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Abstract. To provide a search functionality for encrypted data, pub-
lic key encryption with keyword search (PEKS) has been widely recog-
nized. In actual usage, a PEKS scheme should be employed with a PKE
scheme since PEKS itself does not support the decryption of data. Since
a naive composition of a PEKS ciphertext and a PKE ciphertext does
not provide CCA security, several attempts have been made to integrate
PEKS and PKE in a joint CCA manner (PEKS/PKE for short). In this
paper, we further extend these works by integrating secure-channel free
PEKS (SCF-PEKS) and PKE, which we call SCF-PEKS/PKE, where
no secure channel is required to send trapdoors. We give a formal secu-
rity definition of SCF-PEKS/PKE in a joint CCA manner, and pro-
pose a generic construction of SCF-PEKS/PKE based on anonymous
identity-based encryption, tag-based encryption, and one-time signature.
We also strengthen the current consistency definition according to the
secure-channel free property, and show that our construction is strongly
consistent if the underlying IBE provides unrestricted strong collision-
freeness which is defined in this paper. Finally, we show that such an
IBE scheme can be constructed by employing the Abdalla et al. trans-
formations (TCC 2010/JoC 2018).

Keywords: PEKS · Integration of PEKS and PKE
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1 Introduction

Integration of Searchable Encryption and Public Key Encryption:
Public key encryption with keyword search (PEKS) [6] has been widely recog-
nized as a cryptographic primitive providing a search functionality for encrypted
data. Briefly, a trapdoor tω is generated with respect to a keyword ω, and one
can search a ciphertext of ω by using tω. As defined by Abdalla et al. [1], PEKS
should provide (wrong keyword) consistency and keyword privacy. Briefly, the
former guarantees that for two distinct keywords ω and ω′, a ciphertext of ω
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is not searched by tω′ . The latter guarantees that no information of keyword is
revealed from the ciphertext. Abdalla et al. [1] gave a generic construction of
PEKS from anonymous identity-based encryption (IBE), e.g., [7,11,23].

In actual usage, PEKS should be employed with a PKE scheme since PEKS
itself does not support the decryption of data. For example, assume that an
e-mail is required to be encrypted. Then, a sender encrypts the mail header or
title using a PEKS scheme, and encrypts the mail body using a PKE scheme
whose public key is managed by the receiver. Then, a mail gateway can forward
the encrypted e-mail by using PEKS, and the receiver can decrypt the cipher-
text using their own secret key of the PKE scheme. From now on, we denote
the integrated PEKS and PKE as PEKS/PKE as in [30]. As a naive composi-
tion, for a PEKS ciphertext CPEKS and a PKE ciphertext CPKE, a ciphertext of
PEKS/PKE is described as its concatenation CPEKS||CPKE.

Although indistinguishability against chosen ciphertext attack (IND-CCA)
is widely recognized as a standard security definition of PKE, obviously, the
naive composition does not provide CCA security even if the underlying PKE
scheme is CCA secure. For example, the challenge ciphertext C∗

PEKS||C∗
PKE can be

modified such as CPEKS||C∗
PKE where CPEKS �= C∗

PEKS, and one can send it to the
decryption oracle. This was pointed out by Baek et al. [4] who gave a definition of
joint CCA security for PEKS/PKE. Later, Zhang and Imai [30] pointed out that
Baek et al.’s definition does not consider keyword privacy. They gave a formal
definition of PEKS/PKE that captures both data privacy and keyword privacy,
and proposed a generic construction of PEKS/PKE. Abdalla et al. [2,3] fur-
ther pointed out that there is a room for improvement in the Zhang-Imai model
since an adversary is not allowed to access the test oracle in the model. Chen et
al. [12] further considered the trapdoor oracle, and proposed a generic construc-
tion of PEKS/PKE from (hierarchical) IBE schemes. As concrete constructions,
Buccafurri et al. [9] and Saraswat and Sahu [27] proposed PEKS/PKE schemes
from (asymmetric) pairings.1

Secure-Channel Free PEKS: In typical usage of PEKS, a receiver generates
a trapdoor, and sends it to a server (e.g., mail gateway). Then, since anyone can
run the test algorithm when they obtain a trapdoor, the trapdoor must be sent
to the server via a secure channel. To remove the secure channel, secure-channel
free PEKS (SCF-PEKS), which is also called designated tester PEKS, has been
proposed [13–15,20,26,28]. Unlike the case of employing SSL/TLS in a naive
way, only the designated server can run the test algorithm even if trapdoors are
exposed. In SCF-PEKS, the server also has a public key and a secret key, and
a keyword is encrypted by using the server pubic key in addition to the receiver
pubic key. The test algorithm is run by using the server secret key in addition
to a trapdoor.

1 As a similar primitive, decryptable searchable encryption has been proposed [18,21]
where keywords can be recovered from ciphertexts via the decryption procedure.
One main difference from PEKS/PKE is that no plaintext space is defined.
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Our Contribution: As in PEKS, all PEKS/PKE have assumed that trapdoors
are sent to the server via a secure channel. In this paper, to remove this limitation
we propose PEKS/PKE supporting secure-channel free property, which we call
SCF-PEKS/PKE.

First we give a formal security definition of SCF-PEKS/PKE in a joint CCA
manner. Basically, we extend the security definition of SCF-PEKS given by Fang
et al. [16].2 We strengthen their consistency definition as follows. First, an adver-
sary is allowed to access the trapdoor oracle in our model. Owing to the secure-
channel free property, this setting is natural since trapdoors are sent via a public
channel. Moreover, we give the server secret key to the adversary to guarantee
that the server has no way of producing inconsistent ciphertexts. We call this
weak consistency. We further strengthen the consistency, which we call strong
consistency, where (1) an adversary can obtain trapdoors even for challenge key-
words, and (2) an adversary is allowed to produce the challenge ciphertext. The
first extension is the same as that of unrestricted strong robustness [17], and
the second extension is the same as those of strong robustness [2,3] and strong
collision-freeness [25]. For keyword privacy, as in Fang et al., we consider two
situations where either an adversary is modeled as the server (then the server
secret key is given to the adversary), or an adversary is modeled as a receiver
(then the receiver secret key is given to the adversary). In the former, the adver-
sary is allowed to access the trapdoor oracle and the test oracle, and in the latter,
the adversary is allowed to access the test oracle. We additionally consider the
decryption oracle to integrate SCF-PEKS and PKE in our joint CCA security.
We further define data privacy. To guarantee that the server does not obtain
information of data via the test procedure, we give the server secret key to the
adversary. Moreover, the adversary is allowed to access the decryption oracle.

