1.29

σ
h(2,2)
y = 0.31

σ
h(2,3)
y = 3.45

3 h(3, 1) = {v1}; h(3, 2) = {v2, v3, v4, v5};
h(3, 3) = {v6}; h(3, 4) = {v7};
h(3, 5) = {v8, v9, v10, v11}

σ
h(3,2)
x = 0

σ
h(3,5)
x = 0

σ
h(3,2)
y = 0.22

σ
h(3,5)
y = 0.23

4 h(4, 1) = {v1}; h(4, 2) = {v2};
h(4, 3) = {v3, v4, v5}; h(4, 4) = {v6};
h(4, 5) = {v7}; h(4, 6) = {v8};
h(4, 7) = {v9, v10, v11}

σ
h(4,3)
x = 0

σ
h(4,7)
x = 0

σ
h(4,3)
y = 0.24

σ
h(4,7)
y = 0.20

5 h(5, 1) = {v1}; h(5, 2) = {v2}; h(5, 3) = {v3};
h(5, 4) = {v4, v5}; h(5, 5) = {v6}; h(5, 6) = {v7};
h(5, 7) = {v8}; h(5, 8) = {v9}; h(5, 9) = {v10, v11}

σ
h(5,4)
x = 0

σ
h(5,9)
x = 0

σ
h(5,4)
y = 0.20

σ
h(5,9)
y = 0.25

6 h(6, 1) = {v1}; h(6, 2) = {v2}; h(6, 3) = {v3};
h(6, 4) = {v4}; h(6, 5) = {v5}; h(6, 6) = {v6};
h(6, 7) = {v7}; h(6, 8) = {v8}; h(6, 9) = {v9};
h(6, 10) = {v10}; h(6, 11) = {v11}
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4.2 Discussion

Several abstraction levels are considered for the vehicles. The more precise level
corresponds to the microscopic level (level 6 in the case study): a vehicle is asso-
ciated with a holon. At the upper level called macroscopic (level 0 of case study),
the behavior of the super-holon approximates a group of vehicles. The interest of
this work (the holarchy) is to switch between abstraction levels according to the
simulation’s objectives (visualization, etc.) or available computational resources.
For example, if computational resources is available, the system can be modeled
at the most precise level (microscopic). Nevertheless, if computational resources
is insufficient, system can be modeled at a higher level of abstraction. The main
research question is therefore to ensure the consistency of the upper level mod-
eling. Standard deviation helps us to ensure this consistency. For example in our
example, at level 0, the value of standard deviation of inter-distance is high: that
means the gaps between vehicles is very dispersed, i.e. vehicles are not homo-
geneous according to inter-distance point of view. Moreover, the value of the
standard deviation of speed vehicles is high: that means the values of vehicles
speeds are very dispersed, i.e. the vehicles are therefore not homogeneous accord-
ing to speed point of view. In this case, we conclude that a holon h(0, 1) seems
not to be a good approximation of its sub-holons. Nevertheless, at the level 3 of
the holarchy in Fig. 6, the values of the standard deviation tend to zero: vehi-
cles have sensibly the same speed, and the gap between them is approximately
equal. These groups of vehicles are called convoy. We argue that if computa-
tional resources is not available, this system can be modeled with an acceptable
approximation at level 3, level 4 etc.

Convoy is a group of “similar” vehicles, i.e., in a convoy, vehicles seem to
have approximately the same speed and approximately the same inter-distance.
Formally, convoy can be define as simple directed, planar, connected and acyclic
weighted sub-graph on vertices and edges as in Eq. 16. In contrary with road
traffic graph which is not necessarily connected convoy is always a connected
graph.

G′ ⊆ G such that G′ = ((V ′, E′), WE′ ,WV ′), σWE′ ≤ ε1, σy(V ′) ≤ ε2
(16)

ε1 → 0 is the maximum standard deviation of inter-distance. ε2 → 0 is the
maximum standard deviation of speed. These values can be studied through
observations of real convoys. An agent which plays the role Head of convoy is a
vertex v ∈ V such that output degree equals zero.

