
An Efficient and Provably Secure Private
Polynomial Evaluation Scheme

Zhe Xia1, Bo Yang2(B), Mingwu Zhang3, and Yi Mu4

1 School of Computer Science, Wuhan University of Technology,
Wuhan 430070, China
xiazhe@whut.edu.cn

2 School of Computer Science, Shaanxi Normal University,
Xi’an 710062, China
byang@snnu.edu.cn

3 School of Computers, Hubei University of Technology,
Wuhan 430068, China
csmwzhang@gmail.com

4 School of Computing and Information Technology,
University of Wollongong, Wollongong 2522, Australia

ymu@uow.edu.au

Abstract. Private Polynomial Evaluation (PPE) allows the service
provider to outsource the computation of a polynomial to some third
party (e.g. the Cloud) in a verifiable way. And meanwhile, the poly-
nomial remains hidden to the clients who are able to query the ser-
vice. In ProvSec 2017, Bultel et al. have presented the formal security
definitions for PPE, including polynomial protection (PP), proof unforge-
ability (UNF) and indistinguishability against chosen function attack
(IND-CFA). They have introduced a PPE scheme that satisfies all these
properties, and they have also shown that a polynomial commitment
scheme in Asiacrypt 2010, called PolyCommitPed, enjoys these properties
as well. In this paper, we introduce another provably secure PPE scheme,
which not only has computational advantages over these two existing
ones, but also relies on a much weaker security assumption. Moreover,
we further explore how our PPE scheme can be implemented in the dis-
tributed fashion, so that a number of third parties jointly respond to
the query but none of them could learn the polynomial unless they all
collude.

1 Introduction

Mathematical models have various applications in our everyday life. For exam-
ple, a patient collects her medical data such as blood pressure, body temperature
and heart rate by sensors, and the expert system can use some pre-defined math-
ematical model to evaluate her health status. A farmer collects the data of the
soil, such as humidity, acidity and thermal parameters, and the agricultural con-
sultant can use some well analysed mathematical model to predict the state
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of the soil for the next year. The benefits for these examples are obvious: the
patient gets better medical treatments, and the farmer obtains precise informa-
tion regarding how much seeds to buy and when to plant them in the coming
year. As the development of computer and communication technologies, things
could get even better. The service provider can outsource the computation of
the mathematical model to some third party, e.g. the Cloud. In this way, the
service provider reduces its operation cost, because it does not need to main-
tain the resources of computation, storage and communication. And meanwhile,
the client could access the service more conveniently, e.g. the patient can be
monitored continuously in real-time.

However, the above attractive features and economical initiatives cannot suc-
ceed unless the following issues have been well addressed. On one hand, to protect
its intellectual property, the service provider may not be willing to reveal the
mathematical model to the clients. On the other hand, the clients may not trust
the third party, and would like to verify that the mathematical model has been
computed correctly. To harmonise these two contradicting requirements, several
cryptographic solutions have been proposed recently in the literature. One sub-
class of these solutions focusing on the case where the mathematical model can
be expressed as univariable polynomials are called private polynomial evaluation
(PPE) schemes [6].

In a PPE scheme, as illustrated in Fig. 1, the service provider outsources
the evaluation of the polynomial f(·) to a third party and it broadcasts some
public information vk. The paid client can query the service by submitting the
input data x to the third party. After evaluating the polynomial, the third party
returns f(x) as well as a proof π to the client. Finally, the client is able to
verify whether the polynomial has been evaluated correctly using the public
information vk and the proof π. Note that during this process, the client should
not learn any information of the polynomial f(·). This not only requires that the
client cannot derive the entire polynomial f(·), but also requires that even if the
client has some prior knowledge of two polynomials f0(·) and f1(·), she cannot
distinguish which one has been used to evaluate her input data.

