
Macros Finder: Do You Remember
LOVELETTER?

Hiroya Miura(B), Mamoru Mimura, and Hidema Tanaka

National Defense Academy, Yokosuka, Japan
{em56030,mim,hidema}@nda.ac.jp

Abstract. In recent years, the number of targeted email attacks which
use Microsoft (MS) document files has been increasing. In particular,
damage by malicious macros has spread in many organizations. Rele-
vant work has proposed a method of malicious MS document files detec-
tion. To the best of our knowledge, however, no method of detecting
malicious macros exists. Hence, we proposed a method which detects
malicious macros themselves using machine learning. First, the proposed
method creates corpuses from macros. Our method removes trivial words
in the corpus. It becomes easy for the corpuses to classify malicious
macros exactly. Second, Doc2Vec represents feature vectors from the
corpuses. Malicious macros contain the context. Therefore, the feature
vectors of Doc2Vec are classified with high accuracy. Machine learning
models (Support Vector Machine, Random Forest and Multi Layer Per-
ceptron) are trained, inputting the feature vectors and the labels. Finally,
the trained models predict test feature vectors as malicious macros or
benign macros. Evaluations show that the proposed method can obtain
a high F-measure (0.93).

Keywords: Macro · Machine learning
Natural language processing technique · Bag-of-Words · Doc2Vec

1 Introduction

In recent years, email has become one of the most popular communication tools.
In this situation, targeted email attacks have become a big threat to society.
A targeted email attack is a specific attack in which the attacker attempts
to persuade a victim to run specific action. Depending on the specific action,
there are two types of targeted email attacks. One is to open malicious links
and to download a malware, and the other is to open malicious attachments.
Attackers attempt to earn credibility with their victims through an eloquent
mail text. Moreover, the attackers convince victims to unknowingly download
a malicious file attachment or click-through to a malicious site. According to a
report published by Sophos [1], most targeted email attacks are the attachment
type. Moreover, the report shows that 85% of the attached files are Microsoft
Office documents (MS documents) files. The report shows that most malicious
c© Springer Nature Switzerland AG 2018
C. Su and H. Kikuchi (Eds.): ISPEC 2018, LNCS 11125, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-319-99807-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99807-7_1&domain=pdf

4 H. Miura et al.

MS document files have malicious macros. Malicious macros have a long history.
For example, the LOVELETTER worm of malicious macro infected more than
45 million computers, and some organizations suffered serious damage in 2000.
After that, the occurrence of malicious macros gradually slacked off. However,
they were enlivened again from 2014 onwards.

Next, we show the importance of detecting malicious macros themselves.
Relevant work [5] analyzes the structure of docx files, and detects malicious
docx files. The work does not, however, discriminate between malicious macros
and benign macros. If the dataset contains benign macros and malicious macros,
the work probably cannot detect malicious docx files. If malicious docx files are
camouflaged with a structure of benign docx files, attackers can probably evade
the detection model. Detecting malicious macros themselves can overcome these
weaknesses. Hence, detecting malicious macros is an effective and important
method.

We will introduce an outline of the proposed method. The proposed method
detects malicious macros themselves using machine learning. First, the proposed
method creates corpuses from macros. Our method reduces trivial words in the
corpus. It becomes easy for the corpuses to classify malicious macros exactly.
We use Term Frequency (TF) or Term Frequency-Inverse Document Frequency
(TFIDF) in the reducing words process. TF is a method which weights value
corresponding to frequency of words in a corpus. TFIDF is a method which
weights a representative word in a corpus. Second, Doc2Vec (D2V) or Bag-
of-Words represents feature vectors from the corpuses. D2V is a model that
represents vectors from the context of the documents. Bow is a method that
represents vectors corresponding to the frequency of the words.

Next, Support Vector Machine (SVM), Random Forest (RF) and Multi Layer
Perceptron (MLP) are trained, inputting the feature vectors and the labels.
Finally, the trained models predict test feature vectors as malicious macros or
benign macros.

Next, we will show three viewpoints of verification experiments in this paper.

(1) Which is more effective, TF or TFIDF?
(2) Which is more effective, D2V or Bow?
(3) What is the best combination of these methods and classifiers?