Second, we propose a generic construction of SCF-PEKS/PKE with weak
consistency from anonymous IBE, tag-based encryption (TBE) [24], and a one-
time signature (OTS). We also show that our construction is strongly consistent
if the underlying anonymous IBE provides unrestricted strong collision-freeness
which is implied by unrestricted strong robustness [17]. We will show how to
construct these ingredients in Sect. 5. Our construction can be seen as an exten-
sion of a generic construction of SCF-PEKS from the same ingredients as above,
proposed by Emura et al. [14], by considering an observation given by Abdalla
et al. [2,3]. Namely, Abdalla et al. mentioned that if PEKS and PKE support
tags, then these can be combined via the Canetti-Halevi-Katz (CHK) transfor-
mation [10], leading to a PEKS/PKE scheme secure in the joint CCA manner.
That is, by introducing an OTS scheme, a verification key is regarded as a tag
of both ciphertexts, and a signature is produced on them. We point out that the
Emura et al. construction yields a “tag-based” SCF-PEKS scheme. By intro-
ducing a TBE scheme as the underlying PKE scheme supporting tags, we can
construct SCF-PEKS/PKE secure in the joint CCA manner. We further modify
the construction to protect against re-encryption attacks (See Sect. 4: High-level

2 Remark that we do not consider security against keyword guessing attacks which is
considered by Fang et al. [16], and leave it as a future work of this paper.
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Description of Our Construction for details) by preparing an IBE plaintext to
be correlated to a verification key.

2 Preliminaries

We denote that x
$←− S when x is chosen uniformly from a set S. y ← A(x)

means that y is an output of an algorithm A under an input x. We denote State
as the state information transmitted by the adversary to himself across stages
of the attack in experiments.

First, we introduce the definition of TBE [24] as follows. Let T AG and MTBE

be a tag space of TBE and a plaintext space of TBE, respectively.

Definition 1 (Syntax of TBE). A TBE scheme TBE consists of the following
three algorithms, TBE.KeyGen, TBE.Enc and TBE.Dec:

TBE.KeyGen(1κ): This key generation algorithm takes as an input the security
parameter κ ∈ N, and return a public key pkTBE and a secret key skTBE.

TBE.Enc(pkTBE, t, M): This encryption algorithm takes as input pkTBE, a mes-
sage M ∈ MTBE with a tag t ∈ T AG, and returns a ciphertext CTBE.

TBE.Dec(skTBE, t, CTBE): This decryption algorithm takes as inputs skTBE, t,
and CTBE, and returns a message M or a reject symbol ⊥.

Correctness is defined as follow: For all (pkTBE, skTBE) ← TBE.KeyGen(1κ), all
M ∈ MTBE , and all t ∈ T AG, TBE.Dec(skTBE, t, CTBE) = M holds, where
CTBE ← TBE.Enc(pkTBE, t, M).

Next, we define selective-tag weakly secure against chosen ciphertext attack
(IND-stag-CCA) as follows.

Definition 2 (IND-stag-CCA). For any probabilistic polynomial-time (PPT)
adversary A and the security parameter κ ∈ N, we define the experiment
ExpIND-stag-CCA

TBE,A (κ) as follows.

ExpIND-stag-CCA
TBE,A (κ):

(t∗,State) ← A(1κ); (pkTBE, skTBE) ← TBE.KeyGen(1κ)

(M∗
0 ,M∗

1 ,State) ← AOTBE.DEC(find, pkTBE); μ
$←− {0, 1}

C∗
TBE ← TBE.Enc(pkTBE, t

∗,M∗
μ); μ′ ← AOTBE.DEC(guess, C∗

TBE,State)

If μ = μ′ then output 1, and 0 otherwise

– OTBE.DEC: This decryption oracle takes as input a tag and a ciphertext
(t, CTBE) �= (t∗, C∗

TBE) and returns the result of TBE.Dec(skTBE, t, CTBE).

We say that TBE is IND-stag-CCA secure if the advantage

AdvIND-stag-CCA
TBE,A (κ) :=| Pr[ExpIND-stag-CCA

TBE,A (κ) = 1] − 1/2 |

is negligible for any PPT adversary A.
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Next, we introduce definition of anonymous IBE with CCA security [19] as
follows. Let ID and MIBE be an identity space and a plaintext space of IBE,
respectively.

Definition 3 (Syntax of IBE). An IBE scheme IBE consists of the following
four algorithms, IBE.Setup, IBE.Extract, IBE.Enc and IBE.Dec:

IBE.Setup(1κ): This setup algorithm takes as an input the security parameter
κ ∈ N, and return a public key params and a master key mk.

IBE.Extract(params, mk, ID): This extract algorithm takes as input an identity
ID ∈ ID and mk, and returns a secret key skID corresponding to ID.

IBE.Enc(params, ID, M): This encryption algorithm takes as input params, ID
∈ ID, a message M ∈ MIBE, and returns a ciphertext CIBE.

IBE.Dec(params, skID, CIBE): This decryption algorithm takes as inputs skID

and CIBE, and returns a message M or a reject symbol ⊥.

Correctness is defined as follows: For all (params,mk) ← IBE.Setup(1κ), all
M ∈ MIBE, and all ID ∈ ID, IBE.Dec(params, skID, CIBE) = M holds, where
CIBE ← IBE.Enc(params, ID, M) and skID ← IBE.Extract(params, mk, ID).