Since traffic is open and highly dynamic, our model can be apply in situation
when traffic is low dynamic like peak hour, congested traffic, platoon, convoy in
order to deal with the dynamicity of lane changing strategy.

4.3 Experimental Results

In order to validate the relevance of our top down decomposition algorithm,
an evaluation of the algorithm’s execution cost is realized. SARL [17] agent pro-
gramming language and the Janus agent framework [8] are used for implementing
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Fig. 7. Evaluation of the run-time performance of the holonification algorithm.

our algorithm. SARL is a general-purpose agent-oriented programming language
which focus on holonic modeling and simulation. Tests were performed on a
desktop computer, Pentium III, 800 MHz, 512 MB of RAM. Figure 7 presents
the performances of our algorithm’s execution with three traffic conditions. The
corresponding linear regression line, which approximates the average traffic dis-
tribution has the following equation: y = 0.057747x + 0.809038. We assert that
the execution of our algorithm has a good performance because the slope of the
linear regression tends to zero.

It should be noted that the internal states of the agents are generated for
running the model. They should be replaced by internal states issued from field
interviews.

5 Conclusion and Future Works

Holonic multiagent systems are an effective tool to model traffic [9]. The first
issue concerning holonic systems is the way how holarchy is structured (presen-
tation of the whole containing/contained element of system) at time t = 0. This
papers presents a top-down decomposition approach of road traffic system based
on HMAS and graph theory. Multilevel indicators are proposed, based on the
standard deviation, in order to evaluate the consistency of the created holons.

Road traffic is a open system and need to manage the holarchy that is builded
over time. The main research questions to this end are how to manage a new
holon in system? How can a sub-holon can be leave his super-holon if it’s not
meets the criteria of the group any more? How a holon can join a new group
of holons? Future works include dynamic self-organization of the holons over
time, and proposition of others multilevel indicators that will take into account
the spatio-temporal properties of the system and the driver behaviors. Since the
paper discuss only on the numerical results under virtual situation, a future work
include also numerical results on real situation in one developing country.
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19. Vèque, V., Kaisser, F., Johnen, C., Busson, A.: CONVOY: a new cluster-based
routing protocol for vehicular networks. In: Vehicular Networks Models and Algo-
rithms. ISTE Publishing Knowledge/John Wiley and Sons Inc. (2013)



Author Index

Abdennour, Iliasse 57
Adak, Sumit 289
Adamatzky, Andrew 80
Almeida, I. M. 441
Álvarez, Rebeca 68
Arias, Iria 68

Baetens, Jan M. 115
Bagnoli, Franco 243, 255
Bandini, Stefania 68, 102, 460, 481
Bazior, Grzegorz 451
Bernoussi, Abdes Samed 57

Cacau, D. C. 441
Capuni, Ilir 379
Carrieri, Antonio 102
Casal, Mercedes 68
Chaudhuri, Parimal Pal 3
Chraibi, Mohcine 185
Crociani, Luca 102, 460, 481
Cruz, Oscar 68

Daly, Aisling J. 115
Damiani, Chiara 16
Das, Sukanta 289
De Baets, Bernard 115
Dennunzio, Alberto 298
Depraetere, Tim 115
Désérable, Dominique 137
Di Gregorio, Salvatore 307
Dorigatti, Valentina 298
Dourvas, Nikolaos 80
Dridi, Sara 243
Dyrda, Błażej 196
Dzwinel, Witold 42

El Yacoubi, Samira 243

Fatès, Nazim 385
Feliciani, Claudio 470
Fordon, Dawid 146
Formenti, Enrico 298
Fujita, Gen 274

Gadouleau, Maximilien 396
Galland, Stéphane 513
García-Duro, Juan 68
Gąsior, Jakub 125
Georgoudas, I. G. 492
Ghosh, Soumyabrata 3
Goles, Eric 406
Gorrini, Andrea 481
Graudenzi, Alex 16
Gwizdałła, Tomasz M. 146, 196