Fig. 1. An illustration of the PPE scheme



An Efficient and Provably Secure PPE Scheme 597

1.1 Related Works

Verifiable computation, first introduced by Gennaro et al. in [13], requires that
the party who performs the computation to prove the correctness of output.
Hence, it allows the service provider who has limited resources to delegate expen-
sive computations to some untrusted parties. Furthermore, if the correctness of
output can be checked by anyone who is interested, it is called publicly verifi-
able computation [19]. The formal security model and definitions of verifiable
computation have been presented by Canetti et al. in [8]. Afterwards, this tech-
nique has been further extended in various aspects. For example, Choi et al. [9]
have extended verifiable computation to the multi-client setting. Papamanthou
et al. [17] have introduced the concept of signatures of correct computation,
which uses multivariate polynomials for verification. Fiore and Gennaro [11]
have proposed a verifiable computation scheme for polynomial evaluation and
matrix computation. Parno et al. [18] have demonstrated, using a concrete pro-
totype called Pinocchio, that some of the verifiable computations are practical
in the real use. The research focus of the above works is that the verification of
the proof should require less computational costs than computing the function
from scratch, but they have not considered protecting the function against the
client which is required in PPE.

Another related work was introduced by Naor and Pinkas [16], called oblivi-
ous polynomial evaluation (OPE), in which the service provider has some poly-
nomial f(·), and the client has some input x. After the execution of the protocol,
the client should obtain f(x) but not the original polynomial f(·), and the service
provider should not learn x. Although OPE and PPE shares some similarities,
they still differ in several aspects: OPE does not consider verifying the correct-
ness of polynomial evaluation, and PPE does not consider protection of x from
the service provider.

Recently, several works have tried to address these two contradicting require-
ments simultaneously, so that the client can verify that the function has been
correctly computed, and meanwhile, the function is not revealed to the client. To
simplify the design, most of these works have restricted the function as univari-
ate polynomials. In ProvSec 2017, Bultel et al. [6] called this type of schemes
as private polynomial evaluation (PPE), and they presented the formal secu-
rity definitions for PPE. Informally, a PPE scheme should satisfy the following
three properties: (1) polynomial protection (PP) requires that the client cannot
evaluate the polynomial by herself on any new input that she has not queried
before; (2) proof unforgeability (UNF) requires that the third party cannot cheat
the client using incorrect result; (3) indistinguishability against chosen function
attack (IND-CFA) requires that the client cannot distinguish which polynomial
has been evaluated even if she has some prior knowledge of the polynomials. In
the same paper, Bultel et al. also showed that one of the polynomial commitment
schemes in [15], called PolyCommitPed, satisfies these properties as well, although
PolyCommitPed is originally designed as a verifiable secret sharing (VSS) scheme
with constant size commitments. Note that a few other works [12,14] have intro-
duced verifiable and privacy-preserving solutions for various applications and
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they have claimed implicitly to achieve similar properties. But it was shown later
that in these works, a malicious client can retrieve the entire polynomial in a sin-
gle query. To the best of our knowledge, Bultel’s scheme in [6] and PolyCommitPed
in [15] are the existing ones that can achieve all the above three properties, and
we will compare our proposed scheme with these two schemes.

1.2 Our Contributions

The contributions of this paper are summarised as follows:

– We introduce a new PPE scheme and we formally prove that it achieves PP,
UNF and IND-CFA properties. Our proposed scheme not only has computa-
tional advantages over the two existing ones, but also relies on a much weaker
security assumption. Regarding the computational costs, in one aspect, our
scheme uses Pedersen’s VSS [20] to replace Feldman’s VSS [10] as used in [6],
and the benefit is that we no longer need to use any CPA encryption scheme
and zero-knowledge proof in order to achieve the IND-CFA property. In the
other aspect, although Pedersen’s VSS has been used as the main build-
ing block both in our scheme and in PolyCommitPed, the client’s verification
of polynomial evaluation in our scheme does not need any expensive pair-
ing computation. Regarding the security assumptions, our scheme only relies
on the discrete logarithm (DL) assumption, while Bultel’s scheme needs the
decisional Diffie-Hellman (DDH) assumption and PolyCommitPed needs the
t-strong Diffie-Hellman (t-SDH) assumption [4]. It is well known that DL
is a much weaker assumption than DDH and t-SDH. Moreover, the t-SDH
assumption is not as well analysed by researchers in computational number
theory as the other two, and the DDH assumption may fail in some special
groups, e.g. the bilinear map [5].

