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Abstract. With the rapid development of mobile internet, a large num-
ber of lightweight devices are widely used. Therefore, lightweight cryp-
tographic primitives are urgently demanded. Among these primitives,
online/offline signatures are one of the most promising one. Motivated
by this situation, we propose a lattice-based online/offline signature
scheme by using the hash-sign-switch paradigm, which was introduced
by Shamir and Tauman in 2001. Our scheme not only has the advan-
tages of online/offline signatures, but also can resist quantum computer
attacks. The scheme we propose is built on several techniques, such as
cover-free sets and programmable hash functions. Furthermore, we design
a specific chameleon hash function, which plays an important role in
the hash-sign-switch paradigm. Under the Inhomogeneous Small Integer
Solution (ISIS) assumption, we prove that our proposed chameleon hash
function is collision-resistant, which makes a direct application of this
new design. In particular, our method satisfies existential unforgeability
against adaptive chosen message attacks in the standard model.
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Chameleon hash function
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1 Introduction

As one of fundamental cryptographic primitives, digital signatures are the essen-
tial inventions of modern cryptography. Informally, a signer Alice establishs a
public key vk while keeping a secret key sk to herself. In addition, sk and pk
satisfy a certain mathematical relation. The signer Alice signs a message M
using sk and obtains a digital signature σ of M . Anyone, with pk, can verify the
validity of the message-signature pair (M,σ). A digital signature scheme is said
to be secure if it is existentially unforgettable against adaptive chosen message
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attacks [10]. Digital signatures are useful in e-contract signing, document nota-
rizing, authentication, and many other scenarios with the need of data integrity
check and undeniability guaranty (e.g., [3,10]). In addition, digital signatures
are the essential building blocks of more advanced cryptographic schemes, such
as fair exchange and authenticated data redaction (e.g., [5]).

Digital signature schemes are often built on mathematical operations, like
modular exponentiation, scalar multiplication and bilinear mapping, etc. How-
ever, these operations are much too heavy for smart cards, mobile devices, FRID
tags and other resource-constrained devices. For those devices with more power,
it would also be a critical issue when a large number of messages must be signed
within a short period of time.

As a result, a lot of approaches have been proposed to improve the effi-
ciency of digital signatures, e.g., online/offline signatures. Online/Offline signa-
tures speed up signature production by dividing the signing process into two
phases, offline and online. Most costly computations are completed in the offline
phase, when the messages to be signed are unknown and the device is idle. Such
pre-computation enables the online phase to quickly sign the messages with only
light computation. The notion of online/offline signatures was introduced by
Even, Goldreich and Micali [8] in 1989. Their design philosophy of online/offline
signatures is using the one-time signatures for the online phase, which are very
fast, and an ordinary signature scheme is used at the offline phase. Motivated
by the design in [8], Shamir and Tauman [16] use chameleon hash functions to
develop a new paradigm called hash-sign-switch, which can convert any signa-
ture scheme into a highly efficient online/offline signature scheme. From then
on, there are many results (e.g., [4,14,18]) adopting hash-sign-switch paradigm
to construct online/offline signature schemes.

The security of most existing online/offline signature schemes is based on tra-
ditional number-theoretic assumptions (e.g., [8,11,14]) and they are in danger
of being broken with the rapid development of quantum computing technol-
ogy. Therefore, it is urgent to design online/offline signature schemes that can
resist quantum computer attacks. To the best of our knowledge, little attention
has been paid on anti-quantum online/offline signatures (e.g., [18,19]). In the
following section, we shall present a brief review of the related work.

1.1 Related Work

Even, Goldreich and Micali [8] proposed the notion of online/offline signatures
in 1989. They used a general method to convert any signature scheme into an
online/offline signature scheme. In their work, if the length of M is k, then the
length of σ is a quadratic polynomial in k. To further improve the efficiency,
Shamir and Tauman [16] proposed a hash-sign-switch paradigm. In [16], the
overhead of the signature is reduced to an additive factor of k.

Many online/offline signature schemes with different properties have been
proposed, such as threshold online/offline signature schemes (e.g., [4]) and
identity-based online/offline signature schemes (e.g., [14]). Nevertheless, almost



200 M. Zheng et al.

all of previous online/offline signature schemes are based on traditional number-
theoretic assumptions, such as DLP and IF (e.g., [4,8,12,16]). There is a risk that
these assumptions would be broken with the use of quantum computing technol-
ogy. Therefore, it is necessary to design anti-quantum online/offline signature
schemes. However, there are few results on anti-quantum online/offline signa-
tures (e.g., [18,19]). Driven by the design philosophy raised by Xiang [18] and
Zhang [20], we present a lattice-based online/offline signature scheme. Although
the idea of [18] is enlightening, the chameleon hash function needs more rigorous
proof and the correctness of some details in his scheme needs further discussion.

1.2 Our Contributions

Lightweight cryptographic primitives are widely demanded as the widespread
use of lightweight devices. Online/offline signatures are one of the promising
solutions for this dilemma. This makes it highly non-trivial to propose a lattice-
based online/offline signature scheme, which not only has the advantages of
online/offline signature schemes, but also can resist quantum computer attacks.