In order to answer these questions, we conducted verification experiments. Based
on the results of these verification experiments, this paper makes the following
contributions:

(1) we confirmed that D2V was effective in classifying malicious macros.
(2) we confirmed that reducing words using TF was effective in classifying mali-

cious macros.
(3) we confirmed that classifiers in which the strong point was to solve the

problem of linear separability, were effective in classifying malicious macros.

We will introduce the structure of this paper. Section 2 introduces relevant
work and reveals the differences between this paper other and relevant study.

Macros Finder: Do You Remember LOVELETTER? 5

Section 3 presents an overview of the background. Section 4 presents the proposed
method. Section 5 describes experiments. Section 6 discusses the results of the
experiments. Finally, we conclude this paper.

2 Related Work

In targeted email attacks, attackers use document files in which are embedded
malicious source codes, or executable files. Most malicious executable files are
camouflaged with a change of document icon and the file extension. Methods
of detecting these malicious files can be categorized into static analysis and
dynamic analysis. Dynamic analysis is the testing and evaluation of a program
by executing data in real-time. Static analysis is a method of program debugging
that is done by examining the code without executing the program.

Malicious document files are roughly categorized into MS document files
and PDF files [1]. This section presents the relevant work in two parts (MS
document files detection and malicious PDF files detection). Since our method
does not execute specimens for detecting malicious macros, our method is the
static analysis. Therefore, we present the relevant work within the static analysis
range, in this section.

We will show representative work for malicious executable files detection
using the dynamic analysis, as a reference. Rieck et al. [2] proposed a framework
for the dynamic analysis of malicious executable binaries behavior using machine
learning. Bayer et al. [3] proposed a tool which monitors the behavior of Windows
API, to classify malicious executable files. Next, we will show representative
work for malicious executable files detection using the static analysis. Perdisci
et al. [4] proposed a framework which detects malicious executable files using
the static analysis. The framework classifies malicious executable codes using
n-gram analysis. Even if executable files are packed, the framework is able to
classify.

MS Document File. This section presents relevant work on the detection of
malicious MS document files. Nissim et al. [5] proposed a framework (ALDOCX)
that classifies malicious docx files using various machine learning classifiers.
ALDOCX created feature vectors from the path structure of docx files. This
is a practical method, because ALDOCX framework has updatability and incor-
porates new unseen malicious docx files created daily. Naser et al. [6] proposed a
method to detect malicious docx files. The method parses structure of docx files,
and analyzes suspicious keywords. These works do not support the classification
of Excel files and Power Point files. Our method, however, can be applied to
malicious MS document files which are Word files, Excel files and Power Point
files.

Otsubo et al. [7] proposed a tool (O-checker) to detect malicious document
files (e.g. rtf, doc, xls, pps, jtd, pdf). O-checker detects malicious document
files which contain executable files, using deviation of file format specifications.
O-checker focuses on embedded executable files however, and cannot classify

6 H. Miura et al.

macros themselves. Even if the malicious documents do not contain executable
files, our proposed method can detect malicious macros.

Boldewin implemented a tool (OfficeMalScanner) [8] to detect MS document
files which contain malicious shellcodes or executable files. The tool scans entirely
malicious files, and detects features of strings of Windows API, shellcode patterns
and embedded OLE data [9]. The tool scores each document corresponding to
each of the features. If the scores are more than a certain threshold, the tool
judges the file as a malicious file.

Mimura et al. [10] de-obfuscate embedded executable files in a malicious
document file (e.g. doc, rtf, xls, pdf) and detect them. The detection rate was
verified in the work, and it was confirmed that the detection rate was higher than
the detection rate of OfficeMalScanner. [7,8,10] focused on embedded malicious
executable files or shellcodes, but not, however, on detecting malicious macros
themselves.

PDF File. Next, this section presents related work which deals with the detec-
tion of malicious PDF files. Igino Corona et al. [11] proposed a method that
refers to the frequency of suspicious reference APIs, to classify malicious PDF
files. Liu et al. [12] proposed a method that analyzes obfuscated scripts to classify
malicious PDF files. This method uses the characteristics of obfuscation, which
is common to our method. However, these methods classify only malicious PDF
files, and are fundamentally different from our method, which classifies malicious
macros.