– We further explore how our proposed scheme can be implemented in the
distributed fashion. A number of third parties jointly evaluate the polynomial,
but none of them can learn the secret polynomial unless they all collude. In
the client’s view, the polynomial appears to have been evaluated by a single
third party. Note that this extension could better reflect the demands in real
world applications, since the service provider may wish to keep the polynomial
private from the third party as well.

1.3 Organisation of the Paper

The rest of the paper is organised as follows: In Sect. 2, we outline some prelimi-
naries. The model and definitions of PPE are described in Sect. 3. Our proposed
PPE scheme as well as its security proofs are presented in Sect. 4. We further
extend the PPE scheme into a distributed version and briefly sketch its security
in Sect. 5. Finally, we conclude in Sect. 6.
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2 Preliminaries

2.1 Notations

In the paper, all participants are assumed to be probabilistic polynomial time
(PPT) algorithms with respect to the security parameter λ, unless stated other-
wise. We use standard notions for expressing probabilistic algorithms and exper-
iments. If A is a probabilistic algorithm, then A(x1, x2, . . . ; r) is the result of run-
ning A on inputs x1, x2, . . . and a random coin r. We denote y ← A(x1, x2, . . . ; r)
as the experiment of picking r at random and assigning y as A(x1, x2, . . . ; r). If S

is a finite set, then x
R← S denotes the operation of picking an element uniformly

from S. Pr[x ← S; y ← T ; . . . : p(x, y, . . .)] is denoted as the probability that the
predicate p(x, y, . . .) will be true after the ordered execution of the algorithms
x ← S, y ← T , etc. A function ε(·) : N → R

+ is called negligible if for all c > 0,
there exists a k0 such that ε(k) < 1/kc for all k > k0. Moreover, let p, q be large
primes such that q|p − 1, and G is a subgroup of Z∗

p with order q. Both g and
h are generators of G, but it is required that nobody knows logg h. We assume
that all computations are modulo p unless stated otherwise.

2.2 Building Blocks

Pedersen’s Verifiable Secret Shairng [20]. Secret sharing is a useful tech-
nique to ensure secrecy and availability of sensitive information. The dealer can
share the secret among a number of participants, so that a quorum of these par-
ticipants work together can recover the secret, but less participants cannot learn
any information of the secret. However, in traditional secret sharing schemes, the
dealer may cheat by distributing inconsistent shares, and the participants may
cheat by revealing fake shares when reconstructing the secret. Using verifiable
secret sharing (VSS), these dishonest behaviours can be detected. Pedersen’s
VSS is based on Shamir secret sharing, and it works as follows:

– The dealer first generates two polynomials f(·) and f ′(·) over Zq with degree
k as:

f(z) = a0 + a1z + . . . + akzk f ′(z) = b0 + b1z + . . . + bkzk

where the secret s = a0.
– Then dealer publishes the commitments Ci = gaihbi for i = 0, 1, . . . , k.
– The xi values for i = 1, 2, . . . , n are public parameters associate with each par-

ticipant such that xi �= xj if i �= j. For each participant, the dealer computes
the share si = f(xi) and s′

i = f ′(xi).
– Once receiving the share si and s′

i, each participant verifies its validity by:

gsihs′
i =

k∏

j=0

(Ci)xi
j
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If the above verification fails, a participant can make an accusation against
the dealer. Note that the same verification also can be used to prevent the
participants from revealing fake shares when reconstructing the secret.

Homomorphic Secret Sharing [3]: Denote (s1, s2, . . . , sn) as a set of shares
encoding the secret s, and (s′

1, s
′
2, . . . , s

′
n) as another set of shares encoding the

secret s′. Moreover, ⊕ and ⊗ are denoted as the operation of shares and the
operation of the secret, respectively. Secret sharing is said to have the homomor-
phic property if the set (s1 ⊕ s′

1, s2 ⊕ s′
2, . . . sn ⊕ s′

n) encodes the secret s ⊗ s′. It
is obvious that Pedersen’s VSS enjoys the (+,+)-homomorphic property, where
the symbol + denotes the addition operation in the group Zq. We will use this
property to extend our PPE scheme into the distributed version.