Compared to previous work [18], our proposed chameleon hash func-
tion includes rigorous proof and specific data. Furthermore, by applying our
chameleon hash function to the original scheme [20], the new scheme is more
efficient than the original one in the offline phase. The security of our scheme
can be reduced to the Inhomogeneous Small Integer Solution (ISIS) assumption
in the standard model.

1.3 Roadmap

After some preliminaries in Sect. 2, we give a specific chameleon hash function
in Sect. 3.1, which is a core technical in our scheme. We propose a lattice-based
online/offline signature scheme in Sect. 3.2, and a short conclusion is given in
Sect. 4.

2 Preliminaries

In this section, we mainly describe the notion of lattice-based programmable
hash functions [20] and online/offline signatures [4].

2.1 Notation

We denote the real numbers and the integers by R and Z, respectively. For
any positive integer N , we let [N ] = {0, 1, · · · , N − 1}. For positive integer n,
let the standard notation O, ω classify the growth functions, and we say that
f(n) = ˜O(g(n)) if f(n) = O(g(n) · logc n) for some fixed constant c. We use
poly(n) to denote the function f(n) = O(nc) for some constant c. A negligible
function, denoted usually by negl(n), is f(n) such that f(n) = o(n−c) for every
fixed constant c. A probability is said to be overwhelming if it is 1 − negl(n).
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The natural security parameter is κ throughout the paper, and all other
quantities are implicitly functions of κ. The notation of ←r indicates randomly
choosing elements from the distribution. Let In be the n × n identity matrix.
Vectors are accustomed to being in column form and wrote by bold lower-case
letters, e.g. x. Matrices are used to be bold capital letters, e.g. X. The notation
of (X‖Y) ∈ R

n×(m+m′) means that the columns of X ∈ R
n×m are followed by

the columns of Y ∈ R
n×m′

. The length of a matrix is denoted as the norm of its
longest column, i.e., ‖X‖ = maxi‖xi‖. The largest singular value of matrix X
is measured by s1(X) = maxt‖Xt‖, where t is the unit vector. A hash function
H : Zn

q → Z
n×n
q is an encoding with full-rank difference (FRD) [20] if it satisfies

the following two conditions: (1) for any u �= v, the matrix H(u) ± H(v) =
H(u ± v) ∈ Z

n×n
q is invertible; and (2) H is computable in polynomial time in

n log q. In particular, for any vector v = (v, 0, · · · , 0)�, we have that H(v) = vIn.

2.2 Lattices

We now introduce the definition of lattice and its related parameters. For-
mally, given m linearly independent vectors B = (b1,b2, · · · ,bm) ∈ R

m×m,
the m-dimensional full-rank lattice generated by B is defined as Λ = L(B) =
{∑m

i=1 xibi : xi ∈ Z}. For any x ∈ R
m, the Gaussian function ρs,c on R

m

is defined as ρs,c(x) = exp(−π‖(x−c)/s‖2) with center c ∈ R
m and s > 0. We

have ρs,c(Λ) =
∑

x∈Λ ρs,c(x). For any c ∈ R
m, real s > 0 and x ∈ Λ, the discrete

Gaussian distribution DΛ,s,c over Λ is denoted as DΛ,s,c(x) = ρs,c(x)/ρs,c(Λ).
For some positive m,n, q ∈ Z, let A ∈ Z

n×m
q be a matrix and consider-

ing the following two lattices: Λ⊥(A) = {z ∈ Z
m : Az = 0 mod q} and

Λ(A) = {z ∈ Z
m : ∃ s ∈ Z

n
q s.t. z = A�s mod q}. For any u ∈ Z

n admitting
an solution to Ax = u mod q, we have the coset Λ⊥

u (A) = {z ∈ Z
m : Az = u

mod q} = Λ⊥(A) + x.
The following result was quoted from [20], and it will be used in Sect. 3.

Lemma 1. For any positive integer m ∈ Z, vector y ∈ Z
m and large enough

s ≥ ω(
√

log m), we have that

Pr
x←rDZm,s

[‖x‖ > s
√

m] ≤ 2−m and Pr
x←rDZm,s

[x = y] ≤ 21−m.

Following [6,15], we say that a random variable X over R is subgaussian
with parameter s > 0 if the moment-generating function satisfies E[exp(2πtX)]
≤ exp(πs2t2) for all t ∈ R,. If X is subgaussian, then its tails are dominated by
a Gaussian with parameter s, i.e., Pr[|X| ≥ t] ≤ 2 exp(−πt2/s2) for all t ≥ 0. In
addition, we get that a random matrix X is subgaussian with parameter s if all
its one-dimensional marginals u�Xv for unit vectors u, v are subgaussian with
parameter s. Moreover, we have that for any lattices Λ ⊂ R

m and s > 0, the
distribution DΛ,s is subgaussian with parameter s.

We have the following results from the non-asymptotic theory of random
matrices [17], and it gives the singular value of variable X exactly.
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Lemma 2. Let X ∈ Z
m×n
q be a subgaussian random matrix with parameter s.

There exists an universal constant C ≈ 1/
√

2π such that for any t ≥ 0, we have
s1(X) ≤ C · s · (

√
m +

√
n + t) except with probability at most 2 exp(−πt2).

