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Abstract. Hierarchical identity-based fully homomorphic encryption
(HIBFHE) aggregates the advantages of both fully homomorphic encryp-
tion (FHE) and hierarchical identity-based encryption (HIBE) that per-
mits data encrypted by HIBE to be processed homomorphically. This
paper mainly constructs a new leveled HIBFHE scheme based on Learn-
ing with Rounding (LWR) problem, which removes Gaussian noise sam-
pling in encryption process. In more detail, we use the lattice basis del-
egation method proposed by Agrawal, Boneh and Boyen at CRYPTO
2010 to generate delegated basis, while cleverly exploit a scaled round-
ing function of LWR problem to hide plaintext rather than adding an
auxiliary Gaussian noise matrix. Besides, Gentry, Sahai and Waters con-
structed the first leveled LWE-based HIBFHE schemes from identity-
based encryption scheme at CRYPTO 2013, in this work, however, we
also focus on improving their leveled HIBFHE scheme, using Alperin-
Sheriff and Peikert’s technically simpler method. We prove that our
schemes are adaptively secure under classic lattice hardness assumptions.

Keywords: FHE · Hierarchical identity-based encryption
Learning with Rounding

1 Introduction

Fully Homomorphic Encryption (FHE) is a very attractive cryptographic primi-
tive that allows computations of arbitrary programs on encrypted data without
decrypting it first, and then is a powerful tool for handling many core prob-
lems in cloud computing, e.g., private outsourcing of computation, SQL query,
private information retrieval, secure multi-party computation (MPC), etc. The
first candidate lattice-based FHE scheme is based on ideal lattices proposed by
Gentry [19] in 2009. In particular, he put forward a remarkable “bootstrapping”
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theorem for the first time, which implies that if a scheme is capable of evaluating
its own (augmented) decryption circuit (it needs an “encryption” of the secret
key) and added with the “circular security” assumption made in [19], then one
can transform it into a full fledged one which enables arbitrarily large homomor-
phic computations on encrypted data. However, his solution is complicated and
involves relatively untested cryptographic assumptions.

The more attractive and implementable lattice-based FHEs (see [3,9,10,12,
21]) started with the work of Brakerski and Vaikuntanathan (BV11b) [12], who
devised relinearization and dimension-modulus reduction techniques that play a
key role in their construction. The optimized version of the scheme [10] proposed
by Brakerski, Gentry and Vaikuntanathan (BGV) is Halevi and Shoup’s scheme
[23], which was recognized as one of the most efficient leveled FHE1 schemes,
using the dimension reduction and modulus reduction iteratively and gradually.
It is worth mentioning that Gentry, Sahai and Waters [21] (GSW) used a novel
technique of so-called approximate eigenvector method to construct a conceptu-
ally simpler leveled FHE scheme with simpler and more directly homomorphic
operations. Moreover, this GSW needs no user’s “evaluation key” and has an
interesting property of asymmetric noise growth because of its GSW-style matrix
operations. The GSW was subsequently improved by Alperin-Sheriff and Peikert
[3] (GSW variant) who leveraged a “gadget matrix” G developed by Micciancio
and Peikert [24].

In fact, the above lattice-based FHEs have been enjoying the intensive study
for their faster implementation, stronger malleability and applicability; and more
importantly, stronger security, since these schemes are based on Learning with
Errors (LWE) problem [27] which was proved to be at least as hard as some worst-
case lattice problems [11,27] (e.g., GapSVP, which was regarded to be secure
even after the advance of quantum computers). Therefore, these lattice-based
FHEs are very attractive and conductive for the studying of the post-quantum
cryptography.

IBE and HIBE. Identity-Based Encryption (IBE) is a generalization of public
key encryption (PKE) that allows a sender to encrypt a message using the recip-
ient’s identity − any arbitrary string such as an e-mail address − as a public
key, which was first proposed by Shamir [28] in 1984. The ability to use iden-
tities as public keys avoids the need to distribute public key certificates, which
is very useful in many applications such as email where the recipient is often
off-line and unable to present a public-key certificate while the sender encrypts
a message. The first construction of IBE is based on bilinear maps assumption
[7] or quadratic residue assumption [17]. Since then, a series of schemes, which
are based on bilinear maps assumption [31], quadratic residue assumption [8]
and LWE assumption [1,2,14,20], have been proposed.

