
Efficient Trapdoor Generation from
Multiple Hashing in Searchable

Symmetric Encryption

Takato Hirano(B), Yutaka Kawai, and Yoshihiro Koseki

Mitsubishi Electric Corporation, Kamakura, Japan
Hirano.Takato@ay.MitsubishiElectric.co.jp,

Kawai.Yutaka@da.MitsubishiElectric.co.jp,

Koseki.Yoshihiro@ak.MitsubishiElectric.co.jp

Abstract. Searchable symmetric encryption (SSE) which can search
encrypted data using encrypted keywords has been extremely studied. In
Asiacrypt’10, Chase and Kamara formalized structured encryption which
is a generalization of SSE, and its concrete schemes were proposed. An
efficient SSE scheme (hereafter, Chase-Kamara scheme) which has a very
simple encrypted index is obtained by simplifying the concrete schemes,
and its adaptive security can be proved, easily. In the Chase-Kamara
scheme, a search result for a keyword is represented as a bit string in
which the i-th bit is 1 when the i-th document contains the keyword,
and the encrypted index is built by directly masking the search result
with each bit of the output of a pseudo-random function. Therefore, the
Chase-Kamara scheme requires pseudo-random functions whose output
lengths are longer than the number of documents that users would like to
store. As a result, the trapdoor size of the Chase-Kamara scheme depends
on the number of stored documents. In this paper, we propose a modified
scheme whose trapdoor size does not depend on the number of stored
documents. The modified scheme is constructed by using our multiple
hashing technique which can transform a trapdoor of short length to
that of long length without any secret information. We also show that
the modified scheme achieves the same adaptive security as the Chase-
Kamara scheme in the random oracle model.

Keywords: Searchable symmetric encryption
Chase-Kamara scheme · Trapdoor size · Multiple hashing

1 Introduction

1.1 Background

Nowadays, cloud services such as data storing on remote third-party providers
give high data availability and reduce IT infrastructure costs of a company. From
a viewpoint of security, company’s sensitive data such as secret information or

c© Springer Nature Switzerland AG 2018
C. Su and H. Kikuchi (Eds.): ISPEC 2018, LNCS 11125, pp. 160–175, 2018.
https://doi.org/10.1007/978-3-319-99807-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99807-7_10&domain=pdf

Efficient Trapdoor Generation from Multiple Hashing 161

privacy data of customers should be encrypted to be kept secret from people
outside of the company when stored on the cloud. On the other hand, it is indis-
pensable to search the stored data from a viewpoint of usability. However, data
encrypting and keyword searching are incompatible in general, since keyword
searching for encrypted data is intractable. Although there is a naive approach
in which keyword searching is performed after decrypting encrypted data on the
cloud, this is insufficient because malicious administrators or softwares on the
cloud would steal the plain data or decryption keys when performed the decryp-
tion process. As a solution to these problems, searchable encryption has been
proposed.

After the first searchable encryption scheme was proposed in [42], many con-
crete schemes have been constructed. Roughly speaking, searchable encryption
schemes are typically classified into two types: symmetric-key type (e.g. [1,2,5,7–
49]) and public-key type (e.g. [3,6]). This paper focuses on the former searchable
encryption.

Searchable encryption of symmetric-key type is called searchable symmet-
ric encryption or SSE. SSE consists of document storing process and keyword
searching process, and these processes are performed by the same user since a
unique secret key is used in typical SSE. In the document storing process, the
user encrypts documents and generates an encrypted index from the secret key,
and the server stores a pair of the encrypted documents and the encrypted index.
In the keyword searching process, the user generates an encrypted query (called
trapdoor) from the secret key and a keyword, and the server searches by applying
the trapdoor to the encrypted index. Although the keyword searching cost in
SSE is quite lower than that in public-key type, this cost becomes critical even
in SSE as the number of stored documents increases. In order to reduce this
cost, SSE schemes with useful indexes such as inverted index structure or Bloom
filter have been constructed.

Security models for SSE also have been studied. Curtmola et al. [15,16] care-
fully extracted unavoidable information leaked from the document storing pro-
cess and the keyword searching process of a typical SSE scheme, and formalized
acceptable leakage information. Then, they defined that an SSE scheme is secure
if information revealed from the processes of the SSE scheme is at most the
acceptable leakage information. Their security model and its variants (e.g. [13])
are used in many SSE schemes. Especially, adaptive security definitions proposed
in [13,15,16] is considered as one of the security goals in SSE literature.

1.2 Motivation

The SSE schemes (called SSE-1 and SSE-2) proposed by Curtmola et al. have
search-friendly encrypted indexes such as inverted index structure [15,16]. Their
schemes have had a big impact on constructing efficient SSE schemes. Especially,
SSE-2 is constructed only from pseudo-random functions and achieves the adap-
tive security. Furthermore, the keyword searching process of SSE-2 is based on
the binary searching operation, and therefore performed efficiently. However,

162 T. Hirano et al.

there is a problem that the trapdoor size of SSE-2 depends on the number of
stored documents.