In 1999, Ajtai [2] proposed the first trapdoor generation algorithm to out-
put an approximately uniform trapdoor matrix A that allows to efficiently
sample short vectors in Λ⊥(A). Then this trapdoor generation algorithm has
been improved in [15]. We now recall the publicly trapdoor matrix G in
[15]. Formally, for any prime q > 2, integer n ≥ 1, k = log2 q�, and
g = (1, 2, 4, · · · , 2k−1)� ∈ Z

k
q , we have that the public trapdoor matrix

G = In ⊗ g� ∈ Z
n×nk
q , where ‘⊗’ denotes the tensor product.

We show the formal definition of G-trapdoor [15] in the following and it will
be used in Sect. 3.

Definition 1. Let A ∈ Z
n×m̄
q and G ∈ Z

n×nk
q be matrices with n, q, m̄ ∈ Z and

k = log2 q�. A G-Trapdoor for A is a martix R ∈ Z
(m̄−nk)×nk
q such that A

(

R
I

)

= SG for some invertible matrix S ∈ Z
n×n
q . The quality of the trapdoor

is measured by its largest singular value s1(R).

If R is a trapdoor for A, then it can be made into an equally good trapdoor for
any extension (A‖B) by padding R with zero rows. This leaves s1(R) unchanged.

Then we refer to [15] for a detailed description of the sampling algorithm,
which plays an important role in our scheme in Sect. 3.

Theorem 1. For any integer n ≥ 1, q > 0, k = log2 q�, sufficiently large
m̄ = O(n log q) and some invertible tag S ∈ Z

n×n
q , there is a polynomial time

algorithm TrapGen(1n, 1m̄, q,S) that outputs a matrix A ∈ Z
n×m̄
q and a G-

trapdoor R ∈ Z
(m̄−nk)×nk
q with quality s1(R) ≤ √

m̄ · ω(
√

log n) such that the
distribution of A is negl(κ)-far from uniform. Moreover, given any u ∈ Z

n
q and

real s > s1(R) ·ω(
√

log n), there is an efficient algorithm SampleD(R,A,S,u, s)
samples from a distribution within negl(κ) statistical distance of DΛ⊥

u (A),s.

The following lemma illustrates that the matrix we construct is statistically
close to the uniform, which is applied to Theorem 4.

Lemma 3. For any postive n ≥ 1, q > 2, sufficiently large m̄ = O(n log q)
and real s ≥ ω(

√
log m̄), we have that the distribution of u = Ae mod q is

statistically close to uniform over Z
n
q , where e is randomly sampled from DZm̄,s

and A is a uniformly random matrix over Z
n×m̄
q .

The Inhomogeneous Small Integer Solution(ISISq,m̄,β̄) problem was first
raised by Ajtai [1]. The ISIS problem was an inhomogeneous variant of SIS,
which is asked to find a short nonzero integer solution e ∈ Z

m̄ to the homoge-
neous linear system Ae = 0 mod q for uniformly random A ∈ Z

n×m̄
q . If we set

n, q ∈ Z be some polynomials in the security parameter κ, m̄ = O(n log q), then
β̄ in the ISISq,m̄,β̄ problem can be ˜O(n5.5) according to [20]. Both hard problems
on lattices are shown in detail in [9].
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Definition 2. The Inhomogeneous Small Integer Solution (ISIS) problem (in
the 	2 norm ) is as follows: given an integer q, a matrix A ∈ Z

n×m̄
q , a syndrone

u ∈ Z
n
q and a real β̄, find a integer vector e ∈ Z

m̄ such that Ae = u mod q and
‖e‖2 ≤ β̄.

2.3 Lattice-Based Programmable Hash Function

We use lattice-based PHFs to construct our signature and lattice-based PHFs
was proposed by [20] in 2016. Formally, let m, m̄, n, 	, q, u, v ∈ Z be some poly-
nomials in the security parameter κ. We denote In as the set of invertible
matrices in Z

n×n
q . A hash function H : χ → Z

n×m
q consists of two algorithms

(H.Gen,H.Eval), i.e., K ← H.Gen(1κ) and HK(X) = H.Eval(K,X) for any
input X ∈ χ. The following definition is referenced from [20].

Definition 3. (Lattice-Based Programmable Hash Function)
A hash function H : χ → Z

n×m
q is a (u, v, β, γ, δ)-PHF if there exist a PPT

trapdoor key generation algorithm H.TrapGen and an efficiently deterministic
trapdoor evaluation algorithm H.TrapEval such that given a uniformly random
A ∈ Z

n×m̄
q and a public trapdoor matrix B ∈ Z

n×m
q , the following properties

hold:

Syntax: The PPT algorithm (K ′, td) ← H.TrapGen(1κ,A,B) outputs a key K ′

with a trapdoor td. Besides, for any input X ∈ χ, the deterministic algorithm
(RX , SX)← H.TrapEval (td,K ′,X) outputs RX ∈ Z

m̄×m
q and SX ∈ Z

n×n
q such

that s1(RX) ≤ β and SX ∈ In ∪ {0}.
Correctness: For all possible (K ′, td) ← H.TrapGen(1κ,A,B), all X ∈ χ
and its corresponding (RX ,SX) ← H.TrapEval(td,K ′,X), we have HK′(X) =
H.Eval(K ′,X) = ARX + SXB.

Statistically close trapdoor keys: For all (K ′, td) ← H.TrapGen(1κ, A, B)
and K ← H.Gen(1κ), the statistical distance between (A,K ′) and (A,K) is at
most γ.