3 Model and Definitions

3.1 Private Polynomial Evaluation (PPE)

A PPE scheme [6] is specified by the following four randomised algorithms: Setup,
Init, Compute, Verif:

– Setup: takes as input the security parameter λ, and returns the system param-
eters params.

– Init: takes as input params, and returns some public information vk associated
with the secret polynomial f(·) ∈ Zq[X].

– Compute: takes as inputs params, vk, the polynomial f(·) and the client’s
input x, and returns y = f(x) as well as some proof π.

– Verif: takes as inputs params, vk, x, y and π, and returns 1 if accepting the
evaluation of f(·) on x, and returns 0 otherwise.

3.2 Security Properties and Assumptions

Definition 1 (k-polynomial protection (k-PP)): A PPE scheme is said to
be k-PP secure if there exists a negligible function ε(·) such that for all PPT
adversaries APP , we have:

Pr
[
params ← Setup(λ); f(·) ← Zq[X]k; vk ← Init(params, f(·));

Σ ← ∅; (x∗, y∗) ← APP
OPP (·)(params, vk):

f(x∗) = y∗ ∧ (x∗, y∗) �∈ Σ
]

< ε(λ)

In the above expression, f(·) is a polynomial over Zq with degree k, and OPP is
an oracle that takes as input x and returns f(x) as well as some proof π. The
adversary APP is restricted to query OPP at most k times. The set Σ records
all pairs (x, f(x)) that have been queried.
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Definition 2 (Proof unforgeability (UNF)): A PPE scheme is said to be
UNF secure if there exists a negligible function ε(·) such that for all PPT adver-
saries AUNF , we have:

Pr
[
params ← Setup(λ); f(·) ← AUNF (Zq[X]k); vk ← Init(params, f(·));

(x∗, y∗, π∗) ← AUNF (params, vk, f(·)):
f(x∗) �= y∗ ∧ Verif(params, vk, x∗, y∗, π∗) = 1

]
< ε(λ)

Definition 3 (Indistinguishability against chosen function attack
(IND-CFA)): A PPE scheme is said to be IND-CFA secure if there exists
a negligible function ε(·) such that for all PPT adversaries ACFA, we have:

Pr
[
params ← Setup(λ); (f0(·), f1(·)) ← ACFA(Zq[X]k); b R← {0, 1};

vk ← Init(params, fb(·)), b∗ ← ACFA
OCFA(·)(params, vk):

b∗ = b
]

< 1/2 + ε(λ)

In the above expression, both f0(·) and f1(·) are polynomials over Zq with degree
k. Moreover, f0(·) and f1(·) agree at most k points (xi, yi) for i = 1, 2, . . . , k.
When the adversary ACFA queries the oracle OCFA(·) using some of these xi

values, it will output the corresponding yi as well as a proof π. Otherwise, the
oracle OCFA(·) outputs the symbol ⊥.

Definition 4 (Discrete logarithm (DL) assumption): Given the descrip-
tion of the group G and x

R← Zq, the discrete logarithm assumption implies that
there exits a negligible function ε(·) such that for all PPT adversaries ADL, we
have Pr[x∗ ← ADL(g, gx) : x∗ = x] < ε(λ).

4 Our Proposed PPE Scheme

4.1 Our Scheme

Our proposed PPE scheme contains four algorithms Setup, Init, Compute, Verif,
and it works as follows:

– Setup: Given a security parameter λ, this algorithm first generates two primes
p and q such that q|p − 1. It then generates the group G which is a subgroup
of Z∗

p with order q, and two generators g, h of G such that logg h is unknown1.
Finally, all these parameters are made public as params.

1 Note that such a value h can be generated by a distributed coin flipping protocol
that outputs a random value r ∈ Z

∗
p, followed by computing h = r(p−1)/q satisfying

that h �= 1.
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– Init: Before outsourcing the polynomial f(z) = a0 + a1z + . . . + akzk over Zq

with degree k to the third party, the service provider randomly selects another
polynomial f ′(z) = b0 + b1z + . . .+ bkzk over Zq with degree k, and computes
the commitments Ci = gaihbi for i = 0, 1, . . . , k. Then, the service provider
sends both these polynomials f(z) and f ′(z) to the third party using a private
channel, and broadcasts the commitments as the public information vk.