3 Relevant Techniques

3.1 Malicious Macros

This section describes the behavior of malicious macros, and reveals their fea-
tures. There are two types of malicious macros, Downloader and Dropper.

Downloader is a malicious macro which enforces download malware upon a
victim. An attacker uses a slick text of the type that the victim expects, and
induces the victim to open an attachment. When the victim opens the attach-
ment, the computer is forced into connecting to a malicious server. When Down-
loader connects to the server, it tends to uses external applications (Internet
Explorer, etc.). Finally, the computer downloads and installs a malware from
the server.

With Dropper, malicious codes (a binary of EXE files, etc.) are embedded
in Dropper itself. When a victim opens the attachment of a phishing email,
Dropper executes the codes contained in it as an executable file. The difference
between Dropper and Downloader is that Dropper itself is able to fraudulently
operate upon victim computers. Unlike Downloader, Dropper can infect victims
without communicating an external resource (server or database, etc.).

Macros Finder: Do You Remember LOVELETTER? 7

Table 1. Typical obfuscation methods

summary

1 Obfuscation of replacing statement name, etc.

2 Obfuscation of encoding and decoding ASCII code

3 Obfuscation of character string by encoding conversion using exclusive OR

4 Splitting characters

5 Using reflection function

3.2 Obfuscation of Malicious Macros

The source codes of most malicious macro tend to be obfuscated. Therefore, cap-
turing the characteristics of obfuscation can effectively predict malicious macros.
We will show some obfuscation methods of the source codes.

Table 1 shows typical obfuscation methods in the source codes. Method 1
replaces class names, function names, etc with random strings. The random
strings tend to be more than 20 characters. Method 2 encodes and decodes
strings to ASCII codes. Macros provide AscB function and ChrB function. AscB
function encodes character strings to ASCII codes. ChrB function encodes ASCII
codes to character strings. Using AscB functions, attackers can conceal strings
to encode the hexadecimal of ASCII codes. Moreover, ChrB function can convert
ASCII codes to readable character strings. Method 3 performs using exclusive-
OR any strings with a key. Many of the keys are intricately calculated and
perform logic operations. Method 4 subdivides strings. Subdivided character
strings are assigned to variables. By adding together those variables, the original
strings are restored. Method 5 uses reflection functions which execute strings
as instructions. For example, the strings are function names, class names and
method names. CallByName function is a reflection function in the source codes.
Using the CallByName function, attackers can hide the executing function.

3.3 Bag-of-Words

Words and documents need to be represented by feature vectors so that com-
puters can interpret a natural language. Bow is the most basic natural language
processing technique. Bow is a method of representing the frequency of a token
in a sentence to an element of a vector corresponding to the token. Bow does not
consider word order or meaning of tokens. In Bow, the number of unique tokens
and the number of elements are the same. When the number of unique tokens
diverges, the number of elements likewise diverges. Therefore, when Bow repre-
sents feature vectors, it may be necessary to adjust the number of dimensions.

3.4 Doc2Vec

D2V is a natural language processing technique. D2V is a model that is improved
Word2Vec (W2V). First of all, we will introduce W2V. W2V is a model that is

8 H. Miura et al.

used to represent word embeddings. W2V is a two-layer neural network that is
trained to reconstruct the linguistic context of words. W2V has a hidden layer
and an output layer. The input of W2V is a large corpus of documents, and W2V
represents the input in feature vectors. The number of dimensions of the feature
vector is typically several hundred. Each unique token in the corpus is assigned
a corresponding element of the feature vector. Word vectors are positioned in
the vector space such that common contexts in the corpus are positioned in close
proximity to one another in the space. This is based on the probability of words
co-occurrence around a word. W2V has two algorithms, which are Continuous
Bag-of-Words (CBow) and Skip-Gram. CBow is an algorithm which predicts a
centric word from surrounding words. Skip-Gram is an algorithm which predicts
surrounding words from a centric word. Using these algorithms, W2V can obtain
similarity of words, and also predict equivalent words.