Well-distributed hidden matrices: Let all (K ′, td) ← H.TrapGen(1κ, A,
B) and any inputs X1, · · · , Xu, Y1, · · · , Yv ∈ χ enjoys Xi �= Yj for
any i, j. For (RXi

,SXi
) ← H.TrapEval(td, K ′, Xi) and (RYj

,SYj
) ←

H.TrapEval(td,K ′, Yj), we have that

Pr[SX1 = · · · = SXu
= {0} ∧ SY1 , · · · ,SYv

∈ In] ≥ δ.

If γ is negligible and δ > 0 is noticeable, we simply say that H is a (u, v, β)-
PHF.

A general trapdoor matrix B is used for utmost generality, but the publicly
known trapdoor matrix B = G in [15] is regarded for both efficiency and sim-
plicity. In this paper, we apply two types of lattice-based programmable hash
function constructions to our scheme. Then, we show their definitions and exam-
ples from [20].
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Definition 4. [Type-1]
Let 	, n,m, q ∈ Z be some polynomials in the security parameter κ. Let E

be a deterministic encoding from χ to (Zn×n
q )�. Then the hash function H =

(H.Gen,H.Eval) with key space K ⊆ (Zn×m
q )�+1 is defined as follows:

– H.Gen(1κ): Randomly choose (A0, · · · ,A�) ←r K, return K = {Ai}
i∈{0,··· ,�}.

– H.Eval(K,X): Let E(X) = (C1, · · · ,C�), return Z = A0 +
∑�

i=1 CiAi.

In the following theorem, we show several examples of Type-1 PHF [20],
which were implicated proved in [3,15].

Theorem 2. For large enough m̄ = O(n log q), the hash function H given in
Definition 4 is a weak (1, poly(v), β, γ, δ)-PHF with β ≤ √

	m̄ · ω(
√

log n), γ =
negl(κ), and δ = 1 when instantiated as follows:

– Let K ⊆ (Zn×m
q )2 and χ = Z

n
q . Given an input X ∈ χ, the encoding E(X)

returns H(X) where H : Zn
q → Z

n×n
q is an FRD encoding.

– Let K ⊆ (Zn×m
q )�+1 and χ = {0, 1}�. Given an input X ∈ (X1, · · · , X�) ∈ χ,

the encoding E(X) returns Ci = Xi · In for all i ∈ {1, · · · , 	}.
The two instantiations in Theorem 2 are weak (1, v, β)-PHFs for some poly-

nomials v ∈ Z and real β ∈ R.

Definition 5. [Type-2]
Let n, q ∈ Z be some polynomials in the security parameter κ. For any 	, v ∈ Z

and L = 2�, let N ≤ 16v2	, η ≤ 4v	 and CF = {CFX}X∈[L] be an η-uniform,
v-cover-free set. Let τ = log2 N� and k = log2 q�. Then the hash function
H = (H.Gen,H.Eval) from [L] to Z

n×nk
q is defined as follows:

– H.Gen(1κ): Randomly choose Â,Ai ←r Z
n×nk
q for i ∈ {0, · · · , τ − 1}, return

the key K = (Â, {Ai}i∈{0,··· ,τ}).
– H.Eval(K,X): Given K = (Â, {Ai}i∈{0,··· ,τ−1}) and integer X ∈ [L], the

algorithm outputs Z = HK(X).

Please refer to [20] for details of the algorithm in Definition 5 . In the follow-
ing, we show that the hash function H given in Definition 5 is a (1, v, β)-PHFs
for some real β ∈ R and v = poly(κ).

Theorem 3. Let CF = {CFX}X∈[L] be an η-uniform, v-cover-free set. For any
n, q ∈ Z, L = 2�, N ≤ 16v2	, η ≤ 4v	 and m̄ = O(n log q), the hash function H
given in Definition 5 is a (1, poly(v), β, γ, δ)-PHF with β ≤ μv	m̄1.5 ·ω(

√
log m̄),

γ = negl(κ), and δ = 1/N , where τ = log2 N�. In particular, if we set 	 = n and
v = ω(log n), then β = Õ(n2.5) and the key of H only consists of τ = O(log n)
matrices.
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The detailed proof of this theorem has been shown in [20]. Let L,N be some
polynomials in the security parameter κ and let CF = {CFX}X∈[L] be a family
of subsets of [N ]. The family CF is said to be v-cover-free [7,13,20] over [N ] if
for any subset S ⊆ [L] of size at most v, then the union ∪X∈SCFX does not
cover CFY for all Y /∈ S. In addition, we say that CF is η-uniform if every subset
CFX in the union family CF = {CFX}X∈L have size η ∈ Z. CF = {CFX}X∈[L]

is regarded as an η-uniform, v-cover-free set when mentioned in this paper. A
hash function H : χ → Z

n×m
q can be a weak (u, v, β)-PHF, where the algorithm

H.TrapGen additionally takes a list X1, · · · ,Xu ∈ χ as inputs such that the
well-distributed hidden matrices property holds.

2.4 Definition and Security Model of Online/Offline Signatures

First of all, we roughly introduce the notion of online/offline signatures defined
in [16], and then introduce the security model of online/offline signatures. Shamir
and Tauman use the hash-sign-switch paradigm to construct a highly efficient
online/offline signature scheme, which combines any chameleon hash family
(C,H) and any signature scheme (G,S, V ) to get an online/offline signature
scheme (G

′
, S

′
, V

′
).