Chase and Kamara formalized structured encryption which is a generaliza-
tion of SSE, and its concrete schemes were proposed [13]. An efficient SSE
scheme (hereafter, Chase-Kamara scheme) which has a very simple structure
is obtained by simplifying the concrete schemes. It is very easy to show that the
Chase-Kamara scheme achieves the adaptive security, thanks to simplicity of its
encrypted index structure. In the Chase-Kamara scheme, a search result for a
keyword is represented as a bit string in which the i-th bit is 1 when the i-th
document contains the keyword, and the encrypted index is built by directly
masking the search result with each bit of the output of a pseudo-random func-
tion. Therefore, the Chase-Kamara scheme requires pseudo-random functions
whose output lengths are longer than the number of documents that the user
would like to store. As a result, the trapdoor size of the Chase-Kamara scheme
depends on the number of stored documents. This trapdoor size becomes critical
as the number of stored documents increases. For example, the trapdoor size is
about 120MB when the number of stored documents is one billion. Thus, the
Chase-Kamara scheme has the same trapdoor size problem as SSE-2.

Recently, Miyoshi et al. proposed the SSE scheme with a small encrypted
index [36]. Their scheme is constructed by hierarchical Bloom filters, and achieves
the adaptive security. However, in their scheme, the trapdoor size also depends
on the number of stored documents, and the number of communication rounds
between the user and the server is two. Therefore, their keyword searching pro-
cess is inefficient although the encrypted index size is reasonable.

1.3 Our Contributions

In this paper, we focus on the trapdoor size problem of the Chase-Kamara
scheme, and propose a modified scheme whose trapdoor size does not depend on
the number of stored documents. The modified scheme is constructed by using
our multiple hashing technique which can transform a trapdoor of short length
to that of long length without any secret information. With this technique, the
trapdoor size of the modified scheme depends only on the output length of a
used hash function (e.g. 512-bit if SHA-256 is used) even if the number of stored
documents is one billion. We can show that the modified scheme is adaptively
secure in the random oracle model.

A key point of our modified scheme is to securely divide the trapdoor gener-
ation process of the Chase-Kamara scheme by using our multiple hashing tech-
nique. According to this modification of the trapdoor generation process, the
encrypted index of the Chase-Kamara scheme is also slightly modified. Infor-
mally, in the Chase-Kamara scheme, the user generates a trapdoor of long length
and the server searches the encrypted index by directly using the trapdoor.
On the other hand, in our modified scheme, the user generates a trapdoor of
short length, and the server transforms the trapdoor to a meaningful value of
long length, which consists of hash values and corresponds to the trapdoor of
the Chase-Kamara scheme. This transformation uses only the trapdoor sent by

Efficient Trapdoor Generation from Multiple Hashing 163

the user, but not any secret information. After that, the server searches the
encrypted index using the trapdoor and the meaningful value, similarly to the
Chase-Kamara scheme.

We give a comparison result among the adaptively secure SSE schemes [13,
15,36] and our modified scheme in Table 1, where � and λ are the output lengths
of a pseudo-random function and a hash function, respectively, nD is the number
of stored documents, nw is the number of used keywords, nD(w) is the number
of documents containing the keyword w (i.e. the cardinality of the search result
of w), ΣD(w) =

∑nw

i=1 nD(wi), mD(w) = maxw(nD(w)), and PRF and HF are the
computation costs of a pseudo-random function and a hash function, respec-
tively. Here, we assume that λ < nD and the binary complete-matching cost
for N words is log N . Note that these assumptions are reasonable in practical
situations.

Table 1. Comparisons among related works [13,15,36] and our work.

Scheme SSE-2 [15] Chase-Kamara
[13]

Miyoshi et al. [36] Our work

Index size O(�nwmD(w)) O(nwnD) O(�(nw log nw +
ΣD(w)))

O(nwnD)

Trapdoor size O(�mD(w)) O(nD) O(�nD(w)) O(λ)

User’s search
cost

O(mD(w)PRF) O(PRF) O(nD(w)PRF) O(HF)

Server’s search
cost

O(mD(w) log nD) O(log nD) O(PRF log nw +
nD(w) log mD(w))

O(nD
λ
HF + log nw)

Round 1 1 2 1

1.4 Related Works

Curtmola et al. proposed the SSE schemes (SSE-1 and SSE-2) whose encrypted
indexes have search-friendly structures such as inverted index [15]. Their schemes
have had a big impact on constructing efficient SSE schemes. Although SSE-2
achieves the adaptive security, the trapdoor size of SSE-2 depends on the number
of stored documents.

The Chase-Kamara scheme [13] can build an encrypted index of a very simple
structure, and therefore the keyword searching process is conducted efficiently.
However, the trapdoor size depends on the number of stored documents.

The Miyoshi et al. scheme [36] can a construct small encrypted index by
using hierarchical Bloom filters. However, the trapdoor size also depends on the
number of stored documents, and the number of communication rounds between
the user and the server is two.

While this paper focuses on constructing efficient SSE schemes, other use-
ful functionalities for SSE have been studied, in addition to basic function-
alities such as document storing and keyword searching: for example, doc-
ument adding/deleting/updating functionalities (a.k.a. dynamic SSE) [9,15,

164 T. Hirano et al.

20,23,26,28,29,37,38,43,45,47–49], flexible search functionalities [5,7,10,14,
18,21,27,30,31,34,35,37,41,46], localities [2,11,17], forward security [8], UC-
security [32,33,40], multi-user settings [1,15,16,19,24,48], etc.