Hodgkinson, Arran 30
Hoffmann, Rolf 125, 137

Istrate, Gabriel 416

John, Anita 352
Jones, Jeff 80
Jose, Jimmy 352

Kamgang, Jean Claude 513
Kamikawa, Naoki 274
Kamla, Vivient Corneille 513
Karafyllidis, Ioannis G. 319
Kartalidis, N. 492
Kayama, Yoshihiko 328
Kirik, Ekaterina 207
Kocsis, Gergely 166
Koda, Yuka 328
Kutrib, Martin 340

Lakra, Rohit 352
Lawniczak, Anna T. 177
Leal-Toledo, R. C. P. 441
Leporati, Alberto 364

Madikas, Menelaos 80
Maeda, Masashi 274
Magalhães, G. V. P. 441
Maignan, Luidnel 264
Maldonado, Diego 406
Małecki, Krzysztof 218
Malyshev, Andrey 207



Manzoni, Luca 68, 298, 428
Mariot, Luca 68, 364, 428
Marzolla, Moreno 503
Maspero, Davide 16
Minch, Bartosz 42
Montealegre-Barba, Pedro 406
Mukherjee, Sukanya 289
Muñoz, Ana 68

Némethy, Attila 166
Nguyen, Tien Thao 264
Nishinari, Katsuhiro 470

Oliveira, Gina M. B. 154
Ollinger, Nicolas 406
Orzechowska, Julianna 146
Ouardouz, Mustapha 57

Pałka, Dariusz 451
Panuszewska, Marta 42
Pesqueira, Xosé Manoel 68
Popel, Egor 207
Porreca, Antonio E. 298

Quaghebeur, Ward 115

Rechtman, Raúl 243, 255
Reyes, Otilia 68
Richard, Adrien 396
Rummel, Johannes 230

Seredyński, Franciszek 125, 137
Shimura, Kenichiro 460, 470
Sirakoulis, Georgios Ch. 80, 319, 492
Stafiej, Janusz 92
Steffen, Bernhard 185
Stępień, Jan 92

Tchappi, Igor Haman 513
Tinoco, Claudiney R. 154
Toledo, E. M. 441
Tsompanas, Michail-Antisthenis 80

Umeo, Hiroshi 274

Varga, Imre 166
Vitova, Tatýana 207
Vizzari, Giuseppe 102, 460, 481

Wadowski, Igor 196
Wagner, Peter 230
Wąs, Jarosław 451
Wcisło, Rafał 42
Wójtowicz, Jakub 196
Worsch, Thomas 340

Yanagisawa, Daichi 470
Yazawa, Ikumi 328
Yu, Fei 177

528 Author Index


	Preface
	Organization
	Contents
	Biological Systems Modeling
	Cellular Automata Model for Proteomics and Its Application in Cancer Immunotherapy
	1 Background
	2 Design of Protein Modeling CA Machine (PCAM)
	2.1 Modeling Amino Acid Backbone
	2.2 Modeling Amino Acid Sidechain
	2.3 PCAM Evolution
	2.4 Feature Extraction

	3 Study of Monoclonal Antibodies (MAb) for Cancer Immunotherapy
	3.1 PCAM Model for Hot-Spot Detection on MAbs
	3.2 PCAM Model for Prediction of Mutational Effect on PD-L1-MAb Binding

	4 Conclusion
	References

	Modeling Spatio-Temporal Dynamics of Metabolic Networks with Cellular Automata and Constraint-Based Methods
	1 Introduction
	2 Methods
	2.1 Cellular-Automata Representation of Tissue Morphology
	2.2 Metabolic Networks Dynamics
	2.3 Simulation Settings

	3 Results
	3.1 Competition for Space in Homogenous Nutrients Environments
	3.2 [SC 3] Competition for Space in Heterogenous Nutrients Environments

	4 Discussion
	References

	A Novel Cellular Automata Modelling Framework for Micro-environmental Interaction and Co-invasion
	1 Introduction
	2 A Novel Modelling Framework
	2.1 On Cell-Cell Bonding and Associated Field Equations
	2.2 On Cell-ECM Bonding and Associated Field Equations
	2.3 Molecular Species on the Boundary — Chemotaxis
	2.4 Temporal Changes in Intracellular Properties