Hierarchical Identity-Based Encryption (HIBE) is an extension of IBE
scheme where entities are arranged in a directed tree [22]. Specifically, each
entity in the tree obtains a private key from its “parent” (higher-level) and then
1 Leveled FHE is capable of evaluating arbitrary polynomial-depth circuits, without

Gentry’s bootstrapping procedure.
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delegates private keys for its “children” (lower-level) so that a child entity can
decrypt plaintext intended for it, or for its children, but cannot decrypt plain-
text intended for any other nodes in the tree; this delegation process is one-way:
a child node cannot use its private key to recover the key of its parent or its
siblings. Based on this kind of framework, a few HIBEs based on LWE problem
(see [1,2,14]) and (H)IBEs based on the LWR problem (see [18,32]) have been
presented. We will give a formal introduction for LWR problem [5] in Sect. 2. As
far as the efficiency of HIBEs is concerned, the lattice basis delegation problem
is the main bottleneck, although the problems that existed in IBEs, e.g., the size
of ciphertext and parameters, also affect the efficiency.

HIBFHE. Hierarchical Identity-Based FHE (HIBFHE) as an extension of
HIBE, as a matter of fact, has captured researchers’ attentions as it aggre-
gates the advantages of both FHE and HIBE [21]. Roughly speaking, the
data encrypted by HIBE support arbitrarily complex evaluations without being
decrypted, and such properties of hierarchy and homomorphism are very use-
ful in access control of encrypted data [15]. However, there are a few results. In
fact, Gentry, Sahai and Waters [21] also used their “flatten” technique to compile
all HIBEs [1,2,14], which thus results in leveled HIBFHE schemes. After that,
Wang et al. [30] used the MP12-trapdoor for lattices [24] to improve the IBE
scheme in [1], then compiled this improved IBE and obtained a leveled IBFHE.
However, if we extend their leveled IBFHE to leveled HIBFHE, it is very easy
to find that the dimension of lattice will expand when the delegation mecha-
nism is used to generate delegated basis for the identity of lower-level; or more
precisely, the dimension will increase linearly with the depth of hierarchy. Conse-
quently, private keys and ciphertexts become longer and longer as one descends
into the hierarchy. This problem also resides in Sun et al.’ [29] RLWE-based lev-
eled IBFHE (which is selective-ID secure). Actually, this RLWE-based leveled
IBFHE is based on the structure of GSW and thus is impractical, because the
GSW is not fully compatible with RLWE problem due to its asymmetric noise
growth [21].

It is worth noting that all (H)IBFHEs aforementioned are leveled homo-
morphic, which means that they can only bear homomorphic computations of
a priori polynomial-depth circuits, except the first non-leveled IBFHE scheme
proposed by Clear and McGoldrick [16] under the existential hypothesis of indis-
tinguishable obfuscator. This is because we cannot use bootstrapping theorem
to transform a leveled (H)IBFHE scheme into “pure” one, for bootstrapping
in the identity-based setting needs to non-interactively derive from the public
parameters an “encryption” of the secret key for an arbitrary identity. But this
“encryption” is user-specific and is not identity-based, in the sense that it only
can be obtained interactively from user-specific. While obtaining this “encryp-
tion” interactively undermines the main appeal of IBE: its non-interactivity.

Our Contributions. We present two leveled HIBFHE schemes with fixed
dimensions and short ciphertexts. Our first and main scheme, which is based
on LWR problem [5] and is proved to be secure against adaptive chosen-
identity attack, needs no Gaussian noise sampling in encryption process. In our
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LWR-based leveled HIBFHE scheme, we use the basis delegation technique in
[2] to generate identity-specific basis without increasing the dimension of the
lattice in derive phase, and then use the preimage sampleable algorithm in [20]
to yield the identity-specific secret key in extract phase. In encryption process,
we cleverly use the scaled rounding function of LWR problem to hide plaintext
rather than adding an auxiliary Gaussian noise matrix. The resulting cipher-
texts have constant size and are not relevant to the depth of hierarchy. Our
LWR-based leveled HIBFHE scheme gets rid of Gaussian noise sampling merely
in encryption process, but this is enough for improving the efficiency. Because
the generating processes of public keys and secret keys, which involve Gaus-
sian sampling, are implemented only once in general case, while there are a
large number of times for the encryption process. More importantly, removing
the Gaussian noise sampling in encryption process will strengthen safety, due
to some potential side-channel vulnerabilities (result in complete leakage of the
secret key) incurred by Gaussian noise sampling in every encryption process
[13,26]. Although it is possible to create good implementations which protect
against side-channel attacks, these implementations are very complex. However,
such improvements are obtained with a penalty: the size of the secret key, the
public key and the ciphertext of the LWR-based leveled HIBFHE scheme are all
slightly bigger than that of our improvement on the LWE-based leveled HIBFHE
scheme [21] (up to a small polynomial in n), and the security reduction loss
of our LWR-based leveled HIBFHE scheme is also bigger due to the reduction
between LWE and LWR (up to a polynomial). These can be seen from the Table 1
in the full version of the paper.