Next, we define indistinguishability against chosen ciphertext attack (IBE-
IND-CCA) as follows.

Definition 4 (IBE-IND-CCA). For any PPT adversary A and the security
parameter κ ∈ N, we define the experiment ExpIBE-IND-CCA

IBE,A (κ) as follows.

ExpIBE-IND-CCA
IBE,A (κ):

(params,mk) ← IBE.Setup(1κ)

(M∗
0 ,M∗

1 , ID∗,State) ← AOIBE.DEC,OIBE.EXTRACT(find, params); μ
$←− {0, 1}

C∗
IBE ← IBE.Enc(params, ID∗,M∗

μ)

μ′ ← AOIBE.DEC,OIBE.EXTRACT(guess, C∗
IBE,State)

If μ = μ′ then output 1, and 0 otherwise

– OIBE.DEC: This decryption oracle takes as input (ID,CIBE) �= (ID∗, C∗
IBE)

and returns the result of IBE.Dec(params, skID, CIBE) where skID ←
IBE.Extract(params,mk, ID).

– OIBE.EXTRACT: This extract oracle takes as input an identity ID �= ID∗and
returns the corresponding secret key skID ← IBE.Extract(params, mk, ID).

We say that IBE is IBE-IND-CCA secure if the advantage

AdvIBE-IND-CCA
IBE,A (κ) :=| Pr[ExpIBE-IND-CCA

IBE,A (κ) = 1] − 1/2 |

is negligible for any PPT adversary.

Next, we define anonymity against chosen-ciphertext attack (IBE-ANO-
CCA).
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Definition 5 (IBE-ANO-CCA). For any PPT adversary A and the security
parameter κ ∈ N, we define the experiment ExpIBE-ANO-CCA

IBE,A (κ) as follows.

ExpIBE-ANO-CCA
IBE,A (κ):

(params,mk) ← IBE.Setup(1κ)

(ID∗
0 , ID∗

1 ,M
∗,State) ← AOIBE.DEC,OIBE.EXTRACT(find, params); μ

$←− {0, 1}
C∗

IBE ← IBE.Enc(params, ID∗
μ,M∗)

μ′ ← AOIBE.DEC,OIBE.EXTRACT(guess, C∗
IBE,State)

If μ = μ′ then output 1, and 0 otherwise

– OIBE.DEC: This decryption oracle takes as input (ID,CIBE) �∈ {(ID∗
0 , C

∗
IBE),

(ID∗
1 , C

∗
IBE)} and returns the result of IBE.Dec(params, skID, CIBE) where

skID ← IBE.Extract(params,mk, ID).
– OIBE.EXTRACT: This extract oracle takes as input ID �∈ {ID∗

0 , ID∗
1} and returns

the corresponding secret key skID ← IBE.Extract(params,mk, ID).

We say that IBE is IBE-ANO-CCA secure if the advantage

AdvIBE-ANO-CCA
IBE,A (κ) :=| Pr[ExpIBE-ANO-CCA

IBE,A (κ) = 1] − 1/2 |

is negligible for any PPT adversary.

Next, we define unrestricted strong collision-freeness where strong means
that an adversary is allowed to produce the challenge ciphertext C∗

IBE. This is
an extension of strong collision-freeness [25]. Informally, strong collision-freeness
guarantees that no adversary can produce a ciphertext whose decryption result
for two decryption keys are the same, i.e., M∗

0 = M∗
1 . In addition, in our unre-

stricted strong collision-freeness definition, the trapdoor oracle has no restriction
as in unrestricted strong robustness [17]. Informally, unrestricted strong robust-
ness guarantees that no adversary can produce a ciphertext whose decryption
result for two decryption keys are both non-⊥. Since the condition M∗

0 = M∗
1 is

not required, our unrestricted strong collision-freeness is an intermediate notion
where it is weaker than unrestricted strong robustness and is stronger than
strong collision-freeness. How to construct an IBE scheme with unrestricted
strong collision-freeness is explained in Sect. 5.

Definition 6 (Unrestricted Strong Collision-Freeness). For any PPT adversary
A and the security parameter κ ∈ N, we define the experiment ExpIBE-usCF

IBE,A (κ)
as follows.

ExpIBE-usCF
IBE,A (κ):

(params, mk) ← IBE.Setup(1κ)

(C∗
IBE, ID∗

0 , ID∗
1) ← AOIBE.EXTRACT(find, params)

skID∗
0

← IBE.Extract(params, mk, ID∗
0); skID∗

1
← IBE.Extract(params, mk, ID∗

1)

M∗
0 ← IBE.Dec(params, skID∗

0
, C∗

IBE); M∗
1 ← IBE.Dec(params, skID∗

1
, C∗

IBE)

If M∗
0 �= ⊥ ∧ M∗

1 �= ⊥ ∧ M∗
0 = M∗

1 then output 1, and 0 otherwise
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– OIBE.EXTRACT: This extract oracle takes as input ID with no restriction, and
returns the corresponding secret key skID ← IBE.Extract(params,mk, ID).

We say that IBE is unrestricted strongly collision-free if the advantage

AdvIBE-usCF
IBE,A (κ) := Pr[ExpIBE-usCF

IBE,A (κ) = 1]

is negligible for any PPT adversary A.

Next, we introduce OTS [5] as follows. Let MSig be a message space.

Definition 7 (Syntax of OTS). A OTS scheme OTS consists of the following
three algorithms, Sig.KeyGen, Sign and Verify:

Sig.KeyGen(1κ): This key generation algorithm takes as an input the security
parameter κ ∈ N, and returns signing/verification key pair (Ks, Kv).

Sign(Ks,M): This signing algorithm takes as inputs Ks and a message M ∈
MSig, and returns a signature σ.

Verify(Kv,M, σ): This verification algorithm takes as input Kv, M , and σ, and
returns 1 (valid) or 0 (invalid).