– Compute: Once receiving the client’s input x, the third party computes two
values y = f(x) and y′ = f ′(x), and then sends back y and y′ to the client.
Note that in our proposed PPE scheme, the proof π is an empty string.

– Verif: The client checks the correctness of polynomial evaluation by verifying
the following equation:

gyhy′
=

k∏

i=0

(Ci)xi

4.2 Security Analysis

We first show that the proposed PPE scheme is correct. In other words, if the
third party has correctly evaluated the polynomial f(·) on x, then the client’s
verification will always be successful. Considering the case that the third party
is honest, then we have y = f(x) =

∑k
i=0 aix

i and y′ = f ′(x) =
∑k

i=0 bix
i.

Therefore, the following equation will always hold:

gyhy′
= g

∑k
i=0 aix

i

h
∑k

i=0 bix
i

=
k∏

i=0

(gaihbi)xi

=
k∏

i=0

(Ci)xi

Theorem 1. The proposed PPE scheme achieves the k-PP property.

Proof. Because the adversary APP can query the oracle OPP at most k times,
APP can obtains at most k points (xi, f(xi)) for i = 1, 2, . . . , k. Without loss
of generality, we assume that APP aims to compute f(xx+1) for some value
xx+1 that she has not queried, and we prove that APP can succeed only with
negligible probability.

Since the secret polynomial f(·) is with degree k, there are k + 1 unknown
coefficients. Obtaining k points (xi, f(xi)) for i = 1, 2, . . . , k only gives k equa-
tions, hence none of these coefficients can be derived. In particular, the constant
coefficient a0 = f(0) is uniformly distributed within Zq. Using the Lagrange
interpolation, the value f(xk+1) can be expressed as:

f(xk+1) = f(0)
k∏

j=1

xk+1

xj
+

k∑

i=1

f(xi)
k∏

j=1,j �=i

xk+1 − xi

xj − xi

Because both
∏k

j=1
xk+1
xj

and
∑k

i=1 f(xi)
∏k

j=1,j �=i
xk+1−xi

xj−xi
are constant values,

we denote them as a and b respectively. Then, the above equation can be re-
written as f(xk+1) = f(0)a+ b, which is an affine cipher. Moreover, because q is
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a prime and all these values xi ∈ Zq, we have gcd(a, q) = 1. This further implies
that the value f(xk+1) will be randomly distributed within Zq. Therefore, the
probability that APP correctly computes the value f(xx+1) is exactly 1/q, which
is negligible with respect to the security parameter λ.

Theorem 2. The proposed scheme achieves the UNF property under the discrete
logarithm assumption.

Proof. Suppose there exists an adversary AUNF who violates the UNF property
with non-negligible probability, then we demonstrate that AUNF can be used to
construct an algorithm that computes logg h.

Based on the definition of UNF property, the adversary AUNF has the knowl-
edge of the two polynomials f(·) and f ′(·). Her purpose is to output a triple
(x∗, y∗, y′∗) such that within the following two inequalities y∗ �= f(x∗) and
y′∗ �= f ′(x∗), at least one of them is true, and meanwhile the verification of
the equation gy∗

hy′∗
=

∏k
i=0(Ci)x∗i

is satisfied.
Firstly, we prove by contradiction that if y∗ �= f(x∗), then we also have

y′∗ �= f ′(x∗). Suppose we have y∗ �= f(x∗) but y′∗ = f ′(x∗), then gy∗
hy′∗

=∏k
i=0(Ci)x∗i

implies that gy∗
hy′∗

= gf(x∗)hf ′(x∗), which further implies that
gy∗

= gf(x∗). But this contradicts the pre-condition that y∗ �= f(x∗). Hence the
case y∗ �= f(x∗) but y′∗ = f ′(x∗) cannot happen. For similar reasons, the case
y′∗ �= f ′(x∗) but y∗ = f(x∗) cannot happen neither. Therefore, it must be the
case that both inequalities y∗ �= f(x∗) and y′∗ �= f ′(x∗) are true.