	3 Numerical Approach
	3.1 Movement of the Nucleus: A Simple Translation Method
	3.2 Numerical Approximations of Line Integrals

	4 Results and Conclusions
	References

	PAM: Discrete 3-D Model of Tumor Dynamics in the Presence of Anti-tumor Treatment
	1 Introduction
	2 Simplified 0D Cancer Model
	3 3D Tumor Model
	3.1 Particle Automata Model
	3.2 The Layout and Blood Vessel Network
	3.3 Viscosity of the Tissue
	3.4 Anti-cancer Treatment

	4 Results of Simulation
	5 Concluding Remarks
	References

	Simulation and Other Applications of CA
	Modeling of Electrical and Thermal Behaviors of Photovoltaic Panels Using Cellular Automata Approach
	1 Introduction
	2 Problem Statement
	3 Problem Approach
	3.1 CA Definition
	3.2 Description of the Proposed CA

	4 Experimental Test and Simulation Result
	5 Conclusion
	References

	Hidden Costs of Modelling Post-fire Plant Community Assembly Using Cellular Automata
	1 Introduction
	2 Background Data
	3 The Cellular Automaton Model
	4 Results and Discussion
	4.1 Proposal for Parameter Optimization

	5 Conclusions
	References

	Hardware Implementation of a Biomimicking Hybrid CA
	1 Introduction
	2 Description of the CA-Multiagent Model
	3 Hardware Implementation of the Proposed Model
	4 Simulation Results
	5 Conclusions
	References

	Potential Oscillations in Cellular Automaton Based Model for Passivation of Metal Surface
	1 Introduction
	2 Model
	2.1 Physicochemical Basis of the Model
	2.2 Specification of the Automaton
	2.3 Parallel Implementation

	3 Simulations, Results and Discussion
	3.1 Impact of Current and Adhesive Forces

	4 Conclusions
	References

	Motion Detection and Characterization in Videos with Cellular Automata
	1 Introduction
	2 Related Works
	3 The Introduced CA Approach
	3.1 From a Frame to a Sobel-Filtered Frame
	3.2 CA Initialization
	3.3 Frames Comparison
	3.4 Building a Bounding Box Around Salient Objects

	4 Experimental Results
	4.1 Analyzed Videos and Achieved Results
	4.2 Discussion of Experiments

	5 Future Works
	References

	Multi-Agent Systems
	Coexistence in Three-Species Cyclic Competition: Lattice-Based Versus Lattice-Free Individual-Based Models
	1 Background
	2 Model Description
	2.1 Model Versions

	3 In Silico Experiments
	4 Results and Discussion
	5 Conclusions
	References

	Towards Self-organizing Sensor Networks: Game-Theoretic -Learning Automata-Based Approach
	1 Introduction
	2 Sensor Networks and Coverage and Lifetime Problems
	3 Multi-agent Approach to WSN Lifetime Optimization
	4 Game-Theoretic Approach to WSN Lifetime Optimization
	4.1 Model 1: Leader Election Game
	4.2 Model 2 - Synchronized Local Leader Election Game

	5 Iterated Games of Learning Automata: Experimental Study
	6 Conclusion
	References

	Termination and Stability Levels in Evolved CA Agents for the Black–Pattern Task
	1 Introduction
	2 Termination and Stability Levels
	3 The Designed Multi-agent Cell Architecture
	4 Multi-agent Algorithms
	5 Conclusion
	References

	Size Effect in Cellular Automata Based Disease Spreading Model
	1 Introduction
	2 Model
	3 Results and Conclusions
	References

	Pheromone Interactions in a Cellular Automata-Based Model for Surveillance Robots
	1 Introduction
	2 Model
	3 Experiments
	4 Conclusion
	References

	Agent-Based Simulation of Information Spreading in VANET
	1 Introduction
	2 Underlying Map Topology of Simulations
	3 Motion of Vehicles
	4 Spreading of Information
	5 Results
	6 Summary
	References