Correctness is defined as follows: For all (Ks, Kv) ← Sig.KeyGen(1κ) and all
M ∈ MSig, Verify(Kv,M, σ) = 1 holds, where σ ← Sign(Ks,M).

Next, we define strong existential unforgeability against chosen message
attack (sEUF-CMA) of OTS as follows.

Definition 8 (one-time sEUF-CMA). For any PPT adversary A and the secu-
rity parameter κ ∈ N, we define the experiment Expone-timesEUF-CMA

OTS,A (κ) as
follows.

Expone-time sEUF-CMA
OTS,A (κ):

(Ks, Kv) ← Sig.KeyGen(1κ); (M,State) ← A(Kv); M ∈ MSig

σ ← Sign(Ks, M); (M∗, σ∗) ← A(σ,State)

If Verify(Kv, M∗, σ∗)=1 and (M∗, σ∗) �=(M, σ) then output 1, and 0 otherwise

We say that OTS is one-time sEUF-CMA secure if the advantage

Advone-time sEUF-CMA
OTS,A (κ) := Pr[Expone-time sEUF-CMA

OTS,A (κ) = 1]

is negligible for any PPT adversary.

3 Definitions of SCF-PEKS/PKE

In this section, we define SCF-PEKS/PKE. As in SCF-PEKS, the server and a
receiver manage keys separately. A keyword ω and a plaintext M are encrypted
by the server public key, pkS, and the receiver public key, pkR. Although a secret
key of the receiver, skR, plays the role of generating trapdoors in SCF-PEKS, we
additionally require that skR plays a role of decrypting a ciphertext. To search
for an encrypted keyword, the test algorithm requires both the server secret key,
skS, and the corresponding trapdoor. Let K be the keyword space and M be
the message space.
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Definition 9 (Syntax of SCF-PEKS/PKE). A SCF-PEKS/PKE scheme
SCF-PEKS/PKE consists of the following six algorithms,
SCF-PEKS/PKE.KeyGenS, SCF-PEKS/PKE.KeyGenR, SCF-PEKS/PKE.Trapdoor,
SCF-PEKS/PKE.Enc, SCF-PEKS/PKE.Dec and SCF-PEKS/PKE.Test:

SCF-PEKS/PKE.KeyGenS(1κ): This server key generation algorithm takes as
input the security parameter 1κ (κ ∈ N), and returns a server public key
pkS and a server secret key skS.

SCF-PEKS/PKE.KeyGenR(1κ): This receiver key generation algorithm takes as
input the security parameter 1κ (κ ∈ N), and returns a receiver public key
pkR and a receiver secret key skR.

SCF-PEKS/PKE.Trapdoor(pkR, skR, ω): This trapdoor generation algorithm
takes as input pkR, skR, and a keyword ω ∈ K, and returns a trapdoor tω
corresponding to keyword ω.

SCF-PEKS/PKE.Enc(pkS, pkR, ω,M): This encryption algorithm takes as input
pkR, pkS, ω, and a message M ∈ M, and returns a ciphertext λ.

SCF-PEKS/PKE.Dec(pkR, skR, λ): This decryption algorithm takes as input pkR,
skR, and λ, and returns a message M or a reject symbol ⊥.

SCF-PEKS/PKE.Test(pkS, skS, pkR, tω, λ): This test algorithm takes as input
pkS, skS, pkR, tω, and λ, and returns 1 if ω = ω′, where ω′ is the keyword
which was used for computing λ, and 0 otherwise.

Correctness is defined as follows: For all (pkS, skS) ← SCF-PEKS/PKE.KeyGenS
(1κ), all (pkR, skR) ← SCF-PEKS/PKE.KeyGenR(1κ), all ω ∈ K and all M ∈
M, let λ ← SCF-PEKS/PKE.Enc(pkS, pkR, ω,M) and tω ← SCF-PEKS/PKE.
Trapdoor(pkR, skR, ω). Then

SCF-PEKS/PKE.Test(pkS, skS, pkR, tω, λ) = 1 and

SCF-PEKS/PKE.Dec(pkR, skR, λ) = M holds.

Next, we define consistency. Basically, consistency guarantees that for two
trapdoors tω∗ and tω̂∗ where ω∗ �= ω̂∗, a ciphertext of ω∗ is not searched by
tω̂∗ . We give two definitions. The former case, which we call weak consistency, is
essentially the same as that of Chen et al. [12] where the ciphertext λ∗ is honestly
generated. Due to the secure-channel free setting, we additionally consider the
trapdoor oracle, and give skS to the adversary.

Definition 10 (Weak Consistency). For any PPT adversary A and the security
parameter κ ∈ N, we define the experiment ExpWEAK-CONSIST

SCF-PEKS/PKE,A (κ) as follows.

ExpWEAK-CONSIST
SCF-PEKS/PKE,A (κ):

(pkS, skS) ← SCF-PEKS/PKE.KeyGenS(1
κ)

(pkR, skR) ← SCF-PEKS/PKE.KeyGenR(1
κ)

(M∗, ω∗, ω̂∗) ← AOSCF-PEKS/PKE.TRAP(pkS, skS, pkR)
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M∗ ∈ M; ω∗, ω̂∗ ∈ K; ω∗ �= ω̂∗

λ∗ ← SCF-PEKS/PKE.Enc(pkS, pkR, ω∗, M∗)

tω̂∗ ← SCF-PEKS/PKE.Trapdoor(pkR, skR, ω̂∗)

If SCF-PEKS/PKE.Test(pkS, skS, pkR, tω̂∗ , λ∗) = 1 then output 1, and 0 otherwise

– OSCF-PEKS/PKE.TRAP: This trapdoor oracle takes as input ω where ω �∈ {ω∗, ω̂∗}
and returns tω ← SCF-PEKS/PKE.Trapdoor(pkR, skR, ω).

We say that SCF-PEKS/PKE is weakly consistent if the advantage

AdvWEAK-CONSIST
SCF-PEKS/PKE,A (κ) := Pr[ExpWEAK-CONSIST

SCF-PEKS/PKE,A (κ) = 1]

is negligible for any PPT adversary A.