We also present a more efficient leveled HIBFHE scheme based on LWE prob-
lem. In our LWE-based leveled HIBFHE scheme, we use a technically simpler
variant method [3] of GSW to generate ciphertext with constant length, and
then we obtain more compact parameters due to the simple and tight noise
analysis technique when performing homomorphic evaluations. In fact, that we
present this improved construction is meant to help us compare the LWE-based
leveled HIBFHE scheme with our novel LWR-based leveled HIBFHE scheme
more clearly.

Organization. In Sect. 2, we give the preliminaries including notations, hard-
ness assumptions and some related algorithms to be used in this paper. The
definition of hierarchical identity-based FHE, the lattices and discrete Gaussians
can be found in the full version of the paper. In Sect. 3, we present our construc-
tion of LWR-based leveled HIBFHE scheme. Section 4 follows an improvement on
the previous LWE-based leveled HIBFHE. Finally, we conclude the paper with
future direction in Sect. 5.

2 Preliminaries

Notations. We say that a function negl(n) is negligible if negl(n) is smaller
than all polynomial fractions for sufficiently large n. For a positive integer q,
we define the set Zq � [−q/2, q/2) ∩ Z, and all logarithms on q are base 2. All
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arithmetics are performed over Z or Q when division is used, and for ease of
use, we let [n] � {1, · · · , n}. We denote vectors in bold lowercase (e.g., x) and
matrices in bold uppercase (e.g., A); xt (resp. At) denotes the transpose of the
vector x (resp. A). For any x ∈ Q, we denote by �x�, �x�, �x� the rounding
of x down, up, or to the nearest integer; these notations also apply to vector
and matrix. The multiplication between two vectors x, y over Zq is denoted by
<x,y>q (i.e., <x,y> mod q). In this paper, || · || denotes Euclidean norm unless
otherwise stated, and for a n-dimensional vector x = {x1, · · · , xn}, we denote its
magnitude by |x| � max{|xi|}i∈[n] where |xi| refers to x′

i s magnitude, moreover,

vectors (e.g., a) are treated as columns. We let x
$← D denote that x is randomly

sampled from a distribution D and x
$← S denote that x is uniform over a set

S. For any matrix A ∈ Z
n×m
q , A ∈ X n×m (resp. A $← X n×m) denotes that for

i ∈ [n], j ∈ [m] its entry A[i][j] ∈ X (resp. A[i][j] $← X ) where X is a set or
distribution. This also applies to vector.

2.1 Hardness Assumptions

Learning with Errors (LWE). The well-known learning with errors (LWE)
problem has been enjoying a fame for its versatility in the constructions of lattice-
based schemes, and was conjectured to be secure in quantum setting ever since
Regev [27] introduced it and gave a quantum reduction from some standard
lattice problems to the LWE problem (subsequently followed by some classi-
cal reduction [11,25]). The binLWE problem is a specific form of LWE where
the secret s is chosen uniformly from {0, 1}n, or generating the binLWE prob-
lem directly from LWEn,q,m,χ(D) by letting D = {0, 1}n. As for the security of
binLWE problem, Brakerski et al. [11] proved that the binLWE problem is at least
as hard as the original LWE problem.

Definition 1 (B-Bounded Distributions [6,9]). A distribution ensemble

{χn}n∈N, supported over the integers, is called B-bounded if Pr[e $← χn | ||e|| >
B] = negl(n). We say a B-bounded distribution e is balanced if Pr[e ≥ 0] ≥ 1

2
and Pr[e ≤ 0] ≥ 1

2 .

Learning with Rounding (LWR). As a deterministic variant of LWE prob-
lem, Learning with Rounding (LWR) problem, was firstly proposed by Banerjee,
Peikert and Rosen [5] for improving the efficiency of pseudorandom generator
(PRG) based on the LWE problem. Interestingly enough, the implicit noise in
LWR is deterministic which derandomizes the random noise in LWE. Meanwhile,
the single implicit noise in LWR is smaller than that in LWE. Specifically, the
noise in LWE is B-bounded, while the implicit noise has magnitude less than 1

2
in LWR.

For the positive integers n, m and p < q, we firstly recall the scaled rounding
function [5] �·�p which will be used in encryption process in Sect. 3. It is defined
as follows: ⌈ · ⌋

p
: Zq −→ Zp

a �→ ⌈
p
q · a

⌋
.
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The scaled rounding function �·�p denotes the component-wise rounding if the
entry is a vector or matrix.