	Pedestrian and Traffic Dynamics
	Analysis of Rates of Agents’ Decisions in Learning to Cross a Highway in Populations with Risk Takers and Risk Avoiders
	Abstract
	1 Introduction
	2 Model of Agents Learning to Cross a Highway
	3 Simulation Data and Rate Functions of Agents Decisions
	4 Simulation Results
	5 Conclusions and Future Work
	Acknowledgments
	References

	The Automatic Generation of an Efficient Floor Field for CA Simulations in Crowd Management
	1 Introduction
	2 General Properties of CA Models
	2.1 Introduction to the General Theory
	2.2 Movement Properties of CA
	2.3 Natural Structuring of the Space

	3 Guiding People Around Corners
	3.1 Getting the Required Number of Lanes
	3.2 Placing the Lanes
	3.3 Results
	3.4 Treating Variations in Time

	4 Conclusion and Outlook
	References

	Traffic on Small Grids and the Ramp Problem
	1 Introduction
	2 Model
	3 Results
	4 Conclusions
	References

	The Impact of Different Angle Paths on Discrete-Continuous Pedestrian Dynamics Model
	1 Introduction
	2 Description of the Model
	2.1 Space and Initial Conditions
	2.2 Preliminary Calculations
	2.3 Movement Equation
	2.4 Choosing Movement Direction
	2.5 Speed Calculation
	2.6 Model Parameters

	3 Case Studies
	3.1 Description of the Simulation Conditions
	3.2 Simulation Results

	4 Conclusion
	References

	Two-Way Road Cellular Automaton Model with Loading/Unloading Bays for Traffic Flow Simulation
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 The System Developed for the Simulation
	5 Experimental Results
	6 Conclusion
	References

	A Microscopic CA Model of Traffic Flow?
	1 Introduction
	1.1 Notation, CA-Rules, Data-Set

	2 From Scratch
	2.1 Acceleration Noise
	2.2 Time Step Size t
	2.3 The Dynamics

	3 Phenomenology
	3.1 Microscopic
	3.2 Macroscopic

	4 Execution Speed
	5 Conclusions
	References

	Synchronization and Control
	Regional Control of Probabilistic Cellular Automata
	1 Introduction
	2 Definitions
	3 Probabilistic Cellular Automata
	4 The BBR Model
	4.1 Damage Spreading

	5 Reachability Problem
	6 Conclusions and Future Perspectives
	References

	Regional Synchronization of a Probabilistic Cellular Automaton
	1 Introduction
	2 The Probabilistic Cellular Automaton
	3 L-synchronization
	4 L-synchronization
	5 Conclusions
	References

	Firsts Steps in Cellular Fields Optimization: A FSSP Case Study
	1 Introduction
	2 Theoretical Grounds and Backgrounds
	2.1 Relation with Deterministic Finite Automata Minimization
	2.2 Cellular Automata Minimization and the FSSP Particular Case

	3 Optimizations of a Field - Based FSSP Solution
	3.1 The Cellular Automaton F
	3.2 Brute Force Exploration of All Reductions
	3.3 A Brief Analysis of the Reductions

	4 Comparison of F with Noguchi's Solution
	4.1 The Cellular Automaton N
	4.2 Generalized Reductions of F into N
	4.3 A Brief Analysis of the Result

	5 Conclusion
	References

	Implementations of FSSP Algorithms on Fault-Tolerant Cellular Arrays
	1 Introduction
	2 Fault-Tolerant FSSP Algorithm and Its Implementation on 1D Arrays
	2.1 FSSP on Cellular Automata with Defective Cells
	2.2 Fault-Tolerant FSSP Algorithm and Its Implementation on 1D Arrays

	3 Fault-Tolerant FSSP Algorithm and Its Implementation on 2D Arrays
	4 Conclusions
	References

	Theory and Cryptography
	Do There Exist Non-linear Maximal Length Cellular Automata? A Study
	1 Introduction
	2 Basics
	2.1 Definitions
	2.2 Synthesis of Reversible CAs

	3 Cellular Automata with Large Cycles
	4 Experimental Results
	References

	Polynomial Equations over Finite, Discrete-Time Dynamical Systems
	1 Introduction
	2 The Semiring of Dynamical Systems
	3 Polynomial Equations
	4 The Semiring of Cellular Automata
	5 Conclusions
	References