Next, we prove that such an adversary AUNF allows us to compute logg h.
Since the verification of the equation gy∗

hy′∗
=

∏k
i=0(Ci)x∗i

is satisfied, this
implies that gy∗

hy′∗
= gf∗

hf ′(x∗). Hence, we have logg h = y∗−f(x∗)
f ′(x∗)−y′∗ . And

because we have already proved that f ′(x∗) �= y′∗, the discrete logarithm logg h
can be computed with the same probability as AUNF violates the UNF property.
Therefore, based on the discrete logarithm assumption, there cannot exist an
adversary AUNF who violates the UNF property with non-negligible probability.

Theorem 3. The proposed scheme achieves the IND-CFA property.

Proof. We prove this theorem using the following strategy: suppose there are
two games, Game0 and Game1. In Gamei for i ∈ {0, 1}, the polynomial fi(·) is
selected. We then show that the adversary ACFA’s view is perfectly indistin-
guishable between these two games. Hence, ACFA will output the same b∗ in
both games with equal probability, and this proves that ACFA guesses b correctly
with probability exactly 1/2.

In Game0, ACFA will be provided with the params in the first step. Then,
in the second step, ACFA chooses a polynomial f0(z) = a0,0 + a0,1z + . . . +
a0,kzk over Zq with degree k. In the third step, the challenger selects another
random polynomial f ′

0(z) = b0,0 + b0,1z + . . . + b0,kzk over Zq with degree k,
and compute the commitments C0,i = ga0,ihb0,i for i = 0, 1, . . . , k. Then, the
challenger publishes vk which contains all these commitments.
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In Game1, ACFA will be provided with exactly the same params in the first
step. Then, in the second step, ACFA chooses an independent polynomial f1(z) =
a1,0 +a1,1z + . . .+a1,kzk over Zq with degree k. In the third step, the challenger
selects a random polynomial f ′

1(z) = b1,0 + b1,1z + . . . + b1,kzk over Zq with
degree k, and compute the commitments C1,i = ga1,ihb1,i for i = 0, 1, . . . , k.
ACFA receives the public information vk which contains all the commitments in
this step.

In the first step, ACFA’s view of the two games is exactly the same because
the same params is output by the challenger. In the second step, ACFA selects a
random polynomial in both games. Hence, her view is exactly the same in this
step as well. In the third step, ACFA sees C0,i = ga0,ihb0,i for i = 0, 1, . . . , k in
Game0, and she sees C1,i = ga1,ihb1,i for i = 0, 1, . . . , k in Game1. But all these
commitments are randomly distributed in Z

∗
p. Therefore, ACFA’s view in the

third step is also exactly the same. Moreover, although ACFA can query the
oracle OCFA, the oracle only responses to the query when the points lie both
on f0(·) and f1(·). Hence, the oracle OCFA does not give ACFA any additional
power. Therefore, OCFA cannot distinguish these two games, and she guesses b
correctly with probability exactly 1/2.

4.3 Some Comparisons

The comparison of our proposed scheme with Bultel’s PPE scheme in [6] and
PolyCommitPed in [15] is summarised as in Table 1. The description of Bultel’s
PPE scheme and PolyCommitPed can be found in the appendix.

Table 1. Comparison of the three schemes

params size vk size Verif Assumption Model Trusted party

Bultel’s PPE O(1) O(k) Pairing free DDH RO No

PolyCommitPed O(k) O(1) Pairing based t-SDH Standard Yes

Our PPE O(1) O(k) Pairing free DL Standard No

The main advantage of PolyCommitPed is that the size of vk is constant,
which is much smaller than the other two schemes. However, its size of params
is much larger, and this offsets the previous advantage. Recall that the client
needs to know both params and vk, all these three schemes have similar com-
munication costs. To verify the correctness of polynomial evaluation, the client
in PolyCommitPed needs to perform pairing computations, and the client in Bul-
tel’s scheme needs to verify some additional zero-knowledge proofs. Our pro-
posed scheme has some computational advantages over these two existing PPE
schemes, because it is pairing free and the client only needs to perform some
standard VSS verification.