1.5 Organization

The rest of this paper is organized as follows. In Sect. 2, we recall cryptographic
primitives and SSE definitions which are used throughout the paper. The Chase-
Kamara scheme is given in Sect. 3, and its modified scheme is proposed in Sect. 4.
We conclude in Sect. 5.

2 Preliminaries

In this section, we recall cryptographic primitives and SSE definitions which are
used throughout the paper.

2.1 Notations and Basic Cryptographic Primitives

We denote the set of positive real numbers by R
+. We say that a function

negl : N → R
+ is negligible if for any (positive) polynomial p, there exists

n0 ∈ N such that for all n ≥ n0, it holds negl(n) < 1/p(n). If A is a probabilistic
algorithm, y ← A(x) denotes running A on input x with a uniformly-chosen
random tape and assigning the output to y. AO denotes an algorithm with
oracle access to O. If S is a finite set, s

u←− S denotes that s is uniformly chosen
from S. We denote the bit length of S by |S|, and the cardinality of S by #S.
For strings a and b, a||b denotes the concatenation of a and b.

We recall the definition of pseudo-random functions. A function f : {0, 1}λ ×
{0, 1}k → {0, 1}� is pseudo-random if f is polynomial-time computable in λ, and
for any probabilistic polynomial-time (PPT) algorithm A, it holds

|Pr[1 ← AfK(·)(1λ) | K
u←− {0, 1}λ] − Pr[1 ← Ag(·)(1λ) | g

u←− F[k, �]]| ≤ negl(λ),

where F[k, �] is the set of functions mapping {0, 1}k to {0, 1}�.
We recall the definition of left-or-right indistinguishability against the chosen

plaintext attack (LOR-CPA) for symmetric-key encryption [4]. A symmetric-key
encryption scheme is secure in the sense of LOR-CPA if for any PPT adversary
A, it holds

|Pr[1 ← AEncK(LR(·,·,1))(1λ) | K ← Gen(1λ)]
−Pr[1 ← AEncK(LR(·,·,0))(1λ) | K ← Gen(1λ)]| ≤ negl(λ),

where EncK(LR(·, ·, b)) is the left-or-right oracle that takes an input (x0, x1)
and outputs C0 ← EncK(x0) if b = 0 and C1 ← EncK(x1) if b = 1.

Efficient Trapdoor Generation from Multiple Hashing 165

2.2 Definitions of SSE

We recall the definitions of SSE, formalized in [15]. Firstly, we give notions used
in SSE literature.

– Let D ∈ {0, 1}∗ be a document, and D = (D1, . . . , Dn) be a document
collection. Let C = (C1, . . . , Cn) be a ciphertext collection of D, where Ci is
a ciphertext of Di for 1 ≤ i ≤ n. We assume that Di and Ci contain the same
unique identifier idi.

– Let w ∈ {0, 1}k be a keyword, and Δ ⊆ {0, 1}k be a set of possible key-
words. Let Δ(D) ⊆ Δ be a set of keywords which are contained in some
of D1, . . . , Dn. Throughout this paper, we assume that #Δ is polynomially
bounded in a security parameter λ.

– For D = (D1, . . . , Dn) and w ∈ Δ, let D(w) be a set of identifiers of doc-
uments that contain w. Namely, D(w) = {idi1 , . . . , idim} for w ∈ Δ(D) or
∅ for w 	∈ Δ(D). For a searching sequence w = (w1, . . . , wq), let D(w) =
(D(w1), . . . ,D(wq)).

An SSE scheme over Δ, SSE = (Gen, Enc, Trpdr, Search, Dec), is defined as
follows.

– K ← Gen(1λ): Gen is a probabilistic algorithm which takes a parameter 1λ as
an input and outputs a secret key K, where λ is a security parameter.

– (I,C) ← Enc(K,D): Enc is a probabilistic algorithm which takes a secret key
K and a document collection D as input and outputs an encrypted index I
and a ciphertext collection C = (C1, . . . , Cn).

– T ← Trpdr(K,w): Trpdr is a deterministic algorithm which takes a secret
key K and a keyword w as input and outputs a trapdoor T .

– S ← Search(I, T): Search is a deterministic algorithm which takes an
encrypted index I and a trapdoor T as input and outputs an identifier set S.

– D ← Dec(K,C): Dec is a deterministic algorithm which takes a secret key K
and a ciphertext C as input and outputs a plaintext D of C.

An SSE scheme is correct if for all λ ∈ N, all D, all w ∈ Δ(D), all K output by
Gen(1λ), and all (I,C) output by Enc(K,D), it holds Search(I, Trpdr(K,w)) =
D(w) and Dec(K,Ci) = Di for 1 ≤ i ≤ n.

We give security notions, history, access pattern, search pattern, trace, and
non-singular [15].

– For a document collection D = (D1, . . . , Dn) and a searching sequence w =
(w1, . . . , wq), H = (D,w) is called history. This information is sensitive in
SSE.

– α(H) = (D(w1), . . . ,D(wq)) is called access pattern for a history H = (D,w).
This information is appeared by performing the keyword searching processes.

– The following binary symmetric matrix σ(H) = (σi,j) is called search pattern
for a history H = (D,w): for 1 ≤ i ≤ j ≤ q, σi,j = 1 if wi = wj , and σi,j = 0
otherwise. This information is appeared by performing the keyword searching
processes because trapdoors are deterministically generated in SSE.