D2V has two algorithms which are Distributed Memory (DM) and Dis-
tributed Bag-of-Words (DBow). DM is an algorithm that is improved CBow.
In addition to a large corpus of documents, those document-IDs input into DM.
DBow is an algorithm which improves Skip-Gram. The input of DBow is not the
words of documents but document-IDs. Using these algorithms, D2V can obtain
similarity of documents, and also vectorize the documents.

3.5 Term Frequency-Inverse Document Frequency

Term Frequency-Inverse Document Frequency (TFIDF) is a numerical value
that determines the importance of the words in the corpus. We will introduce
how TFIDF value is calculated.

TFIDF = frequencyi,j × log2
D

document freqi

The frequencyi,j is the frequency of a token i in a document j. The
document freqi is the frequency of documents in which the token i appears.
The TF is the frequencyi,j . The IDF is the logarithm of a value in which D
(the number of total documents) is divided by the document freqi. TFIDF
value is a value which is the multiplication of TF and IDF . Finally, TFIDF
value is normalized.

When a word appears rarely in an entire corpus and appears frequently in a
document, the TFIDF value increases the priority of the word.

4 Proposed Method

This section proposes our method. Figure 1 shows an outline of the proposed
method. The purpose of the proposed method is to detect unseen malicious
macros with high classification accuracy. Step 1 extracts macros from MS doc-
ument files. Step 2 separates words in the macros to create corpuses. Step 3
replaces words with characteristics of the same types of obfuscation (such as

Macros Finder: Do You Remember LOVELETTER? 9

Fig. 1. Process procedure of unseen malicious macros detection

hexadecimal ASCII codes), with a word. Step 4 reduces trivial words in the cor-
puses using TF or TFIDF. Step 5 represents feature vectors from the corpus
using Bow or D2V. The proposed method inputs the training feature vectors
and the labels into classifiers (SVM, RF and MLP). Finally, we input the test
feature vectors into trained classifiers, and obtain the labels.

4.1 Extract Source Code Process

The proposed method extracts macros from MS document files using Olevba
[13]. Olevba is open source software that can extract macros from MS document
files. Olevba can extract regardless of the platform.

4.2 Separating Words Process

The purpose of the separating words process is to create corpuses of the macros.
The process replaces special characters that are shown in Table 2 with a blank.
The source codes of malicious macros are intricately written, with many spe-
cial characters. Therefore, the separating words process creates simple corpuses
which are only alphabets and numbers.

10 H. Miura et al.

Table 2. Replaced special characters

Special character Name Special character Name

” double quote + plus

’ single quote / slash

{ quare bracket & and

(round bracket % percentage

, comma yen sign

. period $ dollar sign

∗ asterisk # sharp

- haihun @ at mark

Table 3. Replacing specific strings

Methods Characters pattern Replaced strings

1 Hexadecimal (Type of 0xXX) 0xhex

2 Hexadecimal (Type of &HXX) andhex

3 Asc, AscB, AscW asc

4 A string of 20 or more characters longchr

5 A number of 20 digits or more longnum

6 Element of array Elementofarray

4.3 Replement Process

This section discusses the replacement process. The purpose of the process is to
collect words into each obfuscation. The process replaces words with character-
istics of same type of obfuscation, with one token. Generally, malicious macros
are obfuscated. The process can convert the corpuses to improve classification
accuracy.

We will show an example of the process. The process replaces the hexadecimal
values with one token as follows.

Before the process: 0xFF 0x14 0xA2

After the process: 0xhex 0xhex 0xhex
In this example, each hexadecimal value is treated as a different token before the
process replacing the tokens. However, after the process of replacing character-
istics, they are treated as the same token. The process replaces words regarded
as different features with one word. Therefore, the replacement process improves
the classification accuracy. Table 3 shows string patterns and replaced strings.
These string patterns frequently appear in malicious macros.

Macros Finder: Do You Remember LOVELETTER? 11

4.4 Reducing Words Process

The purpose of the reducing words process is to reduce trivial words for improv-
ing classification accuracy. The frequency of words in macros is biased. A feature
vectors of D2V and Bow are affected by the frequency of words. Thus, each word
in a corpus has the some worth for the classification of malicious macros.