For a n-dimensional vector s sampled from a distribution D ⊂ Z
n
q , we define

the LWR distribution LWRn,q,p(D) � {(ai, �〈ai, s〉�p) ∈ Z
n
q × Zp|ai

$← Z
n
q } in

which the pair (ai, �〈ai, s〉�p) denotes a LWR sample (instance). As with the
LWE problem, LWR problem can be also divided into two problems: the search
and decision problems. The search LWR problem is defined as finding the secret
s given m independent instances chosen from LWRn,q,p(D). While the decision
LWR problem, denoted by DLWRn,m,q,p(D), is to distinguish (with non-negligible
advantage) m samples (ai, �〈ai, s〉�p) chosen from LWRn,q,p(D), from m indepen-
dent samples chosen according to the uniform distribution over Z

n
q × Zp. The

LWRn,q,p(D) assumption implies that the DLWRn,m,q,p(D) problem is infeasible.
As with the binLWE problem, we can also get binLWR problem from LWRn,q,p(D)
by letting D = {0, 1}n.

As for the hardness of the LWR problem, Banerjee et al. [5] presented an
efficient reduction from LWE problem to LWR problem for super-polynomial
modulus q. Subsequently, Alwen et al. [4] gave a reduction that allows for a
polynomial modulus q, but that restricts the number of samples and fails to
apply to all values of the modulus q. In 2016, the reduction in [4] was extended
by Bogdanov et al. [6] who eliminated the theoretic restriction on the modulus q,
though the number of samples in [6] is required to be less than O(q/Bp) (weaker
than that in [4]). For completeness, we give the Theorem 1 that is adapted from
[6]. Note that the reduction from LWE to binLWE was shown in [11], hence by
combining the reduction with Theorem 1, we can safely reduce the hardness of
binLWR problem to LWE problem.

Theorem 1 ([6]). For every ε > 0, positive integers n, m, q > 2mpB, p|q, and
if there is an algorithm A such that

∣
∣PrA,s[A(A, �As�p) = 1] − PrA,v[A(A,v) = 1]

∣
∣ ≥ ε,

where A $← Z
m×n
q , s $← {0, 1}n and v $← Z

m
p , then there exists another algorithm

B that runs in time polynomial in n, m, the number of divisors of q, and the
running time of A such that

PrA,s[B(A,As + e) = s] ≥
(

ε

4qm
− 2n

pm

)2

· 1
(1 + 2Bp/q)m

for noise distribution e that is B-bounded and balanced in each coordinate, where
it requires that B ≥ 2

√
n due to the reduction (quantum or classical) from certain

lattice problems to LWE problem [11,27].

Note that Theorem 1 concerns the search bin-LWE problem, which is
not easier than its decision problem. Moreover, we remark that the term
PrA,s[A(A, �As�p) = 1] − PrA,v[A(A,v) = 1] in Theorem 1 can be inter-

preted as the decision DLWRn,m,q,p(D) problem for the fixed s $← {0, 1}n (set
D = {0, 1}n).
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2.2 Gadget Matrices and Some Algorithms

In this subsection, we recall the gadget matrix [24] and four important algorithms
that will be used in our constructions and security proofs. Roughly speaking, we
generate the master public matrix together with a short basis by employing
the trapdoor generation algorithm [24] and then use the lattice basis delegation
algorithm [2] to generate delegated basis. At last, output the identity-specific
secret key by utilizing the preimage sampleable algorithm [20].

For the integer q, we define the gadget matrix G := Im+1 ⊗ gt, where
gt := (1, 2, · · · , 2�log q�−1) ∈ Z

�log q�
q and Im+1 denotes the (m + 1)-dimensional

identity matrix. Moreover, we define the deterministic inversion function G−1 :
Z
(m+1)×m′
q → {0, 1}m′×m′

where m′ = (m + 1) · �log q�, which is equal to bit
decomposition that decomposes x into its bit representation over Zq and has the
property that for any matrix A ∈ Z

(m+1)×m′
q it holds that G · G−1(A) = A.

Since there are two moduli q, p in LWR problem, here we construct another gad-
get matrix Ĝ constructed as Ĝ := Im+1 ⊗ ĝt where ĝt := (1, 2, · · · , 2�log p�−1) ∈
Z

�log p�
p . The deterministic inversion function Ĝ−1 is defined by the same method

as above.

Lemma 1 ([24]). Let n, q > 2 and m ≈ 2n log q be positive integers, there is a
PPT algorithm GenTrap(1n, 1m, q) that outputs a parity-check matrix A ∈ Z

n×m
q

and a trapdoor X with a tag H such that the distribution of A is statistically close
to the uniform. Then one can use the trapdoor and any basis S for Λ⊥

q (G) to
generate a short basis TA for lattice Λ⊥

q (A), and the parameters satisfy s1(X) ≤
1.6

√
n log q and ||T̃A|| ≤ 3.8

√
n log q, where s1(X) is the largest singular value

of X.