166 T. Hirano et al.

– τ(H) = (|D1|, . . . , |Dn|, α(H), σ(H)) is called trace for a history H = (D,w).
This information is leaked while performing SSE protocols, and therefore
considered as acceptable leakage information in SSE.

– H is called non-singular if (1) there exists a history H ′ 	= H such that τ(H) =
τ(H ′), and (2) H ′ is computed from a given trace τ(H), efficiently. We assume
that any history is non-singular throughout the paper.

Then, we give the adaptive security definition proposed in [15] (a.k.a. IND-
CKA2), which is widely used in SSE literature.

Definition 1 ([15]). Let SSE = (Gen, Enc, Trpdr, Search, Dec), λ be a security
parameter, q ∈ N∪{0}, and A = (A0, . . . ,Aq) and S = (S0, . . . ,Sq) be probabilis-
tic polynomial-time (PPT) algorithms. Here, we consider the following experi-
ments Real and Sim:

RealA(1λ) : SimA,S(1λ) :
K ← Gen(1λ) (D, stA) ← A0(1λ)
(D, stA) ← A0(1λ) (I,C, stS) ← S0(τ(D))
(I,C) ← Enc(K,D) Let w0 = ∅ and t0 = ∅
Let t0 = ∅ For 1 ≤ i ≤ q :
For 1 ≤ i ≤ q : (wi, stA) ← Ai(stA, I,C, ti−1)

(wi, stA) ← Ai(stA, I,C, ti−1) Let wi = wi−1||wi

ti ← Trpdr(K,wi) (ti, stS) ← Si(stS , τ(D,wi))
Let ti = ti−1||ti Let ti = ti−1||ti

Output (I,C, tq, stA) Output (I,C, tq, stA)

We define that SSE is adaptively secure if for any λ, any q of polynomial
size, and any A = (A0, . . . ,Aq), there exists the following PPT algorithm S =
(S0, . . . ,Sq): For any PPT distinguisher D, it holds

|Pr[D(I,C, tq, stA) = 1 | (I,C, tq, stA) ← RealA(1λ)]
−Pr[D(I,C, tq, stA) = 1 | (I,C, tq, stA) ← SimA,S(1λ)]| ≤ negl(λ).

3 The Chase-Kamara Scheme

In this section, we give the Chase-Kamara scheme which is directly obtained by
simplifying the structured encryption schemes (especially, the associative struc-
tured encryption scheme for labeled data) proposed in [13].

Let F : {0, 1}λ × {0, 1}k → {0, 1}� be a pseudo-random function, and SKE be
a symmetric-key encryption scheme. Let n be the number of stored documents,
that is, D = {D1, . . . , Dn}. In the Chase-Kamara scheme, we restrict that � ≥ n.
Here, we use the following bit string b1|| · · · ||bn||bn+1|| · · · ||b� as another repre-
sentation for D(w): bi = 1 if idi ∈ D(w), and bi = 0 otherwise. For example, if
n = 3, � = 5, and D(w) = {id1, id3}, then we also regard D(w) as 10100. The
encrypted index I built in the Chase-Kamara consists of {(key, val)}. Let the
notation I[x] be y if there exists a pair (x, y) in I, or ⊥ otherwise. Then, the
Chase-Kamara scheme is given as follows:

Efficient Trapdoor Generation from Multiple Hashing 167

– Gen(1λ):
1. Choose K1,K2

u←− {0, 1}λ and K3 ← SKE.Enc(1λ).
2. Output K = (K1,K2,K3).

– Enc(K,D):
1. Let I = ∅.
2. For w ∈ Δ,

(a) Compute key = F (K1, w) and val = D(w) ⊕ F (K2, w).
(b) Append (key, val) to I.

1. For D ∈ D, compute C ← SKE.Enc(K3,D).
2. Output I and C = (C1, . . . , Cn).

– Trpdr(K,w):
1. Compute T1 = F (K1, w) and T2 = F (K2, w).
2. Output T = (T1, T2).

– Search(I, T):
1. Parse T = (T1, T2).
2. Let S = ∅.
3. If I[T1] = ⊥ then output ∅.
4. Compute v = I[T1] ⊕ T2.
5. Parse v = v1|| · · · ||vn||vn+1|| · · · ||v�, where vi ∈ {0, 1} for 1 ≤ i ≤ �.
6. For 1 ≤ i ≤ n, append idi to S if vi = 1.
7. Output S.

– Dec(K,C):
1. Compute D ← SKE.Dec(K3, C).
2. Output D.

The Chase-Kamara scheme is adaptively secure if SKE is LOR-CPA secure
and F is a pseudo-random function. This security proof is very simple and
straightforward (see [13]).

We observe that the Chase-Kamara scheme can perform the keyword search-
ing process, efficiently, thanks to very simple structures of the encrypted index
I and the trapdoor T . On the other hand, the trapdoor size, especially |T2|,
depends on the number of stored documents (that is, n). The trapdoor size
becomes critical as n is increased. For example, |T2| is of about one billion bits
(approximately, 120MB) when n is one billion.

4 The Proposed Scheme

In this section, we tackle to the trapdoor size problem of the Chase-Kamara
scheme, and propose its modified scheme by using our multiple hashing technique
which can transform a trapdoor of short length to that of long length. Our
modified scheme can break the restriction � ≥ n, where n is the number of stored
documents and � is the output length of the used pseudo-random function F .