	The Representation Role for Basic Operations Embodied in Cellular Automata: A Suitability Example for Addition in Redundant Numeral Systems vs Conventional Ones
	1 Introduction
	2 CA for Addition in the Conventional Binary Representation
	2.1 CA ADD Definition and Properties

	3 CA for Addition in a Redundant Binary Representation
	3.1 The Redundant Binary Representation RBN for N
	3.2 CA ADDr Definition and Properties

	4 Conclusions and Comments
	References

	Quantum Walks on Quantum Cellular Automata Lattices: Towards a New Model for Quantum Computation
	1 Introduction
	2 Unitary Evolution of Quantum Walks on QCA Lattices
	3 Simulation of Quantum Walks on QCA Lattices
	4 Conclusions
	References

	Fractal Arrangement for 2D Cellular Automata and Its Implementation for Outer-Totalistic Rules
	1 Introduction
	2 Extension of CA Using REN
	2.1 Recursive Estimation of Neighbors

	3 Extension of 2D Outer-Totalistic Rules
	4 2D Fractal CA
	4.1 2D Fractal Arrangement
	4.2 2D Fractal Outer-Totalistic CA

	5 Conclusions and Discussion
	References

	Self-verifying Cellular Automata
	1 Introduction
	2 Preliminaries
	3 Characterization and Speed-Up
	4 Self-verifying One-Way Cellular Automata
	4.1 Computational Capacity
	4.2 Closure Properties
	4.3 Decidability Questions

	References

	CARPenter: A Cellular Automata Based Resilient Pentavalent Stream Cipher
	1 Introduction
	2 Preliminaries
	2.1 Cellular Automata
	2.2 Cryptographic Properties of Boolean Functions

	3  Literature Survey on CA Based Stream Ciphers
	4 Five-Neighbourhood CA
	4.1 Five Neighborhood Linear Rules
	4.2 Five Neighborhood Nonlinear Rule

	5 Description of CARPenter - Cellular Automata Based Resilient Pentavalent Stream Cipher
	5.1 Nonlinear Block
	5.2 Linear Block
	5.3 Nonlinear Mixing Block
	5.4 Working of CARPenter

	6 Security Analysis
	6.1 NIST Statistical Test
	6.2 Resiliency
	6.3 Algebraic Attack
	6.4 Linear Attack
	6.5 Meier-Staffelbach Attack
	6.6 Time/Memory/Data Tradeoff Attack
	6.7 Fault Attack

	7 Conclusion
	References

	Inversion of Mutually Orthogonal Cellular Automata
	1 Introduction
	2 Preliminary Definitions
	2.1 Cellular Automata
	2.2 Orthogonal Latin Squares and Secret Sharing Schemes
	2.3 Construction of OLS by CA

	3 Computing Preimages of OCA
	4 Application to Secret Sharing Schemes
	5 Discussion, Conclusions and Directions for Future Work
	References

	Asynchronous Cellular Automata
	Eroders and Proliferation: Repairing that Goes Wrong
	1 Introduction
	2 The Model
	3 Fault-Tolerance Step-by-Step
	4 Uncontrolled Programatically Guided Proliferation of Cells
	5 Conclusions and Open Questions
	References

	A Pedagogical Example: A Family of Stochastic Cellular Automata that Plays Alesia
	1 Introduction
	2 Definitions
	2.1 Formalisation of the Game
	2.2 Stochastic Cellular Automata

	3 Cellular Automata Players
	3.1 Uniform Distribution Players
	3.2 Uniform Distribution Players with Saturation
	3.3 Another Simple Player: The Binomial Player

	4 Taking into Account the Situation: The q2h2 Player
	References

	On Fixable Families of Boolean Networks
	1 Introduction
	2 Notation
	3 Asynchronous-Acyclic Networks
	4 Monotone Networks
	5 Perspectives
	References

	Fast-Parallel Algorithms for Freezing Totalistic Asynchronous Cellular Automata
	1 Introduction
	2 Preliminaries
	2.1 Some Graph Topics
	2.2 Monotonicity