Next, we strengthen weak consistency, which we call strong consistency. Here,
an adversary is allowed to produce the ciphertext λ∗. This situation is the same
as those of strong robustness [2,3] and strong collision-freeness [25]. Note that,
an adversary is not allowed to obtain decryption keys for challenge identities in
these models. In our model, the trapdoor oracle has no restriction, i.e., an adver-
sary can obtain trapdoors of challenge keywords. This situation is the same as
that of unrestricted strong robustness [17]. Our strong consistency captures the
following situation. Owing to the secure-channel free property, an adversary can
observe trapdoors. Let the adversary obtain tω∗ and tω̂∗ . Moreover, assume that
the adversary knows keywords ω∗ and ω̂∗ associated with tω∗ and tω̂∗ , respec-
tively.3 Then, the adversary may produce a ciphertext where the test algorithm
decides that the ciphertext is associated with both ω∗ and ω̂∗. Strong consistency
prevents this attack.

Definition 11 (Strong Consistency). For any PPT adversary A and the secu-
rity parameter κ ∈ N, we define the experiment ExpSTRONG-CONSIST

SCF-PEKS/PKE,A (κ) as
follows.

ExpSTRONG-CONSIST
SCF-PEKS/PKE,A (κ):

(pkS, skS) ← SCF-PEKS/PKE.KeyGenS(1κ)
(pkR, skR) ← SCF-PEKS/PKE.KeyGenR(1κ)

(λ∗, ω∗, ω̂∗) ← AOSCF-PEKS/PKE.TRAP(pkS, skS, pkR); ω∗, ω̂∗ ∈ K; ω∗ �= ω̂∗

tω∗ ← SCF-PEKS/PKE.Trapdoor(pkR, skR, ω∗)
tω̂∗ ← SCF-PEKS/PKE.Trapdoor(pkR, skR, ω̂∗)
If SCF-PEKS/PKE.Test(pkS, skS, pkR, tω∗ , λ∗) = 1 and

SCF-PEKS/PKE.Test(pkS, skS, pkR, tω̂∗ , λ∗) = 1
then output 1, and 0 otherwise

– OSCF-PEKS/PKE.TRAP: This trapdoor oracle takes as input ω with no restriction,
and returns tω ← SCF-PEKS/PKE.Trapdoor(pkR, skR, ω).

3 This assumption is also natural since we do not consider keyword guessing
attacks [16].
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We say that SCF-PEKS/PKE is strongly consistent if the advantage

AdvSTRONG-CONSIST
SCF-PEKS/PKE,A (κ) := Pr[ExpSTRONG-CONSIST

SCF-PEKS/PKE,A (κ) = 1]

is negligible for any PPT adversary A.

Next, we define two security notions for keyword privacy, indistinguishability
of keywords against chosen keyword attack with the server secret key (IND-CKA-
SSK) and indistinguishability of keywords against chosen keyword attack with
all trapdoors (IND-CKA-AT). In the IND-CKA-SSK definition, an adversary A
is modeled as the server, and thus skS is given to A. If A obtains trapdoors, then
A can run the test algorithm by myself. Thus, trapdoors of challenge keywords
(ω∗

0 , ω
∗
1) are not given to A. Instead, A is allowed to access the test oracle for

(λ, ω) /∈ {(λ∗, ω∗
0), (λ

∗, ω∗
1)}. To guarantee that no information of keyword is

revealed via the decryption procedure, A is allowed to access the decryption
oracle with no restriction.

Definition 12 (IND-CKA-SSK). For any PPT adversary A and the security
parameter κ ∈ N, we define the experiment ExpIND-CKA-SSK

SCF-PEKS/PKE,A(κ) as follows.

ExpIND-CKA-SSK
SCF-PEKS/PKE,A(κ):

(pkS, skS) ← SCF-PEKS/PKE.KeyGenS(1
κ)

(pkR, skR) ← SCF-PEKS/PKE.KeyGenR(1κ)

(ω∗
0 , ω∗

1 , M∗,State)

← AOSCF-PEKS/PKE.DEC,OSCF-PEKS/PKE.TRAP,OSCF-PEKS/PKE.TEST(find, pkS, skS, pkR)

μ
$←− {0, 1}; λ∗ ← SCF-PEKS/PKE.Enc(pkS, pkR, ω∗

μ, M∗)

μ′ ← AOSCF-PEKS/PKE.DEC,OSCF-PEKS/PKE.TRAP,OSCF-PEKS/PKE.TEST(guess, λ∗,State)

If μ = μ′ then output 1, and 0 otherwise

– OSCF-PEKS/PKE.DEC: This decryption oracle takes as input λ with no restriction,
and returns the result of SCF-PEKS/PKE.Dec(pkR, skR, λ). Remark that λ∗

is also allowed to input.
– OSCF-PEKS/PKE.TRAP: This trapdoor oracle takes as input ω where ω �∈ {ω∗

0 , ω
∗
1}

and returns tω ← SCF-PEKS/PKE.Trapdoor(pkR, skR, ω).
– OSCF-PEKS/PKE.TEST: This test oracle takes as input (λ, ω) where (λ, ω) /∈

{(λ∗, ω∗
0), (λ

∗, ω∗
1)}, compute tω ← SCF-PEKS/PKE.Trapdoor(pkR, skR, ω),

and returns result of SCF-PEKS/PKE.Test(pkS, skS, pkR, tω, λ).