168 T. Hirano et al.

4.1 Our Strategy

A key point of our modified scheme is to securely divide the trapdoor generation
process of the Chase-Kamara scheme by using our multiple hashing technique.
According to this modification of the trapdoor generation process, the encrypted
index of the Chase-Kamara scheme is also slightly modified. In the keyword
searching process of the Chase-Kamara scheme, the user generates a trapdoor
T = (T1, T2) of long length (especially, T2 = F2(K,w)) and the server searches
the encrypted index I by directly using the trapdoor T . In order to address the
trapdoor size problem, we modify this process as follows. The user generates a
trapdoor of short length, and the server transforms the trapdoor to a meaningful
value of long length, which consist of multiple hash values and correspond to the
trapdoor of the Chase-Kamara scheme. Then, the server searches the encrypted
index using the trapdoor and the hash values. This process can be achieved by
using our multiple hashing technique. This technical overview is as follows.

As shown in Sect. 3, the encrypted index I of the Chase-Kamara scheme is
constructed by

{(key, val)}w = {(F (K1, w),D(w) ⊕ F (K2, w))}w∈Δ,

where w is a keyword, F : {0, 1}λ × {0, 1}k → {0, 1}� is a pseudo-random func-
tion, K1 and K2 are secret keys of F , and D(w) is a plain search result for a key-
word w and represented as the special bit string form described in Sect. 3. A trap-
door T for a keyword w is computed by T = (T1, T2) = (F (K1, w), F (K2, w)),
where |T2| = � ≥ n.

In order to address the above trapdoor size problem, we modify the encrypted
index of the Chase-Kamara scheme by using the following multiple hashing tech-
nique. For a hash function H : {0, 1}∗ → {0, 1}λ, we modify I as1

{(key, val)} = {(F (K1, w),D(w) ⊕ (hw,1|| · · · ||hw,N))}w∈Δ,

where N =
n/λ� and

hw,1 = H(H(K2||w)||1), . . . , hw,N = H(H(K2||w)||N).

In addition to the above modification of the encrypted index, we further modify
the trapdoor T = (T1, T2) as (F (K1, w),H(K2||w)).

Then, the keyword searching process in this modification is conducted as
follows. For a trapdoor T = (F (K1, w),H(K2||w)), the server computes hash
values hw,1, . . . , hw,N from T2 = H(K2||w), and then checks its search result by
I[T1] ⊕ (hw,1|| · · · ||hw,N)(= D(w)), similarly to the keyword searching process
of the Chase-Kamara scheme. Thus, this modification dramatically reduce the
trapdoor size from O(n) to O(λ). For example, the trapdoor size is of 512 bits
when we use SHA-256. We also observe an advantage that the server can generate
arbitrary long values corresponding to T2 (i.e. the keyword w) with no secret
1 Later, we also modify key and T1 as H(K1||w). Furthermore, we set K1 = K||0 and

K2 = K||1 using a secret key K.

Efficient Trapdoor Generation from Multiple Hashing 169

information. We believe that our multiple hashing technique would be applied to
other SSE schemes which have the trapdoor size problem, due to its generality
and simplicity. Our multiple hashing technique is summarized in Fig. 1.

Fig. 1. Summary of our multiple hashing technique.

From a viewpoint of security, our multiple hashing technique leads that the
server cannot infer not only hidden keywords from trapdoors, but also any infor-
mation on relationships among elements of our encrypted index until received
trapdoors, due to one-wayness of multiple hashing. As a result, we can also
show its adaptive security from a similar strategy as the security proof of the
Chase-Kamara scheme, but in the random oracle model since our proof strategy
essentially requires randomness of hash functions.

4.2 Construction

Let H : {0, 1}∗ → {0, 1}λ be a hash function. Let N =
n
λ� and D(w) =

b1|| · · · ||bn||bn+1|| · · · ||bλN , where b1, . . . , bn are represented as the special bit
form described in Sect. 3 and bn+1 = · · · = bλN = 0. The modified scheme is
proposed as follows:

– Gen(1λ):
1. Choose K1

u←− {0, 1}λ and K2 ← SKE.Enc(1λ).
2. Output K = (K1,K2):

– Enc(K,D):
1. Let I = ∅.
2. Compute N =
n

λ�.
3. For w ∈ Δ,

(a) Compute key = H(K1||0||w).
(b) Compute hw = H(K1||1||w) and hw,i = H(hw||i) for 1 ≤ i ≤ N .
(c) Compute val = D(w) ⊕ (hw,1|| · · · ||hw,N).

170 T. Hirano et al.

(d) Append (key, val) to I.
4. For D ∈ D, compute C ← SKE.Enc(K2,D).
5. Output I and C = (C1, . . . , Cn).

– Trpdr(K,w):
1. Compute T1 = H(K1||0||w) and T2 = H(K1||1||w).
2. Output T = (T1, T2).

– Search(I, T):
1. Parse T = (T1, T2).
2. Let S = ∅.
3. If I[T1] = ⊥ then output ∅.
4. Compute N =
n

λ�.
5. Compute h′

1 = H(T2||1), . . . , h′
N = H(T2||N).