In Bultel’s scheme, the IND-CFA property relies on the DDH assumption, and
the UNF property is proved in the Random Oracle (RO) model [2]. Although the
RO model is of some value, it only provides heuristic proofs. In particular, it does
not rule out the possibility of breaking the scheme without finding the weakness
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in the hash function [7]. Therefore, when the other parameters are equal, a proof
in the standard model is still preferred. The security of PolyCommitPed is proved
in the standard model, but it needs a trusted party to initialise the params and
its UNF property relies on a less standard t-SDH assumption. Our proposed
scheme also has some security advantages over these two existing PPE schemes,
because it does not need any trusted party, it can be proved in the standard
model, and it relies on a much weaker assumption2.

5 A Distributed PPE Scheme

In many applications, it may require that the PPE scheme also keeps the poly-
nomial private from the third party. In this section, we introduce a natural
extension of our propose PPE scheme in order to satisfy this requirement. In
this distributed PPE scheme, the secret polynomial is outsourced to a num-
ber of third parties instead of a single one. These parties jointly evaluate the
polynomial for the client in a verifiable way, but none of them could learn the
polynomial unless they all collude.

The distributed PPE scheme is composed of the following four algorithms
Setup, Init, Compute, Verif:

– Setup: Given a security parameter λ, two primes p and q are generated such
that q|p − 1. Then a group G is generated which is a subgroup of Z

∗
p with

order q. Moreover, g and h are denoted as two generators of G such that
logg h is unknown. Finally, all these parameters are made public as params.

– Init: Suppose the service provider wants to outsource the k degree polynomial
f(z) = a0 + a1z + . . . + akzk over Zq among t independent third parties. It
first randomly selects another polynomial f ′(z) = b0+b1z+ . . .+bkzk over Zq

with the same degree, and then computes the commitments Ci = gaihbi for
i = 0, 1, . . . , k. Next, the service provider randomly generates two groups of t
polynomials fj(z) = aj,0 + aj,1z + . . . + aj,kzk and f ′

j(z) = bj,0 + bj,1z + . . . +
bj,kzk over Zq with degree k, for j = 1, 2, . . . , t, such that f(z) =

∑t
j=1 fj(z)

and f ′(z) =
∑t

j=1 f ′
j(z), and it computes the commitments Cj,i = gaj,ihbj,i

for j = 1, 2, . . . , t and i = 1, 2, . . . , k. The service provider sends a pair of
polynomials fj(z) and f ′

j(z) to each of the third party using a private channel.
Finally, it broadcasts all the commitments generated in this step as the public
information vk.

– Compute: Once receiving the client’s input x, each of the third party computes
two values yj = fj(x) and y′

j = f ′
j(x), and sends these two values back to the

client.
– Verif: The client first checks whether Ci =

∏t
j=1 Cji for i = 1, 2, . . . , k. This

verification ensures that f(z) =
∑t

j=1 fj(z) and f ′(z) =
∑t

j=1 f ′
j(z). Note

2 If there exists an adversary who can break the DL assumption with non-negligible
probability, then an algorithm can be designed that uses this adversary as a subrou-
tine and breaks both DDH and t-SDH assumptions with non-negligible probability.
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that such a check only needs to be performed once, even if the client may
query the polynomial several times. Then, for each of the third party, the
client verifies whether it has correctly evaluated its assigned polynomials by
checking the following equation:

gyjhy′
j =

k∏

i=0

(Cj,i)xi

If all the above checks are satisfied, the client computes y = f(x) =
∑t

j=1 yj .

Note that if batch techniques [1] were used in the Verif algorithm, the client
can verify all the equations at once instead of verifying t equations individually.
Here, we only briefly sketch the security of the above scheme, since it is very
similar as in the standard PPE scheme. Firstly, each third party evaluates a
random polynomial, hence none of them learns the secret polynomial unless they
all collude. The client is allowed to query the polynomial f(·) at most k times,
and f(·) is with degree k. Hence, the client cannot learn any information of the
polynomial and she only has negligible probability to violate the PP property.
Furthermore, unless one can break the discrete logarithm assumption, the client
can use the VSS equation to detect any incorrect evaluation of the polynomial,
and this implies the UNF property. Finally, because all the commitments are
in the Pedersen format which is information theoretically hiding, the IND-CFA
property also holds in the above scheme.