We say that a SCF-PEKS/PKE scheme SCF-PEKS/PKE is IND-CKA-SSK
secure if the advantage

AdvIND-CKA-SSK
SCF-PEKS/PKE,A(κ) :=| Pr[ExpIND-CKA-SSK

SCF-PEKS/PKE,A(κ) = 1] − 1/2 |

is negligible for any PPT adversary A.
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Next, we define IND-CKA-AT. In the IND-CKA-AT definition, an adversary
A is modeled as a receiver. Thus, skR is given to A. Then, A can generate
trapdoors for all keywords. Since A does not have skS, A is not allowed to run
the test algorithm. Thus, A is allowed to access the test oracle for (λ, ω) /∈
{(λ∗, ω∗

0), (λ
∗, ω∗

1)}. To guarantee that no information of keyword is revealed via
the decryption procedure, A is allowed to access the decryption oracle with no
restriction.

Definition 13 (IND-CKA-AT). For any PPT adversary A and the security
parameter κ ∈ N, we define the experiment ExpIND-CKA-AT

SCF-PEKS/PKE,A(κ) as follows.

ExpIND-CKA-AT
SCF-PEKS/PKE,A(κ):

(pkS, skS) ← SCF-PEKS/PKE.KeyGenS(1κ)
(pkR, skR) ← SCF-PEKS/PKE.KeyGenR(1κ)
(ω∗

0 , ω
∗
1 ,M

∗,State)

← AOSCF-PEKS/PKE.DEC,OSCF-PEKS/PKE.TEST(find, pkS, pkR, skR)

μ
$←− {0, 1}; λ∗ ← SCF-PEKS/PKE.Enc(pkS, pkR, ω∗

μ,M∗)

μ′ ← AOSCF-PEKS/PKE.DEC,OSCF-PEKS/PKE.TEST(guess, λ∗,State)
If μ = μ′ then output 1, and 0 otherwise

– OSCF-PEKS/PKE.DEC: This decryption oracle takes as input λ with no restriction,
and returns the result of SCF-PEKS/PKE.Dec(pkR, skR, λ). Remark that λ∗

is also allowed to input.
– OSCF-PEKS/PKE.TEST: This test oracle takes as input (λ, ω) /∈

{(λ∗, ω∗
0), (λ

∗, ω∗
1)}, computes tω ← SCF-PEKS/PKE.Trapdoor(pkR, skR, ω),

and returns result of SCF-PEKS/PKE.Test(pkS, skS, pkR, tω, λ).

We say that a SCF-PEKS/PKE scheme SCF-PEKS/PKE is IND-CKA-AT secu-
rity if the advantage

AdvIND-CKA-AT
SCF-PEKS/PKE,A(κ) :=| Pr[ExpIND-CKA-AT

SCF-PEKS/PKE,A(κ) = 1] − 1/2 |

is negligible for any PPT adversary A.

Next, we define the data privacy for SCF-PEKS/PKE under chosen cipher-
text attack with the server secret key and all trapdoors (IND-CCA-SSK/AT)
as follows. To guarantee that the server does not obtain any information of
plaintext, the adversary A is given to skS. Moreover, to guarantee that no infor-
mation of plaintext is revealed via the text procedure, A is allowed to access the
trapdoor oracle with no restriction.

Definition 14 (IND-CCA-SSK/AT). For any PPT adversary A and the secu-
rity parameter κ ∈ N, we define the experiment ExpIND-CCA-SSK/AT

SCF-PEKS/PKE,A (κ) as
follows.
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ExpIND-CCA-SSK/AT
SCF-PEKS/PKE,A (κ):

(pkS, skS) ← SCF-PEKS/PKE.KeyGenS(1κ)
(pkR, skR) ← SCF-PEKS/PKE.KeyGenR(1κ)
(ω∗,M∗

0 ,M∗
1 ,State)

← AOSCF-PEKS/PKE.DEC,OSCF-PEKS/PKE.TRAP(find, pkS, skS, pkR)

μ
$←− {0, 1}; λ∗ ← SCF-PEKS/PKE.Enc(pkS, pkR, ω∗,M∗

μ)

μ′ ← AOSCF-PEKS/PKE.DEC,OSCF-PEKS/PKE.TRAP(guess, λ∗,State)
If μ = μ′ then output 1, and 0 otherwise

– OSCF-PEKS/PKE.DEC: This decryption oracle takes as input a ciphertext λ �= λ∗,
and returns the result of SCF-PEKS/PKE.Dec(pkR, skR, λ).

– OSCF-PEKS/PKE.TRAP: This trapdoor oracle takes as input ω with no restriction,
and returns tω ← SCF-PEKS/PKE.Trapdoor(pkR, skR, ω). Remark that ω∗ is
also allowed to input.

We say that a SCF-PEKS/PKE scheme SCF-PEKS/PKE is IND-CCA-SSK/AT
secure if the advantage

AdvIND-CCA-SSK/AT
SCF-PEKS/PKE,A (κ) :=| Pr[ExpIND-CCA-SSK/AT

SCF-PEKS/PKE,A (κ) = 1] − 1/2 |

is negligible for any PPT adversary A.

4 Generic Construction of SCF-PEKS/PKE

In this section, we propose a generic construction of SCF-PEKS/PKE. We con-
struct SCF-PEKS/PKE from IBE = (IBE,Setup,IBE.Extract,IBE.Enc,IBE.Dec),
TBE = (TBE.KeyGen,TBE.Enc,TBE.Dec), and OTS = (Sig.KeyGen,Sign,Verify).
Our construction can be seen as an extension of a generic construction of PEKS
(from anonymous IBE proposed by Abdalla et al. [1]) and a generic construc-
tion of SCF-PEKS (from anonymous IBE, TBE, and OTS proposed by Emura
et al. [14]).