6. Compute v = I[T1] ⊕ (h′
1|| · · · ||h′

N).
7. Let v = v1|| · · · ||vn||vn+1|| · · · ||vλN , where vi ∈ {0, 1} for 1 ≤ i ≤ λN .
8. For 1 ≤ i ≤ n, add idi into S if vi = 1.
9. Output S.

– Dec(K,C):
1. Compute D ← SKE.Dec(K2, C).
2. Output D.

In the Chase-Kamara scheme, the user generates a trapdoor (T ′
1, T

′
2) for a

keyword w′, and the server searches the encrypted index I ′ by I ′[T ′
1]⊕T ′

2. On the
other hand, our modified scheme is that the user generates a trapdoor (T1, T2)
for a keyword w, and the server transforms T2 to the value (hw,1|| · · · ||hw,N) and
then searches the encrypted index I by I[T1] ⊕ (hw,1|| · · · ||hw,N).

Then, we can show the following security of the modified scheme.

Theorem 1. The modified scheme is adaptively secure in the random oracle
model if SKE is LOR-CPA secure.

Before proving the security of our modified scheme, we give our proof strat-
egy. Our security proof is straightforward, similarly to that of the Chase-Kamara
scheme.

– Simulation of I: From the leakage information (|D1|, . . . , |Dn|) obtained
by querying on D, S chooses ki, ri,1, . . . , ri,N

u←− {0, 1}λ, and set I =
{(ki, ri,1|| · · · ||ri,N)}1≤i≤#Δ. With this simulation, S cheats A as if I =
{(ki, ri,1|| · · · ||ri,N)} is generated in the real experiment.

– Simulation of T : If A queries on wi, then for some j, S regards rj,1|| · · · ||rj,N

as
rj,1|| · · · ||rj,N = D(wi) ⊕ (r′

j,1 || · · · || r′
j,N)

= D(wi) ⊕ (H(rj ||1) || · · · || H(rj ||N))

by assigning some value rj ∈ {0, 1}λ, and further regards rj as H(K1||1||wi).
With this simulation, S cheats A as if rj is obtained from H(K1||1||wi) and
T = (kj , rj) is generated in the real experiment. In order to simulate the
above completely, S computes r′

j,1, . . . , r
′
j,N from valj = rj,1|| · · · ||rj,N and the

Efficient Trapdoor Generation from Multiple Hashing 171

leakage information D(wi) obtained by querying on wi, chooses rj
u←− {0, 1}λ,

and appends
Input Output
rj ||1 r′

j,1

...
...

rj ||N r′
j,N

into a random oracle hash table H.

Our formal proof with the above simulation is given as follows.

Proof. Let H = {(input, output)} be a random oracle hash table which is set to
∅, initially. A PPT simulator S = (S0, . . . ,Sq) is constructed as follows.

S0’s simulation. For the leakage information (|D1|, . . . , |Dn|) obtained from A’s
output D = (D1, . . . , Dn), S0 computes N =
n

λ�, and chooses random numbers
r1,1, . . . , r1,N , . . . , rδ,1, . . . , rδ,N

u←− {0, 1}λ, where δ = #Δ. Let

R1 = r1,1|| · · · ||r1,N ,

...
Rδ = rδ,1|| · · · ||rδ,N .

S0 also chooses random numbers k1, . . . , kδ
u←− {0, 1}λ, and sets I =

{(ki, Ri)}1≤i≤δ. Further, S0 runs SK ← SKE.Gen(1λ) and Ci ←
SKE.Enc(SK, 0|Di|) for 1 ≤ i ≤ n. Then, S0 sends I and C = {C1, . . . , Cn}
to A.

Si’s simulation (1 ≤ i ≤ q). For the leakage information α(D,wi) and σ(D,wi)
obtained from A’s output wi, Si regards D(wi) as bi,1|| · · · ||bi,n||bi,n+1(=
0)|| · · · ||bi,λN (= 0), where bi,j = 1 if idj ∈ D(wi) and bi,j = 0 otherwise. After
that, Si checks whether wi 	= wi′ for any wi′ (1 ≤ i′ < i). We note that this
check can be efficiently done from the leakage information σ(D,wi).

If wi 	= wi′ for 1 ≤ i′ < i, Si chooses 1 ≤ j ≤ δ which has not been chosen yet,
and computes r′

j,1|| · · · ||r′
j,N = D(wi) ⊕ Rj . Then, Si chooses a random number

rj
u←− {0, 1}λ, appends

(rj ||1, r′
j,1), . . . , (rj ||N, r′

j,N),

into H, and sends Ti = (kj , rj) as a trapdoor of wi to A.
If there exists i′ < i such that wi = wi′ , Si merely re-sends Ti′ = (kj , rj),

which has been already chosen in the i′-th simulation, to A.

Analysis for S’s simulation

– I and (T1, . . . , Tq) output by S work correctly, similarly to Real.
– For any 1 ≤ i ≤ n, A cannot distinguish Ci output by S0 from Ci output by

Real since SKE is LOR-CPA secure.

172 T. Hirano et al.

– The probability that for any 1 ≤ i ≤ q, A can query K1||0||wi to the random
oracle (i.e. H) a priori (in other words, the probability that A can obtain its
corresponding hash value kj a priori), is negligible since A has no secret key
and cannot infer it without querying on wi.