Remark 1. Note that it is easy to compute a basis S for Λ⊥
q (G), whenever the

modulus q is power-of-two or not, since G is gadget matrix whose trapdoor is
publicly known.

The following SampleRwithBasis lemma plays a key role in our security proofs,
this is due to the fact that the simulator (challenger) calls the SampleRwithBasis
algorithm to generate short basis, and then uses this basis to generate identity-
specific secret key for answering the secret key query. While the Lattices Basis
Delegation lemma is of crucial importance in the constructions of our schemes.
In the lattices basis delegation mechanism, it is required that the matrix R is
invertible mod q in Z

m×m
q where all the columns of R are “low norm”. Similarly

with [2], we denote by Dm×m the distribution (DZm
q ,σR

)m conditioned on the
matrix R being invertible mod q in Z

m×m
q , where σR =

√
n log q · ω(

√
log m).

Lemma 2 ([2]). Let q > 2 be a prime and m ≥ 2n log q. For all but at most
a q−1 fraction of rank n matrices A in Z

n×m
q , there exists a PPT algorithm

SampleRwithBasis(A) that outputs a matrix R ∈ Z
n×m sampled from a distri-

bution statistically close to Dm×m and a basis TB for lattice Λ⊥
q (B) with the

parameter σR ≥ ||T̃B|| ·ω(
√

log m) with overwhelming probability, where it holds
that B = A · R−1(mod q).
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Lemma 3 ([2]). Let q > 2 and let A be a matrix in Z
n×m
q with m ≥ 2n log q.

Let TA be a basis for lattice Λ⊥
q (A). Given a matrix R sampled from the dis-

tribution Dm×m and the parameter σ > ||T̃A|| · σR · √
m · ω(log3/2 m), there

is a PPT algorithm BasisDel (A,TA,R, σ) that outputs a basis TAR−1 for
the lattice Λ⊥

q (AR−1) with overwhelming probability, where TAR−1 satisfies
||TAR−1 || ≤ σ · √

m.

One can generate identity-specific secret keys for all identities in hierarchy
via the following preimage sampleable algorithm [20].

Lemma 4. Let n and q be positive integers with q ≥ 2, and let m > n. Let TA

be a short basis for lattice Λ⊥
q (A) and σ ≥ ||T̃A|| · ω(

√
log m). Then for c ∈ R

m

and u ∈ Z
n
q :

1. Pr[ x $← DΛu
q (A),σ | ||x|| >

√
m · σ ] ≤ negl(n).

2. There is a PPT algorithm SamplePre(A,TA, σ,u) that outputs x ∈ Λu
q (A)

sampled from a distribution statistically close to DΛu
q (A),σ.

3 Our LWR-Based Scheme

In this section, based on LWR problem, we use the three algorithms outlined in
Sect. 2.2 to construct a leveled hierarchical identity-based FHE in the random
oracle model. Similarly to [2], we also utilize a hash function H : ({0, 1}∗)≤d →
Z

m×m
q | id �→ H(id) ∼ Dm×m for mapping the identity id to a matrix in

Z
m×m
q , where the requirement is that the H(id) is distributed as Dm×m over

the choice of the random oracle H.

3.1 Leveled Hierarchical Identity-Based FHE from LWR

As what mentioned before, the leveled HIBFHEs have the properties of hierarchy
and homomorphism, thus we assume the maximal depth of the hierarchy is d
and the maximal homomorphically evaluable depth is L. Similarly to [2], we
choose a Gaussian parameter σ = (σ1, · · · , σd) needed in Derive and Extract
processes, where it holds that

{
σ� > σ�−1 · m3/2 · ω(log2 m) > σ1 · (

m3/2 · ω(log2 m)
)�−1

σ1 > ||T̃A|| · σR · √
m · ω(log3/2 m).

Comparing to the LWE-based scheme, our LWR-based leveled HIBFHE scheme
uses the scaled rounding function to hide plaintext instead of Gaussian noise
sampled from a discrete Gaussian distribution, and therefore it doesn’t need the
Gaussian noise parameter α = (α1, · · · , αd) any more.