More specifically, let (m1, r1) ∈ M × S be randomly chosen. M is the mes-
sage space, and S is some finite space. Generating a pair (sk, vk) of private
key and public key, by applying G to the input 1κ (where G is the key genera-
tion algorithm of the original scheme), and generating a pair (tk, hk) of private
key and public key, by applying C to the input 1κ (where C is the key gen-
eration algorithm of the chameleon hash family). H = CHhk is a family of
randomized hash functions. In the offline phase, we run the signing algorithm S
with the signing key sk to sign the message CHhk(m1, r1), and denote the out-
put Ssk(CHhk(m1, r1)) by σoff . In the online phase, there exists a polynomial
time algorithm that on inputs the pair (tk, hk), (m1, r1) and an actual message
m2 ∈ M, then outputs a value r2 ∈ S such that CHhk(m1, r1) = CHhk(m2, r2).
Denoting the output r2 by σon, and sending σ = (σoff , σon) as a signature of m2.
The verification algorithm V

′
verifies that σ = (σoff , σon) is indeed a signature

of the message m2 with respect to the public key (vk, hk), and uses the algo-
rithm V to check that σoff is indeed a signature of the hash value CHhk(m2, r2)
with vk.

The security notion for our online/offline signature scheme is existentially
unforgeable under adaptative chosen message attacks (EUF-CMA), which says
that any PPT attacker, after receiving valid signatures on a polynomial num-
ber of adaptively chosen messages, cannot produce a valid signature on a new
message. Formally, the game between a challenger C and an attacker A is as
follows.

KeyGen. The challenger C runs the key generation algorithm KeyGen(1κ) and
returns (sk, tk) as its private key, (vk, hk) as its public key. C gives the public
key to the attacker A, and keeps the private key.
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Signing. The attacker A is allowed to ask for the signature of any fresh message
m. In the offline phase, the challenger C randomly chooses the information to
compute a chameleon hash function, and then it uses sk to sign the chameleon
hash function, which is regarded as offline signature message. Denote the
result by σoff . In the online phase, the challenger C uses tk and σoff to sign
the actual message m, and return σon as its online signature. The challenger
C sends the signature σ = (σoff , σon) to the attacker A. The attacker can
repeat the query by any polynomial times.

Forge. The attacker A outputs a message-signature pair (m∗, σ∗). Let Q be
the messages set required by A in the signing phase. If m∗ /∈ Q and
Verify(vk, hk,m∗, σ∗) = 1, the game outputs 1, else outputs 0.

If the game outputs 1, A wins the game. The advantage of A in the above
security game is defined as Adveuf−cma

A,SIG (1k) = Pr[ C outputs 1].

Definition 6. Let κ be the security parameter. A signature scheme SIG is
said to be existentially unforgeable under adaptative chosen message attacks
(EUF-CMA) if the advantage Adveuf−cma

A,SIG (1k) is negligible in κ for any PPT
attacker A.

3 Our Design of Online/Offline Signatures

We now introduce a specific chameleon hash function before proposing our
online/offline signature scheme.

3.1 Our Chameleon Hash Function

A chameleon hash function is a special type of hash functions, whose collision
resistance depends on the user’s state of knowledge. It has three properties,
i.e., efficiency, collision resistance and trapdoor collisions. Every chameleon hash
function is connected with a pair of public key and private key. For further
details, please refer to [16]. In particular, the chameleon hash function in [18]
is defined in the ideal lattice. Inspired by this, we designed a chameleon hash
function on the general lattice.

Definition 7. Let n,w, q ∈ Z with n = wq, m̄ = O(n log q), k = log q� and
(m, r) ∈ {0, 1}w × Z

m̄
q . Let A′ ∈ Z

w×m̄
q , B′ ∈ Z

w×w
q be randomly chosen. Then

we have a function CH(A′,B′,m, r) = (B′m + A′r) mod q.

Lemma 4. Let n,w, q ∈ Z with n = wq, m̄ = O(n log q), k = log2 q�, B′ ∈
Z

w×w
q , G′ ∈ Z

w×wk
q and (m, r) ∈ {0, 1}w × Z

m̄
q . Let R′ ∈ Z

(m̄−wk)×wk
q be G′-

trapdoor of A′ ∈ Z
w×m̄
q such that A′

(

R′

Iwk

)

= S′G′ for some invertible matrix

S′ ∈ Z
w×w
q and s > s1(R′) · ω(

√
log n). Then we have that CH(A′,B′,m, r) in

Definition 7 is a chameleon hash function.

Proof. Let ue show the function CH(A′,B′,m, r) enjoys three properties of hash
chameleon functions.
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– Efficiency. The function CH(A′,B′,m, r) = (B′m + A′r) mod q is com-
putable in polynomial time.