The process prioritizes words in the corpuses with TF or TFIDF. First, the
process calculates the TF or TFIDF of each word in all the corpuses. Next,
we define a threshold. Finally, the process replaces words in which the TF or
TFIDF value is less than the threshold, with “NONE”. Through the process,
the words which are bigger than the threshold remain in the corpuses.

4.5 Representing Feature Vectors Process and Classification
of Macros

In the representing feature vectors process, D2V or Bow represents feature vec-
tors by processed corpuses. Next, we input training feature vectors and the labels
into classifiers (SVM, RF and MLP) in order to train the classifier. Test feature
vectors are input into the trained classifier, and our method detects malicious
macros.

5 Experiment

This section describes the verification experiments. The objective is to verify the
next four factors.

1 Investigating the most effective corpus for improving F-measure
2 Comparing D2V and Bow
3 Comparing TF and TFIDF
4 Investigating the best combination of the above factors and classifiers (SVM,

RF and MLP).

Verification Experiment 1 investigates effective corpuses which classify mali-
cious macros. Bow represents feature vectors from malicious corpuses, benign
corpuses and corpuses which are both. Next, SVM classifies each the feature
vector, and obtains each classification accuracy.

The classification accuracy of D2V and Bow is compared in Verification
Experiment 2. Each method represents feature vectors from corpuses. The best
corpuses in Verification Experiment 1 are used in Verification Experiment 2. The
feature vectors are classified using SVM, RF and MLP.

The classification accuracy of TF and TFIDF is compared in Verification
Experiment 3. The best corpuses in Verification Experiment 1 are used in Ver-
ification Experiment 3. Feature vectors are represented using the best method
(D2V or Bow) in Verification Experiment 2.

12 H. Miura et al.

5.1 Experiment Environment

We implemented our proposed method with Python2.7 in the environment as
shown in Table 4. We used gensim-2.0.0 [14] to implement Bow and D2V. Gensim
has many functions related to natural language processing techniques. We used
scikit-learn-0.18.1 [15] to implement SVM, RF and MLP. Scikit learn is a machine
learning library and has many classification algorithms.

Table 4. Experiment environment

CPU IntelCorei7 (3.30 GHz)

Memory 32 GB

OS Windows8.1Pro

Table 5. Breakdown of The dataset

Specimens of 2015 Specimens of 2016

Benign files Malicious files Benign files Malicious files

622 515 1200 641

5.2 DataSet

This section presents the dataset of the experiments. Table 5 shows the break-
down of the dataset. This dataset was collected and provided by Virus Total
[16]. We selected specimens which had been uploaded to Virus Total for the first
time between 2015 and 2016. We collected macros whose file extensions have
doc, docx, xls, xlsx, ppt and pptx. We treat the specimens which more than 29
out of 58 anti-virus vendors judged as malicious, as malicious specimens. We
treated the specimens which all anti-virus vendors judged as benign, as benign
specimens. There was no overlap in these specimens.

5.3 Evaluation Measure

This section presents the evaluation measures in the experiments. Malicious
macros is treated as true label and benign macros is treated as false labels in the
experiments. Table 6 shows the confusion matrix. We used Precision (P), Recall
(R) and F-measure (F) as evaluation metrics. We will indicate the definition of
each evaluation metric.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F −measure =
2Recall × Precision

Recall + Precision

Macros Finder: Do You Remember LOVELETTER? 13

Table 6. Confusion matrix

Actual value

True False

Predicted result Positive TP FP

False FN TN

Fig. 2. The classification accuracy of each corpus in each dimension using TF and Bow

5.4 Verification Experiment 1

Experimental Approach. The objective is to investigate the most effective
corpus for improving F-measure in Verification Experiment 1. The experiment
selects from malicious corpuses, benign corpuses and corpuses which are both.
The procedure of the experiment is shown next. The corpuses are created using
Step 1 to Step 3 in Fig. 1. In the reducing process, we reduce the words in the
corpus using the TF threshold. When the TF of a word is less than the TF
threshold, the word is replaced with one word. Next, Bow represents three fea-
ture vectors from malicious corpuses, benign corpuses and corpuses which are
both. Training feature vectors and the labels are input into an SVM classifier for
training. Test feature vectors are input into the trained classifier to obtain pre-
dicted labels. The parameter of SVM is the default. Training data are specimens
from 2015. Test data are specimens from 2016.