– Setup(1λ, 1d, 1L). Choose a lattice dimension parameter n = n(λ, d, L), mod-
uli q = q(λ, d, L) and p = p(λ, d, L) that satisfies p|q. Also, choose parameter
m = m(λ, d, L) ≥ 2n log q. Let k = �log p� and N = (m + 1) · k. Then
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call the PPT algorithm GenTrap(1n, 1m, q) to generate a parity-check matrix
A ∈ Z

n×m
q and a trapdoor X with a tag H such that the distribution of A is

statistically close to the uniform. Based on Lemma 1, use the trapdoor X and
a random basis S for Λ⊥

q (G) to generate a short basis TA for Λ⊥
q (A). Choose

uniformly at random a vector u ∈ Z
n
q . Finally, the master public parameters

is mpk := (A,u), and the corresponding master secret key is msk := (TA).
– Derive(mpk,Tid|�, id). Take as input public parameters mpk, a private basis
Tid|� corresponding to a “parent” identity id|� = (id1, · · · , id�) at level 	 and
a “child” identity id = (id1, · · · , id�, · · · , idk) of a lower level k where k ≤ d,
do the following processes:
1. For i ∈ [	], compute H(idi), and set Rid|� = H(id�) · · · H(id1) ∈ Z

m×m.
Then compute Bid|� = A ·R−1

id|� ∈ Z
n×m
q . Let Tid|� be the short basis for

Λ⊥
q (Bid|�).

2. Compute R = H(idk) · · · H(id�+1) ∈ Z
m×m and set Bid = Bid|� ·R−1 ∈

Z
n×m
q .

3. Invoke T′ ← BasisDel(Bid|�,Tid|�,R, σk) to obtain a short random basis
for Λ⊥

q (Bid).
4. Output the delegated basis Tid = T′.

– Extract(mpk,Bid,Tid, id). Take as input public parameters mpk, and
an identity id of depth |id| = 	. Run the PPT algorithm Sam-
plePre(Bid,Tid, σ�,u) to sample a short vector x ∈ Z

m such that Bid · x =

u (mod q). Then output identity-specific public key pkid : P =
[
Bt

id

ut

]
, and

the identity-specific secret key skid : s = (−x, 1). Note that st ·P = 0 (mod q).
– Enc(pkid, id, μ). To encrypt a message μ ∈ {0, 1}, sample a small matrix

M $← {0, 1}n×N . Output a ciphertext

C = �P · M�p + μĜ ∈ Z
(m+1)×N
p .

– Dec(C, skid). Choose the penultimate column vector c of ciphertext C, and
then compute

μ =
∣
∣�2

p
· 〈s, c〉p�

∣
∣.

– Add(C1, C2). For two ciphertext matrices C1 and C2 decrypting to plain-
texts μ1 and μ2 under identical identity, output

CAdd � C1 + C2.

– Mult(C1, C2). For two ciphertext matrices C1 and C2 decrypting to plain-
texts μ1 and μ2 under identical identity, the multiplication is defined as

CMult � C1 · Ĝ−1(C2).
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3.2 Correctness and Parameters

Firstly, according to Lemma 4, x ∈ Λu
q (A) is sampled from a distribution sta-

tistically close to DΛu
q (A),σ�

that satisfies ||x|| ≤ √
m · σ� with overwhelming

probability. Combining Lemmas 1 and 3 with the parameters set in Sect. 3.1, we
can set σ� = m

3
2 � · ω(log2� m). Next, we analyze the correctness and the magni-

tude of noise. The penultimate column vector of Ĝ is (0, 0, · · · , v) ∈ Z
m+1
p where

v ∈ (p/4, p/2]. We write E = �P · M�p − p
q · P · M ∈ [−1/2, 1/2](m+1)×N , and

then its penultimate column vector is e ∈ [−1/2, 1/2]m+1. According to the Dec
algorithm, we have

μ =
∣
∣⌈2

p
· 〈s, c〉p

⌋∣∣ =
∣
∣⌈2

p
· (〈s, e〉 + μv)

⌋∣∣,

as long as

|e′| = |〈s, e〉| ≤ ||e|| · (||x|| + 1) ≤ m
3
2 �+1 · ω(log2� m) < p/4. (1)

Since the homomorphic addition is obvious, we mainly analyze homomorphic
multiplication.

Homomorphic Multiplication. To multiply two ciphertext matrices C1,C2 ∈
Z
(m+1)×N
p designated for messages μ1, μ2 ∈ {0, 1}, we have

st · Mult(C1,C2) = st · C1 · Ĝ−1(C2) = (st · E1 + μ1st · Ĝ) · Ĝ−1(C2)

= (e′
1 · Ĝ−1(C2) + μ1e′

2) + μ1μ2st · Ĝ,

where Ĝ−1(C2) ∈ {0, 1}N×N . Then e′
1 · Ĝ−1(C2)+μ1e′

2 is the total noise which
is of magnitude

|e′
1 · Ĝ−1(C2) + μ1e′

2| ≤ m
3
2 �+1 · ω(log2� m) · (N + 1)

by Eq. (1). It is clear that the noise growth factor is N +1, and therefore after L
levels of homomorphic multiplication, the noise grows from an initial magnitude
of m

3
2 �+1 · ω(log2� m), to m

3
2 �+1 · ω(log2� m) · (N + 1)L.