– Collision Resistance. Let r1, r2 ∈ Z
m̄
q and m1,m2 ∈ {0, 1}w such that

m1 �= m2. We note that finding a pair of collision in CH(A′,B′,m, r) is
at least as hard as solving the ISIS problem. Assuming that a collision of
CH(A′,B′,m, r) is (m1, r1) and (m2, r2), then we get CH(A′, B′, m1, r1) =
CH(A′, B′, m2, r2). From this, we have

B′(m1 − m2) + A′(r1 − r2) = 0 mod q. (1)

We randomly choose Ā ∈ Z
w×(m̄−wk)
q . Let A′ = (Ā‖S′G′ − ĀR′), r11, r21 ∈

Z
m̄−wk
q , r12, r22 ∈ Z

wk
q , r1 =

(

r11
r12

)

, r2 =
(

r21
r22

)

and r1 − r2 =
(

r11 − r21
r12 − r22

)

.

Applying this variables into (1), then (1) can be rewritten as

B′(m1 − m2) + (Ā‖S′G′ − ĀR′)
(

r11 − r21
r12 − r22

)

= 0 mod q. (2)

By (2), we get

B′(m1 −m2)+Ā[(r11 −r21)+R′(r22 −r12)] = S′G′(r22 −r12) mod q. (3)

Let A = (Ā‖B′), z1 = (r11 − r21) + R′(r22 − r12), z2 = m1 − m2, z =
(

z1
z2

)

and u = S′G′(r22 − r12). The formula (3) can be rewritten as Az = u. Since
m1 �= m2, we have ‖z‖ �= 0. Moreover, we get

‖z‖ =
√

z21 + z22 ≤ |z1| + |z2| ≤ (q + q2kw)
√

m̄ − wk +
√

w ≤ ˜O(n5.5) = β̄.

Therefore, z is a valid solution to the ISISq,m̄,β̄ instance (A,u).
– Trapdoor Collisions. Let r1 ∈ Z

m̄
q and m1,m2 ∈ {0, 1}w such that m1 �=

m2. We can get CH(A′,B′,m1, r1) = (B′m1 + A′r1) mod q and let U =
(B′m1 + A′r1) − B′m2. Then compute r2 ← SampleD(R′, A′, S′, U, s).
Therefore, we have A′r2 = U by Theorem 1. From this, we have that there
exists an efficient algorithm TrapCol that inputs (A′,B′,R′,m1, r1,m2) and
outputs a vector r2 ∈ Z

m̄
q such that CH(A′,B′,m1, r1) = CH(A′,B′,m2, r2).

By Theorem 1, we can easily get that r2 is computationally indistinguishable
from uniform in Z

m̄
q .

Finally, we have proved that the function CH(A′,B′,m, r) in Definition 7 is
a chameleon hash function. We denote CH(A′,B′,m, r) by CHhk(m, r), where
hk = (A′,B′) is its public key and tk = R′ is its private key. �

3.2 Our Proposed Online/Offline Signature Scheme

Specifically, let w, q ∈ Z be some polynomials in the security parameter κ, and
let n = wq, 	 < n, m̄ = O(n log q), k = log2 q�, m = m̄ + nk, s = Õ(n2.5) ∈ R,
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M = {0, 1}w and S = Z
m̄
q . The construction of the offline phase involves in

the weak PHF H′
and the (1, v, β)-PHF, which are the first instantiated Type-1

PHF H′
given in Theorem 2 and the Type-2 PHF H = (H.Gen,H.Eval) given in

Definition 5 respectively. In particular, the weak PHF H′
mapping from {0, 1}�

to Z
n×nk
q has a form of H′

K′(t) = A0 + H(t)G where K ′ = A0. We are going to
define our signature scheme SIG = (KeyGen, Sign,Verify).

KeyGen(1κ). Given a security parameter κ.
– Randomly choose A0 ←r Z

n×nk
q ,u ←r Z

n
q , and let S ∈ Z

n×n
q be an

invertible matrix. Then compute (A,R) ← TrapGen(1n,1m̄,S,q) such that
A ∈ Z

n×m̄
q , R ∈ Z

(m̄−nk)×nk
q and K ← H.Gen(1κ). Return (vk, sk)=((A,

A0,K,u), R).
– Randomly choose B′ ←r Z

w×w
q , let S′ ∈ Z

w×w
q be an invertible matrix.

Then compute (A′,R′) ← TrapGen(1w, 1m̄,S′, q) such that A′ ∈ Z
w×m̄
q ,

R′ ∈ Z
(m̄−wk)×wk
q , and return (hk, tk)=((A′,B′),R′).

The private key is (sk, tk) and the public key is (vk, hk).
Sign(sk, tk, m). Given a signing key (sk, tk), the signing algorithm operates as

follows.
– Offline phase: Randomly choose t ← {0, 1}�, (m0, r0) ∈ M × S and

compute CHhk(m0, r0) = (B′m0 + A′r0) mod q. Each component in
CHhk(m0, r0) is represented in binary, and the binary digits are arranged
in the order of CHhk(m0, r0). Let CHhk(m0, r0)(2) ∈ {0, 1}n and
ACHhk(m0,r0)(2),t = (A‖A0 + H(t)G + HK(CHhk(m0, r0)(2))) ∈ Z

n×m
q

such that HK(CHhk(m0,r0)(2))) = H.Eval(K, CHhk(m0, r0)(2))) ∈
Z

n×nk
q . Then compute e ← SampleD(R,ACHhk(m0,r0)(2),t,S,u, s), store

CHhk(m0, r0) and the output of offline phase is σoff = (e, t).
– Online phase: Given the message m ∈ {0, 1}w, CHhk(m0, r0) and σoff ,

compute r = TrapCol (A′, B′, R′, m0, r0, m) and return σon = r.
Finally, the signature of the message m is σ = (σoff , σon).