14 H. Miura et al.

Result of Verification Experiment 1. Figure 2 shows the classification accu-
racy of each feature vector. The horizontal axis is the dimensions, and the vertical
axis is the F-measure. When we represent feature vectors from malicious cor-
puses, the classification accuracy is higher than the classification accuracy of
benign corpuses and corpuses which are both. Therefore, we conclude that the
malicious feature vectors are effective in classifying malicious macros.

Fig. 3. The classification accuracy of each classifier using TF

5.5 Verification Experiment 2

Experimental Approach. The objective is to compare the classification accu-
racy of D2V and Bow in Verification Experiment 2. The procedure of the exper-
iment is shown next. The corpuses are created using Step 1 to Step 3 in Fig. 1.
In the reducing words process, we reduce the words in the corpus using TF. The
feature vectors of two patterns are represented from malicious macros using D2V
and Bow. D2V is set up such that the number of dimensions is 100, the num-
ber of epochs is 30 and the algorithm is DBow. Each of the feature vectors and
the labels are input into three classifiers (SVM, RF and MLP) for training. The
parameters of SVM and RF are default values. Verification Experiment 2 sets up
MLP such that the input layer size is the number of unique tokens, the hidden
layer size is 500, and the activation function is ReLU (Rectified Linear Unit). The
classifier is input into the test feature vectors to predict malicious macros and
benign macros. Finally, we obtain the F-measure of each of the feature vectors.
Training data and test data are the same as for Verification Experiment 1.

Result of Verification Experiment 2. (a), (b) and (c) in Fig. 3 show the
result of Verification Experiment 2 in each classifier. The horizontal axis is the
dimensions, and the vertical axis is the F-measure. The F-measure of D2V is
higher than Bow in (a) and (c). In contrast, the F-measure of Bow is higher
than D2V in (b). In (c), when the number of dimensions is 21506 using D2V,
the F-measure is the best (0.93). Moreover, the F-measure of a combination of
MLP and D2V is stable.

Macros Finder: Do You Remember LOVELETTER? 15

Fig. 4. The classification accuracy of each dimension using TF and TFIDF

5.6 Verification Experiment 3

Experimental Approach. The objective is to compare the F-measure of the
TF and the TFIDF in Verification Experiment 3. The corpuses are created using
Step 1 to Step 3 in Fig. 1. In the reducing process, we reduce the words in the
corpus using two methods, which are TF and TFIDF. The feature vectors are
represented using D2V. The settings of D2V are the same as in Verification
Experiment 2. Each of the training feature vectors and the labels are input
into MLP for training. MLP is input into the test feature vectors to predict
malicious macros and benign macros. Finally, we obtain the F-measure of each
of the feature vectors. The training data and the test data are the same as for
Verification Experiment 1.

Result of Verification Experiment 3. Figure 4 shows the result of Verifi-
cation Experiment 3. The horizontal axis is the number of unique tokens, and
the vertical axis is the F-measure. Generally, the classification accuracy of the
TFIDF threshold is decreased. However, the classification accuracy of the TF
threshold is stable and high. The highest F-measure is 0.93.

16 H. Miura et al.

6 Discussion

6.1 Efficient Corpus

In Verification Experiment 1, we confirmed high classification accuracy using
malicious corpuses. Benign macros are used for various purposes. Therefore,
benign macros contain various tokens. In contrast, the purpose of malicious
macros is simple. The purpose of malicious macros is to infect the victim’s com-
puter with malware. The source codes of the malicious macros contain many
tokens which communicate to external servers, and are obfuscated. The source
codes of the malicious macros frequently contain these characteristic tokens.
Therefore, the replacement process can capture the characteristic, and the pro-
posed method obtains high classification accuracy. In Bow, an element of the
feature vectors is the frequency of a token. Therefore, malicious corpuses do
better than other corpuses in Verification Experiment 1.