The Abdalla et al. construction is briefly explained as follows. A receiver
has the master key mk as its secret key skIBE

R . A keyword ω is regarded as
an identity, i.e., K is set to ID, and is encrypted as follows. First, a random
plaintext R ∈ MIBE is chosen, and next R is encrypted by IBE such that
CIBE ← IBE.Enc(params, ω,R). Then, the PEKS ciphertext is (CIBE, R). A trap-
door tω is the decryption key skω ← IBE.Extract(params, skIBE

R , ω). The test
algorithm outputs 1 if IBE.Dec(params, tω, CIBE) = R holds. Since the under-
lying IBE is required to be anonymous, no information of ω is revealed from
CIBE. By additionally employing TBE and OTS, Emura et al. [14] added the
secure-channel property to the Abdalla et al. construction. In their construc-
tion, the server manages a key pair of TBE (pkTBE

S , skTBE
S ). A random plain-

text R ∈ MIBE is encrypted by IBE, and the IBE ciphertext is encrypted by
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TBE such that CTBE ← TBE.Enc(pkTBE
S ,Htag(Kv), CIBE), where the verifica-

tion key Kv is regarded as the tag and Htag : {0, 1}∗ → T AG is a target
collision-resistant (TCR) hash function. Finally, a signature is computed such
that σ ← Sign(Ks, (CTBE, R)). The SCF-PEKS ciphertext is (CTBE,Kv, σ). The
test algorithm first decrypts CTBE using skTBE

S , next it decrypts its decryption
result using a trapdoor, and then obtains R. The test algorithm outputs 1 if σ
is valid on (CTBE, R). Owing to the double encryption, both skTBE

S and tω are
required to run the test algorithm. It is particularly worth noting that the ran-
dom plaintext R is NOT contained in the ciphertext. Emura et al. mentioned
that even if R is contained in a ciphertext, it does not affect the security, and
the reason for removing R is to reduce the ciphertext size.

High-Level Description of Our Construction: To integrate SCF-PEKS and
PKE, the receiver additionally manages a key pair of TBE (pkTBE

R , skTBE
R ). Since

the Emura et al. construction above can be seen as “tag-based” SCF-PEKS, a
plaintext M ∈ MTBE is encrypted by pkTBE

R with the same tag Htag(Kv) such
that

CTBE,S ← TBE.Enc(pkTBE
S ,Htag(Kv), CIBE) and

CTBE,R ← TBE.Enc(pkTBE
R ,Htag(Kv),M)

Here, for the sake of clarity, we use subscript S for ciphertexts encrypted by
the server pubic key pkTBE

S , and use subscript R for ciphertexts encrypted
by the receiver pubic key pkTBE

R . The sender computes the OTS σ on
(CTBE,S, CTBE,R, R). A SCF-PEKS/PKE ciphertext is described as λ =
(CTBE,S, CTBE,R,Kv, σ,R). It is particularly worth noting that the random plain-
text R is contained in the ciphertext unlike in the Emura et al. construction.
The ciphertext now provides public verifiability since anyone can verify σ. Since
the decryption algorithm needs to verify σ, this public verifiability is necessary.

The construction basically works well since TBE+OTS yields CCA-secure
PKE [24]. The main difficulty to be handled is explained as follows. Let
λ∗ = (C∗

TBE,S, C
∗
TBE,R,K∗

v , σ∗, R∗) be the challenge ciphertext in the IND-
CKA-SSK game. Now we consider how to reduce the IND-CKA-SSK secu-
rity to the IBE-ANO-CCA security. Since the adversary A has skTBE

S , A can
decrypt C∗

TBE,S. Let C∗
IBE be the decryption result. Then, A can compute a valid

ciphertext λ �= λ∗ such that (1) (Ks,Kv) is chosen by A with the condition
Kv �= K∗

v , (2) C∗
IBE is re-encrypted with the tag Htag(Kv) such that CTBE,S ←

TBE.Enc(pkTBE
S ,Htag(Kv), C∗

IBE), (3) CTBE,R ← TBE.Enc(pkTBE
R ,Htag(Kv),M)

is computed with arbitrary M , (4) σ ← Sign(Ks, (CTBE,S, CTBE,R, R∗)) is com-
puted, and (5) λ = (CTBE,S, CTBE,R,Kv, σ,R∗) is sent to the test oracle with
ω ∈ {ω∗

0 , ω
∗
1}. Although the reduction algorithm obtains C∗

IBE, the algorithm
cannot send the challenge ciphertext C∗

IBE with either ω∗
0 or ω∗

1 to the decryption
oracle of IBE. Thus, the security proof fails. To protect against this re-encryption
attack, we modify the plaintext of CIBE as

CIBE ← IBE.Enc(params, ω,R) with R = Hibe(Kv)
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where Hibe : {0, 1}∗ → MIBE is a TCR hash function, and the test algorithm
checks whether or not R = Hibe(Kv). This structure prevents the adversary
from employing different Kv and thus, if C∗

IBE appears as above, then Kv = K∗
v

must hold unless the TCR property is broken. Since this situation contradicts
sEUF-CMA security, our simulation works well. Since R can be computed from
Kv, we can now remove R from λ without losing public verifiability, and an
SCF-PEKS/PKE ciphertext is described as λ = (CTBE,S, CTBE,R,Kv, σ).

We give our construction as follows. Assume that CIBE ⊆ MTBE and CTBE ×
CTBE ×MIBE ⊆ MSig, where CIBE and MIBE are a ciphertext space and plaintext
space of IBE respectively, MTBE is a plaintext space of TBE, and MSig is a
message space of OTS.

The Proposed Construction

SCF-PEKS/PKE.KeyGenS(1κ): Run (pkTBE
S , skTBE

S ) ← TBE.KeyGen(1κ). Output
pkS = pkTBE

S and skS = skTBE
S .

SCF-PEKS/PKE.KeyGenR(1κ): Run (pkIBE
R , skIBE

R ) ← IBE.Setup(1κ) and
(pkTBE

R , skTBE
R ) ← TBE.KeyGen(1κ). Output pkR = (pkIBE

R , pkTBE
R ) and skR =

(skIBE
R , skTBE

R ). We assume that TCR hash functions Htag : {0, 1}∗ → T AG
and Hibe : {0, 1}∗ → MIBE are contained in pkR.

SCF-PEKS/PKE.Trapdoor(pkR, skR, ω): Parse pkR = (pkIBE
R , pkTBE

R ) and skR =
(skIBE

R , skTBE
R ). Run skω ← IBE.Extract(pkIBE

R , skIBE
R , ω) and output tω = skω.