Verify(vk, hk, m, σ). Given vk, hk, m and σ, compute CHhk(m0, r0) =
CHhk(m, r). Return 1 if ‖e‖ ≤ s

√
m and ACHhk(m,r)(2),t · e = u. Other-

wise, return 0.

Correctness. From the third property of chameleon hash functions, we have
CHhk(m0, r0) = CHhk(m, r). Since R is a G-trapdoor of A, it can be extended
to a G-trapdoor for ACHhk(m,r)(2),t by padding with zero rows with the same
quality s1(R) ≤ √

m · ω(
√

log n). Since s = Õ(n2.5) > s1(R) · ω(
√

log n), the
vector e produced by SampleD follows the distribution DΛ⊥

u (ACHhk(m,r)(2),t),s

and has length at most s
√

m with overwhelming probability by Lemma 1. In
short, the signature σ is accepted by the verification algorithm.

Theorem 4. Let w, q, m̄ ∈ Z be some polynomials in the security parameter κ,
n = wq, k = log2 q�, 	 = O(log n), v = ω(log n) and m = m̄ + nk. If there
exists a PPT attacker A against EUF-CMA security of SIG that makes at most
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Q = poly(n) signing queries and succeeds with probability ε, then there exists an
algorithm B solving the ISISq,m̄,β̄ problem for β̄ = Õ(n5.5) with probability at
least ε′ ≥ ε

Q·Õ(n)
.

Proof. Assuming that there exists an attacker A forging the signature with prob-
ability ε, then we give the construction of the algorithm B solving ISISq,m̄,β̄

problem with probability at least ε′ ≥ ε
Q·Õ(n)

. Formally, B randomly chooses a

vector t′ ←r {0, 1}� and hopes that A will output a forgery signature with tag
t∗ = t′. Then, the algorithm B simulates the EUF-CMA game as follows:

KeyGen
– Given an ISISq,m̄,β̄ challenge instance (A,u) ∈ Z

n×m̄
q × Z

n
q , the algo-

rithm B first randomly chooses R0 ←r (D
Zm̄,ω(

√
log n))

nk and com-
putes A0 = AR0 − H(0‖t′)G. This is done by running (K ′, td) ←
H.TrapGen(1κ,A,G) as in Definition 5. Therefore, the algorithm B
returns vk = (A,A0,K

′,u) and sk = (R0, td).
– The algorithm B randomly chooses B′ ∈ Z

w×w
q , an invertible matrix

S′ ∈ Z
w×w
q and computes (A′,R′) ← TrapGen(1w, 1m̄,S′, q). Then B

returns hk = (A′,B′) and tk = R′.
Finally, the simulated public key is (vk, hk), and the simulated private key
is (sk, tk). (A,u) is uniformly distributed over Z

n×m̄
q × Z

n
q by the defini-

tion of ISIS. Since R0 ←r (D
Zm̄,ω(

√
log n))

nk, by Lemma 3 the matrix A0 is
statistically close to uniform over Z

n×nk
q . Moreover, the simulated key K ′ is

statistically close to the real key. A′ ∈ Z
w×m̄
q is negl(κ)-far from uniform by

Theorem 1. Thus, the distribution of the simulated verification key is statis-
tically close to that of the real one.

Signing. The algorithm B accepts signing queries from attacker A.
– Offline phase: The algorithm B first randomly chooses (m0, t0) ∈ M×S,

and computes μ = CHhk(m0, t0)(2) ∈ {0, 1}n. Then, B first randomly
chooses t ←r {0, 1}�. If t has been chosen in answering the signa-
ture more than υ times, B aborts. Otherwise, compute (Rμ,Sμ) ←
H.TrapEval(td,K ′, μ) as in Definition 5. Then we have that Aμ,t =
(A‖(A0 +H(t)G)+HK′(μ)) = (A‖(A(R0 +Rμ)+ (H(0‖t)−H(0‖t′)+
Sμ)G). Since Sμ = bIn = H(b‖0) for some b ∈ {−1, 0, 1} by the proof of
Theorem 3 (for details, please refer to [20]). Let Ŝ = H(0‖t) − H(0‖t′) +
Sμ = H(b‖(t− t′)) by the homomorphic property of the FRD in [20]. We
split our analysis into two different cases:
(1) If t �= t′ or t = t′ ∧ b �= 0, we have that Ŝ is invertible. Thus R̂ =
−(R0 +Rμ) is a G-trapdoor for Aμ,t. Since s1(R0) ≤ √

m ·ω(
√

log n) by
Lemma 2 and s1(Rμ) ≤ Õ(n2.5), we have R̂ ≤ Õ(n2.5). Finally, compute
e ← SampleD(R̂,Aμ,t, Ŝ,u, s) and return the signature σoff = (e, t).
(2) If t = t′ ∧ b = 0, we have that Ŝ = H(b‖(t − t′)) = 0. Thus B aborts.