Table 7. Characteristic tokens

Token Appearance ratio
of malicious macro

Token Appearance ratio
of benign macro

Elementofarray 99% Elementofarray 43%

Andchr 93.9% Andchr 28%

Next 90.9% Next 27.9%

Function 85.1% Function 18.3%

String 83.3% String 25.7%

Len 79% Len 14.7%

Public 77.5% Public 17.7%

Longchr 73.7% Longchr 19.7%

Createobject 73% Createobject 6.6%

Error 73% Error 20.7%

Byte 56.1% Byte 1.5%

Callbyname 51.3% Callbyname 0.1%

6.2 Effectiveness of Bow and D2V

In Verification Experiment 2, we verified an efficient method of representing
feature vectors. As a result, we concluded that D2V is better than Bow. As the
TF threshold is high, low frequently-tokens are reduced and high frequently-
tokens remain. In (c) of Fig. 3 using D2V, even if the dimension is the smallest
(concretely, the dimension is 1515), the classification accuracy remains high.
D2V represents word embedding. Therefore, we consider that the high-frequency
token contains the context.

Macros Finder: Do You Remember LOVELETTER? 17

6.3 Efficient Classifier

In Verification Experiment 2, we confirmed that the classification accuracy of
MLP and SVM was high. However, the classification accuracy of the RF classifier
was low. Generally, the strong point of MLP and SVM is in solving the problem
of linear separability. However, the strong point of RF is in solving the problem
of linear inseparability. Therefore, we consider that the feature vectors of D2V
can be separated linearly. In (a) and (c) of Fig. 3, the classification accuracy of
D2V is higher than Bow. As a reason for this, we conclude that D2V tends to
suit SVM and MLP in the classification of malicious macros.

6.4 Effectiveness of TFIDF

When the number of tokens is small, the classification accuracy decreased in
Fig. 4 using TFIDF. Many words which are replaced in the replacement process,
exist in the malicious corpus. Therefore, the TFIDF values of replaced words
are small. While the TFIDF threshold is high, replaced words are reduced. We
indicate the representative tokens in Table 7. We define the appearance ratio as
“Number of the files which contain the token / Number of files”. Therefore, we
consider that the classification accuracy decreased using the TFIDF threshold.

In Fig. 4 using a TF threshold, the classification accuracy is more stable and
we higher than TFIDF. As the TF threshold is high, the characteristic words of
malicious macros remained and low frequently-word are reduced. Therefore, TF
is more effective than TFIDF.

7 Conclusion

In this paper, we discussed effective methods of detecting unseen malicious
macros. The proposed method reduces trivial words in corpuses. Next, the cor-
puses are converted to feature vectors using a linguistic approach. The training
feature vectors and labels are input into a classifier. Finally, the test feature
vectors are input into the trained classifier, and we obtain predicted labels. This
paper investigated effective methods of reducing trivial words (TF and TFIDF),
vectorizing methods (D2V and Bow) and classifiers (SVM, RF and MLP). As a
result, it was seen that the combination of TF, D2V and MLP is effective for
the detection of unseen malicious macros in our method. The highest F-measure
is 0.93. We discussed effectiveness of the proposed method in this paper. We
concluded that the feature vectors of D2V are effective in classifying unseen
malicious macros. Our future work is to implement a tool which can detect
malicious macros in real-time.

18 H. Miura et al.

References

1. Wolf in sheep’s clothing: a SophosLabs investigation into delivering malware
via VBA. https://nakedsecurity.sophos.com/2017/05/31/wolf-in-sheeps-clothing-
a-sophoslabs-investigation-into-delivering-malware-via-vba/

2. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behav-
ior using machine learning. J. Comput. Secur. 19(4), 639–668 (2011)

3. Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis of malicious code.
J. Comput. Virol. 2, 67–77 (2006). https://doi.org/10.1007/s11416-006-0012-2

4. Perdisci, R., Lanzi, A., Lee, W.: McBoost: boosting scalability in malware collection
and analysis using statical classification of executables. In: Computer Security
Applications Conference (2008). https://doi.org/10.1109/ACSAC.2006.53

5. Nissim, N., Cohen, A., Elovici, Y.: ALDOCX: detection of unknown malicious
microsoft office documents using designated active learning methods based on new
structural feature extraction methodology. IEEE Trans. Inf. Forensics Secur. 12(3),
631–646 (2017)