Our LWR-based scheme removes Gaussian noise sampling in encryption pro-
cess, but there are two moduli p, q satisfying q > 2mpB and p|q where B ≥ 2

√
n

(according to Theorem 1). In fact, it is sufficient to set q = pn
3
2 due to

m ≥ 2n log q, and then we have m ≥ 2n log q = 2n log p+3n log n. Therefore, we
can get the the following theorem.

Theorem 2. For the parameters λ, d, L, n = n(λ, d, L) and m = m(λ, d, L) ≥
2n log q, if the polynomial size moduli p ≥ (4n log2 p)

3
2d+L+1 · ω(

(2 log n)2d
)
and

q = pn
3
2 , our LWR-based scheme is a correct L-leveled HIBFHE.

Overall, the moduli p and q are both of polynomial size in parameter n, and
then combining the Theorem 1 with the reductions between LWE problem and
certain standard lattice problems (e.g., GapSVP), we can base the security of
our LWR-based leveled HIBFHE scheme on these worst-case lattice problems
with polynomial approximation factors.
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3.3 Security

We prove that our LWR-based leveled HIBFHE scheme is INDr-ID-CPA secure.
More precisely, the challenger in our simulated attack model can answer any type
of query sent by the adaptive adversary. Comparing to the security proof in [2],
the setup of simulated attack model and the random oracle hash H query are
almost the same as theirs (for simplicity, we omit them in our security proof),
but the challenger needs to run PPT algorithm SamplePre to obtain the secret
key for answering the identity-specific secret key query in our security proof.
The full proof of Theorem 3 is given in the full version of the paper.

Theorem 3. Let A be a PPT adversary that attacks our LWR-based scheme,
and QH be the number of hash H queries made by A and d be the maximal hier-
archy depth, where H is a hash function modeled as a random oracle. Then there
is a PPT algorithm B that solves the DLWRn,m,q,p(D) problem with advantage ε,
such that, if A is an adaptive adversary ( INDr-ID-CPA) with advantage ε′, then
it holds that ε′ ≤ ε · (d · Qd

H) + negl(n).

4 Improvement on Previous LWE-Based Scheme

4.1 Our Leveled Hierarchical Identity-Based FHE from LWE

Here, we also assume the maximal depth of the hierarchy is d and the maximal
homomorphically evaluable depth is L, and we choose a Gaussian parameter
σ = (σ1, · · · , σd) (the same as that in Sect. 3.1) and a Gaussian noise parameter
α = (α1, · · · , αd) needed in the encryption process. We omit the corresponding
homomorphic addition and multiplication, since they are identical to that of
LWR-based scheme presented in Sect. 3.

– Setup(1λ, 1d, 1L). Choose a lattice dimension parameter n = n(λ, d, L), mod-
ulus q = q(λ, d, L), also, choose parameter m = m(λ, d, L) ≥ 2n log q. Let
k = �log q� and N = (m + 1) · k. Call the PPT algorithm GenTrap(1n, 1m, q)
to generate a parity-check matrix A ∈ Z

n×m
q and a trapdoor X with a tag

H such that the distribution of A is statistically close to the uniform. As per
Lemma 1, use the trapdoor X and a random basis S for Λ⊥

q (G) to generate
a short basis TA for Λ⊥

q (A). Choose uniformly at random a vector u ∈ Z
n
q .

Finally, the master public parameter is mpk := (A,u), and the corresponding
master secret key is msk := (TA).

– Derive(mpk,Tid|�, id). Take as input public parameter mpk, a private basis
Tid|� corresponding to a “parent” identity id|� = (id1, · · · , id�) of level 	 and
a “child” identity id = (id1, · · · , id�, · · · , idk) of lower level k where k ≤ d,
do the following processes:
1. For i ∈ [	], compute H(idi) and set Rid|� = H(id�) · · ·H(id1) ∈ Z

m×m.
Then compute Bid|� = A ·R−1

id|� ∈ Z
n×m
q . Let Tid|� be the short basis for

Λ⊥
q (Bid|�).

2. Compute R = H(idk) · · ·H(id�+1) ∈ Z
m×m and then set Bid = Bid|� ·

R−1 ∈ Z
n×m
q .
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3. Invoke T′ ← BasisDel(Bid|�,Tid|�,R, σk) to obtain a short random basis
for Λ⊥

q (Bid).
4. Output the delegated basis Tid = T′.