	3 The Infiltration Technique
	4 Monotone Rules
	5 Concluding Remarks and Perspectives
	References

	Stochastic Stability in Schelling's Segregation Model with Markovian Asynchronous Update
	1 Introduction
	2 Preliminaries
	3 The Model
	4 Main Result and Its Interpretation
	5 Outlook and Further Work
	References

	Cellular Automata Pseudo-Random Number Generators and Their Resistance to Asynchrony
	1 Introduction
	2 Basic Notions
	2.1 The Asynchronous Model

	3 Related Work
	4 Experiments
	4.1 Experimental Settings
	4.2 Experimental Results
	4.3 Type 1 Rules
	4.4 Type 2 Rules
	4.5 Type 3 Rules

	5 Conclusions
	References

	Crowds, Traffic and Cellular Automata
	Drivers' Behavior Effects in the Occurrence of Dangerous Situations Which May Lead to Accidents
	1 Introduction
	2 Modified Nagel-Schreckenberg Model
	2.1 The Proposed Modification in the NaSch Model
	2.2 Numerical Results

	3 Conditions for the Occurrence of Dangerous Situations
	3.1 Dangerous Situations Caused by Sudden Deceleration
	3.2 Dangerous Situations Caused by Sudden Stop
	3.3 Numerical Results

	4 Conditions for the Occurrence of Accidents
	4.1 Accidents Probability
	4.2 Numerical Results

	5 Conclusions
	References

	Cellular Automata Based Modeling of Competitive Evacuation
	1 Introduction
	2 Motivation and Observations
	3 Proposed Model
	3.1 Basic Issues
	3.2 The Details of the Model
	3.3 The Impact of Viscosity on People's Movement

	4 Implementation and Results
	5 Conclusions
	References

	Simulating Pedestrian Dynamics in Corners and Bends: A Floor Field Approach
	1 Introduction and Related Works
	2 A Discrete Model for Pedestrian and Group Dynamics
	3 A General Algorithm for Angular Fields
	4 Experimental Results
	4.1 Fundamental Diagram in a 90-Degrees Turn
	4.2 Analysis of Space Utilisation in a U-Turn

	5 Conclusions and Future Works
	References

	Study on the Efficacy of Crowd Control and Information Provision Through a Simple Cellular Automata Model
	1 Introduction
	2 Selected Case Study
	3 Cellular Automata Model
	4 Results
	4.1 Validation of Fundamental Dynamics
	4.2 Effect of Information Provision and Compliance
	4.3 Combined Effect and Relation with Crowd Control

	5 Conclusions
	References

	Cumulative Mean Crowding and Pedestrian Crowds: A Cellular Automata Model
	1 Introduction
	2 Personal Space and Crowding
	3 Experimental Data
	3.1 Experimental Procedures
	3.2 Experimental Results

	4 Model Description
	5 Crowding Estimation Through Simulations
	6 Conclusions
	References

	Cellular Automata Based Evacuation Process Triggered by Indoors Wi-Fi and GPS Established Detection
	Abstract
	1 Introduction
	2 Related Work
	3 The Theoretical Principles of the Model
	3.1 Detection Using Trilateration Method
	3.2 The Route Estimation Model

	4 The Application and the Experimental Process
	5 Conclusions and Future Perspectives
	References

	Parallel Implementations of Cellular Automata for Traffic Models
	1 Introduction
	2 The Biham-Middleton-Levine Traffic Model
	3 Serial Implementation
	4 OpenMP Implementation
	5 SIMD Implementation
	6 CUDA Implementation
	7 Performance Evaluation
	8 Conclusions
	References

	Holonification of Road Traffic Based on Graph Theory
	1 Introduction
	2 Holonic Multiagent Systems and Related Works
	3 Graph-Based Model for the Holonification of Road Traffic
	3.1 Organizational Model of Road Traffic
	3.2 Holonic Model of Road Traffic
	3.3 Holon Formation
	3.4 Multilevel Indicators

	4 Case Study and Experimental Results
	4.1 Description of the Case Study
	4.2 Discussion
	4.3 Experimental Results

	5 Conclusion and Future Works
	References

	Author Index