6 Conclusion

As the wide deployment of Cloud platforms, PPE is a useful primitive to dele-
gate the evaluation of secret polynomials in a verifiable way. In this paper, we
introduce a new PPE scheme that satisfies all the PP, UNF and IND-CFA prop-
erties as advocated recently. And we show that compared with the existing PPE
schemes with similar properties, our scheme not only has computational advan-
tages but also relies on a much weaker assumption. Moreover, we explore how
the PPE scheme can be implemented in a distributed way so that the polynomial
is also kept private from the third party. We extend our proposed PPE scheme
as an example, but the same method also can be used to extend the existing
PPE schemes into the distributed version.

Acknowledgement. This work was partially supported by the National Natural Sci-
ence Foundation of China (Grant No. 61572303, 61772326, 61672010, 61672398), and
Natural Science Foundation of Hubei Province (Grant No. 2017CFB303, 2017CFA012).
We are also grateful to the anonymous reviewers for their valuable comments on the
paper.

Appendix A – PolyCommitPed

The PolyCommitPed scheme [15] contains four algorithms (Setup, Init, Compute,
Verif), and it works as follows:
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– Setup: This algorithm is operated by a trusted party. Given the security
parameter λ, it generates two cyclic groups G and GT with prime order p such
that there exists a symmetric bilinear pairing ê : G×G → GT . It also chooses
two generators g and h of G such that logg h is unknown. Moreover, it selects

α
R← Z

∗
p and sets params = (G,GT , p, ê, g, h, (gα, . . . , gαk

), (hα, . . . , hαk

)).
– Init: For the secret polynomial f(z) = a0+a1z+. . .+akzk, the service provider

chooses a random polynomial f ′(z) = b0+b1z+ . . .+bkzk over Z∗
p with degree

k. It computes the commitment C =
∏k

i=0(g
αi

)ai(hαi

)bi = gf(α)hf ′(α) and
sets vk = C.

– Compute: Once receiving the client’s input x. The third party computes
y = f(x) and y′ = f ′(x). Moreover, it computes φ(z) = f(z)−f(x)

z−x =
∑k

i=0 δiz
i and φ′(z) = f ′(z)−f ′(x)

z−x =
∑k

i=0 σiz
i. It further computes w =

∏k
j=0(g

αj

)δj (hαj

)σj = gφ(α)hφ′(α). It sets the proof as π = (x, y′, w) and
returns (y, π) to the client.

– Verif: The client verifies whether ê(C, g) = ê(w, gα−x)ê(gf(x)hg′(x), g). If this
equation holds, the client outputs 1, and outputs 0 otherwise.

Appendix B – Bultel’s PPE Scheme

The Bultel’s PPE scheme [6] also contains four algorithms (Setup, Init, Compute,
Verif) as follows:

– Setup: Given the security parameter λ, the service provider generates a group
G with prime order p and a generator g for the group. It chooses a hash
function H : {0, 1}∗ → Z

∗
p, and it sets params = (G, p, g,H). Note that the

hash function is only used to generate non-interactive zero-knowledge proofs.
– Init: For the secret polynomial f(z) = a0 + a1z + . . . + akzk, the service

provider picks sk
R← Z

∗
p and computes pk = gsk. For i = 0, 1, . . . , k, it picks

ri
R← Z

∗
p and computes ci = gri and di = pkrigai . Note that (ci, di) is an

ElGamal ciphertext encrypting the commitment gai . Finally, it sets vk =
({ci, di}0≤i≤k, pk).

– Compute: Once receiving the client’s input x, the third party computes
y = f(x). It also computes c =

∏k
i=0(ci)xi

=
∏k

i=0 gri·xi

= gr(x) and
d =

∏k
i=0(di)xi

= (
∏k

i=0 hri·xi

) · (
∏k

i=0 gai·xi

) = hr(x)gf(x) for some poly-
nomial r(x) =

∑k
i=0 ri · xi. Moreover, it generates a non-interactive zero-

knowledge proof π that (c, d) is an ElGamal ciphertext encrypting gf(x).
Finally, it return (y, π) to the client.

– Verif: Using params and vk, the client can also compute (c, d). Then, she
can verify whether π is a valid non-interactive zero-knowledge proof such
that (c, d) encrypts gy. If the verification satisfies, the client outputs 1, and
outputs 0 otherwise.
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