6. Naser, A., Hadi, A.: Analyzing and detecting malicious content: DOCX files. Int.
J. Comput. Sci. Inf. Secur. (IJCSIS) 14(8), 404–412 (2016)

7. Otsubo, Y., Mimura, M., Tanaka, H.: O-checker: detection of malicious documents
through deviation from file format specification. In: Black Hat USA (2016)

8. Boldewin, F.: Analyzing MSOffice malware with OfficeMalScanner. https://
ja.scribd.com/document/21143233/Analyzing-MSOffice-Malware-With-
OfficeMalScanner

9. OLE Background. https://msdn.microsoft.com/en-us/library/19z074ky.aspx
10. Mimura, M., Otsubo, Y., Tanaka, H.: Evaluation of a brute forcing tool that

extracts the RAT from a malicious document file. In: 2016 11th Asia Joint
Conference on Information Security (Asia JCIS) (2016). https://doi.org/10.1109/
AsiaJCIS.2016.10

11. Corona, I., Maiorca, D., Giacinto, G.: Lux0R: detection of malicious PDF-
embedded JavaScript code through discriminant analysis of API references (2014)

12. Liu, D., Wang, H., Stavrou, A.: Detecting malicious Javascript in PDF through doc-
ument instrumentation. In: 2014 44th Annual IEEE/IFIP International Conference
Dependable Systems and Networks (DSN), pp. 100–111, ISBN 978-1-4799-2233-8
(2014)

13. olevba. https://github.com/decalage2/oletools/wiki/olevba
14. python package index gensim 0.10.1. https://pypi.python.org/pypi/gensim/0.10.1
15. python package index scikit learn 0.19.0. https://pypi.python.org/pypi/scikit-

learn/0.19.0
16. Virus Toral. https://www.virustotal.com/

https://nakedsecurity.sophos.com/2017/05/31/wolf-in-sheeps-clothing-a-sophoslabs-investigation-into-delivering-malware-via-vba/
https://nakedsecurity.sophos.com/2017/05/31/wolf-in-sheeps-clothing-a-sophoslabs-investigation-into-delivering-malware-via-vba/
https://doi.org/10.1007/s11416-006-0012-2
https://doi.org/10.1109/ACSAC.2006.53
https://ja.scribd.com/document/21143233/Analyzing-MSOffice-Malware-With-OfficeMalScanner
https://ja.scribd.com/document/21143233/Analyzing-MSOffice-Malware-With-OfficeMalScanner
https://ja.scribd.com/document/21143233/Analyzing-MSOffice-Malware-With-OfficeMalScanner
https://msdn.microsoft.com/en-us/library/19z074ky.aspx
https://doi.org/10.1109/AsiaJCIS.2016.10
https://doi.org/10.1109/AsiaJCIS.2016.10
https://github.com/decalage2/oletools/wiki/olevba
https://pypi.python.org/pypi/gensim/0.10.1
https://pypi.python.org/pypi/scikit-learn/0.19.0
https://pypi.python.org/pypi/scikit-learn/0.19.0
https://www.virustotal.com/

	Macros Finder: Do You Remember LOVELETTER?
	1 Introduction
	2 Related Work
	3 Relevant Techniques
	3.1 Malicious Macros
	3.2 Obfuscation of Malicious Macros
	3.3 Bag-of-Words
	3.4 Doc2Vec
	3.5 Term Frequency-Inverse Document Frequency

	4 Proposed Method
	4.1 Extract Source Code Process
	4.2 Separating Words Process
	4.3 Replement Process
	4.4 Reducing Words Process
	4.5 Representing Feature Vectors Process and Classification of Macros

	5 Experiment
	5.1 Experiment Environment
	5.2 DataSet
	5.3 Evaluation Measure
	5.4 Verification Experiment 1
	5.5 Verification Experiment 2
	5.6 Verification Experiment 3

	6 Discussion
	6.1 Efficient Corpus
	6.2 Effectiveness of Bow and D2V
	6.3 Efficient Classifier
	6.4 Effectiveness of TFIDF

	7 Conclusion
	References