SCF-PEKS/PKE.Enc(pkS, pkR, ω,M): Parse pkS = pkTBE
S and pkR =

(pkIBE
R , pkTBE

R ). Run (Ks,Kv) ← Sig.KeyGen(1κ) and compute t =
Htag(Kv) and R = Hibe(Kv). Run CIBE ← IBE.Enc(pkIBE

R , ω,R). Compute
CTBE,S ← TBE.Enc(pkTBE

S , t, CIBE), CTBE,R ← TBE.Enc(pkTBE
R , t,M), and

σ ← Sign(Ks, (CTBE,S, CTBE,R, R)), and output λ = (CTBE,S, CTBE,R,Kv, σ).

SCF-PEKS/PKE.Dec(pkR, skR, λ): Parse pkR = (pkIBE
R , pkTBE

R ), skR =
(skIBE

R , skTBE
R ) and λ = (CTBE,S, CTBE,R,Kv, σ). Compute R = Hibe(Kv). If

Verify(Kv, (CTBE,S, CTBE,R, R), σ) = 0, then output ⊥. Otherwise, compute
t = Htag(Kv) and output M ← TBE.Dec(pkTBE

R , skTBE
R , t, CTBE,R).

SCF-PEKS/PKE.Test(pkS, skS, pkR, tω, λ): Parse pkS = pkTBE
S , skS = skTBE

S ,
pkR = (pkIBE

R , pkTBE
R ), and λ = (CTBE,S, CTBE,R,Kv, σ). Compute

t = Htag(Kv), and run C ′
IBE ← TBE.Dec(pkTBE

S , skTBE
S , t, CTBE,S) and

R′ ← IBE.Dec(pkIBE
R , tω, C ′

IBE). Output 1 if R′ = Hibe(Kv) and
Verify(Kv, (CTBE,S, CTBE,R, R′), σ) = 1 hold, and 0 otherwise.

Obviously, correctness holds if TBE, IBE, and OTS are correct. Due to the page
limitation, we omit security proofs of following theorems. We will show the details
of proofs in the full version of this paper.

Theorem 1. SCF-PEKS/PKE is weakly consistent if IBE is IBE-IND-CPA
secure.

Theorem 2. SCF-PEKS/PKE is strongly consistent if IBE is unrestricted strong
collision-free.
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Theorem 3. SCF-PEKS/PKE is IND-CKA-SSK secure if IBE is IBE-ANO-
CCA secure, OTS is one-time sEUF-CMA secure, and Hibe is a TCR hash
function.

Theorem 4. SCF-PEKS/PKE is IND-CKA-AT secure if TBE is IND-stag-CCA
secure, OTS is one-time sEUF-CMA secure, and Htag is a TCR hash function.

Theorem 5. SCF-PEKS/PKE is IND-CCA-SSK/AT secure if TBE is IND-stag-
CCA secure, OTS is one-time sUF-CMA secure, and Htag is a TCR hash func-
tion.

5 Instantiation of Our Generic Construction

For TBE, we can simply employ the Kiltz TBE scheme [24], and for the
OTS, we can employ any sEUF-CMA secure OTS scheme, e.g., the Wee OTS
scheme [29]. We explain how to construct an IBE scheme that matches our
requirements, i.e., with unrestricted strong collision-freeness which defined in
this paper, and with IBE-ANO-CCA security. To the best of our knowledge, the
strongest notion among several robustnesses and collision-freenesses is complete
robustness defined by Farshim et al. [17]. They showed that complete robust-
ness implies unrestricted strong robustness. Since unrestricted strong collision-
freeness is implied by unrestricted strong robustness, it is enough to construct
an IBE scheme with complete robustness for our purpose. Farshim et al. also
showed that the transformation from weakly robust IBE (and commitment with
the standard hiding and binding properties) to strongly robust IBE, proposed by
Abdalla et al. [2,3], is already powerful enough to construct completely robust
IBE.4 Moreover, Abdalla et al. also proposed a transformation from IBE to
weakly robust IBE. Since these transformations preserve the anonymity and
CCA security of the underlying IBE scheme, we can construct an IBE-ANO-
CCA secure IBE scheme with unrestricted strong collision-freeness by applying
the two Abdalla et al. transformations (from normal to weakly robust, and from
weakly robust to strongly robust).

We have three candidates as the underlying IBE scheme.5 One candidate
is the Gentry IBE scheme [19] which is IBE-ANO-CCA secure in the standard
model. As another standard model construction, we can employ a variant of
the Boyen-Waters IBE scheme [8] that uses the CHK transform to achieve IBE-
ANO-CCA security. Although Abdalla et al. [2,3] mentioned that these schemes
4 Farshim et al. [17] showed that a transformation proposed by Mohassel [25] is also

powerful enough to construct completely robust IBE,al though the transformation
requires the random oracle.

5 Although other anonymous IBE schemes without random oracles based on simple
assumptions have been proposed, we cannot employ them. For example, the Chen
et al. IBE scheme [11] and the Jutla-Roy IBE scheme [22,23] are IBE-ANO-CPA
secure. Although Jutla and Roy gave a CCA version, the scheme is not anonymous
due to its public verifiability where one can check whether or not a ciphertext is
valid for an identity.
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are not robust, we can add unrestricted strong collision-freeness property to them
via the Abdalla et al. transformations. Other candidate is the CCA-version of the
Boneh-Franklin IBE scheme [7] which is IBE-ANO-CCA secure in the random
oracle model. The scheme is also known to provide strong robustness. However,
it is not clear whether the scheme provides unrestricted strong collision-freeness.
Thus, we need to properly employ the Abdalla et al. transformation.

Since unrestricted strong collision-freeness is weaker than complete robust-
ness, employing the two Abdalla et al. transformations as above may be some-
what excessive. Thus, directly and simply constructing an IBE-ANO-CCA secure
IBE scheme with unrestricted strong collision-freeness is left as an interesting
open problem.
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