– The probability that for any 1 ≤ i ≤ q, A can query K1||1||wi to H a priori
(in other words, the probability that A can obtain its corresponding hash
value rj a priori), is negligible since A has no secret key and cannot infer it
without querying on wi.

– The probability that for any 1 ≤ j ≤ δ and any 1 ≤ i ≤ N , A can query
rj ||i to H a priori (in other words, the probability that A can obtain its
corresponding hash value r′

j,i), is negligible since A cannot have rj a priori
for any 1 ≤ j ≤ δ without querying on wi.

– The probability that for any 1 ≤ j ≤ δ and any 1 ≤ i ≤ N , A can infer r′
j,i

from Rj , is negligible since A cannot have D(wi) a priori for any 1 ≤ i ≤ q
without querying on wi.

From the above analysis, A and also any distinguisher D cannot distinguish
(ki, ri) output by S from (keyi, vali) output by Real for any 1 ≤ i ≤ δ. Thus,
the modified scheme is adaptively secure in the random oracle model. �

5 Conclusion

In this paper, we have shown the Chase-Kamara encryption scheme which is
obtained by simplifying the structured encryption schemes [13]. We have focused
on the trapdoor size problem of the Chase-Kamara scheme, and proposed the
modified scheme whose trapdoor size does not depend on the number of stored
documents. The modified scheme is based on our multiple hashing technique
which can transform a trapdoor of short length to that of long length. We have
shown that the modified scheme is adaptively secure in the random oracle model.

A future work is to show that our modified scheme is adaptively secure from
standard assumptions. We note that our modified scheme satisfies non-adaptive
security if employed pseudo-random functions instead of hash functions in our
modified scheme.

Acknowledgments. The authors would like to thank anonymous reviewers of ISPEC
2018 for their valuable comments.

References

1. Alderman, J., Martin, K.M., Renwick, S.L.: Multi-level access in searchable sym-
metric encryption. In: Brenner, M. (ed.) FC 2017. LNCS, vol. 10323, pp. 35–52.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 3

2. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption:
optimal locality in linear space via two-dimensional balanced allocations. In: STOC
2016 (2016)

https://doi.org/10.1007/978-3-319-70278-0_3

Efficient Trapdoor Generation from Multiple Hashing 173

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

4. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS 1997, pp. 394–403 (1997)

5. Boldyreva, A., Chenette, N.: Efficient fuzzy search on encrypted data. In: Cid, C.,
Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 613–633. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46706-0 31

6. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

7. Bösch, C., Brinkman, R., Hartel, P., Jonker, W.: Conjunctive wildcard search over
encrypted data. In: Jonker, W., Petković, M. (eds.) SDM 2011. LNCS, vol. 6933, pp.
114–127. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23556-
6 8

8. Bost, R.: Σoφoς - forward secure searchable encryption. In: ACM CCS 2016, pp.
1143–1154 (2016)

9. Cash, D., et al.: Dynamic searchable encryption in very-large databases: data struc-
tures and implementation. In: NDSS 2014 (2014)

10. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 20

11. Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 351–368.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 20

12. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137 30

13. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

14. Chase, M., Shen, E.: Substring-searchable symmetric encryption. PETS 2015
2015(2), 263–281 (2015)

15. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: ACM CCS 2006, pp.
79–88 (2006)

16. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. J. Comput. Secur. 19(5),
895–934 (2011)

17. Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable locality.
In: ACM SIGMOD 2017, pp. 1053–1067 (2017)

18. Do, H.G., Ng, W.K.: Private boolean query processing on encrypted data. In:
Lam, K.-Y., Chi, C.-H., Qing, S. (eds.) ICICS 2016. LNCS, vol. 9977, pp. 321–332.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50011-9 25

19. Dong, C., Russello, G., Dulay, N.: Shared and searchable encrypted data for
untrusted servers. J. Comput. Secur. 19(3), 367–397 (2011)

20. Etemad, M., Kupcu, A., Papamanthou, C.: Efficient dynamic searchable encryption
with forward privacy. PETS 2018 2018(1), 5–20 (2018)

https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-662-46706-0_31
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-642-23556-6_8
https://doi.org/10.1007/978-3-642-23556-6_8
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-642-55220-5_20
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-319-50011-9_25

174 T. Hirano et al.

21. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich
queries on encrypted data: beyond exact matches. In: Pernul, G., Ryan, P.Y.A.,
Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 123–145. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24177-7 7

22. Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003).
http://eprint.iacr.org/2003/216

23. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: ACM CCS 2014, pp. 310–320 (2014)

24. Hamlin, A., Shelat, A., Weiss, M., Wichs, D.: Multi-key searchable encryption,
revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp.
95–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 4

25. Hayasaka, K., Kawai, Y., Koseki, Y., Hirano, T., Ohta, K., Iwamoto, M.: Proba-
bilistic generation of trapdoors: reducing information leakage of searchable sym-
metric encryption. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol.
10052, pp. 350–364. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48965-0 21

26. Hirano, T., et al.: Simple, secure, and efficient searchable symmetric encryption
with multiple encrypted indexes. In: Ogawa, K., Yoshioka, K. (eds.) IWSEC 2016.
LNCS, vol. 9836, pp. 91–110. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-44524-3 6

27. Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-case
sub-linear complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 94–124. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 4

28. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM CCS 2012, pp. 965–976 (2012)

29. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 22

30. Kissel, Z.A., Wang, J.: Generic adaptively secure searchable phrase encryption.
PETS 2017 2017(1), 4–20 (2017)

31. Kurosawa, K.: Garbled searchable symmetric encryption. In: Christin, N., Safavi-
Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 234–251. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45472-5 15

32. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In:
Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32946-3 21

33. Kurosawa, K., Ohtaki, Y.: How to update documents Verifiably in searchable sym-
metric encryption. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013.
LNCS, vol. 8257, pp. 309–328. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-02937-5 17

34. Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted
data. In: IEEE ICDE 2012, pp. 1156–1167 (2012)

35. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: IEEE INFOCOM 2010 (Mini-Conference),
pp. 1–5 (2010)

36. Miyoshi, R., Yamamoto, H., Fujiwara, H., Miyazaki, T.: Practical and secure
searchable symmetric encryption with a small index. In: Lipmaa, H., Mitrokotsa,
A., Matulevicius, R. (eds.) NordSec 2017. LNCS, vol. 10674, pp. 53–69. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70290-2 4

https://doi.org/10.1007/978-3-319-24177-7_7
http://eprint.iacr.org/2003/216
https://doi.org/10.1007/978-3-319-76578-5_4
https://doi.org/10.1007/978-3-319-48965-0_21
https://doi.org/10.1007/978-3-319-48965-0_21
https://doi.org/10.1007/978-3-319-44524-3_6
https://doi.org/10.1007/978-3-319-44524-3_6
https://doi.org/10.1007/978-3-319-56617-7_4
https://doi.org/10.1007/978-3-319-56617-7_4
https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1007/978-3-662-45472-5_15
https://doi.org/10.1007/978-3-642-32946-3_21
https://doi.org/10.1007/978-3-319-02937-5_17
https://doi.org/10.1007/978-3-319-02937-5_17
https://doi.org/10.1007/978-3-319-70290-2_4

Efficient Trapdoor Generation from Multiple Hashing 175

37. Moataz, T., Shikfa, A.: Boolean symmetric searchable encryption. In: ASIACCS
2013, pp. 265–276 (2013)

38. Naveed, M., Prabhakaran, M., Gunter, C.A.: Dynamic searchable encryption via
blind storage. In: IEEE S&P 2014, pp. 639–654 (2014)

39. Ogata, W., Koiwa, K., Kanaoka, A., Matsuo, S.: Toward practical searchable sym-
metric encryption. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol.
8231, pp. 151–167. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41383-4 10

40. Ogata, W., Kurosawa, K.: Efficient no-dictionary verifiable searchable symmetric
encryption. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 498–516. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70972-7 28

41. Shen, Y., Zhang, P.: Ranked searchable symmetric encryption supporting conjunc-
tive queries. In: Liu, J.K., Samarati, P. (eds.) ISPEC 2017. LNCS, vol. 10701, pp.
350–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72359-4 20

42. Song, D., Wagner, D., Perrig, A.: Practical techniques for searching on encrypted
data. In: IEEE S&P 2000, pp. 44–55 (2000)

43. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: NDSS 2014 (2014)

44. Taketani, S., Ogata, W.: Improvement of UC secure searchable symmetric encryp-
tion scheme. In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp.
135–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22425-1 9

45. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally
efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM
2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15546-8 7

46. Wang, C., Ren, K., Yu, S., Urs, K.M.R.: Achieving usable and privacy-assured
similarity search over outsourced cloud data. In: IEEE INFOCOM 2012, pp. 451–
459 (2012). https://doi.org/10.1109/INFCOM.2012.6195784

47. Xu, P., Liang, S., Wang, W., Susilo, W., Wu, Q., Jin, H.: Dynamic searchable
symmetric encryption with physical deletion and small leakage. In: Pieprzyk, J.,
Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 207–226. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-60055-0 11

48. Yang, Y.J., Ding, X.H., Deng, R.H., Bao, F.: Multi-user private queries over
encrypted databases. Int. J. Appl. Crypt. 1(4), 309–319 (2009)

49. Yavuz, A.A., Guajardo, J.: Dynamic searchable symmetric encryption with min-
imal leakage and efficient updates on commodity hardware. In: Dunkelman, O.,
Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 241–259. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31301-6 15

https://doi.org/10.1007/978-3-642-41383-4_10
https://doi.org/10.1007/978-3-642-41383-4_10
https://doi.org/10.1007/978-3-319-70972-7_28
https://doi.org/10.1007/978-3-319-72359-4_20
https://doi.org/10.1007/978-3-319-22425-1_9
https://doi.org/10.1007/978-3-642-15546-8_7
https://doi.org/10.1007/978-3-642-15546-8_7
https://doi.org/10.1109/INFCOM.2012.6195784
https://doi.org/10.1007/978-3-319-60055-0_11
https://doi.org/10.1007/978-3-319-31301-6_15

	Efficient Trapdoor Generation from Multiple Hashing in Searchable Symmetric Encryption
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Our Contributions
	1.4 Related Works
	1.5 Organization

	2 Preliminaries
	2.1 Notations and Basic Cryptographic Primitives
	2.2 Definitions of SSE

	3 The Chase-Kamara Scheme
	4 The Proposed Scheme
	4.1 Our Strategy
	4.2 Construction

	5 Conclusion
	References