– Extract(mpk,Bid,Tid, id). Take as input public parameter mpk, and
an identity id of depth |id| = 	. Run the PPT algorithm Sam-
plePre(Bid,Tid, σ�,u) to sample a short vector x ∈ Z

m such that Bid · x =

u (mod q). Then output identity-specific public key pkid : P =
[
ut

Bt
id

]
, and

the identity-specific secret key skid : s = (1,−x). Note that st ·P = 0 (mod q).
– Enc(pkid, id, μ). To encrypt a message μ ∈ {0, 1}, sample a small matrix

M $← {0, 1}n×N and a small noise matrix E $← D(m+1)×N
Z,α�q . Output a cipher-

text C = P · M + 2E + μG ∈ Z
(m+1)×N
q .

– Dec(skid,C). Choose the first column vector c of ciphertext C. Output μ =
〈s, c〉q (mod 2).

4.2 Correctness, Parameters and Security

Performing the decryption procedure on ciphertext in the scheme, we
have 〈s, c〉 ≡ μ + 2〈e, s〉 mod q. According to Lemma 4, the noise term e is

the column vector of E $← D(m+1)×N
Z,α�q that satisfies ||e|| ≤ √

m + 1 · α�q with
overwhelming probability, while x ∈ Λu

q (A) is sampled from a distribution sta-
tistically close to DΛu

q (A),σ�
that satisfies ||x|| ≤ √

m · σ� with overwhelming

probability. As with that in Sect. 3.2, we can set σ� = m
3
2 � · ω(log2� m) and

then α� =
(
m

3
2 �+2L+1 · ω(log2�+1 m)

)−1. While according to Regev’s reduction
[27] which requires α�+1q > 2

√
n, we can choose q of polynomial size such that

α�q = O(
√

n) > 2
√

n. It follows that

|2〈e, s〉| ≤ 2||e|| · (||x|| + 1) = O(
√

n) · m
3
2 �+1 · ω(log2� m) < q/2.

Moreover, similarly with our LWR-based leveled HIBFHE and [3], after perform-
ing homomorphic evaluations on ciphertexts, the noise grows linearly in N + 1
and asymmetrically in the ciphertexts’ respective noises. For simplicity, we just
present the result by the following theorem.

Theorem 4. For the parameters λ, d, L, n = n(λ, d, L) and m = m(λ, d, L) ≥
2n log q, if the polynomial size modulus q ≥ (3n log2 q)

3
2d+L+1 · ω

(
(2 log n)2d

)
,

our construction based on LWE is a correct L-leveled HIBFHE.

The modulus q is of polynomial size and the Gaussian noise rate α is of
inverse-polynomial size in the parameter n, this allows the security to be based
on certain worst-case lattice problems with polynomial approximation factors. As
for the security, we note that the main difference between our LWR-based scheme
and LWE-based scheme depends on Enc algorithm. The LWR-based scheme uses
the scaled rounding function to hide plaintext contrast to the Gaussian noise
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used in the LWE-based scheme, therefore the security proofs for both are almost
identical, except that they are based on different hard problems. For complete-
ness, we give the following theorem.

Theorem 5. Let A be a PPT adversary that attacks our LWE-based scheme,
and QH be the number of hash H queries made by A and d be the maximal hier-
archy depth, where H is a hash function modeled as a random oracle. Then there
is a PPT algorithm B that solves the DLWEn,q,m,χ(D) problem with advantage ε,
such that, if A is an adaptive adversary ( INDr-ID-CPA) with advantage ε′, then
it holds that ε′ ≤ ε · (d · Qd

H) + negl(n).

5 Conclusion and Future Direction

We presented two leveled HIBFHE schemes from LWR and LWE. Our LWE-
based leveled HIBFHE scheme is an improvement on the previous LWE-based
leveled HIBFHE scheme. Our novel leveled HIBFHE scheme is based on LWR
problem, which is, to the best of our knowledge, the first LWR-based leveled
HIBFHE scheme. Our proposed LWR-based leveled HIBFHE scheme has big-
ger parameters than the previous LWE-based leveled HIBFHE scheme and our
improved scheme, but it does not need Gaussian noise sampling in encryption
process. Thus, the LWR-based leveled HIBFHE scheme still has advantage and
can be seen as an alternative one. Furthermore, in this work we proved that our
two leveled HIBFHE schemes are both secure against adaptive chosen-identity
attack. However, the bootstrapping method cannot be used to transform our
leveled HIBFHE into non-leveled (pure) HIBFHE, due to IBE’s property of
non-interactivity. Therefore, a subject of our future work is to design a pure
IBFHE without indistinguishable obfuscator.
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