– Online phase: Given the message m ∈ {0, 1}w, CHhk(m0, t0) and σoff ,
the algorithm B computes r = TrapCol(A′,B′,R′,m0, t0,m) and returns
σon = r.
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Forge. After answering at most Q signature queries, the attacker A outputs a
forgery σ∗ = ((e∗, t∗), r∗) for some message m∗ ∈ {0, 1}w satisfying ‖e∗‖ ≤
s
√

m and ACHhk(m∗,t∗)(2),t∗ · e∗ = u, and we know that ACHhk(m∗,t∗)(2),t∗ =
(A‖(A0 + H(0‖t∗)G) + HK(CHhk(m∗, t∗)(2))) ∈ Z

n×m
q . B computes that

(RCHhk(m∗,r∗)(2) ,SCHhk(m∗,r∗)(2)) ← H.TrapEval(td,K ′, CHhk(m∗, r∗)(2)).
Moreover, if t∗ �= t′ or SCHhk

(m∗, r∗)(2) �= 0, B aborts. Else, we have
that ACHhk(m∗,r∗)(2),t∗= (A‖(A(R0 + RCHhk(m∗,r∗)(2))) = A(Im̄‖ − R̂),
where R̂ = R0 + RCHhk(m∗,r∗)(2) . Let ê be (Im̄‖ − R̂)e∗. Since s1(R0) ≤√

m · ω(
√

log n) by Lemma 2 and s1(RCHhk(m∗,r∗)(2)) ≤ β = Õ(n2.5) by The-
orem 3, we have ‖ê‖ ≤ Õ(n2.5)·s√m = Õ(n5.5) = β̄. Therefore, the algorithm
B outputs ê = (Im̄‖ − R̂)e∗ as the solution of ISISq,m̄,β̄ .

Since the algorithm B will receive at most Q = poly(n) adaptive signing
queries from the attacker A. For each message, the algorithm B chooses a uni-
formly random tag t. If some tag t is chosen for more than υ times in the
signing queries, B aborts. Let m1, · · · ,mu be all the messages in the signing
queries that B chooses the same tag t = t′ by accident. And corresponding to
that, the algorithm B randomly selects (ai,bi) ∈ M × S for i ∈ {1, · · · , u}.
Let (RCHhk(ai,bi)(2) ,SCHhk(ai,bi)(2)) ← H.TrapEval(td,K ′, CHhk(ai,bi)(2)). If
SCHhk(ai,bi)(2) is not invertible, B aborts. Since 	 = O(log n), we have Q

2� ≤ 1
2 .

Notice that the probability B uses any tag t in answering the signature queries
over v times is less than Q2 · ( Q

2� )v through a similar method in [11], which is
negligible. Therefore, the possibility of using the same tag t in more than u(≥ v)
times signing queries is negligible. If u < v, the possibility that SCHhk(ai,bi)(2)

is invertible and SCHhk(m∗,r∗)(2) = 0 for all i ∈ {1, · · · , u} (using the fact that
CHhk(m∗, r∗)(2) /∈ {CHhk(ai,bi)(2)}i∈{1,··· ,u}) is at least δ = 1

16nv2 - negl(κ) by
Theorem 3. Then, we have Pr[t∗ = t′] ≥ 1

2� . Therefore, the success probability of
solving the ISISq,m̄,β̄ instance is at least ε′ = (ε−Q2 · ( Q

2� )v) · δ · ( 1
2� −negl(κ)) =

ε
Q·Õ(n)

. We conclude the proof. �

3.3 Comparison

In Table 1, we give a (rough) comparison with existing schemes in the standard
model. Let w, q ∈ Z be some polynomials in the security parameter and let
n = wq be the message length. Q presents the number of signature queries
made by the attacker. Real β̄ denotes the parameter for (I)SIS problem. The
reducation loss is the ratio ε/ε′ between the success probability ε of the attacker
and the success probability ε′ of the reduction.

Compared with the existing lattice-based signature schemes [6,18,20], the
length of public key and signature (online) of our proposed scheme is the same
as theirs. Our work is driven by the idea of Xiang [18] and Zhang [20]. Due
to pre-computation in the offline phase, our scheme is more efficient than the
original scheme [20] in signature production. The work [18] is motivated by [6].
As shown in Table 1, signature generation in our scheme is faster than [6] in
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the online phase. Compared to the work in [18], we have more rigorous proof
and specific data in our proposed chameleon hash function. Furthermore, the
parameters of Xiang’s algorithm do not match those defined in [18].

Table 1. Comparison with existing schemes

Schemes DM14 [6] ZCZ16 [20] Xiang17 [18] Our SIG
public key O(log n) O(log n) O(log n) O(log n)

Signature (online) 1 1 1 1

Reduction loss (Q2/ε)2 Q · Õ(n) (Q2/ε)2 Q · Õ(n)

param β̄ Õ(n3.5) Õ(n5.5) Õ(n2) Õ(n5.5)

Calculation (online) O(log2 n) O(log2 n) Õ(w2) Õ(w2)

4 Conclusion

In this paper, we present a new chameleon hash function, the security of which
can be reduced to the Inhomogeneous Small Integer Solution (ISIS) assump-
tion. The main technical of our proposed online/offline signature scheme is our
chameleon hash function and the construction of PHFs in [20]. Moreover, the
online signature of our scheme consists of a single lattice vector and the pub-
lic key includes a logarithmic number of matrices. In addition, our scheme is
proved to be existentially unforgeable against adaptive chosen message attacks
(EUF-CMA) in the standard model